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Abstract

Glassy materials differ greatly from crystalline solids; their lack of

long range order makes it difficult to model their behaviour. While

a lot of work has been done regarding the properties of glass-forming

polymers, their exact nature is not well understood. This thesis pri-

marily focuses on the chain-length dependence of glassy dynamics, in

particular poly(methyl methacrylate) (PMMA), which is of interest

due to its commercial and industrial applications.

Using dielectric spectroscopy, rheology, and calorimetry, the relax-

ation behaviour of chain-modes and the segmental, α, relaxation were

determined as a function of chain-length. Time-temperature super-

position adequately describes the rheology data, even though decou-

pling between chain-modes and segmental relaxations were observed.

Changes occur in the behaviour of the glass transition temperature,

Tg, at the molecular weight, M , of the ”dynamic bead”, MR. Relax-

ation times of the α relaxation and chain-modes of PMMA and other

polymer systems collapse when renormalized by Tg, suggesting univer-

sal behaviour. This occurs when the number of correlated monomers,

Na, in the α relaxation corresponds to MR.

Na was determined using modulated calorimetry and dielectric spec-

troscopy. A clear change in Na was observed at MR for less flexible

PMMA and polystyrene, whereas this was less pronounced for the

more flexible poly(dimethyl siloxane). This may relate to a change

from intermolecular to mainly intramolecular behaviour. Further-

more, for PMMA the activation enthalpies of the α and β relaxations

below Tg are approximately equal at MR, suggesting these relaxations



act on similar lengthscales. The activation enthalpy of the β relax-

ation also becomes M invariant for M > MR, suggesting MR charac-

terises the β relaxation.

Finally, the ionic conductivity was determined for PMMA and two

poly(propylene glycol) (PPG) chain-length systems. The α relax-

ation and conductivity were coupled for PPG, whereas for PMMA

decoupling occurred for M > MR. This demonstrates that polymer

behaviour leads to this decoupling in PMMA. We also show that non-

polymeric systems do not exhibit this decoupling behaviour.
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Chapter 1

Introduction

1.1 The glass transition

From an early age we are taught that when heating or cooling a material it will

transition between three equilibrium states of matter: solid, liquid, and gas. How-

ever, glasses are non-equilibrium solids, which possesses an amorphous structure,

similar to that of a liquid, but behave mechanically like a solid[7]. When cool-

ing a material, molecular motions slow down with decreasing temperature. If a

liquid is cooled below its melting temperature, Tm, it will crystallise if it is ther-

modynamically favourable to do so. However, if the cooling rate is sufficiently

large (or the molecules are not able to nucleate), crystallisation may be avoided

meaning the liquid becomes supercooled. Supercooled liquids exhibit a rapid in-

crease in viscosity with decreasing temperature and, at a particular temperature,

molecular rearrangements occur so slowly that upon further cooling the molecules

cannot find a new thermodynamic equilibrium on the relevant timescale. The cor-

responding temperature at which a supercooled liquid falls out of equilibrium is

referred to as the glass transition temperature, Tg. Below this temperature, the

material is referred to as a glass. Tg is generally defined as the temperature where

the viscosity is η = 1012Pa·s, corresponding to a characteristic relaxation time of

τα = 100s[8, 9].

Figure 1.1 shows the idealised behaviour of enthalpy, H(T ), or free volume,

V (T ), with decreasing temperature for a glass forming material.
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Figure 1.1: Typical behaviour of enthalpy (H(T )) or volume (V (T )) as a function

of temperature for a supercooled liquid cooled at two different rates through their

respective glass transition temperatures, Tg.

Commonly, a liquid cooled below Tm will crystallise. This is a first order phase

transition, which leads to a discontinuity in the first derivative of free energy[10],

as shown by the orange dashed line in figure 1.1. If crystallisation is avoided, the

liquid becomes supercooled (green dashed line in figure 1.1). The temperature

at which a material falls out of equilibrium depends on the rate of cooling: the

quicker the rate, the higher the temperature that this will happen. The blue and

red lines in figure 1.1 show the change in enthalpy or free volume where Tg,1 is

the result of a faster cooling rate than Tg,2.

The entropy of a liquid can be expressed as a sum of two components: a

vibrational entropy, Svib, which is approximately equal in both the liquid and

crystalline states; and a configurational entropy, Scon, which can be approximated

as the so-called excess entropy (the measured difference in entropy between liquid

and crystalline states Sexc = Sliq − Scry)[11]. An extrapolation of Scon in the

supercooled region falls below 0 at some finite temperature. A liquid where

Sconf < 0 is unphysical, and this finding was coined the ”entropy crisis” by

Kauzmann[12, 13] and the temperature where this is predicted to happen is known

as the Kauzmann temperature, TK . However, experimentally, a material always

falls out of equilibrium at T > TK .
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1.2 Relaxation dynamics in glasses

1.2 Relaxation dynamics in glasses

Glass forming materials exhibit multiple relaxation mechanisms, labelled α, β, γ,

etc in order of decreasing relaxation timescale (or increasing frequency)[14]. The

slowest relaxation mechanism (α relaxation), often referred to as the structural

relaxation, is that which governs glass formation (vitrification) of a material. The

so-called secondary relaxations (β, γ, etc) tend to be associated with more local

molecular motions. The following section will outline the behaviours of these

observed relaxation mechanisms.

1.2.1 The structural (α) relaxation

Glass forming dynamics are governed primarily by the α relaxation. At low tem-

peratures near Tg, the mechanism for this relaxation requires long range collective

(cooperative) motions of many units in order to occur. When the characteristic

timescale of the α relaxation, τα, is large, molecular motion is slow and the ma-

terial will behave as a solid. As temperature increases, τα increases, molecular

motions become faster and the material will behave more ‘liquid like’. Accord-

ing to Maxwell[15], the viscosity of a material, η, is related to τα through the

following equation,

η = G∞τα (1.1)

where G∞ is the instantaneous shear modulus. As stated in section 1.1, the

viscosity at which the glass transition is defined is η = 1012Pa·s. Glassy materials

may exhibit instantaneous shear moduli of G∞ ∼ 1010Pa and therefore the value

of τα which corresponds to the glass transition temperature with this definition

is τα ≈ 100s[16].

The temperature dependence of τα is commonly described by Vogel-Fulcher-

Tammann (VFT)[17–19] function, as shown in equation 1.2.

τα(T ) = τ0 exp

(
DT0

T − T0

)
. (1.2)
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Here, τ0 is the timescale of molecular motion at significantly higher temperatures

than the glass transition, and D is the so-called strength parameter which deter-

mines the ”curvature” of τα(T ). T0 is the temperature at which τα(T ) diverges,

which has been shown to relate to the Kauzmann temperature (TK , as described

in section 1.1)[20, 21].

Figure 1.2 is an Arrhenius plot showing typical behaviour of the timescales of

molecular relaxations in a glass forming material as a function of temperature.

The VFT behaviour of τα(T ) is shown by the red line. Tg is defined as the

temperature at which τα = 100s, indicated by the black dashed line. τβ (blue line)

and τγ (green line) are secondary relaxation mechanisms which exhibit Arrhenius

behaviour (represented by a straight line in an Arrhenius plot). These secondary

relaxations will be discussed in section 1.2.3.
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Figure 1.2: Arrhenius plot showing τα, τβ, and τγ as a function of 1/T for a

typically glass forming material (PMMA n=906).

As previously stated, the D parameter in equation 1.2 determines the curva-

ture of τα(T ). Another common metric for this temperature dependence is the

so-called dynamic fragility parameter, m, [22], which is defined as follows:

m =
d log τα
d(Tg/T )

∣∣∣∣
T=Tg

. (1.3)
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The fragility parameter, m, is a direct measure of the slope of τα in a Tg normalised

Arrhenius, or Angell[23], plot. The effect of variations of both D and m are shown

in figure 1.3.
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Fragile

Strong

Figure 1.3: Angell plot showing examples of strong (large D, small m) and fragile

(small D, large m) glasses.

The strength parameter, D, is a measure of the degree of departure from Ar-

rhenius behaviour, whereby the smaller the value, the more ”curved” the VFT

expression becomes. The fragility parameter, m, is a measure of the slope at

Tg/T = 1, and therefore describes how rapidly α relaxation dynamics slow down

with decreasing temperature at Tg. These two parameters are often used to de-

scribe glass forming materials as either being ”strong” or ”fragile”, the difference

of which is apparent in figure 1.3.

In addition to this, a derivative, or Stickel[24], analysis of the temperature

dependence of τα can be employed. This is shown in equation 1.4:

Z =

(
d log τα

d(1000/T )

)−1/2

=

(
DT0 log e1

1000(T0/T − 1)2

)−1/2

. (1.4)

This derivative linearises the VFT behaviour, whereby the slope of the Stickel

parameter, Z, is related to the VFT parameters D and T0, as shown in equation

1.5.

dZ

d(1000/T )
= −

( T0

1000D log e1

)1/2

. (1.5)
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A change in the slope of Z therefore indicates a change in VFT behaviour, which

is not as obvious in an Arrhenius plot. An example of this kind of derivative

analysis for the same VFT curves shown in figure 1.3 is shown in figure 1.4.
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Z
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Figure 1.4: Stickel plot showing the same VFT functions as figure 1.3. From

equation 1.5, the slope of this depends on D (shown), and T0 = 373.15K.

It is apparent in figure 1.4 that Arrhenius behaviour will be manifested as a

horizontal line (Z is invariant with temperature), and therefore the gradient is, in

effect, a measure of deviations from Arrhenius behaviour. This type of analysis

is often used to determine a change in VFT behaviour, which will be discussed

in section 1.2.3.

1.2.2 Models for the glass transition

The glass transition is a widely studied phenomenon. As such, many different

models exists which describe glassy dynamics with varying degrees of accuracy

and scale. The following reviews and books provide much more detail of these

models, amongst others [7, 9–11, 25–27]. However, this section will briefly outline

a few models which are commonly used to describe the glass transition and are

relevant to the work presented in this thesis.
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Entropy models

Many models are based on the role of entropy in glass formation. In this section,

two will be briefly outlined. These are: the Adam-Gibbs model[28], which ap-

plies to small molecular glass formers; and the Gibbs-DiMarzio model[29], which

applies to polymeric systems.

Adam and Gibbs suggested that the rate of molecular rearrangement depends

on the size of the rearranging region[28]. This so-called ”cooperatively rearranging

region” (CRR) is defined as the minimum size of a region which can reconfigure

into another configurational state independent of its surroundings[9, 28]. The

size of a CRR is assumed to be temperature dependent, increasing in size with

decreasing temperature. As previously discussed in section 1.1, if a liquid was

cooled in equilibrium to the Kauzmann temperature, TK , the configurational

entropy would be Scon = 0. Noting this, Scon(T ) can be defined as equation

1.6[10].

Scon(T ) = a
T − TK
T

, (1.6)

where a is a constant. Assuming that the activation energy for the α relaxation

is proportional to the volume of the CRR, the α relaxation timescales can be

expressed in terms of configurational entropy[11], Scon:

τα(T ) = τ0 exp

(
C

TScon(T )

)
. (1.7)

Here, the C is a material dependent constant, which is proportional to the vol-

ume of the CRR. By inserting equation 1.6 into equation 1.7, the VFT expression

(equation 1.2) is obtained. This assumes that TK is equal to the Vogel tempera-

ture, T0. The fact that TK and T0 are often close gives validity to the Adam-Gibbs

model, although this is not always the case[30].

An entropy model specifically devised for polymeric systems is that of the

Gibbs-DeMarzio model[29]. This is based on the Flory-Huggins model using

lattice statistics, and models polymer systems as a collection of chains where the

flexibility can be set. This yields a second-order phase transition at the point

where Scon = 0.
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1. INTRODUCTION

Free volume models

The notion of ”free” volume comes from the assumption that the volume of a

liquid can be divided into two parts: the first is the volume occupied by molecules

and the second is that which is not occupied by molecules. The latter of these

two is termed the ”free” volume, vf , and allows for the rearrangement of the

system[31, 32]. A material has to have a large enough vf in order to rearrange.

However, as a liquid is cooled, vf decreases due to thermal contraction. At a

certain temperature, vf is no longer large enough for the α relaxation to take

place, i.e. the material becomes dynamically ”stuck”. Above Tg, the free volume

expands according to equation 1.8

vf (T ) = vc + vg∆αl,g(T − Tg) (1.8)

where, vc is a constant, which is the free volume of the glass, divided by the

number of particles in the system, and ∆αl,g is the difference in the thermal

coefficients of the liquid and glass. This expression can be rewritten as equation

1.9.

vf (T ) = v∆αl,g(T − T0) (1.9)

Here, T0 is the temperature where free volume is zero if no glass transition occurs,

and v is simply defined so that at vf (Tg) = vc. The free volume is assumed to be

described using Boltzmann statistics, i.e. equation 1.10 holds.

p(vf ) =
1

v̄f
exp

(−vf
v̄f

)
(1.10)

where p(vf ) is the probability of finding vf in a system of average free volume,

v̄f . This can be expressed in terms of the α relaxation timescale, whereby the

relaxation depends on finding a free volume larger than vc, as shown in equation

1.11.

τα(T ) ∝ exp
( vc
v̄f (T )

)
. (1.11)

By replacing v̄f (T ) with equation 1.9, then a VFT expression is obtained, shown

in equation 1.12
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1.2 Relaxation dynamics in glasses

τα(T ) = τ0 exp
( B

T − T0

)
(1.12)

Where B = 1/v∆αl,g is a constant, which in a VFT equation is generally written

as DT0 instead.

Specific models based on this ”free” volume assumption can be problematic

due to the fact that vf (T ) is difficult to define[11, 33]. Furthermore, liquids under

isochoric conditions also exhibit a glass transition[34, 35], suggesting that there

is more to glass formation than simply the availability of ”free” volume.

The coupling model

The coupling model (CM) proposed by Ngai[36, 37] is based on the notion that in

order for a glass forming liquid to relax, there must be some cooperative motion

of molecules. This model suggests that a glass forming liquid comprising many

body interactions will exhibit a two-step relaxation, with some crossover time

tc[38] (for most systems this is of the order of tc ∼ 10−12s[39]), whereby the

motion of molecules transitions from being non-cooperative to cooperative. For

t < tc, the basic units relax independently via a single exponential decay:

φ(T ) = φ0 exp(−t/τ0), (1.13)

Where τ0 is the primitive relaxation timescale of the molecules. At t > tc, relax-

ations are said to occur via a stretched exponential decay:

φ(T ) = exp((−t/τ)1−n), (1.14)

where n is the ”coupling parameter”, and is related to the KWW stretching

parameter (to be discussed in section 2.1.2): n = 1−β. n is said to depend on the

intermolecular interactions of the system[40]. The crossover between equations

1.13 and 1.14 occurs when t = tc, and the continuity of these two functions leads

to the following expression:

τ = (t−nc τ0)1/(1−n). (1.15)

9



1. INTRODUCTION

This links the cooperative relaxation time, τ , to the primitive relaxation time

τ0. This model gives no insight into microscopic interactions of the molecules.

However, it has been shown to describe complex dynamics in a wide range of

phenomena, such as: the glass transition, polymer viscosity, and the dynamics

of ionics in glassy and crystalline conductors[40]. It has also been shown that

the α relaxation, along with the KWW stretching parameter, is able to yield

a primitive relaxation which is comparable to that of the β relaxation in some

systems[41, 42]. This coupling suggests that the β relaxation may be a precursor

to the α relaxation in these systems.

The potential energy landscape model

In 1969, Goldstein proposed a topographical model for describing viscous liquids

close to Tg[43]. It was suggested that a landscape representing 3N+1 dimensions

(3 spacial coordinates per particle, plus all particles of potential energy kBT )

could describe the configurational state of a system. An representation of this

potential energy landscape is shown in figure1.5.

Collective coordinates
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l e
ne
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y

Glass

"Ideal" glass

kBT2

kBT1

kBTK

Crystal

Figure 1.5: Representation of a potential energy landscape describing a glass

forming liquid.

Temperature affects how the system is influenced by the landscape[7]. In

figure 1.5, at T1, the temperature is too high for a particular system to be signif-

icantly influenced by the landscape and therefore the particles can freely diffuse.
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1.2 Relaxation dynamics in glasses

At T2, the landscape influences the configurational state of the system: the system

explores local minima which represent local relaxation mechanisms. As temper-

ature decreases further, the system will become trapped in a deeper potential

energy minima, which leads to non-exponential relaxation timescales[7]. Even-

tually, upon further cooling, the system will become ”stuck” in a large energy

minima, forming a glass. If it exists, the deepest energy minima should represent

that of the ”ideal” glass, which will have a potential energy minima at kBTK .

It is thought that more fragile systems have a larger density of minima in the

potential energy landscape[27, 44], representing more glassy states, than stronger

liquids. This model also provides an interpretation for the dynamic crossover

(discussed in section 1.2.3), whereby, within a larger potential energy minimum

representing a α relaxation, the system can also sample local minima representing

the β relaxation[45]. This dynamic crossover will be discussed in section 1.2.3.

1.2.3 Secondary relaxations

In addition to the α relaxation, glass forming materials exhibit faster, more local,

relaxation mechanisms. These are generally labelled β, γ, δ, etc in order from

slowest to fastest relaxation timescales at a fixed temperature[14]. Such relax-

ations typically display thermally activated Arrhenius behaviour, as the straight

lines show in figure 1.2[46]. This is quantified in equation 1.16.

τ(T ) = τ0 exp

(
∆H

kBT

)
. (1.16)

Here, τ0 is the relaxation time at high temperatures, ∆H is the activation en-

thalpy, and kBT is thermal energy.

The β relaxation was origninally assumed to be intramolecular in nature, in-

volving the reorientation or rotation of small, mobile, chemical groups[47]. How-

ever, Johari and Goldstein[48, 49] showed that small molecular systems, which

lack intramolecular degrees of freedom (such as toluene), also exhibit a β relax-

ation. Therefore, at least for small molecular systems, the β relaxation must have

an intermolecular component. This intermolecular nature of the β relaxation was

also shown to be the case for polymers[50, 51], whereby the mechanisms involve

motions within side groups as well as relaxation of the polymer backbone. The

11



1. INTRODUCTION

heterogeneous nature of this relaxation is the topic of much discussion[52, 53]. At

low temperatures close to Tg, it has been suggested that there exists ”islands of

mobility”, whereby some regions relax, while others are relatively immobile[54]

The timescale at which the α and β relaxations merge, marked τα,β in figure

1.2, relates to the so-called dynamic crossover. It has been observed that there

there are several changes in dynamic behaviour at the τα,β crossover, such as i)

decoupling between translational and rotational diffusion[55], ii) a change in the

dielectric strength (∆ε) of the α relaxation[56] and iii) a distinct change in the

VFT behaviour of τα, which has been observed in various small molecular and

polymeric systems[57].

Relaxations faster than the β relaxation are typically attributed to a much

more local motion, such as in PMMA, where the γ relaxation has been attributed

to some reorientation within the side groups[58].

1.3 Polymers and polymer dynamics

The term polymer comes from the Greek words poly, meaning ”many”, and mer,

meaning ”part”. Polymers are macromolecules which are made up of many co-

valently bonded repeated monomer units. A molecule containing only a few

monomer units is sometimes referred to as an oligomer[59]. Polymer properties

such as backbone chemistry, side groups, tacticity, and molecular weight have

a huge impact on both glassy and chain dynamics. Despite this, the ability to

characterise polymers using limited resolution models is key to understanding

how polymer chains interact. A visualisation of the relaxation moduli for a linear

entangled polymer is shown in figure 1.6.
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1.3 Polymers and polymer dynamics

log(time)
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Ge
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τα
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Figure 1.6: Simplified time domain relaxation moduli of a liner entangled poly-

mer.

Figure 1.6 shows that at t < τα, glass dynamics dominate, and the material

acts like an elastic solid. At t > τα, the polymer enters a viscoelastic regime,

whereby the interaction of polymer chains become important. In this regime,

so called Rouse modes occur, which relax the chain through a series of normal

modes. At t > τe, entanglement dynamics become applicable and polymer motion

is hindered by overlapping chains. Finally, at t > τrep, these chains are able to

move through each other (reptate) and the polymer system is relaxed, exhibiting

viscous behaviour. In this section, these polymer behaviours will be outlined. In

this section, basic models of chain behaviour in these regimes will be outlined,

and will closely follow well established literature[5, 60, 61].

1.3.1 The freely jointed chain model

For a flexible polymer of n + 1 backbone atoms, the end-to-end vector can be

expressed simply using equation 1.17[60],

Rn =
n∑
i=1

ri (1.17)

Rn and ri represent the end-to-end vector (as a summation of n bonds) and the

ith bond vector respectively. This is visualised in figure 1.7, showing a simple

schematic of a flexible polymer with n+ 1 atoms.
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Figure 1.7: Schematic of a single flexible polymer containing n+ 1 atoms with n

bonds between them.

Different chains will have different end-to-end vectors. In an isotropic polymer

system, the mean end to end distance is zero, 〈Rn〉 = 0. However, the mean-

square end-to-end distance is non-zero:

〈R2
n〉 = 〈Ri ·Rj〉 =

〈( n∑
i=1

ri

)
·
( n∑
j=1

rj

)〉
=

n∑
i=1

n∑
j=1

〈ri · rj〉. (1.18)

If all backbones bonds are of the same length, i.e. |ri| = l, the scalar product in

equation 1.18 can be written in terms of l and the bond angle between ri and rj,

θi,j. This is expressed as:

ri · rj = l2 cos θi,j. (1.19)

Therefore, the mean-square end-to-end distance becomes:

〈R2
n〉 =

n∑
i=1

n∑
j=1

〈ri · rj〉 = l2
n∑
i=1

n∑
j=1

〈cos θi,j〉. (1.20)

The freely jointed chain model assumes constant bond length, and that there are

no correlations between different bond vectors[60], i.e. 〈cos θi,j〉 = 0 for i 6= j.

Therefore, equation 1.20 contains n non-zero terms (cos θi,j = 1 for i = j) and

the mean-square end-to-end distance becomes:

〈R2
n〉 = nl2. (1.21)
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1.3 Polymers and polymer dynamics

In reality, there are correlations between adjacent (and nearby) bond vectors,

i.e. 〈θi,j〉 6= 0. However, bond vectors far enough apart will be uncorrelated.

Therefore, for bond vector ri, the summation of all other bond vectors, ri,j can

be expressed as a finite number[60, 62]:

C ′i =
n∑
j=1

〈cos θi,j〉. (1.22)

Therefore, the mean-square end-to-end distance in equation 1.20 becomes:

〈R2
n〉 = nl2

1

n

n∑
i=1

C ′i (1.23)

Flory’s characteristic ratio, C∞, is the average of C ′i over all backbone bonds in

a polymer, expressed as:

Cn =
1

n

n∑
i=1

C ′i. (1.24)

This yields equation 1.25 as the mean-square end-to-end distance of a polymer:

〈R2
n〉 = Cnnl

2. (1.25)

For large n where this value becomes independent on chain length, the value

Cn → C∞. The value of C∞ depends on the local flexibility of the polymer chain.

For example, in a flexible polymer such as polyisoprene, C∞ = 4.7, whereas for a

more rigid polymer such as poly(methyl methacrylate), C∞ = 8.2[60].

Rather than describing a polymer chain in terms of single monomer units, an

ideal polymer can be described as a freely jointed chain with N units of length

b, otherwise known as the Kuhn length[61]. This is described in terms of the

contour length, Rmax:

Rmax = Nb, (1.26)

Where the mean-square end-to-end vector is described as:

〈R2
n〉 = Nb2 = bRmax = C∞nl

2. (1.27)
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Therefore, the Kuhn monomer length can be defined as:

b =
〈R2

n〉
Rmax

=
C∞nl

2

Rmax

. (1.28)

In effect, this definition describes real polymers as freely jointed chains with

”Kuhn monomers” comprising of multiple (∼10) monomer units.

1.3.2 Rouse model

The Rouse model is often used to describe chain dynamics for unentangled poly-

mer systems. This model describes a polymer chain as a series of independent

Rouse monomers of size b attached by harmonic springs[60, 63], as shown in figure

1.8.

Figure 1.8: Schematic of a Rouse chain consisting of beads connected by springs.

The polymer in figure 1.8 consists of N monomers connected by springs of

size b. The monomers interact with each other through the springs, each with a

friction coefficient ζ. Therefore, the total friction coefficient of the Rouse chain

is simply the sum of these contributions, shown in equation 1.29.

ζR = Nζ. (1.29)

Here, ζR is the friction coefficient of the entire Rouse chain. Using the Einstein

relation (D = kBT/ζ), this can be expressed in terms of a diffusion coefficient:

DR =
kBT

ζR
=
kBT

Nζ
. (1.30)
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1.3 Polymers and polymer dynamics

Where DR is the diffusion coefficient of the Rouse chain, and kBT is thermal

energy. The time it takes for a polymer to diffuse its own distance is coined the

Rouse time, τR:

τR ≈
R2

DR

≈ R2

kBT/(Nζ)
=

ζ

kBT
NR2. (1.31)

The Rouse time is of particular importance as it represents the crossover between

viscoelastic and diffusive behaviour of a polymer chain[60]. For timescales shorter

than the Rouse time, t < τR, the chain is unrelaxed (or partly relaxed) and will

therefore exhibit viscoelastic properties. However, for timescales longer than the

Rouse time, t > τR, the chain is relaxed and can diffuse, exhibiting viscous

properties.

The Rouse chain has N − 1 springs but, for long chains, this number can be

approximated as N . Due to the fractal nature of polymers, the size of a polymer

is related to the number of monomers by a power law, as shown in equation 1.32:

R ≈ bN ν . (1.32)

Here, ν is the reciprocal fractal dimension (ν = 1/2 for a ideal linear polymer

chain with no interactions[60]). The relaxation timescale of individual monomers

can be expressed as follows:

τ0 =
ζb2

kBT
. (1.33)

This is the relaxation time of a single Rouse bead. Inserting equation 1.33 into

equation 1.31 yields the Rouse time:

τR ≈
ζ

kBT
NR2 ≈ ζb2

kBT
N1+2ν . (1.34)

As previously stated, for ideal linear chains, ν = 1/2. Therefore, the Rouse time

for such chains simply becomes:

τR ≈ τ0N
2. (1.35)

17



1. INTRODUCTION

Rouse derived a full expression for the relaxation time of an ideal chain[63], which

differed from this derivation by a factor of 1/(6π2). Hence, the full expression of

the Rouse time is fomulated as:

τR =
ζb2

6π2kBT
N2. (1.36)

This is the timescale for an entire Rouse chain to relax. τR and τ0 are important

quantities that determine the behaviour of a Rouse chain: when t < τ0, the beads

are unable to relax, and therefore exhibit an elastic response; for τ0 < t < τR, the

response will be viscoelastic; and when t > τR, the entire chain is relaxed and

will exhibit a viscous response[62].

Equation 1.35 gives the relaxation time of the entire Rouse chain. Therefore

the relaxation time for a N/p monomers can be expressed as:

τp ≈ τ0

(N
p

)2

, (1.37)

Where p = 1, 2, 3, ..., N . From this, it is clear that p = 1 and p = N represent

the longest and shortest Rouse times respectively. Breaking the chain down into

N/p modes gives a spectrum of relaxation modes, each with its own relaxation

timescale. Therefore, at time t = τp, modes with a higher index than p are mostly

relaxed, whereas modes with a lower index than p are mostly unrelaxed[60].

The number of unrelaxed modes at time t = τp is equal to p. Each unrealxed

mode can contribute energy of the order of kBT to the relaxation modulus. This

relaxation modulus is proportional to kBT and the number density of sections

with N/p monomers:

G(τp) ≈
kBT

b3

φ

N
p. (1.38)

Here, φ is the volume fraction for the chain with N/p beads. By inserting p

from equation 1.37 in to equation 1.38, this yields the relaxation modulus for

intermediate timescales:

G(t) ≈ kBT

b3
φ
( t
τ0

)1/2

for τ0 < t < τR. (1.39)
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1.3 Polymers and polymer dynamics

Beyond the longest Rouse time (terminal regime), the relaxation modulus will

decay as a single exponential. Therefore the relaxation modulus beyond τR will

be a product of equation 1.38 and a single exponential:

G(t) ≈ kBT

b3
φ
( t
τ0

)1/2

exp(−t/τR) for τR < t. (1.40)

The relaxation modulus of the entire Rouse spectrum can be be expressed as a

sum of each individual Rouse mode[60, 64]:

G(t) =
kBT

Nb3
φ

N∑
p=1

exp(−t/τp) =
ρkBT

M

N∑
p=1

exp(−t/τp). (1.41)

This is the relaxation modulus of the Rouse model. The pre factor here can also

be expressed in terms of a density and polymer molecular weight. Using a Fourier

transform, this can be expressed as a complex shear modulus in the frequency

domain:

G∗(ω) =
ρkBT

M

N∑
p=1

iωτp
1 + iωτp

. (1.42)

Equations 1.41 and 1.42 are the standard expressions of the Rouse model for the

relaxation modulus in time and frequency domain respectively. For short chains

containing a relatively small amount of Rouse beads, τp takes the form[47]:

τp =
τ1

sin2(pπ/2(N + 1))
. (1.43)

In this project, the Rouse model was used in this way to describe the relaxation

moduli of chain modes for unentangled polymers.

1.3.3 Entanglement and reptation models

Above a certain molecular weight, polymer chains become entangled. This is due

to overlapping polymer chains imposing topological constraints on each other, i.e.

hindering motion due to the fact that they cannot pass through each other. These

restraints are referred to as entanglements[61]. To characterise this behaviour, the

tube model is employed, which describes a single polymer chain as being contained
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in an imaginary tube, the shape of which is determined by the chemistry of the

particular polymer system[64, 65]. A schematic of this is shown in figure 1.9.

Figure 1.9: A basic schematic showing a polymer chain (blue) constrained due to

entanglements from other chains (red) to a tube with diameter a.

The polymer, shown in blue in figure 1.9, can only diffuse within the tube

(black dashed lines) due to it being constrained by other polymer chains (shown

in red). In this model, each monomer has limited movement and will stick close

to the primitive path (shown by the green dotted line) with some fluctuations

due to thermal motions which define the diameter of the tube, a[60]. Long chain

polymers may have many entanglements per molecule depending on its molecu-

lar weight. The molecular weight of the polymer between these entanglements is

called the entanglement molecular weight, Me, which is comprised of Ne Rouse

monomers. The tube diameter is related to the end-to-end distance of the entan-

glement strand, shown in equation 1.44.

a ≈ bN1/2
e , (1.44)

where b is the size of the monomers. This entanglement strand defines the mod-

ulus of the rubber plateau (Ge, visualised in figure 1.6):

Ge =
ρkBT

Me

. (1.45)

Here, ρ is the density and kBT is thermal energy. The role of entanglement on

the mechanical response is of crucial importance in understanding the dynamics

of entangled polymers[60].

The polymer can be viewed as a random walk of either entanglement strands

(N/Ne strands of size a) or monomers (N monomers of size b). Thus, the total

length of the polmer, R, can be expressed as:
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1.3 Polymers and polymer dynamics

R ≈ a
(N
Ne

)1/2

≈ bN1/2. (1.46)

The average length of the primitive path, 〈L〉, is the product of a and N/Ne:

〈L〉 ≈ a
N

Ne

≈ b2N

a
≈ bN

N
1/2
e

. (1.47)

For polymers where the chain length is much greater than the strand length

(N >> Ne), the modulus may be relatively constant over a long time due to

entanglements[60]. The occupied volume of an entanglement strand is the product

of Ne and the monomer volume, v0:

v0Ne =
Me

ρ
≈ v0

a2

b2
≈ v0

b3
a2b. (1.48)

Therefore, using equation 1.45, the plateau modulus can be defined as:

Ge =
ρkBT

Me

≈ kBT

v0Ne

≈ b2kBT

a2v0

. (1.49)

This shows that the plateau modulus depends on thermal energy, the tube diam-

eter and the size of the monomers.

Eventually, the polymer chain is able to escape this tube in a mode of motion

described by de Gennes as ”reptation”[65]. This curvilinear motion along the

tube is characterised by the friction coefficient, ζ[60] and the curvilinear diffusion

coefficient, describing the motion of the polymer along the tube is defined as:

Dc =
kBT

Nζ
. (1.50)

The time the chain takes to diffuse out of its original tube of length 〈L〉 is:

τrep ≈
〈L〉2

Dc

≈ ζb2N3

NekBT
. (1.51)

Here, τrep is often referred to as the reptation time. Equation 1.51 suggests

that τrep ∝ N3. However, modifications to this simple model allow for (i) tube

length fluctuations, whereby the size of the tube changes due to Rouse motion

at the chain ends, and (ii) constraint release, whereby tubes may reorganise due

21



1. INTRODUCTION

to entanglement release from the motion of the surrounding chains[64]. Taking

these factors into account, one finds that τrep ∝ N3.4[65].

These models can predict the relaxation modulus, G(t), for entangled poly-

mer systems. On length scales shorter than Ne, relaxation dynamics are still

governed by Rouse dynamics. The crossover from Rouse dynamics to entangle-

ment dynamics occurs at the timescale τe:

τe ≈ τ0N
2
e . (1.52)

Here, τe is often referred to as the entanglement time and is simply the Rouse

time of an entanglement strand.

Many models exist that predict relaxation moduli of entangled polymers using

the tube model[66–68]. For this project, the Likhtman-McLeish model[5] was used

to describe the relaxation moduli of polymer dynamics. This is a tube model for

linear, monodisperse polymers, which assumes that different contributions to the

moduli can be broken down into different components: (i) constraint release,

(ii) longitudinal relaxation modes along the tube and (iii) Rouse modes between

entanglements.

1.3.4 Molecular weight and microstructure

The polymer chains in a sample will not contain exactly the same number of

monomer units i.e. there will be some degree of polydispersity. To distinguish

between grades of polymers, the number average, Mn and weight average, Mw,

molecular weights are defined[61, 69]. These are shown in equation 1.53 and 1.54.

Mn =
∑ niMi

ni
(1.53)

MW =
∑ niM

2
i

niMi

(1.54)

where ni is the number of molecules of molecular weight Mi, which are summed

up over i molecular weights. Mn is simply the total weight of a sample divided

by the total number of polymers in that sample whereas MW depends on both
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the number of polymers but also on the weight of each polymer. From these two

quantities, the polydispersity index, PDI, can be defined as follows:

PDI =
MW

Mn

. (1.55)

Samples which contain chains of identical molecular weight are ”monodisperse”,

which corresponds to PDI=1. Through careful polymerisation techniques, low

PDI samples can be produced. However, in reality, polymeric samples will always

have some degree of polydispersity.

Gel permeation chromatography (GPC) can be used to characterise the molec-

ular weight distribution of a sample[61]. This is a form of size exclusion chro-

matography, which differentiates between molecules of different sizes by the speed

at which they can move through a porous medium. Smaller molecules will have a

larger retention time due to them being able to diffuse in and out of the pores. An

example of a typical molecular weight distribution of two polymers with different

PDI is shown in figure 1.10.
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Figure 1.10: Mass fraction, W , as a function of molecular weight, M , for two

different samples with MW = 100kg/mol, but different PDI.

Figure 1.10 shows the mass fraction of two samples, both with MW = 100kg/mol,

but different PDI. The red curve has a higher PDI, and is clearly broader than

the blue curve with a lower PDI. Of course, W (logM) does not necessarily have a

smooth distribution, this depends entirely on polymerisation technique and this
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may be tailored to suit particular needs. Multi-modal distributions can also be

obtained by mixing samples of different M .

Throughout this project, we focused primarily on relatively monodisperse

oligomeric/polymeric samples (PDI< 1.44) to reduce the effects of polydispersity

on the measured relaxation dynamics.

Tacticity

Another important property of polymer systems are the side groups attached to

the main polymer backbone. The relative orientation of side groups with respect

to the backbone is termed ’tacticity’, which can vary due to chiral centres in the

backbone[61].

Tacticity can have large effects on polymer behaviours such as viscosity, glass

formation, and crystallisation. Therefore, knowledge of this is crucial when at-

tempting to characterise any polymer system. The different types of tacticity

are:

• Atactic - Side groups randomly orientated along the chain.

• Isotactic - All the side groups are orientated in a single direction along the

chain.

• Syndiotactic - Side groups are in alternating positions along the chain.

