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Abstract
Multilevel Design for Complex Engineered Systems

by Christopher J. Hambley

This thesis presents a multilevel design approach that uses formalized requirements

to facilitate design synthesis techniques, such as optimization, at increasing levels

of fidelity. The benefits are that verification is built into the design, guaranteeing

requirements satisfaction. It also focuses the design effort higher up, spending

more time considering what the system needs to do, and the attributes it should

have. Specific examples of design synthesis techniques are developed in the main

chapters, showing how they fit into the wider multilevel framework.

Architecture optimization has been implemented at both high and low levels.

High-level architectures are composed as a combination of physical means for

achieving a set of functions. A multiobjective genetic algorithm is used to produce

a set of Pareto-optimal solutions. Refinement to a single solution is then imple-

mented using a customer-oriented approach. This produces solutions that the

customer wants whilst reducing the need for iterative discussions with engineers.

Low-level topology is represented as a graph with nodes (system components) and

edges (interconnections between components). The topology requirements are

formulated as constraints on the graph and synthesis is achieved via constrained

optimization. The approach is applied to a turbofan oil system case study with

two objectives: increasing controllability, via the addition of controllable valves,

and minimising cost. The methodology provides benefits to system designers by

selecting cheaper architectures with fewer valves when the need to control oil

chambers separately is small.

A simulation-based approach for performing control synthesis with signal temporal

logic (STL) requirements is presented. The goal is to find control parameters

that maximise the margin of satisfaction of the STL formulae. The quantitative

semantics of STL are extended to a multiobjective formulation called multiSTL.

In multiSTL each requirement margin is displayed on a parallel coordinates plot,

which allows tradeoffs between different requirements to be analysed. This can

also be used to highlight where relaxing of some requirements might yield better

performance in other areas.
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Chapter 1

Introduction

This PhD project has been undertaken in the Rolls-Royce Control and Monitoring

Systems University Technology Centre. It addresses some of the challenges faced

by the company in designing complex engineered systems such as gas turbine

engines.

1.1 Defining Complex Engineered Systems

There is some debate surrounding the definition of complex systems. A survey

of complexity measures presented in [1] covers computational complexity, num-

ber of states and connectivity amongst many others. These would be considered

measures of complicatedness by the definitions of [2] and [3]. They define com-

plicated systems as having a large number of components working together with

well-defined behaviour to accomplish a specific goal, whereas complex systems

exhibit some sort of emergence or adaptability. For example, an aircraft is com-

plicated, while a flock of geese is complex. However, in the context of engineered

systems, [3] notes that the process of designing a complicated system is actually

complex because of the many interacting design teams and stakeholders. For the

purpose of this PhD project no distinction is made between the words, referring

to the systems developed by Rolls-Royce and other big industrial companies as

complex engineered systems.

1
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1.2 Challenges for Complex Systems Engineer-

ing

There are three main aspects to designing complex systems: 1) defining the system

specification; 2) designing a system which meets the specification; 3) verification

and validation of the design. As time progresses, we are demanding more from

our engineered systems in terms of functionality, performance and safety. To meet

these increasingly complex requirements, the design solutions are also becoming

more complex. For example, the number of lines of source code in fighter jets has

increased from around 300,000 in 1980 to nearly 4.5 million lines in the modern

joint strike fighter programme [4]. This increase in design complexity consequently

makes the task of verification more difficult. Managing this complexity introduces

a variety of challenges which must be addressed by systems engineering techniques.

Challenges in defining the system requirements

Firstly there is the challenge of getting good requirements from the customer. This

requires defining the core functionality and then prioritising the non-essential but

desirable attributes. It is vital that this step is done right because any defects

in the requirements will result in defects in the design of the system. Ideally

requirements should be defined in a formal language to make verification easier,

but the stakeholders providing the requirements generally find it easier to specify

linguistically.

Challenges in the system design process

One of the big challenges in high-level system design is making decisions about

the architecture of the system. There is often a reliance on the opinions of subject

matter experts, but this is not objective enough and there is a need to use design

optimisation, modelling and simulation as much as possible. Unfortunately mod-

elling and simulation can be very difficult because of the multi-level, distributed

nature of complex systems design. How can subsystems developed by multiple

design teams, defined at different levels of fidelity, using different design tools

be compared? There is a need for a mathematical framework to understand the

complex interactions between different models of the system.

Challenges for verification

Verification refers to the process of checking that a system has been designed

correctly, meeting all the system requirements. As systems become more complex,

manual verification of the design becomes a challenging task. Therefore there is a

need for automation in the verification process. This requires virtual integration

of models to verify not only that the subsystems themselves have been designed
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correctly, but also that the system still functions as required when the individual

components are put together. The ideal scenario would be to design systems with a

correct-by-construction framework, whereby the verification is built into the design

process itself and the final design is guaranteed to meet the requirements.

Challenges for adapting, upgrading and evolving systems

This is an area which is relevant to Rolls-Royce since they design high-value prod-

ucts with long operating lifespans. Adaptability is needed because gas turbine

engines are sold to a variety of airlines and fitted on multiple aircraft, all with

different requirements. Long product lifespans mean it would be beneficial to

have a design that could easily be upgraded to make use of new technology such

as better sensing equipment. At the same time any changes to the design have

to satisfy stringent certification requirements. It is therefore desirable to have a

formal mathematical framework that can handle these changes in design quickly

and efficiently without a lengthy redesign and verification process. There are a

huge number of engineering companies across a wide range of industries that face

similar problems and seek a similar solution.

Addressing these challenges in a formal scientific framework is very important to

the academic and industrial systems engineering community. It was identified as

the top grand challenge priority in a brainstorming session amongst attendees of

the 2015 Systems-NET Annual Research Grand Challenges for Systems Engineer-

ing Workshop [5]. This confirms the importance of the research presented in this

thesis.

1.3 Multi-Level System Design for Complex En-

gineered Systems

This thesis proposes a multilevel design framework to address some of the complex

systems engineering challenges discussed in Section 1.2. The framework, outlined

in Figure 1.1, utilises formal requirements with design synthesis techniques such

as optimization. This allows engineering effort to be focused at the upper levels,

where the system requirements and performance measures are defined. Spending

more time at this stage of the design helps to address the first big challenge

(defining requirements).

The use of design synthesis methods solves two big challeges. Firstly, it ensures

good system design, with less engineering effort through use of techniques such as
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Model

Libraries

Formal Requirements

Static/non-

functional models

Simple

dynamic models
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ulation models

Architecture

optimization
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Component-level design

and parameter optimization

System Architecture, Controller and

Low-Level Component Parameters

Constraints/

Objectives

Architecture

Controller

Performance

Reqs.

Control

Reqs.

Figure 1.1: A multilevel system design framework with design automation
using formal requirements. Cylindrical buckets represent libraries of compo-
nents/models at different levels of fidelity, compiled from bottom-up abstrac-
tion. Grey rectangles represent inputs and outputs of the top-down design flow.
White rectangles represent design activities at the different levels. Black arrows
indicate information flows. Dashed arrows indicate a change in the requirements
for upper levels when no feasible solution can be found at a lower level.

optimization. Secondly, the use of formal requirements as inputs into the synthesis

allows a correct-by-construction approach whereby the design is guaranteed to

satisfy the requirements, or even maximise the margin of satisfaction. This removes

the need for a separate verification exercise.

The synthesis techniques rely on a library of models at appropriate levels of fidelity.

Therefore, there is a bottom-up phase of populating these libraries. However, this

only needs to be carried out once, allowing companies to re-use models when

designing similar systems. With a sufficient model library, system design is then a

top-down approach progressing rapidly from requirements to detailed design. This

helps to address the challenge in adapting or upgrading systems, since it is easy

to synthesise an alternative solution for a different set of requirements.

Referring to the connections between levels in Figure 1.1, the aim is for designs

to be specified formally, so that they can be passed down as constraints for the



Chapter 1. Introduction 5

synthesis at the next level of fidelity. This allows an automated flow from require-

ments to low-level design.

Sometimes decisions at a higher level make it difficult or impossible to meet re-

quirements at a lower level. Therefore feedback loops are included in the frame-

work. For example, a decision on a particular architecture may make it impossible

to meet the performance requirements at the control synthesis stage. This intro-

duces a new constraint on the architecture design, which in turn triggers a repeat

of the architecture and control synthesis stages.

1.4 Main Contributions

To the best of this author’s knowledge, the original contributions of this thesis

are:

1. The customer-oriented architecture refinement framework. This provides a

rapid approach for reducing a large set of potential architectures to a small

set of interest to the customer. It only requires a set of customer preference

weightings, which can be provided at the outset, eliminating the need for

lengthy iterative discussions with the customer. The framework also includes

an approach to analyse resilience of architectures to changing customer pref-

erences. This helps engineers to select solutions that are likely to remain

good options, even if the customers change their preference weightings as a

result of external factors, such as budget cuts. The result is a lower chance

of having to rework or modify designs. The SATS tool has been developed

to implement the approach in a graphical user interface, which is currently

being used by the industrial sponsor of the PhD in real-world architecture

design problems.

2. A graph-based topology optimization approach for system architectures. The

approach is demonstrated on a turbofan oil system case study, which involves

a novel heuristic algorithm for determining similarities between oil chamber

flow requirements. The approach allows sensible coupling of oil chambers

to shared valves, to reduce the cost of the architecture. The graph-based

approach to modelling system architectures and optimizing connections be-

tween nodes also has wider applicability to any system with a set of inter-

connected components.
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3. The multiSTL control synthesis framework. This allows the margins of sat-

isfaction for performance requirements specified as Signal Temporal Logic

(STL) formulae to be compared on a parallel coordinates plot, highlighting

tradeoffs between requirements. The approach gives designers far more in-

formation about how the system is performing than if the overall margin

of satisfaction is taken as the minimum of the individual requirement mar-

gins. This helps with choosing a set of control parameters that achieve an

optimal system response, with respect to the priorities of the multiple, often

conflicting performance requirements. To demonstrate the approach on a

real-world problem, a nonlinear dynamic oil system model is developed and

used to perform a multiSTL analysis.

1.5 Thesis Layout

The fully integrated multilevel design flow outlined in Section 1.3 is beyond the

scope of a single PhD project. To apply this approach to a real-world complex

system would require teams of engineers working for long timescales. This pro-

vides a challenge for demonstrating the novelty, relevance and importance of the

framework. The thesis handles this by presenting specific instances of design at

different levels of fidelity, showing how the research fits into the wider multilevel

framework.

Chapter 2 discusses the relevant literature focusing on previous research into mul-

tilevel design frameworks, architecture optimization, formal requirements and con-

trol synthesis techniques.

Chapters 3 and 4 focus on the architecture synthesis level. This is further split into

high-level architecture framework and low-level architecture topology, as shown in

Figure 1.2.

Chapter 3 presents a two-sided approach to high-level architecture design. The

first side involves synthesising a large number of Pareto-optimal architectures.

This means that for each candidate architecture, there is no architecture which

performs better against every decision criterion. Therefore, all the architectures

are optimal in some respect, depending on the priorities of the decision criteria.

The second side focuses on refining the large set of Pareto-optimal architectures

to a chosen solution or subset of solutions.

The main contributions of this chapter focus on a method to rapidly refine the ar-

chitecture set, based on a set of customer preference weightings. These weightings
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Figure 1.2: System architecture design at multiple levels. Cylindrical buck-
ets represent libraries of functional means/components/models used in the de-
sign. Grey rectangles represent inputs and outputs of the top-down design flow.
White rectangles represent design activities at the different platforms. Black
arrows indicate information flows.

are transformed via a relational matrix into decision criteria (engineering charac-

teristic) weightings, which are then translated into upper bounds on the decision

criteria. Any solutions that do not fall under all of the upper bounds are removed

from the solution set. The solutions produced via the customer-oriented refine-

ment method are analysed for their resilience to changing customer preferences.

This allows designers to select solutions that are likely to remain good options over

long development periods, even in the presence of external factors such as budget

cuts or management change. The approach is demonstrated on a nuclear reactor

and a turbofan oil system case study.

Chapter 4 focuses on lower level architecture topology optimization. While the

high-level architecture defines the key technologies that will be used, the low-level

architecture topology defines the specific components and the structure of their

interconnections. The approach in this chapter models the topology as a graph

with nodes representing components and edges representing physical connections

between them. Topology requirements are defined as constraints on the nodes and

edges. Objectives are then minimised using constrained optimization.

The approach is applied to a turbofan oil system design, following on from the

high-level architecture case study. The novelty of the case study is in the use of

variable restrictor valves to control flows to one or more oil chambers. The two
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conflicting objectives are minimising cost (by using less valves) and maximising

controllability of flows to the oil chambers. Here controllability refers to the ability

to maintain good system performance. When two oil chambers share similar flow

requirements, good controllability can be achieved without independent valves.

Using a matrix of flow requirement similarities, populated by a new heuristic

algorithm, the optimization algorithm can couple similar oil chambers to a shared

valve. This maintains good controllability whilst minimising cost.

Chapter 5 focuses on the control synthesis design level. The approach uses simula-

tion -based optimization to maximise the margin of satisfaction for a set of system

requirements specified in the formal signal temporal logic (STL) language. The

key contribution is the development of the multiSTL framework. Rather than cal-

culating the overall system margin as the minimum of the individual requirement

margins, multiSTL displays each margin on a multidimensional parallel coordi-

nates plot. For a set of simulation results, this allows tradeoffs between different

requirements to be analysed.

The control synthesis stage uses multiSTL to analyse simulation performance for

a set of different control parameters, iteratively tuning the parameters to reach a

Pareto-optimal set of gains. This is then refined to a single set of control param-

eters by progressively prioritising the requirements, as done in the architecture

refinement of Chapter 3. The approach is demonstrated on the turbofan oil sys-

tem case study used in the upper design levels. A nonlinear simulation model is

developed, and a set of natural language requirements are converted into STL.

These are used to perform the simulation-based control synthesis with multiSTL.

The resulting controller is able to satisfy all system requirements and achieve good

thermal and lubrication efficiency.

Chapter 6 summarises the research presented in the thesis, highlighting the original

contributions and suggested areas for further research.

1.6 Publications, Presentations and Technical Re-

ports

Some of the research presented in this thesis is related to the following publications,

presentations and technical reports.

• C. J. Hambley, ‘Contract-based design for complex engineered systems’,

poster presentation at ACSE Postgraduate Research Symposium, 2015.
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• C. J. Hambley, ‘SATS V1.0 User Guide’, Tech. Report, 2017.

• C. J. Hambley, ‘Customer-oriented architecture refinement in multi-criteria

synthesis of large-scale system architectures’, oral presentation at IEEE In-

ternational Symposium on Systems Engineering, 2017.

• C. J. Hambley, W. Bradley, R. Shirtcliffe, A. R. Mills, T. J. Dodd, V.

Kadirkamanathan, ‘Customer-oriented architecture refinement in multi-criteria

synthesis of large-scale system architectures’, in proceedings of IEEE Inter-

national Symposium on Systems Engineering, 2017.

• C. J. Hambley, B. Ll. Jones, I. Griffin, A. R. Mills and V. Kadirkamanathan,

‘Optimized synthesis of cost-effective, controllable oil system architectures

for turbofan engines’, Systems Engineering, Special Issue on Model-Based

Systems Engineering, 2018.

• C. J. Hambley, B. Ll. Jones and V. Kadirkamanathan, ‘Simulation-based

control synthesis with multiple, conflicting performance requirements’, in

preparation.





Chapter 2

Literature Review

This chapter reviews some of the relevant research in complex systems engineering,

looking at typical approaches in industry, multilevel design approaches, system

architecting, formal requirements and control synthesis.

2.1 Systems Engineering in Industry

The systems engineering processes commonly used in industry are described in [6,

7]. These approaches are divided into vertical processes and horizontal processes.

Vertical processes involve splitting the design up via abstraction and refinement

stages. Horizontal processes relate to the decomposition of the system at the

same abstraction level. The aim in this case is to develop components which are

fairly independent of each other with well-defined interfaces. The system is then

designed by composing a set of components connected via their interfaces [6, 7].

Model-based design is an approach that has been widely adopted by industry.

Languages such as SysML [8] replace the document-centric approach of the past

and provide useful features like auto code generation, which helps to reduce design

errors.

As the use of model-based design becomes more widespread, virtual integration

becomes possible. This refers to the process of integrating the models of the sys-

tem and performing verification of the design requirements without the need to

actually build the physical system. This is commonly done in industry through a

tool-based approach. For example, [6, 7] outline a variety of software for virtual

integration such as Ptolemy II, Metropolis, Modelica and SimScape. The problem

11
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with these approaches is that they focus on providing a translation between the

semantics of the different modeling languages, rather than an underlying mathe-

matical framework.

2.2 Multilevel Design Approaches

There are a variety of vertical processes used for designing complex systems in

industry. These consist of multiple levels of design at increasing levels of abstrac-

tion. For example, the layered approach of the Autosar standard consists of

abstraction levels from the microcontroller layer (bottom) to communication/op-

erating system layer (middle) to the application layer (top) [9]. Another commonly

used vertical process is the systems engineering V-modell R© XT [10], a well-defined

standard that all German military engineering companies must follow. The wider

systems engineering community uses various V-shaped models generally consist-

ing of project definition/design activities on the left side and testing/integration

activities on the right side.

In the academic community, a variety of more formal multilevel approaches are

proposed for systems engineering, as discussed in the following subsections.

2.2.1 Model Order Reduction

One of the challenges with a multilevel design framework is ensuring that simplified

models used for upper level design activities accurately reflect the dynamics of the

lower level behaviour. This can be guaranteed mathematically, under bounded ap-

proximation error, using model order reduction techniques. Model order reduction

is defined mathematically in [11] as:

Given the original system,

Σ :

{
d
dt
x = f(x, u)

y = g(x, u)
, where u ∈ Rm, y ∈ Rp and x ∈ Rn (2.1)

find,

Σ̂ :

{
d
dt
x̂ = f̂(x̂, u)

y = ĝ(x̂, u)
, where u ∈ Rm, y ∈ Rp, x̂ ∈ Rk and k < n

(2.2)
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where Σ is the original system, x is the full state vector, u is the input vector,

y is the output/measurement vector, f and g are functions of the full states and

inputs, Σ̂ is the reduced order system, x̂ is the reduced order state vector and f̂

and ĝ are functions of the reduced order states and inputs.

The model order reduction problem is pervasive across a variety of engineering

fields; see [12] for a collection of examples. Extensive discussion of model or-

der reduction techniques is given in [11] for linear systems and [13] for nonlinear

systems.

2.2.2 Model Bounding

Another multi-level approach to system design is presented in [14]. Here the

design progresses sequentially as the set of potential solutions is narrowed down to

a choice set, with increasing levels of fidelity in the models used to make decisions.

Low fidelity models are coupled to higher fidelity models through use of bounding

functions which specify the upper and lower bounds on variables. This allows

information from the detailed models to be considered at the conceptual design

stage, without the need for complex analysis or simulation of the high-fidelity

details [14].

2.2.3 Platform-Based Design

Platform-based design (PBD) [15, 16] is a method for combining vertical abstrac-

t/refine processes and horizontal composition/decomposition approaches. The ba-

sic idea is to define a set of platforms corresponding to different abstraction layers

in the design. Each platform has a library of components and a set of rules for how

they can be composed. A collection of platform components with specific config-

uration parameter values is called a platform instance, which defines the system

design at that platform level. The PBD approach is represented in Figure 2.1. A

mapping function defines the relationship between platform instances (designs) at

different platforms.

The example given in [15] is based on embedded systems with a high-level func-

tion/application platform, an architecture platform and a silicon implementation

platform. An example of PBD applied to an aircraft electric power system is pre-

sented in [17]. Other applications of PBD are given in [4], with a JPEG encoder

and distributed automotive design case studies.
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Figure 2.1: An illustration of PBD. Platforms are the levels of abstraction. Li-
braries contain the set of components with rules for connecting them. Platform
instances are the system designed by composition of platform components.

One of the main challenges in PBD is determining how to move downwards through

the framework. In [18] this is handled using an optimisation-based approach. At

each platform the functional specification (what the system needs to do) is sepa-

rated from the architecture (how to do it). The functional specification and the

rules of the platform define the constraints, whilst the architecture (platform in-

stance) is the output of the optimisation algorithm. The selected architecture then

becomes the functional specification for the next platform down and a similar op-

timisation process is followed. The main problem with the optimisation approach

is that the design space can easily become too large to efficiently explore. This

is particularly true when there are both decisions on components (e.g. how many

resistors) and decisions on configuration parameters (e.g. resistance) [18].

Another big challenge for PBD is establishing platform rules for connecting compo-

nents described by heterogeneous models. In [4] this is handled using a tool-based

approach called Metropolis, which acts as a translation between different modeling

languages. Another practical approach is taken in [17] where tools such as SysML

requirements diagrams, state-machine diagrams and Simulink models are used at
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different platforms. The downside to these ad hoc approaches is that they lack an

underlying mathematical theory such as assume-guarantee contracts.

2.2.4 Contract-based design

Contract-based design (CBD) is a formal mathematical approach to PBD. Each

component within CBD is defined by an implementation and a contract [19]. A

component implementation M consists of a set of variables, configuration param-

eters and models. A component contract C(A,G) consists of assumptions and

guarantees [6, 7, 20]. Assumptions (A) define the assumed behaviour of the envi-

ronment or inputs from other components (uncontrollable variables). Guarantees

(G) define promises on the behaviour of the component outputs (controllable vari-

ables) subject to the assumptions on the uncontrollable variables. A component

implementation M satisfies its associated contract C whenever it satisfies its guar-

antee, subject to its assumption.

Splitting the component contract in this way makes it very clear what the compo-

nent is responsible for (guarantees) and what the other components are responsible

for (assumptions). This can be particularly useful when working with multiple sub-

system suppliers who may not have good communication amongst each other [6].

In CBD the compatibility and virtual integration testing is based on the contracts

of components, rather than their models [7]. Since there are well defined rules for

compatibility, consistency, composition, refinement and conjunction of contracts

this is much more simple (see Appendix A). This means that the verification

process can be automated, particularly when contracts are expressed in a formal

language (see Section 2.4).

CBD has been applied to case studies for water level control [21], aircraft elec-

tric power systems [19, 22] and ultra-wide band receivers for intelligent tire sys-

tems [23].

2.3 System Architecture Design

A system architecture is a definition of the system structure including the major

components and the way in which they are connected in order to meet the system

requirements [24]. In [25] system architecting is defined as “the embodiment of

concept, the allocation of function to elements of form, and definition of relation-

ships among the elements and with the surrounding context”. The importance
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of system architectures is argued in [26] as a tool for understanding the design,

operation, and complex behaviours of engineered systems.

This high-level decision making process is a key part of the systems engineering

discipline [27]. The way these decisions are made can vary greatly between different

applications. Six main patterns of architectural decision making are shown in

[28] including: combining, downselecting, assigning, partitioning, permuting and

connecting. Regardless of the pattern followed for a particular application, it is

important for the architectural decisions to be made using a well-defined process.

The impact of effective architecture design is highlighted in a recent survey of 46

industrial defense contractors, which shows a strong positive correlation between

increasing system architecting activities and improved product development cost,

schedule and scope goals [29]. Despite these clear benefits, [30] shows a marked

need for an improvement in the uptake of system architecting activities within

industry. The research found that even a world-leading industrial automation

company with more than 50% of the global market share still has no formal archi-

tecting process. A U.S. Government Accountability Office review also found that

10 defence programs out of the 32 investigated pursued a pre-selected solution

without performing any analysis of alternative architectures [31]. This motivates

the need for more research into system architecting activities, as wider uptake by

companies will rely on the continued development of effective tools and frame-

works.

There are various types of architecting processes with different levels of formality.

Improved project performance can be gained even through less formal approaches

whereby the majority of systems architecture decisions are carried out using the

knowledge and expertise of engineers, but in a well-defined task-flow [32]. More

formal approaches attempt to automate some of these tasks and use optimization

to produce optimal architectures that maximize satisfaction of some objective

function and ensure system requirements or constraints are met [19, 33–39]. Use

of optimization also ensures a fuller exploration of the search space and limits the

effects of cognitive biases.

Guidelines for system architecting are given by INCOSE [27] covering a range of

activities from obtaining customer requirements to verification of the design. An-

other framework for systems architecting called the Method-Framework for Engi-

neering System Architectures (MFESA) is presented in [24]. This covers the entire

systems architecture process for an industrial company, which includes activities

like assigning engineering effort. The areas of interest for the research in chapters

3 and 4 focus on MFESA tasks T5 to T8 which look at generating a list of suitable
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architecture candidates and selecting the best choice. A variety of approaches for

carrying out these tasks are presented in Sections 2.3.1 to 2.3.6.

2.3.1 Informal Approaches

It has been established in [30] that some substantial multinational companies still

do not have a formal process for designing complex system architectures. The

reasons for this can be due to lack of understanding or knowledge of more for-

mal processes such as optimization techniques. However, improvements can still

be made from use of more simple techniques. The INCOSE systems engineer-

ing handbook [27] does not provide specifics about how the systems architecting

tasks must be accomplished. Therefore tasks such as “evaluate alternative design

solutions” could be implemented in a straightforward fashion, simply by using

subject-matter experts (SMEs) to rank candidate architectures against various

criteria in a Pugh matrix [40]. The same is true of many of the activities within

the MFESA framework [24].

