
NEUTRAL EMERGENCE
AND

COARSE GRAINING CELLULAR
AUTOMATA

Andrew Weeks

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

March 2010

Neutral Emergence and Coarse Graining Cellular Automata

i

ABSTRACT

Emergent systems are often thought of as special, and are often linked to
desirable properties like robustness, fault tolerance and adaptability. But,
though not well understood, emergence is not a magical, unfathomable
property.

We introduce neutral emergence as a new way to explore emergent phe-
nomena, showing that being good enough, enough of the time may actu-
ally yield more robust solutions more quickly.

We then use cellular automata as a substrate to investigate emergence, and
find they are capable of exhibiting emergent phenomena through coarse
graining. Coarse graining shows us that emergence is a relative concept
– while some models may be more useful, there is no correct emergent
model – and that emergence is lossy, mapping the high level model to a
subset of the low level behaviour.

We develop a method of quantifying the ‘goodness’ of a coarse graining
(and the quality of the emergent model) and use this to find emergent
models – and, later, the emergent models we want – automatically.

 Neutral Emergence and Coarse Graining Cellular Automata

ii

Neutral Emergence and Coarse Graining Cellular Automata

iii

CONTENTS
Abstract	 i

Figures	 ix

Acknowledgements	 xv

Declaration	 xvii

1	Introduction	 1
1.1 Neutral emergence 1
1.2 Evolutionary algorithms, landscapes and dynamics 1
1.3 Investigations with cellular automata 2

2	Cellular	automata	 5
2.1 Cellular automata grids 5
2.2 Updating a CA 5
2.3 CA dynamics 6
2.4 Conway’s Game of Life 7
2.5 Elementary cellular automata 8
2.6 Simple ECA behaviour 8
2.7 More complex ECA behaviour 10
2.8 Key points 11

3	Evolutionary	algorithms	 13
3.1 Genetic algorithms 14
3.2 A tension in evolution 18
3.3 Recombination as conservation 19
3.4 Recombination as innovation 20
3.5 Key points 21

4	Nonlinear	dynamics	 23
4.1 Pendulum 23
4.2 Bifurcations 25
4.3 Saddle node bifurcation 25
4.4 Transcritical bifurcation 26
4.5 Pitchfork bifurcation 27
4.6 Hopf bifurcation 28
4.7 Linear analysis 29
4.8 Phase portrait stability 31
4.9 Nullclines 31
4.10 Higher dimensional systems 32
4.11 Chaos in discrete systems 35
4.12 Bifurcation diagrams 36
4.13 Key points 37

5	Computation	as	a	dynamical	system	 39
5.1 The λ parameter 39
5.2 A phase transition 40
5.3 Correlation 40

 Neutral Emergence and Coarse Graining Cellular Automata

iv

5.4 Growth dimension 41
5.5 Length of transients 42
5.6 Key points 43

6	NK	landscapes	and	random	Boolean	networks	 45
6.1 The NK model 45
6.2 Random Boolean networks 52
6.3 Key points 63

7	Entropy	 65
7.1 Thermodynamics 65
7.2 Heat and Work 66
7.3 Entropy 67
7.4 The Second Law and Life 67
7.5 Gibbs Free Energy 68
7.6 Summary of thermodynamics 69

7.7	Information	theory	 70
7.8 Information theory 70
7.9 Shannon entropy, joint and conditional entropies 71
7.10 Information 72
7.11 Noiseless encoding 73
7.12 Key points 73

8	Emergence	review	 75
8.1 Why emergence? 75
8.2 Modelling flocking behaviour 75
8.3 Defining emergence 76
8.4 Downward causation 78
8.5 Supervenience and emergence 80
8.6 Levels and complexity in emergence 80
8.7 Emergence as a change of scope or resolution 81
8.8 Weak emergence 82
8.9 Strong emergence 83
8.10 Dynamics and emergence 83
8.11 Abstractions in flocking 85
8.12 Evolving flocking 85
8.13 Flocking through predation 86

9	Emergence	 89
9.1 Defining emergence 89
9.2 A starting definition of emergence 89
9.3 Subjective emergence 90
9.4 Useful emergence 90
9.5 Independence and lossy emergence 91
9.6 Discontinuities and lossy emergence 92
9.7 Projection and sampling 93
9.8 Mappings in emergence 93

9.9	Neutral	emergence	 95
9.10 Neutral evolution 95

Neutral Emergence and Coarse Graining Cellular Automata

v

9.11 Quantitative emergence 95
9.12 Complexity and information 96
9.13 Kolmogorov complexity 97
9.14 Minimum model complexity 98
9.15 Information retention 99
9.16 Comment on Adami’s model 99
9.17 Quantifying emergence 100
9.18 Neutral emergence 101

9.19	Engineering	emergence	 102
9.20 Robustness in neutral emergence 103
9.21 The power of neutrality 104
9.22 Emergence is easy 105
9.23 Exploiting problem structure 105
9.24 ‘Good enough’ solutions 106
9.25 Key points 107

Using	cellular	automata	to	investigate	neutral	emergence	 109

10	Coarse	graining	CAs	 111
10.1 Predicting cellular automaton behaviour 111
10.2 How to find Life: identifying patterns and predicting behaviour 111
10.3 Predicting the future 114
10.4 Elucidation through elimination 114

10.5	Coarse	graining	and	emergence	 115
10.6 What is coarse graining? 115
10.7 Why coarse grain? 117
10.8 Coarse graining needs consistent mappings 117
10.9 Cell mappings are sufficient 118
10.10 How to coarse grain 119
10.11 Something of a waste 123
10.12 Different coarse grainings 124
10.13 Graining graphs 126
10.14 Moving to two dimensions 131
10.15 Explosive test cases 132

10.16	Partial	coarse	graining	 133
10.17 A partial population 134
10.18 Finding a partial coarse graining 134
10.19 Partial graining graphs 138
10.20 Mappings 139
10.21 Taking the union of all mappings 148
10.22 Using known rule cases 149
10.23 Key points 150

11	Emergence	and	information	 153
11.1 Types of information loss 153
11.2 Coarse graining and mutual information 154
11.3 How to calculate the MI 155
11.4 Calculating the MI 157

 Neutral Emergence and Coarse Graining Cellular Automata

vi

11.5 Calculating the MI example 157
11.6 The significance of 1.5 160
11.7 Partial coarse graining and mutual information 160
11.8 Choosing MI test strings 162
11.9 Mutual information of different coarse grainings 168
11.10 Graining graphs and MI 173
11.11 Predicting good coarse grainings 173
11.12 Mappings and MI 176
11.13 Key points 179

12	Subjective	emergence	 181
12.1 Feature extraction in emergent systems 182
12.2 How to extract features from an elementary CA 182
12.3 Example of feature extraction 183
12.4 Forcing contiguous blocks 186

12.5	Towards	directed	coarse	graining	 187
12.6 Phase changes in cellular automata 187
12.7 Catching the transition 189
12.8 MI and phase transitions 192
12.9 Exploring restart position 193
12.10 A clearer transition graph 194
12.11 Coarse graining rule 130 to rules 128 and 213 195
12.12 Coarse graining rule 130 to rules 128 and 84 197
12.13 Relative graphs 198
12.14 The inevitable S-curve 199
12.15 Analysis of finding transition points 199
12.16 Overcoming the mutual information problem 200
12.17 A temporal dimension in mutual information 200
12.18 True temporal mutual information 204
12.19 Analysis of temporal mutual information 205
12.20 Analysis of different block shapes and sizes 206
12.21 Extra entropy: a better distinction 207
12.22 Liberal coarse graining 208
12.23 Applying extra entropy to other coarse grainings 209
12.24 Graphs of rule 130’s extra entropy 209
12.25 The best block size 213
12.26 Extra entropy of rule 130’s coarse grainings 214
12.27 Extra entropy of rule 140’s coarse grainings 217
12.28 Analysis of extra entropy 220

12.29	Directed	coarse	graining	 222
12.30 Finding behaviour of interest 222
12.31 Creating an exception to a rule 223
12.32 Exceptions 224
12.33 Sparse exceptions 225
12.34 Exceptions at the coarse level 226
12.35 Coarse graining with exceptions 227
12.36 Another exception using rule 138 228

Neutral Emergence and Coarse Graining Cellular Automata

vii

12.37 Adding an exception to a chaotic rule 230
12.38 Directed coarse graining through exceptions 235
12.39 Key points 235

13	Contributions	 237
13.1 Emergence 237
13.2 Coarse graining and emergence in cellular automata 238
13.3 Emergence and information 239

14	Looking	forward	 241
14.1 Emergence and robustness 241
14.2 Exploiting problem structure 242
14.3 Developmental systems 242

A	Coarse	grainings	 247

B	MI	of	random	strings	 265

C	Coarse	graining	distribution	 267

D	Phase	changes	initial	condition	 269
D.1 Investigating string length 270
D.2 Avoiding MI resonance 272

E	Extra	entropy	of	selected	rules	 275
E.1 Extra entropy of rule 130’s coarse grainings 275
E.2 Extra entropy of rule 140’s coarse grainings 280
E.3 Extra entropy for rule 43’s coarse grainings 284
E.4 Extra entropy of rule 192’s coarse grainings 288

References	 291

 Neutral Emergence and Coarse Graining Cellular Automata

viii

Neutral Emergence and Coarse Graining Cellular Automata

ix

FIGURES
2	Cellular	automata
Figure 2.1 A 2D cellular automaton grid. Each square is a cell. 5
Figure 2.2 The Moore neighbourhood for a regular 2D CA (left); the von Neumann neighbourhood… 6
Figure 2.3 The progression over time from all possible states. (Image from [48]) Garden of… 6
Figure 2.4 Patterns in Life 7
Figure 2.5 Elementary CA rule 58 8
Figure 2.6 The result of running rule 128 for twelve steps, starting with the initial condition… 9
Figure 2.7 Rule 128 9
Figure 2.8 A run of rule 138. The cell space wraps round horizontally, so the diagonal lines… 9
Figure 2.9 Rule 102 10
Figure 2.10 Rule 110 11
Figure 2.11 Rule 54 11

3	Evolutionary	algorithms
Figure 3.1 Kitty chew flavours. 17
Figure 3.2 Test kitty chew flavour combinations. 17

4	Nonlinear	dynamics
Figure 4.1 Pendulum phase portrait plotting velocity against angle (from [22]) 24
Figure 4.2 Dissipative pendulum phase portrait (from [22]) 25
Figure 4.3 Saddle node bifurcation. Bifurcation occurs as system parameter r is varied. When…	 26
Figure 4.4 Phase portrait of a saddle node bifurcation (including ghost) as parameter μ is… 26
Figure 4.5 Graphs show velocity against position and position against time. The ghost (slowing… 26
Figure 4.6 Transcritical bifurcation as parameter r is varied (from [22]) 27
Figure 4.7 Pitchfork bifurcation as r is altered (from [22]). 27
Figure 4.8 Supercritical (left) and subcritical (right) pitchfork bifurcations. Graphs show… 27
Figure 4.9 Phase portrait of pitchfork bifurcation with changing μ (from [22]). 28
Figure 4.10 System behaviour switches from decay to growth after a supercritical Hopf bifurcation… 28
Figure 4.11 Supercritical Hopf bifurcation at μ = 0 (from [22]) 28
Figure 4.12 Subcritical Hopf bifurcation (from [22]) 29
Figure 4.13 Saddle node (from [22]) 30
Figure 4.14 Star, centre and two other nodes for comparison (from [22]) 30
Figure 4.15 Limit cycles (from [22]) 31
Figure 4.16 Nullclines and a few flow arrows can often give a good indication of the phase… 31
Figure 4.17 Velocity of chaotic waterwheel over time. Note irregular switchbacks (from [22]). 32
Figure 4.18 Bifurcation diagram of Lorenz waterwheel as flow rate is increased (from [22]). 33
Figure 4.19 Rössler attractor (from [29]) 33
Figure 4.20 Lorenz attractor (from [31]) 34
Figure 4.21 Lorenz map (from [22]) 34
Figure 4.22 Estimating the Lyapunov exponent (from [22]) 35
Figure 4.23 A cobweb diagram for cos xn (from [22]) 36
Figure 4.24 Typical iterated map bifurcation diagram showing value(s) taken by x after converging… 36

5	Computation	as	a	dynamical	system
Figure 5.1 Phase transition seen plotting mutual information (correlation) I against λ. As… 41
Figure 5.2 Phase transition seen plotting length of transients T against λ. Again, Langton… 42

 Neutral Emergence and Coarse Graining Cellular Automata

x

6	NK	landscapes	and	random	Boolean	networks
Figure 6.1 Examples of Massif Central. Diagrams show correlation between fitness and hamming… 48
Figure 6.2 A small Random Boolean network and the attractor cycle followed (from [46]). 53
Figure 6.3 Example of RBN attractor from K = 3 N = 13 network. Attractor is loop in centre; trees… 54
Figure 6.4 Two dimensional lattice. Sites containing 1 are frozen; note islands of activity… 57
Figure 6.5 Recurrence relation showing expected distance between successive states of annealed… 59

7.7	Information	theory
Figure 7.1 A communication channel (adapted from [78]). 70
Figure 7.2 Entropy for random variables X and Y. 73

8	Emergence	review
Figure 8.1 Boids moving round pillars. The flock splits and reforms after passing the obstacles.… 76

9	Emergence
Figure 9.1 Mapping between high and low level models. The mapping translates between the two… 93

9.9	Neutral	emergence
Figure 9.2 Gaining mutual information between the genome and the environment (adapted from… 98
Figure 9.3 Gaining mutual information between the low level and high level (emergent) models.… 101

9.19	Engineering	emergence
Figure 9.4 In the left diagram, the small central circle is the perfect solution and the large… 106
Figure 9.5 The narrow left peak contains a few highly fit individuals. The flatter, lower peak… 107

10	Coarse	graining	CAs
Figure 10.1 The stages of the toad, a period two oscillator in the Game of Life. (The diagram… 112
Figure 10.2 A glider gliding in the Game of Life. 112

10.5	Coarse	graining	and	emergence
Figure 10.3 A fine CA and a matching coarse CA. 115
Figure 10.4 Coarse and fine CAs running over time. The coarse CA’s initial state is determined… 117
Figure 10.5 Even a cell on the edge of the input 3g cells affects the coarse rule’s output. 119
Figure 10.6 Finding a coarse rule in a coarse graining. The fine rule is run for	g	timesteps (where g… 120
Figure 10.7 A run of rule 188. As before, ■ cells are represented by red squares and □ cells… 121
Figure 10.8 Rule 188’s rule cases 121
Figure 10.9 A run of rule 192. The initial condition was calculated from Figure 10.7 via mapping… 123
Figure 10.10 Rule 192’s rule cases 123
Figure 10.11 Rule 188 coarse grained to rule 192 via mapping ■□□□. The fine rule is shown in… 123
Figure 10.12 Rule 140 coarse grained to rule 136. See §10.12 for diagram interpretation. 125
Figure 10.13 Rule 140 coarse grained to rule 204. 125
Figure 10.14 Rules 34 (left) and 48 (right) are mirror images. 126
Figure 10.15 Rule 34 coarse grained to rule 170, showing the thick lines in coarse rule 170… 127
Figure 10.16 A graining graph showing all total coarse grainings at	g	= 2. The floating numbers… 128
Figure 10.17 A graining graph of all total coarse grainings at	g	= 3. See §10.13 for discussion. 129
Figure 10.18 A graining graph of all total coarse grainings at	g	= 4. See §10.13 for discussion. 130
Figure 10.19 Symmetry in Life 132
Figure 10.20 The number of possible mappings and test set size for various grains. 132

10.16	Partial	coarse	graining
Figure 10.21 Candidate mapping for rule 130 136
Figure 10.22 Known coarse rule cases at this stage for the coarse graining of rule 130. We… 136

Neutral Emergence and Coarse Graining Cellular Automata

xi

Figure 10.23 A graining graph of all partial coarse grainings from input □■□■□■□■□■ at g… 138
Figure 10.24 Mappings for rule 150 coarse grained to itself at	g	= 2. The binary sorting applied… 140
Figure 10.25 A run of rule 150 coarse grained to itself with mapping □■■□. 141
Figure 10.26 A run of rule 150 coarse grained to itself with mapping □□■□. 141
Figure 10.27 A run of rule 150 coarse grained to itself with mapping □□□■. 141
Figure 10.28 Steps for first valid mappings. 142
Figure 10.29 The middle column shows the number of valid partial coarse grainings returned… 143
Figure 10.30 The number of valid coarse grainings returned at	g	= 2 for the initial conditions… 144
Figure 10.31 Steps for all mappings. 145
Figure 10.32 Steps for more efficient all mappings. 147
Figure 10.33 Steps for even more efficient all mappings. 148
Figure 10.34 The union of valid coarse grainings at	g	= 2 for the initial conditions in Figure… 149
Figure 10.35 The union of valid coarse grainings at	g	= 2 for the initial conditions in Figure… 149
Figure 10.36 The number of valid coarse grainings at	g	= 2 using known rule cases for the initial… 150

11	Emergence	and	information
Figure 11.1 The difference (modulo 2) in the trajectories resulting from replacing a □■□ segment… 154
Figure 11.2 A coarse graining of rule 130 to rule 162, showing the fine cells used and not… 156
Figure 11.3 The fine and coarse CA input test strings (coarse string calculated via the mapping). 158
Figure 11.4 The fine CA, after running for 5 (fine) timesteps. 158
Figure 11.5 The coarse CA, after running for 3 (coarse) timesteps. 158
Figure 11.6 The fine and coarse CAs’ outputs, split into blocks. 158
Figure 11.7 Fine state counts. The binary states seen in the fine CA’s blocks at time 5. (States… 159
Figure 11.8 Coarse state counts. The binary states seen in the coarse CA’s blocks at time 3… 159
Figure 11.9 Joint state counts. The binary states seen in the fine and coarse CAs’ blocks at… 159
Figure 11.10 Rule 90, a Class 3 (chaotic) rule, coarse grained to rule 165 (also Class 3).… 161
Figure 11.11 This coarse graining of rule 208 to rule 243 also has high MI because it duplicates… 161
Figure 11.12 Representation of three different coarse grainings. The circles indicate the amount… 162
Figure 11.13 Rule 204’s output (left) duplicates the input, so its MI is very dependent on… 163
Figure 11.14 Rule 204 163
Figure 11.15 Rule 128 163
Figure 11.16 32,000 MI results obtained at timestep 9 from totally coarse graining 100 random… 164
Figure 11.17 MI results from the 390 total coarse grainings at timestep 9 obtained using the… 165
Figure 11.18 An example of a coarse graining with Class 3 rules found in section A. The picture… 166
Figure 11.19 A coarse graining of Class 2 rules, typical of those in section B. Here rule 170… 167
Figure 11.20 An example of a rule found in section C section of Figure 11.16. Here we see the… 167
Figure 11.21 The distribution of each coarse graining, sorted by MI, using the same data as… 169
Figure 11.22 Rule 60 coarse grained to rule 60. 169
Figure 11.23 Rule 51 coarse grained to rule 204. 170
Figure 11.24 Rule 160 coarse grained to rule 128. 170
Figure 11.25 The distribution of each coarse graining, sorted by MI, using the data from Figure… 171
Figure 11.26 32,000 MI results obtained at timestep 9 from partially coarse graining the same… 172
Figure 11.27 Number of coarse grainings returned at different granularities when totally coarse… 174
Figure 11.28 The number of new coarse grainings found at higher granularities or with less… 175
Figure 11.29 The number of coarse grainings predicted at higher granularities. 10 of the 54… 175
Figure 11.30 The number of coarse grainings that coarse grain to 0/255 and 128/254. An increasing… 175
Figure 11.31 The mean MI over all coarse grainings at timestep 4 or 5 (depending on which coincides… 176

 Neutral Emergence and Coarse Graining Cellular Automata

xii

Figure 11.32 The mean MI over the extra coarse grainings in Figure 11.28. The MIs were recorded… 176
Figure 11.33 Rule 162 partially coarse grained to rule 160 with mapping □■□■. 177
Figure 11.34 Rule 162 partially coarse grained to rule 160 with mapping ■■□■. 177
Figure 11.35 Rule 162 totally coarse grained to rule 128 with mapping □□□■. 178
Figure 11.36 Rule 162 partially coarse grained to rule 128 with mapping □■□■. 178

12	Subjective	emergence
Figure 12.1 Rule 128 182
Figure 12.2 A CA divided into chunks for feature extraction. 182
Figure 12.3 CAs showing rules 140 (fine rule in black), 136 (coarse rule in purple) and 204… 184
Figure 12.4 Mutual information between rules 140 and 136, divided into four chunks horizontally… 185
Figure 12.5 Mutual information between rules 140 and 204. 185
Figure 12.6 Table illustrating which rule matches better (has a higher MI) out of 136 and 204… 185

12.5	Towards	directed	coarse	graining
Figure 12.7 Rule 130, the fine rule in this example. 187
Figure 12.8 Rule 128, the coarse rule that matches rule 130 before the phase transition. 188
Figure 12.9 Rule 34, the coarse rule that matches rule 130 after the phase transition. 188
Figure 12.10 The MIs between rule 130 and rule 34 with no restarts and rule 34 restarted at… 190
Figure 12.11 The graph in Figure 12.10 is reproduced, with the addition of a suggested phase… 191
Figure 12.12 Rule 130 coarse grained to rule 213. Though a poor match for rule 130 in terms… 192
Figure 12.13 In these pictures, rule 34 is able to capture substantially more of the underlying… 193
Figure 12.14 MI over time between fine rule 130 and coarse rule 34, restarting rule 34 at (fine)… 194
Figure 12.15 A normalised graph showing the MI over time between fine rule 130 and coarse rule… 195
Figure 12.16 A run of rule 130 coarse grained to rule 213. Though apparently a poor match,… 196
Figure 12.17 Graph showing MI over time of restart times 1-35 for rule 130 coarse grained to… 196
Figure 12.18 Normalised graph of Figure 12.17. We see the same basic S-curve as Figure 12.15,… 197
Figure 12.19 A sample run of rule 130 coarse grained to rule 84. 84 is a poor match for 130. 197
Figure 12.20 Graph showing rules 130 coarse grained to rules 84 and 128. Rule 84 is a poor… 198
Figure 12.21 Normalised graph of rule 130 coarse grained to rules 84 and 128. We see the same… 198
Figure 12.22 An example block with x-block = 4 and y-block = 2. Two of the rows at the fine… 201
Figure 12.23 The MI between rule 130 and rules 34, 128 and 213 for various x-blocks. The y-block… 202
Figure 12.24 MI between rule 130 and rules 34, 128 and 213 for various x-blocks. The y-block… 202
Figure 12.25 MI between rules 130 and 34 for various y-blocks. The x-block is 3 for this graph. 203
Figure 12.26 MI between rules 130 and 213 for various y-blocks. Again, the x-block is fixed at 3. 203
Figure 12.27 Rotating the CAs through 90° to calculate temporal mutual information. 204
Figure 12.28 As the CAs are rotated by 90°, we need to exclude different cells when calculating… 204
Figure 12.29 Results of coarse graining rule 130 to rule 34 using temporal MI. The initial condition… 205
Figure 12.30 Results of coarse graining rule 130 to rule 128 using temporal MI. Here we see… 205
Figure 12.31 Temporal MI results of coarse graining rule 130 to rule 213. Like rule 34, rule… 205
Figure 12.32 Rules 34 (left) and 140 (right). Rule 140 draws vertical lines, so there is no… 206
Figure 12.33 Both these diagrams have the same mutual information, but the coarse rule in the… 207
Figure 12.34 Extra entropy when coarse graining rule 130 to rule 34 for various x-blocks. The… 208
Figure 12.35 Extra entropy when coarse graining rule 130 to rule 213 for various x-blocks.… 208
Figure 12.36 Rule 162 is probably the best coarse graining for rule 130. It captures more of… 209
Figure 12.37 Rule 130 210
Figure 12.38 Extra entropy for rule 130 coarse grained to rule 34 for various x-blocks. 210
Figure 12.39 Extra entropy for rule 130 coarse grained to rule 34 on a logarithmic scale. Noise… 211

Neutral Emergence and Coarse Graining Cellular Automata

xiii

Figure 12.40 Extra entropy for rule 130 coarse grained to rule 162. 211
Figure 12.41 Extra entropy for rule 130 coarse grained to rule 162 on a logarithmic scale.… 212
Figure 12.42 Extra entropy for rule 130 coarse grained to rule 213. The graph is dominated… 212
Figure 12.43 Extra entropy for rule 130 coarse grained to rule 213 without x-block = 1 results. 213
Figure 12.44 Extra entropy for rule 130 coarse grained to rule 213 on a logarithmic scale.… 213

12.29	Directed	coarse	graining
Figure 12.45 Rule 130 222
Figure 12.46 Highlighted triangles on rule 130. 223
Figure 12.47 Rule 130 223
Figure 12.48 Rule 138 224
Figure 12.49 Rule 138 224
Figure 12.50 Rule 138 with the exceptions □■□□□ → □ and □■□□■ → □. Note that the single width… 225
Figure 12.51 Exceptions in coarse graining. Adding exceptions to the fine rule lets us find… 226
Figure 12.52 Rule 138 coarse grained to rule 98. Note that the coarse rule mirrors the single… 227
Figure 12.53 Rule 138 with exceptions coarse grained to rule 10. Note that the coarse rule… 227
Figure 12.54 The behaviour we want to create in rule 138. 228
Figure 12.55 Rule 138 with this exception coarse grained to rule 128. 229
Figure 12.56 Rule 102, a chaotic rule that draws a series of ever-larger triangles. 230
Figure 12.57 Comparing rule 102 plus exception (top) to rule 110 (bottom). The rule with exception… 231
Figure 12.58 Larger CAs of rules 102 plus exception (top) and 110 (bottom). 232
Figure 12.59 Rule 102 plus exception coarse grained (at	g	= 2) to rule 110. The coarse graining… 233
Figure 12.60 Rule 102 with a nine cell exception, showing the same pattern as Figure 12.59… 234
Figure 12.61 A section of rule 102 with a 17 cell exception, showing the same pattern as Figure… 234

D	Phase	changes	initial	condition
Figure D.1 Rule 130 showing a segment of the initial condition described in this section. The… 269
Figure D.2 MI between rules 130 and 128 for the mixed 52 and 53 ■s initial condition with x-block… 270
Figure D.3 MI between rules 130 and 128 for the mixed 52 and 53 ■s initial condition with x-block… 270
Figure D.4 MI between rules 130 and 128 for the mixed 52 and 53 ■s initial condition with x-block… 271
Figure D.5 MI between rules 130 and 128 with x-block = 3, y-block = 1 for the shorter 340 cell… 271
Figure D.6 MI between rules 130 and 128 with x-block = 2, y-block = 1 for the shorter 340 cell… 272
Figure D.7 MI between rules 130 and 128 with x-block = 6, y-block = 1 for the shorter 340 cell… 272
Figure D.8 These close-ups show the locations at which blocking can slice up a segment of rule… 273

 Neutral Emergence and Coarse Graining Cellular Automata

xiv

Neutral Emergence and Coarse Graining Cellular Automata

xv

ACKNOWLEDGEMENTS

I’m incredibly grateful to Susan Stepney and Fiona Polack, my supervisors,
for their help throughout my PhD. They have always been there to give me
guidance and support, and I would not have been able to complete this
research without them. I’m also extremely grateful for their belief in this
project and in me, even when I had doubts myself.

I’d like to thank John Clark for being my internal assessor and for provid-
ing me with useful feedback at the different milestones of my PhD.

I’m very grateful to Microsoft Research Cambridge for providing the fund-
ing that allowed me to undertake this research and to Fabien Petitcolas at
Microsoft for his support and help.

Finally, I’d like to thank my parents, my brother Chris and everyone else
who has been there for me. Thank you.

 Neutral Emergence and Coarse Graining Cellular Automata

xvi

Neutral Emergence and Coarse Graining Cellular Automata

xvii

DECLARATION

I declare that all the work in this thesis is solely my own except where at-
tributed and cited to another author. Some of the material has been previ-
ously published in the following papers

Neutral	Emergence:	a	proposal [137] – An introduction to the concept of
neutral emergence (in analogy to an information theoretic view of neutral
evolution) and how it might be used to engineer robust systems.

Neutral	Emergence	and	Coarse	Graining [138] – Building on the concept of
neutral emergence, we discuss engineering robust solutions and describe
preliminary results from applying these ideas to coarse graining of cellular
automata.

Investigating	 emergence	 by	 coarse	 graining	 Elementary	 Cellular	 Automata
[139] – We extend coarse graining of cellular automata to investigate as-
pects of emergence. Starting with the total coarse graining approach intro-
duced by Israeli and Goldenfeld [123], we introduce partial coarse grain-
ing. We also show the importance of the mapping between the lower and
emergent levels in determining the quality of emergence.

 Neutral Emergence and Coarse Graining Cellular Automata

xviii

Neutral Emergence and Coarse Graining Cellular Automata Introduction

1

1 INTRODUCTION
Emergent systems are often thought of as special. In the biological world at least, they are closely
linked with desirable properties like robustness, fault tolerance and adaptability (§9.19). Unfor-
tunately emergent systems are usually difficult to understand, and even more difficult to engineer. 		

But emergence is not a magical, unfathomable property. The principal difficulty in working with
emergent systems stems from our approach to it: if we try to engineer them with a conventional
development mindset and use conventional development techniques, we will face significant dif-
ficulties.

We claim we can develop emergent systems as easily as conventional systems. We claim we can
even develop emergent systems automatically. And though we approach the problem in a new way,
the tools and techniques we use are relatively conventional, drawing on relatively well understood
evolutionary and other search methods.

Central to this is a new approach to finding answers: rather than trying to find a perfect solution,
we suggest we should look for answers that are mostly correct, most of the time. In fact such solu-
tions may be better than ‘perfect’ ones, not only because they are easier to find, but also because
they can be made more robust than a perfect-but-brittle answer (§9.20).

1.1 Neutral emergence
We introduce neutral emergence, in analogy to neutral evolution, as a new way of looking at emer-
gence. We aim to exploit the robustness and adaptability innate to emergence – and two of the
strengths of neutral evolution – as a framework for thinking about what constitutes a good solution.

In an emergent system, it is not obvious how its high level properties arise from its low level be-
haviour. (In fact, we argue later that this is a requirement for emergence.) This is a big problem for
conventional development, which builds a path of small steps between an abstract specification and
concrete implementation. But many search and optimisation techniques work differently: we only
need to be able to evaluate an answer, not know how to find it. This is a much easier task to solve,
and one that only requires a mapping between the levels, not a path with intermediate steps. One
class of search technique that works like this is evolutionary algorithms.

1.2 Evolutionary algorithms, landscapes and dynamics
Evolutionary algorithms (EAs) are good problem solvers: they are often efficient, particularly if the
total thinking and computation time is considered; they are (usually) conceptually simple and ap-
pealing; and they are quite generally applicable – similar techniques can be used solve a wide range
of problems.

Introduction Neutral Emergence and Coarse Graining Cellular Automata

2

But of course they are no panacea. Many problems can be answered more efficiently with other,
often more specialist algorithms, including a substantial number of algorithms that predate the
popularisation of EAs. There also seems to be a ‘complexity ceiling’ in many EAs that prevents them
from solving problems beyond a certain difficulty, and unfortunately this can stop them moving
from toy problems to the problems that concern science and industry today.

We suggest that there may be an inherent tension in these algorithms, a balance that must be struck
between innovation and conservation which can limit their efficacy. But we believe we may be able
to avoid this tension by taking advantage of the problem structure.

There is a story that genetic algorithms were created one afternoon, after someone sat down at a
computer with a school biology textbook. In fact it took John Holland, along with his research
students, three years to work out all of the details and perfect the technique [77]. The concepts are
not difficult, nor is the abstraction obscure; most people would describe their operation as obvious.
But DNA recombination in living organisms is an incredibly complex process that is still not fully
understood today. Holland had the insight to abstract the right details from the process and apply
them successfully to a new field.

Evolutionary systems, with few exceptions, only consider the final solution. They do not consider
the structure of the search space, of the problem landscape, which may well be replete with useful
information – of how to find a good solution, and of what a good solution is. It may prove possible
to exploit these underlying features – to which most algorithms are blind – to find more effective
solutions more effectively (at least to a subclass of interesting problems). This structure is believed
to be important in two ways: to provide a guide, a constant stream of feedback of progress made;
and perhaps more importantly, to constrain search (after all, if there is only one path to a solution,
finding the answer is easy).

Landscapes and dynamics are key to understanding neutral evolution, to understanding emergence,
and to understanding neutral emergence. They are also key to understanding why a mostly good,
most of the time answer is often better than a theoretically perfect but brittle answer.

As we are trying to understand the fundamental properties of this topic, we choose to investigate
these questions through cellular automata (CAs). The small search space we used meant it was usu-
ally efficient to explore the whole problem space exhaustively, leaving a lot of the reviewed literature
on dynamics and landscapes in the further work section. However, we feel that this material is vital
for taking this work further and also provides important background material and context for the
work on CAs presented here.

1.3 Investigations with cellular automata
The mathematical transparency of CAs make them a good substrate for exploring these ideas with-
out the uncertainty (of definition, of language, of boundaries, of relationships) that would almost

Neutral Emergence and Coarse Graining Cellular Automata Introduction

3

inevitably appear in more complex ‘real world’ models. Also the small number of some classes
of CA, such as the elementary CAs (ECAs) we principally consider here, makes it practicable to
explore the entire state space and test ideas against the whole gamut of possible model behaviour.

Despite their conceptual simplicity, CAs are capable of displaying very complex behaviour. For
example, ECA rule 110 and Conway’s Life (another CA) are both known to be Turing complete
(§2.4, §2.7), and it is claimed that some ECAs can be used as pseudo-random number generators.
The wide variety of interesting behaviour makes CAs more than just a trivial test case, and allows us
to apply and extrapolate concepts found here to other models.

For CAs to be a useful model here, they must be capable of showing emergence. We explore the
topic in greater depth in §8 and §9, but it is commonly accepted that emergent behaviour should be
coherent (appearing, like a flock of birds, to act almost as a discrete object with behavioural rules of
its own) and that there should be a non-obvious link between the emergent phenomenon and the
low level actions that create it.

So we can demonstrate emergence in CAs by showing large-scale, high-level, coherent behaviour
in CAs, where the relationship between this behaviour and the underlying CA rule is non-obvious.
Specifically, we can do this by modelling a CA with another, coarser CA that maps onto the under-
lying CA.

We believe that emergence is a relative concept, and demonstrate this through CAs: while some
models may be more useful to us than others, there is no ‘correct’ emergent model, and the emer-
gent properties we see are dependent on our point of view. We also use CAs to show emergence as
lossy, extracting a carefully chosen subset of the low level behaviour to produce a coherent high level
model (often best interpreted in a different language).

CAs help us demonstrate why thinking of emergence as neutral emergence has real advantages
when we introduce partial coarse graining. A partial coarse graining has an incomplete mapping be-
tween the low level and emergent models and can make mistakes, but this also gives it the freedom
to capture low level behaviour that is impossible to model otherwise.

Through quantitative emergence, we show that mutual information is a measure of the goodness
of an emergent CA model and use this to find such models automatically. Despite being a local
measure, we discover its results closely correlate with our observations of good global CA behaviour.

To make useful emergent systems, we need a way of finding systems that model the emergent be-
haviour we	want	to	capture, and not just systems that model emergent behaviour. Reynolds’ Boids
model (§8.2), for example, uses just three pieces of information out of the thousands (or millions)
of possible choices, and works incredibly well. (In fact, we argue that this brutal restriction is one
of the reasons it does work so well.) We develop a way of adding exceptions to CAs so they reflect
the behaviour we want to capture. Combining this with the ideas already outlined, we show how we
can direct a search to find the emergent models of CAs we want, and do so automatically.

Introduction Neutral Emergence and Coarse Graining Cellular Automata

4

Neutral Emergence and Coarse Graining Cellular Automata Cellular Automata

5

2 CELLULAR AUTOMATA
As they will be used extensively in later chapters, cellular automata (CAs) are introduced, explain-

ing how to update a CA and their typical dynamics. We describe two of the most popular CAs,

Conway’s Life and elementary cellular automata, and discuss the range of behaviour they produce.

2.1 Cellular automata grids
Cellular automata (CAs) are simple mathematical models that have been used to study many
subjects, including complexity, computability theory, biology and physics. Though not required
[64, 65], CAs are usually made from a regular grid of cells. The grid is most often one or two di-
mensional, though it is possible to construct a CA with any finite dimensionality.

Figure 2.1 A 2D cellular automaton grid. Each square is a cell.

A 2D grid is traditionally modelled as an infinite plane of cells (and a 1D grid as an infinite line of
cells). Clearly modelling an infinite number of cells is challenging on a computer with finite mem-
ory and processing power, so the cells are usually arranged on a torus to give an infinite periodic
grid: cells at the top of the grid come below the cells at the bottom, and those at the left edge fall
just to the right of those on the right edge. Placing cells on a torus, rather than a rectangle, means
we can avoid boundary conditions and also ensures that all locations on the grid are equal – though
there is a limit to the size of the phenomena we can explore, our results will be identical no matter
which location we use to start it.1

2.2 Updating a CA
Each cell has a state, which is set when the CA is initialised. The states are usually binary (‘0’ and
‘1’, ‘off’ and ‘on’, ‘dead’ and ‘alive’ – we use □ and ■) though some CAs have more possible states.

The CA has an update rule to calculate the next state for each cell. Though asynchronous CAs exist,
the next states are usually calculated for all cells at once in a series of discrete timesteps	(or genera-
tions). The cells around each cell, called its neighbourhood, are used to determine the next state of the
cell. On a 2D grid this is normally the cell itself and the eight surrounding cells. (This is the Moore	

1 Of course there may be circumstances where a rectangular sheet of cells is more appropriate, perhaps to prevent expelled space-
ships from wrapping round and interfering with the pattern being modelled.

Cellular Automata Neutral Emergence and Coarse Graining Cellular Automata

6

neighbourhood; an alternative, diamond-shaped neighbourhood without the diagonally adjacent
cells is called the von	Neumann	neighbourhood.) For a 1D CA, the cell itself and the two immedi-
ately adjacent cells usually form the neighbourhood.

Moore neighbourhood

von Neumann neighbourhood

Figure 2.2 The Moore neighbourhood for a regular 2D CA (left); the von Neumann neighbourhood for a regular

2D CA (right).

Some update rules differentiate between cells and give different results depending on which cells are
active, whereas others are totalistic and only count the number of cells in each state.

2.3 CA dynamics
CAs are discrete dynamical systems. Many CAs follow irreversible, dissipative paths – the trajec-
tories followed from different initial conditions merge over time and end up concentrated on a
smaller number of attractors. There must be some initial conditions for irreversible CAs for which
there are no previous states. Such patterns are known as Garden	of	Eden	patterns.

Attractor
cycle

Garden of
Eden states

Figure 2.3 The progression over time from all possible states. (Image from [48]) Garden of Eden states are shown

on the edges of the diagram, while the attractor appears at the centre. (The diagram shows just one attractor for

the system.)

The neighbourhood reach determines how quickly information can spread through a CA: if the
neighbourhood only extends for one cell in each direction, information cannot spread faster than
one cell per timestep. This is known as the speed	of	light for the CA.

Neutral Emergence and Coarse Graining Cellular Automata Cellular Automata

7

2.4 Conway’s Game of Life
The most famous example of a cellular automaton is Conway’s Game of Life [66]. Life was created
by Conway to simplify von Neumann’s self reproducing automata [67], a loop and ‘tape’ of many
cells with 29 different states that is capable of making copies of itself. Life operates on binary, 2D,
regular grid with a Moore neighbourhood, and uses the following update rules

 ▪ A live cell with fewer than two live neighbours dies of starvation.

 ▪ A live cell with more than three live neighbours dies of overcrowding.

 ▪ A live cell with two or three live neighbours survives.

 ▪ A dead cell with exactly three live neighbours comes to life.

Despite apparent simplicity of these rules, Life can display complex behaviour and many interesting
patterns have been discovered. Classes of patterns found include

 ▪ Still	lives – patterns that don’t change between generations.

 ▪ Oscillators – patterns that repeat after a number of generations. The vast majority are period two
oscillators [68].

 ▪ Spaceships – patterns that move across the grid as they repeat. The most famous spaceship is the
glider, which moves one square down and to the right in four generations.

Blinker (period 2 oscillator)

1 2

Beehive (still life)

1 5432

Glider (spaceship)

Figure 2.4 Patterns in Life

Life is a dissipative CA, and a random initial state usually changes rapidly over a few tens of genera-
tions from a mêlée to settle into an ash of simple still lives, oscillators and a few spaceships. Though
with careful setup, Life is capable of simulating longer lived patterns. The first one discovered by

Cellular Automata Neutral Emergence and Coarse Graining Cellular Automata

8

Conway was r-pentomino, which takes 1103 generations to stabilise and emits six gliders during
the run. It is also possible to construct glider	guns that emit an infinite stream of gliders at regular
intervals.

Significantly more complex simulations are also possible with Life. From very specific initial states,
it is possible to use gliders, glider guns and other Life patterns to emulate logic gates, timers, mem-
ory and the other behaviour needed to create a universal computer. Though very slow to run on a
computer, Conway’s Life has been shown to have equivalent power of a universal Turing machine
[36, 69].

2.5 Elementary cellular automata
Elementary cellular automata (ECAs) are amongst simplest CAs possible. They are 1D binary CAs
with neighbourhood of one, so just three cells determine next state of each cell. This limits the
number of elementary CAs to just

322 = 256, of which just 88 are distinct.2 (Compare this to a
possible

922 = 10154 2D CAs like Life.) Having so few rules makes studying the entire rule space
practicable and wouldn’t leave us reliant on sampling a small (and possibly unrepresentative) corner
of the rule space.

Consider rule 58. The rule number is calculated by summing the binary values of the rule’s output
states, as shown in Figure 2.5.

0 × 10 × 21 × 41 × 81 × 161 × 320 × 640 × 128 + + + + + + + = 58

Tim
e

Figure 2.5 Elementary CA rule 58

As ECAs are one dimensional, we can efficiently show progress of the CA over time by placing each
subsequent generation underneath the last.

2.6 Simple ECA behaviour
Many rules have relatively uninteresting behaviour, quickly dying out or ending up in unchanging
states. One such rule is rule 128. It dies out after a few generations, drawing tapering triangles over
time until finally disappearing.

2 The others are either reflections or inversions. If a rule produces diagonal lines that move to the left over time, the reflection
would produce a mirror image with lines that moved to the right. An inverse rule substitutes □ for ■ in all cases.

Neutral Emergence and Coarse Graining Cellular Automata Cellular Automata

9

Tim
e

Figure 2.6 The result of running rule 128 for twelve steps, starting with the initial condition in the top line. Each

subsequent generation is shown directly underneath the previous one. ■ cells are represented by red squares and

□ cells by white squares.

We can see why rule 128 draws triangles by examining the rule in detail. The only case when it
outputs a ■ is when the input triple is ■■■. So wide blocks of ■s will remain as ■s in the next
generation, but cells on the edge of such a block (with inputs □■■ or ■■□) will change to □. (And
any other state will change to or stay as □ as well.) This behaviour repeats, gradually tapering in the
edges of wide blocks of ■s, until all of the ■ cells have disappeared.

0 × 10 × 20 × 40 × 80 × 160 × 320 × 641 × 128 + + + + + + +

Figure 2.7 Rule 128

Suppose we change rule 128 to rule 138 so the triples □■■ and □□■ now also output ■. We still
lose cells from the right side of wide segments of ■s (state ■■□), but the other side now outputs
■s. The triple □□■ now adds ■s to the CA when there is a single ■ to the right of the cell. Taken
together, the rule now draws diagonal lines over time: if we start with a single ■, we end up with
single width diagonal line; if we start with five contiguous ■s, we get a diagonal line five cells thick.

Figure 2.8 A run of rule 138. The cell space wraps round horizontally, so the diagonal lines on the right side of the

run continue on the left.

Cellular Automata Neutral Emergence and Coarse Graining Cellular Automata

10

2.7 More complex ECA behaviour
Elementary CAs can display complex patterns too. Rule 102, for example, produces this pattern

Figure 2.9 Rule 102

Much of the early work into ECAs was carried out by Wolfram [37]. As part of his initial investiga-
tions, he classified (by inspection) the elementary CAs into four types of behaviour

 ▪ Class	1 – rules that rapidly converge to a single state (e.g. rule 128).

 ▪ Class	2 – rules that converge to a repetitive or stable state (e.g. rule 138).

 ▪ Class	3 – rules that appear to show chaotic or random behaviour (e.g. rule 102).

 ▪ Class	4 – rules that appear to show complex behaviour, with areas or periods of repetition or
stability, but that also show other complicated (and often long term) interactions.

Two rules in Class 4 are 54 and 110. Rule 110 is particularly interesting as it has been shown to be
Turing complete by Cook, who proved that it was possible to emulate a cyclic tag system (which
is known to be universal) by using spaceships to construct stationary data strings, production rules
and clock pulses [70]. As with Life, emulating a Turing machine with rule 110 requires a specific
initial condition. The run of 110 in Figure 2.10 is far too small to emulate a Turing machine, but
still shows the mix of regular structure and irregular patterns that is characteristic of Class 4 rules.

Neutral Emergence and Coarse Graining Cellular Automata Cellular Automata

11

Figure 2.10 Rule 110

Figure 2.11 Rule 54

2.8 Key points
 ▪ Cellular automata are simple mathematical models consisting of many cells and usually ar-

ranged on a 1D or 2D grid.

 ▪ Conway’s Game of Life has equivalent power as a Turing machine and can show many interest-
ing and complex patterns.

 ▪ Different elementary CAs show a wide range of behaviour, from simple patterns to chaotic and
complex behaviour. Elementary CA rule 110 has also been shown to have equivalent power as
a Turing machine.

Cellular Automata Neutral Emergence and Coarse Graining Cellular Automata

12

Neutral Emergence and Coarse Graining Cellular Automata Evolutionary Algorithms

13

3 EVOLUTIONARY ALGORITHMS
This section describes the main characteristics of evolutionary algorithms and why they are suc-

cessful as a search tool. We then look at genetic algorithms in more depth and explore a possible

tension in evolutionary algorithms.

Evolutionary algorithms (EAs) are “powerful search and optimisation” [1] techniques that are in-
creasingly used and accepted as part of the computer science mainstream. Usually inspired by the
biological processes of genetics and natural selection, evolutionary algorithms are principally de-
signed to meet the challenge of automatic problem solving. Whether the objective is to program
a computer to do “useful things” [2], solve mathematical equations or design a bridge, the aim of
automatic problem solving is to do this without needing to specify, step by step, how to do it.

EAs usually have a number of common features (from Banzhaf et al. [3])

 ▪ A population of solutions

 ▪ Innovation operations

 ▪ Conservation operations

 ▪ Quality differentials

 ▪ Selection

Choosing a good solution	representation	is crucial to the success of the algorithm. It must be possible
to examine candidate solutions and ultimately to evolve them into better solutions. Most represen-
tations are inspired either by nature or computer science: genomes, neural networks, numbers and
bit strings are all common.

A measure, or fitness	function, must be defined against which to judge the quality of solutions. Often
an automatic evaluation function is used, but the quality measure could equally be external to the
system and subjective, such as aesthetic appeal [4]. It is vital that the fitness function provides a
gradation of results, that it can say (approximately) how good a solution is. Otherwise the algorithm
degenerates into a “multi-membered blind search” [3].

Rather than just trying one candidate at a time, EAs group a large number of solutions into a popu-
lation. There will inevitably be variation in the quality, or fitness, of individuals in the population.
EAs improve the overall fitness of the population by preferentially selecting the fitter individuals to
produce the next generation of solutions. This means that the population will move towards one
comprising high quality solutions, without requiring the EA to understand how to make solutions
fitter.

The initial population usually only comprises a tiny fraction of all possible solutions, so it is unlikely
that it will contain the best answer. EAs evolve new solutions by applying innovation	operators	to the
population. Innovation operators aim to combine the best parts of existing individuals with a novel

Evolutionary Algorithms Neutral Emergence and Coarse Graining Cellular Automata

14

element to create fitter solutions. The most common innovation operator is mutation, which typi-
cally replaces part of a solution with new values or alters a parameter within given bounds. There
is no guarantee that the new solution will be better than its parent – if the parent is fit, it is quite
likely to be worse.

Conservation operators aim to consolidate the progress already made by members of the popula-
tion; the most common operators are reproduction	and crossover. Reproduction simply preserves
existing material through copying, but never finds innovative new solutions. Like mutation, crosso-
ver alters solutions, but instead of replacing material with (usually) random values, information is
exchanged between the parents. The objective is to combine the best material from both parents in
their progeny, which is often more effective than mutation. Obviously it has the downside of not
introducing any new variations that are not permutations of their parents into the population.

Getting the balance right between innovation and conservation is often crucial to the success of
an EA. An excess of novelty will tend to destroy good solutions that already exist, but too much
conservation will hardly make any progress at all.

Most evolutionary algorithms, including those discussed next, use stochastic decision making.
Probabilistic processes are used when selecting individuals for conservation or innovation in an at-
tempt to mimic the apparent randomness of nature.

Individuals in most EAs do not represent the sought answer directly; rather they use an interpreta-
tion step to transform the individual into a real world solution. Biological nomenclature for this
– genotype and phenotype (respectively) – is usually adopted.

3.1 Genetic algorithms
Genetic algorithms (GAs) [5] are by far the most famous and widely used examples of EAs. Based
on a simplified model of genetic recombination, one of their strengths – and reasons for their popu-
larity – is their broad applicability to a wide range of problems.

GAs use a simplified model of a DNA strand to represent each member of the population. Each
individual is formulated as a fixed-size chromosome	divided into a number of segments, or genes	(the
values a gene can take are called alleles). The fitness of the final solution is calculated by interpreting
the genes in the individual. For example, the gene sequence might reflect the order in which the
canonical salesman visits cities on his itinerary.

As with most EAs, the initial population is usually generated randomly. The population size varies
substantially, depending on the problem and implementation, but is typically hundreds, covering
only a fraction of the total search space. A GA run proceeds as follows

Neutral Emergence and Coarse Graining Cellular Automata Evolutionary Algorithms

15

 ▪ Each member of the population is evaluated to see how fit it is. It is extremely unlikely that the
initial generation will contain an individual that is fit enough, but if one is found then this is
returned and the run ends.

 ▪ The next generation is produced from the current one through innovation and conservation
operators. In GAs, crossover, mutation and reproduction are used. Individuals are selected to
be parents based on their fitness.

 ▪ The new generation is evaluated and, if no solution is found, the cycle begins again. A maxi-
mum number of generations is specified, which may be tens, hundreds or thousands, depend-
ing on the problem.

3.1.1 Representation
GA chromosomes are usually modelled as a sequence of bits, though other gene encodings have
been used as well, such as real numbers. The use of bit genomes is largely influenced by Holland [5],
who pioneered much early work in the field; in particular Holland’s Schema Theorem (§3.1.4, [5])
initially provided much of their theoretical underpinnings. In almost all cases, the mapping from
genotype to phenotype is a simple one.

The representation – the translation between problem and genome – is domain specific and can
be crucial to the success of a GA run. The encoding must be comprehensive enough to model
the problem adequately, but sufficiently restrictive to limit the search space to a manageable size.
Finding good encodings is “still an art” [3] and often depends on prior knowledge of the problem
domain. Unlike most evolutionary algorithms, GAs are domain independent, so for a wide variety
of problems “the genetic algorithm carries out its search by performing the same amazingly simple
operations” [6].

3.1.2 Fitness and selection
Each individual in the population is evaluated using a fitness function. This score determines the
chance each has of producing the next generation of solutions. Fitness-proportional (or roulette)
selection (again advocated by Holland [5]) is probably the most frequently used scheme for choos-
ing which candidates should become parents. The chance of an individual being selected is

 ∑ iii ffp /

p = probability, f = fitness, i = individual

A number of other selection methods have been designed, aiming to improve the fitness or variety
of the next generation of solutions. Three of the most commonly used are rank	and tournament	
selection	and elitism.

Evolutionary Algorithms Neutral Emergence and Coarse Graining Cellular Automata

16

 ▪ In rank selection, the population is sorted by fitness, with the least fit individual given a score of
1, the next a score of 2 and so on up to n. This score determines the each individual’s chance of
selection (from a total score of n × (n + 1) / 2), so fitter individuals are probabilistically selected
more frequently to reproduce.

 ▪ Tournament selection attempts to imitate rivalry between individuals in nature for the right
to mate. Individuals are chosen randomly to compete against each other and each candidate is
assigned a probability of winning based on its fitness. Selection pressure can be adjusted to give
the fittest individuals a greater or smaller chance of winning each tournament.

 ▪ An elitist scheme always copies the best individuals in the current generation into the new
population. This ensures that the fittest individual in the new generation is at least as good as
that in the previous one.

Both rank and tournament selection are relative methods. Since they do not rely on the absolute
fitness of individuals, they reduce the chance of one very fit individual coming to dominate the
population. These techniques can also help the population converge faster if the whole population
has roughly the same fitness.

3.1.3 Conservation and innovation
As with many EAs, conservation (reproduction) simply copies individuals from one generation to
the next. Not all GAs use reproduction, as solutions are usually not changed too radically by the
most commonly used innovation operators, crossover and mutation.

3.1.3.1 Crossover
Crossover mimics the sexual reproduction (recombination) of genetic material. The most frequent-
ly used version is single point crossover.

 ▪ Two chromosomes are chosen as parents using the selection policy

 ▪ One gene is chosen at random to be the crossover point

 ▪ The tails of the parents are switched after the crossover point, producing two new children

Multi-point (n-point) crossover works similarly, but here several genes along the length of both
candidates are selected as crossover points.

3.1.3.2 Mutation
Mutation asexually changes one individual only.

 ▪ A chromosome is selected for mutation

 ▪ A gene is chosen at random as the mutation start point

 ▪ The tail of the individual is replaced with randomly generated new genes

Neutral Emergence and Coarse Graining Cellular Automata Evolutionary Algorithms

17

Point mutation just mutates the selected gene, leaving the tail untouched.

3.1.4 Schemata
In almost any population there will be individuals with good characteristics, but it is unlikely that
these characteristics will all be found in the same chromosome. The aim of a GA run is to combine
these elements into one optimal individual. We now examine the theory behind how a GA accom-
plishes this often difficult task.

Suppose a pet food manufacturer has persuaded a cat to evaluate some new flavours of kitty chews.
The unique selling point for the new range is that it will comprise a blend of three different flavours,
but the company needs to find out which combinations taste the best. The options have already
been narrowed down by previous research, so the cat is to be presented with the following choices

Salmon 0 Egg custard 1

Tuna fillet 0 Vine tomato 1

Beef stroganoff 0 Jalapeño pepper 1

Figure 3.1 Kitty chew flavours.

Since the company will use a genetic algorithm to formulate new varieties, potential flavours have
been paired off into three pairs of alleles (possible values for that gene) and assigned a binary value.
So a kitty chew combining egg custard, tuna fillet and beef stroganoff would be denoted as 100.

The first four samples are presented to the cat for an objective succulence evaluation. These results
are then fed into the GA to formulate new flavour combinations for the next taste test.

Variety Genome Score
Salmon, vine tomato and jalapeño pepper 011 3

Salmon, tuna fillet and jalapeño pepper 001 5

Egg custard, tuna fillet and beef stroganoff 100 7

Egg custard, vine tomato and jalapeño pepper 111 1

Figure 3.2 Test kitty chew flavour combinations.

The most popular kitty chew is the third one, but no variety has scored a ten (and in general the
optimum value may not be known). The kitty chew compositions and ratings do not provide any
information about which of the ingredients were good or bad, but the population as a whole con-
tains additional hidden information that can be exploited.

One conjecture might be that egg custard is crucial to a kitty chew’s popularity. This hypothesis,
or schema, covers all chromosomes containing custard and is represented as 1** (* indicates don’t
care and matches 0 or 1). Similar schemata can be created for all other possible suppositions; these
schemata can be of differing length (order), from salmon, tomatoes and beef matter (010, order 3)
to nothing matters (***, order 0).

Evolutionary Algorithms Neutral Emergence and Coarse Graining Cellular Automata

18

It is possible to assign a fitness to each schema by averaging over its instances (individuals that use
the schema) in the current population

 ∑
∈

Sx

tSnxftSf ,/)(,ˆ

 tSf ,ˆ = schema fitness, f(x) = fitness of string x, n(S, t) = instances of schema S at time t

These schemata can be seen as competing with each other, their potential validity as expositions
being proportional to their fitness. Holland’s schema theorem [5] states that (for roulette selection)
the expected fecundity of a schema S	at time t	+ 1 will be proportional to its relative fitness (com-
pared to the population’s mean fitness)

)(
,ˆ

,1,
tf
tSf

tSntSnE

E(n(S, t + 1)) = expected instances of S at t + 1, tf = mean fitness of population at t

Note that, since the expected instances of a schema S	at time t	+ 1 is proportional to the number at
time t, schemata experience (approximately) exponential growth.1

The schema theorem suggests that GAs work by manipulating and combining these schemata as
whole units; in fact, the schema theorem assumes that there is no disruption to them at all during
a GA run. Crossover and mutation will inevitably destroy some schemata, but the impact can be
minimised if the mapping between the genotype and phenotype is carefully considered. By group-
ing the information within the chromosome pertaining to each phenotypic feature, there is a much
greater chance of this being passed on whole to the individual’s children.

3.2 A tension in evolution
Crossover is by far the dominant operator in GAs; typically “95% of operators [applied] are either
reproduction … or crossover” [3]. (Though it should be noted that some evolutionary algorithms,
such as evolutionary strategies [1, 7], often rely exclusively on mutation.) Mutation is essential to
explore novel areas of the search space and limit premature convergence, but it can be seriously
disruptive to the population as good adaptations tend to be lost in the noise. We have argued that
“[t]here is a tension between the need for innovation and conservation in GAs” [8].

Genetic programming (GP) [6] adopts many of the principles behind GAs and applies them to tree
structures. Unlike (most [9]) GAs, GP genomes can be of variable length. In addition to encoding

1 Spall [157] says that claims of exponential growth are “not fully justified”, noting that changes in the mean fitness can affect
the growth rate and that the Taylor series approximation associated with the mutation probability makes it only an approximation
(please see [5] for details).

Neutral Emergence and Coarse Graining Cellular Automata Evolutionary Algorithms

19

programs, this property has made GP useful in many other fields including modelling antennae
[10] and circuit design [11].

The problem of poor quality offspring is substantially accentuated in GP, since the progeny of non-
uniform crossover are rarely the same as their parents – even incestuous (self) reproduction usually
produces novel offspring – which tends to infuse a lot more variety in the population. In standard
GP, crossover has an “overwhelmingly negative” [2] impact on the fitness of offspring. Experiments
investigating crossover in different GP systems by Nordin and Banzhaf [12] and Teller [13] suggest
that 75% of children are less than half as fit as their parents. Further, only 10% of progeny were
fitter.2

3.3 Recombination as conservation
Nature goes to great lengths to prevent changes to the genetic code. There are more sequences that
code for the most abundant amino acids; this redundancy means that most transcription errors will
be neutral [14]. Much of the length of a DNA strand does not appear to have any function; it has
been suggested that this junk DNA exists to act as a buffer to prevent crucial information being
overwritten by mistake [3, 15].3

Almost all genetic exchange is homologous [3]. In homologous exchange, the locations where ge-
netic material is swapped are tightly controlled: exchange can only occur between nearly identical
DNA segments and only if the swap point means both are functionally identical too. The reason life
goes to these lengths is to preserve the function of genes – if a species relies on a particular protein,
it is critical that the ability to produce it is passed on to its progeny; an essentially random genetic
exchange is unlikely to preserve functionality. When large-scale changes (mutations) do occur they
are almost always lethal.

This is why disparate species such as the horse and finch should not mate [3], and nature deploys
a substantial arsenal of isolating barriers to prevent this happening. Characteristics evolved to pro-
mote isolation include habitat, seasonal or temporal avoidance, lack of sexual attraction, and hybrid
inviability or sterility [15].

Although genetic exchange is a source of variability, Watson et al. [16] argue that “recombina-
tion’s most vital function is probably the repair of damaged DNA.” Indeed the neutral theory of
evolution suggests that most adaptation (in large populations) happens through genetic drift, not

2 Nordin and Banzhaf looked at was symbolic regression using a polynomial, for which they attempted to evolve register machine
programs. Teller introduces PADO, a learning architecture for signal understanding whose “learning core is Genetic Programming”
[13]. An evolved PADO program is a directed graph “reminiscent of Turing machines and Finite State Automata” [13].

3 There is some evidence to support this. Pseudogenes (close analogues of genes) have been found in junk DNA [15]. Introns can
also build up dramatically towards the end of a GP run. It has been suggested that these structures evolve to reduce the chance of
good schemata being disrupted by crossover.

Evolutionary Algorithms Neutral Emergence and Coarse Graining Cellular Automata

20

selection [15]. The “highly influential” [15] Fisher model of adaptive evolution argues that species
develop through a series of small steps, gradually edging towards their adaptive optimum.

3.4 Recombination as innovation
The design of genetic algorithms is largely inspired by the structure and reproductive processes of
genetic material in eukaryotes: they have a linear genome, rely principally on crossover and allow
some mutation to introduce novelty. However, the makeup of a solution is not known at the start
of a GA run, and the fittest individual found is likely to be radically different from the (often ran-
domly generated) initial population.

So to give results in a reasonable timeframe, GA individuals must be able to evolve much more
quickly than nature does. There is a potential for conflict between reproduction in nature, which is
geared very much towards genetic stability, and the need for progress in a GA search. In EAs, there
is a conflict – or at least a trade off – between information retention and progress. Even within
GAs, there is tension between the need for mutation and crossover within GAs and their disruptive
effects on individuals.

There are obviously many caveats to this argument

 ▪ A GA is a simple abstraction of natural processes. In particular, much of the machinery and
structure that preserves the genome is discarded (diploidity (or higher), redundant coding, er-
ror checking mechanisms, etc.). Thus arguments for constraints on genome evolution may not
apply.

