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Abstract

This thesis is concerned with using mathematical models to investigate the

impacts of stress and epidemiology on ecological frameworks. First we

focus on the effects of stress on honey bee colony decline. We establish

a mathematical model to describe the regulatory processes governing the

hive and general stressors impacting the colony. We analyse this model

in order to understand how these regulatory processes counteract stressors

and find that increasing a density-dependent Allee stressor effect can cause

sudden and unexpected dynamical changes in behaviour.

Our second study examines honey bee hive infection with multiple

routes of transmission. We study a mathematical model of infection with

multiple transmission routes in order to understand how these routes can

impact the spread of disease within a colony. We use published data taken

from the literature and examine the respective contributions to total disease

burden by each route. We demonstrate the presence of a synergistic inter-

action between both infection pathways compared to each infection route

acting alone.

Our third study examines the interaction between two interacting stres-

sors. Toxicant stress can have both immunosuppressive and lethal direct

effects on non-target organisms. We study a model which describes the

within-host processes of cellular health, infection and immunity and anal-
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yse this model under the effects of increasing toxicant stress. We show

that sublethal toxicant stress can promote within-host infection and that

this infection is maximised by an intermediate level of toxicant, rather than

linearly increasing as the toxicant load is increased.

We expand upon this within-host framework to include population level

processes. We do this since infection not only spreads within the host or-

ganism but also spreads between those individuals within a population.

We formulate a nested model to describe the within-host processes and the

between-host epidemiological dynamics under stress to understand how

toxicants impact the spread of population-level disease. We show that in-

fection outbreak at the population level is determined by the interaction

with stress and that the epidemic is maximised by an intermediate level of

toxicant.

Finally we summarise the findings of this thesis and discuss potential

future avenues for research.
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Chapter 1

Introduction

Each chapter in this alternative format thesis has a standalone introduc-

tion, which summarises the empirical and theoretical studies relevant to

each respective chapter in journal publication style. However, none of

these chapters discuss the broader themes underpinning this thesis as a

whole. Here I will briefly give a general overview of different types of

biotic and abiotic stressors and their impacts on populations of host organ-

isms. Second, I will provide an overview of commonly used mathematical

models and their applications, in order to provide context for the models

chosen within this thesis. Finally I will provide the motivation for, and an

overview of the contents of this thesis.

1



2 1.1. Stressors

1.1 Stressors

Throughout this thesis, we define the term stressor to be any natural or

environmental factor which has a detrimental impact on the individual.

Stressors are the external factors impacting the host, while stress is the in-

ternal state induced by those stressors [3]. Stress acts on a relative scale to

the normal functioning of the organism and is species-specific, for example,

the lack of air is completely normal to fish, but would indeed be extremely

stressful to other animals [3]. Within ecological systems, organisms face a

plethora of stressors [4], ranging from heat stress, freezing temperatures,

desiccation, oxygen depletion, environmental pollutants and parasites [5].

In this thesis we focus upon two common stressors; environmental stress

and parasites.

Environmental stress and ecotoxicology

Toxic chemicals released into the environment damage and cause stress to

biological organisms at the individual level, with consequences for popu-

lations and communities. The field of ecotoxicology is a branch of toxicol-

ogy which examines the effects of these chemical pollutants on organisms

[6] and ecotoxicological studies have experienced a substantial growth in

recent years [7]. Toxicants are usually introduced into the environment di-

rectly by or as a by-product of human activity e.g. for a substance intended
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to control pests. The use of toxicants such as pesticides to control agri-

cultural pests continues to increase globally [8–10]. These anthropogenic

toxicants are known to affect a wide range of non-target species including

birds and mammals [11], aquatic invertebrates and fish [7, 12], and insects

such as butterflies, moths and bees [9].

Toxicants can have both lethal [13–17] and sublethal effects [18, 19]. Sub-

lethal effects often impact the behavioural or developmental traits of an

organism such as growth, mobility, feeding, learning and memory, while

lethal effects are often quantified as the lethal concentration (LC50) expected

to kill 50% of the population. In general, the individual-level impacts of

toxicants on organisms are well studied, but the effects on higher scale

population processes are largely unknown [20]. Many toxicology studies

focus on single-species toxicity tests [7] or on the molecular, physiological

and cellular effects of toxicants [20], or on simply monitoring the decline

in population as toxicant exposure increases [20]. Therefore quantifying

only the lethal and sublethal thresholds of toxicant exposure [7] leads to

uncertainty for the population-level consequences of toxicant-exposed in-

dividuals [21]. Very few studies address the interface between toxicant

stress and population level processes [22, 23].
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Parasites

There are different definitions of the term parasite dependent upon the sci-

entific field. In the parasitological literature, the term parasite will usually

refer to the more strict definition of macroscopic organisms e.g. parasitic

worms and protozoans [24]. However, ecologists tend to have a broader

definition of the term parasite: any small organism (including bacteria,

viruses, fungi, worms and protozoans) living in close association with a

respective host organism, which reduces the fitness of the host at the indi-

vidual or population level through infection [24]. Throughout this thesis

we will use this broader definition of the term parasite in reference to stress.

The field of parasitology is concerned with the impacts that parasites

have on population dynamics, sexual selection and life-history evolution

[25]. There are a substantial number of different parasite taxa, to which

hosts have developed a substantial number of adaptations to stop these

infections [25]. This field is extremely broad, and within this thesis we will

stay within the population dynamics and parasite ecology sub-fields, rather

than focussing on other important questions relating to parasite evolution

and selection.
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Multiple Stressors

Effects of stressors are usually tested individually, however in natural sys-

tems, organisms are frequently exposed to multiple stressors simultane-

ously [26]. When acting in combination, these stressors can either increase

overall host stress through synergistic interactions or reduce stress through

antagonistic interactions [5] (Synergism occurs when the cumulative effect

of both stressors is greater than the individual additive effects, antagonism

occurs when the combined effect is less than additive). Interactions be-

tween stressors often lead to effects which are not predictable from under-

standing the underlying impacts of the individual stressors [27]. For exam-

ple, non-additive interactions between pairs of stressors can have consider-

able impacts on survival, intrinsic rate of natural increase and first-brood

offspring [27].

1.2 Mathematical models

Mathematical models are commonly used to study complicated biological

systems. Here I will give a summary of the general types of deterministic

models used throughout this thesis.
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Susceptible-infected-recovered (SIR) models

Modelling the spread of disease within a population was first conceptu-

alised by Kermack and McKendrick [28], by dividing the population into

susceptible (S), infective (I) and recovered (R) compartments. Susceptible

individuals are those who are currently uninfected, but may become later

infected, while recovered individuals are those who can no longer contract

any infection. They used the following simple set of ordinary differential

equations

dS
dt

= −βSI (1.1a)

dI
dt

= βSI − αI (1.1b)

dR
dt

= αI (1.1c)

alongside the assumptions that each individual within each compartment

has identical characteristics, infected individuals transmit the infection with

rate βN where N = S+ I + R and recovery from the infection occurs at rate

α. This simple model has been used and adapted to describe a wide range

of diseases and has been verified by and used extensively to fit epidemic

data [29].
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Susceptible Infected Recovered

Figure 1.1: The flow diagram for the SIR model. Upon infection, sus-
ceptible individuals leave the susceptible compartment and move into the
infected compartment. Upon recovery, they move from the infected to the
recovered compartment.

Many extensions to the SIR model framework [28] are used in mod-

ern epidemiology, such as incorporating treatment (infected individuals

become susceptible again) or including birth and death rates of the pop-

ulation to simulate population dynamics. Ecological disease models were

pioneered by Anderson and May [30, 31] to further include the host pop-

ulation as a dynamical variable rather than a constant, and to include life

cycles of the host and their respective parasite infections. In this thesis

we will mainly use the basic susceptible-infected framework within these

extensions. However, recent models have investigated a wide variety of

such extensions to the initial SIR framework, including more stages and

compartments of infection, vector transmission, vaccination, vertical trans-

mission, spatiality, quarantine and explicit age structure [32]. These ap-

proaches have been developed to answer questions relating to diseases

such as HIV/AIDS, syphilis, rabies, herpes, smallpox, measles, rubella and

malaria (see review by Hethcote [32]).
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Immune response models

Modelling the within-host interaction between pathogens, cells and the im-

mune system relies on many assumptions dependent upon the specific bi-

ology of the species and pathogen in question [33]. However, a simple

general model for the relationship between the immune response of an in-

dividual and a pathogen was formulated by Nowak and May [33], which

considers four variables: uninfected cells (X), infected cells (Y), virus parti-

cles (V) and immune response (Z):

dX
dt

= λ− βXV − dX (1.2a)

dY
dt

= βXV − aY− pYZ (1.2b)

dV
dt

= kY− uV (1.2c)

dZ
dt

= c− bZ (1.2d)

where infected cells are produced from uninfected and virus particles at

rate βXV, die at rate aY, and are removed by the immune response at rate

pYZ. Uninfected cells are produced at rate λ and die at rate d. Virus is

produced from infected cells at rate kY and dies at rate uV. Immunity is

produced at rate c and dies at rate bZ. The model works under the assump-

tion that c > 0 if Y > 0, otherwise c = 0. Other assumptions involving the

acquisition of immunity are possible (such as increasing relative to parasite

density [33]), but throughout this thesis we assume the simplest possible
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immune response above. This model predicts two outcomes: either R0 < 1

and clearance of infection, or R0 > 1 and the persistence of the infection.

The immune response reduces the equilibrium status of infected cells and

likewise increases the equilibrium number of uninfected cells. These types

of deterministic models have been used to understand different immune

responses to various diseases [34], such as HIV [35], hepatitis B [36] and

influenza [37], or the immune response to infection within a honey bee

colony [38].

In order to simplify this model further, in this thesis we assume fast dy-

namics of virus replication compared to the replication of other within-host

cells or immunity, which results in the formulation of the model without

virus particles:

dX
dt

= λ− βXY− dX (1.3a)

dY
dt

= βXY− aY− pYZ (1.3b)

dZ
dt

= c− bZ (1.3c)

This model is similar to system (1.2), but assumes that infected cells are

produced from uninfected and infected cells at rate βXY. This assumption

means that the variable Y now represents a cell occupied by an parasitic

infection rather than the cell itself.
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Within-host cells Parasite Immunity

SuppressionInfection

Production

RemovalRemoval Removal

Figure 1.2: The flow diagram for the immune response model. Within-
host cells are infected by the parasite and immune suppression reduces
the infection. Production and removal of within-host cells, and the natural
removal of parasite and immunity are also considered.

Nested models

Bridging the gap between multi-scale biological processes can be achieved

using nested deterministic mathematical models [39, 40]. Nested mathe-

matical models often embed the characteristics of smaller scales of organ-

isation into a wider larger-scale framework. These models are commonly

used to link within- and between-host levels of infection dynamics in many

areas of epidemiology, for example modelling HIV and hepatitis C, and

fitness evolution and viral diversity [40]. This approach allows epidemi-

ological parameters to be determined by the dynamics of within-host pa-

rameters such as parasite load, immune status and cellular health. Nested

models are particularly useful when relationships between the within- and

between-host processes are unknown [40] and as such can be formalised

from the subsequent analysis of these models. Recently the use of nested

modelling approaches has been increasing, providing important biological
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mechanistic predictions particularly within inherently multi-scale epidemi-

ology [39, 41–45]. For example, a nested model describing the relationship

between epidemiological and immunological dynamics [41] predicted that

unexpected complex dynamical properties can emerge as the result of cou-

pling two models. Additionally a model linking the within- and between-

host dynamics under an environmentally-driven Toxoplasma gondii infection

predicted that population-level disease can occur even when the isolated

between-host reproduction number R0 was less than one [44].

Susceptible Infected

Between-host model

Within-host model Within-host model

Figure 1.3: The flow diagram for a generalised nested model. The between-
host model has 2 compartments: susceptible and infected. Within-host
models are embedded within both susceptible and infected individuals.
The particular within-host processes modelled depend entirely upon the
particular infection and can vary dependent upon the between-host com-
partment. For example, we may want to model more processes within an
infected individual, or the within-host processes impacting those of the
between-host.

1.3 Motivation and aims

Before giving an overview of the contents of this thesis, I will briefly explain

the main motivation and aims for each chapter, and for the entire body of

work.
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The original starting point for this body of work was to understand how

different stressors impact honey bee colony dynamics. The motivation for

this lies within the recent rapid decline in honey bee populations [10, 46],

and the subsequent implications for the pollination industry, food security

and biodiversity [47]. However, empirical research has yet to find a single

causal factor for these honey bee declines [48]. This pressing issue pro-

vided the motivation for our original study, combined with the potential

for simple theoretical models to shed new light on important biological

problems.

As a consequence of completing the work contained within Chapters 2

and 3 on honey bee modelling, we found additional motivation in applying

these kind of models to the wider eco-epidemiological field. Many such

organisms are exposed to a wide array of stressors, which sometimes act

multiplicatively [5]. Multi stressor approaches have the potential to not

only explain honey bee colony losses, but could also be useful in the context

of any organism undergoing stress. This is why we generalise our results

to the wider stress ecology and epidemiological fields later in this thesis.

Therefore the main questions we are interested in answering within this

thesis relate to both honey bee colonies and the wider, eco-epidemiological

field, and are as follows:

• How do sublethal stressors impact honey bee colony dynamics? How

do simple regulatory functions of honey bee colonies respond to
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stress?

• How does a disease stressor with multiple routes of infection impact

the spread of disease within a honey bee colony?

• How does seasonality affect the spread of Nosema disease in honey

bee colonies? What are the implications of treating this disease at

different points in the colony life cycle?

• What are the effects of multiple stressors (toxicant-parasite interac-

tions) on within-host health? How do these stressors affect each other

at the within-host level?

• What are the effects of multiple stressors (toxicant-parasite interac-

tions) on population dynamics?

• Which within-host processes determine the outcome of population

epidemiology?

• How does toxicant stress impact epidemiological population dynam-

ics?

1.4 Overview of Thesis

This thesis is comprised of four main chapters which have been adapted

from their corresponding peer-reviewed journal articles, followed by a dis-

cussion chapter.
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In Chapter 2, Stress-mediated Allee effects can cause the sudden collapse of

honey bee colonies, we will focus on the effects of generalised external stress

on an important ecological problem; honey bee colony decline. These or-

ganisms face a multitude of sublethal stressors and research has yet to

identify a cause for colony disappearance. Here we establish a mathemati-

cal model of the essential regulatory processes governing the hive and the

general stressors impacting the colony. In particular, we analyse how these

regulatory processes interact with and counteract stress. We find that in-

creasing stress acting through a density-dependent Allee effect can cause

sudden dramatic switches in the underlying dynamical behaviour of the

hive. This chapter was published in the Journal of Theoretical Biology [1]:

RD Booton, Y Iwasa, JAR Marshall, and DZ Childs. Stress-mediated Allee

effects can cause the sudden collapse of honey bee colonies. J. Theor. Biol.,

420:213–219, 2017.

In Chapter 3, Multiple routes of transmission synergistically increase infec-

tion within the honey bee hive: a mathematical model, we examine the effects

of a stressor which acts through multiple pathways. Again, we apply this

to the ecological field of honey bee decline. In this chapter we study a

mathematical model of general infection stress with multiple transmission

routes. We do this to better understand how stressors with multiple path-

ways impact the spread of disease. We carefully parameterise the model

according to the data and honey bee literature. We examine the respec-
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tive contributions to disease spread and outbreak by each route and show

that the combination of both pathways synergistically contribute a much

greater risk of infection compared to each route acting alone. This chapter

is currently under review.

In Chapter 4, Interactions between immunotoxicants and parasite stress: im-

plications for host health, we examine the interaction between two interacting

stressors; toxicant exposure and parasite infection. Toxicants can have both

sublethal immunosuppressive and lethal direct effects on non-target organ-

isms. We formulate a model which describes the within-host dynamics of

immunity, infection and health and examine the effect of increasing toxi-

cant exposure on these within-host processes. We demonstrate that sub-

lethal toxicant exposure can promote an already-present infection through

the suppression of the immune system. In particular, we show that within-

host parasite density is maximised by intermediate toxicant stress, rather

than simply increasing through a linear relationship. This chapter was pub-

lished in the Journal of Theoretical Biology [2]: RD Booton, R Yamaguchi, JAR

Marshall, DZ Childs, and Y Iwasa. Interactions between immunotoxicants

and parasite stress: implications for host health. J. Theor. Biol., 445:120–127,

2018.

In Chapter 5, How do toxicants affect epidemiological dynamics?, we expand

upon the within-host framework provided in Chapter 4 to include popu-

lation level epidemics. We do this since infection not only spreads within
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the host organism but also spreads between those individuals within a

population. Here we formulate a multilevel model of the within-host pro-

cesses of immunity and infection and the between-host epidemiological

dynamics of a population under lethal and sublethal stressors. We do this

to better understand how toxicants impact the spread of disease within a

population. We demonstrate that disease outbreak at the population level

is dependent upon the level of stress and that epidemics can be maximised

by an intermediate level. The within-host processes described in Chapter

4 also determine the outcome of the population epidemic. This chapter is

currently under review.

Finally, in Chapter 6 we will summarise our key findings and propose

future work which could extend upon the ideas contained within this the-

sis.

