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Abstract

In many engineering systems, e.g., in heat exchanges, reflux condensers,
combustion chambers, nuclear vessels, etc. concerned with high tempera-
tures/pressures/loads and/or hostile environments, certain properties of the
physical medium, geometry, boundary and initial conditions are not known
and their direct measurement can be very inaccurate or even inaccessible.
In such a situation, one can adopt an inverse approach and try to infer the
unknowns from some extra accessible measurements of other quantities that
may be available.

The purpose of this thesis is to determine the unknown space-dependent co-
efficients and/or initial temperature in inverse problems of heat transfer, es-
pecially to simultaneously reconstruct several unknown quantities. These in-
verse problems are investigated from additional pieces of information, such
as internal temperature observations, final measured temperature and time-
integral temperature measurement. The main difficulty involved in the so-
lution of these inverse problems is that they are typically ill-posed. Thus,
their solutions are unstable under small perturbations of the input data and
classical numerical techniques fail to provide accurate and stable numerical
results.

Throughout this thesis, the inverse problems are transformed into optimiza-
tion problems, and their minimizers are shown to exist. A variational method
is employed to obtain their Fréchet gradients with respect to the unknown
quantities. Based on this gradient, the conjugate gradient method (CGM) is
established together with the adjoint and sensitivity problems.

The stability of the numerical solution is investigated by introducing Gaus-
sian random noise into the input measured data. Accurate and stable numer-
ical solutions are obtained when using the CGM regularized by the discrep-
ancy principle.



Nomenclature

A admissible set
C heat capacity
D(T) domain of T
dn direct of descent
E accuracy error
e1, e2, Y , y exact data
eε1, eε2, Y ε, yε perturbed data
F space-dependent heat source component
f heat source
g, h space- and time-dependent heat source components
J objective functional
J ′ gradient of J
k thermal conductivity
L parabolic operator
N stopping iteration number
n iteration number
p% percentage of noise
q reaction coefficient
R(T) range of T
T final time
T operator
T∗ adjoint operator
u temperature
U bounded linear operator
x0 a-priori information
x† x0-minimum-norm solution
X, Y Hilbert spaces
XD characteristic function of the domain D



Greek symbols

α Robin coefficient
β regularization parameter
βn search step size
γn, ϕn conjugate coefficients
δ(·) Dirac delta function
ε noise level
λ adjoint function
µ heat flux
ν outward unit normal
σ standard deviation
φ initial temperature
ω weight function
Ω bounded domain
∂Ω boundary of Ω

Abbreviations

BEM boundary element method
BHCP backward heat conduction problem
CGM conjugate gradient method
FDM finite difference method
FEM finite element method
FVM finite volume method
HTC heat transfer coefficient
IHTP inverse heat transfer problem
MFS method of fundamental solution
PDE partial differential equation
RBF radial basis function
SVD singular value decomposition
TSVD truncated singular value decomposition
TV total variation
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Chapter 1

Introduction

Inverse problems are considered as determining the cause of a desired or an observed

effect, on the other hand, the direct problem is concerned with determining the effect

when the cause is known. There is a natural distinction between the direct and the inverse

problem if there is a real physical problem behind the mathematical model.

For instance, one shall call a problem direct when one wants to predict the future

behaviour of a physical system if the present state and laws of the physical problem are

known, whilst possible inverse problems are to identify the knowledge of the present state

of the system from future observations or, the reconstruction of the physical parameters

and/or coefficients from the measurements of the system.

Inverse heat transfer problems (IHTPs) are to determine the thermal parameters or

coefficients, the temperature on an inaccessible part of the boundary and the initial tem-

perature from over-specified temperature measurements, see e.g. Alifanov (1994); Özişik

& Orlande (2000). Such inverse problems are encountered in almost every branch of sci-

ence and engineering, and also found in aerospace, chemical and nuclear industry, etc.

Thus, the interest has grown rapidly in the theory and application of IHTPs in recent

years.

One example of an inverse problem is the following: It is difficult to directly measure

the heat flux by applying conventional methods on the surface of a wall subjected to fire,

in such case the inverse analysis in heat transfer can be employed to estimate the unknown

heat flux from the transient temperature readings which are taken by temperature sensors

at some specified locations beneath the heated surface.

Another practical application is about the aviation and rocket space technology using

IHTPs. For instance, the surface temperature of the thermal shield is impossible to be

measured directly by using temperature sensors, since the areodynamic heating of the
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1. INTRODUCTION

space vehicles is extremely high during the re-entry in the atmosphere. The surface tem-

perature can be reconstructed by using inverse analysis from the measured temperature

obtained by sensors placed beneath the hot shield surface. Finally, since the measure-

ments of thermophysical properties based on classical methods to many materials can

only be realized at lower temperatures and heating rates, such limitation can be avoided

by estimating the thermophysical properties of the shield using the inverse analysis in

heat transfer during operating conditions at high temperatures.

IHTPs are usually ill-posed, which is the main difficulty associated with the solution

of such inverse problems, Alifanov (1994); Beck et al. (1985). As such, IHTPs are very

sensitive to random errors inherent in the measured input data, which implies that special

techniques are required to obtain stable solutions.

1.1 Direct problem

In mathematical physics, a direct problem is a problem of modelling some physical fields,

processes, or phenomena, especially using partial differential equations (PDEs). The

aim of solving a direct problem is to obtain the main dependent variable function that

describes and governs naturally a physical field or process.

One example of a direct problem for a one-dimensional heat transfer process is given

by 
C(x)∂u

∂t
= ∂

∂x

(
k(x)∂u

∂x

)
+ f(x, t), (x, t) ∈ (0, 1)× (0, T ),

−k(0)∂u
∂x

(0, t) = µ1(t), u(1, t) = µ2(t), t ∈ (0, T ),

u(x, 0) = φ(x), x ∈ [0, 1],

(1.1)

where u(x, t) is the unknown temperature, C(x) is the heat capacity, k(x) is the thermal

conductivity, f(x, t) is the source term, µ1(t) is the heat flux at the left end point, µ2(t)

is the boundary temperature at the right end point, φ(x) is the initial temperature and T

is the final time. The direct problem is to determine the temperature u(x, t) satisfying the

initial-boundary value problem (1.1) when the thermal coefficients C(x), k(x), f(x, t),

the boundary data µ1(t) and µ2(t) and the initial temperature φ(x) are all specified.

We also present a two-dimensional heat transfer problem given by
C(x1, x2)∂u

∂t
= ∇ · (k(x1, x2)∇u)

−q(x1, x2, t)u+ f(x1, x2, t), (x1, x2, t) ∈ Q,
k(x1, x2)∂u

∂ν
+ α(x1, x2)u = µ(x1, x2, t), (x1, x2, t) ∈ S,

u(x1, x2, 0) = φ(x1, x2), (x1, x2) ∈ Ω,

(1.2)
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1.1 Direct problem

where Ω = (0, 1)×(0, 1),Q = Ω×(0, T ), S = ∂Ω×(0, T ) and ν is the outward unit nor-
mal to the boundary ∂Ω. The coefficients C(x1, x2), k(x1, x2), f(x1, x2, t), µ(x1, x2, t)

and φ(x1, x2) have the same physical properties as those presented in (1.1), q(x1, x2, t)

is the reaction coefficient and α(x1, x2) is the Robin convective coefficient. Similarly,
the direct problem is to identify the temperature u(x1, x2, t) based on known coefficients,
source, initial and boundary conditions in the problem (1.2).

Direct problems are in general well-posed by the concept of Hadamard (1923) if they
satisfy:

(a) The solution to the problem exists;

(b) The solution is unique;

(c) The solution depends continuously on the input data.

The well-posedness of direct problems for parabolic PDEs has been extensively studied,
see, e.g., Friedman (2008); Ladyzhenskaia et al. (1968). Besides analytical results, the
methods to obtain numerical solutions play an important role in this thesis. There are
various numerical discretisation methods to solve PDEs, for instance, the finite differ-
ence method (FDM), Smith (1985), the finite element method (FEM), Reddy (1993), the
finite volume method (FVM), Versteeg & Malalasekera (2007), and the boundary ele-
ment method (BEM), Banerjee & Butterfield (1981). Meshless spectral methods such as
the method of fundamental solutions (MFS) or the radial basis functions (RBF) are also
possible, but they are not discussed herein.

The FDM, which seems to be the easiest technique to numerically discretise a PDE,
utilizes finite differences generated by the Taylor series expansion to approximate the
partial derivatives involved in the PDE. The method becomes complicated when the FDM
is employed to solve the PDE in irregular domains, and the convergence and stability
analyses of FDM are quite difficult for nonliner PDEs.

The FEM uses variational methods to rewrite the original governing equation in a
weak integral form. The large domain is subdivided into smaller, simpler parts that are
called finite elements, then the solutions can be approximated using appropriate basis
functions over each elements. The numerical solutions of the PDE over the entire domain
is obtained by solving an assembled system of algebraic equations.

The FVM is based on integrating the PDE over a finite volume surrounding each node
point. The volume integrals are converted to surface integrals by the divergence theorem.
The FVM does not require a structured mesh, which is an advantage of FVM over FDM.
In addition, the boundary conditions can be applied non-invasively in FVM.

3
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The BEM can be applied to solve those PDEs with explicit fundamental solutions

available. The PDEs then can be transformed into boundary integral equations by using

the Green’s formula, and the solutions can be computed using the given boundary condi-

tions. One advantage is that only the boundary of the domain needs to be discretised in

the BEM, which reduces the dimensionality of the problem by one.

1.2 Inverse heat transfer problems

In many engineering problems certain quantities of the direct problem (1.1) or (1.2) are

not directly specified or measured, which leads to inverse problem formulations.

For instance, a similar problem to the initial-boundary value problem (1.1) is consid-

ered, but the thermal conductivity k(x) is unknown, while all other physical quantities

C(x), f(x, t), q(t), µ(t) and φ(x) are known. One inverse problem formulation is to

determine the unknown thermal conductivity k(x) from the temperature measurements

u(x, t) = Y (x, t), (x, t) ∈ (0, 1)× (0, T ). (1.3)

Similarly, for the problem (1.2), one IHTP is to identify the unknown reaction coefficient

q(x1, x2, t) from the measured temperature in Q, when other thermal coefficients, initial

and boundary conditions are known.

IHTPs can be classified based on the type of causal characteristics to be estimated,

Özişik & Orlande (2000):

• unknown boundary conditions;

• unknown thermophysical properties;

• unknown initial temperature;

• unknown source term;

• unknown geometric characteristics.

The inverse boundary value problems of heat transfer are to determine the unknown

boundary data on an inaccessible part of the boundary from over-prescribed boundary

conditions provided on the remaining boundary part, when the thermal coefficients, the

heat sources and the geometry of the domain are known. In the reference book by Al-

ifanov (1994), analytical solutions and numerical methods for inverse boundary value

problems are presented together with the stability analysis.
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The thermophysical property identification problems in heat transfer are to determine

the thermal coefficients in the governing heat equation characterising the material proper-

ties, such as the thermal conductivity k(x1, x2), the heat capacity C(x1, x2) and the reac-

tion coefficient q(x1, x2, t) in (1.2). One example is that of the two-dimensional time- and

space-dependent thermal conductivity k(x1, x2, t) of a non-homogeneous medium recon-

structed from the temperature measurements (1.3) using the conjugate gradient method

(CGM), Huang & Chin (2000). Besides, the time- and space-dependent reaction coef-

ficient q(x, t) (or q(x1, x2, t)) was estimated from the measured temperature (1.3) using

the CGM, Cao & Lesnic (2018a).

The IHTP to determine the initial temperature is usually called the backward heat

conduction problem (BHCP). This inverse problem is to identify the unknown initial

status from the temperature measurement at a latter time, when the thermal coefficients,

source terms and boundary conditions are specified.

The inverse source problems are to identify the heat source, e.g., f(x, t) in (1.1), or

the heat source components, e.g., f1(x) in f(x, t) = f1(x)h(x, t), where h(x, t) is a given

function, when the thermal coefficients, initial and boundary conditions and geometry of

domain are given. In Isakov (1990), the existence, uniqueness and stability of solutions

to the inverse source problems of parabolic PDEs have been investigated from the final

time or lateral boundary overdeterminations. The inverse source problems have also been

reconstructed numerically, e.g., by using the CGM in Hào et al. (2017).

The inverse geometric problems are to determine the unknown location and shape of

part of the boundary of the domain from the over specified boundary conditions on the

known part of the boundary, when all the coefficients, heat source and initial temperature

are specified. Such inverse geometric problems can be used to model defects such as

obstacles, cavities, inclusions, flaws, faults, voids and cracks. Moreover, one typical

medical application of the inverse geometric problem is the detection of anomalies such

as tumours inside or on the skin of a body.

All the above categories of linear or nonlinear IHTPs are ill-posed, and the ill-posedness

concept is introduced in the next section.

1.3 Ill-posed problems

For an inverse problem of mathematical physics, if one of the three conditions (a)–(c) of

Section 1.1 fail to hold, then the problem is called ill-posed (in the sense of Hadamard).

One main difficulty associated with IHTPs are that they are in general ill-posed, whereas

the corresponding direct problem is well-posed.
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A solution to an IHTP may exist, which can be established according to mathematical
modelling and physical reasoning. The uniqueness of some IHTP can be proved under
suitable sufficient conditions. The IHTP is not physical and cannot be computed if this
problem does not satisfy the stability condition (c). In such case, the inverse problem
becomes very sensitive to the noisy input data. Note that an unstable inverse problem may
be rendered stable mathematically under suitably changing conditions (e.g., functional
spaces), but such changes are not always possible for inverse problems in the realistic
applications for which the input data is inevitably contaminated by random non-smooth
noise.

In order to illustrate the ill-posedness of IHTP, we consider the one-dimensional heat
equation with homogeneous Dirichlet boundary conditions given by{

∂u
∂t
− ∂2u

∂x2 = 0, (x, t) ∈ (0, 1)× (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, 1).
(1.4)

The BHCP is to determine the initial temperature u(x, 0) = φ(x) from the measured
temperature at the final time t = 1,

u(x, 1) = φ1(x), x ∈ (0, 1). (1.5)

Taking φ1,n(x) = sin(nπx)
n2π2 , using the separation of variables to the problem (1.4) and (1.5),

it is easy to see that

un(x, t) =
1

n2π2
en

2π2(1−t) sin(nπx), n ∈ N∗. (1.6)

It is obvious that
lim
n→∞

‖φ1,n‖L2(0,1) = lim
n→∞

1√
2n2π2

= 0,

and

lim
n→∞

‖un(·, 0)‖L2(0,1) = lim
n→∞

en
2π2

√
2n2π2

=∞.

Hence, when we consider φ1,n as perturbation of φ1 = 0 with the L2-error 1√
2n2π2 de-

caying to 0 as n → ∞, the corresponding error to the solution u(·, 0) of the BHCP is
amplified exponentially by en2π2 , which implies that the initial temperature u(x, 0) to the
BHCP is not continuously dependent on the final measured temperature φ1(x).

Many IHTPs can be transformed into an operator equation:

Tx = y, (1.7)

where T : D(T) 7→ Y is a linear or nonlinear operator with domain D(T) ⊂ X, and
X, Y are infinite-dimensional Hilbert spaces. Then the solution of (1.7) exists when

6
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T : D(T)→ R(T) is surjective, i.e., when y belongs to the range R(T) of the operator T.

The solution is unique if and only if T is injective. In case T : D(T) 7→ Y is bijective,

the stability is equivalent to the continuity of the inverse operator T−1 : R(T) → D(T).

The equation (1.7) becomes an ill-posed problem if it violates one or more of the above

conditions.

The operator equation (1.7) requires to determine x ∈ D(T) given the measured

perturbed data yε ∈ Y of the data y ∈ R(T), where ε ≥ 0 represents the noise level,

satisfying

‖y − yε‖Y ≤ ε. (1.8)

For instance, in the IHTP (1.1) and (1.3), the nonlinear operator T maps the unknown

thermal coefficient k(x) onto the measured perturbed temperature Y ε of Y in (1.3). Even

if the inverse operator T−1 : R(T) 7→ D(T) exists, it is usually not continuous (e.g., in

case T is compact1, T−1 is unbounded) and therefore the problem becomes unstable. We

can illustrate this easier in case of linear or nonlinear compact operators as follows.

For any compact linear operator T in the operator equation (1.7), the singular value

decomposition (SVD) method is a widely used technique, e.g., Engl et al. (1996).

The non-zero eigenvalues of the selfadjoint operator T∗T and TT∗, where T∗ denotes

the adjoint operator2 of T, are denoted by {σ2
n}n∈N∗ with σn > 0, the {vn}n∈N∗ are a cor-

responding complete orthonormal system of eigenvectors to T∗T, and wn = Tvn/‖Tvn‖
are a complete orthonormal system of eigenvectors to TT∗. Then (σn; vn, wn) is a singular

system of the compact linear operator T, and we have the following formulas:

Tx =
∞∑
n=1

σn〈x, vn〉wn, x ∈ X, (1.9)

T∗y =
∞∑
n=1

σn〈y, wn〉vn, y ∈ Y, (1.10)

where (1.9) and (1.10) are the infinite-dimensional analogues of the SVD of a matrix,

Golub & Van Loan (2012).

If dimR(T) < ∞, T has only finitely many singular values, thus the infinite series

(1.9) and (1.10) degenerate to finite sums, and the range R(T) is closed, which means

1Let X and Y be normed spaces and T : X→ Y be an operator, then T is a compact operator if for any
bounded sequence {xn} in X the sequence {Txn} contains a convergent subsequence in Y.

2Given T : X 7→ Y an operator, then its adjoint operator T∗ : Y 7→ X satisfies

〈Tx, y〉 = 〈x,T∗y〉, ∀x ∈ X, y ∈ Y.

7
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that T is continuously invertible. However, if dimR(T) = ∞, then limn→∞ σn = 0.

Assuming further that T : D(T) → R(T) is invertible, on solving (1.7) we get that for

y ∈ R(T)

x = T−1y =
∞∑
n=1

〈y, wn〉
σn

vn, (1.11)

where (σn; vn, wn) is a singular system of the compact linear operator T.

Taking yεn := y + εwn, then ‖yεn − y‖Y = ε and using (1.11), we have

T−1yεn − T−1y =
∞∑
i=1

〈εwn, wi〉
σi

vi =
〈εwn, wn〉

σn
vn,

which implies that

‖T−1y − T−1yεn‖X =
ε

σn
→∞, as n→∞.

This result means that the above error can be amplified arbitrarily by the factors 1
σn

.

As for the nonlinear operator equation (1.7), we introduce the concept of the x0-

minimum-norm solution denoted by x† of (1.7):

Tx† = y, ‖x† − x0‖X = min{‖x− x0‖XTx = y}, (1.12)

where x0 is some a-priori information on the solution of (1.7).

We close this subsection by highlighting a case when we can conclude that a nonlinear

problem (1.7) is ill-posed. For a nonlinear, continuous and compact operator T, suppose

that D(T) is weakly closed1. We also assume that Tx† = y and that there exists a ρ > 0

such that Tx = y has a unique solution for ∀y ∈ R(T) ∩ Bρ(y), where Bρ(y) := {y ∈
Y; ‖y − y‖Y < ρ} is the ball centred at y of radius ρ. If there exists a sequence {xn} ∈
D(T) satisfying xn ⇀ x† but xn 9 x†, then T−1 (defined on R(T) ∩ Bρ(y)) is not

continuous in y, see Proposition 10.1 of Engl et al. (1996). Note that if D(T) is compact

and T−1 exists, then T−1 is continuous by the Arzela-Ascoli Theorem. This result implies

that the nonlinear ill-posed problems can be regularized by simply restricting D(T) to a

compact set, however, this usually does not yield qualitative stability estimates.

Regularization methods can be applied to overcome the difficulties arising from in-

stability, as described in the next section.

1That is, for any {xn} in D(T), if xn ⇀ x then x ∈ D(T).
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1.4 Tikhonov’s regularization

Some sort of regularization must be employed in order to retrieve the loss of stability for

ill-posed problems. The Tikhonov regularization approach, see Phillips (1962); Tikhonov

(1963a,b), is one of the most popular regularization procedure to deal with ill-posed

inverse problems. In Engl et al. (1996), the Tikhonov regularization has been studied

extensively for both the linear and nonlinear operator equation (1.7).

The quasi-solution to the ill-posed inverse problem (1.7) and (1.8) can be approxi-

mated by a minimizer of the Tikhonov functional given by:

J(x) = ‖Tx− yε‖2
Y + β‖x‖2

X, (1.13)

where β is a positive regularization parameter to be prescribed.

Convergence results for linear and nonlinear problems are presented in the following

two sections, see further Engl et al. (1996).

1.4.1 Linear problems

If T is a linear operator, then there exists a unique minimizer xεβ of the Tikhonov func-

tional (1.13) given by:

xεβ = (T∗T + βI)−1T∗yε, (1.14)

where I is the identity operator. If the linear operator equation (1.7) is uniquely solvable

and the regularization parameter β := β(ε) satisfies

lim
ε→0

β(ε) = 0, lim
ε→0

ε2

β(ε)
= 0, (1.15)

then xεβ given by (1.14) tends to the solution x = T−1y of (1.7), as ε → 0. It is also

possible to derive convergence rates. For example, if we know a-priori that the solution x

is in the range of the operator (T∗T)σ for some σ ∈ (0, 1] such that x = (T∗T)σv with v ∈
X and ‖v‖X sufficiently small, then choosing the regularization parameter β ∼ ε2/(2σ+1)

we have the convergence rate, see Engl et al. (1996),

‖xεβ − x‖X = O(ε2σ/(2σ+1)). (1.16)

The condition that x = (T∗T)σv is called a source condition and T linear and compact

operator can be rewritten in the form x =
∑∞

n=1 σ
2σ
n 〈v, vn〉Xvn. Equation (1.16) expresses

that the convergence of xεβ to x can be arbitrary slow when σ is close to 0, and moreover

it cannot be better than O(ε2/3) obtained when σ = 1.

9
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For the linear problem, the truncated singular value decomposition (TSVD) of the
linear compact operator T, can be considered by replacing T with the finite-rank operator
Tβ , given by

Tβx :=
∞∑

n=1,σ2
n≥β

σn〈x, vn〉wn,

where the positive constant β is a regularization/truncation parameter. Using (1.11) and
assuming that T is invertible, we obtain the truncated regularized solution

T−1
β y =

∞∑
n=1,σ2

n≥β

〈y, wn〉
σn

vn,

for exact data y and

xεβ := T−1
β yε =

∞∑
n=1,σ2

n≥β

〈yε, wn〉
σn

vn,

for noisy data yε. The choice of the threshold β can be based on the discrepancy principle,
i.e., ‖Txεβ − yε‖Y ≤ τε, τ ≥ 1, see Marin & Lesnic (2002).

1.4.2 Nonlinear problems

The quasi-solution to the nonlinear ill-posed inverse problem (1.7) and (1.8) can be ap-
proximated by a minimizer of the Tikhonov functional given by:

J(x) = ‖Tx− yε‖2
Y + β‖x− x0‖2

X. (1.17)

A minimizer to the functional (1.17) is still denoted by xεβ . Let (1.15) hold. Then every
sequence {xεnβn}, where εn → 0 as n → ∞, βn := β(εn) and xεnβn is a solution of (1.17),
has a convergent subsequence, and the limit of such subsequence is an x0-minimum-norm
solution of (1.7), see Engl et al. (1996). If in addition, the x0-minimum-norm solution x†

is unique, then limε→0 x
ε
β = x†.

Convergence rates can be established under stronger assumptions, as follows. As-
sume D(T) ⊂ X is convex and let x† be an x0-minimum-norm solution of (1.12). Then,
if the following conditions hold:

(i) T is Fréchet differentiable1;
1Let V and W be normed vector spaces, and V1 be an open subset of V. An operator T is called Fréchet

differentiable at point x ∈ V1, if there exists a bounded linear operator U : V 7→W such that

lim
‖h‖V→0

‖T(x+ h)− Tx− Uh‖W
‖h‖V

= 0.

The operator U is called the Fréchet derivative of T at x.

10



1.5 Landweber’s method

(ii) there exist M ≥ 0 such that

‖T′(x†)− T′(x)‖Y ≤M‖x† − x‖X, ∀x ∈ D(T) ∩Bρ(x
†) with ρ sufficiently small;

(iii) x† satisfies the source condition

x† − x0 = (T′(x†)∗T′(x†))σv

for some σ ∈ [1
2
, 1] and v ∈ X with ‖v‖X < 1/M , then for the choice β ∼ ε

2
2σ+1 , we have

the convergence rate
‖xεβ − x†‖ = O(ε

2σ
2σ+1 ). (1.18)

1.5 Landweber’s method

A regularized solution to the inverse problem (1.7) and (1.8) can also be obtained by
using iterative regularization methods, e.g., the Landweber iteration method, see Engl
et al. (1996); Hanke et al. (1995); Kaltenbacher et al. (2008); Landweber (1951). The
Landweber method is given by

xn+1 = xn + T∗(yε − Txn), n = 0, 1, 2, · · · , (1.19)

where n denotes the number of iterations and x0 is the initial guess.
Consider the linear operator equation (1.7) and suppose that ‖T‖ ≤ 1, otherwise we

could introduce a relaxation parameter 0 < γ ≤ ‖T‖−2, such that (1.19) becomes

xn+1 = xn + γT∗(yε − Txn), n = 0, 1, 2, · · · .

Thus, we can assume that ‖T‖ ≤ 1 and drop the parameter γ, without loss of generality.
For exact input data, i.e., ε = 0, if y ∈ D(T−1), then

lim
n→∞

xn = T−1y, (1.20)

otherwise if y 6∈ D(T−1), then

lim
n→∞

‖xn‖X =∞.

For the noisy data yε satisfying (1.8), xn(ε) obtained by (1.19) satisfies

‖xn − xn(ε)‖X ≤
√
nε, ∀n ∈ N. (1.21)

The behaviour of the Landweber iteration with yε can be seen by

T−1y − xn(ε) = T−1y − xn + xn − xn(ε),

11
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which means that the error has two components, ‖T−1y − xn‖X converging to zero from
(1.20) and ‖xn − xn(ε)‖X of the order at most

√
nε from (1.21). Thus xn(ε) converges

to T−1y for the first few iterations after which it diverges as n→∞, i.e., the Landweber
method is semi-convergent, see Natterer (2001).

Thus, the proper stopping of the iterative algorithm plays an important regularizing
role, and the Landweber method should be stopped before the iterates start to diverge.
The iterative scheme can be regularized by the discrepancy principle, Morozov (1966),
which terminates the Landweber method at the iteration threshold n∗ = n∗(ε) for which

‖yε − Txn∗‖Y ≤ τε < ‖yε − Txn∗−1‖Y, (1.22)

where τ ≥ 1 is a constant to be chosen. Under source conditions, convergence rates can
be established, as described in Kaltenbacher et al. (2008).

1.6 Conjugate gradient method

The CGM was first introduced to solve finite dimensional systems of linear algebraic
equations by Hestenes & Stiefel (1952), and then extended to continuous operator equa-
tions in infinite-dimensional Hilbert spaces by Patterson (1974).

We first consider the following system of linear algebraic equations

Ax = y, (1.23)

for the vector x ∈ Rd, where the vector y ∈ Rd is known and A ∈ Rd×d is a symmetric
and positive definite matrix, i.e. AT = A and xTAx > 0 for all x ∈ Rd \ {0}.

The CGM for solving (1.23) is given by:
d0 = r0 = y −Ax0,

xn+1 = xn + βndn, βn = |rn|2
(dn)TAdn

, n = 0, 1, 2, · · · ,
dn = rn + γndn−1, rn = rn−1 − βn−1Adn−1, n = 1, 2, · · · ,
γn = |rn|2

|rn−1|2 , n = 1, 2, · · · ,

(1.24)

where n denotes the iteration number, x0 is the initial guess of the solution, rn is the
residual and the vectors dn form a set of conjugate, or A-orthogonal, directions, i.e.
(dn)TAdm = 0 for all m 6= n. The convergence results and stability analysis of the
method (1.24) are given in Hestenes & Stiefel (1952).

Note that the unique solution to the equation (1.23) is also the unique minimizer of
the following quadratic function

f(x) =
1

2
xTAx− xTy, x ∈ Rd. (1.25)
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1.6 Conjugate gradient method

The first derivative of (1.25), f ′(x) = Ax− y, satisfies f ′(xn) = −rn. Thus, the CGM
given by (1.24) can be written as

xn+1 = xn + βndn, n = 0, 1, 2, · · · ,
d0 = −f ′(x0),

dn = −f ′(xn) + γndn−1, n = 1, 2, · · · ,
(1.26)

and βn, γn can be computed using f ′(xn).
The CGM presented above can be naturally extended to the minimization of non-

linear functions. For instance, it can be applied to the inverse operator problem (1.7)
with the noisy data (1.8), whose solutions minimize the least-squares objective functional
given by

J(x) =
1

2
‖Tx− yε‖2

Y. (1.27)

Using the algorithm (1.26), we can establish the CGM, which can be applied to recon-
struct the minimizer of the optimization problem (1.27), given by:

xn+1 = xn + βndn, n = 0, 1, 2, · · · ,
d0 = −s0,

dn = −sn + γndn−1, n = 1, 2, · · · ,
(1.28)

where sn = J ′n = J ′(xn) is the Fréchet gradient of (1.27) at the point xn. Note that the
objective functional J(x) given by (1.27) is Fréchet differentiable when the operator T is
Fréchet differentiable, and its gradient is given by:

sn = J ′(xn) = T′(xn)∗(T(xn)− yε),

which means that the method (1.28) can be written as
xn+1 = xn + βndn, n = 0, 1, 2, · · · ,
d0 = −s0, s0 = T′(x0)∗(T(x0)− yε),
dn = −sn + γndn−1, sn = T′(xn)∗(T(xn)− yε), n = 1, 2, · · · ,

(1.29)

where x0 is the initial guess, βn is the search step size in passing from iteration n to
iteration n + 1, dn is the direction of descent, γn is the conjugate coefficient, and T′(xn)

is the Fréchet gradient of T at the point xn. Note that various choices of βn and γn yield
different iterative methods:

• Landweber iteration method, for βn = 1 and γn = 0, see Section 1.5;

• Steepest descent method, for βn = ‖dn‖2
‖T′(xn)dn‖2 and γn = 0, Eicke et al. (1990);

Kaltenbacher et al. (2008); Neubauer & Scherzer (1995);

13
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• CGM, for βn 6= 0, γn 6= 0 depending on n, (xi)i=0,n and yε.

In addition, there are many choices for the conjugate coefficient γn as shown in Table
1.1. Note that Powell (1977) introduced the so-called Powell-Beales version of the CGM
with the search direction dn given by

dn =

{
−s0,

−sn + γndn−1 + ψndp, n = 1, 2, · · ·
(1.30)

where the superscript p in (1.30) denotes the iteration number where a restarting strategy
is applied to the CGM, and γn and ψn are the conjugation coefficients given by

γn =
〈sn, sn − sn−1〉
〈dn−1, sn − sn−1〉

, n = 1, 2, · · · (1.31)

ψn =
〈sn, sn − sn−1〉
〈dp, sp+1 − sp〉

, n = 1, 2, · · · (1.32)

According to Powell (1977), the application of the CGM with the conjugation coefficients
given by (1.31) and (1.32) requires restarting when gradients sn at successive iterations n
tend to be non-orthogonal and when the search direction is not sufficiently downhill. The
non-orthogonality of gradients at successive iterations is tested by∣∣〈sn−1, sn〉

∣∣ ≥ 0.2‖sn‖2, (1.33)

and the non-sufficiently downhill search direction (i.e., the angle between the search di-
rection and the negative gradient direction is too large) is identified if either of the fol-
lowing inequalities is satisfied

〈dn, sn〉 ≤ −1.2‖sn‖2, (1.34)

or
〈dn, sn〉 ≥ −0.8‖sn‖2, (1.35)

where the vales 0.2, −1.2 and −0.8 in (1.33)–(1.35) are empirical obtained by Powell
(1977). Thus, dn can be computed using the following algorithm, Colaço & Orlande
(1999); Colaço et al. (2006); Powell (1977):

S1. Test the inequality (1.33), set p = n− 1 if it is true.

S2. Compute the conjugate gradient coefficient γn by (1.31).

S3. If n = p + 1 set the conjugate gradient coefficient ψn = 0, else compute the
coefficient ψn with (1.32).
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1.6 Conjugate gradient method

S4. Compute the search direction dn by (1.30).

S5. If n 6= p+ 1 test the inequalities (1.34) and (1.35). If either one of them is satisfied
set p = n− 1 and ψn = 0. Then recompute the search direction dn by (1.30).

γnHS = 〈sn,sn−sn−1〉
〈dn−1,sn−sn−1〉 Hestenes & Stiefel (1952)

γnFR = ‖sn‖2
‖sn−1‖2 Fletcher & Reeves (1964)

γnPRP = 〈sn,sn−sn−1〉
‖sn−1‖2 Polak & Ribiere (1969)

γnCD = − ‖sn‖2
〈dn−1,sn−1〉 Fletcher (2013)

γnLS = − 〈s
n,sn−sn−1〉
〈dn−1,sn−1〉 Liu & Storey (1991)

γnDY = ‖sn‖2
〈dn−1,sn−sn−1〉 Dai & Yuan (1999)

Table 1.1: Several expressions for the conjugate coefficient γn.

The convergence and convergence rates of CGM (1.29) with the conjugate coefficient
γnFR given by Fletcher-Reeves formula in Table 1.1 for linear ill-posed inverse problems
were investigated by Engl et al. (1996); Hanke (1995). For exact data, i.e. ε = 0, xn given
by (1.29) converges to T−1y of the linear problem (1.7) for all y ∈ D(T−1) = R(T). For
nosiy data yε, ε > 0, the CGM is semi-convergent and should be stopped according to the
discrepancy principle (1.22). Suppose that the linear ill-posed problem (1.7) and (1.8) is
uniquely solvable and the CGM (1.29) is stopped according to the discrepancy principle
(1.22) with n∗ = n∗(ε). If x−x0 = (T∗T)σv, where σ > 0 and ‖v‖X is sufficiently small,
see Engl et al. (1996), then

‖T−1y − xn∗‖X = O(ε
2σ

2σ+1 ), and n∗ = O(ε−
1

2σ+1 ). (1.36)

For nonlinear ill-posed problems a similar CGM (1.29) can be used to find the ap-
proximate solution, but convergence results are still open to be established, see Scherzer
(1996).

1.6.1 Global convergence

Now, we consider the unconstrained minimization for a smooth function J(x) of x ∈ Rd,
d ≥ 1, i.e., minx∈Rd J(x). For example, we can have J(x) as a Tikhonov functional for
the problem (1.23). CGMs are useful for minimizing J(x), especially for large d, and are
given by 

xn+1 = xn + βndn, n = 0, 1, 2, · · · ,
d0 = −J ′0,
dn = −J ′n + γndn−1, n = 1, 2, · · · ,

(1.37)
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where J ′n = J ′(xn) is the Fréchet gradient of J(x) at the point xn. The global conver-

gence of the CGM (1.37) is understood in the following sense:

lim infn→∞‖J ′n‖ = 0. (1.38)

Different choices of the conjugate coefficient γn, such as FR, PRP and HS formulae

described in Table 1.1, yield different formulations of CGM. The non-negative step size

βn can be obtained by a line search for solving

min
βc≥0

J(xn + βcd
n).

Some line search strategies for choosing suitable search step size βn in the direction dn

satisfying the descent condition 〈J ′n,dn〉 < 0, are as follows, see Schopfer (2016):

• Wolfe conditions: Let 0 < σ1 < σ2 < 1 and choose βn such that{
J(xn+1)− J(xn) ≤ σ1β

n〈J ′n,dn〉,
〈J ′n+1,dn〉 ≥ σ2〈J ′n,dn〉.

• Backtracking: Let σ ∈ (0, 1) and 0 < τ1 < τ2 < 1. If βc = 1 satisfies

J(xn + βcd
n)− J(xn) ≤ σ〈J ′n,dn〉,

then set βn = βc. Otherwise, choose a new βc ∈ [τ1βc, τ2βc] and repeat the test.

• Exact line search: Calculate βc with 〈J ′(xn + βcd
n),dn〉 = 0 and set βn = βc.

The convergence analysis of the CGM requires a Lipschitz assumption given by: In

some neighbourhood A of

L = {x ∈ Rd|J(x) ≤ J(x0)},

the Fréchet gradient J ′(x) is Lipschitz continuous, i.e., there exists L > 0 such that

‖J ′(x1)− J ′(x2)‖ ≤ L‖x1 − x2‖, ∀x1,x2 ∈ A.

Consider the CGM (1.37) together with the direction dn satisfying the descent con-

dition and the search step size βn satisfying the Wolfe conditions. Then, if the above

Lipschitz condition holds, the CGM converges globally in the sense of (1.38), see Hager

& Zhang (2006); Schopfer (2016).
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1.6.2 Application of CGM to IHTPs

Throughout this thesis, the quasi-solutions to the IHTPs will be approximated by the

minimizer of the least-squares objective functional, e.g., for the inverse problem (1.1)

and (1.3) to reconstruct the unknown function, k(x) is given by:

J(k) =
1

2
‖u(·, ·; k)− Y ‖2

L2((0,1)×(0,T )).

Clearly, the Fréchet gradient J ′(k) is essential, and such gradient can be obtained

from an auxiliary problem known as the adjoint problem. In fact, a variational method

can be used to obtain the Fréchet gradient together with the adjoint problem. Many types

of conjugate coefficient γn have been described in the above section, and the FR and PRP

formulae are commonly utilized in the CGM for IHTPs. The search step size βn can be

determined by the Taylor series expansion and the sensitivity problem, which describes

the perturbed temperature from the perturbation of the unknown quantity.

In summary, the CGM regularized by the discrepancy principle is based on the direct

problem, the sensitivity problem, the adjoint problem, the Fréchet gradient, the iterative

algorithm and the stopping criterion, Özişik & Orlande (2000). The procedure of the

CGM for IHTP starts with an initial guess n = 0, e.g., k0, for the unknown coefficient.

Then the direct problem is solved with such initial guess in order to obtain the value

of the objective functional. The adjoint problem and the Fréchet gradient are solved to

determine the conjugate gradient coefficient γn and the search direction dn. We then

solve the sensitivity problem to compute the step size βn, and update kn+1 by (1.37).

Finally, the iteration is stopped when the discrepancy principle is satisfied.

The analysis of the global convergence of the CGM to IHTPs is interesting and novel.

In such case, the conjugate gradient coefficient γnFR given by FR formula is used in the

iterative scheme and the exact line search method is applied to attain the step size βn.

Since the adjoint problem and the gradient can be expressed explicitly, the Lipschitz

continuity of such gradient may be obtained from classical arguments described in Dai &

Yuan (1996, 1999); Wolfe (1969); Zoutendijk (1970).

Finally, we present the general framework to reconstruct one or more unknown coef-

ficients of the IHTPs by using the CGM, as follows:

1. Given the mathematical formulation of the direct heat transfer problem, define its

weak solution, and present the well-posedness of the direct problem when all the

coefficients and initial-boundary conditions are given;
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2. State one or more unknown coefficients of the heat transfer problem, and give the

temperature measurement, such as the interior measured temperature, the final tem-

perature observation or the time-average temperature measurement. In addition,

such information usually contains noise. Then, the inverse problem is to recon-

struct the unknown coefficients from such measured temperature, and the problem

is ill-posed;

3. Define a least-squares objective functional which is the gap between the computed

and the measured temperatures. Here, the computed temperature is the weak so-

lution to the heat transfer problem corresponding to the particular values of the

unknown coefficients;

4. The solution of the inverse problem can be approximated by the minimizer of the

objective functional, i.e. the inverse problem is transformed into an optimization

problem. Then, based on the arguments of functional analysis, the existence of

the minimizer to the optimization problem can be proved. Using the variational

method, the Fréchet gradient of the objective functional and the adjoint problem

can be obtained;

5. The CGM can be established using the gradient of the objective function, and the

iteration process has been described above. Since the inverse problem is ill-posed,

CGM regularized by the discrepancy principle can be used to obtain a stable nu-

merical solution to the inverse problem;

6. Use the CGM to numerically reconstruct the minimizer of the objective functional,

then such solution is also the numerical solution to the inverse problem. Thus,

this method can be used to numerically estimate one or more coefficients from

temperature measurements containing various level of noise.

1.7 Purpose and outline of the thesis

The identification of the unknown space-dependent thermal conductivity from various

types of additional information was considered analytically by Cannon & DuChateau

(1974); Cannon & Jones (1963); Cannon et al. (1963); Kohn & Vogelius (1984, 1985);

Kravaris & Seinfeld (1986). The numerical estimation of the thermal conductivity was

also investigated, when the unknown thermal conductivity is assumed to be a constant,

Beck & Al-Araji (1974), space-dependent using CGM, Colaço et al. (2006); Huang &
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Özişik (1990, 1991), time- and space-dependent, Huang & Chin (2000), and temperature-

dependent, Colaço & Orlande (1999); Özişik & Orlande (2000); Tervola (1989).

The simultaneous reconstruction of the constant anisotropic thermal conductivity ten-

sor was investigated by Harris et al. (2008); Sawaf & Özisik (1995); Thomas et al. (2010),

but there is still no numerical estimation of the space-dependent thermal conductivity for

an orthotropic material.

The identification of the reaction coefficient was investigated mainly theoretically,

when is space-dependent, Gel’fand & Levitan (1951); Isakov (1991); Kamynin & Kostin

(2010); Kozhanov (2004); Pierce (1979); Prilepko & Kostin (1993); Prilepko & Solovev

(1987); Rundell (1987); Suzuki (1983), time-dependent, Cannon & Lin (1990); Can-

non & Yin (1990); Cannon et al. (1992); Dehghan (2005); Trucu et al. (2008), time-

and space-dependent, Deng et al. (2008, 2010), and temperature-dependent, Trucu et al.

(2010a). Meanwhile, there were many works on the numerical reconstruction of the un-

known reaction coefficient using FDM or FEM by Cao & Lesnic (2018a); Chen & Liu

(2006); Trucu et al. (2008, 2010b, 2011), with regularization, but the CGM has not been

applied yet for the estimation of the reaction coefficient from final or integral observation.

According to the above literature research, this thesis aims to fill in the gaps on the

numerical solution for space-dependent thermal conductivity and reaction coefficient in

one and two-dimensions using CGM, which model real phenomena such as heat con-

duction, melting or cooling process, blood perfusion, etc. Meanwhile, the simultaneous

determination of the reaction coefficient and initial temperature will be numerically re-

constructed using CGM from temperature observations. Finally, the reaction coefficient,

initial temperature and some component of the source term shall also be recovered simul-

taneously by the CGM.

For all the IHTPs considered in this thesis, they are first transformed into optimiza-

tion problems by the least-squares objective functional, then the quasi-solutions to IHTPs

are approximated by the minimizers of these optimization problems. We prove the exis-

tence of the minimizer to each optimization problem using basic arguments of functional

analysis. A variational method is utilized to obtain the Fréchet gradient of the objective

functional, and the adjoint problem is also derived. Then we establish the CGM by the

steps described in the previous section to reconstruct the unknown function(s). Several

numerical examples for each IHTPs are calculated using the CGM and FDM, and stable

and reasonably accurate solutions are also presented.

The reconstruction of the space-dependent thermal conductivity of an isotropic ma-

terial from interior temperature observations is investigated in Chapter 2. The CGM is
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established using the Fréchet gradient of the objective functional together with the ad-
joint and sensitivity problems. The Sobolev gradient is introduced in order to obtain
smoother and more accurate numerical results. Three numerical examples for one- and
two-dimensional inverse problems are presented and discussed.

In Chapter 3, the determination of the space-dependent thermal conductivity in a
two-dimensional orthotropic material from the temperature observations is investigated
using the similar approaches applied in Chapter 2. The numerical results obtained by the
regular gradient and the Sobolev gradient are compared.

