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Abstract

The work presented in this thesis is motivated by the ultimate goal of reali-

zing a fully integrated quantum optical circuit (IQOC), based on a III-V semi-

conductor, specifically gallium arsenide (GaAs), in a planar architecture with

embedded indium arsenide (InAs) quantum dots as single photon sources.

Technological challenges involved with achieving a scalable quantum photo-

nic circuit are addressed through the design, development and testing of con-

trollable on-chip nano-photonic elements, such as nanobeam photonic crystal

filters and electro-mechanical actuators. The research into both of these types

of devices presented here represents the first work of this kind that has been

carried out in the LDSD group at the University of Sheffield. The majority of

the measurements that have been undertaken and which are presented here

are of an optical spectroscopic nature.

An on-chip optical filter based on a one-dimensional photonic crystal struc-

ture has been modelled and demonstrated experimentally. Such devices can

be integrated with other circuit elements in order to achieve a purely electri-

cally driven IQOC. Tuning the resonant wavelength of the device in order to

attain control over the filtering parameters has also been investigated.

Control over the splitting ratio of an on-chip optical beam splitter opera-

ting at the single photon level has been achieved through an electro-mechanical

cantilever based system for the first time on the GaAs platform. This techno-

logy, which can be used for switching and phase shifting, now paves the way

towards the physical realization of reconfigurable IQOCs.

Other more efficient and versatile electro-mechanical systems that could

be used to provide greater control over a variety of optical circuit elements,

such as filters and beam splitters, have also been investigated experimentally.

Comb-drive actuators, which are well established on silicon based platforms,

have been developed for use in the GaAs based quantum optical architecture.
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Chapter 1

Introduction

The idea of quantum computers was first proposed by Richard Feynman in

1982 [1] as a way of simulating complex quantum many-body problems and

quantum electrodynamical systems, which cannot be solved using current clas-
sical computers. However, since then it has been realized that quantum com-

puters also offer additional advantages over their classical counterparts, such

as the ability to solve specific problems exponentially faster by making use of

the quantum effects of superposition and entanglement, on which quantum

information processing inherently relies. Examples include the factorisation

of large prime numbers [2] and searching unordered lists [3]. The former is

currently used in encryption protocols for securing digital information, for

example, on the web. This has caused interest in the physical implementation

of a universal quantum computer to grow, and in 2000 David DiVincenzo for-

malised the necessary requirements for its realization [4]. A large variety of

architectures, based on several different physical principles, each with their

own advantages and disadvantages, has been proposed since. Examples in-

clude systems based on superconducting junctions and trapped ions [5]. Ho-

wever, using the polarization of single photons to encode information (in so

called quantum bits, or qubits) has been shown to be particularly promising

for scalable systems, due to photons being both relatively easy to manipulate

and comparatively free from decoherence issues [6]. The idea of an optical

quantum information processing circuit was further reinforced when in 2001

it was demonstrated that efficient quantum computation could be achieved

using linear optics with only single photons, phase shifters, beam splitters
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Chapter 1. Introduction

and single-photon detectors [7].

In this context it is important to realize that it was not until the invention of

integrated circuits that a real breakthrough occurred in the utilization of what

we now call classical computers, which allowed personal computers to be-

come both technologically feasible and widely available, and which thereafter

completely revolutionised the modern world by ushering in what has become

known as the Information Age. This significant discovery has indeed been

acknowledged through the Nobel Prize in Physics being awarded in 2000 "for
basic work on information and communication technology" with one half jointly

to Zhores I. Alferov and Herbert Kroemer "for developing semiconductor hete-
rostructures used in high-speed- and opto-electronics" and the other half to Jack S.

Kilby "for his part in the invention of the integrated circuit"[8]. It is interesting to

note too that while the integrated circuits of Kilby were germanium-based, ot-

hers based on silicon were invented contemporaneously by R. N. Noyce, who

would have had an equal claim to Kilby to a share in the 2000 Nobel Prize,

had he not died ten years earlier. Thus, while it was the breakthrough in the

silicon-based microchips driven by Noyce, who became one of the founders of

Intel Corporation in 1968, that fuelled the personal computer revolution, the

work on semiconductor heterostructures revolutionized opto-electronics, pa-

ving the way towards realization of a variety of semiconductor devices, such

as light-emitting diodes, lasers and compact discs. Consequently, both of the

two inventions were essential ingredients for the information revolution.

Accordingly, it seems reasonable to assume that in order to have a similar

impact on the world, quantum computers might similarly need to be integra-

ted on a semiconductor chip. Hence, III-V semiconductor systems have quickly

become the promising frontrunners for the development of quantum optical

circuits, due both to their proven optical and electronic properties as well

as to the already existing well-developed semiconductor fabrication technolo-

gies. Therefore, integrating linear optical elements together with single pho-

ton emitters (semiconductor heterostructures) and their detectors on-chip has

become the ultimate goal in the physical realization of an efficient quantum

optical information processing circuit. It is the purpose of this thesis to further

the state-of-the-art integration methods, as well as to develop on-chip electro-

mechanical systems that would allow for III-V semiconductor optical circuits

to be reconfigured and controlled in-situ.
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1.1 Outline and Scope of this Thesis

The focus of this thesis is thus to contribute to the further technological pro-

gress in realising a controllable and fully integrated gallium arsenide (GaAs)

based quantum optical circuit, using embedded indium arsenide (InAs) quan-

tum dots (QDs) as single photon emitters, and nano-photonic devices, such as

beam splitters and filters, as information processing elements. The QDs are

used as static qubits, which store the information (equivalent to bits in a clas-

sical computer realized through capacitors), and photons are used as flying

qubits, which send the information around the chip and on which the pro-

cessing is realized through optical elements (equivalent to current flow in a

classical computer, where the processing is realized through transistors).

Background information on the proposed solid-state quantum optical in-

formation processing system is provided in Chapter 2. This includes descrip-

tions of quantum dots, methods of waveguiding the single photons emitted by

them within a planar architecture, and the essential elements of cavity quan-

tum electrodynamics, which finds applications in many on-chip optical ele-

ments, such as filters and routers. The experimental and computational met-

hods used throughout this thesis in order to design, make and test the propo-

sed integrated photonic devices are then explained in detail in Chapter 3.

Chapters 4-6 present the results of the original research that has been un-

dertaken for this thesis. Chapter 4 demonstrates on-chip optical filtering using

one-dimensional photonic crystal cavity structures for the first time in the

LDSD group at the University of Sheffield. Embedded QDs are used as pho-

ton sources to measure the relative transmissivity of light through the filter.

Further improvements to the cavity design are also proposed. In addition,

electrical control of the device’s operation, by tuning the emission wavelength

of the QDs into resonance with the cavity mode, is also investigated for the

first time. This could lead in future to novel integration of fully electrically

controlled optical circuits.

Chapter 5 demonstrates the electro-mechanical control of an on-chip op-

tical beam splitter containing embedded single-photon sources for the first

time. The system is realised through two nanobeam waveguides whose out-

of-plane separation determines the splitting ratio of the device. Applying an

actuation voltage to a cantilever to which one of the waveguides is attached
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permits control of the operation of the beam splitter. Emission from the em-

bedded QD used to measure the optical properties of the device is confirmed to

be of single-photon nature through a second-order correlation measurement.

Chapter 6 presents the development of two other electro-mechanical sys-

tems that use in-plane actuation to control a variety of on-chip photonic ele-

ments, such as beam splitters and photonic crystal cavities. This method is

shown to be able to provide greater and more efficient control over the optical

properties of these devices. Metal-rail systems and comb-drive actuator struc-

tures, which have both been demonstrated on silicon, but not on GaAs so far,

are designed, developed and tested, with the latter found to be more versatile,

more efficient and somewhat easier to realize in practice.

Finally, a summary of the work achieved in this thesis is presented in Chap-

ter 7, where directions for further research, based on the results reported here,

are also discussed.
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Chapter 2

Background

This chapter discusses the essential theoretical background that underpins the

research undertaken for this thesis. It begins with a detailed explanation of

what semiconductor quantum dots (QDs) are and what are the electronic and

optical properties of the InAs QDs studied throughout this thesis. Their suita-

bility for qubits in solid-state quantum information processing (QIP) systems

is also addressed. The chapter then goes on to explain how single photons

(flying qubits) emitted by the QDs (static qubits) are guided in an integrated

quantum optical circuit to enable information transfer and processing. Finally,

the field of cavity quantum electrodynamics (cQED) is introduced, which finds

applications in many aspects of QIP, such as efficient single photon generation,

optical filtering, switching, routing and the creation of logic gates.

2.1 Semiconductor Quantum Dots

Quantum dots (QDs) are nanometer-sized semiconductor structures within

which the carriers of charge are confined in all three spatial directions. Due to

this three-dimensional confinement the electronic levels in QDs are discrete.

QDs are often referred to as artificial atoms due to the fact that their emission

is quantized like that of an atom. They can be grown in a variety of ways,

but the InAs QDs incorporated in a GaAs matrix reported throughout this

thesis have all been grown through self-assembly. Details of the growth proce-

dure are discussed in Section 3.1.1. Any variation in the sizes of the QDs that

occurs naturally during the growth will affect their emission wavelength [9].
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The QDs studied here operate in the near infrared spectrum of ∼ 890−970 nm.

Using GaAs as a host material for InAs QDs is advantageous for two reasons.

Firstly, standard nano-fabrication techniques can be used with GaAs, and se-

condly GaAs is transparent for this wavelength range, thereby allowing the

emitted photons to propagate through the GaAs without reabsorption. In ad-

dition, InAs is a direct semiconductor, which ensures efficient radiative recom-

bination of charge carriers within the QD [10]. Self-assembled QDs (SAQDs)

have been successfully studied in other material systems, such as CdSe QDs

in ZnS [11, 12], CdTe QDs in ZnTe [13] and SiGe QDs in Si [14]. However,

InAs QDs approximate two-level emitters particularly effectively, thereby ma-

king them highly efficient for the single-photon generation required for QIP

applications [15–18].

2.1.1 Optical and Electronic Properties of InAs Quantum Dots

The band gaps of GaAs and InAs at room temperature are 1.42 eV and 0.35 eV

respectively. This large step difference in the band gaps between the two ma-

terials, in combination with InAs being formed into nanometer-sized islands

surrounded by GaAs, gives rise to the three-dimensional potential confine-

ment of charge carriers, and hence to discrete energy levels within the QD.

However, due to strain within the structure and diffusion of Ga into the InAs

QD during the growth process, the actual band gap within the QD is much

closer to that of GaAs, typically around 1.35 eV [19–21]. Due to this small dif-

ference between the two band gaps, which is close to the thermal energy of

electrons at room temperature (kBT ), the carriers of charge can be scattered

out of the QD through phonon interactions. In addition, the thermal energy of

the system affects the coherence of the quantum states, which is extremely im-

portant for QIP applications. The higher is the temperature of the system the

faster the decoherence time of the quantum states is expected to be. In order

to minimise these effects the QDs studied in this thesis are cooled to below 5 K

using liquid helium cryostats, which are described in Section 3.3.1. This also

ensures that when a single electron (or hole) is added to the QD it populates

only the first level in the conduction (or valence) band. This discrete behaviour

creates the two-level system required for QIP [22].

Electrons and holes trapped within a QD are attracted to each other through
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the electrostatic Coulomb force, and hence they form bound states called ex-

citons. A typical QD contains only one or two energy levels for electrons and

holes, which means there is a finite number of different excitonic states that

can exist within a QD. The most elementary of these is a neutral exciton state.

A neutral exciton is formed when a single electron and a single hole are trap-

ped within a QD. Both carriers of charge have spin s = 1/2, but their orbital

angular momentum, l, differs. The conduction band has the form of an s-

type wavefunction (l = 0) and is therefore degenerate with respect to spin (i.e.,
ms = ±1/2). By contrast, the valence band has a p-type orbital (l = 1), and

hence has three distinct sub-states (i.e., ml = −1,0,1). These combine with the

spin sub-states to give 3 ∗ 2 = 6 sub-states. An alternative way of describing

these is in terms of the total angular momentum given by j = l + s. In the

case when l = 1 and s = 1/2 the two possible values of j are 1/2 and 3/2. The

j = 1/2 state has two sub-states (i.e., mj = −1/2,+1/2), while the j = 3/2 state

has 4 sub-states (i.e., mj = −3/2,−1/2,+1/2,+3/2) again giving a total number

of sub-states of 2 + 4 = 6. The resulting hole states are known as the heavy

hole band (j = 3/2,mj = ±3/2), the light hole band (j = 3/2,mj = ±1/2) and the

split-off band (j = 1/2,mj = ±1/2).

The split-off band typically has a large energy offset from the heavy and

light hole bands of ≈ 350 meV, and can therefore be neglected when conside-

ring the lowest energy states of a neutral exciton [23]. The remaining dege-

neracy between the heavy and light hole bands is typically lifted due to strain

within the QD caused by the lattice mismatch between the two semiconduc-

tors giving ≈ 30 meV energy difference between the two bands [24]. This me-

ans that the light hole band can also be omitted from further considerations.

Therefore, the total angular momentum projections for neutral exciton sta-

tes of the lowest energy (which comprise an electron and a heavy-hole) are

mx
j = me

s +mh
j = ±1,±2. Since a photon carries a spin projection of ±1, only

those exciton states with mx
j = ±1 are optically allowed, and these are called

bright excitons. The states with mx
j = ±2 require an angular momentum trans-

fer of twice that of a photon. Therefore, these states are optically forbidden

and are called dark excitons.

The degeneracy between both bright and both dark states can also be lif-

ted by the asymmetry of the QD. The energy level difference between the two

bright (or dark) states is known as fine structure splitting (FSS) [25, 26]. The
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Figure 2.1: Schematic diagram of the energy levels of a neutral exciton state within a
QD.

two bright states decay radiatively by emitting photons which are orthogo-

nally polarised to one another. This property can be utilized for directional

emission of a single photon on a chip. If a QD is located in a structure exhibi-

ting polarised optical modes, such as a 2D photonic crystal cavity (discussed

in Section 2.6) or a nanobeam waveguide (see Section 2.2.1), only the excited

bright state of the matching polarisation will couple to the structure modes,

and hence emit light in the preferential direction on a chip [27, 28]. A sche-

matic diagram of the energy levels of a neutral exciton state within a QD is

presented in Figure 2.1.

As mentioned before, other excitonic states (apart from a neutral exciton)

can exist within a QD. If a QD is populated with more holes than electrons

(or the other way round), the bound state becomes charged and is known as a

positive (or negative) exciton. These states are optically active with different

energy levels from each other and the neutral exciton state due to the modified

strength of the Coulomb interactions between the carriers. Similarly, a QD

could be populated by two electrons and two holes forming a biexciton. The

two electron-hole pairs can recombine to emit two photons successively [29].

This so-called biexciton cascade can be used for the generation of polarization-
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entangled photons on a chip, which is another essential component of QIP

systems [30–32]. However, coupling two photons of different polarization to

the same direction in a waveguide remains a technological challenge.

2.1.2 Quantum Dots as Qubits

The reasons behind QDs being good contenders for optical qubits are twofold.

Firstly, as discussed above, the two-level system of an exciton in a QD allows

for the creation of qubits. Secondly, the ability of the QDs (static qubits) to cou-

ple efficiently to single photons (flying qubits) facilitates transfer and storage

of quantum information on a chip [33, 34]. However, as this is a solid-state

system, the difficulty in achieving it experimentally arises from the inevitable

interactions with the environment that result in the dephasing of the quantum

states. Examples of processes causing the decoherence of the system in time

are crystal lattice vibrations (phonons), nuclear spin interactions and charge

fluctuations [35]. These effects can be mitigated by reducing the emitter life-

time so that it is lower than the dephasing time. By so doing, the quantum state

can be recovered from the QDs through photons before it collapses. This can

be achieved by embedding a quantum emitter inside an optical microcavity,

which increases its emission rate through the so-called Purcell effect, which is

discussed further in Section 2.3.

2.1.3 Quantum-Confined Stark Effect

The emission wavelength of a QD depends on both the energy level difference

between the electron and hole states and the exciton binding energy. Due to

this binding energy, the exciton has a lower energy than an unbound electron

and hole pair. The band structure of the device can be modified by the appli-

cation of an electric field. Schematic diagrams of both an unbiased and biased

QD populated by one neutral exciton are presented in Figure 2.2. As voltage is

applied across the device the band structure is modified, decreasing the energy

separation between the electron and hole states, thereby reducing the energy

of the photon emitted upon recombination. The resulting QD emission is thus

at a longer wavelength than under the flat-band conditions. This modifica-

tion of the emission energy, ∆E, due to an electric field, E, is known as the
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Figure 2.2: Schematic diagram of the electronic band structure of a quantum dot
under (a) flat-band condition (zero electric field, E = 0), and (b) non-zero electric field
within the structure (E , 0). The application of an electric field reduces the energy
difference between the electron and hole energy states.

quantum-confined Stark effect (QCSE), and is given by [36, 37]:

∆E = −pE −αE2, (2.1)

where p and α are the permanent electric dipole moment and the polarisability

of the material respectively, in the direction of the electric field, E.

The range of QD emission tuning that can be achieved through the QCSE

depends on the rate at which the charge carriers tunnel out from the QD. If

the rate of tunnelling is faster than the radiative recombination rate the emis-

sion efficiency is quenched. One of the factors affecting the tunnelling rate

is the energetic barrier height between the electron and hole energy states of

the QD and the surrounding material [38]. The application of a large elec-

tric field changes the shape of the band structure to triangular, which hence

reduces the energy offset between the electron (or hole) and the GaAs, the-

reby leading to quenched emission. The amount of tuning can, hence, be

maximized by careful design of the wafer structure. Bennett et al. [39] have

shown a giant QCSE tuning of InAs QD emission of 25 meV by introducing

AlGaAs barriers on either side of the thin GaAs layers surrounding the InAs
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QD layer. The QCSE provides a promising alternative to other QD emission

tuning methods, such as temperature control. By contrast with temperature

tuning, QCSE control does not affect other properties of the QD emission, such

as spectral coherence [40], nor of the semiconductor devices, such as optical

cavity modes [41, 42]. It also has the potential to be scalable and to provide

local control over different QDs on a chip. This is an important capability for

enabling QIP on integrated circuits. An example is the two-photon interfe-

rence effect emitted from two remote QDs, observed experimentally by Patel

et al. [43] due to local QCSE tuning.

2.2 Guiding of Light in a Photonic Integrated Cir-

cuit

Guiding light in a photonic integrated circuit is essential for achieving optical

QIP on a chip. Two commonly used methods that accomplish this are through

the so-called nanobeam and photonic crystal (PhC) waveguides. Even though

it is only the former approach that has been used for all of the research re-

ported in this thesis, both of the mechanisms are now briefly described. The

short introduction to PhCs here will also be useful later in this thesis, particu-

larly when PhC cavities are introduced in Section 2.3.3 and then modelled and

studied experimentally in Chapters 4 and 6.

2.2.1 Nanobeam Waveguides

Perhaps the easiest method of guiding light in a dielectric medium such as a

GaAs chip is through total internal reflection (TIR). GaAs is a transparent ma-

terial for QD emission wavelengths, with a refractive index of n ≈ 3.4 at cryo-

genic temperatures. For a nanobeam waveguide a large refractive index diffe-

rence that minimises the critical angle of refraction, θc, is provided through air

cladding. This is achieved by simply etching away the GaAs material around

a rectangular structure, as shown in Figure 2.3. Light is then confined through

TIR in two directions: out-of-plane and one in-plane, with θc ≈ 17◦ according

to Snell’s Law. This means that QD emission can propagate in one direction

along the waveguide only.
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1 m

Figure 2.3: Angled scanning electron microscope image of a typical GaAs nanobeam
waveguide.

Another important aspect of light propagation for optical QIP applications

is single mode operation. The group velocity of a light wave, vg, depends on

the wave number, k, in which certain frequencies of light, ω, can propagate,

according to:

vg =
dω
dk
. (2.2)

Hence, if the energy of an optical pulse at a single frequency (such as the QD

emission) spreads over several optical modes, parts of the pulse will travel

at different speeds. This will result in broadening of the initial short pulse in

time. This so-called intermodal dispersion is particularly problematic for light

propagation over long distances.

In addition, the overall efficiency of on-chip single-photon sources depends

on the number of possible modes to which each photon can be coupled. If

this number is large the probability of a photon being emitted to the desi-

red waveguide mode (known as the β-factor) is low, making the source in-

efficient [44]. Therefore, on-chip waveguides are designed to operate in a

single-mode regime (similarly to industry standard single-mode fibres). To

confine the light to a single vertical (out-of-plane) mode a waveguide thickness

Zofia K. Bishop 12



2.2. Guiding of Light in a Photonic Integrated Circuit

of 140 nm is used. This corresponds to the λ/2n constraint for a QD emission

wavelength of 950 nm. This dimension is fixed during the epitaxial growth of

the GaAs membrane on top of the sacrificial AlGaAs layer, the etching of which

allows the suspension of the nanobeam waveguide (see Section 3.1). With the

waveguide thickness now set, its width will affect the number of transverse

electric (TE) and transverse magnetic (TM) modes that are allowed to propa-

gate. As QD emission is known to couple well to the TE modes [45], the wa-

veguide width has been chosen so that it results in the strong confinement of

a single TE mode. In order to find the appropriate dimension finite-difference

time-domain (FDTD) or frequency domain electromagnetic modelling had to

be undertaken (see Section 3.4.1). In our case an FDTD solver was used by

Dr Rikki J. Coles to determine that a waveguide with a width equal to twice

its thickness will confine 95 % of the light in a single TE mode. For this rea-

son, the width of the waveguide that is intended to be achieved during sample

fabrication is ∼ 280 nm.

2.2.2 Photonic Crystal Waveguides

Photonic crystal (PhC) confinement is perhaps most easily described through

an analogy to semiconductor physics. The periodic alignment of atoms and

molecules in a crystal lattice of a material gives rise to a periodic potential

experienced by the electrons travelling through the material. This may result

in an energy gap in the band structure of the crystal in which electrons are

prohibited to propagate through the lattice. Photonic crystals are the optical

analogue of this phenomenon. Instead of the atomic lattice, a macroscopic

lattice of materials with different dielectric constants is used, replacing a peri-

odic potential with a periodic refractive index. If the refractive index contrast

is large enough and if the absorption of light in the materials is small, then the

various reflections and refractions of light from the periodic interfaces can give

rise to an energy band gap for photons (known as a photonic band gap) [46–

48], just like the atomic lattice does for electrons. Therefore, we can engineer

PhCs in order to prevent light of particular frequencies from propagating in

certain directions.

Hence, there exist 1D, 2D and 3D PhCs depending on the number of for-

bidden directions within the crystal. Figure 2.4 illustrates the three different

13 Zofia K. Bishop



Chapter 2. Background

Figure 2.4: 1D, 2D and 3D photonic crystal lattices with materials of different re-
fractive indices indicated with dark and light shades of blue.

Figure 2.5: Scanning electron microscope image of a typical GaAs photonic crystal
waveguide.
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lattice types that give different spatial confinements. An example of a 1D PhC

is a distributed Bragg reflector, where thin layers of materials with varying re-

fractive index act as a mirror for light propagating perpendicular to the layers.

A 2D PhC can be engineered by simply making periodic holes in a dielectric

material. Truly 3D PhCs with complete photonic band gaps in all three spa-

tial dimensions are very challenging to achieve experimentally. In 1998 Lin

et al. [49] demonstrated such a structure using polysilicon 1D rods carefully

positioned in a face-centred tetragonal lattice using a four-layered stacking

sequence. It required a complicated and cumbersome fabrication process es-

pecially developed for this purpose where each layer had to be deposited, pat-

terned and etched consecutively. They have achieved a large 3D photonic band

gap for wavelengths of 10− 14.5µm.

2D PhCs can be realised on a chip through a triangular lattice of holes crea-

ted in a GaAs membrane. This results in a photonic band gap for certain wave-

lengths of light in two in-plane directions. Eventually it is desirable for the QD

emission to propagate in one in-plane direction as in the case of the nanobeam

waveguides discussed above. Therefore, the out-of-plane confinement is again

realized by suspending the 2D PhC structure created in a GaAs membrane

by removing the sacrificial AlGaAs layer from beneath it. This results in an

overall 3D confinement of light at the QD emission frequencies: two in-plane

directions through PhC confinement and one out-of-plane direction through

TIR. In order then to create a waveguide, one row of holes is omitted in the 2D

PhC lattice, as shown in Figure 2.5. Light is still prohibited from propagating

in the x direction, and can only travel in the +y or −y direction through the

line defect at its centre. The resulting so-called W1 PhC waveguides are of

great interest to researchers in the field of optical QIP as they integrate well

with other important circuit components, such as PhC cavities [50] (discussed

in Section 2.3.3).

Furthermore, PhC waveguides can be used to study the so-called slow light

phenomenon. As the optical modes propagating through the waveguide ap-

proach the Brillouin zone (BZ) boundary, backscattered light interferes with

the original rays, thereby reducing the group velocity of the travelling wave.

Further away from the BZ boundary the backscattered light is more out-of-

phase with the propagating wave, and hence the two interfere less with each

other, resulting in the mode being dominated by TIR within the waveguide [51].
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The larger is the refractive index contrast, the more intense are the backscat-

tered waves, and hence the bigger is the slow-down factor of the propagating

wave [52]. For this reason PhCs are promising media for studying the slow

light phenomenon.

The slow light regime can occur due to any resonances within the struc-

ture, and therefore does not have to occur only near the edge of the BZ. Careful

adjustment to the design of the W1 PhC waveguide can move the slow light

region away from the BZ boundary, as demonstrated by Petrov et al. [53]. The

bandwidth for slow light operation can also be increased, for example, by in-

creasing the diameter of the holes in the row closest to the line defect [54].

Similarly, the slow-down factor can be greatly enhanced by decreasing the

width of the waveguide by bringing two parts of the 2D PhC lattice closer to-

gether [55]. Engineering of the slow light phenomenon within the PhC struc-

tures provides opportunities for the realization of tunable and compact inte-

grated delay lines [56, 57], as well as optical storage and switching applicati-

ons [58, 59].

2.3 Cavity Quantum Electrodynamics

An optical microcavity is an optical resonator whose linear dimensions are of

the order of or smaller than the wavelength of the light to be confined within it.

Standing waves are formed in a cavity by an arrangement of optical elements,

such as mirrors. A basic example is a Fabry-Perot cavity made of two parallel

mirrors. As the two mirrors are highly reflective, the light will continuously

reflect off of them, resulting in the formation of standing waves for certain

resonant frequencies of the cavity, ω, which depend on the geometry of the

cavity and the medium within it. For an ideal cavity, the resonant light waves

should remain trapped between the mirrors for an infinite amount of time.

However, in reality, imperfections in the cavity design or in the mirrors lead to

photons having a finite lifetime within the cavity. The optical loss rate of the

cavity, κ, is often described in terms of the quality factor (or Q-factor) of the

cavity, as follows:

Q =
ω
κ
. (2.3)
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The photon loss rate manifests itself through spectral characteristics of the ca-

vity. A lossless cavity would have an emission line of infinitesimal width, while

an imperfect one manifests itself through a broadened emission spectrum. The

Q-factor can, therefore, also be defined as:

Q =
ω
∆ω

, (2.4)

where ∆ω is the full-width at half-maximum (FWHM) of the resonant peak of

the cavity.