Overall this thesis contributes to the fields of stress ecology and eco-

epidemiology through the careful theoretical formulation of biological frame-

works. In particular, the mathematical models contained here show real,

important applications within ecology: whether it be the dramatic col-

lapse of population dynamics under general stressors found in Chapter

2, the synergism between multiple routes of infection stress in Chapter

3, the maximisation of host infection stress under intermediate levels of

toxicant in Chapter 4, or the phase-based relationship between population

epidemics and within-host stressors found in Chapter 5.
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2.1 Abstract

The recent rapid decline in global honey bee populations could have signif-

icant implications for ecological systems, economics and food security. No

single cause of honey bee collapse has yet to be identified, although pesti-

cides, mites and other pathogens have all been shown to have a sublethal

effect. We present a model of a functioning bee hive and introduce external

stress to investigate the impact on the regulatory processes of recruitment

to the forager class, social inhibition and the laying rate of the queen. The

model predicts that constant density-dependent stress acting through an

Allee effect on the hive can result in sudden catastrophic switches in dy-

namical behaviour and the eventual collapse of the hive. The model pro-

poses that around a critical point the hive undergoes a saddle-node bifur-

cation, and that a small increase in model parameters can have irreversible

consequences for the entire hive. We predict that increased stress levels can

be counteracted by a higher laying rate of the queen, lower levels of for-

ager recruitment or lower levels of natural mortality of foragers, and that

increasing social inhibition can not maintain the colony under high levels

of stress. We lay the theoretical foundation for sudden honey bee collapse

in order to facilitate further experimental and theoretical consideration.
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2.2 Introduction

The pollination industry generates a total economic value of 153 billion

euros per year [49] and 75% of the leading global fruit, vegetable and

seed crops rely on animal pollination, accounting for 35% of total global

food production [47]. The Western honey bee Apis mellifera L. is the most

common pollinator, providing an additional service to native pollinators

through managed colonies [50, 51]. Hence, there are major concerns for

the effects that decreasing honey bee colonies will have on future biodiver-

sity and agriculture [52–55]. Furthermore, it is normal for beekeepers to

lose 15% of the total honey bee population per year [56], but more recently

this decline has accelerated alarmingly to 30% per year [57]. This has led to

the definition of the term Colony Collapse Disorder (CCD) to describe the

sudden mass disappearance of the worker honey bee population leading

to colony failure [56].

Many potential stressors thought to cause CCD have been identified, al-

though there has been no definitive explanation for every known symptom

of collapsing hives. Pesticides [13, 58–60], viruses [61–64], fungal diseases

[63, 65–68], microbes [69], mite infections [48, 70, 71], poor nutrition [72, 73]

and starvation [74] have all been shown to have adverse effects on honey-

bees. Recently the possibility of causes involving several co-factors have

been investigated. It has been suggested that CCD could have its origins in
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multiple abiotic and biotic stressors interacting with each other [54, 75, 76].

For example, the parasitic mite Varroa destructor and the viruses it transmits

[38, 77], the interactions between multiple pesticides having a synergistic

effect on development and mortality rate [78–81], and pesticides increas-

ing the effect of pathogens in larvae and adult bees, increasing the colony

death rate [82].

Honey bee social behaviour and the mechanisms that govern this are

widely understood. Eusocial insects are typically defined by their intricate

advanced division of labour [83], and within honey bee colonies specific

individuals have different roles in the hive [84]. Life for the honey bee

begins with the queen laying eggs, from which a proportion will eclose

within three weeks dependent upon the size of the adult workforce [85].

The rate that a colony can grow is impacted by two central factors, the total

number of adult workers and the laying rate of the queen [86]. One of

the most fundamental honeybee colony dynamics is the ability to structure

the workforce according to age of the individuals, although this division

of labour can change [87] in response to stressors and in order to ensure

colony survival. This regulation system, known as temporal polyethism

allows honey bees to respond to stressors by either reverting to previous

roles or taking on new ones. This flexibility in age structured task allocation

is socially regulated [88]. Young honey bees tend to work on in-hive tasks

such as cleaning, tending brood and eating pollen [89] while remaining
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protected from potential outside stressors. Older adults will begin foraging

at around 2-3 weeks [85], where natural mortality will most likely occur

due to forager exhaustion [90] and the risks affiliated with foraging [91].

Therefore, natural mortality in individual honey bees is age-dependent.

While an abundance of empirical work has been conducted address-

ing the individual effects of stressors, relatively few theoretical approaches

have considered the underlying dynamics of collapse and the mechanisms

regulating honey bee population dynamics. A simple model of in-hive and

forager worker bees and the transitions between these showed that beneath

a critical death rate of foragers, the colony can survive [92]. Developments

upon this framework to include more complicated aspects of the hive were

analysed with similar results [93]. Seasonal and annual fluctuations within

another model predicted that death rates, food and transitions from in-hive

to foraging tasks can influence colony survival [94]. Population based Allee

effects were shown to induce failure of the hive [95] and investigations into

the effects of sublethal stress on colony function demonstrated that positive

density dependence can cause either exponential growth or failure of the

colony [96]. Other models incorporating the effects of stressors have been

shown to cause colony failure such as infection [97], American Foulbrood

disease [98] and the interaction between Varroa destructor and Actute Bee

Paralysis Virus [99].

While previous theoretical studies capture some elements of CCD and
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failure of the colony, particularly the existence of thresholds where the

colony will either grow or fail, real collapse dynamics appear to be sud-

den [100] rather than the gradual decline observed in most modelling

studies. Bistability, or the presence of two alternate stable states, where

one state corresponds to a stable positive population equilibrium, and the

other to the extinction of the hive, could be crucial to understanding the

suddenness observed in CCD. That is, CCD could be caused by sudden

switches in stability around a critical point. We present a model that ex-

hibits these positive-extinction stable states. We consider a generalised

density-dependent stressor causing adult worker bees to disappear from

the hive, and density-dependent mortality acting on high-density popula-

tions. We investigate the codependence of stress with the major regulatory

functions in bee hives, such as the laying rate of the queen, recruitment

to the forager class, natural mortality and social inhibition, and how these

regulatory functions can counteract high stress levels in honey bee colony

units.

2.3 Methods

The structure of the honey bee hive is complex [89], and many mathemati-

cal models have tried to express and explain the major regulatory systems

observed in real hives. The model we present in Fig. 2.1 extends previous
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model frameworks in Khoury et al. [92] from which we formulate the ba-

sic processes governing the hive. We make the simplification to consider

only the in-hive worker (H) and outside-of-the-hive worker or forager (F)

populations, and assume all bees can be classified in this way. Because

in-hive mortality is extremely low compared to that among foragers [91],

we assume that all natural mortality occurs in the forager class, at a rate

m. Honey bees enter the hive through the eclosion function E, and are

recruited into the forager class through the recruitment function R. We as-

sume that a proportion of the colony is lost to a generalised stress function,

which induces a lethal effect [101], through an individual’s total disap-

pearance from the colony caused by the effects of pesticides causing nav-

igational problems for foragers never returning back to the hive [102], or

that of density dependent in-hive worker bee mass disappearance, present

in CCD situations [103].
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Figure 2.1: Dynamics of the model. The queen lays eggs which eclose into
adult in-hive bees. Total adult population size impacts brood survival. A
proportion of the in-hive bees are recruited into the foraging class by the
natural age-dependent structure of the hive. Forager bees are able to make
the switch back to the in-hive class via social inhibition. Natural mortality
occurs within the forager class, but high density mortality occurs within
the in-hive class. The generalised stress term acts over both adult classes
and causes both in-hive and forager mortality or disappearance from the
hive.

We assume that stress S as a function of time t acts across both in-hive

and forager compartments, as an Allee effect. As each individual stressor

impacts different classes of honey bee in a different way, we make this

assumption to simplify all stresses into a single function. We did this under

the knowledge that the location of stress within the model does not impact

the qualitative dynamics of the model (Appendix Fig. A6). We also model

density-dependent limiting effects at large colony sizes via the function

C. We can express the model with this additional general stressor term

and additional large colony limiting effect as a two dimensional system of
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differential equations:

The rate of change of the in-hive population as functions of eclosion E,

recruitment R, stress S and limiting function C

dH
dt

= E(H, F)− R(H, F)H − S(H, F)H − C(H, F)H (2.1)

The rate of change of the forager population as functions of recruitment R,

natural mortality m and stress S

dF
dt

= R(H, F)H −mF− S(H, F)F (2.2)

Following Khoury et al. [92], we assume that the maximum eclosion of

brood is equivalent to the laying rate L of the queen, and converges to

L as H + F gets large. Maximum eclosion occurs when the total size of

the colony is large, representing the case when the total adult honey bee

population is able to raise all eggs to adulthood [85]. The parameter ω

sets the speed at which total eclosion tends towards the maximum eclosion

L. We make this assumption because the total number of eclosing eggs in

honey bee hives is proportional to the number of adult bees in the colony

[104, 105].

E(H, F) = L
H + F

ω + H + F
(2.3)
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The recruitment function R(H, F) captures the effects of both natural age-

dependent transitions to foraging and that of social inhibition. In-hive bees

are recruited to the foraging class at rate α, and can switch back to in-hive

tasks via social inhibition at a rate σ, proportional to the relative foraging

capacity of the colony. We introduce a term k, which represents the rate at

which the proportion of reverting foragers approaches the maximum social

inhibition rate σ. Similarly to Khoury et al. [92], the recruitment function

can be modelled as

R(H, F) = α− σ
F

k + F + H
(2.4)

Stress is modelled as a positive density-dependent mortality Allee ef-

fect, similarly to Bryden et al. [96],

S(H, F) =
µ

φ + H + F
(2.5)

where per capita mortality is inversely proportional to the operational

colony size. The rate of stress can be expressed as µ, and the low colony

mortality can be controlled via φ. The limiting function at high densities is

proportional to the total colony size

C(H, F) = γ(H + F) (2.6)

We choose this high density effect γ to be extremely small. This large
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colony size limiting function represents the biological nature of hives, as

populations do not grow indefinitely, with a typical colony size around

20000 worker bees [89], and often managed hives have limited comb space

which are maintained by beekeepers. In addition, populations of honey

bees often swarm, preventing the total population from growing indef-

initely. The total combined mortality effect for the in-hive population

(S(H, F) + C(H, F)) and the individual effects of both can be seen in Fig.

2.2, where the overall mortality is very high for lower number of bees, and

decreases before increasing again for large colony sizes.
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Figure 2.2: The effects of stress S(H, F) (dotted) and high density function
C(H, F) (dashed) on in-hive mortality, and the combined effect (black),
as the colony size (H+F) increases. Parameters are µ = 200, φ = 0.402,
γ = 0.0000001. In our model, the stress function S(H, F) acts strongly at
very small populations, whereas the large population size limiting factor
C(H, F) is small at low populations. At high population sizes, the limit-
ing effect reduces the population which results in the population declining
rapidly whereas the stress term has a small effect. The combined impact is
high additional mortality at low population sizes, then a decrease for inter-
mediate population sizes before higher mortality again at high population
sizes.

The final system of differential equations is therefore

dH
dt

= L
H + F

ω + H + F
− H

(
α− σ

F
k + F + H

)
− µH

φ + H + F
− γ(H + F)H

(2.7a)

dF
dt

= H
(

α− σ
F

k + F + H

)
−mF− µF

φ + H + F
(2.7b)

These equations were analysed using the standard methods from dynam-
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ical systems theory. The equations were solved numerically with Wolfram

Mathematica version number 10.0.2.0. Numerical bifurcation plots were

produced using the package MatCont in MATLAB version number 8.6

R2015b. We parameterise the model according to previous empirical and

theoretical studies as shown in Table 2.1.

2.4 Results

There are two fixed points in system (2.7)

(H, F) = (0, 0) (2.8a)

(H, F) = (H∗, F∗) (2.8b)

with H∗, F∗ > 0. Let us define the following functions

g1(H, F) =
dH
dt

(2.9a)

g2(H, F) =
dF
dt

(2.9b)

We calculate the Jacobian matrix for system (2.7) evaluated at the fixed

point (H, F) = (0, 0)

J =


(

dg1
dH

)
(0,0)

(
dg1
dF

)
(0,0)(

dg2
dH

)
(0,0)

(
dg2
dF

)
(0,0)

 =

−α− µ
φ + L

ω
L
ω

α −m− µ
φ

 (2.10)
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Calculating eigenvalues gives the condition for stability of the extinction of

the population of honey bees. This happens when (2.11a) and (2.11b) hold

true

0 < ω <
L(m + α)

mα
& (2.11a)

µ >
Lφ + ω

(
− φ(m + α) +

√
φ2(L2+2Lω(m+α)+(m−α2)ω2)

ω2

)
2ω

= µcrit (2.11b)

or, when (2.12) holds true

ω ≥ L(m + α)

mα
(2.12)

i.e. the population goes extinct when either the laying rate is too low (2.12)

or when the laying rate is sufficiently high (2.11a) and the stress µ is higher

than a critical level µcrit (2.11b).

Two qualitatively distinct dynamical outcomes are possible within our

model. Either the colony size over time reaches a positive stable equilib-

rium which represents the optimal size of the colony or the population

decreases rapidly around a critically low density colony size and the hive

collapses. These two possibilities are dependent on initial conditions and

parameter choice. This dynamical behaviour is summarised in Fig. 2.3(a),

which shows the effect of increasing the stress parameter µ on the total

numbers of the adult in-hive and forager bees. In the stress free popula-
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tion and for stress levels less than the critical level, the model predicts that

the population will reach equilibrium if the initial density is high enough.

As the stress parameter µ is increased, total density drops, and then we

observe a tipping point at the critical level of stress. If initial population

sizes are below the unstable population size (Fig. 2.3(b)), then we predict

the extinction of the hive. Otherwise, all populations will grow and tend

towards the stable branch, and remain stable (Fig. 2.3(b)).
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(a)

(b)

Figure 2.3: Numerical simulations of the model for (a) increasing stress
levels and (b) sensitivity of initial conditions. In (a) we plot 3 stress levels
µ = 0 (dotted), µ = 200 (dashed) and µ = 400 (solid). Failure of the
colony is initiated by the high stress level (µ = 400). Initial conditions are
H(0) = 16000, F(0) = 8000. In (b), dependence upon initial conditions
is illustrated with a fixed stress µ = 150 for H(0) = 3000, F(0) = 1000
(dashed) and H(0) = 2900, F(0) = 1000 (solid). A decrease in 100 initial
in-hive bees causes the colony to fail. Parameters are taken from Table 2.1.

Fig. 2.4 shows the saddle-node bifurcation present in our system, high-

lighting the location of the stable and unstable branches with respect to the

stress parameter for the in-hive population. This shows the way that the

total in-hive population changes as a function of stress, and where the limit
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point is formed as the stable and unstable equilibria branches collide and

disappear, leaving only the stable zero solution. This dynamical behaviour

and the presence of the stable-unstable-stable equilibria is related to initial

conditions (Fig. 2.5), for both low and high stress levels. For lower stress

levels all solutions tend towards either stable equilibria dependent upon

initial conditions, and for high stress levels all solutions tend towards the

stable extinction of the hive. Other saddle-node bifurcations can be caused

by changes to the parameters representing the natural mortality of foragers

(Appendix Fig. A1), and recruitment to the forager class (Appendix Fig.

A2). The direction of the saddle-node bifurcation is reversed for the laying

rate of the queen (Appendix Fig. A4), and is also reversed for the bifurca-

tion of the social inhibition parameter (Appendix Fig. A3).
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Figure 2.4: The saddle-node bifurcation through the stress parameter µ for
the total numbers of in-hive honey bees. Parameters are taken from Table
2.1. The location of the limit point represents a critical stress level after
which the total number of in-hive bees will become 0. The existence of the
unstable branch pushes all solutions onto the stable branch, unless initial
conditions lie below this unstable branch. Around the critical stress level,
we see a rapid decline in the number of in-hive bees.
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(a) Stress µ = 150 (b) Stress µ = 400

Figure 2.5: The comparison of two levels of stress on the in-hive - forager
phase plane. Parameters are taken from Table 2.1. At the lower level of
stress µ = 150, the populations tend towards the positive stable equilibrium
at (H, F) = (21643, 8380) or to the stable origin (H, F) = (0, 0) (black dots).
The existence and location of the unstable equilibrium (white dot) suggests
that for these parameters there can be a minimum of 2927 in-hive and 1064
foragers before extinction of the hive. In (b), all solutions tend towards
(0, 0) (black dot), regardless of the initial conditions suggesting that this
level of stress µ = 400 will cause extinction in all cases.

Fig. 2.6 shows the point of colony failure as a function of stress and

other critical parameters, highlighting the relationship between the major

regulatory functions of the honey bee hive and the hive’s response to stress.

Higher levels of laying by the queen, lower levels of forager recruitment

and lower natural forager mortality can all counteract high levels of stress

impacting the colony. Interestingly, our model predicts that varying the
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level of social inhibition can not save the colony from extinction at high

stress levels.

(a) Laying rate L and stress µ. (b) Recruitment α and stress µ.

(c) Social inhibition σ and stress
µ.

(d) Natural mortality m and
stress µ.

Figure 2.6: The location of the limit point present in the saddle-node bi-
furcation within two dimensional parameter space (black line), and the
conditions for extinction and persistence (dotted), with parameters taken
from Table 2.1. In (a), the higher laying rate L counteracts stress and ex-
tremely high laying rates require exponential stress levels to cause failure.
In (b), low levels of forager recruitment α can maintain the colony. This
can be thought of as lower levels of ’panic’ switching between tasks coun-
teracting high stress levels. In (c), extinction of the hive is possible for all
values of social inhibition σ. Low levels of social reversion are close to the
limit point, even in the stress free hive. In (d), collapse of the hive is not
possible for extremely low natural mortality m of foragers. Past the critical
death rate all colonies will fail regardless of the stress level.
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2.5 Discussion

In this paper we show how stress-mediated Allee effects bring about sud-

den collapse in the population dynamics of honey bee colonies. The stress

induced bistability created by our model forced dependence on the initial

population sizes of both in-hive and forager bees. This led to a sensitive

threshold around the unstable population size where colonies would either

persist or fail. In addition, we show that CCD can be triggered by small

perturbations in regulatory hive functions through changes in hive param-

eters indicating that the honey bee hive is highly sensitive to such changes

under density-dependent stress.

The regulatory functions governing honey bee hives are well under-

stood. It is well documented that the hive will respond to higher levels

of mortality of foragers by speeding up recruitment to form a workforce

primarily made of precocious foragers [88], a process that is thought to be

one of the symptoms of CCD [92]. It is also understood that the queen is

influenced by many factors including seasonality, total available resources,

queen age, temperature in the hive, and photoperiod [108, 109]. There-

fore regulatory functions could have significant implications in maintain-

ing the colony under stress, and could also be influenced by these stresses.

Through investigating the relationship between stress and the major regu-

latory functions of honey bee hives, we make predictions reflecting the na-
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ture of colony collapse. Near the critical threshold inherent in our model,

both an increase in recruitment to the forager class or a decrease in so-

cial inhibition can cause sudden colony failure. This suggests that CCD

can be promoted by a breakdown in these simple regulatory functions that

usually maintain honey bee hives under stress. We also predict that fluc-

tuations in the queen’s laying rate are highly sensitive in failing colonies.