The simultaneous reconstruction of the space-dependent thermal conductivity and
the reaction coefficient of an isotropic material is investigated in Chapter 4 from interior
temperature observations. Three numerical examples are illustrated and discussed for
one- and two-dimensional inverse problems.

The space-dependent reaction coefficient is identified from the final and/or integral
observation in Chapter 5. Uniqueness of solution holds but continuous dependence on
the input data is violated. This is the first time that the CGM is applied to solve the inverse
problems under investigation. Three examples are investigated to verify the accuracy and
stability of the numerical method.

In Chapter 6, the space-dependent reaction coefficient and the initial temperature are
simultaneously identified from temperature observations at two distinct time instants.
The numerical reconstruction process is based on the CGM regularized by the discrep-
ancy principle. Accurate and stable numerical solutions are obtained for three examples.

The inverse problem investigated in Chapter 7 is to determine the same coefficients
considered in Chapter 6 but from the integral temperature observations generated by two
linearly independent time-dependent weight functions. The CGM is established similar
to that of Chapter 6. The new part is the consideration of the global convergence of the
CGM under the Lipschitz continuity property of the Fréchet gradient. In three numerical
examples, the global convergence of CGM, and stable and accurate numerical solutions
are presented.

In Chapter 8, the space-dependent reaction coefficient, initial temperature and one
space-dependent component of the heat source are simultaneously reconstructed from
the measured temperatures at three different time instants. Using the same methods of
the previous chapters, the CGM can be established and used to obtain the numerical
solutions of the three unknown quantities.

Finally, in Chapter 9, general conclusions and suggestions for possible future work
are highlighted.
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Chapter 2

Determination of the space-dependent
thermal conductivity of an isotropic
material

2.1 Introduction

The estimation of the thermal conductivity is very important in many heat transfer appli-

cations, see Alifanov & Tryanin (1985), e.g. in the cooling of continuously cast slabs and

electronic chips, see Hibbins (1982); Orlande et al. (1997); Stewart et al. (1996).

The recent research about the space-dependent thermal conductivity identification has

been reviewed in Section 1.7. Although the determination of the space-dependent thermal

conductivity from temperature measurements has already been numerically attempted by

Colaço et al. (2006); Huang & Özişik (1990, 1991) using the CGM, there is still need to

be put on a firm mathematical solid basis, as described in this chapter. In particular, a

variational framework is set up to rigorously establish the CGM. Moreover, the Sobolev

gradient is utilized to improve the accuracy of the standard CGM.

The plan of the chapter is as follows. First, some preliminary notation is introduced in

Section 2.2. In Section 2.3, the mathematical formulation of the IHTP that is investigated

is given. Analysis is performed in Section 2.4 and the CGM is introduced in Section 2.5.

Section 2.6 discusses the numerical schemes discretisation given by the Crank-Nicolson

(C-N) scheme for one-dimensional problems and the alternating direction implicit (ADI)

scheme for two-dimensional problems. Three numerical examples for one- and two-

dimensional inverse problems are discussed, and stable and accurate numerical solutions

are illustrated. Finally, conclusions are highlighted in Section 2.7.
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2. DETERMINATION OF THE SPACE-DEPENDENT THERMAL
CONDUCTIVITY OF AN ISOTROPIC MATERIAL

2.2 Preliminaries and notations

In this section we give some notations on functional spaces from Isakov (2006); La-
dyzhenskaia et al. (1968); Tröltzsch (2010). We denote by Ω ⊂ Rd, d ≥ 1, a bounded
domain with boundary ∂Ω. The boundary ∂Ω is Lipschitz if it can be thought of as lo-
cally being the graph of a Lipschitz continuous function. We denote by QT = Ω× (0, T )

and ST = ∂Ω× (0, T ) the lateral boundary of QT .
The space Lp(Ω), p ∈ [1,∞), consists of all p-integrable functions u(x) over Ω,

equipped with the norm

‖u‖Lp(Ω) =

{∫
Ω

|u(x)|pdx
}1/p

.

For p = 2, L2(Ω) is a Hilbert space with the inner product defined by

〈u, v〉L2(Ω) =

∫
Ω

u(x)v(x)dx, ∀u, v ∈ L2(Ω).

The space L∞(Ω) comprises all essentially bounded functions u(x) in Ω, endowed
with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω
|u(x)| = inf{M ≥ 0; |u(x)| ≤M, a.e. x ∈ Ω}.

The spaces Lp(QT ) and L∞(QT ) can be defined similarly.
The Sobolev space Hm(Ω), m ∈ N, is defined by

Hm(Ω) =
{
u ∈ L2(Ω) : Dj

xu ∈ L2(Ω) with |j| ≤ m
}

equipped with the norm

‖u‖Hm(Ω) =

∑
|j|≤m

‖Dj
xu‖2

L2(Ω)


1/2

,

where j = (j1, . . . , jd) is a multi-index, ji ≥ 0, i = 1, d, |j| =
∑d

i=1 ji and Dj
xu =

∂|j|u

∂x
j1
1 ···∂x

jd
d

. For m = 2, with the inner product 〈u, v〉H1(Ω) =
∫

Ω
(uv + ∇u · ∇v)dx, the

space H1(Ω) becomes a Hilbert space.
We denote by H1,0(QT ) the normed space of all functions u(x, t) ∈ L2(QT ) having

first-order derivatives with respect to x in L2(QT ) endowed with the norm

‖u‖H1,0(QT ) =

∑
|j|≤1

‖Dj
xu‖2

L2(QT )


1/2

.
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2.2 Preliminaries and notations

The Sobolev space Hm,1(QT ) is defined as a Banach space of all functions u belong-
ing to L2(QT ) along with their space dependent partial derivatives up to the mth-order
and the first-order time derivative. The norm in this space is defined by

‖u‖Hm,1(QT ) =

∑
|j|≤m

‖Dj
xu‖2

L2(QT ) +

∥∥∥∥∂u∂t
∥∥∥∥2

L2(QT )


1/2

.

The space C([0, T ];L2(Ω)) consists of all functions u(x, t) that are square integrable
with respect to x ∈ Ω for every t ∈ [0, T ], and continuous in t with respect to the norm
of L2(Ω), i.e.,

lim
∆t→0

‖u(·, t+ ∆t)− u(·, t)‖L2(Ω) = 0.

The norm of such space is given by

‖u‖C([0,T ];L2(Ω)) = max
t∈[0,T ]

‖u(·, t)‖L2(Ω).

We denote by V 1,0
2 (QT ) the space H1,0(QT ) ∩ C([0, T ];L2(Ω)), equipped with the

norm
‖u‖V 1,0

2 (QT ) = max
t∈[0,T ]

‖u(·, t)‖L2(Ω) + ‖∇u‖L2(QT ).

The space Cm(Ω) is the set of all continuous functions u(x) in Ω having continuous
derivatives up to order m in Ω, equipped with the norm

‖u‖Cm(Ω) =
∑
|j|≤m

sup
Ω
|Dj

xu|.

The Hölder space C l(Ω), l ∈ (0, 1) is the set of all continuous functions u(x) in Ω

which are Hölder continuous with exponent l, equipped with the norm

‖u‖Cl(Ω) = sup
Ω
|u|+ sup

x,x′∈Ω

|u(x)− u(x′)|
|x− x′|l

.

The Hölder space Cm+l(Ω) is the set of all continuous functions u(x) in Ω satisfying
Dj
xu ∈ C l(Ω) for |j| ≤ m, equipped with the norm

‖u‖Cm+l(Ω) =
∑
|j|≤m

‖Dj
xu‖Cl(Ω).

The Hölder space C l,l/2(QT ) is a Banach space of all functions u(x, t) that are con-
tinuous on QT , which are Hölder continuous on x and t with exponents l and l/2, respec-
tively. The norm on the space is defined by

‖u‖Cl,l/2(QT ) = sup
QT

|u|+ sup
(x,t),(x′,t)∈QT

|u(x, t)− u(x′, t)|
|x− x′|l

+ sup
(x,t),(x,t′)∈QT

|u(x, t)− u(x, t′)|
|t− t′|l/2

.

23
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We denote by Cm+l,(m+l)/2(QT ) the Banach space of functions u(x, t) that are con-
tinuous in QT with Dr

tD
j
xu ∈ C l,l/2(QT ) for 0 ≤ 2r + |j| ≤ m, equipped with the

norm
‖u‖Cm+l,(m+l)/2(QT ) =

∑
2r+|j|≤m

‖Dr
tD

j
xu‖Cl,l/2(QT ).

2.3 Mathematical formulation

In this section, we consider the heat transfer problem in the bounded domain Ω ⊂ Rd,
d = 1, 2, 3 for an isotropic material, from the initial time t = 0 to the given final time
t = T , governed by the following mathematical model:{

∂u
∂t

= ∇ · (k(x)∇u)− q(x)u+ f(x, t), (x, t) ∈ QT ,

k(x)∂u
∂ν

= µ(x, t), (x, t) ∈ ST , u(x, 0) = φ(x), x ∈ Ω,
(2.1)

where k(x) > 0 is the thermal conductivity, u(x, t) is the temperature, q(x) is the reaction
coefficient, f(x, t) is the heat source, µ(x, t) is the heat flux, ν is the outward unit normal
to the boundary ∂Ω and φ(x) is the initial temperature at t = 0. For simplicity, the
heat capacity has been assumed constant and taken to be unity. Note that the Dirichlet,
Robin or mixed boundary conditions can be prescribed instead of the Neumann boundary
condition in (2.1).

The direct problem is concerned with the determination of the temperature field
u(x, t) in QT , when the thermal coefficients k(x), q(x), the heat source f(x, t), the heat
flux µ(x, t) and the initial temperature φ(x) are given. In such case, the problem (2.1)
defines a well-posed process, i.e., the solution u(x, t) to (2.1) is well-defined.

Definition 2.3.1. A function u(x, t) ∈ H1,0(QT ) is called as a weak solution to the
initial-boundary value problem (2.1) if∫

QT

(
−u∂η

∂t
+ k∇u · ∇η + quη

)
dxdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(·, 0)dx, ∀η ∈ H1,1(QT ), η(·, T ) = 0. (2.2)

Note that we define the weak solution (2.2) in H1,0(QT ) to the problem (2.1) rather
than in H1,1(QT ), since not only the result presented in Theorem 2.3.2 can be obtained,
but also we shall carry out the mathematical analysis in H1,0(QT ) in Section 2.4.

The existence and uniqueness of the weak solution u ∈ H1,0(QT ) to the initial-
boundary value problem (2.1) is presented in the following theorem (Tröltzsch (2010),
p.373).
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2.4 Analysis

Theorem 2.3.2. Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary ∂Ω, and
suppose that the functions q ∈ L∞(Ω), f ∈ L2(QT ), µ ∈ L2(ST ), φ ∈ L2(Ω) and
0 < k ∈ L∞(Ω). Then the initial-boundary value problem (2.1) has a unique weak
solution u ∈ H1,0(QT ). Moreover, the solution satisfies the estimate

max
t∈[0,T ]

‖u(·, t)‖L2(Ω) + ‖u‖H1,0(QT ) ≤ c
(
‖f‖L2(QT ) + ‖µ‖L2(ST ) + ‖φ‖L2(Ω)

)
(2.3)

with a positive constant c which is independent of f , µ and φ.

The inverse problem, conversely, is concerned with the estimation of the unknown
space-dependent thermal conductivity k(x) using the measured temperature

u(x, t) = Y (x, t), (x, t) ∈ QT , (2.4)

where Y (x, t) is given exact data. Note that at the steady-state, i.e. when all quanti-
ties in (2.1) and (2.4) are independent of time, the inverse problem was considered both
analytically and numerically by Richter (1981a,b), respectively.

2.4 Analysis

Let u(x, t; k) denote the solution of the initial-boundary value problem (2.1), that is,
the temperature corresponding to conductivity function k(x). The quasi-solution of the
inverse problem (2.1) and (2.4) is obtained by minimizing the least-squares objective
functional given by

J(k) =
1

2
‖u(k)− Y ε‖2

L2(QT ) , (2.5)

where we denote u(k) = u(·, ·; k), and Y ε ∈ L2(QT ) represents the noisy measured
temperature which satisfies

‖Y ε − Y ‖L2(QT ) ≤ ε, (2.6)

and ε ≥ 0 represents the noise level, subject to u ∈ H1,0(QT ) satisfying the (2.2), over
the admissible set A = {k ∈ L∞(Ω) : 0 < κ1 ≤ k(x) ≤ κ2, a.e. x ∈ Ω}, where κ1 and
κ2 are given positive constants.

Penalizing (2.5) with a regularization parameter β > 0 we obtain the Tikhonov regu-
larization, Engl et al. (1996),

J1(k) = J(k) + β‖k − k∗‖2
L2(Ω),

or the total variation (TV) regularization, Chen & Zou (1999),

J2(k) = J(k) + β

∫
Ω

|∇k|dx,
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where k∗ is an a-priori information on k.

Following the approach of Keung & Zou (1998) and using the variational principle in
Zeidler (1995), the existence of a minimizer for the objective functional (2.5), over the
the admissible set A, can be established as follows.

Theorem 2.4.1. A minimizer k∗ = arg infk∈A J(k) exists.

Proof. Since ‖u(x, t; k)‖L2(QT ) is bounded by the a-priori estimate (2.3), it is obvious
that min J(k) is finite over the admissible set A by the definition (2.5). Thus, there exists
a minimizing sequence {kn : n ∈ N} ⊂ A such that

lim
n→∞

J(kn) = inf
k∈A

J(k).

The boundedness of {kn} in L∞(Ω) implies that there exists a subsequence, still denoted
by {kn}, and some k∗ ∈ L∞(Ω) such that {kn} converges weakly1 to k∗. Since the ad-
missible set A is closed and convex, then k∗ ∈ A2. The a-prior estimate (2.3) implies that
the sequence {un := u(x, t; kn)} is bounded in the spaceH1,0(QT ). Thus a subsequence,
still denoted by {un}, may be extracted, and some u∗ ∈ H1,0(QT ) such that un ⇀ u∗ in
H1,0(QT ).

From the definition (2.2) of the weak solution in H1,0(QT ) for the direct problem
(2.1), for any η ∈ H1,1(QT ) and η(·, T ) = 0, we have∫

QT

(
−un∂η

∂t
+ kn∇un · ∇η + qunη

)
dxdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(·, 0)dx.

The weak convergence of un to u∗ in H1,0(QT ) and of kn to k∗ in L∞(Ω) imply that

lim
n→∞

∫
QT

−un∂η
∂t
dxdt =

∫
QT

−u∗∂η
∂t
dxdt, lim

n→∞

∫
QT

qunηdxdt =

∫
QT

qu∗ηdxdt,∫
QT

kn∇un · ∇ηdxdt =

∫
QT

k∗∇un · ∇ηdxdt+

∫
QT

(kn − k∗)∇un · ∇ηdxdt,

lim
n→∞

∫
QT

k∗∇un · ∇ηdxdt =

∫
QT

k∗∇u∗ · ∇ηdxdt.

1A sequence {kn} is weakly convergent to k∗ in L∞(Ω), i.e. kn ⇀ k∗ in L∞(Ω), if

lim
n→∞

∫
Ω

knvdx =

∫
Ω

k∗vdx, ∀v ∈ L1(Ω).

2Theorem. Let A be a closed, convex subset of a normed linear space X, and {kn} ⊂ A a sequence
converging weakly to k∗. Then k∗ ∈ A, see Lax (2002).
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2.4 Analysis

Using (2.3) for un and the Lebesgue dominant convergence theorem1 lead to∫
QT

(kn − k∗)∇un · ∇ηdxdt→ 0, as n→∞.

Hence, we obtain ∫
QT

kn∇un · ∇ηdxdt =

∫
QT

k∗∇u∗ · ∇ηdxdt,

and ∫
QT

(
−u∗∂η

∂t
+ k∗∇u∗ · ∇η + qu∗η

)
dxdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(·, 0)dx.

Thus, u∗ = u(k∗), due to the uniqueness of a weak solution to the direct problem (2.1),
and the lower semi-continuity of norms implies

J(k∗) =
1

2
‖u∗ − Y ε‖2

L2(QT ) ≤
1

2
lim
n→∞

‖un − Y ε‖2
L2(QT )

≤lim infn→∞J(kn) = min
k∈A

J(k),

which indicates that k∗ is a minimizer of the objective functional J(k) over A.

Lemma 2.4.2. The mapping k 7→ u(k) is Lipschitz continuous from A to H1,0(QT ), i.e.,

‖u(k + ∆k)− u(k)‖H1,0(QT ) ≤ c‖∆k‖L∞(Ω) (2.7)

for any k, k + ∆k ∈ A and the corresponding u(k), u(k + ∆k) ∈ H1,0(QT ).

Proof. Denote by ∆u = u(k + ∆k) − u(k) the increment of the temperature u caused
by the increment ∆k of the coefficient k. Then, ∆u and ∆k satisfy the problem

∂(∆u)
∂t

= ∇ · (k∇(∆u))− q∆u+∇ · ((∆k)∇u(k + ∆k)), (x, t) ∈ QT ,

k ∂(∆u)
∂ν

+ ∆k ∂u(k+∆k)
∂ν

= 0, (x, t) ∈ ST , ∆u(x, 0) = 0, x ∈ Ω.
(2.8)

Multiplying (2.8) by ∆u, and integrating it over Ω, we obtain

1

2

∫ T

0

d

dt
‖∆u(·, t)‖2

L2(Ω)dt =−
∫
QT

{
k|∇(∆u)|2 + q(∆u)2

}
dxdt

−
∫
QT

(∆k)∇u(k + ∆k) · ∇(∆u)dxdt, (2.9)

1Theorem (Lebesgue’s Dominated Convergence). Let {fn(x)}∞n=1 be a sequence of Lebesgue inte-
grable functions that converges to a limit function f(x) almost everywhere on a domain of definition I .
Suppose that there exists a Lebesgue integrable function g such that |fn| ≤ g almost everywhere on I and
for all n ∈ N. Then f is Lebesgue integrable on I and limn→∞

∫
I
fn(x)dx =

∫
I
f(x)dx.
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and then 1
2
‖∆u(·, T )‖2

L2(Ω) + c‖∆u‖2
H1,0(QT ) ≤ −

∫
QT

(∆k)∇u(k + ∆k) · ∇(∆u)dxdt,
which implies that

‖∆u‖H1,0(QT ) ≤ c‖∆k‖L∞(Ω)‖u(k + ∆k)‖H1,0(QT ).

Finally, by using (2.3), we can obtain that ‖∆u‖H1,0(QT ) ≤ c‖∆k‖L∞(Ω), which concludes
the proof of the lemma.

Note that the problem (2.8) represents the sensitivity problem subject to the thermal
conductivity k(x), which shall be utilized in the establishment of the CGM in Section 2.5
for the numerical estimation of the unknown thermal conductivity k(x).

Lemma 2.4.3. The mapping k 7→ u(k) is Fréchet differentiable with respect to k, i.e.,
for any ∆k ∈ L∞(Ω) such that k + ∆k ∈ A there exists a bounded linear operator
U : A 7→ H1,0(QT ) such that

lim
‖∆k‖L∞(Ω)→0

‖u(k + ∆k)− u(k)− U∆k‖H1,0(QT )

‖∆k‖L∞(Ω)

= 0. (2.10)

Proof. Consider the problem for the function w ∈ H1,0(QT ) given by∂w
∂t

= ∇ · (k∇w)− qw +∇ · ((∆k)∇u), (x, t) ∈ QT ,

k ∂w
∂ν

+ (∆k)∂u
∂ν

= 0, (x, t) ∈ ST , w(x, 0) = 0, x ∈ Ω.
(2.11)

Similarly as (2.9), we have

1

2

∫ T

0

d

dt
‖w(t)‖2

L2(Ω)dt = −
∫
QT

{
k(∇w)2 + qw2

}
dxdt−

∫
QT

(∆k)∇u · ∇wdxdt.

Thus
‖w‖2

H1,0(QT ) ≤ c‖∆k‖L∞(Ω)‖u‖H1,0(QT )‖w‖H1,0(QT ),

which implies that the mapping ∆k 7→ w from L∞(Ω) to H1,0(QT ) defines a bounded
linear operator U.

Denote v = u(k + ∆k) − u(k) − U∆k = ∆u − w, where ∆u satisfies the problem
(2.8). Then, v satisfies the following problem:∂v

∂t
= ∇ · (k∇v)− qv +∇ · ((∆k)∇(∆u)), (x, t) ∈ QT ,

k ∂v
∂ν

+ ∆k ∂(∆u)
∂ν

= 0, (x, t) ∈ ST , v(x, 0) = 0, x ∈ Ω,

and we have

1

2

∫ T

0

d

dt
‖v(t)‖2

L2(Ω)dt = −
∫
QT

{
k(∇v)2 + qv2

}
dxdt−

∫
QT

(∆k)∇(∆u) · ∇vdxdt,

which implies ‖v‖2
H1,0(QT ) ≤ c‖∆k‖L∞(Ω)‖∆u‖H1,0(QT )‖v‖H1,0(QT ). By (2.7), we obtain

‖v‖H1,0(QT ) ≤ c‖∆k‖2
L∞(Ω), therefore, the lemma is proved.
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In order to establish the CGM to obtain the minimizer of the objective functional
J(k), the adjoint problem is introduced and given by{

∂λ
∂t

= −∇ · (k∇λ) + qλ− (u(x, t)− Y ε(x, t)), (x, t) ∈ QT ,

k ∂λ
∂ν

= 0, (x, t) ∈ ST , λ(x, T ) = 0, x ∈ Ω.
(2.12)

The weak solution λ ∈ H1,0(QT ) of the adjoint problem (2.12) satisfies the variational
equality ∫

QT

(
λ
∂η

∂t
+ k∇λ · ∇η + qλη

)
dxdt =

∫
QT

λ(u− Y ε)dxdt (2.13)

for all η ∈ H1,1(QT ) with η(·, 0) = 0.

Lemma 2.4.4. Under the assumptions of Theorem 2.3.2, there exists a constant c > 0,
which does not depend on the given functions, such that

‖λ‖H1,0(QT ) ≤ c‖u− Y ε‖L2(QT ). (2.14)

Proof. Let τ ∈ [0, T ] and τ := T − t, then the functions λ, η, u, and Y
ε

are given by
λ(τ) = λ(T − τ), η(τ) = η(T − τ), u(τ) = u(T − τ) and Y

ε
(τ) = Y ε(T − τ). Then we

have ∂λ
∂τ

= ∇ · (k∇λ)− qλ+ (u(x, τ)− Y ε
(x, τ)), (x, τ) ∈ QT ,

k ∂λ
∂ν

= 0, (x, τ) ∈ ST , λ(x, 0) = 0, x ∈ Ω.
(2.15)

By Theorem 2.3.2, there exists a unique weak solution λ ∈ H1,0(QT ), and the esti-
mate (2.3) implies

‖λ‖H1,0(QT ) ≤ c‖u− Y ε‖L2(QT ).

Since ‖λ‖H1,0(QT ) = ‖λ‖H1,0(QT ) and ‖u−Y ε‖L2(QT ) = ‖u−Y ε‖L2(QT ), one can conclude
that the estimate (2.14) holds.

Theorem 2.4.5. The objective functional (2.5) is Fréchet differentiable and its Fréchet
derivative J ′(k) is given by

J ′(k) = −
∫ T

0

∇u · ∇λdt, (2.16)

where λ satisfies the adjoint problem (2.12).

Proof. Taking any ∆k ∈ L∞(Ω) such that k+∆k ∈ A, denoting by ∆J = J(k+∆k)−
J(k) the increment of J(k), and by equation (2.5), we obtain

∆J =

∫
QT

(u− Y ε)∆udxdt+
1

2
‖∆u‖2

L2(QT ).
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Using the adjoint problem (2.12), we have

∆J =

∫
QT

{
−∂λ
∂t
−∇ · (a∇λ) + qλ

}
∆udxdt+

1

2
‖∆u‖2

L2(QT ),

and the sensitivity problem (2.8) implies that∫
QT

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
∆udxdt

=−
∫

Ω

∆uλ|T0 dx+

∫
ST

k

{
∂(∆u)

∂ν
λ−∆u

∂λ

∂ν

}
dsdt

+

∫
QT

λ

{
∂(∆u)

∂t
−∇ · (k∇(∆u)) + q∆u

}
dxdt

=

∫
QT

λ∇ · ((∆k)∇u(k + ∆k)dxdt+

∫
ST

k

{
∂(∆u)

∂ν
λ−∆u

∂λ

∂ν

}
dsdt.

Via integration by parts, we have∫
QT

λ∇ · ((∆k)∇u(k + ∆k)dxdt

=−
∫
QT

∆k∇u(k + ∆k) · ∇λdxdt+

∫
ST

λ∆k
∂u(k + ∆k)

∂ν
dsdt

=−
∫
QT

∆k∇u(k + ∆k) · ∇λdxdt−
∫
ST

k
∂(∆u)

∂ν
λdsdt

which leads to∫
QT

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
∆udxdt = −

∫
QT

∆k∇u(k + ∆k) · ∇λdxdt.

Thus, we obtain

∆J = −
∫
QT

∆k∇(u+ ∆u) · ∇λdxdt+
1

2
‖∆u‖2

L2(QT ).

Using (2.7), we obtain that∣∣∣∣∫
QT

∆k∇(∆u) · ∇λdxdt
∣∣∣∣ ≤ ‖∆k‖L∞(Ω)‖∆u‖H1,0(QT )‖λ‖H1,0(QT ) ≤ c‖∆k‖2

L∞(Ω),

which implies

∆J = −
∫
QT

∆k∇u · ∇λdxdt+ o(‖∆k‖L∞(Ω)),

which means the Fréchet derivative is given by (2.16). The theorem is proved.
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2.5 Conjugate gradient method

The following iterative process based on the CGM is applied for the numerical estimation

of the unknown thermal conductivity k(x) in (2.1) by minimizing the objective functional

J(k) given by (2.5):

kn+1(x) = kn(x) + βndn, n = 0, 1, 2, · · · (2.17)

with the search direction given by

dn =

{
−J ′0,
−J ′n + γndn−1, n = 1, 2, · · ·

(2.18)

where the subscripts n denotes the number of iteration, J ′n = J ′(kn), k0 is the initial

guess of the thermal conductivity k, and βn is search step size.

From the Fréchet gradient J ′(k) given by (2.16), the boundary condition in the adjoint

problem (2.12) and the search direction (2.18), it is easy to see that dn|∂Ω = 0 for any

n ≥ 0. Thus, in the iterative process (2.17) the boundary values of the unknown thermal

conductivity k will stay fixed and equal to those of the initial guess k0.

Therefore, if the initial guess is not close to the exact solution on the boundary ∂Ω,

the numerical results will also be far from it. In order to deal with this difficulty, extra

smoothness is imposed on the solution through the introduction of the Sobolev gradient,

as described in the next section.

2.5.1 Sobolev gradient

We introduce the Sobolev gradient denoted by J ′H for the unknown thermal conductivity

k(x), which can be obtained via the inner product inH1(Ω) rather than the gradient (2.16)

which is generated in L2(Ω). The Sobolev gradient J ′H is given by Alifanov (1994); Jin

& Zou (2009); Neuberger (2009),

∆J = 〈J ′H ,∆k〉H1(Ω), (2.19)

where 〈J ′H ,∆k〉H1(Ω) the weighted inner product in H1(Ω) defined by

〈J ′H ,∆k〉H1(Ω) =

∫
Ω

{∆kJ ′H + κ∇J ′H · ∇(∆k)} dx, (2.20)
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where κ is a positive constant representing the amount of regularization in the weighted

inner product. Using Green’s formula, equation (2.19) can be transformed into

∆J =

∫
Ω

{∆kJ ′H + κ∇J ′H · ∇(∆k)} dx

=

∫
Ω

∆k
(
J ′H − κ∇2J ′H

)
dx+

∫
∂Ω

κ∆k∇J ′Hds

= 〈∆k, J ′H − κ∇2J ′H〉L2(Ω) +

∫
∂Ω

κ∆k∇J ′Hds.

Setting∇J ′H |∂Ω = 0, then we have

∆J = 〈∆k, J ′H − κ∇2J ′H〉L2(Ω) = 〈∆k, J ′〉L2(Ω).

Thus, the gradient J ′H can be calculated from the L2-gradient J ′ (2.16) by solving the

elliptic problem 
− κ∇2J ′H + J ′H = J ′, x ∈ Ω,

∂J ′H
∂ν

= 0, x ∈ ∂Ω.

(2.21)

(2.22)

Note that the Sobolev gradient J ′H obtained by solving the elliptic problem (2.21) and

(2.22) is smoother than the conventional gradient J ′ (2.16). If the thermal conductivity

k is known on the boundary ∂Ω, the Neumann boundary condition (2.22) is replaced by

the homogeneous Dirichlet boundary condition

J ′H = 0, x ∈ ∂Ω. (2.23)

2.5.2 CGM

The search direction dn given by (2.18) is defined by the gradient and the conjugate

gradient coefficient γn. Several choices for the conjugate gradient coefficient γn have

been given in Section 1.5. In this chapter and throughout the thesis, the Fletcher-Reeves

formula is utilized for the conjugate gradient coefficient γn given by, see Fletcher &

Reeves (1964),

γn =
‖J ′n‖2

L2(Ω)

‖J ′n−1‖2
L2(Ω)

, n = 1, 2, · · · . (2.24)

The step size βn can be found by minimizing

J(kn+1) =
1

2

∫
QT

(u(kn + βndn)− Y ε)2dxdt.
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This expression implies that the step size βn is implicit in the objective functional J(kn+1).
Such expression can be transformed into an explicit formula by applying the Taylor se-
ries expansion to approximate u(kn + βndn). Thus, setting ∆kn = dn, the function
u(kn + βndn) can be linearised by the Taylor series expansion in the form

u(kn + βndn) ≈ u(kn) + βndn
∂u(kn)

∂kn
≈ u(kn) + βn∆u(kn).

Denoting u(x, t; kn) = un and ∆u(x, t; kn) = ∆un, we obtain

J(kn+1) =
1

2

∫
QT

(un + βn∆un − Y ε)2dxdt.

The partial derivative of the objective functional J(kn+1) with respect to βn is given by

∂J

∂βn
=

∫
QT

(un + βn∆un − Y ε)∆undxdt.

We set ∂J
∂βn

= 0, and obtain the step size βn given by

βn = −
〈un − Y ε,∆un〉L2(QT )

‖∆un‖2
L2(QT )

. (2.25)

The iteration process given by (2.17) and (2.18) does not provide the CGM with sta-
bilization necessary for minimizing the objective functional (2.5) to be classified as well-
posed because of the errors inherent in the temperature measurement (2.4). However,
the method may become well-posed if the discrepancy principle, see Alifanov (1994);
Engl et al. (1996); Hanke (1995); Jarny et al. (1991); Scherzer (1996), is applied to stop
the iterative procedure. According to the discrepancy principle, the iterative procedure is
stopped when the following criterion is satisfied:

J(kn) ≤ ε, (2.26)

where ε is a small positive value, e.g., ε = 10−6, for exact temperature measurement, and

ε =
1

2
‖Y − Y ε‖2

L2(QT ), (2.27)

when the temperature measurements contain noisy data. The exact temperature can be
generated from the analytical solution, if available, or from solving the direct problem
numerically (with care not to commit an inverse crime). In the absence of knowledge of
any upper bound on the amount of noise in (2.27) popular heuristic error-free methods
such as the generalized cross-validation, see Wahba (1990), or the L-curve method, see
Hansen & OLeary (1993), may occasionally work well for a fixed noise level, but they
cannot lead to convergence as the amount of noise tends to zero, see Engl et al. (1989).

The CGM established for reconstructing the unknown space-dependent thermal con-
ductivity is presented as follows:
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S1. Set n = 0 and choose an initial guess k0(x) for the unknown thermal conductivity

k(x).

S2. Solve the direct problem (2.1) numerically by applying the FDM scheme to com-

pute the temperature u(x, t; kn) and the objective functional J(kn) given by (2.5).

S3. If the stopping criterion (2.26) is satisfied, then go to S7. Else go to S4.

S4. Solve the adjoint problem (2.12) to obtain the adjoint function λ(x, t; kn), and the

gradient J ′(kn) given by (2.16). Compute the conjugate gradient coefficient γn

given by (2.24) and the search direction dn given by (2.18).

S5. Solve the sensitivity problem (2.8) to numerically obtain the sensitivity function

∆u(x, t; kn) by taking ∆kn = dn, and compute the search step size βn by (2.25).

S6. Update kn+1 by (2.17), set n = n+ 1 and return to S2.

S7. End.

Note that the Sobolev gradientH1-gradient J ′H(kn) can be applied in S4, and then the

CGM with H1-gradient can be established similarly.

2.6 Numerical results and discussions

In this section, the numerical methods for reconstructing the space-dependent thermal

conductivity k(x) are illustrated, and three numerical experiments based on the CGM

established in the previous section are shown for one- and two-dimensional cases (d =

1, 2). The Simpson’s rule is utilized to deal with all the integrals within the CGM, e.g.,

the objective functional J(k) in (2.5). The accuracy error, as a function of the iteration

number n, for the thermal conductivity k(x) is defined as

E(kn) = ‖kn − k‖L2(Ω), (2.28)

where kn is the numerical solution obtained by the CGM at the iteration number n, and k

is the analytical expression for the thermal conductivity, if available. The noisy tempera-

ture measurement Y ε is numerically simulated by adding to the exact temperature Y an

error term in the following form:

Y ε = Y + σ × random(1), (2.29)
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where σ = p
100
× max(x,t)∈QT |Y (x, t)| is the standard deviation, random(1) generates

random values from a normal distribution with zero mean and unit standard deviation,
and p% represents the percentage of noise.

In the following two sections, the FDM is applied to solve the PDEs of the CGM.
The C-N and ADI methods are used for the one- and two-dimensional case (d = 1, 2),
respectively.

2.6.1 The Crank-Nicolson scheme

The numerical scheme of the one-dimensional (d = 1) initial-boundary value problem
(2.1) can be established using the C-N scheme, see e.g. Richtmyer & Morton (1967);
Smith (1985), which is unconditionally stable and second-order accurate in space x and
first-order accurate in time t. Set the domain Ω = (a0, a1), and QT = (a0, a1) × (0, T ).
For numerical discretization, a rectangular network is constructed by subdividing the
domain QT into I ×M subintervals of the step lengths ∆x and ∆t in space x and time
t directions, where I , M are two positive integers. Taking ∆x = a1−a0

I−1
and ∆t = T

M−1
,

then

xi = a0 + (i− 1)∆x, i = 1, I, tm = (m− 1)∆t, m = 1,M.

The temperature u(x, t) and the coefficients k(x), q(x), f(x, t), µ(x, t), φ(x) at the node
(i,m) are denoted by umi = u(xi, tm), ki = k(xi), qi = q(xi), fmi = f(xi, tm), µmi =

µ(xi, tm) and φi = φ(xi).
Denoting ki±1/2 = 1

2
(ki + ki±1), approximating

∇(k∇u)|i,m =
∂

∂x

(
k
∂u

∂x

)∣∣∣∣
i,m

≈
ki+1/2

umi+1−umi
∆x

− ki−1/2
umi −umi−1

∆x

∆x

=
ki+1/2

(∆x)2
umi+1 −

ki+1/2 + ki−1/2

(∆x)2
umi +

ki−1/2

(∆x)2
umi−1,

and employing the C-N scheme, the heat transfer equation (2.1) can be discretised as

um+1
i − umi

∆t
=

1

2

{
ki+1/2

(∆x)2
umi+1 −

ki+1/2 + ki−1/2

(∆x)2
umi +

ki−1/2

(∆x)2
umi−1 − qiumi + fmi

+
ki+1/2

(∆x)2
um+1
i+1 −

ki+1/2 + ki−1/2

(∆x)2
um+1
i +

ki−1/2

(∆x)2
um+1
i−1 − qium+1

i + fm+1
i

}
which implies that

− Ai−1/2u
m+1
i−1 + (2 +Bi)u

m+1
i − Ai+1/2u

m+1
i+1

=Ai−1/2u
m
i−1 + (2−Bi)u

m
i + Ai+1/2u

m
i+1 + ∆t(fmi + fm+1

i ), (2.30)

35



2. DETERMINATION OF THE SPACE-DEPENDENT THERMAL
CONDUCTIVITY OF AN ISOTROPIC MATERIAL

whereAi = ki
∆t

(∆x)2 andBi = qi∆t+Ai−1/2 +Ai+1/2. The Neumann boundary condition
in (2.1) can be approximated as

um+1
1 =

1

3

(
4um+1

2 − um+1
3 + 2µm+1

1

∆x

k1

)
, (2.31)

um+1
I =

1

3

(
4um+1

I−1 − u
m+1
I−2 + 2µm+1

I

∆x

kI

)
. (2.32)

Thus, the difference equation (2.30) can be reformulated as a (I − 2) × (I − 2) system
of linear equations of the form

Aum+1 = Bum + Fm, m = 1,M − 1, (2.33)

where um =
[
um2 , · · · , umI−1

]T, and it is easy to see that u1 = [φ2, · · · , φI−1]T is known
by the given initial temperature φ(x) in (2.1), the (I − 2)× (I − 2) tridiagonal matrices
A and B given by

A =


2 +B2 − 4

3
A 3

2

1
3
A 3

2
− A 5

2
0 . . . . . . . . . . . . . . . . .

−A 5
2

2 +B3 −A 7
2

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . −AI− 5
2

2 +BI−2 −AI− 3
2

. . . . . . . . . . . . . 0 1
3
AI− 1

2
− AI− 3

2
2 +BI−1 − 4

3
AI− 1

2

 ,

B =


2−B2 A 5

2
0 · · · 0 0 0

A 5
2

2−B3 A 7
2
· · · 0 0 0

...
...

... . . . ...
...

...
0 0 0 · · · AI− 5

2
2−BI−2 AI− 3

2

0 0 0 · · · 0 AI− 3
2

2−BI−1

 ,

and

Fm =


∆t(fm2 + fm+1

2 ) + A 3
2
um1 + 2

3
A 3

2
µm+1

1
∆x
k1

∆t(fm3 + fm+1
3 )

...
∆t(fmI−2 + fm+1

I−2 )
∆t(fmI−1 + fm+1

I−1 ) + AI− 1
2
umI + 2

3
AI− 1

2
µm+1
I

∆x
kI

 .
Note that for the direct problem (2.1) with the Dirichlet boundary condition given by

u(x, t) = µ(x, t), (x, t) ∈ ST , then such boundary condition can be approximated by

um+1
1 = µm+1

1 , um+1
I = µm+1

I . (2.34)

For the Robin convection type boundary condition given by k(x)∂u
∂ν

+ α(x)u(x, t) =

µ(x, t), (x, t) ∈ ST , where α(x) is a given Robin coefficient, the boundary condition can
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be similarly approximated by

um+1
1 =

1

3 + 2∆xα1/k1

(
4um+1

2 − um+1
3 + 2µm+1

1

∆x

k1

)
, (2.35)

um+1
I =

1

3 + 2∆xαI/kI

(
4um+1

I−1 − u
m+1
I−2 + 2µm+1

I

∆x

kI

)
. (2.36)

Thus the C-N scheme for the initial-boundary value problem (2.1) with the Dirichlet or

Robin boundary condition can be established by the above approach and (2.34) or (2.35),

(2.36), respectively.

2.6.2 The alternating direction implicit (ADI) scheme

For the two dimensional case (d = 2), setting the domain Ω = (a0, a1) × (b0, b1) and

QT = (a0, a1)× (b0, b1)× (0, T ), the parabolic equation (2.1) can be written as

∂u

∂t
=

∂

∂x1

(
k(x1, x2)

∂u

∂x1

)
+

∂

∂x2

(
k(x1, x2)

∂u

∂x2

)
− q(x1, x1)u(x1, x2, t) + f(x1, x2, t), (x1, x2, t) ∈ QT . (2.37)

The ADI scheme, see Peaceman & Rachford (1955); Richtmyer & Morton (1967), is

applied to compute the numerical solution for the two dimensional problem, which is un-

conditionally stable and second-order accurate in space (x1, x2) and first-order accurate

time t.

For numerical discretization, a rectangular network is constructed by subdividing the

domain QT into I × J ×M subintervals of the step lengths ∆x1, ∆x2 and ∆t in space

x1, x2 and time t directions, where I , J , M are positive integers.

Taking ∆x1 = a1−a0

I−1
, ∆x2 = b1−b0

J−1
and ∆t = T

M−1
, then (x1)i = a0 + (i − 1)∆x1,

i = 1, I , (x2)j = b0 + (i − 1)∆x2, j = 1, J , and tm = (m − 1)∆t, m = 1,M .

The temperature u(x1, x2, t), the thermal coefficients k(x1, x2), q(x1, x2), the heat source

f(x1, x2, t) and boundary and initial conditions µ(x1, x2, t), φ(x1, x2) at the node (i, j,m)

are denoted by umi,j = u((x1)i, (x2)j, tm), ki,j = k((x1)i, (x2)j), qi,j = q((x1)i, (x2)j),

fmi,j = f((x1)i, (x2)j, tm), µmi,j = µ((x1)i, (x2)j, tm), and φi,j = φ((x1)i, (x2)j).

According to the ADI scheme, the equation (2.37) can be approximated by

u
m+ 1

2
i,j − umi,j

1
2
∆t

=
ki+ 1

2
,j

(∆x1)2
u
m+ 1

2
i+1,j −

ki+ 1
2
,j + ki− 1

2
,j

(∆x1)2
u
m+ 1

2
i,j +

ki− 1
2
,j

(∆x1)2
u
m+ 1

2
i−1,j

+
ki,j+ 1

2

(∆x2)2
umi,j+1 −

ki,j+ 1
2

+ ki,j− 1
2

(∆x2)2
umi,j +

ki,j− 1
2

(∆x2)2
umi,j−1 − qi,jumi,j + fmi,j, (2.38)
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and

um+1
i,j − u

m+ 1
2

i,j

1
2
∆t

=
ki+ 1

2
,j

(∆x1)2
u
m+ 1

2
i+1,j −

ki+ 1
2
,j + ki− 1

2
,j

(∆x1)2
u
m+ 1

2
i,j +

ki− 1
2
,j

(∆x1)2
u
m+ 1

2
i−1,j

+
ki,j+ 1

2

(∆x2)2
um+1
i,j+1 −

ki,j+ 1
2

+ ki,j− 1
2

(∆x2)2
um+1
i,j +

ki,j− 1
2

(∆x2)2
um+1
i,j−1 − qi,ju

m+ 1
2

i,j + f
m+ 1

2
i,j , (2.39)

where ki± 1
2
,j = 1

2
(ki,j + ki±1,j) and ki,j± 1

2
= 1

2
(ki,j + ki,j±1). Denoting

Ai,j = ki,j
∆t

(∆x1)2
, A1i,j = 2 + Ai− 1

2
,j + Ai+ 1

2
,j,

A2i,j = 2− Ai− 1
2
,j − Ai+ 1

2
,j −∆tqi,j, Bi,j = ki,j

∆t

(∆x2)2
,

B1i,j = 2 +Bi,j− 1
2

+Bi,j+ 1
2
, B2i,j = 2−Bi,j− 1

2
−Bi,j+ 1

2
−∆tqi,j,

the expressions (2.38) and (2.39) can be written as

− Ai− 1
2
,ju

m+ 1
2

i−1,j + A1i,ju
m+ 1

2
i,j − Ai+ 1

2
,ju

m+ 1
2

i+1,j

=Bi,j− 1
2
umi,j−1 +B2i,ju

m
i,j +Bi,j+ 1

2
umi,j+1 + ∆tfmi,j, (2.40)

and

−Bi,j− 1
2
um+1
i,j−1 +B1i,ju

m+1
i,j −Bi,j+ 1

2
um+1
i,j+1

=Ai− 1
2
,ju

m+ 1
2

i−1,j + A2i,ju
m+ 1

2
i,j + Ai+ 1

2
,ju

m+ 1
2

i+1,j + ∆tf
m+ 1

2
i,j . (2.41)

The Neumann boundary condition of the problem (2.1) for the two-dimensional case can
be approximated as

um+1
1,j =

1

3

(
4um+1

2,j − um+1
3,j + 2µm+1

1,j

∆x1

k1,j

)
, (2.42)

um+1
I,j =

1

3

(
4um+1

I−1,j − u
m+1
I−2,j + 2µm+1

I,j

∆x1

kI,j

)
, (2.43)

um+1
i,1 =

1

3

(
4um+1

i,2 − um+1
i,3 + 2µm+1

i,1

∆x2

ki,1

)
, (2.44)

um+1
i,J =

1

3

(
4um+1

i,J−1 − u
m+1
i,J−2 + 2µm+1

i,J

∆x2

ki,J

)
. (2.45)

Thus, the difference equations (2.40) and (2.41) can be reformulated in the following
forms:

Aju
m+ 1

2
j = Fm

j , j = 2, J − 1, (2.46)

Biu
m+1
i = F

m+ 1
2

i , i = 2, I − 1, (2.47)
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for m = 1,M − 1, where umi = [umi,2, · · · , umi,J−1]T, umj = [um2,j, · · · , umI−1,j]
T,

Aj =


A12,j − 4

3
A 3

2
,j

1
3
A 3

2
,j − A 5

2
,j 0 . . . . . . . . . . . . . . . . .