Another SME-driven architecting procedure is the 9-step method presented by

[32]. This lists activities from stakeholder requirement elicitation to validation

of a chosen architecture. In this approach architectural candidates are listed via

brainstorming sessions and a final architecture chosen through use of SMEs. The

method is demonstrated on an automotive telematics system case study.

A big disadvantage to SME-focused approaches is that they can sometimes lead

to design fixation [41] with decisions echoing the engineers’ previous experiences

and neglecting novel ideas. This means that the resulting architectures are often

evolutionary rather than revolutionary, potentially missing out on the benefits of

new technological advancements. However, by following an SME-driven architect-

ing procedure rather than none at all, companies are still likely to see noticeable

improvements in project performance [29]. It is also worth noting that SMEs can

be effective in removing unsuitable architectures from consideration early in the

design, where unnecessary lower-level analysis would be costly or time-consuming

[42].

2.3.2 Architecture Design Using Decomposition Matrices

Following elicitation of customer requirements, architecture design is typically car-

ried out as a process of decomposition, splitting high-level functions into sub-

functions, and physical elements into sub-systems or components [26]. Examples
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of this type of decomposition are the morphological matrix [43] or matrix of tech-

nology alternatives [44]. Here the system is broken into subsystems and then

components, listed alongside potential technologies for implementing them. Tak-

ing the aircraft example from [44], the subsystem “brakes” could be accomplished

by 3 technologies: a) hydraulic, b) electro-hydraulic or c) electro-mechanical.

A similar approach is function means analysis [45], whereby the system is decom-

posed into a set of functions that must be performed, alongside a list of physical

means of implementing these functions. For example, “interface with human user”

could be accomplished by: a) lamps and switches; b) keyboard, mouse and moni-

tor; or c) touchscreen.

For all of these approaches, an architecture is defined by selecting an option for

each subsystem, component or function. In [46] the selection of options is imple-

mented manually via an interactive reconfigurable matrix of alternatives (IRMA)

with an ontology used to define incompatible choices. The downside to manual

selection is that it limits the number of architectures that can be practically consid-

ered. An approach that uses optimization to synthesize architectures by exploring

a much larger set of alternatives is therefore advocated in Chapter 3.

2.3.3 Architecture Topology Design as a Component Se-

lection Problem

Another approach to system architecting is to have a library of components with

their models and perform architecture design as a composition of these library

elements. This naturally involves two stages as highlighted in [47, 48]:

1) Modelling phase: where the library of component models is populated either

from first-principles, system identification or legacy models. It is noted that when

designing complex systems there is a need to address the systems architecture

problem at higher levels of abstraction, where simpler models facilitate more rapid

analysis of alternatives. Therefore the modeling phase may also contain a bottom-

up approach whereby high-level abstract models are derived from their high fidelity

descriptions [47].

2) Component selection phase: where the architecture is constructed as a compo-

sition of components. A set of rules define the minimum and maximum number of

different components of each type and the permitted interconnections. The com-

ponents are then composed according to these rules until a set of formal system

requirements are met.
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In [47, 48] three different algorithms are used to implement the component selection

phase: two “Greedy” algorithms and one simulated annealing approach. The

effectiveness of the algorithms is demonstrated on a Network on a Chip (NoC) case

study. The problem with the three component selection approaches here is that

they only iterate until the system specification/architecture constraints are met.

Therefore the algorithm may miss better architectures that satisfy the performance

specification more robustly, or for cheaper cost. The reason the authors state for

not following a more exhaustive optimization approach is due to the size of the

search space [47, 48]. If the system design problem could be posed as a convex

optimization, this large search space would not be prohibitive. However, it is

known that system design is an NP-complete problem, as proved in [49]. This

means that optimal systems cannot be designed with deterministic, polynomial-

time procedures. Fortunately system design does not need to be carried out in

real-time and architecture optimization (see Section 2.3.4) can be performed in a

reasonable time-frame for smaller systems. For example, the approach presented in

this thesis produces oil system architectures in less than 10 seconds on a standard

desktop PC.

The architecture design problem is solved in [50] using a genetic algorithm (GA)

approach. It starts with the functions that must be performed by the system and a

library of components. Each function is assigned to a component from the library.

If the function cannot be met by a single component alone, then increasingly large

chains of components are investigated until the function is met. Using this method

a population of potential candidates for the architecture is generated. The GA is

then an iterative algorithm which generates a population of new architecture can-

didates based on the best individuals from the previous population. The method

is applied to an aircraft cockpit design case study. The downside to this method

is that GAs are not able to guarantee finding a globally optimal solution. Sev-

eral methods for improving this are suggested including reducing the design space,

considering the architecture performance in the synthesis of candidates and using

constraint programming [50].

Design of system architectures as a composition of elements from a component

library is also presented in [19, 33]. In these approaches optimization is used

to ensure that the resulting architecture is optimal according to some objective

function, rather than just satisfying the system requirements (constraints). This

is discussed in more detail in Section 2.3.4.
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2.3.4 Architecture Design as a

Constrained Optimization Problem

As discussed in Section 2.3.3, it is possible to have multiple different system archi-

tecture candidates that satisfy the system requirements. Constrained optimization

is a method for determining the best architecture from a set of candidates by find-

ing the solution which maximises some desired objective such as minimising cost.

The advantage of this is that it enforces a fuller exploration of the search space.

In addition, the objective nature of optimization limits the cognitive biases inher-

ent to SME-driven techniques (Section 2.3.1). The generic systems architecture

optimization (SAO) problem is presented in [35] as comprising of three elements:

1. f - the objective function

2. R - a set of constraints

3. A - a set of architectures built in a framework N

The SAO solution finds a subset of A which minimises/maximises f whilst satis-

fying R. This is a generic problem and the paper does not refer to any specific

optimization schemes since often these need to be tailored to suit the application.

An application of the SAO problem is presented for optimal design of an aircraft

electric power system in [19, 33]. In this framework an architecture is defined as

a directed graph with components represented as nodes {N1, · · · , Nn} ∈ N and

interconnections between nodes Ni, Nj represented by edges ei,j ∈ E where:

E :=

 e1,1 · · · e1,n

...
. . .

...

en,1 · · · en,n

 ∈ Bn×n, (2.3)

and B := {1, 0} is the Boolean set, with ei,j = 1 indicating a connection between

components i and j and ei,j = 0 indicating no connection. Each node has different

attributes which correspond to the design objectives. Therefore inclusion/exclu-

sion of a node from an architecture will have an effect on the overall objective

function score. The set of nodes can be partitioned into subsets of components of

similar types. For example N is partitioned as {Tank, FP,HE,Valve, OC, SP} in

Figure 2.2.

An architecture template is a set of nodes which are fixed. There may also be some

connections between nodes which are fixed in the template as in Figure 2.2. Note



Chapter 2. Literature Review 21

Figure 2.2: An architecture template for an actively controlled oil system.
Connections between the tank, feed pump (FP), oil chambers (OC) and scavenge
pumps (SP) are fixed. The heat exchanger (HE) and valve connections are yet
to be determined. In the final architecture, any HE or valve nodes which are
not connected to other nodes are not included in the design.

that the architecture template represents the maximal node configuration. There

is no requirement for every node in the template to be used in the final architec-

ture. The architecture optimization problem is then to determine the optimum set

of connections between components to minimise the objective function f whilst

satisfying the system requirements/constraints R. Any nodes which are not con-

nected to other nodes in the final architecture are discarded. Note that this is

approach is an example of a connecting architectural decision making process as

described in [28].

In [19, 33] the methodology is applied to an aircraft electric power system (EPS)

case study. Here the objective function is focused on minimising the cost of the

architecture (number of nodes included) and complexity (number of connections

amongst components). The interconnection constraints enforcing rules for how

components should/should not be connected are expressed as inequalities on the

edges ei,j. In addition there are reliability constraints which are expressed as

inequalities on combinations of the component reliabilities and the edges ei,j. As

the decision variable in this optimization problem is the Boolean matrix E (2.3),

this is known as an integer program (IP). IPs can be solved using software such

as the matlab toolbox yalmip [51].
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In [19, 33, 47] the architecture design is carried out at a high-level of abstraction

using low-fidelity steady-state models for the components. Some research takes

a different approach whereby the low-level, high-fidelity components models are

simulated directly within the optimization algorithm [36, 39].

This has the advantage of being able to assess the low-level performance of candi-

date architectures visited by the optimization scheme. The performance of these

high-fidelity simulations is the closest approximation of the real system perfor-

mance and hence these methods should yield the best architectures. Unfortunately

there are various downsides to these approaches. Firstly it can be impractical to

simulate high-fidelity representations of more complex systems in a reasonable

time-frame. In addition, when the system architecture is chosen at the start of

a complex product development, these high-fidelity component representations

may not have been developed. One of the key limitations for the actively con-

trolled oil system is that the low-level performance cannot be evaluated without

the controller, but the controller cannot be designed without the architecture of

the system. This problem is common in any control system and hence multilevel

approaches have been developed (see Section 2.2).

A recent attempt to address some of these problems through use of a two-level op-

timization scheme is presented in [34]. At the upper level the algorithm produces

an architecture candidate using low-fidelity steady-state models. The architec-

tural candidate is then passed to the lower level where sizing of the individual

components is optimized using high-fidelity models. When no feasible component

sizing can be found for a candidate architecture, a new set of constraints is added

to the high-level optimization problem. For example, consider a high-level archi-

tecture that leads to a flow through a given component A which exceeds its upper

bound in the low-level simulation. In this case, a new constraint can be added

to neglect all architectures with upper bounds on flow which are smaller than the

upper bound of A [34]. This process is repeated until an architecture is produced

with a valid component sizing to meet all system requirements. Here the iterative

mapping between the two levels is carried out automatically. This means the only

inputs required are the system requirements and library of components with their

interconnection rules. The algorithm will then run until a feasible architecture

with optimum component sizings is reached.

Another multi-level optimization framework for systems-of-systems (SoS) architec-

tures is presented in [37]. Here the framework follows a hierarchical structure with

three levels resembling a tree of optimization problems. The method is applied to

a noise-optimal aircraft design problem with: optimization of aircraft trajectories
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at the SoS level; optimization of aircraft designs at the system level; and optimiza-

tion of turbojet thrust and airfoil shape at the sub-system level. SoS architecture

optimization is also considered in [38]. This approach uses multi-objective op-

timization (see Section 2.3.5) of all the SoS decision variables in a single Mixed

Integer Non-Linear Program (MINLP), with links to dynamics and performance

models to evaluate candidate solutions.

2.3.5 Multi-objective Architecture Optimization

The design of complex system architectures is usually multi-objective, with nu-

merous, often-conflicting decision criteria. These capture the engineering charac-

teristics of interest to the designers. For example, “robustness”, “performance” or

“technology maturity”. When there are multiple objectives, there is often no sin-

gle ‘best’ solution. Rather there is a set of Pareto-optimal solutions. This means

that no Pareto-optimal solutions are dominated by other solutions which perform

better against every objective [52].

A popular set of techniques for performing multi-objective optimization are evolu-

tionary algorithms. These methods produce solutions that are a good approxima-

tion of the Pareto-front in reasonable time, despite not guaranteeing to be globally

optimal [53] due to the NP-completeness of the problem [49]. Evolutionary algo-

rithms are also able to produce solutions that would not be considered ordinarily

by humans, such as the unusual organic-looking NASA evolved antenna [54]. In

relation to system architectures, an unforeseen solution could be a high-scoring

but unintuitive combination of options, which whilst unusual is a perfectly valid

solution.

More discussion of multi-objective evolutionary algorithms in engineering design

can be found in [55–58], and applications specifically for system architecture opti-

mization in [59–61]. This is the approach used in the architecture synthesis stage

of Chapter 3.

2.3.6 Determining Architectural Drivers / Decision

Criteria

Whatever systems architecting approach is taken, a key task is to identify the

architectural drivers. A 5-step method for identifying the architectural drivers

by analysing and refining stakeholder requirements is presented in [62]. These
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drivers are the motivating features of an architecture which correspond to either

the constraints or decision criteria in more formal optimization-based design. For

example, in [33] the architectural drivers are cost and complexity (decision criteria

in the objective function) and reliability (one of the constraints).

2.4 Formalizing System Requirements

In many cases system requirements are comprised of both temporal and spatial

constraints. For example, consider the following requirements: R1) If engine is in

idle, RPM shall be between 200 and 300, else it shall be between 600 and 2000;

R2) RPM should be greater than 500 within 2 seconds. R1 and R2 cannot be

expressed as simple mathematical constraints, however, temporal logic languages

are capable of formalizing these requirements.

2.4.1 Temporal Logic Formulae

A natural way of expressing system requirements in a formal language is temporal

logic. Linear temporal logic (LTL) [63] extends traditional logic by adding the

temporal operators: © (next), U (until), � (always) and ♦ (eventually). For

example take the LTL formula in (2.4). ϕ1 is true iff whenever s1 and s2 are true,

s2 is not true at the next time step.

ϕ1 = � s1 ∧ s2 →©¬ s2 (2.4)

The downside to LTL formulae is that they are only defined for discrete-time,

finite-state systems. Real-time temporal logic [64] extends LTL to finite-state

systems defined over the continuous time domain. For example, take the formula

ϕ2 = ♦[0,20]s1 which states that eventually between 0 and 20 seconds the signal s1

becomes true. Two examples of Boolean signals which satisfy and do not satisfy

ϕ2 are shown in Figure 2.3.

Signal temporal logic (STL) [65] takes real-time temporal logic further to include

real-valued signals. The way this is handled is through the use of Booleanizers.

Given a signal x, a Booleanizer µ(x) is any function that converts the original

real-valued signal into a Boolean signal. A simple example is a threshold function

µ(x) = x > 0.6 as demonstrated in Figure 2.4. After this process, the semantics

of STL are the same as real-time logic, with STL formulae defined over time

intervals. For example, ϕ3 = �[40,50] x > 0.6 would be satisfied by the real-valued
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Figure 2.3: Boolean signals for real-time temporal logic formula ϕ2 = ♦[0,20]s1.
a) ϕ2 is satisfied, b) ϕ2 is not satisfied.
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Figure 2.4: An example of converting from a real-valued to Boolean signal
using Booleanizing function µ(x) = x > 0.6

signal in Figure 2.4 because the Booleanized signal is always true between 40 and

50 seconds.

2.4.2 Verification of Temporal Logic Formulae

Analytical verification asks whether all possible behaviours of a model over infinite

time satisfy a temporal logic formula i.e. S ⊆ ϕ. With real-valued, continuous-

time signals, it is impossible to calculate the infinite-time behaviour. The use of

bounded time intervals in STL means that verification can be carried out for finite-

length traces; however, it is impossible to do an exhaustive search of the behaviour

because real-valued signals can take an infinite number of values. One approach

to solve this is to use reachable set approximation [66] to determine the entire
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space of possible traces. Verification then consists of checking that the reachable

set satisfies the temporal formula i.e. R(S) ⊆ ϕ.

Another option is to use monitoring rather than verification. This consists of

asking whether a specific trace satisfies the temporal logic formula i.e. for s ∈ S
check that s ∈ ϕ [65]. Design of experiments is then needed to generate multiple

simulation traces which cover the likely behaviour of the system. The process

of monitoring for STL formulae is handled by the Breach toolbox [67, 68]. The

advantages of monitoring are that it is a process that can be carried out much more

quickly than analytical verification and hence can be incorporated into simulations

with minimal overhead [67].

2.4.3 STL Quantitative Semantics

The problem with the use of Booleanizers for checking satisfaction of STL formulae,

is that there is no indication of the margin of satisfaction. For example, take the

simple STL formula ϕ4 = ♦[0,10] x > 0. Consider a signal x1(t) which briefly

reaches a maximum of 0.1 at 9.9 seconds and a signal x2(t) which has a large

positive value for the entire time interval. Clearly x1(t) is very close to violating

the formula, while x2(t) satisfies it by a large margin. Unfortunately standard

STL checking is unable to distinguish between these two cases. This led to the

development of quantitative semantics for STL, presented in [69]. The idea is to

define a function ρ(x, ϕ, t) which is positive whenever the signal x(t) satisfies the

STL formula ϕ and negative whenever it does not. The more positive the value

of ρ(x, ϕ, t) the more robust the satisfaction of ϕ is. Similarly, the more negative

the value of ρ(x, ϕ, t), the more serious the violation of ϕ.

Space Robustness

There are three measures of robustness defined in [69]. The first measure, originally

presented in [70], is termed space robustness. The space robustness at time t is

defined as the distance between the magnitude of the signal and the Booleanizer

limit. Consider an STL formula ϕ5 = �[0,10] speed(t) < speedmax. In this case the

space robustness is defined by the function:

ρ(speed, ϕ5, t) = speedmax − speed(t)

An example of two signals with large and small space robustness to formula ϕ5 is

presented in Figure 2.5.
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Figure 2.5: Two signals with different space robustness to the STL formula
ϕ5 = �[0,10] speed(t) < speedmax

Time Robustness

The second measure of robustness in [69] is time robustness. This relates to the

amount by which the signal can be shifted in time before the STL formula is

violated. It is defined as a pair of functions ρ−(x, ϕ, t) and ρ+(x, ϕ, t) corresponding

to shifts backwards and forwards in time respectively. Figure 2.6 shows an example

of three Boolean signals with different time robustness to the formula ♦[τ1,τ2]x.

Clearly the signal in a) is very robust to forward shifts in time but not very robust

to backwards shifts, while the opposite is true for c). The signal in b) is robust

to shifts in time in both directions. In practical applications it may be more

important to have robustness to shifts in a particular direction. For example, if

the signal in Figure 2.6 is prone only to delays in events then clearly the signal in

a) is much more robust than the one in c).

Space-Time Robustness

Space and time robustness can be combined into a single space-time robustness

measure [69]. For a given spatial robustness c, the space-time robustness at time t

can be visualised as the largest rectangle containing t of height c which fits below

the space-robustness function ρ(x, ϕ, t). Note that this rectangle is not unique

as there are infinite choices of height c. Figure 2.7 shows that there is a trade-off

between space and time robustness. With tighter space robustness c2 the rectangle

is taller but narrower. By relaxing the space robustness to c1 the rectangle is much

wider because the time-robustness is greater.

An efficient algorithm for computing robustness degrees which is linear in the size
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Figure 2.6: Boolean signals with different left and right time robustness to
the STL formula ♦[τ1,τ2]x: a) large forwards time robustness, small backwards
time robustness; b) large forwards and backwards time robustness; c) large
backwards time robustness, small forwards time robustness
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Figure 2.7: Space-time robustness θc(t) for two different space thresholds c2

and c2

of the signal is presented in [71]. This algorithm is implemented in the Breach

toolbox [67]. One of the problems with checking STL robustness satisfaction is

that the majority of algorithms use an offline approach. STL monitoring is usually

based on simulations which can be computationally expensive and time consuming.

To save time and resources it is desirable to terminate the simulation when a

violation of the STL formula occurs. This is achieved by the online algorithm for

robust STL monitoring presented in [72].

2.4.4 Weighted STL

One of the problems with the quantitative semantics of STL is the use of different

units in compound formulae. For example, consider equation (2.5) which is taken

from [73].

ϕ6 = �[0,10](speed ≤ 120 ∧ RPM ≤ 4500) (2.5)
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If speed = 150 and RPM = 4530 it is clear that they both exceed their threshold

by 30 units. In the standard space robustness measure, both would be violating

the formula by an equal amount, but clearly the speed is violating its threshold by

25% while RPM is only violating its threshold by 0.67%. Weighted STL (WSTL)

is introduced in [73] to counter this problem. Weights wspeed and wRPM are used

to solve the problem of different units. Then the space robustness calculations

become:

ρωspeed
(t) = (speedmax − speed(t)) · wspeed

ρωRPM
(t) = (RPMmax − RPM(t)) · wRPM

The suggested choice for the weights in [73] is wspeed = 1/120 and wRPM = 1/4500.

This makes sense as a normalisation processes; however, it may be desirable for

the engineers to weight a particular signal more highly. For example, if violations

in speed could result in a fatal crash whilst violations in RPM result in reduced

fuel efficiency, it may make sense to give a stronger weighting to the speed signal.

The selection of weights remains an open research topic in WSTL.

2.5 Control Synthesis from STL Requirements

As stated in earlier sections, the advantage of using formal requirements is the

ability to use them as inputs to design synthesis methods, which guarantee that

they are satisfied. In [74] STL requirements are automatically encoded as a mixed-

integer linear program (MILP) to be solved at each step of a model predictive

control (MPC) optimization. In the absence of a cost function the quantitative

semantics of the STL formula are used. This ensures not only that the controller

satisfies the system requirements, but that it maximises the margin of satisfaction.

It is noted in [74] that the encoding of the MILP is computationally much more

expensive than the solving. Since the encoding only needs to be done once at the

start of the MPC problem, there could be potential for real-time execution of the

algorithm. However, since solving an MILP is an NP-hard problem, there is no

guarantee of finding a solution in polynomial time [75]. This is not a particular

issue for systems with slow transients such as the smart building temperature

control system used to demonstrate the approach in [74]. However, it is not an

option for fast and safety-critical applications such as aerospace systems.

The STL-based MPC synthesis approach is extended in [76] to a robust control

framework that can handle disturbances acting on the system. This utilises a
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counterexample-guided inductive synthesis algorithm, which is computationally

expensive. Other robust algorithms are explored in [77].

Some of these techniques have been implemented in the BluSTL toolbox for MAT-

LAB [78]. The toolbox can be used to implement the encoding from STL to MILP

and then solve the MPC problem whilst simulating the system.

2.6 Summary

This chapter has reviewed the literature relevant to this thesis. A general overview

of complex systems engineering is given, looking at both horizontal processes of

integration and vertical processes of abstraction/refinement [6, 7].

Multi-level approaches to system design can be useful for systems that are too

complex to design in one high-fidelity stage. Model order reduction techniques

[11, 13] can be useful for reducing the complexity of models for design exercises at

higher fidelity levels. Top-down design processes such as the systems engineering

V-modell R© [10], the sequential model bounding approach of [14], or platform-based

design [16] provide techniques for addressing the challenges of system design and

verification.

One of the first design activities in a multilevel framework is system architecting.

There are a variety of approaches for architecture design, ranging from informal

guidelines [24, 27, 32] to multiobjective optimization [59–61]. This provides a

background to the work carried out in Chapters 3 and 4.

Specifiying requirements in formal languages facilitates the use of design synthesis

techniques such as optimization or control synthesis [74]. In particular, STL [65]

is able to formalize a rich set of spatial and temporal requirements, with quantita-

tive semantics defining the margin of satisfaction [69]. This margin of satisfaction

can be used as an objective for optimization to maximise satisfaction of the re-

quirements [74, 76, 77]. This provides a background to the research presented in

Chapter 5.



Chapter 3

Customer-Oriented Preliminary

Architecture Optimization

Referring back to the multilevel framework outlined in Figure 1.1, the first design

stage is architecture optimization. This architecture design is often carried out as

a two-level process, as outlined in Figure 1.2. This chapter focuses on the high-

level architecture decision making which defines the architecture framework upon

which a physical architecture topology can be designed (as in Chapter 4). The

approach uses multi-objective optimization to produce a set of candidate solutions

which are then refined interactively to a smaller set of interest to the customer.

This chapter is partly based on research previously published in [79].

Designing complex system architectures involves analysing tradeoffs between mul-

tiple conflicting decision criteria to find a solution which best matches the pref-

erences of the customer. This is usually done in the engineering characteristic

(decision criteria) space, but the customer is generally more interested in higher-

level characteristics. For example, the engineering characteristic “modularity” is

not of direct interest to a customer, but it is related to their concern “through-life

costs”, since modular systems can be upgraded more easily. The relationships

between customer and engineering concerns are many-to-many making it difficult

to relate the two sets of priorities. This chapter proposes an integrated system

architecture synthesis framework, which aims to maximise customer satisfaction

by using their preferences directly to refine a set of candidate architectures. The

main contribution of the research relates to the translation from customer pref-

erences to decision criteria limits on a parallel coordinates plot. This automated

flow facilitates rapid re-synthesis of “best” architectures following a change in cus-

tomer preferences. The time saved allows customers to investigate a wider range

31



Chapter 3. Customer-Oriented Preliminary Architecture Optimization 32

Customer Requirements,
Constraints and Preferences

Architecture
Synthesis

Customer
Preference

Articulation

Architecture
Refinement

Final Architecture

Figure 3.1: An overview of the architecture design process from customer
concerns to chosen architecture. The contributions of this chapter are in the
stages of the process highlighted in the grey boxes.

of concerns and gain a better understanding of how their priorities influence the

solution set.

An approach for analysing the resilience of each solution in the set of “best” ar-

chitectures to changing customer preferences is also presented. This is useful since

large, complex projects with long timescales may experience changes in manage-

ment, budgets or unforeseen circumstances that result in a change in customer

priorities.