 ▪ A GA population need not be viable at all points during the search - an individual needs only to
be relatively fit within its generation, whereas life in the natural world must not only compete
with its peers but also survive in its environment.

 ▪ GAs are a valid and often effective search technique that can be successfully applied to a wide
range of problems.

It has been argued that the balance between innovation and conservation is not a trade off at all, but
rather an optimum value [17]. Certainly life would want to maintain a degree of change (assuming
it were possible to eliminate this entirely) and introducing a small degree of mutation to GAs is usu-
ally seen as beneficial, but we believe it is fair to argue this ‘optimum’ is merely the best compromise
available within the considered scope. It is surely the case that increasing innovation will help the
search progress more quickly; unfortunately, the search will tend to progress in the wrong direc-
tion as good information is lost. Similar arguments can be made about conservation. A new ‘oracle’
search technique that innovated quickly and correctly would outperform it consistently.

While trying to find such a technique would obviously prove as fruitless as the oracle would be
bountiful, it does raise the question as to whether a more efficient search technique – over a subset

Neutral Emergence and Coarse Graining Cellular Automata Evolutionary Algorithms

21

of interesting problems, free lunch caveats noted – could be developed using different, perhaps
developmental, paradigms. In the next few chapters, we explore some of the factors that may be
important in forming and constraining such ideas.

3.5 Key points
 ▪ Evolutionary algorithms are popular search and optimisation techniques usually inspired by the

biological processes of genetics and natural selection.

 ▪ Genetic algorithms, the most widely used EA, use a simplified model of genetic recombination
to find solutions. They are quite general and can be applied to many problems.

 ▪ There may be a tension in evolution between recombination as innovation and recombination
as conservation in evolution-inspired search techniques.

Evolutionary Algorithms Neutral Emergence and Coarse Graining Cellular Automata

22

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

23

4 NONLINEAR DYNAMICS
Dynamical systems are a key component of the questions we are trying to answer here. The next

chapter focuses on Chris Langton [18], who believes that computation and the dynamical behav-

iour of a system are one and the same. In the following chapter, Stuart Kauffman [17, 19] takes

these ideas further, suggesting that dynamical behaviour dictates a system’s capacity to adapt to

its environment, and its ability to adapt to itself (systems evolve to evolve). Finally, dynamical sys-

tems form a key part of neutral emergence (§9.9), and the robust systems advocated alongside.

Chaos and fractals are perhaps one of the best known (though least understood) branches of math-
ematics: James Gleick wrote a bestselling book [20] describing their discovery and development;
they are well established in the lexicon of newspapers, fiction and popular science; computer pro-
grams capable of rendering beautiful images are widely available. What is perhaps less well known
is how intimately these ideas related to almost every aspect of the world around us, including life
itself [17, 44, 45, 145, 146].

Chaos forms part of the field of dynamics, specifically nonlinear dynamics. Linear dynamical sys-
tems have long been used by physicists and others for modelling the world. But to create these
linear models it is often necessary to approximate and restrict, so calculations are only valid over a
short timespan or only account for the most common mode of behaviour. Nonlinear systems do
not intrinsically suffer from this deficiency. On the other hand, even complicated linear systems can
be solved; nonlinear systems, as a rule, cannot.

The adequacy of linear approximations varies dramatically with the application: both the weather
and the motion of planets in our solar system contain nonlinear components, but only in the
former do they dominate. Thus the position of Venus in six months’ time can be calculated with
some accuracy using equations as simple as Kepler’s laws [21], whereas predicting the weather even
six days ahead requires something analogous to a brute force attack by supercomputer. And Kepler
would have been dismissed long ago if his laws had as poor a record as that of weather forecasters.

The difficulty of applying traditional mathematical techniques to nonlinear problems has led to
an emphasis on modelling, iteration and geometric methods, producing some very interesting and
important results that – although not proved – have appreciably shifted perceptions in a number
of important areas [22].

4.1 Pendulum
One of best known examples of nonlinear system is the swinging pendulum. As it swings, the
pendulum charts a path through space. Since the rod is of fixed length, the weight’s motion can
be modelled one dimensionally. The (undamped) pendulum thus charts a path through position /
velocity space over time, governed by

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

24

0sin θθ

L
g

 θ = acceleration, θ = angle from (downward) vertical, g = acceleration due to gravity, L = length of pen-

dulum

Even simple dynamical systems such as the pendulum can exhibit qualitatively different – and
sometimes surprising – behaviour. One normally thinks of a pendulum as swinging back and forth,
but (by applying a bit more force) it is possible to get the weight to whirl over the top, or stop it
completely at the bottom of its swing. In theory (though not in practice) the pendulum can also sit
still vertically with the weight at the top.

Figure 4.1 Pendulum phase portrait plotting velocity against angle (from [22])

These different states correspond to the pertinent features shown in Figure 4.1. The pendulum is
oscillating when it flows around the circles (larger circles for bigger swings). When the pendulum
flies over the top it follows the wavy trajectories at the top and bottom of the picture. The solid dots
correspond to the weight hanging still at the bottom (all are actually the same point as the diagram
‘wraps’) – these are stable	fixed	points. The white dots are analogous to the pendulum standing verti-
cally upwards; they are unstable	fixed	points.

Figure 4.1 shows a non-dissipative system – no friction or other force acts on the weight to slow
it down, so the pendulum follows the same trajectory for eternity. Most real systems are of course
dissipative: the pendulum will eventually come to rest as energy is lost to the environment. In the
dissipative system Figure 4.2, the stable fixed points (point) have now become attractors with trajec-
tories spiralling into them from their basins	of	attraction. Basins of attraction surround stable fixed
points (and other attractors), inexorably drawing in any captured trajectories. Unstable fixed points
do not have a basin around them, so they can only be reached by following one specific trajectory
(out of the infinite possible ones).

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

25

Figure 4.2 Dissipative pendulum phase portrait (from [22])

4.2 Bifurcations
One of the reasons – perhaps the main reason – that dynamical systems are so interesting (not to
mention complicated, obscure and, in some cases, dangerous) is their propensity to change their
behaviour qualitatively. Consider placing a light weight on top of a beam. The beam will resist the
weight and remain straight. But if the small weight is replaced by a large one, the beam may buckle
to one side or the other. Here, by increasing the mass (by changing the system’s parameters), a
single stable situation has been replaced by two alternate stable states, and the original has become
unstable.

In general, fixed points can be created or destroyed, and their stability can change. These changes,
or bifurcations, come about as the system’s parameters are varied.1 Bifurcations come in a number of
forms with substantially different qualitative behaviour. The most common are summarised next.2

4.3 Saddle node bifurcation
A saddle	node	bifurcation (Figure 4.3 and Figure 4.4) is the “basic mechanism” [14] through which
fixed points are created or destroyed. As a parameter is varied, two points move towards each other,
collide and mutually annihilate. The effects of the node are apparent even after the saddle node has
vanished in the form of a ghost, a bottleneck region that develops around the former node’s location,
much like a basin surrounding a node (Figure 4.5). The ghost sucks in trajectories and delays them
before they proceed out the other side.

1 Though bifurcations represent a qualitative shift in system behaviour, they can be seen as part of a continuum within a higher
dimensional model.

2 Most of the diagrams in this section have been taken from [22]. Some have axes labelled as distance (x or θ) against velocity;
others use a more abstract x and y. These labels may be useful to interpreting the graphs but are not central to the points made here
– it is their qualitative shape that is important. A number show the effect of varying a system parameter r or μ which does alter the
graph qualitatively. This is remarked upon where appropriate.

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

26

Figure 4.3 Saddle node bifurcation. Bifurcation occurs as system parameter r is varied. When r = 0, the fixed point

is half-stable: it attracts from one side and repels from the other (from [22]).

Figure 4.4 Phase portrait of a saddle node bifurcation (including ghost) as parameter μ is changed (from [22]).

Figure 4.5 Graphs show velocity against position and position against time. The ghost (slowing speed θ almost to 0)

holds the system in one location θ for a substantial period of time (from [22]).

4.4 Transcritical bifurcation
In a transcritical	bifurcation	a fixed point exists for all parameter values, but the point may change
its stability. (Consider a simple population growth model, where 0 must always be a fixed point.)
In Figure 4.6 the unstable fixed point approaches the origin, coalesces with it forming a saddle
node, and finally emerges from the origin as a stable node. There has been an exchange of stabilities
between the two nodes.

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

27

a b

Figure 4.6 Transcritical bifurcation as parameter r is varied (from [22])

4.5 Pitchfork bifurcation
Pitchfork	bifurcations are common in systems with symmetry (Figure 4.7). (For example, the beam
above buckled to the left or right.) There are two types of pitchfork bifurcation: subcritical and su-
percritical. The bifurcation diagram for the supercritical case in Figure 4.8 shows a stable fixed point
becoming unstable and, at the same time, two new stable fixed points emerging from the origin (see
also Figure 4.9). In a subcritical system, the pitchfork is inverted and now unstable.

Note from Figure 4.8 (right) that no stable fixed points exist beyond the origin. In this case, higher
order terms in the system’s equations provide stability further out by turning around unstable
branches, in the process adding interesting dynamics, as jumps and hysteresis are now possible. The
system is no longer guaranteed to be reversible as the parameter is varied.

a b

Figure 4.7 Pitchfork bifurcation as r is altered (from [22]).

Figure 4.8 Supercritical (left) and subcritical (right) pitchfork bifurcations. Graphs show fixed points in x as r is varied

(from [22]).

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

28

Figure 4.9 Phase portrait of pitchfork bifurcation with changing μ (from [22]).

4.6 Hopf bifurcation
Unlike the other bifurcations seen so far, Hopf bifurcations exist only in two- and higher-dimen-
sional systems. As with the pitchfork bifurcation, there are two types of Hopf bifurcation: super-
critical and subcritical. Suppose a system relaxes to equilibrium through damped oscillations and
that the rate of decay is controlled by a parameter μ. As μ is increased, decay becomes slower and
slower until it passes through a critical value μc, at which point the decay changes to growth and
the equilibrium loses stability. The system has undergone a supercritical Hopf bifurcation (Figure
4.11). Often systems switch to a small-amplitude sinusoidal limit cycle, shown in Figure 4.10.

Figure 4.10 System behaviour switches from decay to growth after a supercritical Hopf bifurcation (from [22]).

Figure 4.11 Supercritical Hopf bifurcation at μ = 0 (from [22])

Subcritical Hopf bifurcations are “always much more dramatic, and potentially dangerous in engi-
neering applications” [22]. The bifurcation occurs when an unstable cycle tightens around a stable
fixed point, causing it to become unstable. Trajectories within its area of influence must then jump
to a distant attractor (Figure 4.12). Note that the system experiences hysteresis: once trajectories
have moved to distant attractors they will not return when μ	is reduced.

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

29

Figure 4.12 Subcritical Hopf bifurcation (from [22])

4.7 Linear analysis
Though they generally offer a poor facsimile of a system’s true performance, linear approximations
can usefully be applied to small windows of behaviour or to discern salient system features. These
approximations then allow powerful linear techniques to be applied to the model, for example
constructing a phase portrait of the system from its eigenvectors and eigenvalues. (This summary is
adapted from [22]. For a more detailed explanation, see e.g. [23].)

The eigenvalues of a matrix A are given by the characteristic equation det(A – λI) = 0 (I is the iden-
tity matrix). For a 2 × 2 matrix

dc
ba

The characteristic equation is

det

−

−
λ

λ
dc
ba

= 0

The determinant is therefore

λ2 - τλ + Δ

where

τ = trace(A) = a + d

Δ = det(A) = ad – bc

The qualitative structure of fixed points can be classified through the trace τ and determinant Δ.

 ▪ If Δ < 0, the eigenvalues are real and have opposite signs; the fixed point is a saddle. Trajectories
approach the node at a tangent to the slow eigendirection (direction of eigenvector with the
smaller eigenvalue; see Figure 4.13).

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

30

Figure 4.13 Saddle node (from [22])

 ▪ If Δ > 0 and τ 2 – 4Δ > 0 the point will be a node. Alternatively, if Δ > 0 and τ 2 – 4Δ < 0, it will
be a spiral or centre (Figure 4.14). Stability of the nodes and spirals is determined by τ. When
τ < 0 the fixed point is stable; otherwise when τ > 0 it is unstable (if τ = 0 the point is a star).
Stars and centres are comparatively rare borderline cases,3 though centres are commonly found
in non-dissipative mechanical systems.

Figure 4.14 Star, centre and two other nodes for comparison (from [22])

In nonlinear systems it is also possible to have limit cycles. Similarly to fixed points, limit cycles can
be stable (attracting), unstable and – in rare cases – half-stable (attracting from one side and repel-
ling from the other; see Figure 4.15). Unlike a periodic solution, a limit cycle is isolated: neighbour-
ing trajectories aren’t closed. Limit cycles pervade the world around us (and indeed within us): the
beating of a heart; the hormone levels in the body; yeast metabolic cycles [24]; or the (dangerous)
self-excited oscillations of bridges [25, 26]. These systems have a preferred period, waveform and
amplitude, and when perturbed slightly they will always resume their original cycle.

3 Such instances can be difficult to discern through linear analysis as the approximation often distorts the phase space, turning,
for example, a centre into a spiral.

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

31

Figure 4.15 Limit cycles (from [22])

4.8 Phase portrait stability
Two systems are topologically equivalent if one is a distorted version of the other: bending and
warping are allowed, but ripping is not (e.g. so closed orbits remain closed). A phase portrait is
structurally stable if its topology cannot be changed by an arbitrarily small perturbation to its vec-
tor field. Stars and centres do not have stable phase portraits: they are perched on the edge between
stability and instability. Applying numerical techniques or linearisations to them will distort the
phase space and can give misleading results.

4.9 Nullclines
Though it is obviously impossible to determine the whole phase portrait of a nonlinear system from
a handful of eigenvectors, linearising around the fixed points often reveals a large amount of local
structural information that allows much of the system’s flow pattern to be sketched by ‘joining the
dots’, particularly if combined with nullcline information.

Nullclines are defined as the curves where x = 0 or y = 0 – they demark lines where the flow is
purely horizontal or vertical and partition the plane into regions where x and y have different signs.
Figure 4.16 shows diagram with nullclines drawn and some sample flow vectors; next to this is a
computer generated image of the system.

Figure 4.16 Nullclines and a few flow arrows can often give a good indication of the phase portrait (from [22]).

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

32

4.10 Higher dimensional systems
The models considered so far have all been one- or two-dimensional. In three dimensions, systems
suddenly become capable of exhibiting complex and unpredictable dynamics that are qualitatively
different from those seen so far. The first – and arguably most famous – example of a higher dimen-
sional system is due to Lorenz [27]. Searching for an abstract model of weather, Lorenz came up
with three simple, interlinked equations that satisfied his brief; these are more commonly presented
today through an equivalent model known as the Lorenz waterwheel [28].

bzxyz
xzyrxy

xyx

−
−−

−

)(σ

In the Lorenz equations σ, r, b are parameters. σ is the Prandtl number, r the Rayleigh number and
b has no name. Lorenz originally derived his equations from fluid dynamics, hence the constants,
though their genesis is not important to the model, particularly when abstracted away from its
meteorological origins.

4.10.1 Lorenz waterwheel
The waterwheel has a number of leaky cups on its rim. Water is poured in from above at a steady
rate. When the flow is slow, the top cups never fill up enough to overcome friction and the wheel
remains stationary. If the inflow is increased to a certain point, the additional weight of the top cups
starts the wheel turning, and the system settles into a steady rotation in one direction (depending
on initial conditions). But if the rate of flow is increased further, this steady rotation is disrupted
and the wheel’s motion becomes chaotic: it first rotates one way for a few iterations, then some of
the cups get too full and it swings pendulously back in the other direction. The wheel keeps on
changing direction erratically, exhibiting an irregular sequence of reversals such as in Figure 4.17.

Figure 4.17 Velocity of chaotic waterwheel over time. Note irregular switchbacks (from [22]).

The Lorenz equations are dissipative (in fact they are highly dissipative [22]). For low rates of water
flow (low r in Figure 4.18), trajectories end at a fixed point (the stationary wheel). As the rate is ad-
justed, the fixed point undergoes supercritical pitchfork bifurcation at r = 1 to a limit cycle (steady
rotation, Lorenz called these states C+ and C-, shown in Figure 4.18). When flow is increased fur-

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

33

ther, each branch of the pitchfork experiences a further change, but this time the pitchfork bifurca-
tions are subcritical – there are no stable points beyond this transition.

Figure 4.18 Bifurcation diagram of Lorenz waterwheel as flow rate is increased (from [22]).

4.10.2 Lorenz attractor
Since the equations are dissipative, in the limit all trajectories must be confined to a bounded set
of zero volume. Yet despite this they manage to move forever without intersecting or approaching
a point attractor or limit cycle. This apparently contradictory state of affairs is possible because the
attractor exists in three dimensions. A trajectory on the attractor can coil in until it is close to the
centre of the spiral and then ‘hop’ out again to the edge to begin the process again. This is perhaps
most clearly shown by the Rössler attractor (Figure 4.19).

Figure 4.19 Rössler attractor (from [29])

When Lorenz plotted his equations against each other he found the infamous butterfly shape in
Figure 4.20; here trajectories spiral outwards on one cycle before jumping to the other (equivalent

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

34

to reversing the waterwheel’s oscillations). The lines in the diagram only appear to cross because of
the 2D depiction here; the attractor’s dimensionality has been estimated at about 2.05. Though the
Lorenz attractor has zero volume, due to its fractal structure it has an infinite surface area [22, 30].

Figure 4.20 Lorenz attractor (from [31])

4.10.3 Lorenz map
Though it seems impossible to guess the state of the system far into the future, the short term be-
haviour of the attractor looks more predictable. The trajectory appears to have to reach a certain
distance out before it jumps to the other spiral. Also, if the trajectory spirals right out to the edge of
one loop, it will end up near the centre of the other and spend longer cycling round before jump-
ing again. Lorenz noticed these points too, and hypothesised that zn (the nth value of the variable z)
should predict zn + 1. He plotted the values of zn against zn + 1 and found that they fell neatly on a
curve, with almost no thickness to the graph (Figure 4.21). In this way, Lorenz was able to extract
substantial order from chaos.

Figure 4.21 Lorenz map (from [22])

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

35

4.10.4 Divergence of trajectories
Lorenz found that motion on the attractor shows a sensitive dependence on initial conditions. This
means that trajectories started arbitrarily close to each other will rapidly diverge and eventually
spread over the entire attractor’s surface. Numerical studies have shown that

|δ(t)| ~ |δ0|e
λt

δ is the initial separation of the trajectories. λ is the Lyapunov	exponent	of the system, the slope of
the graph of ln|δ| against t in Figure 4.22. In this case, λ is calculated to be 0.9.

Figure 4.22 Estimating the Lyapunov exponent (from [22])

The positive Lyapunov exponent means that neighbouring trajectories separate exponentially quick-
ly. The implications of this are substantial; in particular it is impossible to predict the long term
behaviour of a system that contains a strange attractor (an attractor that shows sensitive dependence
on initial conditions) such as Lorenz’s [22, 32]. Any measurement will inevitably be subject to some
error, and because of the exponential rate of divergence, this error – however small – will prevent
long term forecasting with any degree of accuracy. Strogatz [22] notes that a millionfold improve-
ment in measurement quality only affords prediction for 2.5 times longer.

4.11 Chaos in discrete systems
Perhaps surprisingly, chaotic behaviour can also be found in some discrete dynamical systems. By
far the most commonly studied examples are iterated maps, such as xn+1 = cos xn. The discreteness in
the model comes from employing fixed timesteps; the function values still range over the (continu-
ous) real numbers. In an iterated map, the sequence of points x0, x1, x2… describes the orbit starting
from x0. These maps have proved useful in analysing differential equations; modelling phenomena
including digital electronics, parts of economics and finance theory; and modelling populations in
which generations don’t overlap.

As with their continuous counterparts, discrete systems have fixed points. Again these can be stable
or unstable: their stability is determined by considering a point close by and seeing if it is repelled.
The map of cos xn has a single stable fixed point at 0.739… – no matter what initial value is used,
the plot approaches this value over time. Maps are often illustrated using cobweb diagrams, such as
Figure 4.23, which show the path taken over successive iterations of the plot.

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

36

Figure 4.23 A cobweb diagram for cos xn (from [22])

4.12 Bifurcation diagrams
For a rather more interesting plot, consider the cobweb diagram for the logistic map xn+1 = rxn (1 xn).
This is often used as a simple model of population growth. When r < 1, the plot always goes to
0; in the range 1 < r < 3, the graph settles to a steady value. For larger values of r, say r = 3.3, the
population builds up as before but then oscillates alternately between two population sizes. If r is
increased still further (e.g. r = 3.5), the cycle bifurcates again into one that repeats every four genera-
tions. These period doublings continue, arriving faster and faster until, at about r = 3.569946, the
map becomes chaotic. Figure 4.24 shows the progress from a single fixed point to chaos visually.
Interestingly, the behaviour doesn’t remain chaotic forever: a stable period 3 cycle begins at around
r = 3.83 (which itself bifurcates and, amazingly, contains a copy of the entire diagram in miniature).

Figure 4.24 Typical iterated map bifurcation diagram showing value(s) taken by x after converging for increasing r

(adapted from [33]).

Plotting the bifurcation diagrams of a number of iterated maps shows a surprising degree of cor-
respondence: there are quantitative differences, but qualitatively the graphs are very similar. In fact,
a number of universal characteristics have been found in these maps

Neutral Emergence and Coarse Graining Cellular Automata Nonlinear Dynamics

37

 ▪ A unique series, the U-sequence, dictates the order in which stable periodic solutions will appear,
independent of the map being iterated. “This amazing result implies that the algebraic form of
f (x) is irrelevant; only its overall shape matters” [22].

 ▪ Feigenbaum [34] discovered a relationship between consecutive values of rn, the value at which
a period 2n cycle first occurs. He noticed that rn converged between successive transitions,
shrinking by a constant factor of about 4.669. The same convergence rate appears no matter
what unimodal map is iterated. This value δ is a new mathematical constant, “as basic to period-
doubling as π is to circles” [22]. Results from fluid convection and nonlinear electronics appear
to support Feigenbaum’s value for δ [35].

4.13 Key points
 ▪ Nonlinear dynamics is a powerful paradigm for modelling physical systems. Subsequent sec-

tions will show it to be equally potent at describing computation, chemical systems and life.

 ▪ With few exceptions, nonlinear systems cannot be solved analytically, so simulation is often
used. That said, linear analysis can be applied to discover key elements of a system’s structure.

 ▪ Systems can experience bifurcations, qualitative shifts in system behaviour.

 ▪ The system dimension determines the types of behaviour it can exhibit. Systems in three or
more dimensions can have chaotic dynamics. The most famous example of this is the Lorenz
attractor.

 ▪ Discrete systems are also capable of displaying chaotic dynamics. The bifurcation diagram for
all such systems is qualitatively the same.

 ▪ Chaotic systems have a sensitivity to initial conditions, which makes it impossible to predict
their behaviour in the long term.

Nonlinear Dynamics Neutral Emergence and Coarse Graining Cellular Automata

38

Neutral Emergence and Coarse Graining Cellular Automata Computation as a Dynamical System

39

5 COMPUTATION AS A DYNAMICAL
SYSTEM
Nature has shown great resourcefulness in solving apparently intractable problems: photosynthesis,

flocking, sex and the genetic code are great examples. We have shown a similarly great aptitude

in copying (or trying to copy) nature’s ingenuity to solve our own problems. But the emphasis is

almost invariably on understanding each specific case, not the general process. Langton’s work on

cellular automata, reviewed in this chapter, provides a crucial bridge connecting computation and

the real world. He suggests that there is a strong analogy between computation and the dynamical

behaviour of a system, and that ideas and analyses from each can be applied to the other. Among

his most important findings are a number of dynamical properties that a system must have in or-

der to support computation; the next chapter describes how Kauffman extends these to evolution.

One body of work that has shaped the field of artificial life like few others is due to Chris Langton
[18]. He posed the question: “Where does computation – especially universal computation – fit
in the spectrum of behaviours exhibited by dynamical systems?” A single computation maps a
machine from its current state to its next state in the following timestep. Following a sequence of
steps, the system charts a path through space and time – this is the dynamical behaviour of system.

5.1 The λ parameter
Cellular automata (CAs) are known to support computation; indeed a few examples (most notably
Conway’s Life ([36], cited in [18]) have been shown to have equivalent power to a Turing machine.
Wolfram [37] has claimed that CA behaviour falls into four broad classes: homogeneous fixed
point; heterogeneous fixed point or short period; chaotic; and complex, often with long transients.
(See §2.5-§2.7 for more on these classes.)

Langton defined a number of parameters to quantify CA behaviour and exposed “what appears to
be the ‘deep-structure’ of CA rule space” [18]. The most famous parameter is λ, the proportion of
transitions from all of a CA’s states that end up in a defined, though arbitrary, quiescent state. (The
quiescent state is one of the CA’s possible states. So for a binary CA that has states □ and ■, □ may
be designated as the quiescent state.) Langton uses λ as a baseline against which to measure various
phenomena; perhaps most significantly he has shown that the most complex behaviour – including
that exhibiting universal computation – occurs in a narrow λ-region between the periodic and cha-
otic regimes. Typical CA dynamical patterns in this region involves a high degree of repetition, but
also branching out into long (sometimes infinitely long) excursions, with strong local and global
structure. Conway’s Life is located in this area.

Computation as a Dynamical System Neutral Emergence and Coarse Graining Cellular Automata

40

5.2 A phase transition
There appears to be a phase transition between the periodic and chaotic regimes: periodic behaviour
has low values of λ (the solid regime) and chaotic behaviour high values of λ (gas phase), with com-
plex CAs straddling the gap (the narrow liquid region). Langton suggests that these liquid boundary
states can be viewed as complex phenomena, where the long transients found in this region seem to
be result of the critical slowing down observed at second order phase transitions in physical systems
[22, 147, 148, 149, 150, 151, 152, 153, 154]. This similarity is significant because techniques used
to study phase transitions in physical systems can be applied to computation, and because infor-
mation processing may be an important factor in dynamics of physical systems in the vicinity of a
phase transition – computation may emerge spontaneously at the edge of chaos.

Langton [18] reports that the average transition value of λ appears “fairly insensitive” to the number
of states a CA has but “highly sensitive” to the number of neighbours. The insensitivity to the
number of states is perhaps not surprising as λ is a relative measure over CA states. The large state
limit has been studied by Langton and Wootters (reported in [18 p. 75]) through a state stochastic
CA, which probabilistically approximates an infinite number of states. They found a “very sharp,
second-order phase transition” [18] at λc: as the number of states increases, “the distribution around
the transition point shrinks” [18]. Sensitivity to the number of neighbours reflects the change in
connectivity of the lattice, a result that has also been reported in percolation theory [18, 38] and
random Boolean networks (§6.2, [17]).

Langton also examined other measures of CA behaviour. As well as corroborating his existing re-
sults, they provide important additional insight into the system dynamics. Three are examined next.

5.3 Correlation
If cells are to cooperate, they must be able to influence each other’s behaviour in some manner. In
other words, it must be possible to find correlations between events taking place in each cell. Mu-
tual information, defined as the cells’ joint conditional probabilities, is at a maximum when cells are
perfectly correlated, and 0 when they are completely independent. (Mutual information is intro-
duced in §7.7.) Langton measures mutual information through the degree to which the changes in
two cells mimic each other: if they behave identically then they are perfectly correlated. A similar
phase transition can be seen in these data as well: the mutual information is essentially zero below
the jump, then shifts to a “moderate value” [18] before slowly decaying as λ continues to increase
(Figure 5.1). Langton attributes this decaying tail to an approach to “effectively random dynamics.
The lack of correlation … at high λ values means that cells are acting as if they were independent of
each other, even though they are causally connected” [18].

Even at the transition, the mutual information between cells is significantly below the maximum
possible (I = 1). To support computation, Langton suggests, cells must exhibit the right degree of

Neutral Emergence and Coarse Graining Cellular Automata Computation as a Dynamical System

41

correlation. If cells are overly dependent they will simply mimic each other; if they are excessively
independent they will ignore each other. Neither of these regimes is amenable to cooperative be-
haviour: there must be what Langton terms a meaningful signal between the cells. With too little
correlation, there will be no common code; with too much correlation, there will be nothing to
communicate.

Figure 5.1 Phase transition seen plotting mutual information (correlation) I against λ. As the transition λ value varied

slightly between experiments, Langton lined up the plots at this point (Δλ = 0) to emphasise the similar shape taken

by all of the graphs (from [18]).

5.4 Growth dimension
One measure of a CA’s capacity to propagate information is its growth dimension, the rate at which
perturbations spread through a CA exhibiting ‘typical’ behaviour. CA structure means that pertur-
bations can spread a maximum one unit per timestep (Langton adopts a neighbourhood of radius
one; see §2 for an introduction to CAs). With this in mind, the growth dimension is defined based
on the new region affected – the maximum growth dimension on a square grid CA will be 2 (a
complete new square of cells is added around the perturbed area at each timestep).

Langton remarks [18] that the growth dimension is qualitatively similar to Lyapunov exponents
(§4.10.4); indeed, its sign and value provide the same information as the largest Lyapunov expo-
nent in continuous dynamical systems. In fixed point systems, perturbations will shrink and finally
disappear; here the growth dimension is negative. Disturbances to periodic CAs will spread to a
finite size (tending to zero growth) as with periodic dynamical systems. Chaotic CAs and dynami-
cal systems both have positive Lyapunov exponents; the typical growth dimension of a chaotic CA
is close to 2.

The most interesting CA behaviour is found in the region with a growth dimension greater than 0
but less than 2. Here there is a slow but positive spread of perturbations. Disturbances often extend
through propagating, quasi-periodic structures, allowing perturbations to carry signals over long

Computation as a Dynamical System Neutral Emergence and Coarse Graining Cellular Automata

42

distances without generating excess noise. Again there appears to be a phase transition between the
fixed and chaotic regimes, with the CAs with the most interesting dynamics straddling the bound-
ary.

5.5 Length of transients
Langton proposes that “another discriminator of complex behaviour is the length of time it takes a
system to settle down to ‘typical behaviour’ following a perturbation” [18]. Fixed point and periodic
systems typically have short-lived (and spatially limited) transients. In particular, transient length
is independent of the system size. In fully chaotic systems, perturbations are “quickly randomised,
and local regions cannot ‘feel’ the size of the system” [18]. They rapidly resume ‘typical’ random
behaviour, again independent of system size. In contrast, complex systems can exhibit very long –
even effectively infinite – transients (obviously dependent on system size), which is “of fundamental
importance” [18] for supporting computational dynamics. See Figure 5.2.

Figure 5.2 Phase transition seen plotting length of transients T against λ. Again, Langton has aligned the graphs at the

transition point Δλ = 0 (from [18]).

Langton’s assertion that the transients in chaotic systems are quickly absorbed into the general mêlée
of interactions takes a similar position to that adopted in statistical mechanics (indeed he draws this
analogy himself). But such a perturbation to a chaotic system can cause (is almost guaranteed to
cause) substantial changes at the cell level and at a macro scale. Seen from a different perspective, it
may be that these dynamics – which are not random – reveal interesting structure or other informa-
tion about systems (though we do not claim to know what). Kauffman has asserted that statistical
mechanics is inadequate for describing the behaviour of biological systems (§6.2, [17]), and that a
different language is needed to describe their behaviour. It may be that this behaviour, viewed with
the tools of a new statistical mechanics, is not so random after all.

Neutral Emergence and Coarse Graining Cellular Automata Computation as a Dynamical System

43

5.6 Key points
 ▪ Computation can be viewed as a dynamical system, and significant insight can be gained by

applying techniques developed for each to the other.

 ▪ The most interesting dynamic behaviour is found in a narrow liquid region at the phase tran-
sition between ordered (solid) and chaotic (gaseous) behaviour. Systems capable of universal
computation are located here. For CAs, the liquid region can be found at approximately the
same value of λ.

 ▪ Other measures that appear conducive to creating a complex, cooperating system capable of
exhibiting order at local and global levels (such as a universal computer or life) are also maximal
in the liquid region, including cell correlation, length of transients on perturbation and the
growth dimension of perturbations.

Computation as a Dynamical System Neutral Emergence and Coarse Graining Cellular Automata

44

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

45

6 NK LANDSCAPES AND RANDOM
BOOLEAN NETWORKS
The importance of understanding landscape structure in search has already been stressed. Kauff-

man’s NK landscapes were specifically designed as tuneable structures, able to explore how a

system’s capability to adapt is affected by greater epistasis. (The original motivation was to model

adaptation in protein space.) It turns out, as might be expected, that increased coupling gives a

more rugged fitness landscape, but many of the results Kauffman uncovers through this thorough

analysis are more subtle than that. He presents interesting findings that show a limited degree of

coupling (i.e. not a completely smooth landscape) gives better results than no epistasis. He also

argues for tuning the search process to match the landscape, holding out the tantalising possibility

of optimising for both conservation and innovation (§3.2-§3.4).

The second part of this chapter gives an overview of random Boolean networks, which Kauffman

introduces as a paradigm for biological systems equivalent to statistical mechanics for ideal gases.

These networks are capable of exhibiting a surprising degree of order (and robustness) despite

many aspects of their construction being essentially random. Kauffman also demonstrates a transi-

tion from ordered to chaotic behaviour that mirrors the move from smooth to rugged landscapes

and argues, like Langton, that systems capable of the most complex behaviour are poised on the

edge of chaos. He further contends that there are significant dynamical constraints on evolvability,

and that systems on the edge of chaos are best able to evolve.

6.1 The NK model
In search, hillclimbing over a fitness landscape is hardly a new concept, having been introduced by
Wright in 1931 [39]. Yet it is this apparently trivial model that Kauffman chooses to investigate
through his NK model [17 p. 40, 19]. Many aspects of the NK model are conventional (Kauffman
relates that the NK model is actually a form of spin-glass [17 p. 43]). Each entity (or genome)
comprises N parts (or genes), and the genome’s overall fitness is simply calculated from these con-
stituents. K reflects how coupled the system is – it measures the richness of the epistatic interactions
within the genome.

 ▪ When K = 0, the fitness of the genotype is simply the sum of the N genes’ independent fitness
contributions (divided by N).

 ▪ When K > 0, the fitness contribution of each gene is calculated from its own fitness and the
contributions of K other loci. Schemes have been proposed for modelling epistasis, one of the
most common being to multiply the genes’ fitness scores. Kauffman argues this is too simplistic

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

46

to account adequately for the “complex web” [17] of interactions – one cannot know, a	priori,
which allele combinations will have the highest fitness, or how any change will affect the over-
all fitness. He suggests we therefore admit our “total ignorance” [17] and simply assign fitness
values at random. The fitness of each gene depends on itself and K other genes, each gene has
2K + 1 possible fitness scores. These are summed and normalised as before to give the genome’s
overall fitness.

The ruggedness of the fitness landscape varies as N and K are altered. Many properties of the land-
scapes “appear to be surprisingly robust and depend almost exclusively upon N and K alone” [17].
Kauffman considers several classes of NK landscape model which are reviewed next.

6.1.1 K = 0 landscapes
There is a single global optimum, and all suboptimal genotypes can climb towards fitter neighbours
(indeed all points lie on a connected path to the global optimum). The landscape is very smooth
since all one mutant neighbours (by changing one gene to a different allele) have nearly same fit-
ness. Structurally, the landscape is highly correlated – the fitness of one mutant neighbours cannot
differ by more than 1/N. The average walk length to the global optimum increases linearly with N.

6.1.2 K = N - 1 landscapes
These are effectively random terrains – the landscape is entirely uncorrelated. There are very many
local optima, in fact the number of local optima increases almost as rapidly as the number of geno-
types 2N (see [17 pp. 46-54] for details). To see how easy it is to search the landscape, Kauffman
assumes a rank ordering over the genotypes. As the landscape is uncorrelated, each fitter neighbour
found will be, on average, half way to the top of the rank order. Thus it follows that the expected
fraction of fitter one mutant neighbours dwindles by half on each improvement step. Similarly,
Kauffman has established that walks to local optima are very short ([40] cited in [17]) – their length
increases only logarithmically with N. For these reasons, any given genotype can only climb to a
small fraction of the local optima, and only a small fraction of the genotypes can climb to any one
optimum.

The incredibly complex web of constraints present in these models means that the best mutual allele
choices tend to become poorer overall as the number of genes N increases. Accessible optima dwin-
dle in height, down towards the average fitness for the genotype space. In other words, there is an
inexorable move towards adaptive walks terminating on poorer solutions as N increases. Kauffman
believes this to be “a genuinely fundamental constraint facing adaptive evolution” [17].

“As	systems	with	many	parts	increase	both	the	number	of	those	parts	and	the	richness	of	interac-
tions	among	the	parts,	it	is	typical	that	the	number	of	conflicting	constraints	among	the	parts	
increases	rapidly.	Those	conflicting	constrains	imply	that	optimisation	can	attain	only	ever	poorer	
compromises.	No	matter	how	 strong	 selection	may	be,	adaptive	processes	 cannot	 climb	higher	

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

47

peaks	 than	 afforded	 by	 the	 fitness	 landscape.	 That	 is,	 this	 limitation	 cannot	 be	 overcome	 by	
stronger	selection.”	[17]

In the K = N – 1 case the fitness increases with N, but ever more slowly as N rises. If the cost is
constant per locus, there comes a point beyond which growing N is no longer beneficial to the
organism. This complexity	catastrophe, Kauffman argues, is a general property of complex systems.

6.1.3 Tuneable NK landscapes
NK landscapes were actually invented to explore the region in between the two extremes already
covered, and Kauffman devotes most time to this topic [17 pp. 54-60]. Mean fitness results over
a range of K and N show that the complexity catastrophe kicks in as K is increased towards N
(for various N), causing the final fitness attained by search to drop towards the landscape mean.
Kauffman suggests that there are in fact two different regimes within the NK family: one in which
optima remain high (when K is small relative to N); and one (for large K) in which the complexity
catastrophe makes itself known. As previously reported, the fraction of fitter neighbours dwindles
slowly when K = 0, and reduces logarithmically when K = N – 1. However, the move between these
two extremes is quicker than might be expected: as early as K = 2 the fall in fitter neighbours is ap-
proximately log linear, suggesting that ruggedness is a general feature of even quite highly correlated
landscapes.

Interestingly, the fitness of optima found for small values of K is actually higher than for K = 0 –
“low levels of epistatic interaction appear to buckle the landscape … and yield fitter optima” [17]
before falling again as K approaches N. Another significant result shows that, if N is increased for
constant K, landscapes retain good accessible local optima. This, Kauffman suggests, “is a first hint
of something like a construction requirement to make complex systems with many interacting parts
which remain perfectible by mutation and selection. Each part should directly impinge on rather
few other parts” [17].

Some of the most interesting results Kauffman relates pertain to non-local properties of NK land-
scapes. These are reviewed next.

6.1.3.1 A Massif Central
A surprising feature of low K landscapes is the existence of a ‘Massif Central’ [17 p. 60]: local op-
tima are not distributed randomly in the genotype space but are found close to each other. In short,
the fitness landscape exhibits global structure. Kauffman calculates this by measuring the Hamming
distance between genotypes (how similar their alleles are). Figure 6.1 demonstrates the link between
fitness and similarity of genotype. The plots show fitness against Hamming distance from the fittest
local optimum found.

The distribution of basin sizes surrounding optima can be very non uniform as well: for small K,
there is a tendency for the highest optima to have the largest basins. Combined with the global

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

48

structure of peak distribution, this “implies that one high local optimum has information about
where other good local optima are. And further, the region between two high local optima is a good
area to search for still higher local optima” [17]. As K increases relative to N, the tendency for the
highest optima to have the largest basins decreases, though some do still persist.

Figure 6.1 Examples of Massif Central. Diagrams show correlation between fitness and hamming distance (from

[17]).

6.1.3.2 Correlation structure
As previously discussed, Kauffman defines a landscape as correlated if nearby locations have similar
fitness values. By applying the autocorrelation function to measure correlation structure of NK
landscapes, Weinberger ([41], cited in [17 p. 63]) conducted a series of experiments starting with
an arbitrary genotype and then walking randomly across its surface via one mutant neighbours.

For each value of K, Weinberger showed an (initial) exponential drop in the autocorrelation with
increasing (mutation) distance between genotypes – there is a natural correlation distance for each
landscape. He also demonstrated an inverse relationship between K and autocorrelation, so geno-
types a certain mutation distance apart will be less correlated when K is high.

6.1.4 Long jump adaptation
Kauffman and Levin ([40], cited in [17 pp. 69-75]) investigated whether a population could adapt
successfully by making long jumps across the NK sequence space (landscape). (Though it is not
clear what step length constitutes a long jump – analysis of NK landscape structure reveals hills
residing on the side of hills, so a jump may be random with respect to one scale but not another.)
They found a “near-universal law” [17], equivalent to Feller’s theory of records [42], which states
that the time taken to find each subsequent fitter solution doubles. “The critical idea is that if the
searcher jumps beyond the correlation lengths of the space, then whether or not the landscape is
correlated, the searcher is encountering a fully uncorrelated random landscape” [17]. On an uncor-
related landscape one expects each fitter solution found to be (on average) halfway between the rank
order of the present solution and the optimum solution. With each move, the proportion of points
that remain fitter halves, so (sampling randomly) it will take twice as long to find one of them.

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

49

Kauffman and Levin ([40], cited in [17]) found three adaptation timescales on rugged landscapes.
Early in the acclimatisation process fitter variants near a poor solution are easy to find, but tend to
be unfit themselves due to correlation within the landscape. Good distant solutions are also easy to
find, and these tend to be the best choice as they are beyond the landscape’s correlation distance.
But after undertaking a few such long jumps, the theory of records kicks in and it becomes more
efficient to search locally (within the correlation distance) for fitter solutions. The third stage takes
place once the search has reached a local peak, when the search must once again try to find a better
hillside some distance away (this obviously has a low success rate as the search tries to find a fitter
value effectively at random). It is worth noting the similarity between this and simulated annealing,
though the latter classically comprises only the first two steps.

6.1.5 Von Baer’s laws, the Cambrian explosion and Permian quiescence
In well established lineages, most notably vertebrates, the early embryos of many species are more
similar to each other than later stage embryos. Nascent fish, chickens and humans all look remark-
ably similar; embryonic humans (and other animals) develop gill slit-like features during develop-
ment. These are von Baer’s laws. The traditional explanation for this verity is that early stage changes
are much more disruptive than those affecting later ontogeny, so mutants are much less likely to
survive.

Kauffman posits that this explanation is not entirely plausible: is it really reasonable to believe that
“over a time span of 600 million years, no beneficial mutants affecting early embryos should have
arisen?” [40] Using Wimsatt’s [43] idea of generative entrenchment (that early stage mutations
cause many alterations and have more impact on development), he argues that early mutants adapt
on highly uncorrelated landscapes, whereas later mutants evolve on much more correlated terrain.
Thus more nascent changes are stifled by the complexity catastrophe, whereas later alterations re-
main relatively untroubled.

Kauffman advances related arguments to explain the vastly different paths life took during the
Cambrian explosion and after the (later) Permian extinction. All of the major phyla in existence
today were created, almost overnight, during the Cambrian explosion (in fact there may have been
100 phyla compared to around 30 seen today). The taxonomic tree was filled top down, with
organisms first establishing phyla before filling in the lower levels. In contrast, after the Permian
extinction (during which 96% of species disappeared) there is a rapid increase in species at the lower
taxonomic levels, but no new phyla are created.

If one assumes that early organisms were less fit, it would have been relatively easy for life to make
long jumps across a rugged fitness landscape and still find viable forms. But during the later Per-
mian quiescence, it is likely that species suffering such random changes would be less fit and quickly
become extinct.

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

50

6.1.6 The error catastrophe
Even on smooth landscapes, there is a “very general limitation” [17] to selective adaptation. As the
mutation rate increases, it eventually passes a threshold – causing the error	catastrophe	– beyond
which it is no longer possible to evolve towards a peak and “the population falls from rare optima
toward less fit but more typical members of the ensemble” [17]. This error threshold can also be
exceeded with low mutation rates simply by increasing the genome length: while selection operates
at the genome level (and applies selective pressure to the genome as a whole), mutations affect each
locus equally (and apply pressure to each gene individually).

Kauffman ([17], originally from [44]) outlines a simple gedanken experiment with a single diploid
locus that has two alleles, A1 and A2, and genotypes A1A1, A1A2 and A2A2. The mutation rate
from the A2 to A1 is u, and it occurs with probability v the other way. If A1 and A2 are equally fit,
the equilibrium frequency of A1 is

fA1 = v	/ (u + v)

Assume A2 is favoured, then A1A1 has fitness 1 – s, A1A2 1 – s	/ 2 and A2A2 a score of 1 (0 ≤ s ≤ 1).
If s is not too close to 0, it can be shown that

||
2

1 s
vf A

The model can be extended to multiple loci. (Where the t loci each have two alleles and are consid-
ered independent and additive for calculating fitness.) To keep the maximum fitness at 1, the con-
tribution of each locus is s/t. As t grows, the contribution of each allele decreases, but the (per site)
mutation rate remains constant. Eventually mutation becomes a stronger force than selection and
less favourable alleles begin to accumulate in the population. (This is despite the model assumed
here, which is equivalent to an NK landscape with K = 0, i.e. smooth with one global optimum and
no local optima.) If the forward and reverse mutation rates are equal, the expected fraction of less
favourable alleles per individual due to the mutation / selection trade off is

||

2
s
vtf

The expected number of less favourable alleles c is

||
2 2

s
vtc

Or equivalently

22
||
t
sc

v

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

51

This implies that, to hold the number of unfavourable alleles at a constant c per individual as the
total loci t in the genome increases, the mutation rate v must decrease inversely to t2. Stated another
way, for a fixed mutation rate, the number of poor alleles accumulates with t2 as t increases. For any
model there is a critical complexity tc above which the population can no longer obtain peak fitness
and exists as a “stationary state distribution, a fixed average ‘distance’ from the global optimum”
[17].

Below tc, experiments have shown that the population exists as a “tight cloud centred at the global
optimum” [17]. Above tc, the population forms a thin shell a fixed distance from the optimum.
Movement within the shell is selectively neutral and genotypes within it are one or two mutant
neighbours of many others, so the population tends to spread evenly across the shell surface.

After presenting an analogous argument to the one above, Eigen and Schuster [44] used these re-
sults to demonstrate that, as the length of hypercyclic [44, 45] reproducing molecules increased,
the system passes a threshold beyond which it is impossible to maintain the fittest variants. The
population will flow away from the current best genotype and the information encoded in it will
be lost. Fascinatingly, viruses appear to live close to these error thresholds [44]: predictions using
error rate data for the virus Qβ suggest it could have a maximum of between 1,386 and 10,597
nucleotides; in fact, it has 4,500.

6.1.7 Conservation and innovation
It is usually assumed that must be a trade off between evolvability and sustained fitness (the balance
between innovation and conservation). While it is obvious that either can be maximised at the ex-
pense of the other (§3.3, §3.4), it is not apparent whether they can jointly be optimised. Sustained
fitness will be highest when the “landscape structure is tuned so that the sides of fitness peaks are
steep enough to offset the mutation rate and the rate at which the landscape is deformed” [20].

Evolvability is the capacity of a population to explore a reasonable proportion of the search space.
Populations with low mutation rates adapt best on smoother landscapes, while a higher rate is
required for more rugged terrains. If there are too many mutations, the population ranges across
the genotype space without retaining much heritable information, while if the rate is too low,
the population tends to remain clustered around a local peak. Kauffman suggests evolvability
[17 pp. 95-108] “may be optimised when landscape structure, mutation rate and population size
are adjusted so that populations just begin to ‘melt’ from local regions of the space” [17] so it is able
to explore the landscape while retaining much of its previously acquired fitness.

Specifically, there appears to be a phase transition between these two states. It was stated above
(§6.1.6) that a population subject to mutation above tc is able to wander neutrally throughout a
given band, a “connected cluster of one-mutant near neutral genotypes” [17]. There will typically
be a number of these clouds, hugging the side of peaks on the landscape. Now suppose that the
mutation rate is increased so that the bands are forced down the peaks. At some point the bands will

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

52

meet and meld into one, allowing the population to wander neutrally throughout a large propor-
tion of the landscape (and changing its behaviour radically).

Near this phase transition a small change in the mutation rate can have dramatic effects on the
population’s ability to explore the landscape. Further, the population has a good chance of flowing
into a basin and then climbing a high peak, so Kauffman presents a tantalising possibility that it
may be possible simultaneously to optimise evolvability and sustained fitness.

6.2 Random Boolean networks
Statistical mechanics has proved to be a very powerful tool for modelling the behaviour of gases. It
has allowed scientists to reason about their behaviour with considerable accuracy without needing
to emulate each molecule individually. But the model is a poor one for biological systems – there
are substantial differences between the two that render it unsuitable (adapted from Kauffman [17])

 ▪ The laws governing behaviour vary between elements.

 ▪ Biological systems are open, typically dissipative and often have attractors. Biological systems
don’t wander randomly and ergodically throughout their possibility space: consider, for exam-
ple, the development of an embryo.

 ▪ Statistical mechanics can be characterised as a more or less ergodic flow within the state or phase
space of a single system. Evolution is an adaptive, or drifting, process over the space of biologi-
cal systems.

These differences are significant, and Kauffman argues that a new paradigm is needed adequately
to describe biological systems. His suggestion is the random Boolean network (RBN). A random
Boolean network is a collection of binary variables (nodes) bound together in a graph structure.
Each node has a value and a logical switching rule (for example the Boolean and function) that con-
trols its dynamical behaviour. The inputs of each node are outputs from other nodes in the network,
and these are used to determine the nodes’ next values. Each node may have a different switching
function. The networks are usually assumed to be autonomous (have no external inputs) and oper-
ate synchronously. At any point, the state of the model, such as the simple three node network in
Figure 6.2, is represented by a concatenation of its variables’ states, for example 101. These states
form the inputs to the nodes for the next transition, moving the network to 111 in this case.

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

53

abc(t) abc(t + 1)
000 011

001 101

010 111

011 011

100 111

101 111

110 101

111 110

Figure 6.2 A small Random Boolean network and the attractor cycle followed (from [46]).

 At first blush, this may seem a dangerously abstract biological model (though similar arguments
could be made against the handful of equations describing an ideal gas). Kauffman [17] supplies
several reasons as why the model is adequate

 ▪ RBNs have been used to model dynamical systems with thousands or millions of coupled
variables, such as genetic regulatory networks (GRNs), immune systems, neural networks and
autocatalytic polymer systems. The idealisation to Boolean switching elements makes the study
of such enormously complex networks practicable.

 ▪ For many systems, this Boolean idealisation is either accurate or the best idealisation of non-
linear behaviour. In particular, it is a good approximation for the external behaviour of sigmoi-
dal response functions [47] such as those found in many cellular and biochemical processes
(though they cannot represent the internal (intermediate) unstable steady states of their con-
tinuous progenitors).

 ▪ Due to the discrete nature of RBNs there exists a well-defined ensemble of all possible net-
works, so the averages of structural and behavioural properties can be assessed.

 ▪ It turns out that RBNs exhibit three major regimes of behaviours: ordered, complex and cha-
otic. Thus analysis of these apparently “Byzantine” [17] systems reveals unexpected simplicity,
with important implications for development and evolution.

6.2.1 Dynamics of RBNs
An autonomous random Boolean network is deterministic and has a finite number of states, so (un-
like continuous dynamical systems) it is guaranteed to cycle at some point. However the length of
these state cycles can vary considerably, from 1 to 2n for an n node network. These cycles partition
the state space into different basins of attraction, which represent “alternate recurrent asymptotic
patterns” [17] of network activity (or different system behaviours). No matter what the initial con-
figuration, the system will be pulled down one of these basins and eventually settle down onto the
attractor at its centre. As with cycle length, the size of the basin drained by each attractor can vary

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

54

substantially. Figure 6.3 shows one basin from a RBN; note the small central cycle and compara-
tively many states in the attractor’s sphere of influence.

Figure 6.3 Example of RBN attractor from K = 3 N = 13 network. Attractor is loop in centre; trees lead in from

‘Garden of Eden’ states (from [48]).

Stability of attractors in the face of perturbations varies between networks. Kauffman defines two
main categories of perturbations

 ▪ Minimal	perturbation – transiently flipping the value of a node to a different state (for example
from state 000 to 100).

 ▪ Structural	perturbation – a permanent ‘mutation’ of an element’s connections or the rule under
which an element operates (for instance changing and to or).

6.2.1.1 Attractors and the second law
This talk of attractors (of tending to order) seems at odds with many of the ideas espoused in
statistical mechanics, but Kauffman comments that, “The second law [of thermodynamics] really
states that any system will tend to the maximum disorder possible, within the constraints due to
the dynamics of the system” [17].

An ideal gas is ergodic, and a huge amount of work is required to box the molecules into a small cor-
ner of the state space. But – under certain circumstances – random Boolean networks can contain
a few large basins draining into small attractors. The system spontaneously collapses into a small
corner of the state space, and exhibits a surprising degree of order as a result.

Kauffman shows how these phenomena emerge by varying the networks’ properties

 ▪ N – the number of nodes

 ▪ K – the average number of inputs to each element

 ▪ P – the bias on the elements’ rules (the chance of the elements, on average, producing a 1 as
output) (§6.2.1.3)

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

55

He finds that, as with NK landscapes, a phase transition takes place from chaotic behaviour to an
ordered regime.

6.2.1.2 K = N
K = N networks [17 pp. 192-194], in which every node is connected to each other, are maximally
disordered and chaotic, with a median cycle length of 0.5 × 2N	/ 2. (Kauffman denotes chaotic at-
tractors as cycles whose length increases exponentially with N, i.e. they are not actually divergent.
Clearly, as the network is discrete and finite, every path will eventually repeat itself.) Minimal
changes to the network, such as a transient perturbation or adopting a different starting state, result
in completely different network behaviour. However, the networks do exhibit “one startling sign of
order” [17]: the number of basins is small at N/e.1 Thus a system with 10,000 elements (and cycle
lengths of 25000) would only have 3700 attractors. (Though this is perhaps inevitable, as a discrete,
finite network couldn’t have many huge attractors – there simply aren’t enough paths to go round.)
Further, the basin sizes are non-uniform, with a few huge basins and many smaller ones. Since each
state’s successor is random (the network is fully connected and each node has an arbitrary Boolean
rule), a basin’s stability is proportional to its size.

6.2.1.3 K ≥ 5
Networks with between K = 5 and K = N inputs per variable also exhibit chaotic behaviour (the
same appears to be true for K = 3 and K = 4) [17 pp. 194-198]. The small number of attractors seen
in K = N networks persists as well.

Expected attractor cycle lengths depend on how dissipative the system is, or equivalently the ex-
tent to which trajectories converge. As a measure of convergence, Kauffman defines the internal
homogeneity P of a Boolean function, the fraction of the inputs to a Boolean function that returns
0 or 1, whichever is greater than 50%. Suppose a network were constructed with a bias of P = 0.8,
so – for any input – all functions return 1 with 80% probability. Clearly, the state 111…11 will be
preferred, and many initial values will converge to it. Kauffman shows how the mean cycle length
can be calculated for these biased	random	mappings

Expected median cycle length =
 N

P

 1
5.0

B = P . As B > 1, cycle lengths increase exponentially with N

Median cycle length = 0.5BN (5.2)

He says that a “critical implication of [this] is that no fixed internal homogeneity P, and hence no
corresponding convergence in state space alone, will suffice to ensure that state cycles remain small
as N grows large” [17].

1 e = natural log

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

56

This argument can be extended to calculate the internal homogeneity of unbiased networks for
various K. The internal homogeneity is highest for K = 2 (0.6875), the mean homogeneity for all
16 binary Boolean functions) and falls towards 0.5 as K rises. Analysis of these results shows that
attractor lengths grow approximately exponentially with network size, and increase to N/e as K ap-
proaches N. This is supported by numerical evidence [17 pp. 196-197].

6.2.1.4 K = 2
At K = 2 [17 pp. 198-203], a phase transition occurs and random networks suddenly display a very
high degree order: in short, the attractors are few, small and have large basins surrounding them.
Rather than showing cycle lengths that scale exponentially as before, the expected median cycle
length drops to about N . The number of attractors is also approximately N . For any reasonably
sized network, this represents a huge constriction: “[a] system of 10,000 elements which localises its
dynamical behaviour to 100 states has restricted itself to 10-2998 parts of its entire state space. Here is
spontaneous order indeed” [17]. A system comparable to the human genome with 25,000 elements
[49] would have just 158 attractors.

This class of networks has also proved to be dynamically stable, with 80-90% of systems that are
subject to a minimal perturbation flowing back onto the same attractor (and interestingly usually
at the same place on the cycle it would have reached otherwise – it maintains phase). Transient
changes to an element typically only affect a few other nodes so damage to the network is slight.
Similarly, deleting or modifying an element usually results only in modest damage to the system.
Even minimal perturbations that do change the flow from the current basin are limited to switching
to neighbouring attractors. There is tremendous structure here too – a “variety of different stimuli
acting on different elements … induce the same specific response” [17].

6.2.1.5 A frozen core
Kauffman [17 pp. 203-209] suggests the main reason for this spontaneous order is the development
of a frozen core that divides the system into isolated islands of activity. For networks with higher
K, he reasons that the “failure of a frozen core to percolate and leave functionally isolated unfrozen
islands is a sufficient condition for chaos.”

These percolating walls can be formed through forcing	structures	and internal	homogeneity	clusters. A
Boolean or is an example of a forcing structure: if one input is true then the output will be fixed (to
true), no matter what value the other input takes (this is a canalising Boolean function). If a series
of forcing structures is arranged into a circle, the network develops a forcing	loop or descendant	forc-
ing	structure. Since these circuits are completely insensitive to (minor) perturbations they can act as
frozen walls dividing the network.

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

57

Figure 6.4 Two dimensional lattice. Sites containing 1 are frozen; note islands of activity (from [17]).

A similar chaos-to-order transition is seen when P (measure of internal homogeneity – §6.2.1.3)
is altered. A number of people ([50, 51, 52], see also [17]) have studied the impact of altering P
on two- and three-dimensional lattices with nearest neighbour links (a grid or cube). If P is greater
than a critical value Pc (and certain states, e.g. 111…11, are sufficiently favoured) the system has a
percolating	frozen	core with small embedded islands of activity. Again there is a phase transition to
this state: for values less than Pc the substantially different behaviour is seen, with small islands of
stillness in a writhing sea of change.

The critical value of P depends on the network structure: for a lattice (such as Figure 6.4) with
K = 4, Pc = 0.72 [51, 52]; for a cube with K = 6, Pc is closer to 1. Kauffman distinguishes between
these internal homogeneity structures and forcing clusters: homogeneity clusters, he maintains, are
more general as nodes may be held in a frozen state by the joint activity of several elements – si-
multaneous 1s received from two neighbours may jointly guarantee that a node (or nodes) remains
active. (And these nodes may similarly influence their neighbours (including the ones that ‘forced’
them), forming a frozen block.)

6.2.1.6 Summary of dynamics
The difference in behaviour between these ordered and chaotic regimes is analogous to the transi-
tion as K is reduced to 2. When P < Pc (or equivalently K > 2)

 ▪ Attractors are large and grow exponentially with the network (lattice) size – they are “so large
that the system can be said to behave chaotically” [17].

 ▪ Minor perturbations propagate throughout the system, affecting a large proportion of sites.

 ▪ Many perturbations drive the system onto a different attractor.

 ▪ Damage by changing the network (deleting a node or altering its function) usually affects many
attractors significantly (systems “adapt on very rugged landscapes” [17]).

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

58

But if P > Pc (or K = 2)

 ▪ There is a large frozen component that percolates throughout the lattice with a number of em-
bedded islands of activity. These islands are isolated and cannot communicate with each other,
preventing the spread of perturbations.

 ▪ Attractors are small – systems “spontaneously box themselves into very small volumes of their
space and exhibit high order” [17].

 ▪ Damage does not spread through the network; system typically not altered significantly by net-
work mutations – “such systems adapt on highly correlated landscapes” [17].

6.2.2 Annealed networks
A remarkable piece of work was carried out by Derrida [53] into the annealed approximations of
Boolean networks. When a traditional (quenched) network is created, its elements and structure
remain fixed throughout the model’s life. But in Derrida’s model, after each state transition the con-
nections between each node and the nodes’ Boolean functions are reallocated randomly. The only
items carried over are the new state of the model and each element’s identity. This is the annealed	
model.

Unlike the quenched model, which must cycle eventually, no periodic behaviour is expected. Due
to the huge upheaval that takes place between each step, it would seem reasonable not to expect
any ordered behaviour at all. But the annealed model has very similar properties to its quenched
counterpart, converging through large basins towards small attractors for a K = 2 network. Der-
rida derives an equation that shows the distance between successive states tends to 0 for K = 2. For
K > 2, there is an additional fixed point which pulls the difference between successor states towards
a fixed percentage of the network size. This means that arbitrarily close starting states will diverge
over time – a phase transition analogous to that seen before occurs.

The graph in Figure 6.5 shows that the phase transition takes place somewhere between K = 2 and
K = 3. It may be interesting to find the precise value of K at which the transition takes place and
also to examine behaviour on and around this frontier. A non-integer value of K could be effected
by giving some nodes two inputs and the remainder three. Hopefully this would give the same be-
haviour as assigning each node a non-integer number of inputs (whatever that means); Kauffman
appears to apply a similar argument when calculating P values (the high P for an unbiased K = 2
network is due to an equal number of functions whose outputs favour 1 and that favour 0). One
possible test would be to see if (say) a mixture of 50% two input and 50% four input nodes behaves
similarly to a K = 3 network.

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

59

Figure 6.5 Recurrence relation showing expected distance between successive states of annealed model. A new

attractor emerges when curves cross the 45° line. For K = 2, the recurrence curve is beneath the 45° line (from

[53] via [17]).

