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Abstract

Structural Health Monitoring (SHM) describes a set of activities that can be followed

in order to collect data from an existent structure, generate data-based informa-

tion about its current condition, identify the presence of any signs of abnormality

and forecast its future response. These activities, among others, include instru-

mentation, data acquisition, processing, generation of diagnostic tools, as well as

transmission of information to engineers, owners and authorities. SHM and, more

specifically, continuous monitoring can provide numerous measures, which can be

generally classified into three categories; vibrational-based, which includes natural

frequencies, modeshapes, damping ratios, component-based, such as strains, ten-

sions, deflections and environmental and operational variations (EOVs), associated

with temperature, wind, traffic humidity and others.

One of the main technical problems that SHM has to tackle is that of data normal-

isation. In abstract terms, this describes the impact that EOVs can have on SHM

measures. In many cases, with interest placed on bridges, it has been observed that

EOVs introduce nonstationary to SHM signals that can mask the variability that

can be associated with the presence of damage; making damage detection attempts

difficult. Hence, it is desirable to quantify the impacts of EOVs on damage sensitive

features, project them out, using methods such as the cointegration, Principal Com-

ponent Analysis (PCA) or others, in order to achieve a stationary signal. This type

of signal can be assessed over time using tools, such as statistical process control

(SPC) charts, to identify the existence of novelty, which can be linked with damage.

As one can understand from the latter, it is important to detect the presence of non-

stationary in SHM signals and identify its sources. However, this is not a straight-

forward procedure and one important question that need to be answered is; how
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one can judge if a signal is stationary or not. Inside this work, this question is dis-

cussed, focusing on the definition of weak stationarity and under which assumption

this judgement holds. In particular, the data coming from SHM are finite samples.

Therefore, the mean and variance of a signal can be tracked, using a sequence of

moving windows, something that needs a prior determination of the width of win-

dow. However, the major concern here is that the SHM signals can be characterised

as periodically-correlated or cyclostationary. In such cases, it seems that it is bet-

ter for one to use more advanced statistical tools to assess a signal’s nonstationary.

More specifically, nonstationary tests coming from the context of Econometrics and

time-series analysis can be employed. In order to use such proxies more extensively,

one should build trust on their indications by understanding the mechanism under

which they perform.

This work concentrates on the Augmented Dickey-Fuller (ADF) nonstationary test

and emphasis is placed on the hypothesis (unit root) under which performs its as-

sessment. In brief, a series of simulations are generated, and based on dimensional

analysis, it is shown that the ADF test is essentially counts the number of cy-

cles/periods of the dominant periodic component. Its indications depend on the

number of observations/cycles, the normalised frequency of the signal, the sampling

rate and signal-to-noise ratio (SNR). The most important conclusion made is that

knowing the sampling frequency of any given signal, a critical frequency in Hz can

be found, which can be derived from the critical normalised one, as a function of

the number of cycles, which can be directly used to judge if the signal is stationary

or not. In other words, this investigation provides an answer to the question; after

how many cycles of continuous monitoring (i.e. days), an SHM signal can be judged

as stationary?

As well as considering nonstationary in a general way, this thesis returns to the

main issue of data normalisation. To begin with, a laboratory test is performed,

at the laboratory (Jonas lab) of Sheffield University, on an aluminium truss bridge

model manufactured there. In particular, that involved vibration analysis of the

truss bridge inside an environmental chamber, which simulated varying tempera-

ture conditions from −10 to 20 oC, while damage introduced on the structure by

the removal of bolts and connecting brackets in two locations of the model. This

experiment provided interesting results to discuss further the impact of EOVs on

data coming from the monitoring of a small-scale structure. After that, the thesis

discusses the use of Johansen’s approach to cointegration in the context of SHM,
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demonstrate its use on the laboratory truss bridge data and provides a review of

the available methods that can be used to monitor the cointegration residual. The

latter is the stationary signal provided by cointegration which is free from EOVs and

capable for novelty detection. The methodologies reviewed are various SPC charts,

while also the use of ADF is also explored, providing extensive discussion.

Furthermore, an important conclusion from the SHM literature is that the impact

of EOVs on SHM signals can occur on widely disparate time scales. Therefore, the

quantification and elimination of these impacts from signals is not an easy procedure

and prior knowledge is needed. For such purposes, refined means originated from the

field of signal processing can be used within SHM. Of particular interest here is the

concept of multiresolution analysis (MRA), which has been used in SHM in order

to decompose a given signal in its frequency components (different time-scales) and

evaluate the damage sensitivity of each one, employing the Johansen’s approach to

cointegration, which is able to project out the impact of EOVs from multiple SHM

series.

A more principled way to perform MRA is proposed here, in order to decompose

SHM signals, by introducing two additional steps. The first step is the ADF test,

which can be used to assess each one of the MRA levels in terms of nonstationary.

In this way, a critical decomposition level (L*) can be found and used to decompose

the original SHM signal into a non-stationary and stationary part. The second

step introduced includes the use of autocorrelation functions (ACFs) in order to

test the stationary MRA levels and identify those that can be considered as delta-

correlated. These levels can be used to form a noisy component inside the stationary

one. Assuming that all the aforementioned steps are confirmed, the original signal

can now be decomposed into a stationary, a mean, a non-stationary and a noisy

component. The proposed decomposition can be of great interest not only for SHM

purposes, but also in the general context of time-series analysis, as it provides a

principled way to perform MRA. The proposed analysis is demonstrated on natural

frequency and temperature data of the Z24 Bridge.

All in all, the thesis tries to answer the following questions:

• How an SHM signal can be judged as non-stationary/stationary and under

which assumptions?

• After how many cycles of continuous monitoring an SHM signal that is initially
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non-stationary becomes stationary?

• Which are the main drivers of this nonstationary (i.e. EOVs, abnormal-

ity/damage or others)?

• How one can distinguish the effect of EOVs from this of abnormality/damage?

• How one can project out the confounding influence of EOVs from an SHM

signal and provide a signal that is capable for novelty detection?

• Is it possible to decompose an SHM signal and study each one of these com-

ponents separately?

• Which of these components are mostly affected by EOVs, which from damage

and which do not include important information in terms of novelty detection?

Understanding and answering all the aforementioned questions can help on identi-

fying signals that can be monitored over time or in data windows, ensuring that

stationarity achieved, employing methodologies such as statistical process control

(SPC) for novelty detection.
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Chapter 1

Structural Health Monitoring

and Bridges

1.1 Introduction

Structural health monitoring (SHM) is a relatively new scientific field, which was

initially established in aerospace/aeronautics and during the 80s found useful appli-

cation in civil engineering and especially in large-scale structures, such as bridges,

ports, offshore structures, dams, buildings, tunnels, pipelines, oil rigs and others [5].

The main objective of SHM is the efficient monitoring and evaluation of the response

and behaviour of in-situ structures, using sensor technology, in order to assess their

condition under varying operational and environmental loads, detect damage or

faults, evaluate their integrity and identify their existent pathologies. In essence, an

effective SHM system should assure the fast, reliable and efficient transmission of

information to engineers, owners and authorities with respect to serviceability and

integrity of the structure.

For civil infrastructure, this information can help in establishing informative back-

ground during construction phases, assessment of existent structures for strengthen-

ing and rehabilitation purposes and after construction, for checking the function of

structure and if it performs as expected, while also in cases of testing and evaluating

the life-cycle expectancy of a bridge. In this way the information provided by SHM

can be integrated within inspection and service strategies planned, in order to help

1
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in establishing a more educated decision making (i.e. service, rehabilitation, opera-

tion breaks, maintenance etc.), which aims to avoid cases of unrecoverable damage

(faults), optimise the distribution of resources: materials and services, reduce down-

time and service costs.

SHM has a broad topical coverage due to its multidisciplinary nature as it fosters the

intersection of different technologies to address the varied needs and applications.

In particular, some of the topics that SHM deals with are diagnostics, condition-

based maintenance, vibration methods for damage assessment, signal processing

techniques, sensor design (new materials), data mining and management approaches,

monitoring conducted on infrastructure structures, wired and wireless communica-

tion, embedding technology, development of self-repairable structures and many

others [6].

Closely related disciplines to SHM are those of: i) condition monitoring (CM),

which main subject is damage detection in rotating and reciprocating machinery,

ii) non-destructive testing (NDT), which is conducted on specified damage critical

regions or in the members where damage identified, iii) health and usage monitoring

machines (HUMS), with damage detection applications in rotorcraft drive trains,

iv) statistical process controls (SPC), which use a variety of sensors to monitor

manufacturing processes for measuring and controlling industrial productivity and

v) damage prognosis (DP), which is associated with a system’s life expectancy and

productivity [7].

In SHM literature, there is a large amount of discussion about the objectives of SHM.

A commonly accepted idea is given by Rytter [8]. In particular, four hierarchical

levels are described with respect to the procedure of damage identification:

• Damage detection, which refers to the procedure of detecting the existence of

novelty/damage in the response of a structural system.

• Localisation, which describes the procedure of detecting the damaged region

or component of a structural system.

• Quantification, which is associated with the damage type and assessment of

its severity.

• Prognosis, which refers to the estimation of structural life expectancy and

determination of decision making (preventative measures).
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1.2 What SHM Includes

A typical SHM system involves the coordination of different sub-systems (compo-

nents) in order to provide valuable information that can be used for the purpose of

damage identification. Based on [6], a typical SHM system consists of six compo-

nents:

• The data acquisition system (including the sensing system).

• Communication system available for information transmission.

• Data storage system.

• Diagnostic Tools/Methodologies (i.e. SHM pattern recognition techniques,

finite element analysis).

• System of Information Retrieval.

According to [9], sensors can be used to measure numerous different SHM magni-

tudes. The most commonly measured magnitudes during Bridge SHM are i) accel-

erations, ii) strains, iii) deflection/displacements, iv) tilts and v) tensions (cable-

bridges). Accelerations can be used to extract the natural frequencies and mode-

shapes of a bridge, which are commonly employed for damage detection and finite

element model update (FEMU) [10]. In addition, environmental measures are also

recorded, such as temperature, wind speed and direction, vehicular amounts (weight-

in-motion systems), relative humidity levels and other depending on the environment

where bridges are situated.

SHM in bridges [11] can be classified into four main categories in terms of the way in

which data are collected, as well as the time-scales of data acquisition. More specif-

ically, these categories are: i) static field testing, which includes static/mechanic

behaviour (identify certain method of analysis), diagnostic (evaluate the effects of

components’ interaction) and proof (establish safe load-carrying capability) tests,

ii) dynamic field testing, including stress history, dynamic load allowance (DLA),

ambient vibration and pull back tests, iii) periodic monitoring, which includes field

testing and structural capacity determination tests and finally iv) continuous mon-

itoring, including active monitoring and passive monitoring. The main objective of

this thesis concerns continuous monitoring.
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Although there are many available data that can be measured, the cost of a complete

SHM system (system purchase, installation, monitoring, service etc.) is significantly

high, while its usefulness is sometimes under question. Most of the time, organised

monitoring systems are available in major and newly constructed bridges [10]. In

SHM literature, there is an attempt to decrease the number of transducers without

affecting the efficiency of the SHM systems and rely on cost-effective solutions [2]

(i.e. a great amount of literature work [12] deals with optimised sensor placement).

In addition, some further parameters, such as the bridge type, the construction

material and the type of transducers that will be placed on the structure should

be taken into consideration. This is mainly because different construction materi-

als manifest different pathologies and deficiencies and are also affected in different

manners by environmental and operational conditions, fatigue and ageing. An in-

teresting investigation conducted by the Department of Transportation of Oregon,

US [13] on 13 in total highways bridges included, explaining that is useful to know

the damage or deterioration mechanism to be monitored before installing an SHM

system.

The latter is important, because otherwise it is probable that monitoring the whole

structure placing many different sensors will be costly without profound reason. For

example for bridges observed to have foundation instability or an ongoing tension

crack progressing, appropriate SHM sensors scheme should be adopted in order to

monitor efficiently the aforementioned observations, such as sensors measuring tilts,

pressure levels, displacements, strains and environmental features.

Furthermore, the limitations of the acquisition system should be considered in order

for data to be collected, stored, processed and presented easily. For example, the

data monitored are transferred to a central computer, which needs a system power

supply. Although, bridges in urban areas typically have direct supply from the grid,

as well as phone lines or fibre optic connections, rural bridges should use alternative

supply methods, such as solar panels, wind turbines, radio modems, cellular phones

to transfer data to the central server etc. From the aforementioned, it can be

concluded that the SHM system design is a complex procedure, considering many

factors, besides the cost of equipment and installation.
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1.3 Conventional Practice for Bridges SHM

Bridges have high importance for civil infrastructure, as they link different cities

and countries, connecting isolated villages and regions with the main highways and

substantially play significant role for the economic development of a region or city,

reshaping and adding value to society. Due to the increased awareness of the im-

portance of bridges for economic growth and sustainability of civil infrastructure of

modern societies, the bridge stock of each country should be efficiently managed.

The evaluation of current bridge stock condition, the investment in planning, up-

grade and improvement of the service provided to society and the evaluation of

available budget are of critical importance for the ability of a country to participate

in economic forums and receive funding for further development.

1.3.1 Visual Inspection and Condition Evaluation

The most common way for assessing the state of bridges and characterising their

condition is by the use of conventional inspection methods complemented by non-

destructive (NDT) and destructive (ND) testing [14]. The main aim of these activi-

ties is to collect information about the state of the structure, visually detect patholo-

gies, inspect all components for defects and characterise, in general, the condition

of the bridge. This information can be used to update the available bridge manage-

ment databases, which can be analysed to establish future maintenance schemes, to

assure the longevity and sustainability of the structures.

Visual inspection is a fast, inexpensive and effective method to identify the patholo-

gies of a bridge and to observe internal, external defects, deficiencies and damaged

regions/members [15, 16]. The deficiencies which are anticipated for each bridge,

depends on the construction material used. For example, in reinforced/pre-stressed

concrete, deficiencies such as scaling, cracking, delamination, spalling, rebar-steel

corrosion can be found; in timber, surface depression, warping, loose connections,

failure of protective coating etc.; in steel, corrosion, fatigue cracking, buckling coat-

ing failures etc.); in fibre reinforced polymers, blistering, wrinkling, fibre exposure,

discolouration etc.; in masonry, weathering, abrasion, plant and marine growth,

splitting and others [15, 16].

Although, visual inspection provides a general appreciation and basic evaluation of
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bridges’ condition, there are some disadvantages associated with its use. Among

them, is that the effectiveness of inspection is solely dependent on the experience

and knowledge of the inspection team and main investigator. In addition, visual in-

spection cannot provide specific evidence on defects and cracks occurring within the

material, in microscopic scale [16], as well as scheduled maintenance and periodic in-

spections can offer limited information about structural response [17]. Furthermore,

access to specific parts of the bridge can be restricted or inspection activities can be

dangerous (high-rise layouts, ravine, mountains) [13] (i.e. inspection of viaducts).

Some of the aforementioned drawbacks of visual inspection can be tackled by em-

ploying NDT [16], as well as with the use of new technologies, such as inspection

via drones.

It is important to add here, that although visual inspection and condition evalua-

tion are relative cost-effective activities, are mainly performed every two or three

years or in exceptional cases annually (i.e. army bridges) [16]. One can argue that

the latter periodic inspection activities may sometimes considered as insufficient for

a thorough condition evaluation and especially difficulties can occur when past in-

spection material are not very informative for future inspections [17]. In addition,

the travel costs should also be considered in the case of site visits [17].

Therefore, SHM can be significantly useful here, because the installation of sensors

on the structures and the remote data acquisition can provide a more thorough

investigation of structural response and limit also the associated travel costs. Besides

that there are cases that inspection, condition evaluation and assessment based on

load rating factor cannot be representative of structural evaluation. In particular, in

[13] there are cases of reinforced concrete girder bridges, which were assessed based

on load rating factors and periodically inspected and judged as incapable to carry

trunk loads. However, after performing SHM activities, such as dynamic and static

tests on them it was observed that the bridges had adequate strength to carry these

loads.

Another fact is that condition evaluation and visual inspection is mainly focus on the

examination of particular bridge parts, looking for in-prior determined types of de-

terioration expected, such as the examination of particular bridge members, referred

to as fracture critical members (FCM). These are more critical to the overall safety

of the bridge than others, because their failure can lead in irreversible damage [16],

such as absence of redundancy (load path; number of available load paths, struc-

tural; continuity in load path: statically indeterminate structures, internal; failure
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spreads from one member to the other), which describes the ability of neighbouring

members to carry the re-distributed load resulted by the members’ failure. As one

can understand, thorough knowledge of structural behaviour, mechanics and level

of experience is needed to identify such parts. Here SHM can play a critical role

as sensors can be placed to such critical members and their response can be moni-

tored and evaluated over time, something that can provide more knowledge to the

engineer and also help evaluating if already conducted service activity was sufficient

assuring the proper function of the structure.

In other words, here it can be said that SHM can provide a very useful alternative to

the traditional condition evaluation and visual inspection activities. In particular,

the existence of sensors on structures can provide remote monitoring and evalu-

ation of structure, which can enhance the knowledge of engineers and also help

them organise better the needs for maintenance. In addition, for cases of critical

members monitored, SHM can provide data that can be processed in order to iden-

tify the presence of any on-going deterioration mechanisms, which could not been

identified by inspection activities. All the aforementioned show the preventative

character of SHM and its direction to provide safety and organise better the needs

for maintenance activities, as well as the opportunity for a more effective bridge

stock management.

1.3.2 Bridge Management

In order to manage efficiently their bridge stock, countries created inventories and

unified databases, which include multiple information about the bridges, such as

their type, material, components (superstructure, substructure), location, support

condition, specifications, number of lanes, traffic accounts, operational conditions,

geometric data, age, which can help to categorise them and keep track of inspection

data, such as ratings, surveys, time of inspection, maintenance activities [18]. This

analytical collection of data for numerous bridges is referred to as bridge manage-

ment [19].

For structural evaluation of bridges, the most common guidelines followed are pro-

vided by the Federal Highway Administration Guides (FHWA), which are estab-

lished by the U.S. Department of Transportation and introduced as code of practice

AASHTO [18]. These are, in general sense (slight differences), adopted from Eu-
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ropean Standards. The equivalent specifications for U.K. is the design manual of

roads and bridges (DMRB) [15].

Following the AASHTO determined evaluation here, the evaluation of structural

integrity is performed on a scale from 0 to 9, where 9 describes that bridges meet

the desirable criteria and perform even better, while 0 describes that the bridge’s

operation should stop as soon as possible. For ratings under 5, corrective and

priority actions are required [14]. The bridges of high concern are also classified

as structurally deficient or functionally obsolete, however, neither term necessarily

implies lack of safety [14–20]. In particular, a bridge is referred to as structurally

deficient when it includes a significant defect which often means that speed or vehicle

weight limits must be enforced on the bridge to ensure safety. On the other hand,

structurally obsolete is a bridge that can function properly, however, at levels which

are below the contemporary standards. The latter means that traffic associated

restrictions should be imposed, such as closing a traffic lane in order to reduce the

traffic tonnes that the bridge sees [15].

1.3.3 Bridges’ Condition Nowadays

Based on the previous way of assessment and classification, bridge stocks from dif-

ferent countries have been assessed and important conclusions have been drawn

[14, 21, 22]. In particular, the most commonly observed defects and deteriora-

tion are associated with design and construction issues, such as insufficient con-

crete cover, dense placement of steel rebars, inappropriately placed joints, problems

with drainage systems, alkali-silica reaction (ASR) susceptible aggregates, insuffi-

cient foundation capacity, poor concrete quality, bad compaction, inadequate curing,

poorly fixed reinforcement, faulty ducting for post-tensioning systems, inadequate

grouting, painting and coating, overloading, vehicle impact, chloride attack, carbon-

ation, poor maintenance, freeze-thaw cycle, dynamic loading [16].

According to recent studies and projects [21, 22], counties with big population of

bridges, such as USA, China, Australia, Canada and Japan have a high percentage

of structurally deficient bridges, of which the majority were build within 60s and 70s,

something that is also happening in European countries, such as United Kingdom,

France, Austria, Switzerland and Germany [23]. From this, one can understand that

societies face the necessity to conduct maintenance, that costs billions each year, to
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upgrade, strengthen and/or reconstruct many bridges. Some reasons behind the

observed problems were, a) the significant increase in bridge construction until late

60s following the rapid growth of economy, which led to cost cutting solutions, b)

the limited design knowledge and the conservative speculation, which in many cases

led to the use of low quality materials, insufficient detailing and overestimation of

load-carrying capacity [21, 22] etc.

After major bridge collapses, such as the Silver Bridge (1967), I-35W in Minnesota,

Kisogawa Ohashi and Honjo Ohashi Bridge in Japan, the engineering community

[14] became alarmed and started developing ways to improve bridge condition, some-

thing that provides ground for further development. In this direction, SHM was

introduced for bridge monitoring. In particular, in the last 30 years, there has been

a lot of investment and research orientated into monitoring technologies capable

of improving the current state of bridges and other infrastructure projects, aiming

to allocate resources towards repair, replacement/rehabilitation, as well as future

estimation of life expectancy.

1.4 Motivation behind SHM for Bridges

To begin with, SHM can provide understanding of the behaviour of full-scaled in-

situ structures, assessing, both physically and numerically, their actual response

and bearing capacity, under full cycles of environmental and operational loads. In

addition, SHM can be utilised to understand the effects that environmental and

operational variations (EOVs), time-dependent effects (material deterioration and

fatigue) and live loads have on structural response.

Furthermore, SHM is very useful for the testing and evaluation of innovative struc-

tural designs and new materials (i.e. ensuring safety of as yet unproven materi-

als and systems). For example it can provide ground for testing and evaluation

of newly developed, functional and economical sensors, data acquisition systems

(DASs), communication technologies, new data transmission, collection, archiving,

retrieving systems and novel data processing methodologies [11].

Moreover, monitoring can improve the level of management available for existing

structures. This is achieved as monitoring results provide background to better un-

derstand structural behaviour, evaluate bearing capacity and life expectancy [11].
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For example, the evaluation of bridges’ load carrying capacity was based for many

decades on the concept of allowable stress/strength design (ASD), where each com-

ponent was designed for a level of stress much lower than its maximum allowable

strength. In other words, the nominal strength of a member provided by multiple

laboratory tests is divided by a safety factor (i.e. 2), which was mainly an empir-

ical assumption [10]. This working stress methodology introduced large strength

reservoirs. The past 30 years ASD method was substituted by the load and resis-

tance factor design (LRFD), which is a probabilistic/reliability-based design method,

which aims to account for the uncertainties occurring both during load estimation

and structural resistance [15]. In addition, the assessment of existent bridges is also

based on LRFD concept.

According to the revised versions of DMRB [15], there are parts describing some

typical actions for monitoring, however without providing extensive knowledge back-

ground, something that is left to engineer’s judgement. SHM has a very important

role in order to efficiently manage bridges. In particular, the response of existent

bridges with over 50 years of life can be monitored in order to evaluate their strength

reservoirs and consequently the remaining life of the structure. Here one can argue

that a simple assessment process as required by standards cannot be always suffi-

cient for a thorough assessment before conducting maintenance. More specifically,

the requirements for assessment do not include any dynamic analysis of a structure,

which is of great importance to identify the boundary conditions of the structure and

consequently determine, more precisely, the static configuration of a bridge. For ex-

ample an simple assessment can hide locations of structure were moment and shear

forces have an increased effect, such as the connections between piers/abutments

with the deck and therefore inaccurate structural analysis configuration can lead to

questionable results.

Furthermore, for bridges constructed the last 30 years, SHM can provide a great

background in order to verify and help in developing further the LRFD method,

which is already mainly based on the statistical and probabilistic analysis performed

on data collected from SHM. By aiming for further development of SHM one aims to

save inspection time, reduce needed maintenance activities (downtime), re-evaluate

inspection budgets, re-distribute financial resources and improve the state of practice

and design. In addition, the degree of confidence with respect to visual inspection

is improved, because SHM can help to assess a larger portion of structures and

minimising human factors/errors.
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1.5 SHM in Bridges

1.5.1 Damage Sensitive Features (DSFs)

SHM can provide a wide variety of measured data. Representations of these are

also referred to as features and certain of them demonstrate great sensitivity to

change associated with damage [7]. In a general sense, DSFs can be categorised into

vibrational-based features, which can be natural frequencies, modeshapes, mode-

shape curvatures, modal strain energy, operational deflection shapes (ODS), fre-

quency response functions (FRFs), transmissibilities, structural flexibilities and damp-

ing ratios. On the other hand, there are the component-based features, which are

displacements, tensions, strains, moments, deflections, tilts and others [22].

Some of these measures and more specifically the vibration-based data are obtained

after a procedure of manipulating the measures of time domain (i.e. accelerations)

and decomposing them into the frequency domain. These methods are based on

operational (OMA) and experimental (EMA) modal analysis. Some of the most

commonly used methods are: fast Fourier transform (FFT), singular value decom-

position (SVD), peak picking method (PP), frequency domain decomposition (FDD;

Enhanced FDD, Curve-fit FDD), stochastic sub-space identification (SSI) and oth-

ers. A great review of these methodologies can be found in [24].

1.5.2 Approaches to SHM

A plethora of SHM approaches have been developed throughout the years for dam-

age identification. These can be classified into two main approaches. The first is

the physics-based or model-based approach, which involves the use of advanced nu-

merical methods, such as finite element analysis (FEA), for the simulation of the

governing dynamics (stiffness, mass, damping) of a structural system. On the other

hand, there are the data-based approaches, which rely on statistical pattern recog-

nition (SPR) to make inferences directly from data. An interesting study for their

strengths and weaknesses can be found in [25].

The physic-based modelling, includes FE bridge modelling, updating and calibra-

tion, which is performed based on monitored data. The FE model updating methods
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can be generally categorised into sensitivity and direct ones [26]. The former is based

on the formulation of parametric models of the bridge, aiming to minimise appropri-

ate penalty functions, which approximates the relative error between monitored data

and FE extracted results, as well as the selection of sensitivity parameters, which

are mainly based on the judgement of the engineer and their physical/mechanical

importance (sensitivity analysis). On the other hand, the direct FE update meth-

ods perform a direct update of the dynamic properties (mass, stiffness, damping

matrices) of the FE model, aiming to approximate the monitored data.

The FE model can be used to model the dynamic behaviour of the structure, which

can give a relationship between the matrices affecting its dynamic response. These

are the stiffness, mass, damping matrices and the vectors associated with the force

or acceleration introduced to the system. Here it is important to mention that

sensitivity analysis provides very useful information about the sensitivity of each

localised member and can be used to identify the most sensitive parts of the structure

in terms on how much they change the dynamic features, such natural frequencies,

modeshapes etc. In addition, interesting information can be provided, such as the

identification of boundary conditions of a structure, which can be obtained by the

close examination of modeshapes and the associated natural frequencies.

The results provided by a FE model have been used inside SHM literature in many

different ways. Firstly, there are available damage detection methods based on vibra-

tion measures. An conclusive overview is provided in [27]. The main four vibration

methods for damage detection are based on i) the change on natural frequencies

[28], ii) modal residuals [29], iii) modal curvatures (modeshapes) [30, 31] and iv) the

dynamically measured flexibility [32]. Secondly, FE models can be used to simulate

different possible damage scenarios [31, 33] to quantify their effects and identify

the most sensitive components. Furthermore, FE bridge models can be used for

probabilistic analysis aiming to predict the remaining life of bridges [34, 35]. Next,

there are cases where the FEM used to model the bridge and from these to extract

physics-based relations or create statistical models capable to model their behaviour

in order to perform damage detection [36].

Although, physic-based modelling is used extensively in the industrial and research

engineering worlds, there is great uncertainty associated with it [25]. This is mainly

the outcome of the involvement of engineering judgement during the procedure of

formulating the modelling assumptions. For example, the determination of bound-

ary conditions is not a trivial procedure and there are a lot of assumptions involved,
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which can significantly affect vibration and component-based FE results/projections.