−A 5
2
,j A13,j −A 7

2
,j . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . −AI− 5
2
,j A1I−2,j −AI− 3

2
,j

. . . . . . . . . . . . . 0 1
3
AI− 1

2
,j − AI− 3

2
,j A1I−1,j − 4

3
AI− 1

2
,j

 ,

Fm
j =



B2,j− 1
2
um2,j−1 +B22,ju

m
2,j +B2,j+ 1

2
um2,j+1 + 2

3
A 3

2
,jµ

m+1
1,j

∆x1
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m
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m
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2
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m
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2
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3
AI− 1

2
,jµ
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I,j

∆x1

kI,j


,

and

Bi =


B1i,2 − 4

3
Bi, 3

2

1
3
Bi, 3

2
−Bi, 5

2
0 . . . . . . . . . . . . . . . . .

−Bi, 5
2

B1i,3 −Bi, 7
2

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . −Bi,J− 5
2

B1i,J−2 −Bi,J− 3
2

. . . . . . . . . . . . . 0 1
3
Bi,J− 1

2
−Bi,J− 3

2
B1i,J−1 − 4

3
Bi,J− 1

2

 ,

F
m+ 1

2
i =



Ai− 1
2
,2u

m+ 1
2

i−1,2 + A2i,2u
m+ 1

2
i,2 + Ai+ 1

2
,2u

m+ 1
2

i+1,2 + ∆tf
m+ 1

2
i,2

+2
3
Bi, 3

2
µm+1
i,1

∆x2

ki,1

Ai− 1
2
,3u

m+ 1
2

i−1,3 + A2i,3u
m+ 1

2
i,3 + Ai+ 1

2
,3u

m+ 1
2

i+1,3 + ∆tf
m+ 1

2
i,3

...

Ai− 1
2
,J−2u

m+ 1
2

i−1,J−2 + A2i,J−2u
m+ 1

2
i,J−2 + Ai+ 1

2
,J−2u

m+ 1
2

i+1,J−2 + ∆tf
m+ 1

2
i,J−2

Ai− 1
2
,J−1u

m+ 1
2

i−1,J−1 + A2i,J−1u
m+ 1

2
i,J−1 + Ai+ 1

2
,J−1u

m+ 1
2

i+1,J−1 + ∆tf
m+ 1

2
i,J−1

+2
3
Bi,J− 1

2
µm+1
i,J

∆x2

ki,J


.

Note that for the Dirichlet boundary condition u(x1, x2, t) = µ(x1, x2, t), (x1, x2, t) ∈
ST , can be approximated as

um1,j = µm1,j, umI,j = µmI,j, umi,1 = µmi,1, umi,J = µmi,J . (2.48)

Similarly, the Robin boundary condition k(x1, x2)∂u
∂ν

+α(x1, x2)u(x1, x2, t) = µ(x1, x2, t),
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(x1, x2, t) ∈ ST , can be approximated by

um+1
1,j =

1

3 + 2∆x1α1,j/k1,j

(
4um+1

2,j − um+1
3,j + 2µm+1

1,j

∆x1

k1,j

)
, (2.49)

um+1
I,j =

1

3 + 2∆x1αI,j/kI,j

(
4um+1

I−1,j − u
m+1
I−2,j + 2µm+1

I,j

∆x1

kI,j

)
, (2.50)

um+1
i,1 =

1

3 + 2∆x2αi,1/ki,1

(
4um+1

i,2 − um+1
i,3 + 2µm+1

i,1

∆x2

ki,1

)
, (2.51)

um+1
i,J =

1

3 + 2∆x2αi,J/ki,J

(
4um+1

i,J−1 − u
m+1
i,J−2 + 2µm+1

i,J

∆x2

ki,J

)
. (2.52)

Thus, the ADI for the problem (2.1) with with the Dirichlet or Robin boundary condition
can be established by the above approach together with (2.48) or (2.49)–(2.52), respec-
tively.

2.6.3 Example 1

In this section, the CGM proposed in Section 2.5 is used to reconstruct the unknown
thermal conductivity k(x) of the IHTP (2.1) and (2.4).

For the one-dimensional case (d = 1), we take Ω = (0, 1), the final time T = 1, the
initial temperature φ ≡ 0, and

f(x, t) = (1 + x− xe−t)(sin(πx) + (π + 1)x)

+
1− e−t

12
(π2(1 + x) sin(πx)− π cos(πx)− π − 1),

q(x) = 1 + x, µ(0, t) = −2π + 1

12
(1− e−t), µ(1, t) =

1

6
(1− e−t),

Y (x, t) = (1− e−t)(sin(πx) + (π + 1)x), (2.53)

and by the direct calculation for the parabolic problem (2.1), then the analytical solution
of the inverse problem (2.1) and (2.4) is given by

k(x) =
1 + x

12
, u(x, t) = (1− e−t)(sin(πx) + (π + 1)x). (2.54)

Obviously, u(x, t) in (2.54) coincides with Y (x, t) in (2.53), however the latter one may
contain noise as in (2.29) and solving the PDE in (2.1) as

∂Y ε

∂t
(x, t) =∇k(x) · ∇Y ε(x, t) + k(x)∇2Y ε(x, t)

− q(x)Y ε(x, t) + f(x, t), (x, t) ∈ QT

constitutes an ill-posed problem of numerical differentiation.

40



2.6 Numerical results and discussions
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Figure 2.1: (a) The objective functional (2.5) and (b) the error E(kn) (2.28) with p ∈
{0, 2, 4} noise and the initial guess k0 (2.55) using the L2-gradient J ′ (2.16), for Example
1.
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Figure 2.2: (a) The objective functional (2.5) and (b) the error E(kn) (2.28) with p ∈
{0, 2, 4} noise and the initial guess k0 (2.55) using the H1-gradient J ′H (2.21) and (2.23),
for Example 1.

The initial guess is taken as

k0(x) = −1

4
x2 +

1

3
x+

1

12
, (2.55)

which ensures that k0(x) coincides with the exact thermal conductivity (2.54) at the
boundary points x = 0 and x = 1, and the quadratic initial guess (2.55) is also suffi-
ciently far away from the linear exact function (2.54).
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Figure 2.3: The numerical thermal conductivity k(x) using (a) the L2-gradient J ′ (2.16)
and (b) the H1-gradient J ′H (2.21), (2.23) with p ∈ {0, 2, 4} noise and the initial guess k0

(2.55), for Example 1.
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Figure 2.4: (a) The objective functional (2.5) and (b) the error E(kn) (2.28) with p ∈
{0, 2, 4} noise and initial guess k0 (2.56), using the H1-gradient J ′H (2.21) and (2.22), for
Example 1.

We consider this numerical example for estimating the unknown thermal conductivity
k(x) using the CGM, the C-N scheme of Section 2.6.1, and the L2- and H1-gradients.
Figure 2.1(a) shows the monotonic decreasing convergence of the objective functional
(2.5) that is minimized using the L2-gradient J ′ (2.16), as a function of the number of
iteration n, for various amounts of noise p = 0 (no noise) and p ∈ {2, 4} noisy data
generated by (2.29). For noisy data, the intersection of horizontal lines y = ε with the
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graphs of J(kn) yields that the stopping iteration numbersNL for p ∈ {2, 4}, respectively,
according to the discrepancy principle (2.26). These values are equal to the optimal ones
obtained by plotting the error curves E(kn) (2.28) in Figure 2.1(b).

The numerical results using the L2-gradient J ′ (2.16) are illustrated in Figure 2.3(a),
and they are plotted at the stopping iteration numbers NL in Table 2.1 for p ∈ {0, 2, 4}.
From Figure 2.3(a) it can be seen that in the case of no noise (p = 0), the retrieved
solution is in very good agreement with the exact solution (2.54) (the curves are almost
undistinguishable). However, in the case of noisy data, the retrieved numerical solution is
less stable and accurate indicating the limitations of the CGM to deal with large amounts
of noise, such as p ∈ {2, 4}, when inverting for the thermal conductivity coefficient.

L2-gradient (2.16) H1-gradient (2.21), (2.23)
p I M ε NL E(kn) NH E(kn)

0 51 51 1.0E-07 89 5.5E-04 17 1.1E-03
2 51 51 1.4E-03 15 7.5E-03 10 3.0E-03
4 51 51 5.5E-03 8 1.1E-02 4 3.6E-03

Table 2.1: The stopping iteration numbers NL, NH and the errors obtained by L2- and
H1-gradient with p ∈ {0, 2, 4} and the initial guess k0 (2.55), for Example 1.
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Figure 2.5: The numerical thermal conductivity k(x) with p ∈ {0, 2, 4} noise and initial
guess k0 (2.56), using the H1-gradient J ′H (2.21) and (2.22), for Example 1.

In order to improve on the numerical results of Figure 2.3(a) for p ∈ {2, 4} noise, the
Sobolev gradientH1-gradient (2.21) and the Dirichlet boundary condition (2.23) (instead
of the conventional gradient L2-gradient J ′ (2.16)) is employed, since the initial guess k0
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(2.55) provides the exact values of the thermal conductivity at the boundary values x = 0

and x = 1.

Figures 2.2(a) and 2.2(b) show the objective functional (2.5) and the error E(kn)

(2.28) using the H1-gradient (2.21) and (2.23), and by trial and error, κ = 0.1, with

p ∈ {0, 2, 4}. Similar properties of the objective functional and errors as in Figures

2.1(a) and 2.1(b) are present, except for the different stopping iteration numbers. The

numerical solutions in Figure 2.3(b) are stable and more accurate than those in Figure

2.3(a). The comparison of the stopping iteration numbers and errors are shown in Table

2.1, which indicates that the CGM with H1-gradient (2.21) and (2.23) converges faster

and obtain more accurate results than that using the L2-gradient J ′ (2.16).

As there is a restriction on the initial guess k0 (2.55) to ensure k0|∂Ω = k|∂Ω when

using the L2-gradient (2.16), in order to obtain a more robust method to reconstruct the

unknown thermal conductivity, the H1-gradient (2.21) and (2.22) is applied again for the

arbitrary initial guess

k0(x) = 0.2 (2.56)

which does not satisfy that k0|∂Ω = k|∂Ω.

Figures 2.4 and 2.5 illustrate the objective functional (2.5), the errorE(kn) (2.28), and

the numerical solutions of thermal conductivity k(x) using the H1-gradient J ′H (2.21),

(2.22) and κ = 0.1, with p ∈ {0, 2, 4} noise and initial guess k0 (2.56). The stopping

iteration numbers n ∈ {48, 15, 12} in Figure 2.4(a) are obtained according to the discrep-

ancy principle (2.26) with the values ε ∈ {4 × 10−6, 1.4 × 10−3, 5.5 × 10−3}, and the

errors in Figure 2.4(b) at these iteration numbers are {1.9×10−3, 2.7×10−3, 3.5×10−3}
for p ∈ {0, 2, 4}.

The numerical results of the thermal conductivity in Figure 2.5 show that accurate

and stable numerical results are achieved even for the initial guess (2.56). The numerical

results in Figure 2.5 are almost as accurate as those in Figure 2.3(b), though the initial

guess (2.56) is farther away from the exact solution (2.54) than the initial guess (2.55)

which also satisfies k0|∂Ω = k|∂Ω. The comparison of the numerical results in Figures

2.3(a), 2.3(b) and 2.5 confirms the conclusion that the CGM with the Sobolev gradient is a

robust and stable method for retrieving the smooth space-dependent thermal conductivity.

2.6.4 Example 2

We now present a one-dimensional example where the input data for the temperature is

numerically simulated by solving firstly the direct problem (2.1) using the C-N scheme
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with µ(0, t) = −1, µ(1, t) = 1, φ ≡ 0, f ≡ 0, q ≡ 0, and the discontinuous thermal
conductivity

k(x) =

{
2, x ∈

(
1
5
, 4

5

)
,

1, elsewhere.
(2.57)
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Figure 2.6: The numerical thermal conductivity k(x) with p ∈ {0, 2, 4} noise, for Exam-
ple 2.

p I M ε N E(kn)

0 51 51 1.0E-07 18 0.0879
2 51 51 2.2E-05 11 0.1699
4 51 51 8.3E-05 5 0.1778

Table 2.2: The stopping iteration numbers N and the error with p ∈ {0, 2, 4} noise in the
estimation of k(x), for Example 2.

We take the initial guess for the thermal conductivity k(x) as

k0(x) = 1. (2.58)

The numerical solutions for the thermal conductivity k(x) are presented in Figure 2.6
with p ∈ {0, 2, 4} and the initial guess (2.58). The stopping iteration numbers and accu-
racy errors are shown in Table 2.2. From Figure 2.6 it is easy to see that the numerical
results are stable and reasonably accurate bearing in mind the difficult discontinuous ther-
mal conductivity (2.57) that had to be retrieved. There is also little difference between
the numerical results obtained with p = 2 and p = 4 noise.
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2.6.5 Example 3

For the two dimensional case (d = 2), we take Ω = (0, 1)× (0, 1), the final time T = 1,

the reaction coefficient q ≡ 0, the initial temperature φ ≡ 0, and

f(x1, x2, t) =

(
e−t +

π2

6
(1 + x1 + x2)(1− e−t)

)
sin(πx1) sin(πx2)

+ (π + 1)e−t(x1 + x2)− 1− e−t

12
(π sin π(x1 + x2) + 2π + 2),

µ(0, x2, t) = −1 + x2

12
(1− e−t)(π sinπx2 + π + 1),

µ(1, x2, t) =
2 + x2

12
(1− e−t)(−π sinπx2 + π + 1),

µ(x1, 0, t) = −1 + x1

12
(1− e−t)(π sinπx1 + π + 1),

µ(x1, 1, t) =
2 + x1

12
(1− e−t)(−π sinπx1 + π + 1),

and by the direct calculation for the problem (2.1), then the analytical solution of the

inverse problem (2.1) and (2.4) is

k(x1, x2) =
1 + x1 + x2

12
,

u(x1, x2, t) = (1− e−t)(sin(πx1) sin(πx2) + (π + 1)(x1 + x2)). (2.59)

First, the initial guess is taken as

k0(x1, x2) =
1

2
x1x2(1− x1)(1− x2) +

1 + x1 + x2

12
(2.60)

so as to ensure that k0|∂Ω = k|∂Ω. The numerical solutions are computed by using the

ADI scheme in Section 2.6.2 with I = J = 21 and M = 41 to solve the two-dimensional

parabolic differential equations. The standard L2-gradient J ′ (2.16) and the Sobolev H1-

gradient J ′H (2.21), (2.23) shall be both applied in the CGM to obtain the numerical solu-

tion to the thermal conductivity k(x1, x2) with the initial guess (2.60) and p ∈ {0, 2, 4}.
The stopping iteration numbers NL ∈ {17, 4, 2}, NH ∈ {3, 2, 2} presented in Table

2.3 for L2- and H1-gradients, respectively, are generated by the discrepancy principle

(2.26) with the values ε ∈ {1.6 × 10−5, 5.5 × 10−3, 2.1 × 10−2} for p ∈ {0, 2, 4}. The

comparison of the errors in Table 2.3 shows that the results obtained by H1-gradient J ′H
(2.21), (2.23) are more accurate. Meanwhile, by comparing the results in Figures 2.7

and 2.8, it can be seen that the use of the H1-gradient J ′H improves significantly the

smoothness and accuracy of the numerical solutions.
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L2-gradient (2.16) H1-gradient (2.21), (2.23)
p I J M ε NL E(kn) NH E(kn)

0 21 21 41 1.6E-05 17 3.8E-03 3 2.1E-03
2 21 21 41 5.5E-03 4 5.2E-03 2 2.9E-03
4 21 21 41 2.1E-02 2 6.5E-03 2 3.0E-03

Table 2.3: The stopping iteration numbers NL, NH and the errors obtained by L2- and
H1-gradient with p ∈ {0, 2, 4} and the initial guess (2.60) in the estimation of k(x1, x2),
for Example 3.
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Figure 2.7: (a) The exact thermal conductivity k(x1, x2) (2.59), and the estimated thermal
conductivity k(x1, x2) with (b) p = 0, (c) p = 2 and (d) p = 4 noise using the L2-gradient
J ′ (2.16) and the initial guess (2.60), for Example 3.

Like the discussions in Example 1, the initial guess is taken as

k0(x1, x2) =
1

12
, (2.61)
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which is more arbitrary than the initial guess (2.60), and this initial guess is used to
reconstruct the thermal conductivity k(x1, x2) by the H1-gradient (2.21) and (2.22).
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Figure 2.8: (a) The exact thermal conductivity k(x1, x2) (2.59), and the estimated thermal
conductivity k(x1, x2) with (b) p = 0, (c) p = 2 and (d) p = 4 noise using theH1-gradient
J ′H (2.21), (2.23) and the initial guess (2.60), for Example 3.

H1-gradient (2.21),(2.22)
p I J M ε NH E(kn)

0 21 21 41 1.3E-05 18 3.9E-03
2 21 21 41 5.5E-03 9 5.4E-03
4 21 21 41 2.1E-02 7 6.8E-03

Table 2.4: The stopping iteration numbers NH and the error obtained by H1-gradient
(2.21) and (2.22) with p ∈ {0, 2, 4} noise and the initial guess (2.61) in the estimation of
k(x1, x2), for Example 3.

The numerical solutions in Figure 2.9 for the thermal conductivity, and the stopping
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iteration numbers NH , errors in Table 2.4 are obtained by using the H1-gradient (2.21)
and κ = 0.1. The numerical results shown in Figure 2.9 confirm the stability of the
obtained solutions as well as the robustness with respect to the initial guess of the iterative
CGM with Sobolev gradient. It can also be remarked that the numerical results shown in
Figure 2.8 are more accurate than those obtained in Figure 2.9, because the initial guess
(2.60) is closer to the exact solution (2.59) than the initial guess (2.61), and especially
because the initial guess (2.60) and the exact solution (2.59) share the same boundary
values.
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Figure 2.9: (a) The exact thermal conductivity k(x1, x2) (2.59), and the estimated thermal
conductivity k(x1, x2) with (b) p = 0, (c) p = 2 and (d) p = 4 noise using theH1-gradient
J ′H (2.21), (2.22) and the initial guess (2.61), for Example 3.

2.7 Conclusions

The reconstruction of the space-dependent isotropic thermal conductivity in IHTP from
interior temperature observations has been investigated using the CGM. The CGM is
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based on the Fréchet gradient of the least-squares objective functional, minimizing the
gap between the computed and the measured temperature. The use of the Sobolev gra-
dient in the CGM yields smoother and more accurate numerical results. Regularization
has been achieved by stopping the iterations at the level at which the objective functional
becomes just below the noise threshold with which the data is contaminated. The nu-
merical results show that CGM is an accurate, stable and robust regularization method
for reconstructing the space-dependent thermal conductivity from interior temperature
observations.

In the next chapter we extend the analysis for identifying a space-dependent or-
thotropic thermal conductivity from interior temperature observations.
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Chapter 3

Determination of the space-dependent
thermal conductivity of an orthotropic
material

3.1 Introduction

Prior to this study, the identification of piecewise constant or linearly dependent func-

tionally graded anisotropic materials was investigated in Harris et al. (2008); Lesnic

et al. (2007) using the genetic algorithm for the resulting finite dimensional optimiza-

tion problem. However, in many materials, e.g. thermally bonded nonwovens, Demirci

et al. (2012), the principal directions are orthogonal and then the anisotropic structure is

called orthotropic. Such simplified orthotropic structures have important characteristics

and several inverse analyses have been undertaken, Mejias et al. (1999); Sawaf & Özisik

(1995), for their estimation. Further, an experimental device for the simultaneous esti-

mation of the constant thermal conductivity and the specific heat of orthotropic polymer

composite materials was presented in Thomas et al. (2010). However, in all these stud-

ies the material properties were piecewise constant or linearly space-dependent and this

restricts the generality of the materials that can be identified. In reality, many materials

are highly heterogeneous and therefore simplified assumptions such as having uniform

or linearly varying in space properties are not appropriate.

Therefore, in order to meet this generality manifested by inhomogeneous materials,

the more general infinite dimensional problem is considered in which no prior informa-

tion about the functional form of the space-dependent thermal conductivity is assumed.

Furthermore, the CGM is developed for solving iteratively the resulting optimization

problem and obtaining the numerical solution of the unknown thermal conductivity.
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The mathematical formulation of the inverse problem to identify the unknown space-
dependent orthotropic thermal conductivity is given in Section 3.2. Such inverse problem
is analysed in Section 3.3, and the Fréchet gradient together with the adjoint problem are
obtained. The gradient is then applied to establish the CGM in Section 3.4. Section 3.5
presents a numerical example illustrating that stable and accurate numerical results are
obtained. Finally, conclusions are highlighted in Section 3.6.

3.2 Mathematical formulation

As a mathematical model, consider a two-dimensional, transient heat transfer problem in
an orthotropic square plate Ω = (0, 1)× (0, 1), over the time interval from the initial time
t = 0 to a given final time t = T > 0. The governing equation is given by the following
parabolic heat equation:

∂u

∂t
(x1, x2, t) =

∂

∂x1

(
k11(x1, x2)

∂u

∂x1

(x1, x2, t)

)
+

∂

∂x2

(
k22(x1, x2)

∂u

∂x2

(x1, x2, t)

)
− q(x1, x2)u(x1, x2, t) + f(x1, x2, t), (x1, x2, t) ∈ QT = Ω× (0, T ),

(3.1)

where u(x1, x2, t) is the temperature, k11(x1, x2) and k22(x1, x2) are the positive space-

dependent components of the orthotropic thermal conductivity tensor k =

[
k11 0
0 k22

]
,

q(x1, x2) is the reaction coefficient, f(x1, x2, t) is the heat source term and, for simplicity,
the heat capacity has been assumed constant and taken to be unity. For the boundary
condition we assume that this is of Neumann type

−k11(0, x2) ∂u
∂x1

(0, x2, t) = µ1(x2, t), (x2, t) ∈ (0, 1)× (0, T ),

k11(1, x2) ∂u
∂x1

(1, x2, t) = µ2(x2, t), (x2, t) ∈ (0, 1)× (0, T ),

−k22(x1, 0) ∂u
∂x2

(x1, 0, t) = µ3(x1, t), (x1, t) ∈ (0, 1)× (0, T ),

k22(x1, 1) ∂u
∂x2

(x1, 1, t) = µ4(x1, t), (x1, t) ∈ (0, 1)× (0, T ),

(3.2)

where µi|i=1,4 are the given heat fluxes. Dirichlet, mixed or Robin boundary conditions
can also be considered. The initial condition is

u(x1, x2, 0) = φ(x1, x2), (x1, x2) ∈ Ω, (3.3)

where φ(x1, x2) is the given initial temperature. The direct problem is concerned with the
determination of the temperature u(x1, x2, t) satisfying the initial-boundary value prob-
lem (3.1)–(3.3), when q(x1, x2), f(x1, x2, t) and the thermal conductivity components
k11(x1, x2) and k22(x1, x2) are known.
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Definition 3.2.1. A function u ∈ H1,0(QT ) is called as a weak solution to the initial-
boundary value problem (3.1)–(3.3) if∫

QT

(
−u∂η

∂t
+ k11

∂u

∂x1

∂η

∂x1

+ k22
∂u

∂x2

∂η

∂x2

+ quη

)
dx1dx2dt

=

∫ T

0

∫ 1

0

(µ1 + µ2)ηdx2dt+

∫ T

0

∫ 1

0

(µ3 + µ4)ηdx1dt

+

∫
QT

fηdx1dx2dt+

∫
Ω

φη(·, 0)dx1dx2, ∀η ∈ H1,1(QT ), η(·, T ) = 0. (3.4)

The existence and uniqueness of the weak solution u ∈ H1,0(QT ) to the initial-
boundary value problem (3.1)–(3.3) is presented as follows (see Tröltzsch (2010), p.373):

Theorem 3.2.2. Let Ω ⊂ R2 be a bounded Lipschitz domain, and suppose that the func-
tions q ∈ L∞(Ω), f ∈ L2(QT ), µi ∈ L2((0, 1) × (0, T )), i = 1, 4, φ ∈ L2(Ω), and
0 < υ ≤ k11, k22 ∈ L∞(Ω), where υ is a given positive constant. Then the initial-
boundary value problem (3.1)–(3.3) has a unique weak solution u ∈ H1,0(QT ). More-
over, the solution satisfies the estimate

max
t∈[0,T ]

‖u(·, t)‖L2(Ω) + ‖u‖H1,0(QT )

≤c

(
‖f‖L2(QT ) +

4∑
i=1

‖µi‖L2((0,1)×(0,T )) + ‖φ‖L2(Ω)

)
(3.5)

with a positive constant c which is independent of f , µi|i=1,4, and φ.

The inverse problem, on the other hand, is to simultaneously determine the unknown
thermal conductivity components k11(x1, x2) and k22(x1, x2) satisfying (3.1)–(3.3) and
the additional interior temperature measurement

u(x1, x2, t) = Y (x1, x2, t), (x1, x2, t) ∈ QT , (3.6)

where Y (x1, x2, t) is the given exact data.

3.3 Analysis

Let u(x1, x2, t; k11, k22) denote the solution of the initial-boundary value problem (3.1)–
(3.3), that is, the temperature corresponding to a particular value of the pair (k11, k22).
The quasi-solution to the inverse problem (3.1)–(3.3), (3.6) is obtained by minimizing
the following least-squares objective functional:

J(k11, k22) =
1

2
‖u(k11, k22)− Y ε‖2

L2(QT ) , (3.7)
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where Y ε ∈ L2(QT ) is the noisy measured temperature satisfying

‖Y − Y ε‖L2(QT ) ≤ ε,

and ε ≥ 0 represents the noise level, subject to u ∈ H1,0(QT ) which is the weak so-
lution to the initial-boundary value direct problem (3.1)–(3.3) satisfying (3.4), over the
admissible set

A = {(k11, k22) ∈ L∞(Ω)× L∞(Ω) : 0 < κ1 ≤ k11 and k22 ≤ κ2} , (3.8)

where κ1 and κ2 are two given positive constants.

Theorem 3.3.1. There exists at least one minimizer to the optimization problem (3.7).

Theorem 3.3.1 can be proved using the methods in the proof of Theorem 2.4.1.

Lemma 3.3.2. The mapping (k11, k22) 7→ u(k11, k22) is Lipschitz continuous from A to
H1,0(QT ), i.e.,

‖u(k11 + ∆k11, k22)− u(k11, k22)‖H1,0(QT ) ≤ c‖∆k11‖L∞(Ω), (3.9)

‖u(k11, k22 + ∆k22)− u(k11, k22)‖H1,0(QT ) ≤ c‖∆k22‖L∞(Ω), (3.10)

for any (k11, k22), (k11 + ∆k11, k22 + ∆k22) ∈ A and the corresponding temperature
u(k11, k22), u(k11 + ∆k11, k22), u(k11, k22 + ∆k22) ∈ H1,0(QT ).

Proof. Denote ∆u11 = u(k11+∆k11, k22)−u(k11, k22) and ∆u22 = u(k11, k22+∆k22)−
u(k11, k22) be the increments of the temperature subject to increments in k11 and k22,
respectively. According to the initial-boundary value problem (3.1)–(3.3), ∆u11 satisfies
the following problem:

∂(∆u11)
∂t

= ∂
∂x1

(
k11

∂(∆u11)
∂x1

)
+ ∂

∂x2

(
k22

∂(∆u11)
∂x2

)
+ ∂
∂x1

(
∆k11

∂u
∂x1

)
− q∆u11, (x1, x2, t) ∈ QT ,

−k11
∂(∆u11)
∂x1

∣∣∣
x1=0

= ∆k11
∂u
∂x1

∣∣∣
x1=0

, (x2, t) ∈ (0, 1)× (0, T ),

k11
∂(∆u11)
∂x1

∣∣∣
x1=1

= − ∆k11
∂u
∂x1

∣∣∣
x1=1

, (x2, t) ∈ (0, 1)× (0, T ),

−k22
∂(∆u22)
∂x2

∣∣∣
x2=0

= k22
∂(∆u22)
∂x2

∣∣∣
x2=1

= 0, (x1, t) ∈ (0, 1)× (0, T ),

∆u11(x1, x2, 0) = 0, (x1, x2) ∈ Ω.

(3.11)

Multiplying ∆u11 for (3.11), and integrating it over QT , then we get∫
QT

∂

∂x1

(
k11

∂(∆u11)

∂x1

)
∆u11dx1dx2dt =

∫ T

0

∫ 1

0

k11∆u11
∂(∆u11)

∂x1

∣∣∣∣1
x1=0

dx2dt

−
∫
QT

k11

(
∂(∆u11)

∂x1

)2

dx1dx2dt,
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∫
QT

∂

∂x2

(
k22

∂(∆u11)

∂x2

)
∆u11dx1dx2dt =

∫ T

0

∫ 1

0

k22∆u11
∂(∆u11)

∂x2

∣∣∣∣1
x2=0

dx1dt

−
∫
QT

k22

(
∂(∆u11)

∂x2

)2

dx1dx2dt,

and ∫
QT

∂

∂x1

(
∆k11

∂u

∂x1

)
∆u11dx1dx2dt =

∫ T

0

∫ 1

0

∆k11∆u11
∂u

∂x1

∣∣∣∣1
x=0

dx2dt

−
∫
QT

∆k11
∂u

∂x1

∂(∆u11)

∂x1

dx1dx2dt.

Using the boundary conditions in (3.11), we obtain

1

2

∫ T

0

d

dt
‖∆u11(·, t)‖2

L2(Ω)dt = −
∫
QT

∆k11
∂u

∂x1

∂(∆u11)

∂x1

dx1dx2dt

−
∫
QT

{
k11

(
∂(∆u11)

∂x1

)2

+ k22

(
∂(∆u11)

∂x2

)2

+ q(∆u11)2

}
dx1dx2dt (3.12)

which implies that ‖∆u11‖2
H1,0(QT ) ≤ c‖∆k11‖L∞(Ω)

∥∥∥ ∂u
∂x1

∥∥∥
L2(QT )

∥∥∥∂(∆u11)
∂x1

∥∥∥
L2(QT )

. Using

the estimate (3.5) of Theorem 3.2.2, we obtain ‖∆u11‖H1,0(QT ) ≤ c‖∆k11‖L∞(Ω).

Similarly, ∆u22 satisfies the following problem:

∂(∆u22)
∂t

= ∂
∂x1

(
k11

∂(∆u22)
∂x1

)
+ ∂

∂x2

(
k22

∂(∆u22)
∂x2

)
+ ∂
∂x2

(
∆k22

∂u
∂x2

)
− q∆u22, (x1, x2, t) ∈ QT ,

−k11
∂(∆u22)
∂x1

∣∣∣
x1=0

= k11
∂(∆u22)
∂x1

∣∣∣
x1=1

= 0, (x2, t) ∈ (0, 1)× (0, T ),

−k22
∂(∆u22)
∂x2

∣∣∣
x2=0

= ∆k22
∂u
∂x2

∣∣∣
x2=0

, (x1, t) ∈ (0, 1)× (0, T ),

k22
∂(∆u22)
∂x2

∣∣∣
x2=1

= −∆k22
∂u
∂x2

∣∣∣
x2=1

, (x1, t) ∈ (0, 1)× (0, T ),

∆u22(x1, x2, 0) = 0, (x1, x2) ∈ Ω,

(3.13)

and we can obtain ‖∆u22‖H1,0(QT ) ≤ c‖∆k22‖L∞(Ω). The lemma is proved.

Note that the problems (3.11) and (3.13) are the sensitivity problems subject to the

thermal conductivity components k11 and k22, respectively, which shall be utilized in the

establishment of the CGM later for the numerical reconstruction of the unknown thermal

conductivity components k11 and k22.

Lemma 3.3.3. The mapping (k11, k22) 7→ u(k11, k22) is Fréchet differentiable, i.e., for
any ∆k11,∆k22 ∈ L∞(Ω) such that k11 + ∆k11, k22 + ∆k22 ∈ A there exist two bounded
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linear operators U11,U22 : A 7→ H1,0(QT ) such that

lim
‖∆k11‖L∞(Ω)→0

‖u(k11 + ∆k11, k22)− u(k11, k22)− U11∆k11‖H1,0(QT )

‖∆k11‖L∞(Ω)

= 0, (3.14)

lim
‖∆k22‖L∞(Ω)→0

‖u(k11, k22 + ∆k22)− u(k11, k22)− U22∆k22‖H1,0(QT )

‖∆k22‖L∞(Ω)

= 0. (3.15)

Proof. Consider the problem

∂w
∂t

= ∂
∂x1

(
k11

∂w
∂x1

)
+ ∂

∂x2

(
k22

∂w
∂x2

)
− qw + ∂

∂x1

(
∆k11

∂u
∂x1

)
, (x1, x2, t) ∈ QT ,

−k11
∂w
∂x1

∣∣∣
x1=0

= ∆k11
∂u
∂x1

∣∣∣
x1=0

, (x2, t) ∈ (0, 1)× (0, T ),

k11
∂w
∂x1

∣∣∣
x1=1

= −∆k11
∂u
∂x1

∣∣∣
x1=1

, (x2, t) ∈ (0, 1)× (0, T ),

−k22
∂w
∂x2

∣∣∣
x2=0

= k22
∂w
∂x2

∣∣∣
x2=1

= 0, (x1, t) ∈ (0, 1)× (0, T ),

w(x1, x2, 0) = 0, (x1, x2) ∈ Ω.

(3.16)

where ∆k11 ∈ L∞(Ω) is such that k11 + ∆k11 ∈ A. Similar as in (3.12), we have

1

2

∫ T

0

d

dt
‖w(·, t)‖2

L2(Ω)dt =−
∫
QT

{
k11

(
∂w

∂x1

)2

+ k22

(
∂w

∂x2

)2

+ qw2

}
dx1dx2dt

−
∫
QT

∆k11
∂u

∂x1

∂w

∂x1

dx1dx2dt,

which implies that ‖w‖2
H1,0(QT ) ≤ c‖∆k11‖L∞(Ω)

∥∥∥ ∂u
∂x1

∥∥∥
L2(QT )

∥∥∥ ∂w∂x1

∥∥∥
L2(QT )

. Thus, the

mapping ∆k11 7→ w from L∞(Ω) to H1,0(QT ) defines a bounded linear operator U11.
Denote v := u(k11 + ∆k11, k22)− u(k11, k22)−U11∆k11 = ∆u11−U11∆k11, where

∆u11 satisfies the problem (3.11). Thus, the function v satisfies the problem given by

∂v
∂t

= ∂
∂x1

(
k11

∂v
∂x1

)
+ ∂

∂x2

(
k22

∂v
∂x2

)
− qv + ∂

∂x1

(
∆k11

∂(∆u11)
∂x1

)
, (x1, x2, t) ∈ QT ,

−k11
∂v
∂x1

∣∣∣
x1=0

= ∆k11
∂(∆u11)
∂x1

∣∣∣
x1=0

, (x2, t) ∈ (0, 1)× (0, T ),

k11
∂v
∂x1

∣∣∣
x1=1

= −∆k11
∂(∆u11)
∂x1

∣∣∣
x1=1

, (x2, t) ∈ (0, 1)× (0, T ),

−k22
∂v
∂x2

∣∣∣
x2=0

= k22
∂v
∂x2

∣∣∣
x2=1

= 0, (x1, t) ∈ (0, 1)× (0, T ),

v(x1, x2, 0) = 0, (x1, x2) ∈ Ω.

Then we have

1

2

∫ T

0

d

dt
‖v(·, t)‖2

L2(Ω)dt =−
∫
QT

{
k11

(
∂v

∂x1

)2

+ k22

(
∂v

∂x2

)2

+ qv2

}
dx1dx2dt

−
∫
QT

∆k11
∂(∆u11)

∂x1

∂v

∂x1

dx1dx2dt,
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which implies that ‖v‖2
H1,0(QT ) ≤ c‖∆k11‖L∞(Ω)

∥∥∥∂(∆u11)
∂x1

∥∥∥
L2(QT )

∥∥∥ ∂v
∂x1

∥∥∥
L2(QT )

. Using

(3.9) of Lemma 3.3.2, we obtain ‖v‖H1,0(QT ) ≤ c‖∆k11‖2
L∞(Ω), which means (3.14)

holds, and (3.15) can be obtained by the same approach. The lemma is proved.

To find the minimizer of the objective functional J(k11, k22) (3.7), the CGM, where
the Fréchet gradient is required, shall be applied. Consequently, we introduce the adjoint
problem given by:

∂λ
∂t

= − ∂
∂x1

(
k11

∂λ
∂x1

)
− ∂

∂x2

(
k22

∂λ
∂x2

)
+ qλ− (u− Y ε), (x1, x2, t) ∈ QT ,

−k11
∂λ
∂x1

∣∣∣
x1=0

= k11
∂λ
∂x1

∣∣∣
x1=1

= 0, (x2, t) ∈ (0, 1)× (0, T ),

−k22
∂λ
∂x2

∣∣∣
x2=0

= k22
∂λ
∂x2

∣∣∣
x2=1

= 0, (x1, t) ∈ (0, 1)× (0, T ),

λ(x1, x2, T ) = 0, (x1, x2) ∈ Ω.

(3.17)

The weak solution λ ∈ H1,0(QT ) of the adjoint problem (3.17) satisfies the variational
equality∫
QT

(
λ
∂η

∂t
+ k11

∂λ

∂x1

∂η

∂x1

+ k22
∂λ

∂x2

∂λ

∂x2

+ qλη

)
dx1dx2dt =

∫
QT

(u− Y ε)ηdx1dx2dt,

for any η ∈ H1,1(QT ) with η(·, 0) = 0, and there exists a positive constant c, which does
not depend on the given functions, such that

‖λ‖H1,0(QT ) ≤ c‖u− Y ε‖L2(QT ). (3.18)

Theorem 3.3.4. The objective functional J(k11, k22) given by (3.7) is Fréchet differen-
tiable, and the gradients J ′11(k11, k22) and J ′22(k11, k22) with respect to k11 and k22 are
given by

J ′11(k11, k22) = −
∫ T

0

∂u

∂x1

∂λ

∂x1

dt, (3.19)

J ′22(k11, k22) = −
∫ T

0

∂u

∂x2

∂λ

∂x2

dt. (3.20)

Proof. Taking ∆k11 ∈ L∞(Ω) such that k11 + ∆k11 ∈ A, denote ∆J11 = J(k11 +

∆k11, k22)− J(k11, k22), and by (3.7), we obtain

∆J11 =

∫
QT

(u− Y ε)∆u11dx1dx2dt+
1

2
‖∆u11‖2

L2(QT ).

Using the adjoint problem (3.17), we have

∆J11 =

∫
QT

{
−∂λ
∂t
− ∂

∂x1

(
k11

∂λ

∂x1

)
− ∂

∂x2

(
k22

∂λ

∂x2

)
+ qλ

}
∆u11dx1dx2dt

+
1

2
‖∆u11‖2

L2(QT ),
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and the sensitivity problem for ∆u11 (3.11) implies∫
QT

{
−∂λ
∂t
− ∂

∂x1

(
k11

∂λ

∂x1

)
− ∂

∂x2

(
k22

∂λ

∂x2

)
+ qλ

}
∆u11dx1dx2dt

=

∫
QT

λ

{
∂(∆u11)

∂t
− ∂

∂x1

(
k11

∂(∆u11)

∂x1

)
− ∂

∂x2

(
k22

∂(∆u11)

∂x2

)}
dx1dx2dt

+

∫
QT

λq∆u11dx1dx2dt+

∫ T

0

∫ 1

0

λk11
∂(∆u11)

∂x1

∣∣∣∣1
x1=0

dx2dt−
∫

Ω

∆u11λ|Tt=0dx1dx2

=

∫
QT

λ
∂

∂x1

(
∆k11

∂u

∂x1

)
dx1dx2dt+

∫ T

0

∫ 1

0

λk11
∂(∆u11)

∂x1

∣∣∣∣1
x1=0

dx2dt.

Via integration by parts, we get∫
QT

λ
∂

∂x1

(
∆k11

∂u

∂x1

)
dx1dx2dt =

∫ T

0

∫ 1

0

λ∆k11
∂u

∂x1

∣∣∣∣1
x1=0

dx2dt

−
∫
QT

∆k11
∂u

∂x1

∂λ

∂x1

dx1dx2dt,

and then ∫
QT

{
−∂λ
∂t
− ∂

∂x1

(
k11

∂λ

∂x1

)
− ∂

∂x2

(
k22

∂λ

∂x2

)
+ qλ

}
∆u11dx1dx2dt

=−
∫
QT

∆k11
∂u

∂x1

∂λ

∂x1

dx1dx2dt.

Thus, we obtain ∆J11 = −
∫
QT

∆k11
∂u
∂x1

∂λ
∂x1
dx1dx2dt+

1
2
‖∆u11‖2

L2(QT ), and (3.9) implies

∆J11 = −
∫
QT

∆k11
∂u

∂x1

∂λ

∂x1

dx1dx2dt+ o(‖∆k11‖L∞(Ω)).

By the same method, we have

∆J22 = −
∫
QT

∆k22
∂u

∂x2

∂λ

∂x2

dx1dx2dt+ o(‖∆k22‖L∞(Ω)).

Therefore, the Fréchet gradients J ′11 and J ′22 are given by (3.19) and (3.20), which con-
cludes the theorem.

3.4 Conjugate gradient method

The following iterative process based on the CGM is now applied for the simultaneous
reconstruction of the two unknown space-dependent thermal conductivity components
k11(x1, x2) and k22(x1, x2) by minimizing the objective functional J(k11, k22) in (3.7):

kn+1
11 = kn11 + βn11d

n
11, kn+1

22 = kn22 + βn22d
n
22, n = 0, 1, 2, · · · (3.21)
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with the search directions dn11, d
n
22 given by

dn11 =

{
−J ′011,

−J ′n11 + γn11d
n−1
11 ,

dn22 =

{
−J ′022,

−J ′n22 + γn22d
n−1
22 , n = 1, 2, · · ·

(3.22)

where n is the subscript which indicates the number of iterations, J ′n11 = J ′11(kn11, k
n
22),

J ′n22 = J ′22(kn11, k
n
22), k0

11 and k0
22 are the initial guesses for the two unknown coefficients

in the inverse problem (3.1)–(3.6), βn11 and βn22 are the search step sizes in passing from it-
eration n to the next iteration n+1, and γn11 and γn22 are the conjugate gradient parameters,
which are given by the Fletcher-Reeves formula, Fletcher & Reeves (1964),

γn11 =
‖J ′n11‖2

L2(Ω)

‖J ′n−1
11 ‖2

L2(Ω)

, γn22 =
‖J ′n22‖2

L2(Ω)

‖J ′n−1
22 ‖2

L2(Ω)

, n = 1, 2, · · · (3.23)

The search step sizes βn11 and βn22 are found by minimizing

J(kn+1
11 , kn+1

22 ) =
1

2

∫
QT

(u(kn11 + βn11d
n
11, k

n
22 + βn22d

n
22)− Y ε)2dx1dx2dt.