When a quantum emitter, such as a QD, is placed inside an optical cavity,

the two interact with each other. If the emitter and the cavity are in resonance,

the rate of transition between the ground and excited QD states is modified

due to light-matter interactions. This interesting phenomenon is known as

cavity quantum electrodynamics (cQED). It is characterised by three parame-

ters: the above-mentioned photon loss rate of the cavity, κ, the non-resonant

emission rate of the emitter, γ , and the emitter-photon coupling rate, g0.

The parameter γ includes the effects of emission into modes that are not

the resonant frequency modes of the cavity, as well as any non-radiative re-

combination processes. The former can be suppressed by reducing the spectral

density of non-resonant cavity modes. This can be achieved by optical band

gap engineering through, for example, PhCs described in Section 2.2.2. The

non-radiative recombination processes are typically negligible for InAs QDs

at low temperatures (∼ 5 K) [44].

The parameter g0 describes the rate of exchange of energy between the

emitter and the cavity mode while in resonance, and is defined as follows [60]:

g0 ≡
( µ2ω

2ε0~Veff

)1/2
, (2.5)

where µ is the electric dipole matrix element of the emitter transition, ω is the

angular frequency, ε0 is the permittivity of free space, ~ is the Dirac constant

and Veff is the effective modal volume. While µ depends mostly on the size of

the emitter, which is largely fixed, Veff is defined to be [61]:

Veff ≡

∫
V
ε|E |2dV

max(|E |2)εmax
, (2.6)
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where E is the electric field, ε is the dielectric permittivity and εmax is the

dielectric permittivity at the location of the maximum electric field intensity.

Typically, Veff is given in the convenient units of (λ/n)3, where λ is the wave-

length of light in vacuum and n is the refractive index of the material. There-

fore, by decreasing the size of the cavity, the emitter-photon coupling rate can

be increased. For this reason PhC cavities (further discussed in Section 2.3.3),

whose effective modal volumes are of the order of 10−2(λ/n)3 or smaller are of

great interest for studying cQED effects.

The light-matter interaction between the emitter and the cavity can be clas-

sified into two regimes: the weak and strong coupling regimes. If the photons

are lost from the cavity before the emitter can reabsorb them, i.e. g0 << (κ,γ),

the system is weakly coupled. Conversely, in the strongly coupled case, the

photons are reabsorbed by the emitter and re-emitted several times before le-

aving the cavity, i.e. g0 >> (κ,γ).

2.3.1 Weak Coupling: The Purcell Effect

Even though photons are not reabsorbed by the quantum emitter in the weak

coupling regime of light-matter interaction, an interesting phenomenon takes

place. According to Fermi’s Golden Rule the rate of transition between the

ground and excited states of the emitter is proportional to the density of avai-

lable states as well as to the strength of interaction between the emitter and the

environment for this transition frequency. Therefore, for the emitter resonant

with the cavity mode the interaction strength is increased, in comparison to

the free space, resulting in the enhanced emission rate of the quantum emit-

ter. This effect was first observed by Edward Mills Purcell in 1946 [62] and has

since become known as the Purcell effect. It can be quantified by the Purcell

factor, which is defined as the ratio of transition rates for an emitter within a

cavity, Γcav, to that in free space, ΓFS, and is given by:

FP =
Γcav

ΓFS
=

3
4π2

(λ
n

)3( Q
Veff

)
ξ2L(ω), (2.7)

where ξ is the normalized dipole orientation defined below, L(ω) is the spectral

lineshape of the cavity and the other parameters are as defined previously. The

factor ξ describes the spatial and polarisation alignment between the emitter
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and the cavity mode fields, and is given by: ξ ≡ |p · E |/ |p||E |, where p is the

dipole moment of the emitter and E is the electric field in the cavity. The pa-

rameter L(ω) represents the spectral overlap between the emitter’s frequency,

ω0, and that of the cavity, ω, with a Lorentzian lineshape, and can be written

as L(ω) ≡ ∆ω2/[4(ω0 −ω)2 +∆ω2].

The Purcell factor indicates either an enhancement (for FP > 1) or a sup-

pression (for FP < 1) of the transition rate of the quantum emitter from ground

to excited states due to the light-matter coupling between the emitter and the

cavity. As the Purcell factor depends not only on theQ-factor and the effective

modal volume of the cavity but also on the spectral and spatial alignment bet-

ween the emitter and the cavity, high Purcell factor values are very challenging

to achieve experimentally.

In addition, experimental determination of the Purcell factor is not straig-

htforward. Time-resolved photo-luminescence spectroscopy can be used to de-

termine the radiative lifetime of an emitter. However, to compare directly ca-

vity and free space transition rates, the cavity would have to be placed around

the emitter following the free space measurement. For this reason experimen-

tal values of the Purcell factor are typically found through statistical means,

where an average radiative lifetime of a set of emitters in free space is compa-

red to that of an emitter in a cavity [63].

2.3.2 Strong Coupling: Rabi Splitting

In the strong coupling regime of the cQED effect, the emitted photon remains

in the cavity for a long enough period of time to be reabsorbed by the emitter.

This exchange between the cavity photon and the emitter exciton is known as

Rabi oscillation [64]. The system is well described by the Jaynes-Cummings

Hamiltonian [65], the solutions of which are two energy eigenstates whose

difference, ∆E, depends on the strength of the coupling as follows:

∆E = 2

√
g2

0 −
(κ −γ)2

16
. (2.8)

When g0 << (κ,γ), ∆E is imaginary and the emitter and the cavity states are

degenerate. This is the case in the weak coupling regime, where the Purcell

effect is the dominant phenomenon as discussed above. By contrast, when
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g0 >> (κ,γ), ∆E is real and the degeneracy is lifted. The cavity photon and the

emitter exciton form a quasiparticle known as an exciton-polariton [66], for-

ming two states, and with the magnitude of the energy splitting between them

being ∆E. Experimentally, the strong coupling regime is observed through the

splitting between the cavity mode and the emission wavelength spectral peaks

at resonance. The transition between the weak and strong coupling regimes

is confirmed by an anti-crossing of the two emission peaks as one is tuned

across the resonance of the other [67–69]. Quantum emitters, such as QDs,

embedded in microcavities and operating in the strong coupling regime are

compelling contenders for the provision of efficient on-demand single photon

sources [70, 71].

2.3.3 Photonic Crystal Cavities

As discussed briefly in Section 2.2.2, 2D and 1D photonic crystal (PhC) con-

finement can be integrated in a planar semiconductor architecture to be used

for controlling the propagation of light in quantum optical circuits. The re-

maining directions are forbidden through total internal reflection. However,

defects can be introduced to the PhC periodic structure in order to allow a pro-

portion of the spectrum inside the photonic band gap to be allowed through.

An example given earlier was the linear propagation defect where, by remo-

ving one row of holes in a 2D PhC, a single mode waveguide can be formed.

However, localized point defects can also be used to create optical microreso-

nators.

The most widely studied PhC cavities (PhCCs) are the so-called H1 and

L3 cavities [48]. Both of these are based on the same 2D PhC structure as in

Section 2.2.2. An H1 cavity is created by omitting one hole, while an L3 ca-

vity is made by removing three nearest-neighbour holes in a row (i.e., along

one of the triangular-lattice directions) from the periodic array. They can be

optimized further in order to decrease out-of-plane scattering losses by slig-

htly shifting and/or altering the diameter of the holes immediately surroun-

ding the defect, thereby achieving very high experimental Q-factors of over

40,000 [72, 73]. Nanobeam PhCCs, which are based on 1D PhCs are currently

attracting increasing attention from the quantum optical community as they

can be easily integrated with other circuit components, such as nanobeam wa-
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Figure 2.6: Types of photonic crystal cavities: (a) H1 and (b) L3 are (2D) planar
periodic structures with 1 and 3 holes omitted to create a defect respectively, while (c)
the nanobeam is a 1D array with a changed spacing between the two centre holes.

veguides (see Section 2.2.1) and beam splitters. In addition, there exist pro-

mising electro-mechanical in-plane actuators, which can be used to tune the

optical properties of these cavities in situ (see Chapter 6). Defect states in the

nanobeam PhCCs can be created in a variety of ways, some of which are furt-

her discussed in Chapter 4. However, the simplest case is to displace half of

the PhC array closer to or further away from the other half, so that the distance

between the two centre holes is different to the periodic spacing between all

the other holes. The three types of PhCCs discussed here are presented sche-

matically in Figure 2.6.

PhCCs are very promising platforms for studying cQED effects as they have

very low effective modal volumes, Veff. This is due to their inherent size, with

cavities of dimensions of the order of the wavelength of light for which they

are designed to operate, so that Veff ∼ (λ/n)3. This means that even PhCCs with

low Q-factors can achieve a large Purcell enhancement of the emission rate of

the emitter embedded within them. In addition, these structures have found

numerous applications in a variety of nanophotonic devices, such as switches,

logic gates and memory storage [74].
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Chapter 3

Methods

This chapter outlines the experimental and computational methods that have

been used in order to obtain the results presented in this thesis. It begins with

a description of the molecular beam epitaxy (MBE) technique used to grow

quantum dots (QDs) and an overview of a typical structure of the GaAs-based

wafers. The subsequent fabrication techniques for the placement of diodes

and various photonic structures on those wafers are then discussed. The chap-

ter continues with an outline of the optical device characterisation methods

that have been utilized. These include a micro-photoluminescence setup em-

ployed with two types of cryostats and a time-correlated single-photon coun-

ting technique used to verify the single-photon nature of the emission from

the QDs. Finally, the chapter concludes with a description of the computatio-

nal methods used to simulate the optical and electro-mechanical behaviour of

the structures studied in this thesis.

3.1 Wafer Growth

In this section the principles behind the growth of self-assembled QDs are

explained. The technique that was used to grow the InAs QDs for all the sam-

ples is also described. Finally, the typical structures of the doped (electrically

active) and intrinsic (electrically inactive) wafers are presented.

All of the wafers used for the experiments reported in this thesis were

grown by Dr Edmund Clarke in the National Epitaxy Facility in Sheffield, UK.

23



Chapter 3. Methods

3.1.1 Quantum Dot Growth

A semiconductor QD is a structure with the charge carriers quantum confined

in all three spatial dimensions (as discussed in Section 2.1). In order to achieve

such confinement the sizes of the QDs have to be no larger than the de Broglie

wavelength of electrons (50 nm in GaAs) [75]. Therefore, a fabrication method

is required that allows precise control over the dimensions and shapes of the

nanostructures, as these will affect the optical properties of the QDs [76]. Se-

veral advanced crystal growth techniques fulfil these criteria. Natural or self-

assembled QDs can be produced using heteroepitaxial methods. Natural QDs

are made by the deposition of 2D semiconductor layers of different bandgaps

on top of each other to create a two-dimensional confinement of charge known

as a quantum well. The remaining in-plane confinement necessary for QD for-

mation arises naturally in the system from monolayer thick fluctuations in the

quantum well width [77]. On the other hand, QDs formed by self-assembly

offer higher yield and better control over their sizes and shapes [22].

It is the self-assembled InAs QDs that were used throughout this thesis,

and hence the Stranski-Krastanow growth mode [78] used for their formation

is discussed here in detail. This method relies on the lattice mismatch bet-

ween the two compound semiconductors. In the case of InAs QDs formed on

a GaAs substrate, this amounts to 7 % [79]. As a thin layer of InAs is depo-

sited on top of GaAs at first a layer is formed with the lateral lattice constant

of GaAs, known as the wetting layer. However, as the InAs layer thickness is

increased to above a critical value (typically ∼ 1.7 monolayers [77]), the sto-

red compressive strain leads to instability. In order to relieve the built-up

energy InAs relaxes to its original lateral lattice dimensions forming small is-

lands of the order of 10 nm in size. Their exact size and shape can be control-

led through various growth parameters, such as temperature, pressure and

deposition time [80]. A final layer of GaAs is then grown on top of the for-

med islands in order to remove any surface effects from the formed QDs. In

particular, this minimises the carriers’ non-radiative recombination caused by

the InAs-air interface, thereby resulting in improved optical quality of the

QDs [81]. A diagram of the Stranski-Krastanow growth mode is presented

in Figure 3.1.
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Figure 3.1: Schematic diagram of the Stranski-Krastanov epitaxial method for gro-
wing self-assembled InAs QDs (blue) on a GaAs substrate (purple).

Figure 3.2: Schematic diagram of an MBE chamber.
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Self-assembled QDs can be grown either by molecular beam epitaxy (MBE)

or metalorganic vapour phase epitaxy (MOVPE). The main difference between

the two techniques is that MBE uses elemental sources that are directed onto a

substrate in an ultra-high vacuum (UHV) environment (down to 10−12 Pa) en-

suring material purity, whereas MOVPE uses compound sources that require

the use of a carrier gas (typically hydrogen) to enable them to flow across the

substrate surface [82]. The QDs used in this thesis were all grown using MBE.

A schematic diagram of an MBE chamber is presented in Figure 3.2. Solid

sources of each element, such as gallium or arsenic, are stored in separate

effusion cells. These are heated to their evaporation temperatures and their

deposition on a heated substrate is controlled by mechanical shutters. By ope-

ning several shutters at a time compound semiconductors, such as InAs, can be

grown by condensing on and reacting with the pre-cleaned substrate [83]. The

reflection high-energy electron diffraction (RHEED) technique is often used to

monitor the growth of the thin layers. In this method an electron gun releases

a beam of high-energy electrons, which strike the surface of the sample at an

angle. The diffracted electrons then interfere constructively at specific angles

depending on the crystal structure of the sample, and the resulting diffraction

pattern is detected. The fringe spacing of the pattern then helps to determine

the thickness of the deposited layer in-situ [84].

3.1.2 Wafer Structure

For the experimental results reported in this thesis two types of GaAs wafers

have been used: intrinsic and doped. Their general layout is presented in

Figure 3.3. A buffer layer of GaAs is first grown, using MBE, on top of a com-

mercial epi-ready wafer to level out the substrate. An Al0.6Ga0.4As layer (ty-

pically 1µm thick) is then deposited to allow fabrication of suspended GaAs

devices (as discussed in Section 3.2). The final layer is the GaAs membrane

with a thin (less than 1 nm) InAs QD layer grown in its centre. For samples

that do not require electrical connections the top GaAs layer is intrinsic. It

is typically of a thickness h ≈ 140 nm, so that a single optical mode of the QD

emission (usually around a wavelength of 950 nm) can be vertically confined in

the membrane (according to: h ≈ λ/2n, where n = 3.4 is the refractive index of

GaAs at 4 K). For electrical samples the typically 110 nm thick intrinsic GaAs
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Figure 3.3: Typical structure of a GaAs wafer with (a) an intrinsic, and (b) a doped
QD membrane structure.

layer with embedded InAs QDs is sandwiched between an n-type and a p-type

doped GaAs layers, each of 30 nm thickness (giving a membrane thickness

of about 170 nm). The n-type layer is created through doping of GaAs with

silicon, while the p-type layer is achieved through beryllium doping. Upon

deposition of contacts on these two layers, QCSE (see Section 2.1.3) can be

used to tune the QD emission wavelength. For the electro-mechanical struc-

ture studied in Chapter 5 the GaAs substrate is also doped, so that a potential

difference between the substrate and the membrane can be achieved.

3.2 Device Design and Fabrication

This section outlines the design and fabrication techniques used to make the

devices reported in this thesis. The creation of the desired pattern that is used

to fabricate the samples is first explained. Then the fabrication of suspended

photonic integrated structures is discussed. This is followed by a description

of the procedure used for diode fabrication for doped wafers.

The devices studied experimentally and presented in subsequent chapters

have been designed by myself and fabricated mostly by Dr Ben Royall, but

together with some contribution from Dr Deivis Vaitiekus and myself, in the

National Epitaxy Facility in Sheffield, UK.

3.2.1 Design for Fabrication of On-Chip Devices

In order to fabricate the integrated photonic devices and study them expe-

rimentally they have to be designed first. The modelling of the structures

through computational methods is described in Section 3.4. After the required

systems have been designed and their parameters chosen carefully the struc-
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tures have to be created in a Graphic Database System II (GDSII) format used

for fabrication. This is the conventional industrial format for integrated ci-

rcuitry design. It contains all necessary information about a device, such as

planar geometric shapes, text labels and the hierarchical layout, when several

separate fabrication steps are required. Examples of three system designs in

GDSII format are shown in Figures 3.4, 3.7 and 3.9. These designs have to be

modified from the original models so that they properly take into considera-

tion the fabrication procedures or the fragility of these devices. For example,

the optimized fabrication method for the creation of suspended structures in

GaAs consistently results in smaller GaAs features, larger separations between

them and larger etched features. This information has to be fed back into the

GDSII design, so that the required device parameters can be reproduced du-

ring sample processing. For example, nanobeam waveguides like those located

at the end of the cantilever in Figure 3.4 are usually separated by a 20− 30 nm

larger distance after processing than in the GDSII file. Hence, the GDSII file

has to contain smaller separations than those required in an actual device.

However, small separations are very difficult to achieve in practice and if one

attempts to be make them very small (less than 60 nm) the nanobeam wa-

veguides may actually become joined during the fabrication process, as seen,

for example, in the scanning electron microscope (SEM) image shown in Fi-

gure 3.5. In addition, the cantilever structure in Figure 3.4 was found to be

very fragile, such that it often collapsed onto the substrate during transporta-

tion and installation. Therefore, supporting struts had to be added on either

side of the cantilever’s end to prevent that, and a subsequent process to remove

them post-installation was developed.

The time needed to etch the structure is also crucial. The device is suspen-

ded using a wet etch procedure (described in the following section) resulting

in different parts of the structure etching at different rates depending on their

sizes. For example, the Bragg gratings at the ends of the waveguides are very

narrow and will etch much faster than a wide cantilever. If the etch lasts long

enough to fully suspend the cantilever, the gratings might totally disappear.

By contrast, if gratings are etched for the optimal time, the cantilever may still

be connected to the substrate at its centre, as shown on the angled SEM image

in Figure 3.6. This is the reason for introducing the holes in the centre of the

cantilever to increase its etch rate.
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Figure 3.4: Digital image of a cantilever device design in GDSII format, used for the
electro-mechanical control of an optical beam splitter in Chapter 5. Etched areas are
shown in white.

500nm

Figure 3.5: SEM image of two suspended nanobeam waveguides joined during the
fabrication process.
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1 m

Figure 3.6: Angled SEM image of the cantilever based electro-mechanical system
with the cantilever still attached at its centre to the substrate (noticeable by the grey
stripe along its length).

Figure 3.7: Digital image of an electro-mechanical system in GDSII format designed
for the tuning of a nanobeam photonic crystal cavity. Etched areas are shown in white,
the metal contact rail in gold and the large electrical contact pad in blue.
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200nm

Figure 3.8: SEM image of a nanobeam photonic crystal cavity that has broken due to
a smaller waveguide width and larger hole sizes than designed.

Figure 3.7 shows another electro-mechanical system in GDSII format. It

has been designed for tuning a nanobeam photonic crystal cavity and its de-

velopment is discussed in detail in Chapter 6. The GDSII file design for this

system demonstrates the need for different layers within the device, which re-

present different parts of the system that have to be fabricated consecutively.

For example, the gold rails, which represent metal contacts, need to be patter-

ned separately from the white (etched) parts of the structure as different steps

are involved in their processing. The gold layer, in contrast to the white one, is

not etched away from the GaAs but instead a thin layer of metal is deposited

onto the sample. The large blue rectangle represents an electrical contact pad,

through which voltage can be applied to the smaller metal rails. Contact pads

had to be incorporated into this device design as a typical contact photo-mask

used for diode fabrication (see Section 3.2.3) could not be used for this system,

which is made to operate on an intrinsic wafer. The contact pad had to be

fabricated in a separate fabrication step from the metal rail, as it requires a

thicker, and therefore stronger, metal layer to which wires can be bonded. It is

also advantageous to use a faster processing rate during patterning and metal

deposition of the contact pad due to its size.

For this system there were two important design factors to consider. The

first one, already mentioned earlier, is that the widths of the fabricated waveg-

uides are usually about 30 − 40 nm narrower and the diameters of the etched

holes in those waveguide are usually about 40−50 nm larger than in the GDSII

file. This can have dire consequences for the nanobeam photonic crystal struc-

tures, as demonstrated in Figure 3.8, where the combination of narrower wa-
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Figure 3.9: Digital image of a comb-drive actuator in GDSII format designed for the
electro-mechanical control of an optical beam splitter.
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5 m

Figure 3.10: SEM image of a comb-drive actuator with its fixing columns attached to
the substrate.

veguide and larger holes has led to breakage of the entire nanobeam structure.

It is, therefore, important to correct for the expected fabrication imperfections

in the GDSII design.

Another issue that could be solved through a proper design of the GDSII

file was the observed current flow between different metal rails, despite them

being deposited on an intrinsic GaAs wafer. This was a problem because the

device was to operate based on an induced electro-static attraction between the

rails at different potentials. The issue was resolved by adding isolation ridges

between the rails, which could be fabricated at the same time as the etched

GaAs structure (see Figure 3.7).

The third example device in GDSII format is the comb-drive actuator shown

in Figure 3.9. This design demonstrates the identification marks that allow the

easy recognition of which particular device, from among a large number of

similar structures on the sample, is being investigated experimentally at any

given time. In this case the identifier is the number 52. It provides informa-

tion on the particular device parameters that may be varied amongst the large

ensemble of devices on a chip. For the comb-drive actuator a range of numbers
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or lengths of the teeth, or lengths of the struts, can be produced on a sample

in order to study the effect they have on the electro-mechanical behaviour of

the device. A crucial element for this particular design of the comb-drive ac-

tuator is the size of the fixed columns. These need to remain attached to the

substrate during the wet etch that removes the AlGaAs sacrificial layer from

beneath the other parts of the device. This is an opposite requirement to the

above-mentioned cantilever system, which needed to be fully suspended. If

the columns become suspended the entire moving side of the device will be

attached to the rest of the wafer at only two points on the left-hand side. This

would result in the system not working properly and the possibility of the mo-

ving side of the device totally detaching from the rest of the device. An angled

SEM image of a comb-drive actuator with properly attached columns is shown

in Figure 3.10.

3.2.2 Fabrication of Photonic Structures

The fabrication procedure of suspended photonic structures on a typical in-

trinsic GaAs wafer (see Section 3.1.2) is described below. The steps are also

illustrated in Figure 3.11. Before the fabrication can begin a small piece of

wafer (usually about 1 cm2) has to be cleaved from the as-grown wafer (which

is typically 2 inch in diameter) after the QD growth has been completed. This

is done by scribing the wafer, turning it over and gently rolling the scribing

tool over the marked area. Then any surface contaminants are removed from

the sample through the so-called three-solvent clean, using n-butyl acetate,

acetone, and isopropyl alcohol.

The sample thus prepared is then spin-coated with CSAR 62 - a positive

electron-beam (e-beam) resist. A few drops of the resist are deposited onto

the surface and the sample is then spun around its centre at 4000 rpm for 30 s.

This results in a uniform coating, approximately 360 nm thick. In order to

enhance the adhesion of the resist to the wafer, the sample is then baked on a

hot plate at 180 oC for 3 minutes.

The following e-beam lithography (EBL) step transfers the required pattern

of photonic structures from GDSII format onto the resist by directing the beam

of high-energy (∼ 50 keV) electrons around the sample to expose only the areas

that will eventually be etched away from the wafer. The EBL step is capable of
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Figure 3.11: Schematic diagram of the fabrication process of suspended photonic
structures. A positive e-beam resist (CSAR 62) is spin-coated onto a cleaved and cle-
aned GaAs wafer with embedded QDs. The device pattern is then transferred onto
the resist using electron-beam lithography and developed using xylene. The photonic
structure is then etched into the wafer using an inductively coupled plasma with the
resist as a mask, which is afterwards decomposed using ultraviolet light and removed
chemically. The last step is a wet hydrofluoric acid etch, which removes the sacrificial
AlGaAs layer from beneath the device, thereby creating a suspended structure.
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producing feature sizes as small as 10 nm. Exposure to the e-beam changes the

solubility of the resist and by immersing the sample in the xylene developer

afterwards the exposed areas of the resist are removed from the surface. The

developed resist pattern creates a mask used for the transfer of the structure

onto the wafer using an inductively coupled plasma (ICP) etch.

ICP etching is a highly anisotropic dry etch process, which can provide ex-

tremely smooth and vertical sidewalls (with a wall tilt of less than 4o). This is

essential for achieving the low-loss high-confinement photonic crystal cavities

studied in Chapter 4 [85–87]. During an ICP etch a charged chlorine/argon-

based plasma is created in a vacuum chamber with the imposition of a strong

radio-frequency (RF) field. A secondary RF field is then used to accelerate

electrons to high velocities, which then collide with the chamber, and hence

charge the wafer platter. As the walls of the chamber are grounded, a large

voltage difference causes the ions to bombard the wafer vertically. This chan-

ges the volatility of the GaAs wafer areas not protected by the mask, hence

transferring the device pattern into the sample. The etching lasts typically

about 90 s, until the sacrificial AlGaAs layer is reached. The CSAR 62 resist is

then removed from the surface of the sample by first decomposing it through

exposure to ultraviolet light and then soaking it in N-methyl-2-pyrrolidinone

for several minutes.

The last step in the fabrication process is a wet hydrofluoric (HF) acid etch.

The sample is submerged in a 5:2 mixture of water and HF acid for about

10−20 s in order to remove the sacrificial AlGaAs layer from beneath the GaAs

membrane, thereby creating a suspended photonic structure. This is due to the

selectivity ratio of 105:1 in the etching process with HF between Al0.6Ga0.4As

and GaAs [88]. When the under-etching is completed the sample is rinsed with

water and dried.

However, as the aspect ratios of the suspended photonic devices tend to

be high, the surface tension present when drying the structure can have dire

consequences. As the sample is dried the surface tension of the water droplets

remaining between the GaAs membrane and the substrate increases, resulting

in the suspended device being pulled down towards the substrate, potentially

collapsing it irreversibly. In order to avoid that, a critical point drying (CPD)

procedure can be used. This relies on the fact that a supercritical fluid does not

have any surface tension, due to the lack of a liquid/gas phase boundary [89].
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Water and liquid carbon dioxide are the most commonly used CPD fluids, but

both the critical temperature and pressure of CO2 are considerably lower, and

hence easier to achieve, than that of H2O. Therefore, a CPD procedure with

CO2 has been used for the fabrication of the devices studied in subsequent

chapters in this thesis.

The CPD procedure is illustrated in Figure 3.12. After the sample is rinsed

with water following the HF etch, it is purged with acetone. As acetone is mis-

cible with both water and liquid CO2, it can be used to remove the former. The

sample is then placed in a chamber whose temperature and pressure can be

controlled. Initially the pressure is set to 1 atmosphere and the temperature to

278 K and liquid CO2 is added, which dissolves the acetone. Then the tempe-

rature and pressure are raised to above the critical values for CO2 (over 304 K

and 73 atmospheres), so that the CO2 becomes a supercritical fluid. Once this

transition is completed, the pressure is decreased back to 1 atmosphere, while

keeping the temperature at 304 K, allowing the CO2 to transform from a super-

critical phase to a gaseous phase without any surface tension present. Finally,

the chamber is vented, leaving the suspended GaAs photonic structure dried

at room temperature and pressure.

The effect of using the CPD process on a fabricated suspended device is

demonstrated in Figure 3.13. It shows two SEM images of the same photonic

network prepared with and without CPD. The structure dried in air has clearly

collapsed down onto the substrate due to surface tension, while that fabricated

with the CPD procedure remains suspended.