6.2.3 Design for a brain
To motivate the evolution of Boolean networks, Kauffman introduces Ashby’s Design for a Brain
[54], a “delightful, elegant, and extremely clear and simple” [17] model that attempts to capture
the essence of adaptation in a complex system with many interacting parts. The System (a coupled
organism and its environment) is supposed to be deterministic, so it will flow onto an attractor and
stay there. The “critical idea” [17] is that, out of the many variables that make up the organism, only
a subset of essential variables is crucial to the functioning of the System. Starting the System from
a given configuration, the attractor it reaches may or may not keep these essential variables in their
correct ranges. If so, do nothing. If not, make a jump change to one of the organism’s parameters. If
this knocks the System on to an alternate attractor that does meet the specification, make no further
changes; otherwise perform more random changes until it works. Ashby successfully applied his
method to build a crude autopilot.

Kauffman [17] outlines the pertinence of this work to Boolean networks

 ▪ Adaptation is seen in both models as a walk in parameter space, seeking good attractors.

 ▪ Ashby’s essential variables correspond to a subset of the network’s variables.

 ▪ Ashby introduces the idea of percolating	walls	of	constancy, the equivalent of percolating	frozen	
components	(§6.2.1.5).

 ▪ Jump changes in can be emulated in a RBN by mutating the logic and connections of nodes.

 ▪ Both paradigms have a space	of	systems, an ensemble of models that differ from each other by a
single mutation. Adaptation is a walk through this model space.

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

60

6.2.4 Evolving random Boolean networks
Following Ashby, Kauffman defines the fitness of a network as its ability to emulate a target pattern
of activity and inactivity among its N elements [17]. Using this measure, he shows that the many
of the properties seen in NK landscapes also apply to RBNs. Data from K = 2 networks strongly
suggests that long jump adaptation (the theory of records) holds. The complexity catastrophe also
much in evidence: long jump adaptation proved much less effective as the network size was in-
creased 20 to 100, with a statistically significant drop in final fitness.

Like NK landscapes, the Boolean network space is rugged with many local optima. Adaptive walks
across the landscape finish on these lower peaks, well below the global optimum. This result is
incredibly significant, as it implies that the network cannot adapt to any target state. “Any intui-
tion we may have harboured that mutation and selection alone could tune attractors to arbitrary
patterns of behaviour appears to be wrong” [17]. Dynamical models have been applied in many
biological contexts – to neural networks, to genetic regulatory networks – in which learning or
adaptation occurs by altering network weights and couplings to attain the desired attractors. But
these results imply such adaptation is (in general) “extremely difficult or impossible” [17], so “either
alternative means of searching rugged adaptive landscapes in networks paces must exist or adapta-
tion and learning to not achieve arbitrary attractors” [17].

6.2.5 Adaptation towards the edge of chaos
All of Kauffman’s results presented here show a phase boundary between distinct ordered and cha-
otic regimes. Langton’s work on CAs (§5) [18] similarly demonstrated the existence of a narrow
liquid region at this transition. Kauffman and Langton (and others – see [17 p. 219]) have sug-
gested that systems capable of the most complex and interesting behaviour reside in this area. In the
frozen regime, little computation can occur. In the chaotic phase, the dynamics are too disordered
to be useful. But at the boundary, where the isolated islands of unfrozen elements are in “tenuous,
shifting contact with each other,” [17] they appear able to perform complex, controlled, parallel
computation.

Straddling a phase boundary, the liquid region is a narrow one and difficult to hit by chance. Much
like the spontaneous emergence theory of life’s origins (see e.g. [142, 143, 144]), it would seem
incredibly fortuitous that life just happened upon this fruitful degree of complexity. Kauffman [17]
suggests that we did not need to be so lucky: he hypothecates that natural selection may be the
force that drives complex adaptive systems inexorably towards this boundary region. Drawing on
Langton’s (§5, [18]) ideas, Kauffman [17] argues that systems lying in this region – systems whose
structure is just melting and whose mutual information is maximised – are most capable of solving
complex problems, complex problems such as adapting and evolving in a multifaceted, changing
environment. There is genuine selective advantage in getting there, and it is an advantage whose
efficacy increases the closer one gets to the boundary.

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

61

6.2.6 Network games
To see if they really would adapt towards the edge of chaos, Kauffman conducted an experiment
in which networks were made to play a simple game [17 pp. 221-227]. The challenge selected was
the mismatch game, where each player (network) is rewarded based on the difference between their
binary values (so 000000 vs. 000111 pays each player ½). Competitor networks were able (through
the game’s construction) to sense the activity of corresponding binary values in its opponent.

The game is nontrivial with more than two players. Simply maintaining a constant output rewards
the competitor 0.5 on average, so players must adopt a more subtle strategy if they want to score
well. Players were allowed to evolve during the simulation; in particular they were able to change
K, P and N of their network.

As expected, over time the networks alter their value of K to move towards the boundary region (for
networks initially exhibiting chaotic or frozen dynamics). P is found to adjust similarly, supporting
the hypothesis that liquid phase networks are best able to adapt. The most interesting result is that
N also increases during play, suggesting that more complex networks are better able to solve the
task than simple ones, despite the increase ruggedness of their fitness landscapes and the impending
complexity catastrophe.

This increase in complexity may be because of the modular structure found in such networks.
Modularity, Kauffman says, can be attained in two different ways. The first (exemplified by K = 1
networks) is to construct the network of structurally independent modules. Such systems comprise
a collection of independent loops. The second way to achieve modularity is “radically different”
[17], and relies on a percolating frozen component splitting the remaining nodes into functionally
isolated islands of activity – the network is functionally	modular.

Kauffman found that NK landscape models with a hierarchy of K values (so that most changes
have only a small impact but a few caused large upheavals) were best able to adapt on a changing
landscape. The hierarchy “yields a deep buffering” [17]: if the landscape alters slightly (a smooth
landscape) the system simply tweaks its parameters to compensate; but if there is a drastic deforma-
tion the model is equally capable of rising to the occasion. Networks at the edge of chaos show just
this behaviour: many mutations cause only minor revisions in behaviour, but a few cause massive
changes. Thus it appears that Boolean networks evolve to evolve in two ways: they move towards the
edge of chaos so they can process external changes more effectively; and they become more complex
so they can process internal changes more effectively.

6.2.7 Co-evolution
The aptitude for coping with change apparently developed by Boolean networks is vital if an or-
ganism is to survive on more realistic landscapes, such as the ever changing terrain in complex co-
evolutionary systems. Two types of co-evolution have been proposed: the Red Queen hypothesis
([55, 56] cited in [17 p. 242]), where an unceasing arms race takes place between the protagonists as

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

62

they struggle to maintain the same relative fitness; and evolutionary stable strategies (ESS) ([57] via
[17]), where the phenotypes cease to evolve as any changes would render them less fit. Considerable
effort has been devoted to determining the conditions under which each sort of co-evolution may
emerge (often drawing on game theory [58 pp. 631-640]). Clearly there are often constraints on
and trade offs in further evolution; Rosenzweig et al. [59] suggest constrained traits tend to adopt
ESS, while those that are not relentlessly follow the Red Queen.

It is tempting to draw an analogy between the frozen and chaotic behaviour seen in Kauffman’s
work and ESS and the Red Queen respectively. To test this premise, Kauffman modified the NK
genome so each species depends on K internal traits (as before) and an additional C traits from each
of the Si species with which it interacts. He found that analogues of Nash equilibria tend to occur
after some initial ‘wobbles’ (a sudden burst of change instigated by one partner). These wobbles
become increasingly uncommon as the simulation progresses (cf. long jump adaptation).

Two principal results uncovered were

 ▪ As K increases relative to C the waiting time to hit a Nash equilibrium decreases, despite the in-
creasing ruggedness of the landscape. There appears to be a “crude dividing line” [17] at K = C.
When K > C Nash equilibria are found rapidly, but when K < C the waiting time is extended
substantially.

 ▪ Increasing N with K and C fixed (effectively increasing the complexity of the organism) in-
creases the time taken to hit Nash equilibria, presumably because of the density of local optima.

Kauffman also examined co-evolution amongst species with unequal K and C values (one species
had higher K and / or C than the other). The most striking results were

 ▪ When C is high, high K individuals have a better mean fitness during the oscillatory period be-
fore the model reaches a Nash equilibrium than individuals with lower K. An individual playing
against another with fixed K could increase its fitness by upping its own value of K.

 ▪ Even more remarkably, an individual with low K would score increasingly highly during the
oscillatory period when playing another with increasingly high K than playing one with lower
K. “Thus when C is high, increasing the K value of one partner helps both coevolving partners”
[17].

 ▪ Individuals seem to be fitter, on average, when their K broadly matches C, so it would appear
to be in a species’ interest to tune its K to match C (or vice versa, though C “may be some more
or less fixed fraction of K” [17]).

 ▪ Extending the model to S species shows a similar transition from ESS to the Red Queen ap-
proximately when K = S × C. The waiting time to encounter a Nash equilibrium increases with
the number of species.

Neutral Emergence and Coarse Graining Cellular Automata NK Landscapes and RBNs

63

 ▪ As S increases, the mean fitness of the coevolving partners decreases. There is also a dramatic
increase in fitness fluctuations with more species in the model. The combination of lower fitness
and greater fitness fluctuations makes it much more likely that some species will become ex-
tinct, lowering S and improving the situation for the remaining partners. Obviously the interac-
tion between species in nature is more involved (in particular the graph is not fully connected)
and Kauffman presents data from over 100 food webs that suggest coevolving species do in fact
act to control their connectivity. The food webs appear to be largely stable and scale invariant: at
lower levels each has roughly the same number of species; while higher levels aggregate similar
species into single “trophic species” [17] to achieve the same outcome.

As with the independent models discussed earlier, selection in coevolving systems can act on each
species independently to pull it towards and hold it at the optimal value of K. Though each species
adapts solely for its own purposes, the move towards a mutual poised state benefits all. The “myopic
adaptive agents [may modify their own behaviour], each to its own myopic advantage, [may] uni-
versally coevolve to the edge of chaos” [17].

Coevolutionary avalanches propagate through the NK ecosystems, and these avalanches have char-
acteristic frequency-size distributions that change with the system parameters. In particular, the
distribution is approximately power law if the system is poised at the edge of chaos (cf. self organ-
ised criticality (SOC) [60, 61]). Here, perturbations of the same initial size can unleash avalanches
of a wide variety of scales. Kauffman notes that similar patterns exist in nature: avalanche size data
from Raup ([62] via [17]) suggest real ecosystems show analogous behaviour, leading Kauffman
to speculate tentatively that they may also have evolved to the edge of chaos. Fascinatingly, results
obtained by Ray from Tierra ([63], reported in [17]) also show a “hauntingly similar” [17] distribu-
tion pattern to both Raup and Kauffman’s data.

6.3 Key points
 ▪ The NK landscape model can be tuned to show varying degrees of ruggedness, from completely

smooth to entirely uncorrelated. This ruggedness significantly affects the ability of hillclimbing
to search the terrain.

 ▪ The complexity catastrophe suggests that the extra attainable fitness as the genome lengthens di-
minishes, and that there is a point beyond which additional complexity is no longer beneficial.
This appears to be a general property of complex systems.

 ▪ Introducing a small degree of epistasis may actually be beneficial to search. Attainable op-
tima appear slightly higher on average, and the landscape exhibits potentially exploitable global
structure.

 ▪ Long jump adaptation on landscapes is equivalent of adapting on an uncorrelated landscape
and presents similar problems to search.

NK Landscapes and RBNs Neutral Emergence and Coarse Graining Cellular Automata

64

 ▪ The error catastrophe limits the complexity that molecules can attain while still maintaining
the fittest variants.

 ▪ It may be possible to overcome the trade off between evolution and conservation by optimising
the search process to the landscape so that the population just begins to melt.

 ▪ Random Boolean networks may provide an effective abstract model of the behaviour of biologi-
cal systems.

 ▪ Under certain circumstances, RBNs exhibit surprising order and move spontaneously into a
small corner of their parameter space. This is due to a percolating frozen core surrounding iso-
lated islands of activity.

 ▪ RBNs capable of the most complex behaviour appear to be located in a narrow band at the
transition from ordered to chaotic system dynamics. Evolution may drive networks towards
this region.

Neutral Emergence and Coarse Graining Cellular Automata Entropy

65

7 ENTROPY
Relevant entropy and thermodynamics is briefly reviewed, including its implications for life. Gibbs

free energy is also introduced.

7.1 Thermodynamics
One probable1 requirement for life is that it must have mechanisms to control energy flow [74].
Take a cell, for example. “A living cell is a dynamic structure. It grows, it moves, it synthesizes com-
plex macromolecules, and it selectively shuttles substances in and out and between compartments.
All of this activity requires energy” [75]. And all of this activity requires very precise direction and
control of this energy.

When studying these energy transformations (the thermodynamics), there is usually one particular
area, vessel or concept – a system – that is of interest. The system may be a cell as above, a solution
in a test tube, an industrial reactor, or even a cat [74]. Anything outside the system – the entire
universe apart from the cat – is called the surroundings. For hopefully obvious reasons, the system
and surroundings are separated by a boundary. A boundary is defined as a division, “which may be
material or not,” [74] through which an “[e]xchange of work, heat or matter between a system and
its surroundings occurs… A boundary may be adiabatic, isothermal, diathermanous, insulating,
permeable, semipermeable.” [74] Boundaries can be fixed (of constant volume) or moveable. At any
point in time, the system is in a particular thermodynamic state (the types of molecule present, the
temperature, the pressure, etc.).

A system is open if it can exchange heat and matter with the environment, closed if it can only ex-
change heat and isolated if it cannot exchange either. A sealed test tube might be a closed system,
while the cat is an example of an open system. “It breathes in an exhales matter (air) continually,
and it eats, drinks, defecates and urinates periodically. … Without exception, all living organisms
that have ever existed are open systems” [74].

If a system exchanges energy with its surroundings, it changes its internal energy; this change is
defined as ΔE. Assuming no matter is exchanged, it can be done in two ways

 ▪ Heat can be transferred to or from the system, denoted by q. A positive value indicates that heat
is absorbed by the system from its surroundings. A negative value means that heat is absorbed
by the surroundings from the system.

 ▪ The system or surroundings can do work, symbolised by w. This is positive if the system does
work on the surroundings, and negative if the surroundings do work on the system.

1 Necessary but not sufficient. Probably.

Entropy Neutral Emergence and Coarse Graining Cellular Automata

66

The change in internal energy is ΔE = q	–	w. This is the first	law	of	thermodynamics, which states that
energy cannot be created or destroyed (though it can be transformed) – when energy is added to
the environment the same amount is taken away from the system, and vice versa. The total energy
of a reaction is always constant.

To make this a little more concrete, when the cat eats, food is metabolised, releasing energy. Some of
this energy is used as heat to (for instance) maintain body temperature, and the rest as work; work
done includes breathing, sending nerve impulses and chasing mice.

7.2 Heat and Work
Manufacturers must determine the amount of energy contained in foods; to do this they often use a
bomb calorimeter. A bomb calorimeter is a sealed vessel, immersed in a water bath, into which the
food is placed and then burned. No work is done, as the reaction takes place at a constant volume
(the reaction cannot do work by pushing the sides of the calorimeter out). Thus, the change in
water temperature (the amount of heat transferred to the surroundings) is equal to the amount of
energy released from the food, i.e. ΔE = q.

However, “virtually all biochemical processes occur under conditions ... approximating constant
pressure” [75]. Suppose the same reaction is carried out at constant pressure instead. The reaction
is exothermic, so the temperature rises as the food burns. This causes the gases present to expand,
forcing the reaction vessel to become larger to maintain the pressure.

This expansion process is quantified by the ideal gas law

PV = nRT

P = pressure, V = volume, n = number of moles2 of gas, R = gas constant, T = temperature

Thus if the temperature increases at constant pressure (and gas molarity), the volume must increase
proportionally. Work is done when the vessel expands. To push out the walls of the calorimeter
against a constant external pressure, the work done is

w = P∆V

So less heat is transferred to the surroundings, since q = ΔE – w. (Actually, work will be done by the
surroundings on the system as it cools, and it might even be the case that more heat is conveyed as
the overall work done by the system is negative.)

2 A mole is a specific quantity of a substance that is commonly used in chemistry. It is defined as being equivalent to “the amount
of substance that contains as many elementary entities as there are atoms in exactly 0.012 kilogram of carbon 12. This quantity is
known as Avogadro’s number and is approximately 6.0221415 × 10²³ (2002 CODATA value)” [76].

Neutral Emergence and Coarse Graining Cellular Automata Entropy

67

7.3 Entropy
If the cat picks up a warm sock from in front of the fire and deposits it outside, the sock will quickly
cool in the cold night air; the two systems will come to thermal equilibrium. Furthermore, the
equilibrium between sock and night air will persist indefinitely; it never happens that two vessels at
room temperature spontaneously change so that one becomes hot and the other cold, despite the
total energy of the vessels remaining constant. The first law of thermodynamics does not indicate
the direction of spontaneous change, nor why it should occur in the first place.

However, something has changed to make the reaction irreversible; the second	law	of	thermodynam-
ics states what this change is and the direction it must inevitably follow. Imagine the cat has been
locked in a room containing nothing but a stack of paper and a large quantity of catnip. In short
order the cat flies around the room, scattering the sheets over the floor. As the cat continues to
run around, the paper will become increasingly disorganised and will eventually end up distrib-
uted roughly evenly over the floor. A similar (though less dramatic) effect can be observed if dye is
dropped into a glass of water: the colour spreads evenly throughout the vessel.

All systems “have a natural tendency to randomisation” [75]. The reason is that there are far more
disordered states than ordered ones. There is only one way to arrange a stack of identical sheets of
paper on a table, but many different ways to scatter the sheets around a room. As the number of
elements in the system increases, so does the number of arranging them. The law of large numbers
states that, for bigger systems, it is increasingly likely its elements will assume the average (maximal-
ly disordered) state [78]. So although it is theoretically possible for a system to resume an ordered
state spontaneously, it is extremely unlikely in practice.

The degree of disorder of a system is measured by its entropy (S). There are a number of different
ways of defining entropy, but the most useful within this context depends on the fact that a given
thermodynamic state may have many substates of equal energy. The cat and paper is one example,
another is gas molecules in a flask. Entropy is defined as

S = k ln W

S = entropy, k = Boltzmann constant, W = number of substates

7.4 The Second Law and Life
Since the total entropy of an isolated system increases through spontaneous change, and the uni-
verse is an isolated system, it follows that the overall entropy in the universe must increase, that over
time order must decrease, and that energy must dissipate and become unusable. Yet life appears to
contradict this. “Life appears to propagate order over time. From its unquestionably simpler begin-
nings, the history of life as we know it has been a trajectory of increasing well-ordered complexity”
[78].

Entropy Neutral Emergence and Coarse Graining Cellular Automata

68

Life, however, is an open system – it is not isolated and can exchange heat and matter with its sur-
roundings. If the order in the system (the cat) increases, this must be paid for by a decrease in order
in the surroundings. This typically means that the energy returned by the cat to the environment
(principally through exhalation and excretion) is in a less useful form than the form in which it was
taken in.

ΔSsystem + ΔSsurroundings = ΔSuniverse > 0

7.5 Gibbs Free Energy
As living creatures are open systems, there is a continuous exchange of energy and matter with the
environment. This makes measuring the entropy change difficult, as the system is not isolated.
Additionally, both energy and entropy changes will often take place together, both of which are
important in determining whether a reaction is thermodynamically favourable. The Gibbs free
energy (G) is a function that is frequently used in biochemistry to determine whether a reaction is
thermodynamically favourable. It is defined as

ΔG = ΔH – T∆S

G = Gibbs free energy, H = enthalpy, T = temperature, S = entropy

If the Gibbs free energy of a reaction decreases, the reaction is thermodynamically favourable. So a
reaction that either results in a decrease in enthalpy3 and / or an increase in entropy will be sponta-
neous. In fact, the second law of thermodynamics can be restated as, “The criterion for a favourable
process in a non-isolated system, at constant temperature and pressure, is that ΔG be negative”
[75]. A corollary of this is that if a process is not favourable, the reverse process will be. Processes
with negative free energy changes are called exergonic; those for which ΔG is positive are endergonic.

It is possible to use the interplay between enthalpy and entropy to determine the conditions under
which a process will be spontaneous. Ice changes to water above 0°C and back to ice below that
temperature. While water is more disordered (has higher entropy) than ice, energy is required to
break bonds within the ice crystals. At 0°C, the entropy and enthalpy terms are exactly equal. Above
this temperature the entropy dominates, giving a negative ΔG and making the ice to water transi-
tion favourable. Below 0°C the converse is true, so the change from water to ice is irreversible.

From the free energy equation, it should also be apparent that, if life is to decrease its entropy
through favourable reactions (and life’s reactions must be favourable overall), then it must use en-
ergy to do so.

3 Enthalpy is defined as the heat absorbed by a system at constant pressure, and is the total energy of the system.

Neutral Emergence and Coarse Graining Cellular Automata Entropy

69

7.6 Summary of thermodynamics
 ▪ Energy transformations (in life and everywhere else) are measured with thermodynamics.

 ▪ Enthalpy is the heat absorbed by a system at constant pressure and is the important measure
for living organisms.

 ▪ The second law of thermodynamics states that systems tend to disorder. Entropy is the degree
of disorder in a system. Living organisms are able to maintain order over time by being open
systems and increasing the disorder in their environments.

 ▪ Gibbs free energy tells us whether a reaction is thermodynamically favourable and whether it
will happen spontaneously.

Information Theory Neutral Emergence and Coarse Graining Cellular Automata

70

7.7 INFORMATION THEORY
This section gives an overview of information theory and shows how we can model life in these

terms. Shannon entropy is introduced, along with joint entropies and information. We see how to

use information theory to transmit data over a noisy channel without error.

7.8 Information theory
In §5, we introduced Langton’s λ parameter and saw how the most complex behaviour exists in a
narrow region between order and chaos, a region that supports both information retention and in-
formation transmission. Kauffman also found that the most interesting random Boolean networks
reside on the edge of chaos, and suggests that this is the region most likely to support complex
computation and the emergence of life.

Information retention and information transmission are both essential for life. Life needs to store
information about how to survive: how to eat, move and respire. Life also needs to transmit infor-
mation to and receive information from the environment: information about food, temperature,
chemicals, light, movement and much more. “This connection is a universal trait of all living sys-
tems.” [78]

Though hugely complex, we can investigate parts of this subject through information theory. Infor-
mation theory was developed by Claude Shannon to calculate how to transmit and receive messages
accurately over noisy channels, though it is far more widely applicable [79].

Encoder DecoderChannelIn Out

Figure 7.1 A communication channel (adapted from [78]).

Adami points out that there is a “precise analogue” [78] between the communication channel
in Figure 7.1 and living organisms. Genes encode information about the environment, and this
information is transmitted to the next generation through a DNA, RNA or protein channel. The
channel is subject to noise in the form of replication errors and stresses from heat, light and viruses.
Finally the message is decoded again through the expression of proteins useful for the host in the
environment.

We would like to transmit information between generations without error to avoid potentially
lethal mutations to the organism’s offspring. Imagine we have a binary channel and there is a 20%
chance of each bit changing during transmission. A 20% error rate is too high for most situations,
and would almost certainly result in lethal mutations in the next generation if we were modelling

Neutral Emergence and Coarse Graining Cellular Automata Information Theory

71

reproduction with this channel. Information theory shows how we can add redundancy to the
channel to ensure our message is received with approaching 100% accuracy. 4 To calculate the op-
timal encoding for a channel, we need measures of information and uncertainty.

7.9 Shannon entropy, joint and conditional entropies
Suppose we have a random	variable	X that can be in states x1, …, xn with probabilities p1, …, pn and
that ∑N

i
 pi = 1. The Shannon	entropy	[73]	is defined to be

H(X) = - ∑N

i
pi logb pi

As we are dealing with binary models, we use logarithms of base 2. H(X) is required to be monot-
onic (it must be higher if there are more possible states in the system) and additive (the entropy of
two unrelated systems must be equal to the sum of the entropies of each).

Although the joint entropy of two unrelated systems must be equal to the sum of their entropies,
most interesting composites will show some degree of correlation between its component systems.
If X and Y are random variables with N and N’ states respectively, we can define the probability that
X will be in state xi and Y jointly in state yj as

P(X = xi and Y = yj) = p(xi, yj)

This allows us to define the joint	entropy

H(X, Y) = - ∑N

i
 ∑ 'N

j
p(xi, yj) log p(xi, yj)

We can show that

H(X, Y) ≤ H(X) + H(Y)

The joint entropy of X and Y will only be the sum of their individual entropies if X and Y are
uncorrelated; in all other cases it will be less. To see why, suppose that the cat, Y,5 is in a room
with a mouse, X. The mouse decides that the best way to avoid being eaten is to move randomly
throughout the room, so there is an equal chance of it being at any location.6 Unfortunately the cat
spent too long playing with a catnip-impregnated toy before entering the room, so it too is moving
randomly.

We take a picture of the room and divide the photo into N equal squares. The entropy of the mouse
is log(N). The movement of the cat is uncorrelated with the mouse’s motion and also has entropy
log(N), giving a joint entropy of 2 log(N).

4 In his Fundamental Theorem, Shannon showed that we can achieve arbitrarily accurate transmission through a noisy channel by
reducing the transmission rate to the channel capacity. In [78], Adami shows how to calculate the information transmission capacity
of genomes.

5 The cat’s owners were notoriously unimaginative when it came to names, as their children, C1, C2 and C3, would testify.

6 We ignore edge effects, time taken to change direction, etc.

Information Theory Neutral Emergence and Coarse Graining Cellular Automata

72

Now suppose that the cat recovers from the catnip and starts chasing the mouse. Its agility means
the cat is always in a square immediately adjacent to the mouse, so when we take our next picture
the entropy of the mouse is still log(N), but the cat has only eight choices, giving a joint entropy
of log(N) + log(8).

The cat and mouse are now tightly correlated, and we can use this to define the conditional prob-
ability for the cat. We know that

p(yj	| xi) = ⅛ if the cat is adjacent to the mouse

p(yj	| xi) = 0 if the cat is not adjacent to the mouse

We can use this to define the conditional entropy of the cat. If we know that X = xi

H(Y	| X	=	xi) = - ∑ 'N

j
p(yj	|	xi) log p(yj	|	xi)

The conditional entropy for any X is

H(Y	| X) = - ∑N

i
 ∑ 'N

j
p(xi) H(Y	|	xi)

Which can also be rewritten using Bayes’ Theorem as

H(Y	| X) = - ∑N

i
 ∑ 'N

j
p(xi,	yj) log p(yj	|	xi)

More generally, we can state the conditional and joint entropies as

H(X, Y) = H(X) + H(Y	| X) = H(Y) + H(X	| Y)

7.10 Information
Information is the mutual	entropy, or correlation	entropy, between two random variables (or two sets
of random variables).

I(X	: Y) = H(X) + H(Y) – H(X, Y)

This can be rewritten as

I(X	: Y) + H(X, Y) = H(X) + H(Y)

So the correlation between the variables (the decrease in randomness between them) appears as
information. This is information shared between the variables.

Neutral Emergence and Coarse Graining Cellular Automata Information Theory

73

H(X)

H(X|Y) H(Y|X)I(X:Y)

H(Y)

Figure 7.2 Entropy for random variables X and Y.

7.11 Noiseless encoding
We can now use these definitions of entropy and information to see if a code is sufficient to trans-
mit a message without error. Suppose again that we have a random variable X that can be in states
x1, …, xn	with probabilities p1, …, pn. We have to encode the messages	x1, …, xn	before we can
transmit them. Longer messages will be more susceptible to noise, so we want to minimise average
codeword length. But we must still be able to decipher messages uniquely – for instance, with the
codewords 0, 01 and 010 in our language, it would be impossible to tell if the string 010 was one
codeword or two. More generally, with alphabet size D and codeword lengths ni, a way of uniquely
encoding messages exists if

 ∑N

i
D-ni ≤ 1

But this only tells us if a code exists, not how well it copes with noise. Given the entropy of the
source, Shannon’s Noiseless Coding Theorem [73] gives a lower bound on the average length of
codewords.

 〉〈n 	≥	

D
XH

log
)(
	= - ∑N

i
pi logD pi

7.12 Key points
 ▪ Information theory can be used to model living systems: genes encode information about the

environment and this information is transmitted between generations through a DNA or pro-
tein channel.

 ▪ The Shannon entropy measures our knowledge of a system’s state. A high entropy shows a high
uncertainty about the system’s state.

 ▪ The joint entropy of two correlated systems will be lower than the sum of their individual en-
tropies.

 ▪ Mutual information measures the correlation between two systems.

Information Theory Neutral Emergence and Coarse Graining Cellular Automata

74

Neutral Emergence and Coarse Graining Cellular Automata Emergence Review

75

8 EMERGENCE REVIEW
This section looks at emergence. After describing the allure of emergent properties, we discuss its

many definitions, both in meaning and scope, and introduce a framework for our use here, devel-

oped further in the next chapter.

8.1 Why emergence?
Emergence is “the arising of novel and coherent structures, patterns and properties during the
process of self-organisation in complex systems.” [80] Locally acting rules can combine to create
unexpected large-scale emergent behaviour.

We find emergence everywhere. We see it in nature in the forms of ant colonies and termite mounds,
as friction and in flocking birds [82] and schooling fish [83]. We see it in economics [84], in games
such as poker and in architecture [25, 26].

Emergent biological systems have many desirable properties that people try to engineer into prod-
ucts and services, including fault tolerance, robustness and adaptability. Unfortunately, the drive
to incorporate these properties into traditionally-developed systems has led to “more or less wild
claims that all we need to do to get these properties is allow them to emerge, by stripping away the
centralised control” [85], which “is more a recipe for anarchy, than for emergence.” [85]

Traditional development techniques often make it difficult to exploit the potential of good emer-
gent properties in a methodical way. Indeed many techniques, such as formal development, seek
to eliminate emergent properties from the system so it meets the specification. One reason is that
emergent systems are generally irreducible, making it impossible to separate them into meaningful
constituent parts or to combine simpler elements to build up functionality of the system piece by
piece. Though the emergent behaviour is part of the whole system, we cannot attribute aspects of it
to particular pieces of the system.

Before exploring the subject in greater depth, we introduce what is perhaps the archetypical exam-
ple of emergence, flocking.

8.2 Modelling flocking behaviour
Reynolds’ Boids [82] are a “particularly evocative example of emergence” [82], using just three sim-
ple rules to generate remarkably realistic flocking behaviour. A number of identical boids are placed
into a 3D environment (similar experiments have also been done in 2D). The boids are left to fly
around, subject to these three rules (images adapted from [82])

Emergence Review Neutral Emergence and Coarse Graining Cellular Automata

76

 ▪ Separation – steer to avoid crowding nearby boids in flock

 ▪ Alignment – steer towards the average heading of local boids
in flock

 ▪ Cohesion – steer to move toward the average position of local
boids

There are no special boids here with ‘leader’ or ‘organiser’ roles, and each boid only has information
about its local environment. Yet remarkably, this setup leads to a “goofy kind of flocking” [86] that
nonetheless seems uncannily real.

Perhaps even more surprisingly, the flock continues to behave believably when the boids are placed
in novel environments. When confronted by an obstacle, the flock splits to go round it and then
reforms on the other side. There is nothing explicit in the rules to prescribe this robust – and very
realistic-looking – response, yet Reynolds’ model copes with this and many other situations with no
special conditions or extra rules: we get all of this for free (§9.19-§9.24).

Figure 8.1 Boids moving round pillars. The flock splits and reforms after passing the obstacles. (Stills from a video

at [82].)

8.3 Defining emergence
Emergence has interested philosophers (and, latterly, scientists) for hundreds of years. Aristotle [87]
provides one of the earliest references, recognising “things which have several parts and in which

Neutral Emergence and Coarse Graining Cellular Automata Emergence Review

77

the totality is not, as it were, a mere heap, but the whole is something beside the parts.” In other
words, something that is more	than	the	sum	of	its	parts. Perhaps the first complete definition comes
from George Lewes, who said

“Although	each	effect	is	the	resultant	of	its	components,	we	cannot	always	trace	the	steps	of	the	
process,	 so	as	to	see	in	the	product	the	mode	of	operation	of	each	factor.	In	the	latter	case,	we	
propose	to	call	the	effect	an	emergent.	It	arises	out	of	the	combined	agencies,	but	in	a	form	which	
does	not	display	the	agents	in	action.”	[88]

There is considerable debate about how real emergence is: is it a real phenomenon where emergent
models can be causal, or is it just an epiphenomenon that results from lower level behaviour?

Abbott argues that emergent behaviours are epiphenomena, which he defines as “[a] phenomenon
that can be described independently of the underlying phenomena that bring it about.” [89] He
uses Brownian motion as an illustrative example: while dust particles appear on the surface of water
to move randomly and independently, Einstein [90] explained how this movement is an epiphe-
nomenon of the particles’ collisions with atoms or molecules in the water.

Though the idea of a life force has long been discredited, many take issue with a hierarchy of sci-
ences, where “science[n + 1] is just applied science[n]” [91]. “At each [level] entirely new laws, con-
cepts, and generalization are necessary. … Psychology is not applied biology, nor is biology applied
chemistry. … The whole becomes not only more than but very different from the sum of its parts.
… [The] ability to reduce everything to simple fundamental laws … implies the ability to start from
those laws and reconstruct the universe.” [91], cited in [89]

According to the constructionist hypothesis, we can build up any phenomenon (such as the rules
of biology or chemistry) from more fundamental rules (usually the laws of physics). Many authors
are unhappy with constructionism, sometimes for lack of evidence (no-one has shown, for example,
how to construct a human emotion from the laws of physics) and sometimes because it is not clear
what we should use as building blocks. But the alternative is vitalism, and “Henry Bergson and
Darth Vader notwithstanding, there is no life force.” [92]

This is a rather stark choice – we either accept strict constructionism or subscribe to vitalism – and
many authors have attempted to find ways of recasting the problem to avoid this difficulty. Camp-
bell and Bickhard [93] start from Kim’s ([94] and others) argument that reductive physicalism
cannot explain everything, citing the failure of Carnap’s attempts to translate all mental terms into
physical states. They are not convinced that this is possible in principle either, even given a perfect
understanding of the mental and physical states. They argue that, physicalists “cannot point to any
plausible bridging laws that are effective in explaining such phenomena [,] their doctrine is mere
dogma.”1 [93]

1 Though we note that Campbell and Bickhard provide no substantive evidence to support their alternative theory either.

Emergence Review Neutral Emergence and Coarse Graining Cellular Automata

78

Over time, scientists have discovered new (apparently) fundamental particles, moving from atoms
to protons and electrons to quarks. Of course we could change our model every time new funda-
mental particles are discovered and insist that what we previously believed to be phenomena are
now epiphenomena. While changing fundamental models happens very rarely, it does still not seem
very principled to distinguish phenomena and epiphenomena by whether they are defined in terms
of the most fundamental particles we happen to know about at the time.

And even with the particles we currently have (leaving aside the question of whether they are actu-
ally fundamental or not), it is difficult to explain behaviour such as the Pauli exclusion principle.
Quantum theory also suggests that there are no particles, or at least not in the classic (physicalist)
sense of the term. Campbell and Bickhard [93] point out that this leaves us susceptible to causal	
drain, as there is now no basis in which to define real phenomena – it’s epiphenomena all the way
down.

Having dismissed both reductionism and vitalism, Campbell and Bickhard [93] present their al-
ternative, arguing for a process-based model. They suggest that particles are insufficient as funda-
mental components; we must consider their configuration too, and we must consider these as being
just as fundamental as the particles. “[T]here is the pattern of the relationship between [a proton
and an electron], and that pattern of the process, its organization, is what is crucial to the emergent
properties of hydrogen.”

8.4 Downward causation
Downward causation posits that emergent phenomena can be genuine phenomena, rather than just
epiphenomena, and that these emergent phenomena can produce behaviour at a lower level. Camp-
bell and Bickhard say that there is “no question downward causation exists.” [93] Building on their
organisational model of emergence, they posit that “if everything is configurational, there is no rea-
son not to accept that complex configuration can generate properties and powers that are genuinely
emergent.” Unfortunately Campbell and Bickhard offer no reason to accept that complex configu-
ration can generate causal emergent properties either, as their examples are easy to explain without
resorting to high level phenomena or downward causation. Two examples they give are

 ▪ The location of iron atoms in a wheel is dependent on the movement of the wheel as a whole.
Thus, they argue, the wheel is downwardly causal on the atoms’ positions.

 ▪ A candle keeps itself alive by supplying itself with wax and oxygen and keeping itself at the right
temperature. The self-maintaining candle flame is an organisation that is an	 emergent	 causal	
power.

It is true that these “cannot be explained simply as the physical resultant of the causal properties
of its distinct constituents” [93], but they can be explained if we project properties of the underly-
ing models (physical and configurational) to form the emergent model, much as we shall do later

Neutral Emergence and Coarse Graining Cellular Automata Emergence Review

79

with cellular automata (§10.1). The position of the wheel atoms is determined over time by their
relationship with the other wheel atoms. If we model the bonds between and location of the iron
atoms, we can calculate the position of any constituent atom. This process is hugely expensive and
inefficient, but it does not require downward causation to work. A similar argument can be made
for the candle.

Bedau [96] also advocates downward causation, at least partially. He defines three types of emer-
gence: nominal emergence (a property of the macro system that the micro system cannot have – a
circle is nominally emergent because its constituent points have no shape); strong emergence (sys-
tems with downward causation, in which the macro level effects influence behaviour at both the
macro and micro levels); and weak emergence (systems that are causally dependent on and reduc-
ible to the low level, but that have explanatory independence and irreducibility).

Bedau dismisses strong emergence, stating that “[a]ll the evidence today suggests that strong emer-
gence is scientifically irrelevant. … Strong emergence starts where scientific explanation ends.” [96]
He separates weakly and nominally emergent systems by insisting that weakly emergent systems
must be underivable more efficiently than by simulation.2 (This is in the general case, so specific
setups of a system for which we can predict the outcome, or indeed setups for which we have previ-
ously noted the outcome, do not disqualify a system.)

Despite requiring the high level behaviour of his weakly emergent systems to be ontologically
epiphenomenal, Bedau argues that, as weakly emergent systems are explanatorily autonomous and
irreducible, they exhibit downwards causation in terms of their explanation. Or, to put it more
succinctly, if we can’t easily understand what’s going on then we should class it as downwardly
causal. We later suggest that emergence is a relative concept (there are no correct emergent proper-
ties – §9.3) and using downward causation as an intellectual sleight of hand may be useful in some
circumstances, but again Bedau’s examples can easily be explained without it.

Bedau uses a glider gun in Conway’s Life (§2.4) to illustrate explanatory downward causation. A
glider gun emits gliders at regular intervals, and Bedau argues that the production of these glid-
ers – and the gliders’ affects on the CA’s cells – is caused by the glider gun as a whole. “Clearly, this
repeating pattern [of a specific cell]’s behaviour is caused by the macro-level glider gun.” [96] And
while he acknowledges that the glider gun’s behaviour is ontologically caused by the aggregation of
the CA’s cells causal histories, he believes that the macro explanation is autonomous from the ag-
gregate micro explanation. “There is a macro explanation that is not reducible to the aggregation of
micro histories. If those micro histories had been different, the macro explanation could still have
been true.” [96]

While not inherently wrong, Bedau’s downward causation could be quite confusing, encouraging
us to view system behaviour with reference to a causality that is not actually true at all. It’s also

2 Either in principle or those that can theoretically be derived but must be simulated in practice for “a slightly weaker notion of
emergence”.

Emergence Review Neutral Emergence and Coarse Graining Cellular Automata

80

unnecessary: if, instead of using an ontologically false macro model of the system, we choose to
project a lower dimensional model of the low level system to the emergent level (removing degrees
of freedom we don’t want), we will end up with a model that can naturally be described in terms of
the high level behaviour and is insensitive to a change in its micro histories.3 We describe how we
can use this approach in Life to move from cells to a glider in §10.2. “No matter how real [Game
of Life] patterns look, interaction among them is always epiphenomenal.” [89]

8.5 Supervenience and emergence
Anderson contends supervenience is closely related to emergence. “H supervenes on (or over) L if it
is never the case that two states of affairs will assign the same configuration of values to the elements
of L but different configuration of values to the elements of H.” Abbot [89] illustrates superveni-
ence by supposing we have five bits in the low level L and that the high level H requires that an odd
number of bits are on. Here, H supervenes over L because the truth values of the bits in L always
determine truth of H. But H stops supervening L if we exclude bit 5 from L: bits 1 to 4 can be still
true (so L is also still true), but if bit 5 is false then H will now be false.

While ruling out downward causation, Abbott [89] does allow emergent properties to be down-
ward entailing. Since a Turing machine can be emulated by Conway’s Life, it is one of Life’s possible
epiphenomena. But this also tells us something about Life: we know that the halting problem is
unsolvable on a Turing machine, and as Life can implement a Turing machine, the halting problem
must be unsolvable in Life too. “Thus a consequence of downward entailment is that reducibility
cuts both ways. … We reach that conclusion by reasoning about the higher level as an independent
abstraction and then reconnecting that abstraction to the lower level.” [89]

8.6 Levels and complexity in emergence
Emergent behaviour is often described as the global behaviour of the system, appearing out of the
simple, local interactions between the system’s components, and many definitions talk of levels and
of the increased complexity of emergence – emergent properties appear at more complex level.

In their review of emergence, Stepney et al. [85] suggest that “[t]he emergent properties form
higher level structures (of patterns, of agents) in space and time. These higher level agents have their
own structure and dynamics, their own (longer) length- and timescales. Longer timescales allows
relative stability of higher level patterns.” They quote Burns et al. [97], who introduced timebands
to formalise this notion of different timescales at different levels: “The slower [higher level] band (A)
can be taken to be unchanging (constant) for most issues of concern to B. … At the other extreme,
behaviours in [the lower] band C are assumed to be instantaneous”. Bickhard and Campbell [98]

3 Insensitive to the extent that Bedau’s macro explanation is, at least.

Neutral Emergence and Coarse Graining Cellular Automata Emergence Review

81

note that, in physical systems at least, “successively higher levels often require successively lower
temperatures to emerge … each level ‘condenses’ out of lower levels”.

Anderson [91] links levels to complexity, and says that “[a]t each level of complexity entirely new
properties appear” and uses this definition to reject constructionism. “The constructionist hypoth-
esis breaks down when confronted with the twin difficulties of scale and complexity. The behaviour
of large and complex aggregates of elementary particles, it turns out, is not to be understood in
terms of a simple extrapolation of the properties of a few particles. Instead, at each new level of
complexity entirely new properties appear, and the understanding of the new behaviors requires
research which I think is as fundamental in its nature as any other.” [91]

Other authors reject the link between emergence and complexity. Bar-Yam [99] provides several
examples of emergent simplicity and Ryan [100] extends this to the general case, defining weak
emergence (§8.8) as a loss of resolution (a definition we use in §9 and in subsequent chapters).

Shalizi defines an emergent process as one that “has a greater predictive efficiency than the proc-
ess it derives from.” [95] Rather than define emergence as intrinsically complex, Shalizi seeks “to
filter out everything we can – get rid of all the small-but-significant inputs – so as to simplify the
relationship. We are not trying to explain everything we can measure; we are trying to find what’s
intrinsically important in our measurements.” [95] This is a very important point that we return to
in §9.5, §10.12 and elsewhere. Shalizi’s model is a thoughtful and thorough one in many ways, not
least because he shows how one can quantify emergence (something we also discuss in §9.11 and
develop further in §11).

8.7 Emergence as a change of scope or resolution
We take issue with levels as a requirement for emergence, and even that levels exist in emergent
systems. Levels are useful pedagogically and provide a convenient shorthand (indeed, we shall con-
tinue to use the term extensively here (even when discussing theories of emergence without levels)
and in later chapters), but they throw up more questions than they answer: What is a level? Are they
ontological or epistemological? Is a certain degree of separation needed between them before they
count as distinct levels? Levels smack rather of vitalism (Where do the levels come from?) and seem
to draw from the “I know it when I see it” school of thought [101], rather than from rigorous (or
indeed any) first principles.

Ryan also argues against levels in emergence. “The conventional explanation of emergence presented
in the previous section is unsatisfactory. The use of an emergence hierarchy to account for emergent
properties is alarmingly circular, given that the levels are defined by the existence of emergent
properties. In hierarchy theory, levels are most often considered to be epistemic, although seemingly
only to avoid the burden of proof that falls on an ontological position.” [100]

Emergence Review Neutral Emergence and Coarse Graining Cellular Automata

82

He replaces levels with scope and resolution. System scope is defined by a spatial boundary, which
could be conceptual, physical or formal. System resolution is the finest spatial distinction between
two alternative system configurations.

Ryan stipulates that the scope of the high level4 must be at least that of the low level, and that the
resolution of the high level must be at most that of the low level. He also requires that the levels
have different resolutions and scopes.

RM ≤ Rμ

SM ≥ Sμ

(RM, SM) ≠ (Rμ, Sμ)

R = resolution, S = scope, M = macrostate, μ	= microstate

8.8 Weak emergence
Weak emergent properties describe the relationship between microscopic low level behaviour and
macroscopic high level collective behaviour where both levels share the same scope. Bar-Yam refers
to this as “parts with positions to the whole” [99]. For the model to be emergent in Ryan’s model,
the resolution of the low level must be greater than that of the high level.5

If SM = Sμ then it follows that RM < Rμ. Bar-Yam lists pressure, temperature, patterns on animal skins
and traffic jams as (likely6) examples of weak emergence [99].

A corollary of Ryan’s definition of emergence is that weak emergent properties are epistemic, as
once we discover the mapping they are no longer considered emergent. Unfortunately Ryan appears
to conflate mappings and paths: having a mapping between the high and low levels does not imply
there is a path we can traverse between the two. Such a path allows us (theoretically) to construct a
model of the system at any point between the two levels, whereas a mapping merely asserts there is
a relationship between the levels. In §9.6, we assert that such a path cannot exist in (weakly) emer-
gent systems, though mappings can and do.

Goldstein [80] also questions whether emergence is merely a provisional construct, that it is “simply
an epistemic recognition of the inadequacy of any current theory for deriving macro-level properties
from micro-level determinants.” However, he also points out that complexity theory has built-in

4 As stated previously, we continue to use the term ‘level’ to identify the macro- and microstates, even though we define them in
terms of scope and resolution.

5 Ryan and Bar-Yam both note that scale is not the same thing as resolution: scale is ontological and resolution is epistemological.
Resolution determines the size of things we can detect (without changing their size in the model), whereas scale changes the size of
the things we detect (without changing the minimum size that is detectable).

6 He adds a caveat that modelling some of these properties may require strong emergence.

Neutral Emergence and Coarse Graining Cellular Automata Emergence Review

83

limitations to predictability due to the nonlinearity of complex systems, giving examples of strange
attractors (§4.10) and Conway’s Life [36]. “As a result, it seems that emergence is now here to stay.”

8.9 Strong emergence
Ryan says that a strong emergent property only exists at the emergent level. It cannot be identified
without looking at all parts of the system together – it is only there in the collective. Ryan stipulates
that the resolutions of the high and low levels should be identical for strong emergence, and so it
follows that SM > Sμ.

He uses a secret scheme as an example. Imagine a secret sharing scheme that divides the secret into
n pieces such that

 ▪ The secret is easily determined with knowledge of k or more pieces of the secret.

 ▪ The secret is completely undetermined with knowledge of k – 1 or fewer pieces.

 ▪ We can only know the secret after increasing the scope to k pieces or larger, so the secret is a
strong emergent property of the system.

Bar-Yam calls this type	3	 strong	 emergence. He also identifies type	2	 strong	 emergence, which falls
somewhere in between type 3 (Ryan’s) strong emergence and weak emergence. The scopes of the
high and low levels are the same, but he insists on the presence of ensembles, or global constraints
that determine the properties of the whole system. There is no strong emergence when constraints
act on only some components of the system. Bar-Yam gives examples of a fixed number of players
on a team, quota filling (filling seats in an auditorium) and steady-state flows as examples of type 2
strong emergence.

8.10 Dynamics and emergence
Several authors have suggested a link between emergence and dynamical systems. Drawing on
Broad’s work [102], Newman [103] gives a “careful definition” [85] of emergence. His definition
falls within Ryan’s strong emergence (§8.9), and broadly states that

 ▪ An emergent system comprises structured entities in a relation.

 ▪ It is impossible to identify an emergent property of the system without looking at the system
as a whole.

(The actual wording is significantly more precise.) Newman suggests that being in the basin of a
chaotic attractor meets his definition, as the attractor supervenes on all variables that make up the
system; and that we cannot identify the attractor from just some of its states because these cannot
be finitely defined.

Emergence Review Neutral Emergence and Coarse Graining Cellular Automata

84

In a similar vein, Goldstein asserts that dynamics is one of the “common properties that identify
[systems] as emergent.” [80] He argues that “[e]mergence requires systems with at least the follow-
ing characteristics” [80]: nonlinearity, self-organisation, non-equilibrium systems and the presence
attractors, and that “[n]ew attractors show themselves when a dynamical system bifurcates, this
event signifying both a quantitative and a qualitative metamorphosis.” [80]

Crutchfield also links dynamics and emergence in his ε-machines model, proposing “a synthesis of
tools from dynamical systems, computation, and inductive inference” [104] and, like Goldstein,
believes that chaotic attractors are an example of emergence. He characterises three stages of emer-
gence

 ▪ “The intuitive definition of emergence: “something new appears”;

 ▪ Pattern formation: an observer identifies “organisation” in a dynamical system; and

 ▪ Intrinsic emergence: the system itself capitalises on patterns that appear.” [104]

Flocking is an example of intrinsic emergence, as the group behaviour is identified and used by the
birds in the flock.

Crutchfield introduces ε-machines to model emergent behaviour. There are four levels of ε-machines
in Crutchfield’s hierarchy, somewhat equivalent to the Chomsky hierarchy, though levels 0-2 (data
stream, tree and finite automata) all fall within Chomsky’s level 3 (finite automata), and Crutch-
field’s level 3 has the power of a Turing machine (Chomsky’s level 0). Crutchfield’s ε-machines are
stochastic: he uses Bernoulli-Turing machines and statistical finite state automata to stop random
behaviour from appearing maximally complex [17, 18].

Crutchfield uses ε-machine reconstruction to build a model of a system’s behaviour. He starts by
trying to emulate the system with a level 0 ε-machine. If the language is not expressive enough to
produce a finite model, he moves up to the next level in his ε-machine hierarchy and tries again.
The aim is to create a “minimal model at the least computational powerful level yielding a finite
description” [104]. As with Langton’s and Kauffmann’s work [17, 18], Crutchfield’s results show
maximum complexity at a point between order and chaos.

Shalizi [95] builds on Crutchfield’s work on ε-machines, developing a new creation method that
he shows to be minimally stochastic and argues should include a minimal set of states. (This differs
from Crutchfield’s algorithm, which Shalizi says constructs the “the most complicated [model] that
can be devised, given the length of histories available to the algorithm” [95]). A Shalizi ε-machine
models the entire underlying process, so we can divide it up into sub-machines (strongly-connected
components) and, at each timestep, output a symbol unique to that sub-machine or, if moving
between sub-machines, output a symbol for that transition. Thus, “[if] the sub-machines have been
chosen appropriately” [95], the sub-machines are emergent structures for the underlying model.

Neutral Emergence and Coarse Graining Cellular Automata Emergence Review

85

Finally, we have already seen Kauffmann’s extensive analysis of RBNs, which he believes may be
simplified models of gene regulatory networks (GRNs). “He analyses the structure and stability of
their attractor spaces, and draws an analogy between these attractors and cell types: maybe some-
how cells ‘are’ the attractors of GRNs.” [85]

8.11 Abstractions in flocking
Earlier we saw that Reynolds’ simple flocking rules performed surprisingly well when faced with
novel environmental obstacles. Commentators disagree over whether his flocking rules are actually
followed by birds and fish, or whether they are merely an uncanny facsimile. If it is the former then
these three simple rules demonstrably operate successfully in a very complex world. If it is the latter
then the case is less strong, but this flocking model has still been shown to be effective in a range of
quite complicated and diverse simulations.

We argue that these flocking rules are so effective because there is a very high degree of abstraction
within the model. There are two distinct abstractions in boids’ flocking behaviour: between the
boids and the flock, and between the flock (or equivalently boids) and the environment. At a boid
level, the rules work by ruthlessly removing unnecessary detail: there are two classes of object – boid
and non-boid – and any objects beyond a certain distance are ignored. And the flock effectively
makes the same abstractions: it is not concerned with non-flock objects, and distant objects are
similarly ignored.

Thus the environments considered by both boid and flock are drastically simplified, and there is no
need to account for the difference between, for instance, a high, thin pillar and a low, wide wall in
the rules.7 We have much more robust behaviour than we would have otherwise through choosing
the right abstraction: the model is robust specifically	because	we ignore information. This is some-
thing we expand on in §9.20.

8.12 Evolving flocking
Having described group behaviour rules for flocking, it is natural for researchers to investigate
whether they can evolve similar phenomena, and indeed a number of papers have been written on
the subject.

Zaera et al. [105] discuss the difficulties they encountered attempting to make fish display collec-
tive emergent behaviour. Although they succeeded in evolving simpler dispersal and aggregation
behaviours (constituents of Reynolds’ flocking), they were not able to persuade their fish to school.
Sometimes their fish would show “degenerate” [105] schooling behaviour, where the fish would
swim in tight circles to satisfy the fitness function.

7 Or, for that matter, the difference between a red pillar and a green pillar. Just because we can notice something does not mean
that we should. In fact, most of the time we should ignore things unless given a good reason not to.

Emergence Review Neutral Emergence and Coarse Graining Cellular Automata

86

The authors report that they were unable to find a quantitative measure of schooling in the litera-
ture, and their own compound function (a collection of Gaussian measures favouring ‘desirable’
schooling qualities) proved inadequate: although it rewarded correct schooling, it also favoured
many other behaviours as well. Zaera et al. suggest this is because their fitness function was not
complex enough, and claim that creating an effective function (one that recognises schooling but
nothing else) is likely to prove at least as difficult – and the resultant fitness function at least as
complex – as hand crafting the behaviour.

In fact, it may be considerably more difficult than that. The authors argue that there is no objective
definition of schooling, that the appellation of boids’ collective behaviour is subjective. They con-
tend that, even if one assumes an implicit definition – “if a group of agents do what [boids] do, then
the group is schooling” [105] – it is difficult to formulate an effective quantitative fitness function
that gives a useful indication of progress towards schooling. However, it could be argued that this is
inevitable – by definition of the phenomenon being emergent, it is not possible to provide a nice,
graded progress indicator in terms of lower level behaviour. We discuss mappings and development
paths further in §9.5-§9.8.

There is another way. And there are actually incremental fitness steps towards realistic schooling
behaviour, though not in the direct sense supposed in Zaera et al.’s system. But first we must ex-
pand our model – make it even more complex – so we have a reason for schooling. Biologists have
suggested several motives for such collective behaviour, including reducing the risk of being eaten,
making the search for food easier, increasing mating efficiency, and creating an environment for
learning and reducing overall aggression [106]. Schooling may also save energy by reducing drag
[107].

So if we add food or predators to our model, it is likely we will see schooling behaviour emerge,
as it is selectively advantageous. The evolution of the fish in this model is likely to include changes
that would be selectively neutral towards a schooling fitness function (perhaps different interactions
with their neighbours that look no more like a school ‘should’ behave) but that are nonetheless
beneficial for evading predators or finding food. And, as the fish continue to get better at eating
and avoiding being eaten, they will develop recognisable schooling behaviour as a side-effect of
their gradual evolution. We are unlikely to see the “degenerate” [105] ‘schooling’ Zaera et al. saw,
as swimming in circles is not going to aid survival or locate more food.

8.13 Flocking through predation
Convincing group behaviour has been evolved by several researchers using this approach. Reynolds
[108] evolved animats to evade a simple predator. He placed his creatures in a simple 2D environ-
ment and equipped them with limited visual acuity (the ability to detect and distinguish each
other, obstacles and the predator, but no more). The animats were tasked with steering a safe course
through the environment by avoiding collisions and being eaten.

Neutral Emergence and Coarse Graining Cellular Automata Emergence Review

87

Though none of the evolved behaviours were “anywhere near as robust and general purpose as
herding behaviours seen in natural animals” [108], his model did give rise to coordinated group
behaviour in the prey. Despite the simple environment, simple animats and a particularly simple
predator, the model (presumably) captures an important rationale for flocking – predation – well
enough for group behaviour to prove beneficial.

Ward et al. [83] evolved fish that displayed schooling behaviour. Their model was more complex
than Reynolds’, with multiple predators and prey being co-evolved in a minimal 2D environment.
The creatures used simple neural controllers that encoded models of two major fish senses, the close
range lateral line (hearing or pressure) and a longer range vision system. Each of these senses was
divided into several neurons that pertained to different sectors of the fish’s field of perception. The
predator and prey fish models were identical structurally, but evolved significantly different neural
weightings over time to match their purpose.

As with Reynolds’ model, group behaviour was evolved, the authors reporting that it was use-
ful both for finding food clumps and for giving better protection from predation. (Though less
marked, schooling emerged even in models with no predators present.) Ward et al. also say that the
effect of predation on the model was less pronounced than they hoped, though the authors “believe
that this is purely a reflection of the measure used rather than behavior.”

Ward et al. comment that “it is known from Zaera, Cliff, and Bruten’s ... work that the BOIDS
rules do not describe all these properties, since the rules proved insufficient as a fitness function.
… A slightly more sophisticated model is needed, and for this a flexible representation of the
fish’s knowledge (i.e., its sensory systems) must be designed.” And this is true. The complexity of
Reynolds’ and Ward et al.’s models is almost certainly greater than Zaera et al.’s: there are different
classes of agent who interact with each other dynamically; the agents themselves are much more
sophisticated and strive to meet long term goals (survival and reproduction) through their short
term actions; and Ward et al.’s predator and prey fish co-evolve with each other.

But, at a more abstract level, it’s actually very simple: the objective is to eat and not get eaten. And
crucially this is also the level at which their fitness functions operate, and at which the models
evolve. Flocking is a difficult problem to solve directly, but if we allow ourselves to talk instead
about prey, predators, food and the environment it actually becomes much easier.

We are now able to use evolutionary criteria that incrementally increase the survival chances of each
individual (low level fitness) and of the group (high level fitness), measures that simply weren’t avail-
able in Zaera et al.’s simpler model. And, after observing the simulation for a while, we find that
the evolved fitter behaviour also happens to be behaviour that gives interesting group dynamics.

In contrast, Zaera et al. just decreed, “Let there be flocking.” And there was no flocking, because
there is no continuous development path from the low level, individual behaviour to the flocking
behaviour we want. In common with all emergent systems, this is not something that can gradually

Emergence Review Neutral Emergence and Coarse Graining Cellular Automata

88

appear (§9.6). (Contrast this with swimming in circles, which is not emergent, can gradually appear
and is a way of satisfying the fitness function found by their model.)

Ray and Ward et al. were able to sidestep this problem by evolving the high and low level models in
parallel towards flocking behaviour. And their approach is also much more robust: group behaviour
is an effective response to a significant number of predator models, so the system is not sensitive
to any one aspect being exactly ‘right’. Indeed Ray’s and Ward et al.’s models differ substantially
from each other in their environments, prey and predator models, method of evolution, and so on
– much more significantly than tweaking parameters in a schooling fitness function – but both still
produce convincing group behaviour.

Neutral Emergence and Coarse Graining Cellular Automata Emergence

89

9 EMERGENCE
After explaining how we use emergence the scope of our investigation into the subject, we briefly

touch on the importance of mappings when creating emergent models before investigating how

we can quantify emergence through information theory. We use quantitative emergence to define

neutral emergence, in analogy to neutral evolution, and then explain how we can develop emergent

systems automatically. Many of these themes are covered in greater depth in subsequent chapters.

9.1 Defining emergence
Before delving deeper into the subject, we should clarify what we mean when we discuss emergence.
We are talking exclusively about what Ryan [100] calls weak emergence: there are no changes of
scope, only changes of resolution. And while we allow the (small) possibility that genuinely new
emergent properties may appear in some cases (as opposed to just epiphenomena), this is unneces-
sary for the subset of emergence we cover in this and subsequent chapters.

We are not trying to create and justify yet another definition of emergence, weak or otherwise.
What we discuss here fits within existing definitions of the topic from authors such as Ryan. Rather
we are interested in exploring aspects of emergence that are often not considered. We discuss the
importance of mappings between the high and low level languages; we look at developing emergent
systems in analogy to conventional software development; we consider how to quantify the quality
of an emergent model; and we explore the power of neutrality in emergent models for speeding up
development and boosting robustness.

9.2 A starting definition of emergence
Our starting point for emergence is (an adaptation of) Ronald et al.’s [109] definition.

 ▪ “Design – The system has been constructed by the designer, by describing local elementary in-
teractions between components … in a language L1.

 ▪ “Observation – The observer is fully aware of the design, but describes global behaviours and
properties of the running system, over a period of time, using a language L2.

 ▪ “Surprise – The language of design L1 and the language of observation L2 are distinct, and the
causal link between the elementary interactions programmed in L1 and the behaviours observed
in L2 is non-obvious to the observer – who therefore experiences surprise. In other words, there
is a cognitive dissonance between the observer’s mental image of the system’s design stated in L1
and his contemporaneous observation of the system’s behaviour stated in L2.” [109]

Like other authors [85], we reject ‘surprise’ as a criterion for emergence, but we do start from Ron-
ald et al.’s two languages of description. We user L for the microscopic low (or local) level and S for

Emergence Neutral Emergence and Coarse Graining Cellular Automata

90

the macroscopic high (or global) level of the model.1 Later we shall discuss engineering emergent
systems; in this case, S can be thought of as the system specification and	L	its low level implementa-
tion.

9.3 Subjective emergence
Ronald et al. [109] define emergence in terms of two languages – it is a relative concept. Their
definition does not say that there is a “dissonance between the observer’s metal image of the system
stated in	L	and his … observation of the system’s behaviour stated in the	language	of	emergence,	S.” 	
S	could be any language (though we see later in §10.11 that some languages are better than others).

