
Sampling-based algorithms for motion

planning with temporal logic

specifications

Felipe J. Montana

Department of Automatic Control and Systems Engineering

University of Sheffield

This thesis is submitted for the degree of

Doctor of Philosophy

January 2019

Acknowledgements

I would like to express my gratitude to my supervisors, Prof. Tony J. Dodd and Dr. Jun Liu,

for all the guidance and support throughout my PhD studies.

Thank you to all my friends in Sheffield Robotics for all the discussions and good mo-

ments that we shared during this journey.

Also, I would like to thank my sponsor, CONACyT, for giving me the great opportunity

to study abroad and contribute to the development of science and technology.

Finally, a special thank you to my family for being a constant source of support through-

out all these years.

Abstract

Autonomous mobile robots are machines capable of performing tasks, operating without hu-

man intervention. Their presence has increased in applications such as personal assistance,

manufacturing, etc. One of the main challenges of controlling a robot autonomously lies

in the area of motion planning. This planning needs to consider elements such as system

dynamics, uncertainties, dynamic environments, safety and reliability. These requirements

have motivated the development of methods that combine control theory and model check-

ing techniques to automatically compute plans that provably guarantee the execution of a

given specification.

Although model checking has been successfully used to verify discrete systems, its ap-

plication in autonomous mobile systems presents certain challenges such as: (i) the problem

of computing finite models from high-dimensional systems with infinite number of states;

(ii) the computation of controllers for systems with kinematic and dynamic constraints; (iii)

the computation of robust and reactive controllers to deal with uncertainties and dynamic

environments; and (iv) the state explosion problem due to the total number of possible be-

haviour or states when multiple robots are considered.

The challenges presented above are addressed in this thesis. Specifically, the proposed

methods in this work are focused on the motion planning of mobile systems based on linear

temporal logic and metric interval temporal logic specifications. They are based on sampling

methods which are widely used in the point to point motion planning for high-dimensional

systems with dynamic constraints. By using these methods and automata-based theory, the

solutions in this thesis mitigate the state explosion problem presented in available methods.

The main contributions of the thesis are summarised as follows. Chapter 4 develops

a new algorithm to find optimal trajectories for deterministic systems with kinematic and

differential constraints subject to co-safe temporal logic specifications. Systems with un-

certainty in motion and sensing are considered in Chapters 5 and 6. In these chapters, two

novel approaches to maximise the probability of completing temporal logic specifications

are proposed. Finally, Chapter 7 presents a solution for multi-robot systems subject to co-

safe linear temporal logic specifications. All the proposed algorithms are demonstrated with

several numerical examples.

Table of contents

List of figures xi

List of tables xiii

List of abbreviations xv

1 Introduction 1

1.1 Aim and objectives . 4

1.2 Contributions . 5

1.3 Publications . 6

1.4 Thesis overview . 7

2 Background and Related Work 9

2.1 Motion planning . 9

2.1.1 Roadmaps . 12

2.1.2 Cell decomposition . 12

2.1.3 Method of potential fields . 13

2.1.4 Optimisation-based methods . 14

2.1.5 Sampling-based methods . 15

2.2 Model checking and control synthesis . 21

2.2.1 Model checking . 22

2.2.2 Control synthesis algorithms . 22

2.3 Related work . 26

2.3.1 Optimal control . 26

2.3.2 Time constrained specifications 29

2.3.3 Uncertainty in motion and sensing 31

2.3.4 Multi-robot systems . 34

2.4 Concluding remarks . 37

viii Table of contents

3 Preliminaries 39

3.1 System models . 39

3.2 Linear temporal logic . 42

3.3 ω-automata . 44

3.4 Co-safe linear temporal logic . 46

3.5 Metric interval temporal logic . 47

3.6 Timed automata . 48

4 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications 51

4.1 Problem formulation . 52

4.2 Solution . 55

4.2.1 Overview . 55

4.2.2 Stable sparse RRT . 56

4.2.3 Stable sparse RRT with temporal logic constraints 60

4.3 Analysis . 65

4.3.1 Probabilistic Completeness and Asymptotic Optimality 65

4.3.2 Complexity . 67

4.4 Examples . 67

4.5 Concluding remarks . 69

5 Stochastic Optimal Control with MITL Specifications 71

5.1 Problem formulation . 72

5.2 Solution . 73

5.2.1 Overview . 73

5.2.2 Workspace discretisation and local policies 74

5.2.3 BMDP model . 78

5.2.4 Product BMDP . 79

5.2.5 Optimal global policy computation 80

5.2.6 Policy implementation . 81

5.3 Analysis . 82

5.4 Example . 82

5.4.1 Discussion . 83

5.5 Concluding remarks . 85

6 Reactive Motion Planning with LTL Constraints and Imperfect State Informa-

tion 87

6.1 Problem formulation . 88

Table of contents ix

6.2 Solution . 90

6.2.1 Overview . 90

6.2.2 Feedback-based information roadmap 91

6.2.3 Incremental transition system . 93

6.2.4 Product MDP . 95

6.2.5 Optimal policy computation . 97

6.2.6 Local targets . 98

6.2.7 Obstacle avoidance . 100

6.3 Examples . 102

6.4 Concluding remarks . 105

7 Path Planning for Multi-robot Systems with Co-safe LTL Specifications 107

7.1 Problem formulation . 108

7.2 Solution . 109

7.2.1 Overview . 109

7.2.2 Probabilistic roadmap . 109

7.2.3 Composite roadmap exploration 111

7.2.4 Product automaton update . 113

7.2.5 Guided exploration . 114

7.2.6 Implementation . 116

7.3 Examples . 117

7.4 Concluding remarks . 118

8 Conclusions and Future Work 121

8.1 Summary and conclusions . 121

8.2 Future work . 124

References 127

List of figures

1.1 Illustration of synthesis of controllers using model checking. 3

2.1 Workspace and configuration space of a circular mobile robot. 10

2.2 Example of visibility graph. 12

2.3 Triangular decomposition. 13

2.4 Obstacle encoded as a combination of linear equality constraints. 15

2.5 Example of probabilistic roadmap. 17

2.6 Illustration of rapidly-exploring random tree. 18

2.7 Expansion of RRT. 19

2.8 Example of automata-based method . 23

2.9 Example of an abstraction . 24

3.1 Example of transition system. 40

3.2 Trace defined by a run in transition system 41

3.3 Illustration of a Markov decision process and bounded-parameter Markov

decision process . 43

3.4 Semantics of linear temporal logic. 44

3.5 Büchi automaton. 45

3.6 Rabin automaton. 46

3.7 Timed automaton. 49

4.1 Illustration of two δ -similar trajectories. 53

4.2 Illustration of the small-time locally accessible property. 54

4.3 Illustration of SST. 57

4.4 Selection of state to expand tree. 57

4.5 Illustration of expansion and pruning of tree. 59

4.6 Neighbourhoods defined by witnesses over the state space. 62

4.7 Selection of states to expand transition system. 64

4.8 Growing trees with different atomic propositions. 66

xii List of figures

4.9 Path followed by a quadrotor satisfying a LTL specification. 68

4.10 3D view of path followed by a quadrotor satisfying a LTL specification. . . 69

4.11 Convergency of SST_LTL approach. 69

5.1 Partitioning of the workspace. 74

5.2 Illustration of incremental Markov decision process. 75

5.3 Illustration of the continuous-time interpolation of Markov chain. 76

5.4 Computation of policies for transitioning between segments. 77

5.5 Trajectories followed by a Dubin’s car constrained by a MITL specification. 83

5.6 3D view of trajectory followed by a system following a MITL specification. 84

6.1 Example of a multivariate Gaussian distribution. 89

6.2 Illustration of a feedback-based information roadmap. 93

6.3 Illustration of expansion of transitions system. 95

6.4 Example of Rabin automaton. 96

6.5 Target detected during online execution. 100

6.6 Obstacle detected during online execution. 101

6.7 Example 1 of trajectory followed by a system with uncertainty in motion

and sensing. 103

6.8 Example 2 of trajectory followed by a system with uncertainty in motion

and sensing. 104

7.1 Illustration of tensor product. 110

7.2 Selection of vertex and edge using dRRT. 111

7.3 Incremental construction of a transition system. 112

7.4 Illustration of the path followed by two robots satisfying a LTL specification. 117

7.5 Illustration of the path followed by four robots satisfying a LTL specification. 118

List of tables

6.1 Average required time to solve two problems with uncertainty in motion and

sensing. 104

7.1 Average required time to solve two multi-robot problems. 118

List of abbreviations

AEC Accepting end component

BMC Bounded model checking

BMDP Bounded-parameter Markov decision process

CE Cross-entropy

CEGIS Counterexample-guided inductive synthesis

CTL Computational tree logic

DRA Deterministic Rabin automaton

DTA Deterministic timed automaton

FIRM Feedback-based information roadmap

GDTL Gaussian distribution temporal logic

iMDP incremental Markov decision process

IVI Interval value iteration

LQG Linear quadratic Gaussian

LTL Linear temporal logic

MDP Markov decision process

MILP Mixed-integer linear programming

MITL Metric interval temporal logic

MPC Model predictive control

xvi List of abbreviations

MTL Metric temporal logic

PCTL Probabilistic computational tree logic

POMDP Partially observable Markov decision process

PRM Probabilistic roadmap

RRT Rapidly-exploring random tree

sc-LTL Syntactically co-safe linear temporal logic

SST Stable sparse-RRT

STL Signal temporal logic

Chapter 1

Introduction

Autonomous mobile robots are machines capable of performing tasks operating without hu-

man intervention. Their presence has increased in applications such as personal assistance,

security, manufacturing, warehouse distribution, etc. One of the main challenges of control-

ling a robot autonomously lies in the area of motion planning [31]. In its most basic form,

the goal of motion planning consists of finding a plan to guide a system from an initial to

a final configuration while avoiding collisions. This planning needs to consider elements

such as system dynamics, uncertainties and dynamic environments that are present in most

applications. Moreover, as the number of applications involving interaction with humans

increases, it is essential to consider factors such as safety and reliability.

The problem of motion planning has been studied for decades [97]. Although numerous

algorithms have been proposed, these mainly focus on driving a system from an initial

state to a single final state. As the tasks capable to be performed by a robot become more

complex, these methods present some limitations. For instance, consider a mobile system

used for surveillance. The mission of the system could include the reachability of several

areas of a building in a particular order. While methods that allow tasks such as sequencing

and timing of targets have been proposed [14, 129], they are limited to certain type of tasks,

e.g. only tasks with finite horizon properties. Hence, methods capable of automatically

computing plans based on given complex missions or specified behaviours are desirable.

On the other hand, research in an area of computer science, namely formal methods,

solves a similar problem. Formal methods have been applied in computer science for task

specification and verification of software and hardware. Their aim is to provide a rigorous

mathematical approach to establish the correctness of a system. Examples such as the crash

of the rocket Ariane 5 in 1996 due to a software error [109] or the faulty Intel’s Pentium

II processors [35] have demonstrated the necessity of such methods for the verification of

software and hardware. These methods have allowed the development of approaches, called

2 Introduction

correct-by-construction, that return an implementation that guarantees a desired behaviour

based on a specification.

In particular, a formal method, called model checking [34], allows to verify whether a

given specification is violated by a system. This verification is performed by exhaustively

exploring a model which describes all the possible behaviours of the system. After the ver-

ification is completed, model checking algorithms inform whether there exists a behaviour

violating or satisfying the specification.

Model checking algorithms have been used for years for software verification. However,

it was not until the last decade that they started to be applied in the field of motion planning

or, more general, in control. By combining these two areas, methods capable of automati-

cally synthesising plans that provably guarantee the execution of a given specification have

been developed. Here, synthesis is referred to as the action of constructing controllers to

produce a system’s trajectory that meets certain constraints. Because of the flexibility to

define a wide range of specifications and the guarantees offered by these algorithms, they

have become useful in robotics, especially for safety-critical systems.

In general, these synthesis methods receive as an input a formal specification of the de-

sired system’s behaviour and a model of the system. If the model contains a behaviour capa-

ble of satisfying the specification, a sequence of states or controllers is returned. Otherwise,

it is reported that the specification cannot be satisfied by the model, Fig. 1.1. Specifications

are commonly expressed using computational tree logic (CTL) and linear temporal logic

(LTL) . These logics allow to unambiguously express useful specifications or behaviours for

robotic systems, such as the rules required for the DARPA challenges [191]. Examples of

possible specifications include: (i) sequencing, e.g. go to A, then to C and finally B; (ii)

recurrence, e.g. go to regions A and B infinitely often; and (iii) safety, e.g. always avoid

region C.

Although model checking has been successfully used to verify discrete systems, its ap-

plication in robotics presents certain challenges:

• Computation of abstractions. Since model checking was designed for finite discrete

systems, the problem of computing finite models from high-dimensional systems with

infinite number of states has been an important area of research. The computation of

such models, also called abstractions, must preserve the properties of interest from the

original system in order to guarantee the correct behaviour. This problem becomes

more challenging when nonlinear or high-dimensional systems, i.e. systems with a

large number of variables defining their state, are considered [194].

3

Model of system

Transition system Model checker

State space search

Automaton

Formal specification (e.g. LTL)

Control or trajectory Specification cannot be satisfied

Fig. 1.1 Illustration of a typical approach used to synthesise controllers using model check-
ing. A finite state model of the original system is first computed and modelled as a transi-
tion system. The specification is transformed into an automaton. Using approaches such
as automaton-based techniques, an attempt at finding a trajectory satisfying the specifica-
tion is performed. If a solution is found, the sequence of controllers required to follow the
trajectory is returned.

• System dynamics. Another challenge is the implementation of the computed plan.

As mentioned above, model checking techniques perform the verification at a discrete

level. Hence, the computed plan consists of a series of transitions between discrete

states. In order to perform such plans at the continuous level, controllers must be

computed to achieve the transitions of the discrete plan. While this computation does

not represent a problem for systems with simple dynamics, for nonlinear systems with

more complex dynamics, such as those with kinematic and dynamic constraints, i.e.

kinodynamic systems, this computation is not trivial [37].

• Uncertainties and dynamic environments. As aforementioned, the uncertainty to

which autonomous systems are subjected must also be considered during the motion

planning. These elements represent an additional complication to the previous chal-

lenges given the complexity of solving stochastic problems or problems with partially

observable systems that arise when uncertainties are considered. Moreover, when a

system operates in a dynamic environment, the computed plan or control must be reac-

tive to act against changes. In order to guarantee a level of safety or satisfiability of a

specification under all these circumstances, robust controllers and reactive controllers

that maximise the probability of completing a task are required.

• Specifications. One of the main benefits of using model checking for motion plan-

ning is the flexibility to define complex tasks in a human-like language using modal

4 Introduction

logics. In general, there exists a trade-off between the expressiveness of the logic

and the complexity of the algorithm required to use such a logic. For instance, when

systems with complex dynamics are considered, finding a trajectory to satisfy tasks

with infinite horizon, e.g. visit regions A and B infinitely often, represents a more

challenging problem compared to tasks with finite horizon, e.g. visit region A and

then B. Another example is the inclusion of time in the specifications. Logics such

as metric temporal logic (MTL) [88] permit to express tasks with time constraints.

Nevertheless, considering time constraints during the motion planning increases the

computational complexity of the problem.

• Multi-robot systems. Considering multiple robots brings a series of complications.

How robots should collaborate to accomplish a task or what to do when the specifi-

cations of two different robots conflict with each other are some of the problems that

must be solved for multi-robot systems [189]. Another challenge is the state explo-

sion problem due to the total number of possible behaviours or states, which increases

with the number of robots [84].

1.1 Aim and objectives

Motivated by the challenges mentioned above, the aim of this thesis is the development of

methods to solve the problem of motion planning for linear and nonlinear systems such that

the correct behaviour, based on high-level temporal specifications, is guaranteed. The main

focus is on the scalability and applicability to a variety of system dynamics of the methods.

Moreover, in order to be applicable to several real situations, the developed frameworks

must be able to consider factors such as uncertainties, time constraints, number of robots and

dynamic environments. In order to achieve this aim, the following objectives are defined:

• Develop a method to compute optimal plans while temporal logic specifications are

satisfied. In order to be applicable for a variety of systems, the method should be able

to consider systems with kinematic and dynamic constraints.

• Develop a scalable method to consider real-time constraints. This approach must be

able to mitigate the increasing number of states due to the consideration of time in the

specification.

• Develop a method to find plans satisfying high-level specifications for systems af-

fected by uncertainty in motion and sensing. For scenarios where the correct be-

1.2 Contributions 5

haviour cannot be guaranteed, the method should maximise the probability of satisfy-

ing the specifications.

• Develop a method to compute plans for systems operating on dynamic environments.

The plan must allow the system to react to changes while the temporal logic specifica-

tion is satisfied.

• Develop a scalable method to find paths for multiple robots satisfying a global or

individual specifications. Due to the increasingly number of states with the number of

robots, the method needs to efficiently search for paths satisfying the specifications.

1.2 Contributions

The aim and objectives led to the following contributions:

• The problem of optimal motion for kinodynamic systems subject to temporal logic

specifications is a challenging problem due to the need to compute high quality trajec-

tories while kinematic and differential constraints are satisfied. A framework capable

of finding optimal trajectories for high-dimensional kinodynamic system subject to

co-safe linear temporal logic specifications is presented in Chapter 4. In contrast to

other methods that can only be applied to limited classes of system dynamics, the

proposed approach can be applied to a wider range of dynamics. This is achieved by

a method that only requires the forward propagation of the system dynamics while

other methods require the computation of abstractions or to solve two-point boundary

value problems. Therefore, the proposed method opens the possibility to solve new

problems.

• While qualitative properties such as those that can be specified by co-safe LTL [91]

(a fragment of LTL) could be sufficient for some tasks, others require specifications

with time limits. Considering temporal logic specifications with real-time constraints,

in general, requires the discretisation of the time and state space. This discretisa-

tion becomes a problem when the dimension of the considered system increases. A

method that reduces the complexity of motion planning problems considering real-

time constraints, given as a metric interval temporal logic, and uncertainty in motion

is presented in Chapter 5. Although this problem has been addressed in the liter-

ature, solutions are limited by their scalability due to a fine discretisation required.

The presented approach achieves computational tractability by combining a coarse

abstraction of the workspace with a sampling-based method that approximates the

6 Introduction

properties of the original stochastic system. As a result, the approach can be applied

to high-dimensional systems.

• The solution presented in Chapter 5 considers stochastic motion of the system while

perfect information about the system state and a static environment are assumed. Nev-

ertheless, in many applications, the state of the system becomes uncertain due to

factors such as noisy sensors. Moreover, dynamic environments are also commonly

presented in many applications. Planning under motion and sensing uncertainties rep-

resents a difficult problem because of complexity provoked by the curse of history

associated with these conditions. Because of this complexity, solutions are usually

computed offline. Nevertheless, these solutions become invalid when the environ-

ment is dynamic. The solution proposed in Chapter 6 allows systems with uncertainty

in motion and sensing to react to elements, such as obstacles, in a dynamic environ-

ment while a linear temporal logic specification is satisfied. This problem has mainly

been solved in the literature at the discrete level. In contrast, the proposed approach

finds a solution in the continuous state space. Hence, it imposes less assumptions, e.g.

precomputed abstractions.

• With the possibility of expressing complex tasks by using temporal logics, the range

of possible tasks can be limited by the capabilities of a single robot. In Chapter 7,

an approach for multiple robots subject to co-safe linear temporal logic specifications

is presented. A main challenge with multiple robots is the scalability. This prob-

lem arises due to the increasing number of possible states with the number of robots.

Available solutions do not offer good scalability due to the use of discretisation or

navigations functions. The proposed approach extends sampling-based methods for

the multi-robot problem and uses a novel algorithm that guides the exploration of the

state spaces allowing the reduction of the considered states. As a result, less time is

required to find solutions.

1.3 Publications

The proposed methods in this thesis are based on the following author’s works:

i. Montana, F. J., Liu J., and Dodd, T. J. (2016). Sampling-based stochastic optimal

control with metric interval temporal logic specifications. In Proceedings of Conference

on Control Applications, pages 767-773. IEEE.

1.4 Thesis overview 7

ii. Montana, F. J., Liu, J. and Dodd, T. J. (2017). Sampling-based reactive motion planning

with temporal logic constraints and imperfect state information. In Proceedings of Crit-

ical Systems: Formal Methods and Automated Verification, pages 134-149. Springer.

iii. Montana, F. J., Liu, J. and Dodd, T. J. (2017). Sampling-based path planning for multi-

robot systems with co-safe linear temporal logic specifications. In Proceedings of Crit-

ical Systems: Formal Methods and Automated Verification, pages 150-164. Springer.

1.4 Thesis overview

Chapter 2 presents a background of methods developed to solve the traditional point to

point motion planning problem and presents the necessity of including model checking

techniques to address the current limitations. Then, the main ideas of control synthesis using

model checking techniques are introduced. This section also discusses different developed

approaches and the main gaps and possibles areas for improvement. Finally, an analysis of

the work more related to the methods in this thesis is presented. This related work is divided

into four sections, one for each of the main chapters, and discusses the problems of optimal

control, time constraints, uncertainty in motion and sensing and multi-robot systems.

Chapter 3 introduces linear temporal logic and metric interval temporal logic which are

used in the rest of the chapters to specify the desired behaviour of the systems. This chapter

also presents the concepts of ω-automata and timed automata used to verify whether the

behaviour of a system satisfies a specification. Finally, the graph structures used to model

deterministic and stochastic systems are also described in this chapter.

Chapter 4 presents a solution to the optimal motion planning problem subject to temporal

logic specifications. The solution is geared towards high-dimensional kinodynamic systems.

This is based on new approaches that only require the forward propagation of the system

dynamics to find optimal trajectories. The presented method generalises these methods,

allowing to find asymptotically optimal trajectories satisfying co-safe linear temporal logic

specifications. The method iteratively expands a transition system, where the states are

formed by a state of the system and a state of a Büchi automaton while transitions represent

trajectories of the system. At each iteration, a new state and transition are added after

verifying if the trajectory is valid in the Büchi automaton. The process continues until a

specified number of iterations is completed.

Chapter 5 addresses the problem of computing controllers for stochastic systems under

metric interval temporal logic specifications. The presented approach reduces the compu-

tational complexity of discretising the state space and time by dividing the solution into

two phases. During the first phase, the system is coarsely discretised into distinct regions

8 Introduction

and local policies are computed using a sampling method. In the second phase, a Cartesian

product between the abstraction and a timed automaton is used to compute an optimal global

policy that maximises the probability of satisfying the specification. The number of states

in this product is reduced thanks to the coarse discretisation of the workspace instead of the

state space as in other methods. Hence, the approach is less sensitive to the dimension of

the system. The work in this chapter is based on the author’s work [124].

Chapter 6 considers problems where systems with uncertainty in motion and sensing

operate in dynamic environments. To reduce the complexity of the curse of history caused

by the aforementioned uncertainties, the approach presented in this chapter uses feedback-

based information roadmaps to create a transition system. Based on results in probabilistic

model checking, an optimal solution to the problem is found by constructing a product

Markov decision process with the transition system and a Rabin automaton. In order to

permit a fast reaction to the environment, another feedback-based information roadmap is

computed offline and used during the online execution. The work in this chapter is based on

the author’s work [126].

Chapter 7 focuses on motion planning for multiple robots. Specifically, a global speci-

fication, given as a co-safe linear temporal logic, that must be satisfied by a team of robots

is considered. The proposed method explores the state space of the robots. During the

exploration, a transition system is incrementally expanded by adding new states from indi-

vidual roadmaps. With each expansion, the product automaton of the transition system and

a Büchi automaton is updated. This process continues until a solution is found. To reduce

the number of states in the product automaton, and therefore reduce the required time to

find a solution, an algorithm that uses the Büchi automaton of the specification to guide the

expansion of the transition system is presented. The work in this chapter is based on the

author’s work [125].

Chapter 8 presents a summary of the contributions and its conclusions. This chapter also

presents possible future directions for the developed work.

Chapter 2

Background and Related Work

This chapter presents the background to the motion planning problem and a discussion of

methods that combine motion planning with model checking techniques. In the first section,

an introduction to the problem of motion planning is described. Then, some of the available

techniques to solve the problem of motion planning are presented. Particular emphasis is

made on the section of sampling-based methods which serves as a background for the meth-

ods proposed in this thesis. In the second section, the necessity of methods that combine

model checking and motion planning to solve problems such as reliability and the limited

applicability of traditional motion planning methods for complex tasks is presented. More-

over, this section presents a background of methods using model checking techniques and

motion planning by describing some of the most commonly used approaches. Finally, an

analysis of the state-of-the-art methods more related to those presented in this thesis and

their limitations is presented in the last section.

2.1 Motion planning

A fundamental and challenging problem in the area of robotics is the task of motion planning

[101]. The problem of motion planning has been studied extensively for decades. As a

result, developed algorithms have spread to diverse areas such as robotics, manufacturing,

computer animation, medical applications, etc. [98]. In a broad sense, the goal of motion

planning algorithms is to find a path for a robot from an initial to a final configuration

without colliding with obstacles.

Initial algorithms only considered the problem from the geometrical point of view [31].

In other words, the algorithm only requires to find a series of configurations between the ini-

tial and final ones assuming that the motion between them is realisable. Since then, motion

planning has evolved to consider differential constraints such as velocity and acceleration

10 Background and Related Work

[43]. When these constraints are considered, motion planning algorithms need to validate

the transition from one configuration to another during the planning.

Before formally defining the problem of motion planning, the concept of configuration

space [31] must be introduced. In order to avoid collisions, the physical space occupied

by a robot in the environment in which is operating, called workspace, must be known. A

representation of the robot that permits to obtain this information is called the configuration

of the robot and is represented as q. An example of a configuration is the vector of six

parameters, three defining position and three orientation, for a vehicle operating in a three-

dimensional physical space. This vector contains all the information required to know the

space occupied by the robot in its workspace and hence to detect if the vehicle is colliding

with an obstacle. The set of all possible configurations is called the configuration space

(C-space). The minimum number of parameters required to define a configuration is called

the degrees of freedom. Therefore, the dimension of the configuration space is determined

by the number of degrees of freedom of the robot.

The problem of motion planning requires to find a path from an initial configuration qinit

to a final configuration qfinal. Formally, a path is a function qqq : [0,τ]→C, where τ is the final

time. In order to find a path without collisions, the free configuration space and the obstacle

configuration space are computed. Hence, the position of the obstacles must be known in

advance. The free configuration space Cfree is the set of points from which the robot does

not intersect any obstacle in the workspace. On the other hand, the obstacle configuration

space Cobs is defined by the set of points where a collision occurs, i.e. Cobs = C \Cfree, Fig.

2.1.

Fig. 2.1 Workspace and configuration space of a circular mobile robot. The figure on the left
shows a workspace with two grey obstacles, the initial position of the robot and a collision-
free trajectory followed by it. The figure on the right shows the free configuration space
(white region), the obstacle configuration space (light grey regions) and the robot repre-
sented as a point.

2.1 Motion planning 11

A formal definition of the motion planning problem, from the geometrical point of view,

is now presented.

Problem definition 2.1.1. Given an initial and a final configuration, qinit and qfinal, find a

collision-free path qqq such that qqq(0) = qinit, qqq(τ) = qfinal and for every t ∈ [0,τ], qqq(t) ∈ Cfree.

When the motion of mobile robots is constrained by elements such as friction, veloci-

ties, etc, motion planners must be able to solve the problem of motion planning subject to

kinematic and differential constraints. This problem is referred to as kinodynamic motion

planning [43]. In this type of problems, the configuration q is not enough to represent the

system at a certain moment. Instead, the system is represented by a state x which not only

defines the position and orientation but also defines other variables such as velocities at a

given instant of time. Similar to the configuration space, a state space X is the set of all

possible configurations and other system variables that represent the state of the system. To

express the constraints and evolution of the state, a system can be modelled by a function:

ẋ = f (x,u), (2.1)

in which x ∈ X is the state, u ∈U is the control input and U is the set of all possible inputs.

The set U is also called the control space.

The kinodynamic motion planning problem requires to find a trajectory xxx : [0,τ]→ X ,

where τ is the duration. Formally, the kinodynamic motion planning problem can be defined

as follows.

Problem definition 2.1.2. Given an initial and a final state, xinit and xfinal, find a collision-

free trajectory xxx such that xxx(0) = xinit, xxx(τ) = xfinal and for every t ∈ [0,τ], xxx(t) ∈ Xfree and

Eq. 2.1 is satisfied, where Xfree is the set of states where the system does not violate any

constraint.

For kinodynamic motion planning problems, the search for a trajectory is performed

over the state space X , which is usually bigger than the configuration space C by a factor of

two [102].

Different techniques have been developed to compute collision-free paths for a variety

of scenarios. In the following subsections, several of these approaches are presented. More

specifically, approaches based on roadmaps, cell decomposition, methods of potential fields,

optimal control and sampling-based methods are discussed.

12 Background and Related Work

2.1.1 Roadmaps

In several situations, it is required to solve several motion planning problems on the same

workspace. For these cases, creating a reusable structure, called roadmap, that can be used

to find a path between two configuration is convenient. Methods such as visibility graphs

[115] and generalised Voronoi diagrams [128] compute such structures.

Visibility graphs, Fig. 2.2, are defined over polygonal configuration spaces. The nodes

of the graph include the vertices of the obstacles and the initial and final configurations of

the system. Two nodes are connected by an edge if the points in the straight line between

them lie on the free configuration spaces. Although visibility graphs return the optimal path

for system without dynamic constraints, since the path passes arbitrary close to obstacles, it

cannot be safely used when uncertainty in position exists.

qinit

qfinal

Fig. 2.2 Example of visibility graph defined by the thin lines. The edges of the graph connect
vertices of the obstacles, the initial configuration qinit and final configuration qfinal. The thick
line shows the shortest path between configurations.

Generalised Voronoi diagrams (GVD) take a different approach since it is defined by

the set of points where the distance between the two closest obstacles are the same. In

other words, the diagram follows the maximum distance between two obstacles. Since the

distance to obstacles is required to construct the diagram, a robot equipped with a range

sensor can be employed to incrementally construct a diagram of an unknown workspace.

Once a GVD is constructed, path planning is achieved by moving away from obstacles until

the diagram is reached.

2.1.2 Cell decomposition

When coverage of the configuration free space is required instead of moving from one initial

configuration to a final one, methods based on cell decomposition are used to achieve this

task [30]. In this approach, the free configuration space is presented by a union of regions

2.1 Motion planning 13

called cells. Once the decomposition is computed, a graph can be constructed where the

cells and their adjacency are represented by nodes and edges, respectively. Examples of

cell decomposition include vertical decomposition, triangulation, Morse decomposition and

cylindrical algebraic decomposition.

To find a path from one configuration to another, a planer searches for a path in the graph

connecting the nodes containing the initial and final configurations. Finally, a path in the

configuration space is found by connecting the centroids of the cells to the midpoint of their

boundaries, Fig. 2.3. When coverage is required, the system first explores the whole cell

before moving to the adjacent one. Similar to the GVDs, the approach is not optimal.

Fig. 2.3 Example of triangulation and adjacency graph. Each segment of the triangulation
is represented by a node (black dots). The edges between nodes pass through the midpoints
of the segment’s boundary and define a collision-free path from one segment to another.

2.1.3 Method of potential fields

To avoid the explicit computation of configuration free spaces, planners such as potential

fields has been proposed for single [69, 172], and multi-robot systems [10, 39]. This ap-

proach permits to incrementally explore the free configuration space. A potential function

is a differentiable real-valued function. Its gradient defines a vector field over the configura-

tion space of the system. If one considers the potential function as energy, the gradient can

be seen as negative and positive forces acting on the robot. Hence, obstacles and targets can

be made repulsive and attractive, respectively. On this vector field, the robot moves until a

point with a gradient equal to zero is reached.

A drawback of this method is that it presents the problem of local minima [31]. In other

words, the robot can be led to a point that does not correspond to the desired final destination.

Solutions such as virtual obstacles [105], navigation functions with only one local minima

14 Background and Related Work

[149] and simulated annealing [199], can be used to avoid this problem. Another limitation

of the potential function approach is the scalability. The vector defined at each point of the

configuration space by the vector filed is a function of the distance to obstacles. To compute

this distance, methods discretise the configuration space into cells. Such a discretisation

presents poor scalability with the dimensionality of the configuration space.

2.1.4 Optimisation-based methods

A different type of approaches used to solve the problem of motion planning are optimisation-

based methods. These approaches are rooted in calculus of variations and its application in

optimal control [141]. One of the first works to consider the problem of motion planning

as a variational problem is [195]. In this work, a discretisation of the continuous problem

and techniques for nonlinear programming are used to solve the variational problem. In

[51], the negative formulation of the Pontryagin maximum principle is used to find optimal

trajectories of non-holonomic systems. Calculus of variations has also been applied to find

trajectories for cooperating non-holonomic systems [38].

A more recent work considers a covariant gradient descent approach [200]. This work

proposes trajectory costs that are invariant to time parameterisation of the trajectory. To

account for obstacles, the method uses a signed distance field representation of the environ-

ment and minimises a combination of obstacles cost and smoothness of the trajectory. The

functional gradient optimisation, as other optimisation methods for non-convex objectives,

finds local minimum. To improve the returned solution the approach uses a Hamiltonian

Monte Carlo method. To avoid the local minimum problem, other approaches use stochas-

tic trajectory optimisation methods that rely on an initial trajectory to explore the state space

[72].

The set of configurations where a system does not collide is highly non-convex for most

robotic systems [154]. To handle this non-convexity, several approaches have used sequen-

tial convex optimisation to repeatedly construct convex subproblems [96, 154]. In [96], the

system is parameterised in time by using a B-spline representation. Obstacle avoidance and

constraints are included in a parametric nonlinear optimisation problem. In [154], signed

distances using convex-convex collision detection are directly integrated into the convex

optimisation problem to avoid obstacles collision.

Another common approach to find optimal solutions and to avoid obstacles is to refor-

mulate the motion planning problem as a linear program subject to mixed integer constraint,

known as mixed-integer linear program (MILP) [147]. In this approach, obstacles are rep-

resented by polygonal convex region and encoded as a combination of linear constraints,

Fig. 2.4. To avoid the obstacles, an and-constraint is created by introducing binary vari-

2.1 Motion planning 15

ables. Then, a MILP problem is solved by combining the mixed integer constraints with the

system constraints. For long trajectories, this approach can be implemented in a receding

horizon fashion to reduce the complexity of the problem [13]. This approach has also been

extended to consider more complex problems such as multiple systems [153] and systems

with uncertainty in motion [21].

c1x = d1 c2x = d2

c3x = d3

c4x = d4

c5x = d5

c1

Fig. 2.4 Obstacle encoded as a combination of linear equality constraints. The variables x,
ci and di represent the system state, a vector of appropriate dimension and a real number,
respectively. (Adapted from [21])

In general, the problem of optimal motion planning for kinodynamic systems is a chal-

lenging problem. Since for several problems, an analytical solution is intractable or not

have a closed-form solution, methods rely on optimisation-based methods as presented in

this section. On the other hand, when the minimised (maximised) objective function or

the set of constraints induces a non-convex region, these approaches relax the optimality to

locally optimal solutions.

On the other hand, several of the methods presented in the previous subsections use

an explicit computation of the obstacle space Cobs. Therefore, they have poor scalability for

high-dimensional spaces [77]. This limitation motivated the development of sampling-based

methods. In the next subsection, the principles used by these methods and some common

algorithms are analysed.

