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Abstract

The purpose of this thesis is to find the numerical solutions of one or multiple un-

known coefficient identification problems in the governing heat transfer parabolic

equations. These inverse problems are numerically solved subject to various

types of overdetermination conditions such as the heat flux, nonlocal observa-

tion, mass/energy specification, additional temperature measurement, Cauchy

data, general integral type over-determination, Stefan condition and heat mo-

mentum of the first, second and third order.

The main difficulty associated with solving these inverse problems is that they

are ill-posed since small changes in the input data can result in enormous changes

in the output solution, therefore traditional techniques fail to provide accurate

and stable solutions.

Throughout this thesis, the finite-difference method (FDM) with the Crank-

Nicolson (C-N) scheme is mainly used as a direct solver except in Chapters 8 and

9 where an alternating direction explicit (ADE) method is employed in order to

deal with the two-dimensional heat equation. An explicit forward time central

space (FTCS) method is also employed in Chapter 2 for the extension to higher

dimensions. The treatment for solving a degenerate parabolic equation, which

vanishes at the initial moment of time is discussed in Chapter 6.

The inverse problems investigated are discretised using FDM or ADE and

recast as nonlinear least-squares minimization problems with lower and upper

simple bounds on the unknown coefficients. The resulting optimization problems

are numerically solved using the lsqnonlin routine from MATLAB optimization

toolbox. The stability of the numerical solutions is investigated by introducing

random noise into the input data which yields unstable results if no regularization

is employed. The regularization method is included (where necessary) in order

to reduce the influence of measurement errors on the numerical results. The

choice of the regularization parameter(s) is based on the L-curve method, on the

discrepancy principle criterion or on trial and error.
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Nomenclature
Some of these symbols are used more than once to represent different quantities

from chapter to chapter due to the considerable amount of notation present in

this thesis. In some cases, the use of a symbol not listed below is local to a short

portion of the text and in such happenstance, it is defined where it is introduced.

Latin symbols

a time-dependent thermal conductivity in (Chapters 2 and 3),

time-dependent thermal diffusivity in (Chapter 6), and space,

time-dependent function in (Chapters 4 and 5) and an or-

thotropic thermal conductivity in (Chapter 9)

A operator (Chapter 2)

Aα non-uniformly class for parabolic degenerate PDEs (Chapter

6)

Aj, Ai,j vector components of difference equation in (Chapters 2, 3, 5

and 6)

b time-dependent convection (or advection) in (Chapters 3 and

6)

b1, b2 time-dependent coefficients (Chapter 5) and space, time-

dependent function (Chapters 4 and 8)

bj, b̃j vector components of difference equation in (Chapters 2 and

3)

Bj, Bi,j vector components of difference equation in (Chapters 2, 3, 5,

6 and 7)

c time-dependent absorbtion (Chapter 3) and space, time-

dependent function (Chapter 8)

c1, c2 time-dependent coefficients (Chapter 4)

Cj, Ci,j vector components of difference equation in (Chapters 3, 5

and 6)

C[a, b] the space of continuous functions in [a, b]

C1[a, b] the space of functions once time continuously differentiable in

[a, b]

C3[a, b] the space of functions three times continuously differentiable

in [a, b]



Nomenclature vii

C2,1(Q) the space of functions twice continuously differentiable in

first variable and once continuously differentiable in the

second variable in Q

Ck+α the space of k continuously differentiable functions with the

k-order derivative being Hölder continuous with exponent

α ∈ (0, 1)

D diagonal scaling matrix (Chapter 1)

D, D̃, E, Ẽ matrix given by expressions (2.13), (3.13) (Chapters 2 and

3)

D(A) the domain of A (Chapter 2)

f heat sources (Chapters 2–6 and 8), and time-dependent

coefficient (Chapter 7)

F nonlinear objective least-squares function (Chapters 2, 3,

4 and 8)

Fλ nonlinear objective least-squares function with penalty

term in (Chapters 2 and 8)

F1, F2, F3 nonlinear objective least-squares functions (Chapters 5 and

6)

F nonlinear objective least-squares functions (Chapter 7)

g time-dependent free boundary (Chapter 8)

G the right hand side of equations (2.5) and (7.13), and ma-

trix given by equation (6.16)

h length for y1-axis (Chapter 8) and the time-dependent free

boundary (Chapter 4)

h1, h2, h3 time-dependent free boundaries (Chapter 5)

H Hessian matrix of a function (Chapter 1) and matrix given

by expression (5.22) (Chapter 5)

H0, H1 heat moment functions of order zero and one (Chapter 3)

i, j, n indices

k vector of difference equation in (Chapter 6)

L matrix given by equation (7.19) and length of the conductor

(Chapters 2, 3 and 7)
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l length of the finite slab (Chapter 6)

L2[a, b] the space of square integrable functions in [a, b]

lsqnonlin MATLAB optimization routine

M number of finite differences in x-coordinate (all chapters

except Chapters 8 and 9)

M1 number of finite differences in x1 or x-coordinate (Chapters

8 and 9)

M2 number of finite differences in x2 or y coordinate (Chapters

8 and 9)

N number of finite differences in t-coordinate

N the neighborhood (trust-region) (Chapter 1)

normrnd MATLAB function generating Gaussian random numbers

p percentage of noise (Chapters 3–8)

QT fixed domain (0, L) × (0, T ) (Chapters 2,3 and 7), (0, l) ×
(0, T ) (Chapter 6) and (0, h)× (0, l)× (0, T ) (Chapter 9)

QT closure of the solution domain QT

R(A) range of the operator A (Chapter 1)

Rk regularization derivative operator of order k (Chapter 1)

rand MATLAB function generating uniformly distributed ran-

dom numbers and arrays (Chapter 2)

r vector components of difference equation in (Chapter 5)

t time variable

tj time node

T final time

u solution/temperature

u0 initial condition function (Chapter 1)

u1 Stefan interface conditions on the moving boundary (Chap-

ter 1)

u2 Neumann heat flux boundary condition (Chapter 1)

ui,j values of u at the node (i, j)

uni,j values of u at the node (i, j, n) (Chapter 8)

v the transformed solution (Chapters 4,5 and 8)

vi,j components of transformed solution v (Chapters 4 and 5)

vni,j components of transformed solution v (Chapter 8)

x space variable

xi space nodes

X, Y vector space, Hilbert spaces (Chapter 1)

y, y1, y2 space variables (Chapters 4, 5 and 8)

yε perturbed data (Chapter 1)



Nomenclature ix

Greek symbols

α degree of weakly power law degeneration (Chapter 6)

β regularization parameter (Chapters 1, 3 and 6) and addi-

tional temperature measurement (Chapter 7)

βi regularization parameter (Chapters 4, 5 and 7)

λ regularization parameter (Chapters 2 and 8)

∇ gradient of function (Chapter 1)

∆ trust-region size (Chapter 1)

∆t, ∆x, ∆y sizes of time and space steps

∆x1, ∆x2 sizes of space steps (Chapter 8)

ε total amount of noise

εk Gaussian random variables

σk standard deviation

E solution domain (Chapter 6)

φ initial condition function (Chapters 2–4 and 7)

ϕ initial condition function (Chapters 5, 6, 8 and 9) and

additional temperature measurement (Chapter 7) function

(Chapter 8)

ΩT moving solution domain (Chapters 4, 5 and 8)

Superscripts

T Transpose of a matrix
′ = ∂

∂n
normal derivative

Abbreviations

BEM boundary element method

FDM finite difference method

FEM finite element method

FVM finite volume method

FTCS forward time central space

IP inverse problem

LB lower bound

O order of

PDEs partial differential equations

rmse root mean square error
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SLAE system of linear algebraic equations

TTR trust-region-reflective

UB upper bound
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Chapter 1

General introduction

1.1 Introduction

With the current advancement and reliance on science and engineering, inverse

problems are becoming a core component in these fields. Some of the applica-

tions include the use of heat equation which has been widely applied in scientific

processes such as melting, freezing, manufacturing, and in microwave heating

applications. Many of the applications are modelled using partial differential

equations (PDE’s). If the input values or conditions are known, solutions can be

obtained to determine the behaviour of the system [38]. Some of the necessary in-

puts that are required include initial and boundary conditions, solution domain’s

geometry, coefficients and forcing terms. If some of this information is missing

or unknown, in general it will not be possible to determine the behaviour of the

physical system. However, certain outputs can be experimentally measured and

this information, in addition to the input data can be used to restore the missing

input data. This is what is called an inverse problem.

Inverse problems are in general ill-posed. In most cases, this means that a

small change in the input data can bring about a substantial change in the output

solution.

The scope of inverse problems has been present in several branches of math-

ematics, engineering, and physics for a long period. Over the past decade, the

theory of inverse problems has been considerably developed given partly its signif-

icance in applications. However, the numerical solutions to these problems require

considerable computations. For example, deconvolution in parameter identifica-

tion, image reconstruction, and seismic exploration all require high performance

computers to do the computation in a timely fashion, or to solve the problem

more precisely within a specific duration [135]. Such a consideration is mostly

associated with commercial and economy production. For instance, problems in
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oil and gas detection, problems in data assimilation, and problems in numerical

weather prediction are needed to be solved to couple atmosphere, hydrosphere,

and biosphere.