These ideas have also been implemented in a tool which allows system architects

to perform architecture synthesis and refinement without the need to code the

algorithms themselves. The research is demonstrated on two case studies: a control

system for a pressurized water reactor and an oil system for turbofan engines.

3.1 Overview

This chapter presents a customer-oriented architecture design process. There are

3 main levels in the framework (see Figure 3.1) with the main developments of this

chapter highlighted in the grey boxes. The first stage focuses on eliciting customer

requirements and preferences. This is a complex task requiring iterative discussions

with stakeholders/customers and effective communication [80]. A formal approach

for determining customer preferences is presented in [81]. Multiple stakeholders

are ranked according to their importance to the project. This is used to calculate

an overall weighted sum of the individual customer preference weightings [81].
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The second stage in Figure 3.1 is architecture synthesis which involves generating a

set of candidate architectures that satisfy the customer requirements (Section 3.2).

The architecture synthesis proposed in this chapter is based on multi-objective op-

timization, as shown previously in [35, 59–61]. There are two main advantages to

this approach. Firstly, the use of optimization provides a wider search of alter-

natives than manually-specified architectures, whilst avoiding scalability problems

associated with exhaustive searching (limited memory and processing power). Sec-

ondly, the use of multiple objectives facilitates the analysis of tradeoffs between

different system characteristics which are inherent to complex systems problems.

The third stage in Figure 3.1 is architecture refinement, which involves selecting

a solution or subset of solutions that best match the customer preferences (see

Section 3.3). Despite optimization being used to synthesize candidate architectures

in this chapter, the refinement stage is compatible with architectures derived from

other methods (e.g. a manually generated set of candidates). The approach uses

parallel coordinates [82] to display architecture solutions in terms of their scores

for a set of decision criteria. To narrow down the solution set, users introduce

limits on the upper bounds of the multiple, conflicting decision criteria to reflect

their relative importance. This approach has previously been advocated in [59–61].

The refinement is achieved in [60, 61] through progressive preference articulation,

whereby updating decision criteria limits triggers another optimization process

focused on the new region of interest [58].

The contribution of this chapter addresses the challenge of bridging customer and

engineering concerns in architecture refinement. Architecture quality is usually

assessed with respect to engineering characteristics, but customers are often more

interested in a set of higher-level concerns. For example, a customer may be

interested in “availability”, which is the extent to which the system can operate

in the presence of faults or scheduled maintenance. This is related to numerous

engineering characteristics such as “maintainability” or “robustness”. When there

are many customer preferences, many decision criteria and many relationships

between them, it can be hard to determine which architecture solutions match

the customer preferences most closely. This chapter solves the problem via a

new algorithm for converting customer preferences into decision criteria limits

on a parallel coordinates plot. The set of “best” solutions produced via this

algorithm are then analysed to show how resilient they are to changes in the

customer priorities. This allows the system architect to choose a solution which is

likely to remain a good choice over the entire development lifecycle.
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The benefits of the approach are seen as a substantial reduction in the time and

effort needed to refine a set of architectures. This allows customers to investigate

a wider range of preferences, giving insight into how their priorities affect the

final solution set. Note that this work specifically addresses one of the key areas

suggested for improving systems architecting in [83], to “reveal tradeoffs, tensions,

strengths”.

In Section 3.4 the customer-oriented architecture refinement approach is demon-

strated on an electrical, control and instrumentation (EC&I) system case study

for a pressurized water reactor (PWR). Section 3.5 applies the approach to an oil

system for a turbofan engine case study. Section 3.6 describes how these develop-

ments have been implemented in a user-friendly tool. A summary of the chapter

and concluding remarks are given in Section 3.7.

3.2 Architecture Synthesis

3.2.1 Function/Means Decomposition

The high-level architecture synthesis in this chapter is based on function/means

analysis as discussed in Section 2.3.2. This is a decompositional approach with a

list of functions the system must perform and a set of physical means for satisfying

those functions. Table 3.1 shows a basic function/means decomposition for a

generic control and instrumentation (C&I) system.

Table 3.1: Basic function/means decomposition for a generic C&I system.

Function Means

Sense variable Basic tech. 1 Basic tech. 2 Smart

sensor

Transmit signals Point-to-point Single bus Star Complex

topology

Control actuators Human operated

(mechanical)

Pneumatic Electrical

A high-level architecture is defined by selecting a single means for each function.

For example, the highlighted cells outlined in Table 3.2 define an architecture with

smart sensors, a single bus network and electrically controlled actuators.
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Table 3.2: A high-level architecture defined via an assignment of means for
each function.

Function Means

Sense variable Basic tech. 1 Basic tech. 2 Smart

sensor

Transmit signals Point-to-point Single bus Star Complex

topology

Control actuators Human operated

(mechanical)

Pneumatic Electrical

3.2.2 Scoring Against the Decision Criteria

To determine how “good” a given architecture is, it needs to be evaluated against

an objective. With large-scale and complex systems there are often multiple ob-

jectives or decision criteria which reflect the wide range of stakeholder concerns.

With low-level design, it may be possible to determine these criteria scores via

simulation, mathematical models or component datasheets giving precise values

such as “cost in US$”. At the high-level architecture design phase there is insuffi-

cient information to do this. Therefore the approach taken in this chapter is to use

experienced engineers to provide decision criteria scores for the different solutions.

However, the optimization and architecture refinement described in later sections

would be compatible with any method of generating the criteria scores.

The scoring in this chapter is carried out in relation to a baseline/default solution

(0), with negative scores indicating an improvement in that criterion and positive

scores indicating a worse option. Negative has been chosen to mean “better”

to reflect the fact that the optimization (as discussed in Section 3.2.3) attempts

to minimise the objective scores. In a scoring-based approach, engineers would

typically give criteria scores for a whole architecture. However, this limits the

number of options that can be reasonably evaluated. In this research, the scoring

is instead carried out for each of the means. This allows an overall score to be

calculated for any architecture via summing of its individual means scores, as

shown in Table 3.3.
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Table 3.3: Means scored against decision criteria for a minimal C&I system
example.

Function Means Criterion 1 · · · Criterion N

Sense

variable

Basic tech. 1 0 · · · 0

Basic tech. 2 -1 · · · 4

Smart sensors 4 · · · -2

Transmit

signals

Point-to-point 0 · · · 0

Single bus -2 · · · 2

Star -2 · · · 2

Complex topology -4 · · · 2

Control

actuators

Human operated 0 · · · 0

Pneumatic -2 · · · 4

Electrical -4 · · · -4

Overall -2 · · · -4

This approach allows criteria scores to be generated for any combination of means,

facilitating a much larger search of the solution space (as via multiobjective op-

timization in Section 3.2.3). For example, the case study outlined in Section 3.4

contains 7 functions with 30 individual means to be scored against the decision

criteria. These means can be combined to give 16,200 unique architectures, which

would be too time consuming to score manually.

Note that other methods of combining the scores for a combination of means

could be used. For example, a weighted sum or multiplication of the individual

values. This would have an impact on the solutions generated by an optimization

algorithm (as presented in Section 3.2.3).

3.2.3 Multiobjective Genetic Algorithm Optimization

As mentioned in Section 3.2.2 the approach taken in this chapter is multiobjec-

tive optimization. The generic multi-objective system architecture optimization

problem is defined in [35] as having 3 parameters:

1. f = (f1, f2, · · · , fn) - a multi-criteria objective function.

2. R - a set of constraints defining an admissible set of parameters/variables.

3. N - an architectural framework for deriving a set of candidate solutions A.
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The solution involves finding a subset of solutions A′ ⊂ A which satisfy the con-

straints R whilst being nondominated with respect to f (meaning that improve-

ments for one criterion cannot be achieved without decreasing performance for

another). The constraints R are the combinations of means that are incompatible.

For example, “means mi is not compatible with means mj”, expressed in the form

¬(mi ∧mj).

Note that, as defined, the multi-criteria objective function f can have any number

of criteria n greater than or equal to 2. The architecture design problems consid-

ered in this chapter are not just multi-objective but many-objective (i.e. 4 to 20

decision criteria as defined in [58]).

As mentioned in Section 2.3 it has been proven that architecture design is NP-

complete [49], meaning no guarantee of finding optimal architectures in polynomial

time. However, evolutionary algorithms have overcome this challenge to produce

solutions which are a good approximation of the pareto front, despite not guar-

anteeing to be globally optimal [53]. For example, see Figure 3.2 which compares

the decision criteria scores for architecture candidates synthesised via exhaustive

search or evolutionary algorithm for the PWR system discussed in Section 3.4. In

this figure, the decision criteria scores are represented on a parallel coordinates

plot [82]. This technique allows visualisation of N-D data on a 2-D plot by rep-

resenting architecture solutions as a line joining the architecture scores for each

decision criterion (see Section 3.3.1 for further elaboration). Note that in Fig-

ure 3.2 the evolutionary algorithm approximates the best solutions produced via

the exhaustive search (similar minimum criteria values). For this reason, they are

used in this chapter to synthesise the set of candidate high-level architectures.

The type of evolutionary algorithm used in this chapter is the Multiobjective

Genetic Algorithm (MOGA) approach presented in [58]. This is a nondominated

ranking approach which is summarised in Figure 3.3 and described in the following

steps.

• Randomly generate an initial population - A predetermined number

of initial architectures are generated by randomly selecting a means for each

of the primary functions.

• Evaluate decision criteria scores for the initial population - For each

candidate architecture the aggregated decision criteria scores are calculated

as a sum of the scores of the means chosen (as outlined in Table 3.3).

• Loop through the following steps for a predefined number of iter-

ations
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Figure 3.2: Candidate architecture solutions generated via exhaustive search
of 16,200 potential solutions (left plot) and genetic algorithm optimization (right
plot). The parallel coordinates plots represents solutions as a line joining the
architecture scores for each decision criterion C1 to C8. It is clear that the
genetic algorithm does a good job of approximating the best solutions (similar
minimum criteria values).

1. Do Pareto-based rank sorting - This sorts the current solution set

according to their Pareto-based rank as defined in [55]. The rank for

each solution is calculated as the number of other solutions which dom-

inate it (which means they score better for every decision criterion).

A solution is said to be nondominated if improvements for one crite-

rion cannot be achieved without decreasing performance for another.

Therefore these solutions have a Pareto-based rank of 0, since there are

0 solutions which dominate them. A graphical outline of this principle

is shown in Figure 3.4.

2. Get parent population from sorted population using tourna-

ment selection - In tournament selection a set number of solutions

are chosen at random from the overall population (2 solutions are used

in this chapter). These solutions are the tournament participants and

the winner is the solution with the lowest rank. This is repeated until

the parent pool size has been filled.

3. Perform crossover to get child population - For every pair of

parent solutions, two children are made. The first child starts with the

same means as the first parent, but for each function there is a chance

of “crossover” occurring to inherit the means from the second parent.

The opposite is true for the second child solution. These crossovers

occur randomly with a probability of 0.5 in this chapter.
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1. Randomly generate an initial population

2. Evaluate criteria scores for initial population

3. Set i=1

4. Do Pareto-based rank sorting

5. Get parent population from sorted population 

using tournament selection

6. Perform crossover to get child population

7. Mutate child population

8. Evaluate criteria scores and do Pareto-based 

rank sorting on child population

9. Perform truncated reinsertion to replace x 

worst original solutions by x best child solutions

11. Check 

i>number 

iterations

10. Set i=i+1

12. Take current population 

as final solution set

Y

N

Figure 3.3: An overview of the architecture synthesis using multiobjective
genetic algorithm (MOGA) optimization.

4. Mutate child population - For every child solution, the means may

mutate randomly with a set probability (0.1/N where N is the number

of functions). This causes some new means not present in the parent

population which prevents the solution set from getting stuck at local

minima.

5. Evaluate decision criteria scores and do Pareto-based rank

sorting on the child population - This calculates the aggregate de-

cision criteria scores of the child population and sorts them according

to the Pareto-based rank.
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Figure 3.4: A graphical illustration of Pareto-based ranking [55] for two objec-
tives. In this case, both objectives are aiming to be minimised. The rank of each
solution can be visualised by drawing a square from the solution point to the
origin and observing how many solutions lie within the highlighted area. Sub-
figure a. shows the pareto front of nondominated solutions (0 rank) highlighted
by the red dots with dominated solutions shown as orange dots. Subfigure b.
shows the solutions which are dominated by one other solution. Subfigures c.
and d. show solutions which are dominated by more solutions.

6. Perform truncated reinsertion to replace a percentage of the

worst original solutions by the same percentage of best child

solutions - This ensures that good new solutions from the child popu-

lation are added to the solution set, whilst maintaining the best original

solutions. The percentage is set between 0% and 100% with a value of

50% chosen in this chapter.

• Take the nondominated solutions from the current population as

final solution set - After the predetermined number of iterations through

the algorithm, the final solution set is used as the start point for the archi-

tecture refinement discussed in Section 3.3
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3.3 Architecture Refinement

The inputs to the architecture refinement stage are: 1) a set of candidate archi-

tectures, which could have been generated manually or via a formal architecture

synthesis stage (Section 3.2); and 2) a set of customer preferences. The output is

a subset of solutions which best match the specified preferences.

A commonly used tool for refining a set of candidate architectures is the Pugh

matrix [40]. This involves ranking candidate architectures against the various

decision criteria in a matrix. Weights are used to assign relative importance of the

different criteria. The “best” architecture is chosen as the one with the highest

overall weighted-sum of criteria scores. The downside to this approach is that it

requires manual scoring of every architecture and hence the number of candidates

that can be practically explored is limited.

The methodology presented in this section facilitates a much wider search by

determining the overall architecture scores as a sum of the individual scores for

the function means chosen (see Section 3.2 for details). This only requires scoring

of the different means in order to get overall architecture scores for any valid

combination of these options. Another advantage of this approach over the Pugh

matrix method is the improved visualisation of tradeoffs between decision criteria

as discussed in Section 3.3.1 and Section 3.4.1.

3.3.1 Reducing the Solution Set Using Parallel Coordi-

nates

Visualising many objective scores on a single plot is difficult due to the limits

of 3 dimensions. Parallel coordinates solve this problem, allowing visualisation

of N-D data on a 2-D plot [82]. The use of parallel coordinates for visualising

multiple engineering design objectives is introduced in [55] and applied to various

multiobjective problems in [56–61]. This section uses progressive preference artic-

ulation in a multi-objective evolutionary algorithm to narrow down the region of

interest on the Pareto front. When preferences are updated (via changing parallel

coordinates limits) the optimization stage is repeated to find a new population

of solutions in the new region of interest. An example parallel coordinates plot

is shown in Figure 3.5. A solution is represented as a line linking each of its in-

dividual criterion scores with respect to a baseline solution (the zero line). To

reduce the solution space, the upper bounds on the decision criteria (limits) can

be tightened progressively until a solution or subset of solutions is chosen.
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Figure 3.5: An example parallel coordinates plot for a system with 8 decision
criteria. The decision criteria scores (y-axis) are compared against a baseline
solution (the zero line), with negative values indicating an improvement over
the baseline and positive values indicating a worse solution for that criterion.
A solution is represented by a line linking its score for each criterion. The
red diamonds represent the upper limits for each criterion, which can be tight-
ened/relaxed to refine the solution set.

3.3.2 Customer-Oriented Architecture Refinement

Section 3.3.1 describes how progressive refinement of decision criteria limits in a

parallel coordinates plot can be used to reduce the candidate solution set. However,

this can be a difficult process in real world practice. The main problem is that

the system architects need to select a solution based on the preferences of the

customer/end-user, but these stakeholders are rarely interested directly in the

decision criteria such as “modularity” or “robustness”. Rather they are interested

in a set of related customer preferences such as “through-life running costs” or

“project delivery risk”. This section presents a novel methodology for solving this

problem by translating customer preferences to parallel coordinates limits.

It is highlighted in [84] that design decisions around tradeoffs in conflicting ob-

jectives are often made for non-technical reasons, and that having a structured

method for performing architecture tradeoffs can be useful for identifying good

solutions early in the design cycle. The approach presented in this section seeks to
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facilitate this kind of insight, to narrow down on the ’best’ solutions from a large

Pareto optimal set.

Translating customer attributes to engineering characteristics has been achieved

in Quality Function Deployment (QFD) [85] via the house of quality [86]. This

essentially involves defining a matrix of many-to-many relationships between the

customer and engineering characteristics, with the magnitude/sign of the matrix

values indicating the strength of any positive or negative relationships. Motivated

by QFD, the relationships between customer preferences and decision criteria pref-

erences are defined here through matrix Rpref .

Rpref =


r1,1 r1,2 · · · r1,m

r2,1 r2,2 · · · r2,m

...
...

. . .
...

rn,1 rn,2 · · · rn,m

 . (3.1)

The value ri,j indicates the strength of relationship between customer preference i

and decision criteria preference j. In this research, a three-valued scale is used

with 0 indicating no relationship, 3 indicating a weak relationship and 9 indicat-

ing a strong relationship, as used previously in [87]. However, the methodology

presented is compatible with other scales and negative numbers to indicate neg-

ative relationships, as implemented in the oil system case study of Section 3.5.1.

Defining Rpref is the most challenging task in the refinement process, since it re-

quires a consensus to be reached between the customers and engineers about the

presence and strength of any relationships. However, this only needs to be done

once in the project, whereas manual preference articulation (Section 3.3.1) requires

numerous iterations of customer-engineer discussions. An example of Rpref defined

for a problem with 7 customer preferences and 8 decision criteria is shown in the

orange matrix in the bottom right of Figure 3.6.

The customer preference weightings Pweights (blue vector in the bottom left of

Figure 3.6) are specified as a percentage of the overall importance (summing to

100% in total). Once these have been defined, the decision criteria weights (green

vector in Figure 3.6) can be defined using:

Cweights = P ′weightsRpref . (3.2)

where P ′weights is the row vector (transposed) form of column vector Pweights, and

Rpref is defined as in equation (3.1).
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Figure 3.6: A visualization of the conversion process from customer prefer-
ences to parallel coordinates limits. Preference weights (blue) are multiplied by
the conversion matrix (orange) to give decision criteria weights (green). Darker
hues of blue/green indicate more importance and darker hues of orange indicate
a stronger relationship between the ith preference and jth decision crtierion. The
decision criteria weights are converted to the parallel coordinates limits using
Algorithms 1 and 2. Note that more important decision criteria (e.g. C8, C4, C3)
have tighter limits on the parallel coordinates plot.

The Cweights values show the relative importance of the decision criteria, but they

do not define absolute limits or upper bounds for the criteria scores. Therefore,

the weights need to be translated to parallel coordinates plot limits. Doing this

requires consideration of both the relative difference between the values in Cweights

and of the range of scores for each of the decision criteria. To explain this, see

criteria C1 and C2 in Figure 3.5 and Figure 3.6. All of the candidate architecture

scores for C1 are greater than or equal to the baseline 0 value. An example

criterion likely to show this pattern is “technology maturity” whereby very few

novel architecture options would score as highly as a well-established baseline.

In contrast, almost all of the candidate architecture scores for C2 are below the

baseline 0 value. An example criterion likely to show this pattern is “performance”
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in an electronic system whereby newer components would have higher processing

power and lower size/weight than an older baseline solution. Considering just the

values of Cweights (green vector in Figure 3.6) the limits on C1 would be tighter

(lower) than the limits on C2. However, when the ranges of the different criteria

scores are considered too, the C1 limit is higher than the C2 limit, as shown in

the top of Figure 3.6. This is due to the differences highlighted in their respective

criteria scores.

A method for performing the translation from Cweights to parallel coordinates plot

limits is presented in Algorithm 1. The first part of the algorithm (lines 1 to 5)

determines the pattern of the decision criteria limits based on the Cweights values

and the maximum/minimum scores for each of the decision criteria. In particular,

line 4 ensures that for each criterion the limit will be set somewhere between the

maximum solution score if Cweights(i) = 0 (allowing all solutions for that criterion)

and the minimum solution score if Cweights(i) = max (Cweights) (allowing only the

single best scoring solution for that criterion). Once, this pattern of criteria limits

is set, Algorithm 2 can be used to see how many solutions fall below all of the

decision criteria limits (line 6).

Initially, the limits are likely to be too constrained so that no feasible solutions

are produced. Therefore the second part of Algorithm 1 (lines 7 to 16) is used

to shift the limits upwards whilst maintaining the overall pattern of preferences,

until a specified x number of solutions have been found. Line 12 ensures that the

limits are increased relative to the range of scores for each of the criteria. Taking

the example in Figure 3.5, C5 would increase less than C6 since there is a smaller

range of scores in the different solutions.

The results of Algorithm 1 are displayed in the plot at the top of Figure 3.6. In this

example x = 10, meaning the limits have been scaled to show the 10 best solutions

according to the customer preferences. Note that the use of the two algorithms

presented here produces these solutions almost instantly after a change in customer

preferences, whereas a manual refinement of the decision criteria limits would take

much longer.
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Algorithm 1 Setting limits to find the subset of x solutions which best match
the decision criteria preferences.

Input: Cscores - matrix of the solution set with the (i, j)th element defined as the

score for criterion j in solution i.

Input: Cweights - indicating preference of the different decision criteria to the cus-

tomer.

Input: x - the number of solutions required.

Output: Cx - the subset of the x best solutions according to the Cweights chosen.

1: for i = all decision criteria do

2: Set Cmax and Cmin to max/min Cscores values in the ith column

3: Set Wmax and Wmin to max/min Cweights values

4: Set limits(i) = (Cmax − Cmin)
(Wmax−Cweights(i))

Wmax
+ Cmin

5: end for

6: Calculate valid solutions for the initial limits using Algorithm 2

7: Set adjustment factor cadj = 0

8: while number of valid solutions < x do

9: cadj = cadj + 0.001

10: for i = all decision criteria do

11: Set Cmax and Cmin to max/min Cscores values in the ith column

12: Set limits(i) = limits(i) + cadj(Cmax − Cmin)

13: end for

14: Calculate valid solutions for new limits using Algorithm 2

15: end while

16: Export limits and the x best solutions to Cx

Algorithm 2 Finding valid solutions (satisfying all decision criteria limits) from
the overall solution set

Input: Cscores - matrix of the solution set with the (i, j)th element defined as the

score for criterion j in solution i.

Input: limits - upper bounds on the scores for each criterion.

Output: Cvalid - subset of solutions satisfying all limits

1: for i = all solutions do

2: for j = all decision criteria do

3: if Cscores(i, j) > limits(j) then

4: mark solution as invalid

5: end if

6: end for

7: end for

8: Export all solutions not marked as invalid to Cvalid
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The architecture refinement approach presented in this section aims to reduce

the large Pareto-optimal solution set to a more manageable set of solutions for

selecting an architecture from. An alternative approach is presented in [87] wherein

clustering analysis is used to group the entire Pareto-optimal solution set into

discrete clusters with common features. This allows tradeoffs between different

clusters to be analysed using a parallel coordinates plot. Once a preferred cluster

is chosen, the system architects can perform further tradeoff analysis within the

cluster to refine to a single architecture. In some cases it may not be possible

to group the Pareto optimal solution set into well-separated clusters. For this

reason, the customer oriented architecture refinement approach is preferred in this

chapter.

3.3.3 Resilience to Changing Customer Requirements

Resilience is a prominent topic in systems engineering, with an increasing amount

of research being directed towards engineered resilient systems [88]. This relates

to designing systems which are “effective in a wide range of operational contexts

with the ability to respond to new or changing conditions through modified tactics,

appropriate reconfiguration or replacement” [88].

In the case of very large-scale systems with long development cycles, this becomes

relevant even before delivery of the project. For example, the development cycle

from concept studies to delivery of the first UK Astute nuclear submarine was

around 15 years [89]. Over these long development cycles, changes to customer

priorities as the project progresses can be a particular issue. For example, “Non-

Recurring Engineering Costs” or “Delivery Risk” often become more important as

budgets are finalised and deadlines are approached.

This section proposes a method for analysing the resilience of different solutions

to changes in stakeholder priority weightings. The analysis starts by taking the

x best solutions according to the stakeholder priority weightings as outlined in

Section 3.3.2. The algorithm then loops through all the solutions to check how

much each priority weighting can be increased and decreased before the parallel

coordinates limits have changed enough that the solution is no longer in the set of

x best solutions. An outline of this process flow is shown in Figure 3.7.

This resilience data could potentially be very powerful when narrowing down the

solution set with stakeholder discussions. For example, consider a particular solu-

tion which is the favoured choice with the current performance measure priorities,

but which also has very small resilience values for some performance measures.
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Figure 3.7: A process flow for the customer preference resilience analysis. The
flow loops through every selected solution and every stakeholder preference to
determine how much the priorities can increase or decrease before losing that
solution from the ‘best’ x solutions.

This would highlight to the customer that the solution would only remain the

best option if they are certain that these performance measures will not become

more important later in the project cycle. With this feedback it may be decided
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that a more sensible choice is a slightly worse scoring solution which is more re-

silient to changes in priorities over the life cycle. This is discussed more detail in

the case study in Section 3.5.