A small decrease in the laying rate of the queen subject to these natural

fluctuations close to the bifurcation point could result in drastic switches

in the dynamics of the hive, although colonies will normally replace the

queen if she is not adequately laying enough brood [85], which could po-

tentially occur before this critical point. In addition, the model proposes

that a small increase in natural mortality can cause the sudden collapse of

the colony, although the occurrence of mortality fluctuations are unlikely

in summer conditions given the observed constant probability of death per

unit time spent away from the hive [91], thus making natural mortality less

likely to be subject to bifurcation-causing fluctuations.

The intrinsic bistability and sensible ecological behaviour present within

our model implies an alternative route to colony collapse through the pres-

ence of a saddle-node bifurcation, not seen in other theoretical studies of

honey bee population dynamics [92, 96]. Although some empirical repli-

cations of CCD have observed sudden declines in honey bee populations

exposed to stressors such as the neonicotinoid imidacloprid [100], an insec-
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ticide thought to cause abnormal foraging behaviour [110], further work is

needed to understand the mechanisms governing honey bee failure. Our

generalised approach to modelling stress can, in theory, be thought of as

acting through any possible mortality-based hive-wide stressor, such as

other pesticides [58], the mite Varroa destructor [48] or the pathogen Nosema

ceranae [62]. If it shown that honey bee hives exhibit bistability, we may be

able to forecast the period leading up to the critical transition, and provide

new ways of detecting imminent CCD.

There are many potential extensions to the modelling framework we

present. We do not consider the effects of seasonality, instead concentrating

on the colony in the favourable spring and summer conditions. Indeed, it

has been shown that honey bee survival depends upon the time of year

[74] and that the proportion of brood reared to adulthood depends upon

the supply of pollen which decreases in the autumn and winter seasons

[111]. In order to better understand how the risk of colony collapse varies

across the seasons, we suggest extending the model to include seasonality

in similar ways in which other models have proven useful in this context

[94, 99]. This combination of known ecological behaviour and bistability

within our model could provide insight into the mechanisms governing

colonies which commonly collapse in winter conditions [103].

Currently, we concentrate on the two most significant distinct adult

classes [89], the in-hive and forager worker bees. We make this simplifica-
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tion as there is a clear distinction in mortality rates and behaviour between

these two populations, and together they express the most important reg-

ulatory processes in the hive [89]. However we could extend the model to

include the population dynamics of bees from either the nest centre (clean-

ing and feeding) or nest periphery (receiving, packing and storing nectar)

[89]. For example, we did not consider the regulatory processes governing

receiver honey bees for which the dynamics are well known. Forager bees

collect nectar and transfer it to receiver bees who then proceed to store

this material in cells [112]. Under higher influxes of nectar, the colony

can allocate more honey bees into the receiver bee class [113], and thus

can be thought of as another regulatory process maintaining the colony.

This introduction of a new classification of honey bee into our modelling

framework would help describe the breakdown in regulatory processes of

a honey bee hive under CCD conditions in more detail.

In recent years, researchers have become interested in forecasting tran-

sitions of state in the underlying dynamics of a wide range of systems

[114–118]. If bistability is important in understanding the general mech-

anisms governing a honey bee hive under stress, then we should be able

to predict the onset of colony collapse. The model described in this paper

has the required properties needed to detect critical transitions before they

drastically alter the population dynamics of the system. The existence of a

set of predictors called early warning signals (EWS) can be applied to any
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system with sudden changes in state [118]. When a system undergoes sig-

nificant change from one state into another state, just before the transition

it approaches the tipping point or critical threshold, as shown in the dy-

namics of our model. Sometimes these changes in state can be catastrophic

and widespread, having a detrimental ecological impact on the system as

a whole [118, 119], with the system sometimes never returning to its orig-

inal state, even after pre-collapse conditions have been restored [118]. The

potential implications and applications of these EWS combined with our

model are numerous and may provide the much needed insight into the

complex problem of CCD.
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3.1 Abstract

Honey bee populations are frequently exposed to the microsporidian par-

asite Nosema, thought to be a potential aggravator of population decline.

Transmission of Nosema occurs in two ways: via either an oral-oral (trophal-

laxis feeding) or oral-fecal (contamination) pathway. Here, we quantify the

relative contributions to honey bee disease outbreak by both oral-oral and

fecal-oral pathways. We do this to understand how multiple routes of infec-

tion acting in combination impact the spread of disease. We study a math-

ematical model of infection with multiple transmission routes in a honey

bee colony. Using parameters taken from the honey bee literature and us-

ing Nosema disease as our motivating example, we examine the relative

effects of multiple routes of transmission and their respective contributions

to the basic reproduction number. We run simulations to determine the ex-

pected % infected and % level of contamination present in a honey bee hive

for each transmission pathway acting alone and the combination of both.

We show that the combination of both transmission routes synergistically

contribute a much greater risk of infection compared to each route acting

alone. In general, the combination of both routes causes much greater con-

tamination within the hive and higher infection load across the colony. We

consider seasonality based infection, showing that the greatest risk occurs

in spring and show that Nosema is easier to treat in autumn and winter.
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These results are consistent with the empirical data available in the litera-

ture. The findings of this study indicate that examining multiple routes of

transmission may be key to understanding honey bee colony losses. Our

results also suggest that by limiting a singular transmission route from a

honey bee population, infection can be managed. In addition, we also sug-

gest that these results may be applied to any honey bee disease with more

than one route of transmission.

3.2 Introduction

Honey bee (Apis mellifera) populations continue to decline [10, 46], caus-

ing widespread concern for the impact this will have on the pollination in-

dustry, global food security and biodiversity [47, 120]. In particular, honey

bees play a vital role within the pollination industry, pollinating an array

of commercial crops [121] which are crucially important for global food

security. However, a single causal factor of honey bee population decline

has yet to be found [48].

One such potential aggravator of honey bee decline is the microsporid-

ian parasite Nosema, one of the most prevalent honey bee diseases found

all over the world [66, 122]. Nosema is caused by two genetically distinct

pathogens, Nosema apis and Nosema ceranae, which infect the midgut of

honey bees causing nosemosis. Honey bees ingest Nosema spores in either
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food or fecal material, after which germination causes the proliferation

within the midgut epithelial cells [123]. Common symptoms of N. apis in-

clude trembling, abdomen dilation, faecal stains on comb walls and dead

bees found around the hive [122]. This results in a decrease in population

size [122], honey production [124] and crop pollination [125].

Transmission of Nosema occurs from the ingestion of Nosema spores.

Honey bees frequently perform hygienic behavioural tasks such as cleaning

the hive [126], resulting in the acquisition of Nosema spores via an oral-

fecal pathway [122, 127, 128]. Furthermore, Nosema can be found within

the stored pollen and brood food [129, 130], providing another source of

contamination. An additional route of transmission occurs via trophallaxis

[131, 132], an oral-oral pathway and method of mouth-to-mouth liquid ex-

change and feeding.

Disease within honey bee colonies has been studied in the context of

theoretical models. Betti et al. [133] showed that general infectious dis-

eases can lead to colony collapse using Nosema as an example. Other mod-

els focus on other specific diseases or have a more generalised approach,

such as Varroa mites [134–136], American foulbrood [98], contagions [97] or

general stressors [1]. Ratti et al. [135] examined virus transmission in the

context of a susceptible-infected framework, a commonly used model to

examine disease transmission. However, current general theoretical mod-

els neglect important disease dynamics, such as possible multiple routes of
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transmission, contamination or treatment.

In this paper we construct a mathematical model to describe the sea-

sonal epidemiology found in a honey bee colony under multiple routes of

transmission. We carefully parameterise and simulate this model based on

published data in order to understand the role of multiple transmission

routes in honey bee disease and wider honey bee colony losses. We use

Nosema disease as the motivating example for the model, and we consider

the role of both contamination (fecal-oral route) and trophallaxis feeding

(oral-oral route) in the spread of general disease in a honey bee colony. In

particular we examine the risk of infection outbreak in a seasonal honey

bee population, and study the total contributions to infection load by both

contamination and trophallaxis transmission routes. We also examine the

minimum treatment necessary under these conditions to control the infec-

tion.

3.3 Methods

Mathematical model

Within our mathematical model, all individual honey bees can be classified

as either healthy (X) or infected (Y). The fraction of contaminated mate-

rial within the hive is represented by state variable Z which takes a value

between 0 and 1. A value of 0 represents a fully uncontaminated in-hive
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environment and a value of 1 represents an entirely contaminated in-hive

environment. The total population (X+Y) grows logistically with carrying

capacity Mi ≤ 1, where i can take a value representing spring (1), summer

(2), autumn (3) and winter (4) seasons. We parameterise this according to

normal population levels found in honey bee colonies throughout the year

[137].

Infection occurs via two pathways, either indirectly (represented by

β) through cleaning or consuming contaminated material or stored food

within the hive [122, 127–130] or, directly (represented by θ) through trophal-

laxis feeding, bee-to-bee contact or grooming [131, 132, 138]. We assume

that the rate of indirect infection transmission β depends upon the amount

of contamination present within the hive and the number of healthy bees,

and the rate of direct transmission θ depends upon the number of healthy

and infected bees. Seasonal mortality occurs at rate µi, parameterised ac-

cording to the typical rate of mortality expected during each season [134].

Infection-based mortality α occurs as a result of infection after 8 days [139]

and the infection can be treated with rate p, reverting infected individuals

to healthy honey bees.

The within-hive contamination level Z proliferates at rate k according

to the amount of uncontaminated environment available (with limited hive

space) and the number of infected individuals, which we parameterise as

the mean alive percentage spore viability [140]. The contamination is re-
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moved at a rate d, which we parameterise as the mean dead percentage

spore viability [140]. The model we study (Fig 3.1) is a 3-dimensional set

of nonlinear ordinary differential equations (ODEs):

dX
dt

= r(X + Y)(1− X + Y
Mi

)− βXZ− θXY− µiX + pY (3.1a)

dY
dt

= βXZ + θXY− (α + µi + p)Y (3.1b)

dZ
dt

= kY(1− Z)− dZ (3.1c)

We parameterise system (3.1) using published data (Table 3.1) and calculate

estimates for β and θ (Appendix B).

3.4 Results

The basic reproduction number R0

We calculate the population growth rate (λ = 0.026) of system (3.1) from

published data ([142] and Appendix B). We estimate the basic reproductive

number of the infection in each season (i = 1, 2, 3, 4) as R0spring, R0summer,

R0autumn and R0winter where

R0i =
Mi(βk + θd)(r− µi)

dr(p + αi + µi)
(3.2)
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Figure 3.1: Outline of the honey bee disease dynamics model. The ar-
rows represent the direction of flow between healthy and infected classes
of honey bees within a hive. Bees can become infected either via direct or
indirect transmission, the latter of which depends upon the level of in-hive
contamination. Bees can revert to a healthy state if they are treated, and
enter the system via a laying rate. Natural mortality and infection-based
mortality is also taken into consideration.
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We quantify the contributions to the chance of total disease outbreak R0

from both only the indirect source RI and the direct source RD. This means

that we can investigate the relationship between separate infection sources

and their likely contributions to disease outbreak. A full derivation of the

relationship between RI , RD and R0 can be found in Appendix B, giving

the following

RI = βkX∗Λ1Λ2 (3.3)

RD = θX∗Λ1 (3.4)

where Λ1 = 1
α+µ+p , Λ2 = 1

d , X∗ = M(r−µ)
r and

R0 = RI + RD (3.5)

Therefore the total R0 can be divided into relative contributions by RI and

RD.

Treatment

From system (3.1) we determined the condition under which all infected

individuals can be eradicated using treatment. The relationship between

the basic reproductive number with (R0i) and without treatment (R∗0i) in

each season (i = 1, 2, 3, 4) can be expressed as
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R0i = R∗0i
αi + µi

p + αi + µi
(3.6)

We determined the critical value of treatment which will eradicate all in-

fection in a given season as

p∗i = (αi + µi)(R∗0i − 1) (3.7)

If p is larger than the critical value then the outbreak is prohibited. Fig

3.2 shows this critical value of treatment p∗i for all seasons and percent

contribution to R0 by RI . Treatment is required in spring for a wider range

of indirect contributions to R0 (≥ 30%). There is a smaller range where

treatment can stop the infection in summer (≥ 60%), autumn (≥ 80%) and

winter (≥ 90%).

Seasonal R0

We use parameters and data from the literature (Table 3.1) to calculate an

estimate for the basic reproductive number in summer:

1.18 ≤ R0summer ≤ 1.68 (3.8)
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Figure 3.2: Simulations of the model showing the critical treatment (p∗)
required to remove the infection in the 4 different seasons. The contribution
by the indirect source of transmission RI to the total measure of disease
outbreak R0 is expressed by RI

R0
. Treatment is required in spring for a wider

range of indirect transmission contributions to R0. Parameters taken from
Table 3.1.



Chapter 3. Multiple routes of transmission synergistically increase
infection within the honey bee hive 55

We take R0summer = R0max = 1.68 and rescale equation (3.2) to calculate the

maximum basic reproductive number for each season (Appendix B).

R0spring = 3.40

R0summer = 1.68

R0autumn = 1.30

R0winter = 1.17

We quantify the contributions to disease outbreak from both only the indi-

rect source RI and only the direct source RD (Appendix B). The total per-

cent contribution by indirect transmission can be expressed as RI
R0

, where

the size of β and θ depend upon the ratio of RI and RD as derived in

Appendix B.

For each set of seasonal parameters, we plot the total percent contribu-

tion of indirect transmission and the corresponding breakdown of both RI

and RD (Fig. 3.3). In spring conditions R0 is the largest of all the seasonal

simulations giving a wide range of conditions for which both RI and RD

are above 1 (30% - 70%). Hence either direct or indirect transmission can

individually cause infection to spread to the entire population in this re-

gion. However, for other seasons there are no regions where both RI and

RD are individually greater than 1.
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Figure 3.3: The calculated contributions to the total chance of disease out-
break R0 by indirect transmission RI and direct transmission RD in each
season. These values are calculated for a range of total percent contribu-
tion by indirect transmission RI

R0
and show that spring conditions provide

a wider range of conditions for which both RI and RD are above 1 (30% -
70%). In spring conditions either direct or indirect transmission can indi-
vidually cause an outbreak in infection, but for other seasons there is no
such overlap where RD and RI are greater than 1. Parameters taken from
Table 3.1.
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Synergistic routes of transmission

Fig. 3.4 shows the population under baseline healthy dynamics, and in-

fection and contamination levels, for 30%, 50% and 70% contributions by

indirect RI . For the total percentage infected honey bees, the prevalence

expected by adding up the values for indirect and direct transmission is

always lower than the combined simulated values (Fig. 3.4 B-D), repre-

senting a synergistic interaction within the infection dynamics of system

(3.1). In all seasons aside from spring, the expected values of contamina-

tion are lower than the simulated values (Fig. 3.4 B-D) also representing a

synergistic interaction within system (3.1).

3.5 Discussion

We predict that infection risk is greatest in the spring, at the start of the

colony life cycle, and that it is easier to eradicate infection in the autumn

or winter seasons. We show how the combination of two routes of trans-

mission can synergistically increase infection and contamination levels in a

honey bee hive. Disease outbreak is possible for singular routes of trans-

mission, but multiple routes of transmission increase the likelihood of in-

fection. Honey bees live in densely crowded populations, providing ad-

vantageous conditions for disease transmission through high contact rates

[143]. Therefore, it is intuitive that an additional transmission route should



58 3.5. Discussion

 S
pring        S

um
m

er        A
utum

n        W
inter

 S
pring        S

um
m

er    　
A

utum
n         W

inter
t

Infected (%)

    　
　
　
　
　
　

     
　 =70% 

    　
　
　
　
　
　

     
　 = 50% 

 　
　
　
　
　
　
        

　 = 30%

 S
pring        S

um
m

er    　
A

utum
n         W

inter

 S
pring        S

um
m

er    　
A

utum
n         W

inter

 S
pring        S

um
m

er    　
A

utum
n         W

inter
 S

pring        S
um

m
er    　

A
utum

n         W
inter

 S
pring        S

um
m

er    　
A

utum
n         W

inter
 S

pring        S
um

m
er    　

A
utum

n         W
inter

 Spring         Summer     　
Autumn         W

inter

1 1 1000

1 1 1000

1 1 1000

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 20 40 60 80

100

0 20 40 60 80

100

0 20 40 60 80

100
Contamination (%)

Indirect
Direct
Direct + Indirect

Infected

P
opulation

C
ontam

ination

 S
pring        S

um
m

er    　
A

utum
n         W

inter

B
aseline 

1 1 1000

Total population
Susceptible population

Infected population
Contamination

Infected

A
B

C
D

Figure
3.4:Sim

ulations
of

the
m

odelfor
a

range
of

R
I

and
R

D
.(A

)
Baseline

dynam
ics

of
the

m
odelunder

no
infection

and
contam

ination
(B)

D
ynam

ics
under

R
I

R
0
=

30%
and

resulting
breakdow

n
of

%
infected

and
%

contam
ination

for
both

direct
(green

bars)
and

indirect
transm

ission
(blue

bars),and
the

com
bined

synergistic
effect

(orange
bars).

(C
)

T
he

dynam
ics

ofthe
m

odelunder
R

I
R

0
=

50%
.(D

)The
dynam

ics
ofthe

m
odelunder

R
I

R
0
=

70%
.The

expected
%

infected
for

both
routes

is
alw

ays
low

er
than

the
sim

ulation
of

the
m

odel
representing

a
synergistic

interaction
in

all
seasons.

For
%

contam
ination,there

is
synergy

in
allseasons

but
for

spring.Param
eters

taken
from

Table
3.1.



Chapter 3. Multiple routes of transmission synergistically increase
infection within the honey bee hive 59

result in a greater risk of outbreak of the disease. Our theory suggests that

multiple routes of transmission could be crucial in understanding wider

honey bee population decline. While the effects of multiple routes of trans-

mission on epidemics are well studied [144], this work applies these ideas

to honey bee losses, and indeed we suggest that multiple routes of trans-

mission could be crucial in understanding honey bee population decline.

Throughout this study, we use Nosema disease as the motivating exam-

ple for the model. However there is suggestive evidence [145] that many

infections can be transmitted directly through feeding [143, 146, 147] and

contact [148, 149]. In addition these viruses may be transmitted indirectly

through faeces [150–152] or through the Varroa destructor vector [146, 153].