However, the existence of FE models simulating the structural behaviour are helpful

to establish a general appreciation of the structural response (dynamic and static),

perform parametric analysis (i.e. traffic load distribution) and back-up visual in-

spection results, relevant analysis performed and decision making.

On the other hand, data-based modelling (interest of current thesis) is mainly based

on SPR [7]. This is a wide scientific field including many different methodologies,

such as linear and non-linear neural networks, supervised and unsupervised learning

methodologies, intelligent feature selection and extraction, novelty and outlier de-

tection, decision trees etc. [5]. From the aforementioned methods, those of interest

here are supervised and unsupervised pattern recognition, as well as the concept

of machine learning. In abstract terms, the concept of machine learning can be

described as the process of learning or training based on the relationship between

measured data. In a general sense, the learning problem can fall into two classes,

the supervised and the unsupervised [7]. The former describes the process of learn-

ing/training of data relations, when the data can be classified and labelled from the

beginning of the process (i.e. undamaged and damaged), while the unsupervised

describes the case where data classification and labelling is absent or a single class

exists, something that requires for the learning to be based on intrinsic relations

within the data [7]. A review of the most commonly employed methods used for

bridge SHM will be presented in Chapter 2.

1.5.3 Basic Axioms of SHM

At this point, it is important to mention the basic axioms used for SHM. These can

be used as general guidelines for damage identification [7]:

• Every structural material has inherent flaws or defects in microscopic level.

• Two system states (i.e. undamaged/training and potentially damaged/testing)

should be compared to investigate for damage existence.

• Damage identification (existence and location) is possible with unsupervised

SPR, but severity and type of damage can be assessed only in supervised mode.

• Measures provided by sensors, should be firstly modified (i.e. signal processing,

intelligent feature extraction, statistical classification) before used for damage
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identification attempts.

• The sensitivity of SHM features to damage is highly associated with the im-

pact of changing operational and environmental conditions. Hence, intelligent

feature selection is required.

• The requirements of an SHM system depends highly on the length, time-scale

associated with damage initiation and propagation investigated.

• There is a trade-off between the sensitivity to damage of an algorithm and its

noise rejection capability.

• The size of damage that can be detected from changes in system dynamics is

inversely proportional to the frequency range of excitation.

• Structural complexity increases due to damage existence.

Here it is important to mention some of the main challenges that SHM face nowa-

days. To begin with, is the evaluation and quantification of the confounding impact

of environmental and operational variations (EOVs) on damage senstive features.

It is desirable to project out the impact of EOVs, because it has been observed in

many cases inside SHM literature, that the EOVs impact can mask the variability

of features that can be associated with damage, something that makes damage de-

tection attempts difficult. This is one of the main aims that the current thesis has

and wish to investigate further.

Another important challenge is the attempt to retrieve as many as possible informa-

tion for as less as possible number of sensors. The latter means that methodologies

involved and implemented inside SHM literature try to extract as many as possible

valuable information from sensors. The number of sensors used to retrieve the afore-

mentioned information is associated with the overall cost of the monitoring system

installed in a bridge. The current thesis aims to deal with this issue, however indi-

rectly by trying to develop further the already existent method of cointegration inside

the context of SHM and provide further information for non-stationary/stationarity

assessment and time series decomposition.

Finally, it should be mentioned that an additional challenge is the lack of data

available from destructive testing and/or the damage state of bridges. In particular,

there are not many cases and available data from damage state of bridges in order to

develop and use supervised learning methods for damage detection and evaluation.
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Due to this reason, the methods developed in this thesis are following the unsuper-

vised machine learning approach, where data are available only from the undamaged

state of the bridge. The methods developed are based on normal condition data,

from which damage sensitive features are extracted and monitored over time on

the newly recorded data provided by real-time bridge monitoring. These methods

are tested on an existent showcase where damage is involved (Z24 Bridge) and the

laboratory truss bridge experiment conducted, which also provided damaged data.

1.6 Conclusions

In this Chapter, the concept of SHM has been introduced. In particular, its ori-

gins, fields of application, multi-disciplinary nature and generalised objectives are

discussed. In addition, the sub-systems comprising a typical SHM system are men-

tioned, focusing on the available sensor technologies and categories of SHM testing.

Furthermore, the role and motivations behind SHM and especially bridge SHM are

described, through a discussion on conventional practice (maintenance, inspection,

NDT) employed for effective bridge stock management, underlining some basic con-

siderations faced in some developed countries nowadays. Then, an introduction

on bridge SHM for damage identification is made, concentrating on the measures

provided by SHM, methods to extract them and modify them for damage-sensitive

features and the approaches commonly used to manipulate the DSFs. The main

focus of the thesis is placed on data-based approaches and unsupervised SPR.



Chapter 2

Damage Identification and the

Data Normalisation Issue

2.1 Introduction

The unsupervised data-based modelling approach is commonly applied for bridge

SHM, due observed lack of data associated with the damaged state of bridges [5].

The high structural/communal importance of bridges and their significantly high

cost, means that destructive testing should in general be avoided, however it is

important to achieve the targeted aims of SHM for bridges, to minimise the inter-

ruptions of bridge operation (downtime), ensuring the free traffic movement and

goods transportation [5].

Numerous SHM techniques have been developed throughout the years for damage

identification purposes in bridge SHM. In the current Chapter, a review of commonly

employed methods for bridge SHM is made, whilst the main focus is placed in

methods based on a specific approach referred to as data normalisation, which seeks

to tackle the influence of confounding influences on damage sensitive features.

16
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2.2 Damage Identification in Bridges SHM

Looking in SHM literature, the majority of work on bridges has been focused on

vibration-based data. In such cases, damage identification is commonly performed

by employing features extracted from acceleration measurements for bridges, such

modeshapes, natural frequencies, modal curvatures and others. These are able to

provide a generic idea of the dynamic response of the structure, whilst they exhibit

significant damage sensitivity. Furthermore, there are many methodologies used

for damage identification on bridges structures. Commonly methods include time-

series models, outlier detection, neural networks, statistical process controls, support

vector machine and many others [7].

On of the most commonly used method for damage identification is autoregressive

(AR) modelling. In the case of AR models, the training set (assumed undamaged

state) is used to obtain the parameters of the regression models, such as the coef-

ficients, number of lags and the corresponding statistics (i.e. residual error, mean,

standard deviation). These can be used either directly as DSFs or in part for creat-

ing intelligent DSFs. After the DSFs are established and tested for its appropriate

use, the remaining data representing the potential damage state, are projected on

the established AR model. Any deviation observed on the DSFs, between the two

states, can be assumed as an indicator of novelty existing in the data (i.e. damage

related). In many cases, statistical thresholds are employed to define the abnor-

mality limit in order to cope with erroneous abnormality detection (false alarms) or

statistical control charts used to capture novelty. An interesting review about the

available AR models used for bridge SHM is provided in [7].

In particular, in [37] an AR model is employed to inspect the recorded acceleration

time-histories from the undamaged and the damaged state of a reinforced concrete

(RC) bridge column. The mean and the variance of residual errors of the AR model

employed as DSFs and statistical control charts used (X-bar and S-charts) to observe

their variation in the presence of damage in different locations.

Additionally, other AR model modifications have been explored, such as by intro-

ducing exogenous terms (ARX) and moving averages (ARMA). More specifically,

in [38] an ARMA model is employed for damage identification in both time and

frequency domains, from the recordings provided by the experimental testing of a

IASC-ASCE four-storey benchmark frame, the Z24 Bridge and the second link of
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Malaysia-Singapore bridge. A linear deterministic trend introduced in the ARMA

model in order to account the long-term impact of creep and in addition a diurnal

trend introduced in short-term without triggering any false alarms.

Moreover, the response of a laboratory constructed lightweight aluminium truss

model was monitored in [39]. Damage indication and detection are performed em-

ploying ARX models using numerous DSFs (time-domain i.e. accelerations; fre-

quency domain i.e. PSDs and FRFs employing DSFs such as residual, residual

variance, maximum log likelihood function, residual correlation factors and fitting

coefficients).

Moser and Moveni [40] monitored and tested the modal response of Dowling Hall

Footbridge. The natural frequencies obtained are modelled using many mathemati-

cal techniques such as ARX, linear bi-linear and polynomial regression. Fourth-order

polynomial regression provided the best accuracy. The authors noticed that tem-

perature affects the standard deviation, which can be used to identify damage with

higher accuracy.

Omerzetter and Brownjohn [41] formulated a vector seasonal autoregressive moving

average (ARIMA) model to investigate the strain measures recorded on Singapore-

Malaysian second link bridge (post-tensioned continuous box girder), allowing its

coefficient to vary with time employing a Kalman filter. The in-service condition of

the bridge was monitored under normal and operational conditions and the model

was able to detect unusual events in the strain histories, which some of them inves-

tigated for structural change (damage onset).

Kullaa [42] proposed to use different univariate and multivariate control charts,

such as Shewhart, x-bar, CUSUM and EMWA, in order to monitor online modal

properties, such as natural frequencies, mode shapes and damping ratios. The results

shown that the variability of DSFs is influenced by environmental and operational

variations (EOVs) and suggested the use of data dimension reduction approaches

(i.e. principal component analysis-PCA) for increasing data damage sensitivity.

Mosavi et al. [43] generated a DSF based on the coefficients and residuals of a

vector autoregressive (VAR) model and use it for damage localisation in a steel

beam tested under ambient vibration. This method provided good results showing

high sensitivity to low and high levels of damage, as well as damage in different

locations. The authors suggested further investigation in cases of data exhibiting
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high level of nonstationarity, such as ARIMA or vector ARIMA (VARIMA), as well

as further study on the effect of sensor locations and optimum spacing.

From the aforementioned one can understand that there are numerous approaches to

damage identification inside the context of SHM. As mentioned in the introduction,

the majority of this work is based on approaches that employ the DSFs directly

without further modification. However, from a great amount of SHM literature, it

has been observed that many DSFs show significant sensitivity to EOVs, such as

temperature, wind, traffic, humidity and others. The issue dealing with the impact

of EOVs on DSFs is referred to SHM literature as data normalisation.

2.3 The Data Normalisation Issue

Inside the context of SHM, data normalisation can be defined as the process of dis-

tinguishing the variability of DSFs associated with damage from that associated with

EOVs [2]. More specifically, one of the main issues observed during monitoring and

damage identification efforts is that existing EOVs tend to mask damage-induced

variability present in response series. In particular, if effects, such as those intro-

duced by EOVs, dominate the damage state of the structural response, the damage

identification efforts become difficult, while their results can be uncertain [2]. Hence,

the identification and isolation of the impact of EOVs on DSFs can be of great in-

terest, because it can enable one to purge the effects of EOVs enabling outlier and

novelty detection.

The approaches associated with data normalisation can be generally distinguished

into subtraction and projection methods. Their difference is subjected to the way

that the impacts of EOVs are compensated from the DSFs. For example, a common

subtraction method is the estimation of the impact of EOVs through regression and

its consequent elimination from the DSFs. In contrast, a projection method (which

in many cases does not require recorded EOVs) can be thought of as a means of

mathematically reconfiguring measured feature data into a lower dimension to re-

move any sensitivity to benign changes. However, a more systematic categorisation

of data normalisation approaches is provided in [7]. In particular, these can be cate-

gorised into five categories: (i) experimental or empirical approaches, (ii) regression

modelling, (iii) look-up tables, (iv) machine learning approaches and (v) intelligent

feature selection. Some basic concepts behind these approaches, as well as related
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literature will be discussed in the following.

i) Experimental/Empirical Approaches

The experimental/empirical approaches are those whose main aim is to focus and

record the effects associated with data normalisation issue, attempting to identify

their potential sources (i.e. EOVs). These studies have an empirical character, due

to the fact that the majority of cases are experimental or are the findings of planned

real-time destructive testing on systems, in order to gain valuable inference from

them.

The most commonly described source of EOVs is temperature. The impact of tem-

perature can affect vibration-based data in both the short and long term. More

specifically, the long term impact of temperature is discussed in [4], Peeters et al.

[44], Bricker et al. [45], Peeters and De Roeck [46], Rohrmann et al. [47], describ-

ing the seasonal effects that temperature can have on natural frequencies (highly

increased value during winter) on many bridges (i.e. Z24, Pedro de Ines, I−39 Kish-

waukee River Bridge). Temperature impacts have been associated with boundary

conditions’ change (bearings and expansion joints), soil-structure interactions and

construction material properties variation (i.e. wearing surface/asphalt stiffness in-

crease). In addition, the impact of diurnal temperature variation can be associated

with daily frequencies variability. For example, Doebling and Farrar [48] mentioned

that the observed daily natural frequency variation on Alamosa Canyon Bridge was

the impact of the air temperature variation on a 24 hour basis, and more specifically

it has been associated with the daily temperature difference variation between the

top and bottom bridge’s flange.

Besides temperature, the impact of traffic mass introduces significant variability on

the measured natural frequency of bridges. In particular, during the monitoring of

three bridges (Nogro, Sangjin and Namhae) in Korea [49], it was mentioned that

both light and heavy traffic has impact on the variation of first five fundamental

deck natural frequencies, which significance was a function of bridge span and dead

weight. Farrar et al. [48] performing vibration tests and destructive testing on the

I − 40 Rio Grande Bridge and on the Alamosa Canyon Bridge in New Mexico, US,

mentioned that the temperature and the traffic can have a significant impact on

the variation of natural frequency and tend to mask the variation associated with

damaged introduced. In the case of Tamar Bridge [2], the traffic has been observed

to be the main EOV impact associated with the fluctuation of the fundamental

deck natural frequency, something that can be explained by the significant increase



2.3. THE DATA NORMALISATION ISSUE 21

of daily vehicle numbers, which led also to the re-strengthening of bridge’s deck in

order to reinforce its bearing capacity.

Moreover, according to [50–52], wind induced vibration can have an impact on the

structural response of bridges, especially in cases where extremely high wind speeds

are observed or when the deck-cross section has a compact closed form (concrete

decks). Cable stays, in suspension and cable-stayed bridges, are prone to exhibit

large amplitude and continual oscillations, due to their large flexibility, small mass,

and small damping, which can cause fatigue and corrosion of strands in surpris-

ingly short periods. The cable tensions are highly sensitive to air temperature and

the latter sensitivity depends on many factors, such as their configuration, angle

of inclination, initial curvature, level of pre-tension, cable sag effects and others,

which have a significant impact on the cables stiffness [53–56]. In many cases, the

combined action of wind and rain, introduces significant vibration on cables leading

to instability. The latter is associated with droplets formulating a liquid film and

rivulets affected by the influence of drag, gravitational effects, friction forces and

more severe air induced phenomena, such as galloping [57, 58].

From all of the above, it can be concluded that EOVs, such as temperature, wind,

traffic mass, humidity have a significant impact on the variability of the most com-

monly employed monitored features for damage identification efforts. These can be

referred to as sources of operational and environmental variability (EOVs) and their

monitoring is necessary for any SHM study.

ii) Modelling via Regression

In the case that EOVs measures are available, data-based models can be developed,

trained, tested and updated, in order to predict DSFs (i.e. natural frequencies) based

on measured EOVs data. The main concept of this approach is to capture, using a

variety of regression techniques, the impact of EOVs on DSFs. These models can use

the available EOVs measures to express the DSFs as functions of EOVs (temporal

terms) and can also involve dynamics by adding history dependence between DSFs

and EOVs (e.g. autoregressive models) [7].

iii) Look-up Tables

The main concept of this approach is to establish damage sensitive features in the

absence of EOVs measures that can be used to formulate look-up tables to compare

different states of structural response. In the majority of cases, a feature vector is

established from the available undamaged state of the data, which has been trained
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and tested inside the undamaged state.

For example, an AR model can be used for this purpose. The normal condition

data can be divided into multiple samples, which will be used for model training

and testing, and the AR can be used to obtain the coefficients for these samples.

Then a discordancy measure, such as the Euclidean distance (univariate data) or

Mahalanobis Squared Distance (MSD) (multivariate data), can be used to find the

training sample which coefficient vector is closest to the testing sample coefficients,

in terms of distance. In this way, a look up table can be established including the

available training states that are compared to the tested ones. Then DSFs can

be generated based on the statistical inference provided by the AR model, such as

residual errors, that can be used for novelty detection.

iv) Machine Learning Approach

Some of the most common machine learning algorithms that are used for the data

normalisation issue are: 1) the auto-associative neural networks (AANN), 2) factor

analysis, 3) discordancy measures and outlier analysis, and 4) singular value decom-

position (SVD). More information can be found in [7, 59]. A brief review is provided

below.

AANS

AANNs are neural networks that map network inputs onto themselves in order to

learn internal data structure. In many cases these do not include EOVs measures

and treat them as hidden variables in their network structure [7]. The network

is trained and tested based on its functional dependencies using the undamaged

condition. In case of damage, an increase of AANNs predictions error is expected.

A good example on the use of AANNs on bridge SHM data is given in the work

of Sohn et al. [60], which presented a combination of an AR-ARX model, AANNs

and sequential probability ratio to examine the response of Alamosa Canyon Bridge

and discriminate the change caused by ambient conditions from changes caused by

damage.

Discordancy Measures

Discordancy measures for outlier analysis are commonly employed for novelty de-

tection. These measures can be distinguished into univariate and multivariate. The

most common univariate measure is the Euclidean distance, while the most com-

mon multivariate is Mahalanobis-squared distance (MSD). These have been used

either directly or as a part of more complex algorithms. For example, Dervilis et
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al. [61], introduced a robust multivariate method using the minimum covariance de-

terminant estimator (MCD) and the minimum volume enclosing ellipsoid (MVEE)

as novelty indexes in multiple data, such as the FRFs of a piper tomahawk aircraft

wing, a wind turbine gearbox vibration data and Z24 bridge. These studies pointed

out the different way in which outliers associated with EOVs manifest themselves

with respect to those associated with damage and how classification can be made.

Some more examples of using discordancy measures in SHM literature are provided

in [62, 63].

Factor Analysis and Singular Value Decomposition (SVD)

Factor analysis is based on the correlation of a small number of variables of dimension

(f) and other dependent variables of dimension (m; f < m), which are assumed to

correspond to EOVs (e.g. temperature, vehicular load). Some further information

can be found in [42, 64]. In addition, SVD is a technique, which is commonly

employed for operational modal analysis (OMA). However, it can be used for data

normalisation and novelty detection. In particular, it is based on the determination

of the rank of the feature vector matrix (including EOVs), which is re-generated

introducing augmentation of a feature vector that is assumed for possible damage.

It’s novelty detection concept is that in case of damage, the rank of feature matrix

will increase [2]. Some further information for the application of SVD as novelty

detection measure is provided in [65, 66].

v) Intelligent Feature Selection

In general sense, the selected SHM feature should be damage sensitive and insen-

sitive to EOVs impact. One approach that is used extensively inside SHM is the

Principal Component Analysis (PCA) [67, 68]. In particular, PCA is a data dimen-

sion reduction method, which is used to project the original features into a space

spanned by the eigenvectors associated with the largest eigenvalues of the feature

covariance matrix. This is the reason why PCA is considered a projection method.

PCA using minor components is explored by Manson [69] and Cross [2], based on

the concept that the main variability of DSFs caused by EOVs is trapped inside the

main principal components of PCA and consequently the minor components include

minimised variance, which can be used for damage detection (benchmark testing

data provided by EU project Damascos).

Furthermore, non-linear extensions of PCA have also been employed for novelty

detection, such as non-linear PCA (NLPCA), kernel regression PCA, local PCA,

greedy Kernel PCA. In [62], Sohn et al., proposed and compared PCA and NLPCA
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in combination with AANNs for damage detection. In addition, PCA and kernel

regression has been used for damage diagnosis in a laboratory bridge [70]. Some

further information about the application of PCA and NLPCA inside SHM context

can be found in [71–73].

vi) Cointegration

Another projection method that has been used in the past for dealing with the issue

of data normalisation in the context of SHM is cointegration achieved via Johansen’s

approach. In particular, this concept originates from the field of econometrics [74, 75]

and was employed in the past for novelty detection on the Tamar Bridge [2, 76],

laboratory experimental applications on aluminium plates and composites [77, 78],

monitoring of dam structures [79] and offshore pipelines [80]. A guide for using

cointegration for SHM purposes can be found in [76].

Cointegration method can be used when multiple nonstationary variables/series are

available, such as in the case of SHM. The latter nonstationarity is manifested

through the existence of common trends shared by the SHM series, which can be

associated with the impact that EOVs impose on them over time. Cointegration can

project out the aforementioned common trends by obtaining a linear combinations

between the series. This combination is referred to as cointegration residual and

represents a stationary signal. In the absence of common trends or in other words

in the absence of EOVs effect on SHM series, the cointegration residual is damage

sensitive and is capable for novelty detection.

In addition, there are some work related to non-linear cointegration, where time

series are nonlinearly combined. In particular, Cross and Worden [81], proposed

two possible approaches to non-linear cointegration, while Shi et al. [82] proposed

an non-linear cointegration approach based on Augmented Dickey-Fuller (ADF )

test and Gaussian process regression, which was validated using modal data of Z24

bridge.

Cointegration was introduced to the SHM community in 2011 [76]. Although it has

shown some promising results, this has mostly been limited to experimental data

or limited monitoring campaigns. It is important that the proposed methods are

tested in cases where damage is small and where multiple EOVs are considered.

Further to this, little work has been done to investigate how best to use the coin-

tegrated residual, how different tests for nonstationarity can be used effectively, or

how decomposition methods may prove useful.
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Although the main concern of this thesis is bridge SHM, it is useful to say that, in

general sense, the aforementioned SHM methods can apply to data coming also from

other SHM applications, such as from aerospace, offshore structures, mechanical

systems and others. The main difference has to do with the time-scales in which

the data are collected and the level of nonstationarity the data possess. The latter

can be associated with the impact of environmental and operational variations on

the SHM data collected from different SHM applications, since each structure has

its unique behaviour and is tested under different environmental and operational

situations.

2.4 Scope of Thesis

According to the previous literature review, it can be said that the main interest

of this thesis is placed on bridge SHM and damage identification based on novelty

detection and machine learning approaches. The main interest lies on projection

methods and especially cointegration. In particular, the linear cointegration ap-

proach will be explored further to identify possible drawbacks, optimise its use,

validated through different experimental and real-time data investigations, as well

as explore the possibilities of extending the methodology or combine it with other

SHM based methods.

The analysis in this thesis will be performed under the theoretical framework of data

normalisation and using multiple data coming from both experimental laboratory

bridge structures testing, as well as by real-time bridge monitoring data, which are

provided by organised campaigns. The thesis layout is presented below.

2.4.1 Thesis Layout

This thesis includes seven Chapters, excluding the first two (9 in total). The third

Chapter describes a laboratory experiment, conducted in Jonas Lab at the University

of Sheffield, where the aim is damage detection from data acquired by the vibration

analysis of an aluminium truss bridge. This Chapter discusses the experimental set-

up, the vibration analysis, the process of data acquisition and damage introduction

and finally a summary of the experimental results.
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Chapter 4 will provide an overview of the available real-time Bridge SHM data.

Firstly, the data sets of Tamar Bridge will be presented and special attention will

be placed on the cable tension data. After that a preliminary analysis will be

performed on the cable tensions data which will include simple plotting and response

surface modelling in order to evaluate the impact of the available environmental

and operational variation measurements (wind speed, traffic mass, temperature and

humidity) on them. The obtained results from simple plotting and surface modelling

will be discussed. This preliminary analysis aims to understand when SHM signals

can be considered as appropriate for use inside cointegration (the latter will be

demonstrated in greater extend in Chapter 5) and how simple plotting can help

identifying common trends in the signals. Finally, a short description of Z24 Bridge

data sets will be provided, which will also include some preliminary analysis in order

to draw important conclusion about the relationships between series.

In Chapter 5, the Johansen approach to cointegration will be introduced for dam-

age detection purposes and the best practice, as recommended by the author, for

its application on the available data will be discussed, focusing on important proce-

dures during its application (i.e. training set selection, lag-length specification and

common trends manipulation). In addition, SHM data from three bridges (Tamar

Bridge, Z24 and laboratory truss bridge) will be used to demonstrate the use of

Johansen’s approach to cointegration, as well as discuss how the interrelations be-

tween SHM series are affected by EOVs and how are these form the cointegration

vector.

Chapter 6 will discuss the use of Augmented Dickey-Fuller (ADF) test for testing the

stationarity of SHM series inside cointegration. In particular, an alternative interpre-

tation of the ADF t-statistic will be introduced, which is based on the fundamentals

of signal processing and on dimensional analysis. The latter interpretation will be

introduced employing the continuous SHM signal of the second natural frequency

of Z24 bridge, whilst a brief example on Tamar Bridge’s 1st natural frequency sig-

nal will be used to show how one can define the critical frequency of a signal and

estimate after how many cycles the signal will become nonstationary.

The seventh Chapter will focus on the attempt to understand the novelty detection

capabilities of Johansen’s approach to cointegration. In particular, an attempt will

be made to answer the question of what information one can actually gain from

the cointegrated residuals and how (with which techniques) this information can

be tracked. For this purpose the available methods in literature for monitoring the



2.4. SCOPE OF THESIS 27

cointegration residual will be demonstrated and discussed on the data generated us-

ing a simple mass-spring system and on the data sets of the experimental aluminium

truss bridge.

Furthermore, Chapter 8 will present the use of multi-resolution analysis (MRA),

which is based on orthogonal wavelet analysis, in order to decompose SHM signals.

This decomposition scheme is based on the Debauches wavelet family and the ADF

test is used to test each level obtained by the decomposition. In this way, the signal

can be decomposed in principal manner into a nonstationary, stationary, noisy and

a mean component. The importance of this procedure will be discussed within the

bridge SHM context as the analysis is performed on the frequency and temperature

signals of the Z24 bridge.

Finally, Chapter 9 includes the conclusions of thesis and the recommendations for

future work.



Chapter 3

Experimental Data for Analysis

3.1 Introduction

The main aim of the experimental work that will be presented in this Chapter is

to investigate how damage affects features that are commonly used for bridge SHM

and their consequence on cointegration. Another aspect of the experimental plan

was to study the structural response when the system was ‘repaired’ or returned to

its initial state.

More specifically, this Chapter provides information about the experimental setup,

measurement system and data collected from an experimental vibration analysis per-

formed on a laboratory aluminium truss bridge. The experiment was conducted at

the George Porter’s laboratory (Jonas Lab), at the Mechanical Engineering Depart-

ment of the University of Sheffield. In particular, a vibration analysis is performed

on a bridge truss model aiming to monitor its vibration-based response under a vary-

ing temperature field, which was simulated inside an environmental chamber in the

Jonas Lab. The environmental field covered temperatures between 25 to −10 oC.

In addition, four damaged states were simulated by the removal of bolts at selected

connections of the truss.

The results of this study will be used in the next Chapters to demonstrate how

cointegration can work in order to purge temperature related variability from the

recorded data aiming to capture the presence of damage in the signals. However, in

this Chapter, the experimental procedure and the main results are presented.

28
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The Chapter is organised as follows: in the first section a description of the structure

is given, while in the second the measurement system details are covered. Then, the

procedure of selecting the most appropriate sensor locations is discussed and in the

fourth section, the experimental procedure and an overview of the obtained results

is provided.

3.2 Description of the Structure

The laboratory truss bridge (Figure 3.1) was manufactured by the Dynamics Group

of Sheffield University using T6082 aluminium alloy. The truss consists of 17 in-

dependent members (Figure 3.1). The horizontal top ties are referred to as top

chords, while the horizontal bottom ones as bottom/lower chords. The inclined

vertical members are referred to as end posts (side diagonals) and diagonals (inter-

nal ones). Finally, the transversal members linking the chords (top and bottom)

between them are commonly referred to as struts.