This formula shows that the step sizes βn11 and βn22 are implicit in the objective func-
tional J(kn+1

11 , kn+1
22 ). Such expression can be transformed into an explicit formula with

step sizes βn11 and βn22 by applying the Taylor series expansion to approximate u(kn11 +

βn11d
n
11, k

n
22 + βn22d

n
22). Denoting u(x1, x2, t; k

n
11, k

n
22) = un, ∆u11(x1, x2, t; k

n
11, k

n
22) =

∆un11 and ∆u22(x1, x2, t; k
n
11, k

n
22) = ∆un22, and setting ∆kn11 = dn11 and ∆kn22 = dn22, the

temperature u(kn11 +βn11d
n
11, k

n
22 +βn22d

n
22) can be linearised by the Taylor series expansion

in the form

u(kn11 + βn11d
n
11, k

n
22 + βn22d

n
22) ≈ un + βn11d

n
11

∂un

∂kn11

+ βn22d
n
22

∂un

∂kn22

≈ un + βn11∆un11 + βn22∆un22,

where ∆un11 and ∆un22 are the solutions of the sensitivity problems (3.11) and (3.13).
Then we obtain

J(kn+1
11 , kn+1

22 ) =
1

2

∫
QT

(un + βn11∆un11 + βn22∆un22 − Y ε)2dx1dx2dt.

The partial derivatives of the objective functional J(kn+1
11 , kn+1

22 ) with respect to βn11 and
βn22 are give by

∂J

∂βn11

=

∫
QT

(un + βn11∆un11 + βn22∆un22 − Y ε)∆un11dx1dx2dt = C1 + C2β
n
11 + C3β

n
22,

∂J

∂βn22

=

∫
QT

(un + βn11∆un11 + βn22∆un22 − Y ε)∆un22dx1dx2dt = C4 + C3β
n
11 + C5β

n
22,
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where

C1 =

∫
QT

(un − Y ε)∆un11dx1dx2dt, C2 = ‖∆un11‖2
L2(QT ), C5 = ‖∆un22‖2

L2(QT ),

C3 =

∫
QT

∆un11∆un22dx1dx2dt, C4 =

∫
QT

(un − Y ε)∆un22dx1dx2dt.

Setting ∂J
∂βn11

= ∂J
∂βn22

= 0, the search step sizes βn11 and βn22 are given by

βn11 =
C1C5 − C3C4

C2
3 − C2C5

, βn22 =
C2C4 − C1C3

C2
3 − C2C5

, n = 0, 1, 2, · · · . (3.24)

The iteration process given by (3.21) and (3.22) does not provide the CGM with sta-

bilization necessary for the minimizing of the objective functional J(k11, k22) in (3.7) to

be classified as well-posed because of the errors inherently present in the measured tem-

perature (3.6). However, the method may become well-posed if the discrepancy principle

is applied to stop the iterative procedure. According to the discrepancy principle, the

iterative procedure is stopped when the following criterion is satisfied

J(kn11, k
n
22) ≤ ε, (3.25)

where ε is a small positive value, e.g., ε = 10−5, for exact temperature measurement,

or ε = 1
2
‖Y ε − Y ‖2

L2(QT ), when the temperature measurements contain noisy data. The

exact temperature data can be generated from the analytical solution, if available, or from

solving the direct problem numerically (with care not to commit an inverse crime).

The CGM established for numerically reconstructing the unknown space-dependent

thermal conductivity components k11(x1, x2) and k22(x1, x2) of an orthotropic material

is presented as follows:

S1. Set n = 0 and choose initial guesses k0
11(x1, x2) and k0

22(x1, x2) for the unknown

thermal conductivity components k11(x1, x2) and k22(x1, x2).

S2. Solve the direct problem (3.1)–(3.3) numerically by applying the ADI scheme in-

troduced in Section 2.6.2 to compute the temperature u(x1, x2, t; k
n
11, k

n
22), and the

objective functional J(kn11, k
n
22) (3.7).

S3. If the stopping criterion (3.25) is satisfied, then go to S7. Else go to S4.

S4. Solve the adjoint problem (3.17) to obtain λ(x1, x2, t; k
n
11, k

n
22), and the gradients

J ′n11 (3.19) and J ′n22 (3.20). Compute the conjugate gradient parameters γn11 and γn22

(3.23) and the search directions dn11 and dn22 (3.22).
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S5. Solve the sensitivity problems (3.11) and (3.13) to gain the sensitivity functions

∆u11(x1, x2, t; k
n
11, k

n
22) and ∆u22(x1, x2, t; k

n
11, k

n
22) by taking ∆kn11 = dn11 and

∆kn22 = dn22, and compute the search step sizes βn11 and βn22 by (3.24).

S6. Update kn+1
11 and kn+1

22 by (3.21), set n = n+ 1 and return to S2.

S7. End.

3.5 Numerical results and discussions

In this section, the numerical results for reconstructing the space-dependent thermal con-

ductivity components k11(x1, x2) and k22(x1, x2) are illustrated. The accuracy errors for

the thermal conductivity components k11(x1, x2) and k22(x1, x2) are defined as functions

of the iteration number n, and are given by

E1(kn11) = ‖k11 − kn11‖L2(Ω), (3.26)

E2(kn22) = ‖k22 − kn22‖L2(Ω), (3.27)

where kn11 and kn22 are the numerical solutions at the iteration number n, and k11 and k22

are the analytical expressions for the thermal conductivity components, if available. The

temperature measurement Y ε containing random errors is generated by (2.29).

Example. The CGM is used to reconstruct simultaneously the unknown thermal con-

ductivity components k11(x1, x2) and k22(x1, x2) of the two-dimensional inverse problem

(3.1)–(3.3), (3.6) for an orthotropic material.

We take the final time T = 1, the coefficient q ≡ 0, and

φ(x1, x2) = sin(πx1) sin(πx2) + (π + 1)(x1 + x2) + 1,

f(x1, x2, t) = −e−t(sin(πx1) sin(πx2) + (π + 1)(x1 + x2) + 1)

− e−t

12
(π sinπ(x1 + x2) + 2π + 2) +

π2e−t

12
(2 + 1.5x1 + 2x2) sin(πx1) sin(πx2),

µ1(x2, t) = −1 + x2

12
(π sin(πx2) + π + 1)e−t,

µ2(x2, t) =
2 + x2

12
(−π sin(πx2) + π + 1)e−t,

µ3(x1, t) = −1 + 0.5x1

12
(π sin(πx1) + π + 1)e−t,

µ3(x1, t) =
2 + 0.5x1

12
(−π sin(πx1) + π + 1)e−t.
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By direct calculation, the analytical solution of the inverse problem (3.1)–(3.3), (3.6) is

k11(x1, x2) =
1 + x1 + x2

12
, (3.28)

k22(x1, x2) =
1 + 0.5x1 + x2

12
, (3.29)

u(x1, x2, t) = e−t (sin(πx1) sin(πx2) + (π + 1)(x1 + x2) + 1) . (3.30)
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Figure 3.1: The objective functional J(k11, k22) in (3.7) with p ∈ {0, 1, 2} noise using
the L2-gradients J ′11 in (3.19) and J ′22 in (3.20).
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Figure 3.2: The errors (a) E1(kn11) (3.26) and (b) E2(kn22) (3.27) for k11 and k22 with
p ∈ {0, 1, 2} noise, using the L2-gradients J ′11 (3.19) and J ′22 (3.20).
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3.5 Numerical results and discussions

We take the initial guesses for k11(x1, x2) and k22(x1, x2) as

k0
11(x1, x2) =

1

2
x1x2(1− x1)(1− x2) +

1 + x1 + x2

12
, (3.31)

k0
22(x1, x2) =

1

2
x1x2(1− x1)(1− x2) +

1 + 0.5x1 + x2

12
, (3.32)

which ensure that the boundary values of the initial approximations are equal to the exact

ones (3.28) and (3.29).
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Figure 3.3: (a) The exact thermal conductivity component k11(x1, x2) (3.28), and the
estimated solutions with (b) p = 0, (c) p = 1 and (d) p = 2 noise using the L2-gradients
J ′11 (3.19) and J ′22 (3.20) and the initial guesses (3.31) and (3.32).

All the numerical results are obtained by using the ADI scheme with I = J = M =

26. The standard L2-gradients J ′11 in (3.19) and J ′22 in (3.20) and the SobolevH1-gradient

(2.21) with the homogeneous Dirichlet boundary condition (2.23) and κ = 0.1 are applied

to obtain the numerical solutions.
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Figure 3.4: (a) The exact thermal conductivity component k22(x1, x2) (3.29), and the
estimated solutions with (b) p = 0, (c) p = 1 and (d) p = 2 noise using the L2-gradients
J ′11 (3.19) and J ′22 (3.20) and the initial guesses (3.31) and (3.32).

p I J M ε N E1 E2

0 26 26 26 3.0E-06 10 5.6E-03 6.5E-03
1 26 26 26 4.2E-03 5 6.9E-03 8.7E-03
2 26 26 26 1.7E-02 3 7.0E-03 8.8E-03

Table 3.1: The stopping iteration numbers N and the errors obtained by L2-gradients J ′11

(3.19) and J ′22 (3.20), with p ∈ {0, 1, 2} noise and the initial guesses (3.31) and (3.32).

Figure 3.1 shows the monotonic decrease of the objective functional J(k11, k22) (3.7)
as a function of the number of iteration n, and the stopping iterations numbers for p ∈
{0, 1, 2} are obtained by the discrepancy principle (3.25) with the parameter ε presented
in Table 3.1. The errors E1 (3.26) and E2 (3.27) for k11 and k22 are plotted in Figure 3.2,
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and it is obvious that the errors at the stopping iteration numbers are quite close to the

optimal ones.
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Figure 3.5: (a) The exact thermal conductivity component k11(x1, x2) (3.28), and the
estimated solutions with (b) p = 0, (c) p = 1 and (d) p = 2 noise using the H1-gradients
and the initial guesses (3.31) and (3.32).

The numerical solutions for the thermal conductivity components k11(x1, x2) and

k22(x1, x2) with the L2-gradients are shown in Figures 3.3 and 3.4, whilst the numer-

ical results with the H1-gradients at the iteration numbers in Table 3.2 are presents in

Figures 3.5 and 3.6.

By comparing the results in Figures 3.3 and 3.4 with Figures 3.5 and 3.6, it is easy

to see that the numerical solutions obtained with the standard L2-gradient are not so

smooth, but the employment of the Sobolev H1-gradient alleviates this problem and the

improvement obtained is quite significant. Furthermore, the results obtained with the

Sobolev H1-gradient are more accurate than the ones obtained using the L2-gradient
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according to the errors shown in Tables 3.1 and 3.2. Thus, the numerical results are

significantly smoother, more accurate and stable when using the Sobolev H1-gradient

than when using the L2-gradient.
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Figure 3.6: (a) The exact thermal conductivity component k22(x1, x2) (3.29), and the
estimated solutions with (b) p = 0, (c) p = 1 and (d) p = 2 noise using the H1-gradients
and the initial guesses (3.31) and (3.32).

Next, for an arbitrary initial guesses for the thermal conductivity components k11 and

k22, say

k0
11 = k0

22 =
1

4
, (3.33)

we apply the Sobolev H1-gradient (2.21).

With the initial guesses (3.33), the stopping criterion (3.25) yields the stopping it-

eration numbers presented in Table 3.3. Figures 3.7 and 3.8 show that the numerical

solutions for the thermal conductivity components k11 and k22 are smooth, stable and

they become more accurate as the amount of noise p decreases. Remark also that the

standard L2-gradient produced very inaccurate results for the initial guess (3.33) due to

the incompatibility between (3.33) and (3.28), (3.29) on the boundary.
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p I J M ε N E1 E2

0 26 26 26 5.0E-06 5 2.0E-03 2.3E-03
1 26 26 26 4.2E-03 3 2.1E-03 2.5E-03
2 26 26 26 1.7E-02 2 4.0E-03 4.6E-03

Table 3.2: The stopping iteration numbers N and the errors obtained by H1-gradients,
with p ∈ {0, 1, 2} noise and the initial guesses (3.31) and (3.32).
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Figure 3.7: (a) The exact thermal conductivity component k11(x1, x2) (3.28), and the
estimated solutions with (b) p = 0, (c) p = 1 and (d) p = 2 noise using the H1-gradients
and the initial guesses (3.33).

p I J M ε N E1 E2

0 26 26 26 3.0E-05 18 5.8E-03 4.7E-03
1 26 26 26 4.2E-03 17 7.2E-03 5.6E-03
2 26 26 26 1.7E-02 7 9.0E-03 7.5E-03

Table 3.3: The stopping iteration numbers N and the errors obtained by H1-gradients,
with p ∈ {0, 1, 2} noise and the initial guesses (3.33).
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Figure 3.8: (a) The exact thermal conductivity component k22(x1, x2) (3.29), and the
estimated solutions with (b) p = 0, (c) p = 1 and (d) p = 2 noise using the H1-gradients
and the initial guesses (3.33).

3.6 Conclusions

The determination of two-dimensional space-dependent orthotropic thermal conductiv-
ity from internal temperature measurement has been accomplished using the CGM to-
gether with the discrepancy principle. The Sobolev gradient has been utilized in the
CGM to reconstruct smoother and significantly more accurate and stable numerical so-
lutions. Regularization has been achieved by stopping the iterations at the level at which
the least-squares objective functional, minimizing the gap between the computed and the
measured temperature, becomes just below the noise threshold with which the data is
contaminated. The numerical results illustrate that the CGM regularized by the discrep-
ancy principle is an efficient and stable method. Furthermore, its robustness with respect
to the independence on the initial guess has been further enhanced by using the Sobolev
gradient.
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Chapter 4

Simultaneous determination of the
space-dependent thermal conductivity
and reaction coefficient

4.1 Introduction

This chapter extends the inverse analysis of Chapter 2 from one coefficient, k(x), to two
coefficients, k(x) and q(x). This problem was previously investigated by Colaço et al.

(2006) in the one-dimensional case.
In this chapter, the mathematical analysis of the inverse problem shall be carried out

by some basic arguments of functional analysis and a variational method. The existence
of the minimizer to the optimization problem, and the Fréchet gradient are derived. The
CGM regularized by the discrepancy principle shall be established to simultaneously
estimate both two unknown coefficients, for one- and two-dimensional inverse problems.

The plan of the chapter is as follows. In Section 4.2, the mathematical formulation is
given and analysis is performed in Section 4.3. The CGM based on the Fréchet gradient
and the adjoint problem is introduced in Section 4.4. Three numerical examples for one-
and two-dimensional inverse problems are discussed, and stable and accurate numerical
solutions are illustrated in Section 4.5. Finally, conclusions are highlighted in Section
4.6.

4.2 Mathematical formulation

We consider the same heat transfer mathematical model (2.1) in an isotropic material
as in Chapter 2. Obviously, the direct problem is to determine the temperature u(x, t)
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from the specified thermal coefficients, heat source and initial and boundary conditions.
In the inverse problem, the space-dependent thermal conductivity k(x) and the reaction
coefficient q(x) are unknown, and have to be determined from (2.1) and the temperature
measurement (2.4).

4.3 Analysis

Let u(x, t; k, q) denote the solution of the initial-boundary value direct problem (2.1), that
is, the temperature corresponding to a particular pair (k(x), q(x)). The quasi-solution to
the inverse problem (2.1), (2.4) is obtained by minimizing the least-squares objective
functional given by

J(k, q) =
1

2
‖u(·, ·; k, q)− Y ε(·, ·)‖2

L2(QT ) , (4.1)

where Y ε is the measured temperature satisfying ‖Y −Y ε‖L2(Ω) ≤ ε, and ε ≥ 0 represents
noise level, where u ∈ H1,0(QT ) is the weak solution satisfying (2.2), over the admissible
set A1 ×A2, where

A1 = {k ∈ L∞(Ω) : 0 < κ1 ≤ k(x) ≤ κ2, a.e. x ∈ Ω} ,

A2 = {q ∈ L∞(Ω) : 0 ≤ q(x) ≤ κ3, a.e. x ∈ Ω} ,

and κ1, κ2 and κ3 are three known positive constants.
Based on the approaches in Keung & Zou (1998); Yamamoto & Zou (2001), the

existence of a minimizer to the objective functional (4.1) over the the admissible set
A1 ×A2 is established as follows.

Theorem 4.3.1. There exists at least one minimizer to the optimization problem (4.1).

Proof. Since ‖u(x, t; k, q)‖L2(QT ) is bounded by (2.3), it is obvious that min J(k, q) is
finite over the admissible set A1 × A2 by the definition (4.1). Thus there exists a mini-
mizing sequence {kn, qn} from A1 ×A2 such that

lim
n→∞

J(kn, qn) = inf
k∈A1,q∈A2

J(k, q).

By the boundedness of {kn, qn} in L∞(Ω) × L∞(Ω), there exists a subsequence, still
denoted by {kn, qn}, and some k∗ ∈ L∞(Ω), q∗ ∈ L∞(Ω) such that both kn, qn converge
weakly to k∗ and q∗ respectively in L∞(Ω), and k∗ ∈ A1, q∗ ∈ A2. The estimate (2.3)
implies that the sequence {un := u(x, t; kn, qn)} is bounded in the spaceH1,0(QT ). Thus
a subsequence, still denoted by {un}, may be extracted, and some u∗ ∈ H1,0(QT ) such
that un → u∗ weakly in H1,0(QT ).
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From the definition (2.2) of the weak solution in H1,0(QT ) for the direct problem
(2.1), for any η ∈ H1,1(QT ) and η(·, T ) = 0, we have∫

QT

(
−un∂η

∂t
+ kn∇un · ∇η + qnunη

)
dxdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(·, 0)dx.

The weak convergence of un to u∗ implies that

lim
n→∞

∫
QT

−un∂η
∂t
dxdt =

∫
QT

−u∗∂η
∂t
dxdt,

Since un weakly converges to u∗ in H1,0(QT ) and kn, qn both weakly converge to k∗, q∗

in L∞(Ω), respectively, we have∫
QT

kn∇un · ∇ηdxdt =

∫
QT

k∗∇un · ∇ηdxdt+

∫
QT

(kn − k∗)∇un · ∇ηdxdt,

lim
n→∞

∫
QT

k∗∇un · ∇ηdxdt =

∫
QT

k∗∇u∗ · ∇ηdxdt,

and ∫
QT

qnunηdxdt =

∫
QT

q∗unηdxdt+

∫
QT

(qn − q∗)unηdxdt,

lim
n→∞

∫
QT

q∗unηdxdt =

∫
QT

q∗u∗ηdxdt,

using the estimate (2.3) for un and the Lebesgue dominant convergence theorem leads to
the terms

∫
QT

(kn− k∗)∇un · ∇ηdxdt and
∫
QT

(qn− q∗)unηdxdt converge to zero, hence
we obtain

lim
n→∞

∫
QT

kn∇un · ∇ηdxdt =

∫
QT

k∗∇u∗ · ∇ηdxdt,

lim
n→∞

∫
QT

qnunηdxdt =

∫
QT

q∗u∗ηdxdt,

and ∫
QT

(
−u∗∂η

∂t
+ k∗∇u∗ · ∇η + q∗u∗η

)
dxdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(·, 0)dx.

Thus u∗ = u(k∗, q∗) by the definition 2.3.1 and k = k∗, q = q∗ in the direct problem
(2.1), and the lower semi-continuity of norms implies that

J(k∗, q∗) =
1

2
‖u∗ − Y ε‖2

L2(QT ) ≤
1

2
lim
n→∞

‖un − Y ε‖2
L2(QT )

≤lim infn→∞J(kn, qn) = min
k∈A1,q∈A2

J(k, q),
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which indicates that (k∗, q∗) is a minimizer of the objective functional J(k, q) (4.1) over
the admissible set A1 ×A2.

Lemma 4.3.2. The mapping (k, q) 7→ u(k, q) is Lipschitz continuous from A1 toH1,0(QT )

with respect to k, and from A2 to H1,0(QT ) with respect to q, i.e.,

‖u(k + ∆k, q)− u(k, q)‖H1,0(QT ) ≤ c‖∆k‖L∞(Ω), (4.2)

‖u(k, q + ∆q)− u(k, q)‖H1,0(QT ) ≤ c‖∆q‖L∞(Ω), (4.3)

for any k, k+∆k ∈ A1, q, q+∆q ∈ A2 and the corresponding u(k, q), u(k+∆k, q), u(k, q+

∆q) ∈ H1,0(QT ).

Proof. The inequality (4.2) can be obtained according to Lemma 2.4.2. Thus, our work is
to prove (4.3). Denoted by ∆uq = u(k, q+∆q)−u(k, q) the increment of the temperature
with respect to q, then ∆uq satisfies the following parabolic problem generated based on
the direct problem (2.1)

∂(∆uq)

∂t
= ∇ · (k∇(∆uq))− q∆uq −∆qu(k, q + ∆q), (x, t) ∈ QT ,

k ∂(∆uq)

∂ν
= 0, (x, t) ∈ ST , ∆uq(x, 0) = 0, x ∈ Ω.

(4.4)

Using the estimate (2.3) to the parabolic problem (4.4), we obtain

‖∆uq‖H1,0(QT ) ≤c‖∆qu(k, q + ∆q)‖L2(QT )

≤c‖∆q‖L∞(Ω)‖u(k, q + ∆q)‖L2(QT ) ≤ c‖∆q‖L∞(Ω).

This concludes the proof of the lemma.

Lemma 4.3.3. The mapping (k, q) 7→ u(k, q) is Fréchet differentiable with respect to k
and q, i.e., for any ∆k,∆q ∈ L∞(Ω) such that k+∆k ∈ A1 and q+∆q ∈ A2 there exist
two bounded linear operators Uk : A1 7→ H1,0(QT ) and Uq : A2 7→ H1,0(QT ) such that

lim
‖∆k‖L∞(Ω)→0

‖u(k + ∆k, q)− u(k, q)− Uk∆k‖H1,0(QT )

‖∆k‖L∞(Ω)

= 0, (4.5)

lim
‖∆q‖L∞(Ω)→0

‖u(k, q + ∆q)− u(k, q)− Uq∆q‖H1,0(QT )

‖∆q‖L∞(Ω)

= 0. (4.6)

Proof. The main work is to obtain (4.6), since (4.5) has been proved in Lemma 2.4.3.
Consider the problem∂w

∂t
= ∇ · (k∇w)− qw −∆qu(k, q), (x, t) ∈ QT ,

k ∂w
∂ν

= 0, (x, t) ∈ ST , w(x, 0) = 0, x ∈ Ω,
(4.7)
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where ∆q ∈ L∞(Ω) such that q + ∆q ∈ A2. Then, there exists a unique solution
w ∈ H1,0(QT ) for the initial-boundary value problem (4.7) by Theorem 2.3.2, and by
(2.3) the mapping ∆q 7→ w from L∞(Ω) to H1,0(QT ) defines a bounded linear operator
Uq.

Denote v = u(k, q + ∆q) − u(k, q) − Uq∆q = ∆uq − w, where ∆uq satisfies the
problem (4.4), then v satisfies the problem∂v

∂t
= ∇ · (k∇v)− qv −∆q∆uq, (x, t) ∈ QT ,

k ∂v
∂ν

= 0, (x, t) ∈ ST , v(x, 0) = 0, x ∈ Ω.

Using (2.3), we obtain ‖v‖H1,0(QT ) ≤ c‖∆q∆uq‖L2(Ω) ≤ c‖∆q‖L∞(Ω)‖∆uq‖L2(Ω), and
via (4.3) of Lemma 4.3.2, we obtain that

‖u(k, q + ∆q)− u(k, q)− Uq∆q‖H1,0(QT ) = ‖v‖H1,0(QT ) ≤ c‖∆q‖2
L∞(Ω),

thus, the lemma is proved.

Theorem 4.3.4. The objective functional J(k, q) defined in (4.1) is Fréchet differentiable
and its Fréchet derivatives J ′k(k, q) and J ′q(k, q) are given by

J ′k(k, q) = −
∫ T

0

∇u · ∇λdt, x ∈ Ω, (4.8)

J ′q(k, q) = −
∫ T

0

uλdt, x ∈ Ω. (4.9)

Proof. The gradient J ′k(k, q) in (4.8) is obtained in Theorem 2.4.5, then our work is to
obtain the gradient J ′q(k, q) in (4.9). Taking any ∆q ∈ L∞(Ω) such that q + ∆q ∈ A2,
denote ∆Jq = J(k, q + ∆q)− J(k, q), and by (4.1), we obtain

∆Jq =

∫
QT

(u− Y ε)∆uqdxdt+
1

2
‖∆uq‖2

L2(QT ).

Using the adjoint problem (2.12), then we have

∆Jq =

∫
QT

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
∆uqdxdt+

1

2
‖∆uq‖2

L2(QT ),

and the sensitivity problem (4.4) implies that∫
QT

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
∆uqdxdt

=−
∫

Ω

∆uqλ|T0 dx+

∫
ST

k

{
∂(∆uq)

∂ν
λ−∆uq

∂λ

∂ν

}
dsdt

+

∫
QT

λ

{
∂(∆uq)

∂t
−∇ · (k∇(∆uq)) + q∆uq

}
dxdt

=−
∫
QT

∆qu(k, q + ∆q)λdxdt = −
∫
QT

∆q∆uqλdxdt−
∫
QT

∆quλdxdt.
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Since ∆uq is the solution to the problem (4.4), in virtue of Lemma 4.3.2, we have
‖∆uq‖2

L2(QT ) ≤ c‖∆q‖2
L∞(Ω), and∣∣∣∣∫

QT

∆q∆uqλdxdt

∣∣∣∣ ≤ ‖∆q‖L∞(Ω)‖∆uq‖L2(QT )‖λ‖L2(QT ) ≤ c‖∆q‖2
L∞(Ω)‖λ‖L2(QT ).

Thus,

∆Jq = −
∫
QT

∆quλdxdt+ o(‖∆q‖L∞(Ω)),

which means that the Fréchet derivative J ′q(k, q) is given by (4.9). The theorem is proved.

4.4 Conjugate gradient method

The following iterative process based on the CGM is applied for the numerical estimation
of the unknown thermal conductivity k(x) and reaction coefficient q(x) by minimizing
the objective functional J(k, q) in (4.1):

kn+1(x) = kn(x) + βnk d
n
k , qn+1(x) = qn(x) + βnq d

n
q , n = 0, 1, 2, · · · (4.10)

with the search direction given by

dnk =

{
−J ′0k ,
−J ′nk + γnk d

n−1
k ,

dnq =

{
−J ′0q ,
−J ′nq + γnq d

n−1
q , n = 1, 2, · · ·

(4.11)

where the subscripts n denotes the number of iteration, J ′nk = J ′k(k
n, qn), J ′nq = J ′q(k

n, qn),
k0, q0 are the initial guesses of the thermal conductivity k(x) and reaction coefficient
q(x), βnk , β

n
q are search step sizes for k and q, respectively, in passing from iteration n to

iteration n + 1. γnk and γnq are the conjugate gradient parameters, which are given by the
Fletcher-Reeves formula, Fletcher & Reeves (1964),

γnk =
‖J ′nk ‖2

L2(Ω)

‖J ′n−1
k ‖2

L2(Ω)

, γnq =
‖J ′nq ‖2

L2(Ω)

‖J ′n−1
q ‖2

L2(Ω)

, n = 1, 2, · · · (4.12)

The search step sizes βnk and βnq are found by minimizing

J(kn+1, qn+1) =
1

2

∫
QT

(u(kn + βnk d
n
k , q

n + βnq d
n
q )− Y ε)2dxdt.

Denoting u(x, t; kn, qn) = un, ∆uk(x, t; k
n, qn) = ∆unk and ∆uq(x, t; k

n, qn) = ∆unq ,
and setting ∆kn = dnk and ∆qn = dnq , the temperature u(kn + βnk d

n
k , q

n + βnq d
n
q ) can be

linearised by the Taylor series expansion in the form

u(kn + βnk d
n
k , q

n + βnq d
n
q ) ≈ un + βnk d

n
k

∂un

∂kn
+ βnq d

n
q

∂un

∂qn
≈ un + βnk∆unk + βnq ∆unq ,
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where ∆unk and ∆unq are the solutions of the sensitivity problems (2.8) and (4.4). Then
we obtain

J(kn+1, qn+1) =
1

2

∫
QT

(un + βnk∆unk + βnq ∆unq − Y ε)2dxdt.

The partial derivatives of the objective functional J(kn+1, qn+1) with respect to βnk and
βnq are give by

∂J

∂βnk
=

∫
QT

(un + βnk∆unk + βnq ∆unq − Y ε)∆unkdxdt = C1 + C2β
n
k + C3β

n
q ,

∂J

∂βnq
=

∫
QT

(un + βnk∆unk + βnq ∆unq − Y ε)∆unq dxdt = C4 + C3β
n
k + C5β

n
k ,

where

C1 =

∫
QT

(un − Y ε)∆unkdxdt, C2 = ‖∆unk‖
2
L2(QT ) ,

C3 =

∫
QT

∆unk∆unq dxdt, C4 =

∫
QT

(un − Y ε)∆unq dxdt, C5 =
∥∥∆unq

∥∥2

L2(QT )
.

Setting ∂J
∂βnk

= ∂J
∂βnq

= 0, the search step sizes βnk and βnq are given by

βnk =
C1C5 − C3C4

C2
3 − C2C5

, βnq =
C2C4 − C1C3

C2
3 − C2C5

, n = 0, 1, · · · . (4.13)

To summarise, the CGM established for numerically reconstructing the unknown
space-dependent thermal conductivity k(x) and reaction coefficient q(x) is presented as
follows:

S1. Set n = 0 and choose initial guesses k0(x) and q0(x) for the unknown thermal
conductivity k(x) and reaction coefficient q(x).

S2. Solve the direct problem (2.1) to compute the temperature u(x, t; kn, qn) numeri-
cally by applying the FDM scheme introduced in Subsections 2.6.1 and 2.6.2, and
the objective functional J(kn, qn) in (4.1).

S3. If the stopping criterion
J(kn, qn) ≤ ε, (4.14)

is satisfied, where ε is a small positive value defined below equation (2.26), then go
to S7. Else go to S4.

S4. Solve the adjoint problem (2.12) to obtain the adjoint function λ(x1, x2, t; k
n, qn),

and the gradients J ′nk (4.8) and J ′nq (4.9). Compute the conjugate gradient parame-
ters γnk and γnq (4.12) and the search directions dnk and dnq (4.11).
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S5. Solve the sensitivity problems (2.8) and (4.4) to obtain the sensitivity functions
∆uk(x, t; k

n, qn) and ∆uq(x, t; k
n, qn) by taking ∆kn = dnk and ∆qn = dnq , and

compute the search step sizes βnk and βnq by (4.13).

S6. Update kn+1 and qn+1 by (4.10), set n = n+ 1 and return to S2.

S7. End.

4.5 Numerical results and discussions

In this section, the numerical method for reconstructing the space-dependent thermal
conductivity k(x) and reaction coefficient q(x) simultaneously is illustrated, and three
numerical experiments based on the CGM are shown for one and two dimensional cases
(d = 1, 2). The accuracy errors for k(x) and q(x) are defined as functions of the iteration
number n, as given by

Ek(n) = ‖k − kn‖L2(Ω), (4.15)

Eq(n) = ‖q − qn‖L2(Ω), (4.16)

where kn and qn are the numerical solutions for thermal conductivity and reaction coef-
ficient at iteration number n, respectively. The temperature measurements Y ε containing
random errors are generated by (2.29).

4.5.1 Example 1

In this section, the CGM is used to reconstruct the unknown thermal conductivity k(x)

and reaction coefficient q(x) of the IHTP (2.1) and (2.4), simultaneously. For the one di-
mensional case (d = 1), we take Ω = (0, 1), the final time T = 1, the initial temperature
φ ≡ 0, and

f(x, t) = (1 + x− xe−t)(sin(πx) + (π + 1)x)

+
1− e−t

12
(π2(1 + x) sin(πx)− π cos(πx)− π − 1),

µ(0, t) = −2π + 1

12
(1− e−t), µ(1, t) =

1

6
(1− e−t).

Then the analytical solution of the inverse problem (2.1), (2.4) is

k(x) =
1 + x

12
, (4.17)

q(x) = 1 + x, u(x, t) = (1− e−t)(sin(πx) + (π + 1)x). (4.18)
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Figure 4.1: The objective functional J(k, q) in (4.1) for p ∈ {0, 2, 4} noise, for Example
1.
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Figure 4.2: The errors (a) Ek(n) (4.15) and (b) Eq(n) (4.16) for the thermal conductivity
k and reaction coefficient q with p ∈ {0, 2, 4} noise, for Example 1.

We take the initial guesses for the thermal conductivity k(x) and reaction coefficient
q(x) as

k0(x) = −1

4
x2 +

1

3
x+

1

12
, (4.19)

q0(x) = 1, (4.20)

which ensure that the boundary value of the initial approximation k0 is equal to the exact
one (4.17). All the numerical results illustrated in the figures of Example 1 are obtained
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by using the C-N scheme 2.6.1 with I = M = 51, p ∈ {0, 2, 4} noise and the initial
guesses (4.19) and (4.20).
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Figure 4.3: (a) The numerical thermal conductivity k(x) and (b) reaction coefficient q(x)

with p ∈ {0, 2, 4} noise, for Example 1.

Figure 4.1 shows the monotonic decrease of the objective functional J(k, q) in (4.1),
as a function of the number of iterations n, and the stopping iteration numbers for p ∈
{0, 2, 4} are obtained by the discrepancy principle (4.14) with the value of ε presented
in Table 4.1. The errors Ek(n) (4.15) and Eq(n) (4.16) for k and q are plotted in Figure
4.2. The numerical solutions for the thermal conductivity k(x) and reaction coefficient
q(x) are shown in Figure 4.3, and they are plotted at the stopping iteration numbers N in
Table 4.1 for p ∈ {0, 2, 4}. From Figure 4.3 it can be seen that the retrieved numerical
solutions are stable and accurate.

p I M ε N Ek Eq

0 51 51 5.0E-10 35 4.2E-03 3.6E-02
2 51 51 1.4E-03 3 5.8E-03 4.5E-02
4 51 51 5.4E-03 2 9.5E-03 6.6E-02

Table 4.1: The stopping iteration numbers N and the errors Ek and Eq for p ∈ {0, 2, 4}
noise in the simultaneous estimation of k(x) and q(x), for Example 1.

4.5.2 Example 2

We now present a one-dimensional example where the input data for the temperature is
numerically simulated by solving firstly the direct problem (2.1) using the C-N scheme
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in Subsection 2.6.1 with

µ(0, t) = −2, µ(1, t) = 2, φ ≡ 0, f ≡ 0, (4.21)

the discontinuous thermal conductivity and reaction coefficient

k(x) =

{
2, x ∈

(
1
4
, 3

4

)
,

1, elsewhere.
(4.22)

q(x) = 2 + cos(πx). (4.23)
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Figure 4.4: (a) The numerical thermal conductivity k(x) and (b) reaction coefficient q(x)

for p ∈ {0, 2, 4} noise, for Example 2.

p I M ε N Ek Eq

0 101 101 1.0E-06 19 0.1027 0.2603
2 101 101 1.3E-04 7 0.1680 0.3065
4 101 101 5.3E-04 4 0.2207 0.3532

Table 4.2: The stopping iteration numbers N and the errors Ek and Eq for p ∈ {0, 2, 4}
noise and the initial guesses (4.24) and (4.25) in the simultaneous estimation of k(x) and
q(x), for Example 2.

We take the initial guesses for the thermal conductivity k(x) and reaction coefficient
q(x) as

k0(x) = 1, (4.24)

q0(x) = 2. (4.25)
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The numerical solutions for the thermal conductivity k(x) and reaction coefficient
q(x) are presented in Figure 4.4 with p ∈ {0, 2, 4} and the initial guesses (4.24) and
(4.25). The stopping iteration numbers are shown in Table 4.2, which are obtained by
the stopping criterion (4.14) with the quantity ε. From Figure 4.4 it is easy to see that
the numerical results are stable and reasonably accurate bearing in mind the difficult
discontinuous thermal conductivity (4.22) that had to be retrieved.

4.5.3 Example 3

For the two-dimensional case (d = 2), we take Ω = (0, 1)× (0, 1), the final time T = 1,
the initial temperature φ ≡ 0, and the source term

f(x1, x2, t) = 2π2(1 + sin(πx1) sin(πx2)) sin(πx1) sin(πx2)(1− e−t)

+ (sin(πx1) sin(πx2) + (π + 1)(x1 + x2))((1 + x2
1 + x2

2)(1− e−t) + e−t)

− π(1− e−t)(π cos2(πx1) sin2(πx2) + π sin2(πx1) cos2(πx2) + (π + 1) sin(x1 + x2)).
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Figure 4.5: (a) The exact thermal conductivity k(x1, x2), and the estimated solutions for
(b) p = 0, (c) p = 2 and (d) p = 4 noise, for Example 3.
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Figure 4.6: (a) The exact reaction coefficient q(x1, x2), and the estimated solutions for
(b) p = 0, (c) p = 2 and (d) p = 4 noise, for Example 3.

With the boundary conditions

µ(0, x2, t) = −(1− e−t)(π sin(πx2) + π + 1),

µ(1, x2, t) = (1− e−t)(−π sin(πx2) + π + 1),

µ(x1, 0, t) = −(1− e−t)(π sin(πx1) + π + 1),

µ(x1, 1, t) = (1− e−t)(−π sin(πx1) + π + 1),

the analytical solution of the inverse problem (2.1), (2.4) is given by

k(x1, x2) = 1 + sin(πx1) sin(πx2), q(x1, x2) = 1 + x2
1 + x2

2, (4.26)

u(x1, x2, t) = (1− e−t) (sin(πx1) sin(πx2) + (π + 1)(x1 + x2)) . (4.27)

The initial guesses for the simultaneous reconstruction of the thermal conductivity
k(x1, x2) and reaction coefficient q(x1, x2) are taken as

k0(x1, x2) = 1, (4.28)

q0(x1, x2) = 1. (4.29)
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The numerical solutions are computed by using the ADI scheme in Subsection 2.6.2 with
I = J = 21 and M = 26 to solve the two-dimensional parabolic differential equations
with the initial guesses (4.28) and (4.29) and the level of noise p ∈ {0, 2, 4} in the
following figures.

Figures 4.5 and 4.6 show the retrieved solutions of the space-dependent thermal con-
ductivity k(x1, x2) and reaction coefficient q(x1, x2) at the stopping iteration numbers in
Table 4.3 generated by the discrepancy principle (4.14), with p ∈ {0, 2, 4} noise and the
initial guesses (4.28) and (4.29). From these figures it can be seen that the numerical
solutions are reasonably stable and they become more accurate as the amount of noise p
decreases.

p I J M ε N Ek Eq

0 21 21 26 3.0E-04 49 0.1316 0.1583
2 21 21 26 5.2E-03 39 0.1324 0.1606
4 21 21 26 2.0E-02 28 0.1355 0.1627

Table 4.3: The stopping iteration numbers N and the errors Ek and Eq for p ∈ {0, 2, 4}
noise and the initial guesses (4.28) and (4.29) in the simultaneous estimation of k(x1, x2)

and q(x1, x2), for Example 3.

4.6 Conclusions

In this chapter, the determination of the space-dependent thermal conductivity and re-
action coefficient from the temperature measurements has been investigated using the
CGM. The quasi-solution for the inverse problem is obtained by minimizing the least-
squares objective functional, and the existence of a minimizer is proved. The variational
method is utilized to obtain the Fréchet gradient which is used in the CGM. Regulariza-
tion has been achieved by stopping the iterations according to the discrepancy principle
at the level at which the least-squares objective functional, minimizing the gap between
the computed and the measured temperature, becomes just below the noise threshold with
which the data is contaminated. The numerical results show that CGM is an accurate and
stable regularization method for reconstructing spatially-varying coefficients.

In the next chapter, we give a different inverse formulation to the task of recovering
the reaction coefficient q(x) from measurement of the temperature at the final time or
from a time-average temperature measurement.
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Chapter 5

Determination of the space-dependent
reaction coefficient from final or
time-average data

5.1 Introduction

In this chapter, the space-dependent reaction coefficient is sought to be retrieved from

the final or time-average temperature measurements. The reaction coefficient can also be

considered as the blood perfusion coefficient in biomedical applications, Pennes (1948).

Blood perfusion is defined as the blood volume flow exchange per volume of tissue,

which refers to the local, multidirectional blood flow through the capillaries and intracel-

lular space of living tissue, and its measurements can determine the success or failure of

skin grafts and any related healing, Robinson et al. (1998).

Prior to this study, several parameter estimation least-squares techniques were uti-

lized for the determination of blood perfusion using non-invasive measurements from

minimally surface probe, Robinson et al. (1998); Scott et al. (1997, 1998); Yue et al.

(2008).

The uniqueness of the space-dependent reaction coefficient in Hölder spaces for the

heat equation with homogeneous Neumann boundary condition, initial and final data was

established in Rundell (1987). In Isakov (1991), the uniqueness in the same Hölder space

of functions with the same data, but with zero initial condition and non-homogeneous

Dirichlet boundary condition was proved. In Prilepko & Solovev (1987), existence and

uniqueness for the space-dependent reaction coefficient in Hölder spaces were estab-

lished for the heat equation with non-homogeneous initial and Dirichlet boundary con-

ditions and two distinct types of over-determination: the final temperature data and the
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temperature at a fixed point in the interior of the relevant space region for all values of

time.

In Kamynin & Kostin (2010); Kozhanov (2004), the existence and uniqueness of the

space-dependent reaction coefficient in Sobolev spaces for the heat equation with non-

homogeneous Dirichlet boundary condition and time-average temperature measurement

were established. Finally, the uniqueness of the space-dependent reaction coefficient in

Sobolev spaces from homogeneous initial and boundary conditions with inhomogeneous

source and final or time-average temperature data was established in Prilepko & Kostin

(1993).

In Yang et al. (2008), the space-dependent reaction coefficient was determined in the

one-dimensional heat equation with homogeneous Neumann boundary condition, and

initial and final observations, as in the inverse problem formulated and theoretically in-

vestigated in Rundell (1987). The unknown coefficient was reconstructed by minimizing

the first-order nonlinear Tikhonov regularization functional. Numerical results were ob-

tained using the FDM and an elliptic bilateral variational inequality. In Deng et al. (2009),

the same inverse problem as in Yang et al. (2008) was discussed from discrete final tem-

perature observations. On the basis of an interpolation technique, a new way was found to

reconstruct the coefficient by minimizing the same Tikhonov regularization functional. In

Chen & Liu (2006), the space-dependent reaction coefficient was determined in the heat

equation with homogeneous Dirichlet boundary condition and final temperature measure-

ment. A different weighted objective gradient functional was minimized to identify the

coefficient. The coefficient was obtained numerically by applying the Armijo algorithm

combined with the FEM. Finally, in Trucu et al. (2010b), the space-dependent reaction

coefficient was determined in the one-dimensional heat equation with non-homogeneous

Dirichlet boundary condition and heat flux or time-average temperature measurement.

The first-order Tikhonov regularization functional was minimized using the NAG rou-

tine E04FCF together with the FDM to obtain the numerical solution for the unknown

coefficient.