2.1.5 Sampling-based methods

The main idea of sampling-based methods is to avoid the explicit construction of Cobs, which

is a computationally difficult task for systems with a large number of degrees of freedom.

Instead, these methods create a graph by randomly sampling configurations from Cfree and

connecting them if no collision exists. Once enough samples are added to the graph, a path

connecting the initial and the final configuration is sought on it, Fig. 2.5.

16 Background and Related Work

By avoiding the explicit computation of Cobs, sampling-based methods have been suc-

cessfully used to solve problems with high-dimensional configuration spaces [70]. However,

the scalability of these methods is gained at the cost of completeness. An algorithm is said

to be complete if the returning of an answer, if one exists, is guaranteed. Otherwise, the

algorithm must report failure. Sampling-based methods provide a weaker notion of com-

pleteness: probabilistic completeness, i.e. the probability of finding a solution, if one exists,

converges to one when the number of samples tends to infinite.

As aforementioned, the methods presented in this thesis are based on sampling-based

methods. Specifically, probabilistic roadmaps (PRMs) [81] and rapidly-exploring random

trees (RRTs) [100] are used. These two methods are now analysed.

Probabilistic roadmaps. PRMs are an example of multi-query planners. That is, once

a PRM is constructed, it can be used to solve several problems in the same workspace. The

main benefit is the possibility of a fast path computation between multiple initial and final

configurations. Nevertheless, the initial construction of the roadmap can be a slow process.

The method consists of two phases. In the first phase, the learning phase, an undirected

graph G = (V,E) is constructed, where V is a set of configurations in Cfree and E is a set of

edges connecting elements of V . Initially, G is empty. To add a configuration to this graph,

the configuration space C is randomly sampled. If a sampled configuration q is collision-free,

i.e. q ∈ Cfree, q is added to the set V . Otherwise, the configuration is discarded. This process

is repeated until a predefined number, N, of configurations are added, i.e. |V | = N, where

|V | indicates the cardinality of the set V . Once all the configurations are added to V , each of

the configurations q ∈V is connected to other configurations as follows. First, a set Qq with

the k-closest configurations in V to a given configuration q is computed. The closeness of

the configurations is determined by some metric such as Euclidean distance. Then, a local

planner verifies whether the motion between configuration q to each element of the set Qq

satisfies all the constraints, e.g. no collisions. When the motion between configurations is

valid, an edge between these configurations is added. Algorithm 2.1 shows the procedure

described above.

In the second phase, called query phase, the initial and final configurations, qinit and

qfinal, are connected to the graph G. Then, a graph search is performed to return a sequence

of configurations connecting qinit to qfinal, Fig. 2.5.

As presented above, a local planner is used to connect two different configurations dur-

ing the construction of a PRM. Since the process of connecting two configurations is con-

stantly repeated, the selection of the local planner plays an important role in this method. In

most cases, speed is preferred over the completeness of the planner. A common approach is

to use a quick planner that connects the configurations by a straight-line motion in C [176].

2.1 Motion planning 17

Algorithm 2.1. PRMCONSTRUCTION(C,N,k)

1: V ← /0,E← /0;
2: while |V |< N do

3: q← SAMPLE(C);
4: if COLLISIONFREE(q) then

5: V ←V ∪{q};

6: for each q ∈V do

7: Qq← NEAR(q,V,k);
8: for each q′ ∈ Qq do

9: if COLLISIONFREE((q,q′)) then

10: E← E ∪{(q,q′)};

11: return G = (V,E);

qinit

qfinal

Fig. 2.5 Example of path planning using a probabilistic roadmap. The initial and final config-
urations qinit and qfinal are connected to the PRM through the green and red configurations,
respectively. The shortest path between these configurations is found using graph search
algorithms.

Nevertheless, this approach only works for problems not affected by differential constraints

as presented later in this section.

Another important aspect of PRMs, and in general for sampling-based methods, is the

detection of whether a configuration produces a collision. There exist available libraries to

perform this task, e.g. SOLID [177], RAPID [60] and V-Clip [122]. Most of these libraries

are implemented using algorithms such as the Gilbert-Johnson-Keerthi algorithm [54] which

measures the distance between two convex sets. Although the techniques to detect collisions

have been improved, this is the task where most time is spent on by sampling-based methods.

Approaches such as lazy-PRM* [63] and safety certificates [19] have been proposed to

reduce the number of collision checks required.

18 Background and Related Work

Recall that sampling-based methods can only offer probabilistic completeness. This

completeness has been proven for PRMs [80]. Moreover, a variant of this approach, called

PRM*, can achieve asymptotic optimality [79], i.e. the returned solution approaches the

optimal one as the number of samples tends to infinite. PRMs have also been adapted

to included factors such as systems with uncertainty [2, 143] and dynamic environments

[73, 174].

Rapidly-exploring random trees. As aforementioned, PRMs are used for multiple

queries. When only a single problem needs to be solved, the RRT approach provides a

better performance. RRT approaches are geared towards quickly finding a path from an

initial to a final configuration. However, in contrast to PRMs, the algorithm needs to run

again for any change in the initial configuration.

RRT methods construct a tree T = (V,E), where V and E are defined as in the PRMs.

As opposed to a graph, in a tree, two vertices are connected by exactly one edge. The tree,

rooted at the initial configuration qinit, is iteratively expanded until the final configuration

qfinal is reached, Fig 2.6.

qinit

qfinal

Fig. 2.6 Illustration of path planning using a rapidly-exploring random tree. The tree T

is rooted at the initial configuration qinit and expanded by adding configurations randomly
sampled from the configuration space. The expansion continues until the tree is connected
to the final configuration qfinal.

Initially, the tree only contains the initial configuration qinit. Then, to expand T , the

following procedure is repeated. A configuration qrand is randomly sampled from the con-

figuration space. Then, a search for the closest configuration qnear in the tree to qrand is

performed. This search is based on a chosen metric. A planner attempts to drive the system

towards the sampled configuration qrand from qnear. In contrast to PRMs, an exact connec-

tion between configurations is not required. Instead, the final configuration of the motion

computed towards qrand, called qnew, is considered as a candidate to be added to the tree. If

2.1 Motion planning 19

the path from qnear to qnew is collision free, qnew is added to the set V and the path is added

as an edge to E. Otherwise, the configuration is discarded, Fig. 2.7.

qnear

qrand

(a)

qnear

qrand

qnew

(b)

qnear

qrand
qnew

(c)

Fig. 2.7 Expansion of RRT T . (a) A configuration qrand is randomly sampled from the
configuration space and the closest configuration qnear in T is found. (b) A path from qnear

in the direction towards qrand is computed and checked for collision. Since the path from
qnear to the last state of the path qnew collides with an obstacle, qnew is discarded. (c) A new
configuration qrand is sampled and the closest configuration qnear in T is found. A new path
from qnear towards qrand is computed. As a result of this new collision-free path, qnew is
added to T with the edge (qnear,qnew).

Configurations are added to the tree until the final configuration is reached or another

condition is satisfied, e.g. a minimum number of samples is added to the tree. Then, a path

from the initial to the final configuration can be extracted from the tree by backwardly fol-

lowing the edges, starting from the final configuration. Algorithm 2.2 presents the procedure

to construct an RRT, described above.

Algorithm 2.2. RRT(C,N,q0)

1: V ←{q0},E← /0;
2: for i = 1 to N do

3: qrand← SAMPLE(C);
4: qnear← NEAR(qrand,V);
5: qnew← EXTEND(qnear,qrand);
6: if COLLISIONFREE((qnear,qnew)) then

7: V ←{qnew};
8: E← E ∪{(qnear,qnew)};

9: return T = (V,E);

Similar to PRM, the probabilistic completeness of RRTs and the asymptotic optimality

of a modified version have been proved [77, 102]. Due to the success of RRTs in solving

20 Background and Related Work

difficult problems, they have been extended to include complex dynamics [108, 183], stabil-

ity requirements [90, 167], uncertainty in motion [2, 116] and uncertainty in the state of the

system [23, 173], among other aspects.

From the above procedure, it can be seen that the metric chosen to find the nearest con-

figuration affects the expansion of the trees. The selection of the metric is not trivial. This

selection is especially difficult for the motion planning of systems affected by differential

constraints. Indeed, computing the ideal metric capable of reflecting the cost to go from

one configuration or state to another is as hard as the original problem [102]. Examples

of metrics include weighted Euclidean distance [6], pseudo-metrics based on the cost to go

using linearisation [56, 134] and offline learning using regression models [107, 131].

The sampling strategy is another variable in sampling-based methods. Sampling strate-

gies such as uniform sampling, quasi-random sampling [22] or sampling close to obstacles

[160], have been proposed. Nevertheless, the relationship between the planner performance

and the sampling strategy has not been proven [53]. A different approach consists of guid-

ing the sampling by using information from the workspace [138] or information obtained

during the sampling process [159].

Although PRMs and RRTs can be used for kinodynamic systems, PRMs could present

some limitations for systems with significant constraints on the dynamics. This limitation

is caused by the exact connection between states required in PRMs. In contrast, the steering

function or planner in RRTs does not require to generate an exact trajectory from one state

to another. Instead, only a trajectory towards a sampled state suffices to add a new state.

In general, steering methods can be classified into analytical, state-based and control-

based steering functions [24]. In analytical steering, as the name indicates, the analytical

trajectory with respect to the differential constraints is computed. Although a perfect steer-

ing is achieved, it cannot be applied to many kinodynamic systems due to the differential

constraints. For the control-based steering, a control is selected from the control space or

a set of primitives and a trajectory is computed by forward propagating the system. While

this type of steering is easy to compute, it does not provide control over the destination of

the system. The state-based steering interpolates a trajectory and computes a control that

tracks it.

Due to the benefits presented above, sampling-based techniques have become one of the

main approaches to solve motion planning problems [148]. Nevertheless, these methods are

focused on finding trajectories from an initial state to a goal region. With the increase of

capabilities and automation of robots, this focus could present some limitations. In the next

section, the idea of motion planning based on complex missions is presented.

2.2 Model checking and control synthesis 21

2.2 Model checking and control synthesis

The increasing capabilities of autonomous systems have opened new possibilities and appli-

cations for their use. Therefore, a natural question is how can the available motion planning

techniques be used to develop methods capable of solving the problem of motion planning

such that a complex task is satisfied? For instance, consider a robot surveying a building

with several areas of interest. Traditional methods, such as those presented in the previous

section, are not capable of computing a trajectory where the robot needs to visit these areas

infinitely often in a particular order. In other words, traditional methods cannot be used for

tasks with temporal requirements.

An important aspect to extend the applicability of motion planning methods is the abil-

ity to formally define the desired tasks or specifications. As presented in Chapter 1, formal

methods have been used to verify the behaviour of systems given a formal specification. To

express the desired specification, logics such as computational tree and linear temporal logic

are commonly used. For example, consider the specification ϕ =�(π1→ ♦π2), given as a

linear temporal logic. The symbols π1 and π2 represent two different regions in a two dimen-

sional space, e.g. π1 is the set formed by the inequalities 2 ≤ x1 ≤ 3 and 4 ≤ x2 ≤ 5. The

symbols � and ♦ represent the operators always and eventually, respectively. Intuitively,

the specification ϕ indicates that every time the system reaches the region defined by π1, the

system needs to eventually reach the region π2.

Although these logics can be used to unambiguously express tasks for mobile systems,

the idea of computing controllers or planning the continuous behaviour of the system based

on a discrete or logical specification represents a challenge in the sense that the relationship

between these two elements must be understood [165]. To illustrate this problem, consider a

system modelled as in Eq. 2.1 and the specification presented above. In order to find a plan

to satisfy the specification, a framework capable of solving the logic of the specification and

the control problem to drive the system is required.

Motivated by the challenge described above, recently there has been an increasing inter-

est in combining control theory and model checking techniques to automatically synthesise

controllers for dynamic systems such that high-level specifications are satisfied [15, 89, 166].

By combining these two fields, researchers have developed algorithms for the synthesis of

controllers that ensure the correct behaviour of the system while complex tasks are per-

formed. In the next subsection, the idea of model checking is introduced.

22 Background and Related Work

2.2.1 Model checking

Model checking has been used successfully in computer science to verify whether a system

satisfies a specification. To perform such a verification, a model of the original system is

first created. This model is usually represented by a structure similar to a graph where

vertices define states of the system and edges represent the ability of the system to change

from one state to another. Once the model is computed, this is exhaustively searched to

find a behaviour satisfying or violating a specification. This verification has been typically

performed to guarantee safety requirements in software and hardware.

To unambiguously define the desired behaviour of the system, logics such as µ-calculus

[142], Linear Temporal Logic (LTL) [139] and Computation Tree Logic (CTL) [33] are

commonly used. These logics are built over a set of atomic propositions, which are variables

that evaluate true whenever a property of the system is satisfied. For example, in the problem

specification presented at the beginning of the section, the symbols π1 and π2 are atomic

propositions that evaluate true if the system is within the regions defined by the inequalities.

Otherwise, these are false. By using such logics, a variety of specifications can be rigorously

defined. A formal presentation of these elements is presented in Chapter 3.

Once the model of the system is searched, model checking algorithms can return a series

of states that represent a behaviour of the system violating or satisfying a specification. This

ability of interpreting the logic of a specification, the ability of verifying the behaviour

of a system and the flexibility of defining complex specifications in a human-like language

motivated the development of methods that combine model checking techniques and control

theory. These methods synthesise or compute controllers given a model of the system and

a formal specification. A general background of these methods is presented in the next

subsection.

2.2.2 Control synthesis algorithms

Control synthesis algorithms use ideas of model checking to synthesise controllers such

that the behaviour of a system is guaranteed to follow a given specification. Because of the

guarantees offered by these methods, they have been applied in different control problems

including the motion planning of robots. In particular, these are especially important for

safety-critical systems.

The first element required for methods that synthesise controllers is a model of the sys-

tem. Several approaches, some of which are presented later in this section, have been used

to compute such models. In general, the form of the computed model depends on the tech-

nique used to find a plan to satisfy the specification. As in model checking techniques, a

2.2 Model checking and control synthesis 23

common model of the system is a graph structure, called a transition system, which models

the possible states and transitions of the system.

Recall that atomic propositions are used to identify properties of interest of the system.

To identify which property is satisfied at each state, the states of the transition system are

labelled with the atomic propositions satisfied by each state, Fig. 2.8. The second element is

the specification which can be defined using one of the logics mentioned above. These logics

use the atomic propositions, logical and temporal operators to formally state the desired

behaviour of a system.

s0,q0 s0,q1

s1,q0 s1,q1

s2,q0 s2,q1

q0

q1s2

s0

s1

π

⊤

⊤

/0

/0

{π}

(a) (b) (c)

Fig. 2.8 Example of automata-based method. (a) The transition system T models a system
with three states. Each of these states is labelled with the set of atomic propositions satisfied
by the state. (b) The automaton A is obtained from a specification that indicates that the
atomic proposition π must be satisfied. (c) The product automaton P is constructed by
computing the Cartesian product of T and A. The dashed edges show the sequence of
states required to satisfy the specification.

Given the model of the system and the specification, approaches such as those based

on automata can be used to verify whether the model of the system contains a behaviour

satisfying the specification. These approaches rely on the computation of finite automata

from a specification. This automaton captures the conditions required to satisfy the specifi-

cation. Given the transition system T modelling the system and the automaton A from the

specification, automata-based techniques find a series of states satisfying the specification

by computing the Cartesian product of T andA, Fig. 2.8. On this Cartesian product or prod-

uct automaton, the algorithm searches for a path satisfying certain conditions, presented in

the next chapter. If such a path exists, this is used as a discrete plan, which contains the

24 Background and Related Work

sequence of states that the system must follow to satisfy the specification. Finally, in order

to perform the transitions in the discrete plan, the algorithm must compute a sequence of

control inputs to drive the system from one state to another as indicated by the plan.

Two important aspects to consider in these methods is the computation of the model and

the feasibility of the discrete plan, i.e. the system must be able to perform the transitions

in the plan. A system can be modelled directly using a transition system. Nevertheless,

this model could have an infinite number of states. In order to obtain a finite model, an

abstraction or symbolic model is commonly created. This abstraction preserves all the de-

sired properties of the original system and ignores the properties that do not affect the result.

Intuitively, an abstraction groups a large or infinite number of states of the original sys-

tem in such a manner that they are equivalent or share a property of the system, Fig. 2.9.

The equivalence between the abstraction and the original system is based on the notion of

(bi)simulation [5].

−∞ . . . −1 0 1 . . . ∞

s0 s1 s2

0− +

Fig. 2.9 Example of an abstraction (below) of the transition system (above) with a set of
states formed by the integer numbers. The abstraction has three states, each of these states
groups states from the original system by the sign of the number. (Adapted from [16])

Mainly, there are two different methods to compute such abstractions. The first method

requires the discretisation of the state and control space [111, 112, 140, 146]. The second

method creates a partition of the state space in such a way that the states on a particular

region share the same property of interest [58, 130, 192]. While the latter approach yields

abstractions with a smaller number of states, the former allows the use of metrics to measure

the fidelity of the abstraction [112].

An advantage of methods using such an abstraction over other methods presented in the

rest of this section is that solutions are robust due to the feedback controllers obtained in the

abstraction. Nevertheless, they have several limitations. Because abstraction-based methods

rely on the discretisation of the control and continuous state space, they tend to scale poorly

with the dimension of the system. Moreover, the construction of the abstraction relies on

solving reachability problems which can be computationally expensive [186]. To alleviate

2.2 Model checking and control synthesis 25

this problem, some methods consider an initial coarse abstraction that is then refined based

on a discrete plan [59, 186].

Another limitation of the abstraction is that the optimality of these methods is not guar-

anteed with respect to the original system [48]. Finally, these methods are, in general, not

complete since the behaviours depend on the method used for the abstraction [76].

To avoid the aforementioned limitations, other approaches use optimisation methods

such as linear programming. These methods encode the specifications as mixed-integer lin-

ear constraints. Then, a MILP problem is solved to find a sequence of control inputs such

that the system satisfies the specification. Although these approaches have been applied

successfully for systems such as mixed logical dynamical [17] and flat systems [46] consid-

ering different logics, e.g. signal temporal logic [45, 144, 145], LTL [79] or fragments of

LTL [184], some limitations exist. The main drawback is the sensitivity of the method to

the size of the specification. That is, the number of integer constraints increases with the

size of the specification causing the complexity to grow exponentially due to the complexity

of solving the MILP problem, i.e. MILP problems are NP-hard. Although this problem can

be alleviated by generating constraints as required [151], the MILP approach has only been

applied to systems belonging to the class of systems described above.

A different type of approach, geared towards high-dimensional systems, uses sampling-

based methods, such as PRM and RRT, to incrementally create a transition system modelling

dynamically feasible trajectories of the system [18, 76, 137, 180]. As presented in Section

2.1.5, a transition system can be created by sampling the state space of the system and com-

puting controllers to drive the system from one state to another. The construction of the

transition system is combined with incremental model checking methods to verify whether

the current model contains a trajectory satisfying the specification. As with the previous

approaches, these methods also present some limitations. In contrast to abstraction-based

methods, the solution returned by sampling-based methods is typically an open-loop trajec-

tory. Hence, they are not robust. Another limitation is the probabilistic completeness de-

scribed in Section 2.1.5. However, in practice, probabilistic completeness suffices in many

situations. Moreover, feedback controllers can be used to track open loop trajectories.

At this point, an overview of some of the most commonly used approaches in the litera-

ture have been presented. Nevertheless, the application of such approaches changes depend-

ing on the conditions considered. For example, elements such as stochasticity, number of

robots or the type of specifications affect the method required to solve the problem. In the

next section, the work more related to the cases addressed in this thesis is analysed.

26 Background and Related Work

2.3 Related work

This section provides a presentation of the works more related to the proposed methods

in this thesis. This presentation includes an overview of the methods and an analysis of

their limitations. Hence, this section motivates the development of the methods presented

in the rest of the thesis. The section is divided into four subsections, one for each of the

remaining main chapters. First, methods that compute solutions that are optimal in terms

of a cost function while satisfying LTL specifications are presented. Then, approaches that

permit specifications with time constraints are analysed. Next, methods that find solutions

for systems with imperfect state information are discussed. Finally, approaches considering

multi-robot systems are presented.

2.3.1 Optimal control

Using the approaches presented in the previous section, several paths can be obtained such

that a temporal logic specification is satisfied. Nevertheless, in many situations, an optimal

path with respect to a cost function is desirable. Approaches considering deterministic, non-

deterministic and stochastic system have been developed for this purpose.

Due to the developed techniques to abstract dynamic systems, several works assume the

existence of such abstractions and just focus on the discrete problem. In other words, a

graph modelling the mobility of the system is assumed. One of the first approaches focused

on obtaining optimal paths under such an assumption is presented in [157]. An optimal path,

in terms of the time required to reach regions of interest, is found by solving a bottleneck

problem on the product automaton of the specification and a transition system. A similar

problem is solved in [185] where the average cost of a task that is repeated infinitely often is

minimised using dynamic programming techniques. Using this approach, optimal paths can

be found in polynomial time. When non-deterministic systems are considered, approaches

based on dynamic programming can be used for fragments of LTL to avoid the complexity,

in terms of the number of states, of using automata-based techniques for non-deterministic

systems [187].

In the previous cases, the cost at each state is assumed to be invariant. When this as-

sumption is relaxed, an offline strategy can be combined with an online strategy, based on

receding horizon approaches, to improve the performance of the first one [163].

Methods focusing on the discrete problem have also been developed for stochastic sys-

tems. These works consider a Markov decision process (MDP) as a model of the system.

Similar to the deterministic problem, a common practice is to compute the product MDP

of an automaton that represents the specification and an MDP modelling the system. Using

2.3 Related work 27

this product MDP, policies that maximise the probability of satisfying the specification [41]

or minimise a cost function while satisfying the specification [40, 162] can be computed.

Other approaches use tools from available model checkers, such as PRISM [93], to find

policies that satisfy probabilistic CTL (PCTL) specifications [95].

As mentioned before, the previous approaches do not consider the dynamics of the sys-

tem but only focus on the discrete problem. When mixed logical dynamic systems are

considered, optimal control can be found by solving mixed integer linear programming

problems. In [79], the authors present an algorithm to encode finite horizon LTL formulae

as constraints of a MILP. As in other works using a MILP approach, atomic propositions

indicate whether the system is in a polyhedral subset of the state space. Once the constraints

of the specification and the system dynamics have been computed, the MILP problem can

be solved using off-the-shelf numerical optimisation solvers, e.g. CPLEX [36]. The previ-

ous work is extended in [188] to include full LTL using ideas of bounded model checking

(BMC) [20]. To achieve this, trajectories are restricted to those creating loops or lassos.

MILP approaches have also been combined with automata-based model checking. In

[186], the state space is coarsely partitioned and modelled as a transition system. Then, a

product automaton is computed in the usual way to find a discrete plan. The feasibility of

this plan is checked by solving MILP problems to find a control for each transition according

to the plan. If a transition is not feasible, the partition is refined until the discrete plan can

be achieved. A similar approach is presented in [57] where a dual automaton defines the

partition of the state space.

The main limitation of approaches based on linear programming is that the number

of constraints increases with the size of the specification causing the complexity to grow

exponentially. Although this problem can be alleviated by generating constraints as required

for a subset of specifications [151], the MILP approach can only be applied to linearisable

systems as opposed to the solution proposed in Chapter 4.

To avoid the discretisation or a possible non-convex optimisation in the previous ap-

proaches, hybrid state spaces have been considered. The hybrid state space is formed by

the continuous-time continuous-state of the system and the discrete states of an automaton.

Then, the optimal control is found by solving a mixed continuous-discrete Hamilton-Jacobi-

Bellman equation. For linear systems, an approximate solution to this problem can be com-

puted by semidefinite programming [133] and for nonlinear systems the solution can be

found using importance sampling methods [48]. However, the solution may converge to a

local optimum.

Direct computation in the state space has also been considered for optimal control of

stochastic systems. Similar to [186], an automaton is used to guide the computation of

28 Background and Related Work

stochastic constrained reachability problems in [65]. Each reachability problem is solved

via a Hamilton-Jacobi-Bellman partial differential equation. The solutions to the individual

problems are chained together using dynamic programming.

Other approaches use sampling-based methods that iteratively create a discrete represen-

tation of the state space until a solution is found or other conditions are satisfied. In [78],

a rapidly-exploring random graph is iteratively created to model a subset of the system mo-

tion and a model checker algorithm is used to verify whether a µ-calculus specification can

be satisfied using the current graph. The graph construction is based on the idea of RRT*

[77] that requires an exact steering function to constantly rewire the graph. This steering

function solves a two-point boundary value problem [101] to optimally drive the system

from one state to another. However, finding a solution to this problem is not easy for certain

kinodynamic systems [183]. In Chapter 4, a sampling-based solution that does not require

such exact steering functions is presented.

The previous approach is asymptotically optimal. Hence, an important aspect is the

rate of convergence. To improve the convergence, methods based on cross-entropy (CE)

[150] have been combined with automata-based methods [29, 114]. In these approaches,

the trajectory of the robot is parametrised and the CE method is used to incrementally find

promising trajectories in terms of a cost function. Although this approach can be used for

high-dimensional nonlinear systems, the parametrisation is in general non-trivial [87].

Sampling-based methods have also been used to find optimal paths for stochastic sys-

tems. In [118], an MDP is created by partitioning the workspace. To compute the probabil-

ity of transitioning from one segment to another, a Markov chain is computed by sampling

the state space of the system and the control space. Then, the MDP is combined with an

automaton representing the specification to compute the optimal policy using dynamic pro-

gramming.

From the discussion above, it can be concluded that although several approaches have

been proposed to find optimal paths considering different factors, some problems remain

open. As in most problems considering model checking, the complexity of finding optimal

paths is a limitation for most methods. This complexity arises from the large number of

states that must be analysed to find a path that satisfies a specification. Although some of

the methods aforementioned focus on the reduction of the number of states, their applica-

bility to any kind of system dynamics is limited. The applicability to nonlinear systems

with differential constraints is another main limitation of most methods. Indeed, the field of

motion planning has not yet achieved a general purpose method to find optimal paths [64].

Hence, computing optimal paths for any constrained system based on high-level specifica-

tions remains an open problem. In Chapter 4, a method that provides a first step to solve

2.3 Related work 29

this problem is proposed. The method requires only the forward propagation of the sys-

tem dynamics to find asymptotically optimal paths satisfying temporal logic specifications.

Therefore, it can be applied to a wider range of system dynamics. To achieve this, however,

the method is limited to a subclass of LTL specifications.

2.3.2 Time constrained specifications

In Section 2.3.1, methods designed to find optimal controls for deterministic and stochastic

systems under LTL and µ-calculus constraints were presented. Although useful missions

can be expressed using these logics, they are limited to qualitative specifications. In other

words, only the order of events can be expressed. However, in many situations, real-time

constraints are required. To solve this limitation, logics such as Metric Temporal Logic

(MTL) and Signal Temporal Logic (STL) [120] have been proposed. In contrast to LTL

and µ-calculus, MTL and STL permit to define specifications where tasks must be executed

within a period of time instead of an arbitrary time. Using these logics several approaches

have been developed to include time constraints.

In [113], the authors consider the problem of designing switching controllers for non-

linear systems subject to MTL specifications. They propose a method to compute discrete

abstractions with robustness margins for nonlinear systems in such manner that MTL prop-

erties are preserved. Moreover, in order to ensure the correctness of the strategy obtained

from the abstraction in the original system, a transformation of MTL formulae is presented.

Once the abstraction and the modified formulae are computed, methods found in the litera-

ture can be applied by transforming the MTL specification into an LTL specification [113]

or by considering the discrete abstraction as a timed automaton such as in [198].

In [198], a timed transducer is computed based on a Metric Interval Temporal Logic

(MITL) specification. The abstraction of the system is performed by partitioning the en-

vironment into cells and estimating the time required to drive the system from one cell to

another. The solution to the motion planning problem is found in the product of the timed

automaton and the transducer using the model checker UPPAAL [12]. As presented in Sec-

tion 2.2, due to scalability limitations of computing an abstraction, other works have been

presented using the MILP approach which has better scalability with respect to the system

dimensionality [145].

One of the first works to use MTL specifications with MILP-based algorithms is [75].

In this work, the authors find the optimal path for a variant of the vehicle routing problem

where the task is defined by a MTL specification. In order to reduce the number of con-

straints due to the size of the specification in the MILP approaches, in [151], the authors

propose a method where constraints are added as required. The main idea is that solving

30 Background and Related Work

a series of small MILP problems is faster than a single complex problem. To identify the

required constraints, a robustness measurement is introduced. This measurement indicates

how much the system can be perturbed before violating the specification at different points

of a trajectory. Then, constraints are added repeatedly where the trajectory is violated by

the largest margin and the MILP is solved. Results show a significant complexity reduction

compared to adding constraints at each time step. Nevertheless, the approach may not return

the optimal trajectory except for a fragment of MTL.

The previous works considered systems with deterministic motion. However, most sys-

tems are affected by uncertainties. These arise due to modelling errors, external distur-

bances, etc. To address this problem, methods considering bounded uncertainty and stochas-

tic uncertainty have been proposed.

In [144], the authors consider a Model Predictive Control (MPC) based approach with

STL specifications. By using STL, quantitative properties can be considered instead of only

Boolean. The authors propose a method to automatically encode bounded specifications,

based on BMC, into mixed-integer linear constraints in such a way that the trajectory ob-

tained maximises the robustness of the satisfaction of the specification. At every time step,

a MILP problem is solved to compute an optimal control within a horizon subject to the

constraints imposed by the system dynamics and STL specifications. A main limitation of

using a receding horizon approach is that the global optimality is not ensured.

The previous work is extended in [145] to include unbounded specifications and re-

activeness to a possible adversarial nondeterministic environment. This extension uses a

counterexample-guided inductive synthesis (CEGIS) approach to react to an environment

which tries to minimise the robustness of the satisfaction. The method finds a control satis-

fying a specification only for a finite set of environments satisfying predefined assumptions.

These environments represent input disturbances. When a solution is found for a particular

set of disturbances, new disturbances are added to the set until a solution cannot be found.

Hence, a possible limitation of this work is that using the CEGIS approach the convergence

of the method is not guaranteed if the set of disturbances is not finite [45]. Although tech-

niques such as multi-parametric MILP and Monte Carlo approaches can be used to ensure

the termination of the algorithm [45], in general, they require long computational time. In

contrast to the work presented in Chapter 5, the system in [145] is nondeterministic rather

than stochastic and considers a set of disturbances. Instead, the method in this thesis con-

siders a probability distribution, which is more appropriate to model elements such as an

estimate of position computed via a Kalman filter or external disturbances such as wind

[21].

2.3 Related work 31

For stochastic dynamics, the authors in [49] compute an optimal policy with respect to

the probability of satisfying a MITL specification. The original system is first approximated

using the Markov chain approximation method [92]. This approximation relies on the dis-

cretisation of the continuous state space and time in such a way that the properties of the

original system are conserved. Then, the problem of finding a policy that maximises the

probability of satisfying the specification is reduced to a reachability problem in a product

MDP. This product is obtained from the MDP that approximates the original system and a

deterministic timed automaton obtained from the specification. The main limitation of this

approach is the scalability. Since the method discretises the state space and time, the number

of states in the product becomes intractable when high-dimensional systems are considered.

Similar to the previous section, one of the main problems of including time in the speci-

fications is the complexity of the problem. While some approaches need to solve a NP-hard

problem, e.g. MILP, other approaches required the discretisation of time and state space.

The number of states of this discretisation becomes impractical for systems with high di-

mensional spaces. In Chapter 5, a method that achieves computational tractability by using

a coarse discretisation and sampling-based methods is presented. More specifically, the

method is divided into two phases. In the first phase, policies to drive the system between

partitions are computed. In the second phase, a global policy is computed to find a trajectory

to satisfy the specification. This division of the problem allows to compute policies faster

than other methods and provides a trade-off between computation speed and the smoothness

of the trajectory.

2.3.3 Uncertainty in motion and sensing

In the previous section, uncertainty is considered in the motion of the system. However,

uncertainty is also often present in sensing, resulting in partially observable states of the

system. In these cases, the system cannot decide the best action based on a single state but

only on a probability distribution over all possible states. In its more general form, a system

with various sources of uncertainty such as action, sensing or environment can be modelled

as a partially observable Markov decision process (POMDP) [71]. Planning in POMDPs

consists of finding policies that map a history of observations and actions to an action such

that the expected reward is maximised. Most of the solutions proposed to solve these prob-

lems consider a compact representation of the history of observations and actions, called

belief. In general, solving these problems is computationally intractable [132], therefore,

methods that approximately solve the problem by considering points over the belief state

instead of the entire belief state have been developed [135]. These methods can be used to

solve the traditional point to point motion planning problem. However, they extension to

32 Background and Related Work

problems with high-level specifications, especially to those with infinite horizon properties,

is not trivial. To consider such specifications, other methods have been proposed.

POMDPs with tasks that are satisfied in an infinite horizon are considered in [26]. In

general, the analysis of whether infinite horizon objectives given as a parity objective can

be ensured with probability one is undecidable [8]. To make the problem tractable, in [26],

an algorithm that considers finite-memory policies [27] and a series of heuristics are em-

ployed. The approach demonstrates applicability for robotics applications with dynamic

environments [164].

In a similar problem, the authors in [155] consider the computation of controllers that

maximise the probability of satisfying LTL specifications for POMDPs. In contrast to the

previous work, parametrised controllers with pre-defined number of states are considered.

While this assumption makes the problem more tractable, it also limits the class of con-

trollers than can be considered to solve the problem. This method solves a constrained opti-

misation problem to find the parameters that maximise the probability of being absorbed by

sets of accepting states in the product of the POMDP and a deterministic Rabin automaton.

Besides the limitation in the class of controllers, because this solution considers only the

current observation, instead of a history of them, feasible problems can become infeasible.

Moreover, the method suffers from local maxima.

To avoid the problem of the previous work, a learning-based approach is presented in

[196]. A finite-state automaton is iteratively created and used as a supervisor of the POMDP.

The learning process, used to create the automaton, is based on counterexamples returned

by the Markov chain of the POMDP and the automaton. Although sound, the method is not

complete and limited to finite horizon specifications expressed as PCTL.

In the previous works only dynamic but not adversarial environments, i.e. the envi-

ronment tries to falsify the specification, are considered. For the latter case, policies that

maximise the probability of the system satisfying the specification are computed. One such

approach is presented in [190], where policies that maximise the worst-case probability of

satisfying a LTL specification for partially known environments are computed. They assume

that the environment can be in one of several modes, which are modelled as Markov chains.

Although the system does not know exactly which is the current mode of the environment at

each time, all the possible environment models are known by the system. This is a limitation

since in many applications these models are not available. The policies are computed using

a parallel composition between a MDP modelling the system and the set of Markov chains.

In [47], a reactive controller is computed assuming partial information and adversarial

environments. The method focuses on safety specifications where the system needs to avoid

a set of states. The control or strategy is obtained by solving a two-player game with partial

2.3 Related work 33

observation. To cope with a large number of states, the abstract game is constructed from

the original structure that represents the interaction between the system and the environment.