Development of Silicon Dioxide Mask

An additional complication in the fabrication procedure of nano-optical de-

vices arises when photonic crystal (PhC) structures are made. These devices

require precise reproduction of the size and shape of the periodically repea-

ted pattern. As will be discussed in Chapter 4, the optical properties of PhC

devices can vary considerably with just a few nanometers deviation from the

required feature sizes. Unfortunately, the e-beam resist typically used for the

fabrication of other less demanding nano-photonic structures, such as waveg-

uides (discussed in Chapter 5), has a tendency to peel off slightly during the

ICP etching procedure. This results in a somewhat rougher surface and rand-
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Figure 3.12: Schematic diagram of the critical point drying process. The rinsed
under-etched device is purged with acetone to remove water. Then the liquid CO2 is
added to dissolve the acetone. This is followed by an increase in both temperature and
pressure to the critical values for CO2, inducing its transition into a supercritical fluid
phase. The pressure is then decreased, allowing the CO2 to became gaseous. Finally,
the chamber is vented leaving the GaAs photonic structure dried and suspended.
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Figure 3.13: SEM images of a suspended GaAs photonic device fabricated (a) with,
and (b) without the critical point drying process.
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omly spaced few-nanometer sized differences in the periodic patterns. This

effect is particularly more pronounced for nanobeam PhC structures as oppo-

sed to 2D ones, such as PhC waveguides or 2D PhC cavities (see Sections 2.2.2

and 2.3.3 respectively). The combination of periodically etched holes in a nar-

row strip of material, as is the case for a nanobeam waveguide, exacerbates the

problem of the resist peeling off from the GaAs during etching. For this reason

a new fabrication procedure that achieves the required reproducibility levels

of the nanobeam PhC devices was developed. It uses a more robust, silicon

dioxide (SiO2) mask for the etching, which reduces the problem of irregular

shapes of these structures [90]. This requires two additional steps in the fabri-

cation process shown in Figure 3.11. Firstly, a 100 nm layer of SiO2 is deposited

onto the prepared wafer using plasma-enhanced chemical vapour deposition

(PECVD), described below, before the CSAR 62 resist is spin-coated on top of

it. The PhC structure is then transferred into the resist as usual using EBL and

xylene. Then the pattern needs to be also created in the SiO2 mask beneath

it. This is done with an ICP etch which uses trifluoromethane (CHF3) plasma,

rather than the chlorine/argon-based plasma used in the GaAs etching. Next,

the resist is removed using ultraviolet light and acetone as usual and the SiO2

mask alone is used for the ICP etching of the wafer. Finally, two HF acid etch

steps, of 10 % and 40 % concentrations, remove the SiO2 mask and the AlGaAs

layer respectively, before the sample is finished with a CPD step. Figure 3.14

demonstrates the difference between the nanobeam PhC filter fabricated with

an e-beam resist and a SiO2 mask.

The PECVD process mentioned above is one that allows deposition of thin

films of material. In this procedure, a sample is placed in a vacuum chamber

and reactant gases - in this case silane (SiH4) and nitrous oxide (N2O) - are fed

into it as required. Plasma is then created from the gases using a strong RF

field. The ionized gases react with the heated sample, allowing the material to

be deposited. The process lasts until the required thickness of the SiO2 layer

is reached.

3.2.3 Diode Structure Fabrication

For the electrical samples studied in this thesis a diode structure needs to be

produced in addition to the photonic device, in order to allow the application
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200nm

200nm

(a)

(b)

Figure 3.14: SEM images of a nanobeam photonic crystal filter fabricated (a) with an
e-beam resist, and (b) with a silicon dioxide mask.

of voltage to the doped layers of the wafer. This can be done either before

or after the photonic structure fabrication, but in either case it needs to be in

advance of the final steps of HF etch and CPD, in order to avoid damage to the

suspended devices by the subsequent processing.

The fabrication of the diode structure is very similar to that of the photonic

devices themselves. The main differences are that photo-lithography can be

used instead of e-beam lithography, and a wet (acid) etch can be used instead

of an ICP etch. Both lithography techniques have their advantages and disad-

vantages. The main benefit of using photo-lithography is that it is much faster.

It takes only several seconds of exposure to ultraviolet light, instead of hours

of e-beam patterning, to transfer the structure into the resist. The disadvan-

tages of photo-lithography are twofold. Firstly, an expensive hard mask (as

opposed to a soft one, such as a computer-generated pattern that can be easily

adjusted) has to be made in advance. Therefore, it is typically only used when

a large quantity of samples with exactly the same pattern is needed. Secondly,

the minimum feature sizes that can be produced using photo-lithography are
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about 100 times larger than those made using EBL. However, whereas this has

no appreciable effect on the quality of the diode structures, which are typically

several microns in size, it would not be possible to resolve the nanometre-sized

features of the photonic devices using photo-lithography.

Similarly, the two etching methods have their own advantages and dis-

advantages. As mentioned before, ICP etching produces smooth and verti-

cal walls, which are essential in achieving high-quality photonic devices, but

which are not so important for simple contact deposition on the diode struc-

ture of the wafer. Wet etching, on the other hand, does not require expensive

equipment, and hence it is faster and cheaper. Therefore, wet etching is the

technique of choice for fabricating diode structures.

The full fabrication procedure for diodes is shown schematically in Fi-

gure 3.15. A doped GaAs wafer is prepared by cleaving (if the diode is to

be fabricated first) and cleaning. This time the sample is spin-coated with

a positive photo-resist SPR350. The diode structure is then transferred onto

the resist using photo-lithography. The mask is brought into contact with the

sample’s surface in a mask aligner and then exposed to ultraviolet light. The

uncovered areas of the resist are then removed using MF26a developer. The

wafer is then etched in a mixture of sulphuric acid (H2SO4), hydrogen perox-

ide (H2O2) and water in the respective concentration 1:8:80 until the desired

doped layer is reached. For example, if the electrical sample is used for the

tuning of the QD emission wavelength it is the n-type GaAs layer of the mem-

brane that needs to be reached (as indicated in the diagram). Conversely, if the

wafer is used for electro-mechanical actuation of the membrane (as in Chap-

ter 5), then the GaAs substrate, beneath the sacrificial AlGaAs layer, needs also

to be doped and reached by etching. Finally, a Ni:Au contact layer can be depo-

sited on the doped layer using evaporation. Nickel is used as it offers superior

adhesion to the GaAs surface, while gold is a better conductor. Solid Ni is first

heated through high-resistance metallic coils until it evaporates. This allows

deposition of Ni on top of the cooler sample, typically to a thickness of about

20 nm. Then about 200 nm of Au is deposited on top of the Ni layer in the

same manner. This results in the entire surface of the wafer being covered in

the metal contact. However, as the resist is removed afterwards with acetone,

the contact remains only on the desired doped layer of the wafer. The whole

procedure is then repeated with a different hard mask in order to deposit a
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Figure 3.15: Schematic diagram of the fabrication process for diodes. SPR350 resist
is spin-coated onto a cleaved and cleaned doped GaAs wafer with embedded QDs. A
contact pattern is then transferred onto the resist using a hard mask and ultraviolet
light. The exposed areas are removed using MF26a developer. The wafer is then
etched with the resist as a mask by soaking it in sulphuric acid until the n contacting
layer is reached. Finally, a Ni:Au contact layer is deposited and the resist is removed
with acetone.
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second contact, this time on the top p-type layer. In this case the wet etch is

not necessary as the p-type layer is the surface of the wafer.

An electrical sample prepared in this way is then mounted with gold epoxy

to either a 12-pin TO-5 header for use in a flow cryostat, or a 20-pin ceramic

chip carrier for use in a bath cryostat (see Section 3.3.1). The electrical con-

nections between the wafer and the mount are then made using a gold wire

ball bonder. This technique involves feeding a thin, approximately 15µm di-

ameter, gold wire through a capillary tool and heating it by the application of

electrical current. This causes the wire to melt at its tip forming a ball due to

surface tension. The capillary is then pressed down onto the sample’s contact

and as the gold solidifies it forms a weld with the sample. The wire is then

passed through the capillary until enough length is achieved to reach the con-

tact on the mount, and the procedure is repeated. This time a weld is created

by bending the wire as it is pressed down onto the holder’s contact. Due to the

increased resistance in the defect, the heat dissipation increases melting the

bent area of the wire, forming a weld with the mount as it solidifies. The wire

is then cut behind the second weld, and the process can be repeated to create

more connections.

3.3 Optical Device Characterisation

3.3.1 Cryogenic Measurements

The great majority of the experiments reported in this thesis have been perfor-

med on samples held at a temperature of approximately 5 K in cryostats cooled

by liquid helium (4He). While the temperature of liquid helium is 4.2 K, the

samples are never in direct contact with it, and hence the assumption of slig-

htly higher sample temperature. Two types of cryogenic systems have been

used depending on the mode of cooling: continuous flow and bath cryostats.

Both types, together with their corresponding advantages and disadvantages,

are briefly described below.
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Continuous Flow Cryostat

In a continuous flow cryostat, the sample is mounted on top of a copper cold

finger within a vacuum chamber. The cold finger provides a thermal contact

between the sample and the heat exchanger outside the vacuum chamber. Li-

quid helium is pumped continuously through the heat exchanger to cool the

sample down to a temperature of ∼ 5 K. The micro-photo-luminescence (µ-PL)

setup (discussed later and presented in Figure 3.19) is positioned on a bench

above the cryostat, and the glass window on the top of the chamber allows

optical access to the sample. The cryostat is located on top of a translation

stage that enables course adjustments to the position of the sample in the X

and Y directions. The optical setup is used to control focus (Z direction) and

fine-tune the sample position. A schematic diagram of the continuous flow

cryostat is shown in Figure 3.16.

The main advantage of this system is that samples can be exchanged ra-

pidly. Mounting a new sample in the cryostat, evacuating the chamber and

cooling it down can all take less than 4 hours. However, due to the continuous

pumping of liquid helium through the cryostat, mechanical vibrations can be

a major problem, especially for measurements requiring long timescales and

hence long positional stability, such as the HBT experiment. In addition, due

to safety and environmental concerns, the liquid helium flow is stopped over-

night and during weekends, causing the sample to be cooled down to ∼ 5 K

and then warmed up to room temperature many times. This thermal cycling

has been found to cause deterioration of some photonic structures, especially

the electro-mechanical devices (reported in Chapters 5 and 6). Despite these

disadvantages, the continuous flow cryostat is a good choice for sample cha-

racterisation and spectral measurements that can be performed on shorter ti-

mescales (such as those presented in Chapter 4), due to its relatively simple

and rapid operation.

Bath Cryostat

The main advantages of a bath cryostat over a continuous flow cryostat are its

positional and thermal stability. As the sample (located inside an evacuated

insert) is immersed in a dewar containing liquid helium, no pumping is requi-

red. The dewar is also positioned on a vibrational damping platform, which
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Figure 3.16: Schematic diagram of a continuous flow cryostat. The micro-
photoluminescence system shown in Figure 3.19 is positioned on a bench above the
cryostat.

keeps any mechanical vibrations to a minimum, thereby providing a long term

positional stability, often lasting days. The sample is also kept at a constant

temperature of ∼ 5 K for weeks and even months. If the dewar is refilled with

liquid helium fortnightly, there is no need for the sample to be warmed up to

room temperature until all measurements are complete. This is why a bath

cryostat provides ideal conditions for second-order correlation measurements

(discussed in Section 3.3.3) and experiments on the electro-mechanical devi-

ces. On the other hand, the mounting of the sample in the bath cryostat is

much more complicated, and hence can take much longer, than that for the

continuous flow system. The schematic diagram of the bath cryostat is shown

in Figure 3.17.

The sample is mounted in a chip carrier, which itself is attached to the top

of the piezoelectric translation stage, which allows fine positioning and focus

of the sample. This structure together with an aspheric objective lens and an

achromatic doublet are installed in a cage system inside the insert tube. The

two lenses positioned in a 4f configuration increase the scanning range of the

microscope without compromising image quality [91]. Electrical leads are fed

from the top to the very bottom of the insert to enable both the control of the

piezoelectric positioner and the electrical properties of the sample. The insert

tube is evacuated and a little helium gas is fed inside it in order to achieve bet-

ter heat transfer between the sample and the liquid helium outside the insert.

The glass window on top of the tube allows optical access to the sample. The

optical measurement system shown in Figure 3.19 is mounted on a breadboard

directly on top of the dewar.

Exchanging the sample involves removing the µ-PL setup from the top of
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Figure 3.17: Schematic diagram of a liquid helium bath cryostat. The micro-
photoluminescence system shown in Figure 3.19 is mounted on the top of the dewar
as indicated.
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Figure 3.18: Schematic diagram of (a) non-resonant, and (b) quasi-resonant and re-
sonant quantum dot excitation methods.

the dewar and taking out the insert tube. The apparatus then needs to be

allowed to warm up to room temperature before the chip carrier can be de-

tached from the piezoelectric positioner and up to 14 electrical contacts from

the sample. This is a very delicate task, which often leads to necessary repairs

of various parts of the system. Moving the imaging system can also result in

misalignment, which then requires further adjustments to be made. The entire

process can last several days.

3.3.2 Micro-Photoluminescence Spectroscopy

Quantum dots can be made to emit single photons by means of electrical

(electro-luminescence) or optical (photo-luminescence) excitation [92]. All

the experiments reported in this thesis have been performed using the latter.

Photo-luminescence (PL) is the processes of delivering enough energy in the

form of light to the semiconductor in order to promote electrons to the con-

duction band, thereby creating electron-hole pairs, which can then recombine

emitting photons. Analysis of the light emitted from a QD during the radiative

recombination of the electron-hole pair can reveal information about its pro-

perties, such as energy level structure and coherence (see Sections 2.1.1,2.1.2).

Figure 3.18 presents three distinct optical excitation schemes that exist for

QDs: non-resonant, quasi-resonant, and resonant. Two different non-resonant

QD excitation processes can be used [see Figure 3.18(a)]. One involves exciting
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the QDs with light of energy equal to or larger than the band gap of the wetting

layer (WL) but smaller than the GaAs band gap. The other approach is to

supply light of energy equal to or larger than the GaAs band gap. An electron-

hole pair created in this way will either emit a photon at the WL or GaAs

band gap energies correspondingly, or will relax to the lower energy level of

the QD, where it will be captured by the 3D potential confinement. The non-

radiative relaxation processes that take place are carrier scattering and phonon

interactions [93]. These occur on the timescale of a few pico-seconds, and they

remove any coherence between the excitation source and photons emitted by

the QD.

The quasi-resonant and resonant excitation schemes are illustrated in Fi-

gure 3.18(b). The quasi-resonant process involves exciting QDs with an energy

equal to either the p-like first excited state of the QD [94] or to a longitudi-

nal optical (LO) phonon-assisted transition [95, 96]. An exciton in QD’s first

excited state will decay to the ground state (s-like) within a few tens of pico-

seconds. The LO phonon excitation scheme requires for the light of energy

equal to the sum of the QD and LO phonon energies to be absorbed, genera-

ting a ground-state exciton within the QD and an LO phonon. By contrast,

resonant excitation directly drives the QD ground-state transition at the Rabi

frequency [97, 98]. The main difficulty in realising quasi-resonant or resonant

PL measurements is that the photons emitted by the QD maintain some degree

of coherence with the excitation source due to relatively few non-radiative re-

laxation processes being involved. In order to be able to distinguish between

the excitation and emission photons experimentally the sample and/or setup

designs require careful arrangement [99].

All the experiments undertaken for this thesis have used non-resonant QD

excitation schemes. The above GaAs band gap excitation method was achie-

ved through a He:Ne laser emitting at 632.8 nm, while for the WL excitation

scheme a Ti:Sapphire continuous-wave laser with a tunable emission wave-

length of 800−860 nm was used. A typical spatially selective micro-PL (µ-PL)

setup that has been used for most of the experiments reported in this thesis

is presented in Figure 3.19. Two key attributes of this arrangement that are

necessary for most of the experiments presented in the following chapters are

the ability to excite and collect light from small defined areas of the sample,

and to be able to do so selectively so that the two paths are independent from
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Figure 3.19: Schematic diagram of a spatially selective micro-photoluminescence ex-
perimental setup with two optical collection paths (marked in red). The excitation
path is shown in green, while the white light illumination beam is marked in blue.
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each other. This allows excitation of one part of the device and collection from

another for the measurements of the transmissivity of the photons emitted by

QDs through the integrated optical devices, such as waveguides (in Chapter 5)

and filters (in Chapter 4).

The excitation laser is fed to the µ-PL setup through a single-mode optical

fibre, which is then coupled out of the fibre in order to be directed onto the

sample using a system of mirrors and beam splitters, as shown. It is then focu-

sed to a spot of∼ 2µm in diameter on the sample using an objective lens. In the

bath cryostat configuration that lens is positioned inside the cryostat ∼ 6 mm

above the sample, while in the flow cryostat the Mitutoyo near-infrared ob-

jective (NA= 0.42) is situated on top of the breadboard with the rest of the

imaging system and remains at room temperature during the optical measu-

rements. The first beam splitter incorporates a power meter and a white light

source (lamp), in order to monitor the excitation power and illuminate the

sample inside the cryostat for imaging, respectively. The purpose of the se-

cond beam splitter is to separate the excitation laser from the QD PL signal,

so that they are independent from each other. The dichroic filter behind the

second beam splitter lets through shorter wavelengths, such as those from the

white light source and the excitation laser reflected from the sample, so that

these can be observed with the camera. The longer, infrared signal emitted

by the QDs are reflected by the filter and directed onto another beam split-

ter. This enables PL signal collection from two different areas of the sample at

the same time. The two collection paths are controlled through their own two

mirrors and are coupled into separate single-mode fibres for detection. The

signal from each of the collection paths is then passed to its own 0.75 m Prin-

ceton Instruments (SP2750i) spectrometer, as shown. The dispersed signal is

either directed onto a PyLoN nitrogen-cooled coupled charged device (CCD)

for spectral measurements or filtered through a side exit and passed onto a

Thorlabs silicon avalanche photo-diode (APD) for time-correlated single pho-

ton counting (TCSPC) experiments [discussed below]. The motorised mirrors

in each of the three optical paths are used to control the position of the ex-

citation and collection spots on the sample via a computer. They also enable

automated raster scanning of a defined area of the sample in order to create

PL maps of the measured photonic device (used in Chapter 5). Such maps are

useful to illustrate the propagation of QD emission around the sample.

51 Zofia K. Bishop



Chapter 3. Methods

3.3.3 Time-Correlated Single Photon Counting

The spectral measurements of the PL signal allow identification of the tran-

sition energies of optically active excitonic states within QDs. However, they

are unable to provide information about photon statistics of the emitted light.

Many applications of quantum optics require a single photon source, which

will emit only one photon in a well-defined interval. This differs from, for

example, laser sources, which emit photons at random intervals, and ther-

mal sources, which emit photons in bunches. The second-order correlation

function, g(2)(τ), can be used to identify light sources as anti-bunched, cohe-

rent (random) and bunched [100]. It can be measured using a Hanbury Brown

and Twiss (HBT) experiment presented schematically in Figure 3.20(a). In this

procedure, the investigated light is passed through a 50:50 beam splitter and

each resulting path is directed to an APD. When a photon arrives at a detector

it sends an electrical pulse to the single photon counting module (SPCM). De-

tector D1 triggers the SPCM to start counting the delay time, τ , at time t until

detector D2 stops the count at time (t+τ) as it registers the arrival of a second

photon at a time τ later. Many such events (coincidence counts) are accumu-

lated by the SPCM, which then produces a histogram of the number of events

recorded depending on the elapsed time τ between the pulses arriving at D1

and D2. The second-order correlation function for this measurement system

is given by:

g(2)(τ) =

〈
n1(t)n2(t + τ)

〉〈
n1(t)

〉〈
n2(t + τ)

〉 , (3.1)

where ni(t) denotes the number of counts registered by detector i at time t, and

the angled brackets indicate time-averaged values. Clearly, g(2)(t,τ) ≡ g(2)(τ) is

independent of the starting time t.

Anti-bunched light sources emit single photons at long, defined time inter-

vals. When one photon enters the beam splitter it will either travel to D1 or

D2 with equal probability. If it is recorded at D1 the probability of detecting

a photon at the same time (τ = 0) at D2 is zero, as only one photon is availa-

ble at a time. This means the SPCM will not register any coincidence counts.

At longer timescales, the second photon will have a 50 % probability of arri-

ving at D2. If it arrives at D2 the timer is stopped and the SPCM records an
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Figure 3.20: (a) Schematic diagram of the experimental arrangement for the Hanbury
Brown and Twiss measurement. (b) Typical g(2)(τ) results for an antibunched (solid
line), a coherent (diamonds), and a bunched (dashed line) light source.

event. If it arrives at D1 nothing happens and the timer continues running

until another photon strikes D2. Therefore, for anti-bunched (single photon)

sources g(2)(0) = 0, and at long timescales g(2)(τ) = 1.

Coherent light sources on the other hand emit photons at random time

intervals. Hence, the probability of detecting a photon at D2 is independent of

τ giving g(2)(τ) = 1 for any value of τ . Finally, and by contrast, bunched sources

emit photons in batches. Therefore, if one photon is detected there is a higher

probability of detecting another one at shorter rather than longer time scales.

This leads to g(2)(τ) > 1 for τ near zero and g(2)(τ) = 1 for larger τ . Thermal

light possesses the highest photon correlations of any naturally occurring light

sources with g(2)(τ) = 2 [101]. All classical sources of light, including thermal

sources, are bunched. Anti-bunching is only possible for quantum sources. A

typical result of a second-order correlation measurement for each light source

classification is presented in Figure 3.20(b).

The histogram obtained from the accumulated HBT measurements can be

fitted with the function g(2)(τ) = 1− [1− g(2)(0)]e−|τ |/τd , where τd is the lifetime

of the exciton (i.e., the source of the photons). In practice, g(2)(0) never reaches

zero for anti-bunched light sources mainly due to the response time of the

detectors, which is typically of the order of 400 ps. This effectively smooths the
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results for very short timescales. However, this measurement inaccuracy can

be removed from the data by deconvolving the fit to the experimental results

with the known characteristics of the detection system (as demonstrated in

Figure 5.15).

3.4 Computational Methods

The two main types of computational methods used to design the GaAs-based

devices reported in this thesis are electromagnetic and electro-mechanical si-

mulations. The former were used to investigate the propagation of QD emis-

sion through photonic structures, such as waveguides (in Chapter 5) and pho-

tonic filters (in Chapter 4), while the latter were used to study the behaviour

of mechanical devices, such as cantilevers (in Chapter 5), metal rail systems

and comb-drive actuators (in Chapter 6), upon the introduction of a capacitive

force to the system. Both of the modelling methods are briefly outlined below.

3.4.1 Electromagnetic Simulations

The electromagnetic simulations solve Maxwell’s equations in order to model

the propagation of light around photonic structures. Two distinct computati-

onal techniques were used for this purpose in this thesis: time and frequency

domain methods.

Finite-Difference Time-Domain

The time-domain approach investigates the field evolution within a photonic

structure in time. Thus, the time-dependent Maxwell’s equations:

∇×E = −∂B
∂t
, (3.2)

∇×H = J +
∂D
∂t
, (3.3)

are solved directly at finite time intervals, together with the remaining time-

independent Maxwell’s equations:

∇ ·D = ρ, (3.4)
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∇ ·B = 0, (3.5)

where E, H are the electric and magnetic fields, D, B are the electric displa-

cement and magnetic induction fields with D = ε0εrE and B = µ0µrH (where

ε0 and µ0 are respectively the dielectric permittivity and permeability of free

space, and εr and µr are respectively the relative permittivity and permeability

of the medium), and ρ, J are the free electric charge and current densities.

Central to the finite-difference time-domain (FDTD) method is the device

structure, which is represented as a dielectric map, εr(r), and a light source.

These are defined within a simulation domain, which is then divided into

small cubic cells of size ∆r. The device shape is then mapped onto this com-

putational voxel array, known as a Yee lattice, to give εr(∆r), as illustrated

in Figure 3.21. During the modelling the electromagnetic fields are propaga-

ted from the light source at time t = 0 through the Yee lattice in discrete time

steps, ∆t. The electric fields are evaluated along the edges of each voxel and the

magnetic fields are defined on the faces. A single cubic cell (voxel) of the Yee

lattice is shown schematically in Figure 3.22. The simulation can end either at

the defined maximum time limit, T , or a minimum energy threshold remai-

ning within the simulation domain [102]. Various flux monitors can be placed

throughout the simulation domain in order to record the propagation of light

at different positions within the structure. The accuracy of the simulations

will obviously depend on the size of the voxels. The smaller the computatio-

nal unit is made, the higher the accuracy of the mapped device structure and

the calculations, but the larger the computer power and time required. This

trade-off also holds for the monitors that record the data. When setting up

simulations care must be taken not to mismatch a high-accuracy simulation

with low-resolution monitors or vice versa. The overall size of the simulation

domain, which is mainly determined by the size of the photonic structure of

interest, can be the defining factor for the maximum possible computational

accuracy that can be reached for a given system.

The time-domain method has been employed in the work reported in this

thesis when the temporal response of a photonic device is of interest, for exam-

ple, for the investigation of light transmission through photonic crystal filters

and the resonance decay times within them (in Chapter 4). These simulations

have been performed by myself using a commercial-grade FDTD software: Lu-
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Figure 3.21: Schematic diagram illustrating an arbitrary dielectric map εr(r) and its
equivalent when mapped onto the Yee lattice to produce εr(∆r).

Figure 3.22: Schematic diagram of a single voxel of the Yee lattice used for calculating
the electromagnetic fields in the FDTD simulations. The electric fields are calculated
along the edges, while the magnetic fields are calculated normal to the faces.
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merical FDTD Solutions [103].

An example of the FDTD model simulated using the above mentioned soft-

ware is presented in Figure 3.23, where the behaviour of light with time in

a nanobeam waveguide with a quantum dot (i.e., light source) located in its

centre is under investigation. Figure 3.23(a) illustrates the 3D model with the

waveguide shown in blue, the dipole source indicated by an arrow, the compu-

tational domain filled with air shown in orange, and two data monitors marked

in yellow. The z−normal monitor located above the waveguide is a so-called

time monitor, as it records electro-magnetic fields as a function of time. Two

data sets from this monitor are presented in Figure 3.23(b). At time t = 0 the

electro-magnetic fields are accumulated in the centre of the waveguide as the

dipole is turned on. Light emitted by the dipole travels in both directions,

−y and y, along the waveguide, and hence at time t = 11 fs the total power of

the source is now split between two positions, as shown. The y−normal mo-

nitor located by the right end of the waveguide is used to record the electro-

magnetic fields propagating along the waveguide as a function of wavelength.

The results are shown in Figure 3.23(c). The transmissivity is defined as a per-

centage of the total dipole intensity, and hence can be no greater than 50 %

since half of the light has travelled in the opposite direction along the waveg-

uide. In a large wavelength range of 200 nm the efficiency of light propagation

changes by only ∼ 10 %.

Frequency-Domain Eigenmode Solver

The frequency-domain approach, on the other hand, works by finding the fre-

quency modes, ω, of a periodic structure, from which the associated electric

and magnetic fields can be derived. Various assumptions need to be made in

order to derive an eigenvalue equation based on frequency from the two time-

dependent Maxwell’s equations in Equations (3.2) and (3.3). These include:

no sources of free charge or free current present in the system (ρ = 0, J = 0),

the materials under investigation being isotropic and non-dispersive (so that

εr depends only on the position, r(x,y,z), within the system), as well as trans-

parent (so that εr(r) is real and positive), and finally µr ∼ 1 for most materials

of interest [47]. In general E and H are functions of both space and time, but

because Maxwell’s equations are linear we can separate these dependencies as
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Figure 3.23: FDTD simulation of light propagation along a nanobeam waveguide
performed using the Lumerical FDTD Solutions package. (a) 3D model showing the
waveguide in blue, the computational domain in orange, the data monitors in yellow,
and the dipole source in the centre of the waveguide as an arrow. (b) Results from
the z−normal monitor, showing the electro-magnetic fields at the two times t = 0 and
t = 11 fs. Edges of the waveguide are indicated by the continuous white lines, and
the centres of symmetry by the dashed ones. (c) Results from the y−normal monitor,
showing the total amount of light transmitted to the right end of the waveguide as a
function of wavelength.
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follows: E(r, t) = E(r)e−iωt and H (r, t) = H (r)e−iωt for monochromatic sources.