3.4 Case Study - Pressurized Water Reactor EC&I

System

The approach presented in Section 3.2 and Section 3.3 has been applied to an

architecture selection problem for a pressurized water reactor (PWR) electrical,

control and instrumentation (EC&I) system. A PWR is a type of nuclear reactor

which uses a closed, pressurized loop of water that passes through the reactor

core, absorbing heat. This heat is transferred to a second loop of water which is

not pressurized, allowing vaporization and the production of steam. The steam

generated is used to drive a turbine to produce power (see Figure 3.8) [90]. The

main roles of the EC&I system in a PWR are to provide all of the sensing, signal

transmission, data processing, human/machine interface and actuation needed

to maintain stable temperatures/pressures and initiate protection or shutdown

procedures when necessary.

Pressurizer

Condenser

Load

Turbine

Reactor 
Core

Steam
Generator

Figure 3.8: A diagram of a pressurized water reactor. The pressurized water
loop (red) transfers heat from the reactor core to the unpressurized loop (blue)
via the steam generator. The steam is used to drive a turbine, linked to a load.
The steam is condensed then returned to the steam generator [90].

.
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Table 3.4: Decision criteria for a PWR EC&I system.

No. Decision Criterion Description

C1 Internal commonality The degree to which features, attributes and

environments can be shared.

C2 Modularity The degree to which system components can be

separated and recombined.

C3 External consistency The degree to which physical and functional ele-

ments are governed by established standards.

C4 Maintenance and test The degree to which the system supports effective

and efficient maintenance and testing.

C5 Security The degree to which the system is protected from

threats.

C6 Robustness The degree to which the system can perform its

function under stated conditions for a specified

period of time.

C7 Usability The degree to which the human interfaces are easy

to use.

C8 Performance The degree to which the system accomplishes its

designated functions within given constraints.

Table 3.5: Customer preferences for a PWR EC&I system.

No. Customer

Preference

Description

P1 Availability The degree to which the system is able to operate

at any time.

P2 NRE Costs The up-front costs of designing, verifying and

certifying the system.

P3 Through-life costs The ongoing costs of operation, maintenance,

upgrading and decommissioning.

P4 Size & mass The physical size and mass of the system.

P5 Sustainability The long-term availability of spare parts, knowl-

edge and expertise needed to maintain the system.

P6 Delivery risk The degree of risk that the system will not be

delivered on time and/or on budget.

P7 Manning Reduction in operation, monitor and maintenance

requirements of the system.
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a.

b.

Figure 3.9: An analysis of tradeoffs in the PWR EC&I case study. These have
been explored by setting the decision criteria limits manually. Plots a. and b.
show a tradeoff between performance (C8) and robustness (C6). This tradeoff is
represented by the fact that the best scoring solutions for either criterion, score
moderately to badly for the other.

The PWR EC&I architecture is decomposed into 7 functions with 31 different

options and a total of 16,200 candidate architectures. To protect commercial in-

terests, these are not described in detail here. There are 8 decision criteria and 7

customer preferences as shown in Table 3.4 and Table 3.5 respectively. Perform-

ing multi-criteria architecture optimization produces a set of 255 nondominated

solutions as shown in Figure 3.5.
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a.

b.

Figure 3.10: An analysis of complementary decision criteria in the PWR
EC&I case study. These have been explored by setting the decision criteria
limits manually. Plots a. and b. show two complementary criteria, usability
(C7) and maintainability (C3). This is represented by the fact that the best
scoring solutions for either criterion score well for the other.

3.4.1 Manually Investigating Tradeoffs and Complemen-

tary Decision Criteria

The set of architecture solutions in Figure 3.5 can be manually refined by altering

the parallel coordinates limits. This can be useful for identifying tradeoffs between

decision criteria e.g. “Performance” vs “Robustness” as shown in Figure 3.9 a. and

Figure 3.9 b. It can also show complementary criteria, such as “Usability” and

“Maintainability” as in Figure 3.10 a. and Figure 3.10 b. The downside to this

manual approach for the PWR case study is that it is very hard to alter the limits

to accurately reflect the 7 customer preference weightings, since each preference is

correlated to numerous decision criteria.
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3.4.2 Automating Parallel Coordinates Limits Using Cus-

tomer Preferences

The results of applying Algorithm 1 to the PWR EC&I problem are shown in Fig-

ure 3.6. Note that the parallel coordinates limits (and hence the chosen solutions)

change automatically with changes in customer preferences. This allows the large

range of alternatives (as in Figure 3.5) to be narrowed down rapidly to a region

of interest (as in Figure 3.6), unlike the time-consuming manual process described

in Section 3.4.1. The engineers may want to make some small manual changes to

the limits after Algorithm 1 to enforce concerns such as “security must be at least

as good as the baseline”. However, the overall time taken is still greatly reduced.

3.5 Case Study - Novel Turbofan Oil System

The approach presented in Section 3.2 and Section 3.3 has been applied to a

high-level architecture design problem for a novel turbofan oil system. The key

purpose of the oil system is to provide both lubrication and cooling to the turbofan

engine bearings and gearboxes [91, 92]. In this problem, the aim is to investigate

architectures which use novel components to allow the oil flow to be controlled

independently of the shaft speed. This allows oil temperature and lubrication

efficiency to be managed more effectively, increasing the life of components and oil.

Chapter 4 describes the oil system in more detail, but an overview is given of the

functions/means decomposition in Table 3.6. This function/means decomposition

is developed from previous work on a similar case study in [87].

Note that for many of the functions there are only 1 or 2 means. Since the number

of potential architectures is the product of the number of means for each function

(1 × 8 × 2 × 7 × 2 × 2 × 2 = 896) this results in a relatively small number of

solutions. There is therefore no need to use MOGA for this case study. Rather an

exhaustive search of all possible combinations of means has been used.

For this problem the customer preferences are the same as those in P1 to P6 in

Table 3.5. The reason P7 is not used here is that the oil system is an automated

part of the turbofan engine and does not require manning in normal operation.

The set of decision criteria used in this problem is defined in Table 3.7. The

relational matrix Rpref and the customer preference weightings Pweights are defined

as shown in Figure 3.11. Note that Rpref uses a scale from -4 to 4 whereby: 0

indicates no relationship; negative or positive values indicate a negative or positive
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Table 3.6: Functions/means decomposition for the turbofan oil system. The
means of the architecture A1 chosen in Section 3.5.1 are highlighted in blue.

Function Means

Contain oil Partially pressured system via tanks and pipes

Feed oil during normal
operation

Single mechanical fixed displacement (FD) feed pump

Single electric FD feed pump (AC motor without controller)

Single electric FD feed pump (DC motor with controller)

Zonal ganged DC electric FD feed pump

Zonal feed pump electric & mechanical mix

Main feed + individual chamber flow control pump

Individual DC electric FD feed pump

Mechanical variable displacement feed pump (VDP)

Schedule oil during normal
operation

Fixed orifice feed restrictors

Variable restrictor valves (VRV)

Remove aerated oil from
chamber sump

Single ganged mechanical fixed displacement (FD) scavenge
pump

Single ganged electric feed pump (AC motor without controller)

Single ganged electric FD scavenge pump

Zonal ganged electric FD scavenge pump

Zonal ganged FD scavenge pump - electrical/mechanical mix

Individual electric FD scavenge pump

Drain chamber via gravity

Feed and scavenge
separation

Combined feed and scavenge

Separate feed and scavenge

Remove debris from oil
Mesh filter

Electric charge across oil flow

Limit static charge build
up

Earth bond every component

Electrical bonding for rotating parts (e.g. brushes)

relationship respectively; and magnitude indicates the strength of the relationship.

This is a different scale to the 0, 3, 9 scale used in [87] and the PWR case study,

to demonstrate that the customer-oriented architecture refinement algorithm is

compatible with different approaches to scoring or defining relationships between

performance measures and decision criteria.

3.5.1 Oil System Architecture Refinement

Performing exhaustive search and removing dominated solutions produces the so-

lution set shown in Figure 3.12 a. One thing that is immediately clear is that the

majority of solutions score worse than the baseline for all decision criteria other

than ‘flow matching’ (C5). This makes sense, since the main purpose of investi-

gating the novel oil system is to improve performance in this decision criterion.

It is also obvious that the addition of new components will have a negative effect

on performances for other decision criteria such as ‘weight’ (C1) or ‘technology
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P5 15

P6 15
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195 125 90 80 115 80

Figure 3.11: Customer-oriented architecture refinement for the oil system.
Preference weights (blue) are multiplied by the conversion matrix (green/red)
to give decision criteria weights (orange). The decision criteria weights are
converted to the parallel coordinates limits using Algorithms 1 and 2. The
purple solution highlighted has corresponding resilience values in column A1 of
Table 3.8

.

Table 3.7: Decision criteria for a turbofan oil system.

No. Decision Criterion Description

C1 Weight The degree to which the weight changes relative to
the baseline.

C2 Reliability The degree to which system components can be
separated and recombined.

C3 Safety The degree to which physical and functional
elements limit potential for hazards.

C4 Technology maturity The degree to which well-established technology is
used in the system and manufacturing process.

C5 Flow matching The degree to which the system allows oil flow to
be controlled independently from the shaft speed.

C6 Maintenance The degree to which the system supports effective
and efficient maintenance.
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maturity’ (C4). A particularly noticeable tradeoff highlighted in Figure 3.12 b.

and Figure 3.12 c. is between ‘flow matching’ (C5) and ‘maintenance’ (C6).

As mentioned in previous sections, the manual preference articulation can be a

time-consuming way of narrowing down the solution set. Therefore the customer-

oriented architecture refinement algorithm has been implemented to rapidly reduce

to the 8 ‘best’ solutions according to the customer preferences. This is shown in

Figure 3.11.

Table 3.8: Resilience values for the 8 ‘best’ oil system architectures. The
chosen architecture and associated resilience values are highlighted in blue.

Customer

Preference

Resilience

A1 A2 A3 A4 A5 A6 A7 A8

+ - + - + - + - + - + - + - + -

Availability 11 10 90 10 90 10 90 10 90 10 9 10 90 10 9 10

NRE cost 22 15 85 8 22 15 22 15 85 8 85 4 22 13 85 4

Lifetime cost 77 20 11 17 43 20 43 20 11 20 5 20 17 20 5 20

Size & mass 75 25 75 25 75 25 75 25 75 25 75 7 75 25 75 7

Sustainability 69 15 6 15 36 15 36 15 6 15 3 15 18 15 3 15

Delivery Risk 19 15 17 10 19 15 19 15 85 10 85 5 19 15 85 5

Chapter 4 covers the low-level architecture topology optimization for the novel

oil system case study. This requires a specific high-level architecture as an input,

meaning the 8 ‘best’ solutions in Figure 3.11 need further refining to a single chosen

solution. Resilience analysis is a useful tool for achieving this. The resilience

values for the 8 candidate solutions are shown in Table 3.8. Firstly, architectures

A2, A5, A6 and A8 are ruled out because they are too sensitive to small increases

in the weight of the ‘sustainability’ preference. Of the remaining architectures A3,

A4 and A7 are highly resilient to changes in the ‘availability’ weighting, whilst

architecture A1 is more resilient to changes in ’lifetime cost’ and ’sustainability’.

The long-term cost and overall lifetime of a system is one of the key concerns for

aerospace customers, and therefore A1 is chosen as the solution to take forward to

the next stage of the design. The means chosen for this solution are highlighted

in Table 3.6.

3.6 SATS Tool Development

To help make the research in this chapter accessible to system architects who may

be unfamiliar with optimization, the System Architecture Trade Study (SATS)
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a.

b.

c.

Figure 3.12: An analysis of tradeoffs in the oil system case study. These have
been explored by setting the decision criteria limits manually. Plot a. shows the
unfiltered solutions. Plots b. and c. show a tradeoff between flow matching (C5)
and maintenance (C6). This tradeoff is represented by the fact that the best
scoring solutions for either criterion, score moderately to badly for the other.
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I1: Determine decision 

criteria
I2: Determine key 

functions/means 

of system

I4: Determine invalid 

combinations of means

I5: Score means against 

decision criteria relative 

to baseline

T2: Choose how to 

generate solutions 

(exhaustive search or 

GA optimization).

T1: Load file in the 

SATS welcome screen

T3: Use interactive 

SATS tool to investigate 

tradeoffs and 

downselect solutions

I3: Define customer 

preferences and links to 

the decision criteria

T4: Save work 

for future use

Figure 3.13: An overview of the SATS workflow. Blue boxes represent inputs
which must be defined in the Excel input file. Green boxes represent tasks which
are carried out using the tool.

tool has been developed. This is implemented in matlab [93] and can run either

in the matlab command window or as a Microsoft Windows Executable (.exe)

file. An overview of the SATS work flow is shown in Figure 3.13 and a view of the

SATS user interface is given in Figure 3.14. The following subsections describe

these features in more detail.

3.6.1 SATS Input Files

The input data required to run a SATS analysis is:

• Customer performance measures e.g. “Delivery Risk”.

• Decision criteria e.g. “Modularity”.

• Customer performance measure to decision criteria relational matrix.

• Primary functions e.g. “Interface with user”.

• Means (e.g. “lamp and switch user interface”) scored against the decision

criteria.

• Incompatible combinations of means e.g. NOT “electric power supply” AND

“mechanically-driven motor”.
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Figure 3.14: The SATS GUI main screen with: 1) manual preferance artic-
ulation controls; 2) parallel coordinates plot; 3) customer-oriented architecture
refinement controls; 4) plot display tools; 5) solution tables group; 6) pushbut-
ton group; 7) resilience analysis and display.

This data is defined and saved in Microsoft Excel spreadsheets before being loaded

by the SATS tool. The advantage of using Excel is that it is standard software

that will be installed on most PCs. This allows a wide range of engineers from

different teams to contribute to the scoring of different means, without having to

have the specialist SATS software installed. The system architect can then collate

this information to be input into the tool and generate/refine candidate solutions.

3.6.2 Generating Solutions

SATS provides two options for generating candidate architectures. The first option

is the multiobjective genetic algorithm (MOGA) as explained in Section 3.2.

The second option is to perform an exhaustive search of all potential combina-

tions of means. Note that with this option dominated solutions (as described in

Section 3.2) are removed. The advantage of the exhaustive search over the genetic
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Figure 3.15: An example of solution selection in the PC plot. [Left] no selected
solutions. [Right] one solution selected and highlighted (via clicking the line on
the plot).

algorithm approach is that it is guaranteed to find all of the nondominated solu-

tions. However, this is only suitable for relatively small problems since the number

of combinations increases exponentially with the number of means. For relatively

small problems (less than 10,000 combinations of means) this can be evaluated in

reasonable time and is therefore a good option.

3.6.3 Visualising and Selecting Architecture Solutions

The SATS GUI contains two methods for visualising solutions. The first is the

parallel coordinates graph which plots each solution as a line linking its decision

criteria scores. This is useful for determining how the different architectures per-

form, but does not give any information about which means have been selected.

For this reason, the table group is used to show which means have been chosen.

The user can access this feature by clicking a solution, which highlights the line

on the parallel coordinates plot (see Figure 3.15). Once a solution is selected, the

means chosen are highlighted in the table as shown in Figure 3.16. This allows the

user to select various different solutions, with a quick visualisation of what means

have changed.

3.6.4 Refining Solutions

SATS offers manual preference articulation via changing of the parallel coordinates

limits. For each decision criterion, the limits can be changed incrementally using

the sliders or stepped via inputting a new value in the text box.
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Figure 3.16: An example of a selected solution represented via highlighting
the chosen PF options. The highlighted means are the ones chosen for the cur-
rent solution. This approach allows a quick visual understanding of a given
solution and a method for identifying differences between solutions at the func-
tions/means level rather than just the criteria values level on the PC plot.

The customer-oriented architecture refinement approach described in Section 3.3.2

can also be used to update the parallel coordinates limits. Here the user inputs

the customer preference weightings (as a percentage) plus the number of ‘best’

solutions they want to see. The limits are then scaled according to the algorithm.

There is an option to perform a resilience analysis on a set of solutions. Once these

have been calculated, the respective values are displayed in the resilience section

when a solution is clicked/highlighted.

3.6.5 Manually Adding Architectures to the Solution Set

Sometimes it may be desirable to manually add an architecture to the solution set.

For example, if the preferred choice of the engineers is removed in the architecture

synthesis stage due to being dominated by other solutions. While generally it

is only desirable to select nondominated solutions, it may still be useful to see

how badly this solution performs against the decision criteria. Therefore SATS

has a manual input screen whereby users can select an architecture by clicking

a means for each function, as shown in Figure 3.17. Manually defined solutions

also override any incompatible means or parallel coordinates limits, showing any

potential benefits to relaxing these constraints.

3.6.6 Editing MOGA Configuration Parameters

Since SATS is a generic tool which can be used for a variety of architecture prob-

lems, the MOGA parameters such as number of iterations, pool size and truncation
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Figure 3.17: The manual solution input screen. For each function a means
is selected and the solution added to the PC plot. This allows addition of
dominated solutions which would not be generated via SATS but may be of
interest to the designer (e.g. a legacy solution).

percentage may need to be changed from the defaults. SATS provides a screen

to see how the algorithm has converged and rerun the optimization with different

parameters if needed (see Figure 3.18).

3.7 Conclusion

This chapter has demonstrated a customer-oriented approach to designing system

architectures, building upon previous work on multiobjective architecture opti-

mization. The main benefits come from the automated step of translating cus-

tomer concerns to engineering characteristic preferences, allowing a set of “best”

architectures to be generated rapidly in response to a change in customer prefer-

ences. Referring back to Figure 3.1 note that there is feedback to the customer

following the refinement step. They are able to directly explore tradeoffs and the

effect of their preferences on the solutions generated. This additional information

helps with reconsideration and refinement of the preferences until a satisfactory

solution or set of solutions is generated. This approach has been demonstrated on

architecture case studies for a PWR EC&I system and a turbofan oil system.

Providing this bridge between customer concerns and engineering concerns in-

creases efficiency for both parties. In the customer preference elicitation stage,

there is no need to consider engineering characteristics (which they may not fully
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Figure 3.18: The MOGA parameter edit screen with options to change
the number of iterations, initial solutions, parent poolsize, tournament size,
crossover probability and truncation percentage.

understand) focusing instead on the areas of importance to the customer. In the

architecture refinement stage, engineers have a clear definition of decision crite-

ria priorities, reducing the need for long, iterative discussions with the customer.

One thing to note though, is that this customer/architect bridge relies on having

a relational matrix which has to be defined with input from both parties at the

start.

In very large-scale system design, long development cycles can often result in

changes to customer preferences from earlier to later stages of the project. The

resilience analysis presented in this chapter helps engineers to select solutions

which are likely to remain a good choice, in the presence of such changes. This is

helpful for narrowing down on a final solution, as shown in the turbofan oil system

case study in Section 3.5.

One of the main barriers to successful uptake of systems engineering research is

the need for engineers to spend time learning new mathematical techniques, such

as genetic algorithm optimization. SATS solves this problem for the techniques

presented in this chapter by coding the approach into a user-friendly tool. This

only requires simple spreadsheet input files to run, opening the possibilities of

MOGA to all system architects.





Chapter 4

Cost-Effective, Controllable

Topology Optimization

Referring back to Figure 1.1, this chapter focuses on the architecture optimization

stage of the multilevel framework. Here the design is synthesised at the lower

of the two architecture abstraction levels outlined in Figure 1.2. The high-level

architecture decision making (as discussed in Chapter 3) defines the architecture

framework upon which a physical architecture topology can be designed. Follow-

ing this approach for the novel oil system, the architecture framework that resulted

from the set of customer preferences specified in Section 3.5.1 defines an oil sys-

tem architecture with variable-restrictor (actively controlled) valves. This chapter

focuses on the physical topology design, and presents an optimization-based ap-

proach to determining the number and type of components to be used, and the

best way in which to connect these in an oil flow network. The chapter is based

on research previously published in [94].

Turbofan oil systems are used to provide lubrication and cooling in the engine.

There is an increasing interest in oil system architectures which utilise electric

pumps and/or valves to give optimized control of flows to individual oil cham-

bers, leading to improved thermal management of oil and lubrication efficiency.

The challenges here lie in the tradeoff between increasing controllability and min-

imising the addition of new components, which adds unwanted production and

maintenance costs. This chapter formulates the low-level oil system architecture

design as a constrained, multi-objective optimization problem. An architecture

is described using a graph with nodes representing components and edges rep-

resenting interconnections between components. A fixed set of nodes called the

architecture template is provided as an input and the edges are optimized for a

65
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multi-criteria objective function. A heuristic method for determining similarities

between the different oil chamber flow requirements is presented. This is used in

the optimization to evaluate the controllability objective based on the structure

of the valve architecture. The methodology provides benefits to system designers

by selecting cheaper architectures with fewer valves when the need to control oil

chambers separately is small. The effect of manipulating the cost/controllability

criteria weightings is investigated to show the impact on the resulting architecture.

4.1 Oil System Overview

The oil system is a vital part of a turbofan engine, providing the dual functions of

lubrication and heat removal in the bearings and gearboxes. Components within

an oil system architecture consist of: tanks to contain oil; pumps to move oil

around the system; filters to remove debris; heat exchangers to remove heat; pipes

and flow restrictors to control flow rates; oil chambers with jets directing flow to

bearings or gears; deaerators and breathers to vent air to the atmosphere [91, 92].

This is shown graphically in the object process diagram [95] in Figure 4.1.

The pumps and flow restrictors that determine the amount of oil provided to the

bearing chambers are typically not actively controlled in Rolls-Royce Trent [91],

GE, CFM or Pratt & Whitney engines [92]. The pumps are driven by a fixed gear

in the accessory gearbox, providing an output flow proportional to the speed of the

high pressure shaft [91, 92]. This lack of oil flow controllability can lead to problems

such as exceeding oil temperature constraints, which leads to oil degradation and

higher maintenance costs. This is a particular issue during transient manoeuvres.

For example, when reducing thrust the shaft speed slows more quickly than the

temperature in the oil chambers due to the thermal capacitance of the metals.

With a reduced oil flow, but sustained high temperature, the maximum allowable

oil temperature can be exceeded [91]. Challenges such as these are likely to be

even more evident in the new generation of geared turbofan engines such as the

Pratt & Whitney PW1000G and the Rolls-Royce UltrafanTM. The power gearbox

in these engines creates substantial new demand for lubrication and cooling. The

22MW power gearbox on the PW1000G engine generates huge amounts of heat

despite being highly efficient (e.g. 1% inefficiency produces 220kW of waste heat

to be absorbed by the oil system) [96]. This motivates research into novel oil

system architectures. Of particular interest is the ability to utilise electrically

driven pumps and variable flow restrictor valves, to provide optimal flow to the

individual oil chambers at all stages of the flight cycle. This removes the need
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Figure 4.1: An object process diagram [95], showing the main objects and
processes of the oil system. Blue ellipses represent processes, green rectangles
represent objects and brown, rounded rectangles represent states of the oil.
Arrows indicate which objects are consumed by which process, and how the
processes change the state of the oil.

to constantly oversupply oil during transients and thus reduces parasitic losses on

the system efficiency. In addition, better thermal management of oil means that

properties such as viscosity can be more closely controlled, improving lubrication

system performance and increasing component life.

Choosing the controlled oil system architecture is a multi-objective problem. It

is desirable to increase the controllability of oil flows around the system, but

at the same time the production cost and weight of the system has to be kept

low. This presents a tradeoff which must be handled by the system designer

in some kind of multi-criteria decision making environment. In addition to this

there are safety, reliability and power consumption constraints which cannot be

violated. The remainder of this chapter presents a method for handling all of these

considerations in a multi-objective optimization framework.
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4.2 Problem Formulation

This section formulates the turbofan oil system architecture optimization prob-

lem mathematically. The approach is based around the method presented in [33]

whereby the architecture is described as a graph of nodes and edges. The resulting

architecture is generated from a given template of nodes, with optimization used

to determine which nodes to include and the interconnection structure between

them. The novelty of this research and the main differences from the approach in

[33] are:

1. Use of a multi-criteria objective function - this facilitates tradeoffs

between the different objectives via selection of weights. The approach in

this chapter covers 2 criteria (cost and controllability) but can be easily

extended to include others. The need for this arises from the fact that

controllability cannot be handled as a constraint as reliability is handled in

[33]. This is because there is no “necessary limit” for controllability since

none (direct drive) or full (individual valve for each chamber) could both be

acceptable depending on the priorities of the customer.

2. Application to a new real-world problem - increased controllability of

oil flow leads to improved lubrication efficiency meaning reduced friction and

decreased fuel consumption. Better management of temperature transients

also improves the life of components and oil, leading to maintenance cost

savings. However, there is also a strong pressure on engine manufacturers to

keep the production costs low by minimising the number of additional com-

ponents. This chapter presents a new approach for handling these conflicting

concerns.

Note that this approach, like [33], is an example of a connecting architectural

decision making process [28]. However, it is also similar to a downselecting process

due to the cost/controllability tradeoff leading to architectural solutions which are

a subset of the original architecture template [28].