When a strategy fails to satisfy the specification, counterexamples are used to refine the ab-

straction and to update the sensor model until the specification is realisable. The previous

work is improved in [50] to allow a subset of LTL specifications and the use of sensing ac-

tions to reduce the complexity of the problem. The approach obtains a belief-based strategy

from a game with complete information. This strategy maps belief states to actions. When a

robot finds a belief where the strategy is not defined, the robot applies sensing actions until

a belief with a defined strategy is found.

Most of the previous works solve the problem at the discrete level. In other words, a

partition of the environment and controllers to drive the system between them are assumed.

As presented before, this could limit the type of system from which a solution can be found.

Therefore, other approaches that consider the continuous state space have been proposed.

An approach to maximise the probability of satisfying bounded linear temporal logic

specifications for stochastic systems, where only the initial state is known, is considered in

[32]. At each time step, the only information available is the measurement of two noisy

encoders. An MDP is created by mapping the incremental encoder measurements. Due to

the size of the MDP, the approach uses a statistical model checking approach, where policies

are used to generate traces on the MDP to find a solution. Then, the probability of the trace

satisfying the specification is computed and the policy is improved and reapplied until the

probability converges. Due to the cumulative uncertainty, the approach is limited to finite

specifications.

In [121], an approach that computes control laws for piecewise-affine systems, operat-

ing in possible adversarial environments, to satisfy LTL specifications is proposed. In order

to use available methods for solving two-player games with perfect state information, e.g.

[193], an observer is used to estimate the state of the system. The satisfaction of the LTL

specification is guaranteed by bounding the error from the observer. Then, it is proved that

a control computed for the observer system satisfying a robust version of the LTL specifica-

tion, can be applied in the original system to satisfy the original specification.

In [182], the authors propose a specification language, called Gaussian distribution tem-

poral logic (GDTL), that permits including noise mitigation in the specification. The work

creates a graph by sampling the state space of the system and computing feedback con-

trollers that stabilise the system at each node. For each transition, a particle-based method

is used to compute the probability of transitioning from one state to another. Finally, a policy

that maximises the probability of satisfying the specification is computed on a MDP with

the probability previously computed. In contrast to the method proposed in Chapter 6, this

34 Background and Related Work

approach assumes a static environment. Hence, the system cannot react to changes in the

environment.

In general, solving problems for partially observable MDPs is a hard task [132]. The

problem of path planning with temporal logic specifications for systems with uncertainty in

state and dynamic environments has been addressed mainly at the discrete level. In other

words, a POMDP or a series of MDPs is assumed to model the possible transitions of the

system. Although some solutions consider the continuous state space, they do not consider

a possible changing environment. In Chapter 6, a method that finds policies that maximise

the probability of satisfying a LTL specification on a dynamic environment is presented. In

order to react to the changing environment, a graph representing the motion of the system

is computed offline and used to drive the system when a previously unknown object is

detected. This graph considers the temporal logic specification to react to the environment

without violating the specification during the operation of the system. Since the system

must be able to reach specified states with zero velocity in the graph, the method cannot be

applied to certain systems, e.g. fixed-wing aircrafts.

2.3.4 Multi-robot systems

The methods presented in the previous three sections are designed for tasks that require a

single robot. However, in many cases, the cooperation of several robots is required to ac-

complish tasks that would be impossible for a single robot. For most of the aforementioned

methods, their adaptation for the multi-robot case is not trivial. Moreover, as the number of

robots increases, the scalability of the methods is compromised due to the total number of

possible states. Therefore, different techniques are required.

The motion planning of multiple robots subject to temporal logic constraints can be

divided into two categories depending on the task: (i) a task can be assigned to each robot,

where the cooperation among them might be required; or (ii) all the robots work as a team

to perform a global task. In this section, works considering both situations are presented.

Tasks with individual specifications. A possible solution to the multi-robot problem is

to compute a synchronous product of the transition systems of the robots and the automata

of the specifications. This approach is computationally expensive. To reduce this compu-

tational complexity, a receding horizon approach is proposed in [169]. The method creates

a synchronised automaton based on a predefined horizon of the automaton of all the spec-

ifications. Moreover, a progressive function is defined to indicate the progress towards the

satisfaction of the specifications. This function is used to define the temporal goals with

the maximal progression in each synchronised automaton. To compute a path in the transi-

tion system such that the local targets are reached, a product automaton of the synchronised

2.3 Related work 35

automaton and the transition system modelling all the robots is constructed considering a

certain horizon. Once the local target is reached, a new plan is computed and the process is

repeated until the specifications are satisfied.

A different approach to reduce the complexity of computing a synchronised automaton

is presented in [170]. In this work, robots have to satisfy motion and action specifications,

which might require cooperation with other robots. Although the final motion and action

plan are computed in a synchronised automaton, the number of states is reduced by elimi-

nating states where the motion of each robot is not planned.

In the previous works, the plan is computed in a synchronised automaton. Therefore,

the transitions of the robots must be synchronised during the execution of the plan. This

represents a limitation in terms of robustness and flexibility. This synchronisation problem

is solved in [61], where a method for loosely coupled systems is proposed. An offline

plan is obtained in the product automaton of a transition system modelling a discretised

environment and the automaton of the specification for each robot. During the execution

of the plan, each robot observes whether cooperation is required within a horizon. In case

of cooperation, a request is sent to robots to indicate the position and time of collaboration.

When a robot accepts a request, it modifies its original plan to include the location of the

requested action.

A method for partially known environments is proposed in [62]. The method finds paths

that satisfy hard constraints such as safety properties while minimising the violation of soft

constraints due to the partial knowledge of the environment. This is achieved by construct-

ing a product automaton of a transition system modelling different points of the environment

and a modified synchronised automaton. The approach allows robots to discover the envi-

ronment via sensing or communication. To reduce communication, a protocol where robots

send only relevant information to each neighbour in terms of regions of interest is proposed.

With every update about the environment, the discrete plan is updated. As in the previous

case, a navigation function is used to drive the system between points.

Specifications with real-time constraints have also been considered for multi-robot sys-

tems [127]. In this case, robots are assigned with individual specifications given as MITL

specifications. Moreover, a global specification is required to be satisfied at the same time.

The time of the transition, in a partitioned environment, is computed by considering the

worst time required to move from any point of one segment to its boundary. The individual

plans for each robot are obtained by computing individual products of transition systems and

timed automaton of individual specifications. Then, a product is computed with the previous

product automata and finally, a global one is constructed by adding the timed automaton of

the global specification.

36 Background and Related Work

Tasks with global specifications. As aforementioned, other solutions consider a global

specification that needs to be satisfied by a team of robots. Similar to the previous case, the

problem can be solved by creating a parallel composition of the individual transition sys-

tems to create a model of the motion of all the robots as a group. Then, this composition is

used to compute a Cartesian product with the automaton. Although available model check-

ing solvers can be used to obtain a plan using this approach, it is computationally expensive

[84]. Moreover, synchronisation between robots is required for each transition. Although

the latter problem can be partially alleviated by computing the moment where the synchro-

nisation is required [85], in general, this approach does not scale well with the number of

robots. Therefore, solutions have been developed aiming to improve this scalability.

An approach that uses an abstraction that does not depend on the number of robots is

presented in [86]. A Petri net is used to model the environment using tokens to represent

the positions of the robots. To find a path for the robots, a path is sought in the automaton

of the specification. Then, a search is performed in the Petri net looking for a sequence of

firings or transitions that generate the atomic propositions required for the chosen path. The

sequence of transitions is obtained by solving an integer linear programming. As a path is

selected before searching for a sequence on the petri net, the solution is suboptimal.

Other approaches decompose the global specification into local ones [28]. This can be

achieved by checking whether the specification is distributable. If this is possible, product

automata of individual transition systems and mixed automata are computed. The individual

transition systems and mixed automata model the motion of the robots and the specification

of each of them, respectively. To find the global strategy a synchronous product automaton

is formed by the individual product automata. Using a similar approach, the problem of

deploying a team of robots with the purpose of gathering information from an uncertain

environment while the motion of the robots is constrained by a temporal logic specification

has been solved [103]. In this case, the global specification is distributed among the teams

which execute a receding horizon planner where a dynamic programming problem is solved

to minimise the uncertainty. The idea of distributability has also been used to verify whether

a specification can be violated when uncertainty in travelling times exists [171]. In this work,

asynchronous individual plans are computed for each robot such that the global behaviour

minimises a cost function in terms of time. Since uncertainty in travelling times can produce

a global behaviour such that the specification is violated, a method is presented to verify

whether the specifications are sensitive for this uncertainty. In such cases, communication

is used to coordinate the motion of the robots just when this is required.

The approaches that use distributability are conservative in the sense that if the property

is not distributable, the approach cannot find a solution even if one exists. Hence, these meth-

2.4 Concluding remarks 37

ods are limited to subclasses of LTL. Moreover, the previous cases assume the availability

of a discrete abstraction for the system and only treat the discrete problem. Nevertheless,

the generation of these abstractions is non-trivial for several systems. In contrast, the ap-

proach presented in Chapter 7 finds a solution directly on the configuration space of the

robots. More complex dynamics in the form of nonholonomic systems are considered in

[197], where a method is proposed to incorporate reachability properties of the robots in a

graph modelling the workspace.

Using a sampling-based method, the authors in [74] create a tree that approximates the

product automaton. This approximation permits to solve large problems, in terms of the

number of states in the product automaton, that are not solvable considering the product

automaton itself. However, in contrast to the solution proposed in Chapter 7, they sample

states from a transition system representing regions of the environment and not from the

configuration space of the robots.

Similar to the previous sections, the number of states or state explosion is one of the

main problems when multiple robots are considered. This is due to the large number of

states that must be considered to find a solution, especially for multiple high-dimensional

systems. Different approaches have been proposed to mitigate this problem. In most of

these approaches, the motion of the robot between regions of the workspace is assumed or

the use of navigation functions is required. However, for high-dimensional systems, these

approaches could present limited scalability. As presented in Section 2.1.5, sampling based

methods were developed to handle problems with systems with multiple degrees of freedom.

Nevertheless, these methods have not been used for multiple robots and temporal logic spec-

ifications. In Chapter 7, a novel method that extends sampling-based methods for multiple

robots and temporal logic specifications is proposed. In contrast to other available methods,

the proposed approach considers the continuous configuration space to find a solution rather

than a partition of an environment like must of the available methods. Moreover, an explo-

ration of the configuration is guided by the proposed method to find a solution in a short

period of time. Since the method is geared towards fast solutions, it does not find optimal

trajectories.

2.4 Concluding remarks

This chapter has presented an introduction to the problem of motion planning. Moreover,

an explanation of sampling-based methods as a way to deal with problems where high-

dimensional systems are considered has also been provided. The main limitations of these

methods to solve problems with complex tasks and the methods used to solve these limi-

38 Background and Related Work

tations have been presented. Finally, a review of methods that synthesise controllers using

model checking techniques for deterministic, stochastic and multi-robot systems has been

presented

A common problem with the available methods is the scalability and the limited ap-

plicability in terms of system dynamics. In the traditional point to point motion planning,

sampling-based methods have been used to alleviate the problem of state explosion and

the computation of controllers for systems with kinodynamic constraints. Motivated by the

results demonstrated using these methods, in the remaining chapters, methods based on

sampling-based approaches are proposed to find trajectories based on temporal logic spec-

ifications in different situations. More specifically, in Chapter 4 optimal trajectories for

kinodynamic systems are found by sampling the state space of the system. In Chapter 5,

a sampling-based method is used to approximate the dynamics of a stochastic system. Fi-

nally, in Chapter 6 and 7 large state spaces are explored by using sampling-based methods.

Before presenting these methods, preliminaries of model checking concepts are presented

in Chapter 3.

Chapter 3

Preliminaries

This chapter introduces definitions and concepts that will be used throughout the thesis.

Specifically, it presents a background of model checking and automata theory, which is

used in the methods presented in the rest of the chapters. First, the graph structures used

as models for deterministic and stochastic dynamic systems are defined. Then, the logics

used to formally specify the desired behaviour of the systems are presented together with

the automata that can be computed to represent such specifications.

3.1 System models

In order to model the motion capabilities of deterministic systems, deterministic transition

systems are used. Before formally defining transition systems, some definitions are required.

Definition 3.1.1. (Alphabet, word and language) A set of symbols Σ = {σ1,σ2, · · ·} is

called an alphabet. A word w is a sequence of symbols over Σ. The set of finite and infinite

words are denoted by Σ∗ and Σω , respectively. A set of words over an alphabet Σ is called a

language [168].

Definition 3.1.2. (Atomic propositions) An atomic proposition π is a true or false state-

ment about a property of a system.

To illustrate the idea of atomic propositions more intuitively, consider a robot operating

in a workspace with two regions of interest. The atomic propositions π1 and π2 can be used

to identify whether the robot is in one of these areas. In other words, π1 would evaluate

true if the system is in the first region, otherwise would be false, Fig 3.2. In this thesis,

atomic propositions are used to identify the position of a system with respect to areas of

the workspace. However, any element of the state of a system can be labelled by an atomic

proposition.

40 Preliminaries

Definition 3.1.3. (Transition system) A deterministic transition system T is a tuple (S,s0,

δT ,Π,L), where:

• S is a finite set of states,

• s0 ∈ S is an initial state,

• δT ⊆ S×S is a transition relation,

• Π is a set of atomic propositions,

• L : S→ 2Π is a labelling function.

s0 s1

s2s3

{π1} {π2,π3}

{π2} {π3}

Fig. 3.1 Example of transition system. The set next to each state is the result of applying the
labelling function, e.g, L(s0) = π1.

An example of a transition system is shown in Fig. 3.1. An execution or run on T is a

sequence of states sss = s0s1s2 . . . , where si is the state at time i and (si,si+1)∈ δT for all i≥ 0.

Note that an execution in T must start with the initial state. A trace L(s0)L(s1)L(s2) . . .

describes a run sss in terms of the atomic propositions that evaluate true. This trace generates

a word w over the power set of the alphabet, i.e. 2Π, Fig. 3.2. The set of all possible words,

i.e. language, generated by T is denoted by L(T).

As aforementioned, the transition system defined above is used to model deterministic

systems. Nevertheless, in Chapters 5 and 6, systems with stochastic motion are considered.

Hence, a mathematical framework capable of expressing the stochastic aspect of the system

is required. For this purpose, Markov decision processes (MDP) and Bounded-parameter

Markov decision processes (BMDP) are used.

Definition 3.1.4. (Markov decision process) A Markov decision process [9]M is a tuple

(S,s0,A,P,Π,L), where:

3.1 System models 41

π2

π1
π0

s0 s1

s2

s3

s4

Fig. 3.2 Illustration of a sequence of states in a workspace labelled with atomic
propositions. The behaviour of the system can be modelled as a transi-
tion system T . The figure shows a specific run sss = s0s1s2s3s4 on T reach-
ing the regions associated with atomic propositions π1 and π2. The word
w = {π0,¬π1,¬π2}{π0,¬π1,¬π2}{¬π0,π1,¬π2}{π0,¬π1,¬π2}{¬π0,¬π1,π2} is gener-
ated due to the atomic propositions satisfied by sss.

• S is a finite set of states,

• s0 is an initial state,

• A is a finite set of actions,

• P(·|·, ·) : S× S×A→ [0,1] is the probability of transitioning to state s′ from state s

under action a ∈ A,

• Π is a set of atomic propositions,

• L : S→ 2Π is a labelling function.

The set A(s) defines all the available actions at state s such that P(s′|s,a) > 0 for all

a ∈ A(s). The probability function P satisfies the following condition:

∀a ∈ A(s), ∑
s′∈S

P(s′|s,a) = 1.

A run onM is a sequence of states sss= s0s1s2 . . . , where where si is the state at time i and

for all i≥ 0, P(si+1|si,ai)> 0. Let Sn
fin be the set of all finite runs sssfin = s0s1s2 . . .sn for any

n ∈N. A control strategy or policy is a function µ : Sn
fin→ A such that µ(sssfin) ∈ A(sn) for all

sssfin ∈ Sn
fin. A policy is memoryless if for two runs sssfin = s0s1s2 . . .sn and sss′fin = s′0s′1s′2 . . .s

′
n′

with sn = s′n′ , µ(sssfin) = µ(sss′fin). In other words, a policy is memoryless if it always selects

the same action in a given state s. Hence, a memoryless policy can be viewed as a function

µ : S→ A. When systems with stochastic motion are considered in this thesis, the objective

is to maximise the probability of reaching subsets of states in MDPs. For such problems,

memoryless policies are sufficient to return the optimal result [9].

42 Preliminaries

Definition 3.1.5. (Bounded-parameter Markov decision process) A bounded-parameter

Markov decision process [55] is a generalisation of the exact MDP and is defined by a tuple

B = (S,s0,A, P̂, P̌,Π,L), where:

• S is a finite set of states,

• s0 is an initial state

• A is a finite set of actions,

• P̂(·|·, ·) : S× S×A→ [0,1] is the upper bound of the probability of transitioning to

state s′ from state s under action a ∈ A,

• P̌(·|·, ·) : S× S×A→ [0,1] is the lower bound of the probability of transitioning to

state s′ from state s under action a ∈ A,

• Π is a set of atomic propositions,

• L : S→ 2Π is a labelling function. function.

For all states s ∈ S and any action a ∈ A, the probability functions P̂ and P̌ satisfy the

following conditions:

0≤ P̌(·|s,a)≤ P̂(·|s,a)≤ 1,

0≤ ∑
s′∈S

P̌(s′|s,a)≤ 1≤ ∑
s′∈S

P̂(s′|s,a).

A run on B is a sequence of states sss = s0s1s2 . . . such that for every i≥ 0, P̂(si+1|si,ai)>

0. The control strategy or policy of a BMDP is defined as in the MDP. An example of a MDP

and a BMDP is shown in Fig. 3.3.

3.2 Linear temporal logic

In most of the chapters in this thesis, linear temporal logic (LTL) [139] is employed to

define the desired behaviour of a system. Formally, LTL is a propositional logic extended

by temporal operators. The syntax of LTL, given in the Backus-Naur form, is defined over

the set of atomic propositions Π as follows:

ϕ := π | ¬ϕ | ϕ1∨ϕ2 | ©ϕ | ϕ1Uϕ2,

3.2 Linear temporal logic 43

s1

s2s3s2

s1

s3

[0.89,1.0]

[0.7,0.8]

[0.2,0.5]

[0.7,1.0]

[0.1,0.15][0.0,0.1]

0.5 0.1
1.0

0.5

0.6

0.3

0.2 0.4

0.90.8

0.7

(b)(a)

Fig. 3.3 (a) MDP with 3 states and two actions. Solid and dashed transitions correspond to
different actions. Each edge label shows the probability of the transition. (b) Example of
a BMDP with 3 states and a single action. The transitions are labelled with the lower and
upper probability of transitioning.

where π ∈Π is an atomic proposition; and ¬, ∨,© and U represent the operators negation,

disjunction, next and until, respectively. Using these operators, other logical and temporal

operators such as True = π ∨¬π , conjunction, ϕ1∧ϕ2 = ¬(¬ϕ1∨¬ϕ2), eventually, ♦ϕ =

TrueUϕ , and always, �ϕ = ¬♦¬ϕ , can be defined. The discrete semantics of LTL are

defined over words w ∈ Σω . Given a run sss = s0s1s2 . . . of a transition system T , a LTL

specification ϕ and the satisfaction relation |=, the semantics are inductively defined as

follows:

• si |= π iff π ∈ L(si),

• si |= ϕ1∧ϕ2 iff si |= ϕ1 and si |= ϕ2,

• si |= ϕ1∨ϕ2 iff si |= ϕ1 or si |= ϕ2,

• si |=©ϕ iff si+1 |= ϕ ,

• si |= ϕ1Uϕ2 iff ∃ j ≥ i such that s j |= ϕ2 and sk |= ϕ1,∀k ∈ [i, j).

An illustration of the semantics is shown in Figure 3.4.

LTL has been widely used to express relevant behaviours in the area of autonomous

systems. Examples of such behaviours include [26]:

• Liveness: Given a set of states where the atomic proposition π evaluates true, the

objective is to eventually reach one of such states. Example: ♦π .

44 Preliminaries

©π

π1Uπ2

♦π

�π

π π π π

. . .

¬π ¬π π arbitrary
. . .

π1∧¬π2 π1∧¬π2 π2 arbitrary

. . .

arbitrary π arbitrary arbitrary
. . .

Fig. 3.4 Semantics of linear temporal logic. Intuitively, the first three formulae indicate that
the atomic proposition π must be satisfied, in the next step, always and eventually, respec-
tively. The last specification states that π1 must be satisfied until π2 is satisfied. (Adapted
from [9])

• Safety: Given a set S′ ⊆ S of safe states, where s |= π ∀s ∈ S′, the objective is to

remain on these states. Example: �π .

• Sequencing: Given two sets of states S′,S′′ ⊆ S where the atomic propositions π1 and

π2 evaluate true, respectively, the objective of sequencing specifications is to indicate

that the set S′′ must be visited after reaching S′. Example: ♦(π1∧©♦(π2)).

• Recurrence: The objective of recurrence specification is to visit a set infinitely often.

Example: �♦π .

3.3 ω-automata

Automata that accept infinite words, i.e. w ∈ Σω , are called ω-automata and are defined as

follows.

Definition 3.3.1. (ω-automaton) A non-deterministic ω-automaton [168] is a tuple A =

(Q,Q0,Σ,δA,F), where:

• Q is a set of finite states,

3.3 ω-automata 45

• Q0 ⊆ Q is a set of initial states,

• Σ is a finite alphabet,

• δA : Q×Σ→ 2Q is a transition function,

• F is the acceptance component.

An automatonA is deterministic if |Q0|= 1 and for all q ∈Q and σ ∈ Σ, |δA(q,σ)| ≤ 1.

A run qqq on A, induced by a word w = σ0σ1 · · · ∈ Σω , is a sequence of states qqq = q0q1 . . . ,

such that q0 ∈Q0 and for every i≥ 0, qi+1 ∈ δA(qi,σi). A run qqq is accepting if the accepting

condition holds. The set of all words w that generate accepting runs is called the language

accepted by A and is denoted by L(A).

From a LTL specification, it is possible to compute ω-automata that accept all and only

words that satisfy such a specification [178]. Available tools exist to perform such com-

putations, e.g. LTL2BA [52], LTL2DSTAR [83]. The results presented in the remaining

chapters use the Büchi and Rabin acceptance conditions [168].

Definition 3.3.2. (Büchi acceptance condition) Given an ω-automatonA= (Q,Q0,Σ,δA,

F) with F ⊆ Q and a run qqq, let INF(qqq) be the set of states that appear infinitely often in qqq.

Then, a word w ∈ Σω is accepted by A with a Büchi acceptance condition iff there exists a

run qqq satisfying the condition:

INF(qqq)∩F 6= /0.

An ω-automaton with Büchi acceptance condition is called a Büchi automaton. An

example of a LTL specification and a Büchi automaton are presented in Fig. 3.5. The size

of the Büchi automaton Bϕ , corresponding to the formula ϕ , has size 2O(|ϕ|) in the worst

case, where |ϕ| corresponds to the length of ϕ , i.e. the number of symbols. Nevertheless,

this worst case is rarely encountered in practice.

q2q0 q1

π1∧π2 ⊤
π1∧π2

⊤

⊤
π2

π1

π1

Fig. 3.5 Büchi automaton of formula ϕ = (�♦π1∧�♦π2), where π1,π2 are atomic propo-
sitions, ⊤ is unconditionally true and F = {q2}. The formula indicates that the atomic
propositions π1 and π2 have to be satisfied infinitely often.

46 Preliminaries

Definition 3.3.3. (Rabin acceptance condition) LetA=(Q,Q0,Σ,δA,F) be an ω-automaton

with F = {(L1,K1), . . . ,(Ln,Kn)}, where Li,Ki ⊆Q ∀i ∈ {1, . . . ,n}. Moreover, let qqq be a run

on A and INF(qqq) be the set of states that appear infinitely often in qqq. A word w ∈ Σω is

accepted by A with a Rabin acceptance condition iff there exists a run qqq satisfying the

condition:

∃(L,K) ∈ F : INF(qqq)∩L = /0 and INF(qqq)∩K 6= /0.

Intuitively, a run qqq satisfies a Rabin acceptance condition if qqq visits the set L a finite

number of times, or not at all, and the set K is visited infinitely often. Similar to the previous

case, an ω-automaton with Rabin acceptance condition is called a Rabin automaton. An

example is presented in Fig. 3.6.

q0 q1q2

¬π1∧¬π2

π1∧¬π2

π1∧π2 ¬π1∧π2

⊤ ⊤

Fig. 3.6 Rabin automaton of LTL formula ϕ = ¬π2Uπ1, where π1,π2 are atomic proposi-
tions, U is the operator until and ⊤ is unconditionally true. The formula indicates that the
atomic proposition π2 has to be avoided until π1 is satisfied. The component F is formed by
the pair L = {q1} and K = {q2}.

3.4 Co-safe linear temporal logic

In Chapters 4 and 7 a class of LTL, called syntactically co-safe linear temporal logic (sc-

LTL) [91], is used. LTL formulae where negations only occur in front of atomic propositions

and which only use the operators ©, U and ♦ are sc-LTL formulae. This class focuses

on properties that can be satisfied in a finite horizon. The infinite words satisfying such

specifications always have a good prefix.

Let ϕ be a sc-LTL specification. A finite word w ∈ Σ∗ is called a good prefix iff for

all infinite words w′ ∈ Σω , the concatenation w⊕w′ satisfies the specification ϕ . In other

words, a word satisfying a co-safe LTL specification is formed by a finite prefix followed by

an infinite continuation which does not affect the satisfiability of the formula.

Let B = (Q,Q0,Σ,δA,F) be a Büchi automaton. In contrast to the full LTL, a word

w satisfying a sc-LTL specification is accepted by an automaton B if the produced run qqq

reaches the set of accepting states F . Alternatively, given a sc-LTL formula ϕ , a determinis-

3.5 Metric interval temporal logic 47

tic finite automaton, which accepts the prefixes of all words satisfying ϕ , can be constructed.

Available tools exist to perform such computations [99].

3.5 Metric interval temporal logic

In Chapter 5, specifications with time constraints are considered. For the purpose of defining

such specifications, the metric interval temporal logic (MITL) [4] is used. Before formally

defining this logic, time sequences and timed runs are defined.

Definition 3.5.1. (Time sequence) A time sequence η = η0η1 . . . is an infinite sequence,

where ηi ∈ R+, satisfying the following constraints:

• Initialisation: η0 = 0.

• Monotonicity: ηi < ηi+1 for all i≥ 0.

• Progress: For every t ∈ R+, there is some i≥ 1 such that ηi > t.

Let T = (S,S0,δT ,Π,L) be a transition system. A timed run sηsηsη is a sequence of pairs

sηsηsη = (s0,η0)(s1,η1) . . . , where (si,si+1) ∈ δT for all i ≥ 0. Given an alphabet Σ and the

labelling function L : S→ 2Π, the trace of a run sηsηsη defines a timed word (w,η).

MITL was introduced as an extension of LTL for real-time systems. In contrast to LTL,

MITL allows to express quantitative temporal properties by extending the operator until U

with a time interval I. The syntax of MITL, given in the Backus-Naur form, is defined over

the set of atomic propositions Π as follows:

ϕ := π | ¬ϕ | ϕ1∨ϕ2 | ϕ1∧ϕ2 | ϕ1UIϕ2,

where π ∈ Π and ¬, ∨, ∧, U , I represent the operators negation, disjunction, conjunction,

until and a nonsingular interval with integer end points, respectively.

The discrete semantics of MITL are defined over words w ∈ Σω . Given a timed run

sηsηsη = (s0,η0)(s1,η1) . . . of a transition system T , a MITL specification ϕ and the satisfaction

relation |=, the semantics are inductively defined as follows:

• (si,ηi) |= π iff π ∈ L(si),

• (si,ηi) |= ϕ1∧ϕ2 iff (si,ηi) |= ϕ1 and (si,ηi) |= ϕ2,

• (si,ηi) |= ϕ1∨ϕ2 iff (si,ηi) |= ϕ1 or (si,ηi) |= ϕ2,

• (si,ηi) |= ϕ1UIϕ2 iff ∃η j > ηi such that η j − ηi ∈ I, (s j,η j) |= ϕ2 and (sk,ηk) |=

ϕ1,∀ηk ∈ [ηi,η j).

48 Preliminaries

3.6 Timed automata

Let C = {c1,c2, . . . ,cn} be a set of real-valued variables, called clocks, and let Ω be a val-

uation for all ci ∈ C. The valuation of the i-th clock is denoted by Ω(i). Given t ∈ R+,

let Ω′ = Ω+ t be the valuation with an increment t with respect to Ω in all the clocks, i.e.

Ω′(i) = Ω(i)+ t, for all ci ∈C. For the set C, Λ(C) is a set of constraints defined as:

λ := ci ≤ k | ci < k | ci ≥ k | ci > k | λ1∧λ2,

where λ ∈ Λ(C) is a clock constraint, ci ∈C and k ∈ N.

Definition 3.6.1. (Timed automaton) A deterministic timed automaton [3] is a tuple T =

(Q,q0,Σ,C,Λ(C),δT ,F), where:

• Q is a set of finite states,

• q0 ∈ Q is an initial state,

• Σ is a finite alphabet,

• C is a finite set of clocks,

• δT : Q×Σ×Λ(C)→ Q×2C is a transition function,

• F ⊆ Q is a set of accepting states.

The transition (q′,ς)∈ δT (q,σ ,λ) indicates a transition from q to q′ with the input σ ∈Σ

such that the clock constraint λ is met and the clocks in the set ς ⊆C are reset to zero. Let Ω0

be the valuation with all clocks equal to zero, i.e. Ω0(j)= 0 for all j ∈ {1, . . . , |C|}. A run qηqηqη

on T , induced by a timed word (w,η), is a sequence of the form qΩqΩqΩ = (q0,Ω0)(q1,Ω1) . . . ,

where for all i≥ 1, (qi,ςi) ∈ δT (qi−1,σi,λi) such that Ωi−1+ηi−ηi−1 meets the constraint

λi, Ωi(k) = 0 for all clocks ck ∈ ςi ⊆C and for all clocks c j ∈C\ςi, Ωi(j) = Ωi−1(j)+ηi−

ηi−1.

Similar to the Büchi automaton, see Definition 3.3.2, a word (w,η) is accepted by a

timed Büchi automaton, if INF(qηqηqη)∩F 6= /0, where qηqηqη is the run induced by (w,η) and

INF(qηqηqη) is the set of states that appear infinitely often in qηqηqη . An example of a timed automa-

ton is shown in Fig. 3.7.

3.6 Timed automata 49

q2q0

q1

⊤,⊤,c¬π,c≤ 10, /0

π,5≤ c≤ 10,c

⊤,⊤,c

π,c < 5∨ c > 10,c¬π,c > 10,c

Fig. 3.7 Timed automaton of formula ϕ = ♦[5,10]π , where π is an atomic proposition, ♦ is
the operator eventually,⊤ is unconditionally true and F = {q2}. The formula indicates that
the atomic propositions π has to be satisfied within 5 to 10 units of time. The edges are
labelled by an atomic proposition, clock constraint and the set of resetting clocks.

Chapter 4

Optimal Kinodynamic Motion Planning

with Co-safe Linear Temporal Logic

Specifications

Research on motion planning based on temporal logic constraints has resulted in several ap-

proaches as presented in Chapter 2. These methods allow to find paths that satisfy high-level

specifications expressed using temporal logics. Nevertheless, frequently there exist multiple

paths satisfying these specifications. Hence, it most cases it is desirable to select the optimal

path according to a cost function. This chapter focuses on the problem of finding optimal

trajectories for deterministic high-dimensional kinodynamic systems subject to syntactically

co-safe linear temporal logic (sc-LTL) specifications. This is a challenging problem due to

the kinematic and differential constraints imposed by the dynamics of the system.

Most of the works in the literature are limited to systems with relatively simple dynamics

or small state spaces [114, 180]. This limitation is caused mainly by the discretisation

of state spaces or use of optimisation methods with poor scalability with respect to the

dimension of the system or constraints. Other approaches use sampling-based methods,

which have been used in the classical motion planning problem to reduce the complexity

of high-dimensional systems [70]. However, as discussed in Chapter 2, most sampling-

based methods require a steering function to expand a graph structure until a path is found

[76, 137]. Current methods require the use of exact steering functions to achieve optimality

[78, 179]. This function solves a two-point boundary value problem [101] to optimally drive

a system from one state to another. However, finding a solution to this problem is not easy

for certain kinodynamic systems [183].

The method proposed in this chapter is based on sampling methods. Specifically, it

is based on a sampling-based method, called SST [108] that does not require such exact

52 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

steering functions to find optimal trajectories. This property allows the applicability of the

approach to a broader range of system dynamics. However, the SST method is limited to

the task of driving the system from an initial state to a final one. The solution in this chapter

generalises the SST approach to accept temporal logic specification while the properties of

the original approach, such as the optimality of the trajectory, are maintained. Therefore,

the main contribution of this chapter is a method that finds optimal trajectories, subject to

temporal logic specifcations, for kinodynamic systems.

The proposed method creates a graph that contains valid transitions between states. This

graph is iteratively expanded by adding more states and transitions. During each iteration,

it is verified if the graph contains a trajectory satisfying the sc-LTL specification. Moreover,

the quality of the trajectory with respect to a cost function is improved as more states are

added to the graph. On the other hand, recall from Chapter 2 that most solutions to the

problem of optimal motion planning present some type of relaxation, e.g local optimality,

or approximation due to the complexity of the problem. The method is this chapter offers

asymptotic optimality. In other words, the solution found by the method approximates the

optimal one as the number of iteration tends to infinity.

The rest of this chapter is divided as follows. First, the addressed problem is formally

formulated in Section 4.1. Then, in Section 4.2, the proposed solution is presented in detail.

An analysis in terms of optimality and complexity is presented in Section 4.3. To illustrate

the proposed method examples considering a 10-dimensional quadrotor are presented in

Section 4.4. Finally, conclusions are presented in Section 4.5.

4.1 Problem formulation

This chapter focuses on deterministic dynamic systems, Γ, that evolve according to the

differential equation:

ẋ(t) = f (x(t),u(t)), (4.1)

where x(t) ∈ X ⊆ Rdx and u(t) ∈ U ⊆ Rdu are the system state and control input at time

t. The sets X and U are assumed to be compact and the system to be Lipschitz continuous

for both of its arguments. Rdx , Rdu are the dx-dimensional and du-dimensional Euclidean

spaces, respectively. The subset of X where the system collides with an obstacle is denoted

by Xobs. On the other hand, the collision-free subset of X , i.e. X \Xobs, is denoted by

Xfree. The closed ball of radius r centred at x ∈ X is denoted by Br(x). A trajectory of Γ is a

function xxx : [0,τ]→ Xfree, where τ is the duration. The system operates in a static workspace

W . With slight abuse of notation,W(x) is used to define the projection of a state x ∈ X onto

the workspace.

4.1 Problem formulation 53

The results presented in this chapter depend on the following definitions from [108].

Definition 4.1.1. (δ -similar trajectories) Two trajectories, xxx and xxx′, are δ -similar if for

a continuous function α : [0,τ]→ [0,τ ′], the condition xxx′(α(t)) ∈ Bδ (x(t)) holds for all

t ∈ [0,τ].

xxx(0)
xxx′(0)

xxx(τ)

xxx′(τ ′)
δ

Fig. 4.1 Illustration of two δ -similar trajectories, xxx and xxx′.