With all these assumptions in place, Equations (3.2) and (3.3) become:

∇×E(r) = iωµ0H (r), (3.6)

∇×H (r) = −iωε0εr(r)E(r). (3.7)

Decoupling these equations by eliminating E(r) from Equation (3.7) and using

c = 1/
√
ε0µ0, where c is the speed of light in vacuum, we obtain the following

eigenvalue equation:

∇×
( 1
εr(r)

∇×H (r)
)

=
(ω
c

)2
H (r). (3.8)

The frequency-domain method of simulating electromagnetic problems in-

volves solving the eigenvalue problem defined in Equation (3.8), and then fin-

ding the corresponding field E(r) using Equation (3.7). The frequency-domain

calculations require smaller simulation volumes and less time in comparison

to time-domain methods, and are therefore less computationally intensive.

This approach was hence used when the temporal response of the system was

not under consideration, for example, for the coupling efficiency of light be-

tween two parallel waveguides in Chapter 5. These simulations were carried

out with an open-source software: MIT Photonic Bands [104, 105], using a

program written by Dr Rikki J. Coles.

Transfer-Matrix Method

In addition to full 3D electromagnetic modelling in the two different domains

described above, a simpler 1D method has also been used to model the pro-

pagation of light through a multilayer medium. In particular, this was essen-

tial for the analysis of the results reported in Chapter 5, where a cantilever is

displaced downwards towards a substrate using electro-mechanical actuation.

This movement causes changes to the optical interference pattern of light emit-

ted from the device and that reflected from the substrate, thereby influencing

the measurement from the waveguide attached to the cantilever. In principle,

the whole system could be modelled using the FDTD method, but in practice

the required size of the simulation meant that the model would be extremely
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computationally intensive. Instead frequency domain simulations were per-

formed on the waveguide system and a Transfer Matrix Method (TMM) was

used to identify separately the changing optical interference pattern affecting

measurements.

The TMM approach is based on the facts that the Maxwell’s equations (3.2)

and (3.3) imply that the tangential components of E and H are continuous

across layer boundaries carrying zero current (J = 0), and the Maxwell’s equa-

tions (3.4) and (3.5) imply that the normal components of D and B are conti-

nuous across layer boundaries carrying zero free charge (ρ = 0). This, together

with the known reflectance and transmittance coefficients between different

material layers, can be used to calculate the total amount of light reflected

from a multilayered medium, which takes into account any constructive or

destructive interference between the reflected and transmitted rays within the

system. The reflection, r, and transmission, t, coefficients between the inci-

dent layer (1), and the subsequent layer (2) are defined to be the ratios of the

amplitudes of the complex electric field of the reflected and transmitted wa-

ves respectively, to that of the incident wave. They may be found using the

following Fresnel equations [106]:

rTE(TM) =
n1 cos(θ1(2))−n2 cos(θ2(1))

n1 cos(θ1(2)) +n2 cos(θ2(1))
, (3.9)

tTE = 1 + rTE, (3.10)

tTM = (1 + rTM)
cosθ1

cosθ2
, (3.11)

where TE and TM denote transverse electric (s-polarised) and transverse mag-

netic (p-polarised) waves respectively, n1 and n2 are the refractive indices of

layers 1 and 2 respectively, and θ1 and θ2 are incident (reflection) and re-

fraction angles respectively measured from normal of the boundary between

the two layers (with n1 sinθ1 = n2 sinθ2). The total transfer matrix for a light

wave propagating through multiple layers is a multiplication of matrices des-

cribing the continuities of electromagnetic fields across each of the layer boun-

daries using Fresnel coefficients, and those defining the propagation of light

through each of the media depending on their refractive indices, the thicknes-
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ses of the layers, and the wavelength of light propagating through the me-

dium [107]. The reflection and transmission coefficient for the entire layered

structure can then be derived from the total transfer matrix.

The TMM calculations were performed using an open-source programming

language Python with its specialised TMM package developed by Steven Byr-

nes [108].

3.4.2 Electro-Mechanical Modelling

Part of the research reported in this thesis focuses on using so-called Micro-

Electro-Mechanical Systems (MEMS) in order to control the optical properties

of GaAs-based devices. This is an emerging field of interest to the applied

quantum optics community. These systems combine electrostatics with me-

chanics, as parts of the devices are displaced mechanically on-chip upon the

application of voltage between two terminals, which introduces a capacitive

force between them. For this reason it is beneficial to use modelling tools that

allow the simulation of the entire system, rather than to separate artificially

the electrostatic and mechanical problems. That is why the electro-mechanical

simulations were performed using a commercial-grade software: Comsol Mul-

tiphysics, which provides a specialized MEMS module [109] for exactly these

purposes. The systems that integrate photonic devices with MEMS have been

named MOEMS or NOEMS, Micro(Nano)-Opto-Electro-Mechanical Systems.

However, no modelling tool is yet available that treats these structures as

a whole integrated system. For this reason the electromagnetic simulations

had to be done separately from the electro-mechanical modelling to analyse

NOEMS.

Comsol Multiphysics is a user-friendly Finite-Element-Analysis (FEA) tool.

It enables the modelling of complex systems that otherwise might be unsol-

vable due to the number of coupled differential equations that describe them.

Once the 3D model is created, and various boundary conditions prescribed

(such as terminals, voltages, displacements, materials) the model is divided

into small sections (finite-elements). These are then described by linear equa-

tions instead, which give approximate solutions to the problem, and the final

result is the sum of the solutions from all finite-elements within the model.

The smaller the individual elements are made, the smaller the approximati-
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ons. As usual, there is thus a trade-off between accuracy and the computer

power and time needed to achieve it.

An example of a simulation set up for the electro-mechanical analysis of a

cantilever (further discussed in Chapter 5) is illustrated in Figure 3.24. In this

model the cantilever is positioned in a 3D simulation volume that is filled with

air, as shown in Figure 3.24(a). The automatic non-uniform mesh of the com-

putational finite-elements allows an increased resolution of the simulation at

the interfaces and at the objects of interest, while decreasing it for those parts

of the model that do not have significant influence over the final result. This is

very advantageous as higher accuracy can be achieved for shorter simulation

times. For example, the air volume has a coarser mesh than the cantilever, and

the face of the simulation domain to which the cantilever is fixed has the fi-

nest mesh at the interface between them, which then gets coarser further away

from it. The fixed end of the cantilever is defined through the prescribed zero

displacement at its vertical short side where the cantilever meets with the face

of the simulation domain (marked in red). The bottom face of the simulation

volume is used as an electrical ground - plate of zero potential (marked in

green), while the bottom face of the cantilever is used as an electrical terminal

to which different potentials can be applied (marked in orange). By applying

a voltage to the terminal a capacitive force between the cantilever and the

bottom of the simulation domain is induced, which causes the cantilever to

displace in the +z direction towards the ground. As the cantilever is fixed at

one end to the side of the simulation domain the displacement will be largest

at its free end and smallest (zero) at the other, as illustrated in Figure 3.24(b).

The image shows the profiles of the cantilever at applied actuation voltages of

0 V and 7 V, as determined by the simulation.
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Figure 3.24: (a) 3D image of a meshed model created in Comsol Multiphysics soft-
ware to study the electro-mechanical behaviour of a cantilever. The fixed face of the
cantilever is marked in red, the bottom face of the cantilever used as a voltage terminal
is marked in orange, and the bottom face of the simulation volume used as a ground
terminal is marked in green. (b) Results from the simulation showing the displace-
ment of the cantilever towards the ground terminal (substrate) at actuation voltages
applied to it of 0 V and 7 V.
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Nanobeam Photonic Crystal
Cavities for On-Chip Spectral
Filtering and Cavity QED
Applications

Nanobeam photonic crystal cavities (PhCCs) are of increasing interest to the

quantum optical community as they are readily integrable with other on-chip

photonic elements essential for QIP, such as nanobeam waveguides and beam

splitters. In addition, these optical microcavities offer high Q-factors and low

effective modal volumes, Veff, [110] which means they are a highly suitable

platform for cavity QED (cQED) studies (see Section 2.3) [111]. They can also

be used as optical filters, and even as switches [112, 113]. Other semiconduc-

tor structures exist that can be used for similar purposes, such as whispering

gallery resonators [114, 115], 2D PhCCs [116–119], 2D PhC heterostructu-

res [120] and micropillars [41, 121]. However, these are typically not as straig-

htforward to integrate with other circuit components.

On-chip filtering is now gaining greater significance as the realization of a

fully integrated quantum optical circuit is becoming within our reach. The fil-

tering in III-V optical circuits with embedded single photon sources is essential

for non-resonant excitation techniques, which result in emission from a large

number of semiconductor structures. As previously discussed in Section 3.1

the QDs studied in this thesis are grown epitaxially and form through self-
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assembly. This implies that if such QDs are excited non-resonantly either

through photo-luminescence or electro-luminescence the optical signal from

the sample will consist of emission from many QDs, as well as potentially from

the wetting layer and the GaAs itself [122]. For this reason, in order to be able

to perform operations on single photons, any emissions from other QDs, the

wetting layer and the GaAs need to be filtered out. Currently such filtering

is mostly done externally by collecting the entire signal from the sample and

then using a spectrometer to filter out the single QD emission. This filtering

method was used, for example, for the second-order correlation measurements

reported in Chapter 5. However, in order for quantum optical circuits to be

fully integrated, such filtering needs to be performed on-chip [123, 124] toget-

her with all other necessary operations.

Most of the nanobeam PhCC studies reported in the literature so far are

concerned with telecommunication wavelength operation [110, 112, 125–131],

and hence are not compatible with the emission of the QDs studied in this

thesis. Therefore, these structures had to be designed from scratch in order to

match the emission from the available GaAs-based wafers used for the experi-

ments reported here.

In this chapter the design, optimization and performance of nanobeam

PhCCs is demonstrated through both modelling and experimental results. The

chapter begins with a brief discussion of how the structures operate and how

their performance is measured. It then goes on to demonstrate experimen-

tally on-chip filtering of QD emission with a passband of ∆ω = 1− 3 nm. The

expected trade-off of the device between a narrow passband and a high trans-

missivity is also explained and illustrated through experimental results. The

chapter then goes on to discuss ways of minimising the spectral extent of the

cavity mode (and hence of maximising the respectiveQ-factors) through slight

alterations to the design of the structure. Q-factors of ∼ 2800 (∆ω ≈ 0.34 nm)

are achieved experimentally and further improvements are suggested, which

are shown theoretically to achieve very high Q-factors of ∼ 850,000 (∆ω ≈
1 pm). The possibility of tuning the QD emission wavelength into resonance

with the cavity mode using the quantum-confined Stark effect (QCSE), discus-

sed in Section 2.1.3, for cQED applications is also examined experimentally.

The chapter ends with a summary of the work achieved so far and offers re-

commendations for future directions of study in this area.
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Figure 4.1: Schematic diagram of a nanobeam photonic crystal cavity created by
increasing the distance between the two central air holes to be c > a, where a is the
periodic distance between the remaining holes. The dashed yellow line indicates the
centre of symmetry of the device.

4.1 Principles of Operation

Nanobeam PhC cavities are based on the 1D PhCCs discussed in Section 2.6

that are created through periodic positioning, a, of air holes of diameter, d,

along a nanobeam waveguide (see Section 2.2.1), with width, w, and thickness,

t. While the QD emission is confined in two dimensions inside the nanobeam

waveguide by total internal reflection, the PhC structure provides the confine-

ment in the remaining direction along the nanobeam waveguide for the parts

of the light spectrum within its photonic band gap. By introducing a defect

inside the PhC structure an optical cavity can be formed. This can be achie-

ved in several different ways, of which the simplest is to adjust the distance

between the two central holes of the PhC, c, leaving all the other parameters

unchanged. Increasing or decreasing this dimension breaks the periodicity of

the PhC, and hence creates an optical resonator between the two central holes,

whilst ensuring the PhC structure (and hence its band gap) on either side of

the cavity remains unaffected. A schematic diagram of such a nanobeam PhCC

is presented in Figure 4.1.

As discussed previously in Section 2.3, the Q-factor is the figure of me-

rit for optical microcavities as it is inversely proportional to the cavity’s loss

rate, which determines the full-width at half-maximum (FWHM), ∆ω, of the

resonant peak of the cavity. The decay mechanisms of the nanobeam PhCC

(neglecting absorption) are twofold. The light can either couple to the waveg-

uide or radiate into the surrounding air. Therefore, the total loss rate of the
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cavity can be expressed as follows [47]:

1
Q

=
1
Qw

+
1
Qr
, (4.1)

where Qw and Qr are the Q-factors associated with the waveguide and radia-

tion losses respectively. The fraction of light, T , transmitted in resonance with

the cavity mode through the resonator, as derived using coupled-mode theory,

depends on both of these parameters through:

T =
( Qr
Qr +Qw

)2
. (4.2)

This means that in order to achieve near unity transmission (i.e. T ≈ 100 %)

Qr needs to be much larger than Qw (i.e., Qr >> Qw). However, according

to Equation 4.1, increasing Qr will result in the total Q-factor of the resona-

tor to be dominated by the lower Qw. For this reason a trade-off between a

good transmissivity through the cavity and a highQ-factor is expected in these

structures.

The following section of this Chapter reports detailed studies of this phe-

nomenon through both electromagnetic modelling and experimental measu-

rements in the context of integrating narrow-band optical filters on a chip.

The next Section 4.3 then explores ways of further optimizing the parameters

Qr andQw through resonator design in order to achieve higherQ-factors, both

through modelling and experimentally. The possibility of tuning the QD emis-

sion wavelength using QCSE (see Section 2.1.3) into resonance with the cavity

mode for cQED applications is also investigated, and some initial experimen-

tal results are reported.

4.2 On-Chip Spectral Filtering

4.2.1 Design Requirements

In a typical wafer used in this thesis (see Section 3.1.2) the QD emission wave-

length is in the range of ∼ 900 − 960 nm, while that of the wetting layer is in

the range of ∼ 820− 860 nm. GaAs itself emits at around 815 nm. Therefore, a

filter with a photonic band gap in the range of ∼ 800−980 nm and with a cavity
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Figure 4.2: Spectrum from a typical GaAs wafer containing a high density of self-
assembled InAs QDs, obtained using non-resonant photo-luminescence excitation.
The two green dashed lines indicate the required filtering bandwidth.

mode at ∼ 930 nm (i.e., the middle of the QD emission range) is required. This

will lead to the transmission of only a small proportion of the QD emission

spectrum (ideally a single QD) through a nanobeam PhC filter, while blocking

a large range of other emissions from the wafer. The spectral response of a ty-

pical wafer containing a high density of QDs excited non-resonantly through

photo-luminescence is shown in Figure 4.2. The two green dashed lines indi-

cate the desired bandwidth of an on-chip optical filter.

4.2.2 Modelling and Optimization of the Filter

There are many parameters of the nanobeam PhC filter that will affect its re-

sonant mode wavelength and band gap, as well as its performance assessed in

terms of Q and T . These are all the dimensions mentioned earlier: a, d, c, w, t,

as well as the number of holes on either side of the cavity, n (as will be demon-

strated later). The effects of these parameters are not independent from each

other. For example, if a is altered, this will affect both the size and wavelength

of the photonic band gap as well as the resonant mode wavelength. Therefore,

designing a suitable device that fulfils all the filtering specifications outlined

above often requires a computationally intensive parameter search. This is

particularly challenging as most similar studies reported in the literature are
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concerned with longer (telecommunication) wavelength filtering operation (at

∼ 1500 nm) [110, 125–127, 129–132]. Therefore, in order to perform a para-

meter optimization that allows one to find the set that fulfils all the specified

design requirements, an initial set of dimensions was first chosen.

As the nanobeam PhC filter was to be made on a typical intrinsic GaAs

wafer with a membrane thickness of 140 nm, this provided a fixed requirement

for the thickness of the waveguide, t. Other dimensions chosen as a starting

point were were based on those used by Chen et al. [125]. These were: w0 =

435 nm, a0 = 360 nm, d0 = 258 nm, and c0 = 503 nm, where the subscript zero

indicates an initial value. FDTD electromagnetic modelling (see Section 3.4.1)

was then undertaken in order to determine the propagation of light within the

structure. The results of these simulations for a nanobeam PhC filter with the

above-mentioned dimensions and n = 3 are shown in Figure 4.3(a). The graph

indicates the amount of light with a wavelength in the range of 1000−1200 nm

that will be transmitted through the filter from one end to the other. In this

case the cavity mode is at ∼ 1100 nm, which is ∼ 170 nm longer than the target

930 nm. However, the width of the photonic band gap is sufficiently large for

the defined filtering requirements.

In order to study systematically the effects of optimizing some of the di-

mensions of the filter a commonly used design criterion for the nanobeam

PhCCs, called the filling fraction (FF) [112], is introduced. This is simply the

ratio, f , of the area of each air hole to the area of the nanobeam waveguide

over one PhC period:

f =
πd2

4wa
. (4.3)

Therefore, an obvious first step in the parameter optimization is to rescale

all the parameters in the same way, so as to keep f fixed. A scaling factor

of 0.8 was found to shift the cavity mode to the required wavelength while

keeping the width of the photonic band unchanged matching all the design

requirements. The transmissivity, T , remains at ∼ 20 %. Further optimization

of a and c then led to a maximization of T at a value of ∼ 70 % at the required

wavelength. The final parameters were as follows: t = 140 nm, w = 350 nm,

d = 200 nm, a = 263 nm, and c = 413 nm. The modelling results for several

parameter sets used in the optimization, including the final one, are presented

in Figure 4.3(b).
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Figure 4.3: Simulation results showing the percentage of light with a wavelength
range of 200 nm transmitted through nanobeam PhC filters with waveguide thickness
t = 140 nm, number of holes on each side of the cavity n = 3, and (a) other dimensions
as chosen by Chen et al. [125], and (b) other dimensions rescaled with respect to the
initial values.
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Figure 4.4: Simulation results showing the percentage of light with a wavelength
range of 900−950 nm transmitted through nanobeam PhC filters with filling fraction,
f , held constant, waveguide thickness t = 140 nm, waveguide width w = 350 nm, dia-
meter of holes d = 200 nm, period a = 263 nm, cavity width c = 413 nm and different
number of holes on either side of the cavity n = 3,4,5.

Figure 4.5: Simulation results for the designed filter showing how the quality factor
of the cavity, Q, and the maximum transmissivity of light through the filter, T , vary
with respect to the number of holes on each side of the cavity, n.
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As mentioned before, apart from the filtering requirements of the resonant

wavelength and the range of the PhC band gap, the important performance

indicators of the PhC filter are Q and T . The larger is Q, the smaller is the

FWHM of the resonance wavelength peak, and hence the emission from fewer

QDs will be transmitted. Therefore, for practical applications in quantum

optics, the higher theQ of the filter the better as ideally one would like for only

a single QD emission to be transmitted. One way of attempting to increase Q

is to increase the hole number, n. The more mirrors are placed on either side of

the cavity the stronger will be the light confinement within it. However, this

was found to have its own disadvantages, as mentioned before. Due to stronger

confinement within the cavity the light resonates inside for a longer period of

time. This means that there is more opportunity for the light to scatter out of

the waveguide without propagating along it as Qw increases.

The effect of n on bothQ and T for this filter is presented in Figures 4.4 and

4.5. The graph in Figure 4.4 shows the transmissivity through the filter with

n = 3,4,5 as a function of wavelength in the range of 900− 950 nm. It is clear

that as n increases, the FWHM of the resonance peak decreases. For n = 3,

∆ωn=3 = 3 nm, which corresponds to Qn=3 ≈ 310; for n = 4, ∆ωn=4 = 0.9 nm

(Qn=4 ≈ 1030); and for n = 5, ∆ωn=5 = 0.4 nm (Qn=5 ≈ 2310). This accompa-

nies the expected decrease in T from ∼ 73 % for n = 3, through ∼ 51 % for

n = 4 to just ∼ 10 % for n = 5. This demonstrates a large trade-off between Q

and T , which is presented clearly in Figure 4.5 for n between 3 and 17. The

relationships between Q and n as well as T and n are approximately sigmoi-

dal. This is because for n = 0 there is no PhC in the nanobeam waveguide and

hence T should be at its maximum, Tn=0 = 100 %, while Q at its minimum,

Qn=0 = 0 (as FWHM is a very large wavelength range). As n increases Q also

increases and then saturates at ∼ 4500 for n ≥ 9, while T decreases to its mi-

nimum, Tn≥9 ≈ 0 %. This is caused by the radiation losses in the nanobeam

PhCC due to its 2D confinement through total internal reflection. While Qw
increases exponentially with n, Qr remains approximately constant. Hence,

for larger n, Q is dominated by Qr and can no longer increase with increasing

Qw. For a structure with complete 3D PhC confinement radiation losses would

be near zero, and hence Qr >> Qw resulting in nearly 100 % transmission on

resonance (according to Equation 4.2) and Q increasing exponentially with n

without saturation.
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Figure 4.6: Top-view scanning electron microscope (SEM) images of typical nano-
beam PhC filters with filling fraction, f , held constant and (a) n = 3, and (b) n = 4.

4.2.3 Fabrication

Nanobeam PhC filters with a different number of holes on each side of the

cavity, n = 3,4,5, were fabricated on an undoped GaAs wafer, using standard

techniques together with a SiO2 e-beam mask (rather than resist), which was

especially developed for these structures (see Section 3.14). The filter was de-

fined within the top GaAs membrane of 140 nm thickness, with InGaAs self-

assembled quantum dots (QDs) embedded in its centre, which were used as

photon sources for the optical testing of the filter. The nanobeam waveguide

containing the filter was terminated on each side with a Bragg output-coupler

(OC) to enable out-of-plane collection of the transmitted signal. The GaAs sub-

strate was isolated from the membrane by a 1µm thick intrinsic Al0.6Ga0.4As

layer, which was removed from beneath the device using an HF etch to cre-

ate the suspended structure. Scanning electron microscope (SEM) images of

typical fabricated devices are shown in Figure 4.6.
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4.2.4 Filtering of QD Emission Using Nanobeam PhCCs

Experimental Setup

The optical properties of the filters were studied experimentally using micro-

photoluminescence (µ-PL) spectroscopy with spatially resolved excitation and

collection in a continuous flow cryostat at 4.2 K, using a confocal microscope

system (see Sections 3.3.2,3.3.1). A He:Ne continuous-wave laser emitting at

633 nm was used for QD excitation via GaAs. The µ-PL measurements were

performed by exciting QDs in the waveguide on one side of the filter and

collecting the emission from both sides consecutively. The light transmitted

through the filter was collected from the through OC, while that transmitted

through the waveguide without passing through the filter was collected from

the normalisation (norm) OC [as indicated in Figure 4.6(a)]. The spectra were

recorded using a spectrometer and a liquid N2 cooled CCD.

Results and Discussion

Examples of raw spectra recorded from one of the filters with n = 3 at an ex-

citation laser power of ∼ 0.5µW are presented in Figure 4.7. The black con-

tinuous line shows the emission both from a large ensemble of QDs located

inside the waveguide in the wavelength range of ∼ 920 − 1000 nm, and from

the wetting layer at ∼ 850 nm. Under normal circumstances this light will be

emitted in both directions along the waveguide to the norm and through OCs

with equal probabilities [28]. Therefore, the signal recorded from the norm

OC can be used as a reference to assess the performance of the filter. It is clear

from the collected data, that the filter suppresses the light propagation in the

designed wavelength range, removing both emission from the wetting layer

and a large proportion from the QDs, while at the same time it allows for a

small bandwidth of wavelengths, inside the PhC band gap, to be transmitted

to the through OC.

The wafer used for this experiment had a high density of QDs in the mem-

brane, so that filter modes can be clearly observed and measured. This is why

the signal collected from the norm OC is an accumulation of emission from a

large ensemble of QDs rather than single and sharp individual QD peaks. The

peaks and troughs in that spectrum are caused by the Fabry-Pérot resonances
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Figure 4.7: Experimental results showing the routed QD emission in the wavelength
range of 840− 1000 nm collected from the through and normalisation OCs for a filter
with n = 3. The blue dotted line shows modelled Fabry-Perot resonances within the
nanobeam waveguide.

Figure 4.8: Experimental results for filters with n = 3,4,5. The data show the per-
centage of light transmitted to the through OC with respect to that collected from the
normalisation OC for the wavelength range of 925− 975 nm.
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within the structure. Both OCs at the ends of the 15µm long waveguide will

cause reflections of the propagating light. The various reflections will interfere

with each other and the actual signal, either constructively or destructively,

forming resonances within the device. This effect was also modelled using the

FDTD electromagnetic simulation software and the results are overlapped on

top of the experimental curves in Figure 4.7.

Figure 4.8 shows the normalized transmissivity measurement results for

three filters with n = 3,4,5 for a wavelength range of 925 − 975. The emis-

sion outside of this range is very small causing large errors in the normali-

zation procedure. A comparison of these curves with their theoretical coun-

terparts in Figure 4.4 leads to several findings. Firstly, both the FWHM, ∆ω,

and transmissivity, T , follow the expected trends to decrease as n is increa-

sed. However, most values of ∆ω are larger (and hence the corresponding Q-

factors are smaller) than the modelled values, while most values of T are smal-

ler than their modelled counterparts. This is likely caused by any roughness

and irregularities in the structures resulting from the fabrication processes,

which increase scattering losses, and hence reduce Qr . Furthermore, the dif-

ference between the experimentally determined Q-factors, Qexp, and the si-

mulated values, Qmod, is larger for bigger n. For n = 3, Qexp ≈ Qmod ≈ 310

(∆ωn=3 = 3 nm); for n = 4, Qexp ≈ 0.78Qmod ≈ 800 (∆ωn=4 = 1.2 nm); and for

n = 5, Qexp ≈ 0.41Qmod ≈ 940 (∆ωn=5 = 1 nm). As the increase in Q depends

greatly on n, any fabrication imperfections per each period of the PhC accu-

mulate to cause a slower increase as n is increased.

Secondly, the resonant wavelengths are considerably longer (even up to

30 nm longer) than designed. They also varied between the measured devi-

ces. This shift is most likely caused by the differences in the dimensions of

the fabricated filters with respect to those intended. A study of the depen-

dence of waveguide width, w, and hole diameter, d, on the wavelength of the

cavity mode has been undertaken and the results from the electromagnetic

modelling are reported in Figure 4.9. In order for the mode to be shifted by

10 nm towards longer wavelengths, the hole diameter needs to be smaller by

only 5 nm, or the waveguide width larger by ∼ 12 nm. This indicates that the

structure is extremely sensitive to fabrication inaccuracies. The cavity length,

c, and the PhC period, a, will also have a similar effect on the cavity mode, but

these are easier to achieve with higher accuracy during fabrication than sizes
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Figure 4.9: Modelling results demonstrating how small changes to the waveguide
width, w, and hole diameter, d, affect the resonance wavelength of the filters.

of structures that depend on a larger number of processing steps. The posi-

tion of various on-chip elements only depends on the single lithography step

that defines them, but the sizes of structures also depend on several etching

procedures, which are not straightforward to control to such tight tolerances.