This relative orientation of side groups along the chain can be tailored through

particular synthesis techniques and can be determined post synthesis through

experimental techniques such as NMR[70, 71]. In this project, all polymer systems

are reported to be atactic by their manufacturers and therefore side groups should

have no overall directional preference relative to each other.

1.4 Poly(methyl methacrylate)

A polymeric system of particular importance to this project was poly(methyl

methacrylate) (PMMA). This section will provide a brief overview of literature

relevant to this work.
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PMMA is more commonly known as acrylic, or by its original trade name

”Perspex”. It has a wide variety of both commercial and industrial applications:

from a high-impact glass substitute, to medicine and dentistry. The PMMA

molecular structure is shown in figure 1.11.

Figure 1.11: Poly(methyl methacrylate) (PMMA) molecule, monomer molecular

weight M0 = 100g/mol.

PMMA is a vinyl polymer with a monomer molecular weight ofM0 = 100g/mol.

It is commonly produced via free radical polymerisation of methyl methacrylate.

The first significant study of the mechanical properties of PMMA was per-

formed in 1940 by Alexandrov and Lazurkin in the USSR[72]. They measured the

effect of frequency and temperature on deformation due to an applied sinusoidal

stress. This was, in effect, a study of the structural relaxation dynamics.

Early work done in the 1950s and 60s laid the groundwork in characterising

both the rheological and dielectric responses of polymeric PMMA[47]. These

studies encompassed chain modes, α, β, and γ dynamics for long-chain PMMA,

providing detailed relaxation behaviour over a wide dynamic range. Since then,

more detailed rheology studies have been carried out, such as looking at sub-

rouse dynamics using higher resolution techniques[73], finding that the onset of

these relate to the merging of the α and β relaxations. It is also noted that the

merging of these relaxation mechanisms appears to occur at the same temper-

ature when measured using rheology[74] and broadband dielectric spectroscopy
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(BDS)[75]. However, due to the differences in these techniques, the corresponding

τα is different by an order of magnitude.

Other work using BDS by Casalini and Roland[76] yielded τα(T ) below Tg,

which was shown to correspond to the decay in the dielectric strength of the β

relaxation. This was consistent with a more direct determinations of τα(T ) below

Tg for PMMA[77]. This group also performed pressure dependent dielectric and

calorimetric measurements on PMMA[78], whereby they determined the number

of dynamically correlated units in the α relaxation as a function of τα. Inter-

estingly, they found that unlike fragility, which shows pressure dependence, the

number of dynamically correlated units does not alter with pressure. This shows

a disconnect between dynamic heterogeneities and fragility.

The size of the dynamically correlated region (related to the number of dy-

namically correlated units) has been determined for long-chain PMMA by others

using differential scanning calorimetry (DSC)[79, 80]. This has been found to

be between ξa ∼ 1.5 − 2.5nm, which is consistent with other fragile polymeric

systems.

The effects of tacticity and end-groups of both oligomeric[81] and long-chain[82]

PMMA has been studied using 1H and 13C NMR, which allows for these properties

to be determined using this technique. PMMA is also a well studied polymer in

molecular dynamics simulations (MD)[83–85] with particular focus on the effects

of tacticity on the Tg.

1.4.1 Molecular weight studies

In this project, the molecular weight dependence of the dynamics of PMMA

was a primary focus. An early example of a systematic molecular weight, M ,

study on PMMA was carried out by Thompson[3] in 1966. This focused on

the heat capacity response measured using differential thermal analysis (DTA)

over the glass transition on a range of oligomeric and polymeric samples with

varying tacticity. It was shown that within this M range, Tg exhibits Fox-Flory

behaviour[86]. A more recent DSC study by O’Driscoll et. al.[4] showed that a

modified Fox-Flory expression had to be employed when including small molecular

weight PMMA samples.
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Further DSC studies by Andreozzi et. al.[87] showed disagreement with the

potential energy landscape model for PMMA whereby, with changing M , the

change in heat capacity between liquid and glass and dynamic fragility, m, did

not correlate as they do for small molecular glass formers. Low molecular weight

PMMA samples have been studied using BDS and DSC by Casalini et. al.[88].

They determined an equation of state from PVT measurements and comment on

the large Tg and m change across this low M range, attributing it to the relatively

low chain flexibility in PMMA compared to other polymer systems.

Two examples of rheological measurments of PMMA, covering the large oligomer

to polymer M range, looked at how both M and tacticity affect entanglement,

viscosity, and Tg[89, 90]. Fuchs et. al. comment that these properties of PMMA

within this M range exhibit no outlying behaviour with respect to other polymer

systems.

In 2018, Zulli et. al.[91] measured the viscosity and the rotational diffusion (of

a probe molecule) of a relatively monodisperse PMMA M series spanning from

small molecular glass former to polymer. This was performed using both rheology

and electron spin resonance spectroscopy. They note that a decoupling between

the viscosity and rotational diffusion of the probe occurs at M ∼ 1200g/mol,

and that at this point there is a changeover between small molecular to polymer

behaviour. This general finding is consistent with work done in this project.

1.5 Thesis overview

This thesis will discuss work done in characterising the rheological, dielectric,

and calorimetric responses of chain length series of linear polymer systems, with

particular focus on PMMA. An overview of each chapter is shown below.

Chapter 3 focuses on the rheological response of a chain-length series of

PMMA spanning from small molecular glass former to fully entangled polymer.

This data was analysed and modelled using standard techniques, including ap-

plying time-temperature superposition (TTS) over the dynamic range spanning

from the glass to the melt. The dielectric and calorimetric responses were com-

pared to rheology in order to determine the validity of using TTS across this
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dynamic range, which may be invalid due to the decoupling of chain and segmen-

tal, α, dynamics. We show that TTS is approximately valid in describing the α

relaxation, whereby τα values obtained from TTS and broadband dielectric spec-

troscopy can be superimposed over a wide dynamic range. τα data are compared

to other polymer systems, and we note a ”universal” scaling of chain dynamics,

and τα at longer times when normalised by Tg/T . We suggest a link between this

universality and the size of the correlated region of the α relaxation.

In chapter 4, the results from advanced calorimetric and dielectric techniques

are presented. These measurements were performed in order to determine the

number of correlated units involved in the α relaxation. This was carried out

on a PMMA, PS, and PDMS chain-length series spanning from small molecular

glass former to fully entangled polymer. The effect of the difference in flexi-

bility/fragility between PMMA, PS, and PDMS was apparent in the number of

cooperative units as a function of molecular weight. We surmise that rigid/fragile

polymer systems such as PMMA and PS exhibit a changeover between a mostly

intermolecular and a more intramolecular cooperativity as chain behaviour be-

comes apparent.

Lastly, chapter 5 contains work done to determine the role of chain-length on

the coupling of ionic conductivity and the α relaxation. This was performed on

a PMMA, PPG, and PPG-DME molecular weight series. We show that these

dynamics decouple in relatively rigid/fragile PMMA series when chain behaviour

becomes apparent, whereas this decoupling does not occur in the flexible/strong

PPG and PPG-DME series. This is also compared to small molecular glass form-

ers of varying fragility and Tg, which all show coupling between ionic conductivity

and the α relaxation. Therefore, it is noted that any correlations between these

fragility or Tg and decoupling is due to polymeric behaviour.
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Chapter 2

Experimental

In this chapter, the experimental techniques used in the work will be outlined.

These were: Shear rheology; Broadband Dielectric Spectroscopy (BDS); and Dif-

ferential Scanning Calorimetry (DSC). These techniques provide access to relax-

ation dynamics over timescales spanning 10−8 < τ < 103s, each having their

own advantages and disadvantages in probing different relaxation mechanisms in

glass forming materials. While this chapter outlines the basic principles of these

techniques and the equipment used, more specific details on the interpretation of

the data will be discussed within other chapters as required.

2.1 Rheology

”We see how quickly through a colander the wines will flow; how, on the other

hand, the sluggish olive-oil delays: no doubt, because ’tis wrought of elements

more large, or else more crook’d and intertangled”

- On the Nature of Things, Lucretius 99-55BC[92].

The term Rheology comes from the Greek, literally meaning ”the study of

flow”. Varying rheological properties of materials are apparent in nature: from

water, which flows freely, exhibiting viscous properties, to steel, which deforms

upon imparting large forces, displaying elastic properties. Material behaviour

between these two extremes are coined viscoelastic properties[8]. These varying

properties are a result of how the atoms or molecules within a material interact
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and move, and hence measurements of these properties give information on both

the microscopic structure and dynamics of these materials.

In this section, the principles needed to determine the complex shear modulus

of viscoelastic liquids and polymers, both in the melt and glassy states, will be

outlined. Along with this, the rheological equipment and testing methods will be

discussed in the context of well established literature and procedures.

2.1.1 The complex shear modulus

The shear modulus is defined as a material’s resistance to a shear deformation.

Quantitatively, this is the ratio of shear stress to shear strain, as visualised in

figure 2.1.

Figure 2.1: Visualisation of a shear deformation resulting from an applied a shear

force.

Figure 2.1 shows a simple schematic of a shear deformation induced by an

applied shear force. From this, a few basic terms are defined:

• Shear stress, σ = F/A, is the shear force, F , applied perpendicular to area

A. This has the unit of N/m2.

• Shear strain, γ = L/h, is the normalised deformation of the material due

to the applied shear stress; the strain is dimensionless.

• Shear rate, γ̇ = ν/h, is the rate of change of the shear stress, which has the

unit s−1.
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2.1 Rheology

These definitions hold for the deformation of a simple rectangular geometry.

Using these quantities, both the shear modulus, G, and viscosity, η, are defined

using equations 2.1 and 2.2 respectively.

σ = Gγ (2.1)

σ = ηγ̇ (2.2)

These are the basic definitions of a Hookean solid (defining G) and a Newtonian

liquid (defining η), and are applicable to ideally elastic and viscous materials. If

a sinusoidal strain, γ = γ0 sin(ωt) (where γ0 is the amplitude of the strain), is

applied, equations 2.1 and 2.2 become equations 2.3 and 2.4 respectively.

σ(t) = Gγ(t) = Gγ0 sin(ωt) (2.3)

σ(t) = ηγ̇(t) = ηγ0ω cos(ωt) = ηγ0ω sin(ωt+ π/2) (2.4)

In the case of an ideal elastic response shown in equation 2.3, σ(t) and γ(t) are

in-phase, i.e. δ = 0 (where δ is the stress-strain phase angle). Whereas, for an

ideal viscous response shown in equation 2.4, σ(t) and γ(t) are out of phase by

δ = π/2. Generally, materials are viscoelatic and thus exhibit both elastic and

viscous properties. An example of the stress-strain behaviour of a viscoelastic

material is shown in figure 2.2.
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time

δ

σ

γ

Figure 2.2: An applied oscillatory strain, γ(t), resulting in a stress, σ(t), out of

phase by angle, δ.

Figure 2.2 shows a typical stress-strain response of a viscoelastic material,

whereby upon the application of an oscillatory strain, γ(t) = γ0 sin(ωt), the

resulting stress leads the strain by some phase angle, σ(t) = σ0 sin(ωt+ δ) (where

σ0 is the amplitude of the stress). This behaviour defines the complex shear

modulus, as shown in equation 2.5.

G∗ =
|σ0|
|γ0|

eiδ = G′ + iG′′ (2.5)

Using Euler’s relation (eiδ = cos(δ) + i sin(δ)), G′ and G′′ can be expressed as

equations 2.6 and 2.7.

G′ =
|σ0|
|γ0|

cos(δ) (2.6)

G′′ =
|σ0|
|γ0|

sin(δ) (2.7)

These define G′ and G′′ as the in-phase (elastic) and out-of-phase (viscous) com-

ponents of the complex shear modulus. G′ is often referred to as the storage

modulus, as this represents energy stored during deformation which reforms the

material to its original shape once the load has been released. In contrast, G′′
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is often referred to as the loss modulus, as it represents the energy lost dur-

ing deformation[8]. A loss factor is therefore defined as the ratio of these two

components, as shown in equation 2.8.

tan δ =
G′′

G′
(2.8)

tan δ is referred to as the loss tangent, and describes whether a material repose is

more elastic (G′ dominant, tan δ < 1) or more viscous (G′′ dominant, tan δ > 1).

2.1.2 The Maxwell model and stretched exponential

A basic model for viscoelatic materials is that of the Maxwell model. This is

comprised of a spring and dashpot in series[93], as shown in figure 2.3.

Figure 2.3: Maxwell model, comprised of a spring (with modulus G0) and dashpot

(with viscosity η) in series.

Upon an instantaneous deformation (strain), a Maxwell model will exhibit an

elastic response (G0). However, over time the addition of the dashpot will allow

the system to relax through viscous flow. This gives rise to a single exponential

decay function, shown in equation 2.9.

GMW (t) = G0 exp(−t/τ) (2.9)

This is a single exponential decay with characteristic timescale τ = η/G0, where

G0 is the instantaneous shear modulus at t = 0. For an oscillatory experiment,

as outlined in section 2.1.1, the can be expressed in complex form, as shown in

equation 2.10.

G∗MW (ω) = iω

∫ ∞
0

eiωtGMW (t)dt = G∞
iωτ

1 + iωτ
(2.10)
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Equation 2.10 can be obtained through a Fourier transform of equation 2.9, yield-

ing the complex shear modulus of the Maxwell model. The instantaneous shear

modulus, G∞, now occurs at infinite frequency, and is equivalent to G0 from equa-

tion 2.9. The complex shear modulus of the Maxwell model is shown in figure

2.4.
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Figure 2.4: Maxwell model showing log-log behaviour of G′(ω) and G′′(ω) of

complex shear modulus.

The low frequency (ω < τ) behaviour for the Maxwell model shown in figure

2.4 shows power-law behaviour, with slopes of 2 and 1 for G′ and G′′ respectively.

This is characteristic of terminal (melt) behaviour. At higher frequencies (ω > τ),

G′ reaches a plateau with modulus G∞, and G′′ falls off with a power-law slope

of −1.

This Maxwell model is the simplest relaxation spectrum corresponding to a

single relaxation mode. In reality, relaxation spectra are generally more complex,

containing a distribution of relaxation modes. A common alteration of the simple

Maxwell model is a stretched exponential, or Kohlrausch-Williams-Watts (KWW)

expression[94]. In the time domain, this is shown in equation 2.11.

GKWW (t) = G0 exp
[
− (t/τ)β

]
(2.11)

This expression is similar to equation 2.9, with the addition of a stretching pa-

rameter β, which when constrained to 0 < β < 1 leads to broadening of the
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relaxation spectra. The KWW expression has no analytic expression in the fre-

quency domain, and therefore requires a numerical Fourier transform to convert

to a complex shear modulus. However, Bergman[95] produced a simple expression

which approximates the imaginary response of the frequency dependent KWW

expression, G′′KWW (ω). This is produced through a simple ansatz describing a

minimum representing the inverse loss peak (originally described for the dielec-

tric loss, but is applied here to loss modulus), G′′(ω), which is characterised by

low and high frequency power-law behaviour. This is shown in equation 2.12.

G′′p
G′′(ω)

= Aω−a +Bωb + C (2.12)

Here, −a and b correspond to the low and high frequency power-law flanks respec-

tively, and a C is a constant setting the bluntness of the minimum. The derivative

of equation 2.12, should be zero at the minimum, occurring at ωp, which leads to

equations 2.13 and 2.14

A =
(b(1− C)

a+ b

)
ωap (2.13)

B =
(a(1− C)

a+ b

)
ω−bp (2.14)

By inserting these expressions in equation 2.12, this yields equation 2.15.

G′′(ω) ≈
G′′p

(1−C)
a+b

[
b
(
ω
ωp

)−a
+ a
(
ω
ωp

)b]
+ C

(2.15)

Equation 2.15 is very general response function for G′′(ω), which can describe a

loss peak using 5 parameters. Where, G′′p and ωp describe the peak loss modulus

and frequency respectively, a and b describe the low and high frequency power-

law behaviours respectively, and C effects the bluntness of the maxima. By

setting a = 1 and C = 1 − b, this has been shown to describe the loss peak of

a KWW expression in the frequency domain to a very good approximation[95].

This expression is shown in figure 2.16.

G′′KWW (ω) ≈
G′′p

1− β + β
1+β

[β(ωp/ω) + (ω/ωp)β]
(2.16)
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In this expression, G′′p and ωp also describe the peak modulus and frequency of

G′′, and therefore ωp relates to the characteristic timescale (τ = 1/ωp). The

b parameters from equation 2.15 is now the KWW stretching parameter, β, in

equation 2.16. Examples of this expression are shown in figure 2.5.
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Figure 2.5: KWW approximation for G′′ from equation 2.16 showing the effect

of stretching parameter β.

The effect of a decrease in the stretching parameter, β, is apparent in figure

2.5. For β = 1, this simply corresponds to G′′(ω) of the the Maxwell model

(shown previously in figure 2.4), with high and low frequency power-law flanks

of 1 and −1 respectively. As β decreases, the high frequency flank broadens,

displaying a power-law behaviour with slope −β.

This analytic approximation of the KWW expression only produces G′′(ω),

whereas G′′(ω) also has a corresponding G′(ω). G′ and G′′ are related through

the Kramer-Kronig relation[96], and therefore G′ can be obtained based on G′′. A

method of obtaining G′ from G′′ for this KWW approximation will be discussed

in section 3.1.2.

2.1.3 Time-temperature superposition

The complex shear modulus response of materials can be complicated, with dy-

namics spanning many decades in frequency. Typically, shear rheometers are

able to perform measurements over frequency ranges from ∼ 10−3rad/s to a few
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hundred rad/s[97]. This limits the amount of dynamic information which can be

obtained.

In order to probe dynamic behaviour over a wider frequency range, a time-

temperature superposition (TTS) technique can be employed. This is achieved by

performing complex shear modulus measurements at discrete temperatures, and

superimposing these onto data measured at a reference temperature. Therefore,

this approach yields a wider frequency response at the reference temperature.

TTS is only valid if all relaxation modes contributing to G∗(ω) at these tem-

peratures have the same temperature dependence (also known as a thermorheo-

logically simple reponse[98]), i.e. changing temperature will have the same effect

as shifting frequency[61]. If this assumption holds, then the relaxation timescales

can be described using a single frequency (horizontal) shift factor per tempera-

ture, shown in equation 2.17.

aT =
τ(T )

τ(T0)
=
ω(T0)

ω(T )
(2.17)

The frequency shift factor aT is the ratio of the timescale (or frequency) of the re-

sponse measured at temperature T to that measured at the reference temperature

T0.

A modulus (vertical) shift factor is also sometimes appropriate, which for chain

modes (Rouse or entanglement behaviour), can be quantified using equation 2.18.

bT =
ρ0T0

ρT
(2.18)

This modulus shift factor bT is based on density variations between temperatures,

effecting the modulus in the regime where rubber elasticity is applicable[47]. For

modulus contributions from the α relaxation, this is not the case. However,

over typical temperature ranges which TTS is used, the modulus variations are

typically small. Therefore, it is recommended that either equation 2.18 is applied

when appropriate (and when ρ(T ) data is available), or that no modulus shift

factor is applied (bT = 1)[61].

In glass forming polymers, both the structural (α) relaxation and chain modes

are often assumed to have the same temperature dependence[8] (at least at short

α relaxation timescales, which will be discussed further in section 3.5). As such,
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frequency measurement at discrete temperatures, capturing both α and chain

dynamics, should collapse onto a common master curve using a single shift factor

per temperature . An examples of this is shown in figure 2.6.
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Figure 2.6: PMMA oligomer (n=96). a) Complex shear modulus measurements

performed at discrete temperatures. b) TTS master curve constructed by fre-

quency shifting all data sets onto an arbitrary reference temperature. Circles and

triangles are G′ and G′′ respectively.

Figure 2.6 (a) shows frequency sweep data taken at discrete temperatures for

a non-entangled PMMA sample. These frequency sweeps were performed in a

frequency range between ω = 10−1− 102rad/s (three decades in frequency is gen-

erally considered the minimum required to perform TTS[98]). Figure 2.6 (b) is the

same data as in (a), but superimposed by frequency shifting (bT = 1, as vertical

shifting was unnecessary) onto a common arbitrary reference temperature.

The frequency shift factors are often described using a Williams-Landel-Ferry

(WLF) equation[99], as shown in equation 2.19.

log(aT ) =
−C1(T − T0)

C2 + (T − T0)
(2.19)

This is an alternative to the VFT equation (as discussed in section 1.2.1), which

describes the frequency shift factors in terms of parameters C1 and C2, and the

reference temperature T0. It has been suggested that for an appropriate choice

of T0 (close to Tg), C1 and C2 are approximately universal for temperatures far
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enough above Tg (C1 = 17.4, and C2 = 51.6K). This potential universality will

be discussed further in section 3.5.

2.1.4 ARES shear strain-controlled rheometer

In order to measure the complex shear modulus, a Rheometrics (now TA instru-

ments) ARES (Advanced Rheometric Expansion System) rheometer was used.

This is a strain-controlled shear rheometer with a forced convection oven using

either compressed air, or liquid nitrogen (LN2) to control the sample temperature

between −150 < T < 300◦C. A basic schematic of this strain-controlled operation

is shown in figure 2.7.

Figure 2.7: Schematic of strain-controlled shear rheometer, with separate actuator

and transducer.

Rather than the deformation of simple rectangular geometry shown previously

in figure 2.1, this ARES strain-controlled shear rheometer applies an angular

deformation using a rotary actuator, with a frequency range of 10−5 < ω <

5 × 102rad/s. The resulting torque is measured using a rotational transducer,

with a torque range of 4 × 10−6 < M < 2 × 10−2Nm, on the other side of the

sample.

Different sample geometries allow measurements of a wide range of viscosities

and shear moduli. In this project, a parallel plate geometry was used, which

consists of two circular parallel plates, with radius r, adhered to the sample
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between them, with height h. A basic schematic of the sample between these

plates is shown in figure 2.8.

Figure 2.8: Parallel plate sample of heigh h, and radius r. A toque, M , is applied,

which shears the sample, resulting in an angular deformation, θ.

This geometry was used because: (i) using small sample diameters (3mm), it

allowed us to measure high shear moduli (up to ∼ 2x109Pa); (ii) due to these

small geometries, only a small amount of sample was required; and (iii) it allowed

for the adjustment of sample height when changing temperature due to thermal

expansion, which is not possible when using a cone and plate geometry. For the

parallel plate geometry, the resulting shear stress and applied shear strain are

calculated using equations 2.20 and 2.21.

σ =
2M

πr3
(2.20)

γ =
rθ

h
(2.21)

Here, θ and M are the angular deformation of the rotary actuator and the result-

ing transducer torque respectively, and r and h are the sample radius and height

respectively (shown in figure 2.8). The strain field of the parallel plate geometry

is inhomogeneous, i.e. the strain is maximum at the plate radius, and zero at

r = 0. However, this was not an issue due to the fact that measurements were

performed within the linear viscoelastic region (LVR), whereby the stress-strain

response does not change (this will be discussed in detail in section 2.1.5).
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Using equations 2.20 and 2.21, the complex shear modulus is defined by equa-

tion 2.22.

G∗ =
σ∗

γ∗
=

2M∗h

πθ∗r4
(2.22)

Where M∗ and θ∗ are the complex torque and angular deformation. From equa-

tion 2.22, it is clear that a small error in r could lead to a larger error in G.

Therefore, maintaining a fixed sample shape throughout the experiment was cru-

cial.

2.1.5 Linear viscoelastic regime tests

The applied strain, for a given temperature, had to be chosen so that the response

was both within the linear viscoelastic regime (LVR), and within the torque range

of the transducer over the measured frequency window. Outside of the torque

range of the rheometer, the results obtained would not be reliable, and an applied

torque which is too high could cause permanent damage to the transducer. An

example of transducer torque with increasing strain at different temperatures

around the α relaxation is shown in figure 2.9.

Figure 2.9 shows five measurements whereby the modulus increases with

decreasing temperature. A slope of 1 on this log-log of plot of torque, M ,

against strain, γ, indicates measurements are within the LVR, as indicated by

the straight lines. The gray dashed lines indicate the transducer torque range.

The measurements shown in figure 2.9 are across the α relaxation of a sim-

ple non-polymeric glass forming material (penta phenyl-trimethyltri-siloxane, or

Dow Corning DC705 diffusion pump oil[1]). The chemical structure of DC705 is

shown in figure 2.10.
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Figure 2.9: 1Hz strain sweep measurements on DC705. Linear fits of torque and

strain (with a slope of 1 on this log-log scale) indicate measurements are within

the LVR. Gray dashed lines indicate torque range of the transducer.

Figure 2.10: Penta phenyl-trimethyltri-siloxane (DC705) molecule[1]. Molecular

weight, M = 546g/mol.

DC705 was used for testing α responses throughout this project because:

• It is a liquid at room temperature, which makes it easy to use in the lab.

• It readily forms a glass (easily avoiding crystallisation) at an easily accessed

temperature (Tg ∼ −45◦C).

• It exhibits no clear secondary relaxations in any technique used in this

project. Therefore, measurements showed an isolated, clear α relaxation
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response.

• It has been measured using shear rheology previously[100] with a piezo

strain gauge (PSG) technique, which measures the complex shear modulus

over a wide frequency range without relying on TTS.

• It has an extremely low vapour pressure, allowing many thermal cycles

without mass loss.

In figure 2.9, as the sample goes from melt to glass (higher to lower temper-

ature), the strain had to be reduced in order to remain within the transducer

torque range (shown by the gray dashed lines). While the relations between

torque (proportional to stress) and applied strain appear proportional (showing

a slope of 1 in this log-log plot), the complex shear modulus (G′ and G′′) was

plotted against applied strain in order to investigate this further. An example of

the shear-dependent for the same sample and temperatures as figure 2.9 is shown

in figure 2.11.
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Figure 2.11: DC705 strain sweep tests. (a) 1Hz complex shear modulus as a func-

tion of strain. (b) TTS master curve with dashed lines indicating the position of

these strain sweeps (shown in (a)). Alternating red, green, and blue sections in-

dicate frequency sweeps taken as discrete temperatures, with circles and triangles

representing G′ and G′′ respectively.

Figure 2.11 (a) shows G′ and G′′ at the same temperatures shown in figure 2.9

as a function of strain, γ, for DC705. This indicates that for for strains higher
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than γ ∼ 5% at −30◦C, the response is starting to deviate from the linear regime

(below γ ∼ 0.05% is below the torque range of the transducer, which is shown

in figure 2.9). The other temperatures and strains are within the LVR. A strain

was chosen for each temperature so that with changing frequency, the response

would remain within both the transducer torque range and the LVR. Figure

2.11 (b) shows the TTS master curve constructed from frequency measurements

performed at different temperatures. The dashed lines indicate the positions of

the strain sweeps from 2.11 (a).

2.1.6 Test of rheometer compliance effects

It is often assumed that the rheometer and sample tools have negligible com-

pliance compared to that of the sample. However, for rigid samples, such as

polymers approaching their glassy state, this may not be the case. Thus, if the

compliance of the rheometer tools or related machinery becomes comparable to

the sample compliance, then the shear stiffness (un-normalised shear modulus,

K = M/θ) measured by the rheometer will be false due to both the sample

and machine responding to the deformation. An approximate schematic of this

scenario is shown in figure 2.12.
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Figure 2.12: A simple schematic showing both rheometer (Kr) and sample (Kr)

contributions to the total sample stiffness.

The schematic in figure 2.12 shows the total stiffness, K∗T , measured by the

rheometer as having contributions from the rheometer/tool, represented by a

single elastic spring (Kr), and the sample, represented by a generalised Maxwell

model (K∗s ). Quantitatively this can be described by equation 2.23.

1

K∗T
=

1

K∗s
+

1

Kr

(2.23)

One method to account for Kr is to directly measure it using connected parallel

plates with no sample present, and subtracting this stiffness from subsequent

measurements on samples[101]. However, in order to see if this was necessary, a

simple test was carried out[102]. This entailed performing linear dynamic shear

modulus measurements on the same simple non-polymeric glass forming material

as introduced in section 2.1.5 (DC705) from the melt to the glassy state using a

range of different parallel plate diameters (d=3, 5, and 8mm).

Considering that the shear stiffness scales as K ∝ d4 (shown in equation 2.22),

by changing the sample diameter from 3 to 8mm, the stiffness increases by more

than 50 times if the sample height is kept the same. If machine compliance is an

issue, one would clearly observe this in the rheological response. These results
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were also compared to literature data on the same sample[100], measured using

a PSG method, where machine compliance was not observed. These are shown

in figure 2.13.
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Figure 2.13: TTS master curves of DC705. A comparison between different di-

ameter parallel plates, (a) modulus shifted to distinguish between curves, and (b)

actual modulus values. (c) 3mm diameter parallel plates compared to literature

PSG data.

Figure 2.13 (a) and (b) shows that for d=8mm, the high frequency data was

limited due to rheometer actuator/transducer limitations, as this sample is more

than 50 times stiffer than for d=3mm with the same sample height. However,

d=3mm and d=5mm show very good agreement, indicating that machine com-

pliance was not an issue. This is further indicated in figure 2.13 (c), whereby
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our d=3mm data and literature data performed using the PSG, yielded the same

response.

If machine compliance was an issue when measuring these glassy moduli, then

the largest source would be the stainless steel tools which are in contact with the

sample. A schematic of this is shown in figure 2.14.

Figure 2.14: Small diameter (d=3mm) parallel plate tools.

Figure 2.14 shows a schematic of the steel tools that we designed and con-

structed to perform high modulus shear rheology experiments. The two nubs, in

direct contact with the sample, are approximately twice the typical height of the

sample, which was minimised so as to contribute as little to the machine/tool

compliance as possible. Stainless steel has a shear modulus of ∼ 80GPa, and

in the glassy regime the polymer samples have a typical modulus of ∼ 1GPa.

Therefore, considering K ∝ h−1, the steel nubs are ∼ 40 times stiffer than the

sample. In order to assess the potential effects of this, these compliances were

simulated using the simple relation shown in equation 2.23. This is shown in

figure 2.15.
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Figure 2.15: TTS master curve of DC705, simulating the complex shear modulus

if machine/tool stiffness is comparable to sample stiffness.

Figure 2.15 shows what the shear modulus of the DC705 would be if the

stiffness of the rheometer/tools (Kr) was comparable to the glassy shear modulus

of the sample (K∞). Where this is only 2 times stiffer than the glassy modulus

(red data in figure 2.15), there is a distinct difference between what is measured

and what would be the real shear modulus in the glassy regime. However, as we

approach the estimate of 40 times stiffer (blue data in figure 2.15), this difference

all but vanishes.

Given these comparisons between plate diameter, literature data, and simu-

lating the effects of machine compliance, the contribution to the shear modulus

from the rheometer itself was deemed not to be an issue for these measurements.

2.2 Broadband Dielectric Spectroscopy

2.2.1 Dielectric properties of materials

Many materials are dielectric, meaning that in the presence of an electric field

there is only a transient displacement of charges (dipoles) rather than the mi-

gration of charges as in a conductor. The modes through which these dipoles
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reorientate and relax due to an applied electric field are coupled to the molecular

relaxation processes present in the material[14].

Broadband dielectric spectroscopy (BDS) is a technique which can be used

to measure the frequency dependent permittivity of a sample which relates to

the displacement of dipoles in the presence of an electric field. Therefore, this

technique can be used to access information of the relaxation phenomena coupled

to the reorientation of dipoles in a material. This section will outline the physical

principles and equipment used in performing BDS measurements to access both

relaxation behaviour and ion mobility in glass forming materials.

2.2.2 Polarisation and relaxation of materials

From Maxwell’s equations, the relationship between an electric field applied to a

material (E) and the resulting dielectric displacement field (D) can be defined

using the following equation [14]:

D = εε0E. (2.24)

Here, ε0 and ε are the permittivity of free space, and the relative permittivity of

the material respectively. Assuming the electric field strength is relatively small,

there is a linear relationship between E and the polarisation (P ):

P = (ε− 1)ε0E. (2.25)

Upon the application of an electric field, a material will polarise. If the applied

electric field is removed, the polarisation will relax back to its equilibrium value

due to thermal fluctuations[103–105], as shown in figure 2.16.
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time

t=0

P(t)

E(t)

Figure 2.16: An electric field across a polarised material (E(t), shown by the

blue line) is removed at t = 0. The resulting polarisation (P (t), shown by the

red line) decays towards zero.

The general relaxation function of P (t) can be expressed as:

φ(t) =
P (t)

P (0)
. (2.26)

If the applied electric field strength is small, then the perturbation of the material

is limited. If this is the case, the response of the material obeys fluctuation dissi-

pation theorem[14]. This states that the response of the sample due to external

perturbation is equivalent to that caused by thermal fluctuations in equilibrium.

Therefore, measurement of the polarisation of a material subjected to an elec-

tric field with appropriate strength yields a response relating to the molecular

dynamics of the material.

If an oscillatory electric field, E∗(ω), is applied, the resulting polarisation,

P ∗(ω), can be expressed as follows:

P ∗(ω) = (ε∗(ω)− 1)ε0E
∗(ω). (2.27)

Where ε∗ is the frequency dependent complex permittivity, defined as:

ε∗(ω) = |ε∗|(ω)e−iδ(ω) = ε′(ω)− iε′′(ω). (2.28)
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Here, ε′ and ε′′ are the real and imaginary components of the permittivity. These

relate to the energy stored and energy lost as a function of frequency, analogous

to the complex shear modulus (disscussed in section 2.1.1) [106]. In relation to

equation 2.24, ε′ and ε′′ relate to the in-phase (δ = 0), and out-of-phase (δ = π/2)

ratios of D∗ and E∗.

In the frequency domain, the relationship between φ(t) and the complex per-

mittivity is:

ε∗ − ε∞
∆ε

= 1− iω
∫ ∞

0

φ(t)e−iωtdt (2.29)

Where ε∞ and ∆ε are the high frequency permittivity, and the change in permit-

tivity respectively. ∆ε can be quantified via Curie’s law[14, 107]:

∆ε =
1

3ε0

µ2

kBT

N

V
. (2.30)

In this expression, µ is the strength of the dipole moment, kBT is thermal energy,

and N/V is the number density of the dipoles. This describes the dielectric

strength due to orientational polarisation. However, it assumes that dipoles do

not interact with each other, and that that local field effects, or shielding of the

electric field, are negligible[14].

In the simplest case, the decay of φ(t) is a single exponential:

φ(t) = e−t/τ , (2.31)

where τ is the characteristic decay time. By inserting this expression into equation

2.29, this leads to an expression for the so-called Debye relaxation:

ε∗(ω) = ε∞
∆ε

1 + iωτD
. (2.32)

A Debye relaxation represents a simple, single relaxation mode caused by the

reorientation of non-interacting dipoles. The real and imaginary components of

this are shown in figure 2.17.
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Figure 2.17: Debye model showing log-log behaviour of ε′(ω) and ε′′(ω) of complex

permittivity.

The Debye relaxation manifests itself as a step in ε′(ω) and a peak in ε′′(ω)

occurring at ω = 1/τD. ε′ plateaus at ε∞ and ε∞+∆ε at high and low frequencies

respectively. The response function of ε′′ is a symmetric peak with power-law

exponents of −1 and 1 for the low and high frequency flanks. This is an idealised

response function and rarely represents relaxation phenomena. An empirical

alternative used in this project, which can account for more complex behaviour,

will be discussed in section 2.2.5.

2.2.3 DC conductivity

Migration of charged species (ions) through a material will contribute to the

complex permittivity[14]. This additional response manifests as a low frequency

power-law flank in ε′′:

ε∗cond(ω) = −i σ
ε0ω

(2.33)

The strength of the DC conductivity (σ) relates to both the molecular diffusion

and the number density of ions present. Therefore, DC conductivity may drown

out the permittivity contribution from relaxation dynamics at higher tempera-

tures if the ion content is significant. This can be reduced by cleaning the samples

52



2.2 Broadband Dielectric Spectroscopy

to remove the ions if required[108]. At higher temperatures, an ionic contribution

in ε′ due to electrode polarisation can be observed.

2.2.4 Novocontrol Alpha-A analyser

BDS measurements in this work were performed using a Novocontrol Alpha-A

dielectric analyser, through which complex permittivity measurements could be

performed over a frequency range of 10−2 < ν < 106Hz. The sample cryostat was

connected to a Quatro Cryosystem allowing measurements to be conducted over

a temperature range of 100 < T < 700K with an accuracy of ±0.1K.

A BDS experiment is carried out by applying a oscillatory voltage across the

sample and measuring the resulting current[38]. A basic circuit schematic of this

is shown in figure 2.18.