Thus, we argue that synergy in infection and contamination are not limited

to the multiple routes of Nosema disease studied here, but is applicable to

any honey bee infection with more than one transmission route. Therefore,

we suggest that future work should carefully examine how these multiple

routes of transmission affect disease spread in a honey bee colony, particu-

larly for deformed wing virus (DWV), black queen cell virus (BQCV), acute

bee paralysis virus (ABPV) and chronic bee paralysis virus (CBPV).

Alongside viruses, exposure to pesticide can result in residue contam-

ination within the comb [81], providing an additional source of stress on

the hive. In the current study we considered the effects of multiple routes

of transmission of Nosema disease, however an additional stressor such as
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pesticide exposure has the potential to enhance one of the routes of trans-

mission. We therefore suggest future work could extend our current model

framework to include more than one stressor, such as the buildup of pes-

ticide residue alongside infection. Understanding this complex interac-

tion between multiple stressors within the hive could shed new light upon

honey bee colony losses.

While Nosema can be devastating to honey bee health, there are several

practices which can be implemented to reduce infection. Our model sug-

gests that this can be achieved by minimising one transmission route. This

could occur through equipment management or sterilisation of the hive

[154]. For example, inactivating the contaminated spores through heating

the hive bodies and undrawn comb has been shown to reduce infection

[154], explained in our model as minimising the fecal-oral route of trans-

mission. An additional management practice is to provide the bees with

nutrient supplementation [154], thus minimising the oral-oral route and

subsequent total infection. Chemical treatments such as fumagillin [154]

could also minimise the oral-oral route. Treating the remaining infected

bees during the autumn and winter seasons could result in the complete

eradication of spore contamination, and a healthy hive in the following

spring.

This study provides an initial assessment of how multiple routes of

transmission can synergistically increase infection and contamination and
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thus contribute to honey bee mortality and decline. We hope that the

framework presented in this paper can stimulate further empirical and

theoretical studies focussing on multiple routes of transmission within a

honey bee hive.
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4.1 Abstract

Many organisms face a wide variety of biotic and abiotic stressors which

reduce individual survival, interacting to further reduce fitness. Here we

studied the effects of two such interacting stressors: immunotoxicant ex-

posure and parasite infection. We model the dynamics of a within-host

infection and the associated immune response of an individual. We con-

sider both the indirect sublethal effects on immunosuppression and the

direct effects on health and mortality of individuals exposed to toxicants.

We demonstrate that sublethal exposure to toxicants can promote infection

through the suppression of the immune system. This happens through the

depletion of the immune response which causes rapid proliferation in par-

asite load. We predict that the within-host parasite density is maximised by

an intermediate toxicant exposure, rather than continuing to increase with

toxicant exposure. In addition, high toxicant exposure can alter cellular

regulation and cause the breakdown of normal healthy tissue, from which

we infer higher mortality risk of the host. We classify this breakdown into

three phases of increasing toxicant stress, and demonstrate the range of

conditions under which toxicant exposure causes failure at the within-host

level. These phases are determined by the relationship between the im-

munity status, overall cellular health and the level of toxicant exposure.

We discuss the implications of our model in the context of individual bee
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health. Our model provides an assessment of how pesticide stress and

infection interact to cause the breakdown of the within-host dynamics of

individual bees.

4.2 Introduction

During their lifetime, organisms are exposed to a wide range of chemical,

physical and biological stressors, which can be defined as anthropogenic

(e.g. toxicant exposure, pollutants) or natural (e.g. pathogens, parasites).

Recently, there has been increasing interest in multiple stress approaches,

examining the potential for stressors to interact [5]. Understanding the

mechanisms behind these interactions is important for quantifying the true

impacts of individual anthropogenic stress on organisms [155].

Pesticides are an important class of anthropogenic toxicant stress, with

the use of pesticides continuing to increase globally [8–10]. Pesticides are

crucially important to crop productivity, preserving around one-fifth of to-

tal crop yield contributing to food security [156] but concerns about detri-

mental side-effects [157, 158] have forced policy makers to restrict the appli-

cation of some pesticides [159]. Non-target organisms frequently encounter

these pesticides [9], with concentrations able to build up throughout food

sources and within various life-stages of the organism [15, 160–164].

Toxicants such as pesticides can cause lethality [13–17], but more of-
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ten have other sublethal effects such as impairments on foraging [165–168],

feeding [169], learning [18, 19], memory [19, 170] and fecundity [171–173].

Exposure during early life can have both lethal and sublethal effects later

appearing during adulthood [174, 175]. These environmental contaminants

can interact in combination with other natural stressors. For example, com-

binations of toxicant exposure with parasite infections can increase indi-

vidual mortality [176, 177], increase the initial pathogen load [82, 178] and

increase the impact on reproduction and survival [179]. Toxicant-pathogen

interactions have been observed in many types of organisms such as in-

sects, snails, water fleas, frogs, salamanders, fish and mussels (see review

by Holmstrup et al. [5]). In addition to toxicants causing direct lethal-

ity, they can also cause damage to individual immune defence. Individ-

ual organisms defend themselves against various infections via a suite of

immune responses, and these can be damaged or inhibited through toxi-

cant exposure [180]. For example, pesticides have been shown to reduce

the total hemocyte abundance in insects [181, 182], the nodulation initia-

tion [181, 183], the encapsulation response [182, 184] and antiviral defences

[185].

Of particular recent concern are the widespread losses to global wild

and managed bee populations [10, 186, 187], because of their importance

to global food security and biodiversity [47, 120]. The Western honey

bee (Apis mellifera L.) is widely recognised as the most important com-
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mercial insect pollinator [49, 188, 189], but a single cause for their pop-

ulation decline has yet to be identified. There is agreement that these

losses may have their origins within multiple stressors interacting with

each other [54, 75, 76, 190]. Possible candidates include neonicotinoid pes-

ticides [19, 22, 161], mites [71, 191], viruses [61, 64, 192] and microsporidia

infections [68, 132].

In this study, we examine the mechanism by which immunotoxicants

interact with the within-host cellular and immunological dynamics of a

host to increase parasite load. We formulate the conditions under which

sublethal toxicant exposure intensifies the infection levels within a host.

This observed interaction between multiple stressors is currently poorly

understood from an immunological perspective [193], while a rich body

of theoretical research exists to describe the within-host dynamics of in-

fectious diseases (see review by Mideo et al. [40]). We focus our study

on the general ecotoxicological applications of the theoretical model, in the

case of any immunotoxicant interacting with any parasite infection. We do

this by formulating a system of nonlinear ordinary differential equations

(ODEs) to investigate the consequences of immunosuppression by a toxi-

cant and the effect this has on within-host infection. We first consider a

toxicant-free environment to examine the conditions under which the in-

fection can spread. We then consider the interaction between the infection

and both lethal and sublethal exposure to toxicants and examine the out-
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come on within-host dynamics. We also consider the case of aggressive

direct lethality of toxicants on the production of new tissue cells.

4.3 Methods

The immune response of any individual relies upon the interdependent

defence of physical, humoral and cellular responses, denoted in our model

by a generalised immune function Z. Nowak and May [33] proposed a

general model to describe the interaction between a cellular immune re-

sponse and a replicating virus, in the setting of self-regulating cytotoxic

T lymphocytes (CTLs) targeting infected cells. The model they present

is simple but captures the fundamental biological processes governing the

immune response to foreign antigens, and following this framework we de-

note within-host cell density as X. We denote the total parasite/pathogen

density as Y. The total number of cells within the model represents a gen-

eral susceptible subset of tissue cells. As a motivating example, our model

can be thought of describing the midgut epithelial cells of the honey bee X

under a Nosema ceranae infection Y [123] with associated immune response

Z, although we also propose that our model can be thought of describing

any interaction between any immunotoxicant and associated parasite or

pathogen in a general host.

We assume that toxicant exposure reduces the functionality of the im-
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mune system c rather than killing off individual immune cells. We make

this assumption in order to simplify the analysis, however this also captures

the inhibition and damage that toxicant exposure can have on the various

functions associated with the immune response [180–185, 194–196]. This

means that the linear function −hQ can be thought of as inhibiting the

immune functionality c. Toxicants are also lethally toxic to individuals at

high enough exposure levels [13, 14, 16, 17], and we assume that rather than

killing individual cells, the toxicant damages the vital functionality of the

host, expressed through the parameter λ. We model both the direct/acute

lethality (denoted by parameter r) and indirect sublethal immunotoxicity

(denoted by parameter h) effects of toxicant exposure Q. For simplicity,

we assume fast dynamics of virus replication compared to the replication

of other within-host cells or immunity resulting in the formulation of the

model (Fig. 4.1) as a 3-compartmental set of nonlinear ODEs;

dX
dt

= λ− βYX− dX− rQ (4.1a)

dY
dt

= βYX− aY− pYZ (4.1b)

dZ
dt

= c− bZ− hQ (4.1c)

with c− hQ > 0 and λ− rQ > 0. When Z = 0 (the immune response is

depleted), we remove equation (4.1c) from system (4.1) and the system be-
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comes the two dimensional system of equations (4.1a) and (4.1b*) without

the immune response term −pYZ;

dX
dt

= λ− βYX− dX− rQ (4.1a)

dY
dt

= βYX− aY (4.1b*)

Within-
host cells

Parasite 
Infection

Immunity

Individual organism

Toxicant
Exposure

Infection

Suppression

Figure 4.1: The modelling framework we use to model the interaction be-
tween toxicant exposure and parasite infection in an individual. Block ar-
rows represent suppression. We model toxicant exposure as a suppressive
effect on immunity and within-host cells.

We assume that within-host cells are produced at rate λ, and die at per-

capita rate d. Parasites are created at rate β via a linear mass action, and

are removed at per-capita rate a. The immune response Z is activated upon

encountering parasites Y and the removal of parasites occurs at rate p. Al-

though in reality, functions involved in immunity are not activated on the

instance of meeting the parasite, but there is a complicated intermediary

chain between processes which eventually result in the removal of parasites

[197]. For simplicity, we assume that this process can be summarised by
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our function pYZ. We assume that the immune dynamics Z are decoupled

from those of within-host and parasite density. This represents the simplest

possible assumption and various extensions to this assumption are possi-

ble. Immunity is therefore produced at rate c, and is removed at per-capita

rate b.

Within our model we infer the mortality risk of the host through the

status of the within-host cells X. Individual mortality risk is high when the

number of within-host cells X are small, so that there is a negative correla-

tion between the mortality of the host and the cell density. This condition

enables us to think about the mortality risk of an individual analogous to

a highly infected within-host tissue (e.g. parasite infection within the gut

of a honey bee).

Our system of equations (4.1) were analysed using standard stability

methods from dynamical systems theory and solved numerically with Wol-

fram Mathematica version number 10.0.2.0, using parameters taken from

Table 4.1. We performed a full parameter dependence analysis which

demonstrated the same universal behaviours of the model which enabled

us to choose arbitrary parameter sets.
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Parameter Symbol Value
production of within-host cells λ 0.1

rate of parasite infection β 0.01
death of within-host cells d 0.01

direct lethal effect of toxicant r 0.1
toxicant exposure Q [0, 1.5]

death rate of parasites a 0.01
immune suppression p 0.009

production of immunity c 0.1
removal of immunity b 0.02

indirect sublethal effect of toxicant h 0.3

Table 4.1: Parameter values used in the within-host stress model

4.4 Results

In the following section we consider the baseline case of parasite infection

in a toxicant-free environment before analysing our within-host system un-

der the addition of a toxicant. We then consider the absence of direct lethal

effects of toxicants before presenting the case of an aggressive toxicant.

Toxicant-free model

Initially we examine system (4.1) under the condition of the absence of

toxicant exposure (denoted by subscript A). Two possible outcomes are

possible. First the infection is removed entirely by the immune system,

in which case the total within-host cells and total immunity each reach a
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constant level at the disease free equilibrium (DFE):

(XDFE
A , YDFE

A , ZDFE
A ) =

(λ

d
, 0,

c
b

)
(4.2a)

where λ
d and c

b represent the ratio of total production to total removal of

both within-host cells and immunity in the absence of toxicant respectively.

Secondly the model predicts that an individual can become infected with

parasites (Y > 0) under the following endemic equilibrium (EE):

(XEE
A , YEE

A , ZEE
A ) =

( ab + cp
βb

, − d
β
+

bλ

ab + cp
,

c
b

)
(4.2b)

This shows that it is possible for an individual bee to sustain a partial

parasite infection without the addition of any toxicant in our model. The

expression ab+cp
βb = a

β + cp
βb represents the reduction in within-host cells.

Toxicant-Parasite model

Next we consider system (4.1) under the condition of an infection and toxi-

cant exposure (denoted by subscript B). In this case the model predicts two

possible outcomes. First, the parasite infection is removed either by im-

mune suppression or by the direct effects of the toxicant on the production

of within-host cells represented by the DFE:

(XDFE
B , YDFE

B , ZDFE
B ) =

(λ− rQ
d

, 0,
c− hQ

b

)
(4.2c)
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so that the addition of any toxicant reduces the total within-host cells by

rQ
d and reduces the immune function by hQ

b . Secondly the model predicts

an infected individual under toxicant exposure represented by the EE:

(XEE
B , YEE

B , ZEE
B ) =

( ab + cp− hpQ
βb

,
−abd− cdp + dhpQ− bQrβ + βbλ

βab + cpβ− hpQβ
,

c− hQ
b

)
(4.2d)

In this case, the parasite density grows rapidly as a result of the toxicant

suppressing the immune system. The introduction of the toxicant reduces

both within-host cells and immunity in both an infection-free and infected

individual, but an initial parasite infection is required for an infection to

grow. The effect of toxicant exposure on the net change of within-host

cells, parasite density and immunity within the individual is summarised

in Table 4.2.

No parasite infection Initial parasite infection
Within-host cells X reduced by rQ

d reduced by hpQ
bβ

Parasites Y no change increased by bQ(hpλ−abr−cpr)
(ab+cp)(ab+p(c−hQ))

Immunity Z reduced by rQ
d reduced by hQ

b

Table 4.2: The net change of immunity, within-host cells and parasites
after the introduction of toxicant, compared to the no-toxicant model, for
both the absence of parasite infection (Y = 0) and initial (Y > 0) parasite
infection load.

Next we assume that the indirect (sublethal) effects of toxicant exposure

on immunosuppression are more prominent than the direct (lethal) deple-

tion of within-host cells. With an initial infection Y > 0 we define this as
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occurring when the immune status of an individual is destroyed before the

infection is removed or when

Z = 0 before Y = 0 (4.3)

We summarise the behaviour of the model under this condition (Fig. 4.2)

into 3 distinct phases which describe the mechanism underlying the inter-

action between toxicant exposure and infection at the within-host level of

the organism, and the parameter dependence of infection and immunity at

equilibrium. Note that the total number of cells within an individual or-

ganism is not constant. This is because both parasite and within-host cells

are removed by either the toxicant exposure or infection and new cells are

produced. The following dynamical phases are determined by the stability

and feasibility analysis of the model (Appendix C):

Phase I 0 ≤ Q < c
h = Q∗0

The model predicts that the initial state of an immune response is able

to counter any infection. However, as the toxicant load is increased, the

immune system is gradually depleted. Through a weakened immune sup-

pression, this enables the parasite density to increase.
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Phase II Q∗0 = c
h ≤ Q < βλ−ad

rβ = Q∗1

The second phase begins at the point of maximum infection and where the

immune system has been completely inhibited. The increase in toxicant

stress gradually depletes the parasite density while the within-host cells

remain constant.

Phase III Q∗1 = βλ−ad
rβ ≤ Q < λ

r

In phase three, the immune system has been destroyed and the parasite

infection is no longer present leaving only a small fraction of within-host

cells. Finally, the lethality of the toxicant causes the mortality of the indi-

vidual bee and production of new cells ceases when λ− rQ becomes zero

which occurs at Q = λ
r .
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Figure 4.2: The mechanism of parasite infection under increasing toxicant
exposure, for both immunosuppressive and lethal effects of toxicant with
all parameters taken from Table 4.1. This shows the parameter dependence
of immunity, parasite density and within-host cells at equilibrium within
the dynamics of our model. In (a) the total densities of immune function
(blue), parasite load (red) and within-host cells (black) change as an in-
dividual is subject to higher toxicant loads, according to the three phases
of the model. In (b) the total % parasite infection (black) increases as the
toxicant load is increased, before decreasing to 0 at Q1

∗.

Thus we have calculated the conditions under which the within-host

dynamics change according to the level of toxicant exposure. Further addi-

tional analysis can be found in Appendix C. By understanding the relation-

ship between the parameters in the model and toxicant stress, we can make

some biological interpretations. We predict that the ratio of the production

of immunity to the amount of immunotoxicity (Q∗0 = c
h ) determines the

point at which the infection load is at a maximum. The expression c
h can

be thought of as an indicator of immune status, and the point at which the

toxicant stress becomes equal (Q = Q∗0) represents the complete inhibition

of the immune system. The expression Q∗1 = βλ−ad
rβ = λ

r −
ad
rβ represents the

point at which the ratio of cell production to lethal toxicant mortality (indi-
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cator of within-host cell status) compares to the ratio of the loss of cells to

the toxicant cell depletion multiplied by the transmission of the infection.

Therefore this condition represents the status of within-host dynamics and

can be thought of as an indicator of health. When Q = Q∗1 , the infection

has been removed but the overall health status is very low, from which we

infer a higher mortality risk of the host. Therefore we have conditions de-

scribing how toxicant exposure relates to that of the immune status Q∗0 and

overall health Q∗1 of the organism.

Our model predicts that a small amount of toxicant can cause the out-

break of an otherwise controlled infection. A healthy immune response can

suppress the parasite infection to a very low level (Fig. 4.3a), but a small

amount of toxicant can cause the status of both infection-free and infected

individuals to decline rapidly (Fig. 4.3b).
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(b) Toxicant exposure Q = 0.5

Figure 4.3: The convergence of the total density of within-host cells and
parasites under no toxicant exposure (a) Q = 0, and small amounts of
toxicant exposure (b) Q = 0.5. All other parameters are taken from Table
4.1. Black dots show the stable endemic equilibrium, white dots show the
unstable disease-free equilibria and lines show the convergence from initial
conditions. We assume an initial immune response (Z = 10) and an initial
amount of within-host cells (X > 0), and either zero or positive parasite
density (Y ≥ 0).