4.2.5 Conclusions and Further Development

In conclusion, an on-chip photonic crystal band-pass filter with a passband of

1 − 3 nm, and a band gap of ∼ 180 nm has been both designed and realized

experimentally. The filter can be easily integrated into III-V semiconductor

quantum optical circuits as it is based on a nanobeam waveguide structure,

widely used for light guiding, interferometry, and beam splitting. The pass-

band was in the range of ∼ 940−960 nm, which was ideal for the QD emission

from the investigated wafer. However, the resonance wavelength can be adjus-

ted by slightly altering the dimensions of the device if a shorter filtering wa-

velength is required. The demonstrated device represents an important step

towards realizing fully integrated quantum optical circuits, as it paves the way

for single-photon detectors being effectively integrated on a chip [133]. The

large trade-off between the transmissivity and the width of the passband of

the filter was also studied both through simulations and experimentally. The

sensitivity of the device to fabrication imperfections has been found to increase
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this trade-off further by increasing the scattering losses. The following section

presents ways of maximising the possible values ofQ by studying different de-

signs of the nanobeam photonic crystal cavity. It also reports results from the

experimental investigation of the possibility of tuning a single QD emission

using QCSE into resonance with a nanobeam PhCC for cQED applications.

4.3 Cavity QED Effects

High-Q PhCCs, which have small modal volumes, are of great interest to the

quantum optics community as they offer large Purcell enhancement of the

emission rate of an emitter within an optical cavity (see Section 2.3). Hence,

they offer excellent platforms for studying cQED effects. Tuning of the QD

emission using temperature control or QCSE to switch between the weak and

strong coupling regimes of the light-matter interaction have been reported in

many 2D PhCCs like L3 cavities [134] (see Section 2.6). However, similar stu-

dies with nanobeam PhCCs have only so far been attempted with temperature

tuning [135], which affects both the cavity mode wavelength as well as that of

a QD. It also broadens the QD emission peak due to the reduced confinement

potential of the charge carriers. In this section an improved design for a nano-

beam PhCC is presented for which experimental Q-factors are less dependent

on any fabrication imperfections. Experimental results from the QCSE tuning

of the QD emission inside this cavity are also reported. At the end of this

section another cavity design is also presented for which very high Q-factors

can be achieved.

4.3.1 Design Requirements

In order to investigate experimentally the possibility of tuning the QD emis-

sion wavelength using QCSE into resonance with the cavity mode of a nano-

beam PhCC, the sample is required to be fabricated on a doped GaAs wafer.

This allows application of a potential difference across the GaAs membrane

with embedded QDs. Thus, the thickness of the waveguide is larger than

for the on-chip filter presented in Section 4.2, with t = 170 nm. The QDs on

a target wafer emit at slightly shorter wavelengths than before, in the range

∼ 890− 940 nm, and hence the cavity mode should be redesigned accordingly
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for ∼ 915 nm. The photonic band gap can, therefore, also be slightly narro-

wer, in the range of ∼ 800 − 960 nm. Another additional requirement chosen

for this iteration of the PhCC design is that the waveguide width should be

w ≈ 280 nm to ensure operation in a single (TE) polarisation, which is an im-

portant requirement for optical QIP applications (see Section 2.2.1). It also en-

sures compatibility with other on-chip photonic devices based on single-mode

nanobeam waveguides, such as the beam splitters reported in Chapter 5.

4.3.2 Modelling and Optimization of the Filter

Simply changing the width and the thickness of the nanobeam waveguide in

comparison to those presented in Section 4.2, while keeping the remaining

PhC parameters (a, d, c) as before, considerably decreases the performance

of the device. Figure 4.10 shows the simulated transmission spectra for a na-

nobeam PhC filter with n = 3, d = 200 nm, a = 263 nm, width c = 413 nm, and

two sets of different values of w and t. Changing the width from w = 350 nm

to w = 280 nm and thickness from t = 140 nm to t = 170 nm causes a large de-

crease in both Q and T , which experience decreases of 59 % (from 310 to 127)

and 77 % (from 73 % to 17 %) respectively. In addition, the photonic band

gap shifts towards shorter wavelengths by ∼ 30 nm. For this reason, anot-

her parameter search is necessary to optimize the remaining dimensions of

the filter in order to maximize Q and T for the required w and t. A device

with t = 170 nm, w = 280 nm, d = 125 nm, a = 250 nm, c = 335 nm was found

to fulfil the design requirements with the resonant wavelength at ∼ 911 nm,

T = 65 %, ∆ω = 1.4 nm and hence Q ≈ 650 for n = 4 (see Figure 4.11).

The reason for this simple cavity’s performance to be affected strongly by

fabrication imperfections with Q-factor values lower than expected with each

period of the PhC (as shown experimentally in Section 4.2.4) is the mismatch

of various modes existing within the structure and the abrupt interfaces be-

tween them. As the light propagates along the nanobeam waveguide it will

arrive at the sudden boundary where the optical mode changes to that of the

nanobeam PhC and then again at the cavity interface, and similarly on the

way out. Hence there exist two abrupt interfaces in this cavity design: bet-

ween the waveguide and the PhC, and between the PhC and the cavity. These

will affect the waveguide and radiation losses respectively (Qw and Qr). It has
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Figure 4.10: Simulation results showing the percentage of light within the wave-
length range of 800−1000 nm transmitted through a nanobeam PhC filter with n = 3,
d = 200 nm, a = 263 nm, c = 413 nm, and different values of w and t.

Figure 4.11: Simulation results showing the percentage of light within the wa-
velength range of 800 − 1000 nm transmitted through a nanobeam PhC filter with
t = 170 nm, w = 280 nm, d = 125 nm, a = 250 nm, c = 335 nm, and n = 4.
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been shown that by gentler confinement of light within the PhCC a stronger

and more imperfection-resistant confinement (with higher Q-factors) can be

achieved [72, 136, 137].

In nanobeam PhCCs better mode matching can be realized through syste-

matic tapering of the filling fraction (FF), f , along the waveguide. This can

be done by altering either the hole diameter, the waveguide width or the PhC

period [according to Equation (4.3)]. Even though high Q-factors have been

realised through the PhC period tapering [135] it is considered a less promi-

sing method as it also has an effect on the PhC band gap and the wavelength

of the cavity mode [112], and hence it is not straightforward to implement ef-

fectively. In order to make the interface between the waveguide and the PhC

smoother f should be decreasing from the centre of the device in either di-

rection so that the mirror strength of the PhC structure is systematically redu-

ced at each period towards the waveguide. However, the opposite is true for

the mode matching between the cavity (whose neff is that of the waveguide)

and the PhC structure, for which f should be increasing from the centre of the

device. Therefore, these two approaches are considered here separately.

As mentioned above, better mode coupling between the PhC structure and

the waveguide can be realised by decreasing the FF from the centre of the

device. This can be realized by either increasing the waveguide width or de-

creasing the hole diameter [see Equation (4.3)]. Schematic diagrams of both

of these methods are presented in Figure 4.12. The latter approach has two

important advantages over the former. Firstly, it is simply easier to realise in

practice variations to the hole size along the PhC structure than to the cur-

vature of the waveguide. Secondly, in order for the nanobeam PhCC to be

compatible with other photonic elements on-chip for use in QIP, such as beam

splitters, the waveguide width needs to remain uniform and in single polari-

zation. For these reasons, the nanobeam PhCC with decreasing hole diameter

is investigated here.

A nanobeam PhCC with f decreasing from the centre of the device has been

modelled using the FDTD software Lumerical, as previously. A linear tapering

of the FF was realized through changes to the hole diameter. The diameter of

the holes closest to the cavity, d0, was set to be 125 nm together with the re-

maining parameters chosen as previously. The FF was decreased by the same

amount at each period of the PhC by reduced hole diameter. Simulation re-
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Figure 4.12: Schematic diagram of a nanobeam PhC filter with decreasing FF reali-
zed through (a) decreasing hole diameter, and (b) increasing waveguide width. The
dashed yellow lines indicate the centres of symmetry of the devices.

sults comparing the performance of the cavity in terms of Q and T depending

on the number of holes, n, with f = const. for all periods and with decreasing

f are presented in Figures 4.13 and 4.14. As could be expected intuitively, in

order to achieve similar confinement level (Q-factor) more periods are neces-

sary in the case of the tapered design, as each individual PhC mirror strength

is weaker than in the case of f = const. Even though, the value at which Q

saturates does not seem to be affected by the tapered design, it is expected

to have a significant impact on the experimentally achievable Q-factors, as is

demonstrated below.

4.3.3 Fabrication

Nanobeam PhCCs with n = 15 and decreasing f , were fabricated on a GaAs

wafer with a doped membrane, using standard techniques (see Section 3.2) and

a SiO2 mask. The filter was defined within the top p-i-n GaAs membrane of

170 nm thickness, and with a low density of InGaAs self-assembled quantum

dots (QDs) embedded in its centre, which were used as photon sources for op-

tical testing of the device. Separate Ni:Au contacts were made to the top p and

the bottom n layers of the membrane to enable wavelength tuning of the QD

emission through QCSE. The nanobeam waveguide was terminated on each
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Figure 4.13: Simulation results showing the percentage of light within the wa-
velength range of 900 − 920 nm transmitted through a nanobeam PhC filter with
t = 170 nm, w = 280 nm, d0 = 125 nm, a = 250 nm, c = 335 nm, and either n = 4 with
filling fraction, f , held constant or n = 10 with f decreasing linearly from the centre
of the cavity.

Figure 4.14: Simulation results showing the Q-factor and transmissivity, T , for a
nanobeam PhC filter with t = 170 nm, w = 280 nm, d0 = 125 nm, a = 250 nm, c =
335 nm, and either filling fraction, f , held constant or with f decreasing linearly from
the centre of the cavity.
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Figure 4.15: Top-view scanning electron microscope (SEM) images of typical nano-
beam PhC filters with decreasing hole diameter from the centre and n = 15 showing
(a) the whole structure with output-couplers and the position of excitation/collection
laser spots during experiments, and (b) a close-up of the photonic crystal structure.

side with a Bragg output-coupler (OC) to enable out-of-plane collection of the

transmitted signal. The n-GaAs substrate was isolated from the membrane by

a 1.2µm thick intrinsic Al0.6Ga0.4As layer, which was removed from beneath

the device using an HF etch to create the suspended structure. Scanning elec-

tron microscope (SEM) images of typical devices are presented in Figure 4.15.

4.3.4 Cavity QED Effects in Nanobeam PhCCs with Tunable

QD Emission

Experimental Setup

The optical properties of the nanobeam PhCCs were studied experimentally

using micro-photoluminescence (µ-PL) spectroscopy with spatially resolved

excitation and collection in a bath cryostat at ∼ 5 K, using a confocal mi-

croscope system (see Sections 3.3.2,3.3.1). A Ti:Sapphire continuous-wave la-

ser emitting at ∼ 815 nm was used for QD excitation via the wetting layer.

The µ-PL measurements were performed by exciting QDs in the centre of the
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device, and thus of the cavity, while collecting the emission from that same po-

sition [as indicated in Figure 4.15(a)] with a separate optical path. The signal

was recorded using a spectrometer with a liquid N2 cooled CCD.

Results and Discussion

Firstly, the fabricated devices were characterized using high-power excitation

in order to determine the mode wavelength and the Q-factor of each cavity.

Clear cavity modes were observed for 60 % of the measured devices (12/20).

The average value of Q for the working devices was found to be Qav ≈ 1755,

73 % of the modelled value ofQmod ≈ 2400, while the highest measuredQ was

∼ 2020 = 0.84Qmod (∆ω = 0.47 nm). This is a significant improvement from

the previously studied filter with f = const., where the difference between the

theoretical and experimental values of Q was much larger even for the best

device whose modelled Q was slightly lower at 2310 (for n = 5). The experi-

mentalQ value was only 41 % of the theoretical one in that case. This indicates

that due to the gentler mode matching between the PhC structure and the wa-

veguide over a larger number of PhC periods, the performance of the device is

less sensitive to fabrication imperfections than in the case of abrupt bounda-

ries between the two. As the devices were deliberately made with a range of

hole sizes and waveguide widths in order to increase the probability that some

of the cavity modes will overlap with QD emission, the mode wavelengths ran-

ged between 900 nm and 960 nm. Around 50 % of the working devices had a

cavity mode in the correct wavelength range to match that of the QDs emis-

sion. However, due to the low density of QDs on the sample (in contrast with

the previously measured filter), only one cavity was found to slightly overlap

spectrally with the emission from one QD. Figure 4.16 presents the results for

this device.

Figure 4.16(a) shows the raw spectra obtained by exciting and collecting

from the cavity at different excitation powers. At low powers of just a few

µW only emission from the individual QDs is visible. As the excitation po-

wer increases the cavity mode starts to emerge at 933.3 nm, while the intensity

of the emission from the QDs increases. At high power the emission intensity

from the QDs saturates, while the cavity mode becomes increasingly more pro-

nounced. This phenomenon is captured in Figure 4.16(b), where the integrated
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Figure 4.16: Results obtained by exciting with different powers and collecting from
the centre of one of the devices with a cavity mode (at 933.3 nm) close to the emission
wavelength of the QDs. (a) Raw spectra for a wide wavelength range, and (b) inte-
grated peak intensities for the cavity, a typical QD spectrally isolated from the cavity
(at 930.4 nm) and a QD which slightly overlaps with the cavity (at 934.1) denoted as
CavQD.
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peak intensity of the cavity, a typical QD emission not enhanced through the

Purcell effect (at 930.4 nm), and a QD emitting at 934.1 nm, which overlaps

slightly with the cavity mode (and hence is referred to as CavQD), are plot-

ted against the excitation power. The QD emission increases asymptotically

with increasing power and saturates at ∼ 40µW with an intensity ∼ 12 times

brighter than at low excitation power, while the cavity emission increases li-

nearly with increasing power, and hence dominates the emission spectrum at

high powers. In the case of the CavQD, the intensity of the emission incre-

ases much faster than that of a typical QD and saturates at higher power of

∼ 70µW with intensities ∼ 300 times brighter than at low power. Hence, the

CavQD is much brighter than other QDs at higher excitation powers. As the

Purcell factor depends not only on the Q value of the cavity, but also on the

QD’s spectral and positional overlap with the modal fields of the cavity, this

effect could be greatly increased by, for example, tuning the QD emission wa-

velength into resonance with the cavity mode. This has been attempted with

this sample through QCSE by fabricating the device on a p-i-n membrane. The

results of this experimental study are presented below.

The IV characteristic of the measured diode is presented in Figure 4.17.

The turn-on voltage is ∼ 8.5 V. This is much higher than expected (∼ 1.5 V) for

a GaAs p-i-n structure [134]. However, diodes were fabricated on the same

wafer previously and the turn-on voltage was then found to be ∼ 1.3 V. This

indicates that the problem now lies in the fabrication procedure rather than

the wafer itself. For example, if there is any resist still left on the sample when

the contacts are deposited, it acts as an insulating layer between the wafer

and the contacts. This causes the resistance of the contacts to be much higher

than expected, and thus results in a need to apply higher bias than the actual

built-in voltage in order to turn the diode on.

Due to the built-in voltage the electronic band structure of the QD/GaAs

interface (see Section 2.1.3) is bent to start with, and hence the electrons and

holes are allowed to tunnel out from the QD. The bending of the band struc-

ture is decreased by the application of a forward bias to the diode structure.

This means that only at a certain bias should emission from a large number

of QDs be observed. At higher biases their emission wavelength will be blue-

shifted. Typical photoluminescence emission spectra obtained by exciting and

collecting the signal from the centre of one of the cavities as a function of
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Figure 4.17: I-V characteristic of the measured diode structure.

forward bias are shown in Figure 4.18. Figure 4.18(a) shows the effect of the

QCSE on the QD emission. At biases up to ∼ 8.5 V relatively few QD emis-

sion lines are visible due to charge carriers tunnelling out of the QDs. When

the diode turns on many more QDs are able to emit single photons. Further

increasing the forward bias causes the QD emission to shift towards shorter

wavelengths. Overall, a blue-shift of ∼ 0.2 nm is achieved when the voltage is

increased from 8.5 V to 11.2 V for this sample. Figure 4.18(b) presents these re-

sults for a broader range of biases and wavelengths. This particular cavity has

a mode at ∼ 961 nm, and hence is isolated spectrally from the QD emission.

It can be seen that while the QDs experience a shift to shorter wavelengths in

their emission, the cavity mode remains unaffected by the application of bias.

This demonstrates the potential for tuning the QD emission wavelength into

resonance with the nanobeam PhC cavity mode. Unfortunately however, in

this case the spectral separation between the cavity mode and the QDs emis-

sion is far too large in comparison to the achievable Stark-shift.

In addition, the reproducibility of these results for other cavities was found

to have a success rate of only ∼ 30 %. While QCSE could be observed when

exciting and collecting from any output-coupler (OC) on the sample, this was

not the case for the cavities. This might be due to the fact that by making holes

in an already very narrow waveguide, the current flow through the material is

greatly suppressed. This leads to no change in the effective field experienced

by the QDs in the centre of the cavities with respect to the applied bias, and
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Figure 4.18: Photoluminescence emission spectra obtained while exciting and col-
lecting from the centre of one of the cavities, as a function of forward bias applied
to the diode structure. The colour map corresponds to emission intensity, with black
and red/yellow representing weak and bright signals respectively. Plot (a) focuses on
the QDs emission, which appears mostly from a bias of ∼ 8.5 V when the diode turns
on and is tuned by ∼ 0.2 nm through QCSE up to a bias of ∼ 11.2 V. Plot (b) shows the
position of the cavity mode at ∼ 961 nm, the wavelength of which is far away from the
QDs emission (visible mostly ∼ 915− 935 nm) and does not change with bias.
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Figure 4.19: Schematic diagram of a nanobeam PhCC with filling fraction, f , incre-
asing from the centre of the cavity, realized through increasing hole diameter. The
dashed yellow line indicates the centre of symmetry of the device.

hence no wavelength tuning. This was, for example, the case for the cavity

presented earlier in Figure 4.16, whose mode was spectrally much closer to

the QD emission wavelength. The small Stark-shift also presents challenges

to the demonstration of tuning the QD emission wavelength into resonance

with the nanobeam PhCCs using QCSE. However, this can be overcome by

designing an appropriate diode structure with AlGaAs barriers as mentioned

in Section 2.1.3.

4.3.5 High-Q Cavity Design

In the previous section a nanobeam PhCC with better mode matching between

the PhC structure and the nanobeam waveguide, realized through decreasing

f from the centre of the cavity, has been presented. Its advantage of being

less sensitive to fabrication imperfections with respect to cavities with con-

stant f manifested itself through higher experimentalQ-factors. However, the

maximum theoretical Q-factors were still only ∼ 3500. Here, a design for na-

nobeam PhCCs with very high Q-factors, potentially even reaching values of

∼ 850,000, is presented.

As mentioned before, there is a second interface between the cavity and

the PhC structure whose mode mismatch can cause large scattering losses (im-

plying low Qr and hence low Q). This can be adjusted similarly through a

gradual increase of f from the cavity towards the PhC structure to smooth

out this interface. Therefore, a reversed case of a cavity studied in the previ-

ous section is investigated here, now with the diameter of the holes increasing
from the centre towards the waveguide end so that f changes linearly up to

dend = 125 nm with all the other parameters as before. The schematic diagram

of the proposed nanobeam PhCC is presented in Figure 4.19.

The structure was designed so that there were a number of holes, nc, over
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Figure 4.20: Digital image of a high-Q nanobeam PhCC with filling fraction, f , incre-
asing linearly from the centre of the cavity over nc = 15, and with a further number,
nw = 15, of holes with f held constant at the waveguide end, ready for fabrication.

which the tapering took place, which were followed by a further number, nw =

15, of holes with dend = 125 nm, and hence with f = const. in order to increase

the mirror strength on the waveguide side. The number nw was chosen to be

15 as in the design with f = const. over the entire structure 15 holes were

enough to reach the maximum Q-factors for the cavity (see Figure 4.14). This

new cavity design is presented in Figure 4.20 in GDSII format with nc = 15

and nw = 15.

The nanobeam PhCC was modelled using the FDTD simulation software

Lumerical, as previously. The Q-factors for designs with various values of nc
and nw = 15 are shown in Figure 4.21. This time the Q-factors saturate at

∼ 850,000 for nc ≈ 35. This indicates that due to the gentler confinement of

light between the cavity and the PhC structure, the radiation losses at that in-

terface are greatly decreased, thereby making the confinement much stronger.

The tapered design should also make it possible to achieve high Q-factors ex-

perimentally, as demonstrated before. This potentially very high Q nanobeam

PhCC is currently awaiting fabrication for experimental testing.

4.3.6 Conclusions and Further Development

In conclusion, two different improved designs of a nanobeam PhCC have been

presented. One design was based on improving the mode matching between

the PhC structure and the waveguide by systematically decreasing the hole

diameter from the centre of the device in order to increase the resistance to

fabrication imperfections through a longer and softer interface between the

two optical modes. This resulted in higher experimental Q-factors of ∼ 2000
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Figure 4.21: Simulation results showing the Q-factor versus the number of holes
in the near cavity tapered region, nc, for the nanobeam PhCC with filling fraction, f ,
increasing linearly from the centre of the device in both directions until dend = 125 nm,
followed by nw = 15 holes with constant f .

(∆ω = 0.47 nm), 84 % of the modelled value, in comparison to just 41 % for

the original unmodified cavity. Another, reverse design, was also demonstra-

ted, which improves mode matching between the cavity and the PhC structure

through a systematic increase in the hole diameter from the centre of the de-

vice. This decreases scattering losses at that interface, thereby resulting in a

much stronger confinement of light in the cavity. It was shown through simu-

lations that such a nanobeam PhCC is capable of achievingQ factors of around

850,000 (∆ω ≈ 1 pm). The experimental studies still need to be carried out on

these devices, but they should be fairly resistant to fabrication imperfections

due to the tapered design.

Tuning of the QD emission into resonance with the nanobeam PhCC modes

using QCSE was also attempted experimentally. However, it was found that

for the majority (∼ 65 %) of the devices no wavelength tuning was observed

for the QDs inside the cavities. This might be caused by a relatively small

amount of material remaining in the centre of the nanobeam waveguides with

air holes on either side, which would cause the current flow across them to be

heavily suppressed. This would result in the band structure at the centre of

these devices not to be affected by the application of bias across the diode, and

hence also in no change to the confinement potential of those QDs.
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4.4 Summary and Outlook

In this chapter nanobeam photonic crystal cavities (PhCCs) were studied for

on-chip filtering and cQED applications. These devices are highly compa-

tible and easily integrable with other photonic structures essential for QIP,

such as the beam splitters that are studied in the next chapter of this thesis.

A PhC band-pass filter was first designed and demonstrated experimentally

using embedded QDs as light sources. The passbands of the filters were be-

tween 1 and 3 nm with a large photonic band gap approaching 200 nm. The

large trade-off between the high transmissivity through the filter and its nar-

row passband was also demonstrated experimentally. These devices pave the

way towards fully integrated quantum optical circuits as they make the inte-

gration of single photon detectors onto a chip increasingly possible [133].

Nanobeam PhCC designs were further developed in order to decrease the

spectral width of the cavity modes, so as to maximise the cavity Q-factors.

This can result in the increased emission rate of the QDs embedded in the

cavity if the two overlap well both spectrally and spatially according to the

Purcell effect (see Section 2.3). A cavity with an experimental Q-factor of

∼ 2000 (∆ω = 0.47 nm) was achieved through tapering of the hole diameter

to aid PhC mode matching with that of a nanobeam waveguide. Tuning of the

QD emission wavelength into resonance with the cavity mode was attempted

through QCSE in order to study these cQED effects, but was found to be rat-

her unsuccessful, most likely due to the poor current flow across the narrow

waveguides with air holes along them. An alternative method is to tune the

cavity mode wavelength instead, and this is the topic of Chapter 6 of this the-

sis. Finally, a nanobeam PhCC design that is theoretically capable of reaching

Q-factors of ∼ 850,000 (∆ω ≈ 1 pm) through tapering of the hole diameter to

aid cavity mode matching with that of a PhC was demonstrated through mo-

delling. This is a very promising approach that is particularly recommended

for further experimental study.
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Chapter 5

Electro-Mechanical Control of an
On-Chip Optical Beam Splitter

Micro-opto-electro-mechanical systems (MOEMS) have been widely studied

for a variety of applications in semiconductor integrated photonic circuits.

The vast majority of work has been carried out on silicon where on-chip tu-

ning of the optical properties of essential circuit components is possible by

displacing them mechanically with the application of an electrostatic field.

Lateral displacement has been used in phase modulators [138, 139], resonance

tuning of nanobeam photonic-crystal cavities (PhCCs) [129, 140] and micro-

toroid resonators [141]. More complicated structures such as comb-drive actu-

ators [142–146] have also been developed to allow for the larger displacements

that are attractive for optical switching applications [147–151]. Recently, sca-

lable out-of-plane actuation methods based on a cantilever geometry have also

been demonstrated at room temperature [152].

MOEMS based on III-V semiconductors are now emerging for applications

in quantum information processing (QIP). Initial work has focused on tuning

PhCC modes into resonance with quantum emitters in order to enhance their

emission. In-plane [153] as well as double-membrane out-of-plane actuation

methods [154–156] have been reported, both of which offer small displace-

ments. Beam splitters, realized on chip using directional couplers (DCs), are

another vital component of integrated linear quantum optical circuits, with

post-fabrication control of their optical properties likely required for efficient

QIP applications [7, 157]. In this context the electro-mechanical tuning of DCs
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has so far only been considered theoretically [158].

In this chapter the electro-mechanical control of an on-chip optical beam

splitter containing an embedded single photon source is demonstrated at low

temperature. The beam splitter is tuned reversibly from the initial state, with

output from both arms of the beam splitter, to a final state, with photons rou-

ted into a single arm, by electro-mechanical actuation of a cantilever, with

achievable out-of-plane displacements of over 400 nm [159]. The proposed

device can operate as either an optical router or a fine-tuning element of other

individual photonic elements, such as PhCCs or Mach-Zehnder interferome-

ters, in III-V semiconductor integrated quantum optical circuits.

The chapter begins with a short discussion of how the device operates and

presents the results of optical as well as electro-mechanical modelling of the

system, before discussing its fabrication. It then continues with both room-

and low-temperature electro-mechanical testing of the device before presen-

ting the results of opto-electro-mechanical and autocorrelation measurements.

The chapter concludes with a summary of the work achieved and a discussion

of future improvements to the sample design.

5.1 Principle of Operation

The routing of single photons is achieved by electro-mechanical tuning of the

splitting ratio of an optical beam splitter in the form of a nanobeam waveg-

uide directional coupler (DC). One of the two waveguides forming the DC is

located at the free end of a cantilever, which can be displaced vertically do-

wnwards by applying an actuation voltage, Vact, between the cantilever and

the substrate. The resulting out-of-plane separation between the waveguides

is used to control the splitting ratio of the DC. In the measured device, in

the absence of an actuation voltage, photons emitted by a chosen InGaAs self-

assembled QD embedded within the fixed arm of the device are split ∼ 83:17

between the co-planar through and drop ports of the DC respectively. This

initial state is dependent upon the dimensions of the fabricated structure, as

discussed further in the following section. As Vact is applied the drop port

displaces downwards by over 400 nm causing the splitting ratio to approach

100:0.
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Figure 5.1: (a) Top- and (b) side- view schematic diagram of a directional coupler
consisting of two single-mode waveguides separated by distance sin laterally and sout
vertically in the coupling region of length lc.