Most of the time, the coefficient entries in a PDE model are linked to the

physical properties of the system under consideration. In cases where the model

is quite simple, these physical properties can be identified through experimenta-

tion and the outcomes used to reduce the model to a particular physical system.

In cases where the model is sophisticated, it may be difficult or even impossible

to measure the physical properties linked to a coefficient in a model equation. In

such a case, it may be important to move forward indirectly because of inade-

quate information, that is, to design and solve the inverse problem for the missing

data.

Parameter identification problems tend to involve the use of actual observa-

tion or indirect measurement contaminated by noise, to deduce the values of the

parameters making up the system under consideration. In most cases, these in-

verse problems are ill-posed in line with the Hadamard postulate, which is, if the

solution does not exist or, is not unique or, if it is in violation of the continuous

dependence on input data [46].

Over the past few years, many scholars have shown a significant interest in

inverse coefficient identification problems. The primary motivation for this study

is to determine the unknown properties of a given region by considering only

the data on its boundary. There is also a specific attention to such coefficients

that describe physical quantities as the conductivity of a medium. The methods

applied rely mostly on the type of equation and the variables on which the un-

known coefficient is anticipated a priori to depend. The equation can be linear,

semilinear, or nonlinear. However, there is somewhat a unique instance when the

unknown conductivity, for example, depends on the dependent variable [15]. For

a heat flow problem, for example, this has a physical interpretation of a conduc-

tivity that is temperature-dependent. Regardless if the medium or material is

uniform, then it is expected that the unknown coefficient will be independent of

the spatial variable. In other words, if the spatial change in the problem is negli-

gible considering the change in time, then a rational approximation to this state

of affairs can be considered whereby the coefficient is to be a function of the time

variable only. If, additionally, the characteristic properties fail to change with

time when the dependent variables are held constant, then it is expected that

the coefficients are also independent of time [109]. Many studies as well as some

practical applications seek to determine the leading coefficient or the coefficient

of the high-order derivative in the parabolic heat equation. For instance, there
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is a study of identification in the problem of space-dependent diffusivity in [50].

Also, there is an investigation of the time-dependent case in [93], while there are

references to the temperature-dependent case in [18, 136].

1.2 Direct problems

Direct problems have been extensively studied over the last two centuries, result-

ing in a wealth of literature of procedures relating to their solution. A direct

problem or forward problem, according to the discipline of mathematical physics,

is a problem which involves physical fields, processes, or phenomena such as au-

dio, or electromagnetic, acoustic, seismic, heat, etc. The aim of solving a direct

problem is to find a function that describes a physical field or process at any

point of a given domain at any instant of time if the field is non-stationary.

When forming a direct problem, the following are included, the initial condition

when the process is not-stationary, the domain for the process being calculated,

the function which expresses the process and the boundary conditions. Most of

all, direct problems are in general well-posed. According to Hadamard’s (1923)

definition, a problem is called well-posed if it satisfies the following properties:

• the solution exists for all data (existence).

• the solution is unique for all data (uniqueness).

• the solution depends continuously on the data (stability), such that when

there is a small error in the input data it results in a relatively small error

in the output solution.

1.3 Ill-posed problems

A problem that violates one or more of the above properties of well-posedness is

called an ill-posed problem.

Suppose that A : X → Y is an operator from a vector space X to another

vector space Y such that

Ax = y, (1.1)

where x ∈ X and y ∈ Y . Then the operator equation (1.1) is well-posed if

A is bijective (one-to-one and onto) and the inverse operator A−1 : Y → X is

continuous; otherwise the equation (1.1) is ill-posed. Therefore, three types of

ill-posedness can be classified according to this definition as follows:
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1. IfA is not surjective (onto) this means that the equation (1.1) is not solvable

for all y ∈ Y (non-existence).

2. If A is not injective (one-to-one) this means that the equation (1.1) may

have more than one solution (non-uniqueness).

3. If A−1 exists but is not continuous this means that the equation (1.1) does

not continuously depend on the data y (instability).

A few simple examples of systems of equations which illustrate ill-posed problems,

are given below.

Example 1. Consider the following over-determined system of linear algebraic

equations (SLAE) (Sizikov, 2005):
2x1 − 3x2 = −4,

−x1 + 2x2 = 3,

x1 + 4x2 = 15.

(1.2)

This SLAE has no solution because the rank of the extended matrix rank(A|y) =

3 and the rank of A is rank(A) = 2 are not equal. The fact that this SLAE has

no solution x1, x2 can be proved immediately. Indeed, from the first two equa-

tions we obtain the solution x1 = 1, x2 = 2. Introducing this into the third

equation we get 9 = 15 which is absurd. Hence, the first condition (existence)

for well-posedness is violated.

Example 2. Consider the following under-determined system of linear alge-

braic equations (SLAE) (Sizikov, 2005):

2x1 − 3x2 = −4. (1.3)

For this SLAE, rank(A) = rank(A|y) = 1 < 2; this SLAE is therefore an under-

determined system that has many solutions. For instance, (1) x1 = 1, x2 = 2;

(2) x1 = 2, x2 = 8/3; (3) x1 = 0, x2 = 4/3, etc. are all solutions of the system

(1.3). Thus, the solution of the SLAE is non-unique, and the second condition

(uniqueness) for well-posedness is violated.

Example 3. Consider the determined system (SLAE) (Sizikov, 2005):{
2x1 − 3x2 = 3,

−1.33x1 + 2x2 = −1.99.
(1.4)
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For this SLAE, rank(A) = rank(A|y) = 2; this SLAE is therefore a determined

system. The solution of (1.4) exists and is unique, x1 = 3, x2 = 1. Yet this

solution is unstable. Indeed, for the perturbed SLAE{
2x1 − 3x2 = 3.01,

−1.33x1 + 2x2 = −2,

i.e., with introduced relative errors ||y − yε||/||y||≈ 0.5%, where

y =

(
3

−1.99

)
, yε =

(
3.01

−2

)
, ||y − yε||= ε ≈ 0.01,

we obtain a new, different solution: x1 = 2 (relative error ||x1 − x1
ε||/||x1||≈

33%), x2 = 0.33 (relative error ||x2 − x2
ε||/||x2||≈ 67%), i.e. the small error in

the input data has caused large errors in the output solution. Hence the third

condition (stability) for well-posedness is violated. These estimates can also be

made considering the condition number cond(A), for more details see [108].

1.4 Inverse problems

Mathematical problems are considered inverse if the model has some unknown

parameters. Solving such problems requires using additional information to re-

store these parameters. These are known as the over determination conditions.

The application is important in that they resolve problems whose measurement

of the required parameters is not possible.

Most inverse problems are ill-posed or rather they are termed as problems

that are unstable. This usually means that in such problems a small modification

in the input data can lead to bigger impact on the ultimate result in the output

solution. Earlier in 1920s it was believed that these problems do not have any

practical significance. This opinion was so strong that it was not until 1943, that

the issue of ill-posedness was revisited in the pioneering paper by Tikhonov [125].

The application of inverse problems is of unique importance in the case when

the immediate measurement of suitable parameters is impossible. For example,

an inaccessibility of either material or environment and also the rapidity of the

process, see [74].

Inverse problems can be classified, as follows:

• Coefficient identification problems, that means problems in which the coef-

ficient(s) of equation(s) is(are) not known(s), see Chapters 2–9.
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• Retrospective, which means problems which have reverse direction of time,

such as the backward heat conduction problem.

• Boundary values includes problems that are related to determining un-

known boundary conditions.

• Source or force problems are those that require the determination of the

source or force.

• Geometrical aspect focuses on problems that concern the determination of

unknown areas of the solution domain or even portions of the boundary,

see Chapters 4, 5 and 8.

All of the above classifications of inverse problems are ill-posed in the Hadamard

concept. Therefore, they are unstable and hence a sort of regularization must

be employed in order to recover the loss of stability. Also, these classifications

are incomplete. In some cases, the initial and boundary conditions are unknown

whereas in other cases either the domain or part of its boundary is unknown.

An over specified condition is helpful when determining the unknown conditions.

When the overspecified condition is provided by use of experimental data, noise

becomes an important concern.

As mentioned before, the problems investigated in Chapters 4, 5 and 8 possess

an unknown moving boundary part which needs to be identified. More generally,

these are Stefan-type problems which are described in the next section.

1.5 Stefan problems

A Stefan problem is a moving boundary value problem that concerns the distri-

bution of heat in a period of transforming medium. For instance, during heat

diffusion in melting ice, the melting of the ice happens as the boundary of the

ice keeps on shifting, [69]. Some authors have denoted the problem as a free

boundary value problem because of the domain boundary which is a priori un-

known. Authors have also referred to it as a moving boundary problem because

the interface between two phases changes with time.