Absence of toxicant lethality (r = 0)

In this case, we consider the absence of a direct lethal toxicant effect, there-

fore assuming that toxicant exposure only impairs the immune system and

does not cause direct mortality. This changes the mechanism by which

organisms become infected under increasing toxicant exposure. As before

the immune system is inhibited leaving the organism vulnerable to attack

by parasites. However after reaching a maximum infected threshold, the

health status of the individual remains constant regardless of the amount

of toxicant exposure (Fig. 4.4a). The individual remains highly infected

(Fig. 4.4b) and an increasing exposure to the toxicant no longer causes
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further damage to organism health status.
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Figure 4.4: The mechanism of parasite infection under increasing toxi-
cant exposure, for only the immunosuppressive toxicant effect. Parameters
taken from Table 4.1, but with direct toxicant effect r = 0. In (a), the total
density of immune function (blue), parasite load (red) and within-host cells
(black) change as an individual is subject to higher toxicant loads, but now
only within 2 phases. In (b), the total % parasite infection (black) increases
as the toxicant load is increased, before remaining at equilibrium.

Aggressive toxicant lethality (large r)

It is worth noting that condition (4.3) is necessary to explore the interaction

between toxicant immunosuppression and the immune system. If this were

not the case, for example if the parameter r becomes large we would see a

situation where the toxicant acts too aggressively upon the host and causes

the parasite infection to be killed off (similar to phase II under the original

assumption) and following this the within-host cells are destroyed. The

immune system remains intact as the direct effect of the toxicant on pro-

duction of within-host cells is greater than the immune effect. We again see

three distinct phases as we increase the toxicant from low levels to high (Fig
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4.5a). However now the toxicant exposure is more prominent and reduces

both parasite and within-host cells, stopping the infection from spreading

quickly (Fig. 4.5b). In this situation we also see a somewhat contradictory

phase 3 in which the host has neither parasite or within-host cells but a

small amount of immunity. This result demonstrates the necessity of our

original condition.
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Figure 4.5: The mechanism of parasite infection under increasing toxicant
exposure with aggressive direct mortality. Parameters taken from Table
4.1, but with indirect toxicant effect h = 0.08. In (a), the total density of
immune function (blue), parasite load (red) and within-host cells (black)
change as an individual bee is subject to higher toxicant loads, according
to 3 phases. In (b), the total % parasite infection (black) decreases as the
toxicant load is increased. The phases are determined by new critical levels
of toxicant Q2

∗ and Q3
∗.

The three distinct qualitative behaviours (maximised infection at in-

termediate toxicant, absence of toxicant lethality, and aggressive toxicant

lethality) of the model are summarised in Fig. 4.6. This figure shows that

the ratio between the parameters r and h determine the relationship be-

tween toxicant exposure and infection within a host. If r is too high, then
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the parasite is inhibited before the immune system. However, if h is suf-

ficiently high then the parasite is maximised at an intermediate toxicant

exposure. The small region around r = 0 results in the parasite remaining

at high density regardless of higher toxicant exposure. Additional exam-

ples of individual pairwise combinations of both immunosuppressive and

lethal effects can be found in the appendix for both equilibria phase sta-

tus (Appendix: Fig. C1) and total percentage parasite infection (Appendix:

Fig. C2).
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Figure 4.6: The qualitative behaviour of the model within r − h lethal-
immunosuppressive toxicant space. Parameters taken from Table 4.1, for
a range of r and h. The white region represents the case of maximised
parasite infection at intermediate toxicant exposure. The red region (r = 0)
represents the toxicant-free parasite equilibrium. The black region repre-
sents the aggressive toxicant effect of the model.
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4.5 Discussion

We have shown that interactions between general anthropogenic stress in

the form of an immunotoxicant and parasites can promote within-host in-

fection and reduce health status. This interaction is entirely dependent

upon the phase of toxicant exposure. The immune response of the host can

be divided into three such phases of increasing toxicant load; phase I, II

and III (Fig. 4.2). In the first phase, sublethal doses of the toxicant dam-

age the immune system. This results in suppression of the immune system

and hence the individual organism becomes highly infected. In the second

phase, intermediate exposure to the toxicant reduces the total density of

parasites. In the third phase, the extremely high exposure to the toxicant

leads to the loss of within-host cells and eventual mortality of the host.

Through disentangling the individual effects of both lethal and sub-

lethal toxicant exposure, we were able to establish the role of each within

the breakdown of within-host dynamics. Indirect (sublethal) suppression

of the immune system causes rapid proliferation of parasites within the

host (Fig. 4.3), while direct (lethal) mortality causes both parasites and

within-host cells to die. However without the direct effect of the toxicant

on the production of new cells, the host remains highly infective (Fig 4.4).

We also predict that an extremely small toxicant exposure can cause the

proliferation of a previously manageable infection. These results suggest
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that the ratio between both lethal and immunosuppressive toxicant effects

are important in determining the subsequent interaction with parasite in-

fections. Our model suggests when assessing both sublethal and lethal

toxicant effects, it is important to consider that higher lethal doses (LD50)

could remove the parasite infection from the host and that there exists a

range of intermediate sublethal exposure under which we predict that the

parasite will proliferate.

The findings we present in this study shed new light on the poorly un-

derstood mechanism by which toxicants seem to interact with infection to

increase mortality risk [193]. In the context of the recent losses to global

bee populations [10, 186, 187], the joint immunotoxicant-infection interac-

tion studied here is one example of the recent hypothesis that widespread

native and managed bee losses may be multi-factorial [54, 75, 76, 190]. Joint

pesticide-infection interactions have been shown to increase mortality risk

within bees [176, 177]; for example, Nosema ceranae infections and thiaclo-

prid, a neonicotinoid pesticide act jointly to increase individual mortality

[178]. The findings we present in this paper propose one explanation of

how interactions between these toxicants and infection occur at the within-

host level. We show that these sublethal effects of anthropogenic stress

are potentially more damaging to individual health, aggravating parasitic

stress. This is in direct agreement to the positive correlation between low

level (field condition) neonicotinoid treatment and increases in parasite and
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viral infestations in bees [198, 199]. Infections within individual honey bees

can be significantly increased by different levels of low or high sublethal

pesticides [82]. Indeed, honey bees with undetectable levels of neonicoti-

noid imidacloprid which are reared in sublethal conditions still have in-

creased infection levels [82]. This suggests that even extremely small sub-

lethal exposure to pesticide can result in outbreaks of infection. We show

that increasing the pesticide exposure by a small amount (Q > 0) can result

in a transition from a manageable parasite density level to a highly infected

individual.

Our results rely upon condition (4.3) which ensures that the immune

response is destroyed before the within-host cells. This condition is cru-

cial to ensuring reasonable behaviour of the model, and it should be noted

that the reverse assumption predicts the presence of immunity even after

both infected and within-host cells are dead (Fig 4.5a). We highlight this

limitation of our theoretical work but argue that condition (4.3) is valid

since the direct lethality of toxicants only occur at high doses [14] and vari-

ous immunosuppressive effects occur from toxicants [180], thus suggesting

that toxicants have a greater impact on suppressing the immune system.

Within our model, we made assumptions about the way in which toxi-

cant exposure acts upon the host. An alternative assumption could frame

this exposure as acting through a density dependence upon immunity and

within-host cells. We reproduced Fig 4.2 using the same parameters and
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this assumption also yields the result that parasite density is maximised

at an intermediate toxicant exposure (Appendix: Fig. C3). The qualitative

behaviour of the parasite is unchanged by this density dependent assump-

tion.

The framework provided in this study focuses on the failure of the im-

mune system of an individual organism. However individuals interact

within populations causing infection to spread to other susceptible indi-

viduals, and these populations have associated interdependent immune

defences at both the within-host and between-host level. For example,

social immunity involves many behavioural and population-level mech-

anisms such as social fever, a mechanism by which individuals increase the

temperature of the surrounding environment in order to kill parasites [200],

guarding, where patrolling guards prevent infected individuals from inter-

acting with healthy individuals [201], hygienic cleaning behavioural traits,

by which the population remove diseased or dead individuals [202] and

storing antimicrobial food [203]. Hence the main limitation of our frame-

work is that we may have only considered one half of both interdepen-

dent within and between-host immunities. Coupling population immunity

models in the context of an epidemic alongside our individual immunity

framework could further explain the interactions between toxicants and

infection at both the individual and population level. Further theoretical

work incorporating these multi-level dynamics could address the gap in
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understanding bee decline as interacting stressors in similar ways to other

models of colony collapse disorder [1, 96, 204].

This work highlights the need for further studies which focus on in-

teractions between various stressors at the within-host level. Our theoret-

ical study presents a starting position to think about these interactions at

the within-host level in the context of the immune system of an individ-

ual organism. While our model has an inherently simple structure, the

addition of the toxicant function can lead to complicated dynamics that

are consistent with empirical observations. This framework can stimulate

further empirical and theoretical studies which focus on the interaction

between toxicant exposure, infection and the immune system at both the

social group and individual level.
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5.1 Abstract

Populations are formed of their constituent interacting individuals, each

with their own respective within-host biological processes. Infection not

only spreads within the host organism but also spreads between individu-

als. Here we study a multilevel model which links the within-host statuses

of immunity and parasite density to population epidemiology under sub-

lethal and lethal toxicant exposure. We analyse this nested model in order

to better understand how toxicants impact the spread of disease within

populations. We demonstrate that outbreak of infection within a popula-

tion is completely determined by the level of toxicant exposure, and that it

is maximised by intermediate toxicant dosage. We classify the population

epidemiology into 5 phases of toxicant exposure and calculate the condi-

tions under which disease will spread, showing that there exists a thresh-

old toxicant level under which epidemics will not occur. In general, higher

toxicant load results in either extinction of the population or outbreak of in-

fection. The within-host statuses of the individual host also determine the

outcome of the epidemic at the population level. We discuss applications

of our model in the context of disease ecology, predicting that increased

exposure to toxicants could result in greater risk of epidemics. We predict

that reducing toxicant exposure below our predicted safe threshold could

contribute to controlling population level disease and infection.
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5.2 Introduction

The spread of infectious disease within populations occurs at various scales

of organisation. Population-scale processes are determined by the interact-

ing individuals within such populations, each with their own respective

individual within-host biological processes. Between-host epidemiological

dynamics are determined primarily by host demography and transmission

[205], while transmission is determined by the level of disease in infected

individuals within the population [40]. Furthermore, the dynamics of dis-

eased individuals are entirely dependent on their corresponding within-

host parasite load and host defence mechanisms [40]. Infectious diseases

such as host-parasite interactions depend upon two processes; both the im-

munological host-parasite interaction and the subsequent population level

epidemiology [41].

Individual organisms are exposed to a wide variety of stressors. These

stressors can be broadly defined as either abiotic (anthropogenic or cli-

matic) or biotic (parasites or predation). These stressors either act alone,

or in combination which can result in a higher than expected overall effect

when synergistic interactions occur between them [5]. One such anthro-

pogenic stressor is toxicant exposure; chemicals released into the environ-

ment which damage or have other detrimental effects on the host. Exam-

ples of such chemical stressors include pesticides in freshwater systems
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[7], neonicotinoid insecticides in honey bee colonies [10], various environ-

mental pollutants in rotifers [206] and Daphnia [207] and polychlorinated

dibenzo-p-dioxins (PCDDs), biphenyls (PCBs) and dibenzofurans (PCDFs)

in animals and humans [208]. Indeed, toxicants affect a wide range of non-

target species, including birds, mammals [11], aquatic species [12], and

insects [9].

In general, toxicants have lethal effects [13–17, 209], where the direct

chronic lethality of toxicant exposure occurs at high doses [13, 16, 17]. Toxi-

cants often have have other effects on behaviour, learning, feeding, memory

and fecundity [18, 19, 169, 173, 210, 211]. Individuals exposed to toxicants

can face other stressors such as parasite infections which, when combined

can cause further damage to the host. For example, the combination of

parasite infection and toxicant exposure can increase the initial parasite

load [82, 178], increase virulence [179] and increase mortality [176, 177] in

the host. These interactions between toxicants and parasites are observed

in a multitude of organisms [5]. In addition to the effects of toxicants on

the functionality of the host, toxicants also sublethally damage or inhibit

the individual immune response of the host [180]. There are a wide range

of immunosuppressive effects which occur as a result of sublethal or field

realistic levels of toxicant exposure [180, 182, 212–214]. Throughout this

manuscript we will focus on these two effects of toxicant damage to the

host: lethal exposure reducing the functionality of the host and sublethal



Chapter 5. How do toxicants affect epidemiological dynamics? 91

exposure causing a reduction in the functionality of the host immune re-

sponse.

The individual impacts of stressors on host level processes are well stud-

ied, but the subsequent impact on higher scales of organisation such as

populations are often not fully understood [20]. Toxicant research tends to

focus either on the molecular, physiological or cellular levels, or on merely

observing population decline, with the causal link between scales (within-

host and population) rarely investigated [20]. For example, lethal and sub-

lethal thresholds of toxicants are determined through experiments with

individuals, leading to uncertainty as to what consequence this has for the

population level [21]. Furthermore, interactions between multiple stressors

lead to effects which are not predictable from understanding the individual

effects of each stressor [179]. For example, the chemical stressor cadmium,

in combination with other abotic stressors can affect the population growth

rate and life-history parameters of Daphnia magna [215]. Uncertainty in

quantifying toxic effects can be explained through their interaction with

other stressors at the individual level, which in turn alter the population

dynamics [215]. In another study with Daphnia magna, pesticide exposure

has been shown to enhance the virulence of endoparasites [179].

Many mathematical models either consider the within-host dynamics

independent of the population [2], the epidemiological population dynam-

ics independent of the within-host parasite dynamics [33, 125], or model
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stressors as general population level processes [1, 58, 96]. Bridging multi-

scale biological processes can be achieved using nested (also called embed-

ded) mathematical models [39, 40]. Nested approaches embed models of

within-host dynamics into the epidemiological population scale. This al-

lows epidemiological parameters such as the basic reproduction number R0

to be determined by the dynamics of within-host parameters such as para-

site load, immune status and cellular health. This approach is particularly

useful when the effects of within-host processes on determining population

epidemiology are unknown [40], and as such, parameter relationships can

be determined from the subsequent analysis of the nested model, providing

important biological mechanistic predictions [39, 41–45]. For example, the

model by Bhattacharya and Martcheva [23] relates the immune response of

a species infected by a pathogen to population epidemiological parameters,

using a nested within- and between-host approach. This study however fo-

cusses on ecological competition between species, rather than additional

sources of stressors such as toxicants.

To date, little work addresses the interface between population epidemi-

ology and toxicant stress [22, 23]. In this study, we examine how toxicants

impact the spread of disease within populations, and how the subsequent

epidemiology is formed from their respective within- and between-host

processes. We introduce and analyse a nested model linking epidemiolog-

ical between-host processes to those of a previously studied within-host
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model [2]. This previous model examined interacting within-host pro-

cesses: host immunity, host parasite load and host cellular health, and the

effects of sublethal and lethal toxicant exposure. This previous study by

Booton et al. [2] showed that within-host parasite density is maximised by

intermediate doses of toxicant exposure, but they did not consider the sub-

sequent effects of their results on population level epidemiology. Here, we

investigate the change in the basic reproduction number of the epidemic

as the toxicant load is increased from zero to lethal exposure (causing host

mortality) and classify the resulting epidemiology into five distinct phases

of infection. These phases are determined by the interplay between both

within-host and between-host dynamics and processes.

5.3 Methods

Here we consider two scales of biological organisation, both the within-host

immuno-infection dynamics and between-host population dynamics. We

assume that the within-host dynamics are fast relative to a slower popula-

tion level timescale, a commonly used method for linking multi-level scales

[40, 43, 44]. Therefore each individual has equal average status of infection

at the within-host level, dependent upon the individual’s sub-class of infec-

tion (susceptible or infected). This significantly reduces the complexity of

such nested models, and allows a substitution of within-host steady state
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values into the between-host system. The separation of time scales through

slow-fast dynamics is justified through assuming that each individual be-

longs to a sub-group of infection, which we characterise below as either

susceptible or infected.

Within-host model

We use the simple modelling framework provided in Booton et al. [2] to de-

scribe the within-host infection dynamics under toxicant exposure in an in-

dividual. X, Y and Z represent the total within-host cells, parasite density

and immune function, respectively. The total within-host cells X represent

the uninfected cells within the host and Y represents the total number of

parasite-infected cells as a measure of parasite density. Here the term un-

infected implies that these cells could be potentially infected by a parasite.

To simplify the analysis significantly we use a non-dimensionalised version

of the original model published in Booton et al. [2]. The full derivation of

this model can be found in Appendix D, and this model has the same

qualitative dynamics, but with fewer parameters.

dX
dt

= (1− ξ1Q)− X(φ + Y) (5.1a)

dY
dt

= Y(εX− γ−ωZ) (5.1b)

dZ
dt

= (1− ξ2Q)− Z (5.1c)
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Toxicant exposure Q both reduces the functionality of the immune sys-

tem at rate ξ2 (sublethal) relative to the production of immunity and dam-

ages the functionality of the host at rate ξ1 (lethal) relative to the production

of new cells. This linear relationship is the simplest possible assumption re-

garding the effects of the toxicant on the host, and other such assumptions

(such as density-dependence) reproduce similar qualitative results to the

model presented here [2]. The non-dimensionalisation process scaled the

remaining parameters relative to the removal of immunity: φ sets the rate

at which healthy cells are removed from the system, ε represents trans-

mission of parasites and production of cells, γ sets the death rate of the

parasites, and ω represents the immune suppression and production of

immunity (all relative to the removal of immunity). Details on within-host

parameter relationships and their substitutions can be found in Appendix

D.

This model assumes to begin with that 1− ξ1Q > 0 and 1− ξ2Q > 0.

At the point when Z = 0, equation (5.1c) is removed and the model be-

comes the system of equations (5.1a) and (5.1b) without the term −ωYZ

(as Z = 0). In general throughout this paper we assume ξ2 > ξ1, which

ensures sensible behaviour of the model. If the alternative assumption

ξ2 < ξ1 holds true, the model predicts a healthy immune function even

after the parasite and healthy cells are dead (representing host mortality).

However in the main text we focus on the case ξ2 > ξ1 and argue that this
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case is biologically valid since the direct lethality of toxicants generally oc-

cur at higher doses [13, 16, 17], and various types of immunosuppressive

damage occur at sublethal or field realistic levels of toxicant [180, 182, 212].