Definition 4.1.2. (Obstacle clearance) The obstacle clearance ε of a trajectory xxx is the

minimum distance from obstacles over all the states. Formally, the obstacle clearance is

defined as:

ε = inf
t∈[0,τ],xobs∈Xobs

‖xxx(t)− xobs‖. (4.2)

Definition 4.1.3. (Chow’s theorem [152]) Let V be a neighbourhood of a state x∈ X ⊆Rdx

and let RV (x,T) be the set of reachable states at time T by trajectories remaining inside V .

A system is small-time locally accessible from x if RV (x,≤ T) contains a full dx-dimensional

subset of X for all T > 0 and all neighbourhoods V .

In the definition above, small-time and locally indicate that the property hold for any

T > 0 and any arbitrarily small room around the state x, respectively. An illustration of the

small-time locally accessible property is shown in Fig. 4.2.

Definition 4.1.4. (Dynamic clearance) Given the system Γ satisfying Chow’s condition,

there exists a value δc, called dynamic clearance, such that for all δ ∈ (0,δc], x ∈ Bδ (xxx(0))

and x′ ∈ Bδ (xxx(τ)), there exists a trajectory x̃̃x̃x such that (i) x̃̃x̃x(0) = x and x̃̃x̃x(τ ′) = x′; and (ii) xxx

and x̃̃x̃x are δ -similar.

Definition 4.1.5. (δ -robust trajectory) A trajectory xxx is called δ -robust if its dynamic clear-

ance δc and obstacle clearance ε are greater than δ .

The solution presented in this chapter is a sampling-based method. These methods in-

crementally explore the state space of the system to find a trajectory from an initial state

to a goal region. As more trajectories are computed with each iteration, sampling-based

algorithms improve the quality of the returned solution. This property of the algorithms is

called asymptotic optimality.

54 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

x′

V

x

RV (x,≤ T)

x1

x2 = ẋ1

Fig. 4.2 Two initial states, x and x′, of a double integrator. The system cannot reach a
state on the left of the initial state x without leaving RV (x,≤ T). Therefore, the system is
small-time locally accessible from the state x with x2 6= 0. On the other hand, from the state
x′ with x2 = 0, the system is small-time locally controllable, i.e. RV (x′,≤ T) contains a
neighbourhood of x′ for all neighbourhoods V and all T > 0. (Adapted from [31])

Definition 4.1.6. (Asymptotic optimality) Let An be an algorithm that iteratively creates

a graph of feasible trajectories of Γ, where n is the number of iterations. The set of all

trajectories found by An is denoted by χn. An algorithm is said to be asymptotically optimal

if the following condition holds:

lim
n→∞

min
xxx∈χn

c(xxx)→ c∗, (4.3)

where c is a cost function applied to a trajectory xxx ∈ χn and c∗ denotes the minimum cost

over all possible trajectories.

Let xxx⊕xxx′ be the concatenation of trajectories xxx and xxx′ such that xxx(τ) = xxx′(0). The cost

function is assumed to be Lipschitz continuous and satisfies the following conditions:

• Additivity: c(xxx⊕xxx′) = c(xxx)+ c(xxx′).

• Monotonicity: c(xxx)≤ c(xxx⊕xxx′).

• Non-degeneracy: For all t ′ > t ≥ 0, there exist M > 0 such that t ′− t ≤M · |c(xxx(t ′))−

c(xxx(t))|.

Note that the cost function c is only a function of the state x. This a requirement to proof

asymptotic optimality based on the parameter δ which depends on the distance between

trajectories in the state space and distance to obstacles. Moreover, this requirement is also

necessary for the expansion of a tree that represents the motion of the system, see Section

4.2 Solution 55

4.2. Although the type of admitted cost functions is limited by this condition, this is a

common requirement in most asymptotical optimal sampling-based methods [77].

As mentioned in the introduction of this chapter, the proposed method finds optimal

trajectories subject to sc-LTL specifications, see Chapter 3. Let Π be a set of atomic propo-

sitions associated with regions of the workspaceW and L : X → 2Π be a function mapping

a state x to the atomic propositions satisfied by the projection of x onto the workspace, i.e.

W(x). Given a trajectory xxx, a discrete finite word over 2Π can be obtained as follows. Let

∆(xxx)= {ti | L(x(ti)) 6= limk→t−i
L(x(k))} be the set of discontinuities in the labelled trajectory

L(xxx). This set ∆xxx = {t1, . . . , tn} produces a timed word w∆ = (L(x(t0)),d0)(L(x(t1)),d1) . . .

(L(x(tn)),dn), where t0 = 0, di = ti+1− ti for all 0≤ i < n and dn = τ− tn. From w∆, a finite

word w= L(x(t0))L(x(t1) . . .L(x(tn)) that represents the atomic propositions satisfied during

the trajectory xxx can be obtained. This type of discretisation has been used in the literature

[25, 136]. A trajectory xxx satisfies an sc-LTL specification ϕ if the word w, produced by xxx, is

accepted by a Büchi automaton Bϕ . This condition is denoted by L(xxx) |= ϕ . The problem

addressed in this chapter is now formally defined.

Problem definition 4.1.1. Given a system Γ and a sc-LTL specification ϕ , the objective is to

find an asymptotically optimal algorithm An such that L(xxx∗) |=ϕ , where xxx∗= argminxxx∈χn c(xxx).

In contrast to the traditional point to point motion planning for kinodynamic systems, a

sc-LTL specification can indicate several regions of the workspaceW that must be reached

by the system. Given this specification, the method must find an optimal trajectory satisfying

such a specification.

4.2 Solution

4.2.1 Overview

The proposed solution is based on a new approach, called stable sparse-RRT (SST) [108],

that only requires the forward propagation of the system dynamics to find optimal trajecto-

ries. This property allows to apply this method to a system with complex dynamics or where

the system is simulated using a physics engine. The proposed method iteratively expands a

transition system by sampling states from X . The states of the transition system are formed

by pairs (x,q), where x ∈ Xfree and q ∈ Q is a state of the Büchi automaton Bϕ . At each iter-

ation, a new state and transition is added after verifying if the trajectory is valid in Bϕ . This

process continues until a specified number of iterations is completed. Finally, the optimal

trajectory is extracted from the transition system. The described procedure is performed

56 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

offline. Once the algorithm finds a solution, the obtained trajectory can be tracked online by

the system.

In the following section, the idea of SST is presented before presenting the proposed

solution which generalises the SST to consider sc-LTL specifications.

4.2.2 Stable sparse RRT

The SST algorithm is a sampling-based tree motion planner. It iteratively expands a tree

T = (V,E), where V is a set of states of Γ and E are edges, or transitions, between states.

These transitions define collision-free trajectories of Γ. After an N number of iterations,

the returned tree contains an optimal trajectory from an initial state x0 to a goal region

XG ⊂ Xfree.

Before explaining the expansion of the tree T , the following notation is required. The

trajectory from state x to state x′ is denoted by xxx(x,x′) and its cost by c(xxx(x,x′)). The cost

of transitioning from the initial state x0 to state x, called cost-to-go, is represented by cx0(x).

Given two states x and x′ connected by an edge (x,x′) ∈ E, x is called the parent of x′ and x′

is the child of x.

In order to expand T , the SST algorithm divides the states in V into two sets, Vactive

and Vinactive. Intuitively, the states in Vactive are the states with the lowest cost-to-go in a

neighbourhood defined by some states w called witnesses. On the other hand, the states

in Vinactive do not have the lowest cost-to-go but have a child in Vactive, Fig. 4.3. Since

the states in Vactive have the lowest cost-to-go, these are used to expand the tree. Once a

state in Vactive is selected, the tree is expanded by adding a new trajectory starting from the

chosen state. After the tree is expanded, it is verified if the last state of the new trajectory

has the lowest cost to go in its neighbourhood. If this condition is not true, the trajectory is

removed from the tree. Otherwise, the trajectory remains on the tree and any other trajectory

in the neighbourhood is removed, Fig. 4.5. By removing unnecessary trajectories, the SST

algorithm provides an upper bound on the number of states in T . This is in contrast to other

methods where the number of states do not have a bound and only depends on the number

of iterations of the algorithm [77].

The functions used by the SST algorithm are now presented.

a) BESTFIRSTSELECTION: Given the set of vertices Vactive ⊆V and a constant δBN > 0,

the function randomly samples a state xrand ∈ Xfree and returns the state xselected ∈ Vactive

within BδBN
(xrand) with the minimum cost-to-go, i.e. argminx∈V∩BδBN

(xrand)
cx0(x). If Vactive∩

BδBN
(xrand) = /0 then the nearest state in Vactive to xrand is returned, Fig. 4.4.

4.2 Solution 57

Fig. 4.3 Illustration of SST T = (V,E). The green, red and black disks represent states of
the set V while edges in E are represented by the curves between states. States in black form
the set Vactive ⊂V and the red state forms the set Vinactive ⊂ V . States in blue define balls in
the state space X . The initial state is shown in green.

xrand
xselected

δBN

(a)

xrand

xselected

δBN

(b)

Fig. 4.4 Selection of the best state to expand the tree: (a) based on the cost-to-go and (b)
based on the closeness to sampled state xrand.

b) MONTECARLOPROP: Given a state x and a time duration Tp > 0; a single control

input u ∈U and a time t ∈ (0,Tp] are randomly sampled. Then, the dynamics of the system

are propagated forward for t units of time. The generated trajectory xxx(x,xnew) is returned.

c) COLLISIONFREE: Given a trajectory xxx(x,x′) and a set of obstacles Obs, the function

returns true if the trajectory lies on Xfree. Otherwise, the function returns false.

d) LOCALLYBEST: Let W be a set of states in Xfree called witnesses. For every w ∈W ,

there exists a state xw
rep ∈ V such that xw

rep has the lowest cost-to-go within the ball Bδs
(w).

The state xw
rep is called the representative of w. Then, given a state x′, a set W and a constant

δs > 0, the function LOCALLYBEST searches for the closest witness wclose to x′. If the

distance between x′ and wclose is bigger than δs, the function returns true. Moreover, if

the distance is less than δs and the cost cx0(x
′) is less than the cost of the representative of

wclose, i.e. cx0(x
′) < cx0(x

wclose
rep), the function also returns true. Otherwise, it returns false.

58 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

Intuitively, the function returns true only if x′ has the lowest cost-to-go in the neighbourhood

of size δs defined by the closest witness.

e) PRUNENODES: When a new state x is added to T , the function PRUNENODES moves

the old representative of the ball Bδs
(w), containing x, from Vactive to Vinactive. Then, the state

x becomes the representative of the neighbourhood defined by the ball. Finally, the function

checks if any of the states x′ in Vinactive has a child in Vactive. If that condition is not satisfied,

the state x′ and edges to it are removed from T , Fig. 4.5.

Algorithm 4.1. SST(Γ,X ,x0,U,Tp,N,δBN,δs,Obs)

1: Vactive← x0, Vinactive← /0, E← /0;
2: w0← x0,W ← w0;
3: for i = 1 to N do

4: xselected← BESTFIRSTSELECTION(Xfree,Γ,Vactive,δBN);
5: xnew←MONTECARLOPROP(xselected,U,Tp);
6: if COLLISIONFREE(xxx(xselected,xnew),Obs) then

7: if LOCALLYBEST(xnew,W,δs) then

8: Vactive←Vactive∪{xnew};
9: E← E ∪{xxx(xselected,xnew)};

10: Vactive,Vinactive,E← PRUNENODES(xnew,Vactive,Vinactive,E);
11: return T = (V,E);

The SST algorithm, Alg. 4.1, is now described. The tree T is initialised with the initial

state of the system x0 (line 1). This vertex becomes the representative of the witness located

at the same state (line 2). Then, the following procedure is repeated N > 0 times. The func-

tion BESTFIRSTSELECTION is called to select a state xselected ∈ Vactive (line 4). From this

state, a single control input u is forward propagated t units of time using the function MON-

TECARLOPROP. This propagation generates a trajectory xxx(xselected,xnew) (line 5). Then,

this trajectory is checked for collision (line 6). If no collision is detected, the function LO-

CALLYBEST is called to verify if xnew has the lowest cost-to-go within the neighbourhood

defined by the closest witness (line 7). If xnew is locally the best, it is added to the set Vactive

with the transition xxx(xselected,xnew) (lines 8-9). Otherwise, the trajectory xxx(xselected,xnew) is

discarded. Finally, the function PRUNENODES is called to promote the new state xnew as a

representative of its neighbourhood and to remove the states in Vinactive that are not neces-

sary (line 10). By removing states and transitions from T , the SST maintains a sparse data

structure. In other words, since only one state, the one with the lowest cost, is maintained in

each of the neighbourhoods defined by the witnesses; and the minimum distance between

witnesses is defined by δs, the number of states in the tree is upper bounded. An illustration

of the expansion and pruning operations is presented in Fig. 4.5.

4.2 Solution 59

xrand
δBNxrand

δBNxrand

δs

(a) (b) (c)

Fig. 4.5 Illustration of expansion and pruning of tree. (a) In order to add a new state to the
tree, a new state xrand (green disk) is sampled from the state space. (b) The state with the
minimum cost-to-go in the ball of radius δBN centred at xrand is selected for expansion by
adding a new trajectory (red curve). (c) The final state of the trajectory is then compared
with the states of the tree within the ball of radius δs centred at the closest witness states
(blue disk). If the cost-to-go of the new trajectory is better than any other trajectory, the new
state and trajectory are added and any previous trajectory without children are pruned from
the tree, e.g. the dotted trajectory.

The SST requires the selection of the parameters δBN and δs. These parameters influence

the exploration of the state space and the sparsity of the structure, respectively. To guarantee

a good performance of the algorithm, these parameters must satisfy the condition [108]:

δBN +2δs < δ ,

where δ defines the robust clearance. Although the SST algorithm presented above is asymp-

totically near-optimal, see Section 4.3, asymptotic optimality can be achieved by reducing

the radii δBN and δs over time. Intuitively, this reduction allows to select near-optimal states

closer to the optimal ones and propagate them.

The SST algorithm provides solutions to the classical point to point motion planning for

systems where solving a two-point value boundary problem is not possible or where only a

physics engine is available for simulation. This allows its application to a wider range of

situations than current sampling-based methods. Nevertheless, the algorithm cannot handle

cases where more than one target has to be reached or an order of events is required. In the

following section, a solution to these limitations is presented.

60 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

4.2.3 Stable sparse RRT with temporal logic constraints

This section presents an algorithm, called SST_LTL, that conserves the asymptotic opti-

mality property of the SST while high-level tasks, expressed as sc-LTL specifications, are

satisfied.

Similar to the SST algorithm, the SST_LTL iteratively expands a transition system T =

(S,s0,δT ,Π,L) by sampling the state space X to model a subset of the system motion. To

verify whether a run sss on T satisfies a sc-LTL specification ϕ , a product automaton is used.

Definition 4.2.1. (Product automaton) Let T = (S,s0,δT ,Π,L) be a deterministic transi-

tion and B= (Q,q0,Σ,δB,F) be a deterministic Büchi automaton, where Σ = 2Π. A product

automaton P is a tuple (SP ,sP ,0,Σ,δP ,FP), where:

• SP = S×Q is a set of finite states,

• sP ,0 = s0×q0 is an initial state,

• Σ is a set of atomic propositions,

• δP ⊆ SP ×SP is a transition relation, where ((s,q),(s′,q′)) ∈ δP iff (s,s′) ∈ δT and

δB(q,L(s
′)) = q′,

• FP = S×F is a set of accepting states.

A run sPsPsP = (s0,q0)(s1,q1) . . . is a sequence of pairs where ((si,qi),(si+1,qi+1))∈ δP for

all i≥ 0. Since sc-LTL specifications are considered, a run sPsPsP on P is accepted if it reaches

the set of accepting states.

By construction, for an accepting run sPsPsP on P = T ×Bϕ , its projection s0s1 . . . onto T

satisfies the specification ϕ . Conversely, for any run sss = s0s1 . . . on T satisfying ϕ , there

exists an accepted run sPsPsP = (s0,q0)(s1,q2) . . . on P .

Based on the above statement, the problem of satisfying a sc-LTL specification ϕ can

be reformulated as a reachability problem in a product automaton. To construct this product

automaton simultaneously with the transition system T , the states of the transition system

are augmented with a state of the Büchi automaton to create pairs of the form (x,q), where

x is a state of Γ and q is a state in Q. Therefore, a transition ((x,q),(x′,q′)) ∈ δT is valid if

xxx(x,x′) is a collision-free trajectory and δB(q,L(x
′)) = q′.

The transition system T grows similar to the tree in the SST algorithm with the following

variation. At each iteration, a state (x,q) for all q ∈ Q is expanded with a new trajectory

xxx(x,x′). This trajectory is validated using the word w generated by it as an input to the Büchi

automaton. After the last iteration of the algorithm, the state formed by a state q ∈ QF with

the lowest cost-to-go is found and used to get the optimal trajectory.

4.2 Solution 61

In the rest of the section, the functions used in the SST_LTL algorithm are firstly pre-

sented, followed by the explanation of the algorithm. During the description of the functions,

with abuse of notation, cs0(·) and xxx(·, ·) are used for the states of T , i.e. cs0(s) = cx0(x) and

xxx(s,s′) = xxx(x,x′), where s = (x,q) and s′ = (x′,q′).

a) BESTSELECTIONLTL: The function divides the states in Sactive into sets {Sqi
}
|Q|−1
i=1

depending on the Büchi state forming the state s. Then, the function samples a system

state xrand ∈ Xfree and for each set, a state is selected following the procedure described in

paragraph 4.2.2.a. The function is presented in Alg. 4.2.

Algorithm 4.2. BESTSELECTIONLTL(Xfree ,Sactive,δBN,B)

1: xrandom← SAMPLE(Xfree);
2: for i = 1 to |Q|−1 do

3: Sqi
←{s ∈ Sactive : s = (x,qi)}

4: if Sqi
6= /0 then

5: Snear← NEAR(xrandom,Sqi
,δBN);

6: if Snear 6= /0 then

7: sqi
← argmins∈Snear

cs0(s);
8: else

9: sqi
← NEAR(xrandom,Sqi

,X);

10: return {sqi
}
|Q|−1
i=1

b) RUNBUCHI: Given a Büchi automaton B, state q and a word w∆, the function RUN-

BUCHI (Alg. 4.3) returns the last state qfinal of the run qqq onB, starting from state q, generated

by w∆.

Algorithm 4.3. RUNBUCHI(B,w∆ ,qinit)

1: for i = 1 to LENGTH(w∆) do

2: qfinal← δB(qinit,w∆,i);
3: if qfinal 6= /0 then

4: qinit← qfinal;
5: else

6: return /0
7: return qfinal

c) LOCALLYBESTLTL: Recall that the states in W define neighbourhoods in X , where

the state with the lowest cost-to-go is called the representative of w ∈W . These neighbour-

hoods are used to prune states that do not contribute to the lowest-cost path to any point

in X . When considering LTL specifications, multiple representatives may exist for each

state w ∈W . That is, each state w can have as many representatives as states in the Büchi

62 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

automaton, Fig. 4.6. Formally, a state s = (x,q) is a representative of w, denoted as s
w,i
rep,

if s = argmin(x∈Bδs
(w), q=qi) cs0(s). The function LOCALLYBESTLTL returns true or false

following the conditions presented in paragraph 4.2.2.d with the difference that only the

representatives formed by the Büchi state in turn are considered. The function is presented

in Alg. 4.4.

δs

w
s

w,i
rep

s
w, j
rep

π

Fig. 4.6 Neighbourhoods of radius δs defined by witnesses (blue disks) and area associated
with the atomic proposition π . The colour change in the path shows a change in the Büchi
state. The witness w has two representatives, s

w,i
rep and s

w, j
rep, corresponding to the Büchi states

qi and q j, respectively.

Algorithm 4.4. LOCALLYBESTLTL(snew ,W,X ,δs,q)

1: wclose← NEAR(snew,W,X);
2: if DIST(snew,wclose)≤ δs then

3: if cs0(snew)< cs0(s
wclose,q
rep) then

4: return True;
5: else

6: return False;
7: else

8: return True;

d) PRUNENODESLTL: Given a state snew, the sets Sactive, Sinactive and a Büchi state

q; the function PRUNENODESLTL, Alg. 4.5, moves the current representative s
w,q
rep of the

ball Bδs
(w) from Sactive to Sinactive. Then, the state snew becomes the representative of the

neighbourhood. Finally, the function checks if any of the states s′ in Sinactive has a child in

Sactive. If that condition is not satisfied, the state s′ and the transitions to it are removed from

T .

A detailed presentation of the SST_LTL algorithm, Alg. 4.6, is now presented. The

transition system T is initialised with the state s0 = (x0,q0), where x0 is the initial state of

4.2 Solution 63

Algorithm 4.5. PRUNENODESLTL(snew ,Sactive,Sinactive,W,X ,δT ,q)

1: wclose← NEAR(snew,W,X);
2: Sactive← Sactive \ s

wclose,q
rep ;

3: Sinactive← Sinactive∪ s
wclose,q
rep ;

4: schild← s
wclose,q
rep ;

5: while CHILD(schild) = /0 and schild ∈ Sinactive do

6: sparent← PARENT(schild);
7: Sinactive← Sinactive \ schild;
8: δT ← δT \xxx(sparent,schild);
9: schild← sparent;

10: s
wclose,q
rep ← snew;

the system and q0 is the initial state of the Büchi automaton of the specification ϕ (line 1).

The set of witnesses W is also initialised with the initial state x0 (line 2). Then, the following

procedure is repeated N times. The function BESTSELECTIONLTL returns one state s
j
selected

for each state in the Büchi automaton (line 4), Fig. 4.7. This set of states is used to expand

the transition system T as follows. First, the function MONTECARLOPROP, presented in

paragraph 4.2.2.b, is called to generate a new trajectory starting from s
j
selected (line 6). This

trajectory is denoted as xxx(s
j
selected,xnew). An important difference with respect to the original

SST algorithm is that trajectories are restricted to those that intersect the boundary of a

region in the workspace at most once, i.e. |∆(xxx)| ≤ 1. By using this restriction, only the

last state of the trajectory must be checked to verify the satisfaction of a specification. If

xxx(s
j
selected,xnew) is collision-free (line 7), the function RUNBUCHI is called to verify whether

the word w∆, generated by xxx(s
j
selected,xnew), is valid in the Büchi automaton Bϕ (line 9). The

function RUNBUCHI returns the state qfinal reached in Bϕ . A new state snew = (xnew,qfinal) is

created with the last state of the trajectory and the reached Büchi state (line 11). This state is

then compared with the states in T to verify whether it is useful to generate an optimal path.

This operation is performed by the function LOCALLYBESTLTL (line 12). If the new state

snew is accepted, it is added to T (lines 13-14). Finally, the function PRUNENODESLTL is

called to remove the states and transitions that are not required for any optimal path (line

15).

Once the SST_LTL algorithm returns the transition system T , after N iterations, the set

SQF
= {(x,q)∈ Sactive : q ∈QF} is computed. If the set is empty, the specification cannot be

satisfied by T . Otherwise, the state sbest = argmins∈SQF
cs0(s) is found. The optimal path,

satisfying the sc-LTL specification ϕ , can then be found by recursively computing the parent

of each state starting from sbest. Note that the method is limited to sc-LTL specifications due

to the tree structure created by the algorithm. While other methods create graphs to satisfy

64 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

Algorithm 4.6. SST_LTL(Γ,X ,x0,U,T ,Tp,N,δBN,δs,Bϕ)

1: Sactive← (x0,q0), Sinactive← /0, δT ← /0;
2: w0← x0,W ← w0, i← 0;
3: while i < N do

4: {s
j
selected}

|Q|−1
j=1 ← BESTSELECTIONLTL(Xfree,Sactive,δBN,Bϕ);

5: for j = 1 to |Q|−1 do

6: xxx(s
j
selected,xnew)←MONTECARLOPROP(s

j
selected,Γ,U,Tp);

7: if COLLISIONFREE(xxx(s
j
selected,xnew),Obs) then

8: qinit← q j;

9: qfinal← RUNBUCHI(Bϕ ,L(xxx(s
j
selected,xnew)),qinit);

10: if qfinal is valid then

11: snew = (xnew,qfinal);
12: if LOCALLYBESTLTL(snew,W,δs,qfinal) then

13: Sactive← Sactive∪{snew};
14: δT ← δT ∪{xxx(s

j
selected,snew)};

15: PRUNENODESLTL(snew,Sactive,Sinactive,δT ,qfinal);
16: i← i+1;
17: return T = (S,s0,δT);

s0
selected

s1
selected

s2
selected

xrand

Fig. 4.7 Expansion of transition system using SST_LTL. States {si
selected}

2
i=0 of the transi-

tion system with different Büchi state components (colours) are selected to generate new
trajectories from these states.

specifications with infinite horizon properties given as full LTL, they can be applied to a

limited type of systems.

4.3 Analysis 65

4.3 Analysis

This section analyses the SST_LTL algorithm in terms of optimality, completeness and com-

plexity. Before presenting the analysis, some additional definitions from [108] are intro-

duced.

Definition 4.3.1. (δ -robust feasible motion planning problem) Given a system Γ, an ini-

tial state x0 ∈ X, a goal region XG ⊂ X and that a δ -robust trajectory connecting x0 with a

state x f ∈ XG exists, find a trajectory xxx such that xxx(0) = x0 and xxx(τ) = x f .

Definition 4.3.2. (Probabilistic δ -robust completeness) An algorithm An is probabilistic

δ -robust complete if for any δ -robust feasible motion planning problem Ξ, the following

condition holds:

liminf
n→∞

P(∃ xxx ∈ χn : xxx is a solution to Ξ) = 1. (4.4)

Definition 4.3.3. (Asymptotic δ -robust near-optimality) Given a function h : R×R→R

of the optimum cost and the δ clearance, where h(c∗,δ)≥ c∗, an algorithm An is asymptotic

δ -robust near-optimal if for all runs:

P(limsup
n→∞

(argmin
xxx∈χn

c(xxx))≤ h(c∗,δ)) = 1. (4.5)

4.3.1 Probabilistic Completeness and Asymptotic Optimality

The probabilistic completeness and asymptotic optimality of the SST_LTL algorithm are

now discussed.

Theorem 4.3.1. (see Theorem 29 in [108]) Stable sparse-RRT is probabilistically δ -robustly

complete.

The proof of Theorem 4.3.1 is based on the proofs that the MONTECARLOPROP and

BESTFIRSTSELECTION will eventually generate a δ -similar trajectory to the optimal path

with a probability ρδ > 0 and select a near-optimal state for propagation with probability

γ > 0, respectively.

Theorem 4.3.2. (see Theorem 30 in [108]) Stable sparse-RRT is asymptotically δ -robust

near-optimal.

Again, the proof of Theorem 4.3.2 follows from the positive probability ρδ of SST

generating a δ -similar trajectory to the optimal one and the conditions assumed for the cost

function, see Section 4.1.

66 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

Corollary 4.3.1. The SST_LTL algorithm is probabilistically δ -robustly complete and asymp-

totically δ -robust near-optimal.

Proof (Sketch). From Theorems 4.3.1 and 4.3.2, it is guaranteed that, starting from the ini-

tial state (root of the tree), a δ -similar trajectory to the optimal one will be generated with

a positive probability, if one exists, to any region of the state space. On the other hand,

every change in the Büchi state generates a root of a new tree that is only affected by trees

having the same Büchi state in the root, see paragraph 4.2.2.d. Hence, from each new root,

δ -similar trajectories to the optimal ones are generated. Therefore, the trajectory satisfying

the specification, returned by the SST_LTL algorithm, can be seen as a concatenation of δ -

robust near optimal trajectories, with different Büchi states, resulting in a longer trajectory

with the same property.

To illustrate Corollary 4.3.1, consider the case where the system, starting from the ori-

gin, has to visit the regions associated with the atomic propositions π1 and π2 to satisfy a

specification. For simplicity, assume that the tree with root (0,0) generates only 3 optimal

trajectories to the region π1. The end of each trajectory is a root for a tree with δ -similar

trajectories to the optimal ones to any region of the state space. Hence, to satisfy the speci-

fication, the system has to follow the optimal path from the origin to the region π1 and then

follow the trajectory with lowest cost to the region π2, Fig. 4.8.

π1

π2

Fig. 4.8 Tree optimal paths (black lines) to region π1 from the tree rooted at the origin. From
each end of a path, a tree grows (each one with a different colour) containing δ -similar
trajectories to the optimal ones. Because each tree has states with the same Büchi state, they
affect each other, i.e. they do not overlap. The optimal solution is a concatenation of two
paths from different trees.

4.4 Examples 67

As mentioned in Section 4.2.2, asymptotical optimality can be achieved by reducing the

parameters δBN and δs [108].

4.3.2 Complexity

Recall that states are pruned from T if they are not part of a trajectory leading to a state

with the lowest cost in the neighbourhoods defined by δs. Moreover, the maximum number

of states in each neighbourhood is limited to the number of states in the Büchi automaton.

Therefore, if the state space X is bounded, the maximum number of states in T is finite

and bounded byO(|Q| ·δ−dx). Consequently, operations such as finding nearest neighbours

have bounded time complexity in contrast to other methods such as the Rapidly-exploring

Random Graph and Rapidly-exploring Random Trees with space complexity O(n log n)

and O(n) [77], where n is the number of samples.

4.4 Examples

The proposed method is demonstrated with a 10-dimensional quadrotor with the following

dynamics [183]:

ẋ =









































0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 g 0 0

0 0 0 0 0 0 −g 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0









































x+









































0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1/m 0 0

0 0 0

0 0 0

0 ℓ/ j 0

0 0 ℓ/ j









































u, (4.6)

where g, m, ℓ and j are constants representing the gravity, the mass of the quadrotor, the

distance between the rotors and the centre of the vehicle and the moment of inertia, respec-

tively. The state x = (p,v,r,w) consists of the three-dimensional position p and velocity v;

and the two-dimensional orientation r and angular velocity w (the yaw and its derivative

are constrained to zero). The control input u = (u f ,ux,uy) is formed by the total thrust u f

needed for hovering and the thrust ux, uy required for producing roll and pitch, respectively.

68 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

The system operates in two different environments, each one with three regions of in-

terest associated with the atomic propositions π1, π2 and π3. For these examples, once the

system reaches π1, it has to reach the regions π2 and π3 in that particular order. Formally

the specification can be defined as ϕ = ♦(π1∧©♦(π2∧©♦(π3))). The examples are im-

plemented in MATLAB on a computer with a 3.1 GHz i7 processor and 8 GB of RAM.

π1

π2

π3

Fig. 4.9 Path followed by quadrotor satisfying the specification ϕ . The green areas are
associated with atomic propositions while the grey areas are considered as obstacles.

To find an optimal trajectory satisfying the specification presented above, the SST_LTL

runs for different values of N, i.e. number of iterations, and the Euclidean distance is consid-

ered as a cost function. An example of the computed path for each environment is presented

in Fig. 4.9 and 4.10, respectively. Figure 4.11 shows that the algorithm constantly improves

the quality of the path with the number of iterations. These iterations correspond to the

loop in line 5 in Alg. 4.6. In other words, the path converges to the optimal one as the

number of states in the transition system increases. While other available sampling-based

approaches, e.g. [78, 179], also offer this asymptotical optimality, they require the com-

putation of optimal paths between states using a steering function. This function solves a

two-point boundary value problem which is not easy to solve for systems with kinodynamic

constraints [183]. In contrast, the proposed method only requires to sample the control space

to achieve asymptotical optimality.

4.5 Concluding remarks 69

π1

π2
π3

Fig. 4.10 Path followed by quadrotor satisfying the specification ϕ . The green areas repre-
sent regions of interest while the grey cuboid is considered an obstacle.

1 2 3 4 5 6 7 8 9

Number of iterations 10
4

25

30

35

40

45

50

55

C
o
s
t
(D

is
ta

n
c
e
)

Fig. 4.11 Average (mean) distance travelled by quadrotor v.s. number of iterations.

4.5 Concluding remarks

This chapter has presented a novel sampling-based method to compute asymptotically opti-

mal trajectories for high-dimensional kinodynamic systems constrained by temporal logic

specifications. This is a relevant problem due to the frequent existence of multiple paths

satisfying high-level specifications. The main advantage of the method compared to other

methods is that optimality can be achieved by only forward propagating the system dy-

namics. Therefore, it does not require a solution to two-point boundary value problems

or solving a NP-hard problem such as MILP required in other methods, which cannot be

solved for certain systems. On the other hand, due to the complexity of the problem, finding

a closed-form solution is not possible. Instead, the proposed method only finds an approx-

70 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications

imate solution which is asymptotic optimal. Hence, it cannot be compared to methods that

solve constrained optimal control problems for which solution to many problems does not

exist.

The proposed solution is limited to a fragment of LTL. This limitation is the result of

the method used to expand the transition system. However, the method can find solutions to

a broader range of dynamic systems compared to other methods. Another advantage is that

the sparse structure modelling the motion of the system guarantees a bounded complexity

as the number of iterations increases in contrast to other available methods.

On the other hand, a deterministic system is considered in this chapter. Nevertheless,

uncertainty in motion is presented in most robotic systems. This uncertainty can be caused

by faulty actuators, uneven terrains, wind, etc. Another important element in the method dis-

cussed in this chapter is the logic used for the specification. This logic presents the limitation

that only qualitative properties can be expressed by using it. This could be a problem for

tasks that require the specification of hard time constraints. For example, consider a robot

operating with a limited battery. In this situation, a task must be performed in a limited time

before the battery discharges. In the next chapter, these aspects are addressed.

Chapter 5

Stochastic Optimal Control with Metric

Interval Temporal Logic Specifications

The previous chapter addressed the problem of optimal motion planning subject to qualita-

tive specifications, given as sc-LTL specifications, for deterministic systems. In this chapter,

the assumption of deterministic motion is relaxed. Instead, stochastic systems are consid-

ered. Moreover, specifications that impose time constraints are also introduced. These two

improvements permit to have more complex missions for systems with more realistic mo-

tion.

The problem of optimal control for stochastic systems subject to temporal logic con-

straints has recently attracted attention [49, 65]. This is a relevant topic for mobile systems

since errors in modelling and external disturbances are most of the time present. Although

solutions considering stochastic systems and temporal logic constraints have been proposed,

most of the available solutions focus on this problem at the discrete level [40, 94]. That is,

the computation of a MDP modelling the system is assumed. However, the computation

of such MDPs is not trivial. Other solutions approach this problem at the continuous level

[49, 65]. Nevertheless, solutions that consider a continuous state space and time in the spec-

ifications discretise the time and state space to compute optimal policies. This discretisation

limits the applicability of the methods to low dimensional systems.

In this chapter, a solution to the problem of computing optimal controllers for stochastic

systems under metric interval temporal logic (MITL) specifications is presented. In contrast

to LTL specifications, using MITL, specifications with time constraints can be expressed.

On the other hand, the optimality of the solution is in terms of maximising the probability

of satisfying the specification rather than in terms of a cost function as in the previous chap-

ter. As presented in this chapter, the addition of time constraints increases the computational

complexity of the problem. To reduce this complexity, the proposed solution again uses a

72 Stochastic Optimal Control with MITL Specifications

sampling-based method to compute optimal policies and a coarse partition of the environ-

ment. As a result, the dimensionality of the state space of the system has a less negative

impact compared with other available methods. Therefore, the main contribution of this

chapter is a method that reduces the complexity of problems considering MITL. This reduc-

tion is achieved thanks to a coarse discretisation of the environment and the introduction of

a new timed automaton to allow this discretisation.