Stefan problems have natural occurrences that are associated with solidifica-

tion and melting problems. Nonetheless, there are some problems that are almost

similar to Stefan problems. An example is the fluid flow in a permeable medium

or shock waves in gas dynamics.
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1.5.1 Physical background

The melting of ice and water solidification are significant examples of the phase

transformation. Phase transformation is the discontinuous modification of prop-

erties within a substance. Aggregation has different states which in transition are

referred to as phases. The states share similar physical properties. As a result, a

phase is more particular than a state of matter. During the occurrence of phase

transition, a latent heat appears. The latent heat is absorbed or released by the

thermodynamic system without a change in temperature, [25]. Phase transfor-

mations take place in an appropriate process in natural sciences, physics, and

engineering. Most industrial products involve solidification at some stages. For

instance, steel annealing and thermal welding are some of the processes. Two fun-

damental phenomena characterize these processes: diffusion of heat and exchange

of latent heat. Stefan problems are a model that accounts for this behavior.

The first paper on Stefan problem by Gabriel Lamé and Benôıt Paul Clapey-

ron in 1831 [89], was to cool a liquid that filled the halfspace x > 0 and establish

the thickness of the solid crust that was generated using a constant boundary at

x = 0. The authors established that the crust thickness was the square root of

the time. However, there was no attached determination of the coefficient of pro-

portionally. After several years, Joseph Stefan described mathematical models of

the actual physical problems within a changing phase state, [19, 20].

In 1890, Joseph Stefan modelled the melting of arctic ice in the summer by a

simple one-dimensional model, [85]. Consider a homogeneous block of ice filling

the region x ≥ l = h(0) at the time t = 0. The ice starts to melt by heating the

block at the left end. Thus, at t ≥ 0 the region between x = 0 and x = h(t) > 0

is filled with water and the region x ≥ h(t) is filled with ice. The system of

equations that model this problem with the temperature u(x, t) over the domain

(0, h(t))× (0, T ] at time t, where T is a given arbitrary final time of interest is

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), (x, t) ∈ (0, h(t))× (0, T ], (1.5)

u(x, 0) = u0(x), x ∈ (0, h(t)), (1.6)

the Stefan interface conditions on the moving boundary x = h(t),

u(h(t), t) = u1(t), t ∈ [0, T ], (1.7)
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h′(t) = −∂u
∂x

(h(t), t), t ∈ [0, T ]. (1.8)

Equation (1.8) is a heat balance condition, which states that the rate of change of

the moving boundary (denoted by h′(t)) is equal to the amount of heat entering

through the boundary interface. In (1.7), u1 is the melting temperature (often

constant) at the interface h(t) (and (1.7) is natural to impose since it represents

a change of phase at h(t)). The Neumann heat flux boundary condition at x = 0

is

∂u

∂x
(0, t) = u2(t), t ∈ [0, T ], (1.9)

which is introduced to generate the melting process. When u0 ≡ 0 the problem

represents, for example, the heating of an ice block via a heat flux u2(t) on

the fixed boundary. The representation of the two-phase direct Stefan problem,

with specification of the initial and boundary conditions (1.6)–(1.9) is shown in

Figure 1.1.

x

t

T

0 h(0)

(1.9) (1.8)

(1.7)

(1.6)

h(t) =?

←−
Unknown
moving
boundary

Figure 1.1: Representation of the two-phase direct Stefan problem, with specifi-
cation of the initial and boundary conditions (1.6)–(1.9).

We mention that in Chapters 4 and 5 we focus on inverse Stefan problems

which have the task of determining the temperature u(x, t) and the unknown(s)

boundary(ies) function in addition to the unknown(s) coefficients in a parabolic

partial differential equation.

1.6 Stability analysis of inverse problems

Identification of coefficients in inverse problems are generally nonlinear in nature.

These nonlinear problems can be represented in a nonlinear operator form (1.1),
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where A acts between two Hilbert spaces X and Y. The solution of (1.1) is said to

be unstable if it does not depend continuously on the data y ∈ Y . For example,

if A is compact, i.e. the image of any bounded set in X is pre-compact (a

subset whose closure is compact) in Y , with infinite dimensional range, hence

non-closed, it follows that A−1, if it exists, is unbounded [40]. To restore stability

regularization needs to be employed, as described next.

1.6.1 Regularisation

The solution of inverse and ill-posed problems are well-known to generate instabil-

ity. To deal with this difficulty the inverse problem is solved as the minimization

of an appropriate regularization functional in order to achieve the stability of the

solution, as described in the subsection below.

1.6.2 The Tikhonov regularisation method

The Tikhonov regularization is one of the most popular methods for computing

an approximate solution of ill-posed problems with error-contaminated data. The

method is applied to obtain a stable solution to the nonlinear operator equation

(1.1). In practice, the right-hand side of the equation (1.1) is perturbed as yε

with ||y − yε||≈ ε, where ε represents the level of noise. Then, instead of (1.1)

one has to solve

Ax = yε. (1.10)

But of course equation (1.10) may have no solution if yε /∈ R(A), whereR(A) ⊂ Y

denotes the range of the operator A. In this situation, one has to define a quasi-

solution given by the minimization of the least-squares gap ||Ax−yε||2. Moreover,

if the inverse problems are ill-posed (a small modification in the input data can

lead to bigger impact on the ultimate result in the output solution) we employ

the Tikhonov regularization method based on minimizing

||Ax− yε||2+β||Rkx||2→ min, x ∈ D(A), (1.11)

where D(A) represents the domain of A, Rk is the regularization (derivative)

operator of order k = 0, 1, ..., and β > 0 is a positive regularization parameter.

A minimizer to (1.11) always exists under certain conditions but it may not be

unique, [39]. The order k of the regularization operator Rk is related to the Ck-

smoothness of the solution which may (or may not) be a priori known or assumed,

[131]. Thus, the order k penalises the kth-order derivative, i.e. continuity class
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C0 for k = 0 and first-order smoothness class C1 for k = 1, etc.

1.6.3 The choice of the regularisation parameters

Over the last four decades many different methods for selecting regularisation

parameters have been proposed. Their appropriate choice plays an important role

in equation (1.11) for achieving accurate and stable numerical results of inverse

problems. The choice of regularization parameters can be made according to

certain criteria as follows:

• The L-curve criterion, see [48]. The L-curve method is one of the most

convenient tools for the analysis of discrete ill-posed problems and it will

be used quite a lot in this thesis. This technique is actually a plot for many

positive regularization parameters of the norm of the regularised solution

||xβ|| versus the corresponding residual norm ||Ax− yε||. The L-curve dis-

plays the compromise between minimisation of these two quantities, [47].

If such a curve has an L-shape then one can choose the regularization pa-

rameter at the ’corner’ of it. It is also worth mentioning that there are

counterexamples for which the L-curve fails to provide a clearly defined

corner or no corner at all, see [134].

• The discrepancy principle is a widely used technique for choosing the regu-

larisation parameter, see Morozov (1966) and Tikhonov and Arsenin (1977).

According to this principle, the regularisation parameter β is chosen such

as ||Axβ(ε) − yε||≈ ε, where xβ(ε) is the minimizer to (1.11).

• Trial and error. As mentioned in [35], the regularization parameter β can

be selected based on experience by first choosing a small positive value,

and gradually increasing it until any numerical oscillations in the unknown

solution disappear.

1.7 Numerical methods for discretising partial

differential equations

There are several numerical methods which can be used to solve partial differential

equations (PDEs) for example, finite difference, finite element, finite volume and

boundary element. These methods will be briefly described in the subsections

below.
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1.7.1 Finite difference method

The finite difference method (FDM) is one of the most historic methods that can

be used for solving PDEs by use of finite difference equations to approximate

derivatives, see [126].

The advantage of FDM with a Crank-Nicolson scheme, [123], is that it is

unconditionally stable and second-order accurate in space and time. Also, the

alternating direction explicit (ADE) or the alternating direction implicit (ADI)

methods can be employed, with significant advantages, especially in higher di-

mensions [106]. One possible drawback of the FDM is that it becomes quite

complicated when solving PDEs in irregular domains and the other is that it is

difficult to carry out the mathematical analysis of stability and convergence for

nonlinear PDEs.

1.7.2 Finite element method

The finite element method (FEM) is a numerical method that can solve differen-

tial or integral equations. The method is such that it consists of assuming piece-

wise continuous approximating functions for the solution. It works by rewriting

the governing equation into an equivalent variational weak form, meshing the do-

main into small finite elements and looking for appropriate solutions at the mesh

nodes using appropriate basis functions over each elements [111].

1.7.3 Finite volume method

The finite volume method (FVM), also known as the box method, is one that is

mainly used for the numerical solution of problems in fluid dynamics. The idea

of FVM is to integrate the differential equation over a finite size control volume

surrounding each node point on a mesh, and then changing the volume integrals

to surface integrals, see [94] for more details.

1.7.4 Boundary element method

The boundary element method (BEM) is used to solve those PDEs which possess

a fundamental solution available explicitly. The main idea of the BEM, which is

based on using the Green’s identity and the fundamental solution, is to find the

solution inside the domain by using the solution to the PDE on the boundary

only. The BEM reduces the dimensionality of the problem by one and produces

a fully populated matrix (different from FDM which is tridiagonal). A limitation
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of the BEM is that it can only be used in problems for which the fundamental

solution of the governing equation is available explicitly [97].