Figure 3.1: (a) Laboratory Testing Structure (Truss Bridge) hanged by
four springs (free-free support) and (b) designation of truss members.

Moreover, for vibration testing, the structure is suspended by four threads (high

resistance fishing-net threads), which are attached to 4 springs, in the upper face of

the truss.

3.2.1 Material, Mass and Dimensions

All members share the same cross-sectional characteristics 20×20mm, however they

have different lengths. The exact dimensions of the truss structure are displayed in

Figures 3.2, 3.3, which show the front and bottom plan view of the structure. As for

the material properties, all components were constructed using T6082 aluminium
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alloy, which has an elasticity modulus between 68 − 70GPa, a Poisson ratio (ν)

near 0.32 and weight per unit volume equal to 2.7kg/cm3. The net weight of the

structure (excluding springs, threads and sensors) was measured to be 4.41kg, each

bolt weighted 4gr, whilst the angle bracket weight is 12.5gr.

Figure 3.2: Front View of the laboratory truss bridge (in cm).

Figure 3.3: Ground level plan View (in cm) and the location of pin
(AA’), where shaker is connected.

3.2.2 Connections’ Details and Bolts

The members of the tested truss are connected between them using bolts, while angle

plates, where bolts are mounted, are used in order to connect attached members,

such as the diagonals between them or with chords (Figure 3.4). In particular, 34

bolts are used in the structure, from which 30 are of type M4 Grade A2 (Stainless
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Steel, cap head hexagon socket), while the remaining four are of type A2 M6−40mm

(Figure 3.4 detailing).

Figure 3.4: Vertical Cut View (Front View) of Truss, locations and types
of bolts.

A torque wrench was used for fastening all the bolts at the same level of torque (5.5

Nm), which represents the 75% of maximum torque resistance of a standard M4 bolt

(according to DIN7984 −Metric) [83]. It should be mentioned that additionally,

aluminium M4 bolts were tested for the experiment, however, their use led to an

increase of noise during vibration analysis as a consequence of inadequate fastening

(unexpected loosening under temperature variation inside chamber) and sensitivity

of cap hexagon heads to increased torque. The selection of stainless steel bolts proved

to be the most appropriate for this experiment, both in terms of data extraction and

resistance to temperature variation. Furthermore, at the lower face of the plan view

(Figure 3.5) and more specifically in the mid-strut, there is a fixed pin located, which

is the point where the structure is connected with the shaker. Figure 3.5 provides

the detailing of AA’ section-cut shown in Figure 3.3, as well as the dimensions of

the fixed pin.

Before moving further to system’s description, it is important to talk about the

connections between independent truss members and especially about the locations

where was damage simulated (bolts removal), because it will be useful for the ex-

planation of vibration analysis results (section 3.4). In particular, there are three

damage locations, A1, A2 and B (Figure 3.6), where bolts were removed. Location

A1, connects three truss members together, the horizontal bottom chord (designated

as 2 in Figure 3.6), the vertically inclined end post (external diagonal; designated

as 1 in Figure 3.6) and the transverse strut (designated as 3 in Figure 3.6).
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Figure 3.5: Cross-Cut AA’ (in mm) of middle strut in the lower face of
plan view (see Figure 3.3.)

Figure 3.6: Bridge truss model inside chamber and damage locations.

Although there is an angled bracket in damage location A, with two mounted bolts,

connecting the end post and bottom chord, members 1 and 2 are connected through

a different bolt (with greater pitch; Figure 3.4) which is located at the lower face

of the strut. Therefore, removal of bolts mounted in the angled bracket at location

A, are not expected to significantly affect the stiffness of the truss, while a low

percentage of mass reduction, due to bolts weight, is anticipated. Considering the

masses of bolts and bracket, a mass reduction of 0.1% is anticipated for the first

damage case and 0.465% for the second.

In contrast to location A, in damage location B, the diagonal and bottom chord

of the truss are connected only through the angled bracket. Removal of a bolt at

location B is expected to significantly affect the stiffness of the structure (mass

slightly) and consequently the modal properties of the truss, since the diagonal

tends to slide. Finally, it should be mentioned that the bolts attached to the end
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posts and diagonals, mounted into brackets, have an inclined orientation, something

that proved to be problematic during fastening them and during the restoration of

normal state.

3.3 Measurement System Description

The measurement system used for the experiment consists of two main sub-systems:

(i) the environmental chamber, in which the structure was placed and was able

to provide different temperature conditions and (ii) the data acquisition system

(DAQs), which includes the sensors, transducers, data analysing system, data stor-

age and the software for data retrieval and processing. Table 3.1 provides a summary

of the sub-systems comprising the measurement system used during the laboratory

experiment, whilst Figure 3.12 provides the arrangement of the experiment.

Table 3.1: Description of Measurement System

.

Name Description Properties

Piezoeletric PCB ICP P1-P7 (7) Sensitivity: (±30%) 1mv/(m/s2)
Accelerometers Measurement Range: (±5000 gpk)

Frequency Range: (0.40 to 10000)
Elect. Filter Corn. Freq: 21 kHz

Mec. Filter Reson. Freq.: 35 kHz
Temp. Range: +66 to −18 oC

El/Dyn. Shaker V406 LDS: MA-CE 2.503 mV/N
Raspberry Pi DS18B20 Sensor 4.7 kω(Ohm)Resistor

+100 to −40 oC
Impact Hammer PCB 086C03 ICP Sensitivity: (±15%) 2.25mv/(N

Measurement Range: ±2224 Npk
Hammer Mass: 0.16 kg

Thermocouple RS Pro 206-3738 Best Accuracy: ±0.2%
Dual Channel K Type Resolution: 0.1 oC

Dimensions: 160x64x26 mm
Weight: 430 gr.

Amplifier PA 100E Power Amplifier Freq. Range: (1o to 200 MHz)
High Output Power: +34 dBm

Low VSWR:¡1.5
High Gain: +22 dB
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3.3.1 Environmental Chamber

The environmental test chamber allows dynamic testing of small-scale structures

across a broad temperature range (−45 to 120oC) using either manually or pro-

grammable temperature control. Its internal dimensions are 600 × 600 × 700mm.

A port in the base of the cabinet enables electrodynamic shaker excitation in the

vertical direction at loads up to 100N , while there are two available side ports for

internal-external cable connections (i.e. DAQs). The chamber of Jonas Lab is de-

picted in Figure 3.7.

Figure 3.7: Environment chamber in Jonas Lab.

For this analysis, the chamber temperature field was manually controlled for temper-

atures between −15 to +25oC. The temperature of the chamber and the structure

was measured using a thermocouple and a temperature acquisition Raspberry Pi
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sensor (provided by the Department of Civil Engineering of Exeter University), to

validate that the temperature of the structure is in accordance with the indications

of chamber’s control panel. The Raspberry Pi has two built-in cable wired sen-

sors, providing measures with accuracy up to 0.001oC, which are placed, during the

experiment, on chamber’s wall (inside) and on truss model respectively.

3.3.2 Data Analyser and Processor

The data acquisition and frequency analysis system used is an 8-channel modal

testing system (LMS SCADAS). The impact hammer, shaker (through amplifier)

and accelerometers (inputs) are connected directly to the LMS system, while the

latter is connected via Ethernet port to the central computer, where the data are

stored and analysed (see Figure 3.12). The LMS system includes software for data

management and processing. In brief words, the acceleration data are recorded

and stored in the system and then the modal analysis software, polyreference least-

square complex frequency algorithm (PolyMax) [1, 84], is used to extract the modal

properties of the structure under different temperature and damage conditions (more

information in section 3.3.4).

3.3.3 Sensors and Instrumentation

According to [85], the selection of the most suitable transducers should be based

on the consideration of some parameters, such as: (i) their sensitivity, (ii) resonant

frequency, which depends on the mass and the size of the transducer and (iii) the

effect that the motion of a transducer can have to a structural system, especially in

cases of small-scale systems, which can lead to additional inertia forces and moments.

For this experiment, piezoelectric accelerometers PCB used, of sensitivity around

1mV/(m/s2) and temperature resistance between 66 to −18oC. The sensors are

small and lightweight to minimise their affect on structural response.

3.3.4 Extraction of Modal Properties

The procedure for acquiring the modal properties of the structure includes two

main steps. Firstly, the frequency response functions (FRFs) during the excitation
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are recorded and then used employing the available software to extract the modal

properties.

The FRFs obtained were estimated using a random signal of 2V generated in LMS

(amplified by a 1.5 level gain using the amplifier) and transmitted to the shaker which

is connected through a port in the base of the cabinet and fixed in its upper end in

middle bottom strut (Figure 3.12). The sampling frequency was 2048Hz, while a

hamming window used to account signal leakage present due to non-periodic random

signal. The bandwidth selected was 1024Hz, with 4096 spectral lines, providing a

resolution of 0.25Hz. The approach followed here for the estimation of FRFs is the

Hv. For this, random noise and distortion are assumed to be present both in the

input and output of the system [85]. The FRF is calculated through the relation

between the excitation and response of the system, as described in Equations (3.1),

(3.2) and (3.3), where Sxx(ω) is the response auto spectra, Sff (ω) is the auto spectra

of the excitation signal and Sxf (ω) is the cross spectrum between the two signals.

The Hv is provided according to Equation (3.4) [84].

Sxx(ω) =
∣∣H(ω)2

∣∣× Sff (ω) (3.1)

Sfx(ω) = H(ω)× Sff (ω) (3.2)

Sxx(ω) = H(ω)× Sxf (ω) (3.3)

Hv =
Sxf (ω)

|Sxf (ω)|
×

√
Sxx(ω)

Sff (ω)
(3.4)

The second step includes the PolyMax algorithm [1]. The PolyMax was selected

because it is the industrial standard and was incorporated inside the LMS Scadas

environment. This employs as primary data the FRFs determined above, which are

processed and then using stabilization diagrams, the natural frequencies, damping

ratios and modeshapes are obtained. A brief description is provided below.

The FRFs representation is assumed according to right-matrix fraction model, Equa-

tion (3.5), where Hω is the FRFs matrix of size mxl (m inputs and l outputs), [βγ]
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describes the numerator matrix polynomial coefficients, [αγ] is the denominator

matrix polynomial coefficients, p describes the order of the model, while z is the z-

domain model (frequency domain model) based on time discretised model z = ejω∆t,

where ∆t is the sampling time and ω the frequency axis of FRFs.

The unknown parameters are the model polynomial coefficients [αγ] and [βγ], which

are obtained using the ordinary least-squares (OLS) method and used to obtain the

poles and modal participation factions, needed to construct stabilization diagrams

[1]. Employing appropriate stabilization criteria the natural frequencies, damping

ratios and modeshapes can be obtained. More information about the derivation and

application of Polymax algorithm can be found in [84].

[Hω] =
P∑
γ=0

zγ[βγ]

(
P∑
γ=0

zγ[αγ]

)−1

(3.5)

[Hω] =
n∑
i=1

{νi} ×
〈
lTi
〉

jω − λi
+
{νi} ×

〈
lHi
〉

jω − λ∗i
− [LR]

ω2
+ [UR] (3.6)

λi, λ
∗
i = −ξi × ωi ± j

√
1− ξ2

i ωi (3.7)

The modal parameters are estimated following the pole residue model, described in

Equation (3.6), where n describes the number of modes, {νi} the vector of mode

shapes, lHi , lTi the complex conjugate transpose and transpose of modal participation

factors. The poles (λi,λ
∗
i ) occur in complex conjugate pairs associated with natural

frequencies (ωi) and damping ratios (ξi) according to Equation (3.7), while [LR] and

[UR] describe the lower and upper residuals, which models the influence of the out-

of-band modes in the frequency band considered. The LLS is employed to identify

the unknown parameters νi , [LR] and [UR].

3.4 Description of Experimental Procedure

The experimental procedure included two main steps. In the first step, the roving

impact hammer test was employed aiming to identify the most appropriate loca-

tions for placing the accelerometers. After selecting these locations, the second step
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includes the main experimental procedure, which involves the introduction of the

truss model inside the environmental chamber and the vibration analysis.

3.4.1 Roving Impact Hammer Test

To understand optimal locations for accelerometers a roving hammer test was con-

ducted. The locations are chosen on this basis as those that provide the majority of

the FRF peaks and consequently natural frequencies. During this procedure, many

different locations are excited using the hammer (this excites the structure by intro-

ducing an impulse force). In Figure 3.8, an impact hammer is depicted, consisting

of a head, an force cell and a tip.

Figure 3.8: Impact Hammer, including different tips, cable and addi-
tional mass [1].

The impact magnitude (energy amplitude level) is a function of the hammer head

mass and the velocity, in which the hammer hits the structure (linear momentum).

Due to the fact that is difficult to control the velocity of the hit, the hammer head

can be adjusted appropriately by adding or removing mass. On the other hand,

the frequency content (magnitude and phase response) of the energy applied to the

structure is a function of the contacting surface stiffness and the hammer mass.

The shape of force impulse can be affected by the contact surface stiffness. Due to

the fact that the stiffness of the test structure cannot be changed, the hammer tip

can be adjusted (i.e. made stiffer). In particular, the harder the hammer’s tip, the

shorter the impulse duration and the higher the frequency content, which means

that in order to excite higher frequencies harder tips are needed. In general, the tip

should be selected in such a way that the force spectrum amplitude is no more than

10-20 dB down at the maximum frequency at interest [85].

An important decision, at this point, is the selection of the most suitable accelerom-

eter in terms of sensitivity. In a general sense, a good choice can be an accelerometer
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with high sensitivity, having a resonant frequency, which depends on the mass and

the size of the transducer, far from the structure frequencies and the size of structure

tested. The latter is associated with the effect that the motion of a transducer can

have to a structural system, especially in cases of small systems, which lead to addi-

tional inertia forces and moments. For this experiment, a piezoelectric accelerometer

PCB is used with a sensitivity of 1.063 mV/(m/s2).

Furthermore, another two important issues are the attachment and the location of

the accelerometer. The most appropriate location of the accelerometer should be

identified prior conducting the roving hammer test, the accelerometer was attached

in different locations using a thin layer of wax. This was selected instead of superglue

in order to test many different locations on the structure. However, it should be

mentioned that the wax cannot provide such a good contact (stiffness) between

the accelerometer and the structure. In particular, the wax tends to deform causing

change in the orientation of the accelerometer, which is not positioned normal to the

structural face, providing poor contact. This can lead to a noise increase observed

during the measurements.

The location of the accelerometer is also an important issue. In essence, the ac-

celerometer should be located in a position, which is not close to a node (location of

zero motion) of a structural modeshape, in order to provide an effectively measured

point. An approach that can be used in order to obtain the most appropriate lo-

cation of accelerometer is to use the point mobility test and examine the measured

FRFs (selecting the accelerometer providing the most resonant frequencies).

The impact hammer test requires little hardware and is relatively inexpensive, there

is a difficulty to obtain consistent results. As a matter of fact, there are two particu-

lar problems, which affect the results quality. The first is noise, which can be present

in either the force or response signal as a result of a long time record. Moreover,

leakage can be present in the response signal as a result of a short time record, due

to the fact that the force impulse is very short relative to the time record length. For

both aforementioned problems, windowing techniques can provide compensation.

The first step of the analysis includes the determination of system inputs, which

are the hammer, the accelerometer and the units. Based on the manufacturers

details, for a hammer PCB 086C03 ICP with actual sensitivity 2.25 mV/N. and an

accelerometer PCB ICP with sensitivity 1.063 mV/(m/s2). Next, the bandwidth

and the spectral lines employed should be defined. Considering the latter, a plastic
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tip was selected in contrast to the metal one (excites higher frequencies/ more energy

to the system), since the former can provide enough energy to excite the frequencies

of interest. The bandwidth selected was 1024 Hz, with 2048 spectral lines, providing

a resolution of 0.5 Hz.

Furthermore, the trigger settings were determined, verifying the bandwidth selection

and apply the most appropriate windowing function to avoid problems with regards

to noise and leakage. In this procedure, the structure is excited, in order to determine

the percentage of input’s cut-off frequency and the percentage of exponential decay

for the response (acceleration). In this case, an exponential window function is used,

due to the fact that the impulse test is a transient vibration technique, where much

of the important information of the time record is concentrated and suppressed in

its initial part.

Finally, before conducting the roving impact hammer test, it should be added that

because the structure is suspended using threads (to provide a free-free test set up),

after every hit sufficient time should be left for the structure to become stable (not

oscillate) before the next hit.

3.4.2 Proposition for the most Appropriate Accelerometer

Locations

The most appropriate locations of accelerometers were found by examining the mea-

sured FRFs (most resonant peaks), as well as the stability diagrams used during the

modal identification [1, 84]. This analysis is performed inside LMS Scadas, employ-

ing the PolyMax algorithm (section 3.3.4)

The roving hammer test is used here to obtain the FRFs of 24 different structural

locations. For reasons of space only, the 12 most appropriate locations are presented

here. The 12 locations tested are depicted in Figure 3.9, whilst the obtained FRFs

are depicted in Figure 3.10 and 3.11. From analysing each one of the FRFs, those

that provide the majority of the resonant peaks are P1, P2, P3, P4, P5, P7, P9

(Figure 3.9, circled in red colour).

Moreover, the LMS Scadas used in order to test if the selected locations of accelerom-

eters can provide good results in terms of stabilisation diagrams, which means that

the poles informing the presence of resonant frequencies were appropriately dis-
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Figure 3.9: Accelerometer locations tested using the roving hammer
method. The red nodes selected for further analysis.

Figure 3.10: The measured FRFs of the 12 tested points using the roving
impact hammer.

played.

3.4.3 Vibration Analysis inside Chamber

As the locations of the accelerometers have been determined, then the truss bridge

model was introduced inside the environmental chamber. In particular, Figure 3.12

provides the experimental schematic, which shows the arrangement of the experi-

mental setup. In brief the structure was hung from a hanger grid inside the chamber

using fish-net threads and was mounted on an electrodynamic shaker using a driving

rod, through a base port (CC’). The accelerometers and temperature cables were

connected on an external central computer through a side port available on the right
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Figure 3.11: The measured FRFs of the most appropriate 7 locations
using the roving impact hammer.

side of the environmental chamber.

Figure 3.12: Experimental schematic/arrangement inside environmental
Chamber.

To begin with, five states were determined and measured as depicted in Table 3.2.

In particular, the first state is considered as the ‘normal state’ of the structure. The

second state is the first damage state, in which one bolt was removed at damage

location A (Figure 3.13). The third state describes the second damage, where both
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bolts removed at damage location A (Figure 3.13) and the angled bracket attached

to bolt holes. Next, in the fourth state three bolts removed, two in damage location

A and one in damage location B (Figure 3.13). The last state describes the attempt

to restore the normal condition of the structure.

Table 3.2: Structural states during laboratory experiment.

State Location Description
Normal - Normal State

Damage 1 Location A Bolt Removal
Damage 2 Location A Both Bolts removed + angled bracket
Damage 3 Location A&B Three Bolts Removed + Angled Bracket
Restored Location A&B All Bolts & Bracket re-placed

Each one of the structural states includes 160 measurements and corresponds to one

day of recording. In particular, twenty accelerations records were measured for each

temperature level (8 levels) starting from 25 to −10oC with a step of −5oC. Each

acceleration record duration was 60s, averaging every 4s (15 averages per measure),

to achieve higher precision. Temperature was also recorded every 4s and each time

its mean value is used as correspondence to each acceleration record.

Figure 3.13: Undamaged state, first bolt removal, two bolts and bracket
removed and finally, third bolt removed.

During the set up for each state, the bolts are removed and tightened up at tem-

peratures around 25 oC. All bolts have the same pretension level, torque 5.5Nm,

verified before and after conducting the experiment. In addition, it was important

to ensure that when a temperature cycle is performed (25 to −10 and back to 25oC)

the structure was left enough time for the structural temperature to stabilise (ther-

mal inertia). The accelerometers are attached to the structure using X60 fast curing

adhesive, which provide good contact and stability to the accelerometers.
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3.5 Summary of Experimental Results

In Figure 3.14, the measured FRFs at a temperature of 19.985 oC are illustrated.

These are obtained from a trial recording. Figure 3.15, shows the stabilisation

diagrams used to obtain the natural frequencies inside the environment of LMS

SCADAS software.

From the second plot, it is clear that poles can be identified, however, it can be

observed that noise is also present during the measurements. Apart from the ex-

pected noise from the sensors cables, the factors that were identified to affect the

level of noise, were: (i) the connection between truss members and the connection

between bolts, holes and brackets. Although these cannot be perfect, the structure

was reassembled twice to improve the noise levels. Then, (ii) the threads used for

hanging the structure affected the noise level, and due to this many different fish-net

threads with different resistance were trialled. Next, (iii) the connection between

the model and the shaker is examined. This is done using a driving rod (stringer),

whose cross-sectional area is quite small in order to fit in both impedance heads.

The latter can be seen in Figure 3.12. However in each impedance head, the stinger

should be partly-fixed, something that is very difficult to achieve. This is needed

because otherwise fixing the rod in impedance head can deform the rod and change

its orientation; and consequently can change the orientation in which the signal is

transmitted from shaker to model.

Figure 3.14: Measured FRFs from a trial recording.
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Figure 3.15: Polymax algorithm inside LMS SCADAS environment for
stable poles detection.

Furthermore, (iv) the attachment of cables and accelerometers with the model’s

surface should be sound to provide good quality measures. In terms of acceleration

recordings and natural frequency values extraction, it should be mentioned that the

chamber during its function, sometimes makes slight vibrations when moving from

one temperature to the other, even for small temperature difference. In order to

mitigate this unavoidable vibration additional recordings were performed.

Finally, for every temperature step, the temperature was kept inside a ±0.5oC range.

This means that all recordings, i.e. for 20oC, are measured between 19.5 and 20.5oC.

In order to perform such a temperature stabilisation manually, re-heating and re-

cooling was needed.

3.5.1 Results

The results that will be used for further analysis in this thesis are the first five natural

frequencies obtained by the vibration analysis, which are illustrated in Figures 3.16

to Figure 3.20. The plots show the five different structural states, as well as the

impact that temperature has both in long-term (25 to −10oC) and short-term (i.e.

25 ±0.5oC).

As for long term temperature impact, a trend over time can be observed due to

increased stiffness, while for each temperature step (i.e. 25 to 20oC), a mean shift
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Figure 3.16: First natural frequency series for all states of experiment.

Figure 3.17: Second natural frequency series for all states of experiment.

is introduced to the data. On the other hand, the short-term effect of temperature

is associated with the way that natural frequencies change inside each temperature

step and is observed in all plots. The latter can be also associated with the variation

of stiffness due to temperature change.

Furthermore, the different damage states can be observed clearly. In particular, the

first two damage states are close to the normal state condition, showing that the

frequencies increased. This observation can be explained by the fact that the bolts

removed at damage location A, did not affect the stiffness of the structure and the

change in frequencies can be associated with bolt mass and bracket removal (Figure
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Figure 3.18: Third natural frequency series for all states of experiment.

Figure 3.19: Fourth natural frequency series for all states of experiment.

3.12). In particular, a mass reduction of approximately 0.1% is expected from the

first damage case, as the mass of a bolt is 4gr. and that of the whole structure

is 4410gr. In addition, for the second damage, a mass reduction of approximately

0.45% was expected, since two bolts removed (8gr) and an angled bracket (approx.

12.5gr.). Assuming an average natural frequency value of 201.816Hz, a 0.1% mass

reduction gives 202Hz, whilst a 0.45% gives 202.758Hz. These two values are quite

close to those observed in Figure 3.17.

However, for the third damage a completely different result is found. In particular,

damage 3 is the most severe and led to decrease of natural frequency, because the

removal of the bolt led to truss diagonal sliding and change in connection at damage
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Figure 3.20: Fifth natural frequency series for all states of experiment.

location B. Finally, in all cases and tests, the results show that the system was

restored successfully, however exhibiting lower natural frequency values. This shows

that although the system is practically restored, it does not retrieve its exact same

response, something that can be caused by the change in bolts tension and the

impact of temperature cycles on the structure.

Finally, the repeatability of the results was tested. In particular, the system was

brought to the initial normal condition, then all three bolts and angled bracket

removed and put back on. This procedure repeated 8 times. For repeatability

purposes, the average values of natural frequency at 25oC were recorded, as shown

in Table 3.3.

Table 3.3: Repeatability of Experiment for natural frequency values at
25oC.

Reference 1st 2nd 3rd 4th 5th

Test 201.816 239.300 270.183 316.457 377.245
Repeat 1 202.756 239.811 270.167 316.486 375.047
Repeat 2 202.469 239.442 271.672 315.833 376.180
Repeat 3 202.208 239.178 271.419 315.618 375.248
Repeat 4 201.491 238.483 271.490 315.713 374.904
Repeat 5 200.930 238.359 267.658 315.797 377.957
Repeat 6 200.863 238.008 268.076 315.672 376.373
Repeat 7 200.568 238.291 266.373 315.008 374.814
Repeat 8 200.926 239.308 266.766 315.002 376.494
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3.6 Conclusions

The aim of this Chapter was to describe the experimental setup and testing method-

ology followed in order to test the vibration-based response of a laboratory truss

bridge model under varying temperature and simulated damage conditions. In par-

ticular, the procedure followed and presented included: a) the model description:

material, mass, dimensions, connections details, bolts and damage locations, b) the

measurement system description, which involved the environmental chamber, the

data analyser and processor, the shaker and impact hammer (for vibration anal-

ysis), the transducers (temperature, acceleration) and their appropriate locations.

Furthermore, c) the experimental procedure followed described including informa-

tion about the FRFs estimation and the considerations faced during the extraction

of modal properties.

The novelty in this chapter is that a new data set was generated, laboratory truss

bridge vibration analysis data, that can be used inside this thesis for methodology

development and further future research.

In the next Chapter, a description and a preliminary analysis, based on surface

modelling, will be performed on the data sets of Tamar Bridge and Z24 Bridge.



Chapter 4

Real-Time SHM Data for

Analysis

4.1 Introduction

The current Chapter aims to present the available structural health monitoring

(SHM) data coming from two real-time campaigns (Tamar Bridge and Z24 over-

bridge), which will be used inside this thesis for further analysis and methodologies

development on the following chapters. Besides, the presentation of the available

data, a preliminary analysis will be performed on them, aiming to investigate the

relations between the SHM series and any available environmental and operational

(EO) measures, through simple plotting and first order linear regression (surface

modelling). The latter investigation is very useful in order to establish an infor-

mative background about the SHM series available and the sources affecting their

variability over time, before conducting a more advanced analysis on the upcoming

chapters.

The Chapter includes: a description on Tamar Bridge, the available SHM data

from it, especially on cable tension system and a preliminary analysis on them,

a description on Z24 overbridge available data and a preliminary analysis on the

natural frequency signals with respect to EO measures.

50



4.2. TAMAR BRIDGE DESCRIPTION AND SHM DATA 51

4.2 Tamar Bridge Description and SHM Data

4.2.1 Tamar Bridge Description

The Tamar Bridge is a three-span cable-stayed suspension bridge, extending over a

total length of 643m, as a continuous stiffening girder of externally anchored type

with vertical hangers arranged at 9.1m intervals. The bridge carries the A38 truck

motorway passing over the River Tamar and links Saltash in Cornwall and Plymouth

in Devon. The bridge was constructed by Cleveland Bridge & Engineering Company

from 1959-1961 [86]. Due to the continuing increase of traffic requirements and in

order to improve aero-dynamic behaviour, the bridge was upgraded (Hyder Ltd.

Consulting) and re-opened on April 26th of 2002.

In its current form [87], the superstructure of the bridge consists of a light-weight

orthotropic open steel box truss, carrying three main traffic lanes, while extend-

ing in transverse direction by two side cantilevers (3m width each), which carry a

supplementary traffic lane, parapets and pedestrian-cycle footpaths.