Section 4.2.1 defines the components and architecture template of the actively

controlled oil system architecture. Section 4.2.2 discusses a heuristic approach

to quantifying the similarities between different oil chamber flow requirements.

Finally Section 4.2.3 to Section 4.2.4 present the constraints and objective function

for the optimization.
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4.2.1 An Actively Controlled Oil System

Whilst geared turbofan designs motivate the architecture optimization techniques

presented in this chapter, the proposed methods are being validated against a

baseline design of a conventional 3-shaft turbofan engine. The key components

which make up a typical turbofan oil system architecture are outlined in [91].

These include: tanks for storing oil; mechanically driven pumps for moving oil

around the system; filters for removing debris from the oil; heat exchangers for

removing heat from the oil; pipes for directing oil flow around the system; flow

restrictors for changing the velocity and pressure of oil flows around the system;

oil chambers with jets directing flow to bearings or gears; and dearators/breathers

to vent air to the atmosphere. The main differences with an actively controlled

architecture are the addition of variable restrictor valves and electrically driven

pumps. These modifications allow the oil flow to be controlled independently of

the engine shaft speed.

Following the approach taken by [19, 33] the oil system architecture is expressed

as a graph with nodes {N1, · · · , Nn} ∈ N where N is partitioned into sub-

sets {T, FP,HE, V,OC, SP} corresponding to the 6 component groups outlined

in Table 4.1. The interconnection matrix E is defined as in equation (2.3). The

architecture template is given in Figure 4.2. In this template the connections be-

tween the tank-pumps and oil chambers-scavenge pumps are fixed, i.e. eT,FP = 1

and eOCi,SPi
= 1, eSPi,FP = 1, ∀ i = {1, · · · , 7 }.

Assumptions

The following assumptions have been made in the formulation of the problem:

• The feed pump is an electrically-driven pump.

• Some components such as filters and the breather are essential in any archi-

tecture and therefore these are taken out of this architecture optimization for

simplicity. The remaining components which are considered in this problem

are given in Table 4.1.

• Oil connections to oil chambers are parallel.

• Component sizes are fixed. Architectures are composed by connecting com-

ponents according to rules defined in Section 4.2.3. Some components from

the template may not be used in a given architecture.
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Figure 4.2: An architecture template for the actively controlled oil system.
Connections between the tank, feed pump (FP), oil chambers (OC) and scavenge
pumps (SP) are fixed. The heat exchanger (HE) and valve connections are yet
to be determined by the optimization algorithm. Any HE or valve nodes which
are not connected to other nodes by the optimization algorithm are not included
in the final architecture.

Table 4.1: The component groups, functions and maximum numbers of in-
stances.

Component Function No.
Tank Contain oil 1

Feed pump
Supply oil to the oil
chambers

1

Heat exchanger Remove heat from oil 4

Valve
Control the oil flows
to the individual oil
chambers

7

Oil chambers
Supply oil to engine
bearings or gears

7

Scavenge pumps
Remove oil from oil
chamber sumps

7
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Figure 4.3: A schematic of a 3-shaft turbofan engine with low pressure
shaft (blue), intermediate pressure shaft (yellow), high pressure shaft (red) and
internal/step-aside/accessory gearboxes (green). Roller bearings (black rect-
angles) and ball bearings (black circles) are contained in the 7 oil chambers
OC 1 to OC 7 (grey boxes). The engine regions (compressor, turbine, accessory
gearbox) are highlighted by the dashed, grey boxes.

4.2.2 Quantifying Similarities Between Oil Chamber Flow

Requirements

The location of the seven oil chambers is based on a typical 3-shaft turbofan

engine as outlined in [91] and shown in Figure 4.3. As mentioned previously, the

motivation for using an oil system architecture with valves is to better control

the flow of oil to the individual oil chambers. There is also a need to keep the

production costs and complexity of the architecture low. Therefore it is desirable

to control multiple oil chambers with a single valve when their flow requirements

are similar throughout the flight cycle.

The similarities between the oil flow requirements are contained in a matrix Cfr ∈
SRm×m, where SRm×m is the set of real valued symmetric matrices of size m×m
and m is the number of oil chambers.

Cfr :=


0 c1,2 c1,3 · · · c1,m

c2,1 0 c2,3 · · · c2,m

c3,1 c3,2 0 · · · c3,m

...
...

...
. . .

...

cm,1 cm,2 cm,3 · · · 0

 . (4.1)
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The elements ci,j are a measure of the independence of oil chambers i and j with

a larger magnitude indicating a greater need to control their oil flows separately.

The values of ci,j can be assigned through a variety of methods. For example, if

there was a set of optimized flow conditions for each oil chamber over the flight

cycle, these could be analysed to determine the statistical correlation between

chambers. These correlations would be used to populate the matrix Cfr.

Algorithm 3 Defining ci,j values.

1: for all ci,j do
2: if i == j then
3: Set ci,j = 0
4: else
5: Set ci,j = 1
6: if i and j are in different parts of the engine (compressor/turbine/gear-

boxes) then
7: ci,j = ci,j + 1
8: end if
9: for each shaft (HP/IP/LP) in i and j do

10: if shaft is unique to either chamber i or chamber j then
11: ci,j = ci,j + 1
12: end if
13: end for
14: end if
15: end for

In the absence of these optimized flow conditions, a more heuristic approach has

to be taken, as outlined in Algorithm 3. Lines 2 to 5 correspond to the fact that

there will be at least some difference between oil flow requirements in different

chambers. Lines 6 to 8 come from the fact that oil chambers are more likely to

have similar flow requirements to other chambers in the same engine region, due to

coupled temperature transients, pressures and flow rates. Lines 9 to 13 correspond

to the fact that any oil chamber bearings or gears which do not have a physical

connection can rotate at independent speeds and hence their optimum oil flows

may vary more greatly.

Using Algorithm 3 for the 3-shaft civil turbofan example in Figure 4.3, Cfr eval-

uates to:
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Cfr =



0 1 4 4 3 5 5

1 0 4 4 3 5 5

4 4 0 3 4 2 2

4 4 3 0 4 3 3

3 3 4 4 0 4 4

5 5 2 3 4 0 1

5 5 2 3 4 1 0


. (4.2)

Note that Algorithm 3 is a suggested set of rules for determining similarities, but

some designers may be interested in other factors. For example, oil chambers with

different bearing types (ball or roller) may have less similarity between flow re-

quirements. Additionally, a designer may want to single out a specific oil chamber

(OC i) to have an independent valve based on some experience or knowledge about

particular oil flow challenges in that chamber. This could be achieved by adding

a large number (for example, 100) to the off-diagonal elements in the ith row and

column.

The multi-criteria optimization approach presented in this chapter will work re-

gardless of the method in which Cfr is populated. However, since the similarities

matrix is used to generate the controllability objective scores, a sensible choice of

Cfr values will be required to produce sensible architectures.

4.2.3 Defining Architecture Constraints

Constraints are introduced to the architecture optimization to ensure system re-

quirements are met. These requirements may define either required/forbidden

interconnections or some sort of energy balance that must be satisfied.

Interconnection Constraints

There are a variety of interconnection constraints which can be expressed formally

as:

|G1|∑
i=1

eG1i,G2j � c ∀j ∈ {1, · · · , |G2|}, c ∈ N, (4.3)
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where G1, G2 ∈ {T, FP,HE, V,OC, SP} are component partitions and � ∈ {<
,≤, >,≥,=}. For example, the requirement “each oil chamber shall be connected

to exactly one valve” is defined as:

|V |∑
i=1

eVi,OCj
= 1 ∀j ∈ {1, · · · , |OC|}. (4.4)

For some component groups there may be constraints on connections with up-

stream components, depending on the connections made downstream. These can

be expressed formally as:

 |G1|∑
i=1

eG1i,G2j � c

 =⇒

 |G3|∑
k=1

eG3k,G2j � c

 , ∀j ∈ {1, · · · , |G2|}. (4.5)

where A =⇒ B indicates A implies B. For example, the constraint “if a valve is

connected to one or more oil chambers, it shall also be connected to exactly one

heat exchanger” is given by:

|OC|∑
i=1

eOCi,Vj > 0

 =⇒

|HE|∑
k=1

eHEk,Vj = 1

 , ∀j ∈ {1, · · · , |V |}. (4.6)

Likewise “if a heat exchanger is connected to a valve, it must also be connected

to the feed pump” is expressed as:

 |V |∑
i=1

eVi,HEj
> 0

 =⇒
(
eFP,HEj

= 1
)
, ∀j ∈ {1, · · · , |HE|}. (4.7)

These interconnection requirements are contained in the constraint set RI .

Energy Balance Constraints

In the component library there are 4 different off-the-shelf heat exchangers each

with different maximum flow rates (in arbitrary units) contained in vector flowHE.

flowHE =
[

300 200 200 500
]
. (4.8)
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The oil chambers have maximum flow demands given by:

flowOC =
[

30 40 50 100 80 20 20
]
. (4.9)

One or more heat exchangers can be used in the architecture, so long as they meet

the downstream maximum flow demand of the oil chambers. This is termed RB,

an energy balance constraint as in [33], and is defined formally as:

|V |∑
i=1

|OC|∑
j=1

(eHEk,Vi)(eVi,OCj
)(flowOCj

) ≤ flowHEk
, ∀k = {1, · · · , |HE|}. (4.10)

In this research, the interconnection and energy requirements have been manually

converted from natural language to formal, programmable constraints. There is

potential for a tool which allows requirements to be defined using a limited set

of natural language expressions which are then automatically coded to formal

requirements for the optimization problem. The challenges here revolve around

getting a set of expressions which is large enough to capture any requirement that

the user may wish to specify.

Safety Constraints

A key constraint for a controlled oil system is safety. If any valves become blocked

leading to an interrupt in oil flow there could be serious consequences. It is assumed

here that appropriate safety measures are incorporated into the physical design of

the valves. For example, they could be sized to ensure that the minimum oil flow

rate is always maintained, with just the upper range of flow controlled to optimize

flow.

Since these safety concerns relate to the design of the valves themselves rather than

the system architecture, they are not incorporated into the optimization algorithm

for the oil system. In other applications, such as those whereby redundant compo-

nents need to be used to achieve a certain level of reliability, safety constraints will

need to be programmed into the architecture optimization as presented in [19, 33].
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4.2.4 Objective Function

Architectural Drivers / Decision Criteria

Whatever systems architecting approach is taken, a key task is to identify the

architectural drivers. A 5-step method for identifying the architectural drivers

by analysing and refining stakeholder requirements is presented in [62]. These

drivers are the motivating features of an architecture which correspond to either

the constraints or decision criteria in more formal optimization-based design. For

example, in [33] the architectural drivers are cost and complexity (decision criteria

in the objective function) and reliability (one of the constraints).

In the case of the oil system architecture problem presented in Section 4.2 to

Section 4.3, the architectural drivers/decision criteria are:

1. Increasing controllability of oil flow to the individual oil chambers.

2. Minimising system architecture production cost.

These are both handled in the objective function described in Section 4.2.4. Min-

imising cost is common in almost all applications. The meaning of increasing con-

trollability is less clear since the term controllability has many definitions. Some

discussion of this is given in [97] which notes that often the term controllability

is used to mean state-controllability (the ability to move a system from an initial

state to an arbitrary point in the state space in finite time). If we consider the

exit oil temperature at each of the oil chambers as states in our system, then

the ability to arbitrarily move to any point in the state space requires uniquely

controllable flow to each chamber. This would require a unique valve for each oil

chamber. In this chapter the term controllability relates more closely to (input-

output) controllability which is linked to performance [97]. In the case of the oil

system, good performance can be achieved when the flow to oil chambers can be

controlled to manage oil temperature peaks during transients, without the need

to oversupply oil during steady-state conditions. Therefore if two oil chambers

share similar oil flow requirements, it may be possible to get good input-output

controllability (good performance) without having full state-controllability. This

would allow the production cost of the oil system to be reduced by using fewer

valves.

As previously noted, there are two decision criteria in the objective function: cost

and controllability.

f := wcostfcost + wcontrolfcontrol. (4.11)
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Since these are two opposing objectives, the tradeoff between them is handled

through the introduction of weights wcost and wcontrol. Section 4.3.2 investigates

the effect of varying the weights on the resulting architecture. This section shows

how the individual objective functions fcost and fcontrol are constructed.

Cost

This is dependent on the production cost of the valves and heat exchangers which

are used in the architecture and their interconnections:

fcost :=

|V |∑
i=1

δVi

CVbase +

|OC|∑
j=1

eVi,OCj
flowOCj

CVadd.

+

|HE|∑
i=1

δHEi
CHEi

, (4.12)

where,

δi :=


1 if

|N |∑
j=1

ei,j > 0,

0 otherwise.

(4.13)

The production costs of the four potential heat exchangers (in some monetary unit)

are contained in vector CHE. This represents the fact that different off-the-shelf

components will utilise different technologies and hence cost different amounts.

There is also a rough correspondence between these costs and the flow capacities

contained in (4.8).

CHE =
[

4000 3000 3000 10000
]
. (4.14)

In this chapter the valves are all assumed to be equal cost (CVbase = 5000) which

represents the basic cost of manufacturing a valve regardless of size. It is also

assumed that there is an additional cost added for each oil chamber that is con-

nected to a valve depending on the size of the maximum flow requirements to

that chamber (flowOCi
· CVadd.) where CVadd. = 100. This represents the additional

material cost in larger valves with greater flow capacity. Using this cost model,

the cost of the valve part of the architecture is 69,000 units for a 7 valve system,

and 39,000 units for a 1 valve system. This confirms that the more valves used,

the higher the cost.
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Controllability

The effect of the combination of operations in equation (4.15) is to extract and

sum the relevant values from the flow interconnections matrix Cfr based on which

oil chambers are controlled via the same valves.

fcontrol :=

|V |∑
i=1

evi,OC


 1

...

1

⊗ evi,OC
 • Cfr, (4.15)

where ⊗ denotes the Kronecker product and • denotes the Hadamard product.

Consider an example with 4 oil chambers and 4 potential valves given in (4.16).

In this example the first three oil chambers are controlled by one valve and the

last oil chamber by another separate valve as indicated in eV,OC .

eV,OC =


1 1 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , Cfr =


0 1 4 4

1 0 4 3

4 4 0 2

4 3 2 0

 . (4.16)

Evaluating fcontrol using equation (4.15) gives a sum of the bold values in Cfr:

fcontrol = (1 + 4 + 1 + 4 + 4 + 4 + 0) = 18. (4.17)

Note that according to this equation, a higher value indicates worse controllability,

so the objective is to minimise fcontrol.

Normalization

As shown in Section 4.2.4, the criteria do not share the same units. Therefore they

are normalized by dividing each criterion score by the maximum possible value for

that criterion:

f̂cost =
fcost

fcostmax

, f̂control =
fcontrol

fcontrolmax

. (4.18)

The maximum value for the cost objective was found to be fcostmax = 79, 000,

when using all 7 valves and the most expensive heat exchanger (HE 4). The

maximum value for the controllability objective was found to be fcontrolmax = 146,
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when controlling all 7 oil chambers with a single valve. These normalized criteria

are then used in the overall objective function as defined in equation (4.19).

4.3 Results

After defining the constraints R and objective function f the optimization problem

is expressed as:

min
E∈Bn×n

f := wcostf̂cost + wcontrolf̂control,

subject to R := {RI , RB} .
(4.19)

Since the matrix variable E only contains values in the Boolean set B := {1, 0}
this is a specific type of integer program. This has been solved using the mat-

lab toolbox yalmip [51] implementing a global branch-and-bound algorithm with

upper solver fmincon [93] and lower solver Gurobi [98].

4.3.1 Generated Architectures

The resulting architecture depends on the selection of weights wcost and wcontrol

as discussed in Section 4.3.2. Setting a strong preference for reducing cost results

in a 1-valve architecture as shown in Figure 4.4. At the other extreme, when

controllability is very highly weighted the optimization generates a 7-valve system

as shown in Figure 4.5.

Selecting between these two extremes produces architectures with 2, 3, 4 or 5

valves (e.g. the 3-valve example in Figure 4.6). There are two things to note here.

Firstly the 3-valve architecture contains two heat exchangers. Whilst the fourth

heat exchanger has a flow capacity large enough to supply all of the oil chambers it

is also more expensive (see (4.14)). Therefore the algorithm has chosen to use two

cheaper heat exchangers (2 and 3). This was the case for the entire range of criteria

weightings investigated in Section 4.3.2, apart from the architectures with a single

valve. There is a requirement that “if a valve is connected to an oil chamber it

shall be connected to exactly one heat exchanger”. Therefore when there is a single

valve controlling flow to all oil chambers only one heat exchanger can be used and

heat exchanger 4 is the only one with sufficient capacity. A cheaper solution could

be gained by allowing connection of multiple heat exchangers to a single valve in

parallel. This has not been implemented because the physics of mixing multiple
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Tank 1

FP 1

HE 1 HE 2 HE 3 HE 4

Valve 1 Valve 2 Valve 3 Valve 4 Valve 5 Valve 6 Valve 7

OC 1 OC 2 OC 3 OC 4 OC 5 OC 6 OC 7

SP 1 SP 2 SP 3 SP 4 SP 5 SP 6 SP 7

Figure 4.4: An example oil system architecture with 1 valve and 1 heat ex-
changer. The tank, fuel pump, oil chambers, scavenge pumps and their connec-
tions are fixed by the architecture template.

oil flows at the inlet to the valves would make it hard to quantify the state of

the oil (e.g. temperature or viscosity) which is required for effective control. This

constraint only has a small effect on the overall size of the search space, since

architectures with two or more valves are not constrained to only using 1 heat

exchanger (as shown in Figure 4.6).

The second point to note is that the architecture in Figure 4.6 is a sensible coupling

of the oil chambers for a 3-valve system. Referring back to Figure 4.3 it is clear

that the two LP/IP compressor chambers are controlled by the first valve, the two

gearbox chambers and the gearbox/HP compressor chamber are controlled by the

second valve and the two turbine chambers are controlled by the third valve.



Chapter 4. Cost-Effective, Controllable Topology Optimization 81

Tank 1

FP 1

HE 1 HE 2 HE 3 HE 4

Valve 1 Valve 2 Valve 3 Valve 4 Valve 5 Valve 6 Valve 7

OC 1 OC 2 OC 3 OC 4 OC 5 OC 6 OC 7

SP 1 SP 2 SP 3 SP 4 SP 5 SP 6 SP 7

Figure 4.5: An example oil system architecture with 7 valves and 2 heat
exchangers. The tank, fuel pump, oil chambers, scavenge pumps and their
connections are fixed by the architecture template.

4.3.2 Investigating the Trade-offs Between Cost and Con-

trollability

The solutions presented in Section 4.3.1 are examples of optimal solutions on the

Pareto front, as shown in Figure 4.7. Note that there is a clear tradeoff between

these criteria: improvement can only be achieved for controllability by increasing

the cost and vice versa. All of the architectures shown in Figure 4.7 have some

form of active control (1 valve or more), but none of the oil system architectures

reviewed in the literature have controllable oil flows [91, 92]. This means they are

cheaper to produce but have no controllability. Hence they would appear beyond

the top-left corner of this tradeoff plot.

The solution from the Pareto front that is generated by the optimization will

vary depending on the values of the weights wcost and wcontrol in the objective

function (4.19). Some discussion of how to choose weights is given in [81]. In

particular it presents a method for determining overall criteria weights from a set
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Tank 1

FP 1

HE 1 HE 2 HE 3 HE 4

Valve 1 Valve 2 Valve 3 Valve 4 Valve 5 Valve 6 Valve 7

OC 1 OC 2 OC 3 OC 4 OC 5 OC 6 OC 7

SP 1 SP 2 SP 3 SP 4 SP 5 SP 6 SP 7

Figure 4.6: An example oil system architecture with 3 valves and 2 heat
exchangers. The tank, fuel pump, oil chambers, scavenge pumps and their
connections are fixed by the architecture template.

of weights given by multiple stakeholders. For this research, there is no access to

multiple stakeholders to implement such a method. However, since the number

of decision criteria is small it is possible to investigate the entire range of weight

ratios wcost/wcontrol that produce architectures with 1 to 7 valves. This tradespace

is represented in Figure 4.8. Since there are only 7 discrete possibilities for the

number of valves in the architecture, the plot in Figure 4.8 shows a stepped line.

One thing to note is the fact that there is a jump from a 7-valve architecture

to a 5-valve architecture. The reason for this is clear when referring back to the

matrix Cfr .

Cfr =



0 1 4 4 3 5 5

1 0 4 4 3 5 5

4 4 0 3 4 2 2

4 4 3 0 4 3 3

3 3 4 4 0 4 4

5 5 2 3 4 0 1

5 5 2 3 4 1 0


. (4.20)
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Figure 4.7: Architecture solutions generated via the optimization approach
with the goal of minimising both criteria (squares). Moving from left to right
on the x-axis, these represent solutions with 1, 2, 3, 4, 5 and 7 valves. Note
that the optimization algorithm finds nondominated solutions on the Pareto
front, meaning that improvement in one criterion cannot be achieved without
producing a worse score for the other criterion. A few solutions have been
generated randomly, without taking into account the objective function, to show
the principle of dominated solutions (crosses).

Figure 4.8: The effect of varying the cost to controllability weight ratio on
the number of valves in the resulting architecture.
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Note the 1s highlighted in bold in the top-left and bottom-right corners. The

similarities between the flow requirements of OC 1 and OC 2 are identical to the

similarities between the flow requirements of OC 6 and OC 7. Therefore as soon

as the weight ratio wcost/wcontrol is great enough that it is worth controlling OC 1

and OC 2 with a single valve, the same is true for OC 6 and OC 7. This explains

why the optimization never produces a 6-valve architecture.

Another observation is the fact that the stepped line shows a roughly exponential

decrease. The reason for this can be explained through considering the effect of

removing valves from the system on the values of the objective functions fcost

and fcontrol. Moving from a 7 to 6 valve architecture there is a decrease in the fcost

due to the removal of 1 valve. However, as two oil chambers become controlled

by a single valve they both suffer a reduction in controllability. Similarly when

moving from the 6-valve architecture to a 5-valve architecture fcost continues to

decrease in a linear fashion, whilst the controllability of all three oil chambers goes

down. Since fcontrol decreases more rapidly than the reduction in fcost, the weight

ratio wcost/wcontrol has to increase exponentially to produce architectures with the

smallest number of valves.

A sensitivity analysis has also been performed on the parameters of the cost model

in equation (4.12). The net effect of increasing either CVbase or CVadd is that a

smaller wcost/wcontrol ratio is needed to generate an architecture with the same

number of valves. However, the pattern of the exponential stepped decrease shown

in Figure 4.8 remains the same.

For simplicity this research has only considered the two decision criteria of cost

and controllability. This allows a 2-dimensional plot to be used to visualise the

tradespace. However, a more thorough optimization could consider other criteria

such as weight, safety or reliability. In this case, a multi-criteria visualisation

tool such as parallel coordinates [58] would be needed to investigate the effects of

varying the criteria weightings.

4.4 Conclusion

This chapter has presented a multi-criteria optimization approach to the design

of high-level turbofan oil system architectures. A key development is the ability

to analyse the impact of using common actuators for multiple oil chambers on

the controllability and cost of the system. This has been achieved through use of
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a flow requirement similarities matrix which is used to identify which oil cham-

bers should or should not be controlled together. In this research the matrix has

been populated through use of a heuristic algorithm but the optimization frame-

work would remain valid if the matrix was populated using other methods. The

approach has produced sensible results and has demonstrated the ability for trade-

offs to be investigated through variation of weights in the objective function. The

optimization yields more suitable architectures than other computational methods

investigated, such as a random coupling of oil chambers to valves. The architec-

tures generated also match with the best architectures determined subjectively by

experienced engineers. This supports the method used and provides an additional

objective evidence-base upon which to make decisions.

The techniques developed have been validated on a baseline 3-shaft turbofan oil

system design. This motivates the use of the approach for future geared turbofan

oil system designs. Other potential case studies are alternative controlled flow

networks such as smart building water-heating control or smart traffic systems.

The graph-based approach to modeling system architectures and optimizing con-

nections between nodes also has wider applicability to any system with a set of

interconnected components.

The optimization-based approach presented in this chapter ensures that designs

are verified and guaranteed to satisfy the formal specification. However, it is worth

noting that there is a human element to formulating the problem in the choice of

constraints and objective function. This means the resulting architecture will

be sensitive to the problem formulation choices made by the system designers.

Therefore a procedure for validation of the specification would also be required

when using these techniques in practice.





Chapter 5

Simulation-Based Control

Synthesis With Formalized

Requirements

Referring back to the multi-level framework introduced in Chapter 1, there are

multiple distinct platforms as shown in Figure 1.1. Below the top-level require-

ments, the first design platform is the architecture optimization platform. This

is further split in Figure 1.2 to high-level (Chapter 3) and low-level (Chapter 4)

architecture design. Following the architecture design, the next platform is the

control synthesis stage, which is explored in this chapter.

The approach taken here is to use simulation-based optimization of control param-

eters, to maximise satisfaction of a set of formal requirements. A key contribution

of this research lies in extending the principles of quantitative satisfaction of signal

temporal logic (STL) formulae to a multiobjective formulation called multiSTL.