In this chapter, the determination of the space-dependent reaction coefficient from

final time or time-average temperature measurements in the inverse parabolic with initial

and boundary conditions is obtained by minimizing the nonlinear least-squares objective

functional. The Fréchet gradient of the objective functional is obtained using a varia-

tional method. In order to obtain a stable numerical solution, the CGM regularized by

the discrepancy principle, Alifanov (1994); Özişik & Orlande (2000), is developed ap-

parently for the first time for the inverse problems under investigation. Three examples

are presented, and the numerical results obtained using the CGM and the FDM show that
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the CGM algorithm regularized by the discrepancy principle is efficient and stable for
identifying the space-dependent reaction coefficient.

The mathematical formulations of the coefficient identification problems under in-
vestigation are presented in Section 5.2. This inverse problem is analysed in Section 5.3,
and the Fréchet gradient together with the adjoint problem is obtained. The numerical
CGM algorithm based on the sensitivity and adjoint problems is presented in Section 5.4.
Numerical results are presented and discussed in Section Section 5.5. Finally, Section
5.6 highlights the conclusions of the work.

5.2 Mathematical formulation

The most common heat transfer model in tissue is obtained by balancing the accumulation
of energy with the diffusion, heat transfer due to the blood flow through the capillary
network and heat generation due to cell metabolism, to result in the well-known Pennes’
bio-heat equation, Pennes (1948). As such, we consider the heat transfer problem in a
bounded domain Ω ⊂ Rd with sufficient smooth boundary ∂Ω, over the time interval
t ∈ (0, T ), given by{

∂u
∂t

(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t) + f(x, t), (x, t) ∈ QT ,

u(x, t) = µ(x, t), (x, t) ∈ ST , u(x, 0) = φ(x), x ∈ Ω.
(5.1)

The operator

L :=
∂

∂t
−∇ · (k∇) + qI, (5.2)

where I is the identity, is assumed to be uniformly parabolic, i.e.,

υ1|ξ|2 ≤
d∑

i,j=1

kij(x)ξiξj ≤ υ2|ξ|2, a.e. x ∈ Ω, ∀ξ ∈ Rd, (5.3)

for two given positive constants υ1 and υ2, and usually kij = kji.
In the above, Ω represents the tissue with d = 1, 2, 3 usually, k = (kij(x))i,j=1,d de-

notes the thermal conductivity of the tissue satisfying (5.3) which states and the physical
property that the thermal conductivity tensor is symmetric and positive definite, and leads
to the operator L (5.2) being uniformly parabolic. The perfusion coefficient q(x) in the
bio-heat equation is the product between the heat capacity of the blood Cb and the blood
perfusion rate ωb. The arterial blood temperature has been assumed to be uniform and
taken, for simplicity, equal to zero, and f(x, t) is the given metabolic heat source. Neu-
mann heat flux or Robin convective boundary conditions can also be considered instead
of the Dirichlet boundary condition in (5.1).

85
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Since the coefficient q(x) in (5.1) is unknown we need additional information, and in

this chapter we supply either the final temperature at t = T , namely,

e1(x) = u(x, T ), x ∈ Ω, (5.4)

or the time-average temperature measurement

e2(x) =

∫ T

0

ω(t)u(x, t)dt, x ∈ Ω, (5.5)

where ω(t) ∈ L2(0, T ) is some given weight function, and e1(x) and e2(x) are given data

which may be subjected to noise due to measurement errors. Compatibility conditions

between (5.1), (5.4) and (5.5) require that

e1(x) = µ(x, T ), x ∈ ∂Ω, (5.6)

and

e2(x) =

∫ T

0

ω(t)µ(x, t)dt, x ∈ ∂Ω, (5.7)

respectively.

There are two inverse problems, namely, (5.1), (5.4) and (5.1), (5.5) termed IP1 and

IP2, respectively, which may be formulated for the determination of the space-dependent

reaction coefficient q(x) ≥ 0 together with the temperature u(x, t). These two inverse

problems possess in common the fundamental property that both the input data, e1(x) or

e2(x), and output data, q(x), are space-dependent. A different inverse Cauchy-type prob-

lem in which, instead of (5.4) or (5.5), we have a time-dependent boundary measurement

of the heat flux,

k(x)
∂u

∂ν
(x, t) = µ̃(x, t), (x, t) ∈ ST , (5.8)

is not investigated herein, but we mention Tadi et al. (2002); Trucu et al. (2008).

The existence and uniqueness of the classical solution in Hölder spaces of the IP1 was

established in Prilepko & Solovev (1987). For the IP2, existence of a generalized solution

was established in Kozhanov (2004) and Kamynin & Kostin (2010), whilst Prilepko &

Kostin (1993) established uniqueness of generalized solutions in Sobolev spaces for both

IP1 and IP2.

First, we state the existence and uniqueness of the solution for the direct problem

(5.1) when all the coefficients and boundary and initial conditions are known functions

(see Ladyzhenskaia et al. (1968), p.341).
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Theorem 5.2.1. Suppose that k ∈ C1(Ω) satisfies (5.3), q ∈ L∞(Ω), f ∈ L2(QT ), φ ∈
H1(Ω) and µ ∈ H3/2,3/4(ST ). Then the direct problem (5.1) satisfying the compatibility
condition of zero order φ|∂Ω = µ|t=0 has a unique solution u ∈ H2,1(QT ) which satisfies
the estimate

‖u‖H2,1(QT ) ≤ c(‖f‖L2(QT ) + ‖φ‖H1(Ω) + ‖µ‖H3/2,3/4(ST )), (5.9)

where c is a positive constant.

Next, we state the uniqueness results for the inverse problems IP1 and IP2.

Theorem 5.2.2 (Prilepko & Kostin (1993)). Let Ω be a bounded simply connected do-
main in Rd, d ≥ 1 with boundary ∂Ω ∈ C2. Suppose that φ = µ ≡ 0, 0 ≤ f ∈ L2(QT ),
0 ≤ ft ∈ L2(QT ), 0 ≤ ω ∈ L2(0, T ). Then:

(i) if e1 > 0 in Ω (or e2 > 0 in Ω) the solution of the IP1 (or IP2) is unique in the
class of functions u ∈ H2,1(QT ) and 0 ≤ q ∈ L∞(Ω);

(ii) the same uniqueness result holds if f(·, T ) 6≡ 0 for IP1, or
∫ T

0
ω(t)f(·, t)dt 6≡ 0

for IP2.

5.3 Analysis

Let u(x, t; q) denote the solution of the direct problem, that is, the temperature corre-

sponding to a particular value of the unknown function q(x). The quasi-solution of the

IP1 or IP2 is obtained such that the following least-squares objective functionals are min-

imized:

J1(q) =
1

2
‖u(·, T ; q)− eε1(·)‖2

L2(Ω), (5.10)

or

J2(q) =
1

2

∥∥∥∥∫ T

0

ω(t)u(·, t; q)dt− eε2(·)
∥∥∥∥2

L2(Ω)

, (5.11)

where eε1 or eε2 is the noisy temperature measurement satisfying

‖e1 − eε1‖L2(Ω) ≤ ε,

‖e2 − eε2‖L2(Ω) ≤ ε,

and ε is the level of noise, subject to u ∈ H2,1(QT ) satisfying the direct problem (5.1),

over the admissible set A = {q ∈ L∞(Ω) : q(x) ≥ 0, a.e. x ∈ Ω} .
The following result states the existence of the minimizer to the optimization problem

(5.10) or (5.11), which can be proved according to the approach of Theorem 4.3.1.
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Theorem 5.3.1. There exists at least one minimizer to the optimization problem (5.10) or
(5.11).

Lemma 5.3.2. The mapping q 7→ u(q) is Lipschitz continuous from A to H2,1(QT ), i.e.,
for any q, q + ∆q ∈ A and the corresponding u(q), u(q + ∆q) ∈ H2,1(QT ), there holds

‖u(q + ∆q)− u(q)‖H2,1(QT ) ≤ c‖∆q‖L∞(Ω). (5.12)

Proof. Denote ∆u = u(q + ∆q) − u(q) which is the increment of the temperature u
subject to q, then ∆u satisfies the problem

∂(∆u)
∂t

= ∇ · (k∇(∆u))− q∆u−∆qu(q + ∆q), (x, t) ∈ QT ,

∆u(x, t) = 0, (x, t) ∈ ST , ∆u(x, 0) = 0, x ∈ Ω.
(5.13)

Using the estimate (5.9) in Theorem 5.2.1 to the problem (5.13), we obtain

‖∆u‖H2,1(QT ) ≤ c‖∆qu‖L2(QT ) ≤ c‖∆q‖L∞(Ω)‖u‖L2(QT ).

Since ‖u‖L2(QT ) is bounded by (5.9), this concludes the proof of the lemma.

Lemma 5.3.3. The mapping q 7→ u(q) from A to H2,1(QT ) is Fréchet differentiable in
the sense that for any ∆q ∈ L∞(Ω) such that q + ∆q ∈ A there exists a bounded linear
operator U : L∞(Ω) 7→ H2,1(QT ) such that

lim
‖∆q‖L∞(Ω)→0

‖u(q + ∆q)− u(q)− U∆q‖H2,1(QT )

‖∆q‖L∞(Ω)

= 0. (5.14)

Proof. Consider the problem∂w
∂t

= ∇ · (k∇w)− qw −∆qu(q), (x, t) ∈ QT ,

w(x, t) = 0, (x, t) ∈ ST , w(x, 0) = 0, x ∈ Ω,
(5.15)

where ∆q ∈ L∞(Ω) such that q + ∆q ∈ A. Theorem 5.2.1 shows that there exists a
unique solution w(x, t) ∈ H2,1(QT ) of (5.15), and the map ∆q 7→ w from L∞(Ω) to
H2,1(QT ) defines a bounded linear operator U by the estimate (5.9).

Denote v = u(q + ∆q) − u(q) − U∆q = ∆u − w, where ∆u satisfies the problem
(5.13), thus the function v satisfies the problem∂v

∂t
= ∇ · (k∇v)− qv −∆q∆u, (x, t) ∈ QT ,

v(x, t) = 0, (x, t) ∈ ST , v(x, 0) = 0, x ∈ Ω.
(5.16)

Utilizing the estimate (5.9), we obtain

‖v‖H2,1(QT ) ≤ c‖∆q∆u‖L2(QT ) ≤ c‖∆q‖L∞(Ω)‖∆u‖L2(QT ), (5.17)

and (5.12) implies that ‖v‖H2,1(QT ) ≤ c‖∆q‖2
L∞(Ω). The lemma is proved.
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Theorem 5.3.4. The functional J1(q) in (5.10) is Fréchet differentiable and its gradient
is

J ′1(q) = −
∫ T

0

u(x, t)λ1(x, t)dt, (5.18)

where λ1(x, t) satisfies the following adjoint problem:∂λ1

∂t
= −∇ · (k∇λ1) + qλ1 − 2(u(x, T ; q)− eε1(x))δ(t− T ), (x, t) ∈ QT ,

λ1(x, t) = 0, (x, t) ∈ ST , λ1(x, T ) = 0, x ∈ Ω,
(5.19)

and δ is the Dirac delta function.

Proof. Taking any ∆q ∈ L∞(Ω) such that q+∆q ∈ A, and ∆J1(q) = J1(q+∆q)−J1(q),
we have

∆J1(q) =
1

2

∫
Ω

(u(x, T ; q + ∆q)− eε1(x))2dx− 1

2

∫
Ω

(u(x, T ; q)− eε1(x))2dx

=

∫
Ω

∆u(x, T )(u(x, T ; q)− eε1(x))dx+
1

2
‖∆u(·, T )‖2

L2(Ω).

Now we introduce a function λ1(x, t), being the solution to the final-boundary value
problem (5.19). Using the problem (5.13) and integration by parts, we have∫

Ω

∆u(x, T )(u(x, T ; q)− eε1(x))dx

=

∫
QT

2∆u(x, t)(u(x, T ; q)− eε1(x))δ(t− T )dxdt

=

∫
QT

∆u

(
−∂λ1

∂t
−∇ · (k∇λ1) + qλ1

)
dxdt

=

∫
QT

λ1

(
∂(∆u)

∂t
−∇ · (k∇(∆u)) + q∆u

)
dxdt−

∫
Ω

∆uλ1|T0 dx

+

∫
ST

k

(
λ1
∂(∆u)

∂ν
−∆u

∂λ1

∂ν

)
dsdt = −

∫
QT

∆qu(q + ∆q)λ1dxdt.

Hence

∆J1(q) =−
∫
QT

∆qu(q + ∆q)λ1dxdt+
1

2
‖∆u(·, T )‖2

L2(Ω)

=−
∫
QT

∆q∆uλ1dxdt−
∫
QT

∆quλ1dxdt+
1

2
‖∆u(·, T )‖2

L2(Ω).

Since ∆u is the solution of the parabolic problem (5.13), in virtue of Lemma 5.3.2, we
have ‖∆u(·, T )‖2

L2(Ω) ≤ c‖∆q‖2
L∞(Ω), and∣∣∣∣∫

QT

∆q∆uλ1dxdt

∣∣∣∣ ≤ ‖∆q‖L∞(Ω)‖∆u‖L2(QT )‖λ1‖L2(QT ) ≤ c‖∆q‖2
L∞(Ω)‖λ1‖L2(QT ),

thus ∆J1(q) = −
∫
QT

∆quλ1dxdt+ o(‖∆q‖L∞(Ω)), which means the functional J1(q) is
Fréchet differentiable, and its gradient is given by (5.18). The theorem is proved.
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Similarly, we can obtain the following result by applying the approach in the proof of
Theorem 5.3.4 for the objective functional J2(q) in (5.11):

Theorem 5.3.5. The functional J2(q) in (5.11) is Fréchet differentiable and its gradient
is

J ′2(q) = −
∫ T

0

u(x, t)λ2(x, t)dt, (5.20)

where λ2(x, t) satisfies the following adjoint problem:
∂λ2

∂t
= −∇ · (k∇λ2) + qλ2

−ω(t)
(∫ T

0
ω(τ)u(x, τ ; q)dτ − eε2(x)

)
, (x, t) ∈ QT ,

λ2(x, t) = 0, (x, t) ∈ ST , λ2(x, T ) = 0, x ∈ Ω.

(5.21)

5.4 Conjugate gradient method

The following iterative process based on the CGM is used for the numerical estimation of
the reaction coefficient q(x) in (5.1) by minimizing the objective functional J(q), where
J stands for J1 or J2:

qn+1(x) = qn(x) + βndn, n = 0, 1, 2, · · · (5.22)

with the search direction given by

dn =

{
−J ′0,
−J ′n + γndn−1, n = 1, 2, · · · ,

(5.23)

where the subscripts n denotes the number of iteration, J ′n = J ′(qn), q0(x) is the initial
guess for q(x), βn is search step size in passing from iteration n to iteration n + 1. The
conjugate gradient parameter γn is given by the Fletcher-Reeves formula, Fletcher &
Reeves (1964),

γn =
‖J ′n‖2

L2(Ω)

‖J ′n−1‖2
L2(Ω)

, n = 1, 2, · · · (5.24)

For the problem IP1, the search step size βn is found by minimizing

J1(qn+1) =
1

2

∫
Ω

(u(x, T ; qn + βndn)− eε1(x))2dx. (5.25)

Setting ∆qn = dn, the estimated temperature u(x, T ; qn+βndn) is linearized by a Taylor
series expression in the form

u(x, T ; qn + βndn) ≈ u(x, T ; qn) + βndn
∂u(x, T ; qn)

∂qn
≈ u(x, T ; qn) + βn∆u(x, T ; qn)
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5.4 Conjugate gradient method

and ∆u(x, T ; qn) is the solution of the sensitivity problem (5.13) when t = T . Then, we
have

J1(qn+1) =
1

2

∫
Ω

(u(x, T ; qn) + βn∆u(x, T ; qn)− eε1(x))2dx.

The partial derivative of the objective functional J1(qn+1) with respect to βn is give by

∂J1(qn+1)

∂βn
=

∫
Ω

∆u(x, T ; qn)(u(x, T ; qn) + βn∆u(x, T ; qn)− eε1(x))dx.

Setting ∂J1(qn+1)
∂βn

= 0, the search step size βn is given by

βn =

∫
Ω

(u(x, T ; qn)− eε1(x))∆u(x, T ; qn)dx

‖∆u(·, T ; qn)‖2
L2(Ω)

. (5.26)

We also can obtain βn for the inverse problem IP2 via a similar method. We have

J2(qn+1) =
1

2

∫
Ω

[∫ T

0

ω(t)u(x, t; qn + βndn)dt− eε2(x)

]2

dx

=
1

2

∫
Ω

[∫ T

0

ω(t)u(x, t; qn)dt+ βn
∫ T

0

ω(t)∆udt− eε2(x)

]2

dx.

Then the derivative of J2(qn+1) with respect to βn is

∂J2

∂βn
=

∫
Ω

[∫ T

0

ω(t)udt+ βn
∫ T

0

ω(t)∆udt− eε2
](∫ T

0

ω(t)∆udt

)
dx.

Again we set ∂J2

∂βn
= 0, and obtain

βn = −

∫
Ω

(∫ T
0
ω(t)udt− eε2

)(∫ T
0
ω(t)∆udt

)
dx

‖ω∆u‖2
L2(QT )

. (5.27)

According to the discussion in Section 2.5, the CGM regularized by the discrepancy
principle, for the numerical reconstruction of the reaction coefficient q(x) for the inverse
problem IP1 or IP2, may become well-posed. Hence, the iterative procedure is stopped
when the following criterion is satisfied:

J(qn) ≤ ε, (5.28)

where ε is a small positive value, e.g., ε = 10−5, for exact measured data, or

ε =
1

2
‖e− eε‖2

L2(Ω), (5.29)

when the temperature measurement contains noisy data, e denote the final temperature
measurement e1 for the inverse problem IP1, or the time-average temperature measure-
ment e2 for the inverse problem IP2.

The steps of the CGM algorithm for the estimation of the reaction coefficient q(x) for
the inverse problem IP1 (and similarly for the inverse problem IP2) are shown as follows:
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S1. Set n = 0 and choose an initial guess q0 for the unknown reaction coefficient q(x).

S2. Solve the direct problem (5.1) numerically by applying the FDM scheme to com-
pute the temperature u(x, t; qn), and the objective functional J1(qn) (5.10).

S3. If the stopping criterion (5.28) is satisfied, then go to S7. Else go to S4.

S4. Solve the adjoint problem (5.19) to compute the adjoint function λ1(x, t; qn), and
the gradient J ′1(qn) from (5.18). Compute the conjugate coefficient γn (5.24), and
the search direction dn in (5.23).

S5. Solve the sensitivity problem (5.13) to compute ∆u(x, t; qn) by taking ∆qn = dn,
and compute the search step size βn (5.26).

S6. Update qn+1 by (5.22). In case qn+1(x) takes negative values replace it utilizing
max{0, qn+1(x)} in order to enforce the physical constraint that the reaction coef-
ficient cannot be negative. Set n = n+ 1 and return to S2.

S7. End.

5.5 Numerical results and discussions

In this section, the space-dependent reaction coefficient q(x) is numerically reconstructed
by the CGM proposed in Section 5.4. We use the FDM, based on the C-N method to one
dimension d = 1, or the ADI method to two dimension d = 2, to solve the direct,
sensitivity and adjoint problems. We define the accuracy error at the iteration number n
for the reaction coefficient q(x) as

E(qn) = ‖qn − q‖L2(Ω). (5.30)

The final temperature eε1 for the inverse problem IP1 containing random errors are sim-
ulated by adding to the exact data an error term generated from a normal distribution by
MATLAB in the form:

eε1 = e1 + σ1 × random(1), (5.31)

where σ1 = p
100
× maxx∈Ω |e1(x)| is the standard deviation and p% represents the per-

centage of noise. Similarly, the time-average temperature measurements eε2 for the inverse
problem IP2 containing random errors are simulated as

eε2 = e2 + σ2 × random(1), (5.32)

where σ2 = p
100
×maxx∈Ω |e2(x)|.
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5.5 Numerical results and discussions

5.5.1 Example 1

In this example, we take Ω = (0, 1), T = 1, ω(t) = 1 and

k ≡ 1, f ≡ 0, µ(0, t) = µ(1, t) = 20e−t, φ(x) = (x− x2)2 + 20, (5.33)

e1(x) = e−1((x− x2)2 + 20), for IP1, (5.34)

e2(x) = (1− e−1)((x− x2)2 + 20), for IP2, (5.35)

we obtain the analytical solution, Trucu et al. (2010b),

u(x, t) = e−x((x− x2)2 + 20), q(x) =
x4 − 2x3 + 13x2 − 12x+ 22

(x− x2)2 + 20
. (5.36)

We take the initial guess as q0(x) = 1.1 such that on the boundary ∂Ω = {0, 1}, the
initial guess is equal to the exact solution for the reaction coefficient q(x) in (5.36), with
the mesh size ∆x = ∆t = 0.01 applied in the FDM for solving the direct, sensitivity and
adjoint problems involved.

Figures 5.1 and 5.3 show the monotonic decreasing convergence of the objective func-
tional J1(qn) given by (5.10) and J2(qn) given by (5.11) that are minimized for the inverse
problems IP1 and IP2, respectively, as functions of the number of iterations n, for various
amounts of noise p ∈ {0, 1, 2}. For noisy data p ∈ {1, 2}, the stopping iteration num-
bers {1, 1} are generated according to the discrepancy principle (5.28). It is clear that the
stopping iteration numbers are quite close to the optimal ones in Figures 5.2(a) and 5.4(a)
which present the error curve (5.30).
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Figure 5.1: The objective functional J1(qn) (5.10) with p ∈ {0, 1, 2} noise, for the IP1 of
Example 1.
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Figure 5.2: (a) The error E(qn) (5.30) and (b) the exact and numerical coefficient q(x)

with p ∈ {0, 1, 2} noise, for the IP1 of Example 1.
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Figure 5.3: The objective functional J2(qn) (5.11) with p ∈ {0, 1, 2} noise, for the IP2 of
Example 1.

The numerical solutions for IP1 and IP2 are presented in Figures 5.2(b) and 5.4(b),

respectively. In the case of no noise, the results are plotted after 24 iterations, whilst for

noisy data the results are plotted after 1 iterations. First, it can be seen that in the case of

no noise, the retrieved solutions for both IP1 and IP2 are in very good agreement with the

exact solution (5.36). Second, in the case of noisy data, the retrieved solutions are stable

and they become more accurate as the amount of noise p decreases. The errors for IP1
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and IP2 for various amounts of noise p ∈ {0, 1, 2} are shown in Table 5.1, and it can be
seen that the numerical results for IP2 are more accurate than the numerical results for
IP1.
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Figure 5.4: (a) The error E(qn) (5.30) and (b) the exact and numerical coefficient q(x)

with p ∈ {0, 1, 2} noise, for the IP2 of Example 1.
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 p=1, Tikhonov Regularization

Figure 5.5: The exact solution (5.36), the numerical results of Trucu et al. (2010b) (with
regularization parameter 0.8 and initial guess q0 = 1), and of the CGM with initial
guesses q0 = 1 and q0 = 1.1 for p% = 1% noise, for the IP2 of Example 1.

Comparison with other method. For Example 1, a comparison for the IP2 can be
made with the previous numerical results of Trucu et al. (2010b) obtained by minimizing
the first-order Tikhonov regularization functional using the NAG routine E04FCF. In or-
der to keep the numerical simulations as similar as possible the time-average temperature
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Inverse problem IP1 IP2

p I M ε N E ε N E

0 101 101 1.0E-12 20 1.0E-04 1.0E-12 23 5.9E-05
1 101 101 3.8E-03 1 1.5E-02 1.1E-02 1 9.9E-03
2 101 101 1.5E-02 1 2.9E-02 4.5E-02 1 2.4E-02

Table 5.1: The stopping iteration numbers N and the errors E with p ∈ {0, 1, 2} noise,
for IP1 and IP2 of Example 1.

measurement (5.35) is perturbed by the multiplicative noise

eε2 = e2

(
1 +

p

100
× η
)
, (5.37)

where η are random variables generated from a uniform distribution in [−1, 1], as in

Trucu et al. (2010b), rather than the additive noise (5.32). In Trucu et al. (2010b), the

initial guess q0(x) = 1, but in our CGM, because of (5.18) and (5.19), as the value of

qn(x) remains to q0(x) on x ∈ ∂Ω, throughout iteration, we take the initial guess as

q0(x) = 1.1.

For p% = 1% noise in (5.37), Figure 5.5 illustrates the comparison between the

analytical solution (5.36), the Tikhonov’s regularization numerical results of Trucu et al.

(2010b) and those obtained by our CGM with the initial guesses q0(x) = 1 (and stopped

after n = 1 iteration according to (5.28)) and q0(x) = 1.1 (and stopped after n = 2

iteration according to (5.28)). From this figure it can be seen that for p% = 1% noise in

the data (5.37), both the Tikhonov’s regularization of Trucu et al. (2010b) and our CGM

under-perform in achieving good agreement with the exact solution (5.36) when the initial

guess is q0 = 1. The CGM over-regularizes the numerical solution when stopped only

after n = 1 iteration, according to the discrepancy principle (5.28), whilst the Tikhonov’s

method of Trucu et al. (2010b), with the regularization parameter 0.8, under-regularizes

the numerical solution, which manifests some unstable oscillations. However, when the

initial guess is q0 = 1.1, which ensures that q0(x) = q(x) for x ∈ Ω our CGM is very

accurate in comparison with the exact solution (5.36). Unfortunately, we do not have

available the numerical results of Trucu et al. (2010b) for the initial guess q0 = 1.1 to

compare with. Finally, on comparing Figures 5.4 and 5.5 for p% = 1% noise and initial

guess q0 = 1.1, it can be remarked that the CGM inversion of the data (5.35) perturbed

by the multiplicative noise (5.37) is more accurate than when the data is perturbed by the

additive noise (5.32).
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5.5.2 Example 2

In this example, we take Ω = (0, 1), T = 1, ω(t) = 1,

k ≡ 1, φ ≡ 0, µ ≡ 0, (5.38)

f(x, t) = 2t+ x(1− x) +


tx(1− x)(2− x), x ∈ [0, 0.3],
tx(1− x)(1− x+ 4x2), x ∈ (0.3, 0.7),
3tx(1− x), x ∈ [0.7, 1],

(5.39)

e1(x) = x(1− x), x ∈ (0, 1), for IP1, (5.40)

e2(x) =
1

2
x(1− x), x ∈ (0, 1), for IP2. (5.41)
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Figure 5.6: The objective functional J1(qn) (5.10) with p ∈ {0, 1, 2} noise, for the IP1 of
Example 2.

One can observe that the conditions of Theorem 5.2.2 are satisfied and hence the
solutions of the IP1 and IP2 are unique. In fact it can be verified by direct substitution
that the analytical solution is given by

q(x) =


2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1],

u(x, t) = tx(1− x). (5.42)

The initial guess is chosen as q0(x) = 2+xwhich is a linear function passing through
the end points q(0) = 2 and q(1) = 3. Figures 5.6 and 5.8 show the monotonic decreasing
convergence of the objective functional J1(qn) given by (5.10) and J2(qn) given by (5.11)
that are minimized for IP1 and IP2, respectively. For exact data, i.e., p = 0 numerical
results are plotted after 35 and 38 iterations for IP1 and IP2, while for noisy data p ∈
{1, 2}, the stopping iteration numbers generated by the discrepancy principle (5.28) are
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{4, 4} and {4, 5} for IP1 and IP2, respectively. The error curves (5.30) are shown in

Figures 5.7(a) and 5.9(a), and the numerical solutions are presented in Figures 5.7(b) and

5.9(b). It is obvious that the numerical results deviate from the exact solution (5.42) near

the discontinuity points x = 0.3 and x = 0.7. The errors for IP1 and IP2 are shown in

Table 5.2 with p ∈ {0, 1, 2} noise and it can be seen that the errors are quite close to each

other for both IP1 and IP2.
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Figure 5.7: (a) The error E(qn) (5.30) and (b) the exact and numerical coefficient q(x)

with p ∈ {0, 1, 2} noise, for the IP1 of Example 2.
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Figure 5.8: The objective functional J2(qn) (5.11) with p ∈ {0, 1, 2} noise, for the IP2 of
Example 2.
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Inverse problem IP1 IP2

p I M ε N E ε N E

0 101 101 1.0E-10 35 0.0972 1.0E-10 38 0.1184
1 101 101 4.4E-06 4 0.2233 1.1E-06 5 0.2188
2 101 101 1.8E-05 4 0.2558 4.4E-06 4 0.2504

Table 5.2: The stopping iteration numbers N and the errors E with p ∈ {0, 1, 2} noise,
for IP1 and IP2 of Example 2.
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Figure 5.9: (a) The error E(qn) (5.30) and (b) the exact and numerical coefficient q(x)

with p ∈ {0, 1, 2} noise, for the IP2 of Example 2.

5.5.3 Example 3

We consider now a two-dimensional (d = 2) example in the domain Ω = (0, 1)× (0, 1),
T = 1, and

ω(t) =1, k = I2, µ ≡ 0, φ ≡ 0,

f(x1, x2, t) =(1 + t(1 + x2
1 + x2

2))x1x2(1− x1)(1− x2)

+ t(x1(1− x1) + x2(1− x2)),

e1(x1, x2) =x1x2(1− x1)(1− x2), for IP1, (5.43)

e2(x1, x2) =
1

2
x1x2(1− x1)(1− x2), for IP2. (5.44)

One can observe that the conditions of Theorem 5.2.2 are satisfied and hence the solutions
of the IP1 and IP2 are unique. In fact, it can be verified by direct substitution that the
analytical solution is given by

q(x1, x2) = 1 + x2
1 + x2

2, u(x1, x2, t) = tx1x2(1− x1)(1− x2). (5.45)
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Figure 5.10: (a) The objective functional J1(qn) (5.10) and (b) the error E(qn) (5.30)
with p ∈ {0, 1, 2} noise, for the IP1 of Example 3.
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Figure 5.11: (a) The exact and numerical reaction coefficient q(x1, x2) for (b) p = 0, (c)
p = 1 and (d) p = 1 noise, for the IP1 of Example 3.
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Figure 5.12: (a) The objective functional J2(qn) (5.11) and (b) the error E(qn) (5.30)
with p ∈ {0, 1, 2} noise, for the IP2 of Example 3.
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Figure 5.13: (a) The exact and numerical reaction coefficient q(x1, x2) for (b) p = 0, (c)
p = 1 and (d) p = 1 noise, for the IP2 of Example 3.
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We take I = J = M = 101 and the initial guess

q0(x1, x2) = 1 + x2
1 + x2

2 + 10x1x2(1− x1)(1− x2)

which ensures that q0 = q on the boundary ∂Ω. Numerical results and errors presented in
Figures 5.10–5.13 and Table 5.3 reveal the same conclusions as those drawn for Examples
1 and 2.

Inverse problem IP1 IP2

p I J M ε N E ε N E

0 101 101 101 1.0E-12 17 0.0273 1.0E-12 18 0.0355
1 101 101 101 1.9E-07 4 0.0741 4.8E-08 6 0.0608
2 101 101 101 7.7E-07 4 0.0824 1.9E-07 5 0.0706

Table 5.3: The stopping iteration numbers N and the errors E with p ∈ {0, 1, 2} noise,
for IP1 and IP2 of Example 3.

5.6 Conclusions

The numerical CGM analysis developed and verified in this study overcomes the state
of the art limits in reconstructing accurately and stably the space-dependent reaction co-
efficient from noisy final temperature or time-average temperature measurements. The
Fréchet gradient together with the adjoint problems is obtained using the variational
method. Regularization has been achieved by stopping the iterations at the level at which
the least-squares objective functional, minimizing the gap between the computed and the
measured data, becomes just below the noise threshold with which the data is contam-
inated. We have tested three examples for both inverse problems, and found that the
numerical solutions are stable and become more accurate as the amount of noise de-
creases. From Example 2, we also understand that the error becomes larger when the
exact reaction coefficient is discontinuous but still stable and reasonable. The numerical
results show that the CGM is an efficient and stable iterative algorithm for reconstruct-
ing the reaction coefficient from minimal data which makes the solution of the inverse
problems unique. We have also found out that the numerical solution for the IP2 based
on the time-average temperature data (5.5), which is also more practically realistic, is
slightly more accurate than the numerical solution for the IP1 based on the final instant
temperature measurement (5.4).

In the next chapter, we extend the inverse analysis to the case when the initial tem-
perature φ(x) is also unknown in addition to the reaction/perfusion coefficient q(x).
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Chapter 6

Simultaneous reconstruction of the
space-dependent reaction coefficient
and initial temperature

6.1 Introduction

Managing and controlling the complex process of heat transfer involves solving a wide-

range of inverse problems concerned with the identification of physical properties and

heat transfer coefficients, internal sources, boundary and/or initial conditions, Kurpisz &

Nowak (1995). In particular, the efficient and safe performance of heat transfer apparatus

and equipment requires knowledge of the heat transfer coefficients (HTCs). Therefore,

an important but difficult problem of reconstructing the reaction coefficient, which are

assumed to be spacewise dependent, from temperature measurements at interior points

inside the heat conductor at prescribed times is proposed. Moreover, in certain applica-

tions, e.g., steel melting, data assimilation or deblurring, the initial status of the diffusion

process cannot be prescribed directly, but instead the temperature at a later time is avail-

able. This BHCP is also well-known to be severely ill-posed, Miranker (1961).

When the initial temperature is known, the identification of the space-dependent reac-

tion coefficient from final temperature measurements has been investigated theoretically

and numerically, see Chapter 5. On the other hand, when the initial temperature is un-

known, this BHCP is well-known to be severely ill-posed, but conditions under which it

can become stable are well-known, Cannon & Douglas (1967); Miranker (1961). More-

over, there were many numerical techniques to reconstruct the unknown initial tempera-

ture, including the iterative CGM algorithm, Alifanov (1994); Özişik & Orlande (2000),

the BEM, Han et al. (1995), the elliptic approximation together with the BEM, Lesnic
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u(x, t1) = φ1(x)

k(x)∂u
∂ν

+ α(x)u = µ(x, t)

u(x, 0)|x∈Ω = φ(x) =?

Figure 6.1: Schematic of the inverse problem under investigation.

et al. (1998), the Tikhonov regularization approach, Muniz et al. (1999), the Fourier reg-

ularization method, Fu et al. (2007), and the non-local boundary value problem method,

Hào et al. (2009). It is also worth noting, Colton (1979), for the solution of the BHCP

for the heat equation with heterogeneous thermal conductivity and the more recent inves-

tigation, Tuan et al. (2017), of the BHCP for the nonlinear heat equation.

Prior to this study, the space-dependent reaction coefficient and the initial tempera-

ture were simultaneously reconstructed in Yamamoto & Zou (2001) from temperature

measurements at a fixed time and in a subregion of the space-time domain. The stability

of the inverse problem and the existence of a minimizer to the Tikhonov’s first-order reg-

ularization functional were proved. The multi-grid gradient method was used to obtain

the numerical solution of the nonlinear finite element minimization problem. In a subse-

quent paper, Choulli & Yamamoto (2008), the previous reaction coefficient and the initial

temperature were determined simultaneously with the Robin coefficient, which appears

in a convection Robin boundary condition, from final time measurements only, provided

that the reaction coefficient is a-priori known on a sub-domain of the heat conductor. The

uniqueness and stability for this inverse problem were obtained.

In this chapter, the space-dependent reaction coefficient and initial temperature are

determined from temperature observations at the final time T and at a instant of time

t1, where t1 ∈ (0, T ). This is a completely new inverse problem, sketched in Figure

6.1, which has never been investigated before. The reaction coefficient is proved to be

unique from the contraction mapping principle for the problem during the time-layer
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[t1, T ], and finally the initial temperature is obtained uniquely from the energy estimate

for the BHCP during the time-layer [0, t1], Cao et al. (2018). Next, the simultaneous and

numerical reconstruction of the reaction coefficient and initial temperature is carried out

by minimizing the least-squares objective functional. The Fréchet gradient components

with respect to the two unknowns are obtained together with the adjoint problem. Since

the inverse problem is nonlinear and unstable, the CGM is regularized by the discrepancy

principle, Alifanov (1994); Özişik & Orlande (2000), to obtain a stable and accurate

numerical solution.

The mathematical formulation of the multi-component inverse problem under inves-

tigation is presented in section 6.2 together with the uniqueness result for the inverse

problem. The variational formulation and the iterative CGM are presented in Sections

6.3 and 6.4. Numerical results are presented and discussed in Section 6.5 and finally,

Section 6.6 highlights the conclusions.

6.2 Mathematical formulation

In the bounded domain Ω ⊂ Rd with boundary ∂Ω ∈ C2+l1, consider the transient heat

transfer process given by the following mathematical model:{
∂u
∂t

(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t) + f(x, t), (x, t) ∈ QT ,

k(x)∂u
∂ν

+ α(x)u(x, t) = µ(x, t), (x, t) ∈ ST , u(x, 0) = φ(x), x ∈ Ω,
(6.1)

where k(x) = (kij(x))i,j=1,d is the thermal conductivity, q(x) is the reaction coefficient,

α(x) represents the Robin coefficient, and f(x, t), µ(x, t) and φ(x) represent an internal

source, heat flux and initial temperature, respectively. The convective boundary condition

in (6.1) involving the Robin coefficient, α(x) on x ∈ ∂Ω, is the most important boundary

condition for quenching process simulation, Trombe et al. (2003).

For known system functions (k(x), q(x), α(x)), if we consider (f, µ, φ) as the in-

puts for the heat conduction process, then (6.1) defines a well-posed process, namely,

the temperature solution u(x, t) to (6.1) is well-defined. However, in some engineer-

ing situations, the system parameters as well as some inputs may be unknown. To be

precise, we assume that the thermal conductivity k(x) and the Robin coefficient α(x)

are known, but q(x) and φ(x) are unknown. We are interested in the determination of

1That is, each point of ∂Ω has a neighbourhood in which ∂Ω is the graph of a function xd =

f(x1, . . . , xd−1) of class C2+l consisting of functions which themselves and all derivatives up to the
second-order are Hölder continuous with exponent l ∈ (0, 1).
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(q(x), φ(x), u(x, t)) satisfying (6.1) and the extra temperature measurements at some in-
ternal time t1 ∈ (0, T ) and the final time t = T , i.e., we are given

u(x, t1) = φ1(x), u(x, T ) = φ2(x), x ∈ Ω. (6.2)

A sketch of the inverse problem under investigation is presented in Figure 6.1.

Remark 6.2.1. A weighted time-average temperature observation

φ2(x) =

∫ T

t1

ω(t)u(x, t)dt

for x ∈ Ω, with ω > 0 a given weight function, may be specified in place of the second
condition u(x, T ) = φ2(x) for x ∈ Ω, in (6.2), see Prilepko & Kostin (1993) and Chapter
5. Note that the input data (6.2) and the output components q(x) and φ(x) of the inverse
problem are both spatially distributed for x ∈ Ω and therefore, the rule of thumb of
trace functionals in prescribing the extra data with respect to the unknowns is followed,
Cannon et al. (1990). In case the destructive temperature measurements (6.2) are not per-
mitted or available, non-destructive boundary temperature (or heat flux) measurements
can be used instead, but this resulting non-characteristic, nonlinear and ill-posed inverse
problem is deferred to a future work .

In practical cases, measurements unavoidably contain some noise. Therefore, from
the numerical implementations point of view, we are in fact seeking the solution only
approximately from the noisy data (φε1, φ

ε
2) of (φ1, φ2) satisfying

‖φε1 − φ1‖L2(Ω) ≤ ε, ‖φε2 − φ2‖L2(Ω) ≤ ε, (6.3)

where ε ≥ 0 represents the noise level.
In summary, our inverse problem is to identify the reaction coefficient q(x), the initial

status φ(x), and the temperature u(x, t) throughout QT , from (6.1), and (6.2) or the noisy
data (φε1, φ

ε
2) satisfying (6.3). To analyse the above inverse problem, we need the follow-

ing well-posedness result for the direct problem (6.1) (see Ladyzhenskaia et al. (1968),
p.320).

Lemma 6.2.2. Suppose kij = kji ∈ C1+l(Ω), i, j = 1, d, satisfying (5.3), q ∈ C l(Ω)

and α ∈ C1+l(∂Ω). Then, for given f ∈ C l,l/2(QT ), φ ∈ C2+l(Ω), µ ∈ C1+l,(1+l)/2(ST )

satisfying the compatibility condition

k(x)
∂φ

∂ν
(x) + α(x)φ(x) = µ(x, 0), x ∈ ∂Ω,

the direct problem (6.1) has a unique solution u ∈ C2+l,1+l/2(QT ) satisfying the estimate

‖u‖C2+l,1+l/2(QT ) ≤ c
(
‖f‖Cl,l/2(QT ) + ‖φ‖C2+l(Ω) + ‖µ‖C1+l,(1+l)/2(ST )

)
. (6.4)
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Notice, the inverse problem (6.1) and (6.2) is nonlinear for unknown pair (q, φ). We
state below the uniqueness for this inverse problem. Define Q := {q(x) : q ∈ C l(Ω), 0 <

q− ≤ q(x) ≤ q+}, Φ := {φ(x) : 0 < φ0 ≤ φ ∈ C2+l(Ω)} where q± and φ0 are given
positive constants.

Theorem 6.2.3 (Cao et al. (2018)). For known 0 < k0 ≤ k ∈ C1+l(Ω), 0 ≤ α ∈
C1+l(∂Ω), 0 < f0 ≤ f ∈ C l,l/2(Q) and 0 ≤ µ ∈ C1+l,(1+l)/2(S), the solution to the
inverse problem (6.1) and (6.2) is unique in Q× Φ.

6.3 Analysis

The unique reconstruction of q(x) and φ(x) for x ∈ Ω, together with the temperature
u(x, t) for (x, t) ∈ QT , from specified temperatures (6.2) at two instants t1 and T is
implemented by the following two steps:

• S1: Recover the solution (q(x), u(x, t)) satisfying the inverse problem
∂u
∂t

(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t) + f(x, t), (x, t) ∈ Ω× (t1, T ),

k(x)∂u
∂ν

+ α(x)u(x, t) = µ(x, t), (x, t) ∈ ∂Ω× [t1, T ],

u(x, t1) = φ1(x), u(x, T ) = φ2(x), x ∈ Ω;

• S2: With q(x) in Ω already determined in S1, recover the solution (φ(x), T (x, t))

of the BHCP given by{
∂u
∂t

(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t) + f(x, t), (x, t) ∈ Ω× (0, t1),

k(x)∂u
∂ν

+ α(x)u(x, t) = µ(x, t), (x, t) ∈ ∂Ω× [0, t1], u(x, t1) = φ1(x), x ∈ Ω.

Although the above reconstruction process, which recovers three unknowns step by
step, is clear for the formal uniqueness, the numerical implementation is not so easy, since
the reconstruction error in one step will contaminate the recovery in the next step. Step
S1 is the challenging since the inverse problem is both nonlinear and ill-posed, whilst
Step S2 considers a linear BHCP which has been investigated in many studies but which
is still challenging due to its severe ill-posedness and heterogeneity of the material.

In the following, we reconstruct q(x) and φ(x) simultaneously using the noisy data
(φε1(x), φε2(x)). To deal with these noisy situations, we reformulate the inverse problem
as its optimization version. Let u(x, t; q, φ) be the solution of the direct problem (6.1).
Introduce the admissible sets

A1 = {q ∈ L∞(Ω) : 0 < q− ≤ q(x) ≤ q+, a.e. x ∈ Ω},

A2 = {φ ∈ L2(Ω) : 0 ≤ φ(x) ≤ F0, a.e. x ∈ Ω}.
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The quasi-solution of the inverse problem is obtained by minimizing the least-squares
objective functional J(q, φ) : A1 ×A2 → R+ defined by

J(q, φ) =
1

2

(
‖u(·, t1; q, φ)− φε1(·)‖2

L2(Ω) + ‖u(·, T ; q, φ)− φε2(·)‖2
L2(Ω)

)
, (6.5)

where u(x, t; q, φ) ∈ H1,0(QT ) is the weak solution to (6.1) satisfying the variational
form∫

QT

(
−u∂η

∂t
+ (k∇u) · ∇η + quη

)
dxdt+

∫
ST

αuηdsdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(x, 0)dx, ∀η ∈ H1,1(QT ), η(·, T ) = 0. (6.6)

The existence and uniqueness of u(q, φ) ∈ H1,0(QT ) satisfying (6.6) for the direct
problem (6.1) can be found in Tröltzsch (2010). Moreover,

‖u‖H1,0(QT ) + max
t∈[0,T ]

‖u(·, t)‖L2(Ω) ≤ c
(
‖f‖L2(QT ) + ‖µ‖L2(ST ) + ‖φ‖L2(Ω)

)
(6.7)

for some constant c > 0 independent of f , µ and φ.
Inspired by the approaches in Hào et al. (2013); Keung & Zou (1998); Yamamoto

& Zou (2001), the existence of a minimizer for the objective functional (6.5) over the
admissible set A1 ×A2 is established as follows.