Cable saddles support six main suspension cables (3 North, 3 South) at the top of

the two towers, which are anchored externally through mounted splay saddles into

the anchorage. A total of 120 vertical hangers are fastened to the main 6 cables

over the deck steel truss. Seventy two hangers are located on the main span (36

South and 36 North) and 24 at each side span. The main load carrying system

consists of suspension cables with a diameter of 350mm, each includes 31 locked coil

wire ropes, while a secondary stay-cable system reliefs the main suspension cables

(to avoid over-stressing) during heavy traffic loads. Finally, the substructure of

Tamar Bridge consists of two non-prismatic (varying cubic area per height) hollow

cross-section reinforced concrete towers of portal shape sitting on caisson foundation

founded on rock subgrade.

The secondary stay-cable system consists of 18 stay cables (4 around Saltash Towers

S1, S2, S3, S4, another 4 around Plymouth Tower P1, P2, P3, P4, another 8 on the

south side Towers and two additional longitudinal under the bridge deck) (Figure

4.1). Some of them are extended from the Tower saddles to internal anchors on the

deck truss (S2, S3, P2, P4), while others are anchored externally on the abutments

(S1, S3, P1, P3).
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4.2.2 Available SHM Data

The monitored data are provided by the SHM campaign organised by the Vibration

Engineering Section (VES) (Department of Civil and Structural Engineering at the

University of Exeter [2, 3]). This data includes recordings of deck accelerations,

deck vertical displacements (fluid pressure-based level sensing system), natural fre-

quencies (Honeywell QA750 accelerometers; at 8Hz sampling frequency; Figure 4.2),

cable tensions (extensiometers in Figure 4.3; resistive strain gauges), damping val-

ues, deck and towers displacements (Leica robot total positioning system; Figure

4.4).

Figure 4.2: Accelerometers placed on deck and cable P4. From left to
right i) horizontal in south deck, ii) vertical in south deck, vertical in
north deck and iii) horizontal placed on cable P4 [3].

Figure 4.3: Extensiometers located at the north, center and south ex-
pansion joints in the bridge deck at the Saltash Tower [3].

Furthermore, environmental and operational features are monitored, such as air

temperature, traffic mass, wind speed and percentage of relative humidity. In par-

ticular, the monitored air temperature was extracted from a sensor consisting of a

temperature probe with radiation shield, sampled per 1Hz in degrees of Celsius (oC).

The wind speed sensor was located at the top South of Plymouth Tower (Figure

4.1), consisted of an anemometer and a vane, recording in miles per hour (mph) at

a sample frequency of 1 Hz. The percentage of atmospheric humidity was measured

by a hygrometer (Fugro) at sample frequency of 1 Hz. The traffic count was approx-

imated from a toll, which monitored the traffic flow in one direction (east bound)
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Figure 4.4: Leica TCA 1201M (Robotic total station) located on the
South West corner of the roof of the bridge offices and reflectors placed
on Plymouth and Saltash side Towers respectively [3].

across the bridge, providing the vehicle numbers per category (from motorcycles up

to 4-axle heavy trucks) based on gross-weight estimations [2]. Further information

about the monitoring campaign on Tamar Bridge can be found in [3].

4.2.3 Cable Tensions

The main measurements that will be used in the upcoming Chapters in order to

demonstrate and discuss the methodologies presented in this thesis are the stay ca-

ble tensions of Tamar Bridge. In particular, there are three types of stay-cables.

Firstly are those anchored on either sides of the deck, where tension is measured by

resistive strain gauges attached onto the main tensioning bolts at the deck anchor

points. The second type represents stay-cables anchored externally on abutments

or inside the ground, whilst the third type are longitudinal stay-cables located un-

der the deck, which are installed in order to restore creep deformations during the

construction stages of Tamar Bridge [88]. In the latter, tensions are measured using

load displacement strain gauges (LDSG) mounted onto the cable. The monitored

data are measured in KN and extracted at a sampling frequency of 1Hz [3].

Finally, it should be mentioned that some cable tensions are expected to have a

proportional relationship to temperature variability and some others inverse pro-

portional. This depends on the orientation in which the strain gauges are installed.

For example Figure 4.5 depicts two cases, one for stain gauges mounted on tower

anchorage and one for those mounted on deck level anchorage.

After presenting the available SHM data of Tamar Bridge and a brief description of

the cable system is provided, it seems beneficial to study and display the effect that
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Figure 4.5: Tension sensors placed at the anchorage of the South side
and the deck level of the north side of the bridge [3].

measured EOVs available impose on the tension signals of the Tamar Bridge. The

latter information can be very useful in order to understand the characteristics of the

series obtained by real-time bridge monitoring and detect the existence of signals’

nonstationarity, as well as establish an informative background before attempting

to use cointegration analysis for anomaly detection. Thirdly, the response surface

methodology will be employed to study the effect that the measured EOVs impose

on the cable tension series and extract linear relations between them, in terms of

regression. A brief description on the response surface method is provided below.

Finally, the observations will be discussed and an initial hypothesis about their use

inside cointegration will be made.

4.3 Preliminary Analysis of Tamar Bridge Data

The proposed preliminary analysis includes three main steps. In the first step,

the tension series are categorised according to cable type and their response into

three groups, in order to be studied more efficiently. Secondly, a representative

cable tension series will be plotted with respect to the available EOVs (traffic, air

temperature, wind speed and relative humidity) and multivariate linear regression

(response surface modelling) will be employed to establish informal relations between
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tensions and EOVs. Finally, a comparison between series of different tension groups

will be performed to explain any difference on the variability of the monitored signals.

To begin with, the aforementioned tension signals represent half-hourly measure-

ments recorded over a motoring period of two years, as depicted in Figures 4.6-4.8.

From these, it can be observed that the majority of tension signals exhibit the same

pattern over time. However, in order to more efficiently study them, the series will

be divided into three groups.

Figure 4.6: Cable Tensions recorded over the examined monitoring pe-
riod.

The first group includes those series following an increasing trend between 5000-

10000 observations, which then falls and again increases around 20000-25000 obser-

vations. These are denoted as G1 (group 1) in Figures 4.6-4.8. The second group

includes those series that exhibit the inverse pattern with respect to the series of

group 1 and are denoted as G2 (group 2). The third group (G3) includes two cable

tensions measured using displacement sensors, DS077SD1 and DS077ND1, and

are located under the deck on both sides of the bridge. The functional purpose of

these two cables is to restore horizontal deformations and creep during construction

stages. It should be mentioned that all the cable tensions shown in Figures 4.6-4.8,

follow a generic notation; SS stands for tension sensor, N stands for north, S for

south, A for anchorage level and D for deck level. The reference numbers on the

notation describe the distance (in metres) from a reference point along the length

of the bridge.
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Figure 4.7: Cable Tensions recorded over the examined monitoring pe-
riod.

4.3.1 Response Surface Models

Response surface models will be used here to study the correlation between series.

The methodology follows the work of [89] and describes the use of a multi-variable

regression model for the estimation of the regression coefficients. In particular, the

method includes two steps. Firstly, the available variables are normalised, which

means that the their mean (µ) value is subtracted from their initial value and then

the latter is divided by its standard deviation (σ). This aims for all the variables to

be of the same scale in order to establish a regression model. Finally, the second step

includes the linear regression between the variables based on ordinary least squares

(OLS). Assuming a linear regression, such as: yi = ax1i+ bx2i+ cx3i, the coefficients

(a, b, c) of the regression can provide statistical evidence of which variables are the

more informative in order to explain the variable in question (yi). The greater the

coefficient, in terms of absolute value, the stronger the influence of this variable on

the yi.

A normalised mean squared error (nMSE) is introduced here as a measure of model

fitness and is defined as:

nMSE = 100

∑
(model errors)2)

n (σ [predictions])2 (4.1)
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Figure 4.8: Cable Tensions recorded over the examined monitoring pe-
riod.

where n is the number of data observations of the series and σ denotes the corre-

sponding standard deviation. This nMSE has the property that, if the mean of the

data is used as the model, the nMSE will be 100%. With this normalisation, values

of nMSE below 100% are indicative of captured correlation. Inside the context of

statistics, it is common to use the R2, correlation coefficient, as a means of studying

model fitness. In particular, the nMSE is related to the R2 coefficient, as shown in

Equation (4.2), where R2 increases as nMSE decreases.

R2 = 1− nMSE

100
(4.2)
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4.3.2 Simple Plotting

As the steps of the preliminary analysis are described, now the S3 back-stay cable

tension series is examined, which corresponds to cable SS010SD1 in Figure 4.6.

The first step of the analysis includes simple plotting aiming to extract functional

relations between the S3 back-stay cable tension and the explanatory variables of air

temperature, traffic mass variation, wind speed and percentage (%) of atmospheric

humidity for the monitoring period starting at 12th July 2007 and finishing at the

7th July 2009.

Figure 4.9: Cable Tension S3 recording over the examined monitoring
period.

Figure 4.9 shows the S3 back-stay cable tension for the examined monitoring pe-

riod. From the latter it can be observed that S3 exhibits a fluctuation over an

mean tension value of 1098.1 KN and can be considered as nonstationary. As it

is nonstationary, the next step is to identify the probable sources behind this non-

stationarity. In order to do this, the cable tensions is plotted versus the available

EOVs. More specifically, Figure 4.10 depicts the S3 back-stay cable tension with

respect to air temperature. From this, a negative correlation between S3 tension

and air temperature (T ) can be assumed, as by linear regression it can be found

that S3 = −13.103 · T + 1251.8. The latter relation has been commonly observed

in bridge SHM literature, considering that stay-cables tend to tighten when tem-

perature falls [90], as a consequence of effective stiffness and cable length variation

during cold temperatures.
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Figure 4.10: Cable Tension S3 with respect to air temperature over
the examined monitoring period. The red dashed line provides the best
linear fit based on OLS.

Furthermore, the S3 tension is plotted with respect to wind speeds recorded over the

examined monitoring period. From Figure 4.11, it can be observed that it is difficult

to assume a deterministic relationship between S3 tension and wind speeds (W ).

The latter is also observed when the S3 cable tension is plotted with respect to wind

speeds over 25 mph, as shown in Figure 4.12. This behaviour has been observed in

the majority of stay-cables of the Tamar Bridge. According to [91] the change in

wind speed is expected to introduce some amount of vibration to suspension bridges’

cables, however from different showcases it was observed that the wind speed did

not have a particular effect on the variation of cable tensions.

Moreover, the relationship between traffic mass variation and S3 back-stay cable

tension is studied. Figure 4.13 shows the plot of S3 cable tension with respect to

traffic mass of Tamar Bridge during two and half years of monitoring. From this

it can be said that there is no specific relation between traffic mass and S3 cable

tension variation. In addition, Figure 4.14 shows the relation between traffic masses

over 90 tonnes with respect to S3 stay cable tension. From the latter, once again it

is difficult to assume a deterministic relationship. An probable explanation is that

the stay-cable system is a secondary load carrying system and is mostly affected by

traffic mass variation when a significant amount of vehicles is present on the bridge

(traffic congestion). This can lead to increase of cable tensions as the cables are

becoming tight when load increases [88]. However, the latter cannot be assumed
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Figure 4.11: Cable Tension S3 with respect to wind speeds over the
examined monitoring period.

based on the plot, something that holds for the majority of stay cables.

Figure 4.12: Cable Tension S3 with respect to wind speeds over 20 mph
for the examined monitoring period.

Figure 4.15 depicts the S3 cable tension versus the percentage (%) of atmospheric

relative humidity. From this plot it is difficult to assume that there is correlation

between relative humidity and cable tension. As described in [92, 93], secondary

EOVs impacts, such as those introduced by humidity and rainwater can be mani-

fested as a combined action associated with wind induced vibration, however it is
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Figure 4.13: Cable Tension S3 with respect to traffic mass over the
examined monitoring period.

Figure 4.14: Cable Tension S3 traffic mass greater than 90 tonnes, over
the examined monitoring period.

difficult here to draw a similar conclusion.
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Figure 4.15: Cable Tension S3 with respect to the percentage of relative
atmospheric humidity over the monitoring period of two years. The red
dashed line provides the best linear fit based on OLS.

4.3.3 Results of Response Surface Model Analysis

After studying the plots and relationships between the explanatory variables and

S3 cable tension, the next step is to investigate the data sets available by using the

response surface model regression. In particular, Figure 4.16 illustrates the surface

model forecast with respect to the normalised signal of S3 cable tension for the

examined period of monitoring. Table 4.1 summarises the coefficients of the ex-

planatory variables included in the response surface model regression. From Figure

4.16 it can be observed that the surface model provides good fitting with respect to

a training period taken from the normalised S3 signal, providing a normalised mean

squared error (nMSE) of 11.51%. Furthermore, from Table 4.1 it can be seen that

the main driver of cable tension’s variability is air temperature, with humidity to be

second, wind speed third, while traffic has a slight effect on S3 tension variability. In

other words, temperature is the main EOV that can be associated with S3 tension’s

variability.

At this point, the response surface model regression is employed again in order to

analyse the cable signal coming from group 2. This is the signal of cable SS082SD1,

which is depicted in Figure 4.17. As mentioned previously and comparing it with

Figure 4.9, it can be observed that the two signals exhibit inverse proportional

trends. The surface model results are shown in Figure 4.18, while the corresponding
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Figure 4.16: Normalised cable Tension S3 (black) and surface model
forecast for S3 (red).

Table 4.1: Surface Model Regression Coefficients for normalised S3 cable
tension.

Explanatory Variable Coefficient

Traffic -0.0032
Temperature -0.9815
Wind Speed -0.0589
Humidity -0.0972

coefficients are summarised in Table 4.2. The response surface model provides good

fitting with an nMSE of 11.06%. In addition, as expected looking at its coefficients,

temperature is again the main driver of tension’s variability, however providing a

coefficient with opposite sign with respect to the tension series of group 1. In other

words, cable tensions of group 2 follow similar behaviour to the series of group 1.

Table 4.2: Surface Model Regression Coefficients for normalised
SS082SD1 cable tension.

Explanatory Variable Coefficient

Traffic 0.0175
Temperature 0.8987
Wind Speed -0.0562
Humidity -0.0812

Although, the latter observations occurred in the majority of cable tensions, it should

be mentioned that there was one case where the observations are different. More
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Figure 4.17: Signal of cable SS082SD1 tension over two years of moni-
toring.

Figure 4.18: Normalised signal of cable SS082SD1 tension (black), group
2, and the corresponding surface model forecast (red).

specifically, in the case of cables, which design purpose is to restore deformations,

such as creep, which occurs during the construction stages of the deck as well as

during its in-service operation. This case is shown in Appendix A.1. as it is slightly

outside the scope of the current analysis.
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4.4 Z24 Data Description

The Z24 overpass was constructed in Switzerland in the beginning of the 1960s in

order to link Koppigen and Utzenstorf by passing over the main national Highway A1

Lausanne-Zurich. The overpass was constructed by the Road department of Canton

of Bern and its demolition was carried out in 1998, in order to accommodate newly

designed train line. Before its demolition taking place, continuous monitoring and

destructive testing activities were performed on it [4].

4.4.1 Z24 Structural Description

The deck of Z24 has 8.6m width including two vehicular lanes and the total span

of the bridge is 58m (14+30+14m). The cross-section of deck is an post-tensioned

reinforced concrete open rectangular box with average depth of 1m. The top side of

the deck carries a 6cm surfacing (asphalt), inclination of 2%, while its plan-view is

skewed (13o). The bridge has full-height integral abutments, which each one consists

of three rectangular columns (0.4 × 0.4m; 1.9m distance each other; 6.15m height)

and were located inside ground. The foundations have a conical cross-section (height

1.65 and 1.80m respectively), while the foundation beam had a rectangular cross-

section (0.80×1.00m; 7m length). Finally, Z24 has concrete leaf (wall) piers with

a rectangular cross-section (0.4 × 3.2m) and an average height of 6m. The deck is

continuous over the piers forming a longitudinal diaphragm. The aforementioned

can be observed in Figure 4.19.

4.4.2 Available SHM Data

The sensors installed on the bridge included multiple temperature sensors placed in

different structural locations, such as on bridge girder sections, on the pavement,

approaches, soil, while also the air temperature is measured. Furthermore, in total

16 accelerometers were placed on the deck of Z24 bridge in order to measure accel-

erations. These are measured on hourly basis for a total monitoring period of 10

months. It should be mentioned that the effect of traffic on the natural frequencies

of Z24 is assumed to be insignificant, because either one or no cars crossed the bridge

during a day.
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Figure 4.19: Elevation Plan and Overview of Z24 Overbridge [4].

According to the data acquisition strategy described in [4], 10 scans of environmen-

tal data were collected per hour and these are averaged to obtain the average hourly

temperature value. In addition, 8 averages of 8192 samples at a sampling frequency

of 100 Hz were collected and stored for the whole group of the 16 accelerome-

ters. The main features for SHM were modal quantities extracted automatically by

stochastic subspace identification (SSI) at regular intervals [46], hourly values. The

corresponding modeshapes are not available for further analysis.

As mentioned previously, a series of non-destructive scenarios were performed on

the bridge after 8 months of continuous monitoring. More information about these

scenarios can be found in [4]. The natural frequency series are illustrated in Figure

4.20. In the left plot the normalised natural frequency data are shown, whilst in the

right the original ones. From these two plots, it can be observed that the natural

frequencies share common trends, while after 3500 observations a significant change

on the second natural frequency can be observed (as designated by the vertical

dashed red line).
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Figure 4.20: Normalised and original natural frequency time series of
Z24; red line distinguish undamaged from damaged region.

4.4.3 Response Surface Model Results

The effect of air temperature on natural frequencies of Z24 can be explored using

a response surface model. The air temperature series is illustrated in Figure 4.21.

Here, all the data of natural frequencies and temperature are used inside the surface

model and there is no provision for training and testing region, because the surface

model aims only to explore the effect of temperature on natural frequency and not

to be used for model predictions. The results of surface models with respect to

normalised natural frequencies are illustrated in Figure 4.22, whilst Table 4.3 sum-

marises the regression coefficients. It is important to mention that only temperature

measurements were available for this analysis.

Table 4.3: Surface Model Regression Coefficients for Normalised Natural
Frequencies with respect to Normalised Temperature.

Nat. Freq. Temp. Coeff.

1st -0.7426
2nd -0.4169
3rd -0.7269
4th -0.7391

Looking at Figure 4.22 and Table 4.3, the main observation is that for the second

natural frequency, temperature has the lowest regression coefficient (−0.4169). This

is happening because this frequency series is influenced significantly by damage, as
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one can observe after 3000 data points (Figure 4.20).

Another interesting result is that although air temperature can explain some of the

variability observed on natural frequencies, the error of regression is significantly

high and especially in specific parts of the plots, such as the regions of large artefacts,

i.e. between 1200 and 1800 data observations. These regions have been associated

with the effect of low temperatures on natural frequencies, assuming a nonlinear

relationship between them [42, 46]. In particular, it was observed that a layer of ice

was formed in the asphalt and structural boundary conditions changed, leading to

an extreme increase in natural frequency values.

Figure 4.21: Z24 air temperature variation.

From the previous analysis on Z24 overbridge natural frequencies and especially

from Figure 4.20, it can be said that the series share common trends. These trends

can be associated with the long-term effect that temperature impose on the natural

frequencies, as shown in Figure 4.22. However, it is clear that temperature is not the

only factor affecting the variability of natural frequencies, something that cannot

be investigated here due to the lack of available data from additional environmental

and operational variables.
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Figure 4.22: 1st order surface model results (red colour) with respect to
the normalised first four natural frequencies of Z24 (black colour).

4.5 Conclusions

In this Chapter, a description of two real-time monitoring systems of bridges, the

available sensing systems and the recorded SHM data are presented. In particular,

in the case of the Tamar Bridge emphasis is placed on the cable tension data and a

preliminary analysis performed using simple plotting and the response surface model.

From these, it was shown that the main EOV driving the variability of cable tensions

is air temperature. In addition, two different types of tension series are examined

pointing that they share inversely proportional trends, which can associated with

temperature variability.

Furthermore, the data sets available from the monitoring campaign on the Z24 bridge

were examined and more specifically the relationships between natural frequencies

and air temperature. It was shown that the series share common trends, which in

some extend can be associated with temperature. However, some of the variability

observed in the natural frequency series, such as the large artefacts detected during

winter period, are difficult to be explained in terms of linear regression and only

based on the air temperature measurements.

The previous observations made and data sets examined, as well as the data sets of

the laboratory truss bridge experiment presented in Chapter 3 will be used inside

Chapter 5 in order to demonstrate the use of Johansen’s approach to cointegration.



Chapter 5

Johansen’s Approach to

Cointegration for Data

Normalisation

5.1 Introduction

As discussed in the previous Chapters, the use of cointegration for SHM is a data-

based projection methodology, which lies inside the unsupervised statistical pattern

recognition (SPR) techniques for SHM [7]. In the past it was employed for SHM

and damage detection purposes in bridge monitoring applications (i.e. Tamar Bridge

[2, 76]), laboratory experimental applications on aluminium plates and composites

[77, 78], monitoring of dam structures [79] and offshore pipelines [80].

Cointegration is a multivariate statistical technique [74, 75], which requires for all

series included to be of the same order of integration (I(1); nonstationary). The series

introduced into cointegration should share common trends and have a long-term

relationship between them, although in short-term such a relationship might not

exist. This long-term relationship can be captured via a linear combination between

series, which provides a lower order of integration (I(0)) signal, which is referred to

as cointegration residual. In particular, using Johansen’s approach to cointegration,

the long-term common trends are projected into a different dimensional space and

the corresponding residual is capable of novelty detection [2]. In the context of

71
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SHM, the common trends shared by the SHM series are associated with the impact

of EOVs (i.e. temperature, wind, traffic mass, humidity and others).

As mentioned above, the time-series introduced into Johansen’s framework should

be nonstationary (I(1)). Statistical tests originated from the domain of econometrics

are commonly used for nonstationarity assessment. The most commonly employed

are the Augmented Dickey-Fuller (ADF) [94, 95], the Philip-Perron (PP) [96] and

the Kwitkakowski etal. [97] (KPSS) tests. These are based on the theoretical concept

of unit-root, which means that the series involved are tested, under a null hypothesis,

for the presence or not of a characteristic root. The unit-root test procedure is it

quite straight-forward, as a simple autoregressive model (AR) is employed including

the coefficients of the first lag of the original series and those corresponding to the

lags of the first difference of the series. Then, the corresponding ADF statistic of the

defined AR model is evaluated and compared with the corresponding critical ones

[98]; depending on the confidence interval (significance level) selected. The ADF

test is the first step of Johansen’s approach to cointegration.

Furthermore, the next step of Johansen’s approach is the use of a vector autore-

gressive model (VAR). The series are introduced in the VAR and the relationships

between them can be obtained. In this model an error correction term is intro-

duced able to adjust/correct the short-term errors of the VAR model in longer term

achieving a long-term equilibrium. This equilibrium is a stationary process, which

describes the linear combination of the series and is referred to as cointegration

residual.

The current work follows the Johansen’s approach to cointegration, which introduced

in [76] for SHM applications. In brief, this idea for novelty detection is based on

two steps. Firstly, a cointegration vector is established based on training data. This

includes coefficients for each series, which multiplied with each observation of the

series, can produce a stationary cointegration residual. Next, the remaining and

future SHM data are projected on the previously obtained cointegration vector and

the residual is monitored to detect any form of novelty. The most common practice

to monitor the cointegration residual is using statistical process controls (SPC) [7],

as the residual is stationary if cointegration holds (further information in Chapter

6).

The aforementioned procedure is presented and discussed, step by step, inside this

Chapter. In particular, in the first section, the Johansen’s approach to cointegration
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is presented and discussed inside the SHM context. This includes discussion about

the ADF test, the VAR model and the error correction term. In the next section, a

theoretical discussion is made on how common trends are manipulated inside coin-

tegration and what happens to the residual in the presence of damage. Finally, the

SHM data of three different show cases (Tamar Bridge, Z24 and laboratory truss

bridge) are used to demonstrate the application of Johansen’s approach. The aim

of the latter is to explore the interrelationships between the series used inside coin-

tegration, as well as evaluate the effect of environmental and operational variations

(EOVs) and damage on them. Finally, the last section includes the conclusions of

the three aforementioned show cases.

5.2 Description of Johansen’s Approach to Coin-

tegration

In general sense, Johansen’s approach to cointegration includes three main steps,

which are (i) the ADF unit-root test, (ii) the VAR model and (iii) the reduced rank

regression. These will be discussed in order to understand how, combined together,

can be used for SHM purposes.

5.2.1 The ADF Test

The simplest form of ADF test is given in Equation (5.1), where ∆Yt describes the

first difference of time-series Yt, ρ is the root of the process, ∆Yt−1 is the first lag-

term of the first differenced time-series, et is a white noise term and t is the lag of

the first difference ∆Yt. The main concept in which the ADF test performs, is the

unit-root hypothesis. In particular, the root ρ can be either equal to one, which

provides statistical evidence for nonstationarity, or is 0 < ρ < 1 and the data can

be considered as stationary.

∆Yt = (1− ρ)∆Yt−1 + et (5.1)

Here, it should be mentioned that inside the context of econometrics, there is crit-

icism about the the validity of the unit-root hypothesis concept, based on the fact
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that the unit-root will never be found with complete precision and the statistical

evidence provided for decision making, stationary or not, cannot always provide full

confidence [96, 97, 99].

In Equation (5.2), a simple random walk (AR) is described, where ∆ is the first

difference of the time-series Yt, ∆Yt−i is the value of the previous differenced lags

for i = 1, ..., p, where p is the lag-length selected, multiplied by the appropriate

coefficient (ai). Finally, the term δYt−i includes the potential unit-root, since δ =

1−ρ (potentially nonstationary term). In the case that a unit-root is present, δ = 0,

then the first difference ∆Yt is equal to a stationary process defined by the sum of

lagged values of the first difference and the residual error term (et), which are also

stationary. Two more ADF modifications are proposed in [74] by introducing two

additional terms; the drift (c) and the time-trend (T ), which can be used to describe

the nonstationary series tested.

∆Yt = δYt−1 +

p−1∑
i=1

αi∆Yt−i + et (5.2)

The unit-root testing is based on a null hypothesis H0, which states that the ADF

regression has a unit-root ρ = 1 or δ = ρ − 1 = 0. The null hypothesis H0 is

rejected if the obtained t-statistic is lower than the corresponding critical t-statistic

[98]. The critical values considered in this work corresponds to 99% confidence

interval. The t-statistic can be estimated using Equation (5.3), in which ρ̂ describes

the approximated unit-root, while σρ describes the standard error of ρ̂.

tADF =
ρ̂

σρ
(5.3)

Furthermore, it is important to determine the most appropriate lag length of the

ADF model. For this, the Akaike Information criterion (AIC) is employed [100].

The AIC statistic can be estimated by AIC = nlog(σ2
et)+2p, where σ2 is the variance

of the error term et, p is the lag length examined and n is the number of observations

of the series under consideration. The procedure of lag-length specification starts

with the estimation of the maximum lag number (pmax), according to Schwert [101]

formula, pmax = [12(n/100)]0.25, where n indicates the number of observations. Next,

the ADF model is employed and run for multiple lag values, from zero to pmax.

During each run, the AIC statistic is saved and the lag length corresponding to the
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lowest AIC is employed as the most appropriate one.

5.2.2 Vector Autoregressive (VAR) Models

VAR models are a category of autoregressive models, which study the dynamic

interrelationships between multiple variables. Typically, they are an extension of the

univariate autoregressive model (AR) to multivariate time-series and are commonly

employed in macroeconomics and financial time-series [102]. Inside the context of

SHM and especially for bridges, there are not many attempts employing a VAR

model for damage detection. However, some interesting work is presented in [103],

where a VAR model is employed for damage assessment on the data provided by the

response of an 8-degree freedom (DOF) simulation test. In addition, Mosavi et al.