We believe there is no such thing as a correct emergent property. The emergent properties of a
system we see are not right in any absolute sense – they are merely a reflection of the view (more
precisely, the mapping and language – §10.5, §10.20) we have taken. If we take a different view of
a system, we may well see different emergent properties.

A relativistic approach to emergence is also advocated by Gell Mann [71], who suggests that low
level information may be modelled through what he calls schemata

“A	complex	adaptive	system	acquires	information	about	its	environment	and	its	own	interaction	
with	that	environment,	identifying	regularities	in	that	information,	condensing	those	regularities	
into	a	kind	of	‘schema’	or	model,	and	acting	in	the	real	world	on	the	basis	of	that	schema”	[71].

The system uses schemata to separate “regularities from randomness” [71], to model information
acquired in	S	in terms of	L. Gell Mann suggests that emergence occurs when the flow of informa-
tion to the model deviates from that expected by the schema; this is emergence	relative	to	a	model
[72]. The model must adapt its schemata again to account for these unexpected inputs, after which
the system is no longer considered emergent. While we don’t subscribe to this rather transient defi-
nition, his model provides another thoughtful example of subjective emergence.

9.4 Useful emergence
Though no view of emergence is correct, some views will be considerably more useful (or good)
than others.2 We naturally see a group of birds as a flock because this captures the most salient
(and, though our genetic inheritance, the most evolutionarily significant) properties of their be-
haviour: their macro position, their overall speed, their general direction. We largely abstract away
other details, such as the individual birds’ positions relative to each other or how they interact with
each other. This gives us a useful view of birds (for hunting them, avoiding them or viewing them
through binoculars) without overwhelming us with information.

1 H having been claimed by entropy.

2 We define utility as relative correctness – if it’s right for this situation or model, it’s useful.

Neutral Emergence and Coarse Graining Cellular Automata Emergence

91

We use these ‘natural’ views even when faced with artificial (and entirely abstract) systems. When
we stare at a simulation of Conway’s Life, we immediately pick out patterns such as gliders as we
impose our real world propensity for detecting salient objects on this mathematical space. We find
it much more difficult to detect meaningful objects or patterns in the soup immediately after start-
ing Life from a random state. (Though patterns in apparently random states can still exist [155].)

Sometimes these views fail us. If a flock of birds is confronted by a large object (such as a pillar
[82]), our model of the flock as a large, single entity will not help us predict the birds’ behaviour.
Will they veer to the left, to the right, or split in two? If they separate, will they regroup afterwards?
It is not at all obvious from our ‘big blob’ flock model.

Birds and fish take advantage of another failure in this natural view to avoid predators; indeed, this
is thought to be one of the reasons they flock or school in the first place. It is very difficult for a
predator to pick out an individual fish within a school – the school is well defined, but information
at the fish level is confusing and overwhelming [83]. Thus the fish, despite being weaker and slower
than their predators, stand a reasonable chance of surviving an attack.

9.5 Independence and lossy emergence
The perception of an emergent system is that its high level behaviour appears to be, to some degree
at least, distinct from, and independent of, the low level behaviour. A termite mound has ostensibly
little in common with the scurrying insects that constructed it; a Life glider is an object with dis-
tinct boundaries and movement, quite different from its ever-changing but stationary constituent
cells; optimal commodity pricing occurs through the local (and selfish) interactions of traders.3 We
see this apparent independence in many definitions of emergence, with their references to separate
languages, levels or timeframes [85, 97, 98]; some definitions insist there is no emergence once we
have identified a link between the high and low levels [100].

But while these emergent properties may appear to be something new and distinct, they are not.
Emergent properties are merely a subset of the underlying behaviour, albeit a carefully chosen one.
Emergence doesn’t add anything; it removes (or hides) aspects of the underlying system until one is
left with an apparently salient, coherent core of behaviour – the high level phenomenon, often bet-
ter described in a different language – that appears to be emergent. Our high level view (constrained
by language, time, etc.) has blurred the underlying system so only certain aspects of its behaviour
are still apparent, much like Ryan’s loss of resolution [100].

Consider that archetypal example of emergence discussed earlier, flocking. In Reynolds’ boids mod-
el [81], each boid has a position and a velocity. The emergent flock has just a single velocity and
position. We have moved from many interacting entities occupying a 6n-dimensional space to just

3 Though we note that efficient market theory is disputed theoretically and empirically, with researchers turning to behavioural
economics and or citing imperfect information and market manipulation.

Emergence Neutral Emergence and Coarse Graining Cellular Automata

92

one with 6 dimensions.4 And although we use the same terms (position, velocity) to describe the
behaviour of the flock and each bird, the relationship between the levels is non-obvious.

A flock of boids is certainly simpler and distinct from the behaviour of the individuals that make
it, but our imprecise, natural language definition of flocking precludes us from showing that the
emergent level is a subset of the low level behaviour in this case. Later we describe a technique for
moving from a natural view for describing CA cells to a natural view for describing Life gliders only
through eliminating degrees of freedom in the underlying system (§10), demonstrating that the
emergent gliders are a simpler subset of the underlying behaviour.

No additions or novel discovery are needed to find the Life glider, only elimination. The glider
exists equally at both levels, but only by eliminating unnecessary degrees of freedom does it be-
come apparent, does it become the natural representation. And once we have eliminated degrees of
freedom (and re-expressed the model in a new language that naturally captures this subset of the
underlying system’s properties), it is now non-obvious how the emergent level relates to the under-
lying behaviour.

9.6 Discontinuities and lossy emergence
Intuitively, it should be apparent that a discontinuity must exist between the high and low levels
of an emergent system. This is why the emergent behaviour can be non-obvious, given a low level
description. This is what causes the (rather discredited) “surprise” [109], the “cognitive dissonance”
[109] noted by observers.

This discontinuity is also responsible for much of the power we see in these systems – we can use
our emergent model to predict future behaviour. We can calculate the system’s salient properties at
some point in the future more efficiently than by running it. This model independence (or discon-
tinuity) is the reason we can predict the flight path of a flock of birds (and, as we will see later §11,
the future state of many CAs) easily, something that would be much more challenging for a group
of birds behaving independently.

The emergent model is simpler than the underlying system, so information must be lost between
the two. It follows that we can only predict certain properties of the system, though the proper-
ties of the model we can predict are – by definition – those in which we are most interested. (If we
weren’t interested in these properties, we should have sought an alternative emergent model.)

We may also not be able to anticipate the system’s behaviour correctly in all cases from our emergent
model. But, if the mapping and model we choose are good, our predictions should be accurate in
the vast majority of circumstances, and in particular the most common circumstances.

4 This of course assumes that the characteristics identified by Reynolds are those which are pertinent to flocking.

Neutral Emergence and Coarse Graining Cellular Automata Emergence

93

9.7 Projection and sampling
It is not sufficient merely to lose information when moving to a model of an emergent phenom-
enon; the way it is lost is important.

Sampling is one way to lose information. We could, for example, only consider five birds from a
flock of fifty and cut the amount of information in our system by (approximately) 90%. But this is
not a useful reduction. It gives us no extra insight into the behaviour or emergent properties of the
whole flock, nor does it lend us any useful predictive power over the birds’ future behaviour.

Instead, we require a projection from the whole state space of the birds (6n dimensions) onto the
centre of mass of the flock (6 dimensions), a uniform	dimension	 loss. Because of this projection,
every point in state space loses the same degrees of freedom. This is consistent with the loss of reso-
lution described by Ryan [100].

9.8 Mappings in emergence
Emergent systems are usually described as a pair – an emergent phenomenon and a low level be-
haviour – distinguished by different languages, levels, timeframes, etc. Ronald et al.’s definition
uses two languages [109]; Ryan has two scopes and resolutions [100]; many authors use two levels;
a flock model has rules for each animal and for the group; Life has simple rules for cells and more
loosely defined behaviour for gliders and other objects.

Relatively little attention has been given to the mapping between this pair – it is implicit, assumed
to exist somewhere in the background. But we believe that the mapping is a crucial component in
any emergent system.	Without a good mapping it would be impossible to use an emergent model
(even an otherwise valuable one) to predict system behaviour. We will see later (§10.20) that find-
ing a good mapping is as crucial as finding a good high level model for describing an emergent
system effectively.

Mapping

Low level model

High level model

Figure 9.1 Mapping between high and low level models. The mapping translates between the two models.

And it is not always natural or obvious which mapping is the best choice, particularly when dealing
with systems that, unlike flocking birds, aren’t ‘natural’ to us. This is something we discuss later in

Emergence Neutral Emergence and Coarse Graining Cellular Automata

94

§10.11, when we see cases where selecting a different mapping leads to a different emergent model.
Each emergent model is useful, but they reflect a different aspect of the low level behaviour.

Neutral Emergence and Coarse Graining Cellular Automata Emergence

95

9.9 NEUTRAL EMERGENCE
We now discuss neutral evolution and draw a parallel between it and emergence before introduc-

ing neutral emergence. We then show how we can exploit some of the strengths inherent to neu-

tral evolution – strengths such as robustness and adaptability – when developing emergent models.

9.10 Neutral evolution
Neutral evolution is a well recognised phenomenon in evolutionary biology [15, 110]. The theory
states that changes in the genotype may occur without materially affecting the fitness of the pheno-
type: the change is selectively neutral. This is possible because the mapping between genotype and
phenotype is complex, and that there is significant redundancy in both. Different genotypes can
map to the same phenotype; for example, different codons (DNA nucleotide triplets) can code for
the same amino acid. Thus changes can occur in the genome that have no discernible impact on an
organism’s ability to survive. Similarly, the same genotype can give rise to different phenotypes due
to variations in environmental conditions during development.

It is thought that this redundancy between layers allows the phenotypic population to explore more
of its fitness landscape at little cost, drifting along contours of equal fitness to regions with high
peaks of fitness not directly accessible from its starting point in the search.

The indirection in neutral evolution may allow organisms to evolve new behaviours by changing
gene regulation (creating new paths) and not by changing the genes themselves. Thus each gene
can remain a specialist, preventing compromise of its function [17]. Another suggested advantage
of indirection is enhanced evolvability, which in turn promotes biodiversity [17]. It may also be
that neutral evolution is almost inevitable, simply because of the complexity of the environment in
which life exists.

We shall soon introduce neutral emergence, which seeks to apply the same concepts – of indirec-
tion, of evolvability – to emergence. The next few sections explore how this could work, first by
looking at mutual information and evolution in detail.

9.11 Quantitative emergence
In a bid to understand the complexity of life, Adami [78, 111, 112] considers how prebiotic life
could adapt to its environment. Specifically, he looks at the transfer of information from the envi-
ronment to the genome, represented by a simple bit string. The strings exist within an environment
with physical laws that affect how they can replicate. Adami assumes that the environment is replete
with potential information and that there are many things to discover. In information theoretic
evolution, the genome is seen as some kind of representation of the environment. Adami and Cerf

Emergence Neutral Emergence and Coarse Graining Cellular Automata

96

[112] dub the mutual information between the string and its environment the physical	complexity
(a relative measure, as opposed to the algorithmic complexity; see §9.13).

Note that, as they can reproduce, the strings must already contain a substantial amount of informa-
tion. The information that allows a string to replicate is context dependent: a powerful arrangement
of bits in one environment is likely to be meaningless in another if they don’t allow it to harness
resources in the environment in order to reproduce.

In Adami’s model, the strings adapt through random mutations (caused by cosmic rays5 or copy
errors). Some of these bit flips will be beneficial, some harmful and others essentially neutral.

 ▪ Mutations of bits crucial to replication are likely to be lethal, so these areas will tend to stay
fixed in the population – these are cold	bits.

 ▪ Neutral mutations to unused or little used segments of the genome are more likely to remain,
leading to diversification – these are hot	bits.

 ▪ When a positive mutation takes place, the string has become better adapted to its environment
and the allele will spread throughout the population, changing the bit from hot to cold. Ad-
ditional	information	about	the	environment	has	been	written	into	the	genome.	

9.12 Complexity and information
Adami models the adaptation of the strings to their environment through information theory. In-
formation entering the genome can be seen as a measurement performed on the environment by
the genome. According to information theory, this act increases the correlation between the meas-
ured system and the measurement device, and the conditional entropy of both decreases.6

The more cold bits there are, the higher the mutual information between the organism’s genome
and the environment. The mutual information, or correlation, between the string	S	and its environ-
ment	L, I(S :	L), is the entropy of the string, H(S), minus the conditional entropy of the string in
the context of the environment, H(S|L)

 I(S :	L) = H(S) − H(S|L)

Mutual information = string entropy – conditional string entropy

Or equivalently

I(S	:	L) = H(L) − H(L|S)

Mutual information = environment entropy (constant) – conditional environment entropy

5 Random bit mutations unrelated to replication.

6 Since this is a closed system, the unconditional (overall) entropy does not decrease during measurement. Measurements are
performed spontaneously and randomly by the genomes, but the information acquired is not released just as capriciously; rather, it
is used to lower the entropy of the population. Adami points out that this is the prototype behaviour of a Maxwell demon [78].

Neutral Emergence and Coarse Graining Cellular Automata Emergence

97

The conditional entropy H(S|L) can be thought of as the amount of information in the string
that cannot be explained by (correlations with) its environment. Similarly, the conditional entropy
H(L|S) is the amount of information in the environment that cannot be explained by correlations
with the string.

9.13 Kolmogorov complexity
As entropy (and hence information) is a statistical concept, it is not possible to determine the en-
tropy of one string. Yet some strings are clearly more regular than others. To quantify this degree
of regularity, Adami uses Kolmogorov	complexity [113], which defines how easily a string can be ob-
tained through computation. Difficulty is measured by the length of the shortest program that can
compute the string on a universal Turing machine. (The prefix code needed to simulate any other
machine is vanishingly small in the limit of an infinitely long string s.) The Kolmogorov complexity
(algorithmic complexity) is thus defined as

K(s) = min{|p| : s = CT(p)}

K(s) = Kolmogorov complexity of string s, |p| = length of program p, CT(p) = result of running program p

on Turing machine T

Within this context, a string is defined to be random if the shortest program to compute it is as long
as the string itself, K(s) ≈ |s|.

However, Adami comments that the “algorithmic complexity does not seem to be a good measure
of the physical complexity of a string” [14], that the regularity of a string does not necessarily re-
veal the complexity of the encoded information – as Adami points out, “it is possible to create an
(admittedly insane) encoding scheme in which the blank tape represents all of The Brothers Kara-
mazov” [14]. This problem can be rectified by adding a context to the Turing machine, supplying
it with a ‘universe’ tape l. The machine then computes results from l, which allows the conditional
Kolmogorov complexity to be used

K(s|l) = min{|p| : s = CT(p, l)}

K(s|l) = Conditional Kolmogorov complexity of string s given string l, |p| = length of program p, CT(p, l) =

result of running program p on Turing machine T with input tape l

This measures the remaining randomness in s, the bits in s that are not correlated with (and that
cannot be calculated from) the bits in l. The program p comprises instructions for those parts of s
that can be calculated from l together with a compressed copy of the remainder of s. In the limit
of infinitely long strings, p will mainly consist of the randomness of s, which allows us to state the
mutual complexity

Emergence Neutral Emergence and Coarse Graining Cellular Automata

98

K(s : l) = K(s) – K(s|l)

Mutual complexity = environmental complexity (constant) – conditional complexity (or remaining envi-

ronmental randomness)

Obtaining s from u constitutes a measurement on u, which reduces the conditional entropy of s
and increases the information known about l. Adami provides an example of this process. Imagine a
string s that shares some information with l, with other bits that are random. Mutations constantly
change these bits and a machine checks to see if any of these bits can now be obtained from l by a
computation; if they can, these constitute information, augmenting their mutual entropy. Thus the
mutual information between them constantly increases (Figure 9.2) and “natural selection can be
viewed as a filter … that lets information flow into the genome, but prevents it from flowing out”
[111]. Returning to Adami’s original model, these are simply the hot bits becoming cold.

L

I(S:L)

H(S|L)

S

S

Figure 9.2 Gaining mutual information between the genome and the environment (adapted from [78]). The ge-

nome becomes better adapted over time.

9.14 Minimum model complexity
The conditional Kolmogorov complexity of an uncompressible (defined as random) environment
is the same as its Kolmogorov complexity: its shortest description is as big as the universe itself. In
terms of S and L, if L is uncompressible then S must be (at a minimum) as complex if it is to be
described with no ambiguity.

This has implications for modelling problems for which the outcome cannot be predicted more
quickly than by running the simulation. For example, modelling the emergent behaviour of certain
classes of cellular automata will require a language that is at least as complex as the low level lan-
guage.7 It also has implications for modelling problems which (whether Turing complete or not) we
cannot hope to model in their entirety. Chaotic weather systems is one example mentioned earlier,
but the same will be true (often for boring practical reasons) of any system interacting with the real
world.

7 For a CA, the low level language would consist of more than just the update rules, as other factors, including the initial configu-
ration and spatial arrangement of cells, can have a significant impact on the simulation’s progress.

Neutral Emergence and Coarse Graining Cellular Automata Emergence

99

So there will be a discontinuity between the complex environment and comparatively simple model
held by systems that interact with it. (We make a similar argument in the software engineering
domain §9.19.)

9.15 Information retention
Adami makes the point that, while there is selective pressure for hot bits to become cold, it is rela-
tively rare for cold bits to revert to being hot. Information can enter the genome but not leave, and
therefore “genomes are doomed to accumulate more and more information and grow longer and
longer as a consequence” [78]. This has potentially serious consequences for an automatic emergent
system, as the language will tend to grow and become unwieldy over time. Particularly with this sort
of application, it is important that the genome (the language) is kept as clean as possible.

The error catastrophe [17, 44] should provide a partial solution here by preventing genomes over a
certain length from improving their fitness. As stated previously (§6.1.6), for a fixed mutation rate,
the number of poor alleles accumulates with the square of the number of loci. It is therefore possible
that adjusting the mutation rate could afford crude control over the language size.

9.16 Comment on Adami’s model
Adami’s description of information acquisition appears somewhat simplistic, in that it assumes
there are no correlations between the bits in the string S. Most tasks (undoubtedly including re-
production in protolife) are complex combinatorial problems, so when some bits go cold it will
be necessary for other bits to become hot again. In other words, there is no guarantee that mutual
information will increase monotonically [111]. This can affect evolutionary trajectories, as it may
not be possible ‘to get there from here’ by the moves permitted by evolutionary operators [17].

It has been shown [17] that a population found at a certain level of fitness will tend to form a nar-
row cloud band clinging to side of the particular fitness peak it is climbing. There is significant
neutral evolution within this band, so strings with very similar fitness may have substantially dif-
ferent genomes. This will lead to a disparity between the population and Kolmogorov entropies, as
a number of bits will appear hot between individuals but not between each string and the environ-
ment. The most common genome in a species (the quasi-species [17, 44]) often forms a minority
of the population.

The total information is shown as unchanging (the areas of ellipses Sn and L are constant) in Figure
9.2, implying that conditional information decreases as the mutual information increases. Again,
this is not necessarily the case: a neutral evolutionary step could change the amount of conditional
information H(S|L) by increasing the size of the uncorrelated part of the genome [111]. This could
happen, for example, by mutating a redundant part of the correlated genome such as could have
resulted from a gene duplication event. Piszcz and Soule [125] discuss genome growth as a strategy

Emergence Neutral Emergence and Coarse Graining Cellular Automata

100

for increasing robustness (to perturbations from the genetic operators; see also §9.20). A similar
argument means that parts of the environment L that are not correlated with S can also change
neutrally (from the point of view of S): it can change without the organism ‘noticing’. So S is robust
to these kinds of environmental changes, too.

Gell-Mann’s definition (§9.3) relies on a system “identifying regularities” [71] in its environment
– there is an implication that the environment is not random. In contrast, Adami allows for a
completely random environment (the entire universe can be encoded in s). In practice the two are
equivalent, as a random fitness landscape offers no clues as to whether a particular mutation is ben-
eficial: there can be no gradient leading towards better solutions that the algorithm can exploit to
reach a fitness peak. So unless a string (Adami) or schema (Gell-Mann) stumbles upon a complete
correlation purely by chance, the population cannot adapt.

While these limitations would need to be accounted for when applying his model, particularly in
a biologically realistic setting, the simplifying assumptions made by Adami do not undermine the
principle of his information-theoretic approach, particularly when it is transferred from a biological
to an engineering domain.

9.17 Quantifying emergence
We can use Adami’s information theoretic model almost directly to quantify the degree of emer-
gence in a system: starting with the definition of emergence developed from §9.3, simply replace
the environment by a low level language L	and the genome by a high level language S	and we have
an automatically	developed emergent	system. Modelling (creating a high level model of the low level)
and incremental system development (creating a low level model of the high level) can both be
viewed as increasing the shared information between the specification and implementation. The
mutual information between S and L can be expressed as

I(S : L) = H(S) – H(S|L) ≡ H(L) − H(L|S)

The mutual information between S and L is the common behaviour that both languages can ex-
press, and for which S can model L. This is equivalent to how much of L is expected by, and can be
predicted in, S.

The conditional entropy H(S|L) is the information in the system specification that has not been
captured by (correlations with) its implementation. These are the ‘surprising’ behaviours or prop-
erties of S not explained by L. (They may also just be noise.) If we were trying to implement a
specified system S in an implementation substrate L, this conditional information is the part of the
specification that has yet to be captured by the proposed implementation L: more development
work is required.

Neutral Emergence and Coarse Graining Cellular Automata Emergence

101

L

I(S:L) H(S|L)

S

S

Figure 9.3 Gaining mutual information between the low level and high level (emergent) models. The emergent

model captures more of the low level’s behaviour over time.

Similarly, H(L|S) are the ‘surprising’ properties of L, properties that may be considered L unneces-
sary for the realisation of S and invisible when the system is viewed through high level observation
‘glasses’ [114] that see only system-level properties (multiple distinct microstates nevertheless result-
ing in the same observed macrostate). (Note that these system-level properties are not in any sense
objective or universal – they are merely those properties we have chosen to retain in our specifica-
tion.)

9.18 Neutral emergence
We have already said that there is a discontinuity in the relationship between an emergent system
and its environment. It follows that this relationship must be incomplete and that there cannot be
a one-to-one mapping between the two, so a number of environmental behaviours will be indistin-
guishable to the system (and vice versa). But this is almost exactly the definition of neutral evolution
given before (§9.10).

We call this neutral	emergence. An emergent property exhibits neutral emergence when a change in
the microstate L does not change the macrostate S, or vice versa. In information theoretic terms, it
is a change that does not significantly alter the mutual information I(S : L). It follows that neutral
emergence is almost inevitable in any high level model of any sufficiently (realistically) complex
implementation or other low level behaviour.

Emergence Neutral Emergence and Coarse Graining Cellular Automata

102

9.19 ENGINEERING EMERGENCE
The next sections discuss how neutral emergence could be used in software development instead

of traditional software engineering processes. We demonstrate how to apply common and well

understood evolutionary and other search techniques to neutral emergence, and discuss how to use

them to find an implementation of a specification automatically.

Engineering processes traditionally focus on designing and building products in a largely top down
manner. To build a bike we need wheels, a frame and a seat. We can break down these parts further
into nuts, screws and tubing, until the schema reaches an atomic level (for a bike) and it is possible
to construct a complete machine. But the bike also exhibits emergent properties: it can support and
convey a person, but a wheel or seat alone cannot. This is an example of planned emergence (and
something that is unlikely to feature in the bike’s construction manual, though clearly was consid-
ered when designing each component); it may also exhibit unplanned emergent properties, such as
the front wheel detaching unexpectedly [115].

Engineering processes and tools (CAD drawings, UML diagrams, etc.) [116] often have no ad-
equate way of representing emergent properties – they focus on (and constrain themselves to)
exploding one particular aspect of the system which, almost by definition, makes it virtually impos-
sible to model these ‘unexpected’ aspects of the system.

Emergent software engineering attempts to manage novel behaviour by including an unexpected
event observation and property modification phase into the development cycle. In the language of
Gell-Mann (§9.3), the schemata are adapted to include new regularities discovered through interac-
tion with the environment.

And by internalising this observation mechanism, we immediately get automatic, incremental
emergent engineering as systems adapt their own schemata dynamically. The information theoretic
definition of emergence given in §9.17 suggests how this could be done: use the mutual informa-
tion as a fitness function to search for good low level implementations of a system specification.
Equivalently, we can search for good models (system descriptions) of an existing implementation.
(Note that, in practice, an equivalent but more efficient, problem specific fitness measure may be
more appropriate.)

This is, of course, essentially what many evolutionary algorithms do. For example, genetic al-
gorithms (GAs) change their constitution through crossover and mutation, and the algorithm’s
progress is observed and directed by an internal fitness function.

And this approach to emergent engineering shares another nice property with evolutionary algo-
rithms: we only need to know if the end product is correct (that the high and low level systems
behave consistently), not how to find it (exactly how the systems are related). This neatly sidesteps
the discontinuity problem outlined in §9.6, as there is now no need for an obvious development

Neutral Emergence and Coarse Graining Cellular Automata Emergence

103

path between the specification and implementation. Instead we can search at the implementation
level for good solutions.

Developing emergent systems is generally thought of as difficult, something involving a great deal
of intuition and guesswork at best and black magic at worst. There is no methodical process for
getting the emergent model or implementation we desire. But we have just seen how standard evo-
lutionary and other search techniques can be used to develop emergent systems.

There is nothing magic about emergence, or developing emergent systems. The mapping to known
search techniques explored here is nascent, but, as with Langton’s link between physical systems and
computation [18], offers the potential to exploit a large body of existing work. We may be able to
apply the ideas introduced here for emergent systems to ‘traditional’ developments to add desirable
properties such as robustness. We discuss this now.

9.20 Robustness in neutral emergence
The best solutions not only solve a problem well, they also solve it robustly. A solution is robust if
minor changes do not materially affect the fitness of the solution, perhaps because the solution is
insensitive to certain failure modes. It is important to search for robustness when using an artificial
fitness function in an evolutionary algorithm. Branke [117] notes that “this means that not only
the solution should be good, but also that the (phenotypic) neighbourhood of the solution should
have a high average quality. Looking at the fitness landscape, a solution on a high plateau should be
preferred over a solution on a thin peak: if the environment changes slightly ... the solution on the
plateau will yield much better expected quality than the solution on the peak.”

Robustness is intimately related to neutral evolution. The aspects of the search landscape exploited
by neutral evolution – correlations on different scales, basins, and so on – are exactly those that
can make a model robust [17, 125]. And robustness is intimately related to neutral emergence too.

An emergent system is robust if changes to either the high (emergent) or low levels do not signifi-
cantly affect their mutual information. Assuming we have a good model, the conditional informa-
tion H(L|S) (the information in the implementation not correlated with the system specification)
is behaviour in L unnecessary for the realisation of S. These additional properties will be invisible if
the system is subject only to high-level observation through S – there will be basins of multiple low
level behaviours ‘draining’ into the same high level behaviour, with multiple distinct microstates
nevertheless resulting in the same observed high level macrostate.8

8 The same would be true if a low level representation is being sought for a high level specification, though presumably to a lesser
extent, as the high level language is likely to be more abstract and less rich.

Emergence Neutral Emergence and Coarse Graining Cellular Automata

104

9.21 The power of neutrality
Travisano et al. [126] (also [127] and others) evolved twelve initially identical populations of E.	
coli	in identical glucose-limited environments. After 2000 generations, the fitness of the bacteria
in all populations had improved by about 35%, and they were all very similar in other ways, with
higher maximal growth rates, larger cells and fewer cells at	 stationary	phase9 than their common
ancestor. Thus “identical starting conditions and identical environmental conditions produce an
almost identical evolutionary outcome” [110]. The authors then introduced the twelve populations
to novel environments, substituting other sugars (such as lactose) for glucose. The fitness difference
between populations in these new environments was found to be 100 times greater than the varia-
tion seen in the glucose environment. Travisano et al. conclude that, although the populations had
acquired very similar traits at a phenotypic level, they differed substantially at a genotypic level: they
had evolved to substantially different places within the fit glucose phenotype’s basin.

A similar process could be used when engineering emergent systems. Stressing a model before it is
‘released into the wild’ (exposing it to the equivalent of glucose-limited and lactose-rich environ-
ments by adding a range of implementation errors or simply by adding noise to the fitness function)
should encourage the solution towards the centre of the desired behaviour’s basin. It should also
help us land on a gently sloping plain or high plateau rather than a narrow peak or steep cliff. (See
also §9.24.)

Such an implementation would be much more likely to perform to specification: slight deviations
at a low level will still fall within the same basin and produce the same desired outcome. Perhaps
more significantly, the implementation would be robust with respect to mutations (errors of imple-
mentation, manufacture, environment, etc.): the implementation degrades gracefully. This is a far
stronger statement than can be made about formally proven systems, which do not guarantee any
level of performance with even the smallest change. Large unmapped entropy H(L|S) at the low
level is necessary for emergent systems to be robust in this manner.

As with neutral evolution, neutral emergence should allow a system to explore its environment
more widely without ‘committing’ to a particular model and without compromising the effective-
ness of existing adaptations. The model can be adapted gracefully to introduce new behaviours.10 	
In	short,	it	is	not	brittle.

9 The rate of cell division equals the rate of cell death, so the total number of cells remains constant. Alternatively, there could be
no cell birth or death. See [128] for more details.

10 It is also likely that the landscape would prove easier to explore, as the high level language would tend to be a simpler model,
without so many local optima and smoother with greater correlation distances. Kauffman [17] discusses the benefits (even necessity)
of starting with a simple terrain before moving to a more complex one as the system adapts (using neural networks as a vehicle),
something also developed by others including [118].

Neutral Emergence and Coarse Graining Cellular Automata Emergence

105

9.22 Emergence is easy
Traditional software development tries very hard to eradicate harmful emergence from the imple-
mentation, often with limited success. In fact, creating an emergent system appears to be com-
paratively simple. And it is: emergence is easy. But developing a useful emergent system – one that
models the properties we want – is considerably more difficult. It is all too easy to end up with the
wrong emergent properties that reflect little of the desired behaviour, or little interesting behaviour
of any kind.

9.23 Exploiting problem structure
Searching for answers in complicated landscapes is an extremely common problem in computer
science, and one that has been tackled in many different ways, using everything from depth first
search to evolutionary algorithms. Some techniques, for instance Dijkstra’s shortest path algorithm
[119], are very problem specific, whereas others, such as genetic algorithms, can usefully be applied
in many different situations.

Though not universally true, it is generally the case that problem specific techniques will outper-
form more general ones in their areas of ‘expertise’ [120]. This may be inevitable (and fortunate for
the individual techniques), but it is the reason why they perform better that is significant here: they
are better adapted to the problem, or more specifically they are better at exploiting the structure of
the problem.

It is perhaps a truism that search algorithms work better if they exploit the problem structure. Yet,
with few exceptions, search and optimisation algorithms only consider complete solutions when
looking for answers. There is a huge amount of information out there that they simply ignore, that
they jump over in their quest for a final solution. If this information – about partial solutions, about
search trajectories, about the problem landscape – were exploited, it would be possible to find better
solutions, and find them more quickly.

We have seen that emergent systems can be developed in much the same way – and with much the
same techniques – as ‘conventional’ systems. But while the methods may be conventional, the aim
is to channel development in new directions and create a much more fault tolerant model, a model
robust to flaws in its implementation, in its environment, and to our understanding of the problem
at hand.

Finding a good emergent model of a system complex enough to be useful is difficult. But things
often become a lot easier if one looks only for ‘partial’ descriptions. In particular, it we find it is pos-
sible to build on these partial descriptions and arrive at a fuller, more accurate model.

Emergence Neutral Emergence and Coarse Graining Cellular Automata

106

9.24 ‘Good enough’ solutions
In trivial cases, finding perfect solutions is both practicable and verifiable, but in general this is not
so. We suggest that we shouldn’t even bother trying; instead, we should devote time to finding an
answer that is robust.

L1

L2

L3

L4

L1

L2

L3

Figure 9.4 In the left diagram, the small central circle is the perfect solution and the large outer circle the space of

acceptable solutions. Four ‘good enough’ solutions (L1 to L4) are also shown. They overlap significantly with the per-

fect solution, but will be easier to find in all but the most trivial cases. The right diagram shows the perfect solution

right on the edge of the space of acceptable solutions. In addition to being easier to find, the good enough solutions

(particularly L2) are more robust too: a small error is less likely to push L2 out of the acceptable solutions circle than

if the same problem occurred in the perfect solution. We assume that the model has been stressed during develop-

ment so that the most likely perturbations have been experienced.

There are two main reasons why ‘good enough’ solutions are actually better: they can be made more
robust; and they are much easier to find. We don’t want a complete overlap between the specifica-
tion and implementation in Figure 9.4, we want partial answers. If we have a ‘good enough’ answer
that is not fully defined, then the final solution can be picked from a range of essentially neutral
(or if not neutral then certainly sufficiently good) alternatives. So we can perturb the specification
in a number of ways (fitness weights, initial conditions, etc.) to determine the shape of the local
landscape and then position the solution in the centre of this neutral area of the landscape, making
it much more robust to change.

The solution will be mostly correct, most of the time, and will remain mostly correct, most of the
time even if it turns out that the problem specification, implementation, deployment environment
or any other factor doesn’t turn out quite as was expected. (And, after all, how often does that hap-
pen in practice?)

A nice example is work carried out by Piszcz and Soule [125], which shows that evolution can fa-
vour robustness, even if the robust solutions are less fit than alternative, more brittle ones. Seeking
to solve a symbolic regression problem through genetic programming (GP) [6], the authors seeded
their algorithm with individuals that occupied a high but narrow peak on the fitness landscape.
After running the algorithm, they found that the initial population had been replaced by solutions

Neutral Emergence and Coarse Graining Cellular Automata Emergence

107

that were less fit, but were more robust and resilient to the often harmful effects of GP evolution [3,
12, 13]. The final population occupied a lower, rounder fitness peak – the survival of the flattest.

Figure 9.5 The narrow left peak contains a few highly fit individuals. The flatter, lower peak is occupied by more

individuals who are more resilient to genotypic changes (redrawn from [125]).

It could be argued that these results stem from the particularly negative effects of GP’s genetic
operators, but we reasoned in §3.2 that there is an inherent tension in all evolutionary algorithms
that attempt to balance innovation and conservation, and this outcome – individuals increasing
their own chance of survival (becoming fitter) by building up resistance to the algorithm’s damag-
ing changes, even if this reduces their apparent fitness (as determined through the fitness function
alone) – is not uncommon or unexpected.11

9.25 Key points
 ▪ There is nothing magical about emergence, or developing emergent systems. Emergence is easy.

 ▪ Emergent systems can be generated automatically. Standard evolutionary and other search tech-
niques can be used.

 ▪ The language of dynamical systems (of basins, etc.) can usefully be applied to ‘conventional’
GA searches as well.

 ▪ There are positive advantages to having emergent systems. If the system is evolved such that
the implementation is centred in the specification’s basin of possibilities, it is likely to be more
robust to perturbations than conventionally developed system.

 ▪ Exploiting the problem structure to find good enough partial solutions that are mostly right,
most of the time may give better results than searching for the perfect answer: the solution can
be made more robust, and the solution will be easier to find.

 ▪ If some properties are specified, but others left unspecified, we will inevitably develop an emer-
gent system.

11 For this tendency not to exist, the overall impact of the innovation operator would have to be beneficial for each individual’s fit-
ness overall: the progeny of each individual must be, on average, fitter than their parent(s). This is manifestly not the case with most
common evolutionary algorithms (see e.g. §6.1, [3]).

Emergence Neutral Emergence and Coarse Graining Cellular Automata

108

Neutral Emergence and Coarse Graining Cellular Automata Interstitial

109

USING CELLULAR AUTOMATA
TO INVESTIGATE NEUTRAL
EMERGENCE

The previous few chapters have discussed evolutionary algorithms, com-
putation as a dynamical system, entropy and how we model emergence,
introduced neutral emergence and explored why the ideas behind neutral
emergence – that of being good enough, enough of the time – may actu-
ally give more robust solutions more quickly. But so far we have provided
no concrete examples of the concept.

As we are trying to understand the fundamental properties of neutral emer-
gence, we chose to investigate it through cellular automata (CAs – §2).
CAs are in many ways an ideal substrate for exploring neutral emergence:
they are simple, discrete mathematical models with none of uncertainty
we could see if using real world systems or even more complex (and po-
tentially unreliable) computer simulations. At a micro level it is very easy
to understand and visualise their progress, but at a macro level CAs can
exhibit very involved (complex, chaotic and even Turing complete) behav-
iour. And, as we see in §10.5, CAs are also capable of showing emergence
through coarse	graining.

In §9.3, we discussed emergence as a relative concept: while some models
may be more useful to us than others, there is no ‘correct’ emergent model,
and the emergent properties we see depend on our point of view. We find
in §10.12 that CAs show this relativism, and see how a single CA can be
coarse grained to several emergent models, each of which captures a dif-
ferent facet of the underlying CA’s behaviour. Through coarse graining we
also show emergence is lossy, extracting a carefully chosen subset of a CA’s
low level behaviour to produce a coherent high level model in the form of
another CA rule. In §11, we develop a method of quantifying the ‘good-
ness’ of a CA coarse graining (the quality of the emergent model) and show
how we can use this to find emergent models automatically.

CAs help us demonstrate why thinking of emergence as neutral emergence
has real advantages when we introduce partial	coarse	graining	in §10.16.
A partial coarse graining (as opposed to a total coarse graining) has an
incomplete mapping between the low level and emergent models and can

Interstitial Neutral Emergence and Coarse Graining Cellular Automata

110

therefore make mistakes, but also have the freedom to capture low level
behaviour that is impossible to model otherwise. Sometimes these emer-
gent models capture significantly more of the underlying CA’s behaviour
than any total coarse graining. Partial coarse graining can also be used to
find emergent solutions in cases where an exponential explosion makes it
expensive or (practically) impossible to find an answer otherwise.

While the CA models used here are nearly all too simple to show the
robustness benefits discussed in §9.20 – there aren’t enough possible solu-
tions for there to be significant solution clustering – we do see through
partial coarse graining that ‘good enough’ solutions can be found more
easily in some cases. Interestingly, the extra freedom we get by not restrict-
ing ourselves to totally correct solutions also allows us to find more com-
prehensive or better targeted emergent models than we could otherwise
(§11.7).

In many cases we are not merely looking to capture emergent behaviour;
rather we wish to describe particular aspects of the underlying behaviour
through our emergent model. Specifically, we want to model the behav-
iour of interest to us. In §12, we build towards a method of targeting
specific emergent behaviour in CAs by through feature extraction, phase
changes and exceptions. This allows us move beyond developing models of
emergent systems automatically and to developing models of the emergent
systems we want automatically.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

111

10 COARSE GRAINING CAS
Cellular automata (CAs) are discrete, conceptually simple and well studied [18, 36] systems.

They are also capable of complex behaviour and exhibiting emergent phenomena. This mixture

of simplicity and complexity (in the broadest sense of the word) makes CAs a useful medium for

exploring and understanding neutral emergence. This section examines emergence in CAs and how

we can use these emergent phenomena to predict the behaviour of the underlying system.

10.1 Predicting cellular automaton behaviour
Predicting the behaviour of cellular automata is impossible in general [36, 69, 70]. Similarly, Polack
and Stepney [121] suggest that moving from a high level specification to emergent implementa-
tion via formal refinement is, at the very least, non-trivial. But adopting the less stringent criteria
of neutral emergence – getting it mostly right, most of the time – opens up interesting new pos-
sibilities. Under certain circumstances, it makes predicting CA behaviour a tractable problem. In
fact predicting CA behaviour, at least in the case of Wolfram’s elementary rules (including many in
Classes 3 and 4 – §2.7), is not only possible but works very well.

One emergent structure found in CAs is the spaceship. Next we use the most famous CA with
spaceships, Conway’s Life [36, 66], to see how one particular spaceship, the glider, can be identified
and how we can predict its emergence or collision. Although the method described is naïve and
somewhat limited in scope, it does introduce some important concepts we shall use later.

10.2 How to find Life: identifying patterns and predicting behaviour
CA cells are small, stationary and rather dull, but the patterns they make can be large, dynamic and
interesting. CA patterns are interesting because they are what we see; they are emergent behaviour
of the CA: the spaceships and oscillators in Life, the fractal structure in elementary CA rule 18.1
The path to take when translating from one to the other may seem non-obvious – surely a whole
new set of incompatible concepts must be introduced? – but it is actually just a matter of throw-
ing information away. Specifically, it is possible to convert a collection of static cells into dynamic
objects through these three steps2

 ▪ Object	detection – collapse the objects’ cells into one state

 ▪ Object	tracking – collapse the objects’ movement over time

 ▪ Object	prediction – collapse the objects’ states into fewer states

1 References to ‘rule n’ should be taken as shorthand for ‘elementary CA rule n’.

2 In this section (until §10.5), ‘collapse’ is defined to mean modelling two or more states or possibilities with one state or pos-
sibility, while ‘compress’ is defined to mean a more efficient model of the states or possibilities. Compression is achieved through
collapsing states.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

112

Collapsing an object’s cells and movement allows it to be detected and tracked over time – these
steps add meaning to the representation. They do not, however, allow the behaviour to be modelled
more economically. Collapsing the object’s states allows prediction: the future state of the CA can
be calculated more efficiently than by simply running it, though we shall see that the approach de-
scribed here is incapable of predicting the behaviour of the CA beyond a few specific cases.

Though flawed, the concepts this method embodies – that of identifying and modelling the emer-
gent behaviour we want, and doing so automatically – are potentially powerful when generalised
from this limited example, and we develop just such a general method over the next chapters.

10.2.1 Collapse the objects’ cells – detecting objects
Objects must first be identified. In Life this can be done fairly trivially by looking for contiguous
blocks of cells. Most objects have a defined border of dead cells separating them from other objects
(though there are exceptions, such as the toad in Figure 10.1). Other CAs will have analogous dis-
tinguishing features that define object boundaries. (They must; if they did not, the CA could not
contain any objects or emergent structures.)

1 2

Figure 10.1 The stages of the toad, a period two oscillator in the Game of Life. (The diagram numbers show the

current timestep, after which the oscillator repeats.)

Gliders can be identified by examining each 5 × 5 block (the size of a glider plus a surrounding
barrier) at increments of 1 block. If it contains a glider (and no more) then it is labelled as a glider.
Otherwise, it is not.3 There is now a link between the low level cells and high level gliders, similar
to the tagged sites used by Turner and Stepney [122].

1 5432

Figure 10.2 A glider gliding in the Game of Life.

3 This is patently hideously inefficient, and there are obvious immediate refinements that could be made, but for the purpose of
this example it will suffice.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

113

10.2.2 Collapse the objects’ movement – tracking objects and identifying patterns
Objects can be tracked over time because of the speed of information flow in Life: at each step, an
object can move at most one cell in any direction. We can search immediately around any glider
we found in the previous step and identify it as the same object. The glider’s position has become
relative, no longer defined by its grid location.

10.2.3 Collapse the objects’ states – object prediction
If an object repeats a sequence of moves, it can be classified as a period n pattern. And as the pattern
must, of course, repeat again unless it hits something, we can use this to predict an object’s behav-
iour and path (within a limited context at least).

Predicting the appearance of an object is more difficult. We can extend the object identification step
to include other interesting cell configurations of arbitrary (though small) size. Some structures,
such as r-pentomino and glider guns, are known to produce gliders. Others, including blinkers and
an empty screen, are known not to. We could construct similar groupings for other objects, but
there is a vast (infinite) number of patterns for which glider production is unknown.

Luckily most of these unknown patterns can be ignored. All CAs have a fixed speed of light (§2.3)
that limits the spread of information through the structure, so there is a limit as to how quickly
perturbations can cause (or prevent) the production of a glider at a particular location. It is perhaps
reasonable to assume we could construct an enumeration of all CA structures of, perhaps, 10 × 10
squares and time when (or if) they produce a glider in the next five turns. Monitoring the block to
see whether it remains unchanged – or equivalently changes to another with the same behaviour –
will allow the nature and time of any behaviour change to be foreseen.

But there is clearly still a prediction horizon here, and extending it (by increasing the block size
enumerated) will in general grow the enumeration exponentially. However, the dynamics of com-
plex CAs such as Life suggest that most future states can be discounted. Unlike (discrete) chaotic
and ordered systems, complex systems are dissipative [18]: they maintain order by constraining
themselves to a small corner of their state space. This means that, as the simulation progresses, a
lot of information is lost (the CA is assumed to be a closed system) [62]. This implies that a lot of
information currently in the model is not going to be important in the future, that a lot of possible
current states will end up in the same future state. There must be substantial equivalence classes in
the current model with respect to some future model, and the size of these equivalence classes will
increase (in general) the further one looks into the future. Though potentially beneficial, it is not
immediately apparent how we can take advantage of these properties within the current model. We
discuss this next.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

114

10.3 Predicting the future
On their own, collapsing an object’s cells and movement (§10.2.1, §10.2.2) give the appearance of
compressing the state, but they are actually just presentational conveniences. While less informa-
tion is needed to identify an object than exhaustively enumerating its constituent cells, it is not
possible to model the outcomes of all the object’s potential interactions without resorting to a huge
database (or, perhaps more simply, just modelling its cells). So less information may be presented
to the observer, but this is just a wrapper over what is happening beneath – it provides no simpler
rules for modelling the CA’s future state. An analogous argument can be made for collapsing move-
ment over time.

But if we also collapse an object’s state as described in §10.2.3 then we do get true compression,
and thus the ability to predict its future state more efficiently than by running it – we discussed how
we can know the future state of gliders, oscillators and other known patterns. Or rather we could
predict the future state if it worked beyond a few specific circumstances and a fairly limited predic-
tion horizon. We could certainly improve the model, perhaps by refining the object edge detection
routine, but these improvements would be incremental and unlikely to address its underlying fragil-
ity and narrowness of scope.

Unfortunately the prediction problem is fundamentally linked to the way in which we have ab-
stracted objects: our objects are conceptually easy to grasp and relatively easy to find, but they are
almost entirely passive. Though we have a basic method for tracking objects over time, beyond that
there are no rules to define object behaviour at the high level. It is also very unclear how we could
come up with a set of rules that is general enough to be useful in most circumstances and for most
objects while also being small enough to be practicable.

10.4 Elucidation through elimination
Despite these flaws, the broad principles of the method outlined here are interesting and merit fur-
ther investigation. This model is an example of emergence through elimination (§9.5). By limiting
the choice, by selecting the correct abstraction, by deciding what is and isn’t important, it has been
possible to move from a cell level to an object level. A glider exists equally at both levels, but only
by eliminating unnecessary DOFs (through state compression) has it become apparent. This	didn’t	
require	any	search	or	novel	discovery;	it	only	required	elimination.

This model is rather brittle and our abstraction was chosen manually, but next we see how more
robust and useful pathways that can be discovered and evaluated automatically.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

115

10.5 COARSE GRAINING AND
EMERGENCE
We now move from Life, a 2D cellular automaton, to elementary 1D cellular automata. The rea-

sons for this are largely pragmatic: there are only 256 elementary CAs (ECAs), and just 88 that are

actually different after taking out complements and reflections, compared to
922 = 10154 possible

CAs with Life’s nine cell neighbourhood, and we shall shortly discuss combinations of CAs, which

causes the numbers to balloon still further.

It is useful to be able to explore the search space exhaustively to reveal the whole gamut of behav-

iours, rather than just dipping our toe in at a promising-looking spot and hoping for the best. We

also know that elementary CAs, despite their simplicity and small numbers, display many interest-

ing and different behaviours (§2.7, [18]) including the ability to emulate a Turing machine [70].4

10.6 What is coarse graining?
The behaviour of cellular automata can be modelled by other CAs with coarser granularity [123].
In a coarse graining, several (adjacent) fine cells in the one model are represented by one coarse cell
in another model. So for a grain of two and a 1D CA, two fine cells would map to one coarse cell,
and for a 2D CA, four fine cells would map to one coarse cell. Time also slows down at the coarse
level, with the fine CA making twice as many moves as the coarse CA. A simple analogy is to im-
agine viewing the fine-grained CA through blurry glasses, so much of the fine detail is lost but the
large-scale structure still shows through.

Figure 10.3 A fine CA and a matching coarse CA.

4 References to CAs in this and subsequent sections should be taken to mean ECAs unless specifically noted otherwise.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

116

We need a way to translate from the fine CA to the coarse CA. We can do this through a mapping.
Formally, the mapping is a function from	g contiguous fine cells to one coarse cell (at grain	g). Thus
for	g = 2

Mapping : fine × fine	→ coarse

The set of mappings is similar to the transitions in a CA rule, except that they apply between fine
and coarse grains rather than between timesteps. A mapping defines the relationship between every
possible value combination of	g cells. Figure 10.3 shows a possible mapping at	g = 2. (Note that we
ignore every other row at the fine level; this is discussed further in §11.3.)

Fine cells

Coarse cell

This mapping happens to be valid (§10.8) for a coarse graining of elementary CA rule 128 to itself
(so both the coarse and fine CAs use rule 128). Starting with this fine state, we use the mapping to
get the equivalent coarse initial state. Both initial states are shown here.

Fine CA

Coarse CA

We can now run both rules in step. Note that we only use the mapping to obtain the initial coarse
rule state. After that, the CAs operate independently.

Coarse tim
estepFi

ne
 ti

m
es

te
p

1

2

3

4

5

6

7

8

1

2

3

4

Coarse tim
estepFi

ne
 ti

m
es

te
p

1

2

3

4

5

6

7

8

1

2

3

4

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

117

It is intuitively obvious that rule 128 will coarse grain to itself: if we view the low level CA through
the blurry glasses, we end up with another CA that looks like rule 128. And while it is clear that
some elementary rules like this can be coarse grained (to themselves if nothing else), there is no
reason to suppose that this will hold more generally. However, it turns out that almost all of the
elementary CA rules can be coarse grained: their behaviour is modelled exactly (§10.8) at a coarser
grain by other elementary rules [123].

Mapping

Fine CA

Coarse CA

Time

Figure 10.4 Coarse and fine CAs running over time. The coarse CA’s initial state is determined from the fine CA’s

initial state using the mapping. The CAs then run independently. As the coarse CA has a grain of two, the fine CA

takes two moves for each move taken by the coarse CA.

10.7 Why coarse grain?
Coarse graining is a simple example of emergence that fits within the definition we developed in §9.

 ▪ The emergence is subjective (§9.3). We have two languages – the high and low level CA rules.

 ▪ The coarse high level is less information rich (in general) and can be used to predict future sys-
tem states (§11). The emergence is lossy (§9.5) and there is a discontinuity between the levels
(§9.6).

 ▪ We keep the scope constant and lose resolution when moving to the high level, in line with
Ryan’s weak emergence (§8.8).

 ▪ We can develop these emergent models automatically through search (§9.17).

Just like elementary CAs, coarse graining provides a simple and transparent model of emergence
that we can use to explore the phenomenon in greater detail.

10.8 Coarse graining needs consistent mappings
In order to maintain a good correlation between the high and low level models, the mapping be-
tween the layers must remain consistent. As the mapping describes the relationship between	g fine
cells and one coarse cell, several fine cell combinations will probably map to □ and several combi-

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

118

nations to ■. (At least one of these must be true, as there are more fine combinations than coarse
combinations.)

Now consider one component of the coarse CA rule, a coarse cell triple (one component of the
coarse rule, perhaps □■□) at time t and its corresponding output cell at t	+ 1. It may well be the
case that two or more different underlying patterns of fine cells map to the same coarse triple, but
(because the fine cells are different) the mapping to the coarse output cell is different. In fact, this
sort of inconsistency would seem to be quite likely. The next sections explore how we can use these
inconsistencies to find valid coarse grainings.

10.8.1 Testing a mapping
Suppose we have a fine rule and have chosen a mapping, and that we now need to see whether it is a
valid mapping for our rule. Given that CAs can operate on an unbounded grid, it is clearly impos-
sible to adopt a naïve approach to testing every starting state exhaustively. Fortunately, elementary
CAs have some nice properties that make checking the validity of a mapping simpler.

 ▪ A CA cell has no memory, so each new generation (horizontal line) of a CA is equivalent to
restarting the CA from that initial condition.

 ▪ All cells behave identically, so a correct mapping in one place will work in all other locations
where that pattern of cells is found.

 ▪ CAs have a limited speed of information flow – information cannot be transmitted by the CA
at a rate faster than one cell in any direction per step.

Taken together, these properties mean that it is only necessary, at most, to consider the input triples
for each possible rule case (□□□, □□■, □■□ ... ■■■). As we shall be using this process to discover
coarse grainings for a known fine rule, we actually need to generate a fine CA of these rule cases.
Unfortunately it is not clear a priori which fine patterns may give inconsistent behaviour when
translated to the coarse rule level, but enumerating every possible fine input condition for 3g cells
must cover (with considerable duplication) all high level states. This means that we have to check
3g × 23g fine cells.5

10.9 Cell mappings are sufficient
The flow of information through the CA also means that it is only necessary to consider the map-
pings between cells, and not between the larger number of rules that use them. We would only need
to consider mappings at a rule level if it were possible to make a set of rule-level mappings that con-
tained inconsistent cell-level mappings (for instance, if one rule case mapped □■ → □ and another
rule case mapped □■ → ■). Imagine a mapping with two rules with such a cell-level mapping. For
this mapping to be valid, at least one fine cell in the input state must remain isolated from the fine

5 23g possible combinations with 3g cells in each.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

119

output cells. But this impossible due to the speed of information flow: even a cell at the edge of the
input cells will influence the coarse rule’s output.

Coarse tim
estepFi

ne
 ti

m
es

te
p 1

2

3

4

1

2

Figure 10.5 Even a cell on the edge of the input 3g cells affects the coarse rule’s output.

So it is only necessary to consider the mapping of all states for one cell,
g22 cases for a 1D CA.6 The

entire coarse rule can then be calculated from this information. So for any elementary rule with
grain	g = 2 (which gives successful coarse grainings of most 1D CAs (§10.13, [123]), there are just
sixteen possibilities

 ▪ □□ maps to □ or ■

 ▪ □■ maps to □ or ■

 ▪ ■□ maps to □ or ■

 ▪ ■■ maps to □ or ■

Fourteen have a non-trivial target state that contains both a □ and a ■.

The speed of light also means that we can simply concatenate the 3g cells in our test set; we do not
have to consider each test case individually as they are already isolated for one coarse timestep – a
cell that forms part of an adjacent test case needs at least two (at the coarse level, and	g + 1 at the
fine level) timesteps to affect the output of a given test case.

The number of possible mappings is low for small	g, so an exhaustive search is efficient (and at
higher	g, other factors kick in to make coarse graining intractable first – see §10.15). We developed
the following method to find a valid mapping and coarse grain a CA. Note that we don’t know what
the coarse rule is at this point – this is what we are trying to determine (along with the mapping).

10.10 How to coarse grain
1 Select an elementary rule for the fine CA.

2 Choose the granularity of the coarse graining. Here we are using	g = 2.

3 Decide on a candidate mapping (by search, at random, or iterate exhaustively).

4 Generate a test set of all possible coarse CA input neighbourhoods at the fine CA level. We
concatenate an enumeration of all possible fine states of 3g cells to give an initial condition of

6 Clearly this grows quickly with	g, but in practice other factors limit the size of	g	that can be considered.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

120

the form (for	g = 2) □□ □□ □□, □□ □□ □■, □□ □□ ■□ … ■■ ■■ ■■. This must cover every
possible low and (via the mapping) high level CA input condition. The speed of information
flow means that we can simply concatenate the 3g cells – we are only interested in the middle
output cell of each triple, and this cannot be affected by adjacent triples in one timestep.

5 Run the fine CA for the equivalent of one coarse timestep. (So for a grain of two, run the fine
CA for two timesteps.) We now have the matching fine states for two successive timesteps of
the coarse CA.

6 Generate a coarse CA of the fine input row (the first row) using the mapping. So if the mapping
maps □□ → ■, set all □□ pairs to ■ in the coarse CA.

7 Generate a coarse CA of the output row (this is the row of the fine CA that is one coarse step
on, so for	g = 2 this will be row 3). Use the mapping again. Note that at this stage we do not
know (or care) what the coarse rule is.

8 Check for consistency between the input coarse row and output coarse row: for every coarse
input triple □□□ (and there will probably be several instances because multiple fine states are
mapped to just two coarse ones), verify that the coarse output is the same each time (□ or ■).
Repeat for all other input triples. We only look at the middle output cell as the others are not
relevant to the rule and can stop immediately if we find an inconsistency.7

9 If it is consistent, we have a valid coarse graining and can reconstruct the coarse rule. We know
that every possible coarse rule case – every possible combination of six fine cells – has been in-
cluded, so unless the mapping is to rule 0 (all fine cell pairs map to □) or 255 each coarse rule
instance will also be present (probably multiple times) in the mapped output and we can read
off the rule.8

Fine Rule

2 Run n time steps 4 Extract rule

1 Mapping

3 Mapping

Coarse Rule

Figure 10.6 Finding a coarse rule in a coarse graining. The fine rule is run for g timesteps (where g is the grain). We

use the mapping to calculate the input and output states of the coarse rule.

7 Or more specifically, each low level combination of six input and two output cells must occur elsewhere in the sequence at a
point where it is checked.

8 We have decided to exclude examples that map incompletely to 0 or 255 as they show nothing interesting.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

121

10.10.1 An example of coarse graining
1 We want to know if any coarse grainings exist for the fine rule we have chosen. In this case we

are going to look at rule 188.

Figure 10.7 A run of rule 188. As before, ■ cells are represented by red squares and □ cells by white squares.

0 × 10 × 21 × 41 × 81 × 161 × 320 × 641 × 128 + + + + + + +

Figure 10.8 Rule 188’s rule cases

2 We shall try to find matching coarse rules for 188 at a grain of two.

3 There are 14 non-trivial mappings for a	g = 2 coarse graining. Here is one candidate, the map-
ping □■□■ (□□ → □, □■ → ■, ■□ → □, ■■ → ■; fine cells are always given in the same order).

Fine cells

Coarse cell

4 Create an exhaustive fine CA initial condition that includes all possible coarse rule states
through the enumeration described in §10.10 step 4. This is a segment from the middle of the
input state.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

122

5 Run this fine CA for two steps (equivalent to one coarse step at	g = 2). We use the rule we are
trying to coarse grain (188 here).9

6 Use the current candidate mapping to determine equivalent coarse states for each fine cell pair
for the input row.

Fine CA

Coarse CA

7 Similarly, apply the mapping to the fine output row to get the coarse output row.

Fine CA

Coarse CA

8 The coarse CA just created must always behave consistently if it is valid. This means that, if (for
example) □■□ maps to ■ in one case, it had better map to ■ in all other cases too. Otherwise
there is a problem with the mapping, and that this particular rule is not a valid coarse graining
(at the current grain at least) for the fine rule in question. After placing the coarse input and
output rows from steps 6 and 7 together, we can see that □■□ maps to ■ at one point and to □
at another, so it is inconsistent.

9 We repeat steps 1-8 with the mapping ■□□□. This is consistent, so we can now read off the
coarse rule. Through the mapping, we see that the coarse rule is rule 192.

9 In this diagram, cells are lost from the edge of the CA at each step as their states depend on neighbouring cells not shown here.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

123

Figure 10.9 A run of rule 192. The initial condition was calculated from Figure 10.7 via mapping ■□□□.

0 × 10 × 20 × 40 × 80 × 160 × 321 × 641 × 128 + + + + + + +

Figure 10.10 Rule 192’s rule cases

Figure 10.11 Rule 188 coarse grained to rule 192 via mapping ■□□□. The fine rule is shown in black (■ cells are

black squares and □ cells white squares), overlaid with the coarse rule in red (■ cells are red squares and □ cells

white squares). The coarse rule is semi-transparent, so the fine rule underneath makes a pattern of dark and light

red squares.

10.11 Something of a waste
The coarse graining process described in §10.10 seems somewhat inefficient, both in terms of
processor time and memory use. Rather than creating one large CA, it could easily be chunked
into smaller pieces, saving a lot of memory. The representation adopted is also wasteful as only the
middle cell of each rule case triple is examined.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

124

Both of these would be significant considerations in a production system, but are not particularly
relevant in this context. Reducing the memory requirements to a constant is certainly an improve-
ment, but unfortunately the time taken to run the algorithm gets intractably long at around the
same point as the naïve algorithm runs out of memory. Compressing the description also gives
large savings – eliminating spatial duplication by overlapping test cases reduces the test set to just
10-20% of its original size depending on	g – but again this is not significant when dealing with
runtimes that increase exponentially.

10.12 Different coarse grainings
We have already discussed how emergence is subjective (§9.3). There is no right emergent property
in any absolute sense, merely properties that are useful for a particular purpose. Coarse grained CAs
show the same relativism.

Rule 140 can be coarse grained to 136 and 204 (with mappings □□□■ (136), □□■□ (204) and
■■□■ (204) respectively). Figure 10.12 and Figure 10.13 show the result of running these rules
for a period of time. Rule 136 has captured the transient triangles in the underlying system, while
rule 204 models its long term behaviour. Our choice of mapping determines which aspects of the
underlying system we abstract to the high level, and thus what seems to be the model’s natural
emergent property. We explore this in more detail in §12.

In the following diagrams, the fine rule is shown top left (in black), the coarse rule top right (in red)
and the fine and coarse rules overlaid are illustrated beneath the individual rules. The individual fine
and coarse rule runs are scaled down to ¼ the size of the overlaid rules run, so a coarse cell in the
coarse rule diagram is the same size as a fine cell in the overlaid diagram. The three diagrams give
different views of the same CA run.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

125

Figure 10.12 Rule 140 coarse grained to rule 136. See §10.12 for diagram interpretation.