When multiple STL sub-formulae are joined via conjunction to make a system-

level STL formula, the quantitative semantics of STL defined in [69] state that

the system-level margin of satisfaction is the minimum of the sub-formula mar-

gins. This reduces a rich set of information into a single measure which may

miss some of the advantages/disadvantages of different solutions. In multiSTL

each sub-formula margin is dislayed on a parallel coordinates plot, which allows

tradeoffs between different sub-formulae to be analysed. This can also be used to

highlight where relaxing of some requirements might yield better performance in

other areas.

The case study used to illustrate these techniques is the novel turbofan oil sys-

tem which is described in more detail in Chapter 4. The architecture design

87
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Formalized STL
Requirements

Evaluate
STL Margins

Simulation

Initial Control
Parameters

Simulation
Model

Tune Control
Parameters

Stop?

Final Control
Parameters

N

Y

Figure 5.1: Simulation-based tuning of control parameters for optimal STL
requirement margins. Buckets represent models, blocks represent processes,
diamonds represent decisions and blank text represents inputs/outputs. The
process is generic and could be applied to various different types of controllers,
using different margin analysis techniques and stopping criteria. The grey block
highlights where the multiSTL developments of this chapter fit into the overall
synthesis.

stage only considers very simple static models, but the control synthesis requires

a higher-fidelity dynamic model (as derived in Section 5.2) in order to evaluate

performance. In Section 5.3 the performance requirements for the controller are

converted from natural language to assume-guarantee contracts specified in STL.

Section 5.4 performs the simulation-based optimization and uses the multiSTL

framework to investigate tradeoffs between sub-formulae.

5.1 Simulation-Based Control Synthesis with

multiSTL

As mentioned in Section 2.5, control synthesis from formal STL specifications has

been achieved with model predictive control in [74, 76, 77]. The main problem

with this approach is that the resulting mixed integer linear program optimization

is NP-hard, which makes it unsuitable for safety-critical applications or systems

which need to update control signals in short time intervals, such as aerospace

systems. Therefore, for this type of system it may be desirable to synthesise more

simple controllers that can be implemented in real-time, but which still perform

well in simulations against a formal STL specification.

The generic structure of a simulation-based control synthesis is outlined in Fig-

ure 5.1. Note that this is not specific to any particular control law. For example,
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the control parameters tuned could be PID gains, full state-feedback matrix val-

ues, lead/lag pole/zero locations etc (simple gain control is used in Section 5.4).

There are also various options for the parameter tuning and stopping criterion,

such as a fixed number of iterations of a genetic algorithm, or an exhaustive search

of a discretised parameter space (as performed in Section 5.4).

The key part of the control synthesis (highlighted in grey in Figure 5.1) is calculat-

ing how well a given set of control parameters perform against the requirements.

When requirements are specified formally in STL, this can be achieved by analysing

the quantitative satisfaction as defined in [69]. This gives a measure of by how

much an STL formula is satisfied or a margin of satisfaction (see Section 2.4.3 for

more information).

Often the requirements for a control system will be a set of upper/lower bounds

on states, inputs or outputs of the system joined together via conjunction (as in

equation (5.18) in Section 5.3.2). For example:

ϕsys = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕN . (5.1)

In this case the quantitative satisfaction for the whole system ρ(ϕsys) is defined in

[69] as:

ρ(ϕsys) = min (ρ(ϕ1), ρ(ϕ2), · · · , ρ(ϕN)) . (5.2)

This means that the margin of satisfaction for the whole system is the minimum of

the margins of satisfaction for the individual signals. The problem with using this

definition is that it loses information about performance for all but the worst signal.

When comparing multiple simulation results this can make it diffcult to determine

which is the ‘best’ set of control parameters. Consider the simple example in

Figure 5.2. Going by equation (5.2) the quantitative satisfaction for the two

simulations in the figure is:

ρ(ϕsim1) = min(−1, 4, 4) = −1,

ρ(ϕsim2) = min(−1, 2, 2) = −1.
(5.3)

This states that the control parameters for simulation 1 are equally as good as the

control parameters for simulation 2. However, since simulation 1 performs better

against the second two sub-formulae, it dominates the performance of simulation

2. This means it is a better designed system.

Another issue with taking the minimum margin is demonstrated in Figure 5.3. In

this figure there is a tradeoff between the two simulations. Simulation 1 has greater

margins of satisfaction for ϕ2 and ϕ3 whilst simulation 2 has a bigger margin for ϕ1.
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Figure 5.2: A simple multiSTL parallel coordinates plot for two simulations.
Note that while the minimum margin is the same for both systems (ρ(ϕ1) = −1),
the second simulation has lower margins for both ϕ2 and ϕ3. Therefore the
performance of simulation 1 dominates that of simulation 2.

Figure 5.3: A simple multiSTL parallel coordinates plot for two simulations.
Note that the minimum margin for simulation 2 is worse than for simulation 1
(0.5 and 2 respectively). However, simulation 2 performs better for ϕ2 and ϕ3.
Therefore there is a tradeoff in performance between ϕ1 vs ϕ2 and ϕ3.

Using the rules defined in equation (5.2) the overall system margins are calculated

as:
ρ(ϕsim1) = min(2, 1, 3) = 1,

ρ(ϕsim2) = min(0.5, 3.5, 4.5) = 0.5.
(5.4)

This indicates that simulation 1 is superior to simulation 2, but that is only the

case if ϕ1 is more important to the system stakeholders than ϕ2 and ϕ3.
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multiSTL - Extending Quantitative Satisfaction To Multiple

Dimensions

The issues highlighted in Figure 5.2 and Figure 5.3 are the same problems that

led to the development of the multiobjective optimization techniques discussed in

Section 3.2. The key difference in multiobjective optimization is the concept of

Pareto-optimality. This refers to the fact that when there are multiple objectives,

there is no single ‘best’ solution. Rather there is a set of solutions on the Pareto

front which are all better than each other in some respect [53].

To get from the Pareto-optimal set to a single solution, a system designer is re-

quired to narrow down on a particular area of the Pareto front. In Chapter 3 this

is carried out using a parallel coordinates plot, as shown in Figure 3.5. This has

various advantages:

1. Parallel coordinates are a visual way of displaying large amounts of multidi-

mensional data.

2. All individual decision criteria values are visualised - not just a combined

value.

3. Tradeoffs between decision criteria are clear - both for the entire solution set

and for individual solutions.

4. Refining the Pareto set to a single solution can be achieved via reducing the

upper/lower bounds on decision criteria (progessive preference articulation).

For these reasons parallel coordinates are used in this research to display the in-

dividual STL sub-formula margins (ρ(ϕ1), · · · , ρ(ϕN)) for each simulation/set of

control parameters. This approach is termed multiSTL and is demonstrated in

the simple plots of Figure 5.2 and Figure 5.3. The approach taken to determine

whether a solution is on the Pareto-front is the Pareto-based ranking as discussed

in Section 3.2.3. As in the architecture optimization, simulations which are domi-

nated by another (i.e. have lower margins for every STL sub-formula) are removed

from the candidate set of control parameters. Note that while in Chapter 3 the

aim was to minimise decision criteria scores, the aim here is to maximise the sub-

formula margins. Therefore, when refining the candidate set of control parameters

to a single solution, lower-bounds on the parallel coordinates plot are set, rather

than upper-bounds.
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The control synthesis approach presented in this section is applied to the novel

oil system case study in Section 5.4, after defining the model (Section 5.2) and

formalizing the requirements to STL (Section 5.3).

5.2 Developing an Oil System Simulation Model

A turbofan oil system consists of various different components such as tanks,

pumps, valves, de-aerators, filters, heat exchangers amongst others [91, 92]. Fol-

lowing the more simplified architecture outlined in Chapter 4, the system modeled

here contains only a tank, feed pump, heat exhcanger, variable restrictor valves

(VRVs), oil chambers and scavenge pumps, as outlined in Figure 5.4. The control

system architecture uses sensors to measure the oil chamber scavenge temperatures

and controls the oil flows by actuating the VRVs and pumps.
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Figure 5.4: A schematic of an actively-controlled turbofan oil system. Solid
lines indicate cold (blue), warm (orange) and hot (red) oil flows. Dashed lines
indicate control system signals from sensors or to actuators.

The following sections cover the thermal modelling of the components in this

system, assuming that the pumps and valves only affect the oil flow rates rather

than temperatures.
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5.2.1 Oil Tank Modelling

The oil tank can be modelled using the thermal energy balance equation Heatin =

Heatout + Heatstored. More formally this is defined as,

Hin(t) = Hout(t) +Hstored(t). (5.5)

𝑊𝑠𝑐𝑎𝑣 , 𝑇𝑠𝑐𝑎𝑣

𝑊𝑜𝑖𝑙 , 𝑇𝑡𝑎𝑛𝑘

𝑅𝑡𝑎𝑛𝑘

𝐶𝑡𝑎𝑛𝑘 , 𝑇𝑡𝑎𝑛𝑘

Figure 5.5: A simple diagram of an oil tank.

Considering a simple tank with equal inlet and outlet flow rates as outlined in

Figure 5.5:

• Hin(t) ∈ R is provided by the hot oil coming from the combined scavenge

line.

• Hout(t) ∈ R is the heat lost through the tank walls to the atmosphere.

• Hstored(t) ∈ R is the heat transferred to the oil in the tank.

This gives:

Woil(t) cpoil (Tscav(t)− Ttank(t)) =
Ttank(t)

Rtank

+ cpoil mtank
d Ttank(t)

dt
, (5.6)

which rearranges to give the first order equation for the oil tank:

d Ttank(t)

dt
=
Woil(t)

mtank

(Tscav(t)− Ttank(t))− Ttank(t)

Rtank cpoil mtank

. (5.7)
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where Ttank(t) and Tscav(t) are the temperatures of the oil in the tank and the scav-

enge line respectively, Woil(t) is the mass flow rate of the oil (assuming Woil(t) =

Wscav(t) = Wfeed(t)), Rtank is the thermal resistance of the tank walls, Ctank is the

thermal capacity of the tank and cpoil is the specific heat of the scavenge oil.

5.2.2 Fuel-Oil Heat Exchanger Modelling

The fuel-oil heat exchanger is used to transfer heat from the hot oil to the cold

fuel. This serves a dual purpose of keeping the oil temperature within the specified

operating range, and preventing ice from forming in the fuel system [91, 92]. This

heat flow Hoil−fuel(t) ∈ R is given by:

Hoil−fuel(t) = Uoil−fuel Aoil−fuel ∆Toil−fuel(t), (5.8)

where Uoil−fuel is the heat transfer coefficient and Aoil−fuel is the oil-metal contact

surface area. For counter-current heat exchangers ∆Toil−fuel(t) is given by the

logarithmic mean temperature difference (LMTD):

∆Toil−fuel(t) =
(Ttank(t)− Tfuelout(t))− (Tfeed(t)− Tfuelin(t))

log
(
Ttank(t)−Tfuelout (t)

Tfeed(t)−Tfuelin (t)

) . (5.9)

The most commonly used heat exchanger configuration in gas turbines is a tube-

and-shell type as shown in Figure 5.6. Since this is not a true counter-current

heat exchanger, a correction factor Fc has to be applied. This correction factor

can be taken from lookup tables published by the Tubular Exchanger Manufactures

Association (TEMA), depending on factors such as the number of tubes, passes

and baffles [99–101].

The outlet temperature of the oil is then given by:

Tfeed(t) = Ttank(t)−Uoil−fuel Aoil−fuel

Woil(t)cpoil
Fc

(Ttank(t)− Tfuelout(t))− (Tfeed(t)− Tfuelin(t))

log
(
Ttank(t)−Tfuelout (t)

Tfeed(t)−Tfuelin (t)

) .

(5.10)

Similarly, the fuel outlet temperature is given by:

Tfuelout(t) = Tfuelin(t)+
Uoil−fuelAoil−fuel

Wfuel(t)cpfuel
Fc

(Ttank(t)− Tfuelout(t))− (Tfeed(t)− Tfuelin(t))

log
(
Ttank(t)−Tfuelout (t)

Tfeed(t)−Tfuelin (t)

) .

(5.11)
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Figure 5.6: An example of a tube-and-shell heat exchanger. The tube flow
is passed through a group of tubes running through the shell. Heat transfer is
achieved by directing the shell flow around the tube group via baffles.

5.2.3 Heat To Oil Modelling

The purpose of the engine oil is to lubricate the bearings or gears in the oil cham-

bers and to remove the heat caused by friction in these chambers. This can be

considered as a heat exchanger with heat flow similar to that given in equation

(5.8):

Hmetal−oil(t) = Umetal−oilAmetal−oil ∆T (t), (5.12)

where Umetal−oil is the heat transfer coefficient, Ametal−oil is the oil-metal contact

surface area and ∆T (t) = (Tmetal(t) − Tfeed(t)). This heat flow can be used to

calculate the resulting scavenge oil temperature based on the feed oil temperature

and feed oil flow:

Tscav(t) = Tfeed(t)+
Hmetal−oil(t)

Woil(t) cpoil
= Tfeed(t)+

Umetal−oilAmetal−oil (Tmetal(t)− Tfeed(t))

Woil(t) cpoil
.

(5.13)



Chapter 5. Simulation-Based Control Synthesis With Formalized Reqs. 96

5.2.4 Oil Chamber Metal Modelling

Starting again from the energy balance equation:

Heatstored = Heatin − Heatout = Hg(t)− (Hmetal−oil(t) +Hatmosphere(t)), (5.14)

where Hg(t) is the heat generated via the ambient temperature and friction forces,

Hmetal−oil(t) is the heat given to the oil as specified in equation (5.12) andHatmosphere(t)

will be assumed to be negligible for this case study. Hg(t) is defined as in [102, 103]

by:

Hg(t) = k1ω (Tω−Tmetal(t))ω(t)0.4 = k1ω ((Tambient(t)+k2ω ω(t))−Tmetal(t))ω(t)0.4,

(5.15)

where kω1 , kω2 are heat transfer coefficients and ω(t) is the angular velocity of the

bearings/shafts. Combining this with equations (5.12) and (5.14) gives:

d Tmetal(t)

d t
=
k1ω ((Tambient(t) + k2ω ω(t))− Tmetal(t))ω(t)0.4

cpmetal
mmetal

− Umetal−oil Ametal−oil

cpmetal
mmetal

(Tmetal(t)− Tfeed(t)).

(5.16)

5.2.5 Combining the Individual Scavenge Feeds

In a gas turbine oil system there are several separate feed lines (downstream from

the heat exchanger) going to the different bearings or gearboxes. For simplicity

it is assumed that the valves, splitters and restrictors which guide the main feed

flow down these separate lines do not have a significant effect on the oil temper-

ature. Therefore the feed temperatures for each chamber Tfeed1(t), · · · , TfeedN
(t)

are the same as the exit temperature of the heat exchanger Tfeed(t). However,

since each individual chamber will have a different temperature and oil flow rate,

the individual scavenge temperatures Tscav1(t), · · · , TscavN
(t) will be different. The

downstream combined scavenge temperature can be calculated via:

Tscav(t) =

∑N
i=1 Tscavi

(t)Wscavi
(t)

Wscav(t)
=

∑N
i=1 Tscavi

(t)Wscavi
(t)

Woil(t)
. (5.17)

Here it is assumed that Wscav(t) is equal to the sum of the individual scavenge

flow rates, and that this is the same as the combined feed flow Woil(t).
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Figure 5.7: Oil system simulation results without active control. The flight
envelope includes the 6 phases of typical flight: Ground Idle (0s-300s), Maxi-
mum Takeoff Thrust (300s-600s), Maximum Continuous Thrust (600s-1300s),
Approach Idle (1300s-1600s), Thrust Reverse (1600s-1620s) and Ground Idle
(1620s-1800s) [104].

5.2.6 Simulating the Nonlinear Simulation Model

The model derived in Section 5.2.1 to Section 5.2.5 has been implemented in mat-

lab and Simulink [93] (see Appendix B for parameter values and block diagrams).

Figure 5.7 shows a simulation of the model with oil flow linked to the high-pressure

shaft speed via the accessory gearbox (i.e. no active control) for a standard pas-

senger aeroplane flight envelope.

Note that the shaft speed spool up times are typically much faster than the oil
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chamber temperature transients. For example, European Aviation Safety Agency

CS-E 745 states that an increase from 15% to 95% rated Take-off thrust must take

less than 5 seconds [105], whereas the oil chamber transients last tens to hundreds

of seconds due to the specific heat capacity of the metal [106]. This difference can

be seen in the the middle and bottom plots of Figure 5.7.

The variation between transient times causes spikes in the oil scavenge tempera-

tures as shown in the top plot of Figure 5.7. For example, when stepping down

from the ‘Thrust Reverse’ to ’Ground Idle’ phases around 1600 seconds. The rapid

decrease in shaft speed results in a rapidly reduced oil flow. Since there is less oil

to absorb the heat from the slowly cooling oil chamber, the scavenge temperature

rapidly increases to over 400 ◦C in some cases. This is well over the fire point of

typical turbofan oils (e.g. 285◦C for Mobil Jet Oil II [107]).

Aside from the spikes, it is also clear that lower shaft speeds result in higher

steady-state temperatures. For example, in Figure 5.7 at ‘Ground Idle’ the highest

scavenge temperatures are also close to the fire point. To solve these issues without

active control, the feed pump size has to be increased. Unfortunately this results

in oil being oversupplied at other thrust settings which has a negative impact on

lubrication efficiency and hence on fuel consumption. These problems motivate

the need for the novel oil system with active control, to manage oil temperature

transients more efficiently and avoid temperature spikes.

The authors currently have no measured real-world engine data to validate these

simulation results. However, qualitatively the simulations are performing as ex-

pected, matching the behaviour described by oil systems engineers.

5.3 Formalizing Requirements Using A/G Con-

tracts

The simulation model for the novel oil system has been developed in Section 5.2,

but before the controller can be designed a set of performance requirements are

needed. There are many different viewpoints of interest to the system-level de-

signer, but for simplicity this section focuses just on the thermal and flow-rate

properties of the oil.
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5.3.1 Informal, Textual Requirements

R1 to R4, specified in natural language, define the requirements that the novel oil

system must satisfy.

Thermal Requirements

R1: Oil temperature shall not exceed 220◦C at the scavenging side at any time.

R2: All oil flows from the oil system to the oil chambers shall have a temperature

in the range 10◦C to 120◦C for all operating conditions above idle.

Flow Requirements

R3: All individual oil flows from the oil system to the oil chambers shall have a

maximum flow rate of 0.4 kg s−1 at any time.

R4: The minimum oil feed flow to the chambers shall be 0.07 kg s−1 at any time.

These requirements relate to both a thermal viewpoint and a fluid flow viewpoint

and are satisfied by the following subsystems:

• Heat exchanger - responsible for removing heat from the oil (up to the tem-

perature specified in R1) to achieve R2.

• Oil chambers/valves - responsible for varying the flow to the oil chambers to

satisfy R1 given R2.

• Pumping/storage - responsible for ensuring the flow rates in R3 and R4.

5.3.2 Formalized STL Assume/Guarantee Contract

In Appendix C the informal, textual requirements R1 to R4 are formalized to A/G

contracts [20] specified in Signal Temporal Logic [65] for the different subsystems.

These subsystem contracts are then combined via the rules of contract composition

(see Appendix A) to check compatibility. This is performed to demonstrate how

component-level A/G contracts can be composed to give a system-level contract,

which would be useful if different components or subsystems were to be produced

by different teams or supplier companies.
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For brevity just the final system-level contract will be given here.

Csys =


Asys =� (−35◦C ≤ Tfuelin ≤ 55◦C) ∧� (0.1 kgs−1 ≤ Wfuel ≤ 0.8 kgs−1).

Gsys =� (¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C) ∧� (Tscavi
≤ 220◦C)

∧� (0◦C ≤ Tfuelout ≤ 165◦C) ∧� (0.07 kgs−1 ≤ Wfeedi
≤ 0.4 kgs−1).

(5.18)

Note that the assumptions do not correspond to any of the requirements R1 to R5.

This is because they relate to environmental inputs from outside the scope of the

novel oil system (Tfuelin and Wfuel). The fuel tank temperature can drop as low as

−35◦C when flying at max altitude (outside air temp ≈ −60◦C) and reach as high

as 55◦C when starting on the ground on a hot day [91]. Typical fuel flow values

for a turbofan engine are around 0.5 kg s−1 [108] therefore upper/lower limits are

set as 0.8 kg s−1 and 0.1 kg s−1.

The guarantee corresponding to Tfuelout is also not contained in the original re-

quirements. The upper/lower limits are set so that the fuel is always above 0◦C

(to avoid ice forming in the fuel filter) and below 165◦C (to avoid degradation)

[91].

With a simulation model and a formal A/G contract, the next stage of the design

is to perform control synthesis to maximise the quantitative satisfaction [69] of the

STL formulae in Gsys.

5.4 Oil System Control Synthesis with multiSTL

As highlighted in Figure 5.7, it is impossible to satisfy Gsys without using a very

large sized feed pump. This results in an oversupply of oil during higher shaft

speeds, which affects lubrication efficiency and increases fuel consumption. The

problem can easily resolved, however, by introducing a simple gain-based feedback

control of the form:

Wfeedi
(k) = KpiTmetali(k − 1), (5.19)

where Wfeedi
(k) is the control input (oil chamber feed flows) at the current time

step; Tmetali(k−1) is the oil chamber metal temperature at the previous time step;

and Kpi is the control gain.

This means that the hotter the metal in the oil chambers, the greater the oil flow.

The advantage of scheduling oil in this way is that it is able to track the slower
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transients of the oil chamber temperatures. However, measuring temperature of

solids with rotating parts is technically challenging. Therefore, an alternative is

to use:

Wfeedi
(k) = KpiTscavi

(k − 1), (5.20)

where Tscavi
(k − 1) is the scavenge flow temperature at the previous time step.

It is much easier to measure Tscavi
than Tmetali , with a set of sensors measuring

the scavenge oil temperatures downstream from the chambers. Note that since

the scavenge temperature is highly coupled to the oil chamber temperature, this

would still allow the slow transients to be tracked effectively, removing the spikes

in oil temperature as shown in the top plot of Figure 5.8. In addition, this allows

more oil flow to be supplied when the oil chambers are hotter. This occurs at

higher operating points when faster rotational speeds create a larger demand for

lube oil. Therefore the control law in (5.20) is able to ensure good thermal and

lubrication efficiency.

Note that the choice of Kpi values used in the simulation of Figure 5.8 are good

for the feed flow rates as these are well within the upper/lower bounds set in the

requirements. However, the scavenge temperatures are too high for oil chambers

3, 4 and 5. This represents a tradeoff, since increasing the oil flow to these three

chambers will reduce the scavenge temperature, but push the feed flow rates closer

to their upper bound. By performing multiple simulations with different control

parameters, multiSTL can be used to investigate multiple tradeoffs such as this

(see Section 5.4.4).

5.4.1 Discretising the Control Parameter Space

The control parameters tuned in this case study are the Kpi gains from equation

(5.20). From trial simulations, sensible choices for each Kpi are in the interval

[0.0005, 0.0008]. Larger values lead to saturation of the oil flows, and smaller

values lead to large overshoots in temperature.

To reduce the possible search space, the set of potential control parameters is

discretised in this range as shown in equation (5.21). The number of potential

gain values for the 7 oil chambers is {3, 3, 3, 3, 4, 3, 3} respectively. Note that this
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Figure 5.8: Oil system simulation results with feedback control. The flight
envelope includes the 6 phases of typical flight: Ground Idle (0s-300s), Maxi-
mum Takeoff Thrust (300s-600s), Maximum Continuous Thrust (600s-1300s),
Approach Idle (1300s-1600s), Thrust Reverse (1600s-1620s) and Ground Idle
(1620s-1800s) [104]. The control gains have not been tuned and therefore some
scavenge temperatures are too high (e.g. OC3, OC4, OC5).
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provides 3× 3× 3× 3× 4× 3× 3 = 2916 possible combinations.

Kp1 = {0.0005, 0.0006, 0.0007},
Kp2 = {0.0005, 0.0006, 0.0007},
Kp3 = {0.0006, 0.0007, 0.0008},
Kp4 = {0.0006, 0.0007, 0.0008},
Kp5 = {0.0005, 0.0006, 0.0007, 0.0008},
Kp6 = {0.0005, 0.0006, 0.0007},
Kp7 = {0.0005, 0.0006, 0.0007}.

(5.21)

5.4.2 Weighting the Sub-formulae

For simplicity in plotting/visualising the different formulae, Gsys from equation

(5.18) can be written as:

Gsys = ϕ1,i ∧ ϕ2,i ∧ ϕ3 ∧ ϕ4, (5.22)

where,

ϕ1,i = � (0.07 kgs−1 ≤ Wfeedi
≤ 0.4 kgs−1),

ϕ2,i = � (Tscavi
≤ 220◦C),

ϕ3 = � (¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C),

ϕ4 = � (0◦C ≤ Tfuelout ≤ 165◦C).