[43], employed a VAR model for damage detection and identification in the ambient

vibration data provided by testing slender steel beams undergoing buckling. A VAR

model was also employed by Li et al. [104] and used to track system changes during

the vibration of a ship structure under real environments. It should be mentioned

that more advanced VAR models have been employed also for fault detection and

system identification purposes. A brief description of an one lag VAR model is given

in A.2.

As in the case of ADF, the most appropriate lag length for the VAR model should

be identified. This can be achieved using the AIC statistic, running multiple least

squares fittings for different lag numbers. This procedure is similar to the one

described for ADF model. In this case, the AIC statistic is provided in Equation

(5.4), where nt corresponds to the number of degrees of freedom, which is a function

of the number of variables (n) and the number of lags (p; Equation (5.6)). Then,

there is the likelihood ratio (L), which is given in Equation (5.7), where N is the

number of observations and ω is the determinant of the squared V AR model error

(Y − Ŷ ) over the number of observation minus the lag number and multiplied by

model order (Equation (5.5)).

AIC =
2 (nt − L)

N − p
(5.4)

ω = det
(Y − Ŷ )2

(N − p)p
(5.5)
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nt = n(1 + n× p) (5.6)

L =
(N − p)(n(1 + log(2π) + log(ω))

−2
(5.7)

All in all, from the VAR model specification two bits of information can be pro-

vided. Firstly, the most appropriate lag number that will be used to form the error

correction model and secondly, a description of the linear interrelationships between

the series involved in the cointegration analysis.

5.2.3 The Vector Error Correction Model (VEC)

The third step of Johansen’s approach to cointegration is the formulation of the

VEC model. The VEC model is a VAR model augmented by an error correction

term, which adjusts the short-term errors of the VAR model. A VEC model is given

in Equation 5.8, where ∆Yi is the vector of the first difference, [Π] is a coefficient

matrix describing the long-run equilibrium between variables, [Bj] is the matrix

including the coefficients of the first difference lags, which also referred to as short-

run impact matrix, ∆yi−j are the lags of the first difference and ei is a normally

distributed noise process (ei ∼ N(0, [Σ])).

{∆Yi} = [Π] {yi−1}+

p−1∑
j=1

[Bj] {∆yi−j}+ {ei} (5.8)

{∆Yi} = [α] [β]T {yi−1}+

p−1∑
j=1

[Bj] {∆yi−j}+ {ei} (5.9)

The term [Π]yi−1 is the only one in Equation (5.9), which potentially describes an

I(1) series. For ∆Yi to be I(0), [Π]yi−1 should be also I(0), which means that it con-

tains the cointegrating relations if any exists. [Π] is referred to as correction matrix.

The rank of [Π] can define the existence and the number of possible cointegrated

linear equations. In particular, if the rank of [Π] is zero, implies that yi is I(1), VAR

model includes unit-roots, and there is no cointegration existent. This leads to the

reduction of VEC model to a VAR(p-1) model in first differences. The same hap-
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pens also when the rank (r) of [Π] is full, which means that is equal to the number

of variables (n). The only acceptable case is the reduced rank, which informs that

yi is I(1) and there are n − r available linearly independent cointegration vectors.

If the latter occurs, then the most stationary vector should be selected to satisfy

[Π]yi−1→I(0).

In the last case, [Π] is rank deficient and can be written as the product of two

matrices,[Π] = [α][β]T , where [β]T rows will span the row space of matrix [Π], while

[α] denotes the effect of the cointegration vectors to the evolution of ∆yi. Hence,

Equation (5.8) can take the form in Equation 5.9, where [β]Tyi−1 is I(0). Based on

the previous, [β]T describes the desired cointegration vector.

The method followed to solve for [β] is based on the product moment matrices, ac-

cording to Johansen [74], from which the VEC model can be represented with differ-

ent notation. Therefore, let {∆yi} = {z0i}, {yi−1} = {z1i}, {∆yi−1}T , ..., {∆yi−p}T =

{z2i} and [B1], ..., [Bp−1] = [Ψ]. Based on the above, the problem needing solution

is:

{z0i} = [α] [β]T {z1i}+ [Ψ] {z2i}+ {ei} (5.10)

The residuals {R0i} and {R1i} can be established according to the regressions, as

described in Equations (5.11) and (5.12), while the corresponding four product ma-

trices are given in Equation (5.13).

{R0i} = {z0i} − [C1] {z2i} (5.11)

{R1i} = {z1i} − [C2] {z2i} (5.12)

[Smn] =
1

N

N∑
i=1

{Rmn} {Rmn}T ,m, n = 0, 1 (5.13)

Solving the generalised eigenvalue problem of Equation 5.14, the eigenvector (λi)

can be obtained, which corresponds to available cointegration vectors. The most

stationary cointegration residual corresponds to the cointegration vector exhibiting
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the largest eigenvalue [76].

(λi)[S11]− [S10][S00]−1[S01]) {νi} (5.14)

Having the most stationary residual means that now the cointegration vector {β}T

can be used for damage detection purposes. As mentioned in [7] the second axiom of

SHM mentions that the novelty detection is based on the definition of two structural

condition states, an undamaged and a potentially damage. This is achieved within

cointegration by establishing the cointegration vector based on the undamaged data

and then by projecting the remaining/future data on the cointegration vector. As

described in [2, 76], the cointegration vector providing the most stationary cointe-

grating residual is commonly employed for damage detection purposes inside SHM.

Selecting the most stationary cointegration residual, it is likely that the common

trends shared between series are successfully purged. In other words, that the con-

founding effect of environmental and operational variations (EOVs) are projected

out of the series.

5.3 Common Trends and Novelty

At this point, it will be useful to give some idea on how linear cointegration ma-

nipulates the series to find a cointegrating vector and eliminate common trends,

as well as how the cointegration residual is affected when damage is present. This

section aims to provide a theoretical background before moving to the application of

cointegration into three case studies (Tamar Bridge, Z24 bridge and the laboratory

truss bridge), which will follow in the next section.

To begin with, let’s assume that, before applying cointegration, two signals (s1i,s2i),

which are described in Equations (5.15) and (5.16), share a common (determinis-

tic) trend g(t). The y’s are some response measured variables of a linear system

(for simplicity) which are stationary and Gaussianly distributed. The cointegration

equation is given in Equation 5.17. From this Equation it can be observed that

cointegration does not learn the common trends, but learns the correlation struc-

ture between the features and then cancels it by linear combination [105]. The linear

combination provides a stationary residual (e1i). In other words, this shows that

cointegration can project out the common trends, independently of their pattern,
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as far as they are common.

s1i = βg(t) + y1i (5.15)

s2i = g(t) + y2i (5.16)

z1i − βz2i = y1i − βy2i = e1i (5.17)

Now, supposing that damage occurs, with a severity d and assuming that the sys-

tem stays linear, one potential scenario will given new governing Equations (5.18)

and (5.19), where dashes describe damage case. Now, using the cointegration re-

lation from the undamaged system (Equation 5.17), the cointegration relation can

be obtained in Equation 5.20. Here, α1(d) 6= α2(d). Even if this does not hold,

a difference can still be detected as the dashed variables would give, potentially, a

different stationary residual. The above can be expressed in simpler form in the

bullet points below.

z′1i = α1(d)βg(t) + y′1i (5.18)

z′2i = α2(d)g(t) + y′2i (5.19)

z′1i − βz′2i = (α1(d)− α2(d)g(t)) + y′1i − βy′2i = e2i (5.20)

• Normal/Undamaged State: β = y1i − βy2i = e1i, where β = (1,−β).

• Potentially Damaged State: β∗ = y1i − β∗y2i = e1i, where β 6= β∗.
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5.4 SHM Data for Johansen’s Approach to Coin-

tegration

Cointegration relations depend on the interrelations between the series and the effect

that EOVs and damage impose on them. Although, cointegration can be performed

without including measured EOVs, it is important to study how these affect the

damage sensitive feature. The latter was performed in Chapters 3 and 4 for the

laboratory truss bridge natural frequencies, the cable tensions of Tamar Bridge

and the natural frequencies of Z24 bridge. However, the aim of this section is to

study the interrelationships between the series that will be used inside cointegration.

The main hypothesis that will be investigated here is that when two series have a

clear negative or positive correlation between them can be successfully cointegrated,

otherwise when the correlation is not very clear the cointegration residual it is not

very informative. This will be investigated on the aforementioned three cases on

bridge SHM data. For the purpose of this investigation, the features will be plotted

against each other and the approximated cointegration relation will be studied. In

addition, some damage cases will be examined in order to evaluate their effect to

cointegration residual.

5.4.1 Tamar Bridge Cable Tensions

From the analysis of cable tension series performed in Chapter 4 it was shown that

the main driver of cable tensions variability is the air temperature. In addition, it

was assumed that cable tensions which share common trends, as well as inversely

proportional trends can be used together in a cointegration analysis. For these

reason, it was mentioned that the series of the first and second cable tension groups

can be used together inside Johansen’s approach to cointegration. However, the

latter hypothesis should be investigated here. To do so, the relationships between

cable tensions are examined and the cointegration analysis is performed to obtain

the most stationary cointegration residual.

Cable Tension Relationships

As mentioned previously, it is important to show what exactly happens in the re-

lationships between series of group 1 and 2. In particular, the correlation between

two signals of group 1 and 2, as well as two signals only from group 1. The former
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is depicted in Figure 5.1, from which a negative correlation between the series can

be assumed.

Figure 5.1: Correlation between cable tension signals of group 1 and 2
and best linear fit line (red colour).

Figure 5.2: Correlation between cable tension signals of group 1 and
best linear fit line (red colour).

On the other hand, the plot between the series of the same group, group 1, is depicted

in Figure 5.2. From this a positive correlation between the series can be observed.

In other words, the previously observed relationships between series are, in general

sense, linear because all the tension series of group 1 and 2 are affected by tempera-

ture approximately in the same manner. The negative relationship observed between
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group 1 and 2 series it is because the signals share inverse proportional trends asso-

ciated with temperature, something that obtained previously from response surface

model regression.

Cointegration Residual

Now, in order to demonstrate the use of Johansen’s approach to cointegration, 12

tension series of groups 1 and 2 are plotted in Figure 5.3. The cointegration resid-

ual approximated, employing a training set of 12000 observations, and plotted in

Figure 5.4. Each individual series included in the cointegration has 31570 data ob-

servations. The residual is stationary with the majority of observations to be inside

the statistically determined thresholds, something that informs for the absence of

novelty on the data. In addition, it can be observed the initial trends observed in

the series were projected out. It should be mentioned that the stationarity of the

cointegration residual depends on the number of lags used during the formulation of

vector autoregressive model, as well as the length of the training region. Now, the

next step is to see how the cointegration performs in terms of novelty detection.

Figure 5.3: Tension signals of 12 cable tensions of group 1 and 2.
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Figure 5.4: Cointegration residual for same number of tension signals
from both groups. The horizontal red dashed lines represent the upper
and bottom thresholds, while the vertical one describes the change from
training to testing region. Threshold set at ±3σ from the residual mean.

Novelty Detection

A case of an probably unexpected change in tension is investigated here in order to

evaluate the novelty detection capabilities of cointegration residual. In particular,

from the analysis performed on the cable tensions, the signal of SS048ND1 cable,

which belongs to group 2, is found to be slightly distorted at a point around 16000

observations (Figure 5.5). The point of distortion is denoted with a vertical red

dashed line. This signal is not involved inside the cointegration residual illustrated

in Figure 5.4. However, for novelty detection purposes, the signal is introduced to

the cointegration residual by substituting it with another signal of group 2.

The Johansen’s approach to cointegration is re-performed providing the residual

signal shown in Figure 5.6. From this it can be observed that the cointegration

residual signal after 16000 observations becomes distorted and consequently the

cointegration residual is able to detect the novelty. A control chart method can be

used in such a case in order to detect abnormality more efficiently.

From the previous analysis, it was shown that in the case were multiple signals are

available, here 12 cable tensions, the cointegration residual helped to understand

that something happened with one of the tension signals. In addition, that the

hypothesis that series sharing proportional and inversely proportional trends can

be used successfully inside Johansen’s approach to cointegration. In particular, the
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Figure 5.5: Tension signals SS048ND1 over the examined monitoring
period.

Figure 5.6: Cointegration residual including the SS048ND1 distorted
signal. The horizontal red dashed lines represent the upper and bottom
thresholds, while the vertical one describes the change from training to
testing region. The vertical blue dashed line represents the introduction
of damage in the signal. Threshold set at ±3σ from the residual mean.

series of group 1 have a linear positive correlation between them, while the series

between group 1 and 2 have a linear negative correlation between them.
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5.4.2 The Case of Z24

According to the analysis performed in Chapter 4 on the natural frequencies of Z24

bridge, temperature observed to be the main driver of the variability observed on the

frequency series over time. However, there were parts were the latter effect was not

significant and more specifically the large artefacts observed during winter months

(Figure 4.20). In addition, the second natural frequency shows lower dependency on

air temperature, in terms of response surface model regression, because it is affected

by damage significantly.

Knowing all the previous, the series can be used inside cointegration. However,

before using cointegration, the relationships between natural frequencies should be

examined to check for the existence of linear correlation. The natural frequency

pairs are illustrated in Figure 5.7. These are categorised, in an ad-hoc manner, into

three classes according to temperature: under and equal to 0 oC (cyan), between 0

and 15 oC (blue) and more than 15 oC (green).

From these, it can be said that there is a positive correlation between natural fre-

quencies, in the normal state, as the value of frequency increases when temperature

decrease. From literature [42, 46], the impact of temperature is the main driver of

frequencies’ variability, because at average one car passed over Z24 per day [4], while

the effect of wind is limited. It should be also mentioned that the only available

EOVs measures for the analysis are those of temperature.

Furthermore, looking into the plots, the data in red colour describe those recorded

during destructive testing activities. It can be seen that natural frequency values

decreased significantly forming a cluster, which shows greater distance from the

mean value of data population of the normal state.

As mentioned above, although temperature variability is not capable to explain

solely the variability of natural frequencies during the monitoring period, it was

clearly observed that the natural frequencies exhibit always a positive correlation

between them. This correlation is distorted in the case of the second natural fre-

quency, when damage occurs (red data). The hypothesis tested here is that the

signals are appropriate for cointegration, as they present correlation between them.

Cointegration Residual

As shown in Figure 5.8, the first 1000 observations are used for the training of
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Figure 5.7: Frequency pairs of Z24 Bridge grouped according to air
temperature.

Figure 5.8: Cointegration residual of Z24 natural frequencies. Training
region in black colour, while in blue colour is the testing set. Threshold:
±2.58σ from signal’s mean.
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cointegration vector, whilst 3 lags are used for VEC model. The VEC model in-

cluded all four available natural frequency series, as shown in Figure 4.22, and the

approximated cointegration vector was: β = (−3.0772, 0.6504, 0.8531, 2.2742)T . It

should be mentioned that the series are normalised prior implementing cointegra-

tion. The damage begins at 3473 data points, as shown in Figure 5.8. According

to Akaike Information criterion (AIC) [100], the most appropriate lag length is 6.

The latter is used and the cointegration residual is approximated. This is shown in

Figure 5.8, where the data in black describe the training region, those in blue are

the tested/damaged data and the red vertical line shows the region where damage

can be detected. A probable explanation here is that by including the larger arte-

fact on the training set, the cointegration vector was trained to account for higher

localised signal variability, that affected slightly the damage detection capability of

the residual.

Starting from the training region, outliers can be detected. The number of these

depends on the confidence interval adopted. In this case, the confidence interval

corresponds to 99%, which described ±2.58 standard deviations (σ) from the mean

of the signal (±2.58σ). This assumption can be seen as slightly conservative here

and an alternative of ±3σ can be employed, to decrease the number of outliers inside

the training region. However, it should be mentioned that the outliers observed in

the training regiomn did not hide any form of abnormality/ alarm cause and can be

associated with the approximated linear cointegration vector.

Moving now into the testing region, it can be observed that the damage can be

detected visually inside the residual after 3500 data observations. Here, it should

be mentioned that the training region included the first two large artefacts observed

in the natural frequencies before 1000 data observations, but not the largest of all.

In particular, the effect of the largest artefact can be observed on the cointegration

residual at the region between points 1400-1500, showing that the training set used

wa not capable to completely eliminate the nonstationarity introduced by the largest

artefact.

On the other hand, if the largest one of the artefacts is included inside the training

region (greater length of training region; 2000 data obtained for training), the coin-

tegration residual, as shown in Figure 5.9, provides a quite different result. Inside

the training region outliers can be identified, however the impact of the largest arte-

fact was eliminated. Inside the testing region also outliers can be detected, however

without having any particular significance in terms of abnormality. The main obser-
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vation here is that damage can be detected after 3400 data points, but one can say

that by comparing Figures 5.8,5.9, the cointegration residual signal’s change of mean

value in Figure 5.9 is lower than that of Figure 5.8 inside the damaged region, where

the training region considered included 2000 observations. In other words, extreme

observations in data inside the training region can affect the damage capability of

cointegration and therefore it is important to identify the sources of this variability

as well as how one can overcome the associated problems.

Figure 5.9: Cointegration residual of Z24 natural frequencies including
also the largest artefact. Training region in black colour, while in blue
colour is the testing set. Threshold: ±2.58σ from signal’s mean.

Furthermore, there are still two additional issues that should be considered to im-

prove the damage detection of cointegration residual. More specifically, some vari-

ance can be observed inside the residual that should be removed in order to make

the residual signal more stationary, whilst the detected damage is inside the sta-

tistical thresholds. These issues are investigated inside the context of non-linear

cointegration.

Some initial ideas of using non-linear cointegration are summarised in [2], however

the data of Z24 are examined more thoroughly in the work of Shi et al. [82]. In par-

ticular, in [82] it was described the extension of cointegration to a non-linear context,

introducing the idea of a regime switching algorithm. This rearranges the frequency

data according to temperature, introducing temperature-based breakpoints, which

are tested according to ADF statistic. The result of Shi et al. [82] on Z24 is shown

in Figure 5.10. The latter shows how the damage manifested on the cointegra-
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Figure 5.10: Regime switching cointegration results on Z24 natural fre-
quency data by Shi et al. [24].

tion residual, improving the linear cointegration damage detection capabilities, by

showing the damaged data outside the confidence intervals.

5.4.3 Aluminium Laboratory Truss Bridge

The same procedure as the one described on real-time SHM Bridge data (Tamar

and Z24) is demonstrated here for the data coming from the laboratory truss bridge

vibration test presented in Chapter 3. The plots of frequency pairs are illustrated

in Figure 5.11. In particular, only the pairs of first frequency with respect to others

are plotted here, as the results between the remaining pairs are similar. Looking on

Figure 5.11, the first four plots describe the normal state relationships. The next

four plots describe both the normal state and the first two damage cases, while the

last four include also the last damage case.

From the first four plots, it can be observed that the natural frequencies increase

as the temperature decreases. Looking into the four next plots, including the first

and second damage (removal of the first and second bolt; Chapter 3), the natural

frequency increases. As mentioned in Chapter 3, this is expected since the removal

of the first two bolts affected only the mass of the structure.
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Figure 5.11: Natural frequency pairs for the laboratory truss bridge
under different damage states.
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In addition, the natural frequencies, associated with damage cases 1 and 2, are still

increasing as temperature falls. Finally, in the last four plots, the damaged data

(red colour) coming from the removal of the third bolt, show a significant decrease

on natural frequencies. As mentioned in Chapter 3, the effect of the removal of the

third bolt led to a significant stiffness decrease. Once again the damaged data are

highly sensitive to temperature.

Comparing the last four plots, with the plots of the second damage an interesting

observation can be made. In the case of second damage, the data are following

the same relationship with that of the undamaged data, something that can affect

the damage capability of Johansen’s approach to cointegration. In contrast to the

second damage case, in the third one, the damaged data show great distance from

the normal data population.

Furthermore, a positive linear correlation between all natural frequency pairs is ob-

served. Therefore, it is expected for cointegration to work successfully and provide

a stationary residual, at least inside the normal region, capable for novelty detec-

tion. However, it is also expected to have some difficulty to identify damage on

the first two damage cases, because the effect of damage is not clearly identified in

the natural frequency pairs in contrast to the third damage case, since only mass

is decreasing during the two first damage cases (a mass decrease of approx. 0.1%

in the first damage case and 0.465% in the second). All these assumptions can be

tested performing cointegration below.

Figure 5.12, the cointegration residual shows the normal, damaged and restored

normal states, where each state consists of 160 data points. A control chart was set

at ±3σ from the normal’s condition residual mean. As expected, using all normal

condition data for training, the first 160 data points of the residual are inside the

statistical thresholds. In damage state 1, novelty can be detected. The cointegration

data corresponding to the first damage are close to normal state, however multiple

outliers can be detected. As mentioned previously, at first damaged state an decrease

of 0.1% of mass was expected due to bolt removal. For damage state 2, the damage

can be observed as the majority of data fall outside the confidence intervals. Here

an 0.465% of mass reduction was expected. It should be mentioned that one can

expected a slightly greater change between damaged state one and two residuals,

due to mass reduction which is much higher in the second damage.

For the third damage state, a more severe damage is observed, which corresponds to
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Figure 5.12: Cointegration residual for laboratory truss bridge data. The
vertical yellow dashed line designates the end of training and beginning
of damaged state 1, the magenta dashed line the end of first damage and
beginning of the second, the red dashed line the end of damage 2 and
beginning of damage 3 and finally the blue dashed line the end of third
damage and the beginning of the system restoration region. Thresholds
for this case were set at ±3σ from mean are applied.

stiffness decrease occurring due to the removal of the third bolt. This led to the loss

of contact between the lower chord and the internal diagonal of the truss. This result

was as expected from the initial testing procedure. Finally, the restored condition

shows that the system is slightly outside the statistical thresholds and then comes

back to the normal condition.

An interesting result for comparison is provided in Figure 5.13. In this case, the

first 80 data points of normal condition was set as training region, for cointegration

vector training, whilst the remaining 80 data points as testing region. It is clear that

inside the testing region and especially for recordings at temperatures under zero

degrees (120-160 data points), a shift can be observed, however inside the statistical

thresholds. One can argue here that this is the consequence for not considering a

full temperature cycle (25 to -10oC) in order to train the cointegration residual more

accurately. It is true that a greater normal condition, i.e. including two or more

full temperature cycles could have provided sufficient data for the normal testing

condition.

However, the cointegration residual for the first damage state, shows that this can

be considered as a normal condition as all points are inside the statistical thresholds.
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Figure 5.13: Cointegration residual for laboratory truss bridge data.
The vertical black line designates the training from the testing normal
condition data, whilst the remaining dashed vertical black lines designate
the change of states. The data points in black describe the normal
condition, those in magenta the first damage, the blue ones the second
damage, the red ones the third damage and finally the last black data
are the restored normal condition data.Thresholds for this case were set
at ±3σ from mean are applied.

In the second damaged state, outliers can be detected to the cointegration residual,

which can justify the mass reduction due to bolts and angle bracket. The third

damage state, as expected, shows that the system stiffness decreased significantly.

Finally, the restored normal state shows that all data observations of residual are

inside the statistical thresholds informing there is no damage in the system.

From the comparison of these two cointegration residuals it was observed that the

second one including both training and testing region provided more reasonable

results with respect to the initial assumptions made during the experimental process.

It was also shown that the inclusion of more data inside the training region does

not always lead to a more informative cointegration residual, as a more informative

cointegration vector identified including less data observations of the normal state

in this case.

From the laboratory test, it can be said that damage identified in all cases tested and

that Johansen’s approach to cointegration worked successfully. In addition, seems

that small-scale structures are more sensitive to temperature, even for temperature
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changes occurring at ±0.5oC level. These led to fast changes (rate effects) on the

natural frequencies, which can be associated with small changes in system’s under-

lying physics. Such small changes observed inside all damage states and violated

the cointegration relation established for the normal state.

5.4.4 Conclusive Remarks from Bridge Data

From the analysis performed in Section 5.4, some important conclusions can be

drawn. Starting from the case of cable tension signals of Tamar Bridge, it was

shown that air temperature is the main driver of their variability, while also signals

sharing inverse proportional trends can be used together inside Johansen’s approach

to cointegration by providing a stationary cointegration residual. In addition, an

example is provided where cointegration can be used for novelty detection when

employing multiple signals. Furthermore, in the case of Z24 natural frequency data,

it was shown that the impact of EOVs on the examined real-time bridge data mani-

fests itself in different manner than that of damage. In particular, it seems that the

effect of temperature on the data, in the majority of cases, exhibits a determinis-

tic pattern, since frequencies tend to increase in low temperatures and decrease in

higher. However, this pattern might not be always visible due to the sensitivity of

features to other EOVs (i.e. Tamar vehicle mass [2]). In addition, the importance of

training set selection discussed providing an example on the Z24 natural frequency

data. In particular, the cointegration residual was observed to be more damage sen-

sitive when the training region include only the first two large artefacts of natural

frequency and not the largest one. Moreover, from vibration analysis and damage

simulation experiment conducted on the laboratory truss bridge, it was shown that

small-scale structures’ response is more sensitivity to EOVs than real-time struc-

tures. For the damage cases examined, it seems that the existence of significant

damage can lead to the projection of damage data in a space exhibiting greater

distance from the normal state data. Finally, it was observed that even in case of

damage, the damaged feature keeps, more or less, its initial temperature sensitivity

(frequency increase as temperature falls).
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5.5 Conclusions

In this Chapter, the three steps (ADF, VAR and VEC models) included inside Jo-

hansen approach to cointegration are presented. After that, a discussion was made

about the way that common trends are manipulated inside cointegration and what

happens in case of damage. In particular, it was shown that cointegration does

not learn the common trends but learns the correlation structure between the fea-

tures and then cancels it by subtraction. Furthermore, the SHM data coming from

the Tamar Bridge, the Z24 Bridge and the laboratory truss bridge experiment are

explored and used to demonstrate the application of Johansen’s approach to cointe-

gration. More specifically, the interrelationships between SHM series are examined,

focusing on how these are affected by EOVs (i.e. temperature) and damage, as well

as the impact that these have on the cointegration residual. From all cases it was

shown that cointegration performs well in terms of damage detection. An additional

interesting observation made was that when a linear negative (inverse proportional

trends) or positive correlation is existent between the series considered from cointe-

gration, it is possible to obtain a stationary cointegration residual. Furthermore, it

is important to identify the most appropriate training region for cointegration. An

example given here on the data of Z24 bridge. Further improvements to cointegra-

tion damage detection capability can be achieved employing non-linear cointegration

(Shi et al. [82]) approaches. Moreover, it was shown that in the case of a small-

scale truss bridge, the effect of temperature is greater on natural frequencies and

especially during small temperature variations (±0.5oC). The latter can lead to fast

changes in frequency variation, which are referred to as rate effects [105]. These

were imposed by EOVs and subsequently can change the underlying physics of the

system, leading to a direct impact on cointegration residual, as the normal state

equilibrium is violated (Figure 5.12).

The main aim behind all the aforementioned was to test the initial hypothesis made,

which is that in the presence of linear positive or negative correlation between series,

the linear cointegration analysis, as described inside Johansen’s approach, can be

applied successfully. The latter, in all bridge SHM data cases examined previously,

has been associated with the impact of temperature on the SHM series, which led

to the introduction of time trends on the series. According to the description of

Johansen’s approach to cointegration [74, 75], the series in order to be cointegrated

successfully should share common trends and be nonstationary and more specifically
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of first order of integration I(1). The test used to judge if a signal is stationary or

nonstationary, both inside Johansen’s approach to cointegration and here, is the

Augmented Dickey-Fuller (ADF) test [94, 95]. Although, this is used commonly

inside Econometrics and used previously inside SHM, it will be useful to investigate

it further and understand how exactly works and what attributes of each signal

counts in order to make the judgement. In particular, the latter is attempted in

the next Chapter, in which an interpretation of ADF statistic is provided based on

basic ideas of signal processing and dimensional analysis.