The rest of the chapter is divided as follows. The addressed problem is formulated in

Section 5.1. Then, in Section 5.2, the discretisation of the workspace and the computation

of the optimal policy is presented. An analysis of the complexity of the method is presented

in Section 5.3. In Section 5.4, the proposed solution is compared with the closest related

work in a numerical example. Finally, conclusions are discussed in Section 5.5.

5.1 Problem formulation

This chapter focuses on stochastic dynamic systems, ϒ, called controlled diffusion pro-

cesses, that evolve according to the stochastic differential equation:

dx(t) = f (x(t),u(t))dt+D(x(t))dv(t), (5.1)

where x(t) ∈ X ⊆ Rdx , u(t) ∈U ⊆ Rdu and v(t) are the system state, the control input and

the dv-dimensional Wiener process on a probability space (Ω,F ,P) at time t, respectively.

The sets X and U are assumed to be compact. Rdx , Rdu are the dx-dimensional and du-

dimensional Euclidean spaces, respectively. The vector and matrix valued functions f :

X ×U → R
dx and D : X → R

dx×dv are measurable, bounded and continuous. Similar to

the previous chapter, controllability is not a requirement since a similar approach is used,

i.e., sampling of control space and propagation of system dynamics. The matrix D(·) is

assumed to have full rank and the control u(·) is admissible with respect to v(·) [92]. Given

a continuous sample path xxx(·,v) of system ϒ and an interval ∆ti > 0, the timed behaviour or

run of ϒ can be denoted as xxx∆t = (x0,∆t0)(x1,∆t1) . . . , where xi occurs at time Σi−1
0 ∆t j. The

system operates in a static workspace W . With slight abuse of notation, W(x) is used to

define the projection of a state x ∈ X onto the workspace.

This chapter considers MITL specifications, see Section 3.5, built on a set Π of atomic

propositions associated with non-overlapping regions of the workspace. A function L :

X → 2Π is used to map a state x to the atomic propositions satisfied by the projection

of x onto W . A timed word (w,η) = (L(x0),∆t0)(L(x1),∆t1) . . . , induced by a run xxx∆t ,

gives the behaviour of the system ϒ in terms of the atomic propositions satisfied. Let

Tϕ = (Q,q0,Σ,C,Λ(C),δT ,F) be a deterministic timed automaton computed from ϕ . A

5.2 Solution 73

sample path of the system satisfies a specification ϕ , denoted by L(xxx∆t) |= ϕ , if the timed

word L(xxx∆t) is accepted by the timed automaton Tϕ , i.e. the set of accepting states is reached.

The problem addressed in this chapter is now formally defined.

Problem definition 5.1.1. Given a stochastic dynamic system ϒ and a MITL formula ϕ ,

compute a control policy µ : X →U such that the probability of satisfying ϕ is maximised.

Intuitively, the MITL specifications indicate the regions on the workspaceW that must

be visited and the time constraints. For instance, a specification ϕ = ♦[0,5]π indicates that

the region associated with the atomic proposition π must be visited within five units of time.

Since stochastic systems are considered, the method must return a policy that indicates what

control input must be used, based on the current state and time, to maximise the probability

of satisfying a specification.

5.2 Solution

5.2.1 Overview

Similar to the previous chapter, the solution of this chapter is based on automata theory.

More specifically, a product bounded-parameter Markov decision process (BMDP) is com-

puted to find a policy. However, the addition of time constraints increases the complexity of

the problem. Specifically, the size of the product BMDP is affected by the consideration of

time. Hence, using an approach similar to the one presented in Chapter 4 will result in an

intractable problem due to the large number of states in the structure that models the transi-

tions of the system. To reduce the computational complexity, the proposed solution is this

chapter is divided into two phases. In the first phase, the workspace is coarsely discretised

into non-overlapping regions. In each of these regions, local policies that drive the system

from one region to the adjacent ones are computed, Fig. 5.1. This computation is performed

by a sampling-based approach that approximates the properties of the original stochastic

system [67]. Once the local policies are computed, a BMDP is constructed to model the

probabilities of transitioning between different regions when the policies are applied [117].

In the second phase, a deterministic timed automaton (DTA) is constructed based on the

MITL specification. Then, the original problem is reformulated as a reachability problem in

the Cartesian product of the BMDP and the DTA. The solution to the reachability problem

yields an optimal global policy that selects a local policy for each region of the workspace

such that the probability of satisfying the specification is maximised. An advantage of

dividing the method into two parts is that only the second phase is recomputed when a new

specification is considered in the same workspace.

74 Stochastic Optimal Control with MITL Specifications

In the rest of this section, the discretisation and computation of local policies are first

presented. Then, the computation of the BMDP and product BMDP is described. Finally,

the solution to the reachability problem and the implementation of the global policy are

presented.

5.2.2 Workspace discretisation and local policies

Similar to the previous chapter, atomic propositions are associated to regions of interest

of the workspace W . This workspace is decomposed into a partition P = {pi}
M
i=1 by a

Delaunay triangulation [104]. Nevertheless, this process can be performed by any other

partitioning method. This decomposition is proposition preserving. In other words, for all

the states in pi, the same atomic propositions are true, i.e. for W(x) ∈ pi and W(x′) ∈ pi,

π ∈ L(x) iff π ∈ L(x′). The lower dimensionality of the decomposed workspaceW avoids

the exponential computational cost of discretising the state space X . In each region pi for

i ∈ {1, . . . ,M}, local policies are computed, one for each adjacent region, Fig. 5.1.

pi

p1
i

p2
i

p3
i

Fig. 5.1 Partitioning of the workspaceW . The picture on the left shows the workspace of
the system with two areas of interest and the regions generated by the decomposition. In
each region pi, local policies are computed to drive the system from the region pi to the
adjacent regions p1

i , p2
i and p3

i .

The computation of the local policies is now presented. While any available method

could be used to compute a policy that maximises the probability of transitioning from one

region to another, a sampling-based method, called incremental Markov decision process

(iMDP) [67], is used in this chapter. The selection of this method is due to the benefits that

sampling-based methods offer, presented in Chapter 2.

The iMDP algorithm approximates the continuous dynamics of the system by using the

idea of the Markov chain method [92]. This approximation is performed by a sequence

of MDPs Mn = (Zn,U,Pn,Gn,Hn) for n ≥ 0, where Zn is a discrete subset of X , U is the

5.2 Solution 75

original control space, Pn(·|·, ·) : Zn×Zn×U→ [0,1] gives the probability of transitioning to

the state x j ∈ Zn from the state xi ∈ Zn under action u ∈U , Gn : Zn×U →R is an immediate

cost function and Hn : Zn→R is a terminal cost function, i.e. a cost associated with the final

reached state.

In each iteration of the iMDP algorithm, a new Mn is created by adding randomly

sampled states to the set Zn−1 from the interior and boundary of a region p ∈ P , Fig. 5.2.

To each state x ∈ Zn added toMn, a non-negative interpolation interval ∆tn(x), a cost value

Jn(x) and a control u ∈U are assigned. Intuitively, the cost value Jn(x) is used to compute

a control input for each state x such that the system is driven to a particular area. Before

introducing these elements formally, the required conditions to approximate the continuous

system are presented.

xsample

znear

znew
xsample

Pn+1
znew

(a) (b) (c)

Fig. 5.2 Illustration of an incremental Markov decision process in a workspace with two
obstacles (grey areas) and one goal (green area). (a) The states (black disks) forming the
MDPMn have an assigned cost. This cost is lower in states closer to the target. To add a
new state, a state xsample is sampled from the interior of the workspace. (b) The closest state
znear inMn to the sampled state is found and a new state znew is computed by propagating
the system dynamics. (c) After the new state is added to the MDP Mn+1, the assigned
control is updated based on the cost of the other states in the MDP.

Let {χn
i , i∈Z+} be a controlled Markov chain onMn with transition probability Pn and

let ∆χn
i = χn

i+1−χn
i denote the distance between two consecutive states in the Markov chain.

In order to maintain the properties of the original system, ∆tn(x) and Pn need to satisfy the

following local consistency properties [92]:

• For all xi ∈ Zn:

lim
n→∞

∆tn(xi) = 0. (5.2)

76 Stochastic Optimal Control with MITL Specifications

• For all xi ∈ Zn and ui ∈U :

Exi
(∆χn

i) = f (xi,ui)∆tn(xi)+O(∆tn(xi)), (5.3)

Exi
([∆χn

i −E(∆χn
i)][∆χn

i −E(∆χn
i)]) = D(xi)D(xi)

T ∆tn(xi)+O(∆tn(xi)), (5.4)

lim
n→∞

sup
i∈N
‖∆χn

i ‖= 0, (5.5)

where Exi
is the conditional expectation given χn

i = xi and O(·) indicates an upper bound

on the error due to the discrete time approximation.

To approximate the discrete Markov chain {χn
i , i ∈ Z+} to the continuous process x(·),

the continuous-time interpolations ξx(·) and ξu(·) are used. These interpolations are defined

by:

ξx(t) = χn
i ξu(t) = ui, t ∈ [tn

i , t
n+1
i),

where tn
i = ∑i−1

0 ∆tn(χ
n
i), Fig. 5.3.

χn
0

∆tn(χ
n
0)

χn
1

∆tn(χ
n
1)

χn
2

∆tn(χ
n
2)

χn
3

∆tn(χ
n
3)

ξx(t)

t

Fig. 5.3 Illustration of the continuous-time interpolation of Markov chain {χn
i , i ∈ Z+}.

The computation of the control u and cost J(x) assigned to the states of an MDPMn is

now presented. Recall that each region pi ∈ P requires one policy for each adjacent region

in order to drive the system between regions. To compute a policy to drive the system from

the interior of pi to a particular contiguous region, for instance p1
i , a negative terminal cost

is assigned to states sampled from the boundary shared with p1
i . To avoid the other adjacent

regions, p2
i and p3

i , a positive terminal cost is assigned to states sampled from the boundary

shared with these regions. As presented below, these terminal costs are used to find control

inputs that minimise the cost of a function associated to the states within a region. In other

words, the inputs will drive the system to states with the lowest cost, Fig. 5.4.

5.2 Solution 77

p1
i

p2
i

p3
i

Fig. 5.4 Illustration of transitions from states within pi to the adjacent region p1
i . During the

computation of the MDPMn, samples obtained from the border with the desired adjacent
region (green region) are assigned with a negative cost. Samples from the red regions are
assigned with a positive cost.

Let U be the set of all possible policies µn : X →U that map a state x ∈ Zn to a control

input u ∈U . To compute a policy such that the probability of reaching an adjacent region is

maximised, the following cost-to-go function is minimised [67]:

Jn,µn
(x) = EPn

[

Tn−1

∑
i=0

αtn
i Gn(χ

n
i ,µn(χ

n
i))+αtn

Tn Hn(χ
n
Tn
)

]

, (5.6)

where α ∈ [0,1) is a discount rate, EPn
is the conditional expectation given χn

0 = x under Pn

and Tn is the expected first exit of the controlled Markov chain {χn
i , i∈Z+} under the policy

µn ∈ U from region pi. The cost to go Jn,µn
(x) is the accumulated cost of each transition,

starting from x, and the cost of the reached state under the control µn(·). Since negative and

positive costs are assigned to the desired area and obstacles, respectively, by minimising the

cost Jn,µn
(x), the probability of reaching the target is maximised. The optimal policy µ∗n

satisfies Jn,µ∗n (x) = infµn∈U Jn,µn
(x).

The policy µ∗n assigns a control value µ∗n (x) to each non-boundary state x ∈ Zn. This

process is repeated to obtain a local optimal policy for each adjacent region in each region

of P . That is, a MDP is created in each segment for each adjacent region. To each state

of these MDPs, a control is assigned by using the procedure described above. Because of

the Delaunay triangulation, the obtained regions are triangles. Therefore, for this decompo-

sition, each region pi ∈ P has three local policies, denoted as µ1
pi

, µ2
pi

and µ3
pi

, to drive the

system from the interior of pi to its adjacent regions p1
i , p2

i and p3
i , respectively. Different

partitioning would lead to a different number of local policies.

To guarantee the converge of the cost Jn to the optimal one as the number of iterations

increases, the interval ∆tn(x), also called holding, is computed by:

78 Stochastic Optimal Control with MITL Specifications

∆tn(x) = γ

(

log|Zn|

|Zn|

)θςρ/dx

, (5.7)

where γ > 0, θ ∈ (0,1], ς ∈ (0,1) and ρ ∈ (0,1] are constants. This rate allows to find the

optimal cost Jn by solving a Bellman equation via sampling the control space [67].

5.2.3 BMDP model

The probability of transitioning to region p j from pi under a policy {µ l
pi
, l ∈ {1,2,3}} varies

among the sampled states x∈ Zn within the region pi. Hence, the probability of transitioning

from the region pi to the region p j is given by a range. To model all the possible transitions

between regions and their range of probabilities, a BMDP B= (S,A, P̂, P̌,L) is used. The set

of states S is formed by the segments of the partition P . For ease of explanation, in the rest

of the chapter, states s ∈ S are also referred as regions. The set of actions A contains all the

local policies, µ l
pi

for all pi ∈ P and l ∈ {1,2,3}, computed by the iMDP algorithm. The set

of available actions at state s is denoted by A(s). The minimum and maximum probability,

P̌ and P̂, of transition from one state or region to another are calculated as follows:

P̌(s j|si,µ
l
si
) = min

x∈Zn

P(s j|x,µ
l
pi
), (5.8)

P̂(s j|si,µ
l
si
) = max

x∈Zn

P(s j|x,µ
l
pi
), (5.9)

where P(s j|x,µ
l
pi
) is the probability of state x inside region si to finish in the region s j

when the local policy µ l
pi

is applied. Since the Markov chain χn
i , induced by the policy µ l

pi
,

is absorbing [66], these probabilities can be computed using the fundamental matrix [82],

which gives the probability of transitioning from one state to another in a specific number of

steps. The label function L : S→Π maps each state x within a region p to the set of atomic

propositions Π.

The algorithm to compute a BMDP for a given system ϒ and workspaceW is presented

in Algorithm 5.1. First, the set of states, actions, minimum and maximum probabilities

are initialised as empty sets (line 1). Then, the workspace W is decomposed into M non-

overlapping regions (line 2). To perform such decomposition available tools exist [156].

Since each region corresponds to a state in the BMDP, M states are added to the BMDP

(line 3). Once the decomposition is completed, for each region, its adjacent regions are

selected (line 5). Then, each of the adjacent regions is selected, one at a time, as a target

while the others are considered obstacles for the computation of the local policies (line 7).

The iMDP algorithm returns the policy according to the target and obstacle regions and the

5.2 Solution 79

probability of transitioning to each adjacent region when the computed policy is applied

(line 8). Finally, the computed policies are then added to the set of actions while a matrix

with the probabilities of transitioning is added to a set containing probabilities matrices for

all the computed policies (line 9).

Algorithm 5.1. BMDPCOMPUTATION(ϒ,X ,U,W)

1: S← /0, A← /0, P̌← /0, P̂← /0;
2: P = {pi}

M
i=1← DECOMPOSITION(W);

3: S←{si}
M
i=1;

4: for each si ∈ S do

5: {pl
i}

K
l=1← ADJACENTREGIONS(pi);

6: for l ∈ {1, . . . ,K} do

7: target← pl
i , obstacles← p

j
i for j ∈ {1, . . . ,K}/l;

8: µ l
si
, P̌µ l

si
, P̂µ l

si
← IMDP(ϒ,X ,U, target,obstacles);

9: A← A∪µ l
si

, P̌← P̌∪ P̌µ l
si

, P̂← P̂∪ P̂µ l
si

;

10: return B = (S,A, P̌, P̂);

As explained in Section 5.2.1, one of the benefits of the proposed method is that, if

the workspace W does not change, Alg. 5.1 only needs to be executed one time even if

the MITL specification changes. In the next section, the computation of optimal policies

that map states of the BMDP to actions from the set A is presented. In order to select an

action in each state of the BMDP such that the probability of satisfying a specification ϕ is

maximised, the Cartesian product of the BMDP and the timed automaton obtained from ϕ

is created. This procedure is explained in the next section.

5.2.4 Product BMDP

Using the iMDP method, a discrete model of the original system is obtained. In order to dis-

cretise the time for the BMDP abstractionB, a timed automaton T =(Q,q0,Σ,C,Λ(C),δT ,F)

is introduced, see Section 3.6. For this timed automaton, the range of the clocks in C are dis-

cretised as follows. For each clock ci ∈C, let ĉi be the maximum value in the range of clock

ci. This value can be obtained from the sum over all nested upper bounds of the temporal op-

erators in the specification. Moreover, let ∆τi ∈ R be a constant such that ĉi ≡ 0(mod ∆τi).

Then, the range of each clock ci is divided into intervals of the form [(ki− 1)∆τi,ki∆τi],

where k ∈ {1,2, . . . , ĉi

∆τi
}. Similar to the clock valuation Ω a range valuation ΩT is intro-

duced. This element has entries equal to the interval containing the value of each clock, i.e.

ΩT (i) = [τa
i ,τ

b
i] such that τa

i ≤Ω(i)≤ τb
i for i ∈ {1, ...,cn}. The set of all possible values in

80 Stochastic Optimal Control with MITL Specifications

ΩT is denoted by ΩTΩTΩT . A clock constraint of the form ci ≤ k is satisfied by ΩT (i) if τb
i ≤ k.

On the other hand, a clock constraint ci ≥ k is satisfied by ΩT (i) if τa
i ≥ k.

Given the partition of the clocks range into intervals, a configuration of the discretised

timed automaton T is defined by pairs (q,ΩT). Similar to the timed automaton T , a run

on T induced by a timed word (w,η) is an infinite sequence qΩT
qΩT
qΩT

= (q0,ΩT,0)(q1,ΩT,1) . . . ,

where ΩT,0(i) = [0,∆τi] for i∈ {1, . . . ,cn} and for all j≥ 1, Ω j(i) = Ω j−1(i)+∆η j if ci /∈ ς ,

Ω j(i) = 0 if ci ∈ ς and Ω j(i) ∈ΩT, j(i).

Recall from Chapter 3 that a run (w,η) is accepted by a timed automaton if the set

of accepting states in T is reached. In order to find a policy to drive the system in such

a manner that the produced timed word is accepted by T , the Cartesian product of the

BMDP and T is computed as follows. Given the timed automaton Tϕ representing the

formula ϕ and the BMDP B, the product BMDP P = B×Tϕ is defined by the tuple P =

(SP ,S0,AP , P̂P , P̌P ,Π,L), where:

• SP = S×Q×ΩTΩTΩT is a finite set of states,

• S0 = S×q0×ΩTΩTΩT is a set of initial states,

• AP = A,

• P̂P((s
′,q′,Ω′T)|(s,q,ΩT),a

l
s)) = P̂(s′|s,µ l

s)T
µ l

s

∆ iff (q,ΩT)
L(s′),λ ′

−−−−→ (q′,Ω′T) and 0 oth-

erwise,

• P̌P((s
′,q′,Ω′T)|(s,q,ΩT),a

l
s)) = P̌(s′|s,µ l

s)T
µ l

s

∆ iff (q,ΩT)
L(s′),λ ′
−−−−→ (q′,Ω′T) and 0 oth-

erwise,

• Π is a set of atomic propositions,

• L : SP → 2Π is a labelling function,

(q,ΩT)
L(s′),λ ′

−−−−→ (q′,Ω′T) is a transition in T such that the clock constraints λ ′ are met, T
µ l

s

∆

denotes the probability of the system leaving region s in ∆ units of time under the local policy

µ l
s and ∆ = Ω′T −ΩT . The probability T

µ l
s

∆ can be computed similar to the probabilities in

Eqs. 5.8 and 5.9. Once the product BMDP P is created, a global policy that maps states

of the product BMDP to an action in AP can be computed as shown in the next subsection.

The acceptance component is defined by the set FP = S×F×ΩTΩTΩT .

5.2.5 Optimal global policy computation

In this subsection, the computation of the policy µP : SP → AP is presented. This policy

maximises the probability of satisfying the specification ϕ . This probability is equal to

5.2 Solution 81

the probability of the controlled Markov chain {χi, i ∈ Z+} on P , induced by a policy µP ,

reaching the set of final states FP [49].

To find the policy that maximises the probability of reaching FP in the product BMDP,

the interval value iteration algorithm (IVI) [55] is utilised. This algorithm can optimise a

value function using the lower bound P̌P or the upper bound P̂P . In [55], these are referred

to as pessimistic and optimistic value functions, respectively. In this chapter, the pessimistic

value function is utilised. However, the optimistic value function can also be used. The idea

is to maximise the value function:

V (sP) = max
µ l

sP
∈AP(sP)

min
P̄∈[P̂P ,P̌P]

∑
s′
P
∈SP

P̄(s′P |sP ,µ
l
sP
)V (s′P), (5.10)

for all sP ∈ {SP \FP} and V (sP) = 1 for all sP ∈ FP . Intuitively, the value V (sP) is the

probability of reaching the set of final states FP starting from sP ∈ SP . Projected to the

discrete approximation of the system, V (sP) represents the worst-case probability of satis-

fying the specification ϕ from states x within the region s given that sP = (s, ·, ·). Hence, the

policy that maximises V (sP) for each state, denoted by µ∗P , is selected as an optimal global

policy for the product BMDP P .

5.2.6 Policy implementation

The computed optimal global and local policies are implemented in the following manner.

Given the initial system state x(0) and the valuation of the clocks Ω with all entries equal to

zero, the product BMDP state sP = (s,q0,ΩT) ∈ SP that satisfies: (i)W(x(t)) ∈ s, i.e. x(t)

is in the interior of the region s; and (ii) ΩT (j) = [0,∆τ], for all j ∈ {1, . . . ,cn}, is identified.

The local policy µ l
s that corresponds to the optimal action µ∗P(sP) is selected to control the

system. To apply a local policy, the nearest sampled state xnearest , in the interior of region

s, to the current system state is sought. Then, the control µ l
s(xnearest) ∈ Zn is applied for

∆tn(xnearest) units of time. At the next state x(t ′), where t ′ = t +∆tn(xnearest), the set of

clocks C \ ς are incremented by ∆tn(xnearest) units of time and clocks in ς are set to zero.

The new product BMDP state (s′,q′,Ω′T) ∈ SP satisfying: (i)W(x(t ′))∈ s′; (ii) q
L(s′),λ ′
−−−−→ q′;

and (iii) Ω′T (i) = [τa
i ,τ

b
i] such that τa

i ≤Ω(i)≤ τb
i for all i ∈ {1, . . . ,cn} is selected and the

process is repeated.

82 Stochastic Optimal Control with MITL Specifications

5.3 Analysis

In this section, the complexity of the proposed method is presented. The complexity of the

proposed algorithm can be divided into two parts: the computation of local policies in each

region (phase 1) and the computation of the global policy in the product BMDP (phase 2).

The iMDP algorithm used to find local policies has a time complexity O(|Zn|
θ (log |Zn|)

2),

where |Zn| is the number of sampled states within a region and θ ∈ (0,1] is a constant [67].

On the other hand, the number of iterations of the IVI algorithm, required to converge to

an optimal interval value, is polynomial in the number of states in the product BMDP P

[55], which has at most |S| × |Q| × |ΩTΩTΩT | states, where S, Q and ΩTΩTΩT are the set of regions,

the number of states in the timed automaton T and the set of all possible valuations ΩT ,

respectively. Note that by partitioning the environment instead of considering all the states

of a tree like in the previous chapter, the number of states in P is significantly reduced.

Moreover, in contrast to other methods such as [49], the dimension of the system does not

affect the computation of the product BMDP.

5.4 Example

In this section, the proposed approach is illustrated with a numerical example and compared

to the most related work in the literature. A Dubin’s car [44] is considered. This system can

be represented by the function:

f (x(t),u(t)) =







u1(t)cosθ(t)

u1(t)sinθ(t)

u2(t)






, D(x(t)) = 0.05I3, (5.11)

where x = (x1,x2,θ) is the position and heading angle, u1 ∈ [−1,1] is the linear velocity

input, u2 ∈ [−π ,π] is the angular velocity input and I3 is the identity matrix of size 3×3. In

this example, the workspace is constrained by 0≤ x1 ≤ 3 and 0≤ x2 ≤ 3 and has two areas

of interest marked by the atomic propositions π1 and π2, Figure 5.5. The objective is to

maximise the probability of satisfying the MITL specification ϕ = ♦[0,20](π1∧♦[10,20](π2)),

which indicates that the system has to reach areas π1 and π2 within 20 units of time with the

restriction of visiting π2 after the tenth unit of time.

For this example, the workspace is partitioned into 132 discrete regions by using the

library Triangle [156] and the size of the intervals, i.e. ∆τ , is 1. This discretisation produces

a product BMDP P with 10560 states. To compute local policies, 300 discrete states are

randomly sampled in each region. This process requires 3361.72 seconds. On the other

5.4 Example 83

x2

x1

π2

π1

Fig. 5.5 Illustration of 10 sample paths of the system in Eq. 5.11. The system has to visit
region π1 and π2 within 20 units of time, nevertheless, region π2 has to be visited after the
tenth unit of time. Formally, the specification can be written as ϕ =♦[0,20](π1∧♦[10,20](π2)).
The initial position is marked by a red disk.

hand, the construction of P and the computation of the optimal global policy requires, on

average, 1871.36 seconds with a standard deviation of 104.76. On average, the system

reaches π2 in 19.44 seconds, Figure 5.6. The results presented above represent the average

over 10 runs. The example is implemented in MATLAB on a computer with a 3.1 GHz i7

processor and 8 GB of RAM.

5.4.1 Discussion

In this section, the proposed method is compared with the most related work [49]. In [49],

the system is modelled as a MDP, which is computed by discretising the state space. Then,

a product MDP is constructed with a timed automaton. Because of the discretisation, the so-

lution in [49] is limited by its scalability. Moreover, it requires more time to find a solution

than the proposed solution in this chapter. The example presented in this section requires, on

average, 5233.08 seconds to be solved. In contrast, the method in [49] requires 19080 sec-

onds for the same system model. Although the time of the method proposed in this chapter

would increase if more samples are used to compute the local policies, see Section 5.3, for

a reasonable number of samples, the proposed method is faster than [49] as demonstrated in

the example above. Moreover, for new MITL formulae, the method proposed in this chapter

would be always faster than [49]. This is achieved because only the second phase has to

84 Stochastic Optimal Control with MITL Specifications

t

x1
x2

π2
π1

Fig. 5.6 3D view of 10 trajectories of the system in Eq. 5.11 following the MITL specifica-
tion ϕ = ♦[0,20](π1∧♦[10,20](π2)). The x, y and t axis show the position of the system and
the time, respectively. The average time required to reach π2 is 19.44 seconds.

be solved. Formally, an optimal policy is obtained using a value iteration algorithm in the

Cartesian product in both methods. Recall that the number of iterations of the algorithm, re-

quired to converge to an optimal value, is polynomial in the number of states. Since, in the

proposed method, the dynamics of the system are reasoned in the first phase, the number of

states in the Cartesian product depends only on the number of discrete regions of the coarse

segmentation. In contrast, in [49], the number of states depends on a finer discretisation of

the state space.

The improvement presented above is obtained at the cost of the smoothness of the tra-

jectory. The ‘zigzag’ pattern shown in Fig. 5.5 is caused by the local policies computed in

each region. Since the local optimal policies are obtained by solving an optimisation prob-

lem, all the sampled states have assigned the control that produces the shortest internal path

to the adjacent regions. Therefore, a quick change in the direction can be observed when

the system reaches a new region. A possible solution is to reduce the size of the regions to

obtain a finer segmentation. Nevertheless, this would have an impact on the time required

to solve the problem. In other words, the method offers a trade-off between the smoothness

of the trajectory and the time needed to find a solution.

5.5 Concluding remarks 85

5.5 Concluding remarks

This chapter has presented a novel sampling-based method to compute policies for stochas-

tic systems such that the probability of satisfying a MITL specification is maximised. Simi-

lar to the previous chapter, there is no closed-form or exact algorithm solutions for general

continuous-time continuous-space stochastic optimal control problems [67]. Hence, the

method is this chapter finds approximate solutions to this problem by using a Markov chain

approximation. Another difficulty of the problem in this chapter is the consideration of time

constraints and a continuous state space. Available methods that consider these elements

are limited in scalability because they require a fine discretisation of the state space. The

solution in this chapter achieves computational tractability by dividing the problem into two

phases, one where the system dynamics are considered and another where a solution to a

BMDP is found. As a result of this division, optimal policies can be found faster compared

to current methods. Nevertheless, this speed is gained at the cost of the smoothness of the

trajectory.

In contrast to the previous chapter, systems with stochastic motion were considered.

While this addresses certain type of uncertainties that could affect a system, other factors

must be considered in order for a method to be applicable in real situations. In the next

chapter, uncertainty in motion and sensing is assumed. This is a more realistic and at the

same time more challenging problem due to the lack of certainty in the current state of the

system. Moreover, in the next chapter, dynamic environments are also considered.

Chapter 6

Reactive Motion Planning with Temporal

Logic Constraints and Imperfect State

Information

In the previous chapter, the assumption of deterministic motion was removed to account

for uncertainties that affect a mobile system in real applications. Nevertheless, it was still

assumed that the state of the system was known all the time. In this chapter, this assumption

is relaxed. Instead, systems with uncertainty in motion and sensing are considered. This is

an important problem since most systems operate in uncontrolled real-world environments

where the assumption of perfect motion and sensing does not hold. Another important

element to consider is dynamic environments. Due to the complexity of these types of prob-

lems, most solutions are computed offline. However, if the assumed environment changes,

the computed solution could be not valid anymore.

When a system has imperfect information about its state, it cannot decide the best action

based on a single state. Instead, a probability distribution over all possible states must be

considered. These type of problems are usually modelled as partially observable Markov

decision processes (POMDPs). In general, solving problems for POMDPs is a hard task

due to the number of states that depends on the horizon [132]. This complexity increases

when temporal logic specifications are considered due to the possibility of having tasks

with infinite horizon. Similar to the previous chapter, most of the current solutions approach

these problems at the discrete level [26, 155, 196]. In other words, finite set of states, actions

and observations are considered. Based on this assumption, several solutions have been

proposed to find policies for POMDPs to satisfy temporal logic specifications as presented

in Chapter 2 [26, 155]. Nevertheless, these approaches do not handle continuous spaces and

are limited to relatively small problems in terms of the number of states.

88 Reactive Motion Planning with LTL Constraints and Imperfect State Information

Other solutions consider more realistic scenarios by considering continuous state, con-

trol and observation spaces [182]. However, they assume static environments. In contrast

to these solutions, in this chapter, changes in the environment are considered. By using a

sampling-based approach, the proposed method computes policies that maximise the prob-

ability of satisfying LTL specifications. Moreover, the approach permits systems to react to

previously unknown targets and obstacles in a short period. In these situations, the method

uses a policy that minimises the probability of violating the specification until the obstacles

are avoided or targets are attended. As a result of these policies, the proposed method can

be applied to more realistic tasks where the system is affected by uncertainties and dynamic

environments. The main contribution of this chapter is a method that permits the reaction to

previously unknown targets and obstacles for systems with uncertainty in motion and sens-

ing. This reaction is achieved by computing a dynamic graph structure that considers the

temporal logic specification to find online policies.

The rest of this chapter is divided as follows. First, the addressed problem is formu-

lated in Section 6.1 by presenting background and notation for systems with uncertainty

in sensing and motion. Then, in Section 6.2, the proposed solution is presented in detail.

Two examples are shown in Section 6.3 to illustrate the solution. Finally, conclusions are

discussed in Section 6.4.

6.1 Problem formulation

This chapter focuses on dynamic systems with motion and sensing uncertainty that evolve

according to the following controllable and smoothly differentiable system:

xk+1 = f (xk,uk,wk), (6.1)

where xk ∈ X ⊆ Rdx is the system state, uk ∈ U ⊆ Rdu is the control input and wk is the

process noise at time k. The compact sets X and U define the state space of the system and

control input space, respectively. Note that in this chapter the system is not modelled as a

controlled diffusion processes like in the Chapter 5 because a Markov chain approximation

is not used in this chapter. On the other hand, the noise wk is considered as a zero-mean

Gaussian noise with covariance Qk. In partially observable systems, the system state is

observed according to an observation model:

zk = h(xk,vk), (6.2)

6.1 Problem formulation 89

where zk ∈ Z ⊆ Rdz denotes the observation and vk is a zero-mean Gaussian noise with

covariance Rk at time k. In contrast to the previous chapter, the method in this chapter

requires the system to be controllable in order to reach a set of predefined states, see Section

6.2.2.

Since the state of the system is only partially known due to sensing uncertainty, the

information available at each time k is a distribution over the set of possible states [135]:

bk = Pr(xk|zk,uk−1,zk−1, . . . ,u1,z1,u0,b0). (6.3)

This distribution, called belief, compresses the history of observations z1:k and control

actions u0:k−1 taken from time 0 to time k and k−1, respectively. The updated belief for an

applied control uk and received observation zk+1 is given by:

bk+1 =
Pr(zk+1|xk+1)

Pr(zk+1|bk,uk)

∫

X
bkPr(xk+1|xk,uk)dxk. (6.4)

In a Gaussian belief space B, the belief is characterised by the mean x̂ and covariance

P, i.e. b = (x̂k,Pk) ∈ X × S
dx×dx
+ , where S

dx×dx
+ represents the set of all possible positive

semi-definite matrices with dx×dx entries, Fig. 6.1.

6
4 62 4

x1

0 2

x2

0-2 -2-4 -4-6 -6

Fig. 6.1 Example of belief with mean x̂ =

[

−0.5
1

]

and covariance P =

[

0.5 0
0 1.5

]

of a two

dimensional system. The surface shows the probability density for any value of (x1,x2).

In this chapter, a changeable workspaceW with static obstacles is considered. To illus-

trate this idea, consider as an example a robot moving objects in a dynamically changing

warehouse with two areas of interested, denoted by the atomic propositions π1 and π2, re-

spectively. A possible task for a robot in this scenario could be the movement of objects

from π1 to π2 continuously. Since a changeable environment is considered, new local tar-

gets, e.g. objects in the warehouse, or obstacles can appear during the operation of the robot.

Therefore, in addition to following the behaviour defined by a specification, the proposed

method in this chapter allows the system to react to sensed local targets and obstacles in the

environment.

90 Reactive Motion Planning with LTL Constraints and Imperfect State Information

The method finds optimal policies µ : B→U that map a belief state to a control input.

The policies are computed in such a manner that the probability of satisfying a specification

is maximised. In order to specify the desired behaviour, LTL specifications are used. These

specifications are built on a set of atomic propositions Π that are associated with different

regions of the workspace W . A labelling function L is used to identify the satisfaction of

atomic propositions at each time k. That is, L(xk) = πi if the system is in the region defined

by πi at time k. By labelling the system state at each time k in a trajectory xxx= x0x1 . . . , a word

w = L(x0)L(x1) expressing the behaviour of the system in terms of the atomic propositions

Π is obtained. A trajectory xxx satisfies a LTL specification if the word w is accepted by a

Rabin automaton computed from the specification. Since the state is unknown in partially

observable systems, the word w = L(x0)L(x1) . . . cannot be used to verify the satisfaction of

the specification. Instead, all the possible words generated during the transitions between

beliefs are considered, as presented in the next section. The problem addressed in this

chapter is now formally defined.