5.2 Modelling of the System

5.2.1 Modelling of a Directional Coupler

The schematic diagram of a DC consisting of two single-mode waveguides is

presented in Figure 5.1. The DC acts as an optical beam splitter for light ente-

ring the input arm, due to evanescent light coupling between the two wavegui-

des in the coupling region. Depending on the dimensions of the waveguides,

the wavelength of the light, and both in-plane and out-of-plane separations

between the waveguides, the light will split differently between the through

and drop arms. The splitting ratio (SR) of a DC is defined as the output power

from the through arm to the output power from the drop arm. In this chapter

tuning of the SR is demonstrated by controlling the out-of-plane waveguide

separation, sout, by electro-mechanical actuation of a cantilever.

Modelling of the optical properties of the DC was performed using MIT

Photonic-Bands, a freely available eigenmode solver (see Section 3.4.1). For

the simulation the coupling length, lc, was set to 7µm and the thickness of the

waveguides to 160 nm (the membrane thickness of the wafer used for the ex-

periments). The waveguide width was set to 280 nm in order to ensure an ope-

ration that is as lossless as possible in a single (TE) polarization. The in-plane

waveguide separation, sin, in the coupling region was chosen to be 40 nm so

that the initial SR at sout = 0 of the DC is close to 50:50 for a range of emission

wavelengths of typical SAQDs (890 − 940 nm). The results of the modelling
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Figure 5.2: Results of the optical modelling of a directional coupler consisting of
160 nm thick and 280 nm wide waveguides with a 7µm long coupling region. (a) The
contour plot shows how the fraction of light evanescently coupled from one channel
to the other depends on the wavelength of the transmitted light and the out-of-plane
separation between the waveguides separated laterally by sin = 40 nm. (b) Similar
contour plot as in (a) but for increased in-plane waveguide separation of sin = 80 nm.
(c) Changes to the signal transmitted in the fixed arm (through) and coupled to the
moving arm (drop) as a function of out-of-plane displacement for a wavelength of
910 nm and sin = 80 nm. (d) Increase in the overall percentage of light (for a wave-
length of 910 nm) transmitted to the through arm for various parameters of the di-
rectional coupler as the out-of-plane separation between the waveguides is increased
to over 500 nm.
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of a DC, with a light source located in the fixed arm of the DC, are shown

in Figure 5.2. Depending on the wavelength of the light transmitted through

the DC of the dimensions discussed above and the out-of-plane separation bet-

ween its arms (introduced through the electro-mechanical actuation of a canti-

lever) the SR will change, varying the percentage of signal exiting the through

arm [see Figure 5.2(a)]. It is clear that in a broad QD emission wavelength

range, the DC can be tuned from an overcoupled state, when more light is cou-

pled to the drop than the through arm, to a decoupled state, when all the light

is transmitted to the through arm, as sout is increased to an achievable 400 nm.

This demonstrates the potential of the proposed device, which allows the SR

to be switched between the commonly required 50:50 and that corresponding

to an output into a single arm, 100:0. Unfortunately, the device studied expe-

rimentally had in-plane waveguide separation ∼ 40 nm larger than the target

value of 40 nm giving sin = 80 ± 5 nm. This is caused by fabrication inaccura-

cies, which are more pronounced for smaller separations. Figure 5.2(b) shows

the theoretical output from the through arm of the DC with these dimensions

as sout is increased. The larger sin considerably decreases the range of achie-

vable tuning to ∼ 15 − 20 % as the as-fabricated device is undercoupled. The

relative signal change at the through and drop ports of this DC for an opera-

tion wavelength of 910 nm (the emission wavelength of the single QD studied

experimentally) is shown in Figure 5.2(c).

Further optimization of the dimensions of the DC can overcome the dif-

ficulties in achieving small enough in-plane separations during fabrication,

which are needed in the reported device for larger tuning range covering the

commonly required 50:50 splitting. Figure 5.2(d) shows the comparison of SR

tuning ranges for various DC parameter sets. Reducing the width of the wa-

veguides is one possible solution, as it enhances the evanescent light coupling

between them. 240 nm wide waveguides (40 nm narrower than current) would

enable tuning of the SR over 60%. A coupling region with twice the length of

the present one (lc = 14µm) would triple the potential tuning range of the SR.

However, the downside of this method might be a more fragile structure prone

to breaking while handling or resulting in waveguides not being parallel along

the entire coupling region, which can also have an effect on the optical proper-

ties of the DC.
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Figure 5.3: Relationship between the square of the actuation voltage and the distance
between the cantilever and the substrate derived from Equation (5.2). The cantilever
collapses down onto the substrate (z = 0), when a pull-in voltage is applied for which
the cantilever displacement, d, is z0/3.

5.2.2 Modelling of a Cantilever

Applying an actuation voltage, Vact, between the cantilever and the substrate

results in a capacitive force, which causes the cantilever to deflect towards the

substrate, according to the following equation, which balances the capacitive

force with the restoring force of the cantilever:

ε0A

2z2 V
2
act = ks(z0 − z), (5.1)

where z and z0 are the current and the initial distance between the cantilever

and the substrate respectively, where the cantilever displacement is d = z0 − z,
ε0 is the permittivity of free space, A is the surface area of the cantilever (A =

wL, where w is the width and L the length of the cantilever), and ks is a fitting

parameter corresponding to an average stiffness of the cantilever. Rearranging

for Vact gives:

V 2
act =

(z0 − z)z2

X2 , (5.2)

where X =
√
ε0A/2k. This function, plotted in Figure 5.3, with a minimum at

z = 0 and a maximum at z = 2/3z0 explains the electro-mechanical behaviour

of the cantilever. As Vact is increased, the cantilever will deflect downwards

from z = z0 at Vact = 0 to z = 2/3z0 (corresponding to a cantilever displace-

ment of dpull = 1/3z0) at the so-called pull-in voltage, Vpull. At this point, the
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capacitive force becomes greater than the restoring force and the free end of

the cantilever collapses down onto the substrate (z = 0), as is evident from Fi-

gure 5.3. This introduces surface adhesion forces between the cantilever and

the substrate. If these forces are smaller than the restoring force, the cantile-

ver will be able to lift back up from the substrate as Vact is then decreased to a

value less than Vpull creating a hysteresis behaviour [150, 160, 161].

Modelling of the electro-mechanical behaviour of a cantilever with diffe-

rent dimensions was performed using the FEA software (see Section 3.4.2), the

results of which are presented in Figure 5.4. Changes to the width and length

of the cantilever as well as to the initial separation between the cantilever and

the substrate were investigated. It was found that varying the width of the

cantilever does not affect the displacement-voltage relationship, while halving

its length increases the voltage necessary for achieving the same displacement

by a factor of four. In addition, as z0 doubles, the maximum stable displace-

ment also doubles, which is in accord with the graph shown in Figure 5.3. The

former dependencies are in agreement with Equations 5.1 and 5.2. If the can-

tilever is assumed to act as a linear spring, the stiffness of the cantilever can be

written as:

ks =
Ywt3

4L3 , (5.3)

where t is the thickness, and Y is the Young’s modulus of the cantilever. Equa-

tion 5.1 then becomes:

V 2
act =

Y t3

2ε0L4d(z0 − d)2, (5.4)

with no dependency on w as the factor coming from the area cancels out with

the one from the stiffness. The discussed relationship between Vact and L is

also immediately apparent.

As a GaAs cantilever is an intrinsically fragile device to fabricate, the possi-

bility of adding support struts on either side of its free end was also examined

(see Figure 5.8). 300 nm wide and 9µm long supports were added to the FEA

model in order to study how their presence will affect the electro-mechanical

behaviour of the cantilever. Comparison of the results for a cantilever with

and without the struts is shown in Figure 5.5. Even such thin and long struts

cause the required voltage to increase dramatically, with 25 V giving a displa-

cement of only 200 nm, which displacement a cantilever without struts can
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Figure 5.4: Displacement of the free end of a cantilever with different dimensions z0,
L and w as the actuation voltage is increased, found using FEA.

0 5 10 15 20 25 30
0

200

400

600

800
 

 

D
is

pl
ac

em
en

t [
nm

]

Actuation Voltage [V]

 without struts
 with struts

Figure 5.5: Displacement of the free end of a 30µm long, 10µm wide, and 160 nm
thick cantilever with z0 = 2µm with and without 9µm long and 300 nm wide suppor-
tive struts, located on either side of the end of the cantilever, as the actuation voltage
is increased, found using FEA.
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Figure 5.6: The profile and deformation of a cantilever as modeled using the FEA
software at Vact = 0 V and Vact = 7 V for (a) a cantilever without struts, (b) a cantilever
with 9µm long and 300 nm wide struts.
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Figure 5.7: Displacement of the free end of the 35µm long, 7.5µm wide, and 160 nm
thick cantilever with z0 = 2µm as actuation voltage is increased, calculated using ana-
lytical modelling.
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reach with just 7 V. Therefore, operation of the device with supporting struts

is not viable. However, the struts can be detached post-fabrication using local

laser ablation (discussed later). This enables protection of the device during fa-

brication, transport and installation in a cryostat, while still taking advantage

of the more efficient actuation without them. The profiles and displacements

of the cantilever with and without support struts at Vact = 0 V and Vact = 7 V

obtained from this analysis are presented in Figure 5.6.

The electro-mechanical behaviour of the cantilever without support struts

with the dimensions used for the fabricated device was modelled using both

FEA and an analytical model, which determines the displacement for a given

Vact by minimizing the total energy of the system (comprising restoring and

electrostatic energies). The model assumes that the cantilever’s vertical dis-

placement is a quadratic function of position along its length [162]. For the

simulation the cantilever thickness was set to 160 nm, width to 7.5µm, length

to 35µm, z0, to 2µm, and the Young’s modulus to 85.5 GPa [163]. Figure 5.7

shows the expected displacement of the free end of the cantilever as Vact is

increased, calculated using the analytical model. For this system Vpull is cal-

culated to occur at 7.5 V, when the discontinuity in the (filled squares) curve is

observed between the displacement of about 667 nm and 2000 nm (correspon-

ding to z0/3 and z0). The FEA modelling gave a similar result of Vpull = 7 V.

5.3 Device Design and Fabrication

5.3.1 Device Design

The device, shown in Figure 5.8, consists of a nanobeam waveguide DC, and

a cantilever with dimensions 35µm in length, 7.5µm in width and 160 nm in

thickness. One arm of the DC is fixed to the bulk of the sample, while the other

is located on the free end of the cantilever. Single photons incoming from the

input arm of the fixed waveguide are split by the DC between the through and

drop arms. This occurs due to evanescent coupling between the waveguides

in the 7µm long coupling region, in which the in-plane separation of the arms

of the DC is about 80 nm. The nanobeam waveguides of the DC are designed

to be 280 nm wide and 160 nm thick. Each arm of the DC is terminated with a

Bragg output-coupler (OC) to enable out-of-plane collection of the transmitted
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Figure 5.8: (a) Top-view scanning electron microscope (SEM) image of a typical opto-
electro-mechanical system used for tuning of an on-chip beam splitter. (b) Angled
SEM image of the system after sacrificial struts were removed at low temperature
before commencing the opto-electro-mechanical measurements.
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Figure 5.9: Schematic diagram of the wafer structure used. The position of the Ni:Au
contacts is marked by gold rectangles.

photons. The free end of the cantilever is supported on either side with a

300 nm wide sacrificial strut during sample fabrication and transport. The

struts are removed at cryogenic temperature using a high power (20 mW) CW

laser emitting at 770 nm before measurements commence. It is focused to a

spot of 2µm diameter on the strut for a duration of about 3 s. This ablates a

small part of the strut, thereby releasing the cantilever [see Figure 5.8(b)].

5.3.2 Sample Fabrication

The device was fabricated on a p-i-p-i-n diode, the schematic of which is pre-

sented in Figure 5.9, using standard techniques (see Section 3.2). The DC and

the cantilever were defined within the top p-i-p GaAs membrane of 160 nm

thickness. The intrinsic region of this membrane contained InGaAs self assem-

bled quantum dots (QDs) that are used as embedded single photon sources to

probe the optical response of the system. The n-GaAs substrate was isolated

from the membrane by a 2µm thick intrinsic Al0.6Ga0.4As layer, which was

removed from beneath the device using an HF etch to create the suspended

structure. Ni:Au contacts were made to the top p- and the bottom n-GaAs lay-

ers in order to allow for electro-mechanical control of the cantilever. The row

of holes in the centre of the device (see Figure 5.8) allowed for faster under-

etching of the cantilever.
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5.4 Electro-Mechanical Testing of the Device

5.4.1 Room Temperature Testing

The electro-mechanical behaviour of the cantilever was first tested at room

temperature in the SEM at the National Epitaxy Facility. The SEM images of

the actuated device are shown in Figure 5.10. The dashed orange lines indicate

the horizontal position of the cantilever at Vact = 0 V [Figure 5.10(a)]. It is clear

from Figure 5.10(b), that the free end of the cantilever deflected downwards

towards the substrate at Vact = 16 V as expected. The resulting lighter image

in comparison to that at Vact = 0 V is indicative of the change in the charge

on the surface of the sample. As positive bias is applied to the top p-layer,

the holes move away from the surface, resulting in a negatively charged area.

This increases both the scattering of the secondary electrons from the surface

and the potential difference between the positively charged detector and the

surface, thus enhancing the collection of secondary electrons, which results in

a brighter image [164]. Figure 5.10(c) shows the failure mode of the cantile-

ver at Vact = 16.5 V. At room temperature the current flow through the 2µm

intrinsic AlGaAs layer is greatly enhanced in comparison to that at cryogenic

temperatures and causes the sample to heat up. This results in the cantilever

breaking away at the point of highest strain and lowest heat dissipation - close

to the attachment point to the rest of the membrane. In this particular device,

the two arms of the DC became joined during fabrication, and hence, when the

cantilever collapsed onto the substrate it pulled the fixed arm of the DC down

as well. However, in a working device (as demonstrated later), the two waveg-

uides should be totally independent from each other, and when the cantilever

collapses the fixed arm should remain stationary.

5.4.2 Cryogenic Temperature Testing

The electro-mechanical behaviour of the cantilever was studied experimen-

tally using white light illumination of the sample in a bath cryostat (see Section

3.3.1) at ∼ 5 K, using a confocal microscope system and an infrared camera (see

Section 3.3.2). Figure 5.11 shows the images of the device taken as Vact was in-

creased and then decreased. The free end of the cantilever was observed to

collapse onto the substrate at Vpull = 13 V, which is indicated by the end of
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Figure 5.10: SEM image of a device actuated electro-mechanically at room tempera-
ture at (a) 0 V, (b) 16 V, and (c) 16.5 V.
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Figure 5.11: Images of the device actuated electro-mechanically at cryogenic tempe-
rature as the Vact is increased up to 13 V and then decreased back to 0 V, demonstrating
the hysteresis behaviour of the cantilever.

Figure 5.12: SEM image of the device which collapsed irrevocably at cryogenic tem-
perature.
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the cantilever looking darker and the appearance of interference fringes along

the cantilever’s length. As Vact was decreased the cantilever was observed to

slowly peel away from the surface (visible through interference fringes mo-

ving along the cantilever, and the shortening of the dark end) before finally

totally lifting back up at Vact = 4 V. This demonstrates the expected hysteresis

in the electro-mechanical behaviour of the cantilever (see Section 5.2.2) and al-

lowed for multiple measurements to be performed. The fact that the value of

Vpull found experimentally was larger compared to the modelled value could

simply be related to the resistance of the contacts, which was not taken into

account in the simulation. The value of Vpull at ∼ 5 K is lower and the fai-

lure mode is different compared to room temperature operation. Figure 5.12

shows an SEM image of the device, which collapsed irrevocably at cryogenic

temperature due to an accidental voltage discharge in the system. At ∼ 5 K the

cantilever does not break away from the membrane when Vpull is reached, but

simply collapses down onto the substrate, which allows it to lift back up when

Vact is decreased. This is due to the absence of current flow, and hence heat,

through the 2µm intrinsic AlGaAs layer at cryogenic temperature compared

to room temperature. Figure 5.12 also demonstrates the correct operation of

the device, where the two arms of the DC are independent from each other.

It is clear from the image that when the cantilever collapses down onto the

substrate, the moving arm of the DC also collapses, but the fixed arm remains

stationary at its initial level.

5.5 Tuning of the Optical Properties of a Directio-

nal Coupler by Electro-Mechanical Control of a

Cantilever

5.5.1 Experimental Setup

The system was studied experimentally using micro-photoluminescence (µ-

PL) spectroscopy with spatially resolved excitation and two collections in a

bath cryostat at ∼ 5 K, using a confocal microscope system (see Sections 3.3.2,

3.3.1). A Ti:Sapphire continuous-wave laser emitting at 840 nm was used for

QD excitation via the wetting layer. The voltage-dependent µ-PL measure-
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ments were performed by exciting QDs through the input OC and collecting

the emission from the through and drop OCs simultaneously using two inde-

pendent collection paths. The spectra from the two paths were then recorded

using two spectrometers and two liquid N2 cooled CCDs.

The µ-PL maps obtained for a single value of Vact involved exciting the cho-

sen QD through the input OC and collecting emission from the entire device

by raster scanning a single collection path using a motorised mirror. The sig-

nal was filtered through one of the spectrometers with a bandwidth of 80µm

and detected by an APD.

For the autocorrelation measurements (see Section 3.3.3), the chosen QD

was excited from above and the emission was collected from the input OC

using two separate collection paths. The signal from the two paths was then

filtered through the two spectrometers separately and detected by two APDs.

5.5.2 Results and Discussion

A bright and spectrally isolated QD embedded within the input arm of the

DC, emitting at 910.6 nm was chosen for the measurements. Figure 5.13 shows

the emission spectra obtained while exciting QDs through the input OC and

collecting the emission at the input, through and drop OCs. The chosen QD

emission is marked on the figure.

Figure 5.14 shows two µ-PL maps, with the device contour overlaid, obtai-

ned by raster scanning the collection across the device while spectrally fil-

tering at the QD wavelength. Figure 5.14(a) was obtained from the device

with Vact = 0 V, where emission can be seen from three OCs: input, through

and drop, as well as from the location of the QD within the input arm. As

QDs emit light in both directions along the waveguide the signal also rea-

ches the input OC. The emission in the other direction will be split between

the through and drop OCs as discussed in Section 5.2.1. The µ-PL map in

Fig. 5.14(b) was acquired for the device operated with Vact = 12.5 V. The emis-

sion from the drop OC is now observed to be heavily suppressed, while that

from the through OC increases, in comparison to the previous case. This is

exactly as expected from the modelling, as when Vact is applied the cantilever

deflects downwards, thereby increasing the out-of-plane separation between

the waveguides, which causes the evanescent coupling between them to decre-
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Figure 5.13: QD µ-PL emission spectra obtained when exciting the wetting layer at
the input OC and collecting signal from the input, through and drop OCs. All spectra
are normalised to the chosen QD emission line.
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Figure 5.14: Filtered µ-PL collection maps of the device with an overlaid device con-
tour with (a) Vact = 0 V, and (b) Vact = 12.5 V.
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ase. Hence, all of the light is observed to be routed to the through OC when

Vact = 12.5 V.

The single-photon nature of the emission from this QD was verified by per-

forming an on-chip Hanbury Brown and Twiss experiment (see Section 3.3.3),

which consisted of cross-correlating the photons at the QD wavelength col-

lected by two separate paths from the input OC. The results, shown in Fi-

gure 5.15, yield a normalized value of g(2)(0) = 0.25 ± 0.02. By deconvoluting

the experimental data with the temporal response of the detection system used

(Gaussian, with a FWHM= 874±4 ps) a value of g(2)(0) = 0.00±0.01 was obtai-

ned, which indicates that the source is strongly antibunched.

To characterize the device at increasing out-of-plane waveguide separa-

tion, the routed QD emission was measured simultaneously from the through

(fixed) and the drop (moving) OCs using two independent collection paths as

Vact was increased. The SR for the device at Vact = 0 V was measured to be

SR= 80:20. The absolute percentage change to the collected signal is shown in

Figure 5.16 for the through and drop OCs separately. The signal is normalized

to the total signal collected from both OCs at Vact = 0 V. The change in the QD

emission collected from the through OC increases monotonically until it satu-

rates at ∼ 17% for Vact > 11 V. The signal at the drop OC decreases initially as

expected, but then recovers and peaks at Vact ≈ 11.5 V before decreasing again.

This is caused by the downward movement of the drop OC as Vact is applied. It

results in changes to the optical interference between the signal emitted from

the OC and that reflected from the substrate. This effect has been modelled

using the TMM (see Section 3.4.1), the result of which is presented in Fig. 5.17.

The graph reflects the changes to the signal with respect to that at zero dis-

placement (Vact = 0 V). As the cantilever displaces downwards when Vact is

applied the signal that can be collected from the drop OC decreases quickly

until it reaches a minimum at about 140 nm displacement. The signal then

starts to increase until it reaches a maximum at about 360 nm displacement

before decreasing again. The peaks and troughs expected from the changing

interference effect during the movement of the drop OC explain the presence

of them in the measured data. However, the movement of the drop OC (with

increasing Vact) will also induce some collection efficiency changes due to the

varying collection angle, which are much more difficult to quantify.
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Figure 5.15: Normalized second-order correlation function obtained by exciting the
QD from above and collecting the spectrally filtered µ-PL signal from the input OC
using two separate collection paths. The orange continuous line is a fit to the expe-
rimental data (black points), while the dashed purple line represents a fit that takes
into account the time response of the measurement system.

Figure 5.16: Measured changes to the QD signal collected from the through (fixed)
and drop (moving) OCs independently, as the actuation voltage is increased. The
signal is normalized to the total signal recorded from both OCs at Vact = 0 V.
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Figure 5.17: Theoretical changes to the reflection from an OC as its distance from the
substrate decreases (with increasing displacement), based on the TMM.

Figure 5.18: Measured changes to the emission wavelength of the QD as the actuation
voltage is increased (filled squares) and then decreased (empty circles), demonstrating
the hysteresis in the electro-mechanical behaviour of the cantilever.
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The measurement with increasing Vact has also revealed a wavelength shift

of the QD emission, which is plotted in Figure 5.18. This is clearly caused by

the QCSE (see Section 2.1.3), even though the biasing of the QD is uninten-

tional. Since the bottom p-layer in the membrane is contactless it remains at

a certain potential that cannot be controlled. As Vact is applied to the top p-

layer a potential difference between the two layers is created, which results

in the QCSE (see Figure 5.9 for the wafer structure used). The resulting wa-

velength red-shift is small, less than 0.2 nm, up to Vact = 12.5 V. Once Vact

reaches the value Vpull = 13 V, when the cantilever collapses down onto the

substrate the emission wavelength red-shifts considerably by another 0.9 nm.

When the cantilever touches the substrate a path is created for current to flow

freely between the grounded n-substrate and the actuated top p-layer with a

large potential difference of 13 V, and hence the QCSE has a much bigger influ-

ence on the QD. When the voltage is then decreased the same hysteresis in the

QD emission wavelength is observed as in the electro-mechanical behaviour

of the cantilever. The wavelength blue-shift is small at first as Vact is decrea-

sed since the cantilever slowly peels away from the substrate (see Figure 5.11).

When Vact reaches 4 V, which is exactly the lifting point of the cantilever, the

wavelength blue-shifts by 0.9 nm back to the original value of 910.6 nm.

In order to directly compare the controlled optical properties of the DC

with the modelling (shown in Figure 5.2), Vact was converted to cantilever dis-

placement, by rearranging Equation (5.2) to obtain:

Vact =
(z0 − d)

√
d

X
, (5.5)

The parameter X was found based on the pull-in point of the cantilever, which

occurs at d = z0/3 = dpull = 667 nm. As the value of Vpull determined through

the modelling was different from the experimentally observed value, two pa-

rameters can be used here. By first using the theoretical Vpull, the proposed ap-

proach of relating Vact to cantilever displacement can be compared to the mo-

delling. The values of Vpull were found to be 7.5 V using analytical modeling

(see Figure 5.7), and 7 V using the FEA method (see Section 3.4.2). Choosing

a mean value of 7.25 V for Vpull gives Xmod = 4750 (nm)3/2V−2. Figure 5.19

shows the comparison of the displacement of the cantilever (up to the the pull-

in point) as a function of Vact for the three methods that were used to find this
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Figure 5.19: Comparison of the cantilever displacement as a function of actuation
voltage (up to the pull-in displacement of z0/3), found using: analytical modelling
(solid line) as shown previously in Figure 5.7, FEA (dotted line), and that derived
using Equation (5.5) with Xmod = 4750 (nm)3/2V−2 (dashed line).
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Figure 5.20: Estimated experimental cantilever displacement as a function of actua-
tion voltage based on the observed pull-in voltage of 13 V.
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relationship (analytical modelling, FEA, and Equation (5.5) with X = Xmod).

The three curves give similar results, which validates the proposed conversion

method.

As the value of Vpull found experimentally for the device was 13 V the para-

meter X for the measured system is Xexp = 2650 (nm)3/2V−2. Using this value

Vact can then be converted to the actual cantilever displacement observed in

the measured device using Equation (5.5) withXexp. The resulting relationship

is plotted in Figure 5.20.

By converting cantilever displacement to Vact using this relationship, the

variation in signal due to the interference effect on the drop OC can be di-

rectly compared to the measured signal. Figure 5.21 shows the changes to the

recorded emission from the drop OC (previously shown in Figure 5.16) with

respect to the signal at Vact = 0 V, and the interference effect changes (pre-

viously shown in Figure 5.17 as a function of cantilever displacement) as a

function of Vact. The large peak and trough, which dominate the changes ob-

served from the drop OC, match well those expected from the modelled chan-

ges to the interference effect. This again supports the validity of the method

used to convert Vact into cantilever displacement. It also validates the reason

proposed for the results obtained from the drop OC.

As the measured data from the drop OC are dominated by the interference

effect changes it is unreliable to determine the changes to the SR due to the

electro-mechanical actuation of the cantilever based on this OC. Therefore, the

SR changes need to be found using the through OC only. By converting Vact

to cantilever displacement the QD emission routed to the through OC can be

compared with that calculated using the eigenmode solver [see Figure 5.2(b)].

The experimental curve is in the best agreement with the theoretical curve

for sin = 82 nm, presented in Figure 5.22 as a function of cantilever displa-

cement. The two curves demonstrate a monotonic increase of the QD signal

until saturation at 17 % for displacements of over 300 nm. This demonstrates

the control of the SR of the DC from 83:17 to 100:0 using electro-mechanical

actuation of the cantilever. The initial SR based on the measured signal change

in the through OC, 83:17, is in good agreement with that measured by com-

paring the QD emission from the through and drop OCs, SRboth = 80:20. The

small difference between the two ratios is likely to be related to the uncertainty

in aligning the two collection paths over the through and drop OCs with the
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Figure 5.21: Percentage change of the QD signal collected from the drop OC with
respect to the signal recorded from that OC at 0 V (red empty circles). The continuous
purple line shows the expected reflection changes (already shown in Figure 5.17) but
as a function of actuation voltage (converted from displacement using the derived
relationship in Figure 5.20).

0 100 200 300 400 500

0

5

10

15

20

 

 Experiment
 Theory; s

in
=80nm

 Theory; s
in
=82nm

 Theory; s
in
=84nm

S
ig

na
l C

ha
ng

e 
[%

]

Displacement [nm]

Figure 5.22: Experimental results (empty squares) for the through OC from the graph
in Figure 5.16 as a function of displacement converted from actuation voltage using
the relationship in Figure 5.20. The other three lines are theoretical curves for sin of
80, 82, and 84 nm normalized to the initial signal at zero displacement.
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same efficiency for the SRboth measurement. The achieved displacement of

the cantilever was found to be over 400 nm, which is considerably larger than

demonstrated in any other GaAs-based MOEMS.