Figure 10.13 Rule 140 coarse grained to rule 204.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

126

10.13 Graining graphs
There are a total of 180 coarse grainings of the 256 ECAs at	g = 2; please see §A for a complete list.
Some rules, such as 0 or 128, are much more likely to appear in the set of valid coarse grainings for
a given rule than others. We can plot all possible coarse grainings between the elementary CA rules
on a graph. A graining	graph is a novel way of showing the coarse graining relationships between CA
rules under certain criteria, such as a particular grain and which rules were included. Rules that do
not coarse grain under these conditions are not shown on the graph.

Figure 10.16 shows all coarse grainings under all mappings at	g = 2. The graph is arranged using a
force directed layout algorithm [124] (sometimes tweaked by hand). This is not significant in itself,
but (in addition to providing a fairly clear layout) the algorithm tends to place related rules near to
each other (as they are connected via common nodes) and move the most connected nodes towards
the centre of the graph.

The graph lines show the direction of coarse graining (from the fine to the coarse rule). A few spe-
cific rules are highlighted, though all rule numbers are present inside the graph nodes. If you are
reading a paper version of this report, a copy of the graphs can be found at [156].

The graph has a symmetrical structure (a result of the reflections and □ ■ symmetries in the el-
ementary CA rule set), with certain rules acting as ‘sinks’ for a large number of nodes. Perhaps
unsurprisingly, these are simpler rules that can coarse grain (correctly but often rather vacuously)
many other rules.

The central sink in the graph is centred on 0 / 255 (all states map to □ or ■ respectively). This joins
the three main arms of the graph together (as many rules coarse grain to them) and have a lot of
rules that coarse grain just to them (again, unsurprisingly). We also see a large number of rules clus-
tered around 128 / 254 (128 draws tapering isosceles triangles from cells as shown in Figure 2.7;
254 is its inverse), though here they are isolated from the main graph.

The graph’s symmetry comes from mirrored pairs of rules. For instance rule 34 draws diagonal lines
to the left and 48 diagonal lines to the right (Figure 10.14). There are also many inverse pairs on
the graph (the same rule □ on ■ and ■ on □), though these tend to appear together as it is usually
possible to coarse grain from one to the other.

Figure 10.14 Rules 34 (left) and 48 (right) are mirror images.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

127

Near the top of the graph, rule 136 draws right angled triangles. Rule 140, which draws right an-
gled triangles with vertical lines extending from them, coarse grains to it (Figure 10.12). 140 also
coarse grains to 204, which captures the vertical lines in its output (Figure 10.13).

Towards the bottom, rule 34 coarse grains to 170. Unlike 34, rule 170 is actually capable of draw-
ing thick diagonal lines, but the mapping between them usually prevents rule 170 from doing so: it
only allows 170 to make a line at the left edge of a contiguous fine level block, maintaining consist-
ency between the two rules. Though if we use a pattern of alternating cells as the input condition,
rule 170 does draw a thick line that corresponds to a checkerboard pattern at the lower level (Figure
10.15).

Figure 10.15 Rule 34 coarse grained to rule 170, showing the thick lines in coarse rule 170 and corresponding cheq-

uerboard patterns found in fine rule 34.

Finally, there are four pairs of isolated rules that only coarse grain to each other (and sometimes
themselves).

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

128

0

2

4

5

8

10

12

15

16

24

32

34

36

38

42

46

48

51

52

60

64

66

68

80

85

90

95

102

105

112

116

128

130

132

136

138

139

140

144

150

152

153

155

160

162

165

170

171

174

175

176

186

187

188

189

190

191

192

194

195

196

200

204

206

207

208

209

211

219

220

221

222

223

230

231

236

238

239

240

241

242

243

244

245

246

247

250

251

252

253

254

255

192 / 252

196 / 220

204

136 / 238

140 / 206

0 / 255

48 / 243

128 / 254

34 / 187

170 240

Figure 10.16 A graining graph showing all total coarse grainings at g = 2. The floating numbers are the rules on

which that cluster is grouped, so the rules at the centre bottom are grouped around rules 128 and 254. A zoomable

copy of this and the other diagrams in this section can be found at [156]. See §10.13 for further discussion.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

129

34 / 187

0 / 255

192 / 252 136 / 238204

128 / 254

240

48 / 243

170

Figure 10.17 A graining graph of all total coarse grainings at g = 3. See §10.13 for discussion.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

130

140 / 206

0 / 255

192 / 252
136 / 238

204

128 / 254

24048 / 243

170 34 / 187

196 / 220

Figure 10.18 A graining graph of all total coarse grainings at g = 4. See §10.13 for discussion.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

131

The graphs for	g = 3 and	g = 4 show a similar structure to the	g = 2 graph.10 There are more nodes,
showing that more rules that can be coarse grained at that granularity, though most of these new
coarse grainings are not that interesting as they surround large existing sinks, particularly 0 / 255.
The graphs are more interconnected: the 128 / 254 cluster joins the main graph structure, and we
see new links between the arms at the top of the graph.

The higher granularity graphs seem to include shortcuts, connecting some nodes directly that took
two hops to reach at	g = 2. For instance the nodes surrounding the 34 / 187 cluster (and those fan-
ning out from 170) are directly connected to 0 / 255. Similarly, many nodes at the top of the graph
are directly joined to 0 / 255, rather than having to traverse the arms and main trunk of the graph.

It should be noted that this is not simply a case of two adjacent	g = 2 coarse grainings being linked
by one	g = 4 coarse graining. While this does happen, a coarser granularity also adds significant
numbers of novel links to the graph. Rule 204, for example, is a sink and does not coarse grain to
anything but itself. Rather, it seems that the elementary CA rules have a certain affinity and similar-
ity between them and a higher granularity, with its less strict matching requirements, makes it easier
to see these links. We discuss these relationships further in §10.19.

10.14 Moving to two dimensions
Many interesting CAs – most famously Conway’s Life – exist in a two dimensional environment.
Israeli and Goldenfeld [123] state that “[g]eneralizations to higher dimensions and different inter-
action radii are straightforward,” but provide no examples where they did so. Nor do we. The reason
for this is simple: the numbers involved are scary.

Consider coarse graining Life with	g = 2 (the smallest size possible). Because the grid is 2D, the
number of cases to consider becomes

 2
22
g

, or 65536. Similarly, we must now consider 9 squares
rather than 3. This means there are now 2.47 × 1012 (2292 322

2

×××) cells in the test set. A 1D CA
coarse grained with	g = 2 has just 16 cases and 384 cells in the test set.

It is possible to reduce these numbers significantly in the case of Life by exploiting some of its
characteristics. Life is a totalistic CA – the outcome is the same whether 3 live cells are all on one
side or all on different sides. This cuts the number of unique cases from 65536 to 6 (live cell dies of
loneliness, live cell survives, live cell dies of overcrowding and analogous dead cell cases). Similarly,
the size of the test set reduces dramatically.

It is not reasonable to assume that any coarse graining of Life will also be totalistic, but it must be
the case that any coarse graining of Life (or at least any total coarse graining – §10.16) will have the
same symmetries as the original. Life has four axes of symmetry, limiting the maximum number of

10 Note that the graphs at	g	=3 and	g	= 4 have been rearranged to match the	g	= 2 graph – the large number of nodes around major
sinks (particularly 0 / 255) skewed the layout algorithm, and we felt the node arrangement in the	g	= 2 graph was clearer for showing
important structure.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

132

tile types to three – two edge types and the centre tile – giving 5 × 5 × 2 = 50 possible cases (within
each group the cells are totalistic, so the edge tiles can each be in five different states and the centre
tile in two) and reducing the test set hugely. Taken together these represent a substantial saving, but
the numbers are still too large to handle on a typical desktop computer.

Figure 10.19 Symmetry in Life

10.15 Explosive test cases
For 1D ECAs, the number of possible mappings is very small for a grain of two, small enough for a
standard PC to calculate exhaustively in less than a second. At	g = 2, we have seen there are

g22 = 16
possible mappings to consider. The test set of fine cells used to check the validity of coarse grainings
is

23g × 3 × 2 = 384 cells

Combinations of 3g blocks × coarse block size × grain

Due to the exponentials, these numbers increase rapidly. For	g = 3 they are 256 and 4608 respec-
tively; at 4 they become 65,536 and 49,152; and by	g = 5 they have already reached an intractable
4.29 × 109 mappings over a test set of size 491,520. Multiply these factors together and we have
some very big numbers.

Grain Possible mappings Cells in test set
2 16 384

3 256 4608

4 65,536 49,152

5 4.29 × 109 491,520

6 1.844 × 1019 4,718,592

7 3.40 × 1038 44,040,192

8 1.16 × 1077 4.02 × 108

9 1.34 × 10154 3.62 × 109

10 1.80 × 10308 3.22 × 1010

Figure 10.20 The number of possible mappings and test set size for various grains.

We can overcome the two problems of increasing	g – population size and test set size – by using
partial solutions.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

133

10.16 PARTIAL COARSE GRAINING
The mappings considered so far (and those considered by Israeli and Goldenfeld [123]) are total.
They give an exact match over all possible states: they lose information moving to a coarser grain,
but the systems never differ in their predictions. Here we develop a new approach by searching for
partial mappings, in which we allow some discrepancies between the fine and coarse CAs’ results;
for example, □■ may map to □ in one instance, but to ■ in another.

Formally, the mapping in a partial	coarse	graining	is a relation between	g contiguous fine cells and
one coarse cell (at grain	g).11 For	g = 2

Mapping: fine × fine ↔ coarse

This may seem like a backwards step. The previous discussion of matching mappings implies that
total coarse grainings are ideal, and we should aim to get partial coarse grainings as close to that as
possible. While broadly true, being total is neither necessary nor sufficient for a coarse graining to
be good. (What ‘good’ may mean is a difficult question, and one that is addressed more fully later
in §11 and §12. For now, we shall define this loosely as modelling the desired high level behaviour.)

To understand why, it is important to note what a coarse graining is: it is a high level model of cer-
tain aspects of the underlying CA’s behaviour. And that is all. A total coarse graining captures these
aspects in all cases; a partial coarse graining may not.

The characteristics captured may not be those in which we are interested, or (in as much as it is
possible to state in absolute terms) be particularly interesting. For example we have seen that many
rules coarse grain to rule 0, but arguably this is not very useful as no information about the system
is retained.12

A total coarse graining must always model some aspect of the underlying system’s behaviour with-
out error. It cannot add any new behaviour to the system. A partial coarse graining does not have
this restriction, and its erroneous behaviour adds new information to the model (§11.7). While in
some sense undesirable, this can be useful if the extra information allows the model to approximate
(most of the time) more of the underlying system’s behaviour than would otherwise be possible
with a model of that complexity.

Ideally these additions would be chosen to cover a broad range of behaviour efficiently, reflect-
ing the behavioural facets of most interest to us and that which we wish to emulate. Usually this
would be the CA acting in a ‘typical manner’. (Compare this to physical emergent systems, where
emergent properties only present themselves over some restricted set of all possible states, such as

11 The mapping that forms part of a partial coarse graining (along with the fine and coarse rules) is still a function (or a number of
functions §10.20), but calculating the coarse CA from the fine CA with this function will sometimes be inconsistent with the actual
coarse CA.

12 We only include mappings with both □ and ■ in them.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

134

a particular temperature range.) The idea of finding a solution that works most of the time, and
finding it efficiently, is a central tenet of neutral emergence (§9.9).

Partial coarse grainings also have efficiency advantages over their total counterparts. We know that
calculating total mappings quickly becomes intractable even for quite small grains and elementary
CAs. But we shall see that we can get useful coarse grainings from remarkably little information,
averting the exponential explosion we encountered before. It also turns out that there are additional
subtleties exposed by partial mappings, and it is possible to exploit this ‘hidden information’ to find
better solutions more quickly.

10.17 A partial population
As discussed earlier in §9.10, the ideas behind neutral emergence also form a large part of the ra-
tionale for evolutionary algorithms, and we have already sketched how a genetic algorithm can be
used as an alternative to a brute-force search to find emergent solutions. Here we see how we can
use this general technique to coarse grain an elementary CA.

The initial population comprises random mappings from all fine states to the coarse states (for	g = 2
□□, □■, ■□, ■■ → □ or ■ at random), a small subset of the population space. (Or, in the case of	
g = 2, a superset (more accurately superbag) of the population space as there are only 14 possibili-
ties, less than the likely population size.)

The same evaluation process as before – looking for mismatches – is applied. Unfortunately a short-– looking for mismatches – is applied. Unfortunately a short-
cut used last time in step 8 of §10.10 (only checking each solution until a problem is found) cannot
be used here, as it is necessary to check every case for each individual – we need to know how good
the result is, not just whether it is completely correct.

This GA successfully finds ECA total coarse grainings (although not on every run), supporting our
assertion that mutual information is an appropriate fitness function (§9.17). Using a GA is much
less efficient than a brute force search for low	g. However we have seen that, as the coarse grain-
ing size increases, brute force search quickly becomes computationally intractable and GA search
becomes attractive.

As this is very much an initial exploration of the area, we spend most time working with	g = 2 coarse
grainings and are able to exhaustively cover the search space in our experiments, so we do not dis-
cuss partial populations further.

10.18 Finding a partial coarse graining
Finding a partial coarse graining is similar to finding a total one, though with a few key differences

 ▪ A different (and usually smaller) input string is used instead of an enumeration of all possible
states (step 4 in §10.10).

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

135

 ▪ Because novel rule cases may appear at any point along the input string, every output cell is
considered during evaluation so we fully exploit the partial information (step 8). Thus ■□■■□■
yields overlapping neighbourhoods ■□■, □■■, ■■□ and ■□■. (As the total coarse graining
input string is a concatenation of all possible input triples, we need only look at these triples’
central output cell to obtain all CA states (e.g. does ■□■ go to □ or ■ in this rule?), but this is
not always true for a partial coarse graining.)

 ▪ To find the coarse rule, we must discover all of the coarse rule’s outputs. But the smaller input
string may not include each of the eight coarse rule cases when mapped to the coarse rule (step
9). For instance the state ■□■ may not be present at all.

This last point may require additional work, as simply reading off the rule will not always be pos-
sible. However, unless the mapping is to rule 0 or 255,13 then at least one output mapping to □ and
to ■ must exist, and this relationship can be used to reconstruct the complete rule. We add these
steps to point 9 in §10.10

9.1 Use the inverse mapping to create a fine CA equivalent to the missing coarse rule cases. (The
inverse mapping is a relation, and any valid mapping will work.) Concatenate the rule cases to
make the fine CA. This fine CA should use the same rule as the original fine CA.

9.2 Run the fine CA for the equivalent of one coarse timestep.

9.3 Use the mapping (forwards this time) to obtain the coarse output value for each rule case. We
now have a complete coarse rule.

While any mapping will work, we see shortly (§10.20) that some mappings are better than oth-
ers. We can also use results from multiple mappings to obtain a much higher quality set of coarse
grainings.

10.18.1 Example of deriving the rule for a partial coarse graining
Suppose we are trying to find partial coarse grainings for rule 130 (at	g = 2). After performing steps
1-8 in §10.10, the candidate mapping in Figure 10.21 has proved to be consistent over the partial
string □■□■□□■□□■□■, but the coarse CA does not contain outputs for several rule cases. We
need to find the missing output states.

13 Which are excluded.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

136

Figure 10.21 Candidate mapping for rule 130

0 × 11 × 20 × 4? × 80 × 16? × 32? × 64? × 128 + + + + + + +

Figure 10.22 Known coarse rule cases at this stage for the coarse graining of rule 130. We only know to what four

of the eight coarse rule cases map at the moment.

9.1 There is only one mapping to ■, so we select it. There are three mappings to □ and we arbitrarily
select ■□ (see §10.20 for more on choosing mappings). We use this reverse mapping to create
a fine CA of the missing coarse rule cases.

9.2 Run the fine CA for two steps.14

9.3 Read off the centre two cells of each group of six.

14 As before, we omit cells from the edge of the CA at each step as their states depend on neighbouring cells not shown here.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

137

Apply the forward mapping in Figure 10.21 to these centre cells to obtain the coarse output for
the missing coarse rule cases. We now have the complete coarse rule suggested by this mapping,
rule 34.

0 × 11 × 20 × 40 × 80 × 161 × 320 × 640 × 128 + + + + + + +

The following chart summarises these this process. Steps carried out at the coarse level are shown
at the top and those at the fine level are shown at the bottom, joined together by steps using map-
pings.

Use mapping to get
coarse rule outputs

Run fine CA

Missing coarse rule cases?

Use reverse mapping to make fine
CA for missing coarse rule cases

Run this fine CA

Use mapping to get missing
coarse rule outputs

Complete coarse rule

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

138

10.19 Partial graining graphs

0

2

3

4

5

7

8

10

12

13

15

16

17

21

23

24

25

29

31

32

34

36

37

38

40

42

44

46

48

51

52

58

60

6163

64

66

67

68

69

71

72

76

77

78

79

80

85

87

90

91

92

93

95

96

100

102

103

105

108

112

114

116

119

128

130

132

136

138

139

140

141

144

150

152

153

155

160

162

163

165

170

171

174

175

176
177

178

186

187

188

189

190

191

192
194

195

196

197

200

201

203

204

205

206

207

208

209

211

217

219

220

221

222

223

230

231

232

235

236

237

238

239

240

241

242

243

244

245

246

247

249

250

251

252

253

254

255

240

192 / 252

196 / 220

204

136 / 238

140 / 206

0 / 255

48 / 243

128 / 254

34 / 187

170

Figure 10.23 A graining graph of all partial coarse grainings from input □■□■□■□■□■ at g = 2. Coarse grainings

previously seen in Figure 10.16 are shown in black and new partial links are shown in red. A zoomable copy of this

and the other graining graph diagrams can be found at [156].

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

139

The partial graining graph has a similar structure to the total graph, but adds several new joints to
the central spine (the total coarse grainings are in black and new partial coarse grainings are red).
The additions suggest that partial coarse graining captures the same types of relationships as total
coarse graining: the graph appears to build on what was there before, offering new insights into the
problem space. Rather than building a completely separate graph structure, the new links seem to
expose relationships that exist but have been hidden until now. Disconnected clusters are joined
together: the 128 / 254 cluster is linked to the main graph at the central 0 / 255 sink and to the
lower two arms of the graph.

We see later in §11.11 that partial coarse grainings can be used to predict total coarse grainings at a
higher grain. We also see that the new partial coarse graining links can capture a lot of the underly-
ing model’s behaviour – more, often, than the total coarse grainings.

10.20 Mappings
Selecting the right mapping can be as crucial as choosing the right rule when coarse graining. Once
running, the coarse CA is entirely independent of the fine CA, so there is just one chance – when
the coarse initial state is made from the fine initial state – to get the mapping between the levels
right. We discuss this further in §12.5.

We know that there are more fine rule cases than coarse cases, so there must be several mappings
to at least one of the coarse □ and ■. It is perhaps obvious that two different course grainings of a
given rule will often have two different mappings. And we know from coarse graining that different
mappings find different coarse rules (§10.11).

However, it seems less intuitive that a single coarse graining can also have several different map-
pings. In other words, one fine rule and one coarse rule can be joined through a number of distinct
mappings.

This is because, although closely related, a mapping is distinct from (and, as we have seen, used to
find) a coarse rule. And just as two different mappings can give different coarse rules, it is also pos-
sible for two different mappings to lead to the same coarse rule. (Remember that the only require-
ment here is for consistency.) It’s worth noting that this happens with both complete and partial
mappings (see Figure 10.24-Figure 10.27 and §11.12).

This is actually quite a common phenomenon. It can also be quite significant. In the total coarse
graining procedure outlined in §10.10, any valid mapping will work at step 3. While this is still
true for partial coarse grainings, some mappings will work better than others. If we were to perform
the additional partial steps just outlined (rather superfluously, as the answers are already present) on
a total coarse graining, it doesn’t matter which mapping to □ or ■ we choose, as each case is guar-
anteed to give the same (perfectly correct) answers. This is not necessarily true for a partial coarse
graining, however. It may well be that one mapping gives a better coarse rule than another.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

140

We can see this phenomenon in rule 150. Rule 150 coarse grains to itself at	g = 2 with these map-
pings

Mapping Total?
□□□■
□□■□
□□■■ ▪
□■□□
□■□■ ▪
□■■□ ▪
□■■■
■□□□
■□□■ ▪
■□■□ ▪
■□■■
■■□□ ▪
■■□■
■■■□

Figure 10.24 Mappings for rule 150 coarse grained to itself at g = 2. The binary sorting applied to this table is a bit

misleading as no digit is more significant than any other.

Figure 10.25-Figure 10.27 illustrate the results of running the CA with each of the mappings,
starting from a single cell in an odd and even location on the grid. The coarse CA obtained from
mapping □■■□ closely matches the underlying fine CA pattern in both cases. □□■□ follows the
pattern in one case only, while □□□■ ignores the structure completely. Again, it’s worth emphasis-
ing that the coarse rule is identical in all cases – the only change is in the coarse initial condition,
determined from the mapping.

Clearly starting from just one cell is not terribly representative of the whole gamut of rule 150’s
behaviour, but we see similar variations in some rules with much more complex input strings as
well. In some cases a marked discontinuity can be seen, switching suddenly between little common
behaviour and a close correlation. We examine this further in §11.12 once we have introduced
mutual information as a way of quantifying the ‘goodness’ of a coarse graining.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

141

Figure 10.25 A run of rule 150 coarse grained to itself with mapping □■■□.

Figure 10.26 A run of rule 150 coarse grained to itself with mapping □□■□.

Figure 10.27 A run of rule 150 coarse grained to itself with mapping □□□■.

10.20.1 Using the first valid mapping
We have seen that some mappings are better than others when partially coarse graining, so simply
selecting the first matching mapping as we have done until now would appear to be a poor choice.
And it largely is, though it serves as a useful benchmark for subsequent approaches.15

The modified procedures described in the following sections are the same as that described in
§10.10, except that we use the inverse mapping on all rule cases, not just those for which we don’t
know the mapping. In other words, we ignore the partial rule information we have discovered so
far and use the first inverse mapping that matches instead.

This seems like a retrograde step. And (again) it is, though the answers returned are surprisingly
good, considering the only information passed forward to this stage of the algorithm is that this
mapping and fine rule combination has potential to work.16

15 Note that some of these results are influenced by our choosing the first possible mapping; had we selected (for instance) the last,
we would have obtained different results in some places, though the distinctions are minor.

16 Though these arbitrary mappings do give inconsistent and misleading results in some cases, for instance indicating that a coarse
graining has a lower MI when found through this partial coarse graining technique than when found through total coarse graining.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

142

We have taken this step because it allows us to concentrate on the main issues when generating a
complete rule from a partial mapping. At the end of this section, we discuss the additional problems
of using existing partial matches and present a solution.

10.20.2 First valid mapping steps
The new steps we add to point 9 of the coarse graining algorithm (§10.10) are almost identical to
those in §10.18.1.

9.1 Use the inverse mapping to create a fine CA equivalent to all elementary rule cases for the coarse
rule. Select the first valid choice in the mapping relation in each rule case. Concatenate the rule
cases to make the fine CA. This fine CA uses the same rule as the original fine CA.

9.2 Run the fine CA for the equivalent of one coarse timestep.

9.3 Convert the CA’s output back to the coarse level using the (forwards) mapping (which is a func-
tion in that direction) and read off the coarse rule. We now have a complete coarse rule.

Use mapping to get
coarse rule outputs

Run fine CA

Missing coarse rule cases?

Use reverse mapping to
make fine CA for missing

coarse rule cases. Use first
valid mapping each time.

Run this fine CA

Use mapping to get
missing coarse rule

outputs

Complete coarse rule

Figure 10.28 Steps for first valid mappings.

10.20.3 First valid mapping results
We recorded the number of valid coarse grainings returned with a number of different initial condi-
tions. The numbers in Figure 10.29 don’t look very good, with almost ten times as many answers as
with a total coarse graining. With longer and more complex initial conditions, the number of coarse
grainings decreases quite substantially, but the set is still about five times the size of the total one.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

143

Initial condition Coarse grainings Percentage of total coarse grainings
□■□■□■□■□■ 1432 796%
□■■□■ 1237 687%
□■■□■■ 1144 636%
□■■□■□■□ 1045 581%

□■■□■□■□ ■■□□ 794 441%

Total 180 100%

Figure 10.29 The middle column shows the number of valid partial coarse grainings returned at g = 2 for various

initial conditions, with the number of total coarse grainings in the bottom row. These results are also given in the

right column as a percentage of the number of total coarse grainings. There are significantly more partial coarse

grainings than total ones.

10.20.4 Using all mappings
We can increase the quality of our results by intersecting the results from all possible mappings. This
set of rules must be a superset of the total coarse grainings (though not necessarily a proper one) as
all valid total coarse grainings are also valid for all mappings. This set is also likely to contain the
best rules (because they work most of the time) and we see that it significantly reduces number of
results returned.

This means we must try every combination of potential mappings in inverse mapping relation.
Even at a grain of two, naïvely checking all possible mappings for all input cases is quite time con-
suming. To cover all eight rule cases, we must plough through 38 × 3 × 18 × 3 = 2.82 × 1011 (if we have
three mappings to □ and one to ■ or vice versa) or 28 × 3 × 28 × 3 = 2.81 × 1014 (two mappings to each)
cases. In practice we don’t have to check all of these as we can stop as soon as we detect an inconsist-
ency within the mapping, but this approach is still prohibitively time consuming.

10.20.5 All mappings steps
Use the inverse mapping to create a fine CA equivalent to all rule cases for the coarse rule. Select
the first valid choice in the mapping relation in each rule case. Concatenate the rule cases to make
the fine CA. This fine CA uses the same rule as the original fine CA in the coarse graining. Again,
we add these steps to point 9 in §10.10.

9.1 Use the inverse mapping to create a fine CA equivalent to all elementary rule cases for the coarse
rule. Select the first valid choice in the mapping relation in each rule case. Concatenate the rule
cases to make the fine CA. This fine CA uses the same rule as the original fine CA.

9.2 Run the fine CA for the equivalent of one coarse timestep.

9.3 Convert the CA’s output back to the coarse level using the mapping (which is a function in that
direction). We now have a complete coarse rule.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

144

9.4 Repeat steps 9.1-9.3 using the second valid choice in the mapping relation (if one exists) for the
first coarse rule case. Repeat for the third choice there is one. Keep the mapping choices for the
other seven rule cases unchanged.

9.5 Select the second mapping choice for the second rule case and repeat steps 9.1-9.4. Repeat this
process for all mapping choices and rule cases until all combinations have been tried.

9.6 If the same coarse rule is returned by all test cases, we have a valid coarse graining. If not, we
discard it.

10.20.6 All mappings results
While very expensive to calculate, the results returned by this approach are much better, increasing
the total coarse grainings set size by only 54% for a very short and simple initial condition and only
17% for a more complex one. It is also worth noting that, as well as being short, the first test string
in Figure 10.30 consists entirely of the pattern □■. Really quite simple and short partial mappings
can get pretty close to the complete mapping.17

Initial condition Coarse grainings Percentage of total coarse grainings
□■□■□■□■□■ 278 154%
□■■□■ 254 141%
□■■□■■ 242 134%
□■■□■□■□ 222 123%
□■■□■□■□■■□□ 210 117%

Total 180 100%

Figure 10.30 The number of valid coarse grainings returned at g = 2 for the initial conditions in Figure 10.29. The

number of partial coarse grainings is significantly reduced.

17 This isn’t always the case. The string ■□■■□■■□■■□■ works considerably less well at	g	= 2, though interestingly performs
much better at	g	= 3, perhaps because of its periodicity.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

145

U
se

 m
ap

pi
ng

 to
 g

et
co

ar
se

 ru
le

 o
ut

pu
ts Ru

n
fin

e
CA

M
iss

in
g

co
ar

se
 ru

le
 c

as
es

?

U
se

 re
ve

rs
e

m
ap

pi
ng

 to

m
ak

e
fin

e
CA

 fo
r m

iss
in

g
co

ar
se

 ru
le

 c
as

es
. U

se
 fi

rs
t

va
lid

 m
ap

pi
ng

 e
ac

h
tim

e.

Ru
n

th
is

fin
e

CA

U
se

 m
ap

pi
ng

 to
 g

et

m
iss

in
g

co
ar

se
 ru

le

ou
tp

ut
s

Co
m

pl
et

e
co

ar
se

 ru
le

A

Re
pe

at
 fo

r s
ec

on
d

va
lid

 re
ve

rs
e

m
ap

pi
ng

 a
t s

te
p

A
(if

 e
xi

st
s)

Re
pe

at
 a

ga
in

 fo
r t

hi
rd

 v
al

id
re

ve
rs

e
m

ap
pi

ng
 (i

f
ex

ist
s)

Re
pe

at
 fo

r a
ll

ot
he

r r
ul

e
ca

se
s

Sa
m

e
ru

le
 re

tu
rn

ed

by
 a

ll
te

st
 c

as
es

?

Figure 10.31 Steps for all mappings.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

146

10.20.7 Checking all mappings more efficiently
The above process shows that we actually check the rules’ consistency through their mappings, and
not by verifying the underlying fine rule directly. There are, of course, far fewer mappings than fine
rule cases. We also note again (§10.8.1) that the rule cases are independent of each other (indeed
this is why we were able to concatenate them). These considerations allow us to move the exponen-
tial from the relatively large number of rule cases to a much smaller number of mapping cases, and
thus cut the search space dramatically.

10.20.8 More efficient all mappings steps
9.1 Start with a candidate mapping as before, but this time use it to generate the fine possible

equivalents (for every possible mapping) for just one particular coarse rule case (for instance
□■□). Concatenate these fine rule equivalents to make the fine CA.

9.2 Run the fine CA for the equivalent of one coarse step.

9.3 Map the output back to the coarse level.

9.4 Check which outputs are present for the coarse triples (just □, just ■, or □ and ■). If both □ and
■ are present, the mapping is invalid.

9.5 If the mapping is valid, repeat steps 9.1 – 9.4 for the other coarse rule cases. If the mapping is
valid for all triples, we have coarse grained the CA.

Once we have done this for all eight rule cases, we know which coarse outputs exist for this map-
ping and fine rule. And as we have all eight rule cases, we can immediately assemble the coarse rule,
or perhaps several possible coarse rules. But we also know that if there are several possible coarse
rules (i.e. any rule case has output both a □ and a ■) there must be an inconsistency, so we can im-
mediately eliminate this rule / mapping combination. Thus we avoid the exponential entirely: we
either have just one answer, or we have an invalid coarse graining.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

147

Select one coarse
rule case

Use reverse mappings
to get all possible fine

rule cases

Concatenate rule cases
and run this fine CA

Use mapping to get
coarse rule outputs

If both coarse rule
outputs are present,

mapping is invalid

If mapping is valid, repeat for
another coarse rule case

All coarse rule
cases valid?

Figure 10.32 Steps for more efficient all mappings.

10.20.9 Checking all mappings even more efficiently
An equivalent but (even) more efficient technique is to use the same mapping relation for all rule
cases at once and then perform an intersection on these rules. This means that we now have to
check just three or four alternatives at	g = 2. Since the rule cases are independent, and since we only
need to detect an inconsistency, this is equivalent to the procedure we have just described: though
done in a different order, we still check each possible option for individual rule bits and see if it is
consistent.

10.20.10 Even more efficient all mappings steps
9.1 Start with a candidate mapping as before, then generate the fine possible equivalents (using one

possible mapping) for all eight coarse rule cases (for instance □■□). Concatenate these fine rule
equivalents to make the fine CA.

9.2 Run the fine CA for the equivalent of one coarse step.

9.3 Map the output back to the coarse level and record the outputs (□ or ■) at the coarse level for
each coarse triple, giving us a candidate rule.

9.4 Repeat steps 9.1 – 9.3 for the other possible mappings. If we get the same candidate rule from
each mapping, we have a valid mapping and coarse graining.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

148

Concatenate all
8 rule cases

Use first reverse mapping
to get fine rule cases

Run fine CA

Use mapping to get
coarse rule outputs

Now have candidate
coarse rule

Repeat for all other reverse mappings at A

All candidate coarse
rules match?

A

Figure 10.33 Steps for even more efficient all mappings.

10.21 Taking the union of all mappings
Though intersecting the partial coarse graining sets generally restricts the results to higher quality
answers, the rejected solutions may still be useful in some circumstances. Later, in §12.5, we shall
only consider one fine rule for coarse graining and we shall wish to consider the union of all pos-
sible answers instead. In this case we return all rules given by all mappings, even if they only appear
in a single test case.

Returning the union of all results adversely affects algorithm performance. For the naïve exponen-
tial algorithm, we can no longer stop when find an inconsistency and must examine all possible
combinations of mappings, which significantly increases the runtime.

In the more efficient algorithm, we must now calculate all combinations of mappings. This re-
introduces the exponential, albeit over the much smaller set of mappings. In this case, we have a
maximum of 256 alternates to calculate (28), and typically just 16 (24). In the final step, we now
collate the union of all possible combinations of the coarse rule values we generated in the previous
stage. Note that the more efficient technique described in §10.20.9 is not equivalent under union
and returns far fewer results.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

149

10.21.1 Comparison of union results
Initial condition Coarse grainings Percentage of total coarse grainings
□■□■□■□■□■ 17,592 9773%
□■■□■ 16,397 9109%
□■■□■■ 15,955 8864%
□■■□■□■□ 15,230 8461%
□■■□■□■□■■□□ 9671 5373%

Total 180 100%

Figure 10.34 The union of valid coarse grainings at g = 2 for the initial conditions in Figure 10.29.

Initial condition Coarse grainings Percentage of total coarse grainings
□■□■□■□■□■ 3472 1929%
□■■□■ 3100 1722%
□■■□■■ 2958 1643%
□■■□■□■□ 2812 1562%
□■■□■□■□■■□□ 1881 1045%

Total 180 100%

Figure 10.35 The union of valid coarse grainings at g = 2 for the initial conditions in Figure 10.29, showing non-

equivalence of the more efficient technique in §10.20.9 under union.

If instead we use partial mappings from the partial coarse graining, we maintain a constant map-
ping for those rule cases at all times and cycle through the unknown ones as described above.

10.22 Using known rule cases
The algorithms above ignore the rule cases we know from the initial partial coarse graining steps, re-
lying entirely on intersection to constrain the results returned. (Though we do use the partial coarse
graining to perform a consistency check on those values initially before reaching the algorithm stage
discussed in this section.) While perhaps an impressive feat, we would clearly like to use these exist-
ing partial results as we know them to be correct.

One approach is to fix the known rule cases when testing for consistency across multiple mappings.
Unfortunately this makes passing the intersection test easier: by keeping certain parts of the string
constant for all tests, we now allow through cases where these values would have varied before. This
means it may become easier for a rule to be valid with a more complex test string (which gives more
known values) than a simple one, and we in fact see this in the results. Clearly this situation is less
than ideal.

We can avoid this by performing a double intersection. First we use one of the algorithms outlined
above (varying all rule cases) to get an initial set of valid rules, then we intersect these results with
our partial rule to remove any rules that disagree with the partial information we have. This ap-
proach eliminates a number of extra candidate coarse grainings. Unsurprisingly it removes more
rules when using a longer test string, though the number of rules discarded reduces again as we ap-

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

150

proach the complete test string. (The complete test string will of course have eliminated all invalid
coarse grainings earlier in the process.) The simple string □■□■□■□■□■ allows through all rules
returned by the intersection, but □■■□■ removes an additional 36 (taking valid rules from 254 to
218) and □■■□■□■□■■□□ removes an extra 10 (from 210 to 200 valid rules).

10.22.1 Even more efficient all mappings plus known rule cases steps
9.1 Start with a candidate mapping as before, then generate the fine possible equivalents (using one

possible mapping) for the eight coarse rule cases (for instance □■□). Concatenate these fine rule
equivalents to make the fine CA.

9.2 Run the fine CA for the equivalent of one coarse step.

9.3 Map the output back to the coarse level and record the outputs (□ or ■) at the coarse level for
each coarse triple, giving us a candidate rule.

9.4 Repeat steps 9.1 – 9.3 for the other possible mappings.

9.5 If we get the same candidate rule from each mapping, check that each rule case’s output in the
candidate rule matches the partial rule from step 8 (for the cases where we have an output).

9.6 If the candidate rule and partial rule from step 8 are consistent, we have a valid mapping and
coarse graining.

10.22.2 Known rule cases results
Initial condition Coarse grainings Percentage of total coarse grainings

□■□■□■□■□■ 278 154%
□■■□■ 218 121%
□■■□■■ 218 121%
□■■□■□■□ 203 113%
□■■□■□■□■■□□ 200 111%

Total 180 100%

Figure 10.36 The number of valid coarse grainings at g = 2 using known rule cases for the initial conditions in Figure

10.29. The results show a small but significant reduction in valid coarse grainings compared to Figure 10.30.

10.23 Key points
 ▪ Coarse graining can be used to model the emergent behaviour of CAs and predict their future

states. As it models rules, rather than individual examples of CAs, it can capture CA behaviour
much more generally.

 ▪ We see subjective emergence through different coarse grainings that model different aspects of
a rule’s underlying behaviour.

Neutral Emergence and Coarse Graining Cellular Automata Coarse Graining

151

 ▪ Graining graphs can be used to show the relationships between coarse grainings under certain
criteria.

 ▪ Partial coarse graining allows some discrepancies between the fine and coarse CAs, and can al-
low the coarse CA to model behaviour it would not otherwise be able to capture.

 ▪ Selecting a good mapping can be as crucial as choosing the right rule when coarse graining.
Checking that potential partial coarse grainings are valid for all mappings greatly increases the
quality of results returned.

Coarse Graining Neutral Emergence and Coarse Graining Cellular Automata

152

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

153

11 EMERGENCE AND INFORMATION
Following on from quantitative emergence (§9.11) and neutral emergence (§9.18), we show how

we can model similarities between fine and coarse CAs (the low and emergent level models) using

information theory. After describing how to calculate the MI in a coarse graining, we see that the

MI of partial coarse grainings can be higher than that of total coarse grainings. We also discuss

the types of coarse grainings that have high and low MIs.

Emergent models appear independent from their underlying behaviour because of the apparent dis-
continuity between the high and low levels (§9.6). This discontinuity also allows us to predict the
behaviour of the high level system: we can calculate the system’s future state more efficiently than
by running the low level system. In other words, we end up with a more compact high level repre-
sentation of the low level system, or at least of some aspect of its behaviour. The emergent model
stores and transfers less information (in general) than the low level system from which it emerges.

It is important to distinguish between the high level system and our view (our mental model)
of that high level system. Notwithstanding emergent phenomena (§8.4), the high level system is
entirely dependent on and derived from the low level system. In contrast, our view is entirely inde-
pendent of the low level system and operates through its own rules.

We may think of a flock of birds as one object with one position and velocity, even though it is actu-
ally composed of many birds’ positions and velocities. And we can use this view to predict the flock’s
future position reasonably efficiently and accurately, first synchronising our view with the real flock
and then modelling with our own rules. Of course we may forecast incorrectly if, for example, the
flock encounters an obstacle and splits, but that doesn’t stop the model from being very useful to us
most of the time, or from seeming very real.

A coarse grained CA is another such model: the coarse CA captures the salient emergent properties
of the low level fine CA. A mapping is used to translate the fine rule’s input condition to initialise
the coarse rule, but after that they operate independently, using their own rulesets to calculate their
next states. We have a compact representation of some aspect of the fine rule’s behaviour, requiring
only 25% of the calculations at	g	= 2 to reach any future state.1

11.1 Types of information loss
Sometimes the fine detail of the original rule disappears when coarse graining. This can be seen as a
loss of irrelevant degrees of freedom (DOF) – though we lose information within each coarse cell,
we don’t lose anything that, at the fine level, extends beyond this coarse cell. In other cases, the high
level rule may be a CA rule of lower complexity than the rule at level L: “the system (the update
rule, not the cell lattice) does not contain enough information to be complex at large scales” [7].

1 Assuming we calculate the next states naïvely. Many rules, of course, can be modelled more efficiently.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

154

This is a loss of relevant DOF and information propagated over time by the fine CA cannot always
be modelled at the coarse level, as all fine level states that represent this information map onto a
single coarse state.

Figure 11.1 The difference (modulo 2) in the trajectories resulting from replacing a □■□ segment in the initial condi-

tion with □■■. (From [123])

Israeli and Goldenfeld [123] illustrate such a loss with the coarse graining of rule 146 to rule 128
(Figure 11.1). Because rule 128 is a simpler rule than 146, relevant DOF must be lost. Modify- rule 128 is a simpler rule than 146, relevant DOF must be lost. Modify-
ing the initial condition by replacing □■□ by □■■ gives different behaviour unbounded in space
and time. Since both □■□ and □■■ map to □ at the coarse level, these discrepancies cannot be
modelled. In other cases, coarse grainings seem to highlight some of the underlying structure (for
example, various propagating ‘signals’) by smoothing out other ‘irrelevant’ structure.

Israeli & Goldenfield elaborate on the general case

“Let	us	illustrate	the	difference	between	coarse-graining	of	relevant	and	irrelevant	DOF.	Con-
sider	a	dynamical	system	whose	initial	condition	is	in	the	vicinity	of	two	limit	cycles.	Depending	
on	the	initial	condition,	the	system	will	flow	to	one	of	the	two	cycles.	Coarse-graining	of	irrel-
evant	DOF	can	project	all	the	initial	conditions	on	to	two	possible	long	time	behaviors.	Now	
consider	a	system	which	is	chaotic	with	two	strange	attractors.	Coarse-graining	irrelevant	DOF	
is	 inappropriate	 because	 the	 dynamics	 is	 sensitive	 to	 small	 changes	 in	 the	 initial	 conditions.	
Coarse-graining	of	relevant	DOF	is	appropriate,	however.	The	resulting	coarse-grained	system	
will	distinguish	between	trajectories	that	circle	the	first	or	second	attractor,	but	will	be	insensitive	
to	the	details	of	those	trajectories.”	[123]

11.2 Coarse graining and mutual information
We saw in §10.11 that several different coarse grainings exist for many CAs, and argued in §10.16
that total coarse grainings, though accurate, are not necessarily good if little of the fine rule’s be-
haviour is retained.2 (We lost too many degrees of freedom.) We have also seen that partial coarse

2 We assume here that we wish to retain at least some substantial aspects of the fine rule’s behaviour.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

155

graining appears to give better results – high level models that capture more of the underlying be-– high level models that capture more of the underlying be-
haviour – in a substantial number of cases. But it is difficult to say whether one coarse graining is
actually better than another, or to compare them more objectively than seeing if they look roughly
right.

Mutual information (MI – §7.7) is one way we can qualify this goodness: we suggest that it is a
good indicator of the quality of a coarse graining, and it can be used to direct the search for bet-
ter solutions. Intuitively, mutual information seems like a useful metric as it measures similarities
(similar distributions of values) between two models. It is also a well understood and broadly ac-
cepted measure. There are also specific reasons why mutual information appears well-suited to this
problem.

 ▪ Coarse graining is a simple example of the emergent model described in §9.17, with the coarse
CA representing the emergent behaviour (or specification) and the fine CA the low level behav-
iour (or implementation). We saw there how MI was used to determine the quality of informa-
tion theoretic protolife and emergent models.

 ▪ Mutual information is a quantitative measure, which makes it a candidate for guiding the au-
tomatic development of emergent systems.

 ▪ Mutual information is fairly simple to calculate, making it suitable for practical applications.

11.3 How to calculate the MI
Before we can calculate the mutual information between two systems, information theory requires
us to have a language through which to interpret the systems, and we also need to decide how to
divide up the systems’ state spaces to determine their entropies (§7.9). As both are elementary CAs,
they already share a common language (binary cells), but the different spatial and temporal scales
of the fine and coarse levels requires a little consideration.

We must be able to say whether two states of a system are the same or not, and we must know the
possible states in which a system can be. It seems appropriate to divide the state space into all the
possible coarse rule states, splitting the coarse CA into blocks of three coarse cells and yielding eight
different states. Six fine cells map onto these blocks at a grain of two, so each block of fine cells can
be in one of 64 states (and potentially have a higher entropy). (We explore different block sizes in
§12.17, though we find a coarse block size of three to be one of the best for our purposes in this
and the following chapters.)

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

156

It is less clear how to divide up the state space over time. There are three possibilities

 ▪ Expand the state space to include a temporal dimension. At	g	= 2, each chunk in the fine CA
state space would now comprise twelve cells (six cells spatially by two temporally).

 ▪ Include each coarse CA row several times, once for each fine row to which it corresponds.

 ▪ Only look at the fine CA when it coincides with the top of a coarse row. For	g	= 2, ignore every
other row.

Recounting coarse rows or expanding the state space seem like the better solutions – each coarse cell
replaces several fine cells in the mapping, so surely we should take account of them all? But, because
of the way a mapping works, it turns out that we shouldn’t.

Figure 11.2 A coarse graining of rule 130 to rule 162, showing the fine cells used and not used in the mapping. The

mapping used is □□■■.

At grain two, a mapping links six fine input cells to three coarse input cells and, later on, links two
output cells to one coarse cell. It does not say anything about the intervening row of fine cells and,
in fact, they do not generally correspond. So it does not make sense to measure the MI including
these intermediate rows.

In some cases we see a significant drop in the MI if we include all fine rows in our calculations:
the CAs match well at every other row as expected, but the others – where the fine CA is at an
intermediate stage – are much poorer. In other cases the MI remains roughly the same when we
include all fine rows, though this is merely a serendipitous artefact of the CAs’ structure. Rule 204,
for example, draws vertical lines and has the same cell pattern in all rows and is unaffected by how
we measure its MI.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

157

11.4 Calculating the MI
We now describe how to calculate the mutual information between fine and coarse CAs.

1 Decide on the coarse graining rule pairs to test and select a test string for determining the MI.

2 Create coarse and fine CAs from the test input string. The coarse CA should be calculated from
the fine CA via the mapping as usual.

3 Run the CAs until the time at which we want to measure the MI. Following §11.3, this must be
a time at which the fine CA is aligned with the top of a coarse row. We may choose to measure
the MI at several times throughout the run.

4 Calculate the MI between the rules.

4.1 Split the fine CA’s states at the current time into blocks of size 3g.

4.2 Count the number of blocks in each state. For example, if the first three blocks are □■■■□■,
□■■□□□ and □■■■□■, we have two blocks in state □■■■□■ and one block in state
□■■□□□.

4.3 Split the coarse CA into blocks of size three.

4.4 Count the number of blocks in each state.

4.5 Use the fine and coarse block counts to obtain the entropy for each CA and calculate the
MI between the rules.

Fine CA entropy Hf = Σ p(xf) log2 p(xf)

Coarse CA entropy Hc = Σ p(xc) log2 p(xc)

Joint entropy between fine and coarse CAs Hcf = Σ p(xcf) log2 p(xcf)

MI = Hf + Hc - Hcf

5 Run the CAs until the next time at which we want to calculate the MI. Repeat for additional
MI values at later times.

11.5 Calculating the MI example
Here we calculate the MI between the fine rule 34 and coarse rule 170 at a grain of two. One valid
mapping (§10.20) between these two rules is □□■□. We found this mapping through coarse grain-
ing rule 34 as described in §10.10.

We shall use the test string □□□■□■■□■■■□□■■□■■■□□□□□ to calculate the MI between rules
34 and 170.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

158

We construct a fine CA using rule 34 and a coarse CA with rule 170. The initial conditions for the CAs
are □□□■□■■□■■■□□■■□■■■□□□□□ for the fine CA (the test string) and □□□■□■□■□■□□
for the coarse CA, calculated via the mapping □□■□.

Figure 11.3 The fine and coarse CA input test strings (coarse string calculated via the mapping).

We decide to calculate the MI at fine rule timestep 5 (equivalent to 3 coarse timesteps).3

Fi
ne

 ti
m

es
te

p 1

2

3

4

5

Figure 11.4 The fine CA, after running for 5 (fine) timesteps.

Co
ar

se
 ti

m
es

te
p

1

2

3

Figure 11.5 The coarse CA, after running for 3 (coarse) timesteps.

Split the coarse CA’s state at timestep 3 into blocks of size 3. Do the same for the fine CA’s state at
the timestep 5 and with blocks of size 3g = 6.

Figure 11.6 The fine and coarse CAs’ outputs, split into blocks.

3 We have assumed the cells adjacent to the initial condition given are □ so we can calculate the MI on the full width of the initial
condition at step 5. In practice we would want to use a much larger initial condition (§11.6) and would probably arrange the CAs
on infinite periodic grids (§2.1).

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

159

Count the number of blocks in each state for both CAs.

□□□□□□ 1
■□□□□□ 1
□□□■□□ 1
□■□□■□ 1

Figure 11.7 Fine state counts. The binary states seen in the fine CA’s blocks at time 5. (States with no instances in

the CA have been omitted.)

□□□ 1
□■□ 2
■□■ 1

Figure 11.8 Coarse state counts. The binary states seen in the coarse CA’s blocks at time 3 (fine time 5). (States

with no instances in the CA have been omitted.)

□□□ □■□ ■□■
□□□□□□ 1
■□□□□□ 1
□□□■□□ 1
□■□□■□ 1

Figure 11.9 Joint state counts. The binary states seen in the fine and coarse CAs’ blocks at time 5. State (□■□□■□,

□■□) indicates that the fine CA was in state □■□□■□ and the coarse CA in state □■□ for that particular block (the

first block in Figure 11.6 in this case). States with no instances in the CA have been omitted.

Calculate the entropy for each rule.

Fine CA entropy Hf = Σ p(xf) log2 p(xf)

Coarse CA entropy Hc = Σ p(xc) log2 p(xc)

Joint entropy between fine and coarse CAs Hcf = Σ p(xcf) log2 p(xcf)

In this limited example, we have distinct values for all four cases in the fine CA and one duplicate
value in the coarse CA, yielding a ¼ probability of being in any one fine or joint state and a ¼, ¼ or
½ probability of being in a coarse state (depending on the state). Inserting values into the formulae
gives

Hf = -¼ × log2(¼) – ¼ × log2(¼) – ¼ × log2(¼) – ¼ × log2(¼) = 2.0

Hc = -¼ × log2(¼) – ¼ × log2(¼) – ½ × log2(½) = 1.5

Hcf = -¼ × log2(¼) – ¼ × log2(¼) – ¼ × log2(¼) – ¼ × log2(¼) = 2.0

Calculate the mutual information between the rules.

MI = Hf + Hc – Hcf = 1.5

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

160

11.6 The significance of 1.5
Mutual information of 1.5 is the number of bits of information shared between the fine and coarse
rules. The information content (entropy) in a string of a single state is 0, and indeed we see this
when calculating the entropy for rules 0 or 255. Similarly, the mutual information between rules
0 or 255 and any other rule is also 0. The maximum entropy at the coarse level is 3 bits (this is a
random string) and 6 bits at the fine level (for	g	= 2). The maximum MI between a fine and coarse
rule is limited by the maximum coarse entropy, and so is also 3 bits.

The MI and entropy figures we calculated in our example suggest that there is a reasonable amount
of information (relative to the maximum possible, 1.5 bits out of a possible 3) at the coarse level and
between the CAs, and that the fine CA is fairly regular (less random and less information-rich, 2
bits out of a possible 6), though it is more varied than the coarse CA. But entropy and information
are statistical measures, and the sample we used is too small to give us meaningful results. If we use
the larger, 384 cell string described in §11.8, we end up with

Hf = 4.19, Hc = 2.43, Hcf = 4.19, MI = 2.43

This shows that the entropies and MI were underestimated in our first calculation – all are sig-
nificantly more information-rich with this larger input string – and that the fine CA does actually
contain more information than the coarse CA. (See §11.8 for more on choosing test strings.) Also
note that, as this is a total coarse graining, the coarse entropy equals the MI. We discuss this next.

11.7 Partial coarse graining and mutual information
Partial coarse grainings often have high (sometimes very high) MIs. We see later, in §11.9, that the
MIs of a significant number of partial grainings are higher than that of many total coarse grainings.
Despite the mistakes their coarse rules make through novel behaviour, these partial coarse grain-
ings have more in common (at least to the extent that MI is a determinant of similarity) with the
underlying behaviour than many total coarse grainings, which are all too often vacuously correct.

Mutual information between two rules will be high if the CAs’ behaviours are non-trivial and
tightly coupled (they mirror each other closely). Canonical examples of high MI coarse grainings
are those that comprise a pair of complex or chaotic rules, though simpler rules from class 1 or 2
may also have a high MI in certain circumstances – for instance some class 2 rules duplicate the
state of the previous step, so if we start these with a high MI initial condition we shall keep a high
MI throughout the run.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

161

Figure 11.10 Rule 90, a Class 3 (chaotic) rule, coarse grained to rule 165 (also Class 3). This run has a high MI be-

tween the rules. See Figure 10.11 for interpretation.

Figure 11.11 This coarse graining of rule 208 to rule 243 also has high MI because it duplicates the high MI initial

condition.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

162

The CAs in a total coarse graining must always mirror each other and the MI will always be maxi-
mal; this is not true for partial coarse grainings. Note that maximal does not necessarily mean high
in some absolute sense, it merely means that the MI must equal the coarse entropy. If a graining has
a simple coarse rule, the MI will be much lower than the maximum of 3 bits.

Having a low MI does not necessarily indicate that the coarse graining is a poor one. If the fine rule
is simple, it is possible for a coarse graining to be accurate (and presumably good) but still have a
low MI. However, if a non-trivial fine rule is totally coarse grained to a simple coarse rule, it is likely
that another (perhaps partial) coarse graining of the rule will have a higher MI. Such a simple pair-
ing would be accurate, but probably not good.4 It is therefore important to judge the MI relative
to the fine rule’s entropy. (Though we usually want to find the best coarse graining for a single fine
rule, so this point is moot.)

C
F

C

F

C

F

Figure 11.12 Representation of three different coarse grainings. The circles indicate the amount of entropy: the

large ovals represent the entropy in the fine CA F; the smaller ovals the entropy in the corresponding coarse CA C;

the overlap represents the mutual information. The left figure shows a total coarse graining with high MI; the middle

a total coarse graining with low MI; the right a partial coarse graining with high MI.

11.8 Choosing MI test strings
Mutual information is a statistical measure, so we need a reasonably substantial data set before we
can be confident in our inferences. We initially generated 100 random strings, each 1000 characters
long with P(0.5) of each digit being a ■ to use as CA starting states, giving us a confidence interval
of ±1.05% at 99% certainty for six cell (for	g	= 2) blocks. (We performed the same experiments for
100 strings with P(0.2) and P(0.8) of each digit being a ■. These results are in §B.)

Testing 100 strings of 1000 characters takes a significant amount of time. However we found we
could approximate this entire set of strings with just one string: the 384 digit concatenation of all
input fine states used to check the validity of total coarse grainings at	g	= 2. While there is nothing
magical about this sequence of digits, the string does have some nice properties: it has an equal
number of ■s and □s; and it covers every possible input condition.

In experimental runs, the 384 character string gives very similar results to the 100 random strings,
albeit with more variation in the MI. Figure 11.16 and Figure 11.17, discussed next, show that the

4 We explore what it means to be good further in §12.21.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

163

single string results are less smooth, with a few large steps, but that the overall shape of both graphs
is very similar. This will be useful when we use MI to find good coarse grainings, as being able to
use just one small string to approximate many large ones makes the process much more efficient.

The initial condition chosen will inevitably have an impact on the MI results from later times in
a CA’s run, but this influence can vary considerably from rule to rule. For instance rule 204 just
duplicates the result of the previous state. This isn’t particularly complex behaviour, but, with an
input condition such as a random string of digits, it has a high entropy.5 For other rules, such as
128, which draws triangles that dissipate over time, the effect of the initial condition on the entropy
is much smaller.

Figure 11.13 Rule 204’s output (left) duplicates the input, so its MI is very dependent on the initial condition. In

contrast, rule 128 (right) dissipates quite quickly and is much less sensitive to the run’s starting state.

0 × 10 × 21 × 41 × 80 × 160 × 321 × 641 × 128 + + + + + + +

Figure 11.14 Rule 204

0 × 10 × 20 × 40 × 80 × 160 × 320 × 641 × 128 + + + + + + +

Figure 11.15 Rule 128

5 That the rule is simple and yet has a high entropy is not a problem for using MI as a measure of goodness. While we have
equated (for now at least) goodness with a high MI, a coarse graining to 204 must also contain behaviour that matches rule 204 at
the low level – if it does not, the MI will be low, no matter what rule 204’s entropy is.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

164

0

0.
51

1.
52

2.
53

3.
5

MI

R
ul

e

A
B

C
D

Figure 11.16 32,000 MI results obtained at timestep 9 from totally coarse graining 100 random P(0.5) binary strings

1000 digits long. The graph is sorted by MI. See §11.8 for details.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

165

0

0.5

1

1.5

2

2.5

3

3.5

M
I

Rule

A B C D

Figure 11.17 MI results from the 390 total coarse grainings at timestep 9 obtained using the 384 digit string de-

scribed in this section. The graph is sorted by MI. See §11.8 for details.

Figure 11.16 shows the MI of 32,000 total coarse grainings over all rules at	g	= 2, sorted by their
MI at time 9. The MIs were obtained from 100 random binary strings P(0.5) 1000 digits long. (The
graph is restricted to 32,000 of 100,000 results due to limitations in the graphing software; the data
set was sampled representatively.) Grainings with a high MI at that time (close to the maximum of
3) are found on the left of the graph, while those with 0 MI are on the right. Figure 11.17 shows
all 390 total coarse grainings and mappings at	g	= 2 sorted by MI at time 9. The MIs were obtained
using just the 384 digit concatenation of fine input states from §11.8.

Note that coarse grainings appear multiple times in Figure 11.16, once for each test string. The dif-
ferent initial conditions mean that there will be a spread of MIs for each coarse graining, and the
same pair of rules will appear in several locations on the graph. This also means that the results from
one particular coarse graining will be interspersed with other coarse grainings with similar MIs (a
common occurrence) – see §11.9 and Figure 11.21.

Figure 11.16 (and Figure 11.17) appears to have several steps. At first the MI remains almost
maximal at 3 bits in section A, before dropping sharply. Then the graph descends gradually during
section B until it reaches another steep drop, before finally progressing relatively quickly towards 0
MI (section C leading to section D).

As expected from the graining graphs in §10.19, which show many rules clustered around the rule
0/255 nodes, a significant number of coarse grainings have low mutual information: approximately
a quarter of the grainings have trivial or no MI. (These are predominantly rules that coarse grained
to rules 0 or 255.) Rules that have very high MIs are mainly in Wolfram’s Class 3 (such as rules 102
and 153 – §2.7), though some simpler Class 2 rules are also found in this section (for instance rule
204; Figure 11.13) because they propagate high MI initial conditions.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

166

The long slope in the middle of the graph (section B) mainly comprises Class 2 rules. The change
in MI along the slope is largely due to the initial condition and not the rules: some graining pairs
are more common at the top of section B than the bottom by a factor of approximately two, but
all grainings present in section B are found at all locations throughout the section in significant
numbers. Rule 204 also reappears in section B, presumably the result of lower MI initial conditions.

Most of the rules after the drop to section C are Class 2 rules that discard much of the initial state
before settling on a simple repeating pattern and a few from Class 1 that have not died out by that
point. (Rule 128, for example, has no MI in this experiment as we chose to measure the MI at time
9.6)

Figure 11.18 An example of a coarse graining with Class 3 rules found in section A. The picture shows 153 coarse

grained to 102.

6 For rule 128 to give a non-zero MI here, its initial condition would have to contain a sequence of at least 19 ■s – preferably sig-
nificantly longer than that and preferably several of these sequences – something that is pretty unlikely in a 1000 character random
string.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

167

Figure 11.19 A coarse graining of Class 2 rules, typical of those in section B. Here rule 170 is coarse grained to itself.

Figure 11.20 An example of a rule found in section C section of Figure 11.16. Here we see the Class 2 rule 140

coarse grained to Class 1 136.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

168

11.9 Mutual information of different coarse grainings
We have already seen that we get slightly different MI values from the different initial conditions
used in each of the 100 runs. However, the distribution of each coarse graining in the MI graph
Figure 11.16 is not uniform: for some grainings, the initial condition has relatively little impact on
its MI at time 9 and gives tightly clustered results, whereas for others it is quite significant and the
results are spread over a wider MI range.

Figure 11.21 shows the prevalence of each coarse graining as the MI decreases in Figure 11.16, with
corresponding sections A-D from the graph marked. The width of each series shows the relative in-
cidence of a coarse graining out of all coarse grainings present at that point. Note that all mappings
for each coarse graining are included in the graph, so a coarse graining with three valid mappings
will have three times as many results overall as a coarse graining with just one mapping.

Including all coarse grainings results in a very busy graph, so we remove coarse grainings that return
identical or similar results to others to show the prevalence of coarse grainings in Figure 11.16 more
clearly.7 For a graph with all coarse grainings, see §C.

 ▪ A few high MI rules (e.g. 60 → 60 (Figure 11.22), 238 → 136) dominate initially in section A
before a large spike in popularity of 51 → 204 as we reach the end of the section.

 ▪ Then there is another period of relative quiescence, dominated by rules such as 51 → 204 (Fig-
ure 11.23) and 170 → 170 as we follow the MI descent in section B.

 ▪ In section C, we switch to a completely different set of low MI rules for a short period. These
include 160 → 128 (Figure 11.24) and 128 → 128.

 ▪ Finally, the 0 MI rules (represented here by 0 → 0) take over completely in section D.

7 This also impacts the relative sizes of sections A-D, though they remain similar.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

169

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% 243 / 80
243 / 208
243 / 116
240 / 241
240 / 112
204 / 51
204 / 236
204 / 200
204 / 196
204 / 140
200 / 95
200 / 5
195 / 195
192 / 252
187 / 138
187 / 10
170 / 34
170 / 171
170 / 170
165 / 165
150 / 105
136 / 136
128 / 160
102 / 102
0 / 0

High MI Low MI

R
ul

e
Pr

ev
al

en
ce

A B C D

Figure 11.21 The distribution of each coarse graining, sorted by MI, using the same data as Figure 11.16. A coarse

graining on the left of the graph has high MI and one on the left has low (or zero) MI. The spread of each coarse

graining horizontally indicates the variation in its MI results, while the spread vertically shows its (relative) prevalence

at that MI value. Sections A-D match those in Figure 11.16. See §11.9 for discussion.