Theorem 6.3.1. There exists at least one minimizer to the optimization problem (6.5) and
(6.6).

Proof. Since infA1×A2 J(q, φ) =: J0 ≥ 0, there exists a minimizing sequence

{(qn, φn) : n ∈ N} ⊂ A1 ×A2

such that
lim
n→∞

J(qn, φn) = J0.

Since {(qn, φn) : n ∈ N} is uniformly bounded in L∞(Ω)×L2(Ω) and thus there exists a
subsequence, still denoted by {qn, φn}, such that (qn, φn) ⇀ (q∗, φ∗) in L∞(Ω)× L2(Ω)

with (q∗, φ∗) ∈ A1 × A2. The a-priori estimate (6.7) implies that the sequence {un :=

u(qn, φn) : n ∈ N} is uniformly bounded in H1,0(QT ), noticing that the constant c
depends only on q+. Thus we may extract a subsequence, still denoted by {un : n ∈ N}
such that un ⇀ u∗ ∈ H1,0(QT ) in H1,0(QT ).

From the definition (6.6) of the weak solution, for any η ∈ H1,1(QT ), η(·, T ) = 0,
we have ∫

QT

(
−un∂η

∂t
+ (k∇un) · ∇η + qnunη

)
dxdt+

∫
ST

αunηdsdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φnη(x, 0)dx. (6.8)
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The third term in the left-hand side of (6.8) can be rewritten as∫
QT

qnunηdxdt =

∫
QT

q∗unηdxdt+

∫
QT

(qn − q∗)unηdxdt.

Since qn ⇀ q∗ in L∞(Ω), using the estimate (6.6) for un and the Lebesgue dominant
convergence theorem giving

∫
QT

(qn − q)unηdxdt→ 0, finally (6.8) leads to∫
QT

(
−u∗∂η

∂t
+ (k∇u∗) · ∇η + q∗u∗η

)
dxdt+

∫
ST

αu∗ηdsdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φ∗η(x, 0)dx,

by un ⇀ u∗ in H1,0(QT ), H1,0(QT ) ↪→ L2(QT ) compactly and un|ST ⇀ u∗|ST in
L2(ST ).

Thus we have u∗ = u(q∗, φ∗) due to the uniqueness of weak solution to direct problem
(6.1). Now the lower semi-continuity of norms implies

J(q∗, φ∗) =
1

2

(
‖u∗(·, t1)− φε1(·)‖2

L2(Ω) + ‖u∗(·, T )− φε2(·)‖2
L2(Ω)

)
≤ 1

2
lim
n→∞

(
‖un(·, t1)− φε1(·)‖2

L2(Ω) + ‖un(·, T )− φε2(·)‖2
L2(Ω)

)
≤ lim infn→∞J(qn, φn) = inf

A1×A2

J(q, φ),

i.e., {q∗, φ∗} is a minimizer of the optimization problem over A1 × A2. The proof is
complete.

To find the minimizer, we will apply CGM where the gradient of J(q, φ) is required,
which is ensured by the following lemma.

Lemma 6.3.2. The mapping (q, φ) 7→ u(q, φ) is Lipschitz continuous from A1 toH1,0(QT )

with respect to q, and from A2 to H1,0(QT ) with respect to φ, i.e.,

‖u(q + ∆q, φ)− u(q, φ)‖H1,0(QT ) ≤ c‖∆q‖L∞(Ω), (6.9)

‖u(q, φ+ ∆φ)− u(q, φ)‖H1,0(QT ) ≤ c‖∆φ‖L2(Ω) (6.10)

for any q, q+∆q ∈ A1, φ, φ+∆φ ∈ A2 and the corresponding u(q, φ), u(q+∆q, φ), u(q, φ+

∆φ) ∈ H1,0(QT ).

Proof. The proof is just a straightforward application of (6.7) to the initial-boundary
value problems for ∆uq := u(q + ∆q, φ)− u(q, φ) and ∆uφ := u(q, φ+ ∆φ)− u(q, φ).
We omit the details.

Based on the above lemma, now we can prove the differentiability of u(q, φ).
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Lemma 6.3.3. The mapping (q, φ) 7→ u(q, φ) is Fréchet differentiable with respect to
q and φ, i.e., there exist two bounded linear operators Uq : A1 7→ H1,0(QT ) and Uφ :

A2 7→ H1,0(QT ) such that

lim
‖∆q‖L∞(Ω)→0

‖u(q + ∆q, φ)− u(q, φ)− Uq∆q‖H1,0(Qt)

‖∆q‖L∞(Ω)

= 0, (6.11)

lim
‖∆φ‖L2(Ω)→0

‖u(q, φ+ ∆φ)− u(q, φ)− Uφ∆φ‖H1,0(QT )

‖∆φ‖L2(Ω)

= 0. (6.12)

Proof. For given q ∈ A1, consider the problem∂w
∂t

= ∇ · (k∇w)− qw −∆qu(q, φ), (x, t) ∈ QT ,

k(x)∂w
∂ν

+ α(x)w = 0, (x, t) ∈ ST , w(x, 0) = 0, x ∈ Ω,
(6.13)

for ∆q ∈ L∞(Ω) such that q + ∆q ∈ A1, where u(q, φ) is the solution to direct problem
(6.1). Then there exists a unique solution w(x, t) ∈ H1,0(QT ) for (6.13) depending on
∆q linearly, and by (6.7), the mapping ∆q 7→ w is from L∞(Ω) to H1,0(QT ), which is
defined as Uq.

Define v := u(q + ∆q, φ) − u(q, φ) − Uq∆q = ∆uq − w. Then, it is easy to verify
that ∆uq satisfies the parabolic problem

∂(∆uq)

∂t
= ∇ · (k∇(∆uq))− q∆uq −∆q(∆uq + u(q, φ)), (x, t) ∈ QT ,

k(x)∂(∆uq)

∂ν
+ α(x)∆uq = 0, (x, t) ∈ ST , ∆uq(x, 0) = 0, x ∈ Ω.

(6.14)

Using (6.13), then v satisfies∂v
∂t

= ∇ · (k∇v)− qv −∆q∆uq, (x, t) ∈ QT ,

k(x)∂v
∂ν

+ α(x)v = 0, (x, t) ∈ ST , v(x, 0) = 0, x ∈ Ω.

Applying (6.7) to this problem, we obtain

‖v‖H1,0(QT ) ≤ c‖∆q∆uq‖L2(QT ) ≤ c‖∆q‖L∞(Ω)‖∆uq‖H1,0(QT ),

Using (6.9) in Lemma 6.3.2, the above estimate leads to

‖u(q + ∆q, φ)− u(q, φ)− Uq∆q‖H1,0(QT ) = ‖v‖H1,0(QT ) ≤ c‖∆q‖2
L∞(Ω).

So we have proven (6.11).
Similarly, the function ∆uφ = u(q, φ+ ∆φ)− u(q, φ) satisfies the problem

∂∆uφ
∂t

= ∇ · (k∇(∆uφ))− q∆uφ, (x, t) ∈ QT ,

k(x)
∂(∆uφ)

∂ν
+ α(x)∆uφ = 0, (x, t) ∈ ST , ∆uφ(x, 0) = ∆φ(x), x ∈ Ω,

(6.15)

which defines a linear operator Uφ on ∆φ. Then, the relation (6.12) can be proven anal-
ogously. The proof is complete.
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Theorem 6.3.4. The objective functional J(q, φ) is Fréchet differentiable and its Fréchet
derivatives J ′q(q, φ) and J ′φ(q, φ) are given by

J ′q(q, φ) = −
∫ T

0

u(x, t)λ(x, t)dt, x ∈ Ω, (6.16)

J ′φ(q, φ) = λ(x, 0), x ∈ Ω, (6.17)

where λ satisfies the following adjoint problem:
∂λ
∂t

= −∇ · (k∇λ) + qλ− (u(x, t1; q, φ)− φε1)δ(t− t1)

−2(u(x, T ; q, φ)− φε2)δ(t− T ), (x, t) ∈ QT ,

k(x)∂λ
∂ν

+ α(x)λ = 0, (x, t) ∈ ST , λ(x, T ) = 0, x ∈ Ω,

(6.18)

where δ(·) denotes the Dirac delta function.

Proof. Taking any ∆q ∈ L∞(Ω) such that q + ∆q ∈ A1, we have

J(q + ∆q, φ)− J(q, φ)

=
1

2
‖∆uq(·, t1)‖2

L2(Ω) +

∫
QT

∆uq(x, t) [u(x, t1; q, φ)− φε1(x)] δ(t− t1)dxdt

+
1

2
‖∆uq(·, T )‖2

L2(Ω) + 2

∫
QT

∆uq(x, t) [u(x, T ; q, φ)− φε2(x)] δ(t− T )dxdt.

Let λ be the weak solution of the problem (6.18). Integrating by parts in the above
identity, we have

J(q + ∆q, φ)− J(q, φ) =

∫
QT

∆uq

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
dxdt

+
1

2
‖∆uq(·, t1)‖2

L2(Ω) +
1

2
‖∆uq(·, T )‖2

L2(Ω),

and ∫
QT

∆uq

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
dxdt

=

∫
QT

λ

{
∂(∆uq)

∂t
−∇ · (k∇(∆uq)) + q∆uq

}
dxdt−

∫
Ω

∆uqλ|T0 dx

+

∫
ST

(
k
∂(∆uq)

∂ν
λ− k∂λ

∂ν
∆uq

)
dsdt = −

∫
QT

∆qu(q + ∆q, φ)λdxdt.

Using the decomposition on the first term of the right-hand side

−
∫
QT

∆qu(q + ∆q, φ)λdxdt = −
∫
QT

∆q∆uqλdxdt−
∫
QT

∆quλdxdt
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and noticing ∆uq the problem (6.14) with zero boundary and initial conditions and
by (6.7), we have max

{
‖∆uq(·, t1)‖2

L2(Ω), ‖∆uq(·, T )‖2
L2(Ω)

}
≤ c‖u‖2

L2(QT )‖∆q‖2
L∞(Ω),

from Lemma 6.3.2 and∣∣∣∣∫
QT

∆q∆uqλdxdt

∣∣∣∣ ≤ ‖∆q‖L∞(Ω)‖∆uq‖L2(QT )‖λ‖L2(QT ) ≤ c‖∆q‖2
L∞(Ω).

Thus, J(q + ∆q, φ) − J(q, φ) = −
∫
QT

∆quλdxdt + o(‖∆q‖L∞(Ω)), which means that
the Fréchet derivative J ′q(q, φ) is given by (6.16). Using a similar approach, we obtain
J(q, φ + ∆φ)− J(q, φ) =

∫
Ω

∆φλ(x, 0)dx + o(‖∆φ‖L2(Ω)), thus the Fréchet derivative
J ′φ(q, φ) is given by (6.17). The proof is complete.

6.4 Conjugate gradient method

The following iterative process based on the CGM is now used for the estimation of q(x)

and φ(x) by minimizing the objective functional J(q, φ):

qn+1(x) = qn(x) + βnq d
n
q , φn+1(x) = φn(x) + βnφd

n
φ, n = 0, 1, 2, · · · , (6.19)

where n denotes the number of iterations, q0(x) and φ0(x) are the initial guesses for q(x)

and φ(x), βnq and βnφ are the step search sizes for q(x) and φ(x) in passing from iteration
n to iteration n+ 1, and dnq and dnφ are the directions of descent given by

dnq =

{
−J ′0q ,
−J ′nq + γnq d

n−1
q ,

dnφ =

{
−J ′0φ ,
−J ′nφ + γnφd

n−1
φ , n = 1, 2, · · ·

(6.20)

The Fletcher–Reeves type conjugate gradient coefficients γnq and γnφ are given by

γnq =
‖J ′nq ‖2

L2(Ω)

‖J ′n−1
q ‖2

L2(Ω)

, γnφ =
‖J ′nφ ‖2

L2(Ω)

‖J ′n−1
φ ‖2

L2(Ω)

, n = 1, 2, · · · (6.21)

The search step sizes βnq and βnφ are found by minimizing

J(qn+1, φn+1) =
1

2

∫
Ω

[u(x, t1; qn + βnq d
n
q , φ

n + βnφd
n
φ)− φε1(x)]2dx

+
1

2

∫
Ω

[u(x, T ; qn + βnq d
n
q , φ

n + βnφd
n
φ)− φε2(x)]2dx.

Setting ∆qn = P n
q and ∆φn = P n

φ , the temperature u(x, t1; qn + βnq d
n
q , φ

n + βnφd
n
φ) and

u(x, T ; qn + βnq d
n
q , φ

n + βnφd
n
φ) are linearised by a Taylor series expansion in the form

u(x, t′; qn + βnq d
n
q , φ

n + βnφd
n
φ)

≈u(x, t′; qn, φn) + βnq ∆uq(x, t
′; qn, φn) + βnφ∆uφ(x, t′; qn, φn)
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where t′ represents t1 and T , respectively. Then, denoting

un1 = u(x, t1; qn, φn), un2 = u(x, T ; qn, φn),

∆unq,1 = ∆uq(x, t1; qn, φn), ∆unq,2 = ∆uq(x, T ; qn, φn),

∆unφ,1 = ∆uφ(x, t1; qn, φn), ∆unφ,2 = ∆uφ(x, T ; qn, φn),

we have

J(qn+1, φn+1) =
1

2

∫
Ω

[un1 + βnq ∆unq,1 + βnφ∆unφ,1 − φε1(x)]2dx

+
1

2

∫
Ω

[un2 + βnq ∆unq,2 + βnφ∆unφ,2 − φε2(x)]2dx.

We calculate the partial derivatives with respect to βnq and βnφ to obtain

∂J

∂βnq
= C1β

n
q + C2β

n
φ + C3,

∂J

∂βnφ
= C2β

n
q + C4β

n
φ + C5,

where

C1 =

∫
Ω

[
(∆unq,1)2 + (∆unq,2)2

]
dx, C2 =

∫
Ω

(
∆unq,1∆unφ,1 + ∆unq,2∆unφ,2

)
dx,

C3 =

∫
Ω

[
(un1 − φε1)∆unq,1 + (un2 − φε2)∆unq,2

]
dx, C4 =

∫
Ω

[
(∆unφ,1)2 + (∆unφ,2)2

]
dx,

C5 =

∫
Ω

[
(un1 − φε1)∆unφ,1 + (un2 − φε2)∆unφ,2

]
dx.

Next, we set ∂J
∂βnq

= ∂J
∂βnφ

= 0, and obtain the search step sizes βnq and βnφ as follows:

βnq =
C2C5 − C3C4

C2
2 − C1C4

, βnφ =
C2C3 − C1C5

C2
2 − C1C4

, n = 0, 1, · · · . (6.22)

The unregularized iterative procedure given by (6.19) does not provide the CGM with
the stabilization necessary for the minimization of the function (6.5) to be classified as
well-posed because of the errors inherent in the measurements (6.2). However, the CGM
algorithm may become well-posed if the discrepancy principle is used to stop the iterative
procedure when the following criterion is satisfied:

J(qn, φn) ≤ ε (6.23)

where ε is some small positive value, e.g., ε = 10−5, for the exact temperature measure-
ments, and

ε =
1

2

(
‖φ1 − φε1‖2

L2(Ω) + ‖φ2 − φε2‖2
L2(Ω)

)
,

when the measured temperatures contain noise.
To summarise, the steps of the CGM for reconstructing the unknown space-dependent

coefficients q(x) and φ(x) numerically, are as follows:
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S1. Set n = 0 and choose initial guesses q0(x) and φ0(x) for the unknown q(x) and

φ(x), respectively.

S2. Solve the direct problem (6.1) (using e.g., FDM) to compute u(x, t; qn, φn) and

J(qn, φn).

S3. If the stopping condition (6.23) is satisfied, then go to S7. Else go to S4.

S4. Solve the adjoint problem (6.18) to compute the function λ(x, t; qn, φn), and the

gradients J ′q(q
n, φn) in (6.16) and J ′φ(qn, φn) in (6.17). Compute the conjugate

coefficients γnq and γnφ in (6.21), and the directions of descent dnq and dnφ in (6.20).

S5. Solve the sensitivity problems (6.14) and (6.15) to compute ∆uq(x, t; q
n, φn) and

∆uφ(x, t; qn, φn) by taking ∆qn(x) = dnq (x) and ∆φn(x) = dnφ(x), and compute

the search step sizes βnq and βnφ in (6.22).

S6. Compute qn+1 and φn+1 by (6.19). In case qn+1 takes negative values replace it by

max{0, qn+1} in order to enforce the physical constraint that the coefficient q(x)

cannot be negative. Set n = n+ 1 and return to S2.

S7. End.

Remark 6.4.1. At this stage it is worth mentioning that another possible approach, moti-
vated by Johansson & Lesnic (2008), was also developed based on decoupling the simul-
taneously identification into first obtaining the reaction coefficient q(x) using the CGM in
Chapter 5 by solving the inverse coefficient problem in the region Ω× (t1, T ), after which
the initial temperature φ(x) is obtained using an elliptic approximation method, Lesnic
et al. (1998), for solving the BHCP in the region Ω× (0, t1). However, due to the uncon-
trollable noise present or accumulated in q(x), φ1(x) and ∂tu(x, t1), which are needed
as input in this latter method, the numerically obtained results were rather inconsistent
and therefore they are not presented.

6.5 Numerical results and discussions

In this section we show the numerical results for the initial temperature φ(x) and the re-

action coefficient q(x) reconstructed simultaneously by the nonlinear CGM, as described

in Section 6.4. The FDM based on the C-N scheme in one dimension d = 1, or the ADI

scheme in two dimension d = 2, is employed to solve the direct, sensitivity and adjoint
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problems. Note that the source term in (6.18) contains the Dirac delta function which is

approximated by

δa(t− t) ≈
1

a
√
π
e−(t−t)2/a2

,

where t denotes t1 and T , and a is a small positive constant taken as a = 10−3. The

Simpson’s rule is used to approximate all the integrals involved. We define the errors at

the iteration number n for q(x) and φ(x) as

E1(qn) = ‖q − qn‖L2(Ω), (6.24)

E2(φn) = ‖φ− φn‖L2(Ω). (6.25)

The temperature measurement φε1 at time t1 and the final temperature measurement φε2
at T containing random noise are simulated by adding to the exact data φ1 and φ2 error

terms generated from a normal distribution in the following forms:

φε1 = φ1 + σ × random(1), φε2 = φ2 + σ × random(1), (6.26)

where σ = p
100
×maxx∈Ω{|φ1(x)|, |φ2(x)|} is the standard deviation, p% represents the

percentage of noise, and the term random(1) generates random values from the normal

distribution with zero mean and standard deviation equal to unity using MATLAB.

6.5.1 Example 1

In the one-dimensional case we take Ω = (0, 1). We also take t1 = 0.5, T = 1 and

k ≡ 1, f(x, t) = x(1 + 2x+ x2)e−t, α(x) = 1, µ(0, t) = e−t,

µ(1, t) = 4e−t, φ1(x) = e−0.5(1 + x2), φ2(x) = e−1(1 + x2).

Then the analytical solution of the inverse problem is

q(x) = 3 + x, φ(x) = 1 + x2, x ∈ Ω,

u(x, t) = e−t(1 + x2), (x, t) ∈ QT . (6.27)

For obtaining the components q(x), φ(x) and u(x, t) of the solution we use the FDM

Crank-Nicolson scheme with I = 101 and M = 21 to solve the PDEs involved in the

CGM. In this example, the initial guesses q0 and φ0 for q(x) and φ(x) are chosen as

q0(x) = 2 and φ0(x) = x+ 2.

In Figures 6.2, 6.3(a) and 6.3(b), the objective functional J(qn, φn) given by (6.5),

and the errors E1(qn) given by (6.24) and E2(φn) given by (6.25) are illustrated for the
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simultaneous numerical reconstruction of the initial temperature φ(x) and the reaction
coefficient q(x) using the CGM algorithm of Section 6.4. Figure 6.2 shows the monotonic
decreasing convergence of the objective functional (6.5), as a function of the number of
iterations n, for p ∈ {0, 1} noise. The stopping number for the iterations is 9 for no noise
p = 0, and 2 iterations according to the discrepancy principle (6.23) for p = 1 noise.
These values are in good agreement with the optimal values of the iteration numbers,
which can be inferred from Figures 6.3(a) and 6.3(b) included herein only for illustrative
purposes.

0 5 10
Number of iterations

10-8

10-6

10-4

10-2

100

J
(q

n
,

n
)

 p=1, n=2

 p=0, n=9

Figure 6.2: The objective functional J(qn, φn) (6.5) with p ∈ {0, 1, 2} noise, for Example
1.
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Figure 6.3: The errors (a) (6.24) and (b) (6.25) with p ∈ {0, 1} noise, for Example 1.

The corresponding numerical solutions for q(x) and φ(x) are shown in Figures 6.4(a)
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and 6.4(b), respectively. First, it can be seen that in the case of no noise, the retrieved
solutions for both reaction coefficient q(x) and initial temperature φ(x) are in very good
agreement (see Table 6.1) with the exact solutions (6.27). Second, in the case of noisy
data p = 1, the retrieved solutions are stable and also in reasonable agreement (see Table
6.1) with the exact solutions (6.27) for both functions.
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2

2.2

(x
)

 Exact
 p=0
 p=1

Figure 6.4: The exact and numerical results for (a) the reaction coefficient q(x) and (b)
the initial temperature φ(x) with p ∈ {0, 1} noise, for Example 1.

p I M ε N E1 E2

0 101 21 5.0E-07 9 1.9E-02 2.0E-02
1 101 21 3.0E-04 2 9.2E-02 6.7E-02

Table 6.1: The stopping iteration numbers N and the errors E1 and E2 for p ∈ {0, 1}
noise, for Example 1.

6.5.2 Example 2

Previous example has been concerned with the recovery of smooth functions in (6.27).
In this example, we investigate a more severe situation in which the reaction coefficient
in (6.28) is a discontinuous function. We take Ω = (0, 1), t1 = 0.5, T = 1, k ≡ 1, α ≡ 1,
µ(0, t) = µ(1, t) = e−t, and

f(x, t) = π2 sin(πx)e−t + (1 + π + sin(πx))e−t ×


1− x, x ∈ [0, 0.3],
−x+ 4x2, x ∈ (0.3, 0.7),
2, x ∈ [0.7, 1],

φ1(x) = e−0.5(1 + π + sin(πx)), φ2(x) = e−1(1 + π + sin(πx)).

117



6. SIMULTANEOUS RECONSTRUCTION OF THE SPACE-DEPENDENT
REACTION COEFFICIENT AND INITIAL TEMPERATURE

Then the analytical solution of the inverse problem is

u(x, t) = (1 + π + sin(πx))e−t, φ(x) = 1 + π + sin(πx),

q(x) =


2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1].

(6.28)
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Figure 6.5: The exact and numerical results for (a) the reaction coefficient q(x) and (b)
the initial temperature φ(x) with p ∈ {0, 1} noise, for Example 2.

p I M ε N E1 E2

0 101 101 1.0E-07 43 0.1114 0.1260
1 101 101 1.2E-03 7 0.2372 0.1309

Table 6.2: The stopping iteration numbers N and the errors E1 and E2 for p ∈ {0, 1}
noise, for Example 2.

In order to obtain the components q(x), φ(x) and u(x, t) of the solution, the initial

guesses are chosen as q0(x) = 1 and φ0(x) = 2 for the two unknowns q(x) and φ(x),

respectively. The Crank-Nicolson FDM scheme with I = M = 101 is utilized to solve

the PDEs involved in the CGM. The numerical results for q(x) and φ(x) are illustrated in

Figures 6.5(a) and 6.5(b), respectively. We also quantify the errors (6.24) and (6.25), as

shown in Table 6.2. For these errors and Figure 6.5 it can be concluded that the numerical

solutions are stable and reasonably accurate bearing in mind the difficult discontinuous

reaction coefficient q(x) in (6.28) that had to be retrieved.
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6.5.3 Example 3

In the two dimensional case we take Ω = (0, 1) × (0, 1). We also take t1 = 0.5, T = 1

and

k = I2, α ≡ 1, f(x1, x2, t) = (4 + x1 + x2)(1 + x2
1 + x2

2)e−t − 4e−t,

µ(0, x2, t) = (1 + x2
2)e−t, µ(1, x2, t) = (4 + x2

2)e−t,

µ(x1, 0, t) = (1 + x2
1)e−t, µ(x1, 1, t) = (4 + x2

1)e−t,

φ1(x1, x2) = e−0.5(1 + x2
1 + x2

2), φ2(x1, x2) = e−1(1 + x2
1 + x2

2).

The analytical solution of the inverse problem is given by

α(x1, x2) = 1, q(x1, x2) = 5 + x1 + x2, φ(x1, x2) = 1 + x2
1 + x2

2,

u(x1, x2, t) = (1 + x2
1 + x2

2)e−t. (6.29)
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Figure 6.6: (a) The exact and numerical results for q(x1, x2) for (b) p = 0 and (c) p = 1

noise, for Example 3.
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Figure 6.7: (a) The exact and numerical results for φ(x1, x2) for (b) p = 0 and (c) p = 1

noise, for Example 3.
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For the unknown reaction coefficient q(x1, x2) and initial temperature φ(x1, x2) we
employ the ADI scheme with I = J = M = 21 to solve the PDEs involved in the
CGM, with the initial guesses q0(x1, x2) = 4 and φ0(x1, x2) = 1.5 + x1 + x2. The exact
(6.29) and numerical solutions for the two unknown functions q(x1, x2) and φ(x1, x2),
obtained using the CGM of Section 6.4 are shown in Figures 6.5 and 6.6. The iterations
are stopped after 25 for p = 0 and 4 for p = 1, giving the errors (6.24) and (6.25) in Table
6.3.

p I J M ε N E1 E2

0 21 21 21 1.3E-07 25 0.0884 0.0375
1 21 21 21 3.2E-04 4 0.1117 0.0454

Table 6.3: The stopping iteration numbers N and the errors E1 and E2 for p ∈ {0, 1}
noise, for Example 3.

6.6 Conclusions

In this chapter, the space-dependent reaction coefficient and the initial temperature have
been reconstructed from temperature measurements at two different instants. The unique-
ness of the reaction coefficient and the initial temperature in the inverse problem holds.
The two unknown functions have been simultaneously reconstructed by minimizing a
least-squares objective functional. The existence of a minimizer of the objective func-
tional is proved, and the Fréchet gradients are obtained by a variational method. Then, the
CGM has been applied to simultaneously determine the two unknown quantities. Three
numerical experiments for one- and two-dimensional examples have been illustrated and
discussed. Good accuracy and reasonable stability have been achieved.

In the next chapter, the two unknown coefficients investigated here shall be recon-
structed simultaneously from time-average temperature measurements.
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Chapter 7

Simultaneous reconstruction of the
space-dependent reaction coefficient
and initial temperature from integral
temperature measurements

7.1 Introduction

In the previous chapter we have investigated the simultaneous reconstruction of the space-

dependent reaction coefficient and initial temperature from temperature measurements

(6.2) at two distinct instants. In this chapter, we address the same coefficient identification

but additional measurements are integral observations instead of time instant temperature

measurements. So, in this sense, the new inverse problem investigated in this chapter gen-

eralizes the inverse models considered in Chapter 6, which can be obtained by particular

choices of the integral weights, e.g. Dirac delta functions. For the numerical reconstruc-

tion, the least-squares objective functional is minimised to obtain the quasi-solutions of

the two unknown quantities. The existence of the minimizer for the objective functional

is presented, and the Fréchet gradients are derived using a variational method. In ad-

dition, we show that these Fréchet gradients are Lipschitz continuous. These gradients

and the adjoint problem are utilized in the CGM to reconstruct the unknown quantities

simultaneously. The global convergence of the CGM with the Fletcher-Reeves formula,

Fletcher & Reeves (1964), is established according to the arguments in Zoutendijk (1970)

obtained from the Lipschitz continuity property of the Fréchet gradients. Since the in-

verse problem is unstable, our CGM is regularised by the discrepancy principle, Alifanov

(1994).
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This chapter is organized as follows: Section 7.2 presents the mathematical formu-
lation of the nonlinear IHTP of reconstructing the unknown reaction coefficient and the
initial temperature, together with the objective functional to be minimized. The CGM
is introduced in Section 7.4, according to the Fréchet gradients obtained in Section 7.3,
and the global convergence of the algorithm is obtained. Three numerical examples are
discussed in Section 7.5. Finally, Section 7.6 highlights the conclusions.

7.2 Mathematical formulation

Let Ω ⊂ Rd, d = 1, 2, 3 be a bounded domain with sufficiently smooth boundary ∂Ω,
and consider the heat transfer problem given by (6.1) in the cylinder QT = Ω × (0, T ),
and T > 0 is a final time of interest.

Definition 7.2.1. A function u(x, t) ∈ V 1,0
2 (QT ) is called as a weak solution to the direct

initial-boundary value problem (6.1) if∫
QT

(
−u∂η

∂t
+ (k∇u) · ∇η + quη

)
dxdt+

∫
ST

αuηdsdt

=

∫
QT

fηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(·, 0)dx, ∀η ∈ H1,1(QT ) with η(·, T ) = 0.

(7.1)

The existence and uniqueness of the weak solution u(x, t) ∈ V 1,0
2 (QT ) to the initial-

boundary value direct problem (6.1) is presented as follows (Tröltzsch (2010), p.373):

Lemma 7.2.2. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω, and
suppose that f ∈ L2(QT ), 0 ≤ α ∈ L∞(∂Ω), µ ∈ L2(ST ) and φ ∈ L2(Ω). Let k satisfy
(5.3) and kij = kji ∈ L∞(Ω), i, j = 1, N , and q ∈ L∞(Ω), 0 < q− ≤ q(x) ≤ q+, a.e.,
x ∈ Ω, where, q−, q+ are two positive constants. Then the initial-boundary value direct
problem (6.1) has a unique weak solution u ∈ H1,0(QT ) that belongs to V 1,0

2 (QT ).

Note that by the direct problem (6.1) for a.e., t ∈ [0, T ], we know that

1

2

d

dt
‖u(·, t)‖2

L2(Ω) +

∫
Ω

(k|∇u|2 + qu2)dx+

∫
∂Ω

αu2ds =

∫
Ω

fudx+

∫
∂Ω

µuds.

By (5.3), q ≥ q− > 0, and α ≥ 0, we have

1

2

d

dt
‖u(·, t)‖2

L2(Ω) + min{q−, υ1}‖u(·, t)‖2
H1(Ω)

≤ c(‖u(·, t)‖2
L2(Ω) + ‖f(·, t)‖2

L2(Ω) + ‖µ(·, t)‖2
L2(∂Ω)),
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where c is a positive constant depending on Ω. Using the Gronwall’s inequality1, we can
obtain

max
t∈[0,T ]

‖u(·, t)‖2
L2(Ω) ≤ c(Ω, T )

(
‖f‖2

L2(QT ) + ‖µ‖2
L2(ST ) + ‖φ‖2

L2(Ω)

)
,

‖u‖2
H1,0(QT ) =

∫ T

0

‖u(·, t)‖2
H1(Ω)dt

≤ c(q−, υ1,Ω, T )
(
‖f‖2

L2(QT ) + ‖µ‖2
L2(ST ) + ‖φ‖2

L2(Ω)

)
.

Thus the weak solution u(x, t) ∈ V 1,0
2 (QT ) of the initial-boundary value direct problem

(6.1) satisfies the following estimate:

max
t∈[0,T ]

‖u(·, t)‖L2(Ω) + ‖u‖H1,0(QT ) ≤ C0

(
‖f‖L2(QT ) + ‖µ‖L2(ST ) + ‖φ‖L2(Ω)

)
(7.2)

where C0(q−, υ1,Ω, T ) is a positive constant.
The inverse problem is to determine the triplet (q(x), φ(x), u(x, t)) satisfying (6.1)

together with the time-integral temperature measurements,∫ T

0

ω1(t)u(x, t)dt = φ1(x), x ∈ Ω, (7.3)∫ T

0

ω2(t)u(x, t)dt = φ2(x), x ∈ Ω, (7.4)

where ω1(t) and ω2(t) ∈ L∞(0, T ) are two given functionally independent2 weight func-
tions, and φ1(x) and φ2(x) are given data which may be subject to noise due to measure-
ment errors. In particular, we are actually trying to recover the solution to the inverse
problem (6.1), (7.3) and (7.4) from the noisy data (φε1, φ

ε
2) satisfying

‖φε1 − φ1‖L2(Ω) ≤ ε, ‖φε2 − φ2‖L2(Ω) ≤ ε, (7.5)

where ε represents the noise level.

1Gronwall’s inequality. Let u be a nonnegative and continuous function on [0, T ], which satisfies the
ordinary differential inequality

u′(t) ≤ f(t)u(t) + g(t), a.e. t ∈ [0, T ],

where f(t) and g(t) are nonnegative, integrable functions on [0, T ]. Then

u(t) ≤ e
∫ T
0
f(τ)dτ

{
u(0) +

∫ T

0

g(τ)dτ

}
, ∀t ∈ [0, T ].

2The functions ω1 and ω2 are functionally independent if the only function f : R2 7→ R such that
f(ω1, ω2) = 0 is f = 0.
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Note that φ1(x) may mimic the temperature measurement at an instant time t1 ∈
(0, T ] if ω1(t) = δ(t− t1), namely,

u(x, t1) = φ1(x), x ∈ Ω, (7.6)

and φ2(x) the temperature at another instant time t2 ∈ (0, t1) if ω2(t) = δ(t−t2), namely,

u(x, t2) = φ2(x), x ∈ Ω, (7.7)

where δ is the Dirac delta function. The Dirac delta function δ(t−t1) can be approximated
by the function δa = 1

a
√
π
e−(t−t1)2/a2 with small positive parameter a, e.g., a = 10−3, and

so does δ(t − t2), such that the approximated weighted functions belong to the space
L∞(0, T ).

Other cases of potential interest may be obtained by taking the weights as cut-off
functions, e.g.,

ω1(t) = ω̃1(t)X[t1,T ](t), ω2(t) = ω̃2(t)X[0,t1](t), t ∈ [0, T ], (7.8)

where XD denotes the characteristic function of the domain D and ω̃1(t) and ω̃2(t) ∈
L2(0, T ), in which case (7.3) and (7.4) yield∫ T

t1

ω̃1(t)u(x, t)dt = φ1(x), x ∈ Ω, (7.9)∫ t1

0

ω̃2(t)u(x, t)dt = φ2(x), x ∈ Ω. (7.10)

The uniqueness of the general inverse problem given by (6.1) supplemented with (7.3)
and (7.4) is still to be established, but under some of the particular cases (7.6)–(7.10) the
inverse problem can be split in two separate inverse problem, namely, first identifying
q(x) and after that φ(x). For example, when solving the inverse problem given by (6.1),
(7.3) and (7.7), one can first identify q(x) by solving this in the layer Ω×(t2, t1) followed
by retrieving the initial data φ(x) in (6.1) by solving BHCP (6.1) and (7.7) in the layer
Ω × (0, t2). Similarly, when solving the inverse problem given by (6.1), (7.6) and (7.9),
for t1 < T , one can first identity q(x) by solving this in the layer Ω× (t1, T ) followed by
retrieving the initial data φ(x) in (6.1) by solving the BHCP (6.1) and (7.6) in the layer
Ω× (0, t1). We finally mention that uniqueness results and the numerical reconstructions
of the reaction coefficient q(x) from final time or time-average temperature measurements
can be found in Chapters 5 and 6.

For the numerical reconstruction we employ a variation formulation, as described
next.
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7.3 Analysis

Let u(q, φ) := u(x, t; q, φ) denote the weak solution to the initial-boundary value problem
(6.1) subject to a particular pair (q(x), φ(x)) ∈ L∞(Ω) × L2(Ω). Then, given φε1 and φε2
in L2(Ω) temperature measurements satisfying (7.5), the quasi-solution of the inverse
problem (6.1), (7.3) and (7.4) can be obtained by minimizing the following least-squares
objective functional:

J(q, φ) :=
1

2

∥∥∥∥∫ T

0

ω1(t)u(q, φ)dt− φε1
∥∥∥∥2

L2(Ω)

+
1

2

∥∥∥∥∫ T

0

ω2(t)u(q, φ)dt− φε2
∥∥∥∥2

L2(Ω)

,

(7.11)

subject to u ∈ V 1,0
2 (Q) satisfying the variational equality (7.1), over the admissible set

A1 × A2, where A1 = {q ∈ L∞(Ω) : 0 < q− ≤ q(x) ≤ q+, a.e. x ∈ Ω}, A2 = {φ ∈
L2(Ω) : |φ(x)| ≤ κ, a.e. x ∈ Ω}, for a positive constant κ.

Note that there exists at least one minimizer to the optimization problem (7.11), which
can be proved by the approaches of Theorem 6.3.1.

In order to numerically obtain the minimizer of the objective functional J(q, φ) (7.11),
the CGM can be applied together with the Fréchet gradient. Thus the adjoint problem to
(6.1), (7.3) and (7.4) is introduced and given by

∂λ
∂t

= −∇ · (k∇λ) + qλ− ω1(t)
(∫ T

0
ω1(τ)u(x, τ)dτ − φε1(x)

)
−ω2(t)

(∫ T
0
ω2(τ)u(x, τ)dτ − φε2(x)

)
, (x, t) ∈ QT ,

k(x)∂λ
∂ν

+ αλ = 0, (x, t) ∈ ST , λ(x, T ) = 0, x ∈ Ω.

(7.12)

Its weak solution λ ∈ V 1,0
2 (Q) to the adjoint problem (7.12) is defined as satisfying∫

QT

(
λ
∂η

∂t
+ (k∇λ) · ∇η + qλη

)
dxdt+

∫
ST

αληdsdt

=

∫
Ω

∫ T

0

ω1(t)η(x, t)dt

(∫ T

0

ω1(τ)u(x, τ)dτ − φε1(x)

)
dx

+

∫
Ω

∫ T

0

ω2(t)η(x, t)dt

(∫ T

0

ω2(τ)u(x, τ)dτ − φε2(x)

)
dx,

∀η ∈ H1,1(Q) with η(·, 0) = 0. (7.13)

Theorem 7.3.1 (Cao & Lesnic (2018b)). The objective functional J(q, φ) is Fréchet dif-
ferentiable, and J ′q(q, φ) and J ′φ(q, φ) are given by

J ′q(q, φ) = −
∫ T

0

u(x, t)λ(x, t)dt, (7.14)

J ′φ(q, φ) = λ(x, 0). (7.15)
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Proof. Take ∆q ∈ L∞(Ω) such that q+ ∆q ∈ A1, and denote by ∆uq := u(q+ ∆q, φ)−
u(q, φ) the increment of uwith respect to q. According to the initial-boundary value prob-
lem (6.1), this increment satisfies the sensitivity problem (6.14), and using the estimate
(7.2) for such parabolic problem, we have

‖∆uq‖L2(QT ) ≤ C0‖u∆q‖L2(QT ) ≤ C0‖∆q‖L∞(Ω)‖u‖L2(QT ).

Denote ∆Jq := J(q + ∆q, φ)− J(q, φ), then we have

∆Jq =
1

2

∥∥∥∥∫ T

0

ω1(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

+
1

2

∥∥∥∥∫ T

0

ω2(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

+

∫
QT

ω1(t)∆uq(x, t)

(∫ T

0

ω1(τ)u(x, τ)dτ − φε1(x)

)
dxdt

+

∫
QT

ω2(t)∆uq(x, t)

(∫ T

0

ω2(τ)u(x, τ)dτ − φε2(x)

)
dxdt.

By the adjoint problem (7.12) and the sensitivity problem (6.14), we have

∆Jq =
1

2

∥∥∥∥∫ T

0

ω1(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

+
1

2

∥∥∥∥∫ T

0

ω2(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

+

∫
QT

∆uq

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
dxdt,

and ∫
QT

∆uq

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
dxdt

=

∫
QT

λ

{
∂(∆uq)

∂t
−∇ · (k∇(∆uq)) + q∆uq

}
dxdt

+

∫
ST

{
k
∂(∆uq)

∂ν
λ− k∂λ

∂ν
∆uq

}
dsdt−

∫
Ω

∆uqλ|T0 dx

=−
∫
QT

∆qu(q + ∆q, φ)λdxdt = −
∫
QT

∆q∆uqλdxdt−
∫
QT

∆quλdxdt,

thus

∆Jq =
1

2

∥∥∥∥∫ T

0

ω1(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

+
1

2

∥∥∥∥∫ T

0

ω2(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

−
∫
QT

∆q∆uqλdxdt−
∫
QT

∆quλdxdt.

We have ∥∥∥∥∫ T

0

ω1(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

≤ c‖ω1‖2
L∞(0,T )‖∆uq‖2

L2(QT )

≤ cC2
0‖ω1‖2

L∞(0,T )‖u‖2
L2(QT )‖∆q‖2

L∞(Ω),
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where c > 0 depends on Ω, and similarly∥∥∥∥∫ T

0

ω2(t)∆uq(x, t)dt

∥∥∥∥2

L2(Ω)

≤ cC2
0‖ω2‖2

L∞(0,T )‖u‖2
L2(QT )‖∆q‖2

L∞(Ω),∣∣∣∣∫
QT

∆q∆uqλdxdt

∣∣∣∣ ≤ ‖∆q‖L∞(Ω)‖∆uq‖L2(QT )‖λ‖L2(QT )

≤ C0‖u‖L2(QT )‖λ‖L2(QT )‖∆q‖2
L∞(Ω).

Finally,

∆Jq = −
∫
QT

∆quλdxdt+ o
(
‖∆q‖L∞(Ω)

)
, (7.16)

which means that the Fréchet derivative J ′q(q, φ) is given by (7.14).
Similarly, take ∆φ ∈ L2(Ω) such that φ+ ∆φ ∈ A2, and denote by ∆uφ := u(q, φ+

∆φ) − u(q, φ) the increment of u with respect to φ, then this increment satisfies the
sensitivity problem (6.15). Then, we can obtain that the Fréchet derivative J ′φ(q, φ) is
given by (7.15) by the same approach. The theorem is proved.