Chapter 6

On Stationarity and the

Interpretation of the ADF

Statistic

The last Chapter demonstrated how many of the features that are commonly used

are nonstationary in nature. On the other hand, this Chapter considers the nature

of stationarity of a time series or signal, and how it may be quantified. It is argued

that a subjective assessment is as effective as one based on mathematical definitions,

if one actually has finite samples of data, and that such an assessment is fundamen-

tally based on the number of cycles of the dominant periodic component visible in

the sample. It is shown by dimensional analysis that one of the most often-used

measures of stationarity, the Augmented Dickey-Fuller (ADF) statistic, supports

this hypothesis. This analysis can be useful for anyone concerned with time-series

analysis and nonstationarity.

6.1 Introduction

The concept of prediction is central to science and engineering, also inside economics

and social sciences. Especially in engineering applications such as SHM, which is

the main scope of this thesis, the procedure of prediction becomes difficult when the

physical laws governing a system change over time. In many situations of interest

97
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in engineering, one does not know the exact physical laws and is forced to try and

infer some or all of them from measured data, which essentially is the problem of

system identification [106]. Therefore, it is important to know if a system changes

over time in order to model and predict its response more sufficiently. The latter is

associated with the concept of nonstationarity, which originates from the analysis

of stochastic processes.

Suppose the set of observed signals is a vector time series x(t) governed by a stochas-

tic process Xt. The process is strictly stationary if the joint probability density

pt(x(t)), is independent of time i.e.

pt(x(t)) = pt+τ (x(t+ τ)), ∀τ (6.1)

where the variables (t, τ) can be discrete or continuous. Although this definition is

straight-forward from a mathematical perspective, its application in engineering is

more complex, because it is framed in terms of multivariate density functions, which

are difficult to estimate from data [107, 108]. Thus, other indicators of stationarity

are needed, which will be based on quantities that can be observed inside data

samples.

In the recent past, the idea of stationarity has become central to another engineer-

ing discipline, that of Structural Health Monitoring (SHM) [7]. The basic idea of

SHM is to infer from measured data, whether a system or structure has become

damaged during operation. For various reasons (discussed in detail in [7]), SHM is

often implemented in practice by trying to determine if the measured data changes

its nature at some point (i.e. when the structure moves from the undamaged state

to a damaged state). Such a change is clearly an instance of nonstationarity; how-

ever, the problem is complicated by the fact that signals from structures may be

nonstationary for entirely benign reasons. To give a concrete (no pun intended)

example, consider a bridge to be the structure of interest. Suppose that the mea-

surands/features of interest are the first few natural frequencies; these are known

to be sensitive to damage because reduced structural stiffness (say, as the result of

cracks) will cause the natural frequencies to be reduced. Unfortunately, these same

frequencies are also sensitive to the ambient temperature of the bridge, the traf-

fic loading etc. These benign operational and environmental variations are known

as confounding influences and represent one of the main technological problems in

SHM implementation. Various methods have been proposed for the elimination
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of confounding influences [7]; one of the most powerful is based on the concept of

cointegration [76, 109].

The theory of cointegration arose in the domain of econometrics, where it was mainly

used in order to analyse and understand common trends in economic and financial

time series. However, one application of the theory is to combine multiple non-

stationary time series in such a way as to produce a stationary residual; this is the

application that proves to be useful for SHM. The idea is that confounding influences

in structural response measurements often manifest as common trends between sig-

nals i.e. the daily variations in temperature of a bridge will cause slowly-varying

(compared to the dynamics) common trends in estimated natural frequencies; coin-

tegration allows combination of the signals in such a way that the result is stationary,

and sensitive only to changes due to structural damage (or previously unseen benign

effects). One of the necessities of the cointegration technique, is a means of deciding

if a signal is stationary or not, and this is often based on a hypothesis test using

specialised statistics – the most common being the ADF statistic [94, 95]. In fact,

the ADF statistic works in the abstract sense by detecting unit roots in the set of

characteristic roots of the time series of interest. An important objective of this

paper is to provide a simple interpretation of the ADF statistic and show that it

makes contact with engineering intuition about the nature of stationarity. In fact,

it will be argued that the decision on whether a time series is stationary or not is a

matter of subjective judgement.

The layout of this is as follows: in the first section the nature of stationarity is

discussed, as well as a hypothesis on how a human expert might judge stationarity.

In the second section, it is demonstrated that the ADF test statistic is a function of

the dominant frequency of a mono-harmonic signal, its length and its signal to noise

ratio, via a dimensional analysis. The third section is the results section, which

includes the simulations performed in order to illustrate the aforementioned point.

Finally, the results will be discussed and conclusions on the use of ADF inside SHM

context will be drawn.

6.2 Practical Tests for Stationarity

As mentioned in the introduction, the mathematical definition of a strictly station-

ary stochastic process is quite straightforward. However, it is framed in terms of
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multivariate density functions, something that is difficult to be estimated from data.

As the main aim is to perform a stationary assessment on the engineering signals

obtained from SHM, the concept of stationarity should be formulated in terms of

quantities which can be estimated more easily. Inside SHM, damage detection can

be performed on series exhibiting stationarity using statistical process control and

other control charts [110]. In such a case the definition of stationarity in weak sense
1 can be useful. According to [111], a signal can be considered as weakly stationary

if the mean of the process is constant i.e.,

m(t) = E[Xt] = m (constant) (6.2)

(where E denotes the expectation operator) and the auto-correlation function of

process depends only on time differences, i.e.

E[XsXt] = φxx(s, t) = φxx(s− t) ∀s, t. (6.3)

The second of these conditions can be replaced by the requirement for a constant

covariance.

Although this definition about stationarity is helpful, one can only compute sample

estimates for m(t) and φxx from f inite data samples. As expected, the estimates of

the mean and variance from a finite sample will be constant and one can track the

mean and variance over a sequence of moving windows. A minor issue is the deter-

mination of the window’s width. The main issue is that engineering signals are not

stationary, in most of the cases, something that makes their assessment according to

mathematical determination of weakly stationarity very complex. More specifically,

the SHM signals can be considered as periodically-correlated or cyclostationary [111].

A second-order stochastic process Xt is periodically-correlated if for all s, t,

m(t) = m(t+ T ) (6.4)

and,

1Detection using a control chart depends critically on the tails of the signal probability density,
and these are independent/insensitive to the central statistics controlled in weak stationarity.
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φxx(s, t) = φxx(s+ T, t+ T ) (6.5)

for some period T and there are no smaller values of T > 0 for which these conditions

hold. Even in this case, the application of these criteria to a finite data sample is

difficult.

To justify the aforementioned point an illustration can be considered. For this the

estimated fundamental natural frequency series, Figure 6.1, of the Z24 Bridge is used,

describing a whole year of monitoring [4]. Looking at Figure 6.1, one can assume

that the signal of the frequency can be decomposed into two components: a high-

frequency one, which is associated with its noisy part, contributed to the variance in

frequency estimation and a lower-frequency one, which can be associated with the

large artefacts resulting from very low temperatures occurred during monitoring.

Looking at Figure 6.1, an analyst, based on his/her engineering judgement, can

conclude that the natural frequency series is nonstationary. Considering, that the

cold periods in the region concerned can occur at roughly the same points each year,

the response of the bridge can be simulated for 50 years by repeating figure 5.1, 50

times, as depicted in Figure 6.2. In this case, the analyst can conclude that due

to the repetition of the annual periodic component, the signal of 50 years can be

considered as cyclostationary. Although, the aforementioned two judgements are

clearly subjective, however there is a high likelihood to be done by an expert.

Figure 6.1: Fundamental natural frequency of the Z24 Bridge corre-
sponding to a single year of monitoring.
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Figure 6.2: Fundamental natural frequency of the Z24 Bridge, the single
year repeated 50 times to simulate measurements over a 50-year period.

The problem in SHM is that one wishes to detect damage from signals like the

natural frequencies by detecting changes from a stationary response using tools like

control charts. Our current best approach is to look at features/data measured over

some finite window and to try and make a judgement as to their stationarity; if they

are stationary, it is valid to use control charts etc; if they are nonstationary, one

needs to use cointegration first etc. It has already been noted that it is difficult to

apply mathematical definitions of stationarity to finite samples of data, and it could

be argued that the subjective judgements or engineers/experts might be just as

reliable. However, engineers and scientists (rightly) distrust subjectivity as a rule,

and they have produced statistic tools in order to try and render the judgement

objective.

Inside Econometrics there are several tests that can be used in order to assess if a

given signal is stationary or not. Some of the most commly used are the ADF test

[94, 95], the PP [96] and KPSS [97] tests. These tests follow the concept of unit root

hypothesis, which described in depth in Chapter 4. In the current Chapter the ADF

test will be further investigated, because this forms a part of Johansen’s approach to

cointegration and also the results between the aforementioned econometric tests are

expected to be similar. It is useful to add that inside the context of Econometrics

there is criticism about the validity of unit root hypothesis [97, 99, 112], which is

mainly based on the fact that a unit root will never be found with complete precision



6.3. DIMENSIONAL ANALYSIS OF THE ADF STATISTIC 103

in order to judge with confidence if a signal is stationary or not.

The existence of proxies such as ADF statistic can be an excellent indicator for

testing the nature of a SHM signal, if scientists and engineers trust ADF indications.

To do so, the indications of these proxies should be in line with their intuitions about

signals. Hence, the question now is, what is the basis of expert intuition on the

nature of a finite sample of a time series. Here, it seems that the main criterion can

be the number of periods of the dominant frequency observed in a sample. According

to the example presented for the first natural frequency of Z24, an analyst presented

with data from one period or less, assuming that noise can be identified easily, can

judge the signal as nonstationary, while in case of multiple periods of the dominant

frequency can be judged as cyclostationary or stationary. Considering the latter as

the basis of expert judgement, proxies such as ADF can be tested if they respect

this basis.

In econometrics literature the main considerations affecting unit root tests are: the

sample size, the sampling frequency and the overall time duration of the sample

[113–118]. These observations will be captured in the simple dimensional argument

presented in the following section.

6.3 Dimensional Analysis of the ADF Statistic

6.3.1 Analysis

For the purpose of the analysis of this section, some simplifying assumptions are

made about the signals under consideration. The signal examined will be,

x(t) = A sin

(
2πt

T

)
+ ε(t) (6.6)

which represents a sine wave with amplitude (A), cyclic frequency (2π/T ), where T

is the period and ε is a zero-mean white Gaussian noise sequence with variance σ2
ε .

The term N describes the number of observations of the sample, which is sampled

every ∆t seconds. Hence, the sampling frequency will be fs = 1/∆t, while the the

dominant frequency will be f = 1/T . The normalised frequency corresponding to f

will be defined by fn = f/fs.
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According to [119], the ADF statistic (tADF ) can be calculated by estimating the root

(ρ̂) of an AR process and dividing it by the standard error of that estimate (σρ). The

latter is given in equation (6.7). As the tADF is by definition dimensionless, it can be

expressed as function of any other appropriate dimensionless group, π2 . . . πn, defined

for the problem of interest, according to Buckingham-Pi theorem [120] (Equation

(6.8)).

tADF =
ρ̂

σρ
(6.7)

tADF = π1 = f(π2, . . . , πn) (6.8)

Under the previous assumption, the quantities of interest that can be considered

are: the dominant period of the signal T , the sampling interval ∆t, the number of

sample observations N , the signal variance σ2
y and the noise variance σ2

ε . Despite

the fact that there are five variables under consideration, only two dimensions are

represented: time [T ] and length (amplitude) [L]. This means that two primary

magnitudes for the dimensional analysis are needed, which are the noise variance σ2
ε

([L]) and sampling interval ∆t ([T ]). On the other hand, three secondary variables

or dimensionless groups are possible, formed from T , N (already dimensionless) and

σ2
y . Thus, a valid set can be formed as: π2 = ∆t/T = f/fs, π3 = N and π4 = σ2

y/σ
2
ε .

It follows from the Buckingham-Pi theorem that,

tADF = f(
∆t

T
=
f

fs
, N,

σ2
y

σ2
ε

) (6.9)

where the first variable is simply the normalised frequency of the dominant periodic

component, the second is the number of observations (N) of the series examined and

the third is a signal-to-noise ratio (SNR). Equation ((6.9)) identifies an exhaustive

set of variables that the ADF statistic can depend on. To examine the dependence

of tADF on each of the aforementioned variables, simple simulations using the signal

of equation (6.6) will be performed and their results will be investigated.
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6.3.2 Simulations and Results

Based on the previous dimensional analysis assumptions, three groups of simula-

tions are designed to examine the dependency of tADF on the number of sample

observations, the normalised frequency of the dominant periodic component and

the signal-to-noise ratio. To begin with, the first group of simulations is concerned

with the effect that the number of observations has on the tADF . In particular, to

investigate the latter, SNR is set at 100 (a low noise amount is necessary other-

wise tADF conditioning issues may arise when fitting the AR models), the dominant

period T and ∆T are fixed by generating cycles of sine wave with 128 points per

cycle. This leaves only N to vary, and this is accomplished simply by concatenating

k cycles of the sine wave, from 1 to 100. Figure 6.3 shows the sample with 10 cycles.

Figure 6.4 shows the ADF statistic plotted against the number of cycles of the dom-

inant periodic component. In agreement with the intuition that greater stationarity

is supported for mode periods of the sine wave, the ADF statistic falls monotonically

with number of cycles. This simulation motivates three points:

1. Because the statistic falls monotonically, there is a critical number of cycles

kcrit beyond which the signal is judges stationary. In the case shown, this

number of cycles is around 18, as indicated in Figure 6.4. (This is actually

a function of the number of points per cycle; however, the objective here is

to show how the ADF statistic varies with each of the main dimensionless

groups in turn, holding other variables fixed. The quantitative behaviour of

the statistic-i.e. monotonic decrease- is the same for different number of points

per cycle.)

2. Instead of using π3 = N , it is arguably more meaningful to use π3 = N∆t/T as

this simply counts the number of cycles of the dominant period of the sample.

This is the quantity which was identified above as the prime mover in intuition

about stationarity. The ADF statistic falls monotonically with this quantity

as expected

3. Here it is important to explain why the previous observation is happening. In

simple words, the tADF is proportional to an AR coefficient estimate and there-

fore adding the data in the form of more identical cycles leads to a monotonic

decrease of the standard error, equation (6.7), (until hitting a Cramer-Rao

bound [121, 122]), which however does not change the underlying AR process.
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This means that the tADF grows in magnitude (i.e. becomes more negative)

and judge the sample more stationary.

Therefore, the basic relation now is,

tADF = f(
f

fs
,
N∆t

T
,
σ2
y

σ2
ε

) (6.10)

Figure 6.3: 10 cycles of the slightly noisy sine wave.

Figure 6.4: ADF statistic as a function of the number of cycles of the
dominant periodic component in a sample.
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The second set of simulations is concerned with the dependence that tADF has on

f/fs. Clearly one can increase the number of periods of the dominant frequency in

a sample of fixed length by increasing that frequency or by decreasing the sampling

frequency. Under the hypothesis expressed above, the signal would then appear

more stationary and one would expect the tADF to decrease.

In the next simulation, the SNR is fixed as before, and the number of points N , is

fixed at 104. The sampling frequency of sample is varied by moving by moving from

one extreme when all 1024 points form one sine wave cycle, to the other extreme

when 256 cycles are present, sampled at 4 points each (i.e. at half the Nyquist limit).

Figure 6.5 shows that the ADF statistic decreases monotonically as the sampling

rate decreases (or conersely as the dominant frequency increases) and this is once

more consistent with the hypothesis that the ADF statistic essentially counts the

number of cycles/periods of the dominant frequency component in a sample.

The last simulation reveals something rather interesting. For a fixed N , the ADF

statistic falls monotonically with increased normalised frequency of the dominant

component. This implies that, corresponding to a given critical ADF statistic tc,

there is a critical normalised frequency fc such that, signals with normalised fre-

quencies greater than fc will be judged stationary, while those with f < fc will be

judged nonstationary. For N = 1024 the critical ADF statistic is −2.56, and this

corresponds to a critical normalised frequency of 0.015 (Figure 6.6). Given the sam-

pling frequency in any given situation, the critical frequency in Hz is easily derived

from the critical normalised frequency, which is a function of N .

Although it proved useful to redefine π2 to count the number of periods of the

dominant harmonic component, there is actually another interesting effect associated

with varying N . This effect is revealed by varying the number of points in the

record N , but fixing the signal so that it only contains one period of the harmonic

component. Figure 6.6 shows what happens to the estimated ADF statistic in this

case. The arguments based on engineering intuition would suggest that an expert

faced with a single period of the waveform would judge it to be nonstationary,

regardless of the number of sample points. In fact, this idea is supported by the

ADF statistic, up to a number of points Ncrit, beyond which the ADF statistic judges

the signal to be stationary. While this is initially counter-intuitive, it does make

sense. As N increases, keeping only one cycle of the harmonic present, the sampling

frequency increases monotonically and the normalised frequency of the harmonic

decreases monotonically. In the limit as fn tends to zero, one has a constant signal,



6.3. DIMENSIONAL ANALYSIS OF THE ADF STATISTIC 108

which one would clearly have to judge as stationary.

Figure 6.5: ADF statistic versus normalised frequency.

Figure 6.6: Zoom of ADF statistic versus normalised frequency, indicat-
ing presence of critical normalised frequency.

Finally, the last simulation tries to identify the effect that the amplitude of the signal

has on the ADF statistic. Due to the fact that ADF is dimensionless, there is no

direct dependency with signal amplitude. However, the latter can be investigated

through the variation of SNR, σ2
y/σ

2
ε . For the signals presented here, the latter

corresponds to the ratio of signal over the noise power. It is expected that when the

signal is dominated by noise, the ADF statistic will provide inference for stationarity,

while if the periodic component dominates, inference for nonstationarity. In other
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Figure 6.7: ADF statistic versus N, keeping a single cycle of the domi-
nant frequency, indicating presence of critical number of samples beyond
which the signal is judged stationary.

words, it is expected that stationarity will increase in monotonic manner when the

SNR increases. The latter expectation is supported by the results shown in Figure

6.8. Of course, one could also define a critical normalised frequency with respect to

SNR. The latter case occurs when the signal is a noisy sine wave.

Of course, one could also define a critical normalised frequency with respect to

SNR; however, this would be less interesting as it would apply only to the very

restricted case of the signal being a noisy sine wave. In the general case, the ADF

statistic will depend on the relative sizes of periodic components and the noise

components. If periodic components with frequencies below the critical frequency

dominate other components, one would expect the ADF statistic to judge the signal

stationary. If the signal is a mixture of a narrowband random process and white

noise, it might be possible to extend the arguments presented here by defining the

‘dominant frequency’ in terms of the peak in the spectrum or as the frequency

centroid for example.

6.3.3 Discussion

The results so far support the hypothesis that the ADF statistic essentially counts

the number of cycles of the dominant periodic component visible in the sample; it

falls monotonically as this quantity increases. A second result of the analysis is
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Figure 6.8: ADF statistic versus signal-to-noise ratio.

that there exists (at least for monocomponent signals + noise), a critical frequency

fc corresponding to the critical value of the ADF statistic for a fixed number of

samples. This point requires a little more discussion, due to the fact that there is

more than one critical ADF value. The critical value depends on the type of model

assumed for the underlying process [119]. To simplify matters, the discussion here

will be restricted to the Dickey-Fuller (DF) statistic, rather than the ADF, but the

point is the same. In the DF test, three common models are considered:

1. Simple AR model without constant (c) or time-trend (T ): this represents a

random walk with no drift and its structure is given by,

yi = ρyi−1 + εi (6.11)

where εi is the residual sequence.

2. AR model with constant (c) but no time-trend (T ): the model structure is

given by,

yi = ρyi−1 + c+ εi (6.12)

3. AR model with both constant (c) and time-trend (T ): the model structure is

given by,

yi = ρyi−1 + c+ Tt+ εi (6.13)

where both c and T are constants.
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Each of these models will generate a different tc, and the same is true of the ADF

test, which really only adds certain AR terms to DF model structures. So, for the

situations above where the samples contain N > 500 points, and at 99% confidence,

the ADF tc values for the corresponding types of models (no constant, no trend etc.)

are (1) -2.56, (2) -3.437, (3) -3.967. None of these models seem to completely fit the

situation here where the deterministic components of the time series are periodic;

however, model (1) has been chosen for its simplicity. The different choices do not

affect the main conclusions relating to the monotonic behaviour of the ADF statistic,

but they will have a small affect on the numerical value of fc.

One can also make a general observation in the context of SHM. Consider the case

when one is measuring the dynamic response of a structure. In the absence of any

confounding influences, this would usually be stationary (assuming stationary ex-

citation). If the structure suffers a damaging event, this usually has the effect of

reducing the structural stiffness and thus the natural frequencies. In this case, the

response would have marginally fewer periods of the dominant frequencies than for

the undamaged structure measured over the same time window. With the interpre-

tation of the ADF statistic in this section, it would follow that the ADF statistic of

the response would increase after damage, although this is likely to be a small effect

unless there are major changes in the frequencies i.e. large damage. The use of the

ADF statistic as a damage sensitive feature has actually already been proposed [78].

One of the more interesting outcomes of the analysis above, has been the determi-

nation of a critical frequency for a signal fc, associated with the critical value of

the ADF statistic. It follows that one might be able to separate a given signal into

stationary and nonstationary components by separating the frequency components

above and below fc.
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6.3.4 Example on SHM signal

From all the aforementioned analysis performed and the discussion made on the in-

terpretation of ADF t-statistic, it was clear that ADF essentially counts the number

of cycles of the dominant periodic component in order to make the judgement if the

signal is stationary or not. In addition, it was shown that a critical frequency fc in

Hz can be found for each signal, if the sampling frequency fs is given for a signal,

which can be derived as function of the number of observations. To demonstrate

the latter for a real-time bridge signal, the first natural frequency of Tamar Bridge

will be used.

For the purpose of this analysis, the measurements of one day of the Tamar bridge

natural frequency are used. The signal is shown in Figure 6.9, where x-axis includes

the hours of monitoring, and describes one cycle of the signal. The correspond-

ing dominant frequency can be found, using the Discrete Fast Fourier Transform

(DFFT) [123] and here is 1 Hz.

Figure 6.9: One day signal of the fundamental natural frequency of
Tamar Bridge representing 48 half-hourly measures.

The assumption made here is that the sampling frequency includes 48 observations,

as each observation on Tamar Bridge represents an half-hour measurement and con-

sequently 48 observations represent one day of monitoring. In other words, the

normalised frequency of the signal is 1/48. The question that this analysis will

attempt to answer is; after how many hours the signal is expected to become sta-

tionary and what is the normalised frequency at that point. Knowing that, the
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critical frequency fc can be obtained.

In particular, using the ADF test on the signal shown in Figure 6.9, a t-statistic of

−0.943 is obtained, which is higher than the critical t-statistic. The tc here is -2.6135

and represents the 1% significance level. Now, increasing the cycles of the signal by

adding successively cycles, the tc is reached around five cycles. In particular, Figure

6.10. In particular, the critical number of cycles (Cc) is 4.6 cycles. Then, the tADF

can be plotted with respect to normalised frequency, as shown in Figure 6.11. From

this, the critical normalised frequency fc is 0.0948, employing linear interpolation.

Figure 6.10: Calculated t-statistic versus the number of cycles.

Figure 6.11: Calculated t-statistic versus normalised frequency.

Furthermore, the number of observations after which the signal becomes stationary
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can be found based on critical normalised frequency, which is N = 220. The latter,

in this case, is also the critical frequency Fc, because N ×∆t/T , where ∆t is 1 and

also the dominant period (T ) is unity, as dominant frequency (f) is 1. Therefore,

Fc is 220 Hz. In terms of hours monitoring, after 110 hours the signal will become

stationary.

6.4 Conclusions

For various reasons, relating to applications in engineering like structural health

monitoring (SHM) and system identification, this Chapter speculates on the nature

of stationarity and how it can be quantified. It is briefly argued that mathematical

definitions are of little practical use on finite samples of data and that a subjective

assessment by an expert may be as effective. A hypothesis is presented that experts

would base their assessment on how many cycles of the dominant periodic compo-

nent are present in the sample. If this hypothesis holds true, then any statistics

used for nonstationary assessment would need to support it. This Chapter shows,

using dimensional analysis, that the ADF unit root test, which one of the commonly

employed nonstationarity tests inside econometrics, follows the latter hypothesis. It

should be a simple matter to apply similar dimensional arguments to other measures,

such as PP and KPSS. The results of this Chapter should be of interest for engi-

neers, econometricians and anyone else concerned with time series analysis where

stationarity assessment is of great interest.

After proving this interpretation about ADF statistic and how a signal can be judged

as nonstationary or not, it is important to refer to different way that can be used to

monitor the cointegration residual. Although, cointegration is a damage sensitive

features, there are tools, such as statistical process controls that can be used to

monitor the stationary cointegration residual. These will be presented in the next

Chapter.



Chapter 7

Cointegration Residuals and

Novelty Detection

7.1 Introduction

In the previous Chapters the Johansen’s approach to cointegration was introduced,

discussed and demonstrated based on three bridge case studies (Tamar, Z24 and

the aluminium truss bridge). In addition, a simple interpretation of the ADF test

for SHM series nonstationarity assessment was presented, based on basic signal

processing concepts and dimensional analysis. From the aforementioned, it was ob-

served that SHM signals from structures in operation are generally nonstationary

and need to be rendered stationary in order to monitor optimally them for nov-

elty/damage detection. In particular, SHM signals are nonstationary due to benign

reasons contributed to the impact of EOVs. Cointegration can be used successfully

to project out this benign nonstationarity where variables are linearly related. The

main feature used for damage detection when employing linear cointegration is the

cointegration residual.

According to Axiom II for SHM [7], damage detection is based on the comparison

between two structural response states, an undamaged and potentially damaged one.

Hence, to establish a linear cointegration relationship requires an initial training set

taken from the undamaged state. Based on [7], the training set should be long

enough to obtain a stationary residual, but up to a point, where the feature is still

115
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damage sensitive. An example of such a case is given in Chapter 4 on the natural

frequency data of Z24 bridge.

As the cointegration residual is a stationary time series, different methods can be

used to monitor how the residual changes over time. A common practice to track

the evolution of a stationary time series over time is by the use of statistical control

(SPC) charts [7].These have been used in the past in the context of SHM, as well

as in combination with Johansen’s approach to cointegration [2, 7, 105, 124, 125] .

This Chapter specifically studies the available means of monitoring the cointegrated

residual in order to explore their suitability and success for damage detection. Com-

monly only a standard control chart is used to monitor the cointegrated residuals in

SHM. The Chapter will provide a review of the general process control methodolo-

gies employed inside SHM literature, which are combined with cointegration residual

used for novelty detection purposes. In order to discuss the aforementioned methods

and compare their results, a simple mass spring system is used to generate natural

frequency series both for undamaged and damage conditions. In addition, the ex-

perimental data introduced in Chapter 3 will also be used to explore the available

possibilities. Finally, conclusions will be made as to which options are most suited

for residual monitoring.

7.2 Data Generation: Mass-Spring System

A simple mass-spring system is developed and simulated in Matlab in order to gen-

erate series of natural frequency data. The system is illustrated in Figure 7.1 and

consists of six masses and seven springs. Solving the eigenvalue problem, the six

natural frequencies can be obtained. In order to simulate the variation of natu-

ral frequencies over time, the stiffness of each spring is considered as a function of

temperature (ki = 4 − 0.05T for i = 1, . . . , 7). This equation used to simulate the

stiffness of each spring was selected because it was tested and provided nonstationary

results representing satisfactorily the expected variability of stiffness. The variabil-

ity of spring stiffness is provided using the air temperature field taken from the

monitoring campaign of the Tamar Bridge (Figure 7.2). Of course one can amend

this and generate more or less stationary variables. It should be also said that a

linear behaviour between temperature and stiffness assumed here, as the simplest

one that can exist, which can be also used to explain more easily the future results.
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In total, six frequency time-histories have been generated with 16000 observations

each (Figure 7.3). At 10500 data observation, a decrease in stiffness K4 was intro-

duced to simulate damage. Different damage percentages are introduced in order to

compare the methods.