5.6 Summary and Outlook

In conclusion, electro-mechanical control of an on-chip beam splitter opera-

ting at low temperature using out-of-plane actuation, with large achievable

displacements of over 400 nm, has been demonstrated. Emission from an em-

bedded QD was used to probe the optical response of the system. The splitting

ratio of the on-chip optical beam splitter was tuned from ∼ 83:17 at Vact = 0 V

(zero displacement) up to ∼ 100:0 at Vact = 11 V (300 nm displacement). The

single photon nature of the quantum emitter was confirmed through auto-

correlation measurements. The proposed device operates as a fine-tuning ele-

ment and can be adapted to control other on-chip photonic elements for QIP

applications, such as nanobeam PhCC modes, or Mach-Zehnder interferome-

ters. It represents a significant step towards reconfigurable integrated III-V

semiconductor quantum optical circuits with embedded single photon sour-

ces using compact, easy-to-fabricate and scalable structures.

Greater versatility and scalability of the system can be achieved through

some improvements to the sample design, including the elimination of the

problem arising from the movement of the drop OC during the cantilever ac-

tuation [152]. This could enable the device to operate as an optical router.

Further optimization of the dimensions of the DC can overcome the difficul-

ties in achieving small enough in-plane separations needed in the reported

device for a larger tuning range covering the commonly required 50:50 split-

ting. Increasing the coupling length of the DC or decreasing the cross section

of the waveguides are examples of promising approaches that are worth inves-

tigating. Fabricating this structure on a p-i-n-i-n diode and depositing a third

contact on the middle n-layer would enable tuning of the QD emission wave-

length using the QCSE [27], at the same time as controlling the beam splitter

electro-mechanically. The actuation voltage could also be decreased by using

either a longer cantilever or a thinner AlGaAs sacrificial layer, thus reducing

the initial distance between the two electrodes. A suggested improved wafer

structure is shown in Figure 5.23.
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Figure 5.23: Schematic diagram of the suggested improved wafer structure. The po-
sition of the Ni:Au contacts is marked by (gold for existing and orange for additional)
rectangles.
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Chapter 6

Development of Electro-Mechanical
In-Plane Actuators for the On-Chip
Tuning of Photonic Devices

On-chip electro-mechanical actuation can be used to tune the optical proper-

ties of photonic devices, as discussed and demonstrated in Chapter 5. The

benefits of such control can be utilized in many aspects of the physical realiza-

tions of integrated quantum optical circuits (IQOCs) [165]. Examples include

correcting for fabrication imperfections [159], routing of light on a chip [113],

optical switching [147–151] and alternating between the strong and weak cou-

pling regimes of light-matter interaction for cavity quantum electro-dynamics

(cQED) applications (see Section 2.3) [153].

In the previous chapter the design, fabrication and testing of a cantilever-

based electro-mechanical actuator was presented. The proposed system ope-

rated by displacing one of the waveguides out-of-plane with respect to the

other, thereby allowing to tune the splitting ratio of a beam splitter. While

this was the first demonstration of such control on a GaAs substrate with em-

bedded InAs quantum dots (QDs) acting as single-photon sources, the device

has some limitations. In particular, a cantilever displacement of about 300 nm

was required to achieve maximum control over the splitting ratio, necessita-

ting a rather large actuation voltage of 11 V. Whilst the actuation voltage could

be decreased in this system by reducing the initial distance between the elec-

trodes, this would also diminish the maximum achievable displacement of the
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cantilever, and hence the amount of optical tuning. In addition, issues with

fabricating nanobeam waveguides in close proximity to each other, in order to

enhance the coupling between them, limited the range of achievable control

over the splitting ratio. In this chapter these shortcomings are addressed by

proposing electro-mechanical systems that offer in-plane rather than out-of-

plane actuation.

So far the majority of reported studies of micro-opto-electro-mechanical

systems (MOEMS) on GaAs have focused on out-of-plane actuation methods,

and hence in-plane actuation is a novel approach in this platform. Neverthe-

less, this has been the preferred mechanism for Si-based devices as it offers

better control over the photonic properties for similar electro-mechanical per-

formance of the systems. This is demonstrated through the optical modelling

of a directional coupler that is presented in the following section. By utili-

sing variation in the in-plane separation between the waveguides, less than

150 nm displacement is required to achieve the maximum control over the

splitting ratio of a beam splitter. This is half the distance needed when using

the out-of-plane approach presented in Chapter 5. In addition, using an in-

plane actuation method could circumvent the need to fabricate two nanobeam

waveguides in close proximity in order to gain maximum control over the op-

tical properties of the structures. By designing an actuation system that brings

the two waveguides closer together the fabricated in-plane separation can be

large and still not affect the amount of achievable tuning. Such structures

could bring a single-photon GaAs optical switch a step closer to realization.

In this chapter electro-magnetic modelling of two specific photonic sys-

tems is first presented in order to demonstrate the amount of control over the

optical properties that can be achieved by changing the in-plane separation

between the structures. The two systems chosen are a directional coupler and

one that allows the tuning of a photonic crystal cavity (PhCC) mode. By con-

trolling the resonant wavelength, the propagation of QD emission through a

PhC filter could be turned on and off, thereby effectively acting as an opti-

cal switch. Alternatively, the tuning could be used to alter between the weak

and strong coupling regimes of light-matter interaction for cQED applicati-

ons. The design, fabrication and development of two different types of electro-

mechanical in-plane actuators that could be used to realize this tuning is then

presented. These are the so-called metal rail and comb-drive actuators. This
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Figure 6.1: Schematic diagram of a directional coupler consisting of two single-mode
waveguides separated laterally by distance sin in the coupling region of length lc.

is followed by a summary of the achieved progress and a discussion of re-

commended further developments that are likely to lead to very promising

experimental results.

6.1 Control of Optical Properties Using In-Plane

Actuation

6.1.1 Directional Couplers

A schematic diagram of a directional coupler (DC) acting as a beam split-

ter [previously shown in Figure 5.1(a)] is presented again in Figure 6.1. In

Section 5.2.1 results of the electro-magnetic modelling of this structure as a

function of the out-of-plane separation of the waveguides were presented and

discussed for two in-plane separations, sin, between the waveguides. By con-

trast, Figure 6.2 now presents simulation results for coplanar waveguides of

the same dimensions for a range of values of sin. The modelling was like-

wise undertaken using MIT Photonic-Bands (see Section 3.4.1). As observed

previously, the larger is the in-plane separation between the waveguides the

more light is transmitted to the through arm of the DC. Therefore, by con-

trolling this parameter electro-mechanically an optical switch can be realized

on a chip. Figure 6.2(b) demonstrates this behaviour for a single wavelength

of 910 nm, as previously. One sees clearly that displacing the drop arm of a

DC in-plane by ∼ 120 nm from a separation of 30 nm to 150 nm would allow

one to tune the operation of a beam splitter from highly overcoupled, with

only ∼ 5 % of light transmitted to the through arm, to completely decoupled,

with ∼ 100 % of signal reaching the through arm, through the commonly re-
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Figure 6.2: Results of the optical modelling of a directional coupler consisting of
160 nm thick and 280 nm wide coplanar waveguides with a 7µm long coupling region.
(a) The contour plot shows how the fraction of light evanescently coupled from one
channel to the other depends on the wavelength of the transmitted light and the in-
plane separation between the waveguides. (b) Changes to the signal transmitted in the
fixed arm (through) and coupled to the moving arm (drop) as a function of in-plane
displacement for a wavelength of 910 nm.

Zofia K. Bishop 126



6.1. Control of Optical Properties Using In-Plane Actuation

quired 50:50 splitting in between at sin ≈ 50 nm. By using a QD emitting at

slightly longer wavelength, for example 920 nm, a full 100 % tuning range ne-

cessary for optical routing and switching applications could be reached using

this approach. This is a much more efficient way of controlling the splitting

ratio than through the out-of-plane actuation, which required a displacement

of ∼ 300 nm to achieve a tuning range of just under 20 %.

6.1.2 Nanobeam Photonic Crystal Cavities

As discussed in Section 2.6 PhCCs are Fabry-Perot type optical resonators,

which allow resonant tunnelling of wavelengths that satisfy the following con-

dition:

λ = 2neffL, (6.1)

where neff is the effective refractive index of the modes within the medium and

L is the length of the optical cavity. Therefore, in order to tune the resonant

wavelength of a physical nanobeam PhCC one can take two approaches. One

of them is to change L by, for example, stretching the device. The disadvantage

of using this method is that the resulting stresses within the membrane will

affect the electronic structure of quantum dots (see Section 2.1.1) embedded

in its centre [166–169]. The other approach is through modifying neff. Various

techniques of achieving this have been proposed and reported in the literature,

each having their own advantages and disadvantages. They can be classified

into two types: direct, caused by internal perturbation; and indirect, caused

by the change in overlap of the optical mode with the structure [170].

Examples of direct tuning methods include the thermo-optic [171, 172],

electro-optic [173, 174] and acousto-optic [175, 176] effects. However, con-

trolling neff through temperature, for example, often requires high operating

powers (of tens or hundreds of mW), which can cause problems with heat

dissipation on the chip [177, 178]. On the other hand, both the electro-optic

and acousto-optic approaches suffer from the fact that they require a relatively

large device footprint (of the order of a few millimetres in linear dimension)

due to the range of tuning that can be achieved with these methods [179, 180].

Therefore, indirect methods for tuning the parameter neff of optical on-

chip cavities offer promising alternatives. In order to modify the amount of
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overlap of the optical resonator mode with the structure, the device has to be

displaced mechanically. This can be achieved by using either optical or elec-

trical forces leading to opto-mechanical and electro-mechanical reconfigura-

tion techniques respectively. While the opto-mechanical approach requires a

steady-state hold power for a reconfigured state, the unavoidable introduction

of the electrical contacts demanded by the electro-mechanical method also in-

creases the footprint of the devices. Therefore, in this chapter, two different

in-plane electro-mechanical actuators are presented that allow the on-chip tu-

ning of a PhCC mode by controlling the overlap of the mode with the device.

The two proposed device designs that are first investigated through electro-

magnetic modelling are presented in Figure 6.3. Both of them consist of a

nanobeam PhC filter (similar to those studied in Chapter 4) and a perturbing

nanobeam structure in a coplanar configuration and separated laterally by a

distance sin. This in-plane separation between the two elements will determine

the amount of overlap of the filter mode with the perturbing structure, and

hence also neff and the resonant wavelength of the PhCC.

A structure similar to that shown in Figure 6.3(a) has been studied for

cQED applications by Ohta et al. [153]. Placing a nanobeam waveguide next

to a PhCC allows for a part of the optical power of the resonator to couple

to the waveguide due to evanescent coupling between the two, just as in the

case of two nanobeam waveguides forming a beam splitter that was discussed

earlier and in Chapter 5. This means that the light will leak from the PhCC

into the waveguide, thereby decreasing the resonator strength and hence also

the Q-factor. Tuning the Q-factor of a PhCC can allow switching between the

weak and strong coupling regimes of light-matter interaction (see Section 2.3).

However, if the aim now is to tune the PhCC mode wavelength to match that

of a QD emission to allow its transmission through a nanobeam filter then the

challenge is to retain the highest possible Q-factor. For this reason a varia-

tion of this configuration is also studied. By using a nanobeam PhC instead

of a waveguide as the perturbing element [as demonstrated in Figure 6.3(b)]

the transfer of the optical power to the perturbing structure is suppressed.

A nanobeam PhC of the same dimensions as the filter, but without the dis-

placement defect between the two centre holes that creates an optical cavity,

exhibits an optical band gap over the same wavelength range but includes the

resonant wavelength of the filter. This allows to diminish the decrease in the

Zofia K. Bishop 128



6.1. Control of Optical Properties Using In-Plane Actuation

Figure 6.3: Schematic diagrams of the proposed systems for the tuning of a nanobeam
photonic crystal cavity by varying the in-plane separation, sin, between the device and
(a) a perturbing nanobeam waveguide, and (b) a perturbing nanobeam PhC.

Figure 6.4: Transmissivity of light through a PhC filter (with the following parame-
ters: t = 140 nm, w = 280 nm, a = 240 nm, d = 100 nm, c = 360 nm and n = 6) versus
wavelength.
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Q-factor of the filter for smaller in-plane separations between the filter and

the perturbing structure.

The parameters of the PhC filter studied through FDTD electromagnetic

simulations (see Section 3.4.1) are as follows: thickness t = 140 nm, width

w = 280 nm, PhC period a = 240 nm, hole diameter d = 100 nm, distance bet-

ween the two centre holes c = 360 nm and the number of holes on either side

of the cavity n = 6. Figure 6.4 presents transmissivity results for the filter wit-

hout any perturbing structure present, when light is injected from one side of

the device to the other as indicated in Figure 6.3 as QD Input and Through

respectively. The designed mode wavelength is ∼ 928.3 nm with a full-width

at half-maximum (FWHM) of ∼ 0.74 nm and a Q-factor of ∼ 1250.

The results of the FDTD electromagnetic modelling of the two systems that

allow tuning of the PhC filter mode are presented in Figures 6.5-6.9. Figure 6.5

illustrates the relationship between the filter mode wavelength and the in-

plane separation, sin, between the filter and each of the perturbing structures.

As sin decreases the resonant wavelength experiences a red shift for both per-

turbing structures. However, the maximum wavelength shift is appreciably

larger when the nanobeam PhC is used as the perturbing device rather than

the nanobeam waveguide. The former causes an 8.1 nm change to the filter’s

wavelength when sin varies between 40 nm and 180 nm, while the latter tunes

it by 5.9 nm over the same range of sin. Most of this 2.2 nm difference bet-

ween the two shifts occurs for the smaller in-plane separations of 40− 80 nm.

This is rather intuitive, as the closer is the perturbing structure to the filter the

more will the filter mode overlap and interact with it. At larger separations the

mode overlap diminishes to zero and hence its wavelength approaches that of

a individual PhC filter at ∼ 928 nm. This causes larger shifts for smaller sepa-

rations. It also explains the larger shift observed for the PhC in comparison to

the waveguide. At smaller separations the field overlaps more with the peri-

odic hole structure of the PhC, which acts as a mirror for the optical mode of

the filter, unlike the waveguide, which supports the propagating wavelength.

At larger separations this overlap decreases and hence the difference in the red

shift is also suppressed. This is illustrated in Figure 6.7, which shows the Ey
component of the electromagnetic mode of the filter at two different in-plane

separations of 40 nm and 120 nm from the two perturbing structures.

Figure 6.6 demonstrates the dependence of the FWHM of the cavity mode
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Figure 6.5: Simulation results showing how the mode wavelength of the nanobeam
photonic crystal filter varies with respect to the in-plane separation, sin, from both a
perturbing nanobeam photonic crystal and a perturbing nanobeam waveguide.
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Figure 6.6: Simulation results demonstrating how the full-width at half-maximum
of the spectral peak of the nanobeam photonic crystal filter varies with respect to
the in-plane separation, sin, from both a perturbing nanobeam photonic crystal and a
perturbing nanobeam waveguide.
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Figure 6.7: Modelling results for the Ey component of the electromagnetic mode of
the PhC filter separated laterally from a coplanar nanobeam (a) waveguide by sin =
40 nm, (b) PhC by sin = 40 nm, (c) waveguide by sin = 120 nm, and (d) PhC by sin =
120 nm.
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spectrum on the in-plane separation between the filter and the two pertur-

bing nanobeam structures. As the separation decreases the FWHM increa-

ses as evanescent coupling from the filter to the perturbing structure increa-

ses. This time the larger effect is observed for the nanobeam waveguide, with

the FWHM increasing from 0.75 nm by 1.54 nm to a value of 2.29 nm when

sin decreases from 180 nm to 40 nm, in comparison to the smaller increase of

0.28 nm for the nanobeam PhC. As discussed in Section 2.3, the FWHM is di-

rectly related to the photon loss rate of the cavity. Therefore, as evanescent

coupling of light is stronger when the two structures are closer together, more

photons escape from the PhCC to the perturbing device, thereby increasing

the FWHM. This is exacerbated when the nanobeam waveguide is the pertur-

bing device which, by contrast to the nanobeam PhC that has a photonic band

gap at these wavelengths, allows light to propagate along it. This means that

more photons will be allowed to leak out from the filter into the nanobeam

waveguide than into the nanobeam PhC.

As mentioned in Section 2.3 and examined in detail in Chapter 4, the Q-

factor, which relates the mode wavelength to the FWHM, is the figure of merit

for optical cavities. Therefore, the Q-factor of the PhC filter is plotted against

sin for both perturbing structures in Figure 6.8. As expected, theQ-factor redu-

ces with decreasing in-plane separation, but the undesirable change is smaller

for the PhC than for the waveguide as the perturbing element. While the Q-

factor experiences a reduction as high as 70 % between values of sin of 180 nm

and 40 nm for the waveguide, when the PhC is used instead that decrease is

only about 30 %. This is a considerable improvement on this important figure

of merit. Interestingly, the Q-factor does not saturate at the same values for

both perturbing structures as sin is increased. While for the system with a

perturbing waveguide the Q-factor approaches that of a single PhC filter of

∼ 1250 for sin = 180 nm, the device with a perturbing PhC reaches a higher Q-

factor of ∼ 1400. This may be caused by the fact that the mode is forbidden to

scatter out of the PhCC to one side by the presence of the nanobeam PhC there

which acts as a mirror, thereby decreasing radiation losses from the filter.

Similar benefits are observed when transmissivity through the filter is stu-

died (see Figure 6.9). While the transmissivity approaches ∼ 60 % (similar to

the single filter) at large sin for the waveguide, the same value for the pertur-

bing PhC is ∼ 70 %. The transmissivity at smaller separations is also consi-
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Figure 6.8: Simulation results showing the dependency of the Q-factor of the nano-
beam photonic crystal cavity on the in-plane separation, sin, from both a perturbing
nanobeam photonic crystal and a perturbing nanobeam waveguide.

Figure 6.9: Simulation results showing the relationship between the transmissivity
of resonant light through the nanobeam photonic crystal filter and its in-plane se-
paration, sin, from both a perturbing nanobeam photonic crystal and a perturbing
nanobeam waveguide.
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derably improved when the PhC, rather than the waveguide, is used for filter

mode tuning. The reduction in transmissivity for the PhC is only ∼ 20 % when

sin decreases from 180 nm to 40 nm while that for the waveguide is as high as

60 % over the same range of sin. Likewise, this is due to the evanescent field

coupling between the two nanobeam structures, which is suppressed in the

case of a PhC, which acts as a mirror for the resonant wavelength of the filter.

This results in considerably more light coupling to the nanobeam waveguide

(approaching directional coupler behaviour) than to the PhC, and hence much

less light being transmitted through the filter.

In conclusion, using in-plane displacement of a nanobeam structure for

tuning the wavelength of a PhC filter is a very promising approach to control

single-photon propagation on a chip. It can provide several nanometers shift

for relatively small displacements. Much better performance of the system is

achieved when a nanobeam PhC is used as a perturbing device in compari-

son to a waveguide. Displacing the structure by ∼ 140 nm can achieve a wa-

velength shift of ∼ 8 nm with a corresponding reduction in the Q-factor and

transmissivity of only 30 % and 20 % respectively. This large tuning would be

more than enough to tune the resonant wavelength of a filter (with a FWHM of

∼ 0.74 nm) away from the QD emission, so that the propagation can be turned

off (and back on), effectively making an optical switch.

6.2 Metal Rail Actuators

Perhaps the simplest way of displacing two nanobeam structures closer toget-

her using the electro-mechanical reconfiguration method is to apply an elec-

trostatic potential difference between them. The resulting Coulomb attraction

will then cause them to bend towards each other, effectively decreasing the

distance between them. This approach has been used in the in-plane geome-

try for phase shifting in Si [138] as well as for the tuning of coupled PhCCs on

GaAs [129]. However, this method has its disadvantages for integration with

the quantum nano-photonic devices presented in this thesis. Firstly, any in-

ternal stresses within the waveguides caused by their direct bending can affect

the QD emission. Secondly the profile of the bent waveguides means that the

two would no longer be parallel to each other, i.e., they would be closest to
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Figure 6.10: Schematic diagram of the profile of the two fixed-fixed nanobeam struc-
tures with an actuation voltage applied between them.

each other in their centre and furthest apart at the fixed ends (see Figure 6.10).

This in turn may affect the mode coupling between the waveguides.

Even though this is a similar approach to that demonstrated in Chapter 5,

these drawbacks were avoided in that system by using an out-of-plane canti-

lever geometry. Instead of a waveguide bending, the cantilever absorbed the

stresses caused by deflection, and the waveguides remained parallel to each

other during the electro-mechanical displacement. Likewise, researchers have

been developing systems that would isolate the photonic device of interest

from the electro-mechanical in-plane mechanism. One of the studied methods

for phase shifting and tuning of theQ-factor of a nanobeam PhCC utilizes thin

metal electrodes (rails) deposited on other pliable parts of the device so that

their movement caused in-plane displacement of the nano-photonic structure

indirectly [139, 153]. The design and development of electro-mechanical plat-

forms for the tuning of DCs and PhCCs using this approach is discussed below.

6.2.1 Electro-Mechanical Modelling

Modelling of the electro-mechanical behaviour of a nanobeam with a metal

rail has been performed using Comsol Multiphysics (see Section 3.4.2). In the

simulation a thin and long GaAs waveguide (in a fixed-fixed beam configura-

tion) with a metal rail on top of it was placed in close proximity to a much

wider GaAs structure also covered in metal (see Figure 6.11). The wider struc-

ture was assumed to be fixed, as one of the electrodes would be attached to

the bulk of the sample in an actual device. The Young’s modulus material

property used in the model was 85.5 GPa for GaAs [163] and 79 GPa for the
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Figure 6.11: (a) Bottom- and (b) side-view schematic diagrams of the modelled
electro-mechanical metal rail system. GaAs structures are marked in violet, while
metal layers are shown in gold.

metal (gold) [181]. The thickness of the GaAs was set to be tGaAs = 140 nm (a

typical membrane thickness for undoped wafers), the width of the electrode

we = 1µm and the remaining dimensions for the initial model were as follows:

length of both structures l = 40µm, width of the nanobeam wn = 300 nm, in-

plane separation sin = 150 nm and thickness of the metal tm = 100 nm. The

displacement of the nanobeam with grounded rail was monitored as actuation

voltage, Vact, was applied to the wider electrode. The results are presented in

Figure 6.12.

Figure 6.12(a) demonstrates the profile of the nanobeam with initial dimen-

sions for Vact = 3 V, with the horizontal axis indicating the distance from one

end of the rail to the other (y direction in Figure 6.11), and the vertical axis

showing the in-plane displacement of the nanobeam towards the electrode (x

direction in Figure 6.11). It is clear that the maximum displacement occurs

half way along the nanobeam.

Figure 6.12(b) presents the simulation results of the in-plane displacement

at that point versus Vact for the model with the initial parameters as well as

individually altered dimensions of l, wn, sin and tm. The pull-in behaviour of

the electro-mechanical device discussed in Section 5.2.2 applies to any such

system [182], and hence the maximum controllable in-plane displacement for
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Figure 6.12: Results of the electro-mechanical simulations of the rail system presen-
ted in Figure 6.11. (a) In-plane displacement of the nanobeam versus position along
its length for the model with initial dimensions and an actuation voltage, Vact = 3 V.
(b) Maximum in-plane displacement of the nanobeam versus actuation voltage for
models with various dimensions.
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this device is d = 50 nm for sin = 150 and d = 100 nm for sin = 300 nm. Dou-

bling the initial in-plane separation between the two structures doubles their

maximum possible displacement but also doubles the value of Vact required

to achieve the same amount of movement. Altering the thickness of the me-

tal contact has been found not to affect the displacement-voltage relationship.

This is similar to the cantilever case, where its behaviour was observed to be

independent of its width (see Section 5.2.2). In this system the width of the

cantilever was the parallel dimension of the surface of the capacitor plate. In

the in-plane nanobeam device discussed here, the corresponding dimension

is the thickness of the structures. Similarly to the previous case, halving the

length of the nanobeam increases Vact necessary to achieve the same displace-

ment by a factor of 4. On the other hand, doubling the width of the nanobeam

increases Vact by a factor of about 3 to achieve the same displacement.

6.2.2 Device Design, Fabrication and Testing

Our first design of an electro-mechanical in-plane metal rail actuator for con-

trolling the splitting ratio of a directional coupler (DC) was based on expe-

rimental work of Winger et al. [139]. Their system was used on Si for phase-

shifting an electromagnetic mode of a PhC waveguide. An adjusted design that

meets the needs of the work discussed earlier in this chapter is presented in

Figure 6.13(a) in a GDSII format used for fabrication (see Section 3.2.1). The

grey areas represent the top GaAs membrane, while white ones indicate the

etched regions. The metal rails are marked in yellow, while the green arrows

indicate the direction of movement for each nanobeam.

The device consists of two separate flexible platforms that house each of

the two waveguides of the beam splitter. These platforms are suspended and

connected to the bulk of the wafer through two thin struts at each end. A

thin metal rail is designed to run along the outside strut forming a fixed-fixed

nanobeam. The nanobeam rail is then slowly widened as it reaches the bulk

of the wafer in order to avoid using unnecessarily thin rails that, as will be

discussed later, cause problems during fabrication. While the wider electrode

is situated in close proximity to the nanobeam rail, the two are separated by

an etched-away air gap. The electrode is rounded at the corners in order to

avoid discontinuities in the electric potential between the two rails when Vact

139 Zofia K. Bishop



Chapter 6. Development of Electro-Mechanical In-Plane Actuators...

is applied. An air gap is also included on the outside of each vertical part of the

electrode (running along the horizontal axis) to avoid current leakage through

the intrinsic GaAs membrane between the electrode and the nanobeam. The

air gaps are more visible in Figure 6.13(b), which shows an SEM image of one

of the best fabricated devices.

As the two nanobeams are kept grounded and Vact is applied to both elec-

trodes, both platforms should move towards their corresponding electrodes,

effectively increasing the in-plane separation of the waveguides of the DC. The

system used by Winger et al. with a strut length of 3µm (excluding the length

of the platform) achieved about 15 nm displacement of each of the platforms

for Vact = 19 V. The displacement should be larger for a GaAs device, which

is more flexible than Si (whose Young’s modulus is twice as large), and can be

easily increased further by making the struts longer.

Our device was fabricated on an intrinsic GaAs wafer, using standard techni-

ques (see Section 3.2). The DC structure was first created on a GaAs membrane

of 140 nm thickness. Then Ti:Au rails were deposited on top of the device.

The 1µm thick sacrificial Al0.6Ga0.4As layer separating the membrane from

the substrate was finally removed from underneath the structure using an HF

etch to create the suspended system. While Figure 6.13(b) shows an almost

perfect fabricated system, it is the best-looking device that has been achieved.

Unfortunately, it was not possible to measure it experimentally due to pro-

blems with the metal bond pads that allow application of Vact.

The majority of other fabrication trials of these devices were unsuccessful

due to other recurring issues. Figure 6.14 demonstrates the two most common

problems. One of them is the breakage of the nanobeam rail in the under-

etched region of the bulk wafer [see Figure 6.14(a)], before the rail widens. It

is not obvious why this area should be particularly prone to contacts failing.