Problem definition 6.1.1. Given a dynamic system with motion and sensing uncertainty of

the form Eqs. 6.1 and 6.2; and a LTL formula ϕ , compute a policy µ : B→U such that the

probability of satisfying ϕ is maximised.

As in the previous chapters, the LTL specifications indicate the regions of the workspace

that must be visited. Because the system is affected by uncertainty in motion and sensing,

the proposed method finds the control inputs required to maximise the probability of satis-

fying the specifications. Moreover, the system must be able to react to previously unknown

obstacles or targets. While the system is reacting to these changes, the method finds con-

trollers that minimise the probability of violating the specification.

6.2 Solution

6.2.1 Overview

As presented in the previous section, this chapter considers two types of uncertainties, mo-

tion and sensing; and dynamic environments. An important aspect of the method proposed

in this chapter is the online reaction to changes in the environment. In other words, since

the system will find new elements during its operation, the computation of a policy must

be performed in a short time. Due to the approaches used in the previous two chapters,

the consideration of dynamic environments will require some recomputation. In Chapter 4

several iteration of the algorithm are required to achieve asymptotical optimality. Since the

6.2 Solution 91

approach uses a RRT approach to create a transition system, any change in the environment

would require the recomputation of several parts of the tree, which can be time-consuming

for an online process. A similar problem is presented in Chapter 5. In that chapter, in order

to reduce the size of a Cartisian product of two graphs, the environment is partitioned and

policies are computed in each segment. Hence, any modification of the environment will

require the computation of a new partition to maintain the proposition preserving property.

In contrast, the approach presented in this chapter uses a PRM approach that allows fast

computation of policies for changes in the workspace.

The main idea of the proposed solution is to create a graph that models the motion of

the system. In this graph, vertices represent belief nodes and edges represent controllers

that drive the system from one belief node to another, Fig. 6.2. The graph is initialised with

a single vertex, the initial belief of the system. Then, the graph is incrementally expanded

by adding new vertices that represent new beliefs created by randomly sampling the state

space of the system. After each expansion, it is verified whether there is a path such that

the LTL specification is satisfied. If such a path does not exist, a new belief is added to

the graph and the process is repeated until a valid path is found. Nevertheless, because a

changing environment is considered, the computed path could be invalidated by obstacles.

To solve this problem, two novel algorithms that rely on a precomputed graph are presented.

This graph, formed by beliefs such as the one described above, is used to guide the system

to the local targets or to avoid obstacles. In the rest of this section, the computation of the

graph used to satisfy the specification and the verification of it are first presented. Then, the

computation of the second graph and its usage to avoid obstacles or to reach local targets is

presented.

6.2.2 Feedback-based information roadmap

The main difficulties of solving POMDPs are the so-called curse of dimensionality and curse

of history [135]. Roughly, the curse of dimensionality states that for a problem with n states,

the belief space in which a solution is found is a (n− 1)-dimensional space. On the other

hand, the curse of history is due to the exponential growth in the number of different actions

and observations with the planning horizon. As a consequence, solutions using approaches

such as discretisation of belief spaces have poor scalability [23].

To alleviate this problem, in this chapter, feedback-based information roadmaps (FIRMs)

[1] are used. The main idea of FIRMs is to stabilise the system around known beliefs. By

driving the system to these predefined beliefs, the history of action and observations is not

required. Hence, FIRMs generalise probabilistic roadmaps to account for motion and sens-

ing uncertainty. While several sampling-based methods [68, 173] have been proposed to

92 Reactive Motion Planning with LTL Constraints and Imperfect State Information

reduce the complexity described above, in most of these works, each edge of the graph de-

pends on the path travelled by the system, i.e. actions and observations taken from the initial

belief. Therefore recalculation is necessary when the initial belief changes. In contrast, in a

FIRM, each edge is independent of the others as a consequence of the stabilisation around

the predefined belief nodes. This property is exploited to perform most of the computation

offline in the proposed method.

Without loss of generality, SLQG-FIRMs, where stationary linear quadratic Gaussian

(SLQG) controllers are used as belief stabilisers, are used in this chapter. Nevertheless, any

other type of controller can be used provided that the reachability of a belief is guaranteed.

To construct a FIRM, a PRM is first constructed by sampling the state space of the system.

Let G = (V,E) represent a PRM, where V is the set of vertices ν ∈ X and E is the set of

edges connecting the elements of V . Each node ν of the PRM is used to create a FIRM node

as follows. First the system and observation models, Eqs. 6.1 and 6.2, are linearised with

respect to a node ν resulting in the linear models:

xk+1 = Aνxk +Bνuk +wk, (6.5)

zk+1 = Hνxk + vk, (6.6)

where Aν ∈ R
dx×dx , Bν ∈ R

dx×du and Hν ∈ R
dz×dx are obtained through Jacobian linearisa-

tion:

Aν =
∂ f

∂x

∣

∣

∣

∣x=ν
u=0
w=0

Bν =
∂ f

∂u

∣

∣

∣

∣x=ν
u=0
w=0

Hν =
∂h

∂x

∣

∣

∣

∣x=ν
v=0

(6.7)

For each vertex in V , a SLQG controller is designed to maintain the system state x as

close as possible to ν while a Kalman filter is used to estimate the belief. Under the assump-

tion that the pairs (Aν ,Bν) and (Aν ,Hν) are controllable and observable, respectively, the

SLQG controller stabilises the system to an expected belief bν = (ν,Pν), where the covari-

ance Pν can be determined offline for each node ν [1]. Hence, a belief node is defined as

b= {b : ‖b−bν‖b < ε}, where ‖ ·‖b is a suitable norm in B and ε determines the size of the

belief node. Each node b is associated with its SLQG controller, denoted by µb, as belief

stabiliser. The edges in E of the PRM are used to design time-varying LQG controllers that

drive the system to the proximity of the FIRM nodes where the stabilisers can maintain the

system within the nodes. Therefore, an edge between two FIRM nodes b and b
′ is formed

by the combination of the time-varying LQG and the stabiliser controller and is denoted by

µb,b′ . The set of all controllers starting from b is denoted by E(b). A FIRM can be presented

as a graph G = (B,E), where B is the set of FIRM nodes and E is the set of controllers used

as edges, Fig. 6.2.

6.2 Solution 93

⋆

⋆

⋆ ⋆

⋆

⋆

⋆

⋆ ⋆

⋆

(a) (b)

Fig. 6.2 Illustration of a feedback-based information roadmap. (a) A PRM in an environment
with three obstacles (grey regions) and five landmarks (stars). (b) The FIRM created using
the PRM. The landmarks are used by the system to localise itself. Hence, the uncertainty on
the system state increases with the distance to the landmarks. The centre bν = (ν,Pν) of the
FIRM nodes is represented with a white disk and the covariance is illustrated by an ellipse.
The blue area around ν denotes the neighbourhood that defines the belief node.

Recall that using feedback controllers that guarantee the convergence of the belief to

predefined belief nodes, the curse of dimensionality can be broken. Hence, the idea of

FIRMs is used to incrementally create a transition system where a path that satisfies the

LTL specification is sought. In the next subsection, the procedure to create such a transition

system is presented.

6.2.3 Incremental transition system

Although FIRMs [1] permit to find policies for systems with uncertainty in motion and sens-

ing, they are limited to tasks such as travelling from one region to another in a workspace.

In this section, an approach to create a transition system that maintains the properties of

FIRMs but allows the computation of policies to satisfy LTL specifications is presented.

In order to maintain a low number of states to analyse, a transition system is incre-

mentally created until a path satisfying the specification is created. This transition system

T = (BT ,b0,δT ,Π,L) has a finite set BT of belief nodes, an initial belief b0 ∈ BT and a

set δT of controllers to drive the system between belief nodes. As these controllers produce

transitions, with abuse of notation, δT (b,b
′) is used to represent the transition between b

and b
′. This transition system is created similar to a rapidly-exploring random graph [78]

to allow satisfying words of infinite length. The procedure to construct T is now presented,

Alg. 6.1.

94 Reactive Motion Planning with LTL Constraints and Imperfect State Information

Algorithm 6.1. TRANSITIONSYSTEMEXPANSION(f ,h,X ,U ,b0)

1: BT ← b0;
2: while ϕ not satisfied do

3: X ← X , i← 1
4: νsample← SAMPLE(X);
5: b

new
T ,µbnew

T
← CREATENODE(f ,h,νsample);

6: while BT ∩X 6= /0 do

7: b
near,i
T
← NEAR(bnew

T
,BT ∩X);

8: i← i+1;
9: X ←X \H;

10: BT ←BT ∪b
new
T

;
11: δT ← δT ∪µ

bnew
T

,b
near, j
T

∪µ
b

near, j
T

,bnew
T

∀ j ∈ {1, . . . , i};

12: return T = (BT ,b0,δT ,Π,L);

Initially, the transition system T includes only the initial node b0 which contains the

initial belief of the system (line 1). To add a new node, a state νsample ∈ X is sampled from

the state space (line 4). This state is used to compute the FIRM node bnew
T including a belief

stabiliser as presented in Section 6.2.2 (line 5). After computing the belief node, the closest

node b
near
T in BT is found and connected to b

new
T (line 7). Then, all the nodes in T on the

half-space H containing b
near,i
T

but not bnew
T

are marked as unavailable for connection (line

9), Fig 6.3. The process of searching and connecting belief nodes continues until no more

nodes are available for connection. Once no more nodes can be connected, the new node

b
new
T

is added to T with the transitions (bnew
T

,bnear,i
T

) and (bnear,i
T

,bnew
T

), where i is the index

of the nearest nodes found in the process described above (lines 10-11). For each transition

(bT ,b
′
T) ∈ δT , the edge controller µbT ,b′

T
is computed. This process continues until it is

determined that the transition system contains a path that satisfies the LTL specification, see

Section 6.2.5.

In order to reduce the number of nodes in T and at the same time cover most of the

workspace W , a coarse partition is computed over the workspace. To add a new belief

node to T , a segment of the partition is randomly selected based on the number of samples

associated with this segment. Then, a state is sampled uniformly such thatW(νsample) is in

the selected segment, whereW(·) is the projection of a state onto the workspace.

Based on results from probabilistic verification [9], the product MDP of the transition

system T and the Rabin automaton representing the LTL specification is created and used

to find a path such that the LTL specification is satisfied. The computation of this product

MDP is presented in the next subsection.

6.2 Solution 95

νsample

b
near,2
T

b
near,1
T

b
near,1
T

(a) (b) (c)

Fig. 6.3 Illustration of expansion of transition system T as a rapidly-exploring random graph.
(a) In order to expand T , a state νsample is randomly sampled from the state space. (b) The

closest node already in the T , bnear,1
T

, is found and connected to νsample. Then, all the nodes

in T on the half-space (grey region) containing b
near,1
T

(red disks) are marked as unavailable
for connection. (c) A new search for the closest nodes in T is performed by considering all
the nodes in T not marked as unavailable. This process continues until no more nodes are
available for connection.

6.2.4 Product MDP

The product MDP P = T ×R of the transition system T = (BT ,b0,δT ,Π,L) and the de-

terministic Rabin automaton (DRA) R = (Q,q0,Σ,δR,F) is a tuple P = (S,s0,A,P,Π,L),

where:

• S = BT ×Q is a finite set of states,

• s0 = b0×q0 is an initial state,

• A is a finite set of actions,

• P(·|·, ·) : S× S×A→ [0,1] is the probability of transitioning to the state s′ from the

state s under action a ∈ A,

• Π is a set of atomic propositions,

• L : S→ 2Π is a labelling function.

The acceptance component is defined by the set FP = {(LP
1 ,K

P
1), . . . ,(LP

r ,K
P
r)}, where

LP
i = BT ×Li and KP

i = BT ×Ki for all i ∈ {1, . . . ,r}. A run on P is defined as a sequence

sss = s0s1 . . . , where P(si+1|si,a)> 0 for all i≥ 0. The set of actions A corresponds to set δT

of computed controllers associated with each transition in T . Therefore, the set of actions

available at state s= (bT , ·), denoted as A(s), are the controllers computed for the transitions

96 Reactive Motion Planning with LTL Constraints and Imperfect State Information

(bT , ·) ∈ δT . The probability P(s′|s,µbT ,b′
T
), where s = (bT ,q) and s′ = (b′T ,q

′), is the

probability of ending on the DRA state q′ starting from q when the transition (bT ,b
′
T) ∈ δT

is performed using the controller µb,b′ ∈ A(s).

Let bbb = b0b1 . . .bn be the sequence of beliefs followed after applying µbT ,b′
T

, such that

b0 ∈ bT and bn ∈ b
′
T . Due to the uncertainties affecting the system, more that one sequence

bbb can be obtained after applying µbT ,b′
T

. Now, recall that a word w = L(b0)L(b1), where

L(b) is the set of atomic propositions satisfied by the mean x̂ of the belief b, expresses the

behaviour of the system in terms of the atomic propositions in the set Π. To find the DRA

state q′ reached in R after the transition (bT ,b
′
T) ∈ δT , the word w produced by bbb is used

as an input into the DRA R, starting from the state q ∈ Q. The last state of the run qqq on R,

produced by w, is used as a state q′ for the transition s = (bT ,q) to s′ = (b′T ,q
′).

To illustrate this, consider the initial state q0 of the Rabin automaton in Fig. 6.4 and as-

sume that during the transition (bT ,b
′
T) in T the words w1 = {¬π1¬π2}{¬π1¬π2}{π1¬π2}

and w2 = {¬π1¬π2}{¬π1¬π2}{¬π1π2} are generated with probability 0.90 and 0.10, re-

spectively. It can be seen that starting from state q0 in the automaton R and using the

word w1 (w2) as an input, the run qqq = q0q0q0q2 (qqq = q0q0q0q1) is produced. Therefore, the

probability of transitioning from state (bT ,q0) to (b′T ,q2) is 0.90 and to (b′T ,q1) is 0.10.

q0 q1q2

¬π1∧¬π2

π1∧¬π2

π1∧π2 ¬π1∧π2

⊤ ⊤

Fig. 6.4 Rabin automaton of LTL formula ϕ = ¬π2Uπ1, where the atomic propositions π1

and π2 represent two regions in a workspace, respectively. The formula indicates that the
region marked as π2 must be avoided until the region π1 is reached.

Recall that a specification is satisfied by the system if the word w produces a run on

R such that it visits finitely often times the set Li and infinitely many times the set Ki, for

i ∈ {1, . . . ,r}. Because during the transition s to s′ in P , more than one DRA state can

be reached, in order to find a run on P satisfying a specification, each transition in P is

associated with a probability of visiting a state in a pair (Li,Ki) ∈ F . These probabilities are

denoted as P
Li

s,s′ and P
Ki

s,s′, respectively.

Computing probabilities of transitioning from s to s′ ∈ S is computationally expensive

[1]. In this chapter, these probabilities are approximated using particle-based methods. The

probability P((b′T ,q
′)|(bT ,q),µbT ,b′

T
) is computed based on the number of particles that

produced a word w, during the transition bT to b
′
T under µbT ,b′

T
, and generated a run qqq

6.2 Solution 97

starting from q and finishing in q′. A similar procedure is used to calculate the probability

of intersecting the pairs (Li,Ki) ∈ F during the transition from s to s′.

The product MDP P is updated with each new node bnew
T

added to T . After each update,

it is checked whether the LTL specification can be satisfied. In the next subsection, such

a verification is explained together with the computation of a policy µP : S→ A in P that

satisfies the LTL specification. Using µP , a policy µ : B→U that solves the formulated

problem is finally obtained.

6.2.5 Optimal policy computation

This subsection presents the calculation of the policy that maximises the probability of sat-

isfying a LTL specification ϕ . A run sss = s0s1 . . . on P is accepted if there exists a pair

(LP
i ,K

P
i) ∈ FP such that LP

i and KP
i are visited finitely and infinitely many times, respec-

tively. To find if such a run exists, the method uses accepting end components (AECs),

which are defined as follows. An AEC of P for a pair (LP
i ,K

P
i) ∈ FP is a subgraph of P

where each state is reachable from every other state, P
Li

s,s′ = 0 for all transitions and there ex-

ists a transition with P
Ki

s,s′ > 0. After each increment of the transition system T , the existence

of an AEC is checked. Once an AEC is found, an optimal policy is computed.

It has been shown in probabilistic model checking that maximising the probability of

reaching an AEC is equivalent to maximising the probability of satisfying ϕ [9]. On the

other hand, a policy µP(s) onP , where s= (bT ,q), induces a policy µ(bT) on T by defining

µ(bT) = µP(s). Hence, computing a policy onP that maximises the probability of reaching

an AEC is equivalent to finding a policy on T that maximises the probability of satisfying

the LTL specification. The value iteration method is used to compute the optimal policy by

maximising the value function:

V (s) = max
a∈A(s)

∑
s′∈S

P(s′|s,a)V(s′), (6.8)

µP(s) = argmax
a∈A(s)

∑
s′∈S

P(s′|s,a)V(s′), (6.9)

for all s /∈ AEC and V (s) = 1 for all s ∈ AEC.

Since the product MDP is updated with each addition of nodes to T , the end compo-

nents of P must be maintained after each update. The complexity of maintaining the end

components on P is O(|F||S|
3
2) [182], where the number of states in S is |BT |×|Q|. On the

other hand, the running time of each iteration to find the optimal policy is O(|S||A|2) [110].

98 Reactive Motion Planning with LTL Constraints and Imperfect State Information

At this point, it has been shown how to compute a policy to maximise the probability of

satisfying a LTL specification. Nevertheless, since a dynamic environment is considered in

this chapter, the computed policy becomes invalid if a new obstacle or local target appears

in the workspace. In the following two subsections, the algorithms used to reach detected

local targets and to avoid previously unknown obstacles are presented.

6.2.6 Local targets

Approximating the probability of each transition on P using particle-based methods is, in

general, a slow process [1, 182]. The construction and computation of a policy for T is

computed offline and hence this slow task can be tolerated. Nevertheless, for fast reactions

to targets or obstacles sensed in real-time, this long time is restrictive. In this and the fol-

lowing section, two novel algorithms that permit the online reaction to previously unknown

elements are presented. These algorithms are based on the offline computation of a FIRM G,

which is used to drive the system when obstacles or targets are detected. In addition to per-

mitting reactions in a short period of time, PRM-like structures such as FIRM can present

better performance than methods using RRG techniques on difficult scenarios [73].

To maximise the coverage of the workspace and to obtain a dynamic FIRM (see Section

6.2.7), an offline partition of the environment is first created. In this chapter, a grid-based

partition is used. However, any other type of partition can be utilised. Then, the process of

selecting and sampling in cells is performed similarly to the process presented in Section

6.2.3. After a minimum number of samples on each cell are obtained, the FIRM G = (B,E)

is created as presented in Section 6.2.2.

When a local target is sensed by the system at time k, the FIRM is used to drive the

system from its current belief bk to a predefined service region of the local target while the

specification is satisfied. To use the transition system and the FIRM, three aspects have to

be considered: (i) the connection of the current belief to a node in G; (ii) the optimal path in

G; and (iii) the reconnection to T after the local target has been attended. This procedure is

presented in Alg. 6.2.

In the first step, when a local target is sensed by the system, a subgraph of G is created

within the sensing area with radius r (line 1, Alg. 6.2), Fig. 6.5. In this subgraph, the

nearest FIRM node bnear to the current belief bk is sought (line 2, Alg. 6.2). Then, the local

stabiliser of bnear is applied to drive the system to the FIRM node (lines 3-4). Once the

system is in the subgraph of G, an optimal policy is computed to drive the system to the

local target (line 5, Alg. 6.2). This path is optimal in terms of minimising the probability

of violating the specification. To achieve this, it is necessary to verify which transitions of

the FIRM do not violate the LTL specification. A similar problem has been solved in the

6.2 Solution 99

Algorithm 6.2. PATHLOCALTARGET(f ,h,G,T , target)

1: G′ = (B′,E ′)← COMPUTESUBGRAPH(G,r);
2: bnear← NEAREST(bk ,B

′), btarget← NEAREST(target,B′);
3: while bk /∈ bnear do

4: xk+1 = f (xk,µbnear(xk),wk);

5: µG ← OPTIMALPOLICY(btarget);
6: Apply policy µG ;
7: bclose← NEAREST(bT ,B

′);
8: µG ← OPTIMALPOLICY(bclose);
9: Apply policy µG ;

10: while bk /∈ bT do

11: xk+1 = f (xk,µbT
(xk),wk);

literature for deterministic systems with perfect state information [7, 181] using a monitor

[11] which identifies if a specification has been satisfied or falsified as early as possible. In

the current work, since the state of the system is uncertain, using a monitor is not an option.

Instead, the following procedure is used. Recall that in order to satisfy a specification, for a

pair (Li,Ki) ∈ F , the set Li must be visited only finitely many times. Therefore, the method

calculates the probability of reaching states in Li with a self transition, Fig. 6.4. Similar

to the computation of P
Li

s,s′ and P
Ki

s,s′ in T , the probability of reaching such states starting

in every Rabin state q during the transition from one node to another in G is computed

during the FIRM construction. These probabilities are used to compute a policy on G. Since

the probability of reaching a state Li on a transition (b,b′) depends on the DRA state q,

the current DRA state is tracked all the time during the online operation. Because all the

transitions are precomputed offline, only the computation of the optimal policy, using the

probabilities according to the current DRA state, is performed online. This policy can be

computed by finding the controller that minimises the cost-to-go for each belief node. The

cost-to-go for a belief node b is given by:

V (b) = min
µ∈E(b)

P(L|b,µ)V (L)+ ∑
b′∈B

P(b′|b,µ)V (b′), (6.10)

where V (L) is a user-defined cost assigned for violating the specification, P(L|b,µ) is the

probability of intersecting the set L when travelling from b using µ ∈ E(b) and P(b′|b,µ) is

the probability of reaching b
′ from b. The cost-to-go of the belief node in the local target is

defined by V (btarget) =−1.

After applying the policy (line 6, Alg. 6.2), the last FIRM node in the path has to be

connected to the transition system T in order to continue with the specification. This is

achieved by searching the closest node bT in T such that V (s) > 0 and s = (bT ,q), where

100 Reactive Motion Planning with LTL Constraints and Imperfect State Information

q is the current R state after following the path in G. Once this state has been found, the

closest node bclose of G to bT is sought (line 7, Alg. 6.2). Then, a policy is computed in G

to drive the system to bclose (line 8, Alg. 6.2). After applying the policy (line 9, Alg. 6.2),

the stabiliser of the node bT is applied to make the connection (lines 10-11, Alg. 6.2).

Fig. 6.5 Subgraph of the FIRM within the sensing area of the system. The offline path
obtained by solving the product MDP P is shown as a blue dotted line. The current belief
and local target are represented by a green rectangle and blue diamond, respectively.

6.2.7 Obstacle avoidance

Similar to the local target case, G is used to avoid detected obstacles during the online oper-

ation. The main difference is that the presence of obstacles invalidates parts of G. Because

edges of the FIRM are independent of each other, ideas from dynamic roadmaps [73, 106]

can be applied as follows.

Recall that the environment is partitioned into cells. Each of these cells is associated to

FIRM nodes and transitions as follows. During the computation of the probabilities from

node b to b
′, the probability of visiting a cell ci during a transition can be computed as

follows. Let pk
0:T k be the sample path of the k-th particle p from b at time zero to b

′ at time

T k. The probability of the system reaching a state such that W(x) is on the cell ci during

the transition from b to b
′ is approximated by:

Prb,b′(ci)≈
K

∑
k=1

γk
1ci

(pk
0:T k), (6.11)

6.2 Solution 101

where γk is a weight assigned to the particle pk and 1ci
(·) is an indicator that returns one,

if a particle enters the cell ci, and zero otherwise. Based on these probabilities, a cell is

associated with the FIRM nodes b,b′ and its transition if Prb,b′(ci)> 0, Fig. 6.6.

Fig. 6.6 Subgraph of the FIRM without transitions affected by the obstacle. The obstacle
and estimated position of it are shown with a yellow and red rectangle, respectively. The
cells (shown in blue) occupied by the obstacle determine the invalid nodes and transitions
of the FIRM.

When an obstacle is detected, the cells occupied by the obstacle are computed. Then,

the nodes and transitions associated with these cells are invalidated from the FIRM. Since

the current state of the system is uncertain, i.e. it is given by a mean and covariance over

the belief space, the exact location of the obstacle cannot be determined by the system.

To include the uncertainty on the obstacle’s location, the Minkowski sum of the detected

obstacle and the contour of the 3σ ellipse of the current Gaussian is computed. To illustrate

the obstacle avoidance procedure (Alg. 6.3), assume that the system is transitioning between

the nodes bT and b
′
T in T when an obstacle is detected. A subgraph of G is created within

the sensing area (lines 2-4, Alg. 6.3) as presented in Section 6.2.6. Note that this subgraph

does not include any of the nodes affected by the estimation of the obstacle’s location. In

this subgraph, the closest node bnear to the current belief bk is sought. The stabiliser of bnear

is applied to drive the system to this node. Then, a policy to drive the system to btarget, the

closest node to b
′
T , is computed as presented in Section 6.2.6 (lines 5-6, Alg. 6.3). If, after

applying the policy, the obstacle is still detected, a new subgraph is computed by removing

102 Reactive Motion Planning with LTL Constraints and Imperfect State Information

the invalid nodes. This process is repeated until the obstacle is not sensed. Then, G is

connected to T (lines 8-12, Alg. 6.3) as presented in Section 6.2.6.

Algorithm 6.3. OBSTACLEAVOIDANCE(f ,h,G,T ,obstacle)

1: while obstacle detected do

2: obstacleposition← EstimatedPosition(bk,Pk,obstacle);
3: C← AffectedCells(obstacleposition);
4: G′ = (B′,E ′)← COMPUTESUBGRAPH(G,r,obstacleposition,C);
5: btarget← Neareast(b′T ,B

′);
6: µG ← OPTIMALPOLICY(btarget);
7: Apply policy µG ;

8: bclose← NEAREAST(b′T ,B
′);

9: µG ← OPTIMALPOLICY(bclose);
10: Apply policy µG ;
11: while bk /∈ b

′
T do

12: xk+1 = f (xk,µbT
(xk),wk);

6.3 Examples

In this section, the proposed method is illustrated with the three-wheel omnidirectional mo-

bile robot presented in [1]. For this robot, Eq. 6.1 becomes:

f (xk,uk,wk) =







−2
3 sin(θ) −2

3 sin(π
3 −θ) 2

3 sin(π
3 +θ)

2
3 cos(θ) −2

3 cos(π
3 −θ) −2

3 cos(π
3 +θ)

1
3l

1
3l

1
3l






u+w. (6.12)

The state x = [x1,x2,θ]
T is composed of the robot position (x1,x2) and the orientation

θ . The control input u = [u1,u2,u3]
T is formed of the linear velocities of each wheel. The

distance of the wheels from the centre of the robot are equidistant and denoted by l. The

process noise w is a zero-mean Gaussian with covariance Q.

The robot uses landmarks, with known location on the workspace, to localise itself, Fig.

6.7. Let (LMi
1,LMi

2) denote the location of the i-th landmark; and ηr, σ r
b , ηθ and σ θ

b be

constants. The observation model in Eq. 6.2 with respect to the i-th landmark is expressed

as:

zi = [‖di‖,atan2(di
2,d

i
1)−θ]T + vi, (6.13)

where d = [x1,x2]− [LMi
1,LMi

2] and vi is zero-mean Gaussian noise with covariance R:

6.3 Examples 103

Ri = diag((ηr‖d
i‖+σ r

b)
2,(ηθ‖d

i‖+σ θ
b)

2). (6.14)

The system operates in a workspace with 7 areas associated with the atomic propositions

π1, π2, π3 and π4. Two different LTL specifications are considered:

1. Regions π1, π2 and π3 have to be visited in any order. During this process, the ar-

eas marked with π4 must be avoided. LTL specification: ϕ1 = ¬π4Uπ1∧¬π4Uπ2∧

¬π4Uπ3, Fig. 6.7.

2. After reaching the region marked as π2, the system has to go to region π3 and then go

and stay in the region π1. The regions marked as π4 must be avoided all the time. LTL

specification: ϕ2 = ♦�π1∧♦(π2∧♦(π3))∧�¬π4, Fig. 6.8.

In both missions, the robot encounters a local target and previously unknown obstacles.

The examples are implemented in MATLAB on a computer with a 3.1 GHz i7 processor

and 8 GB of RAM.

π1

π2

π3

x1

x2 π4

π4

π4

π4

Fig. 6.7 Environment containing seven areas identified by the atomic proposition π1, π2,
π3 and π4; a local target (blue diamond) with its service region (red ellipse), an unknown
obstacle (yellow rectangle) and ten landmarks (red stars). The objective of the robot is to
visit the areas marked as π1, π2 and π3 while areas π4 have to be avoided. The grey line
shows the path computed offline. The blue line shows a sample path of the system followed
after detecting the local target and previously unknown obstacle. The initial position is
marked by a red disk.

104 Reactive Motion Planning with LTL Constraints and Imperfect State Information

π1

π2

π3

x1

x2 π4

π4

π4

π4

Fig. 6.8 Environment containing seven areas identified by atomic propositions; a local target
(blue diamond), two unknown obstacles (yellow rectangles) and ten landmarks (red stars).
The objective of the robot is to visit the areas marked as π2 and π3, in order, and then reach
the region π1 while areas π4 have to be avoided. The grey line shows the path computed
offline. The blue line shows a sample path of the system followed after detecting the local
target and previously unknown obstacles. The initial position is marked by a red disk.

The results presented below were obtained from 20 simulations, but for the purpose of

clarity, only one run is presented in Fig. 6.7 and Fig. 6.8. On average (mean), the offline

path for the two missions is found in 90.18 seconds and 112.32 seconds, respectively. More

details about the number of states in the transition system and product MDP are shown in

table 6.1.

Table 6.1 Average required time (seconds) to solve the problems, number of states in transi-
tion system T and product MDP P over 20 different runs.

Specification Time (mean) Std. Dev. States in T States in P

ϕ1 90.18 31.94 33.44 300.9
ϕ2 112.32 39.35 41.38 248.3

Computing the probability in each transition requires 0.528 seconds. The PRM used in

both mission to create G has 1224 vertices, each vertex is connected to its seven nearest ver-

tices. The FIRM requires on average 5108.61 seconds to be constructed. Since computing

the probabilities for each edge in G is the most computationally demanding operation, the

6.4 Concluding remarks 105

time to construct G could be reduced by limiting the number of edges on each vertex. Note

that all the previous computations are performed offline. Finding a path in G, online, to

reach the local targets and to avoid the obstacles requires 0.083 and 0.655 seconds, respec-

tively. Based on these results, it can be observed that computing a path in G to reach targets

or avoid obstacles requires less time than the time that would take to expand the transition

system T with the purpose of finding an alternative path.

6.4 Concluding remarks

In this chapter, a novel method to compute control policies for mobile robots that can re-

act to unknown environments under uncertainty in motion and sensing has been introduced.

The method computes an offline policy that maximises the probability of satisfying the spec-

ification by using an incrementally constructed transition system and a Rabin automaton. To

achieve short reaction times to changes in the environment during the online operation, a

feedback-based information roadmap that considers the probability of violating the specifi-

cation in each transition is precomputed. Once the system finds an unknown element in the

environment, the FIRM is used to reach or avoid this element. Results show that a system

can react in seconds to changes in the environment while minimising the probability of vi-

olating the task. In order to compute such a graph, the ability of the system to reach states

with zero velocities is assumed. Although previous works have considered the synthesis

of controllers under uncertainty constraints and temporal logic specifications in continuous

spaces, reaction to unknown elements of the environment had not been considered under

this scenario. Hence, it is not possible to compare the proposed method to those available

in the literature.

The last three chapters have presented solutions for systems under different scenarios.

However, all these solutions are designed for a single system. While in many situations a

single robot is enough to perform a task, other situations could require more than one robot.

In the next chapter, a method that extends sampling-based methods for multi-robot systems

subject to sc-LTL specifications is presented.

Chapter 7

Path Planning for Multi-robot Systems

with Co-safe Linear Temporal Logic

Specifications

The methods proposed in previous chapters consider a single robot. Although these meth-

ods compute trajectories that satisfy high-level specifications considering factors such as

optimality and uncertainty, the applicability of the methods could be limited by the capacity

of the robot. In other words, some tasks or applications require more than one robot in order

to be performed. Therefore, methods to find paths for multiple robots are required.

One of the main difficulties of problems with multiple systems is the scalability of the

problem. Although some of the methods developed for single robots, such as constructing

a product of the transition systems of all the robots, could be adapted for multiple robots,

the large number of possible states make them computationally expensive [84]. Other prob-

lems such as synchronisation and collision between robots must also be contemplated in the

development of a method.

A possible solution to the multiple robot problem with a global temporal logic specifi-

cation is the distribution of individual specifications in such a manner that the completion

of these results in the satisfaction of the global specification [28, 103]. The individual plans

are then completed using navigation functions. A drawback to these approaches is that the

range of specifications is limited. Other approaches assume the motion of the robots in a

discretised workspace and solve the discrete problem using Petri nets [86] or other methods.

Both techniques used to drive the system, i.e. discretisation and navigation functions, suffer

from scalability with the dimension of the configuration space of the system [148]. To re-

duce this problem, the method proposed in this chapter extends sampling-based techniques

for multiple robots to satisfy sc-LTL specifications. Moreover, an algorithm that guides the

108 Path Planning for Multi-robot Systems with Co-safe LTL Specifications

construction of the graph is presented. Results show that this algorithm reduces the amount

of time to find a solution. Therefore, the contribution of this chapter is a method that guides

the sampling of a configuration space to find paths for multiple robots subject to temporal

logic specifications.

The rest of this chapter is divided as follows. First, the addressed problem is formally

formulated in Section 7.1. Then, in Sections 7.2.3 and 7.2.4, the construction of a graph

modelling the behaviour of all the robots is presented. To reduce the number of states in

such a graph, an algorithm is presented in Section 7.2.5. Two examples are shown in Section

7.3 to illustrate the efficiency of the approach. Finally, conclusions are discussed in Section

7.4.

7.1 Problem formulation

This chapter considers a group of R robots operating in a static two dimensional workspace

W . In contrast to previous chapters, the method in this chapter does not focus on any par-

ticular type of dynamics. Instead, holonomic robots are considered for simplicity. The type

of systems that could be considered is presented later. Let X i ⊆ Rdx be a compact set defin-

ing the configuration space of robot i, where i is an element of the set R = {1, . . . ,R} that

indexes the robots and Rdx is the dx-dimensional Euclidean space. Each robot has a collision-

free configuration space X i
free. The configuration space of the full system, i.e. all the robots,

is denoted as X = ∏i∈RX i. The collision-free configuration space Xfree = ∏i∈RX i
free does

not include configurations where collisions between robots occurs. In other words, configu-

rations where multiple robots overlap are not considered part of Xfree. Now, let xxx = x0x1 . . . ,

where xi = (x1
i , . . . ,x

R
i) for all i ≥ 0, be a sequence of configurations describing a path fol-

lowed by the full system. A path is said to be collision-free if xi ∈ Xfree for all i≥ 0.