1.8 Optimization

Optimization concerns the minimization (or maximization) of functions. The

optimization toolbox consists of functions that perform minimization on general

nonlinear functions. Throughout the thesis we apply the nonlinear Tikhonov

regularization method which minimizes the least-squares functional penalized by

some extra terms to stabilise the solution, see equation (1.11). In this thesis, the

lsqnonlin MATLAB toolbox optimization technique will be used. Simple bounds

on the variables are allowed and the explicit calculation (analytical or numerical)

of the gradient is not required to be supplied by the user.

1.8.1 lsqnonlin routine

The lsqnonlin routine is a nonlinear least-squares solver available from the MAT-

LAB optimization toolbox which is used to find the minimum of a sum of squares

specified by

min
x
||F (x)||22= min

x

(
F 2

1 (x) + F 2
2 (x) + ...+ F 2

n(x)
)
,

subject to a set of upper and lower bounds defined on the components of x. The

solution is therefore, in this range. Rather than computing the norm ||F (x)||22=:

F (x) (the sum of squares), lsqnonlin requires user-defined functions (does not

compute the sum of squares) to compute the vector-valued function in the form

of F = (F1, ..., Fn). This routine is recalled on the MATLAB syntax as follows:

>> lsqnonlin(fun,x0,LB,UB,options), where

fun: the least-squares function F (x) to be minimized;

x0: the initial guess vector x0 to start the minimization process;

LB,UB: vectors containing the lower and upper simple bounds on the solution.

The options are passed to the routine as follows:

% Default options

options = optimset;

% Modify options setting

options = optimset(options,’Display’,’iter’);

options = optimset(options,’MaxIter’,MaxIter_Data);

options = optimset(options,’TolFun’,TolFun_Data);

options = optimset(options,’TolX’,TolX_Data);
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options = optimset(options,’MaxFunEvals’,MaxFunEvals_Data);

options = optimset(options,’Algorithm’,’trust-region-reflective’).

The iterate for the unknown coefficient is passed to the FDM forward solver

which maps the coefficient into the output that is compared with the experimen-

tally measured or numerically simulated data, after which the lsqnonlin updates

the iterate based on an optimization embedded algorithm. There are various such

algorithms that could be selected, e.g. the trust-region-reflective (TRR) or the

Levenberg-Marquardt algorithm. In this thesis, we choose the TRR algorithm,

which is a subspace trust-region method based on the interior-reflective Newton

method described in [30]. At each iteration it involves the solution of a large lin-

ear system of equations using the method of preconditioned conjugate gradients

or Cholesky factorization.

1.8.2 Description of the minimization algorithm

In this section, we explain the algorithm that we use to find the minimizer of the

nonlinear Tikhonov functional (1.11). Generally, the least-squares problem is the

problem of finding a vector x that is a local minimizer to a function that is a sum

of squared quantities, possibly subjected to some constraints.

There are several algorithms to solve this type of optimization problem. One

of them is the TRR, [31, 32], which is based on a simple and powerful concept

in optimization, namely, the Trust-Region method. The idea of this approach is

to consider an unconstrained minimization problem for the function F . Let x be

a point in Rn and we want to move to the next point with lower function value,

viz we approximate F with a simpler function q which is usually the quadratic

form Taylor expansion at the point x. Therefore, q reflects the behaviour of F in

a neighbourhood N around x which is called Trust-Region. Mathematically, we

can express this as the following definition of the Trust-Region subproblem:

min
s
{q(s), s ∈ N}. (1.12)

After solving (1.12) for s, if F (x+s) < F (x), then x+s becomes the current point;

otherwise, x remains the current point, but the Trust Region size is decreased

and we resolve (1.12) for s once again. The key questions in finding a specific

Trust-Region approach to minimizing F (x) are how to choose and compute q

and how to control the neighborhood N . In a typical Trust-Region method, the

quadratic approximation to q is defined by taking the first two terms of Taylor’s
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expansion for F at x, i.e. the Trust-Region subproblem (1.12) becomes

min
{
q(s) =

1

2
sTHs+ sT .∇F (x) such that ||Ds||≤ ∆

}
, (1.13)

where ∇ is the gradient of F (x) at the current point x, H =
(

∂2F
∂xi∂xj

)
1≤i,j≤n

is the

Hessian matrix of F (x), D is a diagonal scaling matrix, ∆ is the Trust-Region size,

and ||.|| is the 2-norm. Such algorithms need some computational effort because

it involves the computation of a full eigensystem and a Newton process applied

to the scalar equation 1
∆
− 1
‖s‖ = 0, for more details, see [102]. The approximation

approach followed in Optimization Toolbox solvers is to restrict the Trust-Region

subproblem (1.12) to a two-dimensional subspace S, see [8]. Once the subspace

S has been computed, then the solution to solve (1.13) is trivial even if full

eigenvalue/eigenvector information is needed (since in the subspace, the problem

is only two-dimensional). The two-dimensional subspace S is determined with the

aid of a preconditioned conjugate gradient process described below. The toolbox

assigns S = {s1, s2}, where s1 is in the direction of the gradient ∇F , and s2 is

either an approximate Newton direction, i.e., a solution to

Hs2 = −∇F, (1.14)

or a direction of negative curvature

sT2Hs2 < 0. (1.15)

The fundamental idea behind this choice of S is to force global convergence (via

the steepest descent direction or negative curvature direction) and achieve fast

local convergence (via the Newton step, when it exists). In the MATLAB op-

timization toolbox we use the lsqnonlin routine with TRR algorithm and we

choose Cholesky factorization1 to solve the subproblem (1.13). The mechanism

of TRR algorithm can be summarized as follows:

1. Formulate the Trust-Region subproblem (1.12).

2. Solve equation (1.13) to determine the initial (trial) step s.

3. If F (x+ s) < F (x) then x 7→ x+ s.

4. The quantity ∆ is adjusted according to the value of F (x+s); if it is greater

than F (x) then the value of ∆ will be decreased, for more details, see [32].

1Cholesky Factorization Theorem: Given a symmetric positive definite matrix A there exists
a lower triangular matrix L such that A = LLT . The lower triangular matrix L is known as
the Cholesky factor and LLT is known as the Cholesky factorization of A.
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As mentioned in [31], the essential idea behind the Trust-Region method

is to adjust the Trust-Region size ∆ for each subproblem (1.12) so as to

ensure a sufficient decrease of the objective function.

These steps are repeated until convergence is achieved.

1.8.3 Limitations of the routine

• One of the limitations of this routine is that it only handles real values. If

the function is comprised of complex variables, it has to be split into real

and imaginary components, then a solution can be sought.

• Another limitation is that it is a requirement for the function being min-

imized to be continuous. In general, depending on the initial guess, only

local solutions may be achieved [33]. Finding a global minimizer to these

nonlinear optimization problems is not an easy task. Since the inverse

problems under investigation are nonlinear the least-squares functional is

not convex and could have many local minima in which, depending on the

initial guess, a descent-based method tends to get stuck if the underlying

problems are ill-posed. A possible way to deal with this difficulty could be

to develop a global convergent method, [112], whose convergence to a good

approximation of the true solution is independent of the initial guess, but

this challenging task is deferred to a future work.

• The algorithm does not allow for equal lower and upper simple bounds.

• The Levenberg-Marquardt algorithm does not handle linear or nonlinear

bound constraints.

• The TRR algorithm, [31], which is used in lsqnonlin, assumes that n must

be greater or equal than the length of x.

1.9 Purpose and outline of the thesis

Coefficient identification problems, some with an unknown moving boundary,

have been investigated theoretically for reconstructing a single coefficient in the

parabolic heat equation assuming that it is constant [17], or time-dependent

[73, 77], or space-dependent [1], or temperature-dependent [103, 104]. In these

research articles, the authors investigated the existence and uniqueness of solu-

tions to the inverse problems, but no numerical method/solution has been at-

tempted. Some numerical technique has been attempted in [122], based on space
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decomposition in a reproducing kernel space. Also, in [11], the author consid-

ered determining the time-dependent coefficients using the method of suboptimal

stage-by-stage optimization.

The simultaneous reconstruction of two time-dependent coefficients has been

investigated theoretically in the monographs [74, 110]. The case of identification

of multiple time-dependent coefficients together with an unknown free boundary

(Stefan) problem such as a solid/liquid phase change has been investigated in

[117–121], but no numerical solution/method has been attempted to solve such

inverse problems.

Based on the above literature research, this thesis aims to fill in the gaps on

the numerical solution for multiple (mainly time-dependent) coefficient identifi-

cation problems in one and two-dimensions in a fixed or moving domain. The

technique used in this thesis is based on the minimization of the least-squares ob-

jective functional which naturally represents the gap between the measured and

computed data. This optimization problem is solved effectively using a MATLAB

optimization toolbox routine. The Tikhonov regularization method is employed

for noisy input data in order to obtain stable and accurate solutions. Numerical

results have been presented, discussed and compared with the analytical solu-

tions, where available. The generation of input data were obtained either from

the analytical solution, if available, or numerically simulated by solving first the

direct problem and with care not to commit an inverse crime in the inversion [84].