Hence the assumption ξ2 > ξ1 ensures that the relative effect of sublethal

damage is stronger than that of the lethal toxicant damage at lower doses.

Similarly, after Y = 0, the model becomes equation (5.1a) but without the

term −XY. The assumption that Z = 0 before Y = 0 ensures that we can

investigate both the sublethal immunosuppressive effect and direct lethal-

ity of the toxicant before the death of the host at higher levels of Q.

We define X′ to be the equilibrium state of within-host cells in an unin-

fected individual in the absence of infection, X∗ to be the equilibrium state

of within-host cells in an infected individual, and Y∗ to be the equilibrium

state of parasite density in an infected individual, given by the expressions

(derivations of which can be found in Appendix D):

X′ =


1−ξ1Q

φ , if 1− ξ2Q > 0

0, otherwise

(5.2a)

X∗ =



γ−ξ2Qω+ω
ε , if 1− ξ2Q > 0

γ
ε , if 1− ξ2Q ≤ 0 & Y∗ > 0

X′, if 1− ξ2Q ≤ 0 & Y∗ = 0

(5.2b)
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Y∗ =



ε−ξ1Qε
γ−ξ2Qω+ω − φ, if 1− ξ2Q > 0

−γφ−ξ1ε+ε
γ , if 1− ξ2Q ≤ 0 & −γφ−ξ1ε+ε

γ > 0

0, −γφ−ξ1ε+ε
γ ≤ 0

(5.2c)

Between-host model

The dynamics of an infected population follow those of a simple suscepti-

ble - infected (S-I) model framework. Each individual can be classified into

either healthy susceptible S or infected I and therefore the total population

N is represented by S + I. We assume that new individuals enter the pop-

ulation at rate Λ. Transmission from a healthy susceptible individual to an

infected individual occurs at rate θ proportional to the equilibrium status of

within-host infection Y∗. We assume that the per capita mortality function

u is the same for each class with rates u
1+kX′ and u

1+kX∗ for uninfected and

infected individuals respectively, where k sets the strength of the mortality

function with respect to the numbers of within-host cells. This ensures that

cell depletion at the within-host level causes mortality at the level of the

individual hosts, where the mortality function increases as the cell count

decreases, up to a maximum value of u. This also ensures that the death

rate of an infected individual is inversely proportional to the equilibrium

state of the within-host cells under parasitisation.
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The coupled within-host and population level model is a two dimen-

sional system of non-linear ordinary differential equations (ODEs):

dS
dt

= Λ− θSIY∗ − u
1 + kX′

S (5.3a)

dI
dt

= θSIY∗ − u
1 + kX∗

I (5.3b)

The model was analysed using standard methods from dynamical sys-

tems theory and were numerically solved with Wolfram Mathematica ver-

sion number 10.0.2.0. The algebraic equilibria were found using the Math-

ematica function Solve and the numeric equilibria by NDSolve. We chose a

parameter set (Table 5.1) which highlights the typical qualitative behaviour

of the model and we examine how this behaviour is modified by changing

parameters around this standard set. The parameter set we chose is one

such set which highlights the qualitative behaviour of the model.
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Figure 5.1: The outline of the multilevel model. Bold lines show the
between-host processes and dashed show the within-host processes. Indi-
viduals can either be classified as susceptible or infected. Infection spreads
between hosts dependent upon the within-host parasite density. The tox-
icant impacts immune function and the general functionality of the host.
New individuals enter the system via birth and leave via death which is
dependent upon the individual within-host cellular health status.
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Parameter/ variable description Symbol Value
Within-host
total within-host uninfected cells X
parasite density Y
immune function Z
lethal toxicant effect relative to production of new
cells

ξ1 0.5

sublethal toxicant effect relative to production of im-
munity

ξ2 2

mortality of cells relative to removal of immunity φ 0.4166
mortality of parasite relative to removal of immunity γ 0.2
within-host transmission and production of cells rel-
ative to removal of immunity

ε 0.5

suppression and production of immunity relative to
removal of immunity

ω 1

Between-host
susceptible individuals S
infected individuals I
birth rate Λ 0.01
between-host transmission rate θ 0.01
mortality rate u 0.01
relative effect of host mortality k 1

Table 5.1: The between and within-host parameters used in the analysis
and simulations of the model.

5.4 Results

States of the population system

System (5.3) has two solutions; the endemic equilibria (EE) and the disease

free equilibria (DFE).

(SDFE, IDFE) =
(Λ + kΛX′

u
, 0

)
(5.4a)
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(SEE, IEE) =
( u

θY∗ + kθX∗Y∗
,

Λ + kΛX∗

u
− u

θY∗ + kθY∗X′
)

(5.4b)

Therefore system (5.3) either converges to the EE or DFE depending upon

the basic reproduction number R0, calculated as

R0 =
θΛY∗(1 + kX′)(1 + kX∗)

u2 (5.5)

This tells us the threshold at which infection will spread throughout

the population causing an epidemic (R0 > 1). Increasing between-host

transmission θ or population birth rate Λ increases the chance of outbreak.

Increasing the density dependent mortality u decreases the chance of out-

break. We predict that infection can spread through a population when the

parasite load Y∗ exceeds the critical threshold

Y∗ >
u2

θΛ(1 + kX′)(1 + kX∗)
(5.6)

When the toxicant Q is not present in the system, we expect R0 = 1

when φ ≥ 0, ε ≥ 0, γ > 0, ω ≥ 0, Λ > 0, u > 0, θ ≥ 0 and k ≥ 0 and

0 < φ <
ε

γ + ω
(5.7a)

θ +
u2εφ(γ + ω)

Λ(k + φ)(φ(γ + ω)− ε)(k(γ + ω) + ε)
= 0 (5.7b)

When the toxicant is at a critical level where immunity is depleted at
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Q = 1
ξ2

, we expect R0 = 1 when φ > 0, ε > 0, γ ≥ 0, ω ≥ 0, Λ > 0, u > 0,

θ ≥ 0 and k ≥ 0 and

0 ≤ ξ1 < ξ2 (5.8a)

0 < γ <
ε(ξ2 − ξ1)

ξ2φ
(5.8b)

θ +
γξ2

2u2εφ

Λ(γk + ε)(k(ξ2 − ξ1) + ξ2φ)(γξ2φ + ε(ξ1 − ξ2))
= 0 (5.8c)

When these conditions are met, the term 1− ξ2Q is equal to 0, which cor-

responds to the point at which immunity is depleted Z = 0.

No feasible within or between-host disease model

Figure 5.2 shows the baseline dynamics of the model under the absence of

within-host (and consequently between-host) infection. The lethality of the

toxicant linearly kills off the population of individuals in phase 0. Even

though immune function is reduced, there is no parasite present to exploit

and infect the population. After a threshold value, all individual hosts are

dead and the population is extinct (phase V). This figure represents the

baseline dynamics of the model under increasing toxicity and no infection.
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Figure 5.2: The baseline dynamics of the model without initial within-
host infection. The absence of the within-host infection means that the
infection cannot spread to the population level. Phase 0 corresponds to the
region of no feasible infection and phase V corresponds to the death of all
individuals within the population. Parameters as in Table 5.1, but with the
initial parasite density Y∗ = 0.

Dynamical phases of the population under increasing toxi-

cant exposure

Figure 5.3 shows the predicted stage of the epidemic under increasing tox-

icant exposure according to the simulations of the model. In general, there

are 5 separate phases present in the model, as defined below (outbreak is

denoted by *).

Phase I: no population epidemic

For low exposure to toxicant, the basic reproduction number is low (R0 <

1). This means that epidemics cannot occur at the population level. There

is a very small within-host infection burden (Y∗) which increases as the
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toxicant exposure increases. In this phase, the individual parasite burden

is not large enough to cause between-host transmission and thus the pop-

ulation only declines a relatively small amount from the direct exposure to

the toxicant.

Phase I I∗: outbreak

Here, the toxicant level is increased beyond a critical threshold causing

R0 > 1 and outbreak at the population level. This threshold is determined

by the relationship between the within-host immunity, parasite burden

and healthy cell status, and the population rate of transmission (Eq. 5.5).

This phase is characterised by a functioning but declining immune status,

caused by the increasing toxicant exposure. Combined with a within-host

parasite density reaching a peak at the end of phase I I∗, we see an out-

break of population level infection, and healthy susceptibles reaching a

minimum, while the total population decreases rapidly.

Phase I I I∗: disease reduced

Increasing the toxicant exposure further results in a complete depletion

of the within-host immune status. The basic reproduction number of the

infection begins to drop resulting in fewer infected cases and therefore an

increase in healthy individuals. Infected individuals are killed off by the

mortality induced by the epidemic. This higher level of toxicant exposure
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causes the parasite density to drop below the minimum required for an

infection to spread at the population level (determined by Eq. 5.6). This

means that the total population is able to recover marginally due to the

infection being removed.

Phase IV: disease controlled

At the start of phase IV, the population epidemic is over (R0 < 1). As

the toxicant exposure is increased again, the within-host parasite density

decreases to 0. At these very high levels of exposure, the individuals are

killed by the direct mortality inducing toxicant causing the population to

decline once again.

Phase V: host dead

At extremely high levels of exposure the host is killed due to the lethality

of the toxicant. All within-host functions are depleted. This results in the

population reaching extinction.



106 5.4. Results

(a)

(b)

Figure 5.3: The predicted five phases of an infected population under in-
creasing toxicant stress Q. Starred phases (I I∗ and I I I∗) represent the out-
break of infection where R0 > 1. In (a) solid lines represent the population
dynamics and dashed lines the within-host dynamics. In (b) the black line
shows the value of R0 and the dashed red line shows the threshold at
which R0 = 1 and above which outbreak will occur within the population.
Parameters taken from Table 5.1.

Within-host parameter phase dependence

We outline the behaviour of the model for a wider range of parameters.

We do this to investigate how the tradeoffs between certain within- and

between-host functions determine the subsequent population epidemic.

We define the phases as above, with phase 0 representing the region where



Chapter 5. How do toxicants affect epidemiological dynamics? 107

there is no feasible within-host or between-host disease.

Direct lethal effect ξ1 and sublethal ξ2 toxicant effect

Figure 5.4 shows the predicted phase of the population epidemic for 3

different levels of toxicant exposure, and for a range of lethal toxicant effect

(relative to the production of new within-host cells) and sublethal toxicant

effect (relative to the production of immunity). The white regions in Fig.

5.4 show the space in which the assumption ξ2 < ξ1 is broken. First,

the absence of toxicant exposure (Q = 0) results in no such epidemic for

any value of lethal and sublethal toxicant effect. Second, as the toxicant

exposure is increased to an intermediate value (Q=0.50), outbreak (phase

I I∗) occurs when the toxicant has both sufficiently high lethal and high

sublethal effect. Third, as the toxicant reaches high levels (Q = 1.50), the

outcome of the outbreak can fall into any of the phases of epidemiology

(0− V), dependent upon the respective lethal and sublethal properties of

the toxicant. Higher lethal and sublethal toxicant stress can result in the

extinction of the population, whereas lower lethality and higher sublethal

effects are required for outbreak (phases I I∗ and I I I∗).
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Figure 5.4: The predicted phase (0 − V) epidemiological outcome of the
population level dynamics for 3 levels of toxicant exposure and varying
direct lethal toxicant effect (relative to the production of new within-host
cells) ξ1 and sublethal effect (relative to the production of immunity) ξ2.
Note that the white region represents the phase space under which the
assumption ξ2 > ξ1 is no longer valid. Starred phases (I I∗ and I I I∗) rep-
resent the outbreak of infection within the population. For the absence of
toxicant exposure Q = 0, outbreak cannot occur for any value of ξ1 and
ξ2. For intermediate Q = 0.50, outbreak occurs if the values of ξ1 and ξ2
are sufficiently large. For lethal Q = 1.50, any of the phases can occur
dependent upon the choice of ξ1 and ξ2. High values of ξ1 and ξ2 result in
extinction of the population. Parameters as in Table 5.1, but for varying ξ1
and ξ2 as above.

Within-host transmission and production of cells (relative to removal of

immunity) ε and between-host transmission θ

Figure 5.5 likewise shows the predicted phase for a range of different lev-

els of ε and θ. In the absence of toxicant (Q = 0), outbreak can only

occur (I I∗) if the within-host transmission and production of cells ε is suf-

ficiently high. Otherwise, no epidemic can occur for any value of between-

host transmission. Secondly as the toxicant is increased to an intermediate
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value (Q = 1.00), the epidemic occurs (I I I∗) if both parameters are suffi-

ciently large. Third, at extremely high levels of exposure (Q = 2.00), the

population becomes extinct.

Figure 5.5: The dynamical phase (0 - V) for a range of within-host trans-
mission and production of cells (relative to the removal of immunity) ε and
between-host transmission θ. Starred phases (I I∗ and I I I∗) represent the
outbreak of infection within the population. For Q = 0, outbreak will occur
(I I∗) if ε is sufficiently large, otherwise phase 0 will occur for any value of
θ. For Q = 1.00, phase I I I∗ occurs only if both ε and θ are large enough.
For high Q = 2.00, population extinction occurs for any chosen values of ε
and θ. Parameters as in Table 5.1, but for varying ε and θ.

Birth rate Λ and mortality rate u

Figure 5.6 shows the relationship between the between-host birth and death

rates and the predicted stage of the epidemic. In the absence of toxicant

exposure (Q = 0), there are 2 possible outcomes. A low death rate is re-

quired to see the outbreak of the disease. Otherwise between-host disease

is not possible for any choice of Λ and u. Increasing the toxicant expo-

sure to higher levels (Q = 1.00) results in a complete switch to either the



110 5.4. Results

reduction or control of the disease. Finally, increasing the exposure to an

extremely high level (Q = 2.00) results in host death and the extinction of

the population.

Figure 5.6: The predicted phase (0 - V) for a range of between-host birth
rate Λ and between-host mortality u. Starred phases (I I∗ and I I I∗) repre-
sent the outbreak of infection within the population. For Q = 0, outbreak
will occur (I I∗) if u is sufficiently low. For Q = 1.00, either outbreak I I I∗ oc-
curs or phase IV occurs depending on the choice of Λ and u. For Q = 2.00,
all hosts are dead and extinction of the population occurs. Parameters as
in Table 5.1, but for varying transmission parameters Λ and u.

Absence of, and aggressive toxicant exposure

We explore the case of the absence of toxicant exposure (ξ1 = 0) in Fig. 5.7,

and also the case of aggressive toxicant exposure (ξ1 larger than ξ2) in Fig.

5.8.

Setting the lethal toxicant exposure ξ1 = 0 (Fig. 5.7) results in simi-

lar phase based dynamics observed in Fig. 5.3. Under this condition, the

first stages of the epidemic can be divided into phases I and I I∗, qualita-



Chapter 5. How do toxicants affect epidemiological dynamics? 111

tively identical to those found in Fig. 5.3. However, after the host immune

function is destroyed, a new phase I I I∗b occurs for any increasing value

of toxicant. This results in a persistent epidemic caused by the lack of any

lethal effects of the toxicant. In this case, the basic reproduction number

remains constant for all further toxicant exposure. Therefore the low toxi-

cant behaviour of the model is similar to the original, even after removing

this lethal toxicant effect ξ1 = 0.

We set the lethal toxicant effect higher than the sublethal effect in Fig.

5.8. This is in order to examine the effect of reversing the assumption used

throughout this paper (ξ2 < ξ1). We see that this alternative assumption

predicts three phases of the epidemic which are broadly similar to those

found in Fig. 5.3. The individual is highly infective to begin with and then

the lethal toxicant effect begins to remove the within-host parasite density.

After this, the population level infection is removed from the system, and

the model returns back to phases IV and V seen in the original dynamical

behaviour of the model.

Both of these figures highlight similar epidemiological phases of the

model under different assumptions, and are sub-dynamics of the original

dynamics found in Fig. 5.3.
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Figure 5.7: The predicted three phases of an infected population under
increasing toxicant stress Q with no direct lethality of the toxicant ξ1 = 0.
Starred phases (I I∗ and I I I∗b) represent the outbreak of infection where
R0 > 1. The individual remains highly infective in the absence of toxicant
lethality. Parameters taken from Table 5.1 but with ξ1 = 0.
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Figure 5.8: The predicted three phases of an infected population under
increasing toxicant stress Q with a relatively aggressive lethal effect of the
toxicant ξ1 > ξ2. Starred phase I I I∗ represents the outbreak of infection
where R0 > 1. The individual is highly infective to begin with and then
the aggressive toxicant effect removes the within-host parasite load which
reduces the chance of infection at the population level. Parameters taken
from Table 5.1 but ξ1 = 3, ξ2 = 2 and ε = 3.

5.5 Discussion

We have studied and analysed a nested multi-level model of within and

between-host processes to understand how toxicants impact epidemiolog-

ical dynamics. A key finding is that population epidemics are dependent



114 5.5. Discussion

upon the level of toxicant exposure. In general, infection prevalence is

maximised by intermediate levels of toxicant. We classify this population

epidemic into 5 phases showing that any outbreak is dependent on the tox-

icant’s sublethal and lethal properties. Higher toxicant exposure results in

either outbreak of infection or death of the population. In particular, the

stress-mediated within-host statuses of immune function and parasite load

also determine the outcome of the epidemic at the population level.

Importantly our model predicts that epidemics may not occur until

reaching an intermediate threshold exposure of toxicant. At low levels

of exposure, the parasite density is able to increase but between-host infec-

tion is equal to zero within the population until reaching a critical threshold

(at the start of phase I I∗). Sublethal toxicant exposure can have dramatic

consequences for population epidemiology, causing widespread outbreak.

These results support the body of work on synergistic interactions between

environmental chemicals and natural stressors [5], and highlight the effects

of toxicants on higher scales of organisation such as population dynamics,

which are often not understood [20] or difficult to experimentally test [21].

Our model also predicts that population epidemics follow phase-based

transitions dependent on the level of toxicant exposure. Within our model,

5 such phases are present. First, the parasite burden is too small within

individuals to have any impact on the population level. Only when the

parasite density crosses a minimum threshold (Eq. 5.6) do we see any pop-
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ulation level impact. The immunosuppressive toxicant effect causes the

parasite density to rapidly multiply and spread between individuals. Un-

der increasing exposure, prevalence only subsides when the parasite is re-

duced by the lethal toxicant effect. The sublethal immunosuppressive effect

of the toxicant only impacts the population if the toxicant exposure is low.