However, by consulting the literature, it was found that Ti, which is mainly

used to enhance adhesion between GaAs and Au, is affected by HF acid used

for etching away the sacrificial AlGaAs layer [183, 184]. This has probably

not been a problem in the past for standard fabrication as only larger con-

tacts were used in previous electrical samples. Ni is another metal that was

reported to enhance adhesion between Au and GaAs creating uniform con-

tacts [185], while at the same time demonstrating corrosion resistance to HF

acid [186, 187]. Hence, tests were performed to check that diode structures
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Figure 6.13: (a) Original design of a metal rail actuator for the tuning of directional
couplers, in GDSII format. Grey areas indicate the GaAs membrane structure, while
white regions represent etched features. Metal contacts are marked in yellow. (b) SEM
image of the fabricated system. Green arrows indicate the direction of movement of
the nanobeam rail.
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(on doped wafers) with Ni:Au contacts exhibited similar electrical properties

to those with Ti:Au contacts. Therefore, Ni:Au has been used instead in all

later fabrications, not only for the thin rails but also for large metal bond pads

and other contacts. In addition, for the next iteration of this system’s design,

the thin metal rails were made to widen almost immediately after they reach

the bulk wafer to avoid the breakage.

The second typical issue observed during fabrication of this system was

the unintended joining of the two rails (nanobeam and electrode) together at

various positions along their lengths [see Figure 6.14(b)]. This of course shorts

the contacts and makes the device unusable. A possible reason for this to

happen is misalignment of the rail pattern with respect to that of the GaAs.

This system requires very high-precision positioning of the two patterns on

top of each other of an order of 10 nm during EBL, which is not trivial to

achieve. In order to minimise this issue, the metal rails were made slightly

thinner than the GaAs nanobeams for the next fabrication trials. This offered

somewhat more room for error in the alignment procedure. Another possible

solution was to make the metal rail pattern first followed by the GaAs one,

rather than the other way round. This could also help with the metal lift-off
process after deposition.

For the rail fabrication e-beam resist is used to mask the regions of the sam-

ple that are not to be covered with metal. Then metal is deposited on the whole

sample, and removed from the masked areas together with the resist using

acetone. It is not easy to remove metal from small areas in general (as will

be illustrated later), but it is extremely difficult to remove it from nanometre-

sized dips that are the etched air gaps between the rails (if these are fabricated

first). By patterning the rails first the thin strip of metal between the rails is

not buried inside the GaAs membrane and hence acetone can access it easier

for removal.

Another issue with the system was that devices with longer struts tended

to sag, increasing the initial in-plane separation of the devices, which is highly

undesirable since this system is designed to only increase it further during

electro-mechanical actuation. Hence, the next design iteration included holes

in the flexible platforms in order to minimise their weight.

The improved design of the metal rail in-plane actuator for the tuning of

the SR of a DC is presented in GDSII format in Figure 6.15. Figure 6.15(a)
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6.2. Metal Rail Actuators

Figure 6.14: SEM images showing examples of problems occurring during fabrication
of the original metal rail actuator for the tuning of directional couplers. (a) The thin
metal rail has broken above the suspended region in the bulk. (b) Two metal rails
(belonging to the nanobeam and the electrode) have become joined.
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shows the close-up of one of the devices, while Figure 6.15(b) demonstrates

the full sample layout on a chip including bond pads (marked in blue) that

allow application of Vact to the metal rails. The notable adjustments discussed

above include the nanobeam metal rail widening immediately after it reaches

the bulk GaAs on either side of the structure, and the inclusion of holes in the

platforms holding each waveguide of the DC. The number of devices using the

same metal rails for their operation was also reduced to just two, so that there

is less chance of the contacts being shorted, thereby making a lot of devices

unusable. Of course this increased the surface area required for the system

as more large metal bond pads are needed for the same number of devices

on a chip. Figure 6.16 shows SEM images of some of the fabrication attempts

of the new design. While devices with shorter struts appear to be coplanar

[Figure 6.16(a)], those with longer struts are still sagging [Figure 6.16(b)], re-

sulting in an in-plane separation between the waveguides of the DC of the

order of 300 nm, and hence making any tuning of the SR impossible. The qua-

lity of the metal rails was definitely improved with respect to the previous

design, but the overall success rate for the devices was still low.

In order to minimise the amount of possible failure regions in this metal

rail system it was subsequently redesigned for the tuning of a photonic cry-

stal cavity (PhCC) so that there is only one movable strut and the in-plane

separation, sin, can be either increased or decreased. This is a considerable im-

provement from the metal rail system for the tuning of the SR of a DC, where

the two waveguides could only be moved apart. One thin metal rail instead

of two also reduces opportunities for fabrication errors. The device design,

which is completely original, is presented in Figure 6.17(a) in a GDSII format.

By depositing electrode on either side of the movable strut a bidirectional mo-

vement is achieved (as indicated by purple arrows). Applying Vact to the top

bond pad (and hence top electrode) will result in a decrease of sin, while an

increase of sin can be achieved by applying Vact to the bottom bond pad (and

hence bottom electrode). However, as the top electrode is in close proximity

to the strut over a shorter distance along its length than the bottom electrode,

the decrease in sin is expected to be smaller than its increase for the same Vact.

Figure 6.17(b) shows an SEM image of one of the fabricated devices. The

most common failure mode of this system was the strut bending towards, and

consequently sticking to, the bottom electrode. It might be that a value of Vact
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Figure 6.15: Improved design of a metal rail actuator for the tuning of directional
couplers, in GDSII format. (a) Close-up image of a single device. (b) Sample design
with two devices and electrical contact pads marked in blue.
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Figure 6.16: SEM images of the improved metal rail actuator for the tuning of directi-
onal couplers. (a) Angled image of the coplanar trial structure with short struts. (b)
Top-down image of the fabricated device with longer struts.
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Figure 6.17: Images of the electro-mechanical in-plane actuator for the tuning of a
nanobeam photonic crystal cavity. Purple arrows indicate the two possible movement
directions for the strut. (a) System designed in GDSII format. (b) SEM image of a
fabricated device, the movable nanobeam strut of which has collapsed onto the bottom
electrode.
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Figure 6.18: Images of the fabricated metal rail actuators showing problems with
lifting the metal off the sample from in between rails for the tuning of (a) a directional
coupler, and (b) a nanobeam photonic crystal cavity.
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of only ∼ 2 V between the strut and the bottom electrode (as indicated by the

electro-mechanical simulations of the system with the initial conditions) is too

low to operate the device in a controllable manner. Charge build-up on the

metal contacts is possible both during sample handling and also when using

SEM to image the structure. If that occurs and causes the nanobeam rail to

be at a different potential to that of one of the electrodes it is possible for the

device to be actuated accidentally. Making the struts shorter might resolve this

sensitivity issue. However, having an asymmetric electrode structures might

turn out still to cause problems. In this case an inclusion of sacrificial struts,

similar to those used for the cantilever system reported in Chapter 5, which

would hold the nanobeam rail in place during fabrication and may be removed

prior to measurements using laser ablation, could be considered.

Furthermore, the issue with the metal contacts not peeling off easily after

deposition still remains unresolved. Even with fabricating contacts prior to the

GaAs structure and using acetone slightly above room temperature to aid dis-

solution of the e-beam resist, this step is highly unreliable. Figure 6.18 shows

SEM images of both rail systems after contact deposition and lift off (but be-

fore GaAs device patterning), which demonstrate this problem. Figure 6.18(a)

demonstrates the difficulty in lifting off the metal from in between the two

rail contacts in the DC tuning system, even in the large areas between indi-

vidual devices where they are much further apart. Figure 6.18(b) illustrates

the failing metal removal process from the PhCC tuning system, where it has

only partly lifted off from the region where the GaAs PhC structure should be

positioned.

Overall the metal rail systems that have been investigated here appear to

be extremely fragile and difficult to fabricate reliably. Therefore, comb-drive

actuators, which offer larger in-plane displacements and are easier to design

for the actuation to decrease sin, were also investigated. The findings from this

study are reported below.

6.3 Comb-Drive Actuators

Comb-drive actuators (CDAs) are electro-mechanical actuators, which have

been well studied on Si platforms thanks to advanced Si micro-fabrication
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technologies. They have found many applications in a variety of fields from

electronic oscillators [188] and tunable lasers [189], through inkjet printing to

automobile sensors [190], biosensors and drug delivery systems [191]. They

are capable of providing large in-plane displacements of tens of microme-

ters [192]. Even though GaAs has been identified as a good mechanical ma-

terial [193, 194] with selective etching of III-V compounds enabling it to host

electro-mechanical structures [195, 196], only few such devices have been de-

monstrated on GaAs to date. CDAs have so far not been reported for use with

integrated quantum optical devices on GaAs, and hence are a very interesting

and challenging prospect to study in this context.

CDAs consist of two comb structures whose teeth are facing each other in an

interlocking fashion, as shown in Figure 6.19. One of the combs is fixed to the

substrate and is usually referred to as a stator, while the other is attached to a

flexible suspension and is typically called a rotor. When an actuation voltage,

Vact, is applied between the two combs, the electrostatic attraction causes the

rotor to travel towards the stator and the rotor’s teeth slide further between

the stator’s teeth, keeping the teeth parallel. By attaching a photonic device to

the rotor, its in-plane position can be controlled on a chip.

6.3.1 Electro-Mechanical Modelling

Applying Vact between the rotor and the stator causes electrical charge to build

up between adjacent interlocking teeth of the CDA. To simplify the electro-

mechanical modelling of the system a one-dimensional parallel-plate capaci-

tor model between the engaged parts of the comb teeth can be used. The-

refore, effects such as fringing fields, fields between the teeth ends and the

combs, as well as out-of plane fields are neglected [197, 198]. In order to si-

mulate fully the whole system a finite-element analysis modelling tool, such as

Comsol Multiphysics (see Section 3.4.2), would have to be used. However, this

is extremely computationally intensive for such large and complex systems.

Therefore, a simplified model is presented here. The capacitance between the

teeth can be expressed as follows:

C =
2nε0t(L0 + x)

g
, (6.2)
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Figure 6.19: Schematic diagram of a comb-drive actuator. The red arrow indicates
the direction of movement of the rotor.

where n is the number of teeth in the shorter comb (in Figure 6.19 the rotor),

ε0 is the permittivity of free space, t is the thickness of the teeth (in the out-of-

plane z direction), L0 is the length of the initial overlap between the opposite

teeth, g is the air gap between the opposing teeth and x is the displacement of

the rotor.

The electrostatic force between the stator and the rotor can then be written

as:

F =
1
2
dC
dx
V 2

act =
nε0t
g
V 2

act. (6.3)

Since the rotor acts as a spring, its displacement due to the electrostatic force

can be derived from Hooke’s law as follows:

x =
nε0t
gks

V 2
act, (6.4)

where ks is the stiffness constant of the spring. For a fixed-fixed beam, such

as the one supporting the rotor at its centre through two struts, the spring

constant is given by [142]:
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Figure 6.20: Displacement of the rotor versus actuation voltage for comb-drive actu-
ators with an air gap between the opposing teeth of g = 150 nm, for various values of
the parameters n, ls and ws.

ks =
2Y tw3

s

l3s
, (6.5)

where Y is the Young’s modulus of the comb’s material (here GaAs), ws and ls
are the width and the length of the struts. The displacement of the rotor can

then be derived to be:

x =
nε0l

3
s

2Y gw3
s
V 2

act. (6.6)

Once again the thickness of the structure is found not to affect the electro-

mechanical behaviour of the in-plane actuator. While the travel range of the

rotor depends linearly on the number of teeth, and is inversely proportional

to the distance between them and the Young’s modulus of the material, the

dimensions of the struts have a cubic or inverse cubic effect. Therefore, in

order to achieve larger displacements it is most effective to increase the length

or decrease the width of the struts. Figure 6.20 demonstrates the expected

electro-mechanical behaviour of a GaAs CDA (for which Y = 85.5 GPa) for a

range of realistic parameter sets. One sees clearly that a CDA with n = 30,
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ls = 10µm, ws = 200 nm and g = 150 nm is expected to achieve over 180 nm

in-plane displacement for Vact = 12 V, which would be more than sufficient to

demonstrate maximum control over the SR of a DC and to achieve more than

10 nm tuning of a PhCC mode wavelength. Increasing the length of the struts

by just 5µm to ls = 15µm extends the travel range to over 600 nm for Vact =

12 V. If the width of the struts were too thin to support the rotor structure,

this can be increased at the same time as increasing the strut length to achieve

identical electro-mechanical performance of the device.

6.3.2 Device Design, Fabrication and Testing

Our first comb-drive actuator design was based on that demonstrated by Chew

et al. [144] for the tuning of coupled PhCCs on Si. Figure 6.21 illustrates the

device design (in GDSII format) that allows the control of the SR of a DC

on a GaAs substrate according to the electro-mechanical behaviour discussed

above. The stator is designed to be fixed to the GaAs substrate, while the rotor

is suspended through a so-called tilted-folded beam suspension arrangement.

The slight tilting of the struts with respect to y axis has been reported to ex-

tend the stable travel range of the rotor [143]. The suspension is connected to

the bulk of the wafer through support columns fixed to the substrate at both

ends. The holes in the rotor’s suspension increase the etch rate of the sacrificial

AlGaAs layer underneath it to ensure the rotor is fully suspended, while at the

same time the stator and the fixed columns are attached to the GaAs substrate

through the AlGaAs layer. The holes also decrease the weight of the device.

One waveguide of the DC is attached to the rotor, while the other is fixed to

the bulk of the wafer.

When Vact is applied between the two combs, the rotor will travel in the

x direction (as indicated in Figure 6.21 by the red arrow), and hence decrease

the in-plane separation, sin, between the waveguides, which in turn changes

the SR of the DC. In order to avoid the pull-in of the rotor to the substrate due

to electrostatic attraction between the two, they should be kept at the same

potential. Therefore, Vact is applied individually to the stator, while both the

rotor and the substrate are grounded. The isolation ridge, marked in green in

Figure 6.21, allows electrical isolation between the stator’s and rotor’s contacts.

Vact is applied to the stator through the contacting bond pad marked in blue.
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Figure 6.21: Digital image (in GDSII format) of an initial design of a comb-drive
actuator for controlling the SR of a DC. The direction of travel of the rotor is indicated
by a red arrow.

Figure 6.22: Schematic diagram of the wafer structure used for comb-drive actuators.
The position of the Ni:Au contacts at the same ground potential for the substrate and
the rotor are marked by gold rectangles. The isolated stator’s contact, for applying
Vact, is indicated in green.
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Two separate contacts for the grounding of the rotor and the substrate, which

can be common to several CDAs on a chip, are not shown here.

A variety of these devices with different dimensions were fabricated on an

n-i-n-i-n diode, the schematic of which is presented in Figure 6.22, using stan-

dard techniques (see Section 3.2). The DC and the CDA structure were defined

within the top n-i-n GaAs membrane of 160 nm thickness. The intrinsic region

of this membrane contained InGaAs self assembled quantum dots (QDs). The

n-GaAs substrate was isolated from the membrane by a 1µm thick intrinsic

Al0.6Ga0.4As layer, which was removed from beneath the device using an HF

etch to create the suspended rotor and DC structure. Two electrically isolated

Ni:Au contacts were made to the top layer and one to the bottom n-GaAs layer

in order to allow for electro-mechanical control of the CDA.

SEM images of two such fabricated devices are shown in Figure 6.23. Fi-

gure 6.23(a) shows a device without the stator’s contact. The inset demon-

strates how well-resolved are the teeth of the combs. The whole structure

looks exceptionally good for the first fabrication trial of such a complex sy-

stem. However, the support columns for the rotor’s suspension under-etched

during the HF etch step, indicating their size was not large enough to prevent

it. Figure 6.23(b) shows another commonly observed issue. Most of the rotor

structures were seen drooping towards the substrate at the DC end, slightly

displacing the moving waveguide out-of-plane with respect to the fixed one.

As discussed in detail in Chapter 5 if this distance from horizontal is large

enough it will prevent the coupling of light between the two waveguides, and

hence make the device inoperable. Some of the fabricated devices, like the

one shown in the image, have totally collapsed down onto the substrate at that

end, resulting in the moving waveguide touching the ground. Therefore, this

was a major issue that had to be resolved for the CDA to operate as expected.

Two distinct solutions were implemented simultaneously in the second

CDA design. One of them consisted of exchanging the holes in the rotor for a

triangular mesh structure that would further reduce the weight of the rotor by

removing more material, while keeping the structural rigidity of the device.

This, however, increased the complexity of the fabrication process as smaller

features had to be resolved. The other, more radical approach, involved com-

pletely changing the rotor’s design at the DC end to decrease the amount of

cantilever-type load exerted on the suspension at this location.
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Figure 6.23: Angled SEM images showing fabricated comb-drive actuators. (a) A CDA
with a suspended rotor and well-resolved teeth structure (see the inset), but slightly
under-etched columns. (b) A CDA whose rotor is drooping towards the substrate with
the moving waveguide of the DC in contact with the ground.
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Figure 6.24: Digital image (in GDSII format) of an improved design of a comb-drive
actuator for controlling the SR of a DC.

The improved CDA design is shown in Figure 6.24. The moving waveg-

uide is now attached directly to the rotor’s body, which removes the torque

associated with the previous design. The reduced size of the suspension also

decreases its weight. In addition, the improved design eliminates the need for

the support columns at that (DC) end, as the struts are connected directly to

the bulk of the wafer in this layout. The size of the fixed columns at the ot-

her end of the rotor were also doubled to ensure they remain attached to the

substrate during an HF etch. To further reduce the weight of the rotor the

triangular mesh structure is implemented throughout the rotor’s body.

A range of these CDAs was fabricated once again on an n-i-n-i-n wafer,

the structure of which is shown in Figure 6.22, using identical procedures to

those used previously. SEM images of two such fabricated devices are shown

in Figure 6.25. This time the support columns clearly remained attached to

the substrate and the triangular mesh structure was very well-resolved [see

inset in Figure 6.25(a)]. In addition, the rotor structure including the DC end

was completely suspended without visible drooping present. This is particu-

larly clear from the angled SEM image in Figure 6.25(b) and demonstrates a

considerable improvement on the initial CDA design.
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Figure 6.25: SEM images showing fabricated improved comb-drive actuators. (a) Top-
down view of the complete device with the rotor support columns fixed to the sub-
strate and well-resolved triangle pattern (see insert). (b) Angled view of a fully sus-
pended CDA.
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Figure 6.26: SEM images of the electro-mechanical diode structure reported in Chap-
ter 5 with six cantilevers actuated through one contact. The yellow arrow indicates the
biased diode with (a) Vact = 0 V and (b) Vact = 3 V. The applied voltage clearly increases
the brightness of the actuated contact.

The CDA sample was first tested electro-mechanically in the SEM, which

has the capability of applying a voltage to the devices whilst imaging. Un-

fortunately, no movement of the rotor was observed. However, the problem

was most likely associated with the actual electrical contacts rather than the

CDA itself. As discussed briefly in Section 5.4.1, application of a voltage to a

conductive surface causes change in the brightness of its image. Figure 6.26

demonstrates this behaviour on the working sample of an electro-mechanical

system reported in Chapter 5. The actuated diode is indicated with a yellow

arrow. Figure 6.26(a) shows the image of the sample with Vact = 0 V, while

Figure 6.26(b) presents the same image with Vact = 3 V. The brightness of the

biased contact clearly increases with the applied voltage. No such changes to

the brightness of the actuated CDAs were observed, which indicates that there

was no electrical connection between the contact and the GaAs surface. This

might have been caused by the quality of the deposited contacts. Occasio-

nally during fabrication, there might be a thin layer of resist remaining on the

sample when contacts are deposited, which consequently acts as an insulating

layer between the GaAs surface and the metal contact. Therefore, it is highly

likely that any future fabrication attempts would be successful and result in

the first demonstration of a GaAs-based CDA allowing to control the SR of a
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single-photon beam splitter containing an embedded quantum emitter.

The CDA structure is also very versatile as it can be easily adapted to tune

other photonic devices on a chip. By making holes in the waveguides of the

DC, a desired PhC structure can be created for the tuning of the PhCC mode

wavelength, as discussed earlier. In fact, any other photonic structure can be

easily exchanged with the DC to allow the control of its optical properties.

Using a CDA for the on-chip tuning of optical properties of GaAs devices for

QIP applications is a very promising field of research, and hence it is expected

that it will surely be continued further by other researchers in the group.

6.4 Summary and Outlook

In conclusion, an in-plane movement of photonic devices was shown through

modelling to be much more effective in controlling their optical properties

than the out-of-plane displacement demonstrated in Chapter 5. Two distinct

electro-mechanical in-plane actuators that would allow such tuning were de-

signed, fabricated, tested and developed. The metal rail system was more com-

pact than the CDA. However, it offered smaller displacements for the same

nominal actuation voltage. In addition, it was extremely fragile and unreli-

able to fabricate due to the required dimensions and proximity of the metal

rail contacts. It was also less effective, as the original design permitted only an

increase in the in-plane separation between the structures. The optical tuning

effect is the most efficient for small separations, which are difficult to achieve

during fabrication. Adapting the device to offer the reduction in the separa-

tion instead is not straightforward and adds to the complexity of the system.

On the other hand, the CDA is less compact and more complex to start with.

However, it offers much larger displacements that reduce the in-plane separa-

tion between the photonic devices and can be easily adapted to tune a variety

of on-chip optical elements for QIP applications. Its fabrication was easier

than was first expected, and perhaps the only reason for it not being able to

operate was the quality of the contacts on the particular sample. Overall, a

CDA structure is the system that is more likely to be successfully fabricated

and demonstrated to work with embedded single-photon sources, and hence

is the one recommended for further study.
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Chapter 7

Summary and Future Directions

7.1 Summary

This thesis has focused on the development and experimental demonstration

of a variety of nanophotonic elements integrated in a GaAs planar architec-

ture, and with self-assembled quantum dots as single photon sources, for the

first time in the LDSD group at the University of Sheffield. The reported devi-

ces represent significant steps towards the realization of fully integrated III-V

semiconductor quantum optical circuits.

Chapter 1 introduced the intriguing subject of quantum information pro-

cessing and discussed its proposed solid-state implementation using III-V se-

miconductors and quantum dots (QDs). This was followed in Chapter 2 by a

presentation of the basic concepts that form the underpinning of the research

undertaken for this thesis. Both the experimental and the computational met-

hods of study, the results of which form a basis for the work reported in this

thesis, were then discussed in Chapter 3.

The use of nanobeam photonic crystal cavities (PhCCs) for on-chip spectral

filtering and cavity quantum electrodynamics (cQED) applications was inves-

tigated in Chapter 4. Nanobeam PhC filters with a passband of ∆ω = 1 −
3 nm (Q = 300−1000) have been both modelled and demonstrated experimen-

tally. The trade-off between a high transmissivity and a narrow bandwidth

of these devices was explained and then demonstrated through spectral me-

asurements. Various design improvements to the PhCC design, which result

in higher Q-factors were also explored, with one device achieving Q ≈ 2000
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(∆ω = 0.45 nm) experimentally, and another shown through modelling to be

capable of reaching Q = 850,000 (∆ω = 1 pm). Tuning of the QD emission

wavelength using the quantum-confined Stark effect was also attempted, but

found unsuccessful, most likely due to the reduced current flow through the

nanobeam PhC structure.

For the first time in-situ electro-mechanical control of an on-chip optical

beam splitter operating at the single photon level was demonstrated in detail

in Chapter 5, using a cantilever geometry. The splitting ratio was reversibly

tuned from an initial value of 83:17 at 0 V (0 displacement) to ∼ 100:0 at 11 V

(300 nm displacement). The cantilever was capable of both achieving displa-

cements of over 400 nm and overcoming the surface adhesion forces between

it and the substrate when the electro-mechanical pull-in occurred.

Finally, in Chapter 6 it was shown through modelling that controlling the

beam splitter electro-mechanically using in-plane rather than out-of-plane ac-

tuation is much more efficient and can greatly enhance the amount of tuning

that was achieved using a cantilever, as presented in Chapter 5. Similarly, the

concept of tuning a PhCC mode wavelength into resonance with a QD emis-

sion was also discussed. The development, fabrication and testing of two dis-

tinct in-plane actuators, namely a metal rail system and a comb-drive actua-

tor (CDA), both of which could enable such tuning, was then reported. The

CDA structure was found to be easier to fabricate and design to decrease the

in-plane separation between the on-chip structures. This makes CDAs more

promising systems for the demonstration of increased control over the optical

properties of the integrated nanophotonic devices studied in this thesis.

7.2 Further Work

The main purpose of the research undertaken for this thesis was to further the

integration of single-photon devices on a III-V semiconductor chip, as well as

to design systems that will allow in-situ control of their optical properties so

that quantum optical information processing circuits can be realized. In this

context, there are several possible future research directions that stem directly

from the work presented here.
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As discussed in Chapter 4, non-resonant QD excitation results in a large

emission spectrum from the wafer. For this reason filtering of the signal from a

single QD and detecting it on-chip is the obvious next step in achieving a fully

integrated quantum optical circuit. Superconducting nanowire single-photon

detectors (SNSPDs) are promising contenders for realizing this goal as they are

well suited to the planar circuit geometry. They can be installed by positio-

ning superconducting nanowire on top of a nanobeam waveguide. This makes

a nanobeam PhC filter ideal for integration with a SNSPD [123, 199, 200]. In

addition, the two elements could also be integrated further with the electrolu-

minescence excitation of QDs, as reported by Bentham et al. [122]. This would

result in single-photon generation, filtering and detection all performed on-

chip.

The system presented in Chapter 5 that enabled electro-mechanical control

of a splitting ratio of an optical beam splitter through out-of-plane actuation of

a cantilever could be further developed in order to realize single-photon rou-

ters or Mach-Zehnder interferometers on-chip. It could also be used to tune

the optical mode a of nanobeam PhCC for cQED applications. Some of these

configurations are currently under joint investigation with Joseph Maguire. If

correctly designed, this control method could also be integrated with the other

circuit components mentioned above.

However, the in-plane electro-mechanical actuation methods presented in

Chapter 6 offer greater control over the optical properties of photonic ele-

ments. Comb-drive actuators are particularly promising and considerable

progress has already been made, as reported in this thesis, towards their re-

alization on a III-V semiconductor circuit. These systems should also be more

reliable in the longer term, as problems with the pull-in effect between the two

electrodes are easier to circumvent in comparison to the out-of-plane actuation

methods. Their integration with other on-chip elements should also be more

straightforward.
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Appendix: List of Wafers

Chapter Device Wafer ID Structure from Top to Bottom

4 On-Chip Filter:

3-hole

4 & 5-hole

VN2009

VN2777

(rotation

stop)

70 nm GaAs

0.7 nm InAs

70 nm GaAs

1µm Al0.6Ga0.4As

200 nm GaAs
4 Nanobeam

Cavity (15-hole)

SF1100 30 nm p-GaAs

55 nm GaAs

0.7 nm InAs

55 nm GaAs

30 nm n-GaAs

200nm n-Al0.6Ga0.4As

1µm Al0.6Ga0.4As

300nm n-GaAs
5 On-Chip Beam

Splitter

VN2103

(rotation

stop)

30 nm p-GaAs

50 nm GaAs

0.7 nm InAs

50 nm GaAs

30 nm p-GaAs

2µm Al0.6Ga0.4As

1µm n-GaAs
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Appendix: List of Wafers

Chapter Device Wafer ID Structure from Top to Bottom

6 Comb-Drive

Actuator

SF1102 30 nm n-GaAs

50 nm GaAs

0.7 nm InAs

50 nm GaAs

30 nm n-GaAs

200nm n-Al0.6Ga0.4As

1µm Al0.6Ga0.4As

300nm n-GaAs
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