Figure 11.22 Rule 60 coarse grained to rule 60.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

170

Figure 11.23 Rule 51 coarse grained to rule 204.

Figure 11.24 Rule 160 coarse grained to rule 128.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

171

The regions in Figure 11.16 are also linked to mapping symmetry: in the first step (section A), the
mappings all have an even number of ■s and □s, while on the main section of the slope (in section
B) the mappings are odd. We see a similar pattern in the small bumps at the end of this descent,
switching first to even mappings, then back to odd again before the steep drop at the start of section
C. It is unclear why rules with even and odd mappings are grouped together like this.

The MI graph for partial coarse grainings (Figure 11.26) has a gentler slope down than the total
graph (Figure 11.16). (Of course this graph includes all of the total results as well.) It turns out that
the partial and total coarse grainings remain largely separate from each other when sorted by MI.

 ▪ The flat section A is completely composed of total rules (this is also section A in the previous
graph).

 ▪ The first half of section B is 95% total rules, before switching to become 93% partial.

 ▪ The small section C before reaching zero MI is approximately 50% partial and total.

 ▪ The zero MI section D is 66% total rules.

With these divisions in mind, we can see sections in the partial graph that exactly mirror parts of
the total graph.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% 136 21

136 140

128 178

128 128

12 44

243 80

243 208

243 116

240 241

240 112

204 51

204 236

204 200

204 196

204 140

200 95

200 5

195 195

192 252

187 138

187 10

170 34

170 171

170 170

165 165

150 105

136 136

128 160

102 102

0 0

High MI Low MI

A B C D

Figure 11.25 The distribution of each coarse graining, sorted by MI, using the data from Figure 11.26. As with Figure

11.21, a coarse graining on the left of the graph has high MI and one on the left has low (or zero) MI. Sections A-D

match those in Figure 11.26.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

172

0

0.
51

1.
52

2.
53

3.
5

MI

R
ul

e

A
B

C
D

A
B

C
D

Figure 11.26 32,000 MI results obtained at timestep 9 from partially coarse graining the same random binary strings

as Figure 11.16. The graph is sorted by MI. The approximate positions of sections A-D in Figure 11.16 are also

shown in grey at the top of the graph (see §11.9).

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

173

11.10 Graining graphs and MI
We now revisit the graining graphs we saw in §10.19, exploring how the MI varies throughout the
graphs.

Almost all of the nodes on the central spine of the graphs have a high MI between them and their
fine or coarse grainings (with obvious exceptions such as rules 0 and 255, which have 0 entropy
and thus 0 MI). That the most connected nodes – those that are most useful for coarse graining –
are usually those with the highest MI adds weight to the link between mutual information and the
goodness of a coarse graining we proposed in §11.2.

The partial coarse grainings have high (sometimes very high) MIs that are higher than the MIs of a
lot of grainings that exist – even to the same rule – in the total graining graph. These partial coarse
grainings often get closer (at least to the extent that MI is a determinant of closeness8) to capturing
the underlying fine behaviour than many of their total counterparts, which we have seen are often
vacuously correct.

While a number of low MI coarse grainings (e.g. to rule 0) are also added to the graph, partially
coarse graining tends to include new links that form part of the central graph structure and have
high MIs. Only 41% (40 of 98) of the new partial coarse grainings at	g	= 2 are added to the 0/255
or 128/254 clusters. This contrasts sharply with totally coarse graining to higher grains: moving to	
g	= 3 adds 193 new coarse grainings, 162 (83%) of which are joined with low MI only to 0/255
or 128/254;	g	= 4 is similar, with 354 extra coarse grainings, 300 (85%) of which join these two
clusters.

Though from the graphs in §11.8 and §11.9, it would be reasonable to conclude that total coarse
grainings are better – the first third of Figure 11.26, with the highest MIs, is almost exclusively
total. But the middle third of the graph is nearly all partial grainings, coarse grainings that all have
higher MIs than nearly half of the total grainings.

In aggregate, partial coarse grainings have slightly lower MIs than total coarse grainings, but there
are good and bad examples of both. And the real point is that partial coarse grainings provide new
options – including some very valuable ones – that were not available otherwise. We have also seen
how partial coarse grainings let us exploit aspects of the problem that are inaccessible when coarse
graining totally because of its need for consistency all of the time.

11.11 Predicting good coarse grainings
As coarse graining to higher granularities takes significant time, it would be useful to predict higher	
g	total coarse grainings through partial coarse graining, but unfortunately the partial graph is rela-
tively poor at such predictions. Just 14 of the 98 extra partial coarse grainings found with the string

8 The caveat mentioned in §11.8 about propagating complex patterns applies here too of course.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

174

□■□■□■□■□■□■□■□■□■ at	g	= 2 become total coarse grainings at	g	= 3. 38 of them become total
coarse grainings at	g	= 4 (this includes all of the ones at	g	= 3). In contrast, 190 of the 193 extra
coarse grainings at	g	= 3 are also valid at	g	= 4.

But partial coarse grainings are better predictors of interesting behaviour. Perhaps because of the
less stringent requirements of higher granularities and partial coarse graining, the partial coarse
grainings that form part of the new spine can predict good complete coarse grainings at higher
granularities. The partial graining graph at	g	= 2 predicts the joining of the 128/254 blob to the
main graph. While there are a few other direct forecasts like this, there are substantially more indi-
rect predictions. Eight of the ten indirect links between 128/254 and 0/255 become direct links at	
g	= 4. Similarly, a lot (though not all) nodes on the path to 204 from 0/255 are direct links at	g	= 4.

It may be possible to use this approach to find specific coarse grainings at higher grains or in more
complex domains where examining all possible combinations quickly becomes intractable.

 ▪ Perform a partial coarse graining at a low grain.

 ▪ Look for solutions one or more steps away from the fine rule on the graph to form a potential
rule pair.

 ▪ See if this rule pair is a valid coarse graining at the target grain.

Partial test string 1 □■■□■□■□□■■□■□■□□■■□■□■□

Partial test string 2 □■□■□■□■□■□■□■□■□■

Coarse Grainings
Total g = 2 180

Partial 1 g = 2 234

Partial 2 g = 2 278

Total g = 3 323

Partial 1 g = 3 394

Partial 2 g = 3 400

Total g = 4 498

Partial 1 g = 4 556

Partial 2 g = 4 556

Figure 11.27 Number of coarse grainings returned at different granularities when totally coarse graining and when

partially coarse graining using test strings 1 and 2.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

175

Partial

1 g = 2

Partial

2 g = 2

Total
g = 3

Partial

1 g = 3

Partial

2 g = 3

Total
g = 4

Partial

1 g = 4

Partial

2 g = 4
Total g = 2 54 98 130 130 130 144 144 144

Partial 1 g = 2 44 140 142 142 170 182 182

Partial 2 g = 2 144 148 150 182 198 198

Total g = 3 71 77 312 312 312

Partial 1 g = 3 6 360 371 371

Partial 2 g = 3 360 373 373

Total g = 4 58 58

Partial 1 g = 4 0

Figure 11.28 The number of new coarse grainings found at higher granularities or with less restrictive test strings.

Partially coarse graining at g = 2 with string 1 finds 54 coarse grainings that are not present when totally coarse

graining at g = 2.

Total
g = 3

Partial

1 g = 3

Partial

2 g = 3

Total
g = 4

Partial

1 g = 4

Partial

2 g = 4
Partial 1 g = 2 (54) 10 12 12 26 38 38

Partial 2 g = 2 (98) 14 18 20 38 54 54

Partial 1 g = 3 (71) 48 59 59

Partial 2 g = 3 (77) 48 61 61

Figure 11.29 The number of coarse grainings predicted at higher granularities. 10 of the 54 extra coarse grainings

when partially coarse graining at g = 2 with string 1 are also found when totally coarse graining at g = 3.

Total 0/255 128/254
Total g = 2 82 (45%) 54 (30%) 28 (15%)

Partial 1 g = 2 110 (47%) 78 (33%) 32 (14%)

Partial 2 g = 2 122 (44%) 86 (31%) 36 (13%)

Total g = 3 244 (76%) 194 (60%) 50 (16%)

Partial 1 g = 3 304 (77%) 254 (64%) 50 (13%)

Partial 2 g = 3 312 (78%) 258 (65%) 54 (13%)

Total g = 4 382 (77%) 334 (67%) 48 (10%)

Partial 1 g = 4 426 (77%) 378 (68%) 48 (9%)

Partial 2 g = 4 426 (77%) 378 (68%) 48 (9%)

Figure 11.30 The number of coarse grainings that coarse grain to 0/255 and 128/254. An increasing number of the

coarse grainings go to these rules as g rises.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

176

Mean MI at 4 or 5 Mean MI at 9 or 10
Total g = 2 0.99 0.95

Partial 1 g = 2 0.82 0.77

Partial 2 g = 2 0.82 0.78

Total g = 3 0.32 0.29

Partial 1 g = 3 0.28 0.26

Partial 2 g = 3 0.28 0.26

Total g = 4 0.24 0.23

Partial 1 g = 4 0.19 0.18

Partial 2 g = 4 0.19 0.18

Figure 11.31 The mean MI over all coarse grainings at timestep 4 or 5 (depending on which coincides with a coarse

step at that grain) and step 9 or 10. There is a marked drop in mean MI as g rises, principally because of the coarse

grainings that include 0/255 or 128/254.

Partial 1
g = 2

Partial 2
g = 2

Total
g = 3

Partial 1
g = 3

Partial 2
g = 3

Total
g = 4

Partial 1
g = 4

Partial 2
g = 4

Total g = 2 0.31/0.24 0.67/0.61 0.23/0.23 0.22/0.22 0.22/0.22 0.13/0.13 0.19/0.18 0.19/0.18

Partial 1 g = 2 1.06/1.03 0.23/0.23 0.23/0.23 0.23/0.23 0.13/0.12 0.14/0.14 0.14/0.14

Partial 2 g = 2 0.24/0.23 0.23/0.23 0.23/0.23 0.13/0.13 0.15/0.15 0.15/0.15

Total g = 3 0.18/0.17 0.20/0.20 0.26/0.26 0.25/0.26 0.25/0.26

Partial 1 g = 3 0.49/0.49 0.46/0.45 0.29/0.29 0.29/0.29

Partial 2 g = 3 0.46/0.45 0.28/0.28 0.28/0.28

Total g = 4 0.23/0.23 0.23/0.23

Partial 1 g = 4 -/-

Figure 11.32 The mean MI over the extra coarse grainings in Figure 11.28. The MIs were recorded at timesteps 4

or 5 and 9 or 10. (Shown as time 4 or 5/time 9 or 10.)

11.12 Mappings and MI
We saw in §10.20 that our choice of mapping can significantly affect the usefulness of a partial
coarse graining, even for the same pair of fine and coarse rules. Mutual information offers us a way
to quantify this difference, and a way to select the best mapping.

We ran a series of experiments to explore the influence of different mappings on MI, starting with
the 88 unique elementary CA rules and partially coarse grained them at	g	= 2. There were typically
two mappings for each coarse graining, though the number varied from one to four.

We see little difference between most mappings. Clearly the MIs of total coarse grainings must be
identical for all mappings (as all mappings are perfect §10.20), but for some partial coarse grainings,
such as rule 160 to rule 128, we see substantial differences between the MIs of the mappings. The
mapping ■■□■ has an MI of 2.41 at time 5 with the complete test string (§11.8), whereas □■□■
only gives 1.06. The reason for this disparity should be immediately obvious from the pictures.9

9 It may seem that the lower MI mapping looks like a better match, and a fairly strong case could be made for that. But they are
both valid partial coarse grainings and we have argued that there is no correct emergence – we may not want the ‘better’ match if it

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

177

Figure 11.33 Rule 162 partially coarse grained to rule 160 with mapping □■□■.

Figure 11.34 Rule 162 partially coarse grained to rule 160 with mapping ■■□■.

performs worse in our model. And more pertinently, we aren’t aiming to find the best model here (by any criteria), merely to show
that different mappings can have a significant impact on the results.

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

178

We also sometimes see this when additional partial mappings are returned for a total rule. 162
totally coarse grains to 128 with mapping □□□■, but also partially with mapping □■□■ (and oth-
ers). The total coarse graining has a significantly lower MI (0.12) than the partial one (0.78). The
distinction in this case is subtle: the partial mapping maps ■□ to ■ and so includes the right edges
of more triangles than the total mapping.

Figure 11.35 Rule 162 totally coarse grained to rule 128 with mapping □□□■.

Figure 11.36 Rule 162 partially coarse grained to rule 128 with mapping □■□■.

It is important to ensure we use the best mapping when we are choosing between partial coarse
grainings. As mentioned in §11.8, we can do this efficiently by checking the MI of each mapping
against just one string.

Neutral Emergence and Coarse Graining Cellular Automata Emergence and Information

179

11.13 Key points
 ▪ Mutual information is a quantitative measure of the goodness of a coarse graining.

 ▪ Partial coarse grainings can have MIs that are higher than total coarse grainings: making some
mistakes gives them the freedom to capture low level behaviour that total coarse grainings can’t.

 ▪ The choice of mapping can have a significant impact on the MI and goodness of a coarse grain-
ing.

 ▪ For some rules, the test string used can have a significant impact on the MI of a coarse graining,
though for other rules it does not. It is therefore important to use a test string typical of the
problem in question to find good coarse grainings.

 ▪ We found that one test string that concatenated all input states gave a good approximation for
a much larger test set of strings, significantly reducing the time needed to test coarse grainings

Emergence and Information Neutral Emergence and Coarse Graining Cellular Automata

180

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

181

12 SUBJECTIVE EMERGENCE
This chapter provides the final elements needed for our goal of finding emergent models of the

behaviour we want in the underlying system, a requirement for engineering emergence (§9.19).

First we show how to find good coarse grainings of the different behaviours of a CA over space

and time. We use these ideas to demonstrate phase changes in CAs and show how to catch the

phase transition at the high level.

The behaviour we want to capture at the high level may not be the most complex behaviour the CA

can produce; in particular, we see that some partial coarse grainings have high MIs, despite looking

like poor matches to us. We introduce extra entropy, the amount of uncorrelated behaviour at the

high level, as a way to find such rules.

We also introduce directed coarse graining, a way to extract the features we want as coarse CAs

by adding exceptions to the behaviour of fine CAs. We find an interesting example of adding an

exception to rule 102 (a Class 3 rule) that gives us a larger scale copy of rule 110 (a Class 4 rule

capable of universal computation [70]).

We already know that emergence is subjective and that there is no such thing as a correct emergent
property. It may be that a number of different views, each with a different emergent model, exist
for a particular system; indeed we often see this with coarse grainings.

When we stare at Conway’s Game of Life, it is natural to notice emergent, moving patterns such
as gliders. We, as humans with our accompanying genetic baggage, are imposing our real world
propensity for object detection (a historically useful emergent abstraction) on this chequerboard
representation of a mathematical space. We find it much more difficult to detect meaningful objects
or patterns in the transient ‘soup’ seen initially on starting Life from a random state. (Though we
should note that patterns can still be in there [155].)

In §10.2, we introduced a technique to identify objects in Life, but this wasn’t a very general, ex-
pandable or flexible technique. It didn’t help predict the future state of the system (except in very
specific circumstances) and it wasn’t robust even to quite small and obvious changes in the system
state. We could certainly improve the technique, perhaps by refining the shape edge detection rou-
tine, but these improvements would be incremental and unlikely to address its underlying fragility
and narrowness of scope.

This chapter develops a more robust technique for finding objects and patterns through coarse
graining.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

182

12.1 Feature extraction in emergent systems
Coarse graining captures similarities between pairs of CAs by creating a high level (coarse) model of
certain aspects of the low level. This is analogous to identifying specific emergent behaviours seen
in Life, such as gliders. With coarse graining we can extract general features of a CA based on a set
of broad behaviours, not just one particular instance based on a specific example. For instance, if
we establish that we want elementary CA rule 128 (the transient triangle rule) as our coarse feature
detection rule, we could then use it to detect CAs that produce triangles of any size and in any loca-
tion and other triangle-like structures.

Figure 12.1 Rule 128

But these coarse grainings have been quite general, seeking to model (at least some aspect of) the
whole underlying CA. We may want to capture particular, predetermined features of the CA in our
model, similarly to identifying just the gliders in Life. (This is relevant to engineering emergence
in §9.19, for which we naturally seek a model that captures the behaviour we want, not just any
behaviour.) One important prerequisite for this is locality, which we introduce now through feature
extraction. Feature extraction allows us to find the best (highest MI1) coarse graining for particular
areas of interest on the CA grid.

At its simplest, we can split the underlying CA into large chunks and select the best coarse graining
for each chunk. We now explain how feature extraction works, assuming we have already coarse
grained a CA and obtained several possible coarse CAs through it.

12.2 How to extract features from an elementary CA

Figure 12.2 A CA divided into chunks for feature extraction.

1 While we revise the definition of ‘best’ in this section, for now we continue to equate high MI with goodness.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

183

1 Coarse grain the CA as described in §10.10. (We may choose to loosen the criteria for valid
coarse grainings; see §12.22.) We assume that we are considering just one fine rule. Though
there may be some cases for which comparing several fine and coarse rules makes sense, general-
ly we shall wish to find the best high level model for a single fine rule’s behaviour in each chunk.

2 Select which of the coarse grainings returned should go forward to the next stage. We may
choose all of coarse grainings, or we may select a subset based on their MI or other criteria. See
also §12.30.

3 Create one fine CA and a coarse CA for each coarse graining that we are considering.

4 Initialise and run the CAs.

5 Divide the CAs up into chunks.

5.1 If we decide to use four chunks spatially, we would split each CA (the fine and all coarse
CAs) into four equal pieces horizontally. (So if the CA were 80 cells wide, it would have
an x-chunk of 10, equal to 10 cells at the coarse level and 20 cells at the fine level at	g	= 2.)

5.2 If we decide to use a y-chunk of 2 and have run the CA for 40 timesteps, we would divide
the CAs into 10 segments of 2 coarse cells (4 fine cells) temporally.

6 Iterating through each coarse rule in turn, calculate the MI for a chunk. We do this exactly as
before, but this time only using the cells in that chunk.

7 Select the coarse CA with the highest MI for each chunk. We now have the best coarse grainings
for different areas of the CA, distinguishing different features in the low level CA.

12.3 Example of feature extraction
To illustrate feature extraction, we coarse grain rule 140. Valid coarse grainings include rules 136
and 204 (§10.11, §A), and we limit ourselves to choosing between these two for this example.

 ▪ We use the initial condition

□■□■■□□■□□□■□□□□□■■■■■■■□□□■□□□□□■■■■■■■■■■
■■■■■■■■□□□□□□□□□□□□□□□■□□□□□■□■■□□■□□□□□□□
□□□□□■□□□□□□□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

 ▪ We know that rule 140 draws right angled triangles with vertical lines at their tips (Figure 12.3).
We also know that rule 136 captures these triangles at the coarse level and that rule 204 matches
fairly well to the vertical lines. The initial condition is designed to show chunking, so we have
two long series of ■s that will make large triangles at the low level, separated by a relatively
sparse area with some ■s for rule 204 to model. At 128 cells wide, the initial condition used
here is larger than in previous examples so we get non-trivial MI results after chunking.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

184

 ▪ We divide the space into chunks with an x-chunk of 16 (16 coarse cells across spatially) and a
y-chunk of 2 (2 coarse cells down temporally). We run the CA until fine timestep 24, so the
CAs are divided into four chunks horizontally (16 × 4 = 64 coarse cells = 128 fine cells) and six
chunks vertically (2 × 6 = 12 coarse cells = 24 fine cells).

Figure 12.3 CAs showing rules 140 (fine rule in black), 136 (coarse rule in purple) and 204 (coarse rule in red)

started from the example in §12.3’s initial condition. The bottom picture shows the x- and y-chunks over rule 140.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

185

 ▪ We calculate the MI for each chunk. Looking at the runs of rules 140, 136 and 204 in Figure
12.3, we see that rule 136 should be a good match in chunks two (initially, at least) and four.
Rule 204 appears to correlate better with the other chunks.

x-chunk (cells)
1-32 33-64 65-96 97-128

y-chunk

(time-

steps)

1-4 0.72 1.92 0.65 0.97

5-8 0.72 1.92 0.00 1.37

9-12 0.00 1.37 0.00 1.92

13-16 0.00 1.37 0.00 1.92

17-20 0.00 0.00 0.00 1.92

21-24 0.00 0.00 0.00 1.37

Figure 12.4 Mutual information between rules 140 and 136, divided into four chunks horizontally (x-chunks) and six

chunks vertically (y-chunks). The cell indices corresponding to each chunk are also shown.

x-chunk (cells)
1-32 33-64 65-96 97-128

y-chunk

(time-

steps)

1-4 1.92 1.52 1.46 0.72

5-8 1.92 1.52 1.46 0.72

9-12 1.92 0.97 1.46 0.72

13-16 1.92 0.97 1.46 0.72

17-20 1.92 0.72 1.46 0.72

21-24 1.92 0.72 1.46 0.72

Figure 12.5 Mutual information between rules 140 and 204.

 ▪ We select the coarse graining with the higher MI as the better match for that chunk. There is
a broad agreement between the rule that appears the better match in Figure 12.3 and the rule
with the higher MI at each point: Figure 12.6 looks like a coarser version of the CAs’ outputs.

x-chunk (cells)
1-32 33-64 65-96 97-128

y-chunk

(time-

steps)

1-4 204 136 204 136

5-8 204 136 204 136

9-12 204 136 204 136

13-16 204 136 204 136

17-20 204 204 204 136

21-24 204 204 204 136

Figure 12.6 Table illustrating which rule matches better (has a higher MI) out of 136 and 204 for each chunk.

This example was chosen to give particularly convincing results, but the correlation between the
rule with the highest MI and the rule that ‘looks right’ is almost always very good. (We discuss cases
where it is not, and a solution to the problem, in §12.21.) Further examples can be found in §E.

There are cases where feature extraction works less well, for instance when a chunk falls entirely
within a block of cells that are all of one state. All rules have zero MI in such a chunk, so it is impos-
sible to choose the correct coarse graining, even though it looks as though it should be the same as

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

186

the surrounding shape. A more significant problem occurs when a high entropy coarse rule matches
better (has a higher MI) than a low entropy coarse rule that seems to model the behaviour we desire.
Again, we address this issue in §12.21.

12.4 Forcing contiguous blocks
Rather than simply selecting the highest MI graining for each chunk, we may decide to favour con-
tiguous blocks of a single coarse graining. We can do this by requiring any coarse graining using a
new rule to have an MI that is at least a certain percentage above the MI of the coarse graining we
are currently using, or alternatively by requiring that no rule can replace the current one unless its
MI drops below a stated proportion (perhaps 50%) of its peak value (or a moving average). These
techniques were devised specifically for investigating CA phase transitions (see §12.6). While they
work well in some situations, they did not prove useful in this context and have thus not been de-
veloped further.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

187

12.5 TOWARDS DIRECTED COARSE
GRAINING
Coarse graining with feature extraction is a potentially powerful technique: we have characterised
the broad behaviour of a region and we can use this to predict, with reasonable accuracy, the future
state of this region. We can now identify and label salient, high-level features of the underlying
model in a fairly robust and general way.

But we are only half way towards our goal of finding specific structures in ECAs. We have not
directed the search so far: we have looked for interesting things, rather than specifically searching
for things in which we are interested. The next sections investigate how we can perform a directed
coarse graining through phase changes in cellular automata.

12.6 Phase changes in cellular automata
Water has three different states – solid, liquid and gas – that have very different properties. We see
water undergoing a phase transition when it changes between these states, but at a molecular level
it remains essentially the same throughout (a characteristic common to many emergent systems).

Despite their mathematical transparency – we can model them unambiguously and completely
with a few equations – CAs can show phase transitions too. One of the clearest examples of this is
rule 130. Rule 130 contains behaviour that can most naturally be coarse grained to a rule in Wolf-
ram’s Class 1 (the triangles of rule 128) and, after the initial transient has died out, to a rule in Class
2 (the lines seen in rule 34 and others). There is a phase transition between these two emergent
models that is not present at the low level.

Figure 12.7 Rule 130, the fine rule in this example.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

188

Figure 12.8 Rule 128, the coarse rule that matches rule 130 before the phase transition.

Figure 12.9 Rule 34, the coarse rule that matches rule 130 after the phase transition.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

189

Most of the examples in §12.5-§12.22 use three rules: the fine rule 130, and coarse rules 128 and
34. To show the phase transition between coarse rules 128 and 34 to best effect, we created a special
CA initial condition, the development of which is described in §D.

12.7 Catching the transition
Clearly it would be useful if we were able to detect these phase transitions automatically, allowing us
to trigger a rule change at the high level. We have already seen how we can extract features to assign
the most appropriate rule to each chunk of the CA run, and it is tempting to do so again.

Suppose we try to use feature extraction and start a simulation of rules 130 (fine), 128 (coarse) and
34 (coarse) with an initial condition similar to that shown in Figure 12.7. Based on our experience
in §12.3, we expect that rule 128 will be a good match during the initial transient, and rule 34
thereafter. Rule 128 does have a high MI at first that reduces over time (as expected), but unfor-
tunately rule 34 is not always there to take over as a good match with high MI. Both coarse rules
started from the same initial condition, but this is a condition suited only to the transient 128. Rule
34 has a fairly tenuous model of the underlying system – in Figure 12.8, there were few places for
it to map to – and will continue to propagate this poor facsimile even when the low level becomes
much more favourable for mapping to its behaviour.

If instead we were to initialise rule 34 later, perhaps halfway down the large triangles in Figure 12.6,
we would get a much better correlation with the underlying model than we were able to get at the
start. And, as the underlying model presumably favours rule 34 after the phase transition, we would
get an even better correlation if we restarted it at that point (see §12.9 for an example). This prob-
lem of a poor post-transition model must exist generally: for a phase transition to occur, the initial
lower level state must suit one high level model well and the other (or others) poorly.

Figure 12.10 shows the MIs between rules 130 and 34. Two series are shown: one for which we
restarted rule 34 at each coarse step, and another with no restarts. It also shows the MI between
130 and 128 from the same initial condition. (Restarting 128 has no effect on the MI as the coarse
graining is total.)

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

190

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 7 9 11 13 15 17 19 23 25 27 29 31 33 35

M
I

Timestep

128

34 No Restarts

34 Restarts

Figure 12.10 The MIs between rule 130 and rule 34 with no restarts and rule 34 restarted at each coarse timestep.

The graph also shows rule 128 (a total rule, so it returns identical results with and without restarts). The initial

condition in §12.8 was used at g = 2.

There are a number of possible ways to exploit the phase transition to get a better match between
the high and low levels. We now consider the two most obvious ones.

12.7.1 Restart at the phase transition
One solution is to restart rule 34 (reinitialise the mapping between the rules) at the phase transi-
tion. To capture the phase transition most accurately, we claim that we should follow the red line on
Figure 12.11: follow rule 128’s curve down until its MI drops below that of the (poorly matched)
rule 34, then restart rule 34 and switch to that. This changeover point is approximately the time
at which the triangles in rule 128 disappear, and is a strong candidate: although the diagonal lines
that match rule 34 have been increasing in number before then, the large triangles still dominate
the CA visually until approximately that point. There is also a distinct change in the CA, as a major
structure that has been present vanishes completely.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

191

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

M
I

Timestep

128

34 No Restarts

34 Restarts

Transition Path

Figure 12.11 The graph in Figure 12.10 is reproduced, with the addition of a suggested phase transition point be-

tween rule 128, which matches fine rule 130 initially, and rule 34, which matches rule 130 subsequently.

12.7.2 Restart at each step
Another solution is to restart rule 34 at each timestep. This avoids the need to calculate (perhaps at
some cost) the right point at which to restart the coarse rule, and would guarantee a good mapping
at every point (as the rules have no time to drift away from each other).

Unfortunately restarting the coarse CA at each point negates a large part of the reasoning behind
coarse graining by reducing it to just a mapping. We effectively ignore the rule of the CA – we no
longer obtain the current coarse state from the previous coarse state, but from the current fine state
instead – and in the process lose the predictive power of coarse graining. We also find that rules
such as 213 (which, like 34 and 130, draws diagonal lines, but draws them in the wrong direction)
become extremely good matches based on their MI.

We could try to ameliorate these difficulties by restarting the coarse CA some steps earlier: instead
of calculating the coarse rule state directly from the fine state at each step via the mapping, we reini-
tialise the coarse rule earlier and allow it to run for a few steps before using it in the MI calculations.
By running several coarse CAs with staggered restart times in parallel, we can read off results at each
step from a CA initialised a fixed time in the past.

Allowing the CA to run for several steps does sometimes help, but its efficacy is very dependent on
the current cell pattern and CA rules. If rule 213 is restarted from a state similar to that in Figure
12.12, it continues to overlap with the underlying CA – and have high MI – for quite some time,
even as the fine and coarse rules diverge. Also pushing the initialisation point further up delays the

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

192

time at which we can act on the real phase transition, so the disadvantages of this technique out-
weigh the small (and occasional) benefits.

Figure 12.12 Rule 130 coarse grained to rule 213. Though a poor match for rule 130 in terms of its behaviour, rule

213 has a high MI with rule 130 for some time after being restarted.

12.8 MI and phase transitions
We have just seen that not restarting the coarse rule at all often gives poor results, and restarting it
every step reduces the coarse graining from a useful model to just a mapping. Restarting the coarse
rule just once, at the transition point, still seems like the best solution. We also suggested that the
transition point for rule 130 is at the point when the triangles matched by coarse rule 128 disap-
pear.

But we still have little to justify this claim other than ‘it looks right’. In fact, Figure 12.10 suggests
that we should switch to rule 34 sooner, given that its MI is higher, after a restart, than 128 from
around timestep 9.

To explore this hypothesis, the coarse rule was restarted (over many runs) at fine times 1-35, com-
fortably covering the interval during which triangles are present for the initial condition in §12.8
(steps 1-26). For each run, the MI between rules 130 and 34 and rules 130 and 128 was recorded
at times 1-51.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

193

12.9 Exploring restart position
Figure 12.13 shows many runs of rule 34, restarting each at a different time. The coarse graining
becomes significantly better over time as the fine rule creates more lines to which 34 can map. Suc-
cessive images show the fine CA shifted up by two (fine) timesteps, with the restart taking place at
the top of each picture.

Figure 12.13 In these pictures, rule 34 is able to capture substantially more of the underlying behaviour after being

restarted. Further, the amount of behaviour captured by rule 34 increases for later restarts, up to the point where

the triangles have disappeared.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

194

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Time 5

Time 7

Time 9

Time 11

Time 13

Time 15

Time 17

Time 19

Time 21

Time 23

Time 25

Time 27

Time 29

Time 31

Time 33

Time 35

Rule 128

Figure 12.14 MI over time between fine rule 130 and coarse rule 34, restarting rule 34 at (fine) times 1-35 (in steps

of 2). The MI between rule 130 and coarse rule 128 is also shown.

Figure 12.14 shows the results of restarting coarse rule 34 at (fine) times 1-35. We would expect the
MI between the rules to jump immediately after the coarse rule has been restarted (because it has
had no time to diverge from the fine rule’s behaviour), and indeed this is what we see.

We also see that that the MIs of the runs that were restarted early (at times 5-11) quickly decline,
dropping quite close to the MI we saw when rule 34 was not restarted at all. The first runs whose
MI remains high are those restarted at times 25 and 27, approximately when the triangles disappear
(time 26). This lends credence to our assertion that this is the transition point – we get the best MI
results over time by restarting at this time.2

12.10 A clearer transition graph
With its plethora of crossing lines, Figure 12.14 is perhaps not the easiest graph to interpret. In
particular, it is not obvious when the phase transition takes place, so we now explore how we can
present the MI data to show phase transitions more clearly.

First we note that we are not necessarily trying to find the rule with the highest MI; we are trying
to find the rule that matches some (significant) structure of the underlying fine CA, and also trying
to find the best point to switch between the coarse rules. We are also considering just two rules, and
know that one of them reflects the underlying model during its transient phase and the other the
model thereafter. As a corollary, we also know that one of these rules has a sharply declining MI over
time and the other is relatively constant.

So the question is whether the second rule is better relative to the first, transient rule. With this in
mind, we can subtract rule 128’s MI results from each run of rule 34’s MI results, giving us Figure

2 Note that the MI bump we see in the restarts over times 15-25 is due to rule 34 matching the sides of rule 130’s triangles, which
of course disappear over time.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

195

12.15. This normalised	graph has a distinct S-curve, swinging from negative to positive at the transi-
tion point as rule 128’s MI drops to zero. The runs restarted at times 25 and 27 have the highest
value at this point, and remain amongst the highest for the remainder of the graph.

-1

-0.5

0

0.5

1

1.5

2

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

N
o

rm
al

is
ed

 M
I

Timestep

Time 5

Time 7

Time 9

Time 11

Time 13

Time 15

Time 17

Time 19

Time 21

Time 23

Time 25

Time 27

Time 29

Time 31

Time 33

Time 35

Figure 12.15 A normalised graph showing the MI over time between fine rule 130 and coarse rule 34, relative to

rule 128. As with graph, rule 34 was restarted over multiple runs at (fine) times 1-35 (in steps of 2).

12.11 Coarse graining rule 130 to rules 128 and 213
The same graph normalisation technique of subtracting MIs can be used even if one coarse rule
is a poor match for the underlying behaviour. As before, we use fine rule 130 and coarse rule 128
to capture the transient behaviour, but we use coarse rule 213 instead of rule 34. Rule 213 draws
thick diagonal lines in the opposite direction from 130’s lines. It has a (very) high MI with 130
immediately after being restarted (§12.7.2), but falls off as the high and low level models diverge.
(Though the MI can increase again if 213’s lines cross those produced by another part of the model,
yielding higher than expected MIs. This behaviour can be seen in Figure 12.17, where a distinct
hump appears at time 35-41.) Despite looking like a poor match, the MI between 130 and 213 is
approximately as high as between130 and 34.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

196

Figure 12.16 A run of rule 130 coarse grained to rule 213. Though apparently a poor match, 213 has a high MI

because its diagonal lines frequently cross those of the fine rule.

Even with this relatively poor rule, we see the same ‘phase transition’ shape as with the graphs in
§12.10. In fact the same MI patterns can be seen for a number rules, both those that are good coarse
grainings and bad coarse grainings of the underlying model.

0

0.2

0.4

0.6

0.8

1

1.2

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Time 5

Time 7

Time 9

Time 11

Time 13

Time 15

Time 17

Time 19

Time 21

Time 23

Time 25

Time 27

Time 29

Time 31

Time 33

Time 35

Rule 128

Figure 12.17 Graph showing MI over time of restart times 1-35 for rule 130 coarse grained to rule 213. We also

see the MI between rules 130 and 128 over the same period. Although 213 looks like a poor match, it has a high

entropy and often intersects with 130’s diagonal lines, which gives it a high MI too.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

197

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

N
o

rm
al

is
ed

 M
I

Timestep

Time 5

Time 7

Time 9

Time 11

Time 13

Time 15

Time 17

Time 19

Time 21

Time 23

Time 25

Time 27

Time 29

Time 31

Time 33

Time 35

Figure 12.18 Normalised graph of Figure 12.17. We see the same basic S-curve as Figure 12.15, though the finer

detail appears messier: the lines are significantly less coherent and there is quite a bit of overlap as the runs progress.

12.12 Coarse graining rule 130 to rules 128 and 84
Rule 84 is another poor coarse graining of rule 130. Unlike rule 213, rule 84 captures very little
of the underlying behaviour (even immediately after a restart), so the MI between it and rule 130
is low. This is reflected in Figure 12.20 and Figure 12.21, where the MI between rules 130 and 84
is low and quite noisy. The reasons for this are similar to rule 213: restarting the coarse CA briefly
gives a higher MI while the CAs still overlap, before they diverge in opposite directions. The MI is
lower than Figure 12.17 as rule 84 usually produces fewer lines than 213. The normalised graph has
a similar shape to the graphs in §12.10 and §12.11.

Figure 12.19 A sample run of rule 130 coarse grained to rule 84. 84 is a poor match for 130.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

198

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Time 5

Time 7

Time 9

Time 11

Time 13

Time 15

Time 17

Time 19

Time 21

Time 23

Time 25

Time 27

Time 29

Time 31

Time 33

Time 35

Rule 128

Figure 12.20 Graph showing rules 130 coarse grained to rules 84 and 128. Rule 84 is a poor match for rule 130: its

MI is significantly lower than that of rules 34 or 213, with a baseline of just 0.2 bits. It shows a brief rise in MI when

the rule is restarted, before dropping quickly back down.

-1.5

-1

-0.5

0

0.5

1

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

N
o

rm
al

is
ed

 M
I

Timestep

Time 5

Time 7

Time 9

Time 11

Time 13

Time 15

Time 17

Time 19

Time 21

Time 23

Time 25

Time 27

Time 29

Time 31

Time 33

Time 35

Figure 12.21 Normalised graph of rule 130 coarse grained to rules 84 and 128. We see the same pronounced S-

curve as in Figure 12.15 and Figure 12.18.

12.13 Relative graphs
As this section considers the relative merits of two rules over time – and specifically relative to them-
selves as much as to other rules – rather than the absolute mutual information, it may make sense
to normalise the rules’ MIs. Experiments have shown that this is unnecessary: although rules 128
and 136 have a relatively low absolute MI, the MI drop at the transition point is still considerably
greater than the differences seen in the second rule throughout the run. There is also a risk of nor-
malising away differences between series of the same rule: for example, the bump we see between
times 5-25 in Figure 12.14 is lost, though it is worth noting that this has little impact on the choice

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

199

of transition point. There is nothing intrinsically wrong with this approach, but it is unnecessary
and slightly reduces the clarity and quantity of information conveyed by the graphs.

12.14 The inevitable S-curve
S-curves are often associated with phase transitions, but the curves found in the graphs above seem
a touch convenient. In all of the cases examined, there is a transition at the high level from a coarse
rule that draws triangles (128 or 136). When that rule runs out of triangles, its MI rapidly falls to
zero and the normalised graph’s data series switch from negative to positive, yielding an S-curve.
Surely this behaviour is almost inevitable?

This is true, but it largely misses the point. The aim here is to find the best point at which to switch
between the transient and non-transient rules. We know a priori that one coarse graining has a
higher MI early on and that the other coarse graining has a higher MI later. We also believe that
switching rules (and restarting) too early gives a poorer coarse grained mapping than switching at
the right point. The objective here is to get a better insight into the right transition point so the
sometimes higher MI of the second rule doesn’t force a switch too early.

We know that the MI of the transient rule will be high and rapidly fall to zero. We know that the
MI of the other rule will remain roughly constant throughout the run, or at least will remain so
during the non-transient phase of the model.3 We exploit these facts to transform the MIs and find
the transition point we want. This wouldn’t work if the rules had arbitrary MI curves over time, but
then nor would there be a phase transition.

12.15 Analysis of finding transition points
The previous sections spend considerable time discussing how to find the correct transition point
and when to restart the non-transient rule. The transition point seems to be at approximately the
time where the transient triangles disappear: as well as looking right, we get the best post-transition
correlation (highest MI) rules by restarting the second coarse rule this point. We have also devel-
oped a graphing technique that shows this transition point clearly.

Some fairly stringent assumptions were required for the process to work: the transient rule’s MI
must decrease rapidly, while the other rule’s MI must not; and the absolute MIs of the rules are
largely immaterial. These provisos aren’t terribly restrictive when considering CA phase transitions,
as they are all inherent to the problem. But they are restrictive if we want to use this approach in
other domains. And we are still no closer to deciding which of 34 and 213 is a better match for the

3 This is certainly true here, as we are modelling Wolfram Class 1-type behaviour at the fine level with a Class 1 rule, but any post-
transition high level model must maintain a comparatively good and consistent representation of the system’s ongoing behaviour for
it to be considered useful.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

200

post-transition 130, given they have very similar MIs (the same problem we faced when discussing
feature extraction in §12.1).

In fact, we appear to be running up against a limitation of using mutual information in this context.
Though any useful emergent model must capture at least some of the underlying model, even the
most comprehensive one will throw away much of this behaviour – it is this predictability (over
the underlying system) that makes these emergent models useful (and interesting) in the first place
(§9.5). And while some of these emergent models retain a useful subset of the underlying behav-
iour, others capture an equally large, but less desirable, fraction. Continuing to use MI as a proxy
for model goodness may not be possible, since we are no longer interested in capturing as much of
the underlying behaviour as we can, but in capturing specific facets of it; facets that, like rule 128,
may not even be that information rich.

12.16 Overcoming the mutual information problem
We could restrict the rules we consider to a small subset of possibilities, perhaps excluding rule 213
in this case because its behaviour is obviously wrong. Limiting the scope of the problem is useful –
essential, even, for almost any real world situation – but it will only get us so far. After all, if we have
such a good idea of what the solution looks like already, why bother searching?

Another approach would be to search for coarse grainings with an MI closest to a target value,
rather than the maximum possible. But this runs into similar difficulties: finding this target value is
likely to be non-trivial and would probably require us to have a pretty good idea of what the answer
is before we start.

We now look at a couple of more promising approaches that change the way we calculate mutual
information by increasing block size and moving to a temporal MI measure.

12.17 A temporal dimension in mutual information
Usually we want to match large-scale structures that span a considerable distance in CA time and
space – the structures that are meaningful to human observers. We know that rule 213 produces the
wrong type of patterns, but still has a high MI with rule 130.

It seems plausible that rule 213 appears well-matched because the information used to evaluate its
MI is too local: looking down on the CA, we can see that the high and low level lines cross at right
angles, but this is far less apparent from the tiny blocks we use to calculate the MI. There is no
temporal component to our measure of mutual information as we only use the current time, and
the blocks we use have a pretty limited spatial component too.

So we could extend the mutual information measure to include more space and time. Until now
the state space has been divided into blocks three coarse cells long (so six at the fine level for	g	= 2)

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

201

and one cell (one timestep) high.4 Going forward, this dissection is described as having an x-block
of 3 and a y-block of 1.

Calculating the MI for a different block size is a generalisation of the process described in §11.4.
Consider a model with x-block = 4, y-block = 2, an x-chunk of the whole row and y-chunk = 2.

 ▪ Initialise and run the fine and coarse CAs as described before.

 ▪ Divide the state space into rows 2 blocks high – the chunks for this calculation.

 ▪ Divide each row into blocks of 4 × 2 cells (8 × 4 cells at the fine level, with two rows ignored as
they don’t map to the coarse level).

 ▪ Count the number of blocks in each state at the fine and coarse levels.

Mapping Coarse RuleFine Rule

Figure 12.22 An example block with x-block = 4 and y-block = 2. Two of the rows at the fine level are ignored.

Using all of the block states within each chunk, calculate the fine and coarse level entropies and
mutual information for the chunk.

By expanding the block size, we hope to see an improvement in our ability to distinguish between
good coarse grainings and poor ones that have a high MI at small block sizes.

Using rule 130 and the initial condition described in §12.8, we calculated the MI for coarse rules
34, 128 and 213 with block sizes 1 × 1 to 15 × 4. Moving to a larger block size evidently introduces
more possible states and therefore permits higher MIs, so the results of a 4 × 2 block are not directly
comparable with a 3 × 1 block. Rather, we are interested in whether rule 213’s MI (as the poor rule)
increases more slowly than that of 34 (good mapping) or 128 (perfect mapping) as the block size
grows in space and time.

Unfortunately this is not what we see – the MI of all three rules increases at roughly the same rate.
There is actually very little difference between the MIs’ relative values for block sizes larger than
2 × 1, and even 2 × 1 is sometimes sufficient. (At 1 × 1 the MI results are often unreliable.) We see
the same proportionate increase in MIs for other rules too.

4 As discussed in §11.3, the intermediate rows at the fine level do not map to anything at the coarse level.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

202

We gain similarly little by keeping the x-block constant and varying the y-block, with the MIs again
increasing approximately in step. It is worth noting that the level of detail we can discern decreases
quite markedly as the y-block rises; in particular, the hump when the diagonal lines of rules 130
and 213 cross in Figure 12.2 is significantly less evident when y-block = 4 than when y-block = 1.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
I

x-block

34

128

213

Figure 12.23 The MI between rule 130 and rules 34, 128 and 213 for various x-blocks. The y-block is always 1 and

the same initial condition (detailed in §12.8) was used throughout. The graph shows the mean MI, calculated over

timesteps 1-49. We see the MI of each rule increasing roughly in step.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
I

x-block

34

128

213

Figure 12.24 MI between rule 130 and rules 34, 128 and 213 for various x-blocks. The y-block is 4 for this graph.

The initial condition is identical to Figure 12.23, as was the method for calculating the MI. Again, we see the MI of

the rules increasing together.

The next graphs show the MI between rules 130 and 34 and rules 130 and 213 for y-blocks 1, 2
and 4. The x-block remains fixed at 3 throughout. The level of detail in the plots decreases quite
markedly as the y-block rises; in particular, the hump when the diagonal lines of rules 130 and 213
cross again is significantly less evident with y-block = 4 than y-block = 1.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

203

0

0.5

1

1.5

2

2.5

3

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
I

Timestep

y-block 1

y-block 2

y-block 4

Figure 12.25 MI between rules 130 and 34 for various y-blocks. The x-block is 3 for this graph.

0

0.5

1

1.5

2

2.5

3

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
I

Timestep

y-block 1

y-block 2

y-block 4

Figure 12.26 MI between rules 130 and 213 for various y-blocks. Again, the x-block is fixed at 3.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

204

12.18 True temporal mutual information
Though we have now incorporated time into the MI calculation, our measure is still dominantly
spatial: we still consider the CA space row by row. We can also flip our measurement grid through
90° and calculate the MI for each column in space, just as we have done until now for each row in
time.

Figure 12.27 Rotating the CAs through 90° to calculate temporal mutual information.

Unlike an individual CA, a coarse graining pair is not rotationally symmetric: while all of the fine
columns correspond to cells at the high level through the mapping, only half of the fine rows do
(§11.3). But this doesn’t affect the ratio of fine to coarse cells in MI calculations, so we can perform
an analogous calculation by adjusting the pattern of cells included in each fine block.

Figure 12.28 As the CAs are rotated by 90°, we need to exclude different cells when calculating temporal MI.

If we use feature extraction on rules 130, 34, 128 and 213, we see similar results to spatial coarse
graining. Here we have used a y-chunk of 16 (equivalent to the x-chunk in spatial MI) for a total of
four vertical chunks and an x-chunk of 4. We started the CAs from the initial condition described
in §12.8. The large, regular triangles made by the initial condition are clearly visible in Figure
12.30: their edges have high MI, with low or zero values inside and outside those ridges. Figure
12.29, showing the MI between rules 130 and 34, picks up on the diagonal lines of 34. Unfortu-
nately, the results from rules 130 and 213 in Figure 12.31 show that rule 213’s MI remains high
when calculated through this method.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

205

0.00 0.00 0.00 0.00 0.16 1.72 1.83 1.61 0.25 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.31 1.95 1.68 0.57 0.00 0.00 0.00 0.00 0.00 0.87

0.00 0.25 1.55 1.92 1.01 0.05 0.00 0.00 0.00 0.00 0.48 1.82 1.92

1.24 1.88 1.44 0.32 0.00 0.00 0.00 0.00 0.15 1.54 1.90 1.54 0.30

Figure 12.29 Results of coarse graining rule 130 to rule 34 using temporal MI. The initial condition discussed in §12.8

was used and rule 34 wasn’t restarted. We can see the diagonal lines emanating from the single cells in between the

long runs of ■s that 34 is able to model from the beginning.

1.69 0.16 0.00 0.00 0.16 1.69 0.48 0.00 0.92 1.40 0.00 0.00 1.41

0.00 1.31 1.31 1.31 1.31 0.00 0.00 0.00 0.00 0.15 1.62 1.00 0.12

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 12.30 Results of coarse graining rule 130 to rule 128 using temporal MI. Here we see the edges of the trian-

gles formed by rules 130 and 128. Note that the lines of rule 34 come from between the triangles.

0.84 0.00 0.00 0.00 0.00 0.00 1.57 1.72 1.41 0.92 0.00 0.00 0.00

0.99 1.49 0.44 0.00 0.00 0.00 0.00 0.36 0.91 1.03 1.68 0.44 0.00

0.64 1.03 1.67 1.40 0.00 0.00 0.00 0.00 0.05 0.64 1.24 1.92 2.02

0.00 0.78 1.66 1.03 0.82 0.21 0.00 0.00 0.00 0.00 0.78 1.75 1.07

Figure 12.31 Temporal MI results of coarse graining rule 130 to rule 213. Like rule 34, rule 213 latches on to the

single cells in between the triangles, though its diagonal lines move to the right over time. The MI values are very

close to those of rule 34.

12.19 Analysis of temporal mutual information
This approach works, but the results are very similar to those we got when calculating MI spatially.
We have learned nothing new about the rules and have no new way to distinguish between the rules
we want and those we don’t. Rule 213’s MI is still greater than 34’s, and by approximately the same
amount as we saw before.

It’s worth noting that the initial conditions in this chapter – including the one used here – were
specifically designed to be uninteresting horizontally: we wanted predictable, repeating behaviour
in space to give a clean phase transition. Many rules have more interesting structures over space,
but in general this approach seems more limiting than spatial coarse graining with an appropriate
chunking resolution. The reason for this is simple: stuff happens over time. There may be changes
over space too, but this is because of changes over time. Changes over time can happen without
changes over space, but changes over space cannot happen without changes over time.

At a more practical level, we can obtain results and make decisions while the simulation is running
if we measure over time. We also note that the example above is spectacularly bad at catching the

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

206

phase transition as the state space is divided into four large chunks temporally. Now clearly we
could increase the vertical resolution, but – once we have changed the y-chunk down to one or two,
and increased the x-chunk in turn to allow useful statistical calculations (§12.8) – there comes a
point at which spatial MI looks like the better choice.

12.20 Analysis of different block shapes and sizes
Increasing the block size in spatial mutual information seems to offer little benefit (at least once we
go larger than 2 × 1), and temporal MI offers similarly little additional insight while imposing some
unfortunate limitations.

On reflection, these results are not surprising. Rules 34 and 213 draw diagonal lines. After flipping
the state space through 90°, they still draw diagonal lines at the same relative positions to each
other. Time and space are essentially isomorphic for these rules, so temporal MI won’t offer new
ways to distinguish between them.

Figure 12.32 Rules 34 (left) and 140 (right). Rule 140 draws vertical lines, so there is no post-transition temporal

information in the run.

Temporal MI would be even less effective with rules coarse grained from rule 140, as there is almost
no non-transient temporal information in the rule (it draws vertical lines). This is an example of the
issue raised in §12.19: rules that undergo phase changes must retain some information that can be
seen when calculating MI spatially (or there would be no repeating element), but they do not have
to retain any that can be seen when doing so temporally.

Changing the block size also didn’t help us distinguish between good and bad rules because the
block size wasn’t increased enough: even a 15 × 4 block (the largest considered here) is comfortably
subsumed within the crossing lines rule 213 uses to get its high MI. We would need to move to
block sizes closer to 50 × 25 to stop this happening for the initial condition used here, and poten-× 25 to stop this happening for the initial condition used here, and poten- 25 to stop this happening for the initial condition used here, and poten-
tially much larger blocks in other cases. So despite using a significantly larger block, we still aren’t
able to distinguish CA objects in any useful manner.

The graphs also show another problem with larger block sizes: loss of resolution. The y-block = 4
series in Figure 12.26 shows significantly less detail than the y-block = 1 series, missing out almost
entirely on the bump when rule 213’s lines cross with 130’s lines. Similarly, the transition point
with y-block can only be given as between times 25 and 33, whereas we have been able to state it

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

207

far more precisely as 25-27 before. We see the same loss of resolution spatially as we increase the x-
block, though this is not an issue here as the CA uses a repeating pattern throughout (and we have
divided the width into four large chunks).

The question of what x-block and y-block values to use is somewhat problem specific. Here we care
very little about horizontal resolution and care very much about the vertical resolution as we at-
tempt to pinpoint the transition point. But if we had a CA whose spatial behaviour we wanted to
track precisely, we now know that using a block of 1 × 3 would be equivalent to using one of 3 × 1
(in terms of the rules’ relative MIs) and would afford us a significantly higher horizontal resolution.

12.21 Extra entropy: a better distinction
We know that rule 213 is a poor match for rule 130, but its MI still manages to equal that of rules
such as 34 that appear to us, as observers, to capture aspects of the underlying rule much better.
And we have just seen that calculating MI using larger blocks does very little to reduce rule 213’s
apparent goodness.

The problem with rule 213 is that there is too much going on. There is too much other stuff hap-
pening that doesn’t match very well and that we don’t like, alongside aspects that correlate well with
the underlying rule. (If we draw only the parts of 213 that match the fine rule, it actually appears
a pretty decent choice.)

Or, to put it another way, there is too much extra	entropy in rule 213. In a total coarse graining,
all of the coarse level behaviour forms part of the mapping between the rules and there is no extra
entropy. This is not the case for all partial coarse grainings, but the vast majority of the high level
behaviour must map onto the lower level for us to consider it a good coarse graining. (Otherwise
the high level’s unmapped behaviour would tend to dominate, as it does with 213.) So a good par-
tial coarse graining, in addition to having a high MI, should have a low extra entropy.

Extra Entropy = H(C) – MI

C

F

C

F

Figure 12.33 Both these diagrams have the same mutual information, but the coarse rule in the right diagram has

considerably more extra entropy than the coarse rule in the left diagram.

With an x-block of 3 (and a y-block of 1), rule 34’s extra entropy doesn’t venture much above 40%
of the MI value, with a mean of 25% over the run. For x-blocks of 4, 5 and 6, the mean extra en-

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

208

tropy improves to 4-7%. In the case of 213, the extra entropy gets as high as 509% of the MI at
x-block = 3, with a mean of 156%. (Again this improves as the x-block increases, but only to 189%
and 49% respectively by x-block = 6.)

x-block 1 2 3 4 5 6
Max 258.3% 120.8% 41.6% 13.8% 10.8% 12.1%

Mean 161.2% 75.9% 25.4% 6.9% 4.0% 3.3%

Figure 12.34 Extra entropy when coarse graining rule 130 to rule 34 for various x-blocks. The y-block is always 1.

x-block 1 2 3 4 5 6
Max 52030.4% 603.5% 509.0% 220.1% 140.4% 189.0%

Mean 11451.7% 305.7% 156.2% 77.2% 45.2% 48.9%

Figure 12.35 Extra entropy when coarse graining rule 130 to rule 213 for various x-blocks. The y-block is always 1.

These large differences in extra entropies aren’t limited to this pair of rules either: we see in §12.26
and §12.27 that extra entropy tallies very closely with how good a rule appears subjectively to us,
as high level observers.

These are significant differences, and being able to use extra entropy as an additional discriminator
(alongside MI) is significant too. As well as being easy to obtain – we already have these figures from
the MI calculation – this method has the distinct advantage of being local. Mutual information is so
useful because it allows us to take a multidimensional, global question – does this large-scale pattern
match this other large-scale pattern? – and reduce it to a single value, calculated locally.

We have not had to consider a plethora of special cases or expensive exceptions, nor faced prediction
horizons from exponentially complex calculations, because the local MI calculations scale linearly
with space and time. Like Reynold’s Boids (§8.2), we do not know or care what is happening glo-
bally, and we don’t have to allow for any number of obscure vagaries in the environment. It just
works.

12.22 Liberal coarse graining
We loosened our criteria for a valid (partial) coarse graining for the experiments described §12.26
and §12.27 by using the union of the results of all mappings, rather than intersecting them as be-
fore. Earlier we justified intersection as an effective quality filter, but we can more easily ‘get away’
with this here as we are only considering one fine rule at once.

We do get significantly more results for each fine rule, including a substantial number of subjec-
tively poor ones. But we also get a number of interesting and perhaps unexpected results. We have
seen that rule 130 coarse grains to rules 34 and 128, which effectively model the underlying rule’s
behaviour during its transient and post-transition phases. But the union of all coarse grainings of
rule 130 also includes rule 162, which models the entire range of the rule’s behaviour fairly accu-
rately (and with high MI).

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

209

This illustrates the “mostly correct, most of the time” ethos of neutral emergence again. Arguably
we have missed out on the best coarse graining for rule 130 by intersecting our result set. But we
also excluded 68 poor rules and did manage to include 34 and 128, both of which are good match-
es. Usually intersection is the better choice as it acts as an effective quality filter, but there are times
when taking the union of the returned results is more appropriate.

Figure 12.36 Rule 162 is probably the best coarse graining for rule 130. It captures more of the underlying pattern

than other coarse rules and has little uncorrelated behaviour, yet is excluded by taking the intersection of the results

when coarse graining as we have done until now. We conjecture that this is an unfortunate consequence of the

“mostly correct, most of the time” ethos of neutral emergence (see §12.22).

12.23 Applying extra entropy to other coarse grainings
We have used extra entropy to judge the quality of the coarse grainings of rules 130, 140, 43 and
192 and saw the same pattern within the results in each case. Results for 130 and 140 are included
here; the other rules’ results can be found in §E.

The tables show the relative difference between the coarse entropy and the mutual information for
each rule over the run. In each case, the mean and maximum values are given. For the absolute
figures from which they were calculated, see §E.

Extra Entropy(t) = (H(C, t) – MI(t)) / MI(t)

Mean Extra Entropy =
 ∑

n

t 1(Extra Entropy(t)) / n × 100%

Max Extra Entropy = Max n
t 1 (Extra Entropy(t)) × 100%

12.24 Graphs of rule 130’s extra entropy
Rule 130 draws triangles with diagonal lines coming out of their left sides. We have already seen
that rules 34 and 162 match rule 130 closely, whereas rule 213 does not.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

210

Figure 12.37 Rule 130

Figure 12.38 shows the (absolute) extra entropy during a run of rule 130 coarse grained to rule
34 for various x-blocks. We used the initial condition in §12.8, which shows a phase transition at
time 25-27. The size of the extra entropy increases initially as the coarse rule 34 diverges from 130’s
transient triangles before settling at an approximately constant extra entropy once the phase transi-
tion has taken place.

The difference with an x-block of one or two is significantly larger than larger x-block sizes. In fact
the relationship appears to be logarithmic: Figure 12.39 shows the line spacing to be roughly equal
on that scale. (Results for x-blocks larger than 4 × 1 aren’t shown on this graph as noise dominates
the results.)

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ex
tr

a
en

tr
o

py

Timestep

x-block 1

x-block 2

x-block 3

x-block 4

x-block 5

x-block 6

x-block 8

x-block 10

x-block 15

Figure 12.38 Extra entropy for rule 130 coarse grained to rule 34 for various x-blocks.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

211

0.01

0.1

1

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ex
tr

a
en

tr
o

py

Timestep

x-block 1

x-block 2

x-block 3

x-block 4

Figure 12.39 Extra entropy for rule 130 coarse grained to rule 34 on a logarithmic scale. Noise dominates for x-

blocks larger than 4 × 1.

We see the same pattern for another good coarse graining of 130 to 162. Again, there is an increase
in extra entropy during the transient phase before moving to a constant value (Figure 12.40). The
lines of the logarithmic graph in Figure 12.41 aren’t quite so regularly spaced as Figure 12.39.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Ex
tr

a
en

tr
o

py

Timestep

x-block 1

x-block 2

x-block 3

x-block 4

x-block 5

x-block 6

x-block 8

x-block 10

x-block 15

Figure 12.40 Extra entropy for rule 130 coarse grained to rule 162.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

212

0.01

0.1

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Ex
tr

a
en

tr
o

py

Timestep

x-block 1

x-block 2

x-block 3

x-block 4

Figure 12.41 Extra entropy for rule 130 coarse grained to rule 162 on a logarithmic scale. Again noise dominates

for x-blocks larger than 4 × 1.

Rule 213’s graphs are much less regular. The extra entropy for block 1 × 1 is vast (Figure 12.42) and
appears to increase throughout the run (though the peaks and troughs on the curve could be due
to vagaries in the calculation). If we remove the x-block = 1 results (Figure 12.43), we see a rather
irregular curve, again rising during 130’s transient phase before peaking and dropping into a valley
when 213’s lines cross 130’s. After that point, the extra entropy rises quickly again. The logarithmic
plot (Figure 12.44) is also far less regular, with the lines seeming much less in consort than we saw
for rules 34 and 162. As the extra entropy for 213 is much higher than the well matched rules, we
are able to include logarithmic plots of larger x-blocks without noise dominating.

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ex
tr

a
en

tr
o

py

Timestep

x-block 1

x-block 2

x-block 3

x-block 4

x-block 5

x-block 6

x-block 8

x-block 10

x-block 15

Figure 12.42 Extra entropy for rule 130 coarse grained to rule 213. The graph is dominated by the x-block = 1

results.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

213

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ex
tr

a
en

tr
o

py

Timestep

x-block 2

x-block 3

x-block 4

x-block 5

x-block 6

x-block 8

x-block 10

x-block 15

Figure 12.43 Extra entropy for rule 130 coarse grained to rule 213 without x-block = 1 results.

0.01

0.1

1

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ex
tr

a
en

tr
o

py

Timestep

x-block 2

x-block 3

x-block 4

x-block 5

x-block 6

x-block 8

x-block 10

x-block 15

Figure 12.44 Extra entropy for rule 130 coarse grained to rule 213 on a logarithmic scale. Noise does not dominate

at larger block sizes because of the larger extra entropy, so we can include more results.

12.25 The best block size
We see in §12.26 that the difference between the entropy and MI is significantly greater than the
MI for x-block = 1 for all coarse grainings of rule 130. Results from x-block = 2 are also high in most
cases. There is substantial variation in the results reported for these x-blocks as the absolute MIs
are often quite low, so a small increase in the absolute difference can give rise to a big percentage
change. In particular, noise can have a significant impact on the reported results.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

214

This, and the graphs in §12.24, suggest that a block size of 3 × 1 or 4 × 1 may well be the best choice
at	g	= 2: by that stage, we have moved beyond the small blocks that give high extra entropy (even
with good rules), but stand to gain little by changing to even larger blocks due to exponentially
decreasing extra entropy drops.