7.4 Conjugate gradient method

The following iteration process based on the CGM scheme is applied for the reconstruc-

tion of the two unknown functions q(x) and φ(x) by minimizing the objective functional

J(q, φ) in (7.11):

qn+1(x) = qn(x) + βnq d
n
q (x), φn+1(x) = φn(x) + βnφd

n
φ(x), n = 0, 1, 2, · · · (7.17)

with the search directions dnq and dnφ given by

dnq =

{
−J ′0q ,
−J ′nq + γnq d

n−1
q ,

dnφ =

{
−J ′0φ ,
−J ′nφ + γnφd

n−1
φ ,

n = 1, 2, · · · (7.18)

where n is the subscript which denotes the number of iterations, J ′nq = J ′q(q
n, φn), J ′nφ =

J ′φ(qn, φn), q0 and φ0 are the initial guesses, βnq and βnφ are the step sizes for q and φ

in passing from iteration n to the next iteration n + 1. The Fletcher-Reeves formula in

Fletcher & Reeves (1964) is utilized for the conjugate coefficients γnq and γnφ , and they

are given by

γnq =
‖J ′nq ‖2

L2(Ω)

‖J ′n−1
q ‖2

L2(Ω)

, γnφ =
‖J ′nφ ‖2

L2(Ω)

‖J ′n−1
φ ‖2

L2(Ω)

, n = 1, 2, · · · . (7.19)
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To determine the step sizes βnq and βnφ , the exact line search is utilized, i.e.,

J(qn + βnq d
n
q , φ

n + βnφd
n
φ) = min

βq ,βφ≥0
J(qn + βqd

n
q , φ

n + βφd
n
φ), n = 0, 1, 2 · · · . (7.20)

By (7.16), (7.17) and the gradient J ′n+1
q (7.14), we have

∂J

∂βnq
=

∂J

∂qn+1
· ∂q

n+1

∂βnq
= lim

βnq→0

J(qn+1, φn+1)− J(qn, φn+1)

βnq d
n
q

dnq

= lim
βnq→0

J(qn+1, φn+1)− J(qn, φn+1)

βnq

= lim
βnq→0

1

βnq

(
−
∫
QT

u(qn, φn+1)λ(qn, φn+1)βnq d
n
q dxdt+ o(‖βnq dnq ‖L∞(Ω))

)
=−

∫
QT

u(qn+1, φn+1)λ(qn+1, φn+1)dnq dxdt =

∫
Ω

J ′n+1
q dnq dx,

and similarly, we have ∂J
∂βnφ

=
∫

Ω
J ′n+1
φ dnφdx. Thus, condition (7.20) implies that the step

sizes βnq and βnφ satisfy the following conditions:

〈J ′n+1
q , dnq 〉 = 0, 〈J ′n+1

φ , dnφ〉 = 0, (7.21)

where 〈·, ·〉 is the inner product in the space L2(Ω).

7.4.1 Global convergence

For the exact data (7.3) and (7.4), the global convergence of the CGM over the admissible
set A1 ×A2 is established in the following sense:

lim infn→∞‖J ′nq ‖L2(Ω) = 0, lim infn→∞‖J ′nφ ‖L2(Ω) = 0.

First, we will prove that the Fréchet gradients J ′q and J ′φ are Lipschitz continuous over
A1×A2 under the following stronger assumption on the input data than in Lemma 7.2.2.

Assumption 7.4.1. Let Ω ⊂ Rd (d ≥ 2) be a bounded domain of class C2+l for some
l > 0. Let p > 1 + d/2 and r > d + 1 and assume that f ∈ Lp(Q) and µ ∈ Lr(S).

Then we have the following lemma, see Proposition 3.3 of Raymond & Zidani (1999).

Lemma 7.4.2. Let the Assumption 7.4.1 on Ω, f and µ hold. Let also the other assump-
tions of Lemma 7.2.2 on data α, k and q hold, and also let φ ∈ A2 ⊂ L∞(Ω). Then, the
weak solution u(x, t) ∈ V 1,0

2 (Q) of the initial-boundary value direct problem (6.1) also
belongs to L∞(Q) and there exists a positive constant C = C(N, p, r, q−,Ω, T ) such that

‖u‖L∞(Q) ≤ C(‖f‖Lp(Q) + ‖µ‖Lr(S) + ‖φ‖L∞(Ω)). (7.22)
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For the adjoint problem we also have the following lemma.

Lemma 7.4.3 (Cao & Lesnic (2018b)). Let the assumptions of Lemma 7.4.2 hold and
let ω1 and ω2 be given weights in L∞(0, T ). Then, there exists a unique weak solution
λ(x, t) ∈ V 1,0

2 (Q) ∩ L∞(Q) to the adjoint problem (7.12) with ε = 0, which satisfies

‖λ‖L∞(Q) ≤ C1‖u‖L∞(Q) (7.23)

for some positive constant C1 depending on N, p, r, q−,Ω, T, ω1 and ω2.

Proof. First, through the change of time variable t 7→ T − t, the adjoint problem (7.12)
can be seen of the same form as the problem (6.1) with µ = φ = 0 and the source

f(x, t) = f̃(x, t) :=ω1(t)

(∫ T

0

ω1(τ)u(x, τ)dτ − φ1(x)

)
+ ω2(t)

(∫ T

0

ω2(τ)u(x, τ)dτ − φ2(x)

)
.

From Lemma 7.4.2 it follows that u ∈ L∞(QT ) and since ω1 and ω2 ∈ L∞(0, T ), and
using also (7.3) and (7.4), we obtain that f̃ ∈ L∞(QT ). Moreover, from (7.3) and (7.4),
and using the inequality (7.22) of Lemma 7.4.2 for the function λ satisfying the adjoint
problem (7.12) with ε = 0, we obtain

‖λ‖L∞(QT ) ≤C‖f̃‖Lp(QT ) ≤ C‖f̃‖L∞(QT )

≤2C(‖ω1‖2
L∞(0,T ) + ‖ω2‖2

L∞(0,T ))‖u‖L∞(QT ),

which implies that (7.23) holds.

Theorem 7.4.4 (Cao & Lesnic (2018b)). Under the assumptions of Lemma 7.4.3, the
gradients J ′q in (7.14) and J ′φ in (7.15) are Lipschitz continuous, namely, there exist two
positive constants Mq and Mφ such that

‖J ′q(q1, φ1)− J ′q(q2, φ2)‖L2(Ω) ≤Mq(‖q1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)), (7.24)

‖J ′φ(q1, φ1)− J ′φ(q2, φ2)‖L2(Ω) ≤Mφ(‖q1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)), (7.25)

for any q1, q2 ∈ A1, φ1, φ2 ∈ A2.

Proof. By Lemma 7.4.2 and using the estimate (7.22), it is easy to see that

‖u(q, φ)‖L∞(QT ) ≤ C(‖f‖Lp(QT ) + ‖µ‖Lr(ST ) + κ) =: K1 (7.26)

for any q ∈ A1 and φ ∈ A2, and K1 is a positive constant depending on N , p, r, q−, κ,
Ω, T , f and µ (independent of q and φ). Similarly, using Lemma 7.4.3, (7.23) and (7.26),
we have

‖λ(q, φ)‖L∞(QT ) ≤ C1K1 =: K2, (7.27)
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where K2 is a positive constant depending on N , p, r, q−, κ, Ω, T , ω1, ω2, f and µ

(independent of q and φ).
Denote uq := u(q1, φ1)− u(q2, φ1) and by the direct problem (6.1), we have

∂uq
∂t

= ∇ · (k∇uq)− q1uq − (q1 − q2)u(q2, φ1), (x, t) ∈ QT ,

k ∂uq
∂ν

+ αuq = 0, (x, t) ∈ ST , uq(x, 0) = 0, x ∈ Ω.

Since q1, q2 ∈ A1 ⊂ L∞(Ω), then q1 − q2 ∈ L∞(Ω) ⊂ L2(Ω), and by using the estimate
(7.2), we have

‖uq‖L2(QT ) ≤ C0‖(q1 − q2)u(q2, φ1)‖L2(QT ) ≤ C0K1‖q1 − q2‖L2(Ω).

Similarly, denoting uφ := u(q2, φ1)− u(q2, φ2), we have
∂uφ
∂t

= ∇ · (k∇uφ)− q2uφ, (x, t) ∈ QT ,

k
∂uφ
∂ν

+ αuq = 0, (x, t) ∈ ST , uφ(x, 0) = φ1 − φ2, x ∈ Ω,

and ‖uφ‖L2(QT ) ≤ C0‖φ1 − φ2‖L2(Ω).

Define λq := λ(q1, φ1)− λ(q2, φ1) and by the adjoint problem (7.12), we have
∂λq
∂t

= −∇ · (k∇λq) + q1λq + (q1 − q2)λ(q2, φ1)

−ω1(t)
∫ T

0
ω1(τ)uq(x, τ)dτ − ω2(t)

∫ T
0
ω2(τ)uq(x, τ)dτ, (x, t) ∈ QT ,

k ∂λq
∂ν

+ αλq = 0, (x, t) ∈ ST , λq(x, T ) = 0, x ∈ Ω,

and by Lemma 7.4.2, we have

‖λq‖L2(QT )

≤C0

∥∥∥∥(q1 − q2)λ(q2, φ1) + ω1

∫ T

0

ω1(τ)uq(·, τ)dτ + ω2

∫ T

0

ω2(τ)uq(·, τ)dτ

∥∥∥∥
L2(QT )

≤C0K2‖q1 − q2‖L2(Ω) + C0

(
‖ω1‖2

L∞(0,T ) + ‖ω2‖2
L∞(0,T )

)
‖uq‖L2(QT )

≤K3‖q1 − q2‖L2(Ω),

where K3 := C0K2 + C2
0K1

(
‖ω1‖2

L∞(0,T ) + ‖ω2‖2
L∞(0,T )

)
. Similarly, denoting λφ :=

λ(q2, φ1)− λ(q2, φ2), we have
∂λφ
∂t

= −∇ · (k∇λφ) + q2λφ

−ω1(t)
∫ T

0
ω1(τ)uφ(x, τ)dτ − ω2(t)

∫ T
0
ω2(τ)uφ(x, τ)dτ, (x, t) ∈ QT ,

k
∂λφ
∂ν

+ αλφ = 0, (x, t) ∈ ST , λφ(x, T ) = 0, x ∈ Ω,
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and

‖λφ‖L2(QT ) ≤C0

∥∥∥∥ω1

∫ T

0

ω1(τ)uφ(·, τ)dτ + ω2

∫ T

0

ω2(τ)uφ(·, τ)dτ

∥∥∥∥
L2(QT )

≤C0

(
‖ω1‖2

L∞(0,T ) + ‖ω2‖2
L∞(0,T )

)
‖uφ‖L2(QT ) ≤ K4‖φ1 − φ2‖L2(Ω),

where K4 := C2
0

(
‖ω1‖2

L∞(0,T ) + ‖ω2‖2
L∞(0,T )

)
. Denote ∆J ′q := J ′q(q

1, φ1)− J ′q(q2, φ2),

then we have ‖∆J ′q‖L2(Ω) =
∥∥∥∫ T0 [u(q1, φ1)λ(q1, φ1)− u(q2, φ2)λ(q2, φ2)]dt

∥∥∥
L2(Ω)

, and

u(q1, φ1)λ(q1, φ1)− u(q2, φ2)λ(q2, φ2) = (uq + uφ)λ(q1, φ1) + (λq + λφ)u(q2, φ2), thus

‖∆J ′q‖L2(Ω) ≤
∥∥∥∥∫ T

0

(uq + uφ)λ(q1, φ1)dt

∥∥∥∥
L2(Ω)

+

∥∥∥∥∫ T

0

(λq + λφ)u(q2, φ2)dt

∥∥∥∥
L2(Ω)

≤c(‖uq‖L2(QT ) + ‖uφ‖L2(QT ))‖λ(q1, φ1)‖L∞(QT )

+ c(‖λq‖L2(QT ) + ‖λφ‖L2(Ω))‖u(q2, φ2)‖L∞(QT )

≤c(C0K1K2 +K1K3)‖q1 − q2‖L2(Ω) + c(C0K2 +K1K4)‖φ1 − φ2‖L2(Ω)

≤Mq(‖q1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)),

where c is a positive constant depending on Ω and T , and Mq := c × max{C0K1K2 +

K1K3, C0K2 +K1K4} > 0, which is independent of q1, q2, φ1 and φ2.
Denote ∆J ′φ = J ′φ(q1, φ1)− J ′φ(q2, φ2), then by (7.2) we have

‖∆J ′φ‖L2(Ω) = ‖∆λ(x, 0)(q1, φ1)− λ(x, 0)(q2, φ2)‖L2(Ω)

≤‖λq(x, 0)‖L2(Ω) + ‖λφ(x, 0)‖L2(Ω)

≤C0

∥∥∥∥(q1 − q2)λ(q2, φ1) + ω1

∫ T

0

ω1(τ)uq(·, τ)dτ + ω2

∫ T

0

ω2(τ)uq(·, τ)dτ

∥∥∥∥
L2(QT )

+ C0

∥∥∥∥ω1

∫ T

0

ω1(τ)uφ(·, τ)dτ + ω2

∫ T

0

ω2(τ)uφ(·, τ)dτ

∥∥∥∥
L2(QT )

≤K3‖q1 − q2‖L2(Ω) +K4‖φ1 − φ2‖L2(Ω) ≤Mφ(‖q1 − q2‖L2(Ω) + ‖φ1 − φ2‖L2(Ω)),

where Mφ := max{K3, K4} > 0 independent of q1, q2, φ1 and φ2. The theorem is
proved.

Lemma 7.4.5. Under the assumptions of Theorem 7.4.4, for the step sizes βnq and βnφ
satisfying (7.20), we have∑

n≥0

‖J ′nq ‖4
L2(Ω)

‖dnq ‖2
L2(Ω)

<∞,
∑
n≥0

‖J ′nφ ‖4
L2(Ω)

‖dnφ‖2
L2(Ω)

<∞. (7.28)

Proof. We use the arguments of Dai & Yuan (1996); Wolfe (1969, 1971); Zoutendijk
(1970). By (7.20), we have

J(qn+1, φn+1) = J(qn + βnq d
n
q , φ

n + βnφd
n
φ) ≤ J(qn + β1d

n
q , φ

n + β2d
n
φ), ∀β1, β2 ≥ 0.
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Taking β2 = 0 and using the mean value theorem1, we obtain

J(qn, φn)− J(qn+1, φn+1)

≥J(qn, φn)− J(qn + β1d
n
q , φ

n) = −β1

∫ 1

0

〈J ′q(qn + tβ1d
n
q , φ

n), dnq 〉dt

=− β1〈J ′nq , dnq 〉 − β1

∫ 1

0

〈J ′q(qn + tβ1d
n
q , φ

n)− J ′nq , dnq 〉dt. (7.29)

Taking n = 0 and using (7.18), we have 〈J ′0q , d0
q〉 = −‖J ′0q ‖2

L2(Ω). For n ≥ 1, using (7.18)
and (7.21), we have 〈J ′nq , dnq 〉 = 〈J ′nq ,−Jnq + γnq d

n−1
q 〉 = −‖J ′nq ‖2

L2(Ω) + γnq 〈J ′nq , dn−1
q 〉 =

−‖J ′nq ‖2
L2(Ω), which means 〈J ′nq , dnq 〉 = −‖J ′nq ‖2

L2(Ω), ∀n ≥ 0.
For

∫ 1

0
〈J ′q(qn + tβ1d

n
q , φ

n)− J ′nq , dnq 〉dt in (7.29), the Lipschitz continuity of the gra-
dient J ′q from Theorem 7.4.4 implies that∫ 1

0

〈J ′q(qn + tβ1d
n
q , φ

n)− J ′nq , dnq 〉dt

≤‖dnq ‖L2(Ω)

∫ 1

0

‖J ′q(qn + tβ1d
n
q , φ

n)− J ′q(qn, φn)‖L2(Ω)dt

≤Mq‖dnq ‖L2(Ω)

∫ 1

0

‖tβ1d
n
q ‖L2(Ω)dt =

1

2
β1Mq‖dnq ‖2

L2(Ω).

Thus, we obtain J(qn, φn)−J(qn+1, φn+1) ≥ β1‖J ′nq ‖2
L2(Ω)−

1
2
β2

1Mq‖dnq ‖2
L2(Ω), ∀β1 ≥ 0.

Taking β1 =
‖J ′nq ‖2L2(Ω)

Mq‖dnq ‖2L2(Ω)

≥ 0, then we have J(qn, φn) − J(qn+1, φn+1) ≥
‖J ′nq ‖4L2(Ω)

2Mq‖dnq ‖2L2(Ω)

.

By the definition of the objective functional (7.11), it is easy to see that the sequence
{J(qn, φn)} is bounded. Then, we have

∑
n≥0

‖J ′nq ‖4
L2(Ω)

‖dnq ‖2
L2(Ω)

≤ 2Mq{[J(q0, φ0)− J(q1, φ1)] + [J(q1, φ1)− J(q2, φ2)] + · · · ]} <∞,

which means the first inequality in (7.28) holds. And by the same approaches, we can
obtain the second inequality in (7.28), which concludes the proof.

Theorem 7.4.6. Under the assumptions of Theorem 7.4.4, the CGM either terminates at
a stationary point or converges in the following senses:

lim infn→∞‖J ′nq ‖L2(Ω) = 0, lim infn→∞‖J ′nφ ‖L2(Ω) = 0. (7.30)
1Let f be a continuously differentiable real-valued function defined on an open interval I ⊂ R, and let

x as well as x+ h be points of I . Then,

f(x+ h)− f(x) =

(∫ 1

0

f ′(x+ th)dt

)
· h.
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Proof. From (7.18), we have ‖d0
q‖2
L2(Ω) = ‖J ′0q ‖2

L2(Ω), and

‖dnq ‖2
L2(Ω) = ‖J ′nq ‖2

L2(Ω) + (γnq )2‖dn−1
q ‖2

L2(Ω) − 2γnq 〈J ′nq , dn−1
q 〉, ∀n ≥ 1.

Then (7.19) and (7.21) imply that ‖dnq ‖2
L2(Ω) = ‖J ′nq ‖2

L2(Ω) +
‖J ′nq ‖4L2(Ω)

‖J ′n−1
q ‖4

L2(Ω)

‖dn−1
q ‖2

L2(Ω).

Dividing both sides by ‖J ′nq ‖4
L2(Ω) and using

‖d0
q‖2L2(Ω)

‖J ′0q ‖4L2(Ω)

= 1
‖J ′0q ‖2L2(Ω)

, we obtain

‖dnq ‖2
L2(Ω)

‖J ′nq ‖4
L2(Ω)

=
1

‖J ′nq ‖2
L2(Ω)

+
‖dn−1

q ‖2
L2(Ω)

‖J ′n−1
q ‖4

L2(Ω)

=
n∑
i=0

1

‖J ′iq ‖2
L2(Ω)

.

Assuming that lim infn→∞‖J ′nq ‖L2(Ω) 6= 0, then there exists a constant c > 0 such that

‖J ′nq ‖L2(Ω) ≥ c, n ≥ 0,

which leads to
‖dnq ‖2

L2(Ω)

‖J ′nq ‖4
L2(Ω)

≤ n+ 1

c
,
∑
n≥0

‖J ′nq ‖4
L2(Ω)

‖dnq ‖2
L2(Ω)

≥ c
∑
n≥0

1

n+ 1
=∞.

This is in contradiction with the first inequality in (7.28). Thus, the first result in (7.30)
holds, and the second result in (7.30) can be obtained by the same method. The proof is
complete.

7.4.2 CGM

Based on the above discussions, all the coefficients of the iteration process (7.17) and
(7.18) are expressed in explicit form except for the search step sizes βnq and βnφ which
satisfy (7.21). These can be found by minimizing

J(qn+1, φn+1) =
1

2

∫
Ω

(∫ T

0

ω1u(qn + βnq d
n
q , φ

n + βnφd
n
φ)dt− φε1

)2

dx

+
1

2

∫
Ω

(∫ T

0

ω2u(qn + βnq d
n
q , φ

n + βnφd
n
φ)dt− φε2

)2

dx.

Since the above expression shows that the step sizes βnq and βnφ are in implicit form,
the Taylor series expression can be applied to approximate J(qn+1, φn+1) such that the
step sizes βnq and βnφ become explicit in the new formulation. Therefore, setting ∆qn = dnq

and ∆φn = dnφ, the temperature u(x, t; qn + βnq d
n
q , φ

n + βnφd
n
φ) is linearised by a Taylor

series expression in the form

u(x, t; qn + βnq d
n
q , φ

n + βnφd
n
φ)

≈u(x, t; qn, φn) + βnq d
n
q

∂u(x, t; qn, φn)

∂qn
+ βnφd

n
φ

∂u(x, t; qn, φn)

∂φn

≈u(x, t; qn, φn) + βnq ∆uq(x, t; q
n, φn) + βnφ∆uφ(x, t; qn, φn).
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Here the functions ∆uq(x, t; q
n, φn) and ∆uφ(x, t; qn, φn) can be obtained by solving the

sensitivity problems (6.14), and (6.15). Then, we rewrite

un1 =

∫ T

0

ω1u(qn, φn)dt, un2 =

∫ T

0

ω2u(qn, φn)dt,

∆unq,1 =

∫ T

0

ω1∆uq(q
n, φn)dt, ∆unq,2 =

∫ T

0

ω2∆uq(q
n, φn)dt,

∆unφ,1 =

∫ T

0

ω1∆uφ(qn, φn)dt, ∆unφ,2 =

∫ T

0

ω2∆uφ(qn, φn)dt,

and then

J(qn+1, φn+1) =
1

2

∫
Ω

{(
un1 + βnq ∆unq,1 + βnφ∆unφ,1 − φε1

)2

+
(
un2 + βnq ∆unq,2 + βnφ∆unφ,2 − φε2

)2
}
dx.

The partial derivatives of the objective functional J(qn+1, φn+1) with respect to βnq and
βnφ are given by

∂J(qn+1, φn+1)

∂βnq
= C1β

n
q + C2β

n
φ + C3,

∂J(qn+1, φn+1)

∂βnφ
= C2β

n
q + C4β

n
φ + C5,

where

C1 =

∫
Ω

[
(∆unq,1)2 + (∆unq,2)2

]
dx, C2 =

∫
Ω

(
∆unq,1∆unφ,1 + ∆unq,2∆unφ,2

)
dx,

C3 =

∫
Ω

[
(un1 − φε1)∆unq,1 + (un2 − φε2)∆unq,2

]
dx, C4 =

∫
Ω

[
(∆unφ,1)2 + (∆unφ,2)2

]
dx,

C5 =

∫
Ω

[
(un1 − φε1)∆unφ,1 + un2 − φε2)∆unφ,2

]
dx.

According to the conditions (7.21), we set ∂J(qn+1,φn+1)
∂βnq

= ∂J(qn+1,φn+1)
∂βnφ

= 0, and then
obtain the search step sizes βnq and βnφ as follows:

βnq =
C3C4 − C2C5

C2
2 − C1C4

, βnφ =
C1C5 − C2C3

C2
2 − C1C4

, n = 0, 1, 2, · · · . (7.31)

The iteration process given by (7.17) does not provide the CGM with the stabilisation
necessary for the minimizing of the objective functional (7.11) to be classified as well-
posed because of the errors inherent in the time-average temperature measurements (7.3)
and (7.4). However, the method may become well-posed if the discrepancy principle
is applied to stop the iteration procedure. According to the discrepancy principle, the
iterative procedure is stopped when the following criterion is satisfied:

J(qn, φn) ≤ ε, (7.32)
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where ε is some small positive value, e.g., ε = 10−5, for the exact temperature measure-

ments, and

ε =
1

2

(
‖φε1 − φ1‖2

L2(Ω) + ‖φε2 − φ2‖2
L2(Ω)

)
≤ ε2,

when the measured temperatures contain noise. Then, the CGM for the numerical recon-

struction of the reaction coefficient q(x) and initial temperature φ(x) is shown as follows:

S1. Set n = 0 and choose initial guesses q0 and φ0 for the unknowns q and φ, respec-

tively.

S2. Solve the initial-boundary value direct problem (6.1) numerically by applying the

FDM to compute u(x, t; qn, φn), and the objective functional J(qn, φn) by (7.11).

S3. If the stopping condition (7.32) is satisfied, then go to S7. Else go to S4.

S4. Solve the adjoint problem (7.12) to get the function λ(x, t; qn, φn), and the gradi-

ents J ′q(q
n, φn) in (7.14) and J ′φ(qn, φn) in (7.15). Compute the conjugate coeffi-

cients γnq and γnφ in (7.19), and the search directions (7.18).

S5. Solve the sensitivity problems given by (6.14) for ∆uq(x, t; q
n, φn), and (6.15) for

∆uφ(x, t; qn, φn) by taking ∆qn = dnq and ∆φn = dnφ, and compute the step sizes

βnq and βnφ by (7.31).

S6. Compute qn+1 and φn+1 by (7.17). Set n = n+ 1 and return to S2.

S7. End.

7.5 Numerical results and discussions

In this section, the reaction coefficient q(x) and the initial temperature φ(x) are recon-

structed numerically and simultaneously by the nonlinear CGM proposed in Section 7.4.

The FDM, based on the C-N scheme for the one-dimensional (d = 1) case and the ADI

scheme for the two-dimensional (d = 2) case, are applied to solve the direct, sensitivity

and adjoint problems involved. The accuracy errors, as functions of the iteration number

n, are defined by (6.24) and (6.25).

The integral temperature observations φε1 and φε2 are corrupted by Gaussian additive

noise as

φε1 = φ1 + σ × random(1), φε2 = φ2 + σ × random(1), (7.33)
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where σ = p
100

maxx∈Ω {|φ1|, |φ2|} is the standard deviation, p% represents the percent-

age of noise, and the term random(1) generates random values from the normal distribu-

tion with zero mean and standard deviation equal to unity.

In the following sections, three numerical examples are considered in one- and two-

dimensions.

7.5.1 Example 1

In the the one-dimensional (d = 1) case, we take Ω = (0, 1), T = 1, ω1(t) = 1,

ω2(t) = 2t and

k ≡ 1, α ≡ 1, µ(0, t) = µ(1, t) = e−t,

f(x, t) =
(
x2(1 + π + sin πx) + π2 sin πx

)
e−t,

φ1(x) = (1− e−1)(1 + π + sin πx), φ2(x) = (2− 4e−1)(1 + π + sin πx).

With this input data, an analytical solution for the combined inverse coefficient or back-

ward bio-heat conduction problem (6.1), (7.3) and (7.4) is given by

q(x) = 1 + x2, φ(x) = 1 + π + sin πx, u(x, t) = (1 + π + sin πx)e−t. (7.34)

0 10 20 30 40 50
Number of iterations

10-8

10-6

10-4

10-2

100

J
(q

n
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n
)

 p=0, n=42

 p=1, n=14

Figure 7.1: The objective functional (7.11) with p ∈ {0, 1} noise, for Example 1.

The Crank-Nicolson FDM is used to solve the problems (direct, sensitivity and adjoint

problems) in the CGM with I = M = 101. The initial guesses are chosen arbitrary, say

136



7.5 Numerical results and discussions

q0(x) = 1.5 and φ0(x) = 1. Figures 7.1 and 7.2 show the objective functional J(qn, φn)

given by (7.11) and the accuracy errors E1(qn) given by (6.24) and E2(φn) given by
(6.25), for the reconstruction of the two unknown functions, simultaneously, in case of
no noise, i.e., p = 0, and with p = 1 noise. Figure 7.1 illustrates the rapid monotonic
decreasing convergence of the objective functional, as a function of iteration number n.
The stopping number of the iterative process is 42 for exact data, i.e., for p = 0, whilst the
iteration process is stopped at iteration number 14 according to the discrepancy principle
(7.32) for p = 1 noise. On comparing Figures 7.1(a) and 7.2 it can be seen that there
is some consistency and agreement between the stopping iteration numbers given by the
discrepancy principle (7.32) and the optimal iteration numbers given by the minimum of
the errors (6.24) and (6.25).
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Figure 7.2: The accuracy errors (a) (6.24) and (b) (6.25), with p ∈ {0, 1} noise, for
Example 1.
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Figure 7.3: The norm of gradients (a) ‖J ′q(qn, φn)‖L2(Ω) and (b) ‖J ′φ(qn, φn)‖L2(Ω), with
p ∈ {0, 1} noise, for Example 1.
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Figure 7.3 shows the convergence of the norms of gradients ‖J ′q(qn, φn)‖L2(Ω) and

‖J ′φ(qn, φn)‖L2(Ω) to small positive values with the increasing of the iteration number

for p = 0. For p% = 1% noise, the two norms are decreasing after the stopping iter-

ation number 14, whilst the errors in Figures 7.2(a) and 7.3(b) are increasing after this

discrepancy principle threshold. Such phenomenon means that while the CGM is con-

vergent, the numerical solution is unstable, since the inverse problem is ill-posed. This is

why the discrepancy principle (7.32) is applied to regularise the CGM to attain the stable

solutions.

The numerical solutions of the reaction coefficient q(x) and the initial temperature

φ(x) are presented in Figures 7.4(a) and 7.4(b) for p ∈ {0, 1} noise. As previously

inferred from Figure 7.1, the plotted results are after 42 iterations in the case of no noise,

while for noisy data the results are plotted after 14 iterations. From Figure 7.4 it can be

seen that the accurate and stable results are obtained for both reaction coefficient q(x)

and the initial temperature φ(x).
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Figure 7.4: The exact and numerical results for (a) the reaction coefficient q(x) and (b)
the initial temperature φ(x), with p ∈ {0, 1} noise, for Example 1.

p I M ε N E1 E2

0 101 101 1.0E-07 42 2.4E-02 3.7E-02
1 101 101 1.3E-03 14 4.3E-02 4.6E-02

Table 7.1: The stopping iteration numbers N and the errors E1 and E2 for p ∈ {0, 1}
noise, for Example 1.
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7.5.2 Example 2

We take Ω = (0, 1), T = 1, ω1(t) = 1, ω2(t) = 4t and

k ≡ 1, α ≡ 1, µ(0, t) = µ(1, t) = e−t,

f(x, t) = 2e−t + (2 + x− x2)e−t ×


1− x, x ∈ [0, 0.3],
−x+ 4x2, x ∈ (0.3, 0.7),
2, x ∈ [0.7, 1],

φ1(x) = (1− e−1)(2 + x− x2), φ2(x) = (4− 6e−1)(2 + x− x2),

with this data the analytical solution of the inverse problem (6.1), (7.3) and (7.3) is given

by

q(x) =


2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1],

φ(x) = 2 + x− x2, u(x, t) = (2 + x− x2)e−t. (7.35)
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Figure 7.5: The exact and numerical results for (a) the reaction coefficient q(x) and (b)
the initial temperature φ(x), with p ∈ {0, 1} noise, for Example 2.

In comparison with the previous Example 1, this example is more severe since the

reaction coefficient to be retrieved is a discontinuous function. We take the initial guesses

q0(x) = 1 and φ0(x) = 1 and employ the Crank-Nicolson FDM with the mesh sizes

I = M = 101.

The corresponding numerical solutions for the reaction coefficient q(x) and initial

temperature φ(x) at these stopping iteration numbers are shown in Figures 7.5(a) and
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p I M ε N E1 E2

0 101 101 1.5E-07 45 0.1319 2.0E-02
1 101 101 4.4E-04 5 0.1721 6.4E-02

Table 7.2: The stopping iteration numbers N and the errors E1 and E2 for p ∈ {0, 1}
noise, for Example 2.

7.5(b), respectively. From these figures it can be seen that the numerical solutions are

stable and reasonably accurate bearing in mind the severe discontinuous reaction coeffi-

cient that had to be retrieved simultaneously with the initial temperature.

7.5.3 Example 3

We now consider a two-dimensional example and take Ω = (0, 1) × (0, 1), T = 1,

ω1(t) = 1, ω2(t) = 3t and

k = I2, α ≡ 1, µ(0, x2, t) = µ(1, x2, t) = µ(x1, 0, t) = µ(x2, 1, t) = e−t,

f(x1, x2, t) = (2π2 + x2
1 + x2

2)(sin2(πx1) sin2(πx2) + 1)e−t

− 2π2(cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2))e−t,

φ1(x1, x2) = (1− e−1)(sin2(πx1) sin2(πx2) + 1),

φ2(x1, x2) = (3− 5e−1)(sin2(πx1) sin2(πx2) + 1).
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Figure 7.6: The objective functional (7.11) with p ∈ {0, 1} noise, for Example 3.
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7.5 Numerical results and discussions

With this data, the analytical solution of the inverse problem (6.1), (7.3) and (7.4) is
given by

q(x1, x2) = 1 + 2π2 + x2
1 + x2

2, φ(x1, x2) = sin2(πx1) sin2(πx2) + 1,

u(x1, x2, t) = (sin2(πx1) sin2(πx2) + 1)e−t. (7.36)

The ADI scheme with mesh sizes I = J = M = 101 is used to obtain the nu-
merical solutions for the direct, sensitivity and adjoint problems in the algorithm for the
two-dimensional (d = 2) case. The initial guesses are chosen as q0(x1, x2) = 20 and
φ0(x1, x2) = 1. Figures 7.6–7.10 for Example 3 represent analogous quantities to Fig-
ures 7.1–7.4 of Example 1 and similar conclusions can be observed.

(a) (b)

0 5 10 20 30
Number of iterations

0

0.5

1

1.5

E
1(q

n
)

 p=0
 p=1

0 5 10 20 30
Number of iterations

0

0.5

1

1.5

E
1(q

n
)
 p=0
 p=1

Figure 7.7: The accuracy errors (a) (6.24) and (b) (6.25), with p ∈ {0, 1} noise, for
Example 3.
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Figure 7.8: The norm of gradients (a) ‖J ′q(qn, φn)‖L2(Ω) and (b) ‖J ′φ(qn, φn)‖L2(Ω), with
p ∈ {0, 1} noise, for Example 3.

141



7. SIMULTANEOUS RECONSTRUCTION OF THE SPACE-DEPENDENT
REACTION COEFFICIENT AND INITIAL TEMPERATURE FROM
INTEGRAL TEMPERATURE MEASUREMENTS
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Figure 7.9: (a) The exact reaction coefficient, and numerical results with (b) p = 0 and
(c) p = 1, for Example 3.
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Figure 7.10: (a) The exact initial temperature, and numerical results with (b) p = 0 and
(c) p = 1, for Example 3.

p I J M ε N E1 E2

0 101 101 101 1.0E-08 30 0.0444 0.0297
1 101 101 101 2.5E-04 5 0.1462 0.1000

Table 7.3: The stopping iteration numbers N and the errors E1 and E2 for p ∈ {0, 1}
noise, for Example 3.

7.6 Conclusions

In this chapter, the simultaneous retrieval of the space-dependent reaction coefficient and
initial temperature from time-integral weighted temperature observations has been inves-
tigated. The two unknown functions have been identified simultaneously by minimizing
the least-squares objective functional using the CGM based on the newly derived adjoint
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7.6 Conclusions

problem (7.12), the sensitivity problems (6.14) and (6.15) presented in Chapter 6, and
the gradient equations (7.14) and (7.15). Stability has been achieved by stopping the it-
erations according to the discrepancy criterion (7.32). Three numerical examples in both
one- and two-dimensions have been presented, and discuss showing the accuracy and
stability of the numerical reconstruction.
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Chapter 8

Simultaneous reconstruction of the
space-dependent reaction coefficient,
initial temperature and source term

8.1 Introduction

The simultaneous identification of several non-constant physical properties along with

initial and/or boundary conditions is very challenging, especially when it cannot be de-

coupled, as it combines both nonlinear as well as ill-posedness features. One such new

inverse problem, that is investigated in this chapter, is to identify the space-dependent

reaction coefficient, the initial temperature and the source term from measured tempera-

tures at two instants and at the final time, simultaneously.

The nonlinear identification of the space-dependent reaction coefficient from final

or time-average temperature observations has been investigated in Chapters 5. The re-

action coefficient and the initial temperature have been simultaneously identified from

temperature measurements at two different time instants in Chapters 6. Also, the linear

identification of the space-dependent source term from temperature measurements at the

final time was also widely studied, e.g., Isakov (1990, 2006); Prilepko et al. (2000).

In this chapter, the simultaneous reconstruction of the spatially-distributed reaction

coefficient, the initial temperature, the heat source, and the temperature throughout the

solution domain from temperature measurements at three different instants, is investi-

gated for the first time. The least-squares objective functional, whose minimizer is proven

to exist, is minimized to obtain a quasi-solution to the inverse problem. A variational

method is applied to derive the Fréchet gradient with respect to the three unknown co-

efficients based on the adjoint and sensitivity problems. The CGM which is based on
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8.2 Mathematical formulation

the gradient, the adjoint and sensitivity problems, are utilized to simultaneously recon-
struct the three unknown functions. Furthermore, since the inverse problem is ill-posed,
the CGM is regularized by the discrepancy principle, Alifanov (1994), to obtain stable
numerical results.

This chapter is organized as follows: Section 8.2 presents the inverse problem to
reconstruct the unknown space-dependent reaction coefficient, initial temperature and
source term. The least-squares objective functional to be minimized is described having
several properties in Section 8.3. The CGM is established in Section 8.4 based on the
gradients of the objective functional, and the adjoint and sensitivity problems, and the
global convergence for the CGM algorithm is obtained. Two numerical examples for
the one-dimensional inverse problem are discussed in Section 8.5. Finally, Section 8.6
highlights the conclusions of this work.

8.2 Mathematical formulation

Let Ω ⊂ Rd, d = 1, 2, 3 be a bounded domain with sufficiently smooth boundary ∂Ω. We
consider the heat transfer problem given by (6.1) in the cylinder QT = Ω × (0, T ), and
T > 0 is a final time. Moreover, the heat source f(x, t) in (6.1) has the form f(x, t) =

F (x)h(x, t) + g(x, t). Then, the mathematical model becomes
∂u
∂t

(x, t) = ∇ · (k(x)∇u(x, t))− q(x)u(x, t)

+F (x)h(x, t) + g(x, t), (x, t) ∈ QT ,

k(x)∂u
∂ν

+ α(x)u(x, t) = µ(x, t), (x, t) ∈ ST ,
u(x, 0) = φ(x), x ∈ Ω,

(8.1)

where F (x), h(x, t) and g(x, t) are the components of the heat source f(x, t). The direct
problem is to determine the temperature u(x, t) in (8.1) when the thermal conductivity
k(x), reaction coefficient q(x), the source components F (x), h(x, t) and g(x, t), the heat
flux µ(x, t) and the initial temperature φ(x) are specified. The weak solution u(x, t) ∈
H1,0(QT ) of the direct problem (8.1) is defined as follows.

Definition 8.2.1. A function u ∈ H1,0(QT ) is called as a weak solution to the initial-
boundary value direct problem (8.1) if∫

QT

(
−u∂η

∂t
+ k∇u · ∇η + quη

)
dxdt+

∫
ST

αuηdsdt

=

∫
QT

Fhηdxdt+

∫
QT

gηdxdt+

∫
ST

µηdsdt+

∫
Ω

φη(·, 0)dx, (8.2)

for ∀η ∈ H1,1(QT ) with η(·, T ) = 0.
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Then, the existence and uniqueness of the weak solution to the initial-boundary value

direct problem (8.1) is stated in the following theorem (Tröltzsch (2010), p.373).

Theorem 8.2.2. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω, and
suppose that the matrix k = (kij)i,j=1,d is symmetric and positive definite, i.e., kij =

kji ∈ L∞(Ω) and satisfy (5.3), q ∈ L∞(Ω), F ∈ L2(Ω), h ∈ L∞(QT ), g ∈ L2(QT ),
α ∈ L∞(∂Ω), µ ∈ L2(ST ) and φ ∈ L2(Ω). Then the initial-boundary value direct
problem (8.1) has a unique weak solution u ∈ H1,0(Q). In addition, the solution satisfies
the estimate

max
t∈[0,T ]

‖u(·, t)‖L2(Ω) + ‖u‖H1,0(QT )

≤c
(
‖F‖L2(Ω)‖h‖L∞(QT ) + ‖g‖L2(QT ) + ‖µ‖L2(ST ) + ‖φ‖L2(Ω)

)
(8.3)

for some positive constant c which is independent of F , h, g, µ and φ.

The inverse problem is to reconstruct (q(x), φ(x), F (x), u(x, t)) ∈ L∞(Ω)×L2(Ω)×
L2(Ω) × H1,0(QT ) satisfying (8.1) together with the temperature measurements at two

time instants t1, t2, 0 < t1 < t2 < T and at the final time T , i.e.

u(x, t1) = φ1(x), x ∈ Ω, (8.4)

u(x, t2) = φ2(x), x ∈ Ω, (8.5)

u(x, T ) = φT (x), x ∈ Ω, (8.6)

where φ1(x), φ2(x) and φT (x) are given data in L2(Ω) which may be subject to noise due

to measurement errors, as

‖φε1 − φ1‖L2(Ω) ≤ ε, ‖φε2 − φ2‖L2(Ω) ≤ ε, ‖φεT − φT‖L2(Ω) ≤ ε, (8.7)

where ε ≥ 0 represents the noise level.

8.3 Analysis

Define the sets A1 = {q ∈ L∞(Ω) : 0 ≤ q(x) ≤ κ1, a.e. x ∈ Ω}, A2 = {φ ∈ L2(Ω) :

|φ(x)| ≤ κ2, a.e. x ∈ Ω} and A3 = {F ∈ L2(Ω) : |F (x)| ≤ κ3, a.e. x ∈ Ω}, where κ1,

κ2 and κ3 are given positive constants.

Let u(q, φ, F ) := u(x, t; q, φ, F ) ∈ H1,0(QT ) denote the solution to the initial-

boundary value direct problem (8.1) for a particular triplet (q(x), φ(x), F (x)) ∈ A1 ×
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8.3 Analysis

A2 ×A3. The quasi-solution of the inverse problem (8.1), (8.4)–(8.6) can be attained by

minimizing the following least-squares objective functional

J(q, φ, F ) =
1

2

{
‖u1 − φε1‖2

L2(Ω) + ‖u2 − φε2‖2
L2(Ω) + ‖uT − φεT‖2

L2(Ω)

}
, (8.8)

where u1(x) = u(x, t1; q, φ, F ), u2(x) = u(x, t2; q, φ, F ) and uT (x) = u(x, T ; q, φ, F ).

The existence of a minimizer to the optimization problem (8.8) over the admissible

set A1 ×A2 ×A3 is established in the following theorem.

Theorem 8.3.1. There exists at least one minimizer to the optimization problem (8.8).

Proof. We follow the same ideas as in the proof of Theorem 6.3.1 of Chapter 6. Based
on the estimate (8.3), it is obvious that min J(q, φ, F ) is finite over the admissible set
A1×A2×A3. Thus, there exists a minimizing sequence {qn, φn, F n} from A1×A2×A3

such that
lim
n→∞

J(qn, φn, F n) = inf
q∈A1,φ∈A2,F∈A3

J(q, φ, F ).

The boundedness of {qn, φn, F n} in L∞(Ω)× L2(Ω)× L2(Ω) implies that there exists a
subsequence, still denoted by {qn, φn, F n}, such that qn, φn and F n converge weakly to
q∗ in L∞(Ω), φ∗ in L2(Ω), and F ∗ in L2(Ω). Clearly q∗ ∈ A1, φ∗ ∈ A2 and F ∗ ∈ A3,
since the sets A1, A2 and A3 are closed and convex. The a-priori estimate (8.3) implies
that the sequence {un := u(qn, φn, F n)} is bounded inH1,0(QT ). Thus, we may extract a
subsequence, still denoted by {un}, and some u∗ ∈ H1,0(QT ) such that un → u∗, weakly
in H1,0(QT ).

By Definition 8.2.1, for any η ∈ H1,1(Q) with η(·, T ) = 0, we have∫
QT

(
−un∂η

∂t
+ k∇un · ∇η + qnunη

)
dxdt+

∫
ST

αunηdsdt

=

∫
QT

F nhηdxdt+

∫
QT

gηdxdt+

∫
ST

µηdsdt+

∫
Ω

φnη(·, 0)dx. (8.9)

Since H1,0(ST ) is compactly embedded in L2(ST ), un|ST converges to u∗|ST in L2(ST ).
The weak convergence of un to u∗ in H1,0(QT ) and the convergence of un|ST to u∗|ST in
L2(ST ) imply that

lim
n→∞

∫
QT

−un∂η
∂t
dxdt =

∫
QT

−u∗∂η
∂t
dxdt,

lim
n→∞

∫
QT

k∇un · ∇ηdxdt =

∫
QT

k∇u∗ · ∇ηdxdt,

lim
n→∞

∫
ST

αunηdsdt =

∫
ST

αu∗ηdsdt,
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and the weak convergence of φn to φ∗ and F n to F ∗ in L2(Ω) implies that

lim
n→∞

∫
QT

F nhηdxdt =

∫
QT

F ∗hηdxdt, lim
n→∞

∫
Ω

φnη(·, 0)dx =

∫
Ω

φ∗η(·, 0)dx.