Figure 2.18: Circuit schematic setup of a broadband dielectric spectrometer.

An oscillatory voltage, V (ω), is applied across the sample sandwiched between

two electrodes with known area and distance between the electrode plates. The

resulting current, I(ω), across the sample is then measured. Frequency dependent

measurements of voltage and current across the sample yield the impedance, as

shown by equation 2.34.

Z∗(ω) =
|V ∗|(ω)

|I∗|(ω)
eiδ = Z ′(ω) + iZ ′′(ω) (2.34)

Where Z ′ and Z ′′ are the in-phase (resistive, δ = 0), and out-of-phase (capaci-

tive, δ = π/2) components of Z∗. From this, the complex permittivity can be

calculated using equation 2.35.
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ε∗(ω) =
−i

ωZ∗(ω)C0

(2.35)

Here, C0 is the capacitance of an empty sample cell, defined as C0 = ε0A/d, where

A is the electrode area (20mm diameter), and d is the sample thickness (0.1mm).

Two electrode configurations were used depending on if the sample was solid

or liquid at room temperature. These two configurations are shown in figure 2.19

Figure 2.19: Electrode configurations used in BDS for: a) solid samples (top

down view); and b) liquid samples (cross section).

For solid samples, figure 2.19 (a) shows the electrode configuration used. The

sample was prepared on a 40mm diameter brass electrode, silica spacers with a

thickness of 0.1mm were placed in the sample as shown, and a smaller (20mm)

brass electrode was placed on top of the sample.

For liquid samples, a Novocontrol BDS 1308 liquid cell was used, as shown in

figure 2.19 (b). The basic sample geometry of the cell consists of two 20mm diam-

eter electrodes with silica spacers and the samples in between. These electrodes

are contained within a Teflon ring sitting in a brass dish with a brass 30mm ’lid’

electrode placed on top.

2.2.5 Dielectric response functions

In section 2.2.2, the response function of a single, simple, relation mode was

described and the Debye model. However, in most cases, the step in ε′ and the

peak in ε′′ for a particular relaxation mode are broader than those predicted by
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this model. Thus, empirical modifications of equation 2.32 are commonly used

to describe measured relaxation modes. One example of these is the Havriliak-

Negami (HN) expression[109]:

ε∗(ω) = ε∞ +
∆ε

(1 + (iωτHN)α)β
(2.36)

This expression contains two empirical parameters, α and β, which quantify the

symmetric and anti-symmetric stretching of an observed relaxation mode: in ε′′,

the exponent of the low frequency flank of a dielectric loss peak is α and the

exponent of the high frequency flank is αβ. The expression reduces to the Debye

model if α = β = 1.

Symmetric broadening of a relaxation mode can be described through varia-

tion of α between 0 and 1 when β = 1. In this case equation 2.36 reduces to the

so-called Cole-Cole (CC) expression[110]. The effect of variation of α is shown in

figure 2.20.
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Figure 2.20: ε′ (a) and ε′′ (b) for Cole-Cole (Havriliak-Negami, where β = 1)

relaxation with different α parameters.

Lower values of α lead to a greater degree of symmetric broadening. Secondary

relaxation mechanisms are often well described using the CC expression. τHN in

this case is inversely proportional to the peak frequency in ε′′ and therefore the

characteristic relaxation time (1/ω′′peak = τ).
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Anti-symmetric broadening can be described through variation of β between

0 and 1, holding α constant: α = 1.This is known as the Cole-Davidson (CD)

expression[111]. The effect of variation of β is shown in figure 2.21.
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Figure 2.21: ε′ (a) and ε′′ for Cole-Davidson (Havriliak-Negami, where α = 1)

relaxation with different β parameters.

Once again, for β = 1 in figure 2.21, the simple Debye relaxation is obtained.

Decreasing values of β, increases asymmetrical broadening. In some systems,

the α relaxation can be adequately described using a CD relaxation. However,

in most cases, α relaxation modes demonstrate both symmetric and asymmetric

broadening and so the full HN expression is required.

In the case of asymmetric relaxations, where β 6= 1, τHN does not correspond

to either the average relaxation time, or the most probable relaxation time (the

peak frequency in ε′′), i.e. 1/ω′′peak 6= τHN . Therefore, to correct for this, the

following expression is used[14].

1

τp
=

1

τHN

[
sin

απ

2 + 2β

]1/α [
sin

αβπ

2 + 2β

]−1/α

(2.37)

In glass forming materials, the complex permittivity measured using BDS can

contain contributions from multiple different relaxation mechanisms. An example

of ε∗(ω) at a single temperature for a small molecular glass former (PMMA, n = 3)

is shown in figure 2.22.
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Figure 2.22: ε′ (a) and ε′′ (b) as a function of frequency for PMMA n=3 at 225K.

The solid line represents fitting of the entire spectra, and dashed lines show the

individual contributions to the spectra.

The contributions to ε∗(ω) at each temperature can be described using sum

of relevant terms. For example:

ε∗(ω) =
−iσ
ω

+
N∑
j=1

∆εj
(1 + (iωτHN,j)α,j)β,j

+ ε∞ (2.38)

This is the HN equation for N relaxations (α, β, γ, etc) visible in the frequency

window at a particular temperature combined with a DC-conductivity contribu-

tion (from equation 2.33). Figure 2.22 shows ε′′ contributions from three different

mechanisms. The α and β relaxations are describe using the HN and CC func-

tions respectively and the conductivity is described by a negative power-law slope.

The different contributions to ε′′ are denoted by the dashed lines in figure 2.22.

The combination of these relaxation functions (formulated using equation 2.38)

is shown by the solid lines interpolating the data.

Typically, we fit either the full complex response, or ε′′ spectra because: (i)

the releaxation peaks are easier to paramaterise than steps, with the relaxation

time being inversely proportional to the peak frequency (or related to in the case

where β 6= 1); and (ii) one fewer fitting parameter is required as ε∞ does not

contribute to ε′′[14].
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In some cases, including that shown in figure 2.22, the DC conductivity con-

tribution can obscure peaks in ε′′. ε′ and ε′′ obey the Kramer-Kronig relations,

meaning that they can be transformed between each other. Wübbenhorst and

Turnhout[112] suggested an approximate form for ε′′, formulated using the deriva-

tive of ε′:

ε′′deriv(ω) = −π
2

∂ε′(ω)

∂ lnω
≈ ε′′(ω) (2.39)

This frequency derivative of ε′(ω) adequately describes ε′′(ω). An example of this

conversion is shown in figure 2.23.

10-2 100 102 104 106

ν (Hz)

100

101

ǫ'

α

β

ǫ
∞

a)

10-2 100 102 104 106

ν (Hz)

10-1

100
ǫ'

', 
ǫ'

' d
e
ri
v

ǫ''

ǫ''
deriv

b)

σ β

α

Figure 2.23: a) ε′(ω) of PMMA n=906 at 404K. b) ε′′(ω) and ε′′deriv(ω) calculated

using equation 2.39 from ε′(ω). The solid line represents fitting of the entire

spectra, and dashed lines show the individual contributions to the spectra.

ε′′deriv(ω) appears to approximately match up to ε′′(ω) in figure 2.23 (b), which

was calculated from ε′(ω), shown in figure 2.23 (a), using equation 2.39. While

the shape of these two versions of ε′′ may vary slightly, it has been shown that

the peak frequency (the inverse of the characteristic relaxation time) is generally

preserved. This makes it an ideal tool for obtaining relaxation times when the

relaxation spectra is obscured by DC conductivity.
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2.3 Differential Scanning Calorimetry

In this section, the background and application of differential scanning calorime-

try (DSC) measurements in this project will be discussed. DSC is a technique

which involves measurement of the difference in heat flow, dQ/dT , between a

sample and a reference as a function of temperature [113]. The ratio of the heat

flow and the heating/cooling rate (dT/dt) yields the heat capacity of the sample:

CP =
dQ

dt

/dT

dt
. (2.40)

DSC measurements enable characterisation of the enthalpy changes associated

with thermodynamic transitions within a sample and the temperature at which

they occur. The isobaric specific heat capacity, cp, as a function of temperature

for an amorphous small molecular glass former on heating is shown in figure 2.24.
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Figure 2.24: cp as a function of T measured on heating for amorphous PDMS

trimer (n=3). a) Entire heat capacity spectra with typical features labelled. b)

Enlarged glass transition region from (a).

Figure 2.24 is that of a PDMS trimer (n=3) that had been quenched (to avoid

crystallisation) from above its melting point, Tm, to below Tg. Once in this glass,

the cp(T ) was measured on heating, which is shown in figure 2.24 (a). The data

has three distinct features. The first of these is the glass transition, observed

as a step-like change in the heat capacity due to the difference in the available

molecular degrees of freedom in the glassy and super-cooled liquid states[9]. Upon
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further heating, a trough in cp is observed indicating crystallisation. This so-called

’cold crystallisation’ can occur at temperatures below the melting point, Tm, for

some polymers (such as PDMS) due to the increase of molecular motions in the

supercooled state. For this reason, polymers that crystallise readily below Tm

must be quenched in order to analyse their glass transitions. This is done by

plunging the sample into liquid nitrogen to rapidly cool it, and them placing it

into the pre-cooled DSC. Finally, at Tm, the sample melts, indicated by a peak in

cp. The area under the melting peak corresponds to the enthalpy of fusion[113].

In this case, this area which should equal that of the cold crystallisation peak,

under the assumption that the sample was quenched into an entirely amorphous

state to begin with.

A close-up representation of the glass transition for this sample is shown in

figure 2.24 (b). In such a representation, one can observe a clear overshoot of the

glass transition step, occurring at T ≈ 130K. This is due to the thermal history of

the material, and is often referred to as the enthalpy relaxation[114]. This occurs

due to enthalpy recovery of the sample while in the glassy state. A idealised

example of the change in enthalpy as a function of temperature is shown in figure

2.25.
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Figure 2.25: Enthalpy (H) as a function of temperature for a supercooled liquid

cooled below Tg, aged in the glassy state, and subsequently reheated above Tg.

This figure shows a representation of the enthalpy behaviour of a glass forming
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material which has been cooled from the supercooled liquid (equilibrium) state

below Tg, aged within the glassy state, and subsequently reheated above Tg. A

material in the non-equilibrium glassy state will evolve towards the equilibrium

state[115, 116]. This is indicated by the gray arrow, whereby the longer the

sample is aged, the lower the enthalpy becomes. Upon subsequent heating, the

enthalpy is recovered, and the enthalpy of the system takes the path indicated

by the blue dashed line. This recovered enthalpy is manifested as a peak in cp.

To avoid ageing effects, DSC measurements in this project were performed on

cooling instead. An example of the glass transition step in cp observed on cooling

is shown in figure 2.26.
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Figure 2.26: cp as a function of T measured at 10K/min on cooling across Tg for

PMMA (n=906). Analysis procedures used to determine Tg, ∆cp, and ∆T are

also shown.

The red dashed lines in the figure indicate extrapolations of both the glassy

and liquid state heat capacities (cp,g and cp,l), and a tangent to the inflection point

of cp. Three characteristic temperatures associated with the glass transition step

can be determined here: (i) the onset temperature, Ton, which is the intercept

between cp,g and the tangent to the inflection point; (ii) the inflection point, Tin;
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and (iii) the offset temperature, Toff , which is the intercept between cp,l and the

tangent to the inflection point.

Typically, Ton or Tin are used as definitions of Tg, and are generally repeatable

within ±1K[113]. An alternative to these definitions is that of the fictive tem-

perature, which is sometimes referred to as the thermodynamic glass transition

temperature[117]. This is the temperature at which the temperature dependence

of the enthalpy changes, as indicated in figure 2.27. This will be discussed further

in section 3.2.1.

The step height in the heat capacity, ∆cp, is defined as the the change in heat

capacity between liquid and glassy states at Tg. This is shown by the blue arrow in

figure 2.26, using Tin as the definition of Tg. The width of the heat capacity, ∆T ,

can also be obtained, which is defined as the difference in temperature between

Ton and Toff , ∆T = Toff − Ton.

2.3.1 Rate dependent DSC

A typical DSC measurement involves measurement of the heat flow through a

sample whilst maintaining a constant heating/cooling rate. Typically, heat-

ing/cooling rates of |dT/dt| = 10K/min are used. The heating/cooling rate is

inversely proportional to the characteristic timescale of the α relaxation (τα) of

the sample [118]. Thus, measurement at slower rates will lead to higher measured

values of Tg. To illustrate this, an idealised example of the enthalpy of a sample

as a function of temperature close to Tg at two different cooling rates is shown in

figure 2.27.
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Figure 2.27: Enthalpy (H) as a function of temperature for a supercooled liquid

cooled at two different rates through their respective glass transition tempera-

tures, Tg.

In this figure, the blue line indicates a faster cooling rate leading to a higher

glass transition temperature, Tg,1 and the red line indicates a slower cooling rate

leading to a lower glass transition temperature, Tg,2. The inverse relationship be-

tween heating/cooling rate and τα can be quantified using the following equation:

τα =
A

B
, (2.41)

where B is the heating/cooling rate and A is a system specific parameter. In this

project, a rate of B = 10K/min was used when performing standard DSC mea-

surements. This rate has been shown to reasonably correspond to τα = 100s for

both polymeric and non polymeric glass formers. This was shown to be the case

by comparing the transition temperature obtained at different heating/cooling

rates with those obtained using Temperature Modulated DSC (TMDSC), where

the timescale is set by the modulation period[119] (this will be discussed in sec-

tion 2.3.2). Therefore this rate was used in order to obtain dynamic behaviour of

the α relaxation comparable to other techniques such as dielectric spectroscopy

and rheology.
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2.3.2 Temperature modulated DSC

Temperature modulated DSC (TMDSC) is a more advanced DSC technique which

combines two simultaneous heating profiles: a linear heating/cooling rate, simi-

lar to that of standard DSC, and a sinusoidal component[120]. When relatively

slow linear heating/cooling rates are used, the addition of a sinusoidal compo-

nent allows for a higher resolution determination of heat capacities than would

usually be possible in more standard DSC measurements[121]. Also, TMDSC

measurements allows the heat capacity to be split into so-called reversible and

non-reversible components, which are affected differently by physical processes

within a sample[113].

The temperature profile of a simple sinusoidal TMDSC experiment is shown

in the following equation:

T (t) = T (0) +Bt+ A sin
(2πt

P

)
, (2.42)

where B is the underlying heating rate, A is the modulation amplitude, and P is

the oscillation, or modulation period. An example of this is shown in figure 2.28.
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Figure 2.28: Example of a TMDSC temperature profile with: An underlying

heating rate of B = 0.5K/min (shown by the gray dotted line); a period of

P = 60s; and an amplitude of A = 1K.
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2.3 Differential Scanning Calorimetry

Figure 2.28 shows an example of a heating-cooling mode TMDSC experiment,

for which the heating rate (dT/dt) due to the modulation is large enough, com-

pared to the underlying heating rate, that the sample undergoes both heating

and cooling. This technique generally yields larger heat flows, and therefore a

larger signal response, than a heating-only mode. Heating-cooling mode TMDSC

was the mode used throughout this project.

A generic expression for heat flow into a sample during a DSC measurement

is shown in equation 2.43:

qtot =
dQ

dT
= Cp

dT

dt
+ g(T, t), (2.43)

where qtot is the total heat flow of the sample, Cp is the heat capacity of the

sample, and g(T, t) is defined as the kinetic heat flow, which is the difference

between the other two components[122].

qtot is the quantity that is determined during typical DSC measurements, i.e.

using a linear heat/cooling rate. The response from TMDSC measurements can

be split into both qtot and CpdT/dt components. qtot is the heat flow due to the

underlying heating rate, B, whereas, CpdT/dt is the heat flow due to modulation

(qm). An example of these responses from TMDSC is shown in figure 2.29.
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Figure 2.29: TMDSC measurements on DC705, using the same experimental

parameters as outlined for figure 2.28. a) The components of the heating rate

from the modulation (blue), and the underlying heating rate (red). b) Heat flow

response due to both of these components.
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Figure 2.29 (a) shows temperature profiles of a TMDSC experiment. The

total heating rate is shown in blue, and the underlying heating rate is shown in

red. Figure 2.29 (b) shows the response of a small molecular glass former (DC705)

across the glass transition due to the temperature profiles in (a). The heat flow

due to modulation is shown in blue, and the total heat flow due to the underlying

heating rate is shown in red. From the two modulated signals shown in blue in

figure 2.29, the average signal (due to the underlying heating rate) is subtracted,

and is then analysed using a Fourier transform procedure in order to obtain the

amplitudes (and phase difference) of these two signals[120]. Using these, the heat

capacity can be calculated using the following equation:

Cp,r =
AdT/dt

Aqm
, (2.44)

where AdT/dt and Aqm are the instantaneous values (amplitudes) of the dT/dt

and qm. Cp,r is referred to as the reversing heat capacity. The components of

the heat flow response from equation 2.43 are shown as specific heat capacities

in equation 2.45.

cp,tot = cp,r + cp,nr (2.45)

cp,tot is the specific heat capacity due to the underlying heating rate, cp,r is the re-

versing specific heat capacity, and cp,nr is the non-reversing specific heat capacity.

cp,nr is the heat capacity due to kinetic components of the heat flow (g(T, t) from

equation 2.43), and results from ”non-reversible” events, such as enthalpy relax-

ations or cold crystallisation. An example of these three components is shown in

figure 2.30.
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Figure 2.30: cp,tot, cp,r, and cp,nr for DC705 across Tg using the same experimental

parameters as outlined for figure 2.28.

cp,r in figure 2.30 shows the characteristic heat capacity step change across

the glass transition. cp,tot contains a contribution due to the enthalpy relaxation,

which is shown in cp,nr as a peak.

It good practice in TMDSC measurements to tailor the underlying heat-

ing/cooling rate such that 4-6 modulation cycles are within the transition of

interest[123]. Fewer than this leads to a lack of sufficient resolution, and informa-

tion in cp may be smeared or lost. In order to ensure enough cycles are present

in the transition region, equation 2.46 is used.

B = 60
T1/2

nP
(2.46)

Here, B is the underlying heating/cooling rate, n is the desired number of cycles

(4-6), P is the modulation period, and T1/2 is the full width at half maximum

of cp,nr. Smaller values of β lead to a higher resolution of the data obtained.

However, smaller values of β require significantly more experimental time. In

addition to this, information on qtot (and therefore qnr) will be lost due to smaller

heat flows. For this project, information contained in qnr (and therefore qtot) was
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not required, and thus B was chosen so that an excess of 4-6 cycles was always

present within the transition region.

From cp,r and the phase angle between dT/dt and dQ/dt, a complex heat

capacity can be calculated[113]:

C∗p =
AdT/dt

Aqm
e−iδ = C ′p − iC ′′p . (2.47)

Here, |C∗p | is the so-called reversing heat capacity, and δ is the phase angle between

AdT/dt and Aqm (as defined in equation 2.44). C ′p and C ′′p are the in-phase and

out-of-phase components of the heat capacity, which are often referred to as the

phase-corrected reversing and kinetic heat capacities respectively[120]. Across

the glass transition, C ′′p yields information about the transition width δT , and

the temperature, Tα. This will be discussed further in section 4.1.1.

2.3.3 TA Instruments Q2000 DSC

The calorimetric determination of heat flow through a sample as a function of

temperature can be performed in two different ways:

• Power compensated DSC - This technique involves having the sample and

reference in two separate furnaces. The power difference required to change

the temperature of both furnaces in order to maintain the same temperature

profile is directly related to the difference in heat flow between the sample

and reference.

• Heat-flux DSC - In this technique, both sample and reference are situated

in the same furnace, connected by a well characterised heat conduction

path. As the temperature of the furnace changes, the temperature difference

between sample and reference is directly related to the heat flow.

DSC measurements were performed using a TA Instruments Q2000 with a

liquid nitrogen cooling system (LNCS). This is an example of a heat-flux DSC

and a basic schematic of this is shown in figure 2.31.

68



2.3 Differential Scanning Calorimetry

Figure 2.31: Basic schematic of a turret style heat-flux DSC.

This setup consists of a constantan base connecting two constantan turrets

onto which two aluminium pans, one empty (reference) and one filled with ∼10mg

of sample, are placed. This geometry is contained in a silver measurement cell

which is purged with gaseous helium, used to prevent ice buildup and to ensure

even temperature control throughout the cell[124].

Temperature control is achieved using a combination of a heating jacket sur-

rounding the cell and a flange (cooled to ∼ −150◦C using liquid nitrogen) con-

nected to a silver plate at the base of the cell via nickel rods. Precise measure-

ments of the temperature difference between reference and sample (∆T ), along

with the temperature of the heat conduction path (T0), allows for the precise

determination of heat flow into the sample.

Steady state heat flow can be described by the Biot-Fourier equation[113, 125],

shown in equation 2.48

q

A
= −Λ∇ · T (2.48)

where q is the heat flow, A is the cross sectional area of the conduction path be-

tween the source and the sink (therefore q/A is the heat flux), and λ is the thermal

conductivity. In a DSC experiment, heat flows between the furnace and the sam-

ple and the reference, with the same length, ∆l, between the sample/reference

and the furnace. Therefore, equations 2.49 and 2.50 can be constructed.

qSF
A

= −λ∆TSF
∆L

(2.49)
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qRF
A

= −λ∆TRF
∆L

(2.50)

Here, qSF and qRF , are the heat flows between the sample and furnace, and be-

tween the reference and furnace respectively, and ∆TSF and ∆TRF are the tem-

perature differences between the sample and furnace, and between the reference

and furnace respectively. From these, the differential heat flow, q = qSF − qRF ,

is shown in equation 2.51.

q =
−λA
∆L

∆TSR (2.51)

The term λA/∆L = K is some value which depends on the thermal properties

of the system[113]. This shows a linear relation between differential heat flow, q,

and the difference in temperature between the sample and the reference, ∆TSR,

as shown in equation 2.52.

q = −K∆TSR (2.52)

This is the basic principle of how the heat-flux DSC calculates q from ∆TSR.

Other considerations, such as thermal resistances and capacitances between fur-

nace and sample and reference are also calibrated for. It is also worth noting that

the temperature of the heat conduction path (T0, shown in figure 2.31) is also

measured in the TA Q2000 DSC. This allows for more precise measurements of

heat flow across the heat conduction path, and therefore a more precise q baseline

can be determined.

Calibration

Initial calibration of the Q2000 involves performing an ‘empty cell’ measurement

(i.e. with no sample or reference pan) and a measurement of two sapphire sam-

ples (with well characterised heat capacity as a function of temperature) over

the temperature range of the instrument at a typical rate of 10K/min. Accu-

rate determination of the thermal resistances and capacitances associated with

the measurement cell allows for precise measurement of the heat flow through a

sample by removing machine response from the resulting DSC trace [126].
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Temperature and enthalpy calibrations were performed using two materials

with well defined thermodynamic transitions: (i) indium, with a melting point

of Tm = 156.6◦C and enthalpy of fusion of 28.66J/g[127]; and (ii) adamantane,

which exhibits a solid-solid transition at -65.5◦C[128]. The differences between the

measured transition temperatures and enthalpy changes are compared to these

literature values and used to correct subsequent measurements.

Modulated DSC Calibration

TMDSC measurements require an additional calibration step. This involves the

calibration of the reversing heat capacity (cp,r), and is performed by measuring cp,r

of a sapphire sample and comparing with well characterised literature values[2].

For different modulation periods, this is shown in figure 2.32.
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Figure 2.32: Reversing heat capacity cp,r measurement for sapphire for different

modulation periods, P=40, 60, and 100s. Literature data for the heat capacity

of sapphire is also shown[2].

It is clear from figure 2.32 that the measured cp,r differs for different modu-

lation periods. In turn, these differ from well characterised literature values. A

calibration value for cp,r was calculated by taking the average difference between
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cp,r measured for a particular modulation period and that of the literature values

across the relevant temperature range.

Correction of the heat flow phase angle (shown in equation 2.47) is required

when calculating C∗p . This will be discussed in detail in section 4.1.1.
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Chapter 3

Chain-length dependent rheology

and relaxation dynamics of

PMMA

In this chapter, the rheological response of a chain length series of atactic, linear,

poly(methyl methacrylate) (PMMA) oligomers and polymers was studied and

comparisons with the behaviour on some other chosen polymers were made. The

complex shear modulus was measured for PMMA samples ranging from small

molecules, to oligomers and long-chain polymers, and the behaviour of each sam-

ple was determined both in the melt and glass state.

The development of the mechanical and relaxation response for chain-length

series ranging from the monomer-scale to entangled polymer is poorly understood,

and most studies have focused on the longer chain-length regime. PMMA is im-

portant both as a model system and as an industrially relevant polymer. However,

full chain-length studies have not been performed on PMMA. Moreover:

• Atactic PMMA is a good glass-former and can thus be studied over the full

chain-length range without issues with crystallization.

• It is commercially available over the full chain-length, and it is possible to

purchase highly monodisperse samples.
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• The ester side groups contain large dipole moments. Therefore, it exhibits

a large dielectric signal for dynamics associated with these side groups (α,

β, and γ relaxation dynamics) so that the full relaxation dynamics can be

readily measured.

• PMMA is a relatively ”stiff” polymer, characterised by a Flory characteristic

ratio of C∞ = 9.0[60] and this translates to a significant Tg variation with

chain-length, which means that the changes with molecular weight can be

investigated in detail.

• The PMMA samples used are proton capped, meaning that we do not have

to take account of any bulky initiator groups.

• PMMA is a so called type-C polymer, which means that the permanent

dipoles are situated within the ester side groups. Therefore, it does not have

a dipole moment component directed along the backbone, which means that

chain-modes will not be observed using Broadband Dielectric Spectroscopy

(BDS). This is an advantage in this study since we can study both the α

relaxation and chain modes using rheology, but only the α relaxation with

BDS (along with secondary relaxations). Therefore, the combination of

these techniques can efficiently be used to separate the observed relaxations.

• As discussed in section 1.4, a lot of other aspects of PMMA have been

previously studied in literature, which allows for comparisons.

It is often assumed that at short timescales (or high temperatures), the struc-

tural (α) relaxation - which is associated with the glass transition - is coupled

to chain dynamics, i.e. both α and chain relaxations have the same temperature

dependence. This allows for the application of time-temperature superposition

(TTS), whereby the rheological response at different temperatures can be super-

imposed onto a single master curve, which effectively yields the response over a

wider dynamic range at a single temperature. However, it has been shown as the

glass transition temperature (Tg) is approached from the melt, these relaxation

mechanisms decouple[129–132].
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Ding and Sokolov[133] show that the dynamic fragility (m) determines the

degree of decoupling between α and chain dynamics, whereby more fragile poly-

mers (PC, PMMA, PS, etc) decouple at shorter α relaxation timescales than

stronger (less fragile) polymers (PI, PPG, PDMS, etc). Therefore, an important

question in rheology arises: is TTS a valid approximation from melt to glass,

especially in more fragile systems such as PMMA? To test this for a PMMA

chain length series, TTS master curves spanning both short and long α relax-

ation timescales were constructed, and described using a simple ansatz, whereby

the total response spectra was described by a sum of a chain mode contribution

and a contribution from α relaxation. This rheological response was compared

to the broadband dielectric spectroscopy (BDS) measurements, which is able to

probe the α relaxation directly over a broad frequency range without relying on

TTS.

The chemical structure of PMMA and sample specifications are shown in

figure 3.1 and table 3.1.

Figure 3.1: Chemical structure of a poly(methyl methacrylate) (PMMA)

molecule.
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n MW (g/mol) PDI Suppler

2 202 1.00 PSS

3 302 1.00 PSS

4 402 1.00 PPS

7 771 1.18 PSS

8 840 1.44 PSS

19 1900 1.10 PSS

43 4300 1.05 PSS

96 9590 1.05 PSS

906 90600 1.04 PSS

1478 147800 2.46 Goodfellow

Table 3.1: PMMA sample specifications showing: the degree of polymerisation

(n), weight average molecular weight (MW ), polydisersity index (PDI=MW/MN),

and the supplier.

The PMMA samples (monomer molecular weight, M0=100g/mol) were pur-

chased from Polymer Standards Service (PSS), and reported by the manufacturer

to be proton capped, with no initiator side groups. The chemical structure of

PMMA is shown in figure 3.1, where n represents the number of monomer units,

and therefore the degree of polymerisation. Table 3.1 shows the degree of poly-

merisation, n, the weight average molecular weight, MW , and the polydispersity

index, PDI, as characterised by the supplier. To make sure that no low molecu-

lar weight species or solvents were present in the sample, representative samples

across the molecular weight range were heated far above Tg in a vacuum oven for

at least 24 hours and any changes heat capacity response were monitored using

DSC. No changes were observed upon the heat treatment, except for the samples

with n=7 and 8, where residual small molecular weight species were detected and

these samples were thus heated far above Tg in a vacuum oven for at least 24

hours to remove any such species from the manufacturing process. In addition

to this, a high molecular weight (M) sample with a higher polydispersity was

obtained from Goodfellow to investigate the effects of polydispersity.

By comparing α relaxation timescales (τα) independently measured rheology,
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BDS, and DSC, the validity of using TTS on this PMMA chain length series

was investigated. Other polymeric systems of varying glassy properties were

also compared, which appear to yield similar α relaxation behaviour at short

relaxation times. These results yield how α relaxation properties (glass transition

temperature (Tg), dynamic fragility (m), and heat capacity response) change with

increasing chain connectivity in PMMA, which have have been shown to exhibit

regional M behaviour in other polymeric systems[134, 135].

3.1 Dynamic shear modulus

Shear rheology measurements were performed using a Rheometrics ARES rheome-

ter, as outlined in section 2.1.4, using 3mm parallel plate geometry in order to

measure the high moduli of samples in their glassy state. Using an oscillatory

strain profile, the complex shear modulus was measured, as shown in equation

3.1.

G∗(ω) = |G∗|(ω)eiδ(ω) = G′(ω) + iG′′(ω) (3.1)

As discussed in section 2.1.1, the complex shear modulus consists of in-phase,

elastic (G′), and out-of-phase, viscous (G′′) components, where δ is the stress-

strain phase angle. At low temperatures (high frequencies) in the glass, G′ dom-

inates the spectra, whereas at high temperatures (low frequencies) in the melt,

G′′ dominates. Between these two dynamic extremes, relaxation behaviour is ap-

parent and the complex shear modulus has contributions from both the elastic

and viscous components. Hence, this is coined the viscoelastic regime.

3.1.1 Dynamic shear modulus measurements

Oscillatory shear modulus measurements were performed within the linear vis-

coelatic region (LVR) (the region where stress and strain are directly proportional,

as explained in section 2.1.5) for angular frequencies in the range ∼ 0.01− 50Hz

(∼ 0.06 − 300rad/s) for temperatures spanning the dynamic range from melt to

glass (for PMMA n = 2, 162K≤ T ≤ 183K; and n = 906, 379K≤ T ≤ 473K)

every 2− 4K. At least three decades in frequency per temperature is commonly
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accepted to be a minimum required for constructing master curves using a TTS

assumption[98]. If TTS is valid over the measured range of temperatures and fre-

quencies, the horizontal shift factors are proportional to the relaxation timescale

as per equation 3.2.

aT =
τT
τref

=
(ωref
ωT

)
(3.2)

Here, aT is the ratio of the characteristic timescales of the relaxation mechanism

apparent in the dynamic window at T relative to that of a reference temperature

Tref . Initially, Tref was chosen as the middle temperature in the range of those

measured. Once all frequency data had been superimposed, this was subsequently

altered to be Tref = Tg using an additional shift factor shown in equation 3.3.

S = exp
[
DT0

( 1

Tref − T0

− 1

Tg − T0

)]
(3.3)

Equation 3.3 is simply a ratio of two VFT expressions, where Tref is the arbitrary

reference temperature, and was used in order to normalise the frequency axis

between different samples. Examples of TTS master curves are shown in figure

3.2.

78



3.1 Dynamic shear modulus

10-6 10-4 10-2 100 102

ω (rad/s)

103

104

105

106

107

108

109
G

', 
G

" 
(P

a)

 a) n=2

21

10-8 10-6 10-4 10-2 100 102

ω (rad/s)

103

104

105

106

107

108

109

G
', 

G
" 

(P
a)

b) n=19

10-8 10-6 10-4 10-2 100 102

ω (rad/s)

103

104

105

106

107

108

109

G
', 

G
" 

(P
a)

c) n=96

10-12 10-10 10-8 10-6 10-4 10-2 100 102 104

ω (rad/s)

102

103

104

105

106

107

108

109

G
', 

G
'' 

(P
a)

d) n=906

21

Figure 3.2: PMMA dynamic shear modulus TTS master curves for samples with

different degrees of polymerisation (n). Alternating red, green, and blue sec-

tions indicate frequency sweeps taken as discrete temperatures, with circles and

triangles represent G′ and G′′ respectively.

In figure 3.2, the alternating red, green, and blue data sets represent frequency

data taken at discrete temperatures. Circles and triangles are used represent G′

and G′′ respectively. This notation will be used throughout this chapter when

displaying TTS master curves.

The TTS master curves were produced by horizontally (frequency) shifting

data only, with no vertical (modulus) shift applied. Commonly, TTS is carried

out far above Tg, where chain modes dominate the spectra. In this regime, the

rheological response is set by Rouse or reptation dynamics, and the effect of the

temperature dependent density variations is taken into account using a simple
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expression when the density is known. Although it has been suggested that even

in the melt regime of polymers, more complex behaviour may apply[136].

However, acquiring the temperature dependence of density for this entire

PMMA chain-length series is non-trivial. Casalini et. al.[88] measured PVT data

for PMMA n=3, 4, 10, and 1500. Therefore, density as a function of temperature

could be calculated for these samples, which allowed for temperature-density ver-

tical shift factors to be determined for appropriate samples in our series (n=3, 4,

and 1478). This had a marginal effect on the shape of the TTS master curves,

as temperature-density effects are insignificant over the measured temperature

range compared to errors due to small sample geometry. In addition to this,

temperature-density behaviour would not be applicable in the intermediate and

glassy parts of the spectra, and such a shift in this regime would have no phys-

ical basis. Therefore, no vertical shift was applied in the construction of these

TTS master curves. This is also consistent with other studies in the literature,

performing similar measurements from melt to glass[137].

Our TTS master curves shown in figure 3.2, show typical behaviour in the

shear modulus as the chain-length of a polymeric glass-former increases from

that of a small molecule to a fully entangled polymer. The smallest PMMA

molecule in this chain-length series (figure 3.2 (a)) shows the α relaxation only,

with low frequency power law behaviours of G′ and G′′ being 2 and 1 respectively.

The intermediate samples (figure 3.2 (b) and (c)) are between MR < M < Mc,

where MR is the Rouse molecular weight and Mc is the critical molecular weight

(Mc = 29500g/mol[138]). In this range, there are additional contributions to the

mechanical response from Rouse chain modes, which become apparent at lower

frequencies. The more Rouse beads that exists within the molecule, the more

Rouse modes are present in the spectra, this is noticeable in these two samples.

The longest PMMA chain (figure 3.2 (d)) is above the critical moleclar weight,

M > Mc, and therefore exhibits entanglement behaviour. For PMMA, the en-

tanglement molecular weight is Me = 13600g/mol[138], therefore this sample

(MW = 90600g/mol) has 90600/13600 ∼ 6 entanglements per chain. This entan-

glement behaviour is visible in the spectra as a rubber plateau at lower frequencies

which is due to effective crosslinks hindering relaxation. At even lower frequen-

cies, these chains are able to relax via reptation, whereby they move along their
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own length. At high frequencies for all these PMMA samples, TTS breaks down

due to a secondary (β) relaxation becoming apparent. Secondary relaxations

such as this do not follow the same temperature dependence as the α relaxation,

and therefore the spectra will not superimpose onto a common master curve.

The β relaxation is particularly strong in PMMA, and is generally attributed to

some cooperative motion involving both the ester side group and the polymer

backbone[139, 140].

In order to directly evaluate the validity of TTS on these samples, so called

Van-Gurp-Palmen (VGP) plots[141, 142] were produced, which remove any time

dependence from the spectra, therefore assessing the validity of TTS without

shifting data. Examples of VGP plots are shown in figure 3.3.
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Figure 3.3: PMMA Van-Gurp-Palmen (VGP) plots for the samples shown in

figure 3.2.
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These VGP plots show the strain-stress phase angle, δ, versus dynamic shear

modulus, |G∗|. For n = 2 (figure 3.3 (a)), TTS appears valid over this dy-

namic range, as indicated by a smooth continuous curve. As chain modes be-

come apparent for n = 19, 96, and 906 (figure 3.3 (b), (c), and (d)), there is

some decoupling between these two relaxation mechanisms in the modulus range

|G∗| ≈ 106−107Pa. This is observed as a discontinuity between frequency sweeps

at different temperatures. At higher and lower moduli, the α relaxation and chain

modes are the dominant relaxation modes respectively, and TTS appears valid.