Throughout the thesis, the mathematical essence of having a time-dependent

conductivity/diffusivity multiplying the second-order derivative uxx in the heat

equation enables the transformation θ(t) =
∫ t

0
a(τ)dτ to be performed and the

resulting PDE becomes the classical heat equation with constant coefficients.

Then, for this latter PDE one can employ a classical analysis based on employing

Green’s functions. For the existence of a solution the Schauder fixed point theo-

rem2 is applied, whilst for the uniqueness the theory of Volterra integral equations

of the second kind3 is applied. More general details can be found in [74].

The purpose of this thesis is to find the numerical solution for various co-

efficient identification problems and extend the possibility of simultaneous re-

construction of physical properties of interest. Most of the inverse problems

investigated in this thesis model real phenomena like heat conduction, melting

of ice or water, steel annealing and freezing food, solidification, etc. Initially, we

2Schauder fixed point theorem: Let C be a closed convex subset of a normed linear space
and let f : C → C be a compact map, then f has a fixed point, [10].

3Theorem. The Volterra integral equation of the second kind ϕ(x) −
∫ x
a
K(x, y)ϕ(y)dy =

f(x), x ∈ [a, b], with continuous kernel K for each right hand side f ∈ [a, b] has a unique
solution ϕ ∈ C[a, b], [88].
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investigate numerically the determination of one unknown coefficient (thermal

conductivity) in Chapter 2 and develop the numerical procedure to be extended

to the case of multi-coefficients (parameters), i.e. two coefficient or more, in the

subsequent chapters.

The structure of the thesis is based upon the type of domain, fixed or moving,

and we arrange the chapters according to the number of unknown coefficients

as follows. Chapters 2, 3, 6, 7 and 9 are fixed domain problems with one or

two coefficients to be identified, whilst Chapters 4, 5 and 8 are moving domains

problems with one, three, and four coefficients to be identified. Finally, Chapters

8 and 9 present extensions to two-dimensions. The FDM with a Crank-Nicolson

scheme is mainly used in this thesis as a direct solver except in Chapters 8 and 9

where the ADE scheme is employed in two-dimensions. An explicit forward time

central space (FTCS) method is also employed in Chapter 2 for the extension to

higher dimensions. The optimization routine lsqnonlin is used in order to find

the numerical solution of these nonlinear inverse and ill-posed problems.

In Chapter 2, we investigate an identification of the time-dependent thermal

conductivity from heat flux overspecification in the one-dimensional parabolic

heat equation. An extension to a two-dimensional coefficient identification prob-

lem, which is a variant of the one-dimensional problem, is investigated. Three

numerical examples are illustrated and discussed for one- and two-dimensional

inverse problems.

In Chapter 3, we investigate a couple of inverse problems of simultaneous

determination of time-dependent thermal conductivity and convection, or ab-

sorption coefficients from the measurements of the heat moments in the one-

dimensional parabolic heat equation. These problems are ill-posed and need to

be stabilised through the Tikhonov regularization method.

The simultaneous determination of several time-dependent reaction coeffi-

cients in free boundary heat transfer problems is investigated in Chapter 4.

Whilst, in Chapter 5, a novel inverse problem consisting of determining the mul-

tiple time-dependent coefficients and multiple free boundaries, together with the

temperature in the heat equation with Stefan condition and several-orders heat

moment conditions, is investigated.

In Chapter 6, we consider an inverse problem of determining the time-dependent

thermal diffusivity coefficient the convection coefficient and the temperature for

a weakly degenerate heat equation, which vanishes at the initial moment of time,

from heat flux and/or mass/energy measurement/specification/overdetermination.

In Chapter 7, we investigate the determination of an additive time and space-

dependent perfusion coefficient from additional temperature measurements in the
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one-dimensional parabolic heat equation.

In Chapter 8, a nonlinear problem concerning the identification of a time-

dependent free boundary in a two-dimensional parabolic equation is investigated.

An ADE scheme is used to discretise the governing equation and the unknown

coefficient is computed via the solution to a nonlinear least-squares minimization

problem.

In Chapter 9, the inverse problem concerning the reconstruction of an or-

thotropic thermal conductivity and the temperature in the two-dimensional parabolic

heat equation in a rectangular domain from the heat flux overspecification is in-

vestigated. The ADE-FDM is developed as a direct solver, whilst the inverse

solver is based on a nonlinear least-squares minimization using the MATLAB

optimization toolbox routine lsqnonlin.

Finally, in Chapter 10, general conclusions and suggestions for possible future

work are highlighted.



Chapter 2

Determination of the

time-dependent thermal

conductivity from boundary data

2.1 Introduction

In inverse identification problems, the unknown coefficients involved in the gov-

erning PDEs or in the boundary conditions are sought from additional infor-

mation on the main dependent variable solution of the original direct initial

boundary value problem, [124]. In particular, the inverse problem of identify-

ing the thermal diffusivity/conductivity from boundary data (temperature and

partial heat flux) has been investigated widely by many researchers in the past,

see [12, 15, 66, 72, 82, 83, 138] to mention only a few. In this chapter, the nov-

elty consists in the development of a numerical optimization method for solving

this nonlinear inverse coefficient problem for the heat equation. Numerically, the

implementation is realised using the MATLAB toolbox routine lsqnonlin.

The chapter is organized as follows. In Section 2.2, the mathematical formu-

lation of the inverse problem is presented. In Section 2.3, the numerical solution

of the direct problem is based on the FDM with the Crank-Nicolson scheme.

In Section 2.4, the minimization algorithm to solve the inverse problem is pre-

sented. The numerical results are discussed in Section 2.5. The extension to

higher dimensions is discussed in Section 2.6. Finally, conclusions are highlighted

in Section 2.7.
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2.2 Mathematical formulation

In the domain QT = {(x, t)| 0 < x < L, 0 < t < T} = (0, L)× (0, T ) we consider

the inverse problem given by the parabolic heat equation

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + f(x, t), (x, t) ∈ QT , (2.1)

with known heat source f(x, t), unknown temperature u(x, t) and unknown ther-

mal conductivity a(t) > 0, t ∈ [0, T ], subject to the initial condition

u(x, 0) = φ(x), x ∈ [0, L], (2.2)

the Dirichlet temperature boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), t ∈ [0, T ], (2.3)

and the heat flux overdetermination condition

a(t)ux(0, t) = q0(t), t ∈ [0, T ]. (2.4)

For simplicity, we have assumed that the heat capacity is constant and taken

to be unity. The sketch of the inverse problem under investigation is shown in

Figure 2.1. Physical problems where a time-dependent conductivity/diffusivity

a(t) appears occur in radioactive decay or damage applications, [13, p.187].

x

t

T

0 L

u(0, t) = µ1(t)

a(t)ux(0, t) = q0(t)

Find u(x, t) and

0 < a(t) satisfying

ut = a(t)uxx + f(x, t)

u(x, 0) = φ(x)

u(L, t) = µ2(t)

Figure 2.1: Sketch of the inverse problem under investigation.

The uniqueness of the solution of the inverse problem (2.1)–(2.4) has been

established in [72] and reads as follows.

Theorem 2.2.1. (Uniqueness of the solution). If 0 < q0 ∈ C[0, T ], then a solu-
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tion (a(t), u(x, t)) ∈ C1+α/2[0, T ]×C2+α,1+α/2(QT ) for some α ∈ (0, 1), with a(t) >

0 for t ∈ [0, T ], to the problem (2.1)–(2.4) is unique.

In this theorem, the Hölder space C1+α/2[0, T ] denotes the space of continu-

ously differentiable functions on [0, T ] with the derivative being Hölder contin-

uous1 with exponent α/2. Also, C2+α,1+α/2(QT ) denotes the space of continuous

functions u along with their partial derivatives ux, uxx, ut in QT , with uxx being

Hölder continuous with exponent α in x ∈ [0, L] uniformly with respect to t ∈
[0, T ], and with ut being Hölder continuous with exponent α/2 in t ∈ [0, T ] uni-

formly with respect to x ∈ [0, L]. Lower-order terms b(x, t)∂u
∂x

(x, t)+c(x, t)u(x, t),

with b and c known functions, can also be added to the right-hand side of equa-

tion (2.1), with no qualitative change in both analytical and numerical analyses,

[72].

2.3 Numerical solution of direct problem

In this section, we consider the direct initial boundary value problem given by

equations (2.1)–(2.3). We use FDM with the Crank-Nicholson scheme, [123],

which is unconditionally stable and second-order accurate in space and time. We

denote u(xi, tj) = ui,j, where xi = i∆x, tj = j∆t for i = 0,M, j = 0, N, and

∆x = L/M, ∆t = T/N.