Plus, if we are trying to use extra entropy as a discriminator, it makes sense to use it at a level where
the entropy itself, and not noise, dominates. When the x-block size gets larger than 6, and certainly
by 10, we start to see a drop off in the utility of this measure.

12.26 Extra entropy of rule 130’s coarse grainings
These tables show the maximum and mean extra entropy between rule 130 and its coarse grainings
for different x-blocks over 51-step runs with the initial condition in §12.8. The y-block is one for
all runs.

12.26.1 Rule 34
Diagonal lines that tally with those made by rule 130. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 258.3% 120.8% 41.6% 13.8% 10.8% 12.1% 6.9% 5.6% 0.0%

Mean 161.2% 75.9% 25.4% 6.9% 4.0% 3.3% 1.9% 1.3% 0.0%

12.26.2 Rule 50
Chequered pattern starting from single nodes and expanding outwards. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 1275.6% 285.9% 181.6% 96.7% 79.8% 45.8% 40.9% 16.1% 5.8%

Mean 523.0% 147.6% 89.0% 42.9% 39.5% 26.2% 17.5% 8.5% 1.1%

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

215

12.26.3 Rule 84
Thick diagonal lines in the opposite direction from rule 130’s lines. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 26603.9% 748.1% 308.2% 203.7% 152.3% 138.9% 88.0% 26.8% 3.6%

Mean 6314.4% 315.2% 119.5% 72.6% 49.3% 39.2% 22.9% 9.6% 0.9%

12.26.4 Rule 128
Triangles that correspond with those seen in rule 130. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12.26.5 Rule 162
Triangles and lines that correspond to rule 130. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 96.2% 31.8% 14.6% 10.1% 8.4% 7.9% 6.3% 5.7% 2.9%

Mean 66.0% 20.1% 9.1% 5.3% 3.3% 3.0% 2.2% 1.7% 0.2%

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

216

12.26.6 Rule 179
Triangles overlaid on areas of contiguous ■s and □s in the initial condition (subsuming rule 130’s
triangles). Chequered pattern elsewhere. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 3205.9% 475.7% 214.8% 117.3% 83.2% 73.6% 50.7% 24.4% 6.3%

Mean 978.8% 237.3% 115.1% 64.5% 42.3% 37.7% 24.0% 11.3% 1.2%

12.26.7 Rule 186
Inverse of rule 162. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 64.4% 24.5% 6.5% 3.4% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 45.4% 14.2% 3.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12.26.8 Rule 187
Inverse of rule 34. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 290.8% 148.7% 46.5% 23.0% 14.0% 13.1% 7.7% 8.4% 2.3%

Mean 212.7% 86.6% 28.1% 12.1% 7.9% 6.4% 4.7% 2.9% 0.8%

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

217

12.26.9 Rule 213
Inverse of rule 84. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 52030.4% 603.5% 509.0% 220.1% 140.4% 189.0% 84.6% 26.1% 6.0%

Mean 11451.7% 305.7% 136.2% 77.2% 45.2% 48.9% 25.9% 11.3% 1.0%

12.26.10 Rule 254
Inverse of rule 128. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12.26.11 Analysis of rule 130’s coarse grainings
We see a clear distinction between well- and poorly-matched rules: the well-correlated rules have
mean differences between 0 and 25% with poorly-matched grainings coming in at several times
that figure. Rule 128 and its inverse 254 are total coarse grainings of rule 130 and therefore their
MIs and coarse entropies are identical (yielding 0 extra entropy).

12.27 Extra entropy of rule 140’s coarse grainings
Rule 140 draws right-angled triangles with vertical lines coming out of their base and from single
blocks in the starting state.

As with the results above, these tables show the maximum and mean extra entropy for different
x-blocks over 51-step runs. The y-block is one for all runs.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

218

12.27.1 Rule 136
Corresponds to fine triangles in rule 140. A good match and total coarse graining.

x-block 1 2 3 4 5 6
Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12.27.2 Rule 140
Covers fine rule 140 well, catching most vertical lines. A good match.

x-block 1 2 3 4 5 6
Max 153.6% 66.4% 33.9% 17.1% 6.9% 6.8%

Mean 83.7% 38.9% 19.8% 10.5% 4.1% 3.8%

12.27.3 Rule 184
Dominant feature is diagonal lines in same direction as rule 140’s triangle edges. Not a good match.

x-block 1 2 3 4 5 6
Max 23648.8% 788.1% 344.9% 203.8% 121.4% 78.3%

Mean 3900.8% 283.6% 110.6% 62.4% 38.2% 25.0%

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

219

12.27.4 Rule 204
Straight lines approximately the inverse of rule 140’s lines. A good match.

x-block 1 2 3 4 5 6
Max 1480.8% 87.1% 29.4% 6.6% 6.9% 3.3%

Mean 898.6% 66.7% 22.4% 5.5% 5.1% 2.3%

12.27.5 Rule 206
Inverse of rule 140. A good match.

x-block 1 2 3 4 5 6
Max 96.8% 55.9% 32.5% 15.6% 8.4% 7.5%

Mean 58.2% 31.6% 17.9% 6.7% 1.9% 2.0%

12.27.6 Rule 226
Diagonal lines following edge of triangle and starting at other points. Not a good match.

x-block 1 2 3 4 5 6
Max 2888.9% 832.3% 523.4% 412.3% 216.4% 128.3%

Mean 1089.8% 294.1% 128.7% 73.4% 40.1% 25.6%

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

220

12.27.7 Rule 238
Inverse of rule 136 and a total coarse graining. A good match.

x-block 1 2 3 4 5 6
Max 0% 0% 0% 0% 0% 0%

Mean 0% 0% 0% 0% 0% 0%

12.27.8 Rule 252
Inverse triangles in wrong direction. Not a good match.

x-block 1 2 3 4 5 6
Max 1886.6% 340.1% 152.8% 70.3% 49.9% 31.7%

Mean 562.4% 154.1% 73.5% 32.9% 21.4% 14.1%

12.27.9 Analysis of rule 140’s coarse grainings
As with rule 130, the well-matched rules show low mean difference percentages at around 20% of
the MI for x-block = 3, while the poorer rules have much larger differences, approaching an order
of magnitude more. The split is quite stark.

12.28 Analysis of extra entropy
Despite being a local measure, extra entropy allows us to observe large scale, high level features we
naturally identify when looking at a CA and find high level rules that capture these features. We
have seen a close correlation between the level of extra entropy and our subjective judgement of the
quality of a coarse graining over a variety of fine and coarse rules.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

221

In short extra entropy works very well, but it is important to highlight a couple of limitations of
this technique

 ▪ It must be used alongside MI, or we would fall into the trap of selecting a (total) coarse graining
that models a minimum of the underlying rule’s behaviour perfectly (in particular, rule 0 would
always be a great match).

 ▪ It should only be used when we seek to model a particular subset of the underlying rule’s behav-
iour accurately. This is a good technique for directed coarse graining (§12.5, §12.29), but there
may be other rules that capture more behaviour and that are rejected because they also model
too much other behaviour that is novel.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

222

12.29 DIRECTED COARSE GRAINING
Despite their conceptual simplicity, elementary CAs display a remarkable range of varied and some-
times complex behaviour. At least one ECA has equivalent power to a Turing machine [70], and we
have seen that they show interesting emergent behaviour, including phase transitions.

There are obviously easier ways of finding patterns such as triangles in ECAs or gliders in Life than
the approaches we have developed over the last few chapters, but we believe we can use these con-
cepts (total and partial coarse graining, maximising mutual information, minimising extra entropy)
with larger, more complex and less well-defined systems – the sorts of systems encountered when
developing real systems that interact with the real world – just as examples of emergence, complex-
ity, order and chaos are found in both ECAs and other systems.

We now know how to use mutual information and extra entropy together to find emergent models
that capture a lot of the underlying behaviour. This chapter provides the last step towards finding
the emergent behaviour we want, and developing emergent systems automatically.

12.30 Finding behaviour of interest
As observers, we don’t discuss the patterns produced by a CA in terms of rules; instead, we talk of
lines and triangles and other shapes. Directed coarse graining should be a process that starts with a
command like, “Find me something that models triangles like those at a high level,” and ends with
a coarse rule that captures that behaviour.

Suppose we are using rule 130 and have shown the run in Figure 12.45 to our observer.

Figure 12.45 Rule 130

The observer uses a drawing package to highlight the areas of the run that are of interest. In this
case, the triangles are highlighted.5

5 The details of the highlighting process are unimportant here, but once complete we know which squares the observer is inter-
ested in for this particular run.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

223

Figure 12.46 Highlighted triangles on rule 130.

Rule 130 has two states, ■■■ and □□■, that generate a ■ at the next timestep; the rest go to □. State
■■■ behaves exactly like rule 128: when three ■ cells occur next to each other, the output cell is
also ■, but if the cells are on a boundary between ■ and □ (■■□ or □■■) then the output is □. This
behaviour draws the distinctive triangles seen here and in rule 128. □□■ outputs a ■ if the input
cell one step to the right is ■ and both other input cells are □. This part of the rule draws diagonal
lines from an initial □□■. Requiring the other two cells to be □ sets the minimum spacing possible
between lines, seen in Figure 12.46. It should be apparent that the behaviour the observer wishes to
model is that of rule 128. We need to keep the ■■■ → ■ rule case and change the □□■ → ■ case,
and we now detail the steps to do so.

0 × 10 × 20 × 40 × 80 × 160 × 320 × 641 × 128 + + + + + + +

Figure 12.47 Rule 130

12.31 Creating an exception to a rule
 ▪ Examine the whole CA run, looking for places where the rule’s behaviour differs from the high-

lighted area. As just explained, we see that every case where □□■ → ■ diverges from the result
we want, and changing it to □ corrects the problem in all instances. (We are only looking at the
fine level at this stage.)

 ▪ Create an exception in the rule, overriding □□■ so that it now maps to □. We could just remap
□□■ to □ in this case, but we shall see presently that exceptions are more general than this sim-
ple example shows.

 ▪ Coarse grain the rule plus exception. We use the same coarse graining procedure as before,
except that, in cases where the fine rule contains □□■, we follow the exception and return □.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

224

Despite its simplicity, this example introduces a couple of important – and generalisable – concepts.
We have outlined a way to move from the large scale objects of interest to observers to the rules that
can be used by CAs. Recasting the problem in terms of rules allows us to abstract away from this
specific instance and to a general form that is applicable to other similar cases. We also introduced
the idea of exceptions.

12.32 Exceptions
The exception in the example above changed the output of the triple □□■ from ■ to □, effectively
changing the rule from 130 to 128. But exceptions can be much more expressive: their purpose is
to restrict the behaviour just to those aspects of the rule in which we are interested, something that
will not always be possible by switching to another elementary rule. In such cases, we can expand
the neighbourhood of the exception to include more cells.

0 × 10 × 20 × 40 × 80 × 160 × 320 × 641 × 128 + + + + + + +

Figure 12.48 Rule 138

Rule 138 draws diagonal lines that are (usually) the thickness of the initial condition, so starting
with a block of five cells will (again usually) produce a diagonal line five cells wide.6

Figure 12.49 Rule 138

Rule 138 has just one different state from rule 130, mapping □■■ to ■ instead of □, which is suf-
ficient to give the rule a significantly different output. As □■■ yields ■, we can duplicate the left

6 If there is a gap of just one cell between adjacent lines, the right line will be one cell narrower than the initial condition.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

225

side of any thick lines, while ■■■ continues to copy the middle of the lines. ■ cells are still lost from
the right side of the line because ■■□ maps to □, but they are added on the left side by □□■ → ■,
giving constant width, diagonal lines.

Suppose we only wanted to include lines that are two cells thick or wider. There is no elementary
rule that behaves like this (there can’t be as the neighbourhood is too small), but we can model this
behaviour if we increase the scope of the exception to a neighbourhood of five cells.

A single width line will match the input state □□■, and we wish to change (or filter) the CA’s output
if the cell to the right of the ■ is a □ from a ■ to a □. (Of course a single line input may also match
□■□, ■□□ and ■□■, but these states already output □.)

Specifically, we are trying to distinguish between input states with the pattern x□□■□ and the pat-
tern x□□■■. We only need to override the rule in the first case. Of course there are two possible
values for x, so we introduce the exceptions

□□□■□ → □

■□□■□ → □

Figure 12.50 Rule 138 with the exceptions □■□□□ → □ and □■□□■ → □. Note that the single width lines now

disappear immediately.

12.33 Sparse exceptions
The ‘rule plus exception’ is equivalent to a 1D CA with neighbourhood five but with almost all
of its states set to their defaults for a neighbourhood three CA. We continue to refer to these as
exceptions because of the sparseness of the rule set – we define only a handful of extra rules of out
a possible 1024 – and because we seek only to modify the elementary CA’s behaviour slightly and
don’t come close to exploiting the additional possibilities of a larger neighbourhood (for instance
by doubling the speed of light – §2.3).

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

226

This is an important practical point for engineering emergent systems. There are only 256 ECA
rules, but, by expanding the neighbourhood to five, we move to a possible 5.29 × 109 rules in the
model space. Examining that many possibilities is feasible (indeed we have done so when looking at	
g	= 4 coarse grainings in §11.11), but it takes significant time. Limiting ourselves to standard ECAs
plus a few exceptions makes the process nearly as efficient as before, while giving us substantial ad-
ditional options for controlling and directing the search.

Fine Rule Exceptions

Coarse grain

Coarse Rule

Coarse grain

Coarse model Desired coarse model

Figure 12.51 Exceptions in coarse graining. Adding exceptions to the fine rule lets us find the coarse model of the

system we want.

12.34 Exceptions at the coarse level
We use exceptions exclusively with fine rules in this section, and it seems logical to ask why we have
not applied them to the coarse rule as well. This is a perfectly reasonable thing to do, but it does not
further our aims in this section.

We are trying to direct the coarse graining towards aspects of the underlying model we find most
interesting. There are two parts to this: changing the fine rule through exceptions and investigating
the coarse grainings we get from this modified model. Adding exceptions to the coarse level instead
would limit us to investigating just the former.

Coarse exceptions would probably allow us to find better high level models (particularly if we are
trying to match rules with exceptions), but it is difficult to decide how expressive we should allow
the coarse rules to become. Should we limit ourselves to a fixed number of exceptions? Presumably
exceptions that exceed the speed of light (for the original CA) should not be allowed? But what if
using such an exception allows us to capture interesting behaviour in two close locations at the fine
level? There a danger that we would end up with a ‘colouring the squares’ approach to coarse grain-
ing, where we define an exception to counter every bit of unwanted behaviour and learn little about
the underlying CA or coarse graining.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

227

12.35 Coarse graining with exceptions
We get different results if we coarse grain rule 138 with and without the exception. If we select only
the intersection of all mappings (§12.22), we get two valid coarse grainings (to 34 and 187) without
the exception and no valid coarse grainings with it. By using the union of all mappings, we get 43
coarse grainings without the exception and 35 with it, of which 24 are common to both.

A single width line is clearly a fine grain feature, so it’s not surprising that none of the unique coarse
grainings highlight the exception clearly. The rule with an exception coarse grains to rule 10, where-
as the rule without does not. The opposite is true for rule 98. By squinting hard it’s perhaps possible
to see how these match slightly better to their fine rules, but the results are not terribly convincing.

Figure 12.52 Rule 138 coarse grained to rule 98. Note that the coarse rule mirrors the single width, fine level lines.

Figure 12.53 Rule 138 with exceptions coarse grained to rule 10. Note that the coarse rule stops immediately when

matching single width, fine level lines (though we also note that it does the same with double width line in most

cases, as shown here).

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

228

12.36 Another exception using rule 138
Suppose we want to model just the single width lines at the coarse level in rule 138 and that we
want all other lines to taper down until they become one cell wide, as shown in Figure 12.54.

Figure 12.54 The behaviour we want to create in rule 138.

The three ■-producing rule cases in 138 are □□■, □■■ and ■■■. We know ■■■ on its own is rule
128 and that it will give us the triangles we want. So we just need to override the other two rule
cases, but only when the line they are making a thick line (which must be on the right side of the
input triple because both have a □ as their leftmost cell). With an exception of neighbourhood five,
we need to override x□□■■ and x□■■■, which we do by adding the following exceptions to rule
138.

□□□■■ → □

□□■■■ → □

■□□■■ → □

■□■■■ → □

These exceptions give behaviours that look remarkably like rule 128 (triangles) and rule 34 (lines).
Rule 34 is a valid coarse graining of the unmodified rule 138, but the only other rule to which is
coarse grains (totally or partially with intersection) is 187, the inverse of 34. After coarse graining
the modified rule, we find 34 is still a valid coarse graining, and we also find that it now coarse
grains to 128 (and its inverse 254), even when we consider the intersection of the results.

Rule 128 is also a good coarse graining of the rule with exceptions – its MI is amongst the highest
of all the rule-plus-exception’s coarse grainings if we start it from an initial condition containing
several contiguous strings of ■s. The point here isn’t to prove that rule 128 is the best coarse grain-
ing in all circumstances for this modified rule – clearly it is not – but to show that coarse graining

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

229

a rule with exceptions can have as high an MI as coarse graining an unmodified rule that naturally
correlates well with 128, such as 130 (e.g. Figure 12.45).

Figure 12.55 Rule 138 with this exception coarse grained to rule 128.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

230

12.37 Adding an exception to a chaotic rule
Rule 102 draws fractal right-angled triangles. Starting from a single ■ cell, the pattern expands left
at 45°, incorporating triangles that double in size as the run progresses.

Figure 12.56 Rule 102, a chaotic rule that draws a series of ever-larger triangles.

We introduce the exception

□■■■■ → ■

This only has an effect on rows of cells that adjoin the right-angled corner of triangles and stops
triangles that are five cells or wider one row early. This upsets the rule’s output, as large triangles are
no longer twice the height and width of smaller ones. The pattern it produces looks more interest-
ing than the vanilla rule 102, and we shall see presently that it is actually complex.

The exception □■■■■ matches the side length of one of rule 102’s triangles, but of course it also
contains triangles that are twice, four, eight, etc. times that length, and indeed half that length. By
halving the exception length to three7 we get □■■, and effectively modify the rule from 102 to 110.

If we compare the output of rule 102 with the length five exception and rule 102 with the length
three exception (which is rule 110), we notice that the rule plus larger exception seems to give ex-
actly the same output pattern as the smaller one, only scaled up by a factor of two. In other words,
each triangle in rule 110’s output is now twice as wide and high as before.

7 The triangle sides length are one cell shorter than the exception as we also need to include the leftmost □ cell in the exception.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

231

Figure 12.57 Comparing rule 102 plus exception (top) to rule 110 (bottom). The rule with exception follows the

same pattern as rule 110, but scaled up by a factor of two.

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

232

Figure 12.58 Larger CAs of rules 102 plus exception (top) and 110 (bottom).

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

233

This should mean that we can coarse grain this new rule-plus-exception to rule 110 (as they fol-
low the same pattern), and indeed we can: superimposing the fine rule 102 plus exception and the
coarse rule 110 shows a perfect match.

Figure 12.59 Rule 102 plus exception coarse grained (at g = 2) to rule 110. The coarse graining is total and shows

a perfect match.

These pictures suggest that the complexity in rule 110 comes from disturbances (caused by the ex-
ception) to the regular pattern created by rule 102. With the three cell exception – or rule 110 – the
grid has a granularity of one cell, but we see the underlying regular structure of rule 102 as we move
to the five cell or larger exceptions, interrupted at intervals by rule 110’s patterns.

As rule 102 consists of fractal triangles, it seems reasonable to ask if we can increase the size of the
exception again from five to nine and double the scale of the 110 rule pattern again. This does in-
deed happen, and we continue to get the same doubling when we scale the exception further. (We
have only tried a limited number of cases and have no proof that this pattern continues indefinitely,
but it does seem reasonable to suggest it would, given the structure of rule 102.)

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

234

Figure 12.60 Rule 102 with a nine cell exception, showing the same pattern as Figure 12.59 with the scale doubled.

Figure 12.61 A section of rule 102 with a 17 cell exception, showing the same pattern as Figure 12.60 but with the

scale doubled again.

Neutral Emergence and Coarse Graining Cellular Automata Subjective Emergence

235

12.38 Directed coarse graining through exceptions
Now we have added exceptions, we are able to do what we set out to do at the start of §10. We can
do the equivalent of finding gliders in Life, but in a much more general and robust way. We can
now select particular aspects of an underlying system that interest us and find a high level model of
this behaviour.

This is directed coarse graining. We have shown, within the context of elementary CAs at least,
that we can develop models of emergent systems automatically – that we can develop the models
of emergent systems we	want automatically. This is a key requirement for engineering emergence
(§9.19), and a central tenet of neutral emergence (§9.9).

Mutual information allows us to see which models capture more of the underlying behaviour. Also
considering extra entropy allows us to find models that not only capture the underlying behaviour
well, but model it closely. Adding exceptions allows us to specify which particular aspects of the
underlying behaviour we wish to capture well and model closely. And, just like many evolutionary
algorithms, we can do all of this without knowing how to find better solutions; we merely need to
recognise better solutions when we come across them.

The examples in this section were carefully selected. They had to be, because the high level language
we are using (ECAs) is less expressive than the low level language (ECAs with exceptions), and
there’s only so much of this low level behaviour we can model. Exceptions at high level would give
far more power, but this doesn’t add much to the argument presented here: essentially, we would
show that having a more expressive language means we can do more with it.

If we consider modelling a Life glider again, one of requirements for success is surely that the high
level language is actually capable of modelling a glider. And while it is perhaps not always obvious
what can be modelled by a coarse ECA a priori (or at least without experimenting for a while), it
must be reasonable to assume that, in the development of any emergent system, we would choose
high and low level languages that are expressive enough to model our desired behaviour.

12.39 Key points
 ▪ Feature extraction can be used to find the best coarse graining for a CA’s behaviour at different

points in space and time over the CA run.

 ▪ Some CAs show phase changes at the emergent level. We can detect the phase transition at the
emergent level by monitoring the MI of the transient rule, and we developed normalised transi-
tion graphs to show this.

 ▪ The mutual information of some partial coarse grainings is high, despite the rules looking like
poor matches visually. Extra entropy is an effective way to exclude such rules. Extra entropy is

Subjective Emergence Neutral Emergence and Coarse Graining Cellular Automata

236

a local, single value measure that, together with MI, effectively distinguishes between good and
poor coarse grainings globally.

 ▪ MI resonance can be a problem with some initial conditions and coarse graining configura-
tions. It is important to use a sufficiently varied test string to avoid the issue.

 ▪ Directed coarse graining adds exceptions to fine rules, allowing us to capture the underlying
behaviour we want at an emergent level.

 ▪ The exceptions we added to rule 102 gave us a larger scale model of rule 110. It suggests that
rule 110’s complex behaviour may be the result of exceptions to a chaotic pattern.

Neutral Emergence and Coarse Graining Cellular Automata Contributions

237

13 CONTRIBUTIONS
This thesis investigates emergence. Emergence is not a very well defined (or understood) phenom-
enon; as we saw in §8 – and as with intelligence – authors disagree on even its most basic require-
ments and disqualifiers.

Our notions of emergence are intimately wrapped up in our experiences of the world around us.
Most people would conclude that flocking is an emergent phenomenon (§8.2), but fewer would
agree that temperature or a secret sharing scheme (§8.9) are really emergent. Not because they are
innately bad examples, but because they fall less within our purview and because, like intelligence,
we want to attach something ‘natural’ or ‘human’ to a phenomenon before admitting it is emer-
gent. The same is true for emergence in CAs, which not only operate in an abstract mathematical
space, but where we can also see exactly what is happening at any time.

Though we have purposefully avoided giving our own definition of emergence here, we implicitly
adopted a fairly liberal and relativistic model. We have approximately used what Ryan calls weak
emergence, which he defines as a model with a change of resolution, but not scope, between the
high and low levels (§8.7, §8.8, [100]).

13.1 Emergence
We have seen the utility of relative emergence, basing it on the two language description in Ro-
nald et al’s definition (§9.3, [109]). We suggested that there is no correct model of emergence in
a system, and have seen instances where we get several different – and useful – emergent models
from a single underlying system.

And we have seen that emergence is not that special: it is actually very common (difficult to avoid,
even), though most emergence captures aspects of the underlying behaviour that are not particu-
larly enlightening or useful (§10.13, §10.19).

At least within the scope of weak emergence (as used here), we can create emergent models just
by eliminating degrees of freedom from the underlying system, though this must be through
uniform dimension loss (or projection). This lossy emergence is what makes the emergent model
independent from low level behaviour (§11).

Drawing on Adami’s information theoretic model of protolife, we introduced quantitative emer-
gence through mutual information and Kolmogorov complexity (§9.17). Using this, we were able
to quantify the information lost in an emergent projection (§11).

Contributions Neutral Emergence and Coarse Graining Cellular Automata

238

We also introduced neutral emergence, in analogy to neutral evolution (§9.9). We claimed that
all emergence is neutral emergence1 – because it must be lossy – but thinking about emergence as
neutral emergence confers distinct advantages for developing robust solutions (§9.19).

13.2 Coarse graining and emergence in cellular automata
Despite their simplicity and mathematical transparency, elementary cellular automata can exhibit
emergent behaviour (§10.5). We have shown that coarse graining is a good way to model these
emergent properties. We were also able to use coarse graining to demonstrate emergence through
elimination, creating emergent models as we mapped from four fine states (two fine cells at	g	= 2)
to two coarse states (one coarse cell). Nothing was added to create the high level model, yet we
often saw cohesive behaviour at the emergent level – behaviour that can be modelled with another
elementary CA rule.

A total coarse graining must model aspects of the low level system’s behaviour without error. A
partial coarse graining does not have this restriction, and its errors add new behaviour to the high
level (introduced in §10.16). This freedom to make mistakes can allow a partial coarse graining
to capture more of low level system than a total coarse graining, which are all too often vacuously
correct (§11.10). This shows us that correctness is not always a synonym for goodness, though
they are usually related.

We found that using remarkably short and simple input test strings with partial coarse graining
gave results that were almost as good as those we got from using test strings that covered all CA
input states with total coarse graining (§10.20).

We introduced graining graphs as way of visualising all coarse grainings at a certain grain (or a
specified subset of that grain). Graining graphs allowed us to explore the coarse graining space
and showed us a progressive change in ECA behaviour over the rule space (§10.13). The grain-
ing graph of partial coarse grainings added significant numbers of useful new rules and showed us
how partial coarse graining is able to exploit similarities in the rules that are not accessible when
totally coarse graining (§10.19).

We have shown that mappings matter when modelling emergent systems. In §11.12, we saw
that a poor mapping can reduce an otherwise good coarse graining with a high MI to one that
captures little of the underlying behaviour. We also discussed different criteria for selecting valid
coarse grainings through mappings: insisting on a rule being present for all possible mappings
(the intersection of all mappings) gave consistently high quality results (§10.20); using the union
of all mappings gave far more coarse grainings, many of which were of poor quality, though the
extra choice was sometimes useful (§10.21).

1 Again, we limit ourselves to speculating about weak emergence here.

Neutral Emergence and Coarse Graining Cellular Automata Contributions

239

We briefly showed that we could find emergent models with evolutionary algorithms, using a
genetic algorithm to find coarse grainings through their mutual information (§10.17). Due to
the small state space we predominantly used, the 256 ECAs at	g	= 2, we did not investigate this
further.

13.3 Emergence and information
We explained how to calculate the mutual information between the two CA rules in a coarse
graining and showed a strong correlation between a high MI and the quality of a coarse graining.
We found that the partial coarse grainings of a rule may have a higher MI than the total coarse
grainings of that rule, despite their erroneous behaviour (§11.9).

We introduced feature extraction in order to model the principal emergent properties of a CA at
different stages in a CA run (§12.1). Building on feature extraction, we showed that ECAs can
undergo phase transitions at the emergent level that are not evident at the low level (§12.6). We
found that we needed to restart the post transition coarse rule in order to ensure a good correla-
tion between the high and low levels, and that the best point at which to perform this restart
was at the phase transition. We also introduced transition graphs, with their distinctive S-curves,
as a way of modelling these phase changes in CAs (§12.10). After trying different block sizes to
calculate the MI in a coarse graining, we found that expanding the block size (or calculating the
MI over time rather than space) did not help us distinguish between good and poor rules, though
it did reduce the resolution of our model.

Adding new behaviour through a partial coarse graining can let us capture more of the fine CA
than is possible when totally coarse graining. However, we had difficulty using mutual informa-
tion to discriminate between good coarse grainings and coarse grainings where only a relatively
small amount of their very high entropy was correlated to the low level. We introduced extra
entropy, the conditional coarse entropy, as a way to distinguish between these two situations
(§12.21). Despite being local measures, using both extra entropy and mutual information allowed
us to get very close to our visual assessment of the goodness of a coarse graining.

We introduced rule exceptions (§12.32), alterations to CA rules that override the rule’s behaviour
for certain input conditions. Exceptions can have a larger neighbourhood than the rule to which
they are applied. Rule exceptions, in combination with mutual information and extra entropy,
allow us to perform directed coarse graining – to find a model of the emergent behaviour we want
automatically. We showed several examples where directed coarse graining gave us different mod-
els depending on the exceptions we introduced at the low level.

Finally, we used a rule exception to find a way of changing the scale of rule 110 and coarse
grained this rule plus exception to rule 110 (§12.37). We speculated on the relationship between

Contributions Neutral Emergence and Coarse Graining Cellular Automata

240

rules 102 and 110 and how rule 110’s complex behaviour may be layered on top of the chaotic
base structure provided by rule 102.

Neutral Emergence and Coarse Graining Cellular Automata Further Work

241

14 LOOKING FORWARD
The aim of this thesis was to understand a bit more about emergence and how to develop emer-
gent systems automatically. We have seen that emergence is not a magical property – it is often
remarkably mundane – and we have described ways to find emergent systems automatically,
evaluate the quality of these systems and direct development towards the solutions we	want.

This is (we hope) useful in itself – developing emergent systems is hard – but researchers are
interested in emergent systems because of their innate robustness and adaptability, properties they
want to introduce into systems that solve real industry or scientific problems.

Almost all of the models used here were limited in scope. Exhaustive search was an efficient tech-
nique for most of our examples, and we had little need to consider the problem landscape or how
best to search it. Clearly this would not be true for most real world problems, and expanding the
work here to such domains is the next step.

In §10.17, we used a genetic algorithm to find emergent models automatically, and we suggest
that we can take advantage of the large body of existing work about evolutionary algorithms to
find solutions to more difficult problems. But we also know that many evolutionary algorithms
hit a complexity ceiling: they have difficulty scaling to problems beyond a certain difficulty [3],
and it is likely that developing interesting emergent models would fall on the wrong side of this
barrier. However, if we consider how we can exploit the problem structure – its landscape, its
dynamics – we believe we can find the answers we want.

14.1 Emergence and robustness
If we accept the ideas of emergence developed here, all emergence is neutral emergence. Or all
neutral emergence is emergence. But we didn’t introduce neutral emergence as a new form of
emergence; we introduced it as a new way of thinking about emergence.

Robustness is intimately related to neutral evolution and emergence. The aspects of the search
landscape exploited by neutral evolution – correlations on different scales, basins, and so on – are
exactly those that can make a model robust [17, 125, 126, 127]. And robustness is intimately
related to neutral emergence too – as with Langton’s link between physical systems and compu-
tation [18], this analogy should allow ideas and techniques from one field to be applied to the
other.

We have seen some hints of this even in the simple ECA models considered here. The rule-based
approach to emergent modelling and development used in coarse graining means that solutions
are much more generally applicable than a case-by-case model and normally work well in other,
similar circumstances. Crucially, these circumstances only	have	to	be	similar with	respect	to	the	rules.
Just like Boids’ flocking rules (§8.2), we can ignore behaviour in which we are not interested –

Further Work Neutral Emergence and Coarse Graining Cellular Automata

242

what the rest of the system is doing does not concern us if it does not impinge on our emergent
model.

14.2 Exploiting problem structure
The literature review highlights a number of cases (§4, §5, §6) where the dynamical structure of
a system has limited, targeted, focused or even spurred development (in the most general sense of
the word). While interesting in their own right, the important point here is that doing this – the
equivalent of constraining a gas to one small corner of a room – requires no effort on the part of
system: it just happens because of the way the system is set up.

A lot of the literature review focuses on understanding how these physical constraints can be
channelled, so they can be made to work in tandem with other system processes (evolution, etc.).
Neutral emergence suggests how to exploit landscape structure to ascertain which solutions are
robust. It also suggests that manipulating the abstraction of a problem, rather than the problem
itself, may actually help find better solutions (we saw this again in §8.12). This idea can be taken
further. If the system model is gradually built up then it can be made to solve a succession of
incrementally more difficult problems, but always from the vantage point of the previous answer.
Such a developmental approach should allow this progression to occur incrementally, gradually
and autonomously.

14.3 Developmental systems
Though still relatively rare in computer science, there are some encouraging examples of using
developmental paradigms. Kauffman [17] presents a suggestive discourse on how neural network
synapse weights should be built up over time, changing the search landscape from smooth to rug-
ged; the neural network model NEAT [128] takes development more literally, successively adding
nodes to the network as it is trained (complexification); AlChemy [129] builds up chemical net-
works from simple beginnings.

More than just adopting a developmental paradigm, it seems important to create a space in which
the system can develop itself. Like AlChemy and Tierra [130], we believe it is crucial that the
model is allowed to organise itself and find its own path to the solution. Such a framework is
likely to be subtle, but, as with many non-standard computation problems, nature is likely to be
replete with examples if one just knows where (and how) to look.

In particular, gaining some understanding of the interaction between evolution and development
is almost certainly vital to the answers being sought here. As with Ashby’s Brain (§6.2.3), there is
a need to grasp which factors – out of the plethora of possibilities – constitute the essential vari-
ables.

Neutral Emergence and Coarse Graining Cellular Automata Further Work

243

The development of a human foetus relies on an intricate interplay of hormones, pressure, gravity,
nutrients and many other factors.

 ▪ The vast majority of DNA appears to have no function [3, 15].

 ▪ Just 1.5% of DNA codes for proteins, but 3% is occupied by regulatory functions [131].

 ▪ Virtually the same ‘master toolkit’ of homeobox genes controls basic development in every
living creature from yeast to yak [132].

 ▪ The vast majority of human genes are shared with the mouse and chimp [131] and we are not
all that genotypically dissimilar from the fruit fly or cabbage (or Arabidopsis	Thaliana at least
[133]), yet morphologically we are substantially different.

 ▪ Some interesting pointers from the field of (non-standard) computation are the emergent
runtime topology of genetic algorithms [134], runtime structure of genetic programming
trees [135, 136] and the (order from chaos) dynamics of random Boolean networks [17, 19].

All of these examples are suggestive. Although there are undoubtedly many pieces missing from
the puzzle, we believe the next step here is finding a model that provides a developmental pathway
to emergent solutions.

Further Work Neutral Emergence and Coarse Graining Cellular Automata

244

Neutral Emergence and Coarse Graining Cellular Automata Further Work

245

Further Work Neutral Emergence and Coarse Graining Cellular Automata

246

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

247

A COARSE GRAININGS
Total coarse grainings at g = 2 [table: coarse rule / fine rule]

0 0 255 66 128 162 243 208 0 251

255 0 0 68 254 162 48 209 255 251

0 2 204 68 90 165 243 209 192 252

255 2 255 68 165 165 48 211 252 252

0 4 48 80 170 170 243 211 0 253

255 4 243 80 170 171 0 219 255 253

200 5 170 85 34 174 255 219 128 254

236 5 90 90 187 174 192 220 254 254

0 8 165 90 34 175 204 220

255 8 200 95 187 175 252 220

34 10 236 95 128 176 0 221

187 10 102 102 254 176 204 221

0 12 153 102 128 186 255 221

204 12 150 105 254 186 128 222

255 12 240 112 0 187 254 222

240 15 48 116 170 187 0 223

0 16 243 116 255 187 255 223

255 16 128 128 192 188 136 230

0 24 254 128 252 188 238 230

255 24 128 130 0 189 0 231

0 32 254 130 255 189 255 231

255 32 128 132 128 190 204 236

0 34 254 132 254 190 136 238

170 34 136 136 0 191 238 238

255 34 238 136 255 191 0 239

0 36 34 138 192 192 255 239

255 36 187 138 252 192 240 240

34 38 34 139 192 194 240 241

187 38 187 139 252 194 128 242

170 42 136 140 60 195 254 242

34 46 204 140 195 195 0 243

187 46 238 140 192 196 240 243

0 48 128 144 204 196 255 243

240 48 254 144 252 196 48 244

255 48 150 150 204 200 243 244

204 51 136 152 204 204 48 245

48 52 238 152 136 206 243 245

243 52 102 153 204 206 128 246

60 60 153 153 238 206 254 246

195 60 34 155 0 207 0 247

0 64 187 155 204 207 255 247

255 64 128 160 255 207 128 250

0 66 254 160 48 208 254 250

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

248

Total coarse grainings at g = 3 [table: coarse rule / fine rule]

0 0 0 34 204 76 255 136 255 175 204 202

255 0 170 34 255 76 0 138 128 176 128 203

0 1 255 34 0 80 170 138 254 176 254 203

255 1 0 36 240 80 255 138 128 178 204 204

0 2 255 36 255 80 0 139 254 178 0 205

170 2 0 38 0 81 255 139 0 179 204 205

255 2 255 38 255 81 136 140 255 179 255 205

0 3 0 40 0 84 204 140 128 182 136 206

255 3 255 40 255 84 238 140 254 182 204 206

0 4 0 42 85 85 0 143 0 183 238 206

204 4 170 42 170 85 255 143 255 183 0 207

255 4 255 42 0 96 128 144 0 185 204 207

0 6 128 44 255 96 254 144 255 185 255 207

255 6 254 44 0 98 128 146 128 186 0 208

0 8 0 46 255 98 254 146 254 186 240 208

255 8 255 46 128 100 128 148 0 187 255 208

0 10 0 47 254 100 254 148 170 187 0 209

170 10 255 47 0 112 136 152 255 187 255 209

255 10 0 48 240 112 238 152 192 188 0 211

0 11 240 48 255 112 0 155 252 188 255 211

255 11 255 48 0 116 255 155 0 189 0 213

0 12 0 50 255 116 136 156 255 189 255 213

204 12 255 50 0 117 192 156 128 190 128 214

255 12 51 51 255 117 238 156 254 190 254 214

0 14 204 51 0 119 252 156 0 191 0 215

255 14 0 52 255 119 0 157 170 191 255 215

15 15 255 52 0 126 255 157 255 191 204 216

240 15 0 55 255 126 128 158 0 192 128 217

0 16 255 55 0 127 254 158 192 192 254 217

240 16 0 56 255 127 0 159 252 192 0 219

255 16 255 56 0 128 255 159 255 192 255 219

0 17 0 63 128 128 128 160 192 194 192 220

255 17 255 63 254 128 254 160 252 194 204 220

0 18 0 64 255 128 128 162 192 196 252 220

255 18 255 64 0 129 254 162 204 196 0 221

0 19 0 66 255 129 170 170 252 196 204 221

255 19 255 66 128 130 0 171 136 198 255 221

0 20 0 68 254 130 170 171 192 198 128 222

255 20 204 68 128 132 255 171 238 198 254 222

0 24 255 68 254 132 204 172 252 198 0 223

255 24 0 70 128 134 0 174 0 199 204 223

0 28 255 70 254 134 170 174 255 199 255 223

255 28 0 72 0 136 255 174 0 200 0 227

0 32 255 72 136 136 0 175 204 200 255 227

255 32 0 76 238 136 170 175 255 200 204 228

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

249

Total coarse grainings at g = 3 (2) [table: coarse rule / fine rule]

136 230 252 252

238 230 255 252

0 231 0 253

255 231 255 253

0 235 0 254

255 235 128 254

0 236 254 254

204 236 255 254

255 236

0 237

255 237

0 238

136 238

238 238

255 238

0 239

255 239

240 240

0 241

240 241

255 241

128 242

254 242

0 243

240 243

255 243

0 244

240 244

255 244

0 245

240 245

255 245

128 246

254 246

0 247

240 247

255 247

0 249

255 249

128 250

254 250

0 251

255 251

0 252

192 252

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

250

Total coarse grainings at g = 4 [table: coarse rule / fine rule]

0 0 204 19 170 46 0 71 255 96 0 132

255 0 255 19 255 46 204 71 0 98 128 132

0 1 0 20 0 47 255 71 255 98 254 132

204 1 255 20 255 47 0 72 0 100 255 132

255 1 0 21 0 48 204 72 255 100 128 134

0 2 255 21 240 48 255 72 102 102 254 134

170 2 128 23 255 48 0 74 153 102 0 136

255 2 254 23 0 49 255 74 150 105 136 136

0 3 0 24 255 49 0 76 0 108 238 136

255 3 255 24 0 50 204 76 255 108 255 136

0 4 0 26 255 50 255 76 0 111 0 138

204 4 255 26 204 51 128 77 255 111 170 138

255 4 0 27 0 52 254 77 0 112 255 138

204 5 255 27 240 52 0 78 240 112 0 139

0 6 0 28 255 52 255 78 255 112 170 139

255 6 255 28 0 53 0 79 0 114 255 139

0 7 0 29 255 53 192 79 255 114 0 140

255 7 204 29 0 55 252 79 0 115 136 140

0 8 255 29 204 55 255 79 255 115 204 140

255 8 0 31 255 55 0 80 0 116 238 140

0 9 255 31 0 56 240 80 240 116 255 140

255 9 0 32 255 56 255 80 255 116 0 141

0 10 255 32 0 58 0 81 0 117 255 141

170 10 0 33 255 58 255 81 255 117 0 143

255 10 255 33 0 59 0 82 0 119 255 143

0 11 0 34 255 59 255 82 255 119 0 144

255 11 170 34 60 60 0 83 0 123 128 144

0 12 255 34 195 60 255 83 255 123 254 144

204 12 0 35 0 63 0 84 0 125 255 144

255 12 255 35 255 63 255 84 255 125 128 146

0 13 0 36 0 64 170 85 0 126 254 146

192 13 255 36 255 64 0 87 255 126 128 148

252 13 0 38 0 65 255 87 0 127 254 148

255 13 170 38 255 65 0 88 204 127 150 150

0 14 255 38 0 66 255 88 255 127 136 152

255 14 0 39 255 66 90 90 0 128 238 152

240 15 255 39 0 68 165 90 128 128 102 153

0 16 0 40 204 68 0 92 254 128 153 153

240 16 255 40 255 68 255 92 255 128 0 155

255 16 0 42 0 69 0 93 0 129 170 155

0 17 170 42 136 69 136 93 255 129 255 155

255 17 255 42 238 69 238 93 0 130 136 156

0 18 0 44 255 69 255 93 128 130 192 156

255 18 255 44 0 70 204 95 254 130 238 156

0 19 0 46 255 70 0 96 255 130 252 156

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

251

Total coarse grainings at g = 4 (2) [table: coarse rule / fine rule]

0 157 0 181 238 198 255 217 0 238 128 254

255 157 255 181 252 198 0 219 136 238 254 254

128 158 128 182 0 199 255 219 238 238 255 254

254 158 254 182 255 199 0 220 255 238

0 159 0 183 0 200 192 220 0 239

255 159 255 183 204 200 204 220 255 239

128 160 0 184 255 200 252 220 240 240

254 160 255 184 0 201 255 220 0 241

0 162 0 185 255 201 0 221 240 241

128 162 255 185 0 202 204 221 255 241

254 162 0 186 204 202 255 221 0 242

255 162 128 186 255 202 0 222 128 242

0 163 254 186 0 203 128 222 254 242

255 163 255 186 255 203 254 222 255 242

90 165 0 187 204 204 255 222 0 243

165 165 170 187 0 205 0 223 240 243

0 167 255 187 204 205 204 223 255 243

255 167 192 188 255 205 255 223 0 244

0 168 252 188 0 206 0 224 240 244

255 168 0 189 136 206 255 224 255 244

170 170 255 189 204 206 0 226 0 245

0 171 0 190 238 206 255 226 240 245

170 171 128 190 255 206 0 227 255 245

255 171 254 190 0 207 255 227 0 246

0 172 255 190 204 207 0 228 128 246

204 172 0 191 255 207 204 228 254 246

255 172 170 191 0 208 255 228 255 246

0 173 255 191 240 208 0 229 0 247

255 173 0 192 255 208 255 229 240 247

0 174 192 192 0 209 136 230 255 247

170 174 252 192 240 209 238 230 0 248

255 174 255 192 255 209 0 231 255 248

0 175 192 194 0 211 255 231 0 249

170 175 252 194 240 211 128 232 255 249

255 175 60 195 255 211 254 232 128 250

0 176 195 195 0 213 0 234 254 250

128 176 0 196 255 213 255 234 0 251

254 176 192 196 128 214 0 235 255 251

255 176 204 196 254 214 255 235 0 252

0 177 252 196 0 215 0 236 192 252

255 177 255 196 255 215 204 236 252 252

128 178 0 197 0 216 255 236 255 252

254 178 255 197 204 216 0 237 0 253

0 179 136 198 255 216 204 237 255 253

255 179 192 198 0 217 255 237 0 254

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

252

Partial coarse grainings at g = 2 □■■□■□■□□■■□■□■□□■■□■□■□ [table: coarse rule / fine rule]

0 0 255 37 200 95 165 165 48 208 254 250

255 0 34 38 236 95 170 170 243 208 0 251

0 2 187 38 0 100 170 171 48 209 255 251

255 2 170 42 255 100 34 174 243 209 192 252

0 3 34 46 102 102 187 174 48 211 252 252

255 3 187 46 153 102 34 175 243 211 0 253

0 4 0 48 0 103 187 175 0 219 255 253

255 4 240 48 255 103 128 176 4 219 128 254

200 5 255 48 150 105 254 176 223 219 254 254

236 5 204 51 4 108 128 178 255 219

192 7 48 52 223 108 254 178 192 220

252 7 243 52 240 112 128 186 204 220

0 8 60 60 48 116 254 186 252 220

255 8 195 60 243 116 0 187 0 221

34 10 0 61 0 119 170 187 204 221

187 10 255 61 255 119 255 187 255 221

0 12 0 63 128 128 192 188 128 222

204 12 255 63 254 128 252 188 254 222

255 12 0 64 128 130 0 189 0 223

192 13 255 64 254 130 255 189 255 223

252 13 0 66 128 132 128 190 136 230

240 15 255 66 254 132 254 190 238 230

0 16 0 67 136 136 0 191 0 231

255 16 255 67 238 136 255 191 255 231

0 17 0 68 34 138 192 192 204 236

255 17 204 68 187 138 252 192 136 238

136 21 255 68 34 139 192 194 238 238

238 21 136 69 187 139 252 194 0 239

0 24 238 69 136 140 60 195 255 239

255 24 204 71 204 140 195 195 240 240

0 25 128 77 238 140 192 196 240 241

255 25 254 77 128 144 204 196 128 242

204 29 192 79 254 144 252 196 254 242

192 31 252 79 150 150 204 200 0 243

252 31 48 80 136 152 4 201 240 243

0 32 243 80 238 152 223 201 255 243

255 32 170 85 102 153 0 203 48 244

0 34 136 87 153 153 255 203 243 244

170 34 238 87 34 155 204 204 48 245

255 34 90 90 187 155 136 206 243 245

0 36 165 90 128 160 204 206 128 246

4 36 0 91 254 160 238 206 254 246

223 36 255 91 128 162 0 207 0 247

255 36 136 93 254 162 204 207 255 247

0 37 238 93 90 165 255 207 128 250

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

253

Partial coarse grainings at g = 2 □■□■□■□■□■□■□■□■□■ [table: coarse rule / fine rule]

0 0 0 34 255 72 187 138 128 190 192 220

255 0 170 34 128 77 34 139 254 190 204 220

0 2 255 34 254 77 187 139 0 191 252 220

34 2 0 36 192 79 136 140 34 191 0 221

187 2 4 36 252 79 204 140 187 191 204 221

255 2 223 36 48 80 238 140 255 191 255 221

0 3 255 36 243 80 128 144 192 192 128 222

255 3 0 37 170 85 254 144 252 192 254 222

0 4 255 37 136 87 150 150 192 194 0 223

255 4 34 38 238 87 136 152 252 194 255 223

200 5 187 38 90 90 238 152 60 195 136 230

236 5 170 42 165 90 102 153 195 195 238 230

192 7 0 44 0 91 153 153 192 196 0 231

252 7 12 44 255 91 34 155 204 196 48 231

0 8 207 44 136 93 187 155 252 196 243 231

255 8 255 44 238 93 128 160 204 200 255 231

34 10 34 46 200 95 254 160 4 201 128 232

187 10 187 46 236 95 128 162 76 201 254 232

0 12 0 48 0 100 170 162 205 201 204 236

204 12 240 48 68 100 254 162 223 201 0 237

255 12 255 48 221 100 90 165 0 203 255 237

192 13 204 51 255 100 165 165 12 203 136 238

252 13 48 52 102 102 170 170 207 203 238 238

240 15 243 52 153 102 170 171 255 203 0 239

0 16 60 60 0 103 34 174 204 204 255 239

48 16 195 60 255 103 187 174 136 206 240 240

243 16 0 61 150 105 34 175 204 206 240 241

255 16 255 61 4 108 187 175 238 206 128 242

0 17 0 63 76 108 128 176 0 207 240 242

255 17 255 63 205 108 240 176 204 207 254 242

136 21 0 64 223 108 254 176 255 207 0 243

238 21 255 64 240 112 128 178 48 208 240 243

128 23 0 66 48 116 254 178 243 208 255 243

254 23 34 66 243 116 128 186 48 209 48 244

0 24 187 66 0 119 170 186 243 209 243 244

48 24 255 66 255 119 254 186 48 211 48 245

243 24 0 67 128 128 0 187 243 211 243 245

255 24 255 67 254 128 170 187 0 217 128 246

0 25 0 68 128 130 255 187 68 217 254 246

255 25 204 68 254 130 192 188 221 217 0 247

204 29 255 68 128 132 252 188 255 217 48 247

192 31 136 69 254 132 0 189 0 219 243 247

252 31 238 69 136 136 34 189 4 219 255 247

0 32 204 71 238 136 187 189 223 219 128 250

255 32 0 72 34 138 255 189 255 219 254 250

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

254

Partial coarse grainings at g = 2 (2) □■□■□■□■□■□■□■□■□■ [table: coarse rule / fine rule]

0 251

255 251

192 252

252 252

0 253

255 253

128 254

254 254

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

255

Partial coarse grainings at g = 3 □■■□■□■□□■■□■□■□□■■□■□■□ [table: coarse rule / fine rule]

0 0 255 21 255 54 204 95 255 138 255 171

255 0 0 23 0 55 0 96 0 139 204 172

0 1 255 23 255 55 255 96 255 139 0 174

255 1 0 24 0 56 0 98 136 140 170 174

0 2 255 24 255 56 255 98 204 140 255 174

170 2 0 26 0 59 128 100 238 140 0 175

255 2 255 26 255 59 254 100 0 143 170 175

0 3 0 28 0 63 0 108 255 143 255 175

255 3 255 28 255 63 255 108 0 144 128 176

0 4 0 31 0 64 0 112 128 144 254 176

204 4 255 31 255 64 240 112 240 144 128 178

255 4 0 32 0 66 255 112 254 144 254 178

204 5 255 32 255 66 0 115 255 144 0 179

0 6 0 34 0 68 255 115 128 146 255 179

255 6 170 34 204 68 0 116 254 146 0 181

0 7 255 34 255 68 255 116 0 147 255 181

255 7 0 35 0 69 0 117 255 147 128 182

0 8 255 35 255 69 255 117 128 148 254 182

255 8 0 36 0 70 0 119 254 148 0 183

0 10 255 36 255 70 255 119 0 152 255 183

170 10 0 38 0 72 0 126 136 152 0 185

255 10 255 38 255 72 255 126 238 152 255 185

0 11 0 40 0 76 0 127 255 152 128 186

255 11 255 40 204 76 255 127 0 155 254 186

0 12 0 42 255 76 0 128 255 155 0 187

204 12 170 42 128 77 128 128 136 156 170 187

255 12 255 42 204 77 254 128 192 156 255 187

0 13 128 44 254 77 255 128 238 156 0 188

255 13 254 44 0 79 0 129 252 156 192 188

0 14 0 46 255 79 255 129 0 157 252 188

255 14 255 46 0 80 0 130 255 157 255 188

15 15 0 47 240 80 128 130 128 158 0 189

240 15 255 47 255 80 170 130 254 158 255 189

0 16 0 48 0 81 254 130 0 159 0 190

240 16 240 48 255 81 255 130 255 159 128 190

255 16 255 48 0 82 128 132 128 160 170 190

0 17 0 49 255 82 254 132 254 160 254 190

255 17 255 49 0 84 128 134 128 162 255 190

0 18 0 50 255 84 254 134 170 162 0 191

255 18 255 50 85 85 0 136 254 162 170 191

0 19 51 51 170 85 136 136 0 167 255 191

255 19 204 51 0 87 238 136 255 167 0 192

0 20 0 52 255 87 255 136 170 170 192 192

255 20 255 52 0 93 0 138 0 171 252 192

0 21 0 54 255 93 170 138 170 171 255 192

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

256

Partial coarse grainings at g = 3 (2) □■■□■□■□□■■□■□■□□■■□■□■□ [table: coarse rule / fine rule]

0 194 128 217 254 242

192 194 254 217 0 243

252 194 0 219 240 243

255 194 255 219 255 243

192 196 192 220 0 244

204 196 204 220 240 244

252 196 252 220 255 244

136 198 0 221 0 245

192 198 204 221 240 245

238 198 255 221 255 245

252 198 128 222 0 246

0 199 254 222 128 246

255 199 0 223 240 246

0 200 204 223 254 246

204 200 255 223 255 246

255 200 0 227 0 247

0 201 255 227 240 247

255 201 204 228 255 247

204 202 0 230 0 249

128 203 136 230 255 249

254 203 238 230 128 250

204 204 255 230 254 250

0 205 0 231 0 251

204 205 255 231 255 251

255 205 0 232 0 252

136 206 255 232 192 252

204 206 0 235 252 252

238 206 255 235 255 252

0 207 0 236 0 253

204 207 204 236 255 253

255 207 255 236 0 254

0 208 0 237 128 254

240 208 255 237 254 254

255 208 0 238 255 254

0 209 136 238

255 209 238 238

0 211 255 238

255 211 0 239

0 213 255 239

255 213 240 240

128 214 0 241

254 214 240 241

0 215 255 241

255 215 128 242

204 216 240 242

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

257

Partial coarse grainings at g = 3 □■□■□■□■□■□■□■□■□■ [table: coarse rule / fine rule]

0 0 255 21 255 54 204 95 0 138 0 171

255 0 0 23 0 55 0 96 170 138 170 171

0 1 255 23 255 55 255 96 255 138 255 171

255 1 0 24 0 56 0 98 0 139 204 172

0 2 255 24 255 56 255 98 255 139 0 174

170 2 0 26 0 59 128 100 136 140 170 174

255 2 255 26 255 59 254 100 204 140 255 174

0 3 0 28 0 63 0 104 238 140 0 175

255 3 255 28 255 63 255 104 0 143 170 175

0 4 0 31 0 64 0 108 255 143 255 175

204 4 255 31 255 64 255 108 0 144 128 176

255 4 0 32 0 66 0 112 128 144 240 176

204 5 255 32 255 66 240 112 240 144 254 176

0 6 0 34 0 68 255 112 254 144 128 178

255 6 170 34 204 68 0 115 255 144 254 178

0 7 255 34 255 68 255 115 128 146 0 179

255 7 0 35 0 69 0 116 254 146 255 179

0 8 255 35 255 69 255 116 0 147 0 181

255 8 0 36 0 70 0 117 255 147 255 181

0 10 255 36 255 70 255 117 128 148 128 182

170 10 0 38 0 72 0 119 254 148 254 182

255 10 255 38 255 72 255 119 0 152 0 183

0 11 0 40 0 76 0 126 136 152 255 183

255 11 255 40 204 76 255 126 238 152 0 185

0 12 0 42 255 76 0 127 255 152 255 185

204 12 170 42 128 77 255 127 0 155 128 186

255 12 255 42 204 77 0 128 255 155 170 186

0 13 128 44 254 77 128 128 136 156 254 186

255 13 254 44 0 79 254 128 192 156 0 187

0 14 0 46 255 79 255 128 238 156 170 187

255 14 255 46 0 80 0 129 252 156 255 187

15 15 0 47 240 80 255 129 0 157 0 188

240 15 255 47 255 80 0 130 255 157 192 188

0 16 0 48 0 81 128 130 128 158 252 188

240 16 240 48 255 81 170 130 254 158 255 188

255 16 255 48 0 82 254 130 0 159 0 189

0 17 0 49 255 82 255 130 255 159 255 189

255 17 255 49 0 84 128 132 128 160 0 190

0 18 0 50 255 84 254 132 254 160 128 190

255 18 255 50 85 85 128 134 128 162 170 190

0 19 51 51 170 85 254 134 170 162 254 190

255 19 204 51 0 87 0 136 254 162 255 190

0 20 0 52 255 87 136 136 0 167 0 191

255 20 255 52 0 93 238 136 255 167 170 191

0 21 0 54 255 93 255 136 170 170 255 191

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

258

Partial coarse grainings at g = 3 (2) □■□■□■□■□■□■□■□■□■ [table: coarse rule / fine rule]

0 192 254 214 240 240

192 192 0 215 0 241

252 192 255 215 240 241

255 192 204 216 255 241

0 194 128 217 128 242

192 194 254 217 240 242

252 194 0 219 254 242

255 194 255 219 0 243

192 196 192 220 240 243

204 196 204 220 255 243

252 196 252 220 0 244

136 198 0 221 240 244

192 198 204 221 255 244

238 198 255 221 0 245

252 198 128 222 240 245

0 199 254 222 255 245

255 199 0 223 0 246

0 200 204 223 128 246

204 200 255 223 240 246

255 200 0 227 254 246

0 201 255 227 255 246

255 201 204 228 0 247

204 202 0 230 240 247

128 203 136 230 255 247

254 203 238 230 0 249

204 204 255 230 255 249

0 205 0 231 128 250

204 205 255 231 254 250

255 205 0 232 0 251

136 206 255 232 255 251

204 206 0 233 0 252

238 206 255 233 192 252

0 207 0 235 252 252

204 207 255 235 255 252

255 207 0 236 0 253

0 208 204 236 255 253

240 208 255 236 0 254

255 208 0 237 128 254

0 209 255 237 254 254

255 209 0 238 255 254

0 211 136 238

255 211 238 238

0 213 255 238

255 213 0 239

128 214 255 239

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

259

Partial coarse grainings at g = 4 □■■□■□■□□■■□■□■□□■■□■□■□ [table: coarse rule / fine rule]

0 0 204 19 170 42 255 65 255 84 0 116

255 0 255 19 255 42 0 66 170 85 240 116

0 1 0 20 0 44 255 66 0 87 255 116

204 1 255 20 255 44 0 67 255 87 0 117

255 1 0 21 0 46 255 67 0 88 255 117

0 2 255 21 170 46 0 68 255 88 0 118

170 2 128 23 255 46 204 68 90 90 255 118

255 2 204 23 0 47 255 68 165 90 0 119

0 3 254 23 255 47 0 69 0 91 255 119

255 3 0 24 0 48 136 69 255 91 0 123

0 4 255 24 240 48 238 69 0 92 255 123

204 4 0 25 255 48 255 69 255 92 0 124

255 4 255 25 0 49 0 70 0 93 255 124

204 5 0 26 255 49 255 70 136 93 0 125

0 6 255 26 0 50 0 71 238 93 255 125

255 6 0 27 204 50 204 71 255 93 0 126

0 7 255 27 255 50 255 71 204 95 255 126

255 7 0 28 204 51 0 72 0 96 0 127

0 8 255 28 0 52 204 72 255 96 204 127

255 8 0 29 240 52 255 72 0 98 255 127

0 9 204 29 255 52 204 73 255 98 0 128

255 9 255 29 0 53 0 74 0 99 128 128

0 10 0 31 255 53 255 74 255 99 254 128

170 10 255 31 0 55 0 76 0 100 255 128

255 10 0 32 204 55 204 76 255 100 0 129

0 11 255 32 255 55 255 76 102 102 255 129

255 11 0 33 0 56 128 77 153 102 0 130

0 12 255 33 255 56 204 77 0 103 128 130

204 12 0 34 0 57 254 77 255 103 254 130

255 12 170 34 255 57 0 78 150 105 255 130

0 13 255 34 0 58 255 78 0 108 0 131

192 13 0 35 255 58 0 79 204 108 255 131

252 13 255 35 0 59 192 79 255 108 0 132

255 13 0 36 255 59 252 79 204 109 128 132

0 14 255 36 60 60 255 79 0 110 254 132

255 14 0 37 195 60 0 80 255 110 255 132

240 15 255 37 0 61 240 80 0 111 128 134

0 16 0 38 255 61 255 80 255 111 254 134

240 16 170 38 0 62 0 81 0 112 0 136

255 16 255 38 255 62 255 81 240 112 136 136

0 17 0 39 0 63 0 82 255 112 238 136

255 17 255 39 255 63 255 82 0 114 255 136

0 18 0 40 0 64 0 83 255 114 0 137

255 18 255 40 255 64 255 83 0 115 255 137

0 19 0 42 0 65 0 84 255 115 0 138

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

260

Partial coarse grainings at g = 4 (2) □■■□■□■□□■■□■□■□□■■□■□■□ [table: coarse rule / fine rule]

170 138 128 160 255 181 252 196 254 214 0 234

255 138 254 160 128 182 255 196 0 215 255 234

0 139 255 160 254 182 0 197 255 215 0 235

170 139 0 162 0 183 255 197 0 216 255 235

255 139 128 162 255 183 136 198 204 216 0 236

0 140 170 162 0 184 192 198 255 216 204 236

136 140 254 162 255 184 238 198 0 217 255 236

204 140 255 162 0 185 252 198 255 217 0 237

238 140 0 163 255 185 0 199 0 219 204 237

255 140 255 163 0 186 255 199 255 219 255 237

0 141 90 165 128 186 0 200 0 220 0 238

255 141 165 165 170 186 204 200 192 220 136 238

0 143 0 167 254 186 255 200 204 220 238 238

255 143 255 167 255 186 0 201 252 220 255 238

0 144 0 168 0 187 204 201 255 220 0 239

128 144 255 168 170 187 255 201 0 221 255 239

254 144 170 170 255 187 0 202 204 221 240 240

255 144 0 171 0 188 204 202 255 221 0 241

0 145 170 171 192 188 255 202 0 222 240 241

255 145 255 171 252 188 0 203 128 222 255 241

128 146 0 172 255 188 255 203 254 222 0 242

254 146 204 172 0 189 204 204 255 222 128 242

128 148 255 172 255 189 0 205 0 223 240 242

254 148 0 173 0 190 204 205 204 223 254 242

150 150 255 173 128 190 255 205 255 223 255 242

0 152 0 174 254 190 0 206 0 224 0 243

136 152 170 174 255 190 136 206 255 224 240 243

238 152 255 174 0 191 204 206 0 226 255 243

255 152 0 175 170 191 238 206 255 226 0 244

102 153 170 175 255 191 255 206 0 227 240 244

153 153 255 175 0 192 0 207 255 227 255 244

0 155 0 176 192 192 204 207 0 228 0 245

170 155 128 176 252 192 255 207 204 228 240 245

255 155 240 176 255 192 0 208 255 228 255 245

136 156 254 176 0 193 240 208 0 229 0 246

192 156 255 176 255 193 255 208 255 229 128 246

238 156 0 177 0 194 0 209 0 230 254 246

252 156 255 177 192 194 240 209 136 230 255 246

0 157 128 178 252 194 255 209 238 230 0 247

255 157 204 178 255 194 0 211 255 230 240 247

128 158 254 178 60 195 240 211 0 231 255 247

254 158 0 179 195 195 255 211 255 231 0 248

0 159 204 179 0 196 0 213 128 232 255 248

255 159 255 179 192 196 255 213 204 232 0 249

0 160 0 181 204 196 128 214 254 232 255 249

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

261

Partial coarse grainings at g = 4 (3) □■■□■□■□□■■□■□■□□■■□■□■□ [table: coarse rule / fine rule]

0 250

128 250

254 250

255 250

0 251

255 251

0 252

192 252

252 252

255 252

0 253

255 253

0 254

128 254

254 254

255 254

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

262

Partial coarse grainings at g = 4 □■□■□■□■□■□■□■□■□■ [table: coarse rule / fine rule]

0 0 204 19 170 42 255 65 255 84 0 116

255 0 255 19 255 42 0 66 170 85 240 116

0 1 0 20 0 44 255 66 0 87 255 116

204 1 255 20 255 44 0 67 255 87 0 117

255 1 0 21 0 46 255 67 0 88 255 117

0 2 255 21 170 46 0 68 255 88 0 118

170 2 128 23 255 46 204 68 90 90 255 118

255 2 204 23 0 47 255 68 165 90 0 119

0 3 254 23 255 47 0 69 0 91 255 119

255 3 0 24 0 48 136 69 255 91 0 123

0 4 255 24 240 48 238 69 0 92 255 123

204 4 0 25 255 48 255 69 255 92 0 124

255 4 255 25 0 49 0 70 0 93 255 124

204 5 0 26 255 49 255 70 136 93 0 125

0 6 255 26 0 50 0 71 238 93 255 125

255 6 0 27 204 50 204 71 255 93 0 126

0 7 255 27 255 50 255 71 204 95 255 126

255 7 0 28 204 51 0 72 0 96 0 127

0 8 255 28 0 52 204 72 255 96 204 127

255 8 0 29 240 52 255 72 0 98 255 127

0 9 204 29 255 52 204 73 255 98 0 128

255 9 255 29 0 53 0 74 0 99 128 128

0 10 0 31 255 53 255 74 255 99 254 128

170 10 255 31 0 55 0 76 0 100 255 128

255 10 0 32 204 55 204 76 255 100 0 129

0 11 255 32 255 55 255 76 102 102 255 129

255 11 0 33 0 56 128 77 153 102 0 130

0 12 255 33 255 56 204 77 0 103 128 130

204 12 0 34 0 57 254 77 255 103 254 130

255 12 170 34 255 57 0 78 150 105 255 130

0 13 255 34 0 58 255 78 0 108 0 131

192 13 0 35 255 58 0 79 204 108 255 131

252 13 255 35 0 59 192 79 255 108 0 132

255 13 0 36 255 59 252 79 204 109 128 132

0 14 255 36 60 60 255 79 0 110 254 132

255 14 0 37 195 60 0 80 255 110 255 132

240 15 255 37 0 61 240 80 0 111 128 134

0 16 0 38 255 61 255 80 255 111 254 134

240 16 170 38 0 62 0 81 0 112 0 136

255 16 255 38 255 62 255 81 240 112 136 136

0 17 0 39 0 63 0 82 255 112 238 136

255 17 255 39 255 63 255 82 0 114 255 136

0 18 0 40 0 64 0 83 255 114 0 137

255 18 255 40 255 64 255 83 0 115 255 137

0 19 0 42 0 65 0 84 255 115 0 138

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Grainings

263

Partial coarse grainings at g = 4 (2) □■□■□■□■□■□■□■□■□■ [table: coarse rule / fine rule]

170 138 128 160 255 181 252 196 254 214 0 234

255 138 254 160 128 182 255 196 0 215 255 234

0 139 255 160 254 182 0 197 255 215 0 235

170 139 0 162 0 183 255 197 0 216 255 235

255 139 128 162 255 183 136 198 204 216 0 236

0 140 170 162 0 184 192 198 255 216 204 236

136 140 254 162 255 184 238 198 0 217 255 236

204 140 255 162 0 185 252 198 255 217 0 237

238 140 0 163 255 185 0 199 0 219 204 237

255 140 255 163 0 186 255 199 255 219 255 237

0 141 90 165 128 186 0 200 0 220 0 238

255 141 165 165 170 186 204 200 192 220 136 238

0 143 0 167 254 186 255 200 204 220 238 238

255 143 255 167 255 186 0 201 252 220 255 238

0 144 0 168 0 187 204 201 255 220 0 239

128 144 255 168 170 187 255 201 0 221 255 239

254 144 170 170 255 187 0 202 204 221 240 240

255 144 0 171 0 188 204 202 255 221 0 241

0 145 170 171 192 188 255 202 0 222 240 241

255 145 255 171 252 188 0 203 128 222 255 241

128 146 0 172 255 188 255 203 254 222 0 242

254 146 204 172 0 189 204 204 255 222 128 242

128 148 255 172 255 189 0 205 0 223 240 242

254 148 0 173 0 190 204 205 204 223 254 242

150 150 255 173 128 190 255 205 255 223 255 242

0 152 0 174 254 190 0 206 0 224 0 243

136 152 170 174 255 190 136 206 255 224 240 243

238 152 255 174 0 191 204 206 0 226 255 243

255 152 0 175 170 191 238 206 255 226 0 244

102 153 170 175 255 191 255 206 0 227 240 244

153 153 255 175 0 192 0 207 255 227 255 244

0 155 0 176 192 192 204 207 0 228 0 245

170 155 128 176 252 192 255 207 204 228 240 245

255 155 240 176 255 192 0 208 255 228 255 245

136 156 254 176 0 193 240 208 0 229 0 246

192 156 255 176 255 193 255 208 255 229 128 246

238 156 0 177 0 194 0 209 0 230 254 246

252 156 255 177 192 194 240 209 136 230 255 246

0 157 128 178 252 194 255 209 238 230 0 247

255 157 204 178 255 194 0 211 255 230 240 247

128 158 254 178 60 195 240 211 0 231 255 247

254 158 0 179 195 195 255 211 255 231 0 248

0 159 204 179 0 196 0 213 128 232 255 248

255 159 255 179 192 196 255 213 204 232 0 249

0 160 0 181 204 196 128 214 254 232 255 249

Appendix - Coarse Grainings Neutral Emergence and Coarse Graining Cellular Automata

264

Partial coarse grainings at g = 4 (3) □■□■□■□■□■□■□■□■□■ [table: coarse rule / fine rule]

0 250

128 250

254 250

255 250

0 251

255 251

0 252

192 252

252 252

255 252

0 253

255 253

0 254

128 254

254 254

255 254

Neutral Emergence and Coarse Graining Cellular Automata Appendix - MI of Random Strings

265

B MI OF RANDOM STRINGS
The MI of 32,000 total coarse grainings over all rules at g = 2, sorted by their MI at time 9. MIs

were obtained from 100 random binary strings P(0.2) 1000 digits long. See §11.8 for context.