(5.23)

The margin of satisfaction for each sub-formula can then be calculated as:

ρw(ϕ1,i) = min (Wfeedi
(t)− 0.07, 0.4−Wfeedi

(t)) · wflow ∀ {t ∈ [0, 1800]},
ρw(ϕ2,i) = min (220− Tscavi

(t)) · wtemp ∀ {t ∈ [0, 1800]},
ρw(ϕ3) = min (Tfeed(t)− 10, 120− Tfeed(t)) · wtemp ∀ {t | ω(t) > 3000rpm},
ρw(ϕ4) = min (Tfuelout − 0, 165− Tfuelout) · wtemp ∀ {t ∈ [0, 1800]}.

(5.24)

Note that these are weighted formulae multiplied by either wflow = 1/0.4 or wtemp =

1/220. The choice of weights is designed to scale the margins so that they can be

visualised on the same parallel coordinates plot. This makes it more difficult to

determine the margin of satisfaction in ◦C or kg · s−1, but preserves the qualitative

satisfaction with ρw(ϕ) ≥ 0 indicating the requirement is satisfied and ρw(ϕ) < 0

highlighting a violation. More information on weighted STL formulae can be found

in [73].
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Figure 5.9: Oil system control synthesis using an exhaustive search of the dis-
cretised parameter space. Buckets represent models, blocks represent processes
and blank text represents inputs/outputs. The grey block highlights where the
multiSTL developments of this chapter fit into the overall synthesis.

5.4.3 Exhaustive Search of the Discretised Parameter Space

Each simulation takes approximately 5 seconds to run. This translates to 2916×
5 = 14580 seconds (approximately 4 hours) to simulate all possible combinations

of Kpi values. Since this is not too unreasonable, exhaustive search is used as

the specific method of tuning the control parameters. Therefore the generic flow

outlined in Figure 5.1 can be updated to that shown in Figure 5.9.

After performing all the simulations and storing the weighted margins as calculated

in equation (5.24), the next step is to investigate tradeoffs and narrow down on a

final parameter set using multiSTL.

Note that exhaustive search is not feasible for larger problem sizes. Therefore

multi-criteria optimization approaches, such as those discussed in Section 3.2,

could be used for such problems.

5.4.4 Analysing Tradeoffs with multiSTL

The multiSTL parallel coordinates plot is shown in Figure 5.10. In this plot,

each solution is represented as a line linking the ρw(ϕi) values for that simulation.

Tradeoffs in the data set occur when there is a crossover of lines between the mar-

gins for two sub-formula. For example, consider the zoomed-in parallel coordinates

plot for ϕ1,4 and ϕ2,4 shown in Figure 5.11 a). Increasing the value of Kp4 results

in a decrease in ρw(ϕ1,4), the margin for oil flow rate (see Figure 5.11 b)) but an

increase in ρw(ϕ2,4), the margin for scavenge temperature (see Figure 5.11 c)).
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Figure 5.10: Weighted multiSTL analysis for the oil system controller. Each
of the 2916 Kpi combinations is represented as a line linking the margins for
each sub-formula for that simulation. A final solution can be narrowed down
by altering the lower bounds for each margin (red diamonds).

Refining to a Single Parameter Set Using multiSTL

The procedure for altering the parallel coordinates limits for this case study is as

follows:

1. All ρw(ϕi) values must be ≥ 0, as shown in Figure 5.12 a). This is to ensure

that all the requirements have been met. This leaves only one parameter

choice for oil chamber 3 (Kp3 = 0.0008).

2. All other temperature margins must be≥ 10◦C. This corresponds to ρw(ϕi,2) ≥
10/220 = 0.045, as shown in Figure 5.12 b). This ensures large enough mar-

gins to avoid getting close to unsafe fire points of oil or fuel.

3. From the remaining solutions, flow rate margins should be prioritised to

ensure better lubrication efficiency and hence better fuel efficiency, as shown

in Figure 5.12 c).

This is the suggested choice of refinement used for this case study, but there could

be other good choices depending on the priorities of the system stakeholders. The
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Figure 5.11: Analysing the tradeoff between oil flow rate and scavenge tem-
perature in oil chamber 4. a) shows a zoomed-in multiSTL parallel coordinates
plot for the two relevant sub-formulae. b) shows the oil flow rate for different
Kp4 values in comparison to the upper/lower bounds of ϕ1,4. c) shows the scav-
enge temperature for different Kp4 values in comparison to the upper bound
of ϕ2,4.
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Figure 5.12: Three stages of refinement using a multiSTL parallel coordinates
plot. a) ensuring all requirements are met (ρw(ϕi) ≥ 0). b) temperature margins
≥ 10◦C. c) Flow rates prioritised for the remaining solutions.

single parameter set resulting from this refinement procedure is:

Kp1 = 0.0006,

Kp2 = 0.0006,

Kp3 = 0.0008,

Kp4 = 0.0008,

Kp5 = 0.0007,

Kp6 = 0.0006,

Kp7 = 0.0006.

(5.25)
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Figure 5.13: Weighted multiSTL analysis for the oil system controller. Each
of the 2916 Kpi combinations is represented as a line linking the margins for
each sub-formula for that simulation. A final solution can be narrowed down
by altering the lower bounds for each margin (red diamonds).

which produces the signals shown in Figure 5.13. Note that all of the signals fall

well inside the upper/lower bounds at all times. The flow rates rise/fall with the

scavenge temperatures, which are coupled to the oil chamber temperatures. This

ensures effective thermal and lubrication system performance, with an increase in

flow rates when the demand for cooling and lubrication is higher.

5.5 Conclusion

This chapter has introduced the multiSTL framework for synthesising control pa-

rameters using simulation. The advantage of using this approach over calculating
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an overall system margin using the min operator is that it allows tradeoffs be-

tween different requirements to be analysed. For example, optimising oil flow

rates results in non-optimal oil temperatures and vice versa.

multiSTL can also be used to show where it may be beneficial to relax certain

requirements if they are too tight. For example, by allowing a greater oil flow

rate to a certain oil chamber, the scavenge temperature margins can be increased.

Being able to show this on a multiSTL parallel coordinates plot provides system

designers with an evidence base to help persuade stakeholders that this would be

a sensible change.

The developments of this chapter follow on from previous architecture level design

techniques discussed in Chapter 3 and Chapter 4. To demonstrate the multiSTL

approach, the novel oil system case study from previous chapters has been used.

The oil system model has been derived from first principles and implemented in

Simulink. This has been simulated with a large set of potential control parameters

to synthesise a controller which optimises satisfaction of formal STL requirements.

The refinement from the large candidate set of parameters to final chosen set

has been carried out by iteratively altering the limits on a multiSTL parallel

coordinates plot.





Chapter 6

Conclusions and Future Work

This final chapter summarises the work presented in Chapters 3-5, highlights the

main contributions of the thesis and suggests potential areas of further research.

6.1 Summary

This thesis has presented a multilevel framework for system design using formalized

requirements, as outlined in Figure 1.1. The approach is both bottom-up (in the

population of libraries of components from high-fidelity to simple static models)

and top-down (in the progression from requirements to detailed design).

A key aspect of the framework is the use of formalized requirements to allow de-

sign automation techniques such as optimization, and mapping between different

design levels. This focuses most of the design effort at the higher levels, where

tradeoffs between customer preferences, engineering characteristics and perfor-

mance requirements can be analysed. Whilst this thesis has required considerable

modeling effort at each design level, the goal for an industrial implementation of

this framework would be to perform modeling only once in the population of a

library of models. These models could then be re-used in similar design exercises

with the majority of the engineering effort focused on the top level requirements.

Fully realizing this multilevel flow for a real-world complex system would require

a whole team of engineers working over considerable timescales. This is out of the

scope of a single PhD researcher. However, this thesis has shown multiple specific

instances of design automation and shown how these exercises fit into the wider

vision of the multilevel design framework.

111
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Chapters 3 and 4 focus on the architecture optimization level, which is further split

into the high-level architecture framework and low-level topology optimization

(as in Figure 1.2). The high-level architecture framework optimization occurs at

the concept design stage and consists of two sides: architecture synthesis and

refinement. The synthesis stage begins by determining a set of potential means

for implementing each system function. Each physical means is scored against a

set of engineering characteristics such as ‘modularity’ or ‘robustness’. A high-level

architecture framework is defined by selecting a single means for each function.

The overall architecture scores for the engineering characteristics are calculated

as a sum of the scores for the means chosen. Architectures are then synthesised

using a multiobjective genetic algorithm which produces a Pareto-optimal set of

candidate solutions.

The architecture refinement stage uses an interactive parallel coordinates plot

which displays each Pareto-optimal architecture as a line linking its decision crite-

ria scores. Refining this set of solutions to a smaller set is achieved via progressively

changing the upper bounds on the decision criteria scores. A customer-oriented re-

finement algorithm has been presented which allows the parallel coordinates limits

to be altered rapidly, to best reflect the set of customer preference weightings. This

has been extended with resilience analysis, which shows how much the weightings

can change before a given solution disappears from the optimal set.

The high-level architecture synthesis and refinement techniques have been imple-

mented in the user-friendly SATS tool, which allows system architects to use this

approach with only simple text input files. The approach has been demonstrated

on two case studies: a pressurized water reactor EC&I system and a turbofan oil

system.

Chapter 4 takes the turbofan oil system architecture framework defined in the pre-

vious case study and performs the lower level architecture topology optimization.

The oil system architecture is modeled as a graph with nodes representing com-

ponents such as pumps, valves, oil chambers and heat exchangers. Edges between

nodes indicate a physical pipe connection between the components. The edges are

represented as an adjacency matrix with a 1 indicating an edge between two nodes

and a 0 indicating no connection. The architecture requirements are formalized

as constraints on the adjacency matrix.

The architecture design is carried out as a constrained optimization, with two

conflicting objectives: cost and controllability. The decision variables are the

values in the adjacency matrix (connections between nodes). The main tradeoff

is between the number of valves to use, since less valves will reduce cost but more
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will increase controllability. Cost is determined as a function of the nodes used in

the architecture, and the number of connections. To determine controllability for

a given architecture, an oil flow requirement similarities matrix, Cfr is populated

using a heuristic algorithm. This ensures that when the number of valves used is

less than 1 per chamber, there is a sensible coupling of valves to oil chambers with

similar flow requirements.

Following on from the architecture optimization levels, Chapter 5 focuses on the

control synthesis level. The approach uses simulation-based control synthesis to

tune control parameters, optimizing satisfaction of a formal requirement set. The

formal language used is signal temporal logic (STL) because of the rich set of

spatial and temporal requirements that can be expressed in this form.

Previous research has presented quantitative semantics for STL which define the

overall system margin of satisfaction as the minimum of the margins of the in-

dividual requirement margins. This removes information about the system per-

formance for all but the worst performing requirement. This makes it difficult

to compare performance between simulations with different control parameters.

For this reason multiSTL is proposed as a multi-dimensional approach similar to

that of multiobjective optimization. Rather than try to find a single ‘best’ set of

control parameters, a Pareto-optimal set of control parameters is found. Refine-

ment to a single solution is then carried out via progressively prioritising different

requirement margins.

A key advantage of multiSTL is better visualization of performance and tradeoffs

between requirements, using the parallel coordinates plot. This information can

be fed back to requirements engineers to initiate beneficial requirements changes.

For example, relaxing Requirement 1 by 25% will result in much larger margins

of satisfaction for Requirements 2 and 3.

The multiSTL control synthesis approach has been applied to the oil system case

study, following on from the previous architecture design levels. A nonlinear sim-

ulation model has been developed, along with formal STL requirements derived

from natural language expressions. The simple gain-based feedback control is

tuned via an exhaustive search of a discretised control parameter space. This pro-

duces a large number of Pareto-optimal parameter sets, which have been refined

to a single parameter set using the multiSTL approach. The final controller is

able to satisfy all the formal requirements with reasonable margins, and maintains

better thermal and lubrication performance than the baseline fixed-gear oil flow

design. This in turn results in reduced maintenance costs and fuel consumption.
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6.2 Main contributions

The main contributions of this thesis are highlighted in Section 1.4. They are

repeated here as a reminder of the most important aspects of the thesis.

1. The customer-oriented architecture refinement framework. This provides a

rapid approach for reducing a large set of potential architectures to a small

set of interest to the customer. It only requires a set of customer preference

weightings, which can be provided at the outset, eliminating the need for

lengthy iterative discussions with the customer. The framework also includes

an approach to analyse resilience of architectures to changing customer pref-

erences. This helps engineers to select solutions that are likely to remain

good options, even if the customers change their preference weightings as a

result of external factors, such as budget cuts. The result is a lower chance

of having to rework or modify designs. The SATS tool has been developed

to implement the approach in a graphical user interface, which is currently

being used by the industrial sponsor of the PhD in real-world architecture

design problems.

2. A graph-based topology optimization approach for system architectures. The

approach is demonstrated on a turbofan oil system case study, which involves

a novel heuristic algorithm for determining similarities between oil chamber

flow requirements. The approach allows sensible coupling of oil chambers to

shared valves, to reduce the cost of the architecture. The graph-based ap-

proach to modeling system architectures and optimizing connections between

nodes also has wider applicability to any system with a set of interconnected

components.

3. The multiSTL control synthesis framework. This allows the margins of sat-

isfaction for performance requirements specified as Signal Temporal Logic

(STL) formulae to be compared on a parallel coordinates plot, highlighting

tradeoffs between requirements. The approach gives designers far more in-

formation about how the system is performing than if the overall margin

of satisfaction is taken as the minimum of the individual requirement mar-

gins. This helps with choosing a set of control parameters that achieve an

optimal system response, with respect to the priorities of the multiple, often

conflicting performance requirements. To demonstrate the approach on a

real-world problem, a nonlinear dynamic oil system model is developed and

used to perform a multiSTL analysis.



Chapter 6. Conclusions and Future Work 115

6.3 Future work

Based on the work presented in this thesis, suggested directions for further research

are:

1. Investigating the sensitivity of the solutions produced via the customer-

oriented architecture refinement to the scores given to the functional means,

and to the relational matrix between customer preferences and decision cri-

teria. This could help to highlight to system architects any scores or values

which have a large impact on the solution set, allowing them to reconsider

whether the score or value has been assigned appropriately.

2. Inverting the customer-oriented architecture refinement process discussed

in Chapter 3. This would involve selecting a solution manually and then

calculating the set of customer preference weightings required to select this

solution. This could be useful in circumstances where engineers prefer a

given solution over the solutions produced via SATS. Comparing the actual

customer preferences with those required to select the chosen solution could

highlight big differences, and give an understanding of why the engineer’s

preferred solution does not match the customers preferred solution.

3. Replacing the heuristic for populating the oil chamber similarities matrix Cfr
in Chapter 4. With extensive high-fidelity simulation of a turbofan system,

a more scientific method for correlating the oil chamber flow requirements

could be established. This could take into account information such as time

constants of the oil chamber metals, rotational velocities, ambient tempera-

tures or physical locations.

4. Genetic algorithm-based control synthesis with multiSTL. The discretisation

of the control parameters in the oil system case study resulted in a search

space that could be evaluated exhaustively. For larger control synthesis prob-

lems this may not be an option, requiring the use of alternative optimization

techniques such as multiobjective genetic algorithms (as used in Chapter 3).

5. Feedback between multiple levels. The original multilevel vision for the PhD

(Figure 1.1) includes automated feedback loops from lower design levels to

higher levels. This could be implemented for example between the architec-

ture topology level (Chapter 4) and the control synthesis level (Chapter 5),

as shown in Figure 6.1. In this example an inability to meet the require-

ments at the control synthesis level results in a feedback to the architecture

level, by adding new graph constraints. This triggers a reoptimization and
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Multi-Level Feedback

Architecture Level

R1: Each oil chamber shall be 

connected to exactly 1 valve

⋮

Formalize

෍

𝑖=1

𝑉

𝑒𝑉𝑖𝑂𝐶𝑗 = 1 ∀ 𝑗 ∈ {1,⋯ , 𝑂𝐶 }

⋮

Architecture 

Optimization

Control Design Level

R1: scavenge temperatures shall never 

exceed 220°C

⋮

Formalize 

to STL

STL1: □ 𝑇𝑠𝑐𝑎𝑣𝑖 ≤ 220

⋮

Control Synthesis
Valid 

Controller

?

Take arch. 

to lower-level 

development

Y

e.g.: Oil chambers 

1 & 2 shall not 

share a valve
෍

𝑖=1

𝑉

𝑒𝑉𝑖𝑂𝐶1 + 𝑒𝑉𝑖𝑂𝐶2 ≤ 1

N

Formalize Add new constraints

Take arch. & controller to 

lower-level development

Repeat
optimization

Figure 6.1: An example of a multilevel feedback loop. An inability to meet
the requirements at the control synthesis level results in a feedback to the archi-
tecture level, by adding new graph constraints. This triggers a reoptimization
and a second control synthesis exercise.

a second control synthesis exercise. The process repeats until a satisfactory

architecture/controller combination are found.

6. This PhD has mainly addressed a multilevel design flow for a single sub-

system. This could be linked to a parallel design flow for coupled systems/sub-

systems. For example, the fuel system which interfaces with the oil system.

In the oil system A/G contract there are assumptions relating to the fuel

flow and heat exchanger inlet fuel temperature, and a guarantee relating to

the heat exchanger outlet fuel temperature. This could be checked for com-

patability with the A/G contract developed for the fuel system, to show that

the two designs will work well together. Co-simulation of the two systems

could help to confirm that both designs satisfy their individual contracts and

the combined system level contract.

7. Extending the multilevel framework to lower levels. For example, the control

inputs Wfeedi
in Chapter 5 need to be realized at a lower level of fidelity by

varying feed pump rate and valve restrictor orifice size. This would involve
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the development of higher fidelity models and component level A/G con-

tracts, which could be composed to check compatibility and refinement of

the upper level contract.

8. Application to new case studies. The techniques in Chapter 3 have been

applied to a nuclear pressurized water reactor EC&I system and turbofan

oil system case studies. Further validation of the techniques could be carried

out on any system that can be decomposed using a function/means analysis.

The flow network topology optimization in Chapter 4 could be applied to

more complex turbofan architectures such as geared turbofans, or other fluid

flow networks such as smart heating systems. The multiSTL approach of

Chapter 5 could be used in any control synthesis case studies where there is

a simulation model and multiple performance requirements.





Appendix A

Theory of Assume-Guarantee

Contracts

The theory underpinning assume-guarantee contracts is presented in detail in [6,

7, 20]. The aspects that are most relevant for CBD are discussed more briefly

here.

Saturated Contracts

A contract C = (A,G) is said to be in saturated form if ¬A ⊆ G i.e. G∨A = True

[6], where ¬ and ∨ are the logical negation and disjunction operators respectively.

If this is not the case, then the saturated form of C can be defined by C ′ = (A,G′),

where G′ = G∨¬A. The rules below for composition, refinement and conjunction

are defined for saturated contracts.

Compatibility and Consistency

A single contract C = (A,G) is said to be consistent if G 6= ∅ and the guarantees

do not constrain any of the uncontrolled variables. It is compatible if A 6= ∅ and the

assumptions do not constrain any of the controlled variables [6, 20]. In the case of

multiple contracts, they are said to be compatible/consistent if their composition

(see below) is compatible and consistent [20]. More informally, a set of contracts

are said to be compatible if the assumptions of each component are contained in

the guarantees of the other components and the environment.

Composition

Composition of two contracts C1 = (A1, G1) and C2 = (A2, G2) in saturated form

is defined by (A.1) [6, 7, 20].

C1 ⊗ C2 = (A12, G12)

119



Appendix A. Theory of Assume-Guarantee Contracts 120

where,

A12 = (A1 ∩ A2) ∪ ¬(G1 ∩G2)

G12 = G1 ∩G2

(A.1)

Composition is needed in CBD to determine an overall system contract, since

system designs are built by composing components from the platform library.

Refinement

A contract C ′ = (A′, G′) is said to refine a contract C = (A,G), written as C ′ 4 C,

if:

A ⊆ A′ and G′ ⊆ G (A.2)

This effectively amounts to tightening the guarantees and loosening the assump-

tions. This means that C ′ can be viewed as a stronger form of contract C [6, 7, 20].

Refinement is a useful relationship when checking if a composition of components

satisfies the top-down vertical contract specification, i.e. (C1⊗C2⊗· · ·⊗Cn) 4 Cs.

Tools have been developed to help with automated verification of temporal con-

tract refinement [109]. When using LTL or STL contracts (see Section 2.4) this

checking problem can become quite expensive. In [110] an algorithm is proposed

which breaks the system-wide refinement problem into a series of successive re-

finement checks. In the example given in the paper, the algorithm reduces the

computation time from 639 to 123 seconds.

Conjunction

Conjunction of two contracts C1 = (A1, G1) and C2 = (A2, G2) in saturated form

is via:

C1 ∧ C2 = (A1 ∪ A2, G1 ∩G2) (A.3)

This is needed in CBD when there are several viewpoints of the system [20]. For

example, requirements may relate to a functional viewpoint, a performance view-

point and a reliability viewpoint. Each component will have contracts relating to

the multiple viewpoints. To get the overall contract for the component these need

to be joined together via conjunction.



Appendix B

Turbofan Oil System Simulation

Model

The oil system is modeled by the following equations. Note that to save space (t)

has been removed from the time-varying signals. See the equations presented in

Section 5.2 for a clearer distinction between constants and signals.

d Tmetal1

dt

...

d TmetalN

dt

d Ttank
dt

0

0

...

0

0

0



=



k1ω1 ((Tambient1
+k2ω1 ω)−Tmetal1

)ω0.4

cpmetal1
mmetal1

− Umetal−oil1
Ametal−oil1

cpmetal1
mmetal1

(Tmetal1 − Tfeed)

...

k1ωN
((TambientN

+k2ωN
ω)−TmetalN

)ω0.4

cpmetalN
mmetalN

− Umetal−oilN
Ametal−oilN

cpmetalN
mmetalN

(TmetalN − Tfeed)

Woil

mtank
(Tscav − Ttank)− Ttank

Rtank cpoil mtank

−Tfeed + Ttank − Uoil−fuel Aoil−fuel

Woilcpoil
Fc

(Ttank−Tfuelout )−(Tfeed−Tfuelin )

Log

(
Ttank−Tfuelout
Tfeed−Tfuelin

)

−Tscav1 + Tfeed +
Umetal−oil1

Ametal−oil1

Wfeed1
cpoil1

(Tmetal1 − Tfeed)

...

−TscavN
+ Tfeed +

Umetal−oilN
Ametal−oilN

WfeedN
cpoilN

(TmetalN − Tfeed)

−Tscav +
∑N

i=1 Tscavi Wscavi

Woil

−Tfuelout + Tfuelin + Uoil−fuel Aoil−fuel

Wfuelcpfuel
Fc

(Ttank−Tfuelout )−(Tfeed−Tfuelin )

Log

(
Ttank−Tfuelout
Tfeed−Tfuelin

)



These equations are implemented in Simulink [93] as shown in Figure B.1 to Fig-

ure B.8.
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Figure B.1: Simulink top-level block diagram.

Figure B.2: Simulink heat exchanger block diagram.
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Figure B.3: Simulink tank block diagram.

Figure B.4: Simulink oil chambers block diagram.
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Figure B.5: Simulink individual oil chamber block diagram.

Figure B.6: Simulink scavenge combine block diagram.
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Figure B.7: Simulink control block diagram.

Figure B.8: Simulink shaft speed references block diagram.
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Figure B.9: Simulink proportional control block diagram.

The matlab code used to set up the parameters for the Simulink model is shown

in code block B.1.

clear all

%% General variables

cpOil = 2.3; % kj/kg K

%% Tank Variables

mTank = 20; % kg

k = 0.03; % W/m.K

L = 0.02; % m

Atank = 3; % m^2

Rtank = L/k; % m^2K/W

Tamb = 293.7; % K - room temp

%% Heat Exchanger Variables

Uoil_fuel = 1;

Aoil_fuel = 0.75;

Fc = 0.85;

cpFuel = 2.01; % kJ/kg K

TfuelIn = Tamb-40; % assume cold for hi altitude

TfuelOutInitial = TfuelIn+20; % for initial conditions

TfeedInitial = Tamb-30; % for initial conditions

w_fuel_min = 0.1;

%% Oil Chamber Variables

TambOC = [270 380 480 700 600 330 270]; % K

Ametal_oil = [0.15 0.15 0.22 0.15 0.15 0.10 0.10];

Umetal_oil = [1 1 1 1 1 1 1];



Appendix B. Turbofan Oil System Simulation Model 127

cpMetal = [0.5 0.5 0.5 0.5 0.5 0.5 0.5]; % kJ/kg K

mMetal = [100 100 150 100 100 60 60]; % kg

k1w = [0.1 0.1 0.1 0.1 0.1 0.1 0.1];

k2w = [0.03 0.03 0.035 0.03 0.03 0.025 0.025];

%% Valve variables

w_feed_i_min = 0.07; % lower saturation limit

w_feed_i_max = 0.4; % upper saturation limit

Listing B.1: Simulation parameter definitions





Appendix C

Oil System Assume/Guarantee

Contract Composition

Thermal Requirements

R1: Oil temperature shall not exceed 220◦C at the scavenging side at any time.