Considering the general time-dependent PDE

ut = G(x, t, u, ux, uxx), (2.5)

the Crank-Nicolson method, [123], discretises (2.5), (2.2) and (2.3) as

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1), i = 1, (M − 1), j = 0, (N − 1), (2.6)

ui,0 = φ(xi), i = 0,M, (2.7)

u0,j = µ1(tj), uM,j = µ2(tj), j = 0, N, (2.8)

where

Gi,j = G
(
xi, tj, ui,j,

ui+1,j − ui−1,j

2(∆x)
,
ui+1,j − 2ui,j + ui−1,j

(∆x)2

)
,

Gi,j+1 = G
(
xi, tj+1, ui,j+1,

ui+1,j+1 − ui−1,j+1

2(∆x)
,
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆x)2

)
,

i = 1, (M − 1), j = 0, (N − 1). (2.9)

1A function f is called Hölder continuous with exponent α ∈ (0, 1) if there exists M > 0
such that |f(x)− f(x′)|≤M |x− x′|α, ∀x, x′.
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For our problem (2.1)–(2.3), the FDM discretisation reads as

−Aj+1ui−1,j+1 + (1 +Bj+1)ui,j+1 − Aj+1ui+1,j+1

= Ajui−1,j + (1−Bj)ui,j + Ajui+1,j +
∆t

2
(fi,j + fi,j+1),

i = 1, (M − 1), j = 0, (N − 1), (2.10)

ui,0 = φ(xi), i = 0,M, (2.11)

u0,j = µ1(tj), uM,j = µ2(tj), j = 0, N, (2.12)

where

aj = a(tj), fi,j = f(xi, tj), Aj =
(∆t)aj
2(∆x)2

, Bj =
(∆t)aj
(∆x)2

.

Starting from the initial time t = 0 where the initial temperature is prescribed

in (2.11), we march forward in time. At each time step tj+1 for j = 0, (N − 1),

using the Dirichlet boundary conditions (2.12), the above difference equation can

be reformulated as a (M − 1)× (M − 1) system of linear equations of the form,

Duj+1 = Euj + bj, (2.13)

where uj+1 = (u1,j+1, u2,j+1, ..., uM−2,j+1, uM−1,j+1)T,

D =



1 +Bj+1 −Aj+1 0 ... 0 0 0

−Aj+1 1 +Bj+1 −Aj+1 ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... −Aj+1 1 +Bj+1 −Aj+1

0 0 0 ... 0 −Aj+1 1 +Bj+1


,

E =



1−Bj Aj 0 ... 0 0 0

Aj 1−Bj Aj ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... Aj 1−Bj Aj

0 0 0 ... 0 Aj 1−Bj


,
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and

bj =



∆t
2

(f1,j + f1,j+1) + Ajµ1(tj) + Aj+1µ1(tj+1)
∆t
2

(f2,j + f2,j+1)
...

∆t
2

(fM−2,j + fM−2,j+1)
∆t
2

(fM−1,j + fM−1,j+1) + Ajµ2(tj) + Aj+1µ2(tj+1)


.

The discretisation of the heat flux (2.4) is given by

q0(tj) = a(tj)ux(0, tj) =
(4u1,j − u2,j − 3µ1(tj))aj

2∆x
, j = 1, N. (2.14)

2.4 Numerical approach for the inverse problem

The nonlinear inverse problem (2.1)–(2.4) can be formulated as a nonlinear min-

imization of the least-squares objective function

F (a) := ‖a(t)ux(0, t)− q0(t)‖2, (2.15)

the discretization of which is

F (a) =
N∑
j=1

[
ajux(0, tj)− q0(tj)

]2

, (2.16)

where a = (aj)j=1,N ∈ RN
+ . It is worth mentioning that in (2.16) at the first time

step, i.e. j = 0, the derivative ux(0, 0) is obtained from the initial condition (2.2),

via (2.14), as

ux(0, 0) =
4φ1 − φ2 − 3φ0

2(∆x)
, (2.17)

where φi = φ(xi) for i = 0,M . The minimization of (2.16) is performed using the

MATLAB toolbox routine lsqnonlin, which does not require supplying by the

user of the gradient of the objective function, [99]. This routine attempts to find

the minimum of a sum of squares by starting from the arbitrary initial guesses

a(0) for a. Furthermore, within lsqnonlin, we use the TRR algorithm [31], which

is based on the interior-reflective Newton method. We have compiled this routine

with the following specifications :

• Number of variables M = N.
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• Maximum number of iterations, (MaxIter) = 400.

• Maximum number of objective function evaluations, (MaxFunEvals)

= 102×(number of variables).

• Termination tolerance on the function value, (TolFun) = 10−20.

• x Tolerance, (xTol)=10−20.

• The lower and upper bounds for a are 10−10 and 103. These bounds allow

a wide search range for the vector of unknowns.

2.5 Numerical results and discussion

For all the numerical results produced in this thesis, we have used a TOSHIBA

laptop with the processor Inter(R) Core(TM) i7-5500 CPU, 64-bit operating sys-

tem and installed memory (RAM) 8.00 GB.

In this section, we present a few examples in order to test the accuracy and

stability of the numerical method introduced in Section 2.4. The root mean

square error (rmse)

rmse(a(t)) =

√√√√ 1

N

N∑
j=1

(
anumerical(tj)− aexact(tj)

)2

(2.18)

is used to evaluate the accuracy of the numerical results.

In all the numerical results presented below we take L = T = 1. We also take

the initial guess for the unknown thermal diffusivity a(t) equal to the constant

a(0), which from the compatibility of the conditions (2.2) and (2.4) at t = 0 is

known and given by a(0) = q0(0)/φ′(0).

2.5.1 Example 1

We consider recovering a non-smooth thermal conductivity, as given by equation

(2.24) below. We take input data given by

φ(x) = u(x, 0) = 2x− x2
(
x+

1

2

)2

, (2.19)

µ1(t) = u(0, t) = 2t− t2

4
, µ2(t) = u(1, t) = 2 + 2t− 9

4
(1 + t)2, (2.20)
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f(x, t) = 2− 2
(
x+

1

2

)2

(x+ t)−
(∣∣∣t− 1

2

∣∣∣+
1

2

)(
− 2
(
x+

1

2

)2

−8
(
x+

1

2

)
(x+ t)− 2(x+ t)2

)
, (2.21)

and

q0(t) = a(t)ux(0, t) =
(

2− 1

2
t− t2

)(∣∣∣t− 1

2

∣∣∣+
1

2

)
. (2.22)

Then, the analytical solution of the inverse problem (2.1)–(2.4) is given by

u(x, t) = 2t+ 2x−
(
x+

1

2

)2

(x+ t)2, (2.23)

and

a(t) =
∣∣∣t− 1

2

∣∣∣+
1

2
. (2.24)

Figure 2.2 shows the numerical heat flux in equation (2.4) in comparison with

the exact solution (2.22) obtained by solving the direct problem (2.1)–(2.3) with

the input data (2.19)–(2.21) and (2.24) using the FDM, described in Section 2.3,

with M = N ∈ {10, 20, 40}. From this figure it can be seen that the good agree-

ment between the exact solution (2.22) and the numerical solutions.

We now fix M = N = 40 and try to recover the thermal conductivity a(t)

and the temperature u(x, t) for exact input data, i.e. p = 0, as well as for

p ∈ {1%, 3%} additive noisy data numerically simulated as

qε0(tj) = q0(tj) + εj, j = 1, N, (2.25)

where εj are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σ given by

σ = p× max
t∈[0,T ]

|q0(t)|, (2.26)

where p represents the percentage of noise. We use the MATLAB function

normrnd to generate the random variables ε = (εj)j=1,N as follows:

ε = normrnd(0, σ,N). (2.27)

The objective function (2.16) is plotted, as a function of the number of itera-

tions, in Figure 2.3. From this figure, it can be seen that a very fast convergence

is achieved in about 7 to 11 iterations to reach to a very low value of O(10−27).

The related numerical results for a(t) and u(x, t) are presented in Figures 2.4

and 2.5, respectively. From these figures it can be seen clearly that there is good
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agreement between the numerical results and the analytical solutions for exact

data, i.e. p = 0, and is proportional with the errors in the input data for p > 0.

The numerical solutions for a(t) and u(x, t) converge to their corresponding exact

solutions in equations (2.24) and (2.23), as the percentage of noise p decreases

from 3% to 1% and then to zero.
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M=N=40

Figure 2.2: The exact (equation (2.22)) and numerical solutions for the heat flux (2.4),

for Example 1 with M = N ∈ {10, 20, 40}, for the direct problem.
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Figure 2.3: Objective function (2.16), for Example 1 with p ∈ {0, 1%, 3%} noise.
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Figure 2.4: The exact (equation (2.24)) and numerical solutions for the thermal con-

ductivity a(t), for Example 1 with p ∈ {0, 1%, 3%} noise.
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Figure 2.5: The exact (equation (2.23)) and numerical solutions for the temperature

u(x, t), for Example 1, with (a) no noise, (b) p = 1% noise, and (c) p = 3% noise. The

absolute error between them is also included.
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Table 2.1: Number of iterations, number of function evaluations, value of the
objective function (2.16) at final iteration, rmse(a) and the computational time,
for Example 1.