Figure 7.1: Mass-spring-stiffness system.

Figure 7.2: Temperature variation of Tamar Bridge for 8 months of
monitoring (01/07/2007 to 31/03/2008).

7.3 Monitoring the Cointegration Residual

The aim of the cointegration methodology within SHM is to find the most station-

ary combination of the variables of interest. The idea is then to infer a structural

change from a variation in this combination (residual), i.e. the cointegration residual

can be used to draw inference about a system’s underlying physics and how this is

changing over time. The available methods for monitoring the cointegrated residual

can be sorted into two main categories: (i) outlier analysis and (ii) nonstationarity

assessment. In the former, measures of data distance are used to identify data pop-

ulation exhibiting different characteristics from normal ones. The most commonly
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Figure 7.3: Natural frequency series generated using the mass-spring
system and the temperature recording of Tamar Bridge for a 5% stiffness
reduction introduced in spring four (K4).

employed measures of distance are those of Mahalonobis and Euclidean distance [7].

On the other hand, for non-stationarity assessment, the moments of residual, such

as the mean, the variance or the nonstationarity of residual using unit root tests, are

tracked over time. The most commonly employed measures of the second category

are the X-bar (mean) and S-control (variance) charts.

As the methods mentioned above all track the change in some way, the question of

which to use may seem trivial. However, as this Chapter will demonstrate, a num-

ber of different behaviours in cointegrated residuals have been observed and these

patterns may lend themselves to one monitoring method over another. The different

behaviour observed stems from the nature of the approach taken to cointegration

for SHM; one is searching for the most stationary combination of variables, however

stationarity is not guaranteed, the residual, even within the training set, may not

be strictly stationary, but still of use for damage detection [126].

For the purposes of this Chapter, the X-bar and S-bar chart methods for monitor-

ing the cointegration residual will be used and discussed, employing the synthetic

natural frequency data generated from the previously introduced linear mass-spring

system (section 7.2) and the laboratory data discussed in Chapter 3. Different meth-

ods to monitor the cointegration residual are compared and discussed. Finally, the

use of the ADF t-statistic for cointegration residual monitoring will be discussed



7.3. MONITORING THE COINTEGRATION RESIDUAL 119

and compared with the previous two control charts.

7.3.1 Tracking Methodologies

Control Chart (µ± 2.58σ)

An important issue faced when building a novelty detector is how the appropriate

thresholds (alarm levels) can be specified. In particular, [7] provides evidence that

novelty detection threshold can be based on extreme value statistics (EVS). The

upper and lower threshold approximated using Gumbel and Weibull empirical and

cumulative distribution function (CDF) for maxima and minima. From this it was

concluded that at least 99.5% of the data should be enclosed by the upper and lower

thresholds, which in terms of data in a normal distribution distribution normality

can be expressed as a number of standard deviations (σ) from the mean value (µ).

More specifically, 99.54% corresponds to µ±2σ, while 99.73% corresponds to µ±3σ.

The threshold adopted for the analysis here is µ± 2.58σ, which represents the 99%

confidence interval.

X-bar Chart

X-bar is a basic statistical process control method focusing on the idea of suppressing

noise by averaging the process and of making the summed variable more Gaussian

(central limit theorem) [110],[7]. The signal is regarded as a Gaussian noise sequence

and one can set alarm level or control limits at µ ± 2.58σ for training set data. In

abstract terms, X-bar tracks the mean of the signal, which is the first moment of

stationarity of signal and observes how this change over time. As mentioned in the

introduction, for use with cointegration this method requires the signal to be station-

ary, at least inside the undamaged state, in order to be able to detect the presence

of novelty or in other words signal nonstationarity, which can effect the mean of

the signal over time. In particular, the X-bar chart calculation used in [124] will

be followed here in order to monitor the cointegration residual (stationary signal).

In that case, the X-bar chart was used for the assessment of tilts’ series provided

by the monitoring of a footbridge located at UK’s National Physical Laboratories

(NPL).

S-bar Chart

In contrast to X-bar, S-bar control charts assess the variance of the signal (σy
2).

As in the case of X-bar, S-bar chart also looks into a sequence of data moving
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windows using a predetermined window’s width. For the S-bar chart, the upper

(UCL) and lower control limits (LCL) are obtained, according to [7], as described

in equations (7.1) and (7.2), where X(p,n) describes the pth quantile of chi-squared

random variable, n is number of observations of each window. S̄ is the mean value

of variance (σy
2) of all observations corresponding to the normal state, whilst α

represents the significant level (i.e. 0.01 for 1%).

UCL = S̄

√
X1−a/2,n−1

n− 1
(7.1)

LCL = S̄

√
Xa/2,n−1

n− 1
(7.2)

The previously tested statistical process control charts (X-bar and S-bar), are the

most commonly employed inside SHM. However, further control charts, such as cu-

mulative sum (CUSUM), exponential weighted-moving average (EWMA), Hotelling

or Shewhart T 2, can be used in the same manner. A review of these aforementioned

control charts can be found in [7]. It should be mentioned here that for damage

detection purposes inside SHM, the cointegration theory has also been employed in

combination with multivariate EWMA (MEWMA) in [127].

7.3.2 The Suitability of Different Tracking Methodologies

Figures 7.4 and 7.5 show the cointegration residuals of the simulated data with 5%

and 20% damage introduced respectively. In both of these Figures, the statistical

threshold was set at µ ± 2.58σ, where µ is the mean of the normal/training state,

and corresponds to 99% confidence intervals.

From these Figures one can see that the residuals appear stationary in the training

period, in fact, they appear to be white noise sequences. In this case, an outlier

analysis is an obvious candidate, as new data can be compared to the stationary

distribution of the data in the training set. As the cointegration residual is a single

series, an univariate outlier analysis is selected here; the Euclidean distance. This

is a discordance measure, where the potential outlier is compared against some

objective threshold to evaluate the statistical likelihood of coming from an specific

distribution.
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Figure 7.4: Cointegration residual for 5% damage introduced in spring
stiffness K4. The vertical red dashed line corresponds to the point where
the damaged introduced. The threshold was set at µ± 2.58σ.

Figure 7.5: Cointegration residual for 20% damage introduced in spring
stiffness K4. he threshold was set at µ± 2.58σ.

The deviation statistics used here is given in Equation (7.3), where xζ is the potential

outlier, x̄ is the mean of the training set of the residual, s is the standard deviation of

the training set, whilst zζ is the novelty index. The thresholds of the outlier analysis

depends on both the number of points of the signal and the number of dimensions

of the problem being studied [7]. As here the univariate analysis is employed, one
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can assume a Gaussian normal distribution and a confidence interval of 99%, which

corresponds to µ± 2.58σ.

zζ =

∣∣∣∣xζ − x̄s

∣∣∣∣ (7.3)

As can be seen clearly from Figures 7.5 and 7.6, an outlier analysis can easily detect

the mean shift that results from a change in stiffness. It is interesting to point

that inside the normal condition of the structural response (1-10500), outliers can

be detected, which can be assumed as lase positives, as there are no inference of

damage and probably inform the existence of local changes of temperature that led

to increase of natural frequencies.

Figure 7.6: Outlier analysis for 20% damage introduced in spring K4.
The blue circled points described the inliers, while the orange crosses
the outliers. The threshold was set at µ± 2.58σ.

However, some potential damage behaviour could be undetectable with this kind of

analysis. For example, if damage introduced a repeating trend with a constant mean

and an amplitude smaller than the error bars\threshold, this would go undetected,

a reduction in variance of the residual would also go undetected. Such an example

is shown in Figure 7.7. In these cases, the alternative methods discussed in Section

6.3.1 may be of more use. For this simple simulated case, the results with these

alternative methodologies are shown below.

More specifically, the X-bar chart is demonstrated here on the cointegrated signal
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Figure 7.7: Outlier analysis for 2% damage introduced in spring K4.
The blue circled points described the inliers, while the orange crosses
the outliers. The threshold was set at µ± 2.58σ.

Figure 7.8: X-bar Chart for a 10% damage introduced in K4. The
horizontal red dashed lines represent the thresholds at 99% confidence
interval.

of the mass-spring system. As shown in Figure 7.8, X-bar tracks the mean of the

signal, considering daily data (48 half-hour observations) and the thresholds are

set at µ ± 2.58σ from the original signal’s training data (first 2850 observations).

The total data are 15984 and corresponds to 333 subgroups of 48 observations each

(one day each). As one can observe from Figure 7.8, at 219th subgroup/day, the
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mean value of the signal changes significantly, something that informs the presence

of nonstationarity in the original natural frequency signals. The response of the

structure after the 219th day continues to vary, however around the increased mean

value.

Furthermore, the results obtained by the S-bar chart analysis on mass-spring coin-

tegration residual are depicted in Figure 7.9.

Figure 7.9: S-chart for 20% damage introduced in K4 spring. The hor-
izontal red dashed lines describes the thresholds at 99% confidence in-
tervals, while the horizontal green dashed line is the standard deviation
of the standard deviations calculated.

This shows that the introduction of a significant amount of damage in the cointe-

gration signal leads to introduction of nonstationarity in the cointegration residual

and consequently changes the signal’s variance.

As mentioned previously, the cointegrated residual of the data provided by the simple

mass-spring system was perfectly stationary, because the natural frequency signals

share exact common trends. Now, to consider a more realistic situation the case of

laboratory truss natural frequencies will be examined employing the X-bar and S-bar

charts. In particular, Figure 7.10 shows the cointegrated residual of the experimental

data introduced in Chapter 3. Here one can see a more typical example of residual

behaviour, where some structure remains, and even in the training set, one could

not say that the residual was strictly stationary. Nevertheless, the residual clearly

shows sensitivity to damage and is, therefore, useful for SHM. The key question

of interest here is whether nonstationarity tests might be more suited for tracking
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this kind of imperfect residual, or whether it is more suitable to consider a range of

control charts.

Figure 7.10: Cointegration residual for laboratory truss bridge data.
The yellow dashed line distinguish the normal state from that of the
first damage, the magenta one the first from the second damaged state,
the red the second from the sever third one and finally the blue dashed
line distinguish the third damage from the restored state.

To begin with, in Figure 7.11 the X-bar chart of truss bridge cointegration residual

is illustrated. For this chart, the mean is considered for every 20 data observations.

The latter represents every temperature step, which includes 20 recordings of natural

frequency. The zoomed-in version of the Figure is also provided in Figure 7.12. From

both figures, it can be observed that the damage is successfully detected for all cases.

Next, the S-bar is employed in order to track down the variance of the signal over

time. This is illustrated in Figure 7.13. Here, the variance is considered for every 20

observations. An interesting observation is that for the first two damage cases, the

variance did not change much in contrast to the third damaged case, where variance

changes significantly. In addition, the variance seems to be relatively stable during

the restored state, where observations are close to the normal state.

In other words, from the analysis performed on the cointegration residual of the

laboratory truss bridge experiment employing X-bar and S-bar charts, it was ob-

served that X-bar chart is more sensitive to detect the damage than the S-bar chart.

Therefore, it can be said that the removal of bolts affected the mean value of the

residual more than its variance. In the next section the use of Augmented Dickey-
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Figure 7.11: X-bar chart considering the mean for every 20 observations.

Figure 7.12: Zoomed in version of X-bar chart considering the mean for
every 20 observations.

Fuller (ADF) statistic as a novelty measure is demonstrated and discussed in both

the synthetic mass-spring system data and the natural frequencies of the laboratory

test.
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Figure 7.13: S-bar chart considering the mean for every 20 observations,
40 subgroups.

7.3.3 Non-stationarity Testing

Besides control charts, nonstationarity proxies can be used to identify the presence

of nonstationarity in the cointegration residual. In the field of Econometrics the

most commonly employed nonstationarity test is the ADF unit root test, which was

described in detail in Chapters 5 and 6. Some other alternatives for the ADF are

Phillips-Perron (PP) [96] and the Kwiatkowski et al. (KPSS) [97] tests. In general

sense, the results provided from all three aforementioned tests are quite similar in

terms of nonstationarity indication. From these, only the ADF have been used in

the past inside SHM literature for monitoring the cointegration residual. In particu-

lar, the use of ADF t-statistic for monitoring the cointegration residual and damage

severity assessment was proposed in [78, 128]. More specifically, cointegration was

used for EOVs impact elimination on the data provided by a lamb-wave test per-

formed in an rectangular (200mm × 150mm) aluminium plate of 2mm thickness,

where a small hole was introduced to simulate damage. The ADF t-statistic was used

to assess both the pre-cointegrated and cointegrated data, showing that the initial

nonstationarity of the signals is eliminated using cointegration and nonstationarity

introduced when the plate is damaged.

The ADF t-statistic method for cointegration residual monitoring is demonstrated

here, on the mass-spring generated natural frequencies and natural frequencies of

laboratory truss bridge. To do so, a sequence of moving windows is chosen with
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a window width of 200 observations each. For each window the ADF t-statistic is

calculated and plotted. The thresholds, upper and lower, are calculated at µ±2.58σ,

from the normal state data (first 2850 observations). The results of this analysis are

depicted in Figure 7.14.

Figure 7.14: ADF t-statistic for the mass-spring system residual.

In particular, Figure 7.14 shows how the ADF t-statistic changes over the undam-

aged and damaged windows, for a reduction of K4 spring’s stiffness of 10%. In-

side the first 51 windows the ADF t-statistic stays inside the calculated thresholds.

However, when the damage is introduced, the t-statistic increases. This is because

nonstationarity introduced to the signals and consequentially to the cointegration

residual. From this example, one can say that the ADF provides similar results to

those provided by X-bar and S-bar charts in the previous section. However, there

are some issues related to ADF t-statistic that should be discussed.

More specifically, to illustrate and discuss them, the cointegration residual provided

from the laboratory truss bridge experiment should be used. The ADF t-statistic

employed for windows including 20 observations each of the cointegration residual

and the results are depicted in Figure 7.15. From this plot it can be observed that

t-statistic provides inference about the different states of damage in the system,

however one can understand that t-statistic is a weak measure of damage. In par-

ticular, from the use of ADF t-statistic as a novelty measure, by testing different

damage cases and different windows’ widths, the observations and discussion are

provided below:
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Figure 7.15: ADF t-statistic for the cointegration residual of the lab-
oratory truss bridge natural frequencies. The points in blue describe
the normal and restored condition,in green the first damaged state, in
magenta the second one and in red the most severe third one.

More specifically, three main points/drawbacks that have been observed employing

ADF t-statistic as novelty measure are:

• In cases of rate effects, such as temperature variation in small-case structures,

as in the laboratory experiment, high variability can be observed on t-statistic.

In particular, the use of t-statistic for a sequence of moving windows with small

width, showed that high variability can be observed both during undamaged

and damaged condition, leading to outliers inside the normal state.

• The results of ADF t-statistic shows that there is nothing specific happening in

the damage case 1 (green), while also a little information in terms of damage

severity can be extracted for the observations of the second damaged state

(magenta).

• In the damage case 3 (red), which is the most severe damage case of all,

outliers are observed, but the amount with which t-statistic increased in not

very informative. As a matter of fact, from further testing using different

damage amounts, it was found that ADF t-statistic is not increasing linearly

with the cointegration residual estimation, especially for positive t-statistic

values.
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• Finally, its is important to mention that the damage sensitivity of the ADF

t-statistic depends a lot on the procedure of lag-length specification, which

depends on the number of observations used for each window. The latter

effects can be very problematic and sometimes highly time-consuming to deal

with.

All the above points, show a specific drawback that ADF t-statistic has as a novelty

measure. This is the fact that the value of t-statistic represents the mean value

between the components of a signal. Assuming the simplest decomposition, a signal

can have a high-frequency and a low-frequency component. The former is associated

with the noisy component of the signal and the latter with the more nonstationary

part. Therefore, in the presence of low levels of damage, the nonstationarity will

be introduced in the signal, however its effect will not be captured in full by ADF

t-statistic because the high-frequency part is still inside the cointegration signal and

probably dominates its variation. In other words, ADF t-statistic is damage sensitive

measure, but seems to be a weak one. This observation fits with interpretation

provided in Chapter 5 for the ADF t-statistic.

7.4 Conclusions

In this Chapter, different ways used in the past in SHM literature to monitor damage

sensitive features are demonstrated for cointegration residual and discussed. Firstly,

the residual is assessed to identify the possible outliers overcoming statistically deter-

mined thresholds (control chart). From this analysis it was shown that the number

of outliers increases linearly with the effect of damage introduced. Then, the coin-

tegration residual was averaged, over a sequence of moving windows, employing the

X-bar statistical process control (SPC), using daily data, which showed that the

mean changes significantly in the presence of novelty/damage. Next, the variance

of the cointegration signal was tracked over a sequence of moving windows, which

also observed to be damage sensitive. Finally, the use of non-stationarity tests, such

as that of ADF t-statistic is demonstrated and discussed. Although the t-statistic

showed that it can be used in some cases in order to monitor the cointegration

residual, its sensitivity is in question. This is because ADF t-statistic represents the

mean of the high and low-frequency components of the signal and therefore if the

effect of non-stationarity is not significant enough to dominate the signal, the ADF
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t-statistic is affected significantly by the noisy part exhibiting low damage sensitivity

capabilities.

All in all, from the aforementioned analysis it is clear that the use of SPC charts

requires stationarity of the signal under consideration. This can be achieved using

the Johansen cointegration, projecting out the confounding impacts of EOVs. The

SPC charts has the capability to identify the existence of non-stationarity on the

cointegration signal and successfully monitor residual’s progression over time. This

non-stationarity is the consequence of novelty existence i.e. damage or the effect of

rapid varying temperature effects (small-scale structures/experiments).



Chapter 8

A Principled Multiresolution

Approach for Signal

Decomposition

8.1 Introduction

In Chapter 6, a simple interpretation of the ADF statistic is proposed based on

dimensional analysis. A byproduct of the analysis was to show that there existed a

critical frequency fc for given sample parameters, such that any signal components

containing only frequencies below fc would be judged nonstationary by the ADF

test. This result is used here to motivate the definition of a simple, but principled,

decomposition method for signals, which can resolve them into their stationary

and nonstationary components. This decomposition is based on the multiresolution

analysis, which facilitates the orthogonal wavelet analysis.

The layout of this chapter is as follows; firstly, a brief description of the analysis

methods including the MRA, the ADF test and autocorrelation functions is given.

The second and third sections provide an illustration of the method on the Z24

bridge data. Finally, the conclusions are presented.

132



8.2. A SIGNAL DECOMPOSITION BASED ON WAVELET ANALYSIS AND
THE ADF TEST 133

8.2 A Signal Decomposition based on Wavelet Anal-

ysis and the ADF Test

Based on the analysis presented in [129], it can be assumed that one can decom-

pose a signal into its stationary and nonstationary components by separating out

the components with frequency content above and below a critical frequency fc,

established using the ADF test criterion. However, in the previous analysis the ex-

istence of the critical frequency was only demonstrated for the case of a harmonic

signal corrupted by noise; in the general case, the critical frequency would require a

more complicated analysis. It will be shown in this section that the decomposition

idea can be implemented in the context of wavelet analysis, without an a priori

calculation of fc. This will prove important in the context of SHM.

The issue in SHM, is that there will generally be nonstationary (periodic) compo-

nents in time series at more than one frequency. If one considers the example the

Z24 Bridge, Figure 8.1 shows the fluctuations in natural frequency associated with

seasonal variations in temperature over a period of one year. However, other envi-

ronmental and operational variations (EOVs) generate nonstationarity at other time

scales e.g. day-night variations in temperature and traffic loading will create nonsta-

tionarity with a daily period; patterns of traffic loading will induce weekly variations

as a result of the different loads during the working week. SHM signals will thus

require the more general decomposition method alluded to earlier. As mentioned in

the introduction, it is necessary to remove all the confounding influences caused by

benign EOVs, so that any potential signatures of damage can be detected.

Previous work on confounding influences and cointegration has exploited multireso-

lution analysis (MRA) and wavelet analysis [130], as a means of decomposing time

series into frequency bands so that the EOVs at different timescales were exposed

[105]. In particular, a scale-by-scale analysis performed in [105] considered the ef-

fects of using cointegration at different time scales. It was shown that the most

nonstationary time scales, associated with lower-frequency signal components, man-

ifested greater damage sensitivity than the higher-frequency ones, due to the fact

that the onset of damage leads to a stronger reassertion of nonstationarity than

in the original signal and correspondingly to a greater effect on the cointegration

residual.



8.2. A SIGNAL DECOMPOSITION BASED ON WAVELET ANALYSIS AND
THE ADF TEST 134

Figure 8.1: Second natural frequency of Z24 Bridge over a single year of
monitoring.

The level decomposition used in [105], will be used here to motivate the required

decomposition into stationary and nonstationary components. In fact, by making

use of autocorrelation functions, it will prove quite simple to decompose signals –

in a principled manner – into four main components: (i) a mean, (ii) a stationary

part, (iii) a non-stationary part and (iv) a noise component. In essence, the main

idea will be to obtain the MRA signal levels and then assess them using the ADF

test to identify those that can be judged as nonstationary and those as stationary.

In this way, a critical level can be found and used to decompose the original signal

into a nonstationary and stationary part. This critical level (denoted L∗) is based on

the ADF statistic associated with the 99% confidence interval, which corresponds

to a critical t-statistic of −2.56. The second step in the method proposed is use

autocorrelation functions (ACFs) in order to test the MRA levels and identify those

that are delta-correlated, and can therefore be considered to be noise. In order to

explain the decomposition, it will be necessary to summarise a little wavelet analysis.

8.2.1 The Orthogonal Wavelet Transform and MRA

As is now well known, the wavelet transform is a linear transform of the function

x(t),

xmk =

∫ ∞
−∞

x(t)ψm,k(t)dt (8.1)
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into a translation (k) and scale (m) domain [130]. Unlike the Fourier transform,

the expansion basis is in terms of functions localised in time, and this allows the

wavelet transform to represent nonstationary signals, among its other benefits. If

the set of scale and translation parameters are reduced to a discrete set, one obtains

the d iscrete wavelet transform. A common choice for the discrete parameters is

the dyadic framework in which, aj = 2j and bj,k = k/2j. In this framework, the

expansion basis functions are defined by,

ψm,k(t) = 2m/2ψ(2mt− k), (m, k ∈ Z) (8.2)

where φ is termed a mother wavelet. The mother wavelet must satisfy certain prop-

erties e.g. it must be localised in the variable t, and this can be ensured by using

functions ψ with compact support for example. The conditions on the mother

wavelet allow many families of wavelet functions, but the most important families

are those which have additional orthogonality properties,

< ψm,k, ψn,l >= δmnδkl (8.3)

where <,> is the standard inner product,

< h, g >=

∫ ∞
−∞

h∗(t)g(t)dt (8.4)

where the ∗ denotes complex conjugation. The term δmn represents the Kronecker

Delta function, which is equal to unity when m = n, while zero for m 6= n.

With the extra condition on the wavelet functions, the transform in equation (8.1)

becomes the orthogonal wavelet transform (OWT). The great advantage of the OWT

is that it allows the definition of extremely efficient algorithms for computation, for

example Mallat’s pyramidal algorithm, which can calculate the expansion coefficients

in O(N) time, where N is the number of sample points in the time series of interest.

There are various families of orthogonal wavelets that can be used; however, by far

the most commonly used are the Daubechies families [130]. There do not exist closed

forms for the Daubechies mother wavelets; instead, they are computed in terms of

scaling functions φ defined by recursion relations [131],
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φ(t) =
√

2
2r−1∑
k=0

ckφ(2t− k) (8.5)

where different sets of coefficients ck yield different families. The order of the family

is controlled by the integer r; mother wavelets of higher order are smoother than

those of lower order (i.e. more differentiable), but the low-order families have more

compact support. The lowest-order mother wavelet in the Daubechies family is the

Haar wavelet which essentially yields a square-wave expansion basis.

Once the wavelet coefficients have been computed, one can construct a decomposi-

tion in terms of wavelet levels,

xm(t) =
∑
k

xmk ψm,k(t) (8.6)

where the sum is over all translation parameters at a common scale (which is roughly

1/frequency), and thus provides a decomposition in terms of frequency band-limited

time series. The different levels potentially capture different low-frequency compo-

nents corresponding to EOVs, so the level decomposition is used here as the basis

of a new decomposition into stationary and nonstationary parts.

The idea behind the decomposition is quite simple. Having established the level

decomposition, one simply applies the ADF test at each level in order to establish

if a given level time series is stationary or not. It is clear that one level will capture

the critical frequency fc, so that level – denoted by the index L∗ – has a frequency

band covering the transition from stationary to nonstationary. Summing the levels

up to, and including level L∗ will determine the nonstationary component of the

original signal (as dictated by the ADF test) and the sum over the remaining levels

will yield the stationary component. By applying the ADF test level-wise, one does

not need to pre-determine the critical frequency fc.

As before, for the assessments in this paper, the 99% confidence interval on the ADF

test is used, which corresponds to a t-critical value of −2.56.

The decomposition proposed here can be made a little more informative, with a little

more effort. First of all, the mean of the signal can be extracted before the wavelet

decomposition; secondly, one can make a further separation within the stationary

component in order to identify a ‘noise’ component.
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8.2.2 Autocorrelation Functions (ACFs)

According to [132], for a stochastic process Xt for a finite sample, with mean µ and

sample variance σx
2, which are both time-independent, the autocorrelation function

(ACF) φxx, can be defined which determines the degree of dependence between any

two samples in the process (signal). For stationary signals, the ACF depends only

on the time interval τ between the pair of values considered and not their individual

positions in time,

φxx(τ) =
E [(Xt − µ) (Xt+τ − µ)]

σ2
x

(8.7)

where E again denotes the expectation operator.

Now, if one defines ‘noise’ as a component within the signal with no temporal corre-

lations (i.e. one cannot predict any future values from past values), one can test for

this property using the ACF. A signal will be termed noise, if it is delta-correlated

i.e.

φxx(k) = δk0 (8.8)

with the index k now representing the sample index in terms of discrete time. With

the normalisation given in equation (8.7), one can compute confidence intervals for

a zero result; the intervals corresponding to 99% confidence are ±2.54/
√
N .

In order to establish the noise component in the signal, one computes the ACF for

any levels in the stationary component (stationarity is required in the definition of

the ACF) and moves into the noise component any levels which are delta-correlated.

This completes the description of how the new decomposition is defined. To sum-

marise, the steps are as follows:

1. Remove the mean from the signal {xi : i = 1, . . . , N}. The mean µ is the first

component.

2. Compute the wavelet transform, and determine the wavelet levels. (Note that

this may require truncation or zero-padding in order to have 2M points for the

OWT, if N does not satisfy this condition already.)

3. Apply the ADF test level by level and determine L∗.
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4. Resum the levels corresponding to the stationary and nonstationary parts.

5. If desired, one can calculate the ACFs for the stationary levels and separate

out the noise component.

The procedure will now be illustrated on the second natural frequency and the air

temperature of Z24 Bridge.

8.3 Second Natural Frequency of Z24 Bridge

As the motivation for this work came from the SHM context in the first place, the

case study will be taken from data acquired in a major SHM campaign based on the

monitoring of the Z24 Bridge. The second natural frequency from the bridge has

already been encountered in Figure 8.1. The Z24 Bridge (overpass) was constructed

in Switzerland in the beginning of the 1960s in order to link Koppigen and Utzenstorf

by passing over the main national Highway A1 (Lausanne-Zurich). The bridge was

superceded by a new construction in the late 1990s, and authorisation was given

for an SHM campaign before its demolition in the autumn of 1998. The exercise,

which included the introduction of realistic but controlled damage, is described

in [4]. Various sensor signals were acquired, these included measurements of the

ambient environmental variables like air and deck temperatures, humidity etc. The

main features for SHM were modal quantities extracted automatically by stochastic

subspace identification (SSI) at regular intervals [46]. The signal examined here will

be the second natural frequency series.