0

0.
51

1.
52

2.
53

3.
5

MI

R
ul

e

Appendix - MI of Random Strings Neutral Emergence and Coarse Graining Cellular Automata

266

The MI of 32,000 total coarse grainings over all rules at g = 2, sorted by their MI at time 9. MIs

were again obtained from 100 random binary strings P(0.8) 1000 digits long.

0

0.
51

1.
52

2.
53

3.
5

MI

R
ul

e

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Coarse Graining Distribution

267

C COARSE GRAINING DISTRIBUTION
Distribution of total coarse grainings, sorted by MI. See §11.9 for context.

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

90
 /

 9
0

90
 /

 1
65

60
 /

 6
0

60
 /

 1
95

48
 /

 8
0

48
 /

 5
2

48
 /

 2
45

48
 /

 2
44

48
 /

 2
11

48
 /

 2
09

48
 /

 2
08

48
 /

 1
16

34
 /

 4
6

34
 /

 3
8

34
 /

 1
75

34
 /

 1
74

34
 /

 1
55

34
 /

 1
39

34
 /

 1
38

34
 /

 1
0

25
5

/
8

25
5

/
68

25
5

/
66

25
5

/
64

25
5

/
48

25
5

/
4

25
5

/
36

25
5

/
34

25
5

/
32

25
5

/
25

3
25

5
/

25
1

25
5

/
24

7
25

5
/

24
3

25
5

/
24

25
5

/
23

9
25

5
/

23
1

25
5

/
22

3
25

5
/

22
1

25
5

/
21

9
25

5
/

20
7

25
5

/
2

25
5

/
19

1
25

5
/

18
9

25
5

/
18

7
25

5
/

16
25

5
/

12
25

5
/

0
25

4
/

25
4

25
4

/
25

0
25

4
/

24
6

25
4

/
24

2
25

4
/

22
2

25
4

/
19

0
25

4
/

18
6

25
4

/
17

6
25

4
/

16
2

25
4

/
16

0
25

4
/

14
4

25
4

/
13

2
25

4
/

13
0

25
4

/
12

8
25

2
/

25
2

25
2

/
22

0
25

2
/

19
6

25
2

/
19

4
25

2
/

19
2

25
2

/
18

8
24

3
/

80
24

3
/

52
24

3
/

24
5

24
3

/
24

4
24

3
/

21
1

24
3

/
20

9
24

3
/

20
8

24
3

/
11

6
24

0
/

48
24

0
/

24
3

24
0

/
24

1
24

0
/

24
0

24
0

/
15

24
0

/
11

2
23

8
/

23
8

23
8

/
23

0
23

8
/

20
6

23
8

/
15

2
23

8
/

14
0

23
8

/
13

6
23

6
/

95
23

6
/

5

Appendix - Coarse Graining Distribution Neutral Emergence and Coarse Graining Cellular Automata

268

Distribution of partial coarse grainings, sorted by MI. (Graph shows only 255 of 280 series due

to limitations of the graphing software.)

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

4
/

10
8

34
 /

 6
6

34
 /

 4
6

34
 /

 3
8

34
 /

 2
34

 /
 1

91
34

 /
 1

89
34

 /
 1

75
34

 /
 1

74
34

 /
 1

55
34

 /
 1

39
34

 /
 1

38
34

 /
 1

0
25

5
/

91
25

5
/

8
25

5
/

72
25

5
/

68
25

5
/

67
25

5
/

66
25

5
/

64
25

5
/

63
25

5
/

61
25

5
/

48
25

5
/

44
25

5
/

4
25

5
/

37
25

5
/

36
25

5
/

34
25

5
/

32
25

5
/

3
25

5
/

25
3

25
5

/
25

1
25

5
/

25
25

5
/

24
7

25
5

/
24

3
25

5
/

24
25

5
/

23
9

25
5

/
23

7
25

5
/

23
1

25
5

/
22

3
25

5
/

22
1

25
5

/
21

9
25

5
/

21
7

25
5

/
20

7
25

5
/

20
3

25
5

/
2

25
5

/
19

1
25

5
/

18
9

25
5

/
18

7
25

5
/

17
25

5
/

16
25

5
/

12
25

5
/

11
9

25
5

/
10

3
25

5
/

10
0

25
5

/
0

25
4

/
77

25
4

/
25

4
25

4
/

25
0

25
4

/
24

6
25

4
/

24
2

25
4

/
23

2
25

4
/

23
25

4
/

22
2

25
4

/
19

0
25

4
/

18
6

25
4

/
17

8
25

4
/

17
6

25
4

/
16

2
25

4
/

16
0

25
4

/
14

4
25

4
/

13
2

25
4

/
13

0
25

4
/

12
8

25
2

/
79

25
2

/
7

25
2

/
31

25
2

/
25

2
25

2
/

22
0

25
2

/
19

6
25

2
/

19
4

25
2

/
19

2
25

2
/

18
8

25
2

/
13

24
3

/
80

24
3

/
52

24
3

/
24

7
24

3
/

24
5

24
3

/
24

4

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Phase Changes Initial Condition

269

D PHASE CHANGES INITIAL CONDITION
This section discusses the initial condition developed to explore phase transitions in CAs. See

§12.5-§12.22 for context.

Most of §12.5-§12.22 is devoted to studying the behaviour of three rules: the fine rule 130, and
two coarse rules, 128 and 34, to which it partially coarse grains at	g	= 2. (We also look at rule 213
as an example of a poor coarse graining for rule 130.) For the purpose of this investigation, we
created an initial CA condition designed to show the phase transition between coarse rules 128 and
34 to best effect. While we could use almost any state (by chunking the CA space to allow feature
extraction), we want to increase the accuracy of our results by using initial conditions for which
the whole CA would undergo a phase transition at approximately the same point. We also want
our runs to show the CA in both its pre- and post-transition states for a significant period of time.
Finally, while we want the first part of the run to favour rule 128, it is important that there should
be something that rule 34 can match from the outset.

We know the phase transition takes place approximately when the triangles captured by rule 128
disappear. We also know that these triangles become two squares narrower at each timestep, so we
must start with a fairly long string of contiguous ■s if we are to delay the phase transition appreci-
ably. Rule 34 will match the edges of fine CA patterns, including single cells. We therefore append
a few individual ■s, surrounded by □s, to the long string of ■s. Finally, we repeat the whole pattern
several times to increase accuracy.

The initial condition used was a string of 53 ■s followed by a smaller number of □s interspersed
with ■s (pattern □□■□□■□■□□□□□■□□□), and then a nearly identical string of 52 ■s joined with
the same short string of □s and ■s (139 characters long in total). The whole string was repeated
six times, giving an initial condition of 834 cells. The blocks of 52 and 53 ■s should show that the
phase transition takes place at timestep 26, when the triangles disappear.

Figure D.1 Rule 130 showing a segment of the initial condition described in this section. The phase transition takes

place at step 26, the time at which the triangles disappear.

Appendix - Phase Changes Initial Condition Neutral Emergence and Coarse Graining Cellular Automata

270

D.1 Investigating string length
There is a substantial increase in variation within the MI results if we reduce the length of the ini-
tial condition. The next three graphs show MI results of 130 coarse grained to 128, starting from
the initial condition we have just outlined. In all cases, the CA has been divided into four chunks
horizontally and has a y-chunk of one.

We calculate the MI for some graphs differently in this section. Previously, the state space has
been divided into blocks three coarse cells long (so six at the fine level for	g	= 2) and one cell (one
timestep) high. Such a model is described as having an x-block of 3 and a y-block of 1, in analogy to
x-chunk and y-chunk (§12.2). This notation is fully introduced in §12.17.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Mean

Figure D.2 MI between rules 130 and 128 for the mixed 52 and 53 ■s initial condition with x-block = 3, y-block = 1.

There is relatively little variation between the four x-blocks, and the mean curve is smooth.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Mean

Figure D.3 MI between rules 130 and 128 for the mixed 52 and 53 ■s initial condition with x-block = 2, y-block = 1.

As with the x-block = 3 graph, there is little variance between the chunks and the mean graph is smooth.

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Phase Changes Initial Condition

271

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Mean

Figure D.4 MI between rules 130 and 128 for the mixed 52 and 53 ■s initial condition with x-block = 6, y-block =

1. There is a little more variation in the lines and the mean curve is less smooth, but the series is still close to graphs

above.

The next three graphs show the MI between rules 130 and 128 for a shorter initial condition 40%
as long as before (340 cells) and only containing strings of 52 ■s interspersed with the pattern
□□■□□■□■□□□□□■□□□ (i.e. we no longer alternate between blocks of 52 and 53 ■s). We explore
this next.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Mean

Figure D.5 MI between rules 130 and 128 with x-block = 3, y-block = 1 for the shorter 340 cell initial condition.

Though the mean curve is still smooth, there is significantly more variation in each chunk’s MI.

Appendix - Phase Changes Initial Condition Neutral Emergence and Coarse Graining Cellular Automata

272

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Mean

Figure D.6 MI between rules 130 and 128 with x-block = 2, y-block = 1 for the shorter 340 cell initial condition. We

see significant resonance in the MIs as the simulation progresses, overpowering the mean graph’s curve (see §D.2).

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

M
I

Timestep

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Mean

Figure D.7 MI between rules 130 and 128 with x-block = 6, y-block = 1 for the shorter 340 cell initial condition.

The differences between each chunk are not in sync with each other as they were with x-block = 2, so the mean

curve is better, though there is still some resonance. The individual chunks’ curves are quite disparate, leading to an

uneven mean curve.

D.2 Avoiding MI resonance
When the experiments were carried out with the shorter 340 cell initial condition, we found sig-
nificant periodic variations in the MI at certain x-block sizes. Typically all of the chunks’ MIs go up
and down in consort; we call these unwanted fluctuations MI	resonance.

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Phase Changes Initial Condition

273

Figure D.6 shows serious MI resonance and has x-block = 2, but Figure D.5, with x-block = 3, looks
relatively free from resonance. Figure D.5 gives much better results because 52 does not divide into
three (or 104 into six at the fine level), whereas it does (of course) divide into two. This means that
the edges of all six triangles fall at the same position within a block throughout the run. Further,
it must be the case (at the coarse level) that both edges of each triangle fall on the boundary of a
chunk at every other timestep.

The triangles – specifically the triangle edges – contribute significantly towards the entropy of rule
130 (and totally towards the MI between it and 128) before the phase transition. But these edges
will be invisible to the MI calculations if they fall on a block boundary. With triangles of base size
52 and x-block = 2, these edge states are omitted every other step, and a significant MI resonance
is seen.

Time step 1

Time step 2

Figure D.8 These close-ups show the locations at which blocking can slice up a segment of rule 130’s triangles. The

initial condition tries to ensure that we always have all of these blocks when calculating the MI. Using the shorter

initial condition (with triangles that are 52 cells wide only) means that we miss out on the combined red and grey

state every other timestep with some x-blocks, resulting in significant MI resonance.

Using a triangle of base size 53 helps significantly as it is odd and thus prevents both edges from
vanishing every other step with x-block = 2. It is also prime, which prevents the problem reoccur-
ring at larger x-blocks. Despite its primality, these triangles still show some unwanted resonance for
certain odd block sizes, presumably because the majority of edges vanish together at those sizes. We
found that including triangles of size 52 and 53 reduced resonance to an acceptable level.1

1 It is important that the triangles are almost the same size so we see a sharp phase transition – using primes 47 or 59 would have
left too large a gap.

Appendix - Phase Changes Initial Condition Neutral Emergence and Coarse Graining Cellular Automata

274

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

275

E EXTRA ENTROPY OF SELECTED RULES

E.1 Extra entropy of rule 130’s coarse grainings
These tables show the maximum and mean extra entropy between rule 130 and its coarse grainings
for different x-blocks over 51-step runs with the initial condition in §12.8. The y-block is one for
all runs.

E.1.1 Rule 34
Diagonal lines that tally with those made by rule 130. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 258.3% 120.8% 41.6% 13.8% 10.8% 12.1% 6.9% 5.6% 0.0%

Mean 161.2% 75.9% 25.4% 6.9% 4.0% 3.3% 1.9% 1.3% 0.0%

x-block 1 2 3 4 5 6 8 10 15
Max 0.229 0.343 0.255 0.136 0.125 0.141 0.128 0.106 0.103

Mean 0.174 0.250 0.168 0.0694 0.0467 0.0407 0.0297 0.0295 0.0289

E.1.3 Rule 50
Chequered pattern starting from single nodes and expanding outwards. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 1275.6% 285.9% 181.6% 96.7% 79.8% 45.8% 40.9% 16.1% 5.8%

Mean 523.0% 147.6% 89.0% 42.9% 39.5% 26.2% 17.5% 8.5% 1.1%

x-block 1 2 3 4 5 6 8 10 15
Max 0.925 1.13 1.19 0.954 0.946 0.704 0.690 0.679 0.501

Mean 0.676 0.737 0.698 0.509 0.523 0.393 0.348 0.313 0.225

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

276

E.1.4 Rule 84
Thick diagonal lines in the opposite direction from rule 130’s lines. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 26603.9% 748.1% 308.2% 203.7% 152.3% 138.9% 88.0% 26.8% 3.6%

Mean 6314.4% 315.2% 119.5% 72.6% 49.3% 39.2% 22.9% 9.6% 0.9%

x-block 1 2 3 4 5 6 8 10 15
Max 0.513 0.816 0.894 0.951 0.847 0.919 0.673 0.770 0.556

Mean 0.422 0.588 0.538 0.452 0.391 0.366 0.270 0.277 0.164

E.1.5 Rule 128
Triangles that correspond with those seen in rule 130. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x-block 1 2 3 4 5 6 8 10 15
Max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

277

E.1.6 Rule 162
Triangles and lines that correspond to rule 130. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 96.2% 31.8% 14.6% 10.1% 8.4% 7.9% 6.3% 5.7% 2.9%

Mean 66.0% 20.1% 9.1% 5.3% 3.3% 3.0% 2.2% 1.7% 0.2%

x-block 1 2 3 4 5 6 8 10 15
Max 0.483 0.350 0.233 0.193 0.183 0.181 0.161 0.159 0.148

Mean 0.347 0.239 0.153 0.107 0.0715 0.0674 0.0475 0.0552 0.0495

E.1.7 Rule 179
Triangles overlaid on areas of contiguous ■s and □s in the initial condition (subsuming rule 130’s
triangles). Chequered pattern elsewhere. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 3205.9% 475.7% 214.8% 117.3% 83.2% 73.6% 50.7% 24.4% 6.3%

Mean 978.8% 237.3% 115.1% 64.5% 42.3% 37.7% 24.0% 11.3% 1.2%

x-block 1 2 3 4 5 6 8 10 15
Max 0.970 1.11 1.07 1.00 0.863 0.879 0.733 0.847 0.584

Mean 0.711 0.787 0.716 0.625 0.503 0.500 0.330 0.412 0.256

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

278

E.1.9 Rule 186
Inverse of rule 162. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 64.4% 24.5% 6.5% 3.4% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 45.4% 14.2% 3.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x-block 1 2 3 4 5 6 8 10 15
Max 0.255 0.251 0.0931 0.0577 0.000 0.000 0.000 0.000 0.000

Mean 0.185 0.159 0.0450 0.0178 0.000 0.000 0.000 0.000 0.000

E.1.11 Rule 187
Inverse of rule 34. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 290.8% 148.7% 46.5% 23.0% 14.0% 13.1% 7.7% 8.4% 2.3%

Mean 212.7% 86.6% 28.1% 12.1% 7.9% 6.4% 4.7% 2.9% 0.8%

x-block 1 2 3 4 5 6 8 10 15
Max 0.316 0.594 0.471 0.383 0.352 0.331 0.356 0.318 0.256

Mean 0.255 0.450 0.346 0.255 0.168 0.176 0.101 0.133 0.116

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

279

E.1.13 Rule 213
Inverse of rule 84. Not a good match.

x-block 1 2 3 4 5 6 8 10 15
Max 52030.4% 603.5% 509.0% 220.1% 140.4% 189.0% 84.6% 26.1% 6.0%

Mean 11451.7% 305.7% 136.2% 77.2% 45.2% 48.9% 25.9% 11.3% 1.0%

x-block 1 2 3 4 5 6 8 10 15
Max 0.663 0.976 1.36 0.940 1.13 1.08 0.773 0.885 0.556

Mean 0.555 0.719 0.782 0.456 0.497 0.460 0.322 0.334 0.202

E.1.15 Rule 254
Inverse of rule 128. A good match.

x-block 1 2 3 4 5 6 8 10 15
Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x-block 1 2 3 4 5 6 8 10 15
Max 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

E.1.16 Analysis of rule 130’s coarse grainings
We see a clear distinction between well- and poorly-matched rules: the well-correlated rules have
mean differences between 0 and 25% with poorly-matched grainings coming in at several times
that figure. Rule 128 and its inverse 254 are total coarse grainings of rule 130 and therefore their
MIs and coarse entropies are identical (yielding 0 extra entropy).

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

280

E.2 Extra entropy of rule 140’s coarse grainings
Rule 140 draws right-angled triangles with vertical lines coming out of their base and from single
blocks in the starting state.

As with the results above, these tables show the maximum and mean extra entropy for different
x-blocks over 51-step runs. The y-block is one for all runs.

E.2.1 Rule 136
Corresponds to fine triangles in rule 140. A good match and total coarse graining.

x-block 1 2 3 4 5 6
Max 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Mean 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x-block 1 2 3 4 5 6
Max 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

E.2.3 Rule 140
Covers fine rule 140 well, catching most vertical lines. A good match.

x-block 1 2 3 4 5 6
Max 153.6% 66.4% 33.9% 17.1% 6.9% 6.8%

Mean 83.7% 38.9% 19.8% 10.5% 4.1% 3.8%

x-block 1 2 3 4 5 6
Max 0.253 0.327 0.298 0.221 0.114 0.126

Mean 0.182 0.236 0.199 0.152 0.0706 0.0704

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

281

E.2.5 Rule 184
Dominant feature is diagonal lines in same direction as rule 140’s triangle edges. Not a good match.

x-block 1 2 3 4 5 6
Max 23648.8% 788.1% 344.9% 203.8% 121.4% 78.3%

Mean 3900.8% 283.6% 110.6% 62.4% 38.2% 25.0%

x-block 1 2 3 4 5 6
Max 0.653 1.12 1.34 1.41 1.31 1.15

Mean 0.511 0.751 0.733 0.671 0.547 0.457

E.2.6 Rule 204
Straight lines approximately the inverse of rule 140’s lines. A good match.

x-block 1 2 3 4 5 6
Max 1480.8% 87.1% 29.4% 6.6% 6.9% 3.3%

Mean 898.6% 66.7% 22.4% 5.5% 5.1% 2.3%

x-block 1 2 3 4 5 6
Max 0.476 0.465 0.309 0.0973 0.112 0.0629

Mean 0.383 0.369 0.234 0.0781 0.0800 0.0415

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

282

E.2.8 Rule 206
Inverse of rule 140. A good match.

x-block 1 2 3 4 5 6
Max 96.8% 55.9% 32.5% 15.6% 8.4% 7.5%

Mean 58.2% 31.6% 17.9% 6.7% 1.9% 2.0%

x-block 1 2 3 4 5 6
Max 0.366 0.425 0.393 0.308 0.197 0.169

Mean 0.229 0.270 0.227 0.119 0.0439 0.0444

E.2.9 Rule 226
Diagonal lines following edge of triangle and starting at other points. Not a good match.

x-block 1 2 3 4 5 6
Max 2888.9% 832.3% 523.4% 412.3% 216.4% 128.3%

Mean 1089.8% 294.1% 128.7% 73.4% 40.1% 25.6%

x-block 1 2 3 4 5 6
Max 0.366 0.425 0.393 0.308 0.197 0.169

Mean 0.229 0.270 0.227 0.119 0.0439 0.0444

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

283

E.2.10 Rule 238
Inverse of rule 136 and a total coarse graining. A good match.

x-block 1 2 3 4 5 6
Max 102.72% 32.04% 9.82% 8.54% 5.21% 3.72%

Mean 30.41% 12.13% 3.89% 4.66% 1.58% 1.08%

x-block 1 2 3 4 5 6
Max 0.178 0.149 0.0818 0.148 0.105 0.0639

Mean 0.0816 0.0650 0.0300 0.0471 0.0184 0.0113

E.2.11 Rule 252
Inverse triangles in wrong direction. Not a good match.

x-block 1 2 3 4 5 6
Max 1886.6% 340.1% 152.8% 70.3% 49.9% 31.7%

Mean 562.4% 154.1% 73.5% 32.9% 21.4% 14.1%

x-block 1 2 3 4 5 6
Max 0.880 0.951 0.959 0.788 0.680 0.490

Mean 0.309 0.360 0.333 0.245 0.198 0.144

E.2.12 Analysis of rule 140’s coarse grainings
As with rule 130, the well-matched rules show low mean difference percentages at around 20% of
the MI for x-block = 3, while the poorer rules have much larger differences, approaching an order
of magnitude more. The split is quite stark.

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

284

E.3 Extra entropy for rule 43’s coarse grainings
Cells in rule 43 alternate between on and off at each timestep. At places where the initial condition
changes from ■ to □, the CA traces a diagonal pattern that reflects this switch.

E.3.1 Rule 136
Maps a ■□ fine pattern to ■. If several ■□ appear together, draws right angled triangles. A poor
match.

x-block 1 2 3 4 5 6
Max 182.4% 64.0% 0.0% 0.0% 0.0% 0.0%

Mean 91.2% 32.0% 0.0% 0.0% 0.0% 0.0%

x-block 1 2 3 4 5 6
Max 0.0869 0.105 0.000 0.000 0.000 0.000

Mean 0.00334 0.00403 0.000 0.000 0.000 0.000

E.3.2 Rule 170
Draws diagonal lines starting from a ■□ fine pattern. Not a good match.

x-block 1 2 3 4 5 6
Max 3436.8% 539.4% 321.1% 105.9% 74.4% 55.1%

Mean 1802.5% 289.2% 120.7% 54.8% 38.1% 25.3%

x-block 1 2 3 4 5 6
Max 0.592 0.998 1.26 1.12 1.12 0.949

Mean 0.524 0.793 0.792 0.679 0.641 0.490

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

285

E.3.3 Rule 184
Draws diagonal lines starting from a ■□ fine pattern. Not a particularly good match, though better
than most.

x-block 1 2 3 4 5 6
Max 1130.8% 205.3% 118.7% 84.4% 48.9% 48.9%

Mean 523.6% 146.4% 78.2% 44.4% 29.7% 21.0%

x-block 1 2 3 4 5 6
Max 0.561 0.780 0.911 0.997 0.846 0.867

Mean 0.472 0.633 0.651 0.587 0.531 0.425

E.3.4 Rule 192
Draws right angled triangles. Not a good match.

x-block 1 2 3 4 5 6
Max 309.6% 172.4% 98.2% 82.0% 29.6% 57.4%

Mean 161.3% 70.3% 36.0% 31.5% 11.4% 11.8%

x-block 1 2 3 4 5 6
Max 0.208 0.197 0.0938 0.109 0.0703 0.0977

Mean 0.0516 0.0376 0.0282 0.0291 0.0148 0.0116

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

286

E.3.5 Rule 226
Draws diagonal lines starting from a ■□ fine pattern. Not a good match.

x-block 1 2 3 4 5 6
Max 1705.3% 281.8% 167.9% 96.8% 62.9% 50.9%

Mean 692.6% 173.0% 101.6% 52.3% 37.8% 22.4%

x-block 1 2 3 4 5 6
Max 0.741 1.05 1.24 1.16 1.04 0.960

Mean 0.621 0.846 0.887 0.774 0.683 0.478

E.3.6 Rule 238
Similar behaviour to rule 136, though inverted. Not a good match.

x-block 1 2 3 4 5 6
Max 351.9% 200.4% 129.0% 10.6% 25.6% 56.0%

Mean 240.9% 58.3% 28.5% 2.4% 5.3% 9.3%

x-block 1 2 3 4 5 6
Max 0.443 0.313 0.105 0.0825 0.0969 0.0833

Mean 0.0414 0.0281 0.0126 0.00608 0.00643 0.00321

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

287

E.3.7 Rule 240
Draws diagonal lines that match fine rule’s diagonal pattern. A good match.

x-block 1 2 3 4 5 6
Max 772.9% 156.0% 85.4% 62.0% 52.5% 48.5%

Mean 450.1% 130.2% 74.4% 52.7% 43.9% 38.2%

x-block 1 2 3 4 5 6
Max 5.00 1.31 0.822 0.638 0.455 0.362

Mean 2.51 0.953 0.545 0.409 0.273 0.179

E.3.8 Rule 252
Draws right angled triangles following some of fine rule’s structure. Not a good match.

x-block 1 2 3 4 5 6
Max 343.1% 172.4% 101.9% 60.6% 37.7% 41.6%

Mean 216.7% 87.4% 41.2% 28.6% 11.5% 12.3%

x-block 1 2 3 4 5 6
Max 0.612 0.486 0.444 0.410 0.316 0.281

Mean 0.322 0.281 0.229 0.208 0.111 0.102

E.3.9 Analysis of rule 43’s coarse grainings
Rule 43 has fewer good coarse grainings than rules 130 and 140, but we see a similar correlation
between coarse grainings that appear to match well and those with a low extra entropy. These results
do show the importance of considering the absolute extra entropy in addition to percentage figures:
rule 192, which is a poor match, has extra entropy percentages significantly lower than the well
matched rules 240 and 184. And it does match a portion of the underlying CA quite well, but this
portion is tiny. This is reflected in the absolute values, which are tiny.

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

288

E.4 Extra entropy of rule 192’s coarse grainings
Rule 192 draws right angled, solid triangles.

E.4.1 Rule 12
Vertical lines descend from edges of rule 192’s triangles. Not a good match.

x-block 1 2 3 4 5 6
Max 6304.1% 3395.5% 1119.0% 611.5% 857.7% 332.0%

Mean 2669.7% 1262.3% 515.5% 309.8% 359.5% 165.4%

x-block 1 2 3 4 5 6
Max 34.4 35.3 15.6 10.8 19.4 7.50

Mean 14.0 12.5 6.64 5.00 7.61 3.41

E.4.2 Rule 48
Diagonal lines from edges of rule 192’s triangles. Lines extend beyond edge of triangles. Not a
good match.

x-block 1 2 3 4 5 6
Max 3020.1% 1454.3% 591.2% 556.6% 351.4% 303.9%

Mean 1500.7% 684.1% 309.3% 245.4% 182.9% 130.9%

x-block 1 2 3 4 5 6
Max 18.0 16.5 8.88 11.7 8.22 7.97

Mean 8.43 7.27 4.27 4.61 3.93 2.90

Neutral Emergence and Coarse Graining Cellular Automata Appendix - Extra Entropy

289

E.4.3 Rule 192
Rule 192 maps perfectly onto itself. A good match.

x-block 1 2 3 4 5 6
Max 845.8% 462.1% 177.1% 273.9% 209.4% 125.1%

Mean 225.0% 132.4% 39.8% 66.0% 49.4% 68.8%

x-block 1 2 3 4 5 6
Max 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000

E.4.4 Rule 207
Inverse of rule 12. Not a good match.

x-block 1 2 3 4 5 6
Max 6917.2% 3096.5% 1103.5% 668.7% 504.1% 324.6%

Mean 1253.1% 501.3% 226.0% 136.3% 127.3% 83.6%

x-block 1 2 3 4 5 6
Max 51.7 43.3 22.0 16.4 13.3 9.28

Mean 16.0 11.8 7.43 5.37 5.48 3.73

Appendix - Extra Entropy Neutral Emergence and Coarse Graining Cellular Automata

290

E.4.5 Rule 243
Inverse of rule 48. Not a good match.

x-block 1 2 3 4 5 6
Max 3622.8% 2225.3% 899.0% 670.4% 508.5% 445.0%

Mean 1515.8% 716.3% 370.4% 256.5% 195.1% 137.9%

x-block 1 2 3 4 5 6
Max 26.6 30.5 17.3 16.5 13.8 13.1

Mean 10.6 9.15 6.65 5.46 4.90 3.56

E.4.6 Rule 252
Inverse of rule 192. A good match.

x-block 1 2 3 4 5 6
Max 1419.4% 836.0% 531.1% 347.3% 293.1% 280.3%

Mean 418.3% 256.9% 187.9% 122.6% 129.9% 99.4%

x-block 1 2 3 4 5 6
Max 2.93 3.02 1.93 1.18 1.42 1.39

Mean 1.31 1.32 1.08 0.600 0.771 0.711

E.4.7 Analysis of rule 192’s coarse grainings
We see the same pattern emerging again with rule 192. The two good matches, rules 192 and 252,
have significantly lower excess entropies than the other rules, whether we look at the relative or
absolute figures.

The relatively high percentages for rule 192 (which has an absolute extra entropy of 0 in all cases)
are due to rounding errors: one typical calculation divides 3.2 × 10-8 by 3.7 × 10-9.

Neutral Emergence and Coarse Graining Cellular Automata References

291

REFERENCES

1 D. Dumitrescu, Evolutionary	Computation. CRC Press, 2000.

2 J. R. Koza, in W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone, Genetic	Programming:	An	Introduction.
Morgan Kaufmann Publishers, 1998.

3 W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone, Genetic	Programming:	An	Introduction. Morgan
Kaufmann Publishers, 1998.

4 R. Dawkins, The	Blind	Watchmaker. Longman Scientific & Technical, 1986.

5 J. H. Holland, Adaptation	in	Natural	and	Artificial	Systems. MIT Press, 1992.

6 J. R. Koza, Genetic	Programming:	on	the	Programming	of	Computers	by	Means	of	Natural	Selection. MIT
Press, 1992.

7 I. Rechenberg, Evolutionsstrategie:	Optimierung	technischer	Systeme	nach	Prinzipien	der	biologischen	Evolu-
tion. Frommann-Holzboog, 1973.

8 A. Weeks, “Hannah ~ Chemistry Inspired Search,” Department of Computer Science, MEng Final Project,
University of York, 2005.

9 Inman Harvey, “Open the Box,” Workshop on Evolutionary Computation with Variable Size Representa-
tion, ICGA97, Intl. Conf. on Genetic Algorithms, Michigan State University, 1997.

10 W. Comisky, J. Yu, J. R. Koza, “Automatic Synthesis of a Wire Antenna Using Genetic Programming,”
2000 Genetic and Evolutionary Computation Conference, pp. 179-186, 2000.

11 J. R. Koza, F. H. Bennett, D. Andre, Genetic	Programming	III:	Automatic	Programming	and	Automatic	Cir-
cuit	Synthesis. Morgan Kaufmann, 1999.

12 P. Nordin, W. Banzhaf, “Complexity Compression and Evolution,” Genetic Algorithms: Proceedings of the
Sixth International Conference, pp. 310-317, 1995.

13 A. Teller, “Evolving Programmers: The Co-Evolution of Intelligent Recombination Operators,” Advances	in	
Genetic	Programming	2, P. J. Angeline, K. E. Kinnear eds. MIT Press, pp. 45-68, 1996.

14 C. Adami, Introduction	to	Artificial	Life. Springer, 1998.

15 M. Ridley, Evolution. Blackwell Publishing, 2004.

16 J. Watson, N. H. Hopkins, J. W. Roberts, J. Argetsinger-Streitz, A. M. Weiner, Molecular	Biology	of	the	
Gene. Benjamin / Cummings, 1987.

17 S. A. Kauffman, The	Origins	of	Order:	Self-Organization	and	Selection	in	Evolution. Oxford University Press,
1993.

References Neutral Emergence and Coarse Graining Cellular Automata

292

18 C. G. Langton, “Computation at the Edge of Chaos: Phase-Transitions and Emergent Computation,” PhD
thesis, University of Michigan, 1991.

19 S. A. Kauffman, At	Home	in	the	Universe. Oxford University Press, 1995.

20 J. Gleick, Chaos. Vintage, 1998.

21 Wikipedia (undated). Kepler’s	laws	of	planetary	motion. http://en.wikipedia.org/wiki/Kepler%27s_laws_of_
planetary_motion

22 S. H. Strogatz, Nonlinear	Dynamics	and	Chaos. Perseus Books Publishing, 1994.

23 D. Poole, Linear	Algebra:	a	modern	introduction. Brooks Cole, 2006.

24 B. P. Tu, S. L. McKnight, “Metabolic cycles as an underlying basis of biological oscillations.” Nature	Re-
views	Molecular	Cell	Biology September 2006 7(9), pp. 696-701, 2006.

25 Wikipedia (undated). Tacoma	Narrows	Bridge. http://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge

26 S. Doole, A. R. Champneys (undated). Tacoma	Narrows	Bridge	Disaster. http://www.enm.bris.ac.uk/re-
search/nonlinear/tacoma/tacoma.html

27 E. N. Lorenz, “Deterministic nonperiodic flow.” Journal	of	Atmospheric	Science 20 2, pp. 130-148, 1963.

28 W. Malkus, L. Howard. Malkus and Howard invented and built the waterwheel mechanical model of the
Lorenz equations at MIT in the 1970s (cited in [22]).

29 Wikipedia (2005, Sep. 29). Image:Roessler	attractor.png. http://commons.wikimedia.org/wiki/
Image:Roessler_attractor.png

30 P. L. Read (undated). Three	Dimensional	Systems:	Lecture	6:	The	Lorenz	Equations. http://www.atm.ox.ac.
uk/user/read/chaos/lect6.pdf

31 Wikipedia (2005, May 25). Image:Lorenz	system	r28	s10	b2-6666.png. http://commons.wikimedia.org/
wiki/Image:Lorenz_system_r28_s10_b2-6666.png

32 J. Lighthill, “The recently recognized failure of predictability in Newtonian dynamics.” Procedures	of	the	
Royal	Society	of	London	A 407, pp. 35-50, 1986.

33 Wikipedia (2005, Sep. 14). Image:LogisticMap	BifurcationDiagram.png. http://commons.wikimedia.org/
wiki/Image:LogisticMap_BifurcationDiagram.png

34 M. Feigenbaum, “Universal behavior in nonlinear systems.” Physica	7D:	Nonlinear	Phenomena, pp. 16-39,
1980.

35 P. Cvitanovic, Universality	in	chaos. Taylor & Francis, 1989.

36 E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning	Ways	for	your	Mathematical	Plays. Academic Press,
1982.

37 S. Wolfram, “Universality and complexity in cellular automata.” Physica	D 10, pp. 1-35, 1984.

Neutral Emergence and Coarse Graining Cellular Automata References

293

38 E. W. Weisstein (undated). Percolation	Threshold,	MathWorld. http://mathworld.wolfram.com/Percolation-
Threshold.html

39 S. Wright, “Evolution in Mendelian populations.” Genetics 16, pp. 97-159, 1931.

40 S. A. Kauffman, S. Levin, “Towards a general theory of adaptative walks on rugged landscapes.” J.	Theoret.	
Biol	128, pp. 11-45, 1987.

41 E. D. Weinberger, “Correlated and uncorrelated fitness landscapes and how to tell the difference.” Journal	
of	Biological	Cybernetics	63 5, pp. 325-336, 1990.

42 W. Feller, An	Introduction	to	Probability	Theory	and	Its	Applications	volume	2	(Probability	&	Mathematical	
Statistics). John Wiley & Sons, 1971.

43 W. C. Wimsatt, “Developmental constraints, generative entrenchment, and the innate-acquired distinc-
tion.” Integrating	Scientific	Disciplines, Bechtel, ed., Dordrecht, 1986.

44 M. Eigen, P. Schuster, “The Hypercycle: A Principle of Natural Self-Organization.” Die	Naturwissenschaf-
ten 64, pp. 541-565, 1977.

45 M. Eigen, “Selforganization of Matter and the Evolution of Biological Macromolecules.” Die	Naturwissen-
schaften 58, pp. 465-523, 1971.

46 C. Gershenson, “Introduction to Random Boolean Networks,” Ninth International Conference on the
Simulation and Synthesis of Living Systems (ALife IX), pp. 160-173, 2004.

47 S. Haykin, Neural	Networks:	a	comprehensive	foundation. Prentice-Hall, 1999.

48 A. Wuensche, “Genomic Regulation Modelled as a Network with Basins of Attraction,” Proc.	Pac.	Symp.	
Biocomput., pp. 89-102, 1998.

49 Wikipedia (undated). Human	Genome. http://en.wikipedia.org/wiki/Human_genome

50 B. Derrida, D. Stauffer, “Phase transitions in two-dimensional Kauffman cellular automata.” Europhys.	Lett	
2, pp. 739-745, 1986.

51 D. Stauffer, “Random Boolean networks: Analogy with percolation.” Phil.	Mag.	B 56, pp. 901-916, 1987.

52 D. Stauffer, “On forcing functions in Kauffman’s random Boolean networks.” J.	Statis.	Phys 40, pp. 789-
794, 1987.

53 B. Derrida, Y. Pomeau, “Random networks of automata: A simple annealed approximation.” Europys.	Lett.
1, pp. 45-49, 1986.

54 W. R. Ashby, Design	for	a	Brain.	Wiley, 1960.

55 M. L. Rosenzweig, “Evolution of the predator isocline.” Evolution	27, pp. 84-94, 1973.

56 L. Van Valen, “A new evolutionary theory.” Evolutionary	Theory	1, pp. 1-30, 1973.

References Neutral Emergence and Coarse Graining Cellular Automata

294

57 J. Maynard Smith, G. R. Price, “The logic of animal conflict.” Nature	246, pp. 15-18, 1973.

58 S. Russell, P. Norvig, Artificial	Intelligence:	a	modern	approach. Prentice Hall, 2003.

59 M. L. Rosenzweig, J. S. Brown, T. L. Vincent, “Red queens and ESS: The coevolution of evolutionary
rates.” Evolutionary	Ecology	1, pp. 59-84, 1987.

60 P. Bak, C. Tang, K. Wiesenfeld, “Self-organized criticality.” Phys.	Rev.	A 38, pp. 364-374, 1988.

61 P. Bak, How	Nature	Works:	the	science	of	self-organized	criticality. Oxford University Press, 1997.

62 D. M. Raup, “Biological extinction in earth history.” Science	231, pp. 1528-1533, 1986.

63 T. S. Ray,	Evolution,	Ecology	and	Optimization	of	Digital	Organisms. Santa Fe Institute working paper 92-
08-042, 1992.

64 S. Wolfram, A	New	Kind	of	Science. Wolfram Media, 2002.

65 N. Owens, S. Stepney, “Investigations of the Game of Life cellular automata rules on Penrose Tilings: life-
time, ash and oscillator statistics.” Journal	of	Cellular	Automata, 2010.

66 M. Gardner, “The fantastic combinations of John Conway’s new solitaire game “life.”” Scientific	American,
1970.

67 J. von Neumann, A. W. Burks, Theory	of	self-reproducing	automata. University of Illinois Press, 1966.

68 A. Flammenkamp, Top	100	of	Game-of-Life	Ash	Objects	(undated). http://wwwhomes.uni-bielefeld.de/
achim/freq_top_life.html

69 P. Chapman (2002, Nov. 11). Life	Universal	Computer. http://www.igblan.free-online.co.uk/igblan/ca/

70 M. Cook, “Universality in Elementary Cellular Automata.” Complex	Systems	15, pp. 1-40, 2004.

71 M. Gell-Mann, The	Quark	and	the	Jaguar:	Adventures	in	the	Simple	and	the	Complex. Abacus, 1995.

72 P. Cariani, “Emergence and Artificial Life.” Artificial	Life	II,	C. G. Langton, C. Taylor, J. D. Farmer, S.
Rasmussen eds. Addison-Wesley, pp. 775-798, 1991.

73 C.E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal, vol. 27, pp.
379–423, 623-656, July, October, 1948.

74 D. T. Haynie, Biological	Thermodynamics. Cambridge University Press, 2001.

75 C. K. Mathews, K. E. van Holde, K. G. Ahern, Biochemistry. Addison-Wesley, 2000.

76 Wikipedia, Mole	(Unit) (undated). http://en.wikipedia.org/wiki/Mole_%28unit%29

Neutral Emergence and Coarse Graining Cellular Automata References

295

77 S. Levy, Artificial	Life. Vintage Books, Random House, 1992.

78 C. Adami, Introduction	to	Artificial	Life. Springer, 1998.

79 C. E. Shannon, “A Mathematical Theory of Communication.” Bell	System	Technical	Journal, pp. 379-423,
1948.

80 J. Goldstein, “Emergence as a construct: History and issues.” Emergence, pp. 49-72, 1999.

81 C. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model.” Computer	Graphics 21, pp.
25-34, 1987.

82 C. Reynolds. Boids:	Background	and	Update (undated). http://www.red3d.com/cwr/boids/

83 C. R. Ward, F. Gobet, G. Kendall, “Evolving collective behavior in an artificial ecology.” Artificial	Life 7,
pp. 191-209, 2001.

84 E. F. Fama, “Efficient capital markets II.” J.	Finance, pp 1575-1617, 1991.

85 S. Stepney, F. Polack, H. Turner, “Engineering Emergence,” ICECCS’06, pp. 89-97, 2006.

86 C. Reynolds, quoted in S. Levy, Artificial	Life. Vintage Books, Random House, 1992.

87 Aristotle, Metaphysics. Volume book H (VIII), 350 BC. Translation from W. D. Ross, Aristotle’s	metaphysics,
Oxford University Press, 1924.

88 G. H. Lewes, Problems	of	Life	and	Mind Vol	2. Kegan Paul, Trench, Turbner, & Co., 1875.

89 R. Abbott, “Emergence explained: getting epiphenomena to do real work.” Complexity 12, pp. 13-26,
2006.

90 A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in
ruhenden Flüssigkeiten suspendierten Teilchen.” Annalen	der	Physik 322, pp. 549-560, 1905.

91 P. W. Anderson, “More is different.” Science 177, pp. 393-396, 1972.

92 S. Weinberg, “Reductionism Redux.” The	New	York	Review	of	Books 5 October 1995, pp. 39-42, 1995.

93 R. J. Campbell, M. H. Bickhard, Physicalism,	emergence	and	downward	causation, (2001). http://www.
lehigh.edu/˜mhb0/physicalemergence.pdf.

94 J. Kim, Mind	in	a	Physical	World:	An	Essay	on	the	Mind-Body	Problem	and	Mental	Causation. MIT Press,
1998.

95 C. R. Shalizi, “Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Au-
tomata,” PhD thesis, University of Wisconsin at Madison, 2001.

References Neutral Emergence and Coarse Graining Cellular Automata

296

96 M. A. Bedau, “Downward Causation and the Autonomy of Weak Emergence.” Principia 6, pp. 5-50,
2002.

97 A. Burns, I. J. Hayes, G. Baxter, C. J. Fidge, “Modelling temporal behaviour in complex socio-technical
systems.” Technical	Report	YCS-2005-390, Department of Computer Science, University of York, 2005.

98 M. H. Bickhard, D. T. Campbell, “Emergence,” Downward	Causation,	P. B. Andersen, C. Emmeche, N. O.
Finnemann, P. V. Christiansen eds. Aarhus University Press, 2000.

99 Y. Bar-Yam, Dynamics	of	Complex	Systems. Westview Press, 1997.

100 A. J. Ryan, “Emergence is coupled to scope, not level.” Complexity 13, pp. 67-77, 2007.

101 J. A. Silver, Movie	Day	at	the	Supreme	Court	or	“I	Know	It	When	I	See	It”:	A	History	of	the	Definition	of	Ob-
scenity, (2003 May 15). http://library.findlaw.com/2003/May/15/132747.html

102 C. D. Broad, The	Mind	and	its	Place	in	Nature. Kegan Paul, 1925.

103 D. V. Newman, “Chaos, Emergence, and the Mind-Body Problem.” Australasian	Journal	of	Philosophy 79,
pp. 180-196, 2001.

104 J. P. Crutchfield, “The Calculi of Emergence: Computation, Dynamics, and Induction.” Physica	D 75, pp.
11-54, 1994.

105 N. Zaera, D. Cliff, J. Bruten, “(Not) Evolving Collective Behaviours in Synthetic Fish.” Animals	to	Ani-
mats	4:	Proceedings	of	the	Fourth	Internatinal	Conference	on	Simulation	of	Adaptive	Behavior, MIT Press, pp.
635-644, 1996.

106 G. M. Werner, M. G. Dyer, “Evolution of herding behavior in artificial animals.” From	animals	to	animats	
2:	Proceedings	of	the	Second	International	Conference	on	Simulation	of	Adaptive	Behavior, MIT Press, pp.
393-399, 1992.

107 B. L. Partridge, T. J. Pitcher, “Evidence against a hydrodynamic function of fish schools.” Nature 279, pp.
418-419, 1979.

108 C. Reynolds, “An Evolved, Vision-Based Behavioral Model of Coordinated Group Motion.” From	Animals	
to	Animats	2:	Proceedings	of	the	Second	International	Conference	on	Simulation	of	Adaptive	Behavior, MIT
Press, pp. 384-392, 1992.

109 E. M. A. Ronald, M. Sipper, M. S. Capcarrère, “Design, observation, surprise! A test of emergence.” Artifi-
cial	Life, pp. 225-239, 1999.

110 S. C. Stearns, R. F. Hoekstra, Evolution:	an	introduction. Oxford University Press, 2000.

111 C. Adami, “What is complexity?” BioEssays 24, pp. 1085-1094, 2002.

112 C. Adami, N. J. Cerf, “Physical complexity of symbolic sequences.” Physica	D 137, pp. 62-69, 2000.

Neutral Emergence and Coarse Graining Cellular Automata References

297

113 A. N. Kolmogorov, “Three approaches to the definition of the concept “quantity of information,”” Probl.	
Peredachi	Inf., pp. 3-11, 1965.

114 J. A. Clark, S. Stepney, H. Chivers, “Breaking the model: finalisation and a taxonomy of security attacks.”
REFINE	2005, pp. 225-242, 2005.

115 Bicycle Retailer and Industry News. Suit	Filed	Against	Dynacraft,	Wal-Mart	For	Defective	Bicycles, http://
www.bicycleretailer.com/bicycleretailer/headlines/article_display.jsp?vnu_content_id=1000806103

116 I. Sommerville, Software	Engineering. Addison-Wesley, 2001.

117 J. Branke, “Creating robust solutions by means of evolutionary algorithms,” International	Conference	on	
Parallel	Problem	Solving	from	Nature, A. E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel eds. Springer-
Verlag, pp. 119-128, 1998.

118 S. T. Abedon, Microbial	Growth, (1998 Apr 3). http://www.mansfield.ohio-state.edu/~sabedon/biol2025.
htm#stationary_phase

119 E. W. Dijkstra, “A note on two problems in connexion with graphs.” Numerische	Mathematik	1, pp. 269-
271, 1959.

120 D. H. Wolpert, W. G. Macready, “No Free Lunch Theorems for Optimization.” IEEE	Transactions	on	
Evolutionary	Computation 5, pp. 295-296, 1997.

121 F. Polack, S. Stepney, “Emergent Properties Do Not Refine.” Electr.	Notes	Theor.	Comput.	Sci., pp. 163-
181, 2005.

122 H. Turner, S. Stepney, “Rule Migration: Exploring a design framework for modelling emergence in CA-like
systems.” Int.	J.	Unconventional	Computing 3, pp49-66, 2007.

123 N. Israeli, N. Goldenfeld, “Coarse-graining of cellular automata, emergence, and the predictability of com-
plex systems.” Phys.	Rev.	E, 2006.

124 yWorks Developers’ Guide, Organic	Layout	Style, (undated). http://www.yworks.com/products/yfiles/doc/
developers-guide/smart_organic_layouter.html

125 A. Piszcz, T. Soule, “Dynamics of evolutionary robustness.” GECCO	2006, pp. 871-878, 2006.

126 M. Travisano, F. Vasi, R. E. Lenski, “Long-term experimental evolution in Escherichia coli. III. Variation
among replicate populations in correlated responses to novel environments.” Evolution	49, pp. 189-200,
1995.

127 F. Vasi, M. Travisano, R. E. Lenski, “Long-term experimental evolution in Escherichia coli. II. Changes in
life-history traits during adaptation to a seasonal environment.” The	American	Naturalist	144, pp. 432-456,
1994.

128 K. O. Stanley, “Efficient Evolution of Neural Networks Through Complexification,” PhD thesis, University
of Texas at Austin, 2004.

References Neutral Emergence and Coarse Graining Cellular Automata

298

129 W. Fontana, L. W. Buss, “The barrier of objects: From dynamical systems to bounded organization
Boundaries and Barriers,” Boundaries	and	Barriers, J. Casti and A. Karlqvist eds. Addison-Wesley, pp. 56-
116, 1996.

130 T. S. Ray, Evolution,	Ecology	and	Optimization	of	Digital	Organisms, Santa Fe Institute working paper 92-
08-042, 1992.

131 S. B. Carroll, Endless	forms	most	beautiful:	the	new	science	of	evo	devo	and	the	making	of	the	animal	kingdom.
W. W. Norton & Company, 2005.

132 W. J. Gehring, Master	Control	Genes	in	Development	and	Evolution:	The	Homeobox	Story. Yale University
Press, 1998.

133 New Science Foundation, First-Ever	Complete	Plant	Genome	Sequence	Is	Announced	(2000 Dec. 13), http://
www.nsf.gov/od/lpa/news/press/00/pr0094.htm

134 J. L. Payne, M. J. Eppstein, “Emergent Mating Topologies in Spatially Structured Genetic Algorithms.”
GECCO	2006, pp. 207-214, 2006.

135 J. M. Daida, “Characterizing the Dynamics of Symmetry Breaking in Genetic Programming.” GECCO	
2006, pp. 799-806, 2006.

136 J. M. Daida, H. Li, R. Tang, A. M. Hilss, “What makes a problem GP-hard? Validating a hypothesis of
structural causes.” GECCO	2003, pp. 1665-1677, 2003.

137 A. Weeks, S. Stepney, F. A. C. Polack, “Neutral Emergence: a proposal.” Symposium	on	Complex	Systems	
Engineering, 2007.

138 A. Weeks, S. Stepney, F. A. C. Polack, “Neutral Emergence and Coarse Graining.” ECAL	2007, pp. 1131-
1140, 2007.

139 A. Weeks, S. Stepney, F. A. C. Polack, “Investigating emergence by coarse graining Elementary Cellular
Automata.” ALife	XI, pp. 686-693, 2008.

140 A. Weeks, “Towards Automated Proof Using Genetic Programming.” Third Year Project, Department of
Computer Science, University of York, 2004.

141 A. Weeks, “Chemistry Inspired Search.” Fourth Year Project, Department of Computer Science, University
of York, 2005.

142 G. Wald, “The Original Life,” Scientific	American August 1954, pp. 44-53, 1954.

143 R. Shapiro, Origins:	A	Skeptic’s	Guide	to	the	Creation	of	Life	on	Earth. Heinemann, 1986.

144 A. W. Schwartz, G. J. F. Chittenden, “Synthesis of uracil and thymine under simulated prebiotic condi-
tions,” Biosystems September 1977, pp. 87-92, 1977.

145 V.G. Red’ko. Principia	Cybernetica,	Hypercycles, http://pespmc1.vub.ac.be/HYPERC.htm, 1998.

Neutral Emergence and Coarse Graining Cellular Automata References

299

146 W. Fontana, L. W. Buss, “The barrier of objects: From dynamical systems to bounded organization,”
Boundaries	and	Barriers, J. Casti, A. Karlqvist eds. Addison-Wesley, pp. 56-116, 1996.

147 S. K. Scott, Chemical	Chaos. Clarendon Press, 1993.

148 B. P. Belousov, “A periodic reaction and its mechanism,” personal archives, 1951. Translated and published
in Oscillations	and	travelling	waves	in	chemical	systems, R. J. Field, M. Burger eds. Wiley, 1985.

149 A. M. Zhabotinskii, “Periodic processes of the oxidation of malonic acid in solution (study of the kinetics
of Belousov’s reaction).” Biofizika, p. 306, 1964.

150 A. M. Zhabotinskii, A. B. Rovinsky, “Mechanism and nonlinear dynamics of an oscillating chemical reac-
tion.” J.	Stat.	Phys.	48, pp. 959-976, 1987.

151 J. L. Hudson, O. E. Rössler, “Chaos in simple three- and four-variable chemical systems,” Modelling	of	pat-
terns	in	space	and	time, W. Jäger, J. D. Murray eds. Springer, pp. 135-145, 1984.

152 H. C. Killory, O. E. Rössler, J. L. Hudson, “Higher chaos in a four-variable chemical reaction model.”
Phys.	Lett.	A	122, pp. 341-345, 1987.

153 O. E. Rössler, “An equation for continuous chaos.” Phys.	Lett.	57A, pp. 397-398, 1976.

154 O. E. Rössler, “Chaotic behavior in simple reaction systems.” Z.	Naturforsch.	31a, pp. 259-264, 1976.

155 J. P. Crutchfield, J. E. Hanson, “Attractor vicinity decay for a cellular automaton.” Chaos	3, pp. 215-224,
1993.

156 A. Weeks, Coarse	Graining	Graphs	for	Elementary	Cellular	Automata. http://www.cs.york.ac.uk/nature/
group/theses/AndrewWeeks/coarse-graining-graphs.zip, 2010.

157 J. C. Spall, Introduction	to	stochastic	search	and	optimization:	estimation,	simulation,	and	control. John
Whiley and Sons, 2003.

References Neutral Emergence and Coarse Graining Cellular Automata

300

Neutral Emergence and Coarse Graining Cellular Automata References

301

References Neutral Emergence and Coarse Graining Cellular Automata

302