R2: All oil flows from the oil system to the oil chambers shall have a temperature

in the range 10◦C to 120◦C for all operating conditions above idle.

Flow Requirements

R3: All individual oil flows from the oil system to the oil chambers shall have a

maximum flow rate of 0.4 kg s−1 at any time.

R4: The minimum oil feed flow to the chambers shall be 0.07 kg s−1 at any time.

R5: The oil system shall have a scavenge ratio of 1.5 to the oil flowrate supplied

to each chamber, to ensure no dangerous build-up of pressure in the oil chambers.

In Section C.1 to Section C.3 the A/G contracts for these subsystems are derived

separately, before being combined via the rules of contract composition (see Ap-

pendix A) to check compatibility in Section C.5. This is done here to demonstrate

how component-level A/G contracts can be composed to give a system-level con-

tract, which would be useful if different components or subsystems were to be

produced by different teams or supplier companies.

Note that in this chapter temporal logic symbols © (next), U (until), � (always)

and ♦ (eventually) are used in the assumptions and guarantees. Further elabora-

tion on temporal logic is given in Section 2.4.1.
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C.1 Heat Exchanger Contracts

Fluid Temperature Contract

CthermalHE
=


AthermalHE

= � ((Ttank ≤ 220◦C)∧ (−35◦C ≤ Tfuelin ≤ 55◦C))

GthermalHE
= � ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C)

∧ (0◦C ≤ Tfuelout ≤ 165◦C))

(C.1)

Note that the assumptions and guarantees highlighted in red in (C.1) do not

correspond to requirements R1 and R2. This comes from the fact that the oil

system will have to transfer heat to the fuel system and the rate of transfer will

be dependent on both Ttank and Tfuelin . The fuel tank temperature can drop as low

as −35◦C when flying at max altitude (outside air temp ≈ −60◦C) and reach as

high as 55◦C when starting on the ground on a hot day [91]. When leaving the

heat exchanger the fuel temperature needs to be above 0◦C (to avoid ice forming

in the fuel filter) and below 165◦C (to avoid degradation) [91].

Fluid Flow Contract

CflowHE
=


AflowHE

= �
(
(0.49 kgs−1 ≤ Woil ≤ 2.8 kgs−1)

∧ (0.1 kgs−1 ≤ Wfuel ≤ 0.8 kgs−1)
)

GflowHE
= ∅

(C.2)

Note that the assumptions highlighted in red in (C.2) are not contained in R3-

R5. These come from the fact that the heat transfer is related to Wfuel as well

as Woil. Typical fuel flow values for a turbofan engine are around 0.5 kg s−1

[108] therefore upper/lower limits are set as 0.8 kg s−1 and 0.1 kg s−1. The flow

guarantees are empty, since the heat exchanger has no control over any of the flows

entering/leaving the subsystem.

Alphabet Equalization

Consider the following alphabets for the two contracts:

ΣthermalHE
= {Ttank, Tfuelin , Tfeed, Tfuelout}

ΣflowHE
= {Woil,Wfuel,Wfeedi

}
(C.3)
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To combine the contracts we need a common alphabet as shown in (C.4).

Σ = {Ttank, Tfuelin , Tfeed, Tfuelout ,Woil,Wfuel,Wfeedi
} (C.4)

This is because of the ∩ operator which is applied in composition and conjunction

operations. If the contracts do not have a common alphabet then the intersec-

tion will yield ∅. The alphabet-equalized contracts are shown in equations (C.5)

and (C.6). The added assumptions/guarantees highlighted in red do not change

the individual contracts. They extend the contracts to include the new variables

whilst offering no assumptions/guarantees about their behaviour. Therefore the

contracts effectively remain the same.

C∗thermalHE
=


A∗thermalHE

= � ((Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C)

∧ (Woil ∈ R) ∧ (Wfuel ∈ R))

G∗thermalHE
= � ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C)

∧(0◦C ≤ Tfuelout ≤ 165◦C))

(C.5)

C∗flowHE
=


A∗flowHE

= �
(
(0.49 kgs−1 ≤ Woil ≤ 2.8 kgs−1)

∧ (0.1 kgs−1 ≤ Wfuel ≤ 0.8 kgs−1)

∧ (Ttank ∈ R) ∧ (Tfuelin ∈ R))

G∗flowHE
= � ((Tfeed ∈ R) ∧ (Tfuelout ∈ R))

(C.6)

Conjunction of the thermal and flow viewpoints

In order to get an overall contract for the heat exchanger, the thermal and fluid

flow contracts need to be combined via the conjunction operator defined as:

CHE = C∗thermalHE
∧ C∗flowHE

= (A∗thermalHE
∪ A∗flowHE

, G∗thermalHE
∩G∗flowHE

) (C.7)

Note that the assumptions are joined via the union operator. When using the

alphabet-equalized assumptions defined in equations (C.5) and (C.6) this union

operator yields an assumption:

AHE = � ((Ttank ∈ R) ∧ (Tfuelin ∈ R) ∧ (Woil ∈ R) ∧ (Wfuel ∈ R)) (C.8)
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This is far too broad an assumption as it means the system has to be designed

to fit any possible environment of heat exchanger flow and temperature values.

Therefore we need to use the modified equations (C.9) and (C.10), which only

perform alphabet equalization on the guarantees.

C∗thermalHE
=


A∗thermalHE

= � ((Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C))

G∗thermalHE
= � ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C)

∧(0◦C ≤ Tfuelout ≤ 165◦C))

(C.9)

C∗flowHE
=


A∗flowHE

= �
(
(0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

∧(0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)
)

G∗flowHE
= � ((Tfeed ∈ R) ∧ (Tfuelout ∈ R))

(C.10)

This allows a more reasonable set of assumptions to be generated:

AHE =A∗thermalHE
∪ A∗flowHE

=� ((Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C)

∧(0.49kgs−1 ≤ Woil ≤ 2.8kgs−1) ∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)
) (C.11)

The corresponding guarantees for the contract joined via conjunction are:

GHE = G′∗thermalHE
∩G′∗flowHE

= � ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C) ∧ (0◦C ≤ Tfuelout ≤ 165◦C))

(C.12)

C.2 Oil Chambers/Valves Contracts

This section will present the oil chambers/valves contracts more quickly than

in section Section C.1 as the principle alphabet equalization has already been

explained.

Fluid Temperature Contract

The thermal contract based on requirements R1 and R2 is:

CthermalOCV
=

{
AthermalOCV

= � (¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C)

GthermalOCV
= � (Tscavi

≤ 220◦C)
(C.13)
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Fluid Flow Contract

The flow contract based on requirements R3 and R4 is given by:

CflowOCV
=

{
AflowOCV

= � (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

GflowOCV
= � (0.07kgs−1 ≤ Wfeedi

≤ 0.4kgs−1)
(C.14)

To combine CthermalOCV
and CflowOCV

these need to be alphabet-equalized as high-

lighted in red:

C∗thermalOCV
=

{
A∗thermalOCV

= � (¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C)

G∗thermalOCV
= � ((Tscavi

≤ 220◦C) ∧ (Wfeedi
∈ R))

(C.15)

C∗flowOCV
=

{
A∗flowOCV

= � (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

G∗flowOCV
= �

(
(0.07kgs−1 ≤ Wfeedi

≤ 0.4kgs−1) ∧ (Tscavi
∈ R)

)
(C.16)

Conjunction of the thermal and flow viewpoints

The assumptions of the overall bearing chamber contract can be calculated via

the union operator:

AOCV =A∗thermalOCV
∪ A∗flowOCV

=� ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C)

∧(0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)
) (C.17)

The guarantees come from the intersection operator:

GOCV = G∗thermalOCV
∩G∗flowOCV

= �
(
(Tscavi

≤ 220◦C) ∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

) (C.18)

C.3 Pumping and Storage System Contracts

Fluid Temperature Contract

The thermal contract for the pumping and storage system is very simple since we

assume that no heat is generated and that all elements are thermally insulated.
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Therefore the maximum temperature will be that of Tscavi
.

CthermalPS
=

{
AthermalPS

= � (Tscavi
≤ 220◦C)

GthermalPS
= � (Ttank ≤ 220◦C)

(C.19)

Fluid Flow Contract

The pumping and storage unit is responsible for two sets of flows:

1. The oil feed flow (via heat exchanger) to the variable restrictor valves -

provided by the feed pump.

2. The scavenge oil flows provided by the individual scavenge pumps. This

needs to satisfy the flow requirement R5.

Therefore the flow contract for the pumping and storage system will offer guaran-

tees regarding both Wscavi
and Woil.

CflowPS
=


AflowPS

=� (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

GflowPS
=�

(
(0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

∧(0.105kgs−1 ≤ Wscavi
≤ 0.525kgs−1)

) (C.20)

Conjunction of the thermal and flow viewpoints

Following an alphabet equalization process (which has not been shown), the as-

sumptions of the overall pumping and storage system contract can be calculated

via the union operator:

APS = A∗thermalPS
∪ A∗flowPS

= �
(
(Tscavi

≤ 220◦C) ∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

) (C.21)

and the guarantees come from the intersection (note that without the alphabet

equalization step explicitly shown here (G∗thermalPS
and G∗flowPS

), the intersection

looks like a union operation).

GPS =G∗thermalPS
∩G∗flowPS

=�
(
(Ttank ≤ 220◦C) ∧ (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

∧(0.105kgs−1 ≤ Wscavi
≤ 0.525kgs−1)

) (C.22)
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C.4 A Note on the Control System

In Figure 5.4 the control system is shown as a separate block with links to:

1. Oil chambers/valves - sensing of scavenge temperatures and actuation of

valves.

2. Pumping & storage system - actuation of pumps for modulating the feed

and scavenge flows.

Therefore it is the controller designed in Section 5.4 which is responsible for the

guarantees on these flows/temperatures.

C.5 Combination via Composition

To check that the contracts derived in sections Section C.1 to Section C.3 are

compatible, we need to calculate the composition of the contracts which can be

calculated iteratively via:

CHE−OCV = CHE ⊗ COCV

Csys = CPS ⊗ CHE−OCV

(C.23)

First Iteration - Combining the HE and OCV Contracts

The first composition CHE−OCV can be calculated via:

CHE ⊗ COCV = (AHE−OCV, GHE−OCV)

where
AHE−OCV = (AHE ∩ AOCV) ∪ ¬(GHE ∩GOCV)

GHE−OCV = GHE ∩GOCV

(C.24)

First we need the alphabet-equalized contracts. Note that since the assumptions

consist of the intersection of the individual assumptions and the union of the guar-

antees, the assumptions need to be alphabet equalized for all variables contained
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in CHE and COCV.

C∗HE =



A∗HE =� ((Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C)

∧ (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1) ∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)

∧ (Tfeed ∈ R) ∧ (Wfeedi
∈ R) ∧ (Tscavi

∈ R) ∧ (Tfuelout ∈ R))

G∗HE =� ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C) ∧ (0◦C ≤ Tfuelout ≤ 165◦C)

∧(0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)∧ (Tscavi

∈ R)
)

(C.25)

C∗OCV =


A∗OCV =�

(
(10◦C ≤ Tfeed ≤ 120◦C) ∧ (0.07kgs−1 ≤ Wfeedi

≤ 0.4kgs−1)

∧ (Ttank ∈ R) ∧ (Tfuelin ∈ R) ∧ (Tfuelout ∈ R)

∧ (Woil ∈ R) ∧ (Wfuel ∈ R) ∧ (Tscavi
∈ R))

G∗OCV =� ((Tscavi
≤ 220◦C)∧ (Tfeed ∈ R) ∧ (Tfuelout ∈ R) ∧ (Wfeedi

∈ R))

(C.26)

Then we can calculate the guarantees:

GHE−OCV =G∗HE ∩G∗OCV

=� ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C) ∧ (Tscavi
≤ 220◦C)

∧(0◦C ≤ Tfuelout ≤ 165◦C) ∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

)
(C.27)

For the calculation of the assumptions we need ¬G∗HE ∩G∗OCV i.e.:

¬GHE−OCV =♦ ((¬Idle ∧ Tfeed < 10◦C) ∨ (¬Idle ∧ Tfeed > 120◦C) ∨ (Tscavi
> 220◦C)

∨ (Tfuelout < 10◦C) ∨ (Tfuelout > 120◦C) ∨ (Wfeedi
< 0.07kgs−1)

∨(Wfeedi
> 0.4kgs−1)

)
(C.28)

And the intersection of the assumptions:

A∗HE ∩ A∗OCV =� ((Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C)

∧ (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1) ∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)

∧ (¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C) ∧ (Tscavi
∈ R)

∧(Tfuelout ∈ R) ∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

)
(C.29)

Notice that when the assumptions are calculated via AHE−OCV = (A∗HE ∩A∗OCV)∪
¬GHE−OCV the constraints highlighted in green, blue, orange and magenta in

(C.28) and (C.29) effectively state that � ((Tfeed ∈ R) ∧ (Tfuelout ∈ R) ∧ (Wfeedi
∈
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R) ∧ (Tscavi
∈ R)). So overall the assumptions reduce to:

AHE−OCV =� ((Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C)

∧(0.49kgs−1 ≤ Woil ≤ 2.8kgs−1) ∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)
)

(C.30)

Second Iteration - Combining the PS Contract With the HE-OCV Com-

position

As stated in (C.23) we have Csys = CPS ⊗ CHE−OCV. Again we need the alphabet

equalized contracts:

C∗HE−OCV =



A∗HE−OCV =� ((Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C)

∧ (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)

∧ (Tscavi
∈ R) ∧ (Tfeed ∈ R) ∧ (Tfuelout ∈ R)

∧ (Wfeedi
∈ R) ∧ (Wscavi

∈ R))

G∗HE−OCV =� ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C)

∧ (Tscavi
≤ 220◦C) ∧ (0◦C ≤ Tfuelout ≤ 165◦C)

∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

∧ (Ttank ∈ R) ∧ (Woil ∈ R) ∧ (Wscavi
∈ R))

(C.31)

C∗PS =



A∗PS =�
(
(Tscavi

≤ 220◦C) ∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

∧ (Ttank ∈ R) ∧ (Tfuelin ∈ R) ∧ (Tfeed ∈ R) ∧ (Tfuelout ∈ R)

∧ (Wfuel ∈ R) ∧ (Woil ∈ R) ∧ (Wscavi
∈ R))

G∗PS =�
(
(Ttank ≤ 220◦C) ∧ (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

∧ (0.105kgs−1 ≤ Wscavi
≤ 0.525kgs−1)∧ (Tfeed ∈ R)

∧(Tscavi
∈ R) ∧ (Tfuelout ∈ R) ∧ (Wfeedi

∈ R))

(C.32)
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Then we can calculate the guarantees:

Gsys = G∗HE−OCV ∩G∗PS

= � ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C) ∧ (Tscavi
≤ 220◦C) ∧ (Ttank ≤ 220◦C)

∧ (0◦C ≤ Tfuelout ≤ 165◦C) ∧ (0.105kgs−1 ≤ fscav ≤ 0.525kgs−1)

∧(0.49kgs−1 ≤ Woil ≤ 2.8kgs−1) ∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

)
(C.33)

For the calculation of the assumptions we need ¬G∗HE−OCV ∩G∗PS i.e.:

¬Gsys =♦ ((¬Idle ∧ Tfeed < 10◦C) ∨ (¬Idle ∧ Tfeed > 120◦C) ∨ (Tscavi
> 220◦C)

∨ (Ttank > 220◦C) ∨ (Tfuelout < 10◦C) ∨ (Tfuelout > 120◦C)

∨ (Wscavi
< 0.105) ∨ (Wscavi

> 0.525kgs−1) ∨ (Woil < 0.49kgs−1)

∨(Woil > 2.8kgs−1) ∨ (Wfeedi
< 0.07kgs−1) ∨ (Wfeedi

> 0.4kgs−1)
)

(C.34)

And the intersection of the assumptions:

A∗HE−OCV ∩ A∗PS =� ((Tscavi
≤ 220◦C) ∧ (Ttank ≤ 220◦C) ∧ (−35◦C ≤ Tfuelin ≤ 55◦C)

∧ (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1) ∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)

∧ (0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1) ∧ (Tfeed ∈ R) ∧ (Tfuelout ∈ R)

∧(Wscavi
∈ R))

(C.35)

Notice that when the assumptions are calculated via Asys = (A ∗HE−OCV ∩A∗PS) ∪
¬Gsys the constraints highlighted in orange, magenta, red, brown, violet, blue

and green in (C.34) and (C.35) effectively state that � ((Tscavi
∈ R) ∧ (Ttank ∈

R) ∧ (Tfeed ∈ R) ∧ (Tfuelout ∈ R) ∧ (Wscavi
∈ R) ∧ (Woil ∈ R) ∧ (Wfeedi

∈ R)). So

overall the assumptions reduce to:

Asys = �
(
(−35◦C ≤ Tfuelin ≤ 55◦C) ∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)

)
(C.36)
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So the final contract is given by:

Csys =



Asys =�
(
(−35◦C ≤ Tfuelin ≤ 55◦C) ∧ (0.1kgs−1 ≤ Wfuel ≤ 0.8kgs−1)

)
Gsys =� ((¬Idle =⇒ 10◦C ≤ Tfeed ≤ 120◦C) ∧ (Tscavi

≤ 220◦C)

∧ (Ttank ≤ 220◦C) ∧ (0◦C ≤ Tfuelout ≤ 165◦C)

∧ (0.105kgs−1 ≤ Wscavi
≤ 0.525kgs−1)

∧ (0.49kgs−1 ≤ Woil ≤ 2.8kgs−1)

∧(0.07kgs−1 ≤ Wfeedi
≤ 0.4kgs−1)

)
(C.37)

This makes sense since the only variables we are making assumptions on are those

that come from outside the modulated oil system. At the same time, all of the

requirements R1-R5 are contained in the guarantees. This is what we expected

and if we were to find anything different with the final Csys it would indicate

that there is some sort of integration issue. However, since CHE ⊗ COCV ⊗ CPS

satisfies our specification, then any set of subsytems which satisfy the individual

contracts will satisfy the whole-system specification. This means we can take away

the individual contracts and use them as specifications for design of the different

subsystems.

Note that in Section 5.4 a simplified version of this is used without the sub-formulae

for Woil and Ttank. This is because the requirements on Woil are guaranteed by

those on Wfeedi
and the requirements on Ttank are guaranteed by those on Tscavi

.

The simplified version also does not contain the sub-formula for Wscavi
. This is

because to have a scavenge flow greater than the feed flow requires modeling of the

deaerator/breather which has not been performed in Section 5.2. It is therefore

assumed that the control system will be capable of satisfying this requirement,

which can be verified at a lower-level of fidelity.

C.6 Checking composition of contracts using the

OCRA tool

The manual method of checking consistency of contract composition has been

demonstrated in section Section C.5. However, in reality this is quite a time-

consuming exercise and we ideally want to use some sort of software to do this
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automatically. Fortunately this can be done using the OCRA tool [109] The input

to OCRA is an Othello System Specification file as shown in code C.1.

COMPONENT modulated_oil_system_separate_viewpoints system

INTERFACE

INPUT PORT T_fuel_in: real;

INPUT PORT W_fuel: real;

OUTPUT PORT T_scav_i: real;

OUTPUT PORT T_tank: real;

OUTPUT PORT T_feed: real;

OUTPUT PORT T_fuel_out: real;

OUTPUT PORT W_scav_i: real;

OUTPUT PORT W_oil: real;

OUTPUT PORT W_feed_i: real;

CONTRACT system

assume: always ( (T_fuel_in >= -35) and (T_fuel_in <= 55) and (W_fuel >= 0.1) and (

↪→ W_fuel <= 0.8) ) ;

guarantee: always ( (T_scav_i <= 220) and (T_tank <= 220) and (T_feed >= 10) and (

↪→ T_feed <= 120) and (T_fuel_out >= 0) and (T_fuel_out <= 165) and (W_scav_i >= 0.105) and (

↪→ W_scav_i <= 0.525) and (W_oil >= 0.49) and (W_oil <= 2.8) and (W_feed_i >= 0.07) and (

↪→ W_feed_i <= 0.4) );

REFINEMENT

SUB he: heat_exchanger;

SUB ocv: oil_chamber_valves;

SUB ps: pumping_storage;

CONNECTION he.T_fuel_in := T_fuel_in;

CONNECTION he.W_fuel := W_fuel;

CONNECTION he.T_tank := ps.T_tank;

CONNECTION he.W_oil := ps.W_oil;

CONNECTION ocv.T_feed := he.T_feed;

CONNECTION ocv.W_oil := he.W_oil;

CONNECTION ps.T_scav_i := ocv.T_scav_i;

CONNECTION ps.W_feed_i := ocv.W_feed_i;

CONNECTION T_scav_i := ocv.T_scav_i;

CONNECTION T_tank := ps.T_tank;

CONNECTION T_feed := he.T_feed;

CONNECTION T_fuel_out := he.T_fuel_out;

CONNECTION W_scav_i := ps.W_scav_i;

CONNECTION W_oil := ps.W_oil;

CONNECTION W_feed_i := ocv.W_feed_i;

CONTRACT system REFINEDBY he.thermal, he.flow, ocv.thermal, ocv.flow, ps.thermal, ps.flow;

COMPONENT heat_exchanger

INTERFACE

INPUT PORT T_tank: real;

INPUT PORT T_fuel_in: real;

INPUT PORT W_oil: real;

INPUT PORT W_fuel: real;

OUTPUT PORT T_feed: real;

OUTPUT PORT T_fuel_out: real;

CONTRACT thermal

assume: always ( (T_tank <=220) and (T_fuel_in >= -35) and (T_fuel_in <= 55) );

guarantee: always ((not Idle implies (T_feed >= 10)) and (not Idle implies (T_feed <=

↪→ 120)) and (T_fuel_out >= 0) and (T_fuel_out <= 165) );
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CONTRACT flow

assume: always ( (W_oil >= 0.49) and (W_oil <= 2.8) and (f_fuel >= 0.1) and (f_fuel <=

↪→ 0.8) );

guarantee: always true;

COMPONENT oil_chamber_valves

INTERFACE

INPUT PORT T_feed: real;

INPUT PORT W_feed_i: real;

OUTPUT PORT T_scav_i: real;

CONTRACT thermal

assume: always ((not Idle implies (T_feed >= 10)) and (not Idle implies (T_feed <=

↪→ 120)));

guarantee: always (T_scav_i <=220);

CONTRACT flow

assume: always ( (W_oil >= 0.49) and (W_oil <= 2.8) );

guarantee: always ( (W_feed_i >= 0.07) and (W_feed_i <= 0.4) );

COMPONENT pumping_storage

INTERFACE

INPUT PORT T_scav: real;

INPUT PORT f_feed: real;

OUTPUT PORT T_pump: real;

OUTPUT PORT f_scav: real;

OUTPUT PORT f_pump: real;

CONTRACT thermal

assume: always ( (T_scav_i <=220) );

guarantee: always ( (T_tank <=220) );

CONTRACT flow

assume: always ( (W_feed_i >= 0.07) and (W_feed_i <= 0.4) );

guarantee: always ( (W_oil >= 0.49) and (W_oil <= 2.8) and (W_scav_i >= 0.105) and (

↪→ W_scav_i <= 0.525) );

Listing C.1: An othello system specification for the modulated oil system

This code has been used along with commands in OCRA to check consistency of

contracts (check that the sub-system contracts compose properly with no contra-

diction between the assumptions and guarantees).
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for identifying architectural candidates as part of engineering a system ar-

chitecture,” in IEEE 8th Annual International Systems Conference, 2014,

pp. 266–271.

[33] N. Bajaj, P. Nuzzo, M. Masin, and A. Sangiovanni-Vincentelli, “Optimized

selection of reliable and cost-effective cyber-physical system architectures,”

in Design, Automation & Test in Europe Conference & Exhibition, 2015, pp.

561–566.

[34] J. Finn, P. Nuzzo, and A. Sangiovanni-vincentelli, “A Mixed Discrete-

Continuous Optimization Scheme for Cyber-Physical System Architecture

Exploration,” in 2015 IEEE/ACM International Conference on Computer-

Aided Design, 2015, pp. 216–223.

[35] O. Hammami and M. Houllier, “Rationalizing approaches to multi-objective

optimization in systems architecture design,” in IEEE Int. Systems Conf.,

2014, pp. 407–410.

[36] O. Hammami, “Architecture frameworks, multiobjective optimization and

multiphysics simulation: Challenges and opportunities,” in IEEE 9th Annual

International Systems Conference, 2015, pp. 546–553.

[37] S. V. Subramanian and D. A. DeLaurentis, “Application of Multidisciplinary

Systems-of-Systems Optimization to an Aircraft Design Problem,” Systems

Engineering, vol. 19, no. 3, pp. 235–251, 2016.

[38] R. E. Thompson, J. M. Colombi, J. Black, and B. J. Ayres, “Disaggre-

gated Space System Concept Optimization: Model-Based Conceptual De-

sign Methods,” Systems Engineering, vol. 18, no. 6, pp. 549–567, 2015.
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