Ding and Sokolov[133] noticed a decoupling of α and chain dynamics for various

polymeric systems for τα & 10−5 − 10−7s. This was apparent in measurements

of more fragile polymers such as Polystyrene (PS), which exhibits similar relax-

ation behaviour to PMMA. Despite this, reasonable TTS master curves could

be constructed over the region where there is a changeover between α and chain

dynamics. This crossover between α and chain mode dominant regimes, and the

validity of these TTS curves will be discussed further in section 3.5, whereby this

data will be compared to other techniques which do not rely on TTS.

3.1.2 Dynamic shear modulus modelling

In the time domain, the α relaxation response is often described by a stretched

exponential, or Kohlrausch-Williams-Watts (KWW) expression[94], as shown in

equation 3.4.

G(t) = G0 exp
[
− (t/τ)β

]
(3.4)

As discussed in section 2.1.2, this is a modified exponential decay, where the

breadth of the response is set by a variation of the KWW stretching parameter,

0 < β < 1. In the frequency domain, the stretched exponential decay manifests

itself as a peak in G′′(ω), characterised by low and high frequency power-laws of 1

and β respectively. Therefore, a variation of the stretching parameter β sets the

high frequency power-law slope of G′′(ω). In addition, it also affects the bluntness

of the peak, as shown in figure 2.5.

The time-domain KWW decay does not have an analytical expression in the

frequency domain. Thus, a numerical transform is required for each iteration of
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a fitting procedure performed in the frequency domain. However, Bergman[95]

produced a simple expression defined for the imaginary part of the relaxation

response which matches a KWW response, shown in equation 3.5.

G′′(ω) =
G′′p

1− β + β
1+β

[β(ωp/ω) + (ω/ωp)β]
(3.5)

Here, G′′p and ωp describes the peak in the loss modulus, and β is the KWW

stretching parameter. The real and imaginary components of the dynamic shear

modulus obey a Kramer-Kronig relation[96], and therefore the storage modulus

is attainable from this loss modulus. Rather than directly computing this, a

relevant fitting routine was employed to describe the loss modulus modelled by

equation 3.5, which is as follows:

1. An initial G′′(ω) is generated from equation 3.5 using a set of initial param-

eters.

2. A sum of Maxwell modes (2 per frequency decade) is fitted to G′′(ω), using

a Nelder-Mead algorithm[143] to minimise χ2, thus yielding both G′ and

G′′ corresponding to the initial KWW response

3. χ2 based on the TTS data and both G′ and G′′ is calculated

4. The fitting parameters of equation 3.5 are optimised iteratively until χ2 is

minimised.

An example of this fitting procedure is shown in figure 3.4.
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Figure 3.4: TTS master curve of PMMA n=2. Gray lines are a series of Maxwell

modes (with peak positions shown by the gray dashed lines) fitted to the KWW

approximation of G′′, shown by the black line. The orange line indicates the real

component sum of Maxwell modes.

This figure visualises the fitting procedure, with a sum of Maxwell modes

appropriately distributed in order to describe the modelled loss modulus, as shown

in equation 3.6.

G∗MW (ω) =
N∑
i=1

∆Gi
iωτi

1 + iωτi
(3.6)

Here, the strengths ∆Gi are fitting parameters, and the time-scales of the modes

τi are distributed logarithmically, two per frequency decade, around the peak in

the G′′ (ωp in equation 3.5). This fitting procedure does not require a numerical

transformation per iteration, and still adequately yields the KWW fit of the α

relaxation of the TTS master curve.

For intermediate molecular weight samples, where MR < M < Mc, the Rouse

model[63] (described in detail in section 1.3.2) was additionally employed in order

to fully describe the TTS master curves. The Rouse model describing the complex

shear modulus is shown in equations 3.7 and 3.8[47, 64].
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3.1 Dynamic shear modulus

G∗Rouse(ω) =
ρRT

M

N∑
p=1

iωτp
1 + iωτp

(3.7)

τp =
τ1

sin2(pπ/2(N + 1))
(3.8)

Here, ρ is the density, R is the gas constant, T is the temperature, M is the

sample molar mass, N is the number of Rouse modes (N = M/MR), τ1 is the

relaxation time of the slowest Rouse mode, and τp is the relaxation time of the

pth Rouse mode. This relaxes the chain through a series of normal modes, each

of which contributes ρRT/M to the modulus in this regime. The number of these

modes depends upon the size of the Rouse bead and the molecular weight of the

polymer.

In the MR < M < Mc range, a simple ansatz was applied, where the α

and Rouse spectra were treated independently, and the mechanical response was

described as a superposition of these two components, shown in equation 3.9.

G∗(ω) = G∗α(ω) +G∗Rouse(ω) (3.9)

This ansatz has been applied to other polymeric systems, most notably polystyrene[137,

144, 145], 1-4-polyisoprene (PI)[146], 1,4-polybutadiene (PB)[147], and even for

more complex poly(ethylene oxide) based sticky-Rouse systems[102]. This as-

sumes that the measured stress is simply a sum of independent stress compo-

nents. Alternatively, it has been suggested that strains, rather than stresses,

might instead be additive[148]. The addition of strains is equivalent to summing

compliance (J∗(ω) = 1/G∗(ω)) components, which is often carried out for poly-

meric systems from creep rheology measurements[149], amongst other techniques,

such as; broadband dielectric spectroscopy (BDS)[150, 151] (complex permitivity)

and fast-field cycling NMR (FFCNMR)[152] (complex permeability). Thus, both

types of approaches can typically be applied successfully to describe data, and it

is often not clear what is the most appropriate approach. Mott and Roland[153]

have pointed out that in reality, the interplay of forces is generally too compli-

cated for any simple addition ansatz to perfectly describe the behaviour. However,

these simplifications can still typically describe data well and it is demonstrated

85



3. CHAIN-LENGTH DEPENDENT RHEOLOGY AND
RELAXATION DYNAMICS OF PMMA

in this work, that a simple addition ansatz based on the moduli can descrice

the data very well and this is thus used as a first approximation to monitor the

chain-length dependent rheology.

Using this addition ansatz of modulus components, the loss modulus (G′′) can

be described as the sum of equation 3.5 and the imaginary component of equation

3.7, shown in equation 3.10.

G′′(ω) =
G′′p

1− β + β
1+β

[β(ωp/ω) + (ω/ωp)β]
+
ρRT

M

N∑
p=1

ωτp
1 + (ωτp)2

(3.10)

Here, G′′p, β, ωp, and τ1 are fitting parameters. τα = 1/ωp denotes the character-

istic relaxation time corresponding to the peak in the G′′ of the α relaxation.

For higher molecular weight samples above Mc, the Rouse model does not

describe all chain behaviour. As explained in section 1.3.2, at higher temper-

atures/lower frequencies than those relevant for Rouse dynamics, relaxation of

polymer chains is impeded by adjacent chains. These constraints act as tempo-

rary cross-links, which give rise to rubbery behaviour, whereby a plateau region

becomes apparent, with a modulus (Ge) determined by the density of the these

entanglements[61]. To characterise this behaviour, the tube model is employed,

which describes a single polymer chain as being contained in an imaginary tube,

the shape of which is determined by the chemistry of the particular polymer

system[64]. Eventually, the polymer chain is able to escape this tube in a mode

of motion described by de Gennes[65] as ”reptation”, which finally relaxes the

polymer chain at high temperatures/low frequencies.

In order to model Rouse and entanglement behaviours for samples where

M ≥ Mc, the Likhtman-McLeish (LM) model[5] was employed. As described

in section 1.3.3, this model is based on a tube model, taking contour length

fluctuations, constraint releases, and reptation along the tube into account. It

also includes Rouse modes between entanglements, and therefore models all chain

dynamics for entangled polymers.

Examples of the fitting procedures for these three M regimes are shown in

figure 3.5.
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Figure 3.5: PMMA TTS master curves with appropriate models fitted for the

samples shown in figure 3.2.

For low M PMMA samples (M < MR, example in 3.5 (a)), a single KWW

expression is adequate to describe the spectra from melt to ∼ Tg, as shown by

black lines describing G′ and G′′. The addition of a Rouse spectrum is necessary

to describe intermediate M samples (MR < M < Mc, examples in 3.5 (b) and

(c)) spectra, which is shown by the red lines. The sum of this, and the blue lines

representing a single KWW expression describing the α relaxation, yield the black

lines describing the entire spectra (as described by equation 3.9 for both G′ and

G′′). Entanglement dynamics become apparent for high M samples (M > Mc,

example in 3.5 (d)), and the Likhtman-McLeish model is used to describe the

chain behaviour, rather than a simple Rouse model. This ansatz works well in

describing both the α relaxation and chain dynamics. From this fitting, infor-
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mation on both the α relaxation and chain modes can thus be obtained for this

PMMA M series.

3.2 The α relaxation

The horizontal TTS shift factors (aT from equation 3.2) are proportional to the α

relaxation timescale (τα) at shorter times, and chain modes (τn) at longer times.

For thermorheologically simple matierals, it is assumed that these two relaxation

mechanisms share the same temperature dependance[8]. Therefore TTS yields

time-scales which are characteristic of both relaxation mechanisms. In order to

associate the shift factors with an absolute α timescale, the peak in the loss

modulus is taken as the τα at the reference temperature (τα = 1/ωp), which is

obtained directly from the fitting procedure for the α relaxation in section 3.1.2.

This yields τα for all temperatures involved in the construction of the TTS master

curves.

The temperature dependence of the α relaxation is commonly empirically

described using a Vogel-Fulcher-Tammann (VFT)[17–19] expression, shown in

equation 3.11.

τα(T ) = τ0 exp

(
DT0

T − T0

)
(3.11)

Here, the strength parameter, D, is a measure of the curvature, and therefore a

measure of the deviation from Arrhenius behaviour, and Vogel temperature, T0,

is the temperature where τα diverges. The temperature dependence of τα for this

chain-length series of PMMA are shown in figure 3.6.
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Figure 3.6: Arrhenius plot showing τα determined from the TTS master curves

as a function of inverse T . The legend gives the degree of polymerisation, and

solid lines are VFT fits to the data.

This shows the typical super-Arrhenius (VFT) behaviour of the α relaxation.

The glass transition temperature is defined as the temperature where τα = 100s,

as shown by the dashed line, and this is well known to increase with chain

length[86]. In order to visualise the sensitivity to a T variation at Tg, a Tg-

normalised Arrhenius, or Angell[23], plot was used. In addition to this, a deriva-

tive, or Stickel[24], analysis of the temperature dependence of τα was calculated.

This is shown in equation 3.12.

Z =
( d log τα

d(1000/T )

)−1/2

=
( DT0 log e1

1000(T0/T − 1)2

)−1/2

(3.12)

This derivative linearises VFT behaviour, whereby the slope of the Stickel pa-

rameter (Z) is related to the VFT parameters D and T0, as shown in equation

3.13.

dZ

d(1000/T )
= −

( T0

1000D log e1

)1/2

(3.13)

A change in the slope of Z therefore indicates a change in VFT behaviour, which

is sometimes not apparent in a standard Arrhenius plot. In this type of analysis,
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Arrhenius behaviour is displayed as simply a horizontal line (Z is invariant with

temperature), and therefore the slope is in effect a measure of deviations from

Arrhenius behaviour. It is also worth noting that both equations 3.12 and 3.13

are not dependant on the VFT pre-factor (τ0). For this series, Angell and Stickel

plots are shown in figure 3.7.
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Figure 3.7: a) Angell plot, showing PMMA α relaxation timescales attained

from TTS master curves as a function of Tg/T . b) Stickel plot linearising VFT

behaviour. The legends give the degree of polymerisation, and solid lines are

VFT fits to the data.

Figure 3.7 (a) and (b) show that as chain length increases, the temperature

dependence of the α relaxation becomes less Arrhenius (more fragile). From the

VFT expression, the fragility parameter can be determined, shown in equation

3.14.

m =
d log τα
d(Tg/T )

∣∣∣∣
T=Tg

=
ln(100/τ0)2 +D ln(100/τ0)

D ln(10)
(3.14)

This is the slope of the VFT curve at the point where the grey dashed lines

intersect in figure 3.7 (a), and hence is a measure of the change of α relaxation time

with temperature at Tg. A higher fragility implies a large change of relaxation

time with changing temperature at Tg.

90



3.2 The α relaxation

3.2.1 Comparisons to BDS and DSC

Along with rheology, the τα(T ) behaviour was also determined using Broadband

Dielectric Spectroscopy (BDS) and Differential Scanning Calorimetry (DSC).

BDS measurements were performed using a Novocontrol Alpha-A analyser,

as discussed section 2.2. PMMA is an example of a so called type-C polymer,

which has flexible dipoles associated with the side group, rather than along the

polymer backbone[14]. Hence the relaxation of chain modes is not apparent in

BDS measurements of PMMA. For the whole chain-length series, the α relaxation

is observed together with faster, secondary, relaxation mechanisms. These are la-

belled β, γ, δ, etc in order of appearance with increasing frequency (or decreasing

temperature)[14]. The β relaxation in PMMA has a strong mechanical response

also, shown by a failure in TTS at high frequency in figure 3.2.

A common empirical expression used to model relaxations is a modified Debye

relaxation, a Havriliak-Negami (HN) relaxation[109], as shown in equation 3.15.

ε∗(ω) = ε∞ +
∆ε

(1 + (iωτHN)α)β
(3.15)

Here, ε∗(ω) is the complex permittivity, ε∞ is the permittivity at infinite fre-

quency, and ∆ε is the change in permittivity due to the relaxation. α and β are

the empirical modifications to the shape of the Debye relaxation, which broaden

the relaxation spectra, where α and αβ are the low and high frequency power-law

flaks in the imaginary permittivity (ε′′) respectively. For the case of asymmetric

relaxations, where β 6= 1, τHN does not correspond to either the average relax-

ation time, or the most probable relaxation time (the peak frequency in ε′′), i.e.

1/ωp = τα 6= τHN . Therefore, to correct for this and attain τα, equation 3.16 is

used[14].

1

τp
=

1

τHN

[
sin

απ

2 + 2β

]1/α [
sin

αβπ

2 + 2β

]−1/α

(3.16)

Over this wide frequency range, multiple relaxation processes may be visible. A

superposition of relevant expressions may be used to describe the entire spectra,

as shown in equation 3.17
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ε∗(ω) =
−iσ
ω

+
N∑
j=1

∆εj
(1 + (iωτHN,j)α,j)β,j

+ ε∞ (3.17)

This is a HN equation for N relaxations (α, β, γ, etc) visible in the frequency

window at a particular temperature, along with a DC-conductivity contribution,

which comes from the migration of charged species (ions) through the sample.

The effects of both polymer system and chain length on the conductivity of ions

will be explored in chapter 5. Examples of BDS fitting are shown in figure 3.8.
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Figure 3.8: Dielectric loss at different temperatures for a) n = 3 and b) n = 906

PMMA samples. Solid line represent fitting of the entire spectra. Dashed line

shows an example of individual contributions to the spectra.

For low M PMMA samples (example in 3.8 (a)), the α relaxation is visible

and relatively easy to model (a large change in permittivity, ∆ε, visualised by a

higher peak in ε′′), with a weaker β relaxation at higher frequencies. However,

as M increases, the β relaxation becomes more dominant, and obscures the α

relaxation (example in 3.8 (b)). This makes differentiating the α relaxation from

DC conductivity and the stronger β relaxation difficult for these samples. As

discussed in section 2.2.5, for the highest M PMMA sample (n=906), ε′ was

converted to ε′′ using an appxorimation of Kramer-Kronig relation[112] in order

to better fit the α relaxation without a conductivity contribution.
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DSC measurements were performed on the full PMMA chain-length series

using a TA instruments Q2000 DSC, as discussed section 2.3. An example of a

DSC trace is shown in figure 3.9.

360 370 380 390 400 410 420

Temperature (K)

1.4

1.5

1.6

1.7

1.8

1.9
c

p
 (

J
/g
·
K

)
n=906

T
f

c
p, l

c
p, g

Figure 3.9: Specific heat capacity as a function of temperature for PMMA n=906.

The red dashed lines indicate the behaviours in the glass (cp,g) and liquid (cp,l)

states. The black dashed line shows the, so called, fictive temperature.

Figure 3.9 shows the typical step in heat capacity when the sample is cooled

through the glass transition. The transition temperature is taken as the fictive

temperature, calculated as per Moynihan et. al.[117] in equation 3.18.∫ T2

Tf

(cP,l(T )− cP,g(T ))dT =

∫ T2

T1

(cP (T )− cP,g(T ))dT (3.18)

Here T1 and T2 are arbitrary temperatures either side of the transition region,

and cP,l and cP,g are the extrapolated heat capacities of both the liquid and glass

respectively (red dashed lines in figure 3.9). This is sometimes referred to as

the thermodynamic glass transition temperature, as it is the point where the

temperature dependent enthalpy changes behaviour. It is used here as it is a

more robust and comparable quantity than either the onset, midpoint, or offset

definitions of the transition temperature.
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In DSC, the cooling rate is inversely proportional to the α relaxation timescale.

Hensel et. al.[119] compared transition temperatures obtained using temperature-

modulated DSC (TMDSC), where the timescale is set by the modulation period,

to transition temperatures at different cooling rates. It was shown that cooling

rates of 10K/min correspond well to timescales of τα ' 100s for a variety of

different non-polymeric and polymeric glass formers. In order to test this, the

same TMDSC technique was performed on this PMMA chain-length series, and

the relationship between cooling rate and α relaxation timescale was determined.

Examples of this are shown in figure 3.10.
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Figure 3.10: Transition temperatures from standard DSC measurements per-

formed at different cooling rates (black circles), vertically shifted using shift fac-

tor, y, to transition temperatures from TMDSC (red triangles) for PMMA a)

n=2 and b) n=906.

Figure 3.10 illustrates the relationship between inverse cooling rate and re-

laxation timescale (τα = y/rate) for both (a) low (n=2) and, (b) high (n=906)

M PMMA samples. The transition (fictive) temperatures obtained at different

cooling rates (black circles) were shifted using a vertical shift factor, y, in order

to coincide with transition temperatures obtained using TMDSC (red triangles),

where the α relaxation timescale is set by the modulation period (this will be

discussed further is section 4.1). The data shown in red, along with the linear

(Arrhenius) fit, describes the absolute timescale behaviour over this narrow dy-

namic window. The shift factor, y, therefore gives the system specific relationship
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between cooling rate and α relaxation timescale. A value of log(y) = 3 means

that 10K/min corresponds to τα = 100s, indicating that PMMA, as shown in

figure 3.10, is consistent with this conclusion. As well as the glass transition

temperature, the change in heat capacity and transition width were also acquired

from cooling rates of 10K/min, and will be discussed in section 3.3.

The α relaxation timescales determined from these techniques are shown in

figure 3.11.
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Figure 3.11: PMMA α relaxation Arrhenius plots. a) BDS (triangles) and DSC

(squares) for all PMMA samples, with VFT fits through BDS data. b) Rheology

(circles), BDS (triangles), and DSC (squares) for common samples, with VFT

fits through rheology data. The legends show the degree of polymerisation (n).

The triangles in figure 3.11 (a) shows that τα(T ) determined directly from

peak values in ε′′, without relying on TTS, exhibits VFT behaviour. This also

shows good agreement with Tg values determined from DSC, shown by the squares

at τα = 100s. τα values from rheology, BDS, and DSC are shown in figure 3.11

(b), with the VFT fits to the rheology timescales. Once again there is good

agreement between these techniques in determining τα within their particular

timescale domains. However, there is a vertical (timescale) shift between rheology

and BDS, which will be discussed in section 3.5.1.
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3.2.2 The glass transition temperature

Rheology, BDS, and DSC all capture the timescale dependence of the α relax-

ation, and therefore the glass transition temperature (Tg) can be determined at

the timescale where τα = 100s. Tg is well known to increase with M for linear

polymers, and is generally attributed to the larger free-volume associated with end

groups. It is suggested that an increase in free volume leads to a decrease in Tg.

Therefore as the molecular weight increases, the density of end groups (and free

volume) decreases, leading to an increase in Tg[31, 86]. A similar argument can

be derived by considering configurational entropy, such as in the Gibbs-DiMarzio

theory[154]. The effect was quantified by Fox and Flory, yielding the equation

3.19.

Tg(MN) = Tg(∞)− K

Mn

(3.19)

This is the Fox-Flory equation, where K is an empirical system specific con-

stant, Mn is the number-average molecular weight (simply M for these relativly

monodisperse PMMA sample), and Tg(∞) is the glass transition temperature at

high M . Figure 3.12 shows Tg from rheology, BDS, and DSC for this PMMA

molecular weight series, along with DTA[3] and DSC[4] literature data.
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Figure 3.12: a) Tg vs MW from Rheology TTS master curves, BDS, and DSC. b)

Including literature data[3, 4]. Fox-Flory fits (equation 3.19) for the entire data

set (red), and for data with MW > 103g/mol (black).
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3.2 The α relaxation

As expected, figure 3.12 shows good agreement in Tg values from these three

techniques (along with literature data). The slight variations in these techniques

are due to differences in the determination of the α relaxation timescales: Rhe-

ology probing the complex shear modulus, using TTS and an extrapolation of a

VFT expression for a Tg value; BDS probing the complex permittivity, also using

an extrapolation of a VFT expression for a Tg value; and DSC measuring the

heat capacity as a function of temperature, assuming a cooling rate of 10K/min

corresponds to a relaxation time of 100s. A Fox-Flory equation can be used to

describe Tg data above M > 103g/mol, as shown by the black curve fit. However,

as shown by the red fit curve, a single Fox-Flory model is insufficient over this

entire M range. Cowie[134, 155, 156] suggested that rather than continuous Tg

behaviour, the variation of Tg is split into three distinct M regions. Cowie (for

PαMS, PS, PB, and PI), and more recently Hintermeyer et. al.[135] (for PDMS,

PS, and PB) attributed these regions to physical changes in polymeric behaviour.

Regions I and II are two distinct regimes where Tg increases linearly with logM ,

and region III a saturation in Tg behaviour, where an increase in M does not

increase Tg. These three regions are show in figure 3.13 for this PMMA M series.
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Figure 3.13: a) Tg vs M from rheology TTS master curves, BDS, and DSC. b)

Inlcuding literature data[3, 4]. Region I, II, and III represent changes in polymer

behaviour with M . Solid black symbols on the top axis indicate MK (circle), Me

(left facing triangle), and Mc (right facing triangle).

Linear regional Tg fitting in figure 3.13 shows better agreement with low M
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data than the single Fox-Flory fit shown in figure 3.12. It is noted that the region

I to II boundary is above the Kuhn molecular weight (black circle on the top

axis). This transition is observed not only in dynamic measurements such as Tg,

but also structural measurements, such as a change in the ratio of the radius

of gyration components, calculated using Flory’s rotational isomeric state (RIS)

theory. This has been carried out in collaboration with Prof. Peter Olmsted[157].

Therefore, this region I to II boundary is attributed to the folding of the poly-

mer chains, leading to the onset of polymer behaviour and the formation of a

dynamic bead. The region II to III boundary has been suggested to relate to

the onset of entanglement dynamics, although Agapov et. al.[158] show that Me

(black left facing triangle on the top axis) does not describe this transition for

PS or PDMS. However, Tg relates to dynamics, and therefore a more relevant

comparison would be Mc (black right facing triangle on the top axis), rather than

Me. For PMMS and PS, Mc describes the transition very well[157]. This work

agrees with Agapov et. al. for PDMS, whereby neither Me or Mc describe the

region II to III transition. However, for PDMS, due to the nature of the siloxane

backbone, loop-like structures form, and therefore direct comparisons to PDMS

regarding characteristic molecular weights are more difficult.

From this, it is clear that regional M behaviour of polymer dynamics oc-

curs, and therefore PMMA Tg behaviour is better described using these regional

boundaries, rather than a single continuous function.

3.2.3 Dynamic fragility

Figure 3.7 (a) shows an increase in fragility with increasing M , as described using

rheology. BDS also probes the temperature dependence of τα, and therefore a

dynamic fragility can also be determined, albeit requiring the extrapolation of a

VFT fit to τα = 100s. The dynamic fragility, as calculated using equation 3.14

from VFT fits, is shown in figure 3.14.
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Figure 3.14: Dynamic fragility (m) vs M from rheology TTS master curves,

and BDS. Orange dashed lines are guides to the eye, showing possible regional

behaviour. Errors are calculated from errors in VFT fitting. Solid black symbols

on the top axis indicate MK (circle), Me (left facing triangle), and Mc (right

facing triangle).

Hintermeyer et. al.[135] also showed an increase in dynamic fragility in other

linear polymer systems with increasing M , although regions I and II appeared to

show continuous behaviour, until a saturation in region III. This may be he case

with PMMA; the rheology data could be showing this behaviour, with the n=8

(M = 840g/mol) sample being an anomaly. However, within the accuracy of the

data it appears that fragility may be M independent in region I. The relationship

between the values of dynamic fragility from rheology and BDS is related to the

vertical shift between τα(T ) values from these techniques, as mentioned in section

3.2.1. τα(T ) values from rheology are smaller than those attained from BDS at

the same temperature (apparent in figure 3.11 (b)), and therefore values of m

will be lower for rheology than BDS, which is apparent here. This vertical shift

in τα(T ) between rheology and BDS will be discussed further in section 3.5.1.

The KWW stretching parameter (βKWW ) has been shown to correlate inversly

to dynamic fragility for polymeric and non-polymeric systems[25]. This non-
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exponential behaviour of the α relaxation is interpreted as either that; (i) the α

relaxation has contributions from a heterogeneous series of environments, each

of which are exponential, or (ii) a homogeneous series which themselves are non-

exponential[10]. Also, in the coupling mode by Ngai[41], the stretching parameter

has been linked to the degree of intermolecular coupling (βKWW = 1 − n). For

the PMMA chain-length series, βKWW was measured directly through fitting of

the TTS master curves, shown in figure 3.15.
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Figure 3.15: a) High frequency TTS master curves for PMMA MW series, scaled

on to the high frequency crossover point. Circles and triangles are G′ and G′′

respectively. b) KWW stretching parameter vs MW from Rheology TTS master

curves, and BDS at τα ∼ 1s. BDS Havriliak-Negami high frequency exponents

at τα ∼ 1s is also shown.

The values of βKWW were attained directly from the fitting to the TTS master

curves from rheology, and the low M samples from BDS (due to the relative

strengths of the α and β relaxations in higher M PMMA). The red squares (BDS

(HN)) in figure 3.15 (b) is the exponent describing the high frequency power-law

flank in ε′′(ω) (αβ parameters from a HN fit), which is consistently lower than

a true value of βKWW . The high frequency flank in G′′(ω) (and ε′′(ω)) relates

to βKWW , which, as shown in 3.15 (a), is clearly increasing with M . This high

frequency flank also has contributions from the secondary (β) relaxation (which

is apparent as a clear failure in TTS), causing exact fitting of a single KWW

expression difficult in this frequency range.
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It is uncertain whether the inverse correlation between βKWW and m[25] holds

for oligomeric systems. However, it seems unlikely to be the case considering the

lack of obvious correlations between figures 3.15 (b) and 3.14. Interestingly,

Santangelo et. al.[159] showed that for PS, the βKWW does not increase with

M using similar rheology measurements, although dynamic fragility did change

comparably.

3.3 Differential scanning calorimetry

DSC measurements were carried out on the PMMA M series as discussed in

section 3.2.1. The step increase in specific heat capacity (cp) at the glass transition

relates to an increase in the number of configurational degrees of freedom, and

therefore an increase in entropy[20] between the glass and liquid states. The traces

of cp as a function of temperature increase systematically with M , as shown in

figure 3.16.
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Figure 3.16: cp as a function T from 10K/min DSC measurement on the PMMA

M series. The dashed lines are a guide to the eye, showing systematically in-

creasing glassy and liquid state specific heat capacities. The legend shows degree

of polymerisation (n).
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Figure 3.16 shows the increase in the glass transition temperature with in-

creasing M (as discussed in section 3.2.2). This also shows, within some scatter,

that the specific heat capacities of the liquid and glassy states (cp,l and cp,g respec-

tively) seem to follow similar behaviour of cp(T ) in this PMMA chain length series

(indicated by the gray dashed lines). Huang et. al.[160] showed that polymeric

(n = 915) poly(α−methylstyrene) (PαMS) understandably showed a reduction

in Tg when blended with increasing mass fractions of PαMS pentamer (n = 5).

Interestingly, for this series of plasticised PαMS, cp,l and cp,g followed common

behaviour, regardless of mass fraction. This suggest that increasing the degree

of polymerisation may be equivalent to mixing long and short chain polymers

(hence altering the MW of the mixed sample). They also noted that this common

cp,l did not hold for units PαMS smaller than n = 5, which is also consistent with

n = 2− 4 for PMMA shown here as having a different slope than the rest of the

series. Loufakis and Wunderlich[161] proposed that the heat capacity is a sum of

three components, as shown in equation 3.20.

Cp = Cvib + Cext + Cconf (3.20)

Here, the heat capacity Cp is a sum of vibrational, external, and configurational

contributions: Cvib accounts for the majority of the heat capacity, which is as-

sumed to be the same for both the solid (glassy) and liquid, and hence does not

change over the Tg step; Cext (related to expansivity and compressibility of the

material), which does vary between solid and liquid; and Cconf , which is related to

the additional configurational degrees in the liquid state. Therefore, these quan-

tities must depend, to first approximation, on temperature, but not increasing

chain length in PMMA.

3.3.1 Width and height of the glass transition

Figure 3.16 shows the change in both the step height (∆cp), and step width (∆T )

of the glass transition as a function of M , which are shown in figure 3.17.
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Figure 3.17: a) Change in cp between cp,liquid and cp,glass at Tg as a function of M .

b) Difference in temperature between onset and offset definitions of Tg (discussed

in section 2.3) as a function of M . Dash lines indicate regional boundaries.

The values of ∆cp against M significantly decreases in region I, and become

M independent withins regions II and III. This quantity, through Adam-Gibbs

entropy model[28], is linked to dynamic fragility (m)[162], which also exhibits re-

gional behaviour (shown in figure 3.14). ∆T as a function of M also exhibits simi-

lar regional behaviour, which relates to the KWW stretching parameter (βKWW ),

as this is a time/frequency domain metric relating to the width of the α relaxation,

and also dynamic fragility[163]. Isobaric heat capacity is defined in equation 3.21.

CP = T
(∂S
∂T

)
p

(3.21)

Therefore, the difference in the rate of change of entropy at Tg between liquid

and glassy states can be defined by equation 3.22.

∆Cp
Tg

=
[(∂Sliquid

∂T

)
Tg
−
(∂Sglass

∂T

)
Tg

]
P

(3.22)

Normalising ∆cP by Tg therefore yields this difference in rate of change of entropy

between liquid and glass[164], as shown for this M series in figure 3.18.
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Figure 3.18: The heat capacity step (∆cP ) normalised by Tg as a function of M

for this PMMA chain length series. Dash lines indicate regional boundaries.

Once again, this shows a distinct decrease in the difference in the rate of

change of entropy between liquid and glass in region I, and a stabilisation in

regions II and III. ∆cP decreases by ∼ 2 and Tg increases by ∼ 2, and therefore

the quantity ∆cP/Tg decreases by ∼ 4 in region I.

Using these heat capacitiy responses (Tg, ∆T , and ∆cp), Donth[165] proposed

a method to determine the size of the cooperatively rearranging region at Tg.

Using temperature modulated DSC (TMDSC), a more robust measure of ∆T ,

and a timescale dependent Tα can be attained. These measurements, along with

the M dependence of the size of the cooperatively rearranging region attained

from TMDSC, along with other measures of the degree of molecular cooperativity

will be discussed in chapter 4.

3.4 Chain modes

As discussed in section 1.3, polymer chains constantly reshape and move due

to Brownian motion[64]. In rheology measurements, this movement of polymer

chains is evident in the complex shear modulus. At the Rouse bead size (MR),
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polymer behaviour starts to become apparent in the form of Rouse modes, which

relax the chain through a series of normal modes. Above the critical entanglement

size (Mc), chains become entangled and entanglement and reptation dynamics

become visible also. In PMMA, these chain dynamics are not obvious in BDS

due to segmental dipoles not having a component along the polymer chain[14].

For PMMA, the critical entanglement size is quoted in literature as Mc =

29500g/mol[138]. In this work, two entangled (M > Mc) PMMA samples were

measured using rheology: a monodisperse (PDI=1.04), n=906 (MW = 90600g/mol)

sample; and a polydisperse (PDI=2.46), n=1478 (MW = 147800g/mol) sample.

These were compared, along with two monodisperse literature samples (n=1080,

and n=2000)[90] in figure 3.19.
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Figure 3.19: Comparison of entangled PMMA samples. a) Samples measured in

this work (n=906, and n=1478) across the entire dynamic range from glass to

melt. b) Monodisperse samples from this work and literature, focusing on low

frequency entanglement and melt dynamics.

As shown in figure 3.19 (a), the complex shear modulus of both these samples

agree at high frequencies within the glassy and Rouse regimes as expected, dif-

fering only at low frequencies once entanglement dynamics become apparent. In

linear polymers, the plateau behaviour depends on polydispersity, whereby the

rubber plateau region will be ”slanted” in polydisperse samples due to shorter

chains being able to reptate quicker than longer chains. In relatively monodisperse

polymers, the frequency distance between entanglement and reptation depends
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on M . Figure 3.19 (b) shows this increasing frequency distance, with the terminal

relaxation time expected to scale as τd ∝M3.4[166].

3.4.1 The dynamic bead size

The dynamic bead (or Rouse bead, MR) size can be estimated using a range of

different techniques:

• Neutron spin echo (NSE) measurements on polymer systems can be used to

determine the scatting vector (q), and therefore the length-scale (∼ 2π/q),

where Rouse modelling breaks down. This lengthscale is often attributed to

the size of the dynamic bead[167], although conversions between this length

scale and MR are non-trivial[168].

• Similar to this work, a chain-length series of oligomers/polymers can be

studied using techniques such as fast-field cycling NMR (FFCNMR) for

PPG, PI, and PDMS[152], and PB[169], or using BDS for so called type-

A polymers[14] (which have dipole conponents along the polymer chain

backbone) such as PPG[170] and PI[151], whereby MR can be determined

as the M when chain behaviour becomes visible in the spectra.

• Using a similar ansatz to that used in this work, whereby the mechanical

modulus has contributions from both the α relaxation and Rouse modes

(equation 3.9). MR can be varied to best fit the spectra. This technique

has been used to determine MR for PS[144, 171].

For PMMA, no such studies exist in literature. Thus, in this work, the number

of Rouse modes was determined simply by nR = M/MR, where MR was taken as

the Kuhn length (MK), which for PMMA is MK = 598g/mol[138]. As already

mentioned, Inoue et. al.[137] carried out a similar fitting procedure on interme-

diate M PS, using a Rouse molecular weight of MR = 850 − 900g/mol, which

was determined from the high frequency modulus contribution of Rouse modes

in extensional rheology[171]. Gray et. al.[144] determined that a Rouse bead size

of MR = 500 − 510g/mol was sufficient in describing intermediate M complex
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shear modulus spectra of PS in the same manner. These values are in-line with

the Kuhn size for PS, which is in the region of MK = 720g/mol[60].

However, Ding and Sokolov[168] have pointed out that the longest Rouse mode

contributes 92% of the total compliance in the Rouse regime, thus criticising the

often used modulus determinations of the MR. They suggested that the Kuhn

length, as defined in section 1.3.1, is an oversimplification, and that the char-

acteristic ratio, C∞, which is the ratio of the mean-squared end-to-end distance

and n number of Kuhn lengths in a random walk (C∞ =< R2
0 > /nl2K)[61], is

not the only parameter which defines the dynamic bead size. The Kuhn length

defined this way assumes that the polymer chain within the Kuhn unit is fully

extended, i.e. in a fully trans configuration. However, in reality this is not the

case, and chains begin to fold on themselves within these lengthscale. Using

the determination of the Rouse length-scale from NSE measurements, they show

that in poly(dimethyl siloxane) (PDMS), both MK , and their calculated MR are

consistent. However, using the same calculation for PS, MR could be as high as

MR = 5000g/mol, and they describe the complex shear modulus with a superpo-

sition of α and Rouse models on the same two samples as Inoue et. al. (n=101,

and n=57) using this estimation.