In order to specify the desired behaviour of the group of robots, sc-LTL specifications

are used to specify a global behaviour. These specifications are built on a set of atomic

propositions Π that are associated with different regions of the workspaceW . To interpret

atomic propositions over the configuration space X , let L : X → 2Π be a function that maps

a configuration x = (x1, . . . ,xR) to the atomic propositions satisfied by the configurations

xi ∀i ∈ R. Hence, a word w = L(x0)L(x1) . . . expresses a path xxx in terms of the atomic

propositions satisfied by xxx. A path xxx satisfies a sc-LTL specification ϕ if the word w, pro-

duced by xxx, is accepted by the Büchi automaton Bϕ that accepts words satisfying ϕ . The

problem addressed in this chapter is now formally defined.

Problem definition 7.1.1. Given a group of R robots with initial configurations xi
0 for i ∈R

and a sc-LTL specification ϕ , find a collision-free path xxx such that ϕ is satisfied.

7.2 Solution 109

Similar to the previous chapters, the sc-LTL specifications indicate the regions of the

workspace that must be visited. In contrast to previous cases, where only single robots were

considered, a specification could now include the task of reaching two or more regions at

the same time. In this chapter, the assumption of exact transition times is ignored. This

assumption has also been considered in the literature [197].

7.2 Solution

7.2.1 Overview

The main idea of the method is to create a transition system modelling the motion of all

the robots as a single system. In other words, multiple robots are concatenated into a sin-

gle large system which is used to find a solution. Although this concatenation implies a

centralised control, this a required condition for problems with multiple robots and a global

specification [28, 74]. Each state of the transition system represents a combination of single

configurations of all the robots. On the other hand, transitions represent collision-free paths

between these configurations. This transition system is iteratively expanded by adding new

configurations until a path in the graph is able to satisfy the specification. To obtain the

new configurations for the expansion, individual roadmaps that model the motion of each

robot are used. During each expansion, a product automaton is updated to verify whether

the transition system contains a solution. Although the approach is similar to the one used

the previous chapters, this chapter requires the coordination of multiple robots. As shown

in this chapter, because of this coordination, applying naive sampling-based methods would

require transition systems with large number of states and as a result long computation

times. To improve the required time to find a solution, a new guidance algorithm based on

the temporal logic specification is proposed. In the rest of this section, the construction of

the individual roadmaps is first presented. Then, the incremental construction of the transi-

tion system and the search for a path satisfying the specification are explained. Finally, the

algorithm that guides the expansion of the graph is explained in detail.

7.2.2 Probabilistic roadmap

The first step of the proposed method consists of creating probabilistic roadmaps for each

robot i ∈R. A roadmap of a robot i models a subset of the possible trajectories of the robot

and is formed by a set of sampled configurations x ∈ X i
free connected by collision-free paths.

A graph Gi = (V i,E i) is used to represent the roadmap of the robot i. Each vertex v ∈ V i

is associated with a unique robot configuration x ∈ X i
free. This association is given by the

110 Path Planning for Multi-robot Systems with Co-safe LTL Specifications

function χ : V i→ X i. Connectivity between two configurations is represented by an edge

(v,v′) ∈ E i. All the vertices v′ that share an edge with v are called neighbours of v. To verify

the satisfaction of a specification using only the atomic propositions that are true in each

state of the transition system, see Section 7.2.4, the edges of each Gi are limited to those

edges that intersect the boundary of a region in the workspace at most once. Moreover, to

reduce the size of the roadmaps, sparse roadmaps [42] are used. Since each vertex v ∈V i is

associated with a configuration x ∈ X i
free, with abuse of notation, L(v) is used to denote the

atomic propositions satisfied by χ(v). The set of vertices on a roadmap Gi that satisfy an

atomic proposition π ∈Π is denoted by JπKi.

To consider the configuration of all the robots, a composite roadmap [161] G = (V,E)

is constructed as the tensor product of the individual roadmaps {Gi}R
i=1, Fig. 7.1. Formally,

ν = (v1, . . . ,vR) is a vertex of G if vi ∈V i for all i ∈R and χ(ν) ∈ Xfree. Let ν = (v1, . . . ,vR)

and ν ′ = (v
′1, . . . ,v

′R) be two vertices in G. In a tensor product, an edge (ν,ν ′) ∈ E is

defined if for every i ∈R, (vi,v
′i) ∈ E i. The projection of a composite vertex ν ∈V onto the

vertex vi ∈V i of robot i is denoted by ν ↓i, i.e. ν ↓i= vi. The atomic propositions satisfied by

a vertex ν = (v1, . . . ,vR) are the union of the atomic propositions satisfied by the individual

vertices forming ν , i.e. L(ν) = ∪R
i=1L(vi), where vi = ν ↓i.

A B C

Fig. 7.1 Illustration of tensor product, graph C, of graphs A and B. Vertices of the tensor
product are formed by the combination of vertices of graphs A and B. Two vertices are
connected in C if a transition exists in A and B connecting the individual vertices forming
the vertices in C.

As explained in the introduction of the chapter, it is possible to find a path for each robot

satisfying a specification by creating a product automaton between the composite roadmap

G and the Büchi automaton Bϕ of the specification ϕ . However, this procedure is only

applicable for small problems due to its poor scalability; the number of vertices in G is |V |R.

To avoid this problem, the method implicitly represents G by iteratively creating a transition

system that models a subset of G. The construction of the transition system is presented in

the next subsection.

7.2 Solution 111

7.2.3 Composite roadmap exploration

A transition system T = (S,s0,δT ,Π,L) is used to model the explored part of the composite

roadmap G. To differentiate the vertices ν ∈ V added to T from those not added to T , s is

used instead of ν in the rest of this section. Initially, T contains only the state that represents

the vertex corresponding to the initial configuration of all robots, i.e. s0 = (v1
0,v

2
0, . . . ,v

R
0),

where χ(vi
0) = xi

0 ∀i ∈ R. Then, more vertices from G are added to T using the idea of

discrete RRTs [158] as follows.

First, a state s= (v1, . . . ,vR)∈ S is randomly selected from the transition system T . Then,

each of the elements vi of s is expanded using the following procedure. A configuration

xi
sample ∈ X i is randomly sampled. Next, the rays ρvi,vi, j , for all j ∈ {1, . . . , l}, that start

from vi and pass through the l neighbours of vi are computed. Similarly, the ray ρvi,xsample

passing through xi
sample is calculated. To choose a neighbour of vi in Gi to be added to

T , the angles between the ray ρvi,xsample
and each of the rays ρvi,vi, j are computed. The

neighbour that generates the ray with the smallest angle is selected and denoted as vi
new, Fig.

7.2. This process is repeated for all the vertices forming s, resulting in a candidate state

snew = (v1
new, . . . ,v

R
new).

30 40 50 60 70 80 90

50

60

70

80

90

100

110

vi
vi,1

vi,2

vi,3

vi,4

xi
sampleα

Fig. 7.2 Selection of vertex and edge in roadmap Gi. The states and transitions in T are
illustrated with black vertices and edges. The roadmap Gi is shown in grey. To choose which
neighbour {vi, j}4

j=1 of vi is added to T , the rays starting from vi and passing through xi
sample

and the neighbours of vi are computed. The smallest angle, α in the figure, determines
which neighbour and edge are added to T , neighbour vi,2 in this example.

Before adding snew to T , it is verified whether a collision between robots exists. To

avoid collisions during the transitions (vi,vi
new) for all i ∈ R, priorities are assigned to each

robot according to the following rules [175]:

112 Path Planning for Multi-robot Systems with Co-safe LTL Specifications

i. If robot i, transitioning from vi to vi
new, causes a collision with robot j, located in v

j
new,

the robot i receives higher priority than j.

ii. If robot i collides with robot j placed in v j during the transition (vi,vi
new), then, robot i

receives lower priority than j.

The state snew is discarded if there is no ordering such that collisions are avoided. Other-

wise, the state is added to T with the transitions (s,snew) and (snew,s). Note that by choosing

only neighbours of each individual vertex vi, (v1
new, . . . ,v

R
new) is an element of the compos-

ite roadmap G. Intuitively, the transition system T represents the explored part of G. An

example of such exploration, for the case R = 1, is shown in Fig. 7.3.

π1 π2

π3 π4

π1 π2

π3 π4

(a)

(b)

Fig. 7.3 Incremental construction of a transition system. The roadmap of the robot is shown
in grey. The roadmap is used to create a transition system. (a) The transition system (shown
in black), initially containing only the initial position of the robot (red vertex), is expanded
by choosing a vertex and edge from the roadmap. (b) The expansion continues until the
specification, visiting the four green regions in this example, is satisfied.

7.2 Solution 113

Since each vertex ν of G is associated with a configuration x ∈ Xfree, a run sss = s0s1 . . .

on T represents a path of the full system in the configuration space Xfree. Hence, this

exploration continues until a path that satisfies the specification ϕ is found. The procedure

to determine whether the current transition system contains such a path is presented in the

next subsection.

7.2.4 Product automaton update

Based on model checking techniques, the verification of a run sss satisfying the sc-LTL speci-

fication ϕ is made on the Cartesian product P = (SP ,sP ,0,δP ,FP), where:

• SP = S×Q is a finite set of states,

• sP ,0 = s0×q0 is an initial state,

• δP ∈ SP × SP is a transition relation, where ((s,q),(s′,q′)) ∈ δP iff (s,s′) ∈ δT and

δB(q,L(s
′)) = q′,

• FP = S×F .

The product automaton P is first created when the transition system contains only the

initial state s0. Since the transition system T changes with each new state snew, the product

P requires to be updated. The procedure to incrementally update P and to search for a path

satisfying ϕ is now presented.

When a new state snew and transition (s,snew) are added to T , the set S′P of states s′P =

(snew,q
′), such that δB(q,L(snew)) = q′ and (s,q) ∈ SP , is computed. Then, for each state

s′P ∈ S′P , it is verified if s′P is already in SP . If that is not the case, the state is added to P

and is removed from S′P . Moreover, the set of states s′′P = (s′,q′′), such that (snew,s
′) ∈ δT

and δB(q
′,L(s′)) = q′′, is computed. If a state s′′P is not already in SP , s′′P is added to SP and

to S′P . This recursive procedure continues until the set S′P is empty.

By construction, if a run on P , starting from sP ,0, reaches a state in the set FP of ac-

cepting states, the word produced by the run sss on T is accepted by the Büchi automaton B

computed from the sc-LTL formula. In other words, a run sss on T satisfies the specification

if a run on P reaches the set of accepting states. Hence, the process of exploring G and

updating P continues until a state sP = (·,q) is added to P such that q ∈QF . The procedure

for exploring G and updating P is shown in Alg. 7.1.

Using the procedure described above, a solution to the problem addressed in this chap-

ter would be eventually found. Nevertheless, depending on the number of robots and the

specification, this process could take an impractical amount of time. To reduce the time, in

the next subsection, an novel algorithm that guides the exploration of G is presented.

114 Path Planning for Multi-robot Systems with Co-safe LTL Specifications

Algorithm 7.1. IncrementalExploration({Gi}R
i=1,B,X)

1: S← s0 = (v1
0, . . . ,v

R
0);

2: P ← T ×B;
3: while sP = (s,q) /∈ SP : q ∈ QF do

4: snew,(s,snew),(snew,s)← EXPLORECOMPROADMAP({Gi}R
i=1),X);

5: S← S∪ snew;
6: δT ← δT ∪{(s,snew),(snew,s)};
7: P ← UPDATEAUTOMATON(P,snew,(s,snew),(snew,s));

8: return T = (S,s0,δT ,Π,L);

7.2.5 Guided exploration

The guided exploration of the composite roadmap G is based on the selection of a state in

T that must be expanded in order to satisfy the sc-LTL specification. The main idea is to

find the shortest path, in terms of transitions, in the Büchi automaton to an accepting state

and use the atomic propositions required in such a path to search in the individual roadmaps

{Gi}R
i=1.

Before explaining the algorithm, the concept of a waiting robot is presented. Depend-

ing on the transition in the Büchi automaton, one or more atomic propositions have to be

satisfied at the same time. Since each robot can only satisfy one atomic proposition at a

time, when more than one proposition is required, collaboration between robots is needed.

When a robot is able to reach a state satisfying one of the required atomic propositions, the

robot remains in its current state. This robot is called a waiting robot and it remains in the

same state until other robots are capable of reaching states that satisfy the rest of the atomic

propositions. The algorithm is now explained in detail, Alg. 7.2.

The algorithm receives as input the set S′P of states added to the product automaton P

after the last update. These states have the form (s,q), where s = (v1, . . . ,vR) ∈ S and q ∈ Q.

The states are divided into different sets depending on their Büchi state component (line

1, Alg. 7.2). In other words, for each state qi in the Büchi automaton, a set gi containing

states s = (v1, . . . ,vR) such that sP = (s,qi) ∈ S′P is created. These sets are used to search

states in the PRMs such that a transition in B, starting from qi, is produced by the atomic

propositions satisfied in the PRM states. Then, the algorithm sorts, from shortest to longest,

the different paths from the initial state q0 ∈ Q to the closest accepting state q ∈ QF . Using

these sorted paths, the algorithm tries to reach atomic propositions required in the paths,

starting from the shortest path (line 2, Alg. 7.2).

For each state s in gi, the individual vertices forming s of all non-waiting robots are

considered to be connected to vertices in Gi satisfying the required atomic propositions

7.2 Solution 115

Algorithm 7.2. LocalConnector ({Gi}
R
i=1,B,T ,S′P)

1: gi←{s : (s,qi) ∈ S′P , ∀i ∈ {1, . . . , |Q|}}
2: for qi ∈ SORT(Q) do

3: for j ∈ {R : j /∈WRobot} do

4: for sn ∈ gi do

5: v j = sn ↓ j;
6: for qk ∈ SORT(δB(qi, ·)) do

7: Πreq← REQAP(qi,qk);

8: vc← CONNECT(v j,JπmK
|Πreq|
m=1, j);

9: if vc 6= /0 then

10: if TRANSCOMPLETE then

11: S← S∪ snew;
12: δT ← δT ∪{(sn,snew),(snew,sn)};
13: WROBOT← /0;
14: else

15: WROBOT←WROBOT∪ j;

in the Büchi automaton transition. An individual vertex, denoted as v j, is considered for

connection in each iteration (lines 3-5, Alg. 7.2). The transition that is attempted to be

satisfied in the Büchi automaton is selected based on the sorted paths (line 6, Alg. 7.2). The

required atomic propositions in the selected transition are assigned to the set Πreq (line 7,

Alg. 7.2). Then, all the vertices in the roadmap G j that satisfy an atomic proposition that

cannot be satisfied by a waiting robot are assigned as a target of the connection (line 8, Alg.

7.2). By connecting the transition system to vertices satisfying atomic propositions required

for the specification, the time needed to solve the proposed problem is reduced.

In order to find a path between the vertices v j and vertices in G j satisfying a required

atomic proposition, any method can be used. However, because this process is constantly

repeated, a method that sacrifices completeness for speed is preferred. This is a common

practice as presented in Section 2.1.5. Note that the type of method used for the connections

defines the type of dynamics accepted by the proposed method. If the path between v j and

vc, the connected vertex, is collision-free, the connection is considered successful (line 9,

Alg. 7.2). Depending on the number of atomic propositions in the selected transition in B,

three different situations can occur:

Case 1: Only one atomic proposition is required in the transition, i.e. |Πreq|= 1. In this

case, if robot j can satisfy the required atomic proposition through the connection, a new

state snew = (v1, . . . ,vR) is created. Intuitively, the new state has the same components as

the composite state s, except the element of robot j that is replaced by vc. If the new state is

116 Path Planning for Multi-robot Systems with Co-safe LTL Specifications

not in the transition system T , the state is added with the transitions (s j,snew) and (snew,s j)

(lines 11-12, Alg. 7.2).

Case 2: More than one atomic proposition is required and at least one more is still

required after the connection. When a robot j can satisfy one of the required atomic propo-

sitions but at least one more is needed for the transition in the Büchi automaton, the robot

stays in the vertex v j waiting for the remaining robots to satisfy the other atomic proposi-

tions. To indicate that the robot is waiting, the index j is added to the set WRobot (line 15,

Alg. 7.2). This set restricts the states that can be selected in the exploration of G. The

selected state in the exploration must be formed by the vertices vi, where i ∈WRobot. After

adding the index j of the robot to the set WRobot, the vertex that can be reached, i.e. vc, is

saved to be used once all the atomic propositions of the selected automaton transition can

be satisfied. Note that the restriction explained above guides the sampling process of G.

Case 3: The last required atomic proposition is satisfied with the connection. Similar to

case 1, when a robot j can satisfy the last required atomic proposition, a new state snew is

created with vc and the saved states. This state is added to T with the transitions (s j,snew)

and (snew,s j) and the set WRobot becomes empty indicating that all the robots can move again

(lines 11-13, Alg. 7.2).

Every time a new state snew is added to T , the product automaton P is updated and the

process of guiding the expansion is repeated. As mentioned in the previous section, the

expansion of T stops once a product state with a final state q ∈ QF is added to P .

7.2.6 Implementation

This subsection presents how a solution is obtained from P together with the implementa-

tion of it in the robots. Once the exploration of G stops, the shortest path sssP = sP ,0 . . .sP ,n

on P , where sP ,n ∈ FP , is sought. Since a state sP is formed by the pair of the form (s,q),

only the first element of each state is considered to create the path xxx that satisfies the sc-

LTL specification. Each configuration in xxx is projected to the individual vertices in {Gi}R
i=1.

Finally, the function χ is used to find the configurations in X i to define a path for each robot.

To execute the path, each robot stores a list of the vertices to visit in its roadmap together

with the configurations where the robot has to wait for other robots before performing a

transition. When a robot finishes a transition, it broadcasts a unique identifier number and

a signal indicating that the transition has been completed. If a robot needs to wait for other

robots, the transition is not performed until the robot receives the signal of all the robots

with higher priority.

7.3 Examples 117

7.3 Examples

The proposed method is illustrated with different sc-LTL specifications and number of

robots. A differential wheeled robot, called e-puck [123], operating in a workspace with

4 areas associated with the atomic propositions π1, π2, π3 and π4 is considered. The compu-

tation of the path is implemented in MATLAB on a computer with a 3.1 GHz i7 processor

and 8GB of RAM. The dynamics of the e-pucks are simulated using Enki [119].

Two different examples, considering two and four robots, respectively, are considered:

1. Regions π1, π2 have to be visited at the same time as well as π3, π4 with the same

restriction. LTL specification: ϕ1 = ♦(π1∧π2)∧♦(π3∧π4), Fig. 7.4.

2. Regions π1, π2, π3 and π4 cannot be visited until all of them are visited at the same

time. LTL specification: ϕ2 = ¬(π1∨π2∨π3∨π4)U(π1∧π2∧π3∧π4), Fig. 7.5.

π1

π2

π3

π4

Fig. 7.4 Illustration of the path followed by two robots satisfying the specification ϕ1 =
♦(π1 ∧ π2)∧♦(π3 ∧ π4). This sc-LTL specification requires the robots to visit the areas
marked as π1 and π2 at the same time and the areas π3 and π4 with the same restriction. The
colour of the robots changes, from darker to lighter blue, over time to show that the atomic
propositions are satisfied at the same time step.

The required mean time, over 20 runs, to solve these examples is presented in Table 7.1.

From this table, it can be seen that a solution can be found in a few seconds for problems

with a big number of states. For instance, in the example with four robots, the parallel

composition G has more than 96 million vertices. This short time can be attributed to the

guided exploration. To show the effect of using the algorithm to guide the exploration,

the first example is solved using only the exploration as presented in Section 7.2.3. On

118 Path Planning for Multi-robot Systems with Co-safe LTL Specifications

π1

π2

π3

π4

Fig. 7.5 Illustration of the path followed by two robots satisfying the specification ϕ2 =
¬(π1∨π2 ∨π3∨π4)U(π1∧π2 ∧π3∧π4). This sc-LTL specification requires the robots to
visit the four marked areas at the same time. The colour of the robots changes, from darker
to lighter colour, over time to show that the atomic propositions are satisfied at the same
time step.

Table 7.1 Average required time (seconds) to solve the problems, number of robots in the
workspace, and number of states in transition system T over 20 different runs.

Specification Time (mean) Std. Dev. Number of robots States in T

ϕ1 6.30 1.53 2 278.55
ϕ2 7.48 1.56 4 270.4

average, the solution is found in 1057.91 seconds and required the exploration of 7242.43

vertices. In contrast, using the guided exploration, the solution is found in 6.30 seconds. A

direct comparison with other sampling-based methods for multiple robots, e.g. [74], is not

possible because the proposed method samples the continuous configuration space instead

of a discrete representation of the robot’s mobility.

7.4 Concluding remarks

In this chapter, a new method to find collision-free paths that satisfy syntactically co-safe

linear temporal logic formulae for multi-robot systems has been proposed. Most of the

available methods assume precomputed controls to drive the system between partitions of

an environment or have poor scalability with respect to the dimension of the robot’s configu-

ration space due to a required discretisation. The proposed method extends sampling-based

7.4 Concluding remarks 119

methods, previously proposed to alleviate the scalability problem, to multi-robot systems.

Hence, fewer assumptions are imposed. The method explores a composite roadmap mod-

elling the possible behaviour of all the robots. This exploration stops when a path satisfying

the specification is found. Additionally, a new algorithm that guides the exploration to re-

duce the time required to find a solution has been presented. Numerical results show that

only a small portion of the composite roadmap is explored as a result of using this algorithm.

A comparison to other methods is not possible because of the considered assumptions, e.g.

precomputed environment partitions. Since the method is geared towards fast solutions, a

disadvantage of the proposed solution is that it does not return optimal paths in contrast

to other methods that consider a partitioned environment [171]. Moreover, it is limited to

sc-LTL specifications.

Chapter 8

Conclusions and Future Work

8.1 Summary and conclusions

The problem of motion planning has been studied for decades. Typically, this planning con-

siders elements such as system dynamics, uncertainties and dynamic environments. How-

ever, as the number of applications where interaction with humans increases, it is essential

to consider factors such as safety and reliability. The search for methods to consider these

requirements has resulted in a new area of research. This area combines traditional motion

planning algorithms, and more general, control theory with model checking techniques to

create methods capable of synthesising controllers that guarantee the execution of high-level

specifications. One of the main challenges in the development of these methods is the scala-

bility due to factors such as high-dimensional systems, uncertainties, type of specifications

and multi-robot systems. In this thesis, methods focused on reducing the complexity have

been proposed to better manage the scalability.

The proposed methods are based on sampling techniques that have been used in tradi-

tional point to point motion planning to handle systems with high-dimensional state spaces.

In contrast to other motion planning methods, sampling-based algorithms do not compute

explicitly the state space of the system. This allows to obtain a better scalability compared

to other methods. These sampling-based techniques are combined with automata theory to

solve motion planning problems subject to high-level specifications expressed with tempo-

ral logics. A variety of scenarios considering optimality, different types of uncertainty and

multi-robot systems were considered.

Optimal trajectories based on sc-LTL specifications for deterministic high-dimensional

kinodynamic systems were computed by using the SST_LTL algorithm in Chapter 4. This

algorithm iteratively constructs a transition system with states augmented by states of a

Büchi automaton until a condition is satisfied. The probabilistic completeness and optimal-

122 Conclusions and Future Work

ity were proved and demonstrated with illustrative examples considering a 10-dimensional

quadrotor. In contrast to current solutions, this algorithm requires only the forward propa-

gation of the system dynamics to find optimal trajectories. As a result, the algorithm can be

applied to a wider range of dynamics. Another difference is the bounded size of the transi-

tion system compared with other sampling-based methods that constantly increase in size

with the number of iterations. This is an important characteristic due to the large number

of iterations required to converge to an optimal solution. The benefits obtained by the pro-

posed approach comes at the cost of a restricted type of temporal specification, i.e. sc-LTL

specifications. Because the approach does not connect states directly, loops in the transition

system cannot be created. As a result, temporal logic specifications with infinite-horizon

properties cannot be satisfied.

The previous method computes a sequence of control inputs to achieve an optimal path.

This is done in an open-loop fashion since deterministic systems are considered. Never-

theless, when a system is affected by uncertainty in motion, a closed-loop controller is

required. In Chapter 5, a method to compute optimal policies in terms of maximising the

probability of satisfying a specification with time constraints expressed as MITL was pre-

sented. Approaches in the literature construct MDPs to represent the stochasticity of the

system. However, in order to approximate the continuous-time continuous-space of the un-

derlying system, a fine discretisation is required resulting in a large number of states. The

proposed method reduces this problem by using a discretisation of the workspace instead

of the state space. By considering a space with lower dimensionality, the scalability of the

method increases. The mobility of the robot in this discretised workspace is modelled by

a BMDP, where the transitions are computed using a sampling-based method. The results

showed that solutions can be computed faster compared to current approaches. On the other

hand, the results also showed that as a result of the coarse partition used to reduce the com-

plexity of the problem, the trajectory followed by the system presents some abrupt changes

in direction. In other words, the trajectory is not as smooth as in other approaches. Hence,

the approach has a trade-off the between computational speed and the smoothness of the

trajectory.

On the other hand, systems can be also affected by uncertainties in sensing due to noisy

sensors. This could result in uncertainty in the knowledge of the system state. In other

words, the precise state of the system is not known and only a probability distribution over

all the states is available. Most of the available solutions to such problems do not consider

the continuous state space of the system due to the complexity generated by the curse of

dimensionality and history. Moreover, static workspaces are mostly considered in this type

of problem. In Chapter 6, a method that computes optimal policies based on LTL specifica-

8.1 Summary and conclusions 123

tions for systems with uncertainty in motion and sensing operating in dynamic environments

was presented. Similar to the previous case, the policy maximises the probability of satisfy-

ing the specification during the normal operation of the system. When the system detects a

previously unknown obstacle or target, the system switches to a policy that minimises the

probability of violating the specification until the detected element disappears. To break the

aforementioned curses, the method constructs a transition system in the belief space of the

system and computes SLQG controllers as stabilisers. To handle changes in the workspace,

a graph in the belief space is precomputed and used to avoid obstacles or reach targets. Re-

sults demonstrated that the system is able to react to changes in the workspace in a short

period of time making the method applicable to more realistic scenarios. A limitation of

the proposed approach is the type of dynamic system that the method can handle. Since the

system must be stabilised at certain belief nodes, the system must be able to reach states

with zero velocities [1]. However, this is not always possible such as in fixed-wing aircrafts.

In the last chapter, Chapter 7, sampling-based methods were extended to solve the prob-

lem of motion planning for multi-robot systems subject to sc-LTL specifications. One of

the main problems with multiple-robot systems is the large number of possible states. This

problem is aggravated for systems with high-dimensional state spaces. Current solutions

use discretisation or potential functions to drive the system, both of which have poor scala-

bility. The proposed method constructs a transition system using precomputed PRMs. The

transition system is combined with an automaton to find a path satisfying the specification.

To accelerate the process of finding a solution, an algorithm that guides the construction

of the transition by taking advantage of the PRMs was proposed. A comparison of the

sampling-based method with and without the algorithm was presented. The results showed

that the guided construction reduces the required number of state in the transition to find a

solution. Because the approach is focused on reducing the number of states required to find

a solution, the optimality of the path is not considered. Therefore, the returned solution can

contain unnecessary long paths.

Overall, the use of sampling techniques with automata theory have resulted in methods

that allow the computation of trajectories for systems with complex dynamics and at the

same time to increase the scalability of the methods. The efficiency of these methods has

been shown in this thesis considering diverse dynamics, uncertainties and multi-robot sys-

tems. From these results, it can be concluded that the methods proposed in this thesis can

increase the applicability of methods combining control theory and model checking for mo-

tion planning for different type of systems and scenarios. The contributions of this thesis

are now summarised:

124 Conclusions and Future Work

• A method capable of finding optimal trajectories for high-dimensional kinodynamic

system subject to co-safe linear temporal logic specifications. In contrast to other

methods that can only be applied to limited classes of system dynamics, the proposed

approach can be applied to a wider range of dynamics.

• A method to solve motion planning problems considering real-time constraints, given

as a metric interval temporal logic, and uncertainty in motion. The presented approach

presents better computational tractability compared to current methods.

• A method to compute optimal trajectories for systems with uncertainty in motion and

sensing subject to linear temporal logic specifications. In contrast to other methods,

the method allows systems to react to previously unknown elements such as obstacles.

• A method for multi-robot systems with co-safe linear temporal logic specifications

and an algorithm to reduce the number of states required to find a solution. The

method is based on sampling approaches which present better scalability compared to

current methods that used discretisation or navigations functions.

8.2 Future work

While the proposed methods are capable of computing trajectories satisfying temporal logic

specifications for a variety of systems, these methods can be extended in several directions.

The method in Chapter 4 is limited to sc-LTL specifications. While this logic can be used

to express many useful specifications for robotic systems, it does not allow specifications

with infinite horizon. Extending the proposed method to allow full LTL specifications would

bring new challenges. For instance, most of the methods considering full LTL rely on the

computation of trajectories forming a loop or lasso. However, computing such trajectories

is not trivial without solving a two-point boundary value problem, which limits the type of

dynamics for which a trajectory can be computed.

The method proposed in Chapter 5 can be improved in two directions. The first one is

the smoothness of the computed trajectory. Because of the discretised workspace and the

optimal policies computed to drive the system from one segment to another, the computed

path creates a zigzag pattern. A possible solution to this problem is to reduce the size of the

segments. Nevertheless, this would increase the number of states in the product automaton.

A possible different solution is to create more than one policy to transition to a segment. By

having more than one policy, a policy could be chosen depending on the target’s direction.

However, an analysis of the optimality would be required. The second direction is the

8.2 Future work 125

extension of the allowed specifications to include infinite horizon specifications. Although

a loop could be created on the partitioned workspace, the method would need to reason

about time in an infinite horizon.

While the method proposed in Chapter 6 considers uncertain workspaces that could

change, static obstacles are considered. Hence, a possible direction for future work is the

inclusion of dynamic obstacles that could move and possibly try to falsify the specification.

This problem can be addressed by solving a two-player game with partial observations. This

problem is currently computational impractical. Moreover, methods that use this approach

do not consider continuous state spaces in contrast to the proposed method.

Similar to the cases mentioned above, the method in Chapter 7 could be extended to

include full LTL specifications. Moreover, the proposed method does not consider a cost

function to find a trajectory satisfying the specification. Therefore, another direction to

improve the work is the computation of optimal paths. These two elements, full LTL and

optimality, would require the consideration of all the possible states to find an optimal tra-

jectory. This can be achieved using the composite roadmap. However, the large number of

states in it make this approach impractical. Therefore, a new sampling-based method and

algorithm to guide the expansion of the transition system would be required.

References

[1] Agha-Mohammadi, A.-A., Chakravorty, S., and Amato, N. M. (2014). Firm: Sampling-
based feedback motion-planning under motion uncertainty and imperfect measurements.
The International Journal of Robotics Research, 33(2):268–304.

[2] Alterovitz, R., Siméon, T., and Goldberg, K. Y. (2007). The stochastic motion roadmap:
A sampling framework for planning with Markov motion uncertainty. In Proceedings of
Robotics: Science and Systems, volume 3, pages 233–241.

[3] Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer
Science, 126(2):183–235.

[4] Alur, R., Feder, T., and Henzinger, T. A. (1996). The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146.

[5] Alur, R., Henzinger, T. A., Lafferriere, G., and Pappas, G. J. (2000). Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE, 88(7):971–984.

[6] Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D. (1998). Choosing
good distance metrics and local planners for probabilistic roadmap methods. In Proceed-
ings of International Conference on Robotics and Automation, volume 1, pages 630–637.
IEEE.

[7] Ayala, A. M., Andersson, S. B., and Belta, C. (2013). Temporal logic motion planning in
unknown environments. In Proceedings of Conference on Intelligent Robots and Systems,
pages 5279–5284. IEEE.

[8] Baier, C., Größer, M., and Bertrand, N. (2012). Probabilistic ω-automata. Journal of
the ACM, 59(1):1.

[9] Baier, C. and Katoen, J. P. (2008). Principles of Model Checking. MIT Press Cambridge.

[10] Balch, T. and Hybinette, M. (2000). Social potentials for scalable multi-robot forma-
tions. In Proceedings of International Conference on Robotics and Automation, volume 1,
pages 73–80. IEEE.

[11] Bauer, A., Leucker, M., and Schallhart, C. (2011). Runtime verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology, 20(4):14.

[12] Behrmann, G., David, A., Larsen, K. G., Hakansson, J., Petterson, P., Yi, W., and
Hendriks, M. (2006). Uppaal 4.0. In Proceedings of International Conference on Quan-
titative Evaluation of Systems, pages 125–126. IEEE.

128 References

[13] Bellingham, J., Richards, A., and How, J. P. (2002). Receding horizon control of
autonomous aerial vehicles. In Proceedings of American Control Conference, volume 5,
pages 3741–3746. IEEE.

[14] Bellingham, J., Tillerson, M., Richards, A., and How, J. P. (2003). Multi-task alloca-
tion and path planning for cooperating UAVs. Springer.

[15] Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and Pappas, G. J. (2007).
Symbolic planning and control of robot motion. IEEE Robotics & Automation Magazine,
14(1):61–70.

[16] Belta, C., Yordanov, B., and Gol, E. A. (2017). Formal Methods for Discrete-Time
Dynamical Systems, volume 89. Springer.

[17] Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427.

[18] Bhatia, A., Kavraki, L. E., and Vardi, M. Y. (2010). Sampling-based motion plan-
ning with temporal goals. In Proceedings of International Conference on Robotics and
Automation, pages 2689–2696. IEEE.

[19] Bialkowski, J., Otte, M., Karaman, S., and Frazzoli, E. (2016). Efficient collision
checking in sampling-based motion planning via safety certificates. The International
Journal of Robotics Research, 35(7):767–796.

[20] Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. (1999). Symbolic model checking
without BDDs. Tools and Algorithms for the Construction and Analysis of Systems, pages
193–207.

[21] Blackmore, L., Ono, M., and Williams, B. C. (2011). Chance-constrained optimal path
planning with obstacles. IEEE Transactions on Robotics, 27(6):1080–1094.

[22] Branicky, M. S., LaValle, S. M., Olson, K., and Yang, L. (2001). Quasi-randomized
path planning. In Proceedings of International Conference on Robotics and Automation,
volume 2, pages 1481–1487. IEEE.

[23] Bry, A. and Roy, N. (2011). Rapidly-exploring random belief trees for motion plan-
ning under uncertainty. In Proceedings of International Conference on Robotics and
Automation, pages 723–730. IEEE.

[24] Caron, S., Pham, Q.-C., and Nakamura, Y. (2017). Completeness of randomized kin-
odynamic planners with state-based steering. Robotics and Autonomous Systems, 89:85–
94.

[25] Castro, L. I. R., Chaudhari, P., Tumova, J., Karaman, S., Frazzoli, E., and Rus, D.
(2013). Incremental sampling-based algorithm for minimum-violation motion planning.
In Proceedings of Conference on Decision and Control, pages 3217–3224. IEEE.

[26] Chatterjee, K., Chmelík, M., Gupta, R., and Kanodia, A. (2015). Qualitative analysis
of POMDPs with temporal logic specifications for robotics applications. In Proceedings
of International Conference on Robotics and Automation, pages 325–330. IEEE.

References 129

[27] Chatterjee, K., Chmelík, M., and Tracol, M. (2016). What is decidable about partially
observable markov decision processes with ω-regular objectives. Journal of Computer
and System Sciences, 82(5):878–911.