Otherwise the lethality of the toxicant takes over and kills the host, caus-

ing extinction of the population. These complicated phase-based epidemics

show that the effect of toxicant exposure upon population disease outbreak

is non-linear. Interestingly, when considering the population density under

increasing toxicant exposure we see a rapid decrease in the population in

the early and late stages of this exposure. However, in phase I I I∗, we see

a marginal increase in the density which represents population recovery.

This is caused by a significant reduction in the epidemiological dynam-

ics, and means that the healthy population is able to recover. This has

implications for environmental assessors, where often the indicator of an

ecosystem’s healthy state is population density, rather than the individual

clinical states of a system. Our results suggest that by only monitoring

population density the underlying dynamics may go unnoticed, especially

in the predicted mid-range toxicant phase I I I∗.

A further prediction the model makes is that tradeoffs between within-

and between-host functions determine the subsequent population epidemi-

ology (Fig. 5.4, Fig. 5.5 and Fig. 5.6). We show that outbreak will occur
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when the individual sublethal toxicant effect is relatively higher than that

of the lethal effect. Although we also predict that higher exposure to toxi-

cants can result in any of the defined epidemiological phases. This suggests

that population epidemiology can be completely determined by the rela-

tive sublethal and lethal properties of the toxicant. In addition, we also

show that the sublethal toxicant effect determines whether the population

will become extinct at high toxicant exposure. This further suggests that

the individual properties of toxicants are important in determining out-

break. The tradeoff between different scales of transmission also determine

these phase-based epidemics. In general, higher levels of both within- and

between-host transmission result in outbreak. Another implication of these

phase-based plots are that slight increases in parameters can result in sud-

den epidemiological switches. For example, the third panel in Fig. 5.4

shows all of the phases in our system. A slight increase in the sublethal

effect ξ2 at this high toxicant exposure Q = 1.50 can result in abrupt tran-

sitions between phase 0 or I to phase IV. These kind of transitions show

that these phases of epidemiology are sensitive to slight perturbations in

the effects of sublethal and lethal toxicant exposure. Introducing a new

toxicant into a healthy population with only a slightly stronger sublethal

effect on the host could cause a dramatic regime shift and ultimately high

mortality rates (shift from phase I to phase IV).

The results in the main text of this paper depend entirely upon the rela-
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tive sublethal and lethal effects of the toxicant, particularly on the assump-

tion that ξ2 > ξ1. We focussed on this assumption for multiple reasons. If

this assumption were reversed, the within-host model predicts unrealisti-

cally that the immune function will be present even after the host is dead.

In Fig. 5.8 we show that under this reverse assumption, the results still fall

into the phase based transitions seen under the normal assumption, and

are sub-dynamics of the original phases shown in Fig 5.3. Another rea-

son we focus on the case of ξ2 > ξ1 is because direct chronic lethality often

occurs at higher doses of toxicant [13, 16, 17] and immunosuppressive dam-

age occurs at various levels of lower dose toxicant exposure [180, 182, 212].

Therefore we argue that focussing on the case in which host mortality oc-

curs at higher toxicant exposure and immunosuppressive damage occurs

at lower, sublethal levels is biologically realistic.

These results have a number of applications, one such application being

motivated by the impacts that toxicants have on a wide range non-target

species [7, 9–12, 206–208]. For example, the recent and widespread losses in

worldwide bee populations [10] are thought to be caused by multifactorial

synergistic stressors [54, 75, 76, 176, 190]. Within this setting, this work

fills a previously identified research gap [22] by outlining the complicated

relationship between toxicant stress and population epidemics. In general,

increased exposure to toxicants should result in more colony epidemics

and therefore greater population losses. Intermediate exposure to toxicants
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could result in dramatic decreases in overall colony health. Reducing the

sublethal toxicant exposure below the predicted safe phase I threshold (to

ensure R0 < 1 in Eq. 5.5) ensures that no colony epidemic can occur. These

results highlight the nonlinear relationship between pesticide exposure and

population epidemiology. Indeed, the very general nature of this model

means that these results may be applied to any disease ecology system

exposed to toxicants.

The framework presented in this study focusses on linking two scales

of biological organisation under toxicant stress. This toxicant stress affects

the within-host dynamics in two ways, acting as an indirect immunosup-

pressant and directly impacting the vital functionality of individual health.

However, we did not explicitly model the population-level toxicant effects.

For example, pesticide exposure has been shown to impair foraging be-

haviour in bees, and increase forager mortality leading to reductions in

brood production and overall colony success [165]. Investigating this addi-

tional route of stress within our framework would further clarify the role

of toxicants in population-level processes. A further improvement to the

model could investigate the role of social immunity, a process by which

populations prevent infection from spreading. Social insects are known to

perform behavioural traits such as removing diseased or dead individuals

[202], preventing others from interacting with infected individuals [201],

and collectively raising the temperature of the surrounding environment
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through a process known as social fever [200], all in order to prevent further

infection. Incorporating these social mechanisms into our nested multilevel

modelling framework could shed new light on the way that populations

use innate and social immunity to combat disease.

In summary, this work takes a multifactorial approach to model infec-

tion at the population level which can be divided into 5 phases dependent

upon the level of toxicant stress. We predict that infection within popula-

tions is maximised by intermediate toxicant exposure, and that there exists

a toxicant threshold below which individual parasite density is controlled

and outbreak does not occur. The modelling framework used here presents

a starting position to think about how within-host functions such as im-

munity and parasite density determine population level effects. This work

highlights the need for experimental studies which focus on measuring

epidemiological traits of populations under increasing toxicant exposure.
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Discussion

In this chapter we summarise the main findings of this thesis and discuss

extensions and applications of these studies.

6.1 Summary

The objective of this thesis was to examine the effects of stressors on various

ecological systems. We have found many results which are novel within the

fields of stress ecology and eco-epidemiology, particularly in the context of

honey bee colonies. We summarise the main findings of this thesis as:

• Sublethal stressors can cause the sudden collapse in populations of

an important ecological species. Around a critical level of increasing

stress, the presence of a saddle-node bifurcation causes irreversible

consequences for populations of honey bee colonies (Chapter 2).

120
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• Increasing levels of stress can be counteracted by regulatory functions

of the individual species. For example, higher birth rates and altering

the balance of age-structured division of labour can counteract the

effects of stress (Chapter 2).

• Disease stressors acting through multiple routes of infection synergis-

tically increase the levels of infection and contamination as compared

to those diseases with only one route of transmission (Chapter 3).

• The interactions between multiple stressors are completely dependent

upon the relative levels of each, and this relationship can be non-

linear. For example, an interaction between toxicant and parasite is

maximised by an intermediate level of toxicant, rather than simply

linearly increasing. This occurs at both the within-host and between-

host level (Chapters 4 and 5).

• The stress response of an organism can be divided into three phases

dependent upon the level of increasing sublethal and lethal stressor

exposure. These phases are also determined by the relationship be-

tween the within-host processes and the stressor (Chapter 4).

• Within a multi-stressor environment, the outbreak of infections at the

population level are determined by the exposure to other abiotic stres-

sors. There is a threshold exposure of stressor exposure under which

epidemics will not occur (Chapter 5).
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• The within-host statuses of individuals also determine the outcome

of epidemics at the population level. The combination of within- and

between-host dynamics result in five-phases of population epidemi-

ology. These phases are determined by the balance of within- and

between-host parameters and the exposure to stressors (Chapter 5).

6.2 Future work

There are many possible extensions to the modelling frameworks presented

within this thesis. There are also various results contained here which

have direct implications for future experimental work. We suggest vari-

ous streams of research which could be conducted arising from the results

contained within this thesis.

The bistability caused by sublethal stressors present in Chapter 2 opens

up the possibility of using early warning signals (EWS) to track honey bee

colony collapse and predict the period leading up to a critical transition.

In recent years, the field of EWS has been used to understand the under-

lying dynamics of ecological systems and predict critical threshold tipping

points of dynamical systems [216]. If increasing sublethal stress can cause

these sudden collapses of honey bee colonies (Chapter 2), then we should

be able to forecast and prevent such collapses from occurring by using EWS

methods. However, in order to track these EWS, we need high-resolution
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data from both before and after the critical transition (colony collapse),

to avoid potential false negatives and confirm that the EWS framework

is indeed predicting colony collapse accurately. As to this date, no such

dataset exists, although some track continuous hive weight data [217],

which could be used as a measure of overall colony function and there-

fore used to track EWS. We suggest that an empirical dataset of various

honey bee colony functions (weight of the hive, temperature, brood/food

storage) is collected. This data needs to be temporal, high-resolution and

crucially needs to monitor those dynamics of a normal hive in compari-

son to that of a colony undergoing colony collapse disorder or other sud-

den changes in dynamical behaviour. The potential implications of such a

dataset combined with the applications of EWS and our model framework

are wide-spanning and may prove valuable to honey bee conservation. For

example, real-time tracking data combined with a EWS toolbox interface

could provide apiculturists with updates about the health of their colonies

and potential warnings of imminent collapse.

We made several simplifications in Chapter 2 in order to divide the

honey bee hive into distinct compartments, appropriate for modelling.

However, we only divided the population into two: the within-hive adults

and forager classes. While these two distinct classes capture the difference

between mortality rates and behaviour in foragers and within-hive adult

bees [89], the hive is actually intricately divided into many such classes
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[83]. For example, dedicated bees will clean and feed the inner hive and

receiver honey bees receive, pack and store nectar [112]. Including the

dynamics of more classes of honey bee could help understand how these

additional regulatory processes are affected by stress, and how they con-

tribute to overall colony dynamics.

Within this thesis we mostly did not consider the effects of seasonality,

instead only concentrating on this aspect in Chapter 3. It has been shown

that honey bee health depends upon the season [74, 111, 134] and honey bee

population levels normally fluctuate with the time of year [137]. We sug-

gest extending the framework provided in Chapter 2 to include seasonal

effects on important regulatory functions of the hive, in order to examine

how this determines overall colony health and the presence of sudden crit-

ical transitions. We also suggest extending the frameworks provided in

Chapters 4 and 5 to include seasonal effects, particularly to investigate the

effects this has on both the within- and between-host epidemiology. The

results from Chapter 3 and other modelling studies including honey bee

seasonality [94, 99] highlight the importance of including such seasonal

effects within theoretical work.

Within Chapter 4 and 5 we made assumptions about the way in which

toxicant stress affects the host organism, namely that it reduces the func-

tionality of the immune system (see [180–185, 194–196]) and is lethally toxic

at high enough exposure, damaging vital functions of the host rather than
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killing individual cells (see [13, 14, 16, 17]). An alternative assumption is

entirely possible based upon toxicant acting through a density-dependence

on immunity and direct cell damage. We briefly touch upon this assump-

tion in Appendix C, which yields similar results (Figure C3) to the original

model contained within Chapter 4. Although the within-host parasite dy-

namics are relatively unchanged by this density dependence assumption,

the effects that this could have on the population level are unknown. We

suggest that further work should apply these within-host density depen-

dent stressor assumptions within a population level framework in order to

clarify that we obtain the same phase-based epidemiology found in Chap-

ter 5.

Another important biological mechanism that we did not consider in

this thesis is social immunity. The process of social immunity is crucial in

defending organisms such as eusocial insects against infection. Social in-

sects remove dead or diseased conspecifics [202] which removes a potential

source of infection [201], and perform other behavioural traits such as in-

creasing the internal temperature of the environment to kill parasites [200].

Chapters 4 and 5 only include strict innate within-host immunity, but we

suggest incorporating the effects of social immunity into this framework,

due to the central role it plays within immune defence mechanisms par-

ticularly in social insect colonies [218]. The role of social immunity rela-

tive to direct innate immunity in combatting infection within populations
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is unknown, especially when combined with a multi-stressors framework.

Future work should incorporate both aspects of immunity and their impli-

cations for population dynamics and epidemiology.
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Appendix A

Appendix for Chapter 2

Linearisation Around The Zero Equilibrium

Clearly, (H, F) = (0, 0) is an equilibrium of the system. We can perform a

linearisation around the zero equilibrium to determine the stability of this

fixed point. Let us define the following functions

g1(H, F) =
dH
dt

= L
H + F

ω + H + F
− H

(
α− σ

F
k + F + H

)
− µH

φ + H + F
− γ(H + F)H

g2(H, F) =
dF
dt

= H
(

α− σ
F

k + F + H

)
−mF− µF

φ + H + F
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Now, since ∃ (H∗, F∗), steady state of

dH
dt

=
dF
dt

= 0

Then

dH∗

dt
= g1(H∗, F∗)

dF∗

dt
= g2(H∗, F∗)

We can calculate the Jacobian matrix for (H∗, F∗) as

J =


(

dg1
dH

)
∗

(
dg1
dF

)
∗(

dg2
dH

)
∗

(
dg2
dF

)
∗



dg1

dH
=− α− Fγ− 2Hγ +

F2σ

(F + H + k)2 +
Fkσ

(F + H + k)2+

Hµ

(F + H + φ)2 −
µ

F + H + φ
− (F + H)L

(F + H + ω)2 +
L

F + H + ω

dg1

dF
=− Hγ +

H(H + k)σ
(F + H + k)2 +

Hµ

(F + H + φ)2 −
(F + H)L

(F + H + ω)2 +
L

F + H + ω

dg2

dH
=α− F(F + k)σ

(F + H + k)2 +
Fµ

(F + H + φ)2

dg2

dF
=−m− H(H + k)σ

(F + H + k)2 −
µ(H + φ)

(F + H + φ)2
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Evaluating the Jacobian at the equilbrium point (H∗0 , F∗0 ) = (0, 0),

J∗ =

−α− µ
φ + L

ω
L
ω

α −m− µ
φ


Calculating the eigenvalues,

λ1 =
Lφ− 2µω−mφω− αφω− φ

√
L2 + 2Lmω + 2Lαω + m2ω2 − 2mαω2 + α2ω2

2φω

λ2 =
Lφ− 2µω−mφω− αφω + φ

√
L2 + 2Lmω + 2Lαω + m2ω2 − 2mαω2 + α2ω2

2φω

In order for the origin to be stable, we require all eigenvalues to be real

and of negative sign. If we assume that all other parameters are nonzero,

ω > 0, α > 0, φ > 0, L > 0, m > 0 and that stress is also nonzero µ > 0 then

this happens either when (1)

0 < ω <
L(m + α)

mα

and when

µ >
Lφ + ω

(
− φ(m + α) +

√
φ2(L2+2Lω(m+α)+(m−α2)ω2)

ω2

)
2ω



Chapter A. Appendix for Chapter 2 155

or when (2),

ω ≥ L(m + α)

mα

So in order for the system to have a stable equilibrium at (0, 0), we require

either (1) or (2) to hold true. If stress is present µ > 0, then we have

obtained the conditions for the stability of the origin.

Bifurcations of Critical Parameters

Figure A1: The saddle-node bifurcation through the parameter of natural
mortality rate, m, with parameters taken from Table 2.1. The location of the
limit point represents the critical death rate after which the total number
of in-hive bees will become 0. For low initial values of in-hive bees, the
colony can fail with no natural mortality present.
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Figure A2: The saddle-node bifurcation through the parameter of recruit-
ment α, with parameters taken from Table 2.1. The bifurcation is similar
to the natural mortality bifurcation, with the limit point being approached
from low parameter values. If recruitment is critically high, then the colony
will fail.

Figure A3: The reversed direction saddle-node bifurcation through the pa-
rameter of social inhibition σ, with parameters taken from Table 2.1. For
high values of social inhibition task switching, the colony can sustain if the
initial number of bees is greater than the critically low amount. If the social
inhibition decreases below the limit point, then the colony will fail.
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Figure A4: The reversed direction saddle-node bifurcation through the pa-
rameter of laying rate of the queen L, with parameters taken from Table
2.1. The bifurcation is similar to the bifurcation for social inhibition. If the
queen lays more than the critically low value around the limit point, then
the colony will sustain given that the initial number of bees is greater than
the unstable branch.
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Model Comparison

(a) Death Rate m = 0 (b) Death Rate m = 0.05

(c) Death Rate m = 0.2 (d) Death Rate m = 0.5

Figure A5: The comparison between our simulated model, and other au-
thor’s models, with parameters taken from Table 2.1. The black curve rep-
resents our adjusted model including the limiting γ function. The dotted
curve represents the Khoury et al. model [92] and dashed curve represents
the Bryden et al. model [96]. As we increase each model through the death
rate parameter, the sudden switch between indefinite growth and collapse
exhibited by the Bryden model, and the very gradual decrease in the popu-
lation exhibited by the Khoury model can be compared to the stabilisation
of the population at low mortality and sudden collapse at higher mortality
exhibited by our model.
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The effect of stress on population dynamics

(a) Stress function only in-hive bees

(b) Stress function only forager bees

Figure A6: The bifurcation through stress when acting only on the in-hive
population (a) and only on the forager population (b), with parameters
taken from Table 2.1. In (a) we see similar dynamics to the original model,
however in (b) the limit point occurs at a higher stress level. The same
qualitative dynamics are present (saddle-node bifurcation) in both cases.
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Appendix for Chapter 3

Calculating the Malthusian growth parameter λ

We use the online application WebPlotDigitizer to extract data from Figure

2A published in [142]. This gives us the initial growth rate of the infection

in the summer. We summarise this extracted data in the following table

160
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Time (days) % infection

0 0

30 0

60 8.7

90 21.9

120 42.6

150 51.4

180 67.6

210 85.3

240 92.6

270 39.2

We can plot this data from the first initial infection using a log scale and fit

an exponential model to the initial data points: aeλt = 4.10e0.026t
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Figure B1

Therefore the Malthusian parameter for the initial growth rate is λ =

0.026.
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R0 in each season

At the disease free equilibrium

(X∗, Y∗, Z∗) =
(M(r− µ)

r
, 0, 0

)
The original system of ODEs becomes

dX
dt

= β
M(r− µ)

r
Z− θ

M(r− µ)

r
Y− (α + µ + p)Y

dZ
dt

= kY(1− Z)− dZ

Calculating the Jacobian for this model gives

J =

−p− α + Mθ − µ(r+Mθ)
r

Mβ(r−µ)
r

k(1− Z) −d− kY


Evaluating at (Y∗, Z∗) = (0, 0) gives

J =

−p− α + Mθ − µ(r+Mθ)
r

Mβ(r−µ)
r

k −d


Calculating the determinant and substituting X∗ gives
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J =

∣∣∣∣∣∣∣∣
λ + (α + µ + p)− θX∗ −βX∗

−k λ + d

∣∣∣∣∣∣∣∣ = 0

Then

(λ + (α + µ + p)− θX∗)(λ + d)− βkX∗ = 0

Let Λ1 = 1
α+µ+p and Λ2 = 1

d so that

(λ +
1

Λ1
− θX∗)(λ +

1
Λ2

)− βkX∗ = 0

(λΛ1 + 1− θX∗Λ1)(λΛ2 + 1) = βkX∗Λ1Λ2 = 0

R0 in each season is expressed as

R0 =
Mi(βk + θd)(r− µi)

dr(p + αi + µi)

=
X∗(βk + θd)

d(p + αi + µi)

=
X∗βk

d(p + αi + µi)
+

X∗θ
(p + αi + µi)

= βkX∗Λ1Λ2 + θX∗Λ1

= RI + RD



164

so that

RI = βkX∗Λ1Λ2

RD = θX∗Λ1

Combining we obtain the following relation between the Malthusian coeffi-

cient λ , the contribution to R0 from the indirect transmission RI and direct

transmission RD.