To test this, complex shear modulus measurements were carried out in the

same manner as the PMMA samples on a PS M = 11300g/mol (n=109) sample.

This would contain either nR = 13 or nR = 2 Rouse modes, depending whether

the size of the Rouse bead is MR = 850g/mol, or MR = 5000g/mol respectively.

The same modelling procedure was carried out as with intermediate M PMMA

samples (with M dependent density data from literature[172], described by a

Fox-Flory model), which are shown in figure 3.20.
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Figure 3.20: PS TTS master curves with a sum of glassy and Rouse models. a)

MR = 850g/mol. b) MR = 5000g/mol.

Figure 3.20 (a) shows the fitting of the complex shear modulus using the

Kuhn definition for the Rouse bead size, MR ≈ MK = 850g/mol (nR = 13),

whereas 3.20 (b) was fitted using MR = 5000g/mol (nR = 2). This suggests

that only 2 Rouse modes is insufficient in describing this TTS master curve, and

that the Kuhn definition is in fact more representative of the dynamic bead than

that defined by Ding and Sokolov. Additionally, the validity of fitting a Rouse

model to the spectra of an oligomer with only 2 Rouse units would also need

to be questioned. The failure of the fitting is more apparent in G′ than G′′,

which is consistent with the statement that the longest Rouse mode contributes

∼ 92% of the total compliance in the Rouse regime, as the total modulus is

dominated by G′′ in this regime. However, both components of the complex

shear modulus are unable to be described with such a large dynamic bead size.

Finally, it is worth pointing out that, as discussed by Jeong and Douglas[173], at

least for some polymer systems such as polyethylene, Rouse theory does not hold

for unentangled (M < Mc) polymers due to the lack of Gaussianity. However, the

use of the Rouse model using the Kuhn molecular weight, MK , as the dynamic

bead size can describe chain dynamics well in both unentangled PMMA and PS,

and therefore this approximation was used.
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3.4.2 Sub-Rouse modes

In order to establish Rouse dynamics, a polymer chain must contain a number of

basic Rouse units. Chain relaxation mechanisms smaller than those involving

Rouse beads are coined sub-Rouse modes[174]. Sub-Rouse modes have been

previously reported in polymeric PMMA using rheology[175], whereby the onset

of such modes are attributed to the dynamic crossover in PMMA[176, 177], i.e.

the temperature where there is a distinct change from one VFT behaviour to

another.

For PMMA samples where the chain length is approximately that of the Rouse

bead size (MR), sub-Rouse modes may be visible due to the lack of Rouse modes.

For this PMMA chain-length series, two samples fit this criteria, as shown in

figure 3.21.
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Figure 3.21: PMMA TTS master curves for a) n=7 and b) n=8. A single KWW

fit of the α relaxation in insufficient to describe the entire spectra, shown by the

black fit.

Figure 3.21 shows two similar spectra, of similar PMMA samples (M=771

and 840g/mol). The chain mode fitting performed in this work would only in-

clude a single Rouse mode for both of these samples, which would be equivalent

to a single Maxwell mode at low frequencies, in addition to the KWW model

describing the α relaxation shown in black. This is unable to describe the spectra

at low frequencies, and therefore was not included. This suggests that Sub-Rouse
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dynamics are evident, causing a broadening of the low frequency flank, which

has previously also been reported from BDS[178], and photo-correlation spec-

troscopy (PCS)[179, 180]. While there does not seem to be a changeover in VFT

behaviour, these samples also do not follow the trend of increasing fragility with

the rest of the series. These two samples also show other anomalous behaviour,

which will be discussed in section 3.5.1.

It is also worth noting that these samples are relatively polydisperse (PDI=1.18−
1.44), and are in a molecular weight range (region I) where M has a large effect

on glassy and polymer dynamics (Tg, m, and τ1). It would be interesting to see

if this behaviour was apparent in monodisperse samples, which will be a focus of

future work.

3.5 Validity of TTS from glass to melt

The validity of TTS, particularly over a wide dynamic range, is often questioned[98,

181]. Ding and Sokolov[133, 182] compiled timescale data for both segmental and

chain dynamics in a number of different polymer systems, and suggested that

these two relaxation mechanisms decouple for time-scales τα ∼ 10−5 − 10−7s.

The timescale where the temperature dependance starts to differ appears to be

correlated to the fragility of the polymer. Less fragile polymers such as polypropy-

lene glycol (PPG) and polyisoprene (PI) are coupled at higher values of τα than

more fragile polymers such as polycarbonate (PC). For PS (which exhibits sim-

ilar α and chain behaviour to PMMA, such as Tg, m, MK), direct measures of

τα(T ) using NMR spectrscopy[183], and chain-mode relaxation times, τn(T ), us-

ing mechanical spectroscopy[184], compared over the same temperature range,

agreed with this hypothesis. Hence we expect TTS to fail as we approach Tg

from the melt (increasing values of τα). In order to assess whether decoupling in

this timescale regime was an issue, the TTS master curves where chain modes

could be observed (M > MR) were split into three regions: an α relaxation

dominant region, where |G∗chain| ≤ 2|G∗α|; a chain mode dominant region, where

|G∗α| ≤ 2|G∗chain|; and an intermediate region between these two. Three scenarios

are shown in figure 3.22.
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Figure 3.22: Left: TTS master curves for n=19, 43, and 96 PMMA showing fit-

ting routine of segmental and chain dynamics. Dashed gray lines indicate changes

from α dominant, to intermediate, to chain dominant regimes. Right: Approxi-

mate position of single frequency sweeps (using f = 0.5Hz as the representative

frequency) indicating the α timescale where these regimes change. BDS timescale

data is also shown (which is α dominant by definition.)
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Figure 3.22 (a), (c), and (e) show TTS master curves with α and chain mode

fitting. These were split into ”α dominant”, ”intermediate”, and ”chain domi-

nant” ranges as defined previously. Figure 3.22 (a) (and samples with lower M)

are α dominant across this dynamic range due to either non-existent or few Rouse

modes. In figure 3.22 (c) the intermediate regime becomes apparent. Finally, in

figure 3.22 (e) (and samples with higher M), the chain dominant regime appears.

By defining the middle value of the frequency sweep range (f = 0.5Hz) as the

representative frequency at a particular temperature, the value of τα that corre-

spond to these regime boundaries can be estimated. Figure 3.22 (b), (d), and (e)

show this position on Arrhenius plots corresponding to these samples, along with

BDS τα data (which is by definition α dominant).

Using this procedure for identifying the dominant relaxation mechanism, for

low M samples (n=19 and below) the modulus is dominated by the segmental

relaxation mechanism over the entire dynamic range. As chain modes become ap-

parent as M increases, the chain mode contribution to the modulus become more

and more prominent at lower frequencies. This eventually yields intermediate and

chain mode dominant regimes for higher M samples. For the middle and high

M samples (n=43 and above), the crossover from α dominant to an intermediate

regime appears to happen at τα ∼ 10−3s. Above this timescale, we deem the

shear modulus to be dominated by the segmental relaxation mode, and for any

underlying chain modes which would cause TTS to fail to be effectively irrelevant

due to their lack of contribution to the shear modulus. As previously mentioned,

decoupling is expected to happen between τα ∼ 10−5 − 10−7s, which means this

does span into the intermediate regime, where the shear modulus has both seg-

mental and chain mode contributions. TTS in this range between the onset of

this intermediate regime τα ∼ 10−3s, and the decoupling region τα ∼ 10−5−10−7s

may show some failure.

3.5.1 Comparisons between rheology and BDS

BDS directly probes the α relaxation of PMMA over a broad frequency range

without relying on TTS, and without an obvious influence of chain modes. The α

relaxation timescales from BDS therefore can be compared to those from rheology,
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3.5 Validity of TTS from glass to melt

which provides a means to identify any prominent chain mode effects on the

dynamics. I.e. in order to assess whether the decoupling between the segmental

relaxation and chain modes were an issue in the timescale region region below

τα ∼ 10−3s for middle and high M (n=43 and above) samples.

As shown in figure 3.11 (b), there is a shift between α relaxation timescales

from rheology and BDS. The complex permittivity is a compliance measurement,

which is the inverse of a modulus measurement. Hence, it has been suggested

that it would be more appropriate to compare the dielectric modulus (M∗ = 1/ε∗)

to the mechanical modulus[47]. An example a conversion to a dielectric modulus

is shown in figure 3.23.
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Figure 3.23: PMMA n=4. a) Imaginary permittivity for T=251, 263, 275, and

287K. b) Imaginary dielectric modulus of the same temperatures as in the left

figure. Peak positions of the imaginary permittivity are shown by dashed lines.

The peak, which is taken as the relaxation timescale (τα = 1/ωp), clearly shifts

to higher frequencies (shorter timescales) in the modulus representation. This is

consistent with the shift between timescales attained from rheology and BDS, as

shown in figure 3.24.
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Figure 3.24: Arrhneius plot showing τα timescales attained from: Rheology TTS

shift factors (modulus); BDS permittivity (compliance); and BDS modulus.

These α relaxation timescales from the dielectric modulus show better agree-

ment with those determined using the mechanical modulus than those from the

permittivity. However, this dielectric modulus representation is often regarded

as unphysical, as not only features of rotational molecular dynamics, but transla-

tional diffusion (due to ion transport) and electronic polarisation is also present

in dielectric spectra[185–187]. Despite this, a shift is apparent between either rep-

resentation of the dielectric timescales and those determined from the mechanical

modulus. Looking back at figure 3.22, across the entire M range for timescales

attained from TTS shift factors (Rheo), the α relaxation is the dominant re-

laxation mechanism where τα > 10−3s. Therefore, shifting between timescales

from rheology and BDS should work above this timescale. To test this, rheology

timescales were shifted to BDS timescales both above where τα > 10−3s, and also

across the entire timescale range. Examples of this is shown in figure 3.25.
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Figure 3.25: α relaxation Arrhenius plots for PMMA n=2, 19, 96, and 906. τα

attained from rheology was shifted to BDS VFT fits across the entire τα range,

and in the ”α dominant” range, where τα > 10−3s when applicable.

For n=2-19 (figure 3.25 (a) and(b)), τα values from the TTS master curve are

always within the ”α dominant” regime due to either the lack of, or insignificant

contribution from chain modes, and hence should shift to BDS timescales across

the entire τα range. For n=43-906 (figures 3.25 (c) and (d)), chain modes are

more significant, and the ”intermediate” and ”chain dominant” regimes appear.

However, this shifting from rheology to BDS indicates that across the M range

(with the exception of n=7 and 8, to be discussed shortly), TTS captures the

timescale dependence of the α relaxation not only in the α dominant regime,

but across this entire timescale range. For other polymeric and non-polymeric

systems, the shift is quoted as being between 0.5-1 decades[187] (with some ex-
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ceptions, such as m-Toluidine which exhibits a very small shift[188, 189]), which

is consistent with this data also, although this shows no obvious trend with M .

The combination of α relaxation timescales shifted to BDS across the entire τα

range for this PMMA M series is shown in figure 3.26.
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Figure 3.26: PMMA α relaxation Arrhenius plot. Timescales attained from TTS

master curves (circles) are shifted across the entire τα range (with the expetion

of n=7 and 8, which are shifted across the ”α dominant” range (10−3s < τα)) to

timescales attained from BDS (triangles), with VFT fits. The legend indicates

the degree of polymerisation (n).

Figure 3.26 shows excellent overlap of τα(T ) from rheology shifted to BDS

with shift factors between ∼ 2− 10. However, a notable discrepancy can be seen

clearly, whereby n=7 and 8 do not overlap below the α dominant range (hence,

are only shifted within this timescale range). The reason for this is unknown.

It is possible that polydispersity in this region plays an important role, whereby

chains of different lengths have vastly different dynamics than others, causing

complicated behaviour in the chain mode region (this was alluded to in section

3.4.2).

Despite this exception, by shifting τα from the TTS master curves to those

directly from BDS, this shows that timescales attained in this manner follow the
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timescale dependence of the α relaxation over the measured temperature range.

Of course, log scales can obscure subtle differences, especially when capturing

∼ 10 orders of magnitude in timescale data. However, considering that: (i) The

decoupling between τα and τn in fragile systems such as PMMA occurs in a τα

regime where chain modes are only beginning to start to dominate the dynamic

shear modulus spectra[133] and; (ii) There is agreement between τα determined

from this TTS procedure and to a direct measurement using BDS. TTS appears

to be a valid technique in describing the dynamic shear modulus, the α relaxation,

and chain dynamics in this PMMA M series from Tg to melt.

3.5.2 Other polymer systems

As TTS allowed us to describe τα(T ) for this PMMA chain-length series. The

question arises as to the validity of TTS, and relationship between τα and τn in

other polymeric systems. We picked two additional samples to investigate: (i)

PS, with similar Tg and flexibility to PMMA; and (ii) PI, which has a lower Tg,

and is more flexible than PMMA.

Considering the previous work done in both applying this ansatz whereby

the dynamic shear modulus TTS spectra is described by a sum of an α and

Rouse spectra[137, 144], and looking at the decoupling between τα and τn[133],

shear modulus measurements were performed on an intermediate M (n=109) PS

sample. TTS master curves were produced in the same manner as for the PMMA

series, with the differences in the fitting of PS in the Rouse regime discussed in

section 3.4.1. This is shown in figure 3.27.
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Figure 3.27: a) TTS master curve for n=109 PS showing fitting routine of seg-

mental and chain dynamics. Dashed gray lines indicate changes from α dominant,

to intermediate, to chain dominant regimes. b) Approximate position of single

frequency sweeps (using f = 0.5Hz as the representative frequency) indicating

the α timescale where these regimes change.

Figure 3.27 shows PS n=109 analysed in the same manner as for PMMA in

figure 3.22, whereby the complex shear modulus spectrum is split into ”α domi-

nant”, ”intermediate”, and ”chain dominant” regimes. PS n=109 is comparable

to PMMA n=96 (figure 3.22 (e) and (f)). Both these samples are similar M ,

with similar properties (M0, MK , Me, Mc, m, and Tg), and therefore exhibit a

very similar shear modulus response. The boundaries between the three regimes

are also situlated at approximately the same frequencies as for PMMA. However,

comparing direct measures of τα using NMR[183], and τn using rheology and

BDS[184], Ding and Sokolov[133] show decoupling in the region of τα ∼ 10−5s.

As concluded for PMMA, this is in the intermediate regime, whereby approx-

imately half of the dynamic shear modulus is being contributed to by the α

relaxation (|G∗α| ≈ |G∗chain|), and because of this, any decoupling between τα and

τn in this region may be negligible.

Due to the previously stated similarities between PMMA and PS, a less fragile

polymeric system was also tested. Dynamic shear modulus measurements and

BDS on a high M (n=1632) polyisoprene (PI) sample were performed. PI is

an example of a type-A polymer, which has a dipole moment component along
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the backbone of the polymer chain[14]. Because of this, chain modes are also

directly observed in the BDS spectra along with the α relaxation. This makes it

an ideal system to compare these two relaxation mechanisms directly using BDS.

For rheology, the TTS master curves were split into the α relaxation and chain

modes, which are shown in figure 3.28.
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Figure 3.28: TTS master curves for PI n=1632. a) Low temperature data showing

α relaxation, with a KWW fit. b) High temperature data showing chain modes,

with a Likhtman-McLeish[5] fit.

Figure 3.28 shows PI n=1632 split into α relaxation (a) and chain mode (b)

regimes so as to directly compare with BDS data. Elfadl et. al.[151] carried out

a chain-length study study using both FFCNMR and BDS on PI, and showed

that τα and τn decoupled at T − Tg ∼ 20K in and intermediate M range (MR <

M < Mc). Unfortunately, this decoupling of high M PI was not determined due

to the large timescale differences between the α relaxation and chain modes. We

thus chose to study, using rheology and BDS, a PI sample which was directly

comparable one of these high M samples. This sample (n=1617), along with the

sample studied in this project (n=1632) provides data from three techniques for

both τα and τn over a large dynamic range. This timescale data is shown in figure

3.29
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Figure 3.29: PI α relaxation and chain mode Arrhenius plots for PI n=1632.

Left: Chain mode and α relaxation timescales for rheology, BDS, and FFCNMR.

Right: Timescales from both the α relaxation and chain modes collapsed onto

BDS and FFCNMR τα data, with ”(s)” in the legend indicating which data sets

have been shifted.

In figure 3.29 (a), the BDS timescale data from both samples overlap as ex-

pected, along with the FFCNMR τα data at short timescales. A comparable

vertical shift as seen with PMMA exists between timescales from rheology and

BDS/FFCNMR, which can be collapsed with a timescale shift in the same man-

ner. Figure 3.29 (b) shows all data collapsed onto the BDS/FFCNMR τα data,

which indicates very good coupling between τα and τn. Ding and Sokolov[133]

suggested that less fragile polymers such as PI start to decouple in the region

of τα ∼ 10−5s, which is below the timescale value of the collapsed chain mode

rheology data. This suggests that despite intermediate M PI samples decoupling

in this timescale regime, high M (Mc < M) PI may be more coupled. The degree

of decoupling may also be so subtle, that a larger range of overlapping α and

chain mode timescale data may be required in order to see the decoupling on this

kind of plot.

Different polymer systems have different dynamic fragilities (m). Therefore,

by definition, these will exhibit different τα(T ) behaviour on an Angell (τα vs

Tg/T ) plot. Interestingly, Ding and Sokolov[133] showed that τn data for a range

of different polymer systems collapsed onto eachother with this kind of Tg/T
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normalisation. Therefore, an important statement can be made: Considering

that τn appears to show universal behaviour when normalised by Tg/T , and that

τα(T ) and τn(T ) are coupled at short τα timescales. It must follow that, τα(T )

for different polymer systems are universal when normalised by Tg/T at short

timescales. To test this hypothesis, α relaxation and chain mode timescales for a

variety of oligomeric/polymeric systems were measured. In an attempt to see how

these timescales will collapse for systems of different fragilities, a Tg normalised

Arrhenius plot was produced. This showed τα data, along with τn (for systems

where it could be directly measured) and τα data vertically shifted onto a single

master curve. This is shown in figure 3.30.
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Figure 3.30: a) Tg scaled Arrhenius plot for a variety of oligomeric/polymeric

systems: PMMA, PI, PS, polycarbonate (PC), and dimethyl-ethers (DME). Data

shown is: τα (circles for PMMA, squares for other systems); Direct measurements

of τn (triangles) which, along with all τα data (”+” symbols), are collapsed onto

a master curve. b) PMMA and PI (τn) data from (a), along with all PMMA

n=2, 3, and 4, τα data (from figure 3.26, including high frequency BDS data)

from BDS and rheology shifted to Tg/T ∼ 0.95.
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Figure 3.30 (a) shows τα(T ) a variety of polymer systems with different chain-

lengths and fragilities on a Tg normalised Arrhenius plot. Along with these,

chain mode timescales, τn(T ), for polyisoprene (PI) from BDS, rheology, and

FFCNMR, along with dimethyl-ethers (DME) from BDS are rescaled in τ onto a

common master curve (shown by the triangles). Considering that TTS is a good

approximation at high enough temperatures, τα(T ) should also collapse in the

same manner as τn(T ). This is shown by the ”+” symbols, whereby for Tg/T .

0.95 these τα(T ) and τn(T ) fall onto a common master curve. Therefore, both

chain modes dynamics, and the short timescale dynamics of the α relaxation are

somehow set by Tg, where they have a common temperature dependant relaxation

time. Understandably, the degree to which τα(T ) diverges from this common

curve appears to relate to dynamic fragility, as this is a measure of α relaxation

dynamics at Tg. This is consistent with the conclusions that Sokolov et. al.[133,

182] came to also, whereby the timescale τα and τn decouple relates to m.

However, figure 3.30 (a) does not include τα(T ) data for samples where chain

modes are not established, i.e. region I, where M < MR. Figure 3.30 (b) contains

the PMMA samples from figure 3.30 (a), with the addition of τα(T ) for the three

lowest M PMMA samples from BDS, superimposed onto τn(T ) for PI. It is clear

that these low M PMMA samples do not follow this τα(T ) behaviour at high

temperatures, whereas other samples of varying fragility and Tg, where chain

modes are established do.

This normalisation of τα(T ) and τn(T ) at short timescales implies that when

chain dynamics become applicable (M > MR), the α dynamics become ”uni-

versal” at high temperatures when normalised appropriately. This implies that

dynamics which govern chain behaviour apply across polymer systems, differing

only by some factor effecting Tg. It is also likely that this is related to the ap-

parent ”universality” of WLF parameters[99] (discussed in more detail in section

2.1.3), which suggests that for an appropriate reference temperature (close to

Tg), parameters which set TTS shift factors are approximately universal in some

polymer systems (C1 = 17.44, and C2 = 51.6K).

As will be shown in chapter 4, for PMMA, the number of correlated (cooper-

ative) units in the α relaxation at Tg shows a large decrease in region I, slightly

increasing in region II, followed by M invariant behaviour in region III. With
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increasing temperature, the degree of molecular cooperativity in the α relaxation

decreases. For PMMA samples in region II and III, at Tg/T ∼ 0.95 the number of

cooperative units in the α relaxation reaches approximately that of the dynamic

bead size (∼ 10 monomers). This suggests that once this dynamic bead has been

established, dynamics become more universal. However, the link between this

and other polymer systems is unclear.

3.6 Conclusions

In this chapter, dynamic shear mechanical spectroscopy measurements were per-

formed on a PMMA chain length series series, spanning from small molecular glass

former, to oligomer, to fully entangled polymer. A summary of these measure-

ments and conclusions, along with those carried out using broadband dielectric

spectroscopy (BDS), and standard differential scanning calorimetry (DSC) are

shown below:

• Using time-temperature superposition (TTS), complex shear modulus mea-

surements probing both α and chain dynamics were able to be superimposed

using a single set of shift factors from melt to ∼ Tg for this PMMA M series.

• These TTS spectra could be modelled by a simple ansatz, whereby a super-

position of a KWW stretched exponential, and either a Rouse or Likhtman-

McLeish model could describe both G′ and G′′ across the appropriate dy-

namic ranges.

• Glassy properties, such as the glass transition temperature (Tg), and dy-

namic fragility (m) exhibit regional behaviours. Whereas traditional mod-

els, such as describing Tg behaviour with a Fox-Flory model across the entire

M range, fail.

• Heat capacity measurements show regional behaviours, suggesting that

there may be regional differences in molecular cooperativity as chain con-

nectivity increases in linear polymers. This is to be explored in chapter

4.
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• The use of the Kuhn M (MK) as an approximation of the Rouse M (MR)

appears to be sufficient in describing Rouse dynamics in intermediate M

(MR < M < Mc) samples for both PMMA and PS.

• Due to the swap over between ”α dominant”, and ”chain dominant” regions

in the mechanical spectra, significant decoupling between τα and τn is not

captured using this particular experimental technique in fragile systems

such as PMMA.

• A timescale shift exists between τα data attained from rheology and BDS.

This allows for a direct comparison, and further justification, that TTS

works in describing τα from these dynamic shear modulus measurements.

• τα and τn values for a variety of linear oligomeric/polymeric systems seem to

show ”universal” behaviour at short timescales if appropriately normalised.

We speculate that this is related to molecular cooperativity occurring on

the lengthscale of the dynamic bead, which will be explored in chapter 4
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Chapter 4

Molecular cooperativity in

glass-forming oligomers and

polymers

Previously in chapter 3, we looked at the mechanical, dielectric, and calorimet-

ric responses for a PMMA chain-length series, noting regional M behaviour in

glassy properties (Tg, m, βKWW , etc), which has been observed in other poly-

meric systems[134, 135]. From DSC measurements on the PMMA series, it was

alluded to that molecular cooperativity at the glass transition temperature, Tg,

may also exhibit some change in behaviour as the chain length increases and chain

dynamics become apparent. This phenomenon is explored in this chapter.

As temperature decreases, molecular motions slow down. With this decreasing

temperature, the number of units moving in a correlated manner, or cooperatively,

must increase in order for the molecules of a material to relax, i.e. the number of

units relating to the structural (α) relaxation which are dynamically correlated

increases[28]. These cooperative regions also become more dynamically heteroge-

neous, whereby ”hot-spots” of mobility form, and the roughness of the potential

energy landscape becomes more and more influential at lower temperatures[7].

Measurements of the cooperative lengthscale have been determined using var-

ious techniques, notably: DSC[165], 4D NMR[190], and molecular dynamics sim-

ulations (MD)[191, 192]. At Tg, the lengthscale of this cooperative region has
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been found to be typically ∼ 1.0− 3.5nm[79]. This lengthscale is system depen-

dent and, along with the number of cooperative ”units” (molecules or monomers),

has been shown to correlate to properties such as dynamic fragility[193] and ac-

tivation volume (defined through the pressure dependence of the α relaxation

timescale)[80, 194] for both small molecular and polymeric glass formers.

While measurements of this cooperative lengthscale at Tg have been performed

on a variety of both small molecular and polymeric glass formers[79, 195–197],

only two previous studies have determined the effects of chain-length[198, 199].

Moreover, neither of these two studies included a sufficient molecular weight (M)

range, or had a sufficient resolution to fully explore how size of correlated regions

changes as a polymeric system grows from small molecular glass former to long-

chain polymer.

The aim of this chapter is to determine the role of M on the number of dy-

namically correlated units characteristic of the α relaxation, both as a function

of timescale (or temperature), and at Tg. Three relatively monodisperse, linear,

polymeric M series, ranging from dimer to fully entangled polymer were cho-

sen: poly(methyl methacrylate) (PMMA); polystyrene (PS); and poly(dimethyl

siloxane) (PDMS). The sample specifications are shown in figure 4.1 and table

4.1.

Figure 4.1: From left to right: PMMA, PS, and PDMS molecules. The end

groups reported by the manufacturer are also shown.
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PMMA PS PDMS

n MW (g/mol) PDI n MW (g/mol) PDI n MW (g/mol) PDI

2 202 1.00 2 266 1.00 2 237 1.00

3 302 1.00 3 370 1.00 3 311 1.00

4 402 1.00 5 545 1.16 14 1150 1.27

6 660 1.21 6 725 1.09 20 1600 1.37

7 771 1.18 9 970 1.12 66 4980 1.29

8 840 1.44 18 1920 1.08 623 46200 1.12

11 1100 1.17 28 2960 1.04

19 1900 1.10 108 11300 1.02

43 4300 1.05 456 47500 1.03

96 9590 1.05 30k 3.15M 1.05

395 39500 1.04

906 90600 1.04

Table 4.1: Specifications of PMMA, PS, and PDMS samples used in this work.

Figure 4.1 shows, from left to right, the monomers of PMMA, PS, and PDMS.

These have monomer molecular weights ofM0=100g/mol, 104g/mol, and 74g/mol

respectively. The manufacturer reported PMMA to be proton terminated, PS to

be sec-butyl terminated, and PDMS to be silioxane-trimethyl siloxy terminated.

Table 4.1 shows the degree of polymerisation (n), the weight average molecular

weight, MW , and the polydispersity index (PDI) of the samples used in this work,

as characterised by the supplier. These samples were purchased from Polymer

Standards Service (PSS), and were used as received, with the exception of PMMA

n = 6−11, which were heated far above Tg in a vacuum oven for at least 24 hours

to remove any solvent remaining from the manufacturing process (this was not

necessary for the other samples).

PMMA and PS have relatively similar properties such as: monomer molecular

weight (M0), Tg, dynamic fragility (m), and chain flexibility[200]. Literature data

also exists for the number of cooperative units at Tg for a PS M series[198], which

allowed for a direct comparison, although n = 5 was the smallest sample in this
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study. PDMS has a lower Tg and m, and is more flexible compared to both

PMMA and PS.

In order to determine the number of cooperative units involved in the α

relaxation, two techniques were employed. The first technique, proposed by

Donth[9, 165], yields the size of the cooperative region from thermal fluctua-

tions at Tg. These fluctuations are shown to relate to the size of independently

rearranging regions, thus yielding information of the number of cooperative units

involved in the α relaxation. This was performed using temperature-modulated

differential scanning calorimetry (TMDSC). The second technique proposed by

Berthier et. al.[201] estimates the four-point dynamic susceptibility, χ4, from

temperature dependent measurements of the dynamic permittivity. This yields

the size of dynamically correlated regions involved in the α relaxation. χ4 in this

work was estimated using broadband dielectric spectroscopy (BDS).

In this work, the timescale dependence of the number of correlated units in

the α relaxation was investigated. We found that for the more fragile, less flexible

polymers, PMMA and PS, correlated behaviour could be split into distinct M

regions. Below a molecular weight corresponding to where a change in Tg is

observed, which corresponds approximately to the size of a dynamic bead (M <

MR), there was a large decrease in the number of correlated monomer units with

increasing M . Above this molecular weight (M > MR), the number of correlated

units at a particular τα was relatively invariant (or slightly increasing) with M .

We suggest that the cooperativity of the α relaxation at Tg may experience a

crossover from intermolecular to largely intramolecular behaviour at MR. We

also related this behaviour to the dynamics of the β relaxation in PMMA, which

are shown to also experience a significant change in dynamics at MR.

4.1 Heat capacity determination of Na

The first of the two techniques employed here to determine the number of co-

operative units in the α relaxation was proposed by Donth[165, 202, 203], which

estimates the size of the cooperative region through temperature fluctuations us-

ing heat capacity measurements. This reasoning will closely follow literature by

Sillescu[26], Donth[9, 165, 203], and Landau and Lifshitz[204].
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A sample can be described as a set of subsystems of equal volume, each

described by different values of their dynamics and thermodynamic characteris-

tics, with mean square fluctuations 〈(∆ρ)2〉, 〈(∆T )2〉, 〈(∆S)2〉, and 〈(∆E)2〉[26].

Therefore, each subvolume will have its own characteristic relaxation timescale,

τ , and glass transition temperature, Tg, as visualised in figure 4.2.

Figure 4.2: Visualisation of a system comprised of dynamically independent sub-

volumes, Va, with lengthscale ξa = V
1/3
a .

Figure 4.2 visualises a system comprised of dynamically and thermodynam-

ically independent subvolumes with volume Va, and lengthscale defined as ξa =

V
1/3
a , which are assumed to be large enough that thermodynamic variables can be

defined. The probability of a molecular fluctuation in a subsystem of a volume,

V , is given by Einstein’s fluctuation formula, shown in equation 4.1,

wfluc ∝ exp(−Wmin(V )/kBT ). (4.1)

Here, Wmin is the minimum work required for a fluctuation to occur. This quan-

tity takes the form of the Gibb’s free energy of the system at constant pressure,

given by equation 4.2,

Wmin = ∆E + P∆V − T∆S, (4.2)

Where P and T are the equilibrium (mean) pressure and temperature and temper-

ature of the system. The change in these quantities, ∆, is not necessarily infinites-

imally small, which allows for subsystem fluctuations. Landau and Lifshitz[204]
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point out that the variable pairs P∆V and T∆S must be treated in the same

manner so as not to exclude temperature fluctuations[9]. From a second order

series expansion in ∆E, the probability of a fluctuation becomes equation 4.3:

wfluc ∝ exp
(∆P∆V −∆T∆S

2kBT

)
. (4.3)

From this, fluctuations in thermodynamic quantities can be found. If V and T are

treated as independent variables, then ∆P and ∆S can be expressed as equations

4.4 and 4.5 respectively:

∆P =
(∂P
∂T

)
V

∆T +
(∂P
∂V

)
T

∆V. (4.4)

∆S =
(∂S
∂T

)
V

∆T +
( ∂S
∂V

)
T

∆V =
CV
T

∆T +
(∂P
∂T

)
V

∆V, (4.5)

Where CV is the heat capacity at constant volume. Inserting equations 4.5 and

4.4 into equation 4.3 yields equation 4.6.

wfluc ∝ exp
( 1

2kBT

(∂P
∂V

)
T

(∆V )2 − CV
2kBT 2

(∆T )2
)
. (4.6)

Fluctuations of volume and temperature are statistically independent, i.e. 〈∆V∆T 〉 =

0. Therefore, equation 4.6 is able to be seperated into two components, one de-

pending only on ∆V , and the other only on ∆T . If these fluctuations can be

described using a Gaussian function[204], the mean square fluctuations of volume

and temperature become equations 4.7 and 4.8 respectively:

〈(∆V )2〉 = δV 2 = −kBT
(∂V
∂P

)
T

(4.7)

〈(∆T )2〉 = δT 2 =
kBT

2

CV
(4.8)

Where δV and δT are the half width at half maximum of a Gaussian function

describing the fluctuation. It is worth noting that P and S can also be taken as

independent variables in equation 4.3. Therefore, the mean square fluctuations,

δP 2 and δS2 can be quantified in a similar manner. However, the quantity of

interest is the mean temperature fluctuation, δT . Once again, this is defined in

equation 4.9,
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δT 2 = kBT
2C−1

V . (4.9)

CV is proportional to the volume of the subsystem, Va, related via CV = cV /ρVa,

where cV and ρ are the isochoric specific heat capacity, and density respectively.

In addition to this, only contributions to the heat capacity from the α relaxation

should be considered, i.e. assuming independence of α cooperativity from other

molecular motions. Therefore T → Tα, and c−1
V → ∆c−1

V , where ∆c−1
V = c−1

V,glass−
c−1
V,liquid. Taking these into account, the volume of the subsystem is given by

equation 4.10,

Va = kBT
2
α∆c−1

V /ρδT 2. (4.10)

Here, the volume of the cooperative region is dependent on the transition tem-

perature (Tα), density (ρ), mean temperature fluctuation (δT ), and the change

in inverse constant volume specific heat capacity[202]). However, rather than

cV , measurements of the specific heat capacity at constant pressure, cp, were

performed and used instead. This will overestimate the size of the cooperative

region. A correction factor based on the ratio of ∆c−1
V /∆c−1

P = 0.74 ± 0.22 has

been determined, which is based on a wide range of glass forming systems[79].

This correction could be applied, but is not commonly done so, and was consid-

ered to not add the the overall conclusions.

Donth demonstrated that the mean temperature fluctuation, δT , can be ob-

tained from the width of the calorimetric response[9, 165, 202, 203]. More specif-

ically, that of the half width at half maximum of the imaginary heat capacity,

c′′P (T ), as described by a Gaussian, shown in equation 4.11:

c′′P (T ) =
A

2δT
√
π/2

exp
[
− 1

2

(T − Tα
δT

)2]
. (4.11)

Here, parameters A, δT , and Tα are the amplitude, breadth (half width at half

maximum), and peak temperature respectively.

In addition to Va, as estimate of the the cooperative length can be calculated

as simply the cube-root of the cooperative volume, shown in equation 4.12.

ξa ≈ V 1/3
a (4.12)

133



4. MOLECULAR COOPERATIVITY IN GLASS-FORMING
OLIGOMERS AND POLYMERS

Exactly how the volume of this region will translate to a lengthscale will depend

on the shape and topology of the cooperative volume. However, for a simple

approximation of ξa, this is often used[79, 205]. Both Va and ξa depend on sample

density. This would be the density at Tα for each of these samples. Instead,

the cooperative region can be expressed as the number of cooperative monomer

units, rather than as a cooperative volume or lengthscale. This is calculated using

equation 4.13.

Na = ρVaA/M0 (4.13)

In equation 4.13, A is Avogadro’s number, and M0 is the monomer molecular

weight. By inserting equation 4.10 into 4.13, this removes the density dependence,

and is replaced with monomer molecular weight dependence (PMMA: 100g/mol,

PS: 104g/mol, and PDMS: 74g/mol).

Therefore, in order to determine the size of the cooperative region, measure-

ments of the complex heat capacity needs to be performed across the glass tran-

sition.

4.1.1 The complex heat capacity

In order to attain the number of cooperative units involved in the α relaxation

in this way, δT , Tα, and ∆c−1
p need to be determined. These quantities can be

obtained from the complex heat capacity, c∗p, response[79], which is measured

using temperature modulated DSC (TMDSC). c∗p is calculated from the reversing

capacity, |c∗p|, and the heat flow phase angle, δ, as outlined in section 2.3.2. This

is defined in equation 4.14.

c∗P = |c∗P |e−iδ = c′P − ic′′P (4.14)

Here, c∗P is separated into in-phase (c′P ), and out-of-phase components (c′′P )[113].