[28] Chen, Y., Ding, X. C., and Belta, C. (2011). Synthesis of distributed control and
communication schemes from global LTL specifications. In Proceedings of Conference
on Decision and Control and European Control Conference, pages 2718–2723. IEEE.

[29] Cho, K., Suh, J., Tomlin, C. J., and Oh, S. (2017). Cost-aware path planning under
co-safe temporal logic specifications. IEEE Robotics and Automation Letters, 2(4):2308–
2315.

[30] Choset, H. (2001). Coverage for robotics–a survey of recent results. Annals of Mathe-
matics and Artificial Intelligence, 31(1):113–126.

[31] Choset, H. M. (2005). Principles of robot motion: theory, algorithms, and implemen-
tation. MIT press.

[32] Cizelj, I. and Belta, C. (2014). Control of noisy differential-drive vehicles from time-
bounded temporal logic specifications. The International Journal of Robotics Research,
33(8):1112–1129.

[33] Clarke, E. M. and Emerson, E. A. (1981). Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proceedings of Workshop on Logic of
Programs, pages 52–71. Springer.

[34] Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model checking. MIT press.

[35] Coe, T. (1995). Inside the pentium-FDIV bug. Dr Dobb’s Journal, 20(4):129.

[36] CPLEX, I. I. (2009). V12. 1: User’s manual for CPLEX. International Business
Machines Corporation, 46(53):157.

[37] DeCastro, J. A. and Kress-Gazit, H. (2015). Synthesis of nonlinear continuous con-
trollers for verifiably correct high-level, reactive behaviors. The International Journal of
Robotics Research, 34(3):378–394.

[38] Desai, J. P. and Kumar, V. (1999). Motion planning for cooperating mobile manipula-
tors. Journal of Robotic Systems, 16(10):557–579.

[39] Dimarogonas, D. V. and Kyriakopoulos, K. J. (2007). Decentralized navigation func-
tions for multiple robotic agents with limited sensing capabilities. Journal of Intelligent
& Robotic Systems, 48(3):411–433.

[40] Ding, X. C., Smith, S. L., Belta, C., and Rus, D. (2011a). MDP optimal control under
temporal logic constraints. In Proceedings of Conference on Decision and Control and
European Control Conference, pages 532–538. IEEE.

[41] Ding, X. C. D., Smith, S. L., Belta, C., and Rus, D. (2011b). LTL control in uncertain
environments with probabilistic satisfaction guarantees. In International Federation of
Automatic Control Proceedings Volumes, volume 44, pages 3515–3520. Elsevier.

130 References

[42] Dobson, A. and Bekris, K. E. (2014). Sparse roadmap spanners for asymptotically
near-optimal motion planning. The International Journal of Robotics Research, 33(1):18–
47.

[43] Donald, B., Xavier, P., Canny, J., and Reif, J. (1993). Kinodynamic motion planning.
Journal of the ACM, 40(5):1048–1066.

[44] Dubins, L. E. (1957). On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents. American Journal
of mathematics, 79(3):497–516.

[45] Farahani, S. S., Raman, V., and Murray, R. M. (2015). Robust model predictive control
for signal temporal logic synthesis. IFAC-PapersOnLine, 48(27):323–328.

[46] Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1995). Flatness and defect of
non-linear systems: introductory theory and examples. International Journal of Control,
61(6):1327–1361.

[47] Fu, J., Dimitrova, R., and Topcu, U. (2014). Abstractions and sensor design in partial-
information, reactive controller synthesis. In Proceedings of American Control Confer-
ence, pages 2297–2304. IEEE.

[48] Fu, J., Papusha, I., and Topcu, U. (2017). Sampling-based approximate optimal control
under temporal logic constraints. In Proceedings of International Conference on Hybrid
Systems: Computation and Control, pages 227–235. ACM.

[49] Fu, J. and Topcu, U. (2015). Computational methods for stochastic control with metric
interval temporal logic specifications. In Proceedings of Conference on Decision and
Control, pages 7440–7447. IEEE.

[50] Fu, J. and Topcu, U. (2016). Synthesis of joint control and active sensing strategies
under temporal logic constraints. IEEE Transactions on Automatic Control, 61(11):3464–
3476.

[51] Galicki, M. (2017). The planning of optimal motions of non-holonomic systems. Non-
linear Dynamics, 90(3):2163–2184.

[52] Gastin, P. and Oddoux, D. (2001). Fast LTL to Büchi automata translation. In Proceed-
ings of International Conference on Computer Aided Verification, pages 53–65. Springer.

[53] Geraerts, R. and Overmars, M. H. (2006). Sampling and node adding in probabilistic
roadmap planners. Robotics and Autonomous Systems, 54(2):165–173.

[54] Gilbert, E. G., Johnson, D. W., and Keerthi, S. S. (1988). A fast procedure for comput-
ing the distance between complex objects in three-dimensional space. IEEE Journal on
Robotics and Automation, 4(2):193–203.

[55] Givan, R., Leach, S., and Dean, T. (2000). Bounded-parameter Markov decision pro-
cesses. Artificial Intelligence, 122(1-2):71–109.

[56] Glassman, E. and Tedrake, R. (2010). A quadratic regulator-based heuristic for rapidly
exploring state space. In Proceedings of International Conference on Robotics and Au-
tomation, pages 5021–5028. IEEE.

References 131

[57] Gol, E. A. and Belta, C. (2014). An additive cost approach to optimal temporal logic
control. In Proceedings of American Control Conference, pages 1769–1774. IEEE.

[58] Gol, E. A., Ding, X., Lazar, M., and Belta, C. (2014). Finite bisimulations for switched
linear systems. IEEE Transactions on Automatic Control, 59(12):3122–3134.

[59] Gol, E. A., Lazar, M., and Belta, C. (2012). Language-guided controller synthesis
for discrete-time linear systems. In Proceedings of International Conference on Hybrid
Systems: Computation and Control, pages 95–104. ACM.

[60] Gottschalk, S., Lin, M. C., and Manocha, D. (1996). Obbtree: A hierarchical structure
for rapid interference detection. In Proceedings of Conference on Computer Graphics
and Interactive Techniques, pages 171–180. ACM.

[61] Guo, M. and Dimarogonas, D. V. (2015a). Bottom-up motion and task coordination
for loosely-coupled multi-agent systems with dependent local tasks. In Proceedings of In-
ternational Conference on Automation Science and Engineering, pages 348–355. IEEE.

[62] Guo, M. and Dimarogonas, D. V. (2015b). Multi-agent plan reconfiguration under
local LTL specifications. The International Journal of Robotics Research, 34(2):218–
235.

[63] Hauser, K. (2015). Lazy collision checking in asymptotically-optimal motion planning.
In Proceedings of International Conference on Robotics and Automation, pages 2951–
2957. IEEE.

[64] Hauser, K. and Zhou, Y. (2016). Asymptotically optimal planning by feasible kinody-
namic planning in a state–cost space. IEEE Transactions on Robotics, 32(6):1431–1443.

[65] Horowitz, M. B., Wolff, E. M., and Murray, R. M. (2014). A compositional approach
to stochastic optimal control with co-safe temporal logic specifications. In Proceedings
of International Conference on Intelligent Robots and Systems, pages 1466–1473. IEEE.

[66] Huynh, V. A. (2014). Sampling-based algorithms for stochastic optimal control. PhD
thesis, Massachusetts Institute of Technology.

[67] Huynh, V. A., Karaman, S., and Frazzoli, E. (2016). An incremental sampling-based
algorithm for stochastic optimal control. The International Journal of Robotics Research,
35(4):305–333.

[68] Huynh, V. A. and Roy, N. (2009). icLQG: combining local and global optimization
for control in information space. In Proceedings of International Conference on Robotics
and Automation, pages 2851–2858. IEEE.

[69] Hwang, Y. K. and Ahuja, N. (1992). A potential field approach to path planning. IEEE
Transactions on Robotics and Automation, 8(1):23–32.

[70] Janson, L., Schmerling, E., Clark, A., and Pavone, M. (2015). Fast marching tree: A
fast marching sampling-based method for optimal motion planning in many dimensions.
The International Journal of Robotics Research, 34(7):883–921.

132 References

[71] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99–134.

[72] Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). Stomp:
Stochastic trajectory optimization for motion planning. In Proceeding of International
Conference on Robotics and Automation, pages 4569–4574. IEEE.

[73] Kallman, M. and Mataric, M. (2004). Motion planning using dynamic roadmaps. In
Proceedings of International Conference on Robotics and Automation, volume 5, pages
4399–4404. IEEE.

[74] Kantaros, Y. and Zavlanos, M. M. (2017). Sampling-based control synthesis for multi-
robot systems under global temporal specifications. In Proceedings of International Con-
ference on Cyber-Physical Systems, pages 3–13. ACM.

[75] Karaman, S. and Frazzoli, E. (2008). Vehicle routing problem with metric temporal
logic specifications. In Proceedings of Conference on Decision and Control, pages 3953–
3958. IEEE.

[76] Karaman, S. and Frazzoli, E. (2009). Sampling-based motion planning with determin-
istic µ-calculus specifications. In Proceedings of Conference on Decision and Control,
pages 2222–2229. IEEE.

[77] Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion
planning. The international Journal of Robotics Research, 30(7):846–894.

[78] Karaman, S. and Frazzoli, E. (2012). Sampling-based algorithms for optimal motion
planning with deterministic µ-calculus specifications. In Proceedings of American Con-
trol Conference, pages 735–742. IEEE.

[79] Karaman, S., Sanfelice, R. G., and Frazzoli, E. (2008). Optimal control of mixed
logical dynamical systems with linear temporal logic specifications. In Proceedings of
Conference on Decision and Control, pages 2117–2122. IEEE.

[80] Kavraki, L. E., Kolountzakis, M. N., and Latombe, J.-C. (1998). Analysis of prob-
abilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation,
14(1):166–171.

[81] Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12(4):566–580.

[82] Kemeny, J. G. and Snell, J. L. (1960). Finite markov chains. Springer.

[83] Klein, J. and Baier, C. (2006). Experiments with deterministic ω-automata for formu-
las of linear temporal logic. Theoretical Computer Science, 363(2):182–195.

[84] Kloetzer, M. and Belta, C. (2010). Automatic deployment of distributed teams of
robots from temporal logic motion specifications. IEEE Transactions on Robotics,
26(1):48–61.

References 133

[85] Kloetzer, M., Ding, X. C., and Belta, C. (2011). Multi-robot deployment from LTL
specifications with reduced communication. In Proceedings of Conference on Decision
and Control and European Control Conference, pages 4867–4872. IEEE.

[86] Kloetzer, M. and Mahulea, C. (2016). Multi-robot path planning for syntactically co-
safe LTL specifications. In Proceedings of International Workshop on Discrete Event
Systems, pages 452–458. IEEE.

[87] Kobilarov, M. (2012). Cross-entropy motion planning. The International Journal of
Robotics Research, 31(7):855–871.

[88] Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-
time Systems, 2(4):255–299.

[89] Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J. (2007). Where’s waldo? sensor-
based temporal logic motion planning. In Proceedings of International Conference on
Robotics and Automation, pages 3116–3121. IEEE.

[90] Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., and Inoue, H. (2002).
Dynamically-stable motion planning for humanoid robots. Autonomous Robots,
12(1):105–118.

[91] Kupferman, O. and Vardi, M. Y. (2001). Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314.

[92] Kushner, H. and Dupuis, P. G. (2013). Numerical methods for stochastic control prob-
lems in continuous time, volume 24. Springer Science & Business Media.

[93] Kwiatkowska, M., Norman, G., and Parker, D. (2011). Prism 4.0: Verification of proba-
bilistic real-time systems. In Proceedings of Conference on Computer Aided Verification,
pages 585–591. Springer.

[94] Lahijanian, M., Andersson, S., and Belta, C. (2011). Control of Markov decision
processes from PCTL specifications. In Proceedings of American Control Conference,
pages 311–316. IEEE.

[95] Lahijanian, M., Andersson, S. B., and Belta, C. (2012). Temporal logic motion
planning and control with probabilistic satisfaction guarantees. IEEE Transactions on
Robotics, 28(2):396–409.

[96] Lampariello, R., Nguyen-Tuong, D., Castellini, C., Hirzinger, G., and Peters, J. (2011).
Trajectory planning for optimal robot catching in real-time. In Proceedings of Interna-
tional Conference on Robotics and Automation, pages 3719–3726. IEEE.

[97] Latombe, J.-C. (1991). Robot Motion Planning. Kluwer Academic Publishers.

[98] Latombe, J.-C. (1999). Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. The International Journal of Robotics Research, 18(11):1119–
1128.

[99] Latvala, T. (2003). Efficient model checking of safety properties. In Proceedings of
International SPIN Workshop on Model Checking of Software, pages 74–88. Springer.

134 References

[100] LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.
Technical Report 98-11, Computer Science Department, Iowa State University.

[101] LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.

[102] LaValle, S. M. and Kuffner Jr, J. J. (2001). Randomized kinodynamic planning. The
International Journal of Robotics Research, 20(5):378–400.

[103] Leahy, K., Jones, A., Schwager, M., and Belta, C. (2015). Distributed information
gathering policies under temporal logic constraints. In Proceedings of Conference on
Decision and Control, pages 6803–6808. IEEE.

[104] Lee, D.-T. and Schachter, B. J. (1980). Two algorithms for constructing a delaunay
triangulation. International Journal of Computer & Information Sciences, 9(3):219–242.

[105] Lee, M. C. and Park, M. G. (2003). Artificial potential field based path planning
for mobile robots using a virtual obstacle concept. In Proceedings of Conference on
Advanced Intelligent Mechatronics, volume 2, pages 735–740. IEEE.

[106] Leven, P. and Hutchinson, S. (2000). Toward real-time path planning in dynamic
environments. In Proceedings of Workshop on the Algorithmic Foundations of Robotics.

[107] Li, Y. and Bekris, K. E. (2011). Learning approximate cost-to-go metrics to im-
prove sampling-based motion planning. In Proceedings of International Conference on
Robotics and Automation, pages 4196–4201. IEEE.

[108] Li, Y., Littlefield, Z., and Bekris, K. E. (2016). Asymptotically optimal sampling-
based kinodynamic planning. The International Journal of Robotics Research,
35(5):528–564.

[109] Lions, J.-L., Lübeck, L., Fauquembergue, J.-L., Kahn, G., Kubbat, W., Levedag, S.,
Mazzini, L., Merle, D., and O’Halloran, C. (1996). Ariane 5 flight 501 failure report by
the inquiry board.

[110] Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995). On the complexity of
solving Markov decision problems. In Proceedings of Conference on Uncertainty in
Artificial Intelligence, pages 394–402. Morgan Kaufmann Publishers Inc.

[111] Liu, J. (2017). Robust abstractions for control synthesis: Completeness via robust-
ness for linear-time properties. In Proceedings of International Conference on Hybrid
Systems: Computation and Control, pages 101–110. ACM.

[112] Liu, J. and Ozay, N. (2014). Abstraction, discretization, and robustness in tempo-
ral logic control of dynamical systems. In Proceedings of International Conference on
Hybrid Systems: Computation and Control, pages 293–302. ACM.

[113] Liu, J. and Prabhakar, P. (2014). Switching control of dynamical systems from metric
temporal logic specifications. In Proceedings of International Conference on Robotics
and Automation, pages 5333–5338. IEEE.

[114] Livingston, S. C., Wolff, E. M., and Murray, R. M. (2015). Cross-entropy temporal
logic motion planning. In Proceedings of International Conference on Hybrid Systems:
Computation and Control, pages 269–278. ACM.

References 135

[115] Lozano-Pérez, T. and Wesley, M. A. (1979). An algorithm for planning collision-free
paths among polyhedral obstacles. Communications of the ACM, 22(10):560–570.

[116] Luders, B., Kothari, M., and How, J. P. (2010). Chance constrained RRT for proba-
bilistic robustness to environmental uncertainty. In Proceedings of AIAA guidance, Nav-
igation, and Control Conference, volume 36, pages 856–863.

[117] Luna, R., Lahijanian, M., Moll, M., and Kavraki, L. E. (2014). Fast stochastic motion
planning with optimality guarantees using local policy reconfiguration. In Proceedings
of International Conference on Robotics and Automation, pages 3013–3019. IEEE.

[118] Luna, R., Lahijanian, M., Moll, M., and Kavraki, L. E. (2015). Asymptotically opti-
mal stochastic motion planning with temporal goals. In Proceedings of Workshop on the
Algorithmic Foundations of Robotics, pages 335–352. Springer.

[119] Magnenat, S., Waibel, M., and Beyeler, A. (2011). Enki: The fast 2d robot simulator.
URL http://home. gna. org/enki.

[120] Maler, O. and Nickovic, D. (2004). Monitoring temporal properties of continuous
signals. In Proceedings of International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems Formal Modeling and Analysis of Timed Systems, volume
3253, pages 152–166. Springer.

[121] Mickelin, O., Ozay, N., and Murray, R. M. (2014). Synthesis of correct-by-
construction control protocols for hybrid systems using partial state information. In
Proceedings of American Control Conference, pages 2305–2311. IEEE.

[122] Mirtich, B. (1998). V-clip: Fast and robust polyhedral collision detection. ACM
Transactions On Graphics, 17(3):177–208.

[123] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). The e-puck, a robot designed
for education in engineering. In Proceedings of Conference on Autonomous Robot Sys-
tems and Competitions, volume 1, pages 59–65. IPCB.

[124] Montana, F. J., Liu, J., and Dodd, T. J. (2016). Sampling-based stochastic optimal
control with metric interval temporal logic specifications. In Proceedings of Conference
on Control Applications, pages 767–773. IEEE.

[125] Montana, F. J., Liu, J., and Dodd, T. J. (2017a). Sampling-based path planning for
multi-robot systems with co-safe linear temporal logic specifications. In Proceedings of
Critical Systems: Formal Methods and Automated Verification, pages 150–164. Springer.

[126] Montana, F. J., Liu, J., and Dodd, T. J. (2017b). Sampling-based reactive motion plan-
ning with temporal logic constraints and imperfect state information. In Proceedings of
Critical Systems: Formal Methods and Automated Verification, pages 134–149. Springer.

[127] Nikou, A., Tumova, J., and Dimarogonas, D. V. (2016). Cooperative task planning
of multi-agent systems under timed temporal specifications. In Proceedings of American
Control Conference, pages 7104–7109. IEEE.

136 References

[128] Ó’Dúnlaing, C. and Yap, C. K. (1985). A "retraction" method for planning the motion
of a disc. Journal of Algorithms, 6(1):104–111.

[129] Ono, M., Williams, B. C., and Blackmore, L. (2013). Probabilistic planning for con-
tinuous dynamic systems under bounded risk. Journal of Artificial Intelligence Research,
46:511–577.

[130] Ozay, N., Liu, J., Prabhakar, P., and Murray, R. M. (2013). Computing augmented
finite transition systems to synthesize switching protocols for polynomial switched sys-
tems. In Proceedings of American Control Conference, pages 6237–6244. IEEE.

[131] Palmieri, L. and Arras, K. O. (2015). Distance metric learning for RRT-based motion
planning with constant-time inference. In Proceedings of Conference on Robotics and
Automation, pages 637–643. IEEE.

[132] Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441–450.

[133] Papusha, I., Fu, J., Topcu, U., and Murray, R. M. (2016). Automata theory meets
approximate dynamic programming: Optimal control with temporal logic constraints. In
Proceedings of Conference on Decision and Control, pages 434–440. IEEE.

[134] Perez, A., Platt, R., Konidaris, G., Kaelbling, L., and Lozano-Perez, T. (2012). LQR-
RRT*: Optimal sampling-based motion planning with automatically derived extension
heuristics. In Proceedings of Conference on Robotics and Automation, pages 2537–2542.
IEEE.

[135] Pineau, J., Gordon, G., Thrun, S., et al. (2003). Point-based value iteration: An
anytime algorithm for POMDPs. In Proceedings of International Joint Conference on
Artificial Intelligence, volume 3, pages 1025–1032.

[136] Plaku, E. (2012a). Path planning with probabilistic roadmaps and co-safe linear tem-
poral logic. In Proceedings of Conference on Intelligent Robots and Systems, pages
2269–2275. IEEE.

[137] Plaku, E. (2012b). Planning in discrete and continuous spaces: From LTL tasks to
robot motions. In Proceedings of Conference Towards Autonomous Robotic Systems,
pages 331–342. Springer.

[138] Plaku, E., Kavraki, L. E., and Vardi, M. Y. (2010). Motion planning with dynamics
by a synergistic combination of layers of planning. IEEE Transactions on Robotics,
26(3):469–482.

[139] Pnueli, A. (1977). The temporal logic of programs. In Proceedings of Symposium on
Foundations of Computer Science, pages 46–57. IEEE.

[140] Pola, G., Girard, A., and Tabuada, P. (2008). Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508–2516.

[141] Pontryagin, L. S. (1962). Mathematical theory of optimal processes. Interscience.

References 137

[142] Pratt, V. R. (1981). A decidable mu-calculus: Preliminary report. In Proceedings of
Symposium on Foundations of Computer Science, pages 421–427. IEEE.

[143] Prentice, S. and Roy, N. (2009). The belief roadmap: Efficient planning in belief
space by factoring the covariance. The International Journal of Robotics Research, 28(11-
12):1448–1465.

[144] Raman, V., Donzé, A., Maasoumy, M., Murray, R. M., Sangiovanni-Vincentelli, A.,
and Seshia, S. A. (2014). Model predictive control with signal temporal logic specifica-
tions. In Proceedings of Conference on Decision and Control, pages 81–87. IEEE.

[145] Raman, V., Donzé, A., Sadigh, D., Murray, R. M., and Seshia, S. A. (2015). Reac-
tive synthesis from signal temporal logic specifications. In Proceedings of International
Conference on Hybrid Systems: Computation and Control, pages 239–248. ACM.

[146] Reißig, G. (2011). Computing abstractions of nonlinear systems. IEEE Transactions
on Automatic Control, 56(11):2583–2598.

[147] Richards, A. and How, J. P. (2002). Aircraft trajectory planning with collision avoid-
ance using mixed integer linear programming. In Proceedings of American Control Con-
ference, volume 3, pages 1936–1941. IEEE.

[148] Rickert, M., Sieverling, A., and Brock, O. (2014). Balancing exploration and exploita-
tion in sampling-based motion planning. IEEE Transactions on Robotics, 30(6):1305–
1317.

[149] Rimon, E. and Koditschek, D. E. (1992). Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation, 8(5):501–518.

[150] Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross-Entropy Method. Springer.

[151] Saha, S. and Julius, A. A. (2016). An MILP approach for real-time optimal controller
synthesis with metric temporal logic specifications. In Proceedings of American Control
Conference, pages 1105–1110. IEEE.

[152] Sastry, S. (2013). Nonlinear systems: analysis, stability, and control, volume 10.
Springer Science & Business Media.

[153] Schouwenaars, T., De Moor, B., Feron, E., and How, J. (2001). Mixed integer pro-
gramming for multi-vehicle path planning. In Proceedings of European Control Confer-
ence, pages 2603–2608. IEEE.

[154] Schulman, J., Ho, J., Lee, A. X., Awwal, I., Bradlow, H., and Abbeel, P. (2013).
Finding locally optimal, collision-free trajectories with sequential convex optimization.
In Robotics: science and systems, volume 9, pages 1–10. Citeseer.

[155] Sharan, R. and Burdick, J. (2014). Finite state control of POMDPs with LTL specifi-
cations. In Proceedings of American Control Conference, pages 501–508. IEEE.

[156] Shewchuk, J. R. (1996). Triangle: Engineering a 2d quality mesh generator and delau-
nay triangulator. In Applied Computational Geometry Towards Geometric Engineering,
pages 203–222. Springer.

138 References

[157] Smith, S. L., Tůmová, J., Belta, C., and Rus, D. (2011). Optimal path planning
for surveillance with temporal-logic constraints. The International Journal of Robotics
Research, 30(14):1695–1708.

[158] Solovey, K., Salzman, O., and Halperin, D. (2016). Finding a needle in an exponen-
tial haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion
planning. The International Journal of Robotics Research, 35(5):501–513.

[159] Şucan, I. A. and Kavraki, L. E. (2012). A sampling-based tree planner for systems
with complex dynamics. IEEE Transactions on Robotics, 28(1):116–131.

[160] Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., and Reif, J. H. (2005). Narrow pas-
sage sampling for probabilistic roadmap planning. IEEE Transactions on Robotics,
21(6):1105–1115.

[161] Švestka, P. and Overmars, M. H. (1998). Coordinated path planning for multiple
robots. Robotics and Autonomous Systems, 23(3):125–152.

[162] Svoreňová, M., Černá, I., and Belta, C. (2013a). Optimal control of MDPs with
temporal logic constraints. In Proceedings of Conference on Decision and Control, pages
3938–3943. IEEE.

[163] Svoreňová, M., Černá, I., and Belta, C. (2013b). Optimal receding horizon control for
finite deterministic systems with temporal logic constraints. In Proceedings of American
Control Conference, pages 4399–4404. IEEE.

[164] Svoreňová, M., Chmelík, M., Leahy, K., Eniser, H. F., Chatterjee, K., Černá, I., and
Belta, C. (2015). Temporal logic motion planning using POMDPs with parity objec-
tives: case study paper. In Proceedings of International Conference on Hybrid Systems:
Computation and Control, pages 233–238. ACM.

[165] Tabuada, P. and Pappas, G. J. (2003). From discrete specifications to hybrid control.
In Proceedings of Conference on Decision and Control, volume 4, pages 3366–3371.
IEEE.

[166] Tabuada, P. and Pappas, G. J. (2006). Linear time logic control of discrete-time linear
systems. IEEE Transactions on Automatic Control.

[167] Tedrake, R. (2010). LQR-trees: Feedback motion planning on sparse randomized
trees. International Journal of Robotics Research.

[168] Thomas, W. et al. (2002). Automata, logics, and infinite games: a guide to current
research, volume 2500. Springer Science & Business Media.

[169] Tumova, J. and Dimarogonas, D. V. (2014). A receding horizon approach to multi-
agent planning from local LTL specifications. In Proceedings of American Control Con-
ference, pages 1775–1780. IEEE.

[170] Tumova, J. and Dimarogonas, D. V. (2015). Decomposition of multi-agent planning
under distributed motion and task LTL specifications. In Proceedings of Conference on
Decision and Control, pages 7448–7453. IEEE.

References 139

[171] Ulusoy, A., Smith, S. L., Ding, X. C., Belta, C., and Rus, D. (2013). Optimality
and robustness in multi-robot path planning with temporal logic constraints. The Inter-
national Journal of Robotics Research, 32(8):889–911.

[172] Vadakkepat, P., Tan, K. C., and Ming-Liang, W. (2000). Evolutionary artificial po-
tential fields and their application in real time robot path planning. In Proceedings of
Congress on Evolutionary Computation, volume 1, pages 256–263. IEEE.

[173] Van Den Berg, J., Abbeel, P., and Goldberg, K. (2011). LQG-MP: Optimized path
planning for robots with motion uncertainty and imperfect state information. The Inter-
national Journal of Robotics Research, 30(7):895–913.

[174] Van Den Berg, J. and Overmars, M. (2007). Kinodynamic motion planning on
roadmaps in dynamic environments. In Proceedings of International Conference on In-
telligent Robots and Systems, pages 4253–4258. IEEE.

[175] Van Den Berg, J., Snoeyink, J., Lin, M. C., and Manocha, D. (2009). Centralized
path planning for multiple robots: Optimal decoupling into sequential plans. In Robotics:
Science and systems, volume 2, pages 2–3.

[176] Van Den Berg, J. P. and Overmars, M. H. (2005). Using workspace information as
a guide to non-uniform sampling in probabilistic roadmap planners. The International
Journal of Robotics Research, 24(12):1055–1071.

[177] Van Den Bergen, G. (1999). A fast and robust GJK implementation for collision
detection of convex objects. Journal of Graphics Tools, 4(2):7–25.

[178] Vardi, M. Y. and Wolper, P. (1986). An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic in Computer
Science, pages 322–331. IEEE Computer Society.

[179] Varricchio, V., Chaudhari, P., and Frazzoli, E. (2014). Sampling-based algorithms
for optimal motion planning using process algebra specifications. In Proceedings of
Conference on Robotics and Automation, pages 5326–5332. IEEE.

[180] Vasile, C. I. and Belta, C. (2013). Sampling-based temporal logic path planning. In
Proceedings of International Conference on Intelligent Robots and Systems, pages 4817–
4822. IEEE.

[181] Vasile, C. I. and Belta, C. (2014). Reactive sampling-based temporal logic path plan-
ning. In Proceedings of International Conference on Robotics and Automation, pages
4310–4315. IEEE.

[182] Vasile, C.-I., Leahy, K., Cristofalo, E., Jones, A., Schwager, M., and Belta, C. (2016).
Control in belief space with temporal logic specifications. In Proceedings of Conference
on Decision and Control, pages 7419–7424. IEEE.

[183] Webb, D. J. and van den Berg, J. (2013). Kinodynamic RRT*: Asymptotically opti-
mal motion planning for robots with linear dynamics. In Proceedings of Conference on
Robotics and Automation, pages 5054–5061. IEEE.

140 References

[184] Wolff, E. M. and Murray, R. M. (2016). Optimal control of nonlinear systems with
temporal logic specifications. In Robotics Research, pages 21–37. Springer.

[185] Wolff, E. M., Topcu, U., and Murray, R. M. (2012). Optimal control with weighted
average costs and temporal logic specifications. Proceedings of Robotics: Science and
Systems.

[186] Wolff, E. M., Topcu, U., and Murray, R. M. (2013a). Automaton-guided controller
synthesis for nonlinear systems with temporal logic. In Proceedings of International
Conference on Intelligent Robots and Systems, pages 4332–4339. IEEE.

[187] Wolff, E. M., Topcu, U., and Murray, R. M. (2013b). Optimal control of non-
deterministic systems for a computationally efficient fragment of temporal logic. In
Proceedings of Conference on Decision and Control, pages 3197–3204. IEEE.

[188] Wolff, E. M., Topcu, U., and Murray, R. M. (2014). Optimization-based trajectory
generation with linear temporal logic specifications. In Proceedings of International
Conference on Robotics and Automation, pages 5319–5325. IEEE.

[189] Wong, K. W. and Kress-Gazit, H. (2015). Let’s talk: Autonomous conflict resolution
for robots carrying out individual high-level tasks in a shared workspace. In Proceedings
of International Conference on Robotics and Automation, pages 339–345. IEEE.

[190] Wongpiromsarn, T. and Frazzoli, E. (2012). Control of probabilistic systems under
dynamic, partially known environments with temporal logic specifications. In Proceed-
ings of Conference on Decision and Control, pages 7644–7651. IEEE.

[191] Wongpiromsarn, T., Karaman, S., and Frazzoli, E. (2011). Synthesis of provably
correct controllers for autonomous vehicles in urban environments. In Proceedings of
Conference on Intelligent Transportation Systems, pages 1168–1173. IEEE.

[192] Wongpiromsarn, T., Topcu, U., and Murray, R. M. (2012). Receding horizon tempo-
ral logic planning. IEEE Transactions on Automatic Control, 57(11):2817–2830.

[193] Wongpiromsarn, T., Topcu, U., and Murray, R. M. (2013). Synthesis of control pro-
tocols for autonomous systems. Unmanned Systems, 1(01):21–39.

[194] Zamani, M., Tkachev, I., and Abate, A. (2017). Towards scalable synthesis of stochas-
tic control systems. Discrete Event Dynamic Systems, 27(2):341–369.

[195] Zefran, M. and Kumar, V. (1997). A variational calculus framework for motion plan-
ning. In Proc. IEEE International Conference on Robotics and Automation, pages 415–
420.

[196] Zhang, X., Wu, B., and Lin, H. (2015). Learning based supervisor synthesis of
POMDP for PCTL specifications. In Proceedings of Conference on Decision and Con-
trol, pages 7470–7475. IEEE.

[197] Zhang, Z. and Cowlagi, R. V. (2016). Motion-planning with global temporal logic
specifications for multiple nonholonomic robotic vehicles. In Proceedings of American
Control Conference, pages 7098–7103. IEEE.

References 141

[198] Zhou, Y., Maity, D., and Baras, J. S. (2016). Timed automata approach for motion
planning using metric interval temporal logic. In Proceedings of European Control Con-
ference, pages 690–695. IEEE.

[199] Zhu, Q., Yan, Y., and Xing, Z. (2006). Robot path planning based on artificial poten-
tial field approach with simulated annealing. In Proceedings of Conference on Intelligent
Systems Design and Applications, volume 2, pages 622–627. IEEE.

[200] Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin,
C. M., Bagnell, J. A., and Srinivasa, S. S. (2013). Chomp: Covariant hamiltonian op-
timization for motion planning. The International Journal of Robotics Research, 32(9-
10):1164–1193.

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	1 Introduction
	1.1 Aim and objectives
	1.2 Contributions
	1.3 Publications
	1.4 Thesis overview

	2 Background and Related Work
	2.1 Motion planning
	2.1.1 Roadmaps
	2.1.2 Cell decomposition
	2.1.3 Method of potential fields
	2.1.4 Optimisation-based methods
	2.1.5 Sampling-based methods

	2.2 Model checking and control synthesis
	2.2.1 Model checking
	2.2.2 Control synthesis algorithms

	2.3 Related work
	2.3.1 Optimal control
	2.3.2 Time constrained specifications
	2.3.3 Uncertainty in motion and sensing
	2.3.4 Multi-robot systems

	2.4 Concluding remarks

	3 Preliminaries
	3.1 System models
	3.2 Linear temporal logic
	3.3 -automata
	3.4 Co-safe linear temporal logic
	3.5 Metric interval temporal logic
	3.6 Timed automata

	4 Optimal Kinodynamic Motion Planning with Co-safe LTL Specifications
	4.1 Problem formulation
	4.2 Solution
	4.2.1 Overview
	4.2.2 Stable sparse RRT
	4.2.3 Stable sparse RRT with temporal logic constraints

	4.3 Analysis
	4.3.1 Probabilistic Completeness and Asymptotic Optimality
	4.3.2 Complexity

	4.4 Examples
	4.5 Concluding remarks

	5 Stochastic Optimal Control with MITL Specifications
	5.1 Problem formulation
	5.2 Solution
	5.2.1 Overview
	5.2.2 Workspace discretisation and local policies
	5.2.3 BMDP model
	5.2.4 Product BMDP
	5.2.5 Optimal global policy computation
	5.2.6 Policy implementation

	5.3 Analysis
	5.4 Example
	5.4.1 Discussion

	5.5 Concluding remarks

	6 Reactive Motion Planning with LTL Constraints and Imperfect State Information
	6.1 Problem formulation
	6.2 Solution
	6.2.1 Overview
	6.2.2 Feedback-based information roadmap
	6.2.3 Incremental transition system
	6.2.4 Product MDP
	6.2.5 Optimal policy computation
	6.2.6 Local targets
	6.2.7 Obstacle avoidance

	6.3 Examples
	6.4 Concluding remarks

	7 Path Planning for Multi-robot Systems with Co-safe LTL Specifications
	7.1 Problem formulation
	7.2 Solution
	7.2.1 Overview
	7.2.2 Probabilistic roadmap
	7.2.3 Composite roadmap exploration
	7.2.4 Product automaton update
	7.2.5 Guided exploration
	7.2.6 Implementation

	7.3 Examples
	7.4 Concluding remarks

	8 Conclusions and Future Work
	8.1 Summary and conclusions
	8.2 Future work

	References