(λΛ1 + 1− RD)(λΛ2 + 1) = RI

Therefore

R0min = λΛ1 + 1 ≤ R0 ≤ (λΛ1 + 1)(λΛ2 + 1) = R0max

Rescaling from the definition of R0 we can find R0 for all seasons using the

seasonal parameters, e.g.

R0summer(α + µ2)

M2(r− µ2)
=

R0spring(α + µ1)

M1(r− µ1)

R0spring =
R0summer M1(α + µ2)(r− µ1)

M2(r− µ2)(α + µ1)
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So that the maximum R0 in each season is

R0spring = 3.40

R0summer = 1.68

R0autumn = 1.30

R0winter = 1.17

Estimating β and θ from the value of R0

The size of β and θ depend upon the choice of RI and RD. With R0 = R0max

we derive the following values for β and θ.

RI : RD β θ

100:0 0.037 0

70:30 0.026 0.170

50:50 0.018 0.284

30:70 0.011 0.397

0:100 0 0.567
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Appendix for Chapter 4

Stability Analysis around the DFE

We perform the stability analysis for the system under the assumption

Z = 0 before Y = 0 (equation 4.3 in the main text).

Phase I 0 ≤ Q < c
h = Q∗0

We analyse the system in the region c− hQ > 0 and λ− rQ > 0 (phase I).

This ensures that X, Y and Z exist. The system describing the dynamics of

the host under toxicant exposure

dX
dt

= λ− βYX− dX− rQ

dY
dt

= βYX− aY− pYZ

dZ
dt

= c− bZ− hQ

166
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has equilibria

(XDFE
B , YDFE

B , ZDFE
B ) =

(λ− rQ
d

, 0,
c− hQ

b

)

(XEE
B , YEE

B , ZEE
B ) =

( ab + cp− hpQ
βb

,
−abd− cdp + dhpQ− bQrβ + βbλ

βab + cpβ− hpQβ
,

c− hQ
b

)
The Jacobian matrix of the system is calculated as follows

J =


−d− βY −βX 0

βY −a− pZ + βX −pY

0 0 −b


The Jacobian evaluated at the DFE is

JDFE =


−d β( rQ−λ

d ) 0

0 −a− p( c−hQ
b ) + β(λ−rQ

d ) 0

0 0 −b


which has eigenvalues

− b

− d

− abd + cdp− dhpQ + bQrβ− bβλ

bd

The system has a stable node at the DFE when all eigenvalues are real and
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negative. Clearly −b < 0 and −d < 0, so the DFE is a stable node when

Q <
abd + cdp− bβλ

dhp− brβ

and a saddle (at least one of the eigenvalues is positive) when

Q >
abd + cdp− bβλ

dhp− brβ

Therefore abd+cdp−bβλ
dhp−brβ gives us the threshold toxicant exposure value at

which a small density of parasite will cause outbreak within the host. In

the parameter space explored in the manuscript the DFE is unstable for

any value of Q in the phase I region 0 ≤ Q < c
h .

Phase II Q∗0 = c
h ≤ Q < βλ−ad

rβ = Q∗1

In this region, the system becomes

dX
dt

= λ− βYX− dX− rQ

dY
dt

= βYX− aY

with equilibria

(XDFE
B , YDFE

B ) =
(λ− rQ

d
, 0
)

(XEE
B , YEE

B ) =
( a

β
,− ad + rβQ− βλ

aβ

)
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The Jacobian matrix is calculated as follows

J =

−d− βY −βX

βY −a + βX


The Jacobian evaluated at the DFE is

JDFE =

−d −β(λ−rQ
d )

0 −a + β(λ−rQ
d )


which has eigenvalues

− d

− a + β(
λ− rQ

d
)

The system has a stable node at the DFE when all eigenvalues are real

and negative. Clearly −d < 0, so the DFE is a stable node when

Q >
βλ− ad

rβ

and (unstable) saddle if eigenvalues are real and of opposite signs which

occurs when

Q <
βλ− ad

rβ
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which corresponds to the definition for Phase II (Q < βλ−ad
rβ = Q∗1).

After this threshold toxicant exposure, the DFE becomes stable and hence

the parasite is removed from the host.

Phase III Q∗1 = βλ−ad
rβ ≤ Q < λ

r

In this phase, the system becomes

dX
dt

= λ− dX− rQ

with equilibria

XB =
λ− rQ

d

and corresponding eigenvalue −d evaluated at the equilibrium. Since this

is negative, the equilibruim is always stable for d > 0. At the point at which

the equilibrium becomes 0, the host is dead and the equations are unde-

fined for larger Q. This happens when the assumption λ − rQ > 0 is re-

versed.

To summarise, the EE equilibria is feasible until one of c − hQ > 0 and

λ− rQ > 0 is broken. After phase I (Q = c
h = Q∗0), then Z = 0, and the

equilibria is expressed in terms of the two dimensional system X and Y.

After which the EE equilibria is feasible until Q = βλ−ad
rβ = Q∗1 , at which

point Y = 0, so the system reverts to the one dimensional system of X, and
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a stable DFE. This equilbria is feasible until Q∗ = λ
r after which all state

values are equal to 0.
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Figure C1: The mechanism of parasite infection under increasing toxicant
exposure, for a pairwise range of both immunosuppressive (h = 0, 0.3, 1.0)
and lethal (r = 0, 0.1, 0.4) effects of toxicant with all parameters taken from
Table 4.2. This shows the parameter dependence of immunity, parasite
density and within-host cells at equilibrium within the dynamics of our
model. The total densities of immune function (blue), parasite load (red)
and within-host cells (black) change as an individual is subject to higher
toxicant loads, according to the phases of the model.
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Figure C2: The mechanism of parasite infection under increasing toxicant
exposure, for a pairwise range of both immunosuppressive (h = 0, 0.3, 1.0)
and lethal (r = 0, 0.1, 0.4) effects of toxicant with all parameters taken from
Table 4.2. This shows how the total % parasite infection (black) changes
depending upon the combination of both immunosuppressive and lethal
effects.

Density dependent assumption

System (4.1) assumes that toxicant exposure reduces the sources of within-

host cells λ and immunity c. We explore the alternative assumption that

toxicant load reduces the within-host cells and immune function depen-

dent upon the density of both, respectively. In this case, system (4.1) be-
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comes

dX
dt

= λ− βYX− dX− rQX

dY
dt

= βYX− aY− pYZ

dZ
dt

= c− bZ− hQZ

We reproduce Fig. 4.2 from the main text in order to examine the equi-

libria under this new assumption with the same parameter set. Figure C3

shows the dynamical behaviour of the model under this assumption. We

show that parasite load is still maximised at an intermediate toxicant ex-

posure, and the removal of the parasite at high toxicant exposure.
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Figure C3: The mechanism of parasite infection under increasing toxicant
exposure for density-dependent assumption. This shows the parameter
dependence of immunity, parasite density and within-host cells at equi-
librium within the dynamics of our model. In (a) the total densities of
immune function (blue), parasite load (red) and within-host cells (black)
change as an individual is subject to higher toxicant loads. In (b) the to-
tal % parasite infection (black) changes as the toxicant load is increased.
Parameters as in Table 4.2.



Appendix D

Appendix for Chapter 5

Derivation of non-dimensional model

We use the simple modelling framework provided in Booton et al. [2] to

describe the within-host infection dynamics under toxicant exposure in an

individual. X, Y and Z represent the total within-host cells, parasite den-

sity and immune function, respectively. Toxicant exposure Q both reduces

the functionality of the immune system at rate h (sublethal) and damages

the functionality of the host at rate r (lethal). λ sets the rate of production

for new healthy cells, β the rate of infection, d the death of healthy cells, a

the death of parasites, p the immune suppression, c the production of im-

munity and b the removal of immunity. This model is given by the below

equations

174
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dX
dt

= λ− βYX− dX− rQ

dY
dt

= βYX− aY− pYZ

dZ
dt

= c− bZ− hQ

In order to significantly reduce the analysis we non-dimensionalise this

model. We write these differential equations in terms of the new variables:

X = X̂X, Y = ŶY, Z = ẐZ and

t = t̂t

, where the quantities X̂, Ŷ, Ẑ and t̂ will be chosen later. By the chain rule,

dX
dt

=
X̂
t̂

dX
dt

=
λX̂

t̂
− βXY

t̂Ŷ
− dX

t̂
− rQX̂

t̂
dY
dt

=
Ŷ
t̂

dY
dt

=
βXY

t̂X̂
− aY

t̂
− pYZ

t̂Ẑ
dZ
dt

=
Ẑ
t̂

dZ
dt

=
cẐ
t̂
− bZ

t̂
− hQẐ

t̂

Let t̂ = b, X̂ = b
λ , Ŷ = β

b , Ẑ = t̂
c = b

c , ξ1 = r
λ , ξ2 = h

c , which gives
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dX
dt

= 1−XY − d
b
X − ξ1Q

dY
dt

=
βλ

b2 XY −
a
b
Y − pc

b2YZ

dZ
dt

= 1−Z − ξ2Q

Then we let φ = d
b , γ = a

b , ε = βλ
b2 and ω = pc

b2 which gives the final

simplified set of equations

dX
dt

= (1− ξ1Q)−X (φ + Y)

dY
dt

= Y(εX − γ−ωZ)

dZ
dt

= (1− ξ2Q)−Z

For convenience in the main text and for the remainder of this appendix

we replace the above X with X and likewise for Y , Z and t with Y, Z and

t.
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Piecewise equilibria for the within-host model

The equilibria for the non-dimensional model are

(XDFE, YDFE, ZDFE) = (
1− ξ1Q

φ
, 0, 1− ξ2Q)

and

(XEE, YEE, ZEE) = (
γ− ξ2Qω + ω

ε
,

ε− ξ1Qε

γ− ξ2Qω + ω
− φ, 1− ξ2Q)

We define X′ to be the equilibrium state of within-host cells in an un-

infected individual in the absence of infection. Under increasing Q, the

solution for X′ is defined until 1−ξ1Q
φ = 0 (after which the solution would

be negative) and hence we set the value equal to zero after this point:

X′ =


1−ξ1Q

φ , if 1− ξ1Q > 0

0, otherwise

We define X∗ to be the equilibrium state of within-host cells in an in-

fected individual. The solution depends on whether or not the infection

is present within the host, and whether or not the immune system has

been depleted to zero. If the immune system Z is nonzero (1− ξ2Q > 0),

X∗ is the solution defined by XEE. However, once the immune system is
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depleted, then the ODEs become

dX
dt

= (1− ξ1Q)− X(φ + Y)

dY
dt

= Y(εX− γ)

which has a solution at

(XEE2, YEE2) = (
γ

ε
,
−γφ− ξ1Qε + ε

γ
)

Hence if Z = 0 at 1− ξ2Q = 0 and the parasite density is above zero, then

X∗ is the solution defined by XEE2. However, once the infection is removed

from the system by the toxicant, the ODE system becomes

dX
dt

= (1− ξ1Q)− φX

which has a solution at

XDFE =
1− ξ1Q

φ

After Y∗ = 0 the solution for X∗ becomes identical to X′. Collecting these

three conditions together yields the piecewise equilibria defined as:
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X∗ =



γ−ξ2Qω+ω
ε , if 1− ξ2Q > 0

γ
ε , if 1− ξ2Q ≤ 0 & Y∗ > 0

X′, if 1− ξ2Q ≤ 0 & Y∗ = 0

Similarly Y∗ is the equilibrium state of parasite density in an infected

individual. This is determined by the status of immunity and by the point

at which the infection is removed from the system. If Z > 0 at 1− ξ2Q > 0

then Y∗ is defined by YEE1. However if the immune system is depleted then

the ODE system becomes 2 dimensional and the solution for Y∗ becomes

YEE2. This solution is defined until YEE2 = 0, at which point the infection is

completely removed from the host and remains at 0 indefinitely. Collecting

these conditions together yields the piecewise equilibria for the parasite

density:

Y∗ =



ε−ξ1Qε
γ−ξ2Qω+ω − φ, if 1− ξ2Q > 0

−γφ−ξ1ε+ε
γ , if 1− ξ2Q ≤ 0 & −γφ−ξ1ε+ε

γ > 0

0, −γφ−ξ1ε+ε
γ ≤ 0
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The basic reproduction number

We will use the next generation matrix method to derive the basic repro-

duction number. The disease free equilibrium for the between-host model

is

(SDFE, IDFE) =
(Λ + kΛX′

u
, 0

)
The next generation matrix G is comprised of two parts: F and V−1 where

F represents the new infections and V represents the transfer of individuals

between compartments:

F =

 0 0

IY∗θ SY∗θ



V =

 u
kX′+1 + IY∗θ SY∗θ

0 u
kX∗+1



V−1 =

 kX′+1
u+I(kX′+1)Y∗θ −

S(kX′+1)(kX∗+1)Y∗θ
u(u+I(kX′+1)Y∗θ)

0 kX∗+1
u


so that

G = FV−1 =

 0 0

IY∗θ SY∗θ


 kX′+1

u+I(kX′+1)Y∗θ −
S(kX′+1)(kX∗+1)Y∗θ

u(u+I(kX′+1)Y∗θ)

0 kX∗+1
u


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G =

 0 0

1− u
u+I(kX′+1)Y∗θ

S(kX∗+1)Y∗θ
u+I(kX′+1)Y∗θ


The eigenvalues of G are

(0,
θSY∗(kX∗ + 1)

θ IY∗(kX′ + 1) + u
)

The largest eigenvalue of G evaluated at the DFE is the basic reproduction

number. θSY∗(kX∗+1)
θ IY(kX′+1)+u evaluated at (SDFE, IDFE) = (Λ+kΛX′

u , 0) gives the

basic reproduction number:

R0 =
θΛY∗(1 + kX′)(1 + kX∗)

u2



Co-author contributions and

declarations

182



 
 

Date: 09/09/2018 
 
 

Please allow Ross Booton to include the following paper(s) which have been published (or 
submitted for publication), of which I was a co-author in his doctoral thesis. I confirm that 
Ross Booton conceived the initial idea for the paper(s) and was the primary contributor to the 
design and conduct of the reported research. All authors contributed its development. Ross 
Booton constructed the model(s) and analysed and interpreted the material. Ross Booton 
wrote the manuscript(s), with contributions from all authors. 
 
 
Chapter 2: R. Booton, Y. Iwasa, J. Marshall, and D. Childs. Stress-Mediated Allee Effects 
Can Cause the Sudden Collapse of Honey Bee Colonies. Journal of Theoretical Biology, 
420:213–219, 2017. 
 
Chapter 3: R. Booton, D. Childs, R. Yamaguchi, Y. Tachiki, and S. Iwami. Multiple routes of 
transmission synergistically in- crease infection within the honey bee hive: a mathematical 
model. Manuscript submitted for publication, 2018.     
 
Chapter 4: R. Booton, R. Yamaguchi, J. Marshall, D. Childs, and Y. Iwasa. Interactions 
between immunotoxicants and parasite stress: implications for host health. Journal of 
Theoretical Biology, 445: 120–127, 2018.   
 
Chapter 5: R. Booton, Y. Iwasa, and D. Childs. How do toxicants affect epidemiological 
dynamics? Manuscript submitted for publication, 2018. 
 
 
Name: Dr Dylan Childs 
 

Signed:  



 
 

Date: ____10/9/2018___________________ 
 

Please allow Ross Booton to include the following paper(s) which have been published (or 
submitted for publication), of which I was a co-author in his doctoral thesis. I confirm that 
Ross Booton conceived the initial idea for the paper(s) and was the primary contributor to the 
design and conduct of the reported research. All authors contributed its development. Ross 
Booton constructed the model(s) and analysed and interpreted the material. Ross Booton 
wrote the manuscript(s), with contributions from all authors. 
 
 
Chapter 2: R. Booton, Y. Iwasa, J. Marshall, and D. Childs. Stress-Mediated Allee Effects 
Can Cause the Sudden Collapse of Honey Bee Colonies. Journal of Theoretical Biology, 
420:213–219, 2017. 
 
Chapter 4: R. Booton, R. Yamaguchi, J. Marshall, D. Childs, and Y. Iwasa. Interactions 
between immunotoxicants and parasite stress: implications for host health. Journal of 
Theoretical Biology, 445: 120–127, 2018. � 
 
 
Name: _James Marshall___________ 
 
Signed: _______________________ 











Chapter D. Appendix for Chapter 5 189


	Introduction
	Stressors
	Mathematical models
	Motivation and aims
	Overview of Thesis

	Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies
	Abstract
	Introduction
	Methods
	Results
	Discussion

	Multiple routes of transmission synergistically increase infection within the honey bee hive
	Abstract
	Introduction
	Methods
	Results
	Discussion

	Interactions between immunotoxicants and parasite stress: implications for host health
	Abstract
	Introduction
	Methods
	Results
	Discussion

	How do toxicants affect epidemiological dynamics?
	Abstract
	Introduction
	Methods
	Results
	Discussion

	Discussion
	Summary
	Future work

	Bibliography
	Appendix for Chapter 2
	Appendix for Chapter 3
	Appendix for Chapter 4
	Appendix for Chapter 5