Figure 4.3 illustrates the typical behaviour of these components across the glass

transition.
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Figure 4.3: Example of the real, c′p, and imaginary, c′′p, components of the complex

heat capacity for a non-polymeric glass former (DC705). Tα and δT define the

peak temperature, and the half width at half maximum of c′′p respectively.

The real and imaginary components of c∗p across the glass transition are shown

in figure 4.3 for a non-polymeric glass forming material (DC705). c′p shows the

typical step observed in a heat capacity measurement across the glass transition,

whereas c′′p shows a peak. Ta and δT can be determined from the peak tempera-

ture, and the half width at half maximum of a Gaussian fit to c′′P . ∆c−1
p can be

determined from the change in step in |c∗p|(T ), as the difference in reciprocal heat

capacities of the glassy and liquid states at Tα (∆c−1
p = c−1

p,g − c−1
p,l )[79, 119].

In this project TMDSC measurements were performed using a TA Q2000 heat-

flux DSC with a liquid nitrogen cooling system, as described in section 2.3. As

detailed in section 2.3.2, the temperature profile of a simple sinusoidal TMDSC

experiment is shown in equation 4.15.

T (t) = T (0) +Bt+ A sin
(2πt

P

)
(4.15)

Where B is the underlying heating rate, A is the modulation amplitude, and P

is the oscillation, or modulation, period. Taking the derivative of equation 4.15

yields the heating rate, as is shown in equation 4.16.

dT

dt
= B +

2πA

P
cos
(2πt

P

)
(4.16)
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From this heating rate, and the resulting heat flow into the sample, the heat

capacity is obtained, as shown in equation 4.17.

CP =
dQ

dt

/dT

dt
(4.17)

Equation 4.17 shows that the heat flow (dQ/dt) depends on the sample heat

capacity (CP ), and the heating rate (dT/dt).

Experiments were performed across the glass transition region (-40K< Tg <40K)

for each sample using three modulation periods (P=40, 60, and 100s). The exper-

iments were performed on cooling (negative B) for PMMA and PS, i.e. starting

in the liquid state, and cooling into a glassy state. However, due to sample crys-

tallisation, PDMS had to be quenched in order to form a glass. Therefore, for

PDMS, experiments had to be performed on heating (positive B), i.e. starting in

a glassy state, and heating into the liquid state.

It is apparent from equation 4.16 that in order to obtain comparable responses

for different modulation periods, the parameters A/P and B · P should be kept

constant. These were chosen appropriately to see the effect of modulation period

on each sample, rather due to different heat flow (set by A/P ), or resolution due

to the number of oscillations within the transition region (set by B · P ). The

values chosen are shown in table 4.2.

P (s) A (K) |B| (K/min)

40 0.8 1.25

60 1.2 0.83

100 2.0 0.50

Table 4.2: TMDSC temperature profile parameters. Note A/P ' 0.02 and |B| ·
P ' 50 for each period.

The parameters in table 4.2 were used on all samples (B values were positive

for PMMA and PS, and negative for PDMS). An example of this experiment

across the glass transition is shown in figure 4.4.
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Figure 4.4: a) Heating rate (dT/dt), and b) Heat flow (dQ/dT ) for PMMA n=2.

For each modulation period (shown in different colours), dT/dt and dQ/dt are

approximately the same amplitude, and contain the same number of oscillations

across the temperature range.

Figure 4.4 shows that both the temperature profile of the DSC, dT/dt (a), and

the response of the sample (PMMA n=2), dQ/dT (b), are similar for the three

different modulation periods. This was expected using the tailoring of dT/dt as

mentioned above. As explained in section 2.3.2, the underlying heating rate, B, is

subtracted from dT/dt, and then equation 4.17 yields the reversing heat capacity

of the sample[120], shown in equation 4.18.

|C∗P | =
AdT/dt

AdQ/dt

(4.18)

Where AdT/dt and AdQ/dt are the instantaneous values (amplitudes) of the heat

flow (dT/dt) and heat response (dQ/dT ) respectively. As outlined in section

2.3.3, this reversing heat capacity is calibrated for each period by running the

same experiment on a sapphire sample across the same temperature range. Sap-

phire samples have a very well defined heat capacity, and the average ratio be-

tween the specific heat capacity measured, and literature values gave a calibration

value for each measurement. Standard temperature and sample cell calibrations

were also carried out over the temperature range.

Equation 4.14 shows that the complex heat capacity can be calculated from

both the reversing heat capacity, |C∗p |, and the phase angle, δ, between dT/dt
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and dQ/dT . However, an offset appeared in δ, which was not due to the sample

response. This was corrected for using a method proposed by Weyer et. al.[206],

whereby the offset in δ is attributed to the finite time it takes for heat to transfer

between the DSC and the sample. It is assumed that this additional component

to δ would simply be proportional to the reversing heat capacity, as shown in

equation 4.19.

δht = a+ b|C∗p | (4.19)

Equation 4.19 shows the offset of the heat flow phase angle due to heat transfer,

scaling linearly with |C∗p |, with fitting parameters a and b. This function is fitted

outside the transition region of δ, where δ should be zero. δht is then subtracted

from δ to obtain the corrected phase angle, as shown in equation 4.20.

δcorr = δ − δht (4.20)

Using this correction, δcorr should be the phase angle due to the sample response

only, with no offset due to heat transfer. An example of this procedure is shown

in figure 4.5.
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Figure 4.5: a) Reversing heat capacity. b) Phase angle signal, with reversing heat

capacity fitting shown in black (right) for PMMA n = 2 sample for each period.

Figure 4.5 (b) clearly shows the offset in δ, which should be zero outside of

the transition (peak) region. |c∗p| (4.5 (a)) is fitted to δ outside of the transition

region, as described by equation 4.19 (with fitting parameters a and b).
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It is apparent in figure 4.5 (b) that δ takes a negative step with increasing

temperature over the transition region (”b” parameter in equation 4.19 is nega-

tive). However, this was not always the case, and for many samples this took

a positive step with increasing temperature as expected. This method of phase

angle correction assumes that the offset of the phase angle is entirely due to heat

transfer effects, whereas in reality the situation may be more complex. Thus, it

is somewhat arbitrary which step function is used to correct the phase angle due

to the unknown origin of the offset in the phase angle. Therefore this method

was used regardless, as the effect on the final result was negligible, and is also

commonly observed in the literature[78, 119].

Using δcorr and |c∗p|, the phase-corrected corrected complex specific heat ca-

pacity was calculated, as shown in equation 4.21.

c∗p = |c∗p|e−iδcorr = c′p − ic′′p (4.21)

Using equation 4.21, the in-phase (c′p) and out-of-phase (c′′p) components of the

complex heat capacity can be written as equations 4.22 and 4.23.

c′p = |c∗p| cos δcorr (4.22)

c′′p = |c∗p| sin δcorr (4.23)

These phase-corrected components of the complex heat capacity are often referred

to as the phase-corrected reversing heat capacity (c′P ), and the phase-corrected

kinetic heat capacity (c′′P )[120].

4.1.2 Heat capacity response

As discussed earlier in section 4.1.1, in order to obtain information from the

imaginary (kinetic) component of the complex heat capacity, a Gaussian function

is fitted to c′′p(T ) (shown previously in equation 4.11). The fitting parameters A,

δT , and Tα are the amplitude, breadth (half width at half maximum), and peak

temperature respectively. This function was only fitted above and around the

peak in c′′p(T ), negating lower temperatures (T > Tα−5K) where δ, and therefore
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c′′P data measured in the non-equilibrium state are less reliable. This is due to

there being a small phase angle contribution from the heat capacity from the

average heating rate, which has a different temperature dependence (lower Tg)

than that from the modulation[119]. This can be clearly seen in figure 4.9 (a),

whereby at temperature lower than Tα, c′′p(T ) behaves unexpectedly. For PMMA,

PS, and PDMS, figure 4.6 shows this fitting procedure for both high and low M

examples.

Figure 4.6 show c′′p with Gaussian fits for the dimer and fully entangled poly-

mer for PMMA ((a) n=2 and (b) n=395), PS ((c) n=2 and (d) n=30k), and

PDMS ((e) n=2 and (f) n=643) for three different modulation periods. There

are obvious similarities between PMMA and PS, whereby the breadth in c′′p(T )

for the dimers (n=2, (a) and (c)) are relatively narrow (δT ≈ 2.2K for PMMA,

and ≈ 2.4K for PS), whereas the polymers ((b) and (d)) are relatively broad

(δT ≈ 4.1K for PMMA, and ≈ 3.2K for PS). The breadth in c′′P for PDMS ((e)

and (f)) appears relatively invariant with M , only varying between δT ≈ 1 for

the dimer and δT ≈∼ 1.3K for the polymer. The breadth variation in PDMS for

different modulation periods is unexpected, as this implies an increase in molec-

ular cooperativity with decreasing relaxation time; this is unrealistic, and will be

discussed in section 4.1.

As expected, Tα increases with decreasing period because unlike conventional

DSC, where the transition temperature is inversely proportional to the heat-

ing/cooling rate, in TMDSC experiments the timescale is set by the modulation

period (τα = P/2π). For a single modulation period (P = 60s), figure 4.7 shows

the effect of M on c′′p for all three polymer systems.

To directly compare c′′p(T ) behaviour for different M , c′′p(T ) is plotted in 4.7

for PMMA (a), PS (b) and PDMS (c) for a single modulation period (P =

60s). The three systems clearly show the expected increase in Tα with increasing

M [86]. Interestingly, PMMA and PS display a large Tα range between dimer to

fully entangled polymer, where PMMA ranges ∼ 230K, and PS ranges ∼ 180K.

However, for PDMS, Tα ranges only ∼ 25K between dimer and fully entangled

polymer. This suggests that the α relaxation is less affected by chain length for

more flexible systems such as PDMS, than for more rigid systems such as PMMA

and PS.

140



4.1 Heat capacity determination of Na

140 150 160 170 180 190 200 210

Temperature (K)

0

10

20

30

40

50

60

c
P
'' 

(m
J
/g
·
K

)

40s

60s

100s

a) PMMA n=2

360 370 380 390 400 410 420

Temperature (K)

0

5

10

15

20

c
P
'' 

(m
J
/g
·
K

)

40s

60s

100s

b) PMMA n=395

180 190 200 210 220

Temperature (K)

0

10

20

30

40

50

c
P
'' 

(m
J
/g
·
K

)

40s

60s

100s

c) PS n=2

2δT

T
α

350 360 370 380 390 400 410

Temperature (K)

0

5

10

15

20

c
P
'' 

(m
J
/g
·
K

)
40s

60s

100s

d) PS n=30k

115 120 125 130

Temperature (K)

0

20

40

60

80

100

120

c
P
'' 

(m
J
/g
·
K

)

40s

60s

100s

e) PDMS n=2

130 140 150 160

Temperature (K)

0

10

20

30

40

50

60

70

c
P
'' 

(m
J
/g
·
K

)

40s

60s

100s

f) PDMS n=643

Figure 4.6: c′′P vs T for low (left) and high (right) M PMMA, PS, and PDMS

samples. The three different oscillation periods are shown for each, with Gaussian

fits shown by the black lines.
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Figure 4.7: c′′P (P = 60s) vs T for all (a) PMMA, (b) PS, and (c) PDMS,

samples with Gaussian fits shown in black. The legends indicate the degree of

polymerisation (n). 142



4.1 Heat capacity determination of Na

In section 3.2.2, values of Tg, defined as when τα = 100s, were compiled from

rheology, BDS, and DSC for the PMMA M series. Tα, defined here as when

τα ≈ 10s, is expected to behave with M in the same manner (albeit slightly

shifted to higher temperatures due to the timescale difference). For PMMA, PS,

and PDMS, this is shown in figure 4.8.
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Figure 4.8: τα vs M for PMMA, PS, and PDMS from TMDSC measurements,

with regional boundaries indicated.

In figure 4.8, PMMA (a), PS (b), and PDMS (c) appear to exhibit the same

regional behaviour which was found by Cowie[134, 156] for PMMA and PDMS,

and later by Hintermeyer[135] for PS and PDMS. As stated in section 3.2.2,

Cowie and Hintermeyer attributed the region I to II boundary to the size of

the Rouse bead. For PS, Meier et. al.[207] report the onset of Rouse modes at

MR ∼ 1500g/mol using fast-field cycling NMR (FFCNMR) measurements on a
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PS M series, which is consistent with the value of this region I to II boundary from

Hintermeyer and this work. Inoue and Osaki[208] determined a value of MR =

850g/mol from Rouse mode contributions in rheology, although this method in

determining MR is not ideal[168]. For PDMS, Hofmann et. al.[152] observer onset

of Rouse modes at MR = 600g/mol using FFCNMR measurements on a PDMS

M series. This is consistent with the value of the region I to II boundary from

this work also. Unfortunately, a value for MR has not been found in literature

for PMMA in order to compare.

Similar to section 3.3, whereby the heat capacity response of the PMMA M

series was measured using standard DSC, a variation in the transition width is

also apparent in figure 4.7 for TMDSC, whereby δT increases with M . This is

shown in figure 4.9 for PMMA, PS, and PDMS.

Figure 4.9 shows the clear increase in δT for all three polymer systems in

region I, followed by a stabilisation in regions II and III. For PMMA, this is con-

sistent with ∆T shown in figure 3.17 (a) measured using standard 10K/minDSC.

Although, due to the differences in definitions of the transition width, the absolute

values are different.

The heat capacity measured using standard 10K/min DSC, shown for PMMA

for samples with different M in figure 3.16, is equivalent to measurements of |cp∗|
from TMDSC. These are shown in figure 4.10 for the PMMA, PS, and PDMS M

series.

Figures 4.10 (a) and (b) show that |c∗p|(T ) for PMMA and PS exhibit the

same behaviour as discussed for standard DSC in section 3.3, whereby the liquid

(|c∗p|liquid) and glass (|c∗p|glass) heat capacities (indicated by the dashed lines) share

a similar temperature dependence across the M range, although interestingly for

the more flexible PDMS this is not the case. A similar behaviour was also seen by

Huang et. al.[160] on a PαMS series of samples blended with different mass ratios

of PαMS pentamer (n = 5). It was concluded that that increasing the degree

of polymerisation is equivalent to mixing long and short chain polymers (hence

altering the M of the mixed sample). This was consistent with the conclusions

of Loufakis and Wunderlich[161]. This common |c∗p|liquid did not hold for PαMS

smaller than n = 5, which is also consistent with n = 2 and 3 for PMMA and PS
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Figure 4.9: Left: c′′p as a function of temperature normalised onto the peak posi-

tion from Gaussian fitting for PMMA (a), PS (c), and PDMS (e). The legends

indicate the degree of polymerisation (n). Right: The half width at half maximum

from Gaussian fits to c′′p, interpreted as the mean fluctuation temperature.
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of a) PMMA, b) PS, and c) PDMS. The legends indicate the degree of polymeri-

sation (n).
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4.1 Heat capacity determination of Na

shown here (this is clearer in PMMA, whereby there is a distinctly lower slope

for these two samples).

As for the step height of the glass transition, this was determined in the same

manner as in section 3.3.1 for PMMA, which is directly calculating ∆|c∗P | as the

difference between |c∗P |liquid and |c∗P |glass at Tα. Likewise, the measure of the rate

of change of entropy was calculated[164], using equation 4.24.

∆Cp
Tg

=
[(∂Sliquid

∂T

)
Tg
−
(∂Sglass

∂T

)
Tg

]
P

(4.24)

For PMMA, PS, and PDMS these are shown in figure 4.11.

For PMMA, figure 4.11 shows the same behaviour as figures 3.17 (a) and

3.18. The slight differences in absolute values (∼ 10%) may be due to these

two techniques probing timescales approximately an order of magnitude apart

and/or slight experimental errors. All three of these systems exhibit the regional

behaviour: a decrease in both ∆|c∗P | and the rate of change of entropy in region I,

and a stabilisation in regions II and III. Interestingly for both of these quantities

PDMS is higher than PMMA and PS. This suggests that the configurational

degrees of freedom contribute more to the heat capacity of PDMS across the M

range than in PMMA or PS, this may be due to the relative flexibilities of these

polymer systems.

From these complex heat capacity measurement, and the Gaussian fits of c′′P ,

information on the size of the cooperatively rearranging region was determined,

which will be shown in section 4.1.3.
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Figure 4.11: Left: Change in reversing heat capacity between liquid and glass

as a function of M for PMMA, PS, and PDMS. Right: The rate of change of

entropy between liquid and glass as a function of M .
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4.1 Heat capacity determination of Na

4.1.3 The size of the cooperative region

As outlined in section 4.1, values of δT , Tα, and ∆c−1
p yield information about

the size of the cooperative region of the α relaxation. These values can be de-

termined using TMDSC, as discussed in section 4.1.1. TMDSC measurements

were performed across the glass transition for the PMMA, PS, and PDMS M

series. Using these measurements, along with M dependent density values from

literature (PMMA and PS[172], and PDMS[209]), allow for the calculation of

the volume, Va, and lengthscale, ξa, of this region using equations 4.10 and 4.12

respectively. These are shown in figure 4.12.

As discussed in section 4.1.2, the regional M boundaries shown in figure 4.12

were determined from changes in Tg behaviour with M [134, 135]. Figures 4.12

(a), (b), (c), and (d) show a sharp decrease in the volume/lengthscale of the

cooperative region in region I, followed by a stabilisation, or slight increase, in

regions II and III. The lenghscale of the cooperative region falls from ξa ≈ 3.2nm

for PMMA and PS to ξa ≈ 1.8nm for PMMA, and ξa ≈ 2.2nm for PS between

dimer (n=2) and the region I to II boundary. The subsequent increase in region

II is less pronounced in PMMA than PS, whereby it increases to ξa ≈ 2.1nm in

PMMA, and ξa ≈ 2.7nm for PS. The M dependence of ξa for PS, and high M

PMMA were compared to literature, which will be discussed in section 4.1.4.

Due to the timescale (τα) dependence, it is expected that the size of the

cooperative region increases with increasing modulation period. This behaviour

is not clear due to scatter in the data, i.e. any timescale dependence in the size

of the cooperative region appears to be within the error of the measurements.

Quantifying errors here is difficult due to how c′′p is calculated and subsequently

fitted. From the fitting, standard errors of δT , Tα, and ∆c−1
p were low (< 1%).

This is because of both the sheer number of data points taken by the DSC,

and the assumptions made when limiting the fitting range (T > Tα − 5K). For

instance, for PMMA n=4 P=60s, the errors from fitting lead to an error in Va

of ∼ 5%. However, from figure 4.12 (a), this is clearly too small. Further errors

are also introduced from phase angle correction, and the subsequent calculation

of c′′p. Despite this, regional behaviour in M is clear for PMMA and PS. An error

of ∼ 10% in Va is likely to be more reasonable.
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Figure 4.12: Size of the cooperative region for PMMA, PS, and PDMS for three

modulation periods (P=40, 60, and 100s). (a), (c), and (e): Volume, calculated

using equation 4.10. (b), (d), and (f): Lengthscale, calculated using equation

4.12.
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4.1 Heat capacity determination of Na

Figures 4.12 (e) and (f) show that for PDMS, this regional behaviour is much

less pronounced. It appears that there is a decrease in the size of the cooperative

region in region I, followed by an increase in regions II and III. However, this is

not clear. Interestingly, the size of the cooperative region appears much larger in

PDMS than both PS and PMMA across the entire M range, with a lengthscale of

ξa ≈ 4.5nm (P=60s). The large shifts in the size of the cooperative region between

modulation periods in PDMS is an anomaly. However the reason for these values

is clear in figures 4.6 (e) and (f), whereby there was a large change in δT between

periods (Va ∝ 1/δT 2, from equation 4.10). One possible explanation is that

because PDMS samples had to be quenched, and the measurements performed

on heating, there may be some crystallisation around ∼ Tα. Further work will be

performed to investigate this.

Due to the fact that: (i) for PMMA and PS, the difference in the size of

the cooperative region for different modulation periods (of those measured) is

within experimental/fitting error; and (ii) for PDMS, there is an unexplained

broadening of δT with increasing oscillation period, only data for P=60s will be

analysed further when describing the size of the cooperative region.

As stated in section 4.1, both Va and ξa depend on sample density. Expressing

the size of the cooperative region as a number of monomer units, Na, rather than

as a volume or lengthscale removes this density dependence. This is calculated

using equation 4.13, which replaces the density dependence with that of the

monomer molecular weight. Figure 4.13 shows these calculated values for all

three systems as a function of molecular weight, along with guides to the eye

pointing out regional behaviour.

Figures 4.13 (a) and (b) demonstrate that the number of cooperative monomer

units for n=2 is Na ≈ 220 for PMMA, and Na ≈ 180 for PS. This falls to Na ≈ 50

for PMMA, and Na ≈ 70 for PS as M increases to the region I to II boundary.

The increase of Na with M in region II for PS is more pronounced (rising to

Na ≈ 130) than in PMMA (which appears more stable at Na ≈ 50). This is

consistent with an M series study in literature for PS[198], which also shows an

increase in this M range; this comparison will be shown in section 4.1.4.

As shown in figure 4.13 (c), it is difficult to say if PDMS shows this regional

behaviour. The relative change in Na with M is much less pronounced than
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in either PMMA or PS, and the number of cooperative monomer units appears

relatively stable at Na ≈ 650. This is also much higher in PDMS than for PMMA

and PS across the entire M range (as noted for Va and ξa previously).

These observations of the number of cooperative monomer units at τα ≈ 10s

will be explored further in section 4.4.3.
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Figure 4.13: Number of monomer units in the cooperative region calculated from

TMDSC (P = 60s) using equation 4.13 for (a) PMMA, (b) PS, and (c) PDMS

MW series. Orange dashed lines are guides to the eye, with regional boundaries

indicated.

4.1.4 Comparisons to literature

Hempel et. al.[79] determined the lengthscale of the cooperative region for poly-

meric PMMA and PS using TMDSC to be ξa,PMMA ∼ 1.1nm and ξa,PS ∼ 2.5nm.
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4.1 Heat capacity determination of Na

From our study, the values polymer value observed (ξa values for high M in figure

4.12) are ξa,PMMA ∼ 2.2nm and ξa,PS ∼ 2.8nm. These comparisons of ξa for PS is

within experimental uncertainty, whereas PMMA is different by a factor of ∼ 2.

However, Hempel et. al. reported that the PMMA sample in their study was

plasticised (Tg ∼ 10 − 15K lower than expected for bulk PMMA), which may

have been the cause of this discrepancy in their value of ξa.

Although extensive work has been done in calculating the size of the co-

operative region using this technique for a wide range of both polymeric and

non-polymeric systems in literature[79, 195–197], only two systematic studies of

chain-length series were found. The first of these studies in literature was con-

ducted on PS[198], which allowed for a direct comparison to this work. This study

did not include the lowest M samples in our study, which exhibit a large decrease

in Na in region I (as shown figure 4.13 (b)). The values of Na as a function of M

for PS, along with their data, is shown in figure 4.14.
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Figure 4.14: Number of monomer units in the cooperative region for PS including:

Data from this work is from TMDSC (P=60s); and literature data measured using

standard (10K/min) DSC, which have been collapsed onto our data using a single

shift factor. Regional boundaries are indicated.

Both our data and the scaled literature data shown in figure 4.14 exhibit the
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same trend with M , although the literature data lacked the lowest M range. A

vertical shift factor (∼ 0.6) was also required to bring the literature data into

line with data from our work. The likely reason for this was the use of standard

(10K/min) DSC in determining these values, rather than TMDSC. This would

effect the results in two ways: (i) As described in section 2.3, a heat/cooling

rate of 10K/min corresponds to τα ≈ 100s for polymeric PS[119] (although this

may also have an M dependence), whereas a modulation period of P = 60s

corresponds to τα ≈ 10s; and more importantly (ii) both of these techniques will

have different definitions of the transition width (δT ), and it has been shown that

standard DSC underestimates this[79]. Both of these factors are consistent with

the direction of the shift in Na between their data and ours. Therefore, applying

a vertical shift factor is justified in order to compare with our data. Figure 4.14

shows the same trend for both data sets across the series, showing an increase in

Na with M around the region I to II boundary, and a stabilisation in region III.

The second existing literature study of a chain-length series was of poly(n-

butylmethacrylate) (PnBMA)[199], which is structurally similar to that of PMMA

(containing a butyl, rather than a methyl group in the ester side group). Un-

like the previous PS study, this series spanned from monomer (n=1) to fully

entangled polymer, using TMDSC with the same modulation period as our study

(P = 60s). Their values of Na as a function of M for a PnBMA are shown in

figure 4.15.

Figure 4.15 shows a clear decrease in Na as the polymer chain grows from

monomeric to oligomeric (region I) as seen with PMMA and PS (shown in figure

4.13 (a) and (b)). After this decrease, Na appears relatively stable, which is

consistent with PMMA. However, Na for PMMA stabilises at Na ∼ 50, whereas

PnBMA appears lower at Na ∼ 10. This increase in Na with increasing side-

group chain length was also observed by Hempel et. al.[79] for side-group chain

lengths between n = 1− 5 for a poly(n-alkylmethacrylate) series, suggesting that

the increase in the length of the side chain reduces the number of cooperative

monomers in the α relaxation.
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4.2 Susceptibility determination of Ncorr,4

The second of the two technique employed to determine the number of correlated

(cooperative) units in the α relaxation involved estimating a dynamic four-point

correlation function, often referred to as the dynamic susceptibility, χ4. This is

a technique that was proposed by Berthier et. al.[201]. It involves measurements

of the complex susceptibility, related to a two-point correlation function, and

performing these measurement at different temperatures provides a three-point

dynamic susceptibility, which allows for an estimation of χ4. In turn, this yields

information on the number of correlated units in the α relaxation. This reasoning

will closely follow literature by Berthier et. al.[201, 210–213].

A spontaneous fluctuation of some variable, O(t) (such as polarisation), can

be written as equation 4.25.

δO(t) = O(t)− 〈O〉 (4.25)

Where O(t) is the value of the variable at time t, and 〈O〉 is the mean value.

From this, a two-point correlation function can be defined, shown in equation
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4.26.

C(0, t) = δO(0)δO(t) (4.26)

This correlates fluctuations in O between times 0 and t. The average value of

this quantity characterises the overall dynamics of the system, defined in equation

4.27.

F (t) = 〈C(0, t)〉 (4.27)

The fluctuation of C(0, t) around its mean is show in equation 4.28.

δC(0, t) = C(0, t)− 〈C(0, t)〉 = C(0, t)− F (t) (4.28)

From this fluctuation, information about the amplitude is given by the varience,

〈δC(0, t)2〉. Dynamic correlations, or heterogeneities, are manifested in the fluc-

tuations of C(0, t), as measured by the dynamic susceptibility, χ4(t), shown in

equation 4.29.

χ4(t) = N〈δC(0, t)2〉 (4.29)

Where N is the number of particles in the system. C(0, t) can also be defined as

a sum of local dynamics[214], shown in equation 4.30.

C(0, t) =
1

V

∫
d3rc(r; 0, t) (4.30)

Here, V is the volume of the system (V = N/ρ), and c(r; 0, t) is a ”local” probe

of dynamics at point r. From equations 4.29 and 4.30, χ4(t) can be defined by

equation 4.31.

χ4(t) =
N

V

∫
d3r〈δc(0; 0, t)δc(r; 0, t)〉 (4.31)

Where N/V = ρ is the mean desnity of the system. This shows that χ4(t)

measures the degree of spatial correlation of dynamic events in a system occuring

between time 0 and t, i.e. a measure of dynamic heterogeneities over time t[212].

This quantity is difficult to measure directly, as it requires dynamic measurements

to be performed at multiple points in both space and time[215].
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4.2 Susceptibility determination of Ncorr,4

Berthier et al.[201, 212] showed that a more experimentally feasible route

in estimating χ4(t) involved looking at how dynamic measurements are effected

by a small change in temperature. For a fluid obeying Newton’s equations at

constant number of particles, pressure, and temperature (NPT ensemble), the

fluctuation-dissipation theorem shown in equation 4.32 holds.

χNPTT (t) =
ρ

kBT 2

∫
d3r〈δh(0; 0)δc(r; 0, t)〉NPT (4.32)

Here, δh(r; 0) is the enthalpy density per molecule. χNPTT (t) is the three-point

dynamic susceptibility, which measures the degree of spatial correlation between

a fluctuation of enthalpy at time 0 at point r = 0, and the dynamics between

time 0 and t at point r. More simply, this is the derivative of F (t) with respect to

T at constant number of particles and pressure[212]. Integrating this expression

leads to equation 4.33.

χNPTT (t) =
∂F (t)

∂T

∣∣∣
NP

=
ρ

kBT 2
〈δH(0)δC(0, t)〉NPT (4.33)

Where δH(0) = H(0)− 〈H〉 is the fluctuation of enthalpy per molecule at t = 0,

and δC(0, t) is the resulting fluctuation in dynamics between 0 and t.

Both χ4(t) and χT (t) contain information on spatial correlations that are asso-

ciated with dynamics. Assuming that the spatial correlations die out over large

distances, the integration over space means that both χ4(t) and χT (t) contain

information about a correlation volume, at a given time. Both χT (t) and χ4(t)

reach a maximum at t ∼ τα[212]. Therefore, the maxima of χ4 relates to the

number of correlated units at τα, shown in equation 4.34.

Ncorr,4 = max{χ4(t)} (4.34)

Ncorr,4 is defined as the number of units whose dynamics are correlated among

themselves. An equivalent to this from the three-point dynamic susceptibility is

given by equation 4.35.

Ncorr,T ∼ ρ
∣∣∣ ∫ d3r〈δh̄(0; 0)δc(r; 0, t ∼ τα)〉

∣∣∣ =

√
kBT 2

∆cp
max|χT (t)| (4.35)
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Ncorr,T is defined as the number of units whose dynamics are correlated with a

local fluctuation of enthalpy. δh̄ is a dimensionless fluctuation of energy density,

which leads to the prefactor term, which contains the heat capacity over the α

relaxation, ∆cp[212]. It has been shown that the relation between equations 4.34

and 4.35 can be approximated by equation 4.36[212].

Ncorr,4 ∼ N2
corr,T (4.36)

Thus, Ncorr,T can be determined experimentally, and using this relation Ncorr,4

can be estimated. These relations are also applicable in the frequency domain.

Therefore, the number of correlated units defined by a four-point correlation

function can be estimated by equation 4.37.

Ncorr,4 ≈
R

m0∆cP
T 2max{|dχ(ω, T )/dT |}2 (4.37)

Here, m0∆cP is the difference in isobaric monomer molar heat capacity between

liquid and glass, and χ(ω, T ) is the normalised dynamic susceptibility[212], which,

based on BDS data, is defined in equation 4.38.

χ(ω, T ) =
ε′(ω)− ε∞

∆ε
(4.38)

Where ε′(ω) is the real part of the complex permittivity. In this work, χ(ω, T ) was

determined using appropriate function fits of the α relaxation from measurements

of the complex permittivity at discrete temperatures.

4.2.1 The complex permittivity

In order to determine the dynamic susceptibility, the frequency dependent com-

plex permittivity, ε∗(ω), is required. This is obtained from the frequency de-

pendent dielectric response, measured using broadband dielectric spectroscopy

(BDS). ε∗(ω) is defined in equation 4.39.

ε∗(ω) = |ε∗|(ω)e−iδ(ω) = ε′(ω)− iε′′(ω) (4.39)
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4.2 Susceptibility determination of Ncorr,4

Equation 4.39 shows ε∗(ω) separated into an in-phase, ε′(ω), and an out-of-phase,

ε′′(ω), component. As outline in section 2.2, measurements of the complex per-

mitivity were performed using broadband dielectric spectroscopy (BDS), using

a Novocontrol Alpha-A analyser. As already shown in section 3.2.1, BDS mea-

surements are performed at discrete temperatures over a broad frequency range

(ν ∼ 10−2 − 106Hz). Within this frequency range at a particular temperature,

several relaxation mechanisms may be apparent, and the spectra are fitted with

a sum of Havriliak-Negami (HN) expressions[109]. This HN expression is shown

in equation 4.40.

ε∗(ω) = ε∞ +
∆ε

(1 + (iωτHN)α)β
(4.40)

Where ε∞ is the high frequency permittivity, ∆ε is the change in permittivity

due to the relaxation, and α and β are parameters which describe the broadness

of the relaxation (relating to high and low frequency power-law flanks in ε′′(ω)).

An example of this fitting is shown in figure 4.16.
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Figure 4.16: ε′ (a) and ε′′ (b) with HN fitting for PDMS n=2. Different colours

represent different temperatures between T = 121.5− 128.5K.

Figure 4.16 shows ε′ (a) and ε′′ (b) for PDMS n=2, with a single HN expression

describing the α relaxation. From the HN fits, τHN relates to the characteristic

relaxation time (the inverse of the ε′′ peak frequency, τp = 1/ωp) by equation

4.41[14].
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1

τp
=

1

τHN

[
sin

απ

2 + 2β

]1/α [
sin

αβπ

2 + 2β

]−1/α

(4.41)

Using this fitting procedure, the response shape in ε∗(ω) of individual relaxation

mechanisms (along with DC conductivity) can be isolated from each other (an

example of this fitting procedure with multiple components is shown previously in

figure 3.8). This was necessary in order to determine the temperature derivative

of the permittivity response due to the α relaxation alone.

4.2.2 χ4 determination of the number of correlated units

As discussed in section 4.2.1, the normalised susceptibility, χ(ω, T ), can be cal-

culated using an appropriate fitting function to the complex permittivity. This

fitting procedure is used to isolate the α relaxation response from other contribu-

tions to the complex permittivity. χ(ω, T ) is then calculated using equation 4.38

from values of ε′(ω), ε∞, and ∆ε determined from these fits at discrete tempera-

tures. For the example shown in figure 4.16, χ(ω, T ) is shown in figure 4.17.
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PDMS n=2

Figure 4.17: Normalised susceptibility (calculated using equation 4.38 from

Havriliak-Negami parameters) for PDMS n=2 as a function of frequency. The

different colours correspond to the same temperatures as in figure 4.16.
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4.2 Susceptibility determination of Ncorr,4

Figure 4.17 shows the values of χ(ω, T ) for the α relaxation as a function

of frequency at different temperatures. From this, small temperature derivatives

were necessary in order to calculate the number of correlated units in the α relax-

ation, Ncorr,4 (as shown in equation 4.37). The importance of small temperature

derivatives is shown in figure 4.18.
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Figure 4.18: Temperature derivative of this normalised real permittivity for

PDMS n=2. The different colours represent different temperature differences

used in order to compute the derivatives.

T |dχ(ω, T )/dT | is the temperature derivative of χ(ω, T ) (multiplied by T ),

shown for PDMS n=2 in figure 4.18. The maximum of the peaks is required

to calculate Ncorr,4 (using equation 4.37) at a particular temperature. Figure

4.18 illustrates the effect of temperature differences used in order to compute

the derivatives. In this particular experiment, ε∗(ω) was measured at every 0.5K,

therefore derivatives taken between T = ±0.5K would yield the red curves (∆T =

1K). The effect of larger temperature differences would yield the green and blue

curves, for ∆T = 2K and 4K respectively. What is clear from this is that small

temperature steps are required in order to determine accurate values of the peak

maximum.
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Therefore, from the HN fits, some form of modelling of the fitting parameters

was needed in order to calculate ε∗(ω) at T ± δT , where δT was adequately

small[212]. Three modelling techniques were explored in order to achieve this.

a) Full Havriliak-Negami modelling

The first technique involved the modelling of all HN parameters using some an-

alytical functions. Examples of this is shown in figure 4.19.

Figure 4.19 (a), (b), (c), and (d) show HN parameters as a function of T fitted

with polynomials, and figure 4.19 (e) shows standard VFT fitting to τα (calculated

from τHN using equation 4.41). Using these expressions describing HN parameters

as a function of T , small temperature derivatives of χ(ω, T ) could be calculated.