The third term in the left hand side of (8.9) can be rewritten as∫
QT

qnunηdxdt =

∫
QT

q∗unηdxdt+

∫
QT

(qn − q∗)unηdxdt.

Since un weakly converges to u∗ in H1,0(QT ), we have

lim
n→∞

∫
QT

q∗unηdxdt =

∫
QT

q∗u∗ηdxdt,

and due to qn weakly converges to q∗ in L∞(Ω), using the estimate (8.3) for un and the
Lebesgue dominant convergence theorem we obtain that the term

∫
QT

(qn − q∗)unηdxdt
converges to zero, and hence

lim
n→∞

∫
QT

qnunηdxdt =

∫
QT

q∗u∗ηdxdt,

and (8.9) yields∫
QT

(
−u∗∂η

∂t
+ (k∇u∗) · ∇η + q∗u∗η

)
dxdt+

∫
ST

αu∗ηdsdt

=

∫
QT

F ∗hηdxdt+

∫
QT

gηdxdt+

∫
ST

µηdsdt+

∫
Ω

φ∗η(·, 0)dx,

which means that u∗ = u(q∗, φ∗, F ∗), due to the uniqueness of solution to the initial-
boundary value direct problem (8.1) in Theorem 8.2.2, with q = q∗, F = F ∗ and φ = φ∗

in (8.1). The lower semi-continuity of norms implies

J(q∗, φ∗, F ∗) =
1

2

{
‖u∗1 − φε1‖2

L2(Ω) + ‖u∗2 − φε2‖2
L2(Ω) + ‖u∗T − φεT‖2

L2(Ω)

}
≤1

2
lim
n→∞

{
‖un1 − φε1‖2

L2(Ω) + ‖un2 − φε2‖2
L2(Ω) + ‖unT − φεT‖2

L2(Ω)

}
= lim

n→∞
J(qn, φn, F n) = min

q∈A1,φ∈A2,F∈A3

J(qn, φn, F n),

which indicates that the triplet {q∗, φ∗, F ∗} is a minimizer of the optimization problem
(8.8) over A1 ×A2 ×A3.

Lemma 8.3.2. The mapping (q, φ, F ) 7→ u(q, φ, F ) is Lipschitz continuous, i.e.,

‖u(q + ∆q, φ, F )− u(q, φ, F )‖H1,0(QT ) ≤ c‖∆q‖L∞(Ω), (8.10)

‖u(q, φ+ ∆φ, F )− u(q, φ, F )‖H1,0(QT ) ≤ c‖∆φ‖L2(Ω), (8.11)

‖u(q, φ, F + ∆F )− u(q, φ, F )‖H1,0(QT ) ≤ c‖∆F‖L2(Ω), (8.12)

for any q, q + ∆q ∈ A1, φ, φ+ ∆φ ∈ A2 and F, F + ∆F ∈ A3.
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Proof. Denote by ∆uq = u(q + ∆q, φ, F ) − u(q, φ, F ), ∆uφ = u(q, φ + ∆φ, F ) −
u(q, φ, F ) and ∆uF = u(q, φ, F + ∆F )−u(q, φ, F ) the increments of the temperature u
with respect to q, φ and F . Then, based on the initial-boundary value problem (8.1) they
satisfy the following problems:


∂(∆uq)

∂t
= ∇ · (k∇(∆uq))− q∆uq −∆qu(q + ∆q, φ, F ), (x, t) ∈ QT ,

k ∂(∆uq)

∂ν
+ α∆uq = 0, (x, t) ∈ ST , ∆uq(x, 0) = 0, x ∈ Ω,

(8.13)


∂(∆uφ)

∂t
= ∇ · (k∇(∆uφ))− q∆uφ, (x, t) ∈ QT ,

k
∂(∆uφ)

∂ν
+ α∆uφ = 0, (x, t) ∈ ST , ∆uφ(x, 0) = ∆φ, x ∈ Ω,

(8.14)

and 
∂(∆uF )
∂t

= ∇ · (k∇(∆uF ))− q∆uF + ∆Fh, (x, t) ∈ QT ,

k ∂(∆uF )
∂ν

+ α∆uF = 0, (x, t) ∈ ST , ∆uF (x, 0) = 0, x ∈ Ω,
(8.15)

Using the estimate (8.3) to the above problem problems, we obtain

‖∆uq‖H1,0(QT ) ≤ c‖∆qu‖L2(QT ) ≤ c‖∆q‖L∞(Ω)‖u‖L2(QT ),

‖∆uφ‖H1,0(QT ) ≤ c‖∆φ‖L2(Ω),

‖∆uF‖H1,0(QT ) ≤ c‖∆Fh‖L2(QT ) ≤ c‖∆F‖L2(Ω)‖h‖L∞(QT ),

which conclude the proof of the lemma.

Lemma 8.3.3. The mapping (q, φ, f) 7→ u(q, φ, f) is Fréchet differentiable.

Proof. Consider the problem∂v
∂t

= ∇ · (k∇v)− qv −∆qu(q, φ, F ), (x, t) ∈ QT ,

k ∂v
∂ν

+ αv = 0, (x, t) ∈ ST , v(x, 0) = 0, x ∈ Ω,
(8.16)

where ∆q ∈ L∞(Ω) such that q+∆q ∈ A1. Then, there exists a unique solution v(x, t) ∈
H1,0(QT ) for the initial-boundary value problem (8.16), and the mapping ∆q 7→ v from
L∞(Ω) to H1,0(QT ) defines a bounded linear operator Uq by the estimate (8.3).

Denote w = u(q + ∆q, φ, F )− u(q, φ, F )− Uq∆q = ∆uq − v, where ∆uq satisfies
the problem (8.13). Then, w satisfies the problem∂w

∂t
= ∇ · (k∇w)− qw −∆q∆uq, (x, t) ∈ QT ,

k ∂w
∂ν

+ αw = 0, (x, t) ∈ ST , w(x, 0) = 0, x ∈ Ω.
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By applying (8.3), we obtain

‖w‖H1,0(QT ) ≤ c‖∆q∆uq‖L2(QT ) ≤ c‖∆q‖L∞(Ω)‖∆uq‖H1,0(QT ),

then via (8.10) in Lemma 8.3.2, we obtain

‖u(q + ∆q, φ, F )− u(q, φ, F )− Uq∆q‖H1,0(QT ) = ‖w‖H1,0(QT ) ≤ c‖∆q‖2
L∞(Ω),

which implies that

lim
‖∆q‖L∞(Ω)→0

‖u(q + ∆q, φ, F )− u(q, φ, F )− Uq∆q‖H1,0(QT )

‖∆q‖L∞(Ω)

= 0.

For the initial-boundary value problem (8.14), it is obvious that there exists a unique
solution ∆uφ ∈ H1,0(QT ), and then the mapping ∆φ 7→ ∆uφ from L2(Ω) to H1,0(QT )

defines a bounded linear operator Uφ and Uφ∆φ = ∆uφ.
Similarly, the problem (8.15) and Theorem 8.2.2 imply that there exists a unique

solution ∆uF ∈ H1,0(QT ), and the mapping ∆F 7→ ∆uF from L2(Ω) to H1,0(QT )

defines a bounded linear operator UF such that UF∆F = ∆uF . Therefore, the lemma is
proved.

The CGM based on the gradient of J(q, φ, F ) is applied to obtain the minimizer of
the objective functional numerically. In order to obtain the gradient, we introduce the
following adjoint problem:

∂λ
∂t

= −∇ · (k∇λ) + qλ− (u1 − φε1)δ(t− t1)

−(u2 − φε2)δ(t− t2)− 2(uT − φεT )δ(t− T ), (x, t) ∈ QT ,

k ∂λ
∂ν

+ αλ = 0, (x, t) ∈ ST , λ(x, T ) = 0, x ∈ Ω,

(8.17)

where δ(·) is the Dirac delta function. According to Definition 8.2.1, the weak solution
λ ∈ H1,0(QT ) of the adjoint problem (8.17), satisfies the variational equality∫

QT

(
λ
∂η

∂t
+ k∇λ · ∇η + qλη

)
dxdt+

∫
ST

αληdsdt =

∫
Ω

{(u1 − φε1)η(x, t1)

+ (u2 − φε2)η(x, t2) + (uT − φεT )η(x, T )} dx, ∀η ∈ H1,1(QT ) with η(·, 0) = 0.

Theorem 8.3.4. The objective functional J(q, φ, F ) is Fréchet differentiable, and the
partial derivatives J ′q(q, φ, F ), J ′φ(q, φ, F ) and J ′F (q, φ, F ) are given by

J ′q(q, φ, F ) = −
∫ T

0

u(x, t)λ(x, t)dt, (8.18)

J ′φ(q, φ, F ) = λ(x, 0), (8.19)

J ′F (q, φ, F ) =

∫ T

0

λ(x, t)h(x, t)dt. (8.20)
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Proof. Taking ∆q ∈ L∞(Ω) such that q + ∆q ∈ A1, and denoting by ∆Jq = J(q +

∆q, φ, F ) − J(q, φ, F ), the increment of the objective functional J(q, φ, F ) in the q di-
rection, then equation (8.8) yields

∆Jq =

∫
Ω

{∆uq,1(u1 − φε1) + ∆uq,2(u2 − φε2) + ∆uq,T (uT − φεT )} dx

+
1

2

{
‖∆uq,1‖2

L2(Ω) + ‖∆uq,2‖2
L2(Ω) + ‖∆uq,T‖2

L2(Ω)

}
,

where ∆uq,i := ∆uq(x, ti; q, φ, F ), i = 1, 2, and ∆uq,T := ∆uq(x, T ; q, φ, F ). Using
the property of the Dirac delta function, the first term of the right hand side in the above
formula can be written as∫

Ω

{∆uq,1(u1 − φε1) + ∆uq,2(u2 − φε2) + ∆uq,T (uT − φεT )} dx

=

∫
QT

∆uq {(u1 − φε1)δ(t− t1) + (u2 − φε2)δ(t− t2) + 2(uT − φεT )δ(t− T )} dxdt,

and by the adjoint problem (8.17), we have

∆Jq =

∫
QT

∆uq

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
dx

+
1

2

{
‖∆uq,1‖2

L2(Ω) + ‖∆uq,2‖2
L2(Ω) + ‖∆uq,T‖2

L2(Ω)

}
.

Also, by (8.13) for ∆uq and integration by parts, we get∫
QT

∆uq

{
−∂λ
∂t
−∇ · (k∇λ) + qλ

}
dxdt

=

∫
QT

λ

{
∂(∆uq)

∂t
−∇ · (k∇(∆uq)) + q∆uq

}
dxdt

+

∫
ST

{
k
∂(∆uq)

∂ν
λ− k∂λ

∂ν
∆uq

}
dsdt−

∫
Ω

∆uqλ|T0 dx

=−
∫
QT

∆qu(q + ∆q, φ, F )λdxdt

=−
∫
QT

∆q∆uqλdxdt−
∫
QT

∆quλdxdt.

Thus, the above two equations and the property of the Dirac delta function imply

∆Jq =−
∫
QT

∆q∆uqλdxdt−
∫
QT

∆quλdxdt

+
1

2

{
‖∆uq,1‖2

L2(Ω) + ‖∆uq,2‖2
L2(Ω) + ‖∆uq,T‖2

L2(Ω)

}
.
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By the same approach for the problems (8.14) for ∆uφ and (8.15) for ∆uF , we can obtain

∆Jφ =

∫
Ω

∆φλ(x, 0)dx+
1

2

{
‖∆uφ,1‖2

L2(Ω) + ‖∆uφ,2‖2
L2(Ω) + ‖∆uφ,T‖2

L2(Ω)

}
,

∆JF =

∫
Q

∆Fhλdxdt+
1

2

{
‖∆uF,1‖2

L2(Ω) + ‖∆uF,2‖2
L2(Ω) + ‖∆uF,T‖2

L2(Ω)

}
.

From (8.3), we can obtain that

max{‖∆uq,1‖2
L2(Ω), ‖∆uq,2‖2

L2(Ω), ‖∆uq,T‖2
L2(Ω)} ≤ c‖∆q‖2

L∞(Ω),

max{‖∆uφ,1‖2
L2(Ω), ‖∆uφ,2‖2

L2(Ω), ‖∆uφ,T‖2
L2(Ω)} ≤ c‖∆φ‖2

L2(Ω),

max{‖∆uF,1‖2
L2(Ω), ‖∆uF,2‖2

L2(Ω), ‖∆uF,T‖2
L2(Ω)} ≤ c‖∆F‖2

L2(Ω),

and via Lemma 8.3.2, we get∣∣∣∣∫
QT

∆q∆uqλdxdt

∣∣∣∣ ≤ ‖∆q‖L∞(Ω)‖λ‖L2(QT )‖∆uq‖L2(QT ) ≤ c‖∆q‖2
L∞(Ω),

thus

∆Jq = −
∫
QT

∆quλdxdt+ o(‖∆q‖L∞(Ω)),

∆Jφ =

∫
Ω

∆φλ(x, 0)dx+ o(‖∆φ‖L2(Ω)),

∆JF =

∫
QT

∆Fhλdxdt+ o(‖∆F‖L2(Ω)),

which means that the formulae (8.18)–(8.20) for the Fréchet derivatives hold. The theo-
rem is proved.

8.4 Conjugate gradient method

In this section, the CGM will be developed and applied to obtain the numerical solutions
for the reaction coefficient q(x), the initial temperature φ(x) and the source term F (x)

to the inverse problem (8.1), (8.4)–(8.6). The following iterative process is used for the
estimation of the triplet of functions (q, φ, F ) by minimizing the objective functional
(8.8):

qn+1 = qn + βnq d
n
q , φn+1 = φn + βnφd

n
φ, F n+1 = F n + βnFd

n
F , n = 0, 1, 2, · · ·

(8.21)

with the search directions dnq , dnφ and dnF given by

dnq =

{
−J ′0q ,
−J ′nq + γnq d

n−1
q ,

dnφ =

{
−J ′0φ ,
−J ′nφ + γnφd

n−1
φ ,

dnF =

{
−J ′0F ,
−J ′nF + γnFd

n−1
F ,

(8.22)
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where the subscript n indicates the number of iterations, q0, φ0 and F 0 are the initial

guesses for the three unknown functions, J ′nq = J ′q(q
n, φn, F n), J ′nφ = J ′φ(qn, φn, F n),

J ′nF = J ′F (qn, φn, F n), βnq , βnφ and βnF are the step sizes with respect to q, φ and F in

passing from iteration n to the next iteration n+1. The Fletcher-Reeves formula, Fletcher

& Reeves (1964), is applied for the conjugate gradient coefficients γnq , γnφ and γnF given

by

γnq =
‖J ′nq ‖2

L2(Ω)

‖J ′n−1
q ‖2

L2(Ω)

, γnφ =
‖J ′nφ ‖2

L2(Ω)

‖J ′n−1
φ ‖2

L2(Ω)

, γnF =
‖J ′nF ‖2

L2(Ω)

‖J ′n−1
F ‖2

L2(Ω)

, n = 1, 2, · · ·

(8.23)

Denote uni := u(x, ti; q
n, φn, F n), i = 1, 2, and unT := u(x, T ; qn, φn, F n), then the

step sizes βnq , βnφ and βnF can be found by minimizing

J(qn+1, φn+1, F n+1) =
1

2

∫
Ω

{
(un+1

1 − φε1)2 + (un+1
2 − φε2)2 + (un+1

T − φεT )2
}
dx.

Setting ∆qn = dnq , ∆φn = dnφ and ∆F n = dnF , the functions un+1
1 , un+1

2 and un+1
T are

linearised by the Taylor series expansion in the following form:

u(x, t; qn + βnq d
n
q , φ

n + βnφd
n
φ, F

n + βnFd
n
F )

≈u(x, t; qn, φn, F n) + βnq d
n
q

∂u(x, t; qn, φn, F n)

∂qn

+ βnφd
n
φ

∂u(x, t; qn, φn, F n)

∂φn
+ βnFd

n
F

∂u(x, t; qn, φn, F n)

∂F n

≈u(x, t; qn, φn, F n) + βnq ∆uq(x, t; q
n, φn, F n)

+ βnφ∆uφ(x, t; qn, φn, F n) + βnF∆uF (x, t; qn, φn, F n)

where t represents t1, t2 and T .

Denote ∆unq,1 = ∆uq(x, t1; qn, φn, F n), ∆unq,2 = ∆uq(x, t2; qn, φn, F n) and ∆unq,T =

∆uq(x, T ; qn, φn, F n), and ∆unφ,1, ∆unφ,2, ∆unφ,T , ∆unF,1, ∆unF,2 and ∆unF,T can be defined

in the same way. We have

J(qn+1, φn+1, F n+1) =
1

2

∫
Ω

(
un1 + βnq ∆unq,1 + βnφ∆unφ,1 + βnF∆unF,1 − φε1

)2
dx

+
1

2

∫
Ω

(
un2 + βnq ∆unq,2 + βnφ∆unφ,2 + βnF∆unF,2 − φε2

)2
dx

+
1

2

∫
Ω

(
unT + βnq ∆unq,T + βnφ∆unφ,T + βnF∆unF,T − φεT

)2
dx.
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The partial derivatives of the objective functional J(qn+1, φn+1, F n+1) with respect to βnq ,
βnφ and βnF are given by

∂J

∂βnq
= A11β

n
q + A12β

n
φ + A13β

n
F −B1,

∂J

∂βnφ
= A21β

n
q + A22β

n
φ + A23β

n
F −B2,

∂J

∂βnF
= A31β

n
q + A32β

n
φ + A33β

n
F −B3,

where A12 = A21, A13 = A31, A23 = A32,

A11 =
∑

i=1,2,T

‖∆unq,i‖2
L2(Ω), A22 =

∑
i=1,2,T

‖∆unφ,i‖2
L2(Ω),

A12 =
∑

i=1,2,T

〈∆unq,i,∆unφ,i〉, A13 =
∑

i=1,2,T

〈∆unq,i,∆unF,i〉,

A23 =
∑

i=1,2,T

〈∆unφ,i,∆unF,i〉, A33 =
∑

i=1,2,T

‖∆unF,i‖2
L2(Ω),

and

B1 = −
∑

i=1,2,T

〈uni − φεi ,∆unq,i〉, B2 = −
∑

i=1,2,T

〈uni − φεi ,∆unφ,i〉,

B3 = −
∑

i=1,2,T

〈uni − φεi ,∆unF,i〉.

Setting ∂J
∂βnq

= ∂J
∂βnφ

= ∂J
∂βnF

= 0, the search step sizes βnq , βnφ and βnF can be obtained by
solving the following linear system:

Ax = b, (8.24)

where A = {Aij}, i, j = 1, 3 is a symmetric matrix, x = {βnq , βnφ , βnF}T and b =

{B1, B2, B3}T.
The iteration process given by (8.21) does not provide the CGM with the stabilization

necessary for the minimizing of the objective functional (8.8) to be classified as well-
posed because of the errors inherent in the measured temperatures (8.4)–(8.6). However,
the CGM may become well-posed if the discrepancy principle, Alifanov (1994), applied
to stop the iteration procedure at the smallest threshold n for which

J(qn, φn, F n) ≤ ε, (8.25)

where ε is a small positive value, e.g., ε = 10−5 for exact temperature measurements, and

ε =
1

2

(
‖φε1 − φ1‖2

L2(Ω) + ‖φε2 − φ2‖2
L2(Ω) + ‖φεT − φT‖2

L2(Ω)

)
,

if the measured temperatures contain noise. Based on (8.7), we indicate that ε ≤ 3ε2/2.
In summary, the CGM for the numerical estimation of the space-dependent reaction

coefficient q(x), initial temperature φ(x) and source term F (x) is presented as follows:
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S1. Set n = 0 and choose initial guesses q0, φ0 and F 0 for the three unknown coeffi-

cients q(x), φ(x) and F (x), respectively.

S2. Solve the initial-boundary value direct problem (8.1) numerically by using the

FDM to compute u(x, t; qn, φn, F n), and J(qn, φn, F n) by (8.8).

S3. If the stopping criterion (8.25) is satisfied, then go to S7. Else go to S4.

S4. Solve the adjoint problem (8.17) to obtain λ(x, t; qn, φn, F n), and the Fréchet gra-

dients J ′nq in (8.18), J ′nφ in (8.19) and J ′nF in (8.20). Compute the conjugate coeffi-

cients γnq , γnφ and γnF in (8.23), and the search directions dnq , dnφ and dnF in (8.22).

S5. Solve the sensitivity problems (8.13) for ∆uq(x, t; q
n, φn, F n), (8.14) for ∆uφ(x,

t; qn, φn, F n), and (8.15) for ∆uF (x, t; qn, φn, F n) by taking ∆qn = dnq , ∆φn = dnφ

and ∆fn = dnF , and compute the search step sizes βnq , βnφ and βnF by (8.24).

S6. Update qn+1, φn+1 and F n+1 by (8.21). Set n = n+ 1 and return to S2.

S7. End.

8.5 Numerical results and discussions

In this section, the space-dependent reaction coefficient q(x), the initial temperature φ(x)

and the source term F (x) are simultaneously reconstructed by the CGM proposed in

Section 8.4. The FDM based on the Crank-Nicolson scheme is applied to solve the

direct, sensitivity and adjoint problem involved. Note that in the adjoint problem (8.17),

we approximate the Dirac delta function δ(·) by δa(t − t̃) = 1
a
√
π
e−(t−t̃)2/a2 , where a is

a small positive constant taken as, e.g., a = 10−3 and t̃ represents t1, t2 and T . The

accuracy errors, as functions of the iteration numbers n, for q(x), φ(x) and F (x) are

defined as

E1(qn) = ‖qn − q‖L2(Ω), (8.26)

E2(φn) = ‖φn − φ‖L2(Ω), (8.27)

E3(F n) = ‖F n − F‖L2(Ω), (8.28)

where qn, φn and F n are the numerical solutions obtained by the CGM at the iteration

number n, and q, φ and F are the analytical expression for the reaction coefficient, initial

temperature and source term, if available.
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The measured noisy temperatures φε1, φε2 and φεT are simulated by adding the Gaussian
noisy term to the exact temperature

φεi = φi + σ × random(1), i = 1, 2, T,

where σ = p
100

maxx∈Ω {|φ1(x)|, |φ2(x)|, |φT (x)|} is the standard deviation, p% repre-
sents the percentage of noise, and random(1) generates random values from a normal
distribution with zero mean and unit standard deviation.

We consider a couple of one-dimensional (d = 1) test examples in a finite slab Ω =

(0, 1) over the time period T = 1. For the numerical discretisation we employ the FDM
with a mesh of 100 equidistant nodes equally spread over each of the space and time
intervals.

8.5.1 Example 1

In this example, we take t1 = 0.5, t2 = 0.7 and

k ≡ 1, α ≡ 1, g(x, t) = x(1 + x)2e−t − (1 + x)(1 + x3)t3,

h(x, t) = (1 + x)t3, µ(0, t) = e−t, µ(1, t) = 4e−t,

φ1(x) = e−0.5(1 + x2), φ2(x) = e−0.7(1 + x2), φT (x) = e−1(1 + x2).

Based on this input data, the analytical solution to the inverse problem (8.1), (8.4)–(8.6)
is given by

q(x) = 3 + x, F (x) = 1 + x3, φ(x) = 1 + x2, u(x, t) = (1 + x2)e−t. (8.29)

The initial guesses are chosen as q0(x) = 2, φ0(x) = 2 + x and F 0(x) = 1. Figure
8.1(a) shows the objective functional J(qn, φn, F n) given by (8.8) for the simultaneous
reconstruction of the three unknown coefficients with p ∈ {0, 1} noise. From this figure
it can be seen that the objective functional (8.8), as a function of iteration numbers n,
is rapidly monotonic decreasing convergent. The stopping iteration number is 17 for
the exact data, i.e., p = 0, whilst the algorithm is stopped at the iteration number 4 for
p = 1 noise, obtained according to the discrepancy principle (8.25). The accuracy errors
E1(qn) given by (8.26), E2(φn) given by (8.27) and E3(F n) given by (8.28) are shown
in Figures 8.1(b)–8.1(d), respectively. From these figures, it can be seen that for p = 0,
the accuracy errors keep decreasing as the iterations proceed, but for p = 1 noise the
errors start quickly increasing after just a few iterations. Therefore, stopping the CGM
iterations after 4 iterations, (cf. Figure 8.1(a)), is expected to yield stable and reasonably
accurate numerical solutions, as illustrated in Figure 8.2.
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Figure 8.1: (a) The objective functional (8.8) and the accuracy errors (b) (8.26) (c) (8.27)
and (d) (8.28), with p ∈ {0, 1} noise, for Example 1.
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Figure 8.2: The exact and numerical solutions for (a) the reaction coefficient q(x), (b) the
initial temperature φ(x) and (c) the source term F (x), with p ∈ {0, 1} noise, for Example
1.
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p I M ε N E1 E2 E3

0 101 101 1.0E-07 17 2.7E-02 2.0E-02 3.0E-03
1 101 101 3.9E-04 4 6.4E-02 5.4E-02 0.1077

Table 8.1: The stopping iteration numbers N and the errors E1, E2 and E3 for p ∈ {0, 1}
noise, for Example 1.

8.5.2 Example 2

We take t1 = 0.3, t2 = 0.7, and

k ≡ 1, α ≡ 1, h(x, t) = (2 + x3)et, µ(0, t) = µ(1, t) = e−t,

g(x, t) = π2 sin(πx)e−t − (3− 2x2)(2 + x3)et

+ (1 + π + sin(πx))e−t


1− x, x ∈ [0, 0.3],
−x+ 4x2, x ∈ (0.3, 0.7),
2 x ∈ [0.7, 1],

φ1(x) = e−0.3(1 + π + sin(πx)), φ2(x) = e−0.7(1 + π + sin(πx)),

φT (x) = e−1(1 + π + sin(πx)).

Based on this input data, the analytical solution to the inverse problem (8.1), (8.4)–

(8.6) is given by

q(x) =


2− x, x ∈ [0, 0.3],
1− x+ 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1],

F (x) = 3− 2x2,

φ(x) = 1 + π + sin(πx), u(x, t) = (1 + π + sin(πx))e−t. (8.30)

In comparison with the Example 1, this example is more severe since the reaction

coefficient q(x) in (8.30) to be retrieved is a discontinuous function. The initial guesses

are taken as q0(x) = 1, φ0(x) = 1 and F 0(x) = 1. Figure 8.3(a) shows the conver-

gence of the objective functional J(qn, φn, F n) given by (8.8) with the iterative CGM

stopped at the iteration numbers {50, 18} for p ∈ {0, 1} noise, respectively. The corre-

sponding numerical solutions to the reaction coefficient q(x), the initial temperature φ(x)

and the source term F (x) at these stopping iteration numbers are illustrated in Figures

8.3(b)–8.3(d), respectively. From these figures, it can be seen that the retrieved results

are reasonably accurate and stable bearing in mind the severe discontinuous reaction co-

efficient that had to be recovered along with the initial temperature and the source term,

simultaneously.
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p I M ε N E1 E2 E3

0 101 101 1.0E-06 50 0.1343 6.2E-02 2.5E-03
1 101 101 2.7E-03 18 0.3402 0.1640 0.1420

Table 8.2: The stopping iteration numbers N and the errors E1, E2 and E3 for p ∈ {0, 1}
noise, for Example 2.
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Figure 8.3: (a) The objective functional (8.8) and the exact and numerical solutions for
(b) the reaction coefficient q(x), (c) the initial temperature φ(x) and (d) the source term
F (x), with p ∈ {0, 1} noise, for Example 2.

8.6 Conclusions

The simultaneous retrieval of the space-dependent reaction coefficient, the initial tem-

perature and the source term from the measured temperatures at two time instants t1, t2
and at the final time T has been investigated. The three unknown coefficients have been
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reconstructed by minimizing the least-squares objective functional. Based on a varia-
tional method, the Fréchet derivatives with respect to the three unknowns are obtained
together with the adjoint and sensitivity problems. The CGM has then been applied to
numerically retrieve the three unknown coefficients. Two numerical examples for one-
dimensional inverse problems have been illustrated for continuous and discontinuous re-
action coefficient. The numerical solutions regularized by the discrepancy principle have
been obtained accurate and stable for all the three space-dependent unknown quantities
that have been simultaneously retrieved.
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Chapter 9

General conclusions and future work

9.1 Conclusions

The objective of this thesis was to reconstruct unknown space-dependent coefficients

and/or the initial temperature in the IHTPs. Such inverse problems have practical physical

applications in heat and bio-heat conduction, melting or cooling processes, etc.

Since one or more space-dependent coefficients and/or the initial temperature in the

inverse problems is/are unknown, extra information is required to retrieve these unknown

quantities. Such information is usually provided as measured over-specified observation

which contains random noise. This random noise causes huge oscillations and unbounded

behaviour in the numerical solutions to the inverse problem under investigation, when this

problem is ill-posed. Consequently, the traditional numerical methods are not appropriate

unless combined with some sort of regularization.

In this thesis, the inverse problems have been transformed to nonlinear optimization

problems of the least squares objective functionals. Then, the quasi-solutions to the in-

verse problems can be approximated by the minimizers of these objective functionals.

The CGM regularized by the discrepancy principle was utilized to stabilize the solution

with respect to errors in the temperature measurements.

The existence of the minimizer for the optimization problem was proved by applying

basic arguments of functional analysis. The Fréchet gradient of the objective functional

is derived using the variational method, the adjoint problem and the sensitivity problem.

The CGM is established to obtain the numerical solutions to the unknown coeffi-

cients. The choice of the conjugate gradient parameter is taken into consideration, and

the Fletcher-Reeves formula is applied throughout the thesis. The temperature can be

transformed into a linear function of the step size using the Taylor series expansion.

Then, the objective functional can be approximated by the above temperature, and the
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step size is obtained by vanishing the partial derivatives of the objective function subject

to the step size. In summary, the steps of the CGM includes: (S1) set n = 0 and choose

initial guesses for the unknown coefficients; (S2) solve the direct problem and calculate

the objective functional; (S3) if the stopping criterion based on the discrepancy principle

is satisfied, then go to S7, else go to S4; (S4) solve the adjoint problem, Fréchet gradient,

conjugate coefficients and directions of descent; (S5) solve the sensitivity problem and

compute the search step sizes; (S6) update the unknown coefficients, set n = n + 1 and

go to S2; (S7) end.

For all the inverse problems considered in this thesis, their accurate and stable numer-

ical results have been thoroughly investigated for various noise levels in the temperature

measurements. The direct, adjoint and sensitivity problems have been solved by using

the FDM, i.e. the C-N scheme for one dimensional problems and the ADI scheme for two

dimensional problems. The temperature measurement has been statistically simulated by

adding to the exact temperature random noise generated from a normal distribution by

MATLAB.

In Chapter 1, a general introduction to the direct parabolic problems and the IHTPs

has been provided. The ill-posedness of the IHTP has been presented, especially the

instability of the solution to linear or nonlinear inverse problems. Then, the Tikhonov

regularization can be used to regularize ill-posed problems for a suitable choice of regu-

larization parameter. Iteration regularization methods, such as the Landweber’s method

and the CGM can be used to obtain stable solutions to the inverse problems when the

iteration process is stopped according to the discrepancy principle.

In Chapter 2, the IHTP which requires to reconstruct the unknown space-dependent

thermal conductivity in an isotropic medium has been investigated. The interior measured

temperature is used as additional information. The quasi-solution of the inverse problem

is approximated by the minimizer of the objective functional, which is the gap between

the computed and the measured temperature. The existence of the minimizer to the op-

timization problem is proved based on basic functional analysis arguments. The Fréchet

gradient is derived using the variational method based on the sensitivity and adjoint prob-

lems. Then, the CGM is established based on such gradient. The Sobolev gradient can

also be applied in the CGM to obtain smoother results, especially for the conventional

gradient with zero boundary values. The stable results can be reconstructed by the CGM

regularized by the discrepancy principle, in such case the iterations are stopped at the

level at which the objective functional becomes just below the noise threshold with which

the data is contaminated. Three numerical numerical examples have been presented for

one- or two-dimensional problems obtaining accurate and stable numerical solutions.
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In Chapter 3, the space-dependent thermal conductivity orthotropic tensor has been

numerically reconstructed from internal temperature observations using the CGM. The

Sobolev gradient has been utilized in the CGM to determine smoother and significantly

more accurate and stable numerical results.

In Chapter 4, the inverse problem of identifying the space-dependent thermal con-

ductivity and reaction coefficient from internal temperature measurements has been con-

sidered using the CGM. The Fréchet gradient with respect to the coefficients has been

utilized to establish the CGM, and then regularized by discrepancy principle to obtain

stable numerical solutions. The numerical results of the three continuous and discon-

tinuous examples showed that CGM is an accurate and stable regularization method for

reconstructing spatially-varying coefficients.

In Chapter 5, the unknown space-dependent reaction coefficient has been recon-

structed from the final or time-average temperature measurements using the CGM reg-

ularized by the discrepancy principle. Three examples for both inverse problems have

been tested obtaining stable and accurate numerical results. Moreover, the numerical so-

lution for the inverse problem based on the time-average measured temperature has been

obtained slightly more accurate than the numerical solution for the inverse problem based

on the final data.

Chapter 6 has been concerned with the simultaneous reconstruction of the space-

dependent reaction coefficient and the initial temperature from temperature measure-

ments at two different instants. The uniqueness of the inverse problem holds under some

assumptions. The regularized CGM has been applied to obtain the numerical solutions

for the two unknown quantities. Three numerical examples for one- and two-dimensional

examples have been illustrated and discussed, and accurate and stable results have been

achieved.

In Chapter 7, the same unknown coefficients as in Chapter 6 have been retrieved, but

from time-integral weighted temperature observations. The CGM has been established

based on the Fréchet gradient and the adjoint and sensitivity problems. The global con-

vergence of the CGM has been established for exact data from the Lipschitz continuity of

the gradient. Three numerical examples in both one- and two-dimensional inverse prob-

lems have been presented, and the numerical solutions showed the accuracy and stability

of the numerical reconstruction.

Finally, in Chapter 8, the space-dependent reaction coefficient, the initial tempera-

ture and the source component have been simultaneously reconstructed from temperature

measurements at two time instants and at the final time. The CGM has been again utilized
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to retrieve the numerical solutions of the three unknown quantities. The numerical solu-

tions of two examples for one-dimensional inverse problems illustrate that all the three

space-dependent unknown coefficients can be retrieved in an accurate and stable manner.

Overall, the numerical results obtained by using the methods established in this the-

sis, i.e. the FDM combined with CGM regularized by the discrepancy principle, illus-

trate that accurate and stable solutions can be obtained for recovering one or more un-

known space-dependent coefficients in nonlinear and ill-posed IHTPs. Moreover, the

CGM semi-converges fast, i.e. the iteration process are stopped rapidly. In general, up

to 5% noisy data, which is a realistic amount noise in practical measurement, can be

inverted to produce reasonably accurate and stable numerical results.

In the simultaneous reconstruction of three unknowns investigated in Chapter 8, the

three search step sizes cannot be obtained in the two-dimensional case, since the matrix

A in (8.24) becomes singular. Thus, the method proposed in this thesis may not be useful

for reconstructing three or more coefficients in IHTPs, simultaneously.

In addition, since the FDM is applied to solve the PDEs, which may limit the appli-

cations of the CGM proposed in this thesis, the FEM could be a better method to solve

the PDEs in irregular domains. Besides, the weak solutions, which are used in the defini-

tion of the least-squares objective functional in Chapters 2–8, can also be applied in the

establishment of the FEM.

Much work remains to be done in the future and some possible avenues are proposed

in the next section.

9.2 Future work

The numerical solutions produced in this thesis confirm the fact that the CGM can be

applied for efficiently reconstructing the unknown coefficients of IHTPs and the initial

temperature of the BHCPs. Some possible future work may consist of:

• Extend the unknown space-dependent coefficients in Chapters 2-4 to time- and

space-dependent or temperature-dependent coefficients.

• Investigate the global convergence of the inverse problems in Chapters 2-4 based

on the approach applied in Chapter 7.

• Reconstruct the space-dependent reaction coefficient, the Robin boundary coeffi-

cient and the initial temperature from the measured temperatures at two distinct

time instants, simultaneously.
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9.2 Future work

• Investigate the uniqueness of the reaction coefficient and the initial temperature in
the IHTP from time-average measured temperatures in Chapter 7.

• Investigate the uniqueness of the reaction coefficient, the source component and
the initial temperature of the IHTP from temperature observations at two distinct
time instants and at the final time in Chapter 8.

• Extend the one-dimensional numerical implementation of Chapter 8 to higher di-
mensional inverse problems.

• The numerical solutions to the discontinuous coefficient examples are not suffi-
ciently accurate throughout the work, especially near the areas of the discontinuity
points. One may employ the TV regularization to improve the accuracy in recover-
ing these discontinuous coefficients.

• Use the FEM combined with CGM to reconstruct unknown coefficients in IHTPs
for irregular solution domains.
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COLAÇO, M.J. & ORLANDE, H.R.B. (1999). Comparison of different versions of the

conjugate gradient method of function estimation. Numerical Heat Transfer: Part A:

Applications, 36, 229–249. 14, 19

167



REFERENCES
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HUANG, C.H. & ÖZIŞIK, M.N. (1991). Direct integration approach for simultaneously

estimating temperature dependent thermal conductivity and heat capacity. Numerical

Heat Transfer, Part A Applications, 20, 95–110. 19, 21

ISAKOV, V. (1990). Inverse Source Problems. 34, American Mathematical Society, Prov-

idence. 5, 144

ISAKOV, V. (1991). Inverse parabolic problems with the final overdetermination. Com-

munications on Pure and Applied Mathematics, 44, 185–209. 19, 83

170



REFERENCES

ISAKOV, V. (2006). Inverse Problems for Partial Differential Equation. Springer-Verlag,

Berlin. 22, 144

JARNY, Y., OZISIK, M.N. & BARDON, J.P. (1991). A general optimization method

using adjoint equation for solving multidimensional inverse heat conduction. Interna-

tional Journal of Heat and Mass Transfer, 34, 2911–2919. 33

JIN, B. & ZOU, J. (2009). Numerical estimation of the Robin coefficient in a stationary

diffusion equation. IMA Journal of Numerical Analysis, 30, 677–701. 31

JOHANSSON, B.T. & LESNIC, D. (2008). A procedure for determining a spacewise

dependent heat source and the initial temperature. Applicable Analysis, 87, 265–276.

114

KALTENBACHER, B., NEUBAUER, A. & SCHERZER, O. (2008). Iterative Regulariza-

tion Methods for Nonlinear Ill-Posed Problems, vol. 6. Walter de Gruyter, Berlin. 11,

12, 13

KAMYNIN, V.L. & KOSTIN, A.B. (2010). Two inverse problems of finding a coefficient

in a parabolic equation. Differential Equations, 46, 375–386. 19, 84, 86

KEUNG, Y.L. & ZOU, J. (1998). Numerical identifications of parameters in parabolic

systems. Inverse Problems, 14, 83–100. 26, 70, 108

KOHN, R. & VOGELIUS, M. (1984). Determining conductivity by boundary measure-

ments. Communications on Pure and Applied Mathematics, 37, 289–298. 18

KOHN, R.V. & VOGELIUS, M. (1985). Determining conductivity by boundary mea-

surements II. interior results. Communications on Pure and Applied Mathematics, 38,

643–667. 18

KOZHANOV, A.I. (2004). A nonlinear loaded parabolic equation and a related inverse

problem. Mathematical Notes, 76, 784–795. 19, 84, 86

KRAVARIS, C. & SEINFELD, J.H. (1986). Identifiability of spatially-varying conductiv-

ity from point observation as an inverse Sturm–Liouville problem. SIAM Journal on

Control and Optimization, 24, 522–542. 18

KURPISZ, K. & NOWAK, A. (1995). Inverse Thermal Problems. Computational Me-

chanics Publications, Southampton. 103

171



REFERENCES

LADYZHENSKAIA, O.A., SOLONNIKOV, V.A. & URAL’TSEVA, N.N. (1968). Linear

and Quasi-Linear Equations of Parabolic Type, vol. 23. American Mathematical Soci-
ety, Providence. 3, 22, 86, 106

LANDWEBER, L. (1951). An iteration formula for Fredholm integral equations of the
first kind. American Journal of Mathematics, 73, 615–624. 11

LAX, P.D. (2002). Functional Analysis. John Wiley & Sons, Inc., New York. 26

LESNIC, D., ELLIOTT, L. & INGHAM, D.B. (1998). An iterative boundary element
method for solving the backward heat conduction problem using an elliptic approxi-
mation. Inverse Problems in Engineering, 6, 255–279. 103, 114

LESNIC, D., MUSTATA, R., CLENNELL, M.B., ELLIOTT, L., HARRIS, S.D. & ING-
HAM, D.B. (2007). Genetic algorithm to identify the hydraulic properties of hetero-
geneous rocks from laboratory flow-pump experiments. Journal of Porous Media, 10,
71–91. 51

LIU, Y. & STOREY, C. (1991). Efficient generalized conjugate gradient algorithms, part
1: theory. Journal of Optimization Theory and Applications, 69, 129–137. 15

MARIN, L. & LESNIC, D. (2002). Boundary element solution for the Cauchy problem
in linear elasticity using singular value decomposition. Computer Methods in Applied

Mechanics and Engineering, 191, 3257–3270. 10

MEJIAS, M.M., ORLANDE, H.R.B. & OZISIK, M.N. (1999). Design of optimum ex-
periments for the estimation of the thermal conductivity components of orthotropic
solids. Hybrid Methods in Engineering, 1, 37–53. 51

MIRANKER, W.L. (1961). A well posed problem for the backward heat equation. Pro-

ceedings of the American Mathematical Society, 12, 243–247. 103

MOROZOV, V.A. (1966). On the solution of functional equations by the method of regu-
larization. Soviet Mathematical Doklady, 7, 414–417. 12

MUNIZ, W.B., DE CAMPOS VELHO, H.F. & RAMOS, F.M. (1999). A comparison of
some inverse methods for estimating the initial condition of the heat equation. Journal

of Computational and Applied Mathematics, 103, 145–163. 104

NATTERER, F. (2001). The Mathematics of Computerized Tomography. Wiley, Chich-
ester. 12

172



REFERENCES

NEUBAUER, A. & SCHERZER, O. (1995). A convergence rate result for a steepest de-
scent method and a minimal error method for the solution of nonlinear ill-posed prob-
lems. Zeitschrift für Analysis und ihre Anwendungen, 14, 369–377. 13

NEUBERGER, J. (2009). Sobolev Gradients and Differential Equations. Springer Science
& Business Media, Berlin. 31
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ÖZIŞIK, M.N. & ORLANDE, H.R.B. (2000). Inverse Heat Transfer: Fundamentals and

Applications. CRC Press, New York. 1, 4, 17, 19, 84, 103, 105

PATTERSON, W.M. (1974). Iterative Methods for the Solution of a Linear Operator

Equation in Hilbert Space: A Survey. Springer-Verlag, Berlin. 12

PEACEMAN, D.W. & RACHFORD, H.H., JR (1955). The numerical solution of parabolic
and elliptic differential equations. Journal of the Society for Industrial and Applied

Mathematics, 3, 28–41. 37

PENNES, H.H. (1948). Analysis of tissue and arterial blood temperatures in the resting
human forearm. Journal of Applied Physiology, 1, 93–122. 83, 85

PHILLIPS, D.L. (1962). A technique for the numerical solution of certain integral equa-
tions of the first kind. Journal of the Association for Computing Machinery, 9, 84–97.
9

PIERCE, A. (1979). Unique identification of eigenvalues and coefficients in a parabolic
problem. SIAM Journal on Control and Optimization, 17, 494–499. 19

POLAK, E. & RIBIERE, G. (1969). Note sur la convergence de méthodes de direc-
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