Numerical outputs p = 0 p = 1% p = 3%
Number of iterations
Number of function evaluations
Value of objective function
(2.16) at final iteration
rmse(a)
Computational time

7
336
2.2E-26

0.0325
4 mins

7
336
4.2E-26

0.2123
4 mins

11
504
9.4E-27

0.6643
6 mins

Other details about number of iterations, the number of function evaluations,

the value of the objective function (2.16) at final iteration, the rmse in (2.18)

and the computational time are given in Table 2.1. From this table it can be seen

that accurate and stable numerical results are rapidly achieved by the iterative

MATLAB toolbox routine lsqnonlin.

2.5.2 Example 2

Consider the inverse problem (2.1)–(2.4) with the input data

φ(x) = u(x, 0) = sin(πx), µ1(t) = µ2(t) = 0, f(x, t) = 0, (2.28)

q0(t) = π(1.01 + sin(3πt)) exp
[
− π2

(
1.01t+

1− cos(3πt)

3π

)]
. (2.29)

The exact solution for the temperature u(x, t) is

u(x, t) = sin(πx) exp
[
− π2

(
1.01t+

1− cos(3πt)

3π

)]
, (2.30)

and for the thermal conductivity a(t) is

a(t) = 1.01 + sin(3πt). (2.31)

This example was considered in [138] and we generate the noisy heat flux mea-

surement (2.4), as multiplicative (rather than additive as in (2.25)), namely,

qε̃0(tj) = q0(tj)(1 + pε̃j), j = 1, N, (2.32)

where p represents the percentage of noise and ε̃ = (ε̃j)j=1,N , is a random real

number between [−1, 1] generated from a uniform distribution using the MAT-
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LAB function rand as

ε̃ = 2× rand(1, N)− 1. (2.33)

The objective function (2.16), as a function of the number of iterations is

shown in Figure 2.6 with no noise and with various mesh sizes. From this figure

it can be seen that very low converging values of the monotonically decreasing

objective function F in (2.16) are achieved. The corresponding numerical results

for a(t) are compared with the analytical solution (2.31) in Figure 2.7, with the

numerical details included in Table 2.2. From this figure and table it can be seen

that the numerical solution for a(t) converges to exact solution (2.31), as the

mesh size decreases.
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Figure 2.6: Objective function (2.16), for Example 2 with no noise and with M = N ∈
{20, 40, 80}.
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Figure 2.7: The exact (equation (2.31)) and numerical solutions for the thermal con-

ductivity a(t), for Example 2 with no noise and with various mesh size M = N ∈
{20, 40, 80}.
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Table 2.2: Number of iterations, number of function evaluations, value of the
objective function (2.16) at final iteration, rmse(a) and the computational time,
for Example 2 with various mesh size M = N ∈ {20, 40, 80} and with no noise.

Numerical outputs M = N = 20 M = N = 40 M = N = 80
Number of iterations
Number of function evaluations
Value of objective function
(2.16) at final iteration
rmse(a)
Computational time

301
6644
5.7E-30

0.1977
6 mins

201
16884
6.4E-29

0.0634
478 mins

401
32964
3.4E-28

0.0170
600 mins

When we include various levels of noise p ∈ {1, 3, 5}% as in (2.32) to the

heat flux measurement (2.4) we obtain stable results for the a(t) as thermal

conductivity shown in Figure 2.8. Furthermore, the results become more accurate

as the amount of noise p decreases. Numerical results are also comparable in terms

of stability and accuracy with those in [138] obtained using a totally different

method.
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Figure 2.8: The exact (equation (2.31)) and numerical solutions for the thermal con-

ductivity a(t), for Example 2 with p ∈ {1%, 3%, 5%} noise and no regularization with

M = N = 40.

2.6 Extension to higher dimensions

The extension to two-dimensions case is straightforward. In the rectangular do-

main QT = {(x, y, t) : 0 < x < h, 0 < y < l, 0 < t < T}, we consider the inverse

problem of reconstructing the time-dependent thermal conductivity a(t) > 0 in

the two-dimensional parabolic heat equation

ut = a(t)∆u+ f(x, y, t), (x, y, t) ∈ QT , (2.34)
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where f is a given heat source, with unknown temperature u(x, y, t), subject to

the initial condition

u(x, y, 0) = ϕ(x, y), (x, y) ∈ [0, h]× [0, l], (2.35)

the Dirichlet boundary conditions

u(0, y, t) = µ11(y, t), u(h, y, t) = µ12(y, t), (y, t) ∈ [0, l]× [0, T ], (2.36)

u(x, 0, t) = µ21(x, t), u(x, l, t) = µ22(x, t), (x, t) ∈ [0, h]× [0, T ], (2.37)

and the nonlocal observation

v1(t)ux(0, Y0, t) + v2(t)ux(h, Y0, t) = χ(t), t ∈ [0, T ], (2.38)

where Y0 is a fixed point within the interval (0, l), and v1 and v2 are given func-

tions.

This is the mathematical formulation of the inverse problem analysed in [86],

though one can remark that, physically, the observation (2.38) (compare with

(2.4)) is missing a conductivity factor a(t) in its left-hand side. We defer this

more physical observation for future investigations and instead concentrate on

(2.38) for which a solid mathematical analysis already exists [86]. In particular,

the local existence and uniqueness of solution of the inverse problem (2.34)–(2.38)

was established in [86] and read as stated in the following two theorems.

Theorem 2.6.1. Suppose that the following assumptions are satisfied:

(A1) f ∈ C(QT ), ϕ ∈ C2([0, h]× [0, l]), Ψ ∈ C2,1(QT ), χ̃, v1, v2 ∈ C1([0, T ]),

and the functions f,∆ϕ,∆Ψ and Ψt satisfy the Hölder condition with

exponent α in the space variables, where

χ̃(t) := χ(t)− v1(t)(ϕx(0, Y0) + Ψx(0, Y0, t))− v2(t)(ϕx(h, Y0) + Ψx(h, Y0, t)),

t ∈ [0, T ],Ψ(x, y, t) := µ11(y, t)− µ11(y, 0) +
x

h

(
µ12(y, t)− µ12(y, 0)− µ11(y, t)

+µ11(y, 0)
)

+ µ21(x, t)− µ21(x, 0)−
[
µ11(0, t)− µ11(0, 0) +

x

h

(
µ12(0, t)

−µ12(0, 0)− µ11(0, t) + µ11(0, 0)
)]

+
y

l

[
µ22(x, t)− µ22(x, 0)− µ11(l, t)

+µ11(l, 0)− x

h

(
µ12(l, t)− µ12(l, 0)− µ11(l, t) + µ11(l, 0)

)
− µ21(x, t)

+µ21(x, 0) + µ11(0, t)− µ11(0, 0) +
x

h

(
µ12(0, t)− µ12(0, 0)− µ11(0, t)

+µ11(0, 0)
)]

;
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(A2) − v1(t)(∆ϕ(0, Y0) + ∆Ψ(0, Y0, t)) + v2(t)(∆ϕ(h, Y0) + ∆Ψ(h, Y0, t)) > 0,

−v2(t)(f(h, Y0, t)−Ψt(h, Y0, t)) + v1(t)(f(0, Y0, t)−Ψt(0, Y0, t)) > 0, t ∈ [0, T ];

(A3) v1(0)ϕ′(0, Y0) + v2(0)ϕ′(h, Y0) = χ̃(0), ϕ(0, y) = µ11(y, 0),

ϕ(h, y) = µ12(y, 0), ϕ(x, 0) = µ21(x, 0), ϕ(x, l) = µ22(x, 0),

µ11(0, t) = µ21(0, t), µ11(l, t) = µ22(0, t), µ12(0, t) = µ21(h, t),

µ12(l, t) = µ22(h, t).

Then, there exists T0 ∈ (0, T ], which is determined by the input data, such that

the problem (2.34)–(2.38) has a solution (a(t), u(x, y, t)) ∈ C([0, T0])×C2,1(QT0),

with a(t) > 0 for t ∈ [0, T0].

Theorem 2.6.2. Let assumption (A1) and the condition

U(t) := v2(t)(∆ϕ(h, Y0) + ∆Ψ(h, Y0, t))− v1(t)(∆ϕ(0, Y0)

+∆Ψ(0, Y0, t)) 6= 0, t ∈ [0, T ], (2.39)

be satisfied. Then, the inverse problem (2.34)–(2.38) cannot have more than one

solution in the class (a(t), u(x, y, t)) ∈ C([0, T ]) × C2,1(QT ), with a(t) > 0 for

t ∈ [0, T ].

2.6.1 Numerical solution of the direct 2D problem

In this section, we consider the direct initial boundary value problem (2.34)–

(2.38), where a(t), v1(t), v2(t), f(x, y, t), ϕ(x, y), µ1i(y, t), i = 1, 2 and µ2i(x, t),

i = 1, 2, are known and the solution u(x, y, t) is to be determined. To achieve

this, we use the forward time central space (FTCS) FDM, which is conditionally

stable, as described in the next subsection.