An example of this is shown by the black curve in figure 4.18, whereby χ(ω, T )

were generated at T ± 0.005K, yielding more accurate values of T |dχ(ω, T )/dT |.
However, it is apparent in figure 4.19 (c) and (d) that the HN shape parameters

(α and β) change unrealistically at high and low temperatures. This is due to the

over-parametrisation of the HN expression as the α relaxation moves out of the

measured frequency window (shown by the data at the high and low frequency

extremes in figure 4.16). It may therefore be unrealistic to calculate χ(ω, T ) using

these generated HN expressions. It is worth noting that ε∞ and ∆ε have little

effect on χ(ω, T ) compared to τα, or the shape parameters, α and β.

b) τα only modelling

The second technique assumed that the shape of the α relaxation does not change

with small temperature differences, thus, taking into account the difference in

timescale only. This removed the need for describing HN parameters using ar-

bitrary functional shapes, and only VFT fitting of τα(T ) was needed. For the

PMMA, PS, and PDMS, this is shown in an Arrhenius plot in figure 4.20.

Figure 4.20 shows PMMA (a), PS (b), and PDMS (c) exhibit VFT behaviour

across the chain-length series. In the same manner as for the full Havriliak-

Negami modelling, χ(ω, T ) was calculated at T±0.005K. This technique assuming

that the other HN parameters did not vary over such a small temperature differ-

ence. It is a sensible assumption that the shape of χ(ω, T ) does not vary much
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Figure 4.19: Havriliak-Negami fitting parameters: (a) ε∞, (b) ∆ε, (c) α, (d) β,

and (e) τα for PDMS n=2 as a function of temperature. Polynomials are fitted

to all except (e), which is fitted with a VFT expression. The different colours

correspond to the same temperatures as in figure 4.16.
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Figure 4.20: Arrhenius plots for a) PMMA, b) PS, and c) PDMS. The fitted

lines are VFT expressions. The temperature where τα = 100s (dashed line) is

commonly taken as the glass transition temperature. The legend shows the degree

of polymerisation (n).
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4.2 Susceptibility determination of Ncorr,4

with such a small temperature difference, and therefore that T |dχ(ω, T )/dT | is

mainly due to the temperature dependence of τα.

c) Time-temperature superposition modelling

The third technique assumed that the α relaxation obeys time temperature super-

position over the measured temperature range, i.e. the shape of the response in

ε∗(ω) does not change with temperature. It was also assumed that the shape of the

response could be adequately described by a stretched exponential, or Kohlrausch-

Williams-Watts (KWW) expression[94] (as described in section 2.1.2). From these

two assumptions, it has been shown that Tmax{|dχ(ω, T )/dT |} can be expressed

simply in terms of the temperature dependence of τα, and the KWW stretching

parameters, βKWW [216], shown in equation 4.42.

Tmax{|dχ(ω, T )/dT |} ≈
(βKWW

e

)(∂ ln τα
∂ lnT

)
(4.42)

From this, Ncorr,4 (from equation 4.37) approximates to equation 4.43.

Ncorr,4 ≈
R

m0∆cP

(βKWW

e

)2(∂ ln τα
∂ lnT

)2

(4.43)

By calculating the number of correlated units this way, this function is very similar

to the number of cooperative units in the cooperative region, as calculated from

TMDSC in section 4.1 using similar approximations. This will be discussed in

section 4.3

Comparison of the three modelling techniques

Each of the three modelling technique described above yield values for: T |dχ(ω, T )/dT |
in the case of (a) full Havriliak-Negami modelling, and (b) τα only modelling; or

Tmax{|dχ(ω, T )/dT |} in the case of (c) time-temperature superposition mod-

elling. An example of these three modelling techniques for PDMS n=2 is shown

in figure 4.21.
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Figure 4.21: Low (a) and high (b) M PDMS samples showing T |dχ(ω, T ), with

different curves representing temperatures where measurements were taken. The

two methods of HN parametrisation are shown, with single data points represent

TTS approximations for the peak value.

The ”full Havriliak-Negami” (black curves in figure 4.21) and ”τα only” (red

curves) modelling techniques gave only slightly different peak values at each tem-

perature for PDMS (within a few %). However, for higher M PMMA and PS

(M & 1000g/mol), secondary (β) relaxation modes become prominent in ε∗(ω)

(either as a second, high frequency, peak for PMMA; or a high frequency flank

for PS). This causes uncertainty in the shape HN parameters, complicating these

methods. The single blue data points in figure 4.21 were calculated (from equa-

tion 4.43) by assuming that the spectra obeys TTS, and can be described by a

KWW expression. For appropriate values of βKWW , this TTS method is valid in

describing this general behaviour in PDMS.

Using these three modelling techniques in determining Ncorr,4, figure 4.22

shows this as a function of τα for the chain-length series of PMMA, PS, and

PDMS.

Figure 4.22 shows Ncorr,4 as a function of τα for the M series of PMMA (a), PS

(b), and PDMS (c) calculated using the three modelling techniques outlined in

this section: full HN modelling (circles); τα only modelling (triangles); and TTS

approximation (squares). For PDMS (and also PMMA and PS for a few monomer

units (n ∼ 1 − 5), there is good agreement between these three techniques for
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Figure 4.22: Ncorr,4 for a) PMMA, b) PS, and c) PDMS as a function of τα

calculated using three techniques: full HN modelling (circles), τα only modelling

(triangles), and TTS approximation (squares). The legends indicate the degree

of polymerisation (n).
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determining Ncorr,4 due to a clear and isolated α peak in the BDS spectra, and

these being adequately described by a KWW expression for the TTS approxima-

tion. For longer M PMMA and PS samples, the presence of secondary relaxation

modes made isolating the relaxation difficult, and obscured the response shape.

Due to this, Ncorr,4 for only small oligomers was calculated for PMMA. In addition

to this, these responses were not adequately described by a KWW expression, as

they often had a broadening of both the low and high frequency power-law flanks

in ε′′(ω), causing the TTS technique to be less appropriate.

The values of Ncorr,4 from τα only modelling (triangles in figure 4.22) were

chosen as the most reliable modelling technique. Trying to model the shape

parameters (α and β from the HN expression) with some arbitrary expression

was unreliable, as these could scatter from temperature to temperature for the

more difficult to fit samples. The TTS description relies on both TTS being

applicable across this wide dynamic range, and also that the response spectra

could be modelled by a KWW expression, which was not the case.

All samples in this work show an increase in Ncorr,4 with τα as expected[212,

216]. For PMMA, shown in figure 4.22 (a), and PS (b), as M increases from small

molecular glass former to oligomer, Ncorr,4 decreases by a factor of ∼ 5. With

further increasing M , PS shows an increase in Ncorr,4 (which is not shown here for

PMMA due to the lack of data). For PDMS (c), the M variation of Ncorr,4 is less

obvious than PMMA and PS, with exception of n = 14, which is lower by a factor

of ∼ 2. The absolute values in Ncorr,4 for PDMS are also higher across the entire

τα and M range than for PMMA and PS. This is consistent with the number of

cooperative units calculated from TMDSC, as discussed in section 4.1.3.

4.3 Comparison between Na and Ncorr,4

The estimate of the number of cooperative/correlated monomer units determined

from TMDSC, Na, and BDS, Ncorr,4, were compared. As discussed in section 4.1,

the number of units in the cooperative region obtained from TMDSC is described

using equation 4.44.
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Na =
RT 2

α∆c−1
P

m0δT 2
(4.44)

This describes the number of correlated units from the heat capacity responses

measured using TMDSC: Tα and δT are the peak and the width of the imaginary

specific heat capacity respectively, and ∆c−1
P is the change in inverse specific heat

capacity between glass and liquid. It has been shown that if the calorimetric re-

sponse of the α relaxation can be described by a KWW expression, the transition

width, δT , can be approximated as equation 4.45[9, 217].

δT ≈ δlnτα
∂lnτα/∂T

=
1.07T

βKWW

(d ln τα
d lnT

)−1

(4.45)

Inserting this approximation into equation 4.44 yields equation 4.46.

Na ≈
R∆c−1

P

m0

(βKWW

1.07

)2(d ln τα
d lnT

)2

(4.46)

Equation 4.46 is similar to the KWW approximation of Ncorr,4 shown in equation

4.43. These two expressions of the number of cooperative units involved in the α

relaxation differ by some factor proportional to the difference between (∆cP )−1

and ∆c−1
P .

These two techniques have often been compared in literature[78, 217–219].

Casalini et. al. quantified the difference between (∆cP )−1 and ∆c−1
P for both

poly(methyl acrylate)[78], and three polychlorostyrenes[218], and determined a

factor of Na = 6.45Ncorr,4 for these samples. This naturally lead to agreement be-

tween Na and Ncorr,4 values when calculated using this KWW assumption. How-

ever, no single shift factor can truly account for uncertainties and assumptions

when calculating either Na and Ncorr,4. Hence, these two measures of the number

of correlated units of the α relaxation were directly compared. For PMMA, PS,

and PDMS, this is shown in figure 4.23.

Figure 4.23 shows that PMMA (a), PS (b), and PDMS (c) show the expected

increase in number of cooperative units with relaxation time[7]. The apparent

changeover in behaviour at τα ∼ 10−4s (shown by the arrow in figure 4.23 (a)) is

well documented[220], and is consistent with the dynamic crossover as discussed

in section 1.2.3.
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Figure 4.23: Na (circles) and Ncorr,4 (triangles) for PMMA (a), PS (b), and PDMS

(c) as a function of τα. The legend indicates degree of polymerisation (n).
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For PMMA (figure 4.23 (a)), there is good agreement between Na and Ncorr,4

measures of the number of cooperative monomer units in the α relaxation. As

stated in section 4.2.2, Ncorr,4 was only calculated for oligomeric (n = 2 − 7)

samples due to difficulties accurately determining the shape of the α relaxation

response due to a strong β relaxation response relative to the α relaxation in BDS.

This was likely an issue for higher M PS samples also, whereby the presence of

a high frequency wing alters the α response shape. For PDMS, no β relaxation

response was apparent in BDS across the entire M range. Therefore, accurately

determine the shape of the α response was not an issue. As such, there was good

agreement between the values of Na and Ncorr,4 (figure 4.23 (c)).

PMMA and PS (figures 4.23 (a)and (b)) also show a distinct decrease in the

number of cooperative monomer units in the α relaxation in region I. For PDMS,

this appears less M dependent, although still clear. PS and PDMS also show the

subsequent increase in regions II and III.

4.3.1 Na from broadband dielectric spectroscopy

Saiter et. al.[221] suggested a technique to determine the size of the cooperative

region using both TMDSC and BDS. They demonstrate that the response shape

of isofrequency measurements of c′′P (T ) and ε′′(T ) are scalable. An example of

this is shown in figure 4.24.
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Figure 4.24: BDS measurements of the ε′′ as a function of temperature for PDMS

n=2. Alternating colours are isofrequency measurements. The solid black curve

is c′′p rescaled from TMDSC (P = 60s) measurement.

Figure 4.24 shows ε′′(T ) as a function of temperature, with TMDSC (P=60s)

scaled to this data. This illustrates that both c′′P (T ) and ε′′(T ) exhibit similar

response shapes. Therefore, this approach suggests that the same Gaussian fitting

routine can be carried out in order to determine Tα and δT , and obtain the size

of the cooperative region, as outlined in section 4.1, using BDS. Due to the broad

frequency range of BDS, this yields the size of the cooperative region over a much

wider timescale range than what would normally be accessible using TMDSC.

Unfortunately, this technique relies on a narrow temperature resolution in

BDS measurements. Typically, BDS measurements were performed every 2K

(with the exception to PDMS n=2 and 3, that were performed every 0.5K),

which was generally insufficient in providing a reliable shape of the response

in the temperature domain. However, the ability to describe both BDS and

TMDSC with the same functional response shapes suggest that the TTS/KWW

assumptions of both Na (equation 4.46) and Ncorr,4 (equation 4.43) should be

directly comparable.
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4.4 Molecular cooperativity of the α relaxation

from oligomer to polymer

Using both TMDSC and BDS, the number of cooperative units were determined

as a function of τα (shown in figure 4.23) for a chain-length series of PMMA, PS,

and PDMS. This section will focus on TMDSC measurements of the size of the

cooperative region, as this is measure of the number of cooperative units at the

same α relaxation timescale (τα ≈ 10s, with a modulation period of P = 60s).

For the more fragile polymers (PMMA and PS), there was a distinct decrease of

Na with increasing M in region I, followed by a levelling out in regions II and III

(shown in figure 4.13 (a) and (b)). For the less fragile and more flexible PDMS,

the number of cooperative units was more level across all three three M regions

(shown in figure 4.13 (c)). The number of units involved in the α relaxation in

PDMS was also higher than for PMMA and PS across the entire M range.

As well as the number of monomer units within the cooperative region, it

was interesting to look at the number of oligomers/polymers involved, which was

determined using equation 4.47.

Np = Na
M0

M
(4.47)

Equation 4.47 is simply the number of monomer units in the cooperative region

(Na) divided by the degree of polymerisation (n = M/M0), where M is the

molecular weight of the oligomer/polymer, and M0 is the monomer molecular

weight. For the three investigated polymer systems, this is shown in figure 4.25.

Figures 4.25 (a) and (b) show that for PMMA and PS there is a change in

the power law dependence of Np with increasing M at around the region I and II

boundary. This behaviour can be described as NP ∝ M−a, and in region I, this

is described with approximate values of a ∼ 2.1 and a ∼ 1.8 for PMMA and PS

respectively. In regions II and III, this power law behaviour changes to a ∼ 0.9

and a ∼ −1.0 for PMMA and PS respectively. Figure 4.25 (c) shows that for

PDMS across the entire M range, this power law behaviour follows a ∼ −1.0,

which indicates that Na is relatively invariant with M in these regions (apparent

in figure 4.13 (c)). It is worth noting that Np in this definition is not necessarily a
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Figure 4.25: Number of oligomers/polymers in the cooperative region calculated

from TMDSC (P = 60s) for (a) PMMA, (b) PS, and (c) PDMS M series. Orange

dashed lines indicate a change in behaviour, regional boundaries indicated by

vertical dashed lines, and horizontal dashed line is when Np = 1. The number of

monomers in the cooperative region is also shown for (d) PMMA and PS.
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measure of the number of entire oligomers/polymers in the cooperative region at

Tα, as that would assume that the α relaxation is entirely intramolecular, whereas

this is unlikely to be the case.

Figure 4.25 (d) shows that Na behaves approximately the same for PMMA

and PS in region I, whereby Na ∝ M−1, as indicated by the dashed purple line

fitting both sets of data. However, there is a distinct difference in regions II and

III between these samples, whereby PS has more cooperative monomers in the α

relaxation (by a factor of ∼ 2).

As outlined in section 1.2.3, Johari and Goldstein[48] noted that non-polymeric

glass-forming materials exhibit a secondary relaxation. Due to the cooperative na-

ture of this relaxation, it is often seen as a precursor to the α relaxation[222, 223].

This particular secondary relaxation is typically called the Johari-Goldstein β

relaxation. The heterogeneous nature of this relaxation is the topic of much

discussion[52, 53]. At low temperatures close to Tg, it has been suggested that

there exists ”islands of mobility”, whereby some regions relax, while others are

relatively immobile[54]. Fragiadakis and Roland[224] showed using MD simula-

tions that, in the glassy state, the β relaxation in diatomic glass formers occur

is these ”islands of mobility”, whereby some molecules relax completely, whereas

others are immobile over a period ∼ 500 times that of the β relaxation timescale.

In contrast to diatomic glass formers, they showed that a polymeric glass former

appeared to be dynamically homogeneous.

We suggest that a similar changeover in behaviour may extend to the α relax-

ation at Tg. Figure 4.25 shows that in region I, multiple molecules are involved

in the α relaxation (Np > 1), i.e. the α relaxation is largely an intermolecular

process. However, in regions II and III for PMMA and PS (figure 4.25 (a) and

(b)), fewer monomers are involved than in a single polymer (Np < 1), although

these may be within different polymers. An extrapolation of the region I fit in

figure 4.25 (a) and (b) for PMMA and PS intercepts Np = 1 at approximately the

molecular weight of the dynamic bead (M at the region I to II crossover). There-

fore, the α relaxation may become more intramolecular, and for more fragile,

less flexible polymers, once the dynamic bead has been established, the number

of cooperative monomer units in the α relaxation does not increase significantly

with increasing M .
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In the case of PDMS, the number of cooperative monomer units in the α re-

laxation is larger than the molecule (Np > 1) until region III, with the behaviour

with increasing M described by a power law of Np ∝ M−1.0. This suggests that

the inter/intramolecular nature of the α relaxation in PDMS does not vary signif-

icantly with chain-length. However, as will be discussed in section 4.4.3, PDMS

displays anomalous conformational behaviour, and therefore this cooperative be-

haviour may not be universal for all less fragile, more flexible polymers.

This measure of the size of the cooperative region of the α relaxation at Tg was

compared to other dynamic properties, which will be outlined in the following

sections, and compared in section 4.4.3.

4.4.1 Secondary relaxations

As discussed in section 1.2.3, secondary relaxation mechanisms faster than the α

relaxation also occur in glass forming materials. These are labelled β, γ, δ, etc in

order of appearance with increasing frequency (or decreasing temperature)[14].

As previously stated, PMMA is a type-C polymer, meaning that it contains

a dipole moment in the side group, which is able to reorientate relatively inde-

pendently of the polymer backbone[14]. The ester side group in PMMA contains

a large dipole moment, and therefore these secondary relaxations in PMMA ex-

hibits a strong dielectric response, and timescale data can be determined using

BDS. In PMMA, β and γ relaxation modes are visible in both rheology and BDS.

This β relaxation is generally attributed to some cooperative motion involving

both the ester side group and the polymer backbone[139, 140]. Whereas the γ

relaxation has been attributed to some more local reorientation[58].

Is PS, β and γ relaxation modes are weaker in both rheology and BDS than

PMMA (the β relaxation is apparent as an additional high frequency flank of

the α relaxation, rather than a separate, distinguishable, peak in ε′′(ω)). NMR

studies have suggested that the β relaxation in PS involves large phenol ring

motions, whereas the γ relaxation is attributed to smaller, faster, motions of the

phenol rings[225, 226], and by necessity, these side group motions are coupled to

the backbone motions. However, a more recent study by Arrese-Igor et. al.[227]
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determined, using Quasielastic Neutron Scattering (QENS), that large scale mo-

tions of the phenol rings do not occur at T < Tg.

As is typical of secondary relaxation modes, relaxation timescales (τβ and

τγ) exhibit Arrhenius behaviour[14], meaning that they can be described by an

Arrhenius expression, shown in equation 4.48.

τ = τ0 exp
(∆H

RT

)
(4.48)

Here, ∆H is the activation enthalpy, R is the gas constant, and τ0 is the relaxation

rate at high temperatures. This is visualised by a straight line in an Arrhenius

plot, with the slope being proportional to ∆H. For this PMMA chain-length

series, this is shown in figure 4.26
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Figure 4.26: Arrhenius plot for PMMA showing α (triangles), β (diamonds),

and γ (stars) relaxations from BDS, with VFT (α) or Arrhenius (β and γ) fits.

TMDSC α relaxation data is also shown (squares). The legend indicates the

degree of polymerisation (n).

Figure 4.26 shows α relaxation timescales with VFT fits, and the β and γ

relaxations with Arrhenius fits for the PMMA chain-length series measured using

BDS. From the Arrhenius fits to the τβ(T ) and τγ(T ) data within the glassy state,
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it is apparent that ∆Hβ (which is proportional to the slope) increases with M

for the n=2-8 samples; above this, ∆Hβ is relatively constant. ∆Hγ is relatively

invariant with M across the entire M range. This is shown clearly in figure 4.27.

Figure 4.27: Activation enthalpies for α (calculated at Tg, to be discussed in

section 4.4.2), β, and γ relaxations as a function of M for PMMA. Regional

boundaries are indicated by dashed lines.

Figure 4.27 shows that ∆Hγ has no obvious trend with M . ∆Hβ does exhibit

regional behaviour, where it an increases in region I, and stabilises in regions

II and III. Interestingly, ∆Hγ is approximately equal to ∆Hβ for the lowest M

sample, which suggests that this may be a similar relaxation mechanisms, and

that the β relaxation grows out from a more fundamental γ relaxation as chain

length increases.

Various connections between features of the α and β have been observed,

which will be looked at in this work:

• A simple relation between ∆Hβ and Tg has been observed for a variety of

small molecular and polymeric systems[228].

• An extrapolation of τβ(T ) to higher T intersects τα(T ) at a certain timescale,
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τα,β. This relates to the dynamic crossover point, has been shown to corre-

late to dynamic fragility, m.

• A correlation between the β relaxation timescale at Tg, τβ(Tg), and the

KWW stretching parameter, βKWW has been observed for small molecular

and polymeric systems[41].

Kudlik et. al.[228] determined that for a selection of glass forming materials,

there is an empirical relation between ∆Hβ (a feature of the β relaxation) and

Tg (a feature of the α relaxation), shown in equation 4.49.

∆Hβ = (24± 3)RTg (4.49)

Where R is the gas constant. Ngai and Capaccioli[229] determined that this also

holds for a variety of small molecular and long-chain polymer systems. However,

nothing has been stated for intermediateM oligomers/polymers. For PMMA, this

relation was tested across the M series in order to determine any discrepancy in

the M range between simple glass former and polymer using equation 4.50.

K =
RTg
∆Hβ

(4.50)

As previously stated, this value of 24 ± 3 was shown to hold for a variety of

small molecular and polymeric materials. However, it may not necessarily hold

for oligomers. Therefore, this value was replaced with the parameter K and was

calculated for the PMMA M series, as shown in figure 4.28.
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Figure 4.28: K parameter determined using equation 4.50 from BDS measure-

ments of Tg and ∆Hβ for PMMA M series. Shaded area indicates the prediction

from equation 4.49. Regional boundaries are also indicated.

Figure 4.28 shows the K parameter increases in region I to a maximum value

greater than 24 ± 3. In regions II it falls back into this boundary, whereup in

region III is stabilises. Therefore, the approximation in equation 4.49 is only valid

for small M PMMA (n∼3) and PMMA in regions II and III. However, it does

not seem to hold for oligomers at around the dynamic bead size (region I to II

boundary).

τβ(T ) is this work was determined in the glassy state. In figure 4.26, an ex-

trapolation τβ(T ) to higher T indicates a point where this merges with τα(T ),

τα,β. It has been observed that there there are several changes in dynamic be-

haviour at this τα,β transition, such as: i) a decoupling between translational and

rotational diffusion below this temperature[55]; ii) a change in dielectric strength

(∆ε) behaviour of the α relaxation occurs above this temperature[56]; iii) and

there is distinct change in VFT behaviour, which has been observed in various

small molecular and polymeric systems[57]. The trend of τα,β as M increases for

PMMA is better visualised on a Tg normalised Arrhenius, or Angell[23], plot, as

shown in figure 4.29.
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Figure 4.29: a) Angell plot displaying VFT fits of τα data, and τβ data with

Arrhenius fits extrapolated to where the two relaxation timescales are equal (τα,β).

b) τα,β (circles) and τβ(Tg) (triangles) as a function of M , with regional boundaries

indicated.

Figure 4.29 (a) and (b) show the similar regional behaviour of τα,β (shown

by the circles) and τβ(Tg) (shown by the triangles), increasing in region I, and

decreasing and stabilising in regions II and III. These two quantities have been

shown to correlate to dynamic fragility, m, and the KWW stretching parame-

ter, βKWW [41] for small molecular and polymeric glass formers. However, these

correlations fail across the entire PMMA chain-length series.

4.4.2 Activation enthalpy of the α relaxation

The relations between ∆Hβ and Tg shown in figure 4.28, and τα,β and τβ(Tg) shown

in figure 4.29 show similar regional M behaviour in PMMA. These quantities are

links between the α and β relaxations.

In general terms, τα(T ) can be expressed as a thermally activated process,

with a temperature dependent activation free energy, as expressed as equation

4.51.

τα(T ) = τ0 exp
(∆Gα(T )

kBT

)
= τ0 exp

(∆Hα(T )

kBT

)
exp

(−∆Sα(T )

kB

)
(4.51)
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Here, ∆Gα(T ) is the activation free energy (Gibbs free energy) of the α relaxation.

This contains both an enthalpic (∆Hα(T )) and entropic (∆Sα(T )) contribution.

Both for small molecular and polymeric glass formers the activation entropy can

be non-zero[230]. However, if as a first estimate one assumes that this quantity is

negligible, then an Arrhenius equation with a temperature dependent activation

enthalpy is obtained, shown in equation 4.52.

τα(T ) = τ0 exp
(∆Hα(T )

RT

)
(4.52)

At Tg (τα = 100s), equation 4.52 shows the simple relation shown in equation

4.53.

∆Hα(Tg) ∝ Tg (4.53)

This is a simple proportionality between the activation enthalpy at Tg, and

∆Hα(Tg), and Tg. Equation 4.50 indicates relationship between ∆Hβ and Tg.

Therefore the proportionality between ∆Hα(Tg) and ∆Hβ is of interest, defined

in equation 4.54.

nc =
∆Hα(Tg)

∆Hβ

(4.54)

Where nc is defined as the ratio of the activation enthalpies of the α and β

relaxations. To investigate this, the value ∆Hα(Tg) is needed to be obtained.

Figure 4.26 shows that the α relaxation above Tg exhibits VFT behaviour, which

can be described as Arrhenius behaviour with a temperature dependent activation

enthalpy, ∆Hα(T ), as shown in equation 4.55.

τα(T ) = τ ′0 exp
( DT0

T − T0

)
= τ ′0 exp

(∆Hα(T )

RT

)
(4.55)

Here, τ ′0 contains both the prefactor τ0, and the entropy contrition from the free

energy. Once out of equilibrium (below ∼ Tg), the temperature dependence of

τα becomes Arrhenius, rather than VFT, due to the glass not being able to re-

lax on experimental timescales. Casalini and Roland[231] demonstrated using

BDS, that a decay in the dielectric strength (∆ε) of the β relaxation over time

corresponded to out of equilibrium α relaxation timescales. Using this method,
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they determined the out of equilibrium α relaxation activation enthalpy (∆Hα)

for a PMMA n = 19 sample[76]. They showed that this agreed with a technique

Hodge[232] proposed, whereby he derived an expression for describing the tem-

perature dependence of the α relaxation in the glassy state, shown in equation

4.56.

τα(T ) = τ0 exp
( DT0

T (1− T0/Tg)

)
(4.56)

This is an Arrhenius equation where τ0, D, and T0 are all parameters of the VFT

expression describing τα(T ) in equilibrium, and is equivalent to equating the VFT

and Arrhenius expressions exponents, as shown in equation 4.57.

DT0

Tg − T0

=
∆Hα(Tg)

RTg
(4.57)

It is apparent from equations 4.56 and 4.57 that ∆Hα is modulated by the high

temperature prefactor of the VFT expression (τ0), and Tg. Both of these values

are extrapolations of the VFT expression, outside the range of a typical BDS

measurement. Therefore, determining accurate values for τ0 can be difficult,

especially for higher Tg polymers (PS, PMMA, PC, etc), causing significant un-

certainties when calculating values of ∆Hα using this assumption. Regardless of

this uncertainty, this technique was used to calculate ∆Hα(Tg) values for the α

relaxation. These values are shown alongside ∆Hβ and ∆Hγ for PMMA in figure

4.27. ∆Hα(Tg) (shown by the circles) also appears to show regional behaviour,

with an increase in region I, slightly increasing in region II (although this is dif-

ficult to say due to scatter), and stabilising in region III. Interestingly, at the

region I to II boundary, ∆Hα and ∆Hβ are approximately equal. This behaviour

will be discussed further in section 4.4.3.

The coupling model (CM), as described in section 1.2.2, suggests a link be-

tween the out of equilibrium α relaxation and Johari-Goldstein (β) process[37,

42, 48], given by equation 4.58.

τ0 = tnc τ
1−n (4.58)

In equation 4.58, τ is the cooperative relaxation time (τα), tc is a fundamental

timescale of molecular motion (∼ 2ps), n is the coupling parameter, relating to
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the KWW stretching parameter[94] (βKWW = 1 − n), and τ0 is the primitive

relaxation time, taken as the timescale of the Johari-Goldstein β process (τβ).

Although the β relaxation in PMMA is a Johari-Goldstein process (it involves all

atoms in the monomer unit[139]), this relation has been shown not to hold for

either oligomeric or polymeric PMMA[233].

This work also showed that this relation does not hold for this PMMA M

series, which would have connected directly measured values of τβ, and βKWW

(shows in figure 3.15 (b)) to τα in the glassy state, and hence allowing the calcu-

lation of ∆Hα. Interestingly, while CM can sometimes, relatively well, describe

the relationship of τβ and τα in colloidal and simple molecular glass formers, it

also applies to more flexible polymers such as polyisoprene[234, 235].

4.4.3 Correlations of cooperativity to dynamic behaviours

While regional M behaviour was visible in many quantities shown in this work

(Tα, δT , ∆cP , Na, Ncorr,4, etc), three quantities in particular follow similar M

behaviour in PMMA. These were:

• The cooperative lengthscale, ξa, defined as the cube-root of the volume of

a cooperative region, Va. As discussed in section 4.1, this was calculated

using a technique proposed by Donth[165], from temperature fluctuations

measured using TMDSC.

• The ratio of the activation enthalpies of the α and β relaxation, nc, as

discussed in section 4.4.2

• The K parameter, which is related to the proportionality between the ac-

tivation enthalpy of the β relaxation, ∆Hβ, and Tg. Similar behaviour was

also seen in τα,β and τβ(Tg), which also connect the α and β relaxations.

As previously stated, these three behaviours outlined above show distinct re-

gional behaviour, exhibiting a large change in region I, followed by a stabilisation

(or slight change) in regions II and III. These were scaled to each other, and

plotted in figure 4.30.
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Figure 4.30: Length of the CRR (ξa), ratio of α and β activation energies (nc),

and scaled ratio of ∆Hβ to Tg (A/K) as a function of M for PMMA.

Figure 4.30 shows the correlation between the lenthscale of the cooperative

region at Tg with nc and 1/K. All three of these quantities exhibit comparable

regional behaviour: decreasing with increasing M in region I, increasing relatively

little in region II, and stabilising in region III.

Looking back at figure 4.27, ∆Hβ increases in region I, implying an increased

growth of cooperativity up the the dynamic bead size. In regions II and III,

∆Hβ flattens out. Therefore, for M > MR, the β relaxation is characterised by

this lengthscale. At Tg, the number of correlated units are significant, and it is

reasonable that the ”cooperative” nature is captured in ∆Hα(Tg). Thus, nc gives

a scale of this in bead units. Therefore, it is understandable that both K and nc

relate to some metric which gives information on the correlated nature of the α

relaxation.

Due to the similarities between PMMA and PS, this behaviour may be appli-

cable to more fragile, less flexible polymeric systems. However, PDMS was not

an ideal system to study, as it is not a typical less fragile, more flexible polymeric

system. As outlined in section 3.2.2, it has been shown using RIS simulations

that PDMS forms look-like structures at the region I to II boundary[157], and
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therefore these definitions may not be applicable to such a system. Therefore,

this chain-length dependence of the number of correlated units in the α relaxation

will also be investigated for propylene glycol dimethyl-ether (PPG-DME), which

is considered to be a more standard less fragile, more flexible system

4.5 Conclusions

In this chapter, the number of cooperative units involved in the α relaxation was

calculated for a chain-length series of PMMA, PS, and PDMS, ranging from dimer

to fully entangled polymer, using two independent techniques: Using the complex

permitivity measured with TMDSC to determine the size of the of the cooperative

region[28, 195]; and using the complex permittivity measured with BDS to calcu-

late the number of specially correlated units involved in the α relaxation[201, 212].

This work shows that:

• These two independent measures of the number of cooperative/correlated

units in the α relaxation show good agreement when both could be applied.

• Tg for PMMA, PS, and PDMS showed regional behaviour with M . For

PMMA and PS, this could not be described by a Fox-Flory[86] expression

below MR, although it could be PDMS. This suggests that the M depen-

dence of Tg may be dependant of the number of chain-end in more less

fragile/more flexible oligomers only.

• The heat capacity responses (Tα, δT , and ∆|c∗P |) of PMMA, PS, and PDMS

all show similar regional behaviours, albeit more subtly in PDMS than

PMMA or PS.

• The number of cooperative units in the cooperative region at Tg (defined

as the temperature where τα ≈ 10s) for PMMA, PS, and PDMS shows

regional M behaviour, decreasing in region I, and stabilising (or possibly

slightly increasing) in regions II and III. This is less obvious for PDMS,

where this regional behaviour is much more subtle, if at all existent. This

general behaviour has been seen in literature also for a PS[198], and a

PnBMA[199] chain-length series.
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• Both the number of cooperative units in the cooperative region at Tg, and

dynamically correlated units across the τα range are higher in PDMS than

PMMA and PS across the entire M range.

• For the more fragile/less flexible PMMA and PS, the number of cooperative

units in the cooperative region at Tg decreases in region I (M < MR). This

is interpreted as a decrease in the intermolecular nature of the α relaxation

as chain-length increases. Once the dynamic bead size has been established

(MR), the size of the cooperative region changes more weakly with increas-

ing M . This suggests that the α relaxation may be more intramolecular at

this point.

• For the less fragile/more flexible PDMS, the number of cooperative units

in the cooperative region at Tg is more stable across all three regions. The

number of correlated units is greater than the number of monomer involved

in the α relaxation until approximately region III. Therefore the α relax-

ation is likely always intermolecular.

• In PMMA, secondary relaxation mechanisms (β and γ) were detectable

using BDS. The β relaxation shows regional M behaviour, increasing in

region I, and stabilising in region II and III. For the smallest sample (n = 2),

this had the same activation enthalpy (∆Hβ) as the γ relaxation (∆Hγ)

across the M range. We suggest this may be the same processes, and the

β relaxation forms from this more fundamental γ relaxation in region I.

• Around the region I to II boundary (MR), ∆Hβ no longer scales with

Tg[228], but rather shows regional behaviour also: increasing in region I,

and decreasing and stabilising in regions II and III for PMMA.

• The out of equilibrium activation energy of the α relaxation (∆Hα(Tg))

was approximated[232] for PMMA, which also exhibited regional behaviour:

Increasing sharply in region I, less so in region II, and stabilising in region

III. Interestingly, ∆Hα(Tg) was equal to ∆Hβ at approximately MR.
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• Both the intersection of τα and τβ (τα,β), and τβ at Tg (τβ(Tg)) for PMMA

show regional behaviour: increasing in region I, and decreasing and stabil-

ising in regions II and III. These does not correlate across the entire M

range with either dynamic fragility, m, or the KWW stretching parameter,

βKWW , which has been shown for small molecular liquids and long-chain

polymers[41].

• The lengthscale of the cooperative region at Tg, ξa, correlated with the ratio

of ∆Hα(Tg) and ∆Hβ, and also the ratio of ∆Hβ and Tg. This suggests that

the β relaxation plays a role is setting the scale of the dynamic bead.

4.5.1 Future work

Future work will include measuring the size of the cooperative region on a chain-

length series of propylene glycol dimethyl-ether (PPG-DME). This is a more

standard flexible polymeric system than PDMS, as it does not exhibit loop-like

formation caused by the siloxane backbone.
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Chapter 5

Decoupling of ion conductivity

and the α relaxation in polymer

systems

In chapters 3 and 4, results from broadband dielectric spectroscopy (BDS) mea-

surements on different polymer systems spanning from small molecular glass

former to polymer were analysed. This primarily focused on the temperature

dependence of relaxation dynamics. However, along with the relaxation mech-

anisms, ionic conductivity was also apparent in the spectra, as shown in figure

3.8. This allowed us to look at how conductivity couples to α dynamics, in par-

ticular, how molecular weight, M , effects this coupling in polymer systems with

different properties, such as Tg, m, etc. The link between diffusion and α dy-

namics in glass forming materials is not well understood[236]. It has become of

increased interest recently due to the demand for safer, solid electrolytes for use

in batteries. A better understanding of how ions diffuse through glass forming

materials could provide the means to produce an amorphous electrolyte which

is both mechanically strong, while also allowing for adequate ionic conductivity.

Therefore, the effect of chain-length and flexibility reflected through Tg and m on

ionic conductivity is explored in this chapter.

A Li-ion battery consists of two electrodes, a positive anode and negative

cathode, which are are in contact with current collectors. Between the two elec-

trodes is an electrolyte material, and a mechanical separator. When the battery
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discharges, oxidation takes place at the anode, and lithium ions migrate through

the electrolyte towards the cathode, whereupon reduction takes place. This move-

ment of charge allows for electrons to flow in the opposite direction through a

circuit. When charging, this process is reversed[237]. While liquid electrolytes

with mechanical spacers may be adequate for technologies such as mobile phones,

the increasing demand from applications such as electric cars is pushing the need

for safer electrolyte materials. Solid electrolytes which can be used in modern

Li-ion batteries are the holy grail of battery technology, because not only would a

solid electrolyte be safer, but also becuase they would remove the need for costly

mechanical spacers. However, with increased mechanical rigidity, tends to come

reduced ion mobility. In order for an electrode material to be suitible for use in

batteries, amongst other things, they need to have[238, 239]:

• Good ionic conductivity over wide operating temperatures (σLi > 10−3S/cm

between −40 < T < 90◦C).