From a first look at the signal (Figure 8.1) one can discern two major components.

There is a high-frequency component, which is essentially the uncertainty associated

with the SSI estimates; one would expect this component to be stationary. There is

also a clear low-frequency trend in the time series that reflects the EOVs experienced

by the bridge over the year. The most dramatic features in the signal are the peaks,

which are associated with stiffening of the bridge asphalt layer during sub-zero

temperature conditions in the winter months [46].

Moving now to the decomposition, Figure 8.2 shows the levels from the wavelet/MRA

analysis. The Daubechies 4th order wavelet was used as a compromise between

smoothness and support. In total, 12 levels were extracted. Note that levels zero

and one both seem to be copies of the mother wavelet; in fact the sum of the two
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levels carries the mean of the original signal, according to the implementation of the

algorithm, which was taken from the book N umerical Recipes [133]. Furthermore,

the algorithm is applied in such a way that the levels are numbered to increase with

increasing frequencies. It is immediately obvious from the figure, that the trend

behaviour – from the EOVs – is captured in the lower levels.

Figure 8.2: Wavelet decomposition/MRA levels for the Z24 second nat-
ural frequency.

The ADF test was then applied to each level in turn, and the statistic values obtained

are summarised in Table 8.1. At the 99% confidence level applied here, the critical

t-statistic is -2.56; this means that the critical level here is L∗ = 5, and the sum of

levels 0 to 4 is determined as the nonstationary component of the signal.

In addition, the discrete Fast Fourier (DFFT) can be used on the obtained MRA

levels [134]. These are depicted in Figure 8.3 and show that in lower-frequency

levels there is only one dominant frequency, significant low one, which dominates
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the signal. As the number of levels increases, the energy is distributed in more than

one frequencies inside DFFT spectra, something which provides evidence for the

presence of stationarity in the signal.

Table 8.1: T-statistics corresponding to different wavelet/MRA levels.

Level tADF
0 -0.025
1 0.705
2 -0.1929
3 -1.103
4 -1.501
5 -2.724
6 -5.021
7 -9.030
8 -15.177
9 -25.852
10 -42.085
11 -87.96
12 -93.58

Figure 8.3: DFFT response spectra for the MRA levels.

The final stage of the decomposition is to compute the ACFs for the stationary levels,

so that one can separate out the delta-correlated levels as a noise component. The

ACFs are given in Figure 8.4 (the ACFs for the nonstationary levels are also shown

here for comparison); the red dashed lines in the figures are the 99% confidence

levels. In this case, levels 10-12 are considered sufficiently delta-correlated and are

separated out as a noise component.
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The final decomposition is shown in Figure 8.5. There is a clear separation into the

nonstationary and stationary components.

Figure 8.4: Autocorrelation functions corresponding to each
wavelet/MRA level. The red dashed lines indicate the 99% confidence
interval.

The further separation into a stationary and a noise component also appears mean-

ingful, with the noise component resembling more the Gaussian white noise sequence

one might associate with noise; however, one should recognise that the component is

the result of essentially high-pass filtering the original signal, and therefore cannot

be truly white.
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Figure 8.5: Decomposition of the Z24 second natural frequency: (a)
original signal; (b) nonstationary component; (c) stationary component;
(d) noise. The mean of the original signal is indicated as a blue dashed
line in (a).

8.4 Z24 Air Temperature

In the same way as done previously for the second natural frequency, the air tem-

perature of Z24 is analysed. The series of air temperature is illustrated in Figure

8.6, showing that in the first 1500 observations some cyclic repetition is present,

which stops during winter months and especially inside February (1500 − 2000),

where many observations found to be under 0oC. After the winter period and more

specifically after 2048 observations, the air temperature signal exhibits an increasing

trend until reaching its maximum of 33.4 0oC. From the latter observations it is

expected that a trend and an cyclic part are present in the signal and characterise

the variation of temperature. To further investigate the temperature signal, the

MRA is employed.

The MRA is based once again on a DB4 wavelet and the results can be observed in

Figure 8.7. In total 12 MRA levels are obtained from the MRA, with lower levels to

represent the most nonstationary components and the high-frequency ones the most

stationary. In order to distinguish the nonstationary from the stationary levels, the

ADF test employed and the MRA levels are assessed. The results of ADF test are

shown in table 8.2. From these concluded that the critical MRA level (L∗) after

which the levels are considered stationary is level 4. Once again the 99% confidence
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interval employed, which corresponds to a t-critical value of −2.56.

Figure 8.6: Z24 air temperature variation.

Figure 8.7: MRA decomposition of Z24 air temperature series.
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Table 8.2: T-statistics corresponding to different MRA levels for Z24 air
temperature.

Level tADF
0 -0.026
1 0.705
2 -0.044
3 -0.713
4 -1.441
5 -3.312
6 -4.559
7 -9.197
8 -14.685
9 -25.314
10 -38.741
11 -80.559
12 -95.317

Figure 8.8: DFFT analysis results for the obtained MRA levels.

In addition to ADF test, the DFFT analysis also performed, as shown in Figure

8.8. The latter shows that as the number of MRA levels increase, the energy of the

signal is distributed to more frequencies, something informing for the presence of

stationarity.
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Finally, to identify the noisy part of the signal, the ACF analysis is performed. This

is shown in Figure 8.9. According to ACF analysis, the last two MRA levels (level

eleven and twelve) can be considered as delta-correlated and can be used in order

to form the noisy part of the signal. Also here, one can argue that the noisy signal

is not exactly a white noise one.

Based on the aforementioned, the original signal of Z24’s air temperature can be

decomposed into four parts; a nonstationary, an stationary, a noisy and an mean

part. All the aforementioned parts are illustrated in Figure 8.10, where blue dashed

lines used to indicate the mean value of each part.

Figure 8.9: ACF analysis on the MRA levels of Z24 air temperature
signal.
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Figure 8.10: Decomposition of temperature signal: (a) original signal;
(b) nonstationary component; (c) stationary component; (d) noise. The
mean of the signal is indicated as a blue dashed line.

8.5 Conclusions

In this Chapter, a new decomposition method is presented, able to separate station-

ary and nonstationary components of signals. The basic idea is that a wavelet/MRA

is used to separate the time series of interest into a set of frequency band-limited

wavelet levels. The levels are then individually tested for stationary by using the

ADF statistic; the stationary levels are re-summed to give the stationary component

of the original series and likewise the nonstationary levels. It is shown that one can

also separate a ‘noise’ component from the stationary component by using autocor-

relation functions (ACF). The ‘noise’ component is not a Gaussian white noise, but

is distinguished by the fact that it is delta correlated, so that future values of the

component are independent of past values. The decomposition method is demon-

strated successfully on signals from a SHM campaign on a real structure – the Z24

bridge.

Despite the SHM context selected here, the results of this Chapter are quite general

and should be of interest, not only to engineers, but also to econometricians, or

anyone seriously concerned with time series analysis where stationarity is an issue.



Chapter 9

Summary and Conclusions

9.1 Importance of SHM for Civil Infrastructure

(Bridges)

Structural Health Monitoring (SHM) can provide numerous measures that can be

used to develop diagnostic tools in order to capture and evaluate the response of a

structural system over its normal condition, as well as under the consequences of

unpredicted and undesired events. The main history of SHM originates from the

field of aerospace and automobiles, however in the last decades its use extended in

civil infrastructure works and especially on large-scale works, such as dams, bridges,

off-shore structures, tall-buildings, ports and others.

The main motive behind the use of SHM in greater extent today, comes from the

need of society to invest in infrastructure, develop economically and efficiently man-

age its current assets. As all the previous are subjected to budget considerations,

each society needs to develop the mechanisms and tools in order to perform educated

decision making and prioritisation of investment. The latter can come as a conse-

quence of the efficient management and evaluation of the existent infrastructure.

Inside the aforementioned framework, the role of bridges is of significance impor-

tance, due to the fact that bridges are a vital part of civil infrastructure, as they

are the main link between roads, gap spans over water and connect cities/countries

between each other. The role of bridges is very important for the economic growth

of a society, as bridges and roads are the main mean of trading, goods’ delivery and

147
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people’s transportation.

Although in the past two decades there has been an increasing trend to investigate

the use of SHM within the context of bridge engineering, the cases that have been

applied in practice are not many. One of the main reasons behind this is the fact that

authorities, companies and owners, which are responsible for bridges, are obliged to

find ways to efficiently manage a significant/large bridge stock and due to continu-

ous shrinkage of governmental budgets, more cost-effective and less time-consuming

solutions are selected, such as visual inspection, sufficiency rating and assessment

in terms of current standards of practice [135].

In fact, all of the previously mentioned cost-cutting decisions aim to prioritise bud-

gets and provide a general solution for the majority of bridges. However, these short-

ages can have a significant long-term impact and cannot always assure the longevity

of a structure. For example, the periodic monitoring cannot provide concrete results

and conclusions on the effect that environmental and operational impacts have on

the structure over time. In addition, the practice of specific standards for assess-

ment, i.e. BD21/01 of DMRB [135], based on development and the evaluation of

FE models cannot always provide assurance that the best decision is made for the

structure. This becomes even worse in the case that assessments are not based on

in-situ observations and experimental testing, i.e. NDT and DT. Furthermore, it is

very common in industrial world to avoid the dynamic evaluation of structures and

focus on the analysis of structural mechanics and static magnitudes (axial, shear

loads and moments).

In the last decade SHM started evolving and its role is expected to be vital in

the near future. Many societies are promoting the so-called Digital Agenda, which

mainly focuses on the exploitation of bridge big data analysis, which in other words

is the SHM data. The main reason of this promotion is the necessity of society

to understand in detail the behaviour of structures on real-time scale (not small-

scale experiments), evaluate it continuously and perform a more educated decision

making, since factors such as cost and structural significance are of great importance

for major structures. This is also the direction that the current thesis has taken.

Here it is important to say that although this thesis is mainly focused on bridges,

the methodologies discussed and demonstrated could be applied to many different

types of SHM data, provided by continuous monitoring activities.
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9.2 Summary based on Layout

The layout of the thesis consists of eight main Chapters. The first Chapter discusses

the role of SHM in today’s society, its origins, fields of application, multi-disciplinary

nature and generalised objectives. In addition, it talks about the subsystems com-

prising a typical SHM system, the available sensor technologies and categories of

bridge SHM, while a review of the conventional practice (visual inspection and con-

dition evaluation) and bridge management systems is made, underlining some basic

issues faced by todays developed societies. Moreover, an introduction to damage

detection is attempted, emphasising the measures provided by SHM, techniques for

DSFs extraction, with the main focus placed on data-based approaches and unsu-

pervised SPR.

In the second Chapter, the main interest of the thesis is placed on novelty detection,

focusing on the role of EOVs on the variability of SHM signals, discussing method-

ologies that have been used inside SHM literature in the past to project out their

effect, such as cointegration and PCA. In addition, in the second Chapter the scope

and aims of the thesis are discussed.

In the third Chapter, the experimental setup and vibration analysis performed on a

laboratory truss bridge model manufactured and tested inside a Sheffield University

laboratory are described. The natural frequencies of the truss model are measured

between −10 to 25oC, while three damage cases are simulated by the removal of

connecting bolts in two different location of the bridge. The obtained results are

analysed in order to evaluate the impact of temperature both in short and longer-

term. From this analysis it was observed that the effect of temperature is very

significant on natural frequencies, even for relatively small temperature changes

between 0.1 to 0.5oC.

In Chapter 4 the SHM data provided by two real-time SHM campaigns, Tamar

Bridge and Z24 overpass, where analysed employing regression modelling, aiming

to evaluate the effect of EOVs on them. The impact of temperature in both cases,

Tamar Bridge cable tensions and natural frequencies of Z24 was pointed, as the

main reason why the series are sharing common trends over time and are correlated

between them.

Next, Chapter 5 introduces the concept of Johansen’s approach to cointegration,
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discusses each step of the procedure, concentrates on the way in which the common

trends are manipulated inside cointegration and finally demonstrates its use on the

data of three bridge cases; the cable tensions of Tamar Bridge, Z24 and laboratory

truss bridge natural frequencies. The main aim of these is to study the impact

that EOVs and damage introduce on real-time and experimental data, focusing on

the interrelationships between SHM series. More specifically, from the cable data

from the Tamar Bridge, the dominant effect of temperature on cable tension signals

is discussed and its effect on series’ nonstationarity. The Johansen‘s approach to

cointegration employed using multiple cable tension series providing a stationary

residual. It is important to add that it was shown that signals sharing inverse pro-

portional trends can be used together inside cointegration and a provide a stationary

residual, capable also for novelty detection. Then, in the case of Z24, the effect of

temperature on the relationships between natural frequencies is studied, as well as

the effect that damage have on these. The effect of temperature led to the intro-

duction of a specific pattern on the data, showing an increase of natural frequencies

as temperature decreases.

On the other hand, the introduction of damage led to the generation of a data

cluster in greater distance from the main data population. Z24 natural frequencies

provided a useful example where large artefacts observed on the natural frequency

variation, over a year of monitoring, can affect the novelty detection capability of the

cointegration residual. In particular, it was observed that the inclusion of all large

artefacts during the training of cointegration can lead to incapability detecting dam-

age in the residual signal. Therefore, it is important to select the most appropriate

training set, that can both provide a stationary residual and is still sufficiently dam-

age sensitive. However, from further investigation on non-linear cointegration [82],

the damage detection sensitivity of cointegration residual can be further increased.

Finally, from the laboratory data, the effect of temperature on small-scale structures

is discussed. In particular, temperature is observed to introduce short-term nonsta-

tionarity in the signals, affecting the relationships between natural frequencies and

consequently the cointegration residual. However, cointegration was able to detect

damage in all damage cases simulated.

The sixth Chapter speculates on the nature of stationarity and how this can be

quantified using nonstationarity measures, such as the ADF test. As a matter of

fact, it is difficult to judge a finite sample, such as an SHM signal, as a judgement

on stationary or nonstationarity only based on the mathematical definition of weak
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stationarity. Therefore, more complex measures, such as ADF test can be used for

this purpose. However, in order to use ADF a main hypothesis is made. It is as-

sumed that a good way to judge if a series is stationary or not is to count the number

of dominant periods of the signal. This Chapter proposed that the ADF is a func-

tion of this number, This idea was investigated through three groups of simulations,

which are based on dimension analysis and basic concepts of signal processing. It

was found that the main factors on which the ADF t-statistic depends on are the

number of observation multiplied by time interval over the dominant signal’s period

(N∆t/T ), which basically counts the number of signals dominant periods, the nor-

malised frequency (fn), which describes the ratio between the dominant frequency

(f) and the sampling one (fs) and finally, the signal to noise ratio (σ2
y/σ

2
ε ; SNR).

Another important conclusion made was that given the sampling frequency (fs) of

any signal and setting the significance level (critical t-statistic), a critical frequency

(Fc) in Hz can be found, which depends on the normalised critical frequency (fc),

which can be used to judge if a signal is stationary or not. For this analysis the

significance level set at 99% confidence intervals.

Next, the seventh Chapter discussed the ways that have been used in the past inside

SHM literature, in order to monitor the cointegration residual. The use of different

SPC charts and nonstationary testing are demonstrated and compared using natural

frequency data generated by a simple mass-spring system. Two main conclusions

were drawn from this analysis; (i) stationarity is needed in order to monitor effi-

ciently the cointegration residual using SPC charts and (ii) nonstationaity testing,

i.e. ADF, can be used for damage detection, but it is a weak measure of novelty,

because the ADF provides the mean between the stationary and nonstationary part

of the signal and in cases that the noise amount is relative high, its novelty detection

capabilities are low.

Furthermore, Chapter eight discussed and demonstrated the use of the discrete

orthogonal wavelet transform (multiresolution analysis; MRA), ADF and ACFs for

the decomposition of SHM signals. In particular, a way to perform MRA in a more

principal manner is described, as the signal under consideration can be analysed

into multiple frequency components and using ADF, these can be distinguished as

nonstationary and stationary. In addition, ACFs can be used to find those stationary

MRA levels that can be considered as delta-correlated and used to form the noisy

part of the signal. In this way, the original signal can now be decomposed into a

mean, a nonstationary, a stationary and a noisy part. This type of analysis can
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be useful not only inside SHM but also for those interested in time-series analysis.

The low-frequency levels can be associated with nonstationarity, while the high-

frequency ones can be associated with stationarity. In case of damage, it is expected

an introduction of nonstationarity in the SHM signals, which shows that the low-

frequency components are more damage sensitive that the higher ones.

9.3 Novelty of Thesis

The main aim of the author was to try and present novel results in each chapter

of the thesis. Besides the first two mainly theoretical chapters of the thesis, some

novel ideas discussed and important results for future research generated. To begin

with, in the third chapter a completely new data set generated by the experimental

laboratory truss bridge test. These results are used inside the thesis as well as can

be shared for future work on them. Going now on the fourth chapter, it was the

first time that the cable tension measures of Tamar Bridge was analysed providing

interesting results and explanation on the effect that EOVs impose on them. This

particular part of the fourth chapter is planned to be published as an interesting

show case.

Chapter 5, besides talking about the Johansen’s approach to cointegration, showed

and discussed the results of its application in three different real-time bridge SHM

data. This was very useful to understand what are the current limitations of the

cointegration analysis. Furthermore, during the Z24 natural frequencies analysis, a

brief description is given about the current development on nonlinear cointegration

and which is main problems that the linear cointegration is facing at the moment.

Going to chapter 6, a completely new interpretation about the ADF test is provided.

This is one of the most commonly employed nonstationarity tests and based on di-

mension analysis and basic signal processing properties, it was shown that the ADF

is mainly counting the number of cycles of the fundamental periodic component

of the signal. The latter was shown through a series of simulations using a sim-

ple sinewave funtion. However, the most important point of this analysis was that

assuming that one knows the sampling frequency of a signal, it is possible to deter-

mine a critical frequency in Hz after which the signal from nonstationary becomes

stationary. This is important not only inside SHM activities, but also to anyone

interested in signal processing, time series analysis, because provides an interesting
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perspective on how to judge if a signal is stationary or not.

The seventh chapter, through two examples, mass spring system and laboratory

truss bridge test, gave a review of the most useful ways to track novelty on the

cointegration residual. From this it was shown that the fundamental moments of

stationarity, such as the mean and variance can be tracked down to provide informa-

tive inference about the existence of nonstationarity and consequently abnormality.

It is also important here to say that the ADF was tested as a measure of novelty

and damage detection. ADF test has been used in the past as an detector for SHM.

However, after the analysis and explanation provided it was shown that it can be

characterised as a weak one, because the t-statistic provides the average between the

stationary and nonstationary component of the signal, and performs better when

novelty dominates the signal.

Finally, chapter 8 provided a principled way to perform multiresolution analysis, in

order to decompose a given signal into each mean, stationary, nonstationary and

noisy components. In particular, the ADF test was able to identify a critical level

L* after which the signal becomes stationary, whilst the use of autocorrelation func-

tions was able to provide the noisy part inside the signal. This type of decomposition

is important inside SHM because different parts of the signals can be used inside

regression with available EOVs or inside cointegration to enhance the damage de-

tection capability of Johansen’s approach to cointegration. In addition, this concept

can be used inside other scientific fields such as time series analysis, signal processing

and from anyone with interest in signal decomposition.

9.4 Limitations of Cointegration and Suggestions

for Further Research

Although the ADF and MRA methods can be used as standard-alone procedures,

the main method and direction followed in this thesis is to investigate and, if it

is possible, to improve Johansen cointegration. As it has already been mentioned

throughout the thesis, the two main advantages of cointegration inside the context

of SHM are its capability to quantify and project out the impact of EOVs and the

fact that it provides a feature (cointegration residual) which is damage sensitive and

stationary, thus it can be used in combination with SPC charts for novelty detection.
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Based on the two above advantages, one can investigate further the ways in which

the method can be improved in the part of quantification and elimination of EOVs

impact and secondly at the part of monitoring the cointegration residual. The cur-

rent thesis investigates more the first main issue, making an attempt to understand

and simply interpret one of the most commonly employed nonstationarity mea-

sures, that of ADF t-statistic. This is incorporated inside the Johansen’s approach

to cointegration. Secondly, the thesis tries to discuss the fact that the impact of

EOVs occurs on a widely disparate time-scales and therefore its elimination is not

a straight-forward procedure. For the latter, is proposed a more principled way

to perform MRA in order to decompose a given signal, aiming to obtain those de-

composition levels that are more damage sensitive and can be used inside Johansen

cointegration. It should be mentioned that there is a great amount of work done

on the aforementioned issue, employing methods, such as MRA [105], PCA [63] and

non-linear cointegration [2, 82].

On the other hand, there is the part of monitoring the cointegration residual. Chap-

ter 6 focused on this issue, presenting some of the basic methods which can be

employed. In particular, from the analysis it was concluded that SPC charts such

as X-bar and S-bar seems to be the best way to perform cointegration residual

monitoring, at least for now. The analysis performed here on both synthetic data

generated using a simple mass-spring system, as well as the natural frequencies of

laboratory truss bridge. In addition, the last part of Chapter 6 explored the use of

ADF t-statistic for residual monitoring. Based on the discussion of Chapter 5 about

the interpretation of ADF t-statistic and the results of Chapter 6, it was concluded

that ADF can be used for damage detection purposes when a high amount of non-

stationarity is introduced in a signal, however, theoretically and pragmatically it

is a weak measure of novelty, because it depends on the relative sizes between the

periodic and noisy components of a signal, providing the mean value of these two.

In other words, if the stationary part of a signal which is assessed for damage, has

a high high-frequency content (more stationary signal), then ADF t-statistic is not

a strong indicator of novelty.

The aforementioned, in general sense, are the main points where the investigation

for Johansen’s approach to cointegration focused. In the two paragraphs that follow,

a discussion is made on two practical issues that can be considered as limitations

for the use of cointegration inside SHM, while two suggestions about future work

on Johansen’s approach are also made, with the emphasis placed in application to
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bridges.

9.4.1 Practical Limitations

Two practical limitations of Johansen cointegration are discussed in this section and

some thought is given in ways these can be dealt with.

To begin with, the first limitation of Johansen cointegration is the fact that its use

is for data coming from continuous monitoring of structures. This issue is general

(does not concerns only cointegration) and is probably the main reason why SHM is

not applied extensively in civil infrastructure so far. Considering the case of bridge

applications, the relative cost of instrumentation, maintenance and generating data-

based results, is not cost-effective and can be time consuming. This happens, more

specifically, in the case that the efficient management of the bridge stock of a whole

nation is needed. The budget for the assessment and repair for each bridge is

significantly low. Hence, due to the relatively high cost for setting an SHM system,

such a solution may not be considered. Furthermore, the second limitation that

is discussed here is that cointegration is based on the concepts of data machine

learning and therefore data are needed for training purposes. The existence of a

newly installed SHM system in a bridge does not mean that there are enough data

to work with. As a matter of fact, time is needed in order to collect and process data

of structural response in order to draw conclusions based on that. In addition, there

is a lack of data coming from the damage state of bridges and supervised methods

cannot been employed, because NDT is not permitted due to bridges’ significant

structural importance to the society.

There is no immediate measure that can be followed in order to solve the previously

mentioned practical limitations. These issues will be solved during time. In partic-

ular, it is a fact that the majority of the newly designed bridges and many major

bridges around the world nowadays, have already monitoring systems installed on

them. The latter means that the construction budget planning for a bridge includes

also funding for SHM systems. This shows that many existent bridges, constructed

the past two decades, while also any new that will be constructed or rehabilitated

in the upcoming years will need the expertise of SHM. Therefore, it is of great im-

portance for the scientific community and industry to prepare the ground for the

role of SHM for civil infrastructure.
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In other words, although the two aforementioned issues have clearly a practical

character explaining the reasons for which SHM is not extensively used in industrial

context, however, it is explained that in the upcoming decades SHM will be become

necessary for the assessment and maintenance planning of civil infrastructure.

9.4.2 Suggestions for Further Research using Cointegration

Johansen’s approach to cointegration is already an established methodology inside

SHM and unsupervised learning. Its main concept is based on its capability to re-

move the impact of EOVs from the damage sensitive features and provide stationary

signals (cointegration residual) that can be used for novelty detection. Since cointe-

gration can provide successful measures for damage detection, further research can

be orientated in the direction of damage localisation. For example, in cases where

multiple SHM series are available, multiple cointegration residuals can be generated

and can be assessed based on probabilistic statistical measures, to provide indica-

tions (i.e. alarms) for potentially damaged locations in a structure.

Furthermore, one interesting field in which cointegration and more specifically the

error correction model (ECM) can be explored, is the future response progno-

sis/forecasting. Some basic information about the use of ECM in such a way are

provided in [136]. Multiple forecasts of the model can be generated, depicting mul-

tiple future scenarios for expected response. These can be employed in combination

with existent or newly formed deterioration and decision models in order to per-

form life-cycle analysis (LCEA) of structures for a more efficient management and

decision making. Some interesting ideas for LCEA can be found in [137],[138].

In particular, in the field of bridge engineering, there is a specific area focusing

on bridge management systems (BMS). This area is separated into two types of

management; the project-level bridge management (P-LBM), which includes in-

situ inspection, testing, maintenance requirements, prevention measures, remedial

methods and monitoring strategies, while there is also the network-level bridge man-

agement (N-LBM), which includes estimation rates of deterioration, prediction of

future condition (i.e. using Markov chain models), planning optimal maintenance

programs, prioritising maintenance, assess effectiveness of different strategies, esti-

mate costs and budgets [19].

It seems that in the case that Johansen’s approach to cointegration test, explored
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for its prognosis/forecasting capabilities could be incorporated successfully and/or

in combination with other methods for life-cycle estimation for N-LBM.



Appendix A

Cable Tensions and VAR model

A.1 Example of Tamar Bridge’s Cable Measuring

Creep and Restoring Deformation

Such cables (referred to as cable Type 5 in Tamar Bridge references) are commonly

installed in stay-cable and suspension bridges, because cable forces require control

and adjustment during construction stages [56]. The latter can be found in Appendix

A. Figure A.1 depicts the configuration of the stay-cable system of Tamar Bridge and

the location of the aforementioned cables (red dashed line). It should be mentioned

that there are two, in total, such cables one in each side of the deck (DS077SD1 and

DS077ND1). The tension signal of cable DS077SD1 is depicted in Figure A.2

Figure A.1: Stay-cable system configuration and cable type 5.
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Figure A.2: Tension signal of cable SS077SD1 with respect to tempera-
ture.

A.2 VAR Model Demonstration

From this Figure an interesting observation is that cable tension increases both when

temperature increases and decreases. Assuming a typical cable, this has an initial

curvature in its configuration. During low temperature it should be in compression,

while during higher temperatures in tension. In other words, during longitudinal

contraction and expansion of the bridge due to thermal strains developed in the

truss. However, it seems that the cable has a specific function, which is to restore

the deformations and hence this is the reason why the tension increases.

chapterVAR Model Demonstration For demonstration purposes, a VAR model with

one lag (VAR(1)) including two (Y1t and Y2t) variables (k = 2) is presented. The

VAR model can be written in terms of a variable vector (Yit) (vector of I(1) series),

a coefficient matrix [aij] (or alpha matrix), a vector of lagged terms Yi,t−i and a

vector of error terms eit (equation (A.1)). In equation (A.1), more lag terms and

variables can be introduced. The equation (A.1) can be written also as given in

equation (A.2), for i = 1, .., n, where n is the number of series and j defines the

model order (lags).
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{
Y1t

Y2t

}
=

[
α11 α12

α21 α22

]{
Y1,t−1

Y2,t−1

}
+

{
e1t

e2t

}
(A.1)

{Yi} =

p∑
j=1

[Ai] {Yt−p}+ {ei} (A.2)
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