• Low electron conductivity (σe < 10−10S/cm).

• High cation mobility, if possible with a transference number σLi/σ ≈ 1, i.e.

low anion mobility.

• Appropriate mechanical properties, e.g. high mechanical modulus, deforms

elastically, and is not brittle.

• The ability to form good interfacial contact with electrodes.

• Chemical stability with respect to the electrode materials over wide tem-

perature ranges (electrochemically stable).

• Relevantly easy and cheap to process.

• Low toxicity and safe.

Various kinds of solid electrolyte materials have been tried, examples of these

include: (i) Gel electrolytes, which have large ion mobility, are free standing and

relatively flexible. However, they are comprised of a large amount of solvent, and

therefore they tend not to be mechanically strong. The solvent itself tends to
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have a low vapour pressure, and therefore the conductivity decreases as solvent

is lost[240]; (ii) Ceramic electrolytes, which have large mechanical modulus and

thermal stability, however they tend to lack in other respects, for instance, re-

quiring high temperatures to operate[241], or are brittle[242]; (iii) Solid polymer

electrolytes, which tend to be mechanically suited for batteries. However, these

usually have low ionic conductivity[243, 244].

As previously stated, one of the biggest issues in solid polymer electrolytes

(SPE) is the lack of sufficient ionic conductivity. One of the most commonly stud-

ied polymer electrolyte material is that of poly(ethylene oxide) (PEO)[238]. This

is due to he fact that: it readily dissociates lithium salts, it is electrochemically

stable, and it is cheap and safe. However, due to high crystallinity, it often lacks

the required ion conductivity, especially at low temperatures. Modifications of

PEO, such as the addition of plasticisers, or blending it with another polymers

yield improved conductivity, but often effect other properties[245].

Polymers have relatively slow α dynamics due to chain connectivity, and there-

fore the coupling between this and conductivity leads to poor ionic conductivity.

Therefore, decoupling between α dynamics and conductivity is important for

polymer electrolytes. In polymer systems such as PEO, conductivity is strongly

coupled to the α relaxation[246], i.e. a change in the characteristic α relaxation

timescale, τα, leads to a proportional change in ionic conductivity, σ. However,

Agapov and Sokolov[247] have shown that some long-chain polymer systems ex-

hibit a decoupling between these two mechanisms. This decoupling was more

apparent in more higher Tg, fragile polymers such as poly(methyl methacrylate)

(PMMA) and polycarbonate (PC), than for lower Tg, less fragile polymers such as

PEO and poly(vinylidene chloride) (PVDC). In non-polymeric liquids, it is well

known that ion diffusion couples to viscosity (and therefore α dynamics)[248, 249],

and that, as previously mentioned, for long-chain PMMA there is significant de-

coupling.

Therefore, an interesting question arises; at what point does decoupling occur

as the chain-length in PMMA increases? It is worth noting that pure PMMA is

not a good electrolyte material, but is still as ideal system to study considering the

strong decoupling at the long-chain limit, and that it has been shown to readily
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dissolve lithium salts[250–252]. Along with PMMA, two low Tg, less fragile chain-

length polymer systems were also studied. These were two poly(propylene glycol)

systems, one with methoxy end-groups (PPG-DME), and one with hydroxyl end-

groups (PPG). PPG is structurally similar to PEO, which also readily dissolves

lithium salts, whereby the lithium ions coordinate to the ether oxygen in polymer

backbone[253]. An advantage of studying PPG in this work is that, unlike PEO,

it is easy to avoid crystallisation, so both conductivity and α dynamics can be de-

termined without any influence from semicrystallinity. The sample specifications

of these systems are shown in figure 5.1 and table 5.1.

Figure 5.1: From left to right: PMMA, PPG-DME, and PPG molecules. The

end groups reported by the manufacturer are also shown..
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PMMA PPG-DME PPG

n MW (g/mol) PDI n MW (g/mol) PDI n MW (g/mol) PDI

2 202 1.00 2 150 1.00 2 124 1.00

3 302 1.00 3 196 1.00 3 170 1.00

4 402 1.00 7 380 1.02 4 216 1.00

6 660 1.21 16 794 - 7 354 1.02

7 771 1.18 32 1530 - 70 3252 1.05

8 840 1.44

19 1900 1.10

43 4300 1.05

96 9590 1.05

395 39500 1.04

906 90600 1.04

Table 5.1: Specifications of PMMA, PPG-DME, and PPG samples used in this

work. The PDI was unknown for PPG-DME n = 16 and 32.

Figure 5.1 shows, from left to right, the monomers of PMMA, PPG-DME, and

PPG. These have monomer molecular weights of; M0=100g/mol for PMMA, and

58g/mol for both PPG-DME and PPG. The manufacturer reported PMMA to

be proton terminated, PPG-DME is methoxyl terminated, and PPG is hydroxyl

terminated. Table 5.1 shows the degree of polymerisation, n, the weight average

molecular weight, MW , and the polydispersity index (PDI) of the sample used in

this work, as characterised by the supplier. PMMA samples were purchased from

Polymer Standards Service (PSS), and were used as received, with the exception

of PMMA n = 6 − 11, which were heated far above Tg in a vacuum oven for at

least 24 hours to remove any solvent remaining from the manufacturing process

(the other samples in this series were tested to be fine). PPG-DME and PPG

samples were originally sourced from Aldrich, Fluka, and Polysciences[38, 254].

In these results, PPG n=70 will also be included in the analysis of PPG-DME,

as it is considered that this molecule is long enough that hydrogen bonding of

the hydroxyl end-groups yields negligible effects, and that true PPG-DME n=70

would have comparable dynamics.
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As previously stated, the coupling between σ and τα, as a function of both

polymer system and chain-length was the focus of this work. Both σ and τα

were measured simultaneously as a function of temperature using broadband

dielectric spectroscopy (BDS). It was found that the decoupling of these two

properties exhibits regional molecular weight, M , behaviour in PMMA. This

regional behaviour has been seen previously in a variety of different polymer

systems[134, 135, 155], whereby Tg exhibits distinct M behaviour between three

regions. Samples in region I (the lowest M samples) were coupled, and become

more decoupled with increasing M in region II (the intermediate M samples), up

until a maximum at in region III, where the decoupling becomes invariant with

M . However, neither PPG-DME or PPG exhibited such M behaviour, and σ and

τα were coupled across the M range measured. This is consistent with Agapov

and Sokolov[247], where they showed that these properties are coupled for low Tg,

less fragile, long-chain polymers. In BDS, chain dynamics are also accessible for

PPG-DME and PPG due to these being type-A polymers, whereby dipoles are

oriented along the polymer backbone[14]. σ and the chain mode relaxation time,

τn, were also shown to correlate, which is consistent with the correlation between

τα and τn, as discussed in section 3.5.2. Along with these polymer systems, a

few examples of small molecular glass formers were also looked at, which also

displayed strong coupling between σ and τα.

5.1 Dielectric determination of τα and σ

DC ionic conductivity is defined by the sum of mobilities of the free ions in a

system[6], as shown in equation 5.1.

σ =
∑
i

niµq,iqi (5.1)

Where σ is the DC ionic conductivity, and ni, µq,i, and qi are the number density,

mobility, and charge of a specific charged species, i. For simplicity, this can also be

expressed as an average mobility of all ions, i.e. σ = nµqq, where n, µq, and q are

the average number density, mobility, and charge of all charged species. Mobility
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5.1 Dielectric determination of τα and σ

of an ion with charge q is related to the diffusion coefficient, D, according to the

Einstein relation, shown in equation 5.2.

µq =
Dq

kBT
(5.2)

Here, D is the self diffusion coefficient, and kBT is thermal energy. In turn,

according the the Stokes-Einstein relation, D relates to viscosity, η, as shown in

equation 5.3.

D =
kBT

6πηr
(5.3)

Where r is the hydrodynamic radius of the diffusing ions. Equations 5.1, 5.2,

and 5.3 yield a relation between conductivity and viscosity, known as the Walden

rule[249, 255], as shown in equation 5.4.

Λη = constant (5.4)

Here, Λ is the molar conductivity (Λ = σ/n). According to this rule, a log-log

plot of Λ against 1/η, or 1/τα, which is related to viscosity through η = G∞τα[15],

should yield a straight line with a slope of 1. This is known as a Walden plot,

and an example of this is shown in figure 5.2.
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Figure 5.2: Example of a Walden plot, with molar ionic conductivity, Λ, against

inverse α relaxation timescale, 1/τα. Superionic and subionic regimes are indi-

cated. PEO 1k, PPG 1k, AgI-AgPO3, and the H2O+LiClO4 reference point are

from literature[6].

In a Walden plot, a system which falls onto a straight line with a slope of 1

indicates coupling between conductivity and α dynamics (such as PEO 1k and

PPG 1k in figure 5.2), i.e. obeying the Walden rule, shown in equation 5.4.

The gray dashed line in figure 5.2 passes through a reference point. This is

a dilute salt (in this case lithium perchlorate (LiClO4)[246]) aqueous solution,

which assumes complete ion dissociation, i.e. all Li cations and ClO4 anions are

contributing towards conductivity. This defines superionic and subionic regimes

above and below this ideal line (which are not that greatly affected by the choice

of reference[6]). Materials that exhibit a different coupling between conductivity

and α dynamics, or fail to dissociate ions, may fall into the subionic regime.

However, materials where conductivity is decoupled from α dynamics may fall

into the superionic regime (such as AgI-AgPO3 in figure 5.2). This superionic

scenario is key in finding an amorphous SPE which is both mechanically strong,

but also allows for the ionic transport, which may be coupled to some other

relaxation mechanism.

This decoupling between σ and τα is generally observed as a slope of less than

1 on the Walden plot (figure 5.2). This behaviour is described by the ”fractional”
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Walden rule[256], shown in equation 5.5.

Ληγ = constant (5.5)

This is the Walden rule (equation 5.4), with an additional decoupling parameter,

γ, which describes the slope on the Walden plot. For decoupled systems, this

values is between 0 < γ < 1, where values closer to 1 indicate more coupling

between σ and τα.

In order to determine this decoupling parameter, the complex permittivity

needed to be measured at different temperatures where both the α relaxation

and ionic conductivity could be distinguished.

5.1.1 Complex permittivity measurements

In order to determine both σ(T ) and τα(T ), the frequency dependent complex

permittivity was measured at discrete temperatures. The complex permittivity

is defined in equation 5.6.

ε∗(ω) = |ε∗|(ω)e−iδ(ω) = ε′(ω)− iε′′(ω) (5.6)

The complex permittivity, ε∗(ω), is separated into a real (ε′(ω)), and imaginary

(ε′′(ω)) component. As discussed in section 2.2, measurements of ε∗(ω) were

performed using broadband dielectric spectroscopy (BDS), using a Novocontrol

Alpha-A analyser. At any temperature, both conductivity and relaxation mech-

anisms (α, β, γ, etc) may be visible in ε∗(ω). As discussed in section 3.2.1,

each temperature is fitted with a superposition of different functions, as shown

in equation 5.7.

ε∗(ω) =
−iσ
ω

+
N∑
j=1

∆εj
(1 + (iωτHN,j)α,j)β,j

+ ε∞ (5.7)

Here, ε∗(ω) at a particular temperature can be described as a sum of Havriliak-

Negami (HN) expressions[109], each describing a relaxation mechanism, and a

conductivity contribution. From the HN fits, τHN relates to the characteristic

relaxation time (the inverse of the ε′′ peak frequency, τp = 1/ωp) by equation

5.8[14].
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1

τp
=

1

τHN

[
sin

απ

2 + 2β

]1/α [
sin

αβπ

2 + 2β

]−1/α

(5.8)

Using this fitting procedure, the ε∗(ω) responses of conductivity and the α relax-

ation (and other relaxation mechanisms) can be isolated from each other. There-

fore, σ and τα (τp relating to the α relaxation) can be obtained when both are

apparent in the spectra. It is clear from equation 5.7 that conductivity only man-

ifests in the imaginary of the permittivity, ε′′(ω), shown once again in equation

5.9.

ε′′(ω) =
σ

ω
(5.9)

This is visible as a low frequency power behaviour (a slope of −1 on a log-log plot)

in ε′′(ω). Therefore, fitting equation 5.8 to ε′′(ω) only yields both σ and τα. An

example of this fitting procedure with multiple components is shown previously

in figure 3.8.

5.2 The α relaxation and DC conductivity

As stated in section 1.2.1, τα(T ) is commonly described by Vogel-Fulcher-Tammann

(VFT)[17–19] behaviour, as shown in equation 5.10.

τα(T ) = τ0 exp
( DT0

T − T0

)
(5.10)

Where τ0 is the relaxation time at high temperatures, D is the strangth parameter,

and T0 is the so-called Vogel temperature, where τα(T ) diverges in equilibrium.

Conductivity also obeys VFT behaviour[257], as shown in equation 5.11.

σ(T ) = σ0 exp
(−DσT0,σ

T − T0,σ

)
(5.11)

By definition, if τα and σ are coupled, the VFT parameters D and T0 in both

equations 5.10 and 5.11 will be the same, i.e. D = Dσ and T0 = T0,σ. For the

PMMA M series, τα(T ) and σ(T ) from BDS are shown in figure 5.3.
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Figure 5.3: PMMA Arrhenius plots: a) τα(T ), with VFT fits (from equation

5.10). The temperature where τα = 100s (dashed line) is commonly taken as the

Tg. b) σ(T ), with VFT fits (from equation 5.11). The legends indicate the degree

of polymerisation, n.

As previously discussed in section 3.2.1, figure 5.3 (a) shows that τα(T ) de-

termined from the peak frequency in ε′′ exhibits VFT behaviour (equation 5.10)

across the entire M range. Tg (defined as the temperature where τα = 100s)

increases with M [86], as shown previously in figure 3.13. Dynamic fragility, m,

also shows M variation in PMMA. This is defined in equation 5.12.

m =
d log τα
d(Tg/T )

∣∣∣∣
T=Tg

=
ln(100/τ0)2 +D ln(100/τ0)

D ln(10)
(5.12)

This shows that m is defined as the slope of τα(T ) at Tg in a Tg normalised

Arrehnius (Angell) plot[23]. This m variation with M is shown previously in

figure 3.14.

Figure 5.3 (b) shows that σ(T ) also exhibits VFT behaviour (equation 5.11).

This shows that for a particular sample, σ increases with increasing temperature,

which is consistent with the fact that as temperature increases, ion mobility also

increases. The conductivity, although not normalised by number density of free

ions, also decreases with increasing M . The coupling of τα to σ across this M

range for PMMA will be explored in section 5.2.1.
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The data for the M series of PPG-DME and PPG used in this work has been

published previously[254, 258], but was re-analysed in order to obtain conductiv-

ity. For these samples τα(T ) data is shown in figure 5.4.
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Figure 5.4: Arrhenius plots showing τα(T ) for PPG-DME (a) and PPG (b) M

series (with VFT fits, from equation 5.10). The temperature where τα = 100s

(dashed line) is commonly taken as the Tg. The legends indicate the degree of

polymerisation, n.

Figure 5.4 shows that τα(T ) for both PPG-DME (a) and PPG (b) M series are

described by a VFT expression, as described by equation 5.10. The PPG-DME

M series in figure 5.4 (a) shows an increase in Tg with increasing M . However,

the PPG M series in figure figure 5.4 (b) shows that τα(T ), and therefore Tg, are

relatively invariant with M . This difference in chain-length dependence of the α

dynamics between methoxyl (PPG-DME) and hydroxyl (PPG) terminated PPGs

is well documented[150, 254, 259]. This is attributed to the fact that the hydroxyl

groups in PPG allow for hydrogen bonding at the chain ends, which effectively

leads to longer chains. PPG is an example of a type-A polymer, whereby dipoles

are oriented along the polymer backbone[14], as such chain dynamics are also

visible with BDS. τα(T ), along with the relaxation time of chain modes, τn(T ),

are shown in Angell plots in figure 5.5 for PPG-DME and PPG.
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Figure 5.5: Tg normalised Arrhenius (Angell) plots for PPG-DME (a) and PPG

(b) M series. Triangles represent τα data (with VFT fits from equation 5.10), and

squares represent τn data. The legends indicate the degree of polymerisation, n.

Figure 5.5 (a) shows that m, defined as the slope of τα (triangles) at Tg/T = 1

from equation 5.12, has no significant M dependence for PPG-DME. Whereas

figure 5.5 (b) shows a decrease in m with increasing M for PPG[258]. For higher

M samples, chain modes become visible as an additional, low frequency relaxation

mode in ε∗(ω), and therefore τn(T ) (squares) can be determined from fitting in the

same manner as for τα(T ). All of the samples in this series are unentangled, and

therefore τn(T ) represents the longest Rouse time, as outlined in section 1.3.2,

whereby this is expected to increase as τn ∝M2[60].

The conductivity measured for the PMMA, PPG-DME, and PPG M series

was due to charged species (ionic impurities) already present in the sample, rather

than specific ions introduced. For this reason, conductivity values were relatively

low (10−16 < σ < 10−10S/cm). This will be discussed further in section 5.2.2.

5.2.1 The coupling of τα and σ

From the measurements of τα(T ), τn(T ), and σ(T ), the decoupling between these

could be determined for the PMMA, PPG-DME, and PPG chain-length series.

As shown in equation 5.5, a decoupling between σ (∝ Λ, although we do not

know the ion concentration) and τα (∝ η) results in a power law slope of less
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than 0 < γ < 1 in a Walden plot[256], shown in figure 5.2. For the PMMA chain-

length series, σ was plotted against 1/τα in order to determine any M dependence

on γ (γα). This is shown in figure 5.6.
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Figure 5.6: Un-normalised Walden plot of σ against 1/τα determined from BDS

for PMMA M series. The gray dashed line represents a slope of 1, and γα is

the decoupling exponent of each data set. The legend indicates the degree of

polymerisation, n.

Figure 5.6 shows an un-normalsied Walden plot of σ against 1/τα for the

PMMA M series. The decoupling parameter, γα, is the slope in this plot, and is

specifically defined by equation 5.13.

σ ∝ τ−γαα (5.13)

As outlined in section 5.1, γα = 1 indicates a direct relationship between conduc-

tivity and α dynamics via the Stokes-Einstein relation. As mentioned previously,

this has been shown to hold for small molecular liquids[248, 249] and less fragile,

low Tg polymers, such as PEG[247]. For 0 < γα < 1, this suggests decoupling

between the mechanisms which dictate ion diffusion and the α relaxation. In fig-

ure 5.6, γα ∼ 1 for PMMA oligomers where n < 8. Therefore, these mechanisms

are coupled, which is consistent with other small molecular systems. However,
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for n > 8, these mechanisms begin to decouple, as visualised by a decrease in

γα with increasing M . Eventually this decoupling saturates at high M . γα as a

function of M for PMMA is shown in figure 5.7.
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Figure 5.7: The decoupling parameter, γα, as a function of M for PMMA. Circles:

γα values corresponding to figure 5.6. Squares: γα values corresponding to PMMA

n = 140 with LiBF4 salt (discussed in section 5.2.2).

As discussed in section 3.2.2, Tg as a function of M can be split into different

regions, which has been seen for a variety of polymer systems[134, 135, 155]. The

region I to II boundary is attributed to the onset of polymer behaviour, and is

approximately that of the dynamic bead size, MR, and the region II to III bound-

ary is approximately at the critical entanglement, Mc, in PMMA. These regional

boundaries defining this Tg behaviour are also shown by the gray dashed lines in

figure 5.7. As with other properties shown in this thesis (Tg, m, Na, etc), γα also

exhibits this regional behaviour. In region I, γα ∼ 1, which is consistent with

the behaviour of other small molecular liquids[248, 249]. However, in region II

γα decreases from 0.4 . γα . 1, therefore displaying greater decoupling between

α relaxation dynamics and ion diffusion with increasing M . In region III, the M

dependence of γα is stabilised at γα ∼ 0.4. Agapov and Sokolov[247] correlated
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the degree of decoupling with m and Tg for a variety of long-chain polymers. To

investigate this behaviour for the PMMA M series, γα was plotted against m and

Tg, shown in figure 5.8.
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Figure 5.8: The decoupling parameter between σ and τα, γα, for the PMMA

M series, as a function of: (a) dynamic fragility, m; and b the glass transition

temperature, Tg.

In figure 5.8 (a), there is no clear correlation between γα and m (except for

region I, where both are approximately invariant with M). Figure 5.8 (b) shows

a potential correlation between γα and Tg in regions II and III (shows by the

orange dashed line).

The exact mechanisms which cause a decoupling between α dynamics and

diffusion are unclear[182, 260]. It has been shown to be related to an increase

in dynamic heterogeneity[247], although both experimental and computer sim-

ulations question this link[236, 261]. Others link the breakdown to how α dy-

namics and diffusion couple differently to varying intermolecular cooperativity, or

the link between diffusion and the β relaxation that emerges below the dynamic

crossover temperature, Tα,β[262, 263], as discussed in section 1.2.3. Recently, Zulli

et. al.[91] measured the rotational diffusion timescales of a probe molecule using

electron spin resonance (ESR), along with viscosity using standard rheology, of

a PMMA chain-length series. These mechanisms were always decoupled below

Tα,β, although they attribute this to some decoupling between the probe and ro-

tational diffusion. Interestingly, above Tα,β this decoupling was reduced. They
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found a change in decoupling behaviour at M & 1200g/mol, which is consistent

with the decoupling of ion diffusion and the α relaxation in this work.

For the PPG-DME and PPG M series, σ was plotted against 1/τα in the same

manner as for PMMA to determine the M dependence of γα. These are shown

in figure 5.9.
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Figure 5.9: Un-normalised Walden plot of σ against 1/τα determined from BDS

for (a) PPG-DME and (b) PPG M series. The gray dashed line represents a

slope of 1. The legend indicates the degree of polymerisation, n.

Figure 5.9 shows that (a) PPG-DME and (b) PPG show no clear decoupling

between σ and τα (which would be visualsied by a slope, γα 6= 1) across the M

range. As discussed in section 5.2, chain modes were also apparent in BDS, and

values of τn could be obtained for higher M samples. For PPG-DME, σ was

plotted against 1/τn is shown in figure 5.10.
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Figure 5.10: Un-normalised Walden plot of σ against 1/τn determined from BDS

for PPG-DME M series. The gray dashed line represents a slope of 1. The legend

indicates the degree of polymerisation, n.

Once again, figure 5.10 shows no clear decoupling between σ and τn (which

would be visualised by a slope, γn 6= 1) across the M range. These γα and γn

values as a function of M for PPG-DME and PPG are shown in figure 5.11.
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Figure 5.11: The decoupling parameter, γ, as a function of M for (a) PPG-DME

and (b) PPG. Circles: γα values corresponding to figure 5.9. Triangles: γn values

corresponding to figure 5.10.

Figure 5.11 shows no clear M variation in either γα or γn for PPG-DME (a), or

PPG (b). This is consistent with PEG, and other low fragility, low Tg, long-chain

polymers[247]. Interestingly, this implies that α and chain dynamics are also
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correlated in this dynamic range, which has been shown previously for PPG[133].

This was also discussed in section 3.5.2, where τα(T ) and τn(T ) were able to be

collapsed onto a single master curve (along with other oligomer/polymer systems,

shown in figure 3.30 (a)).

5.2.2 Effects of ion concentration on DC conductivity

As mentioned in section 5.2, the conductivity measured in these systems was due

to charged species (ionic impurities) already present in the samples. A standard

electrolyte lithium salt was added to a PMMA sample where decoupling was

expected in order to see if the decoupling parameter, γα, was affected. The salt

added was lithium tetrafluoroborate (LiBF4)[264, 265], as shown in figure 5.12.

Figure 5.12: Lithium tetrafluoroborate (LiBF4) salt. This dissociates into a Li

cation, and BF4 anion.

Glycols such as PEG have excellent solubility for lithium salts[245], which

means a relatively large quantity of LiBF4 can be added to PEG, which dissociate,

and increase the ion conductivity. PMMA based systems have also been shown to

dissolve lithium salts[250–252]. Therefore, LiBF4 was added to a PMMA n=140

sample, which would be expected to have a decoupling parameter of γα ∼ 0.4.

This was done by dissolving an appropriate amount of PMMA and LiBF4 salt

in acetone, and drying in a vacuum oven far above Tg. Tg was compared to that

of the unsalted sample using DSC in order to ensure no acetone remained. BDS

was then performed, and σ and τα were obtained in the same manner as outlined

in section 5.1.1. In order to find an appropriate amount of salt to add, three

different salt concentrations were tested, these were: 1000:1, 500:1, and 250:1,

which indicate the ratios of PMMA monomers to Li ions. The BDS results at a

single temperature for these salt concentrations is shown in figure 5.13.
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Figure 5.13: T=393K.

Naively, one would expect that increasing salt concentration would linearly

increase ionic conductivity (assuming that the salt fully dissociates). However

an increase in ion concentration can also reduce overall conductivity due to an

increase in ion-ion interactions, resulting in aggregate formation[266, 267]. Figure

5.13 (a) shows ε′′(ω) for PMMA n=140 at T=393K, whereby conductivity, σ, falls

with increasing salt concentration (1000:1 having half the amount of LiBF4 than

500:1). However, both α and β dynamics remain unchanged. BDS results can

also be expressed as a complex conductivity, σ∗(ω), as shown in equation 5.14.

σ∗(ω) = iωε∗(ω) (5.14)

Figure 5.13 (b) is a so-called Cole-Cole plot[14], with the imaginary conductivity,

−σ′′(ω), plotted against the real conductivity, σ′(ω). In this plot, DC conductivity

can be read off as the the value of σ′ when −σ′′ → 0, as indicated by the dashed

lines.

From these values of τα and σ at different temperatures, the decoupling pa-

rameter, γα, was obtained in the same manner as described in section 5.2.1. These

values are shown by the squares in figure 5.7, which shows a clear decoupling of

γα ∼ 0.4, fully in agreement with γα as obtained from the decoupling between τα

and the unknown charged species (impurities) already present in the other sam-

ples. However, in order to be completely certain, LiBF4 will be added to samples
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either side of the region I to II boundary to confirm this M dependent decoupling

behaviour holds.

In addition to this, future work will include adding a series of perchlorate salts

with different alkali metal cation size to these polymer systems, i.e. lithium per-

chlorate (LiClO4), sodium perchlorate (NaClO4), potassium perchlorate (KClO4),

and rubidium perchlorate (RbClO4). This will explore the effect of the size of

the anion on the decoupling between σ and τα in these different polymer systems.

The size of ions has been shown previously to influence coupling differently for

different glass forming systems[249]. However, a systematic study of this kind on

a chain-length polymeric series has not been performed.

5.2.3 Small molecular glass formers

The difference between the M dependence of γα for the relatively fragile, less

flexible (C∞ = 9.0[60]) PMMA and the less fragile, flexible (C∞ = 5.1[150])

PPG-DME/PPG is clear. As stated before, Agapov and Sokolov observed an

increase decoupling between σ and τα with increasing Tg and m for long-chain

polymers[247]. However, the trends of Tg and m with increasing M in PMMA,

PPG-DME, and PPG do not correlate to γα.

Therefore, in addition to the PMMA, PPG-DME, and PPG M series, α

dynamics and conductivity for small molecular systems with different M , Tg,

and m were looked at. The small molecular liquids were Propylene carbonate

(PC), Phenyl salicylate (Salol), ortho-Terphenyl (OTP), and o-Cresolphthalein

dimethylether (KDE). The molecular structure these samples is shown in figure

5.14.
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Figure 5.14: Molecular structures of small molecular glass formers. From left

to right: Propylene carbonate (PC), Phenyl salicylate (Salol), ortho-Terphenyl

(OTP), and o-Cresolphthalein dimethylether (KDE).

BDS measurements on these systems were performed by Franz-Josef Stickel[268],

who measured both τα(T ) and σ(T ) across a wide dynamic range. τα(T ) data was

fitted with a VFT expression, shown in equation 5.10, and was used to calculate

Tg (T where τα = 100s), and m, using equation 5.12. These values are shown in

table 5.2.

Molecule M (g/mol) Tg (K) m

PC 102 157 113

Salol 214 219 87

OTP 230 230 80

KDE 374 374 72

Table 5.2: Properties of small molecular glass formers shown in figure 5.14.

Small molecular glass formers, such as those shown in figure 5.14 and table

5.2, do not to have the same systematic increase in intramolecular conformational

freedom that oligomers/polymers have with increasing M . Therefore, the Tg and

m dependence of these systems behaves differently to that of oligomers. For small

molecular systems such as these, Tg has been shown to increase with M [157, 269].

However, correlations between M , Tg, and m is complicated, and depends a lot

on the structure of the moleculue, i.e. organic, aromatic, etc[270].

In the same manner as for the PMMA, PPG-DME, and PPG M series, σ was

plotted against 1/τα. From this, the decoupling parameter, γα was determined
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from the slope. These are shown in figure 5.15.
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Figure 5.15: a) Un-normalised Walden plot of σ against 1/τα determined from

BDS small molecular glass formers. The gray dashed line represents a slope of

1. b) The decoupling parameter γα, defined as the slope in (a), as a function of

molecular weight, M .

Figure 5.15 shows that σ and τα are coupled in these small molecular systems,

whereby the slope in (a) is γα ≈ 1 (shown in (b)) for these systems. This shows

that, unlike polymer systems such as PMMA, where decoupling becomes apparent

with increasing Tg and m, for small molecular systems there is no correlation

between between α dynamics and decoupling. Therefore the decoupling in PMMA

is a feature of the onset of polymer behaviour, i.e. above the region I to II

boundary.

5.3 Conclusions

In this chapter, results of α relaxation timescales, τα(T ), and conductivity, σ(T ),

from BDS measurements on chain-length series of PMMA, PPG-DME, and PPG

ranging from dimer to polymer, along with a few examples of small molecular

glass formers, were discussed. This focused on how the decoupling between σ

and τα varies with both M and properties, such as Tg and m. The decoupling

of σ (relating to diffusion), and τα (relating to structural dynamics) is not well
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understood[236], and is of particular importance to the production of solid, amor-

phous, electrolytes which can be used in batteries. This works shows that:

• The decoupling between σ and τα in PMMA as a function of M shows

regional behaviour, as defined by regions with different Tg behaviour. In

region I (small M range), σ and τα were coupled, which is consistent with

other small molecular liquids[248, 249]. In region II (intermediate M range),

σ and τα were decoupled, whereby the degree of decoupling increased until

region III (high M range), where the decoupling become M independent.

This decoupling at high M is consistent with other fragile, high Tg, long-

chain polymers[247]. A similar trend was also observed by Zulli et. al.[91],

whereby the decoupling between the rotation diffusion of a probe molecule

and viscosity showed the same regional behaviour in PMMA.

• PPG-DME (methoxy end-groups) and PPG (hydroxyl end-groups) M series

showed no decoupling between σ and τα across the M range studied. This is

consistent with other less fragile, low Tg, long-chain polymer systems[247].

• A selection of small molecular glass formers with different properties also

exhibit a coupling between σ and τα. However, unlike long-chain polymers,

these do not demonstrate decoupling with varying M , Tg or m.

5.3.1 Future work

In addition to the work outlined, these additional steps will be taken to complete

this story:

• Lithium based salts will be added to PMMA samples with different decou-

pling behaviour, i.e. samples either side of the M region I to II boundary

to ensure this decoupling behaviour persists.

• Another fragile, high Tg polymer systems such as polystyrene (PS) will be

tested in the same manner. Due to the poor dipole strength in PS, this will

require the addition of an appropriate salt.
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• A series of perchlorate salts; LiClO4, NaClO4 KClO4, and RbClO4 will be

added to these polymer systems to explore the effect of the size of the anion

on the decoupling between σ and τα.

• A detailed investigation of lithium ion diffusion mechanism will be per-

formed in these systems using NMR, with the additional possibility of dy-

namic neutron scattering in order to probe the detailed diffusion mecha-

nisms.
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Chapter 6

Conclusions

The main aim of this thesis was to better understand the role chain-length plays

on glassy properties such as Tg, fragility, etc. A large range of experimental

techniques were used through this work, which included; dynamic shear rhe-

ology, broadband dielectric spectroscopy (BDS), differential scanning calorime-

try (DSC), and temperature modulated DSC (TMDSC). These techniques were

performed on a variety of polymeric systems; from the relatively fragile and

stiff poly(methyl methacrylate) (PMMA) and polystyrene (PS), to the relatively

strong and flexible poly(dimethyl siloxane) (PDMS) and poly(propylene glycol)

(PPG).

In chapter 3 the rheological response of a chain-length series of PMMA rang-

ing from small molecular glass formers to fully entangled polymer was studied.

This data spanned from glass to melt, and was analysed using time-temperature

superposition (TTS). The TTS master curves were well modelled using a sum

of a KWW expression describing the α relaxation, and either the Rouse model

or the Likhtman-McLeish model for chain dynamics when applicable. We note

regional molecular weight, M , behaviour in properties relating to α dynamics,

whereby Tg, fragility, and heat capacity responses (measured using DSC) exhibit

distinctly different behaviour in different M regions, which appear to correspond

to the onset of chain dynamics at a molecular weight, MR, corresponding to the

chain folding and the formation of an effective ”dynamic bead”, and the critical

entanglement molecular weight, Mc. For PMMA samples where M > MR chain
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dynamics become apparent, which have been shown to decouple from the α re-

laxation close to Tg. Therefore, the application of TTS was investigated. This

was done by comparing the α relaxation timescales, τα, obtained from rheology to

those from BDS, which yields τα without the need to rely on TTS. We observed

that TTS is approximately valid in describing the α relaxation, whereby τα values

obtained from TTS and BDS can be superimposed over a wide dynamic range.

We compared these τα data to other polymer systems, and we note a ”univer-

sal” scaling of chain dynamics, and τα at longer times when normalised by Tg/T .

From this, we suggest a link between this behaviour and the size of the correlated

region of the α relaxation.

In chapter 4, the number of correlated units in the α relaxation was deter-

mined for PMMA, PS, and PDMS chain-length series as a function of τα. This

was obtained by measuring thermal fluctuations using TMDSC, and from an ap-

proximation of the four-point dynamic susceptibility, χ4, determined using BDS.

PMMA and PS exhibit clear regional M behaviour in the number of monomers

involved in the α relaxation, whereby for M < MR, there is a large decrease with

increasing M . At MR, the number of monomers involved in the α relaxation

is approximately that of the dynamic bead size. We surmise that rigid/fragile

polymer systems such as PMMA and PS exhibit a changeover between a mostly

intermolecular to a more intramolecular cooperativity as chain behaviour becomes

apparent. This is further supported by measurements of the activation enthalpies

of the α and β relaxations measured using BDS, whereby both increase with in-

creasing M . However, at MR, the activation enthalpies of the α and β relaxations

are approximately equal, which suggests similarities between these two processes.

The activation enthalpy of the β relaxation also becomes relatively M invariant

above MR, suggesting that this is a lenghscale which characterises the β relaxation

in PMMA.

In chapter 5, the ionic conductivity was measured for the chain-length series

of PMMA, and for two PPG chain-series. We show that the α relaxation and

ionic diffusion begin to decouple in PMMA at MR, whereas the two PPG systems

shows coupling across the entire M range. It has been suggested that this decou-

pling relates to Tg and fragility, which may be the case for long-chain polymers.

However, we show that this does not hold for non-polymeric liquids, where the
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α relaxation and ionic conductivity are coupled despite having different Tg and

fragilities.

This work outlines the important role chain-length has on the dynamics and

properties of glass forming polymers. In particular the clear differences between

relatively fragile, rigid polymer systems such as PMMA and PS, and relatively

strong, flexible polymer systems such as PDMS and PPG.

The importance of MR as a crossover between small molecular and polymeric

glassy behaviour in PMMA is clear. It is the molecular weight where: i) ”uni-

versal” scaling of τα can be applied; ii) there is a crossover between a mostly

intermolecular to to a more intramolecular cooperativity; and iii) the α relax-

ation and ionic diffusion begin to decouple.
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