We subdivide the solution domain QT into M1, M2 and N subintervals of equal

step lengths ∆x, ∆y, and uniform time step ∆t, where ∆x = h/M1, ∆y = l/M2,

and ∆t = T/N, respectively. At the node (i, j, n), we denote uni,j := u(xi, yj, tn),

where xi = i∆x, yj = j∆y, tn = n∆t, an := a(tn), v1n := v1(tn), v2n := v2(tn)

and fni,j := f(xi, yj, tn) for i = 0,M1, j = 0,M2 and n = 0, N .

2.6.2 Forward time central space (FTCS) method

In this method, the first-order time derivative term in the two-dimensional parabolic

equation (2.34) is approximated by forward finite differences, whilst the space par-
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tial derivatives are approximated by second-order central finite differences. This

gives

un+1
i,j − uni,j

∆t
= an

(uni−1,j − 2uni,j + uni+1,j

(∆x)2
+
uni,j−1 − 2uni,j + uni,j+1

(∆y)2

)
+ fni,j,

i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N. (2.40)

Equation (2.40) can be rearranged into an explicit expression as

un+1
i,j = uni,j + anr1(uni−1,j − 2uni,j + uni+1,j) + anr2(uni,j−1 − 2uni,j + uni,j+1)

+(∆t)fni,j, i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N, (2.41)

where r1 = ∆t
(∆x)2

and r2 = ∆t
(∆y)2

.

Let ã be the maximum value of a(t) for t ∈ [0, T ], then, the stability condition

for the explicit FTCS (2.41), is [101],

ã (r1 + r2) ≤ 1

2
. (2.42)

The initial (2.35) and boundary conditions (2.36) and (2.37) discretise as

u0
i,j = ϕi,j, i = 0,M1, j = 0,M2, (2.43)

un0,j = µ11(yj, tn), unM1,j
= µ12(yj, tn), j = 0,M2, n = 1, N, (2.44)

uni,0 = µ21(xi, tn), uni,M2
= µ22(xi, tn), i = 0,M1, n = 1, N. (2.45)

The function (2.38) can be calculated using the FDM as follows:

χ(tn) = v1n

(
4u(1, Y0, tn)− u(2, Y0, tn)− 3u(0, Y0, tn)

2∆x

)
+v2n

(
4u(h, Y0, tn)− u(h, Y0, tn)− 3u(h, Y0, tn)

−2∆x

)
, n = 1, N. (2.46)

2.6.3 Numerical solution of the 2D inverse problem

In this section, our goal is to obtain stable reconstruction for the time-dependent

thermal conductivity a(t) > 0 together with the temperature u(x, y, t), satisfing

equations (2.34)–(2.38). The inverse problem can be formulated as a nonlinear
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minimization of the Tikhonov regularization function given by

Fλ(a) = ‖v1(t)ux(0, Y0, t) + v2(t)ux(h, Y0, t)− χ(t)‖2+λ‖a(t)‖2, (2.47)

or, in discretized form

Fλ(a) =
N∑
n=1

[
v1nux(0, Y0, tn) + v2nux(h, Y0, tn)− χ(tn)

]2

+ λ

N∑
n=1

a2
n, (2.48)

where u(x, y, t) solves (2.34)–(2.37) for given a, and λ ≥ 0 is regularization pa-

rameter to be prescribed. The minimization of the objective function (2.48) is

performed using the MATLAB toolbox routine lsqnonlin.

We employ the root mean square errors (rmse), in order to assess the accuracy

of the numerical results, defined by (2.18). For simplicity, we take h = l = T = 1.

The inverse problem given by (2.34)–(2.38) is solved subject to both exact

and noisy measurement (2.38). The noisy data are numerically simulated as

χε(tn) = χ(tn) + εn, n = 1, N, (2.49)

where εn is random variable generated from a Gaussian normal distribution with

mean zero and standard deviation σ

σ = p× max
t∈[0,T ]

|χ(t)|, (2.50)

and p represents the percentage of noise. We use the MATLAB function normrnd

to generate the random variables ε = (εn)n=1,N as in (2.27). In the case of noisy

data (2.49), we replace χ(tn) by χε(tn) in (2.48).

2.6.4 Example 3

Consider the inverse problem (2.34)–(2.38) with unknown time-dependent ther-

mal conductivity a(t) and with the input data ϕ, µ1i and µ2i, i = 1, 2, as follows:

ϕ(y, x) =
1

3
cos(x+ πy), v1(t) = 1, v2(t) = 1, Y0 =

1

2
,

µ11(y, t) =
1

3
(1 + t) cos(πy), µ12(y, t) =

1

3
(1 + t) cos(1 + πy),

µ21(x, t) =
1

3
(1 + t) cos(x), µ22(x, t) = −1

3
(1 + t) cos(1 + x),

f(x, y, t) =
1

3
cos(x+ πy)− 1

50
(1.1 + cos(2πt))(−1

3
(1 + t) cos(x+ πy)

−1

3
π2(1 + t) cos(x+ πy)), (2.51)
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χ(t) = v1(t)ux(0, Y0, t) + v2(t)ux(1, Y0, t) = −(1 + t)(1 + cos(1))

3
. (2.52)

First, it can easily be checked that with this data, the conditions (A1)–(A3)

of Theorem 2.6.1 are satisfied. Also, the graph of the function U(t) given by

equation (2.39) is shown in Figure 2.9. From this figure it can be seen that this

function never vanishes over the time interval t ∈ [0, 1] and hence condition (2.39)

is satisfied. Then, according to Theorems 2.6.1 and 2.6.2 the local existence and

uniqueness of the solution are guaranteed. In fact, it can easily be checked by

direct substitution that the exact solutions for the temperature u(x, y, t) and

conductivity a(t) are given by

u(x, y, t) =
(1 + t) cos(x+ πy)

3
, (x, y, t) ∈ QT , (2.53)

a(t) =
1.1 + cos(2πt)

50
, t ∈ [0, 1]. (2.54)

First, we solve the direct problem (2.34)–(2.37), when a(t) is known and given

by (2.54), using the FTCS described in Subsection 2.6.2 with the mesh size

M1 = M2 = 10 and N = 20, i.e. ∆x = ∆y = 1/10 = 0.1 and ∆t = 1/20 = 0.05.

The exact solutions (2.53) and (2.52) for the temperature u(x, y, t) and the non-

local heat flux χ(t) are compared with the numerical solutions in Figure 2.10

and Table 2.3, respectively, and one can observe that an excellent agreement is

obtained.

Next, we solve the inverse problem (2.34)–(2.38) using the lsqnonlin mini-

mization of the functional (2.48) with the initial guess for the vector a = (a(tn))n=1,N

given by

a0(tn) = a(0) = 0.042, n = 1, N. (2.55)

We take the same mesh size as in the direct problem above. We choose the upper

bound UB = 0.05 for a such that the stability condition (2.42) is always satisfied

in the iterative process. Also, since a represents a positive physical quantity we

take the lower bound for a to be a small positive number such as LB = 10−3.

We start the investigation for determining the unknown time-dependent ther-

mal conductivity a(t) and the temperature u(x, y, t) in the case of exact input

data, i.e. p = 0 in (2.50). The unregularized objective function (2.48), i.e. with

λ = 0, as a function of the number of iterations, is shown in Figure 2.11(a). From

this figure, it can be seen that the objective function (2.48) is rapidly decreasing
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to a very low value of O(10−29) in about 25 iterations (in about 5 minutes CPU

time). The related numerical results for the thermal conductivity a(t), with no

regularization, are presented in Figure 2.11(b). From this figure, it can be seen

that, as expected, there is good agreement between the numerical results and the

exact solution (2.54) for exact data.

Next, we investigate the stability of the numerical solution with respect to

various levels of p ∈ {1%, 3%} noise in (2.50) included in the input data χ(t).

Although not illustrated, it is reported that a rapid monotonic decreasing conver-

gence of the objective function (2.48), without and with regularization is achieved

in about 11 to 25 iterations. The related numerical results for the thermal conduc-

tivity a(t) are presented in Figure 2.13(a) for p = 1% noise and in Figure 2.14(a)

for p = 3% noise. From these figures, it can be seen that the numerical results

are unstable (oscillating), if no regularization, i.e. λ = 0, is employed. We expect

that regularization is needed in order to obtain stable and accurate solutions be-

cause the inverse problem is ill-posed. The L-curve, [47], for the choice of the

regularization parameter is shown in Figure 2.12, by plotting the solution norm

||a||=
√∑N

n=1 a
2
n versus the residual norm given by

Residual norm =

√√√√ N∑
n=1

[
v1(tn)ux(0, Y0, tn) + v2(tn)ux(h, Y0, tn)− χ(tn)

]2

. (2.56)

The corner of the L-curve occurs around λ ∈ {3, 4} for p = 1% noise, and

λ ∈ {6, 7} for p = 3% noise, and is taken as a good choice for the regularization

parameter λ balancing the fit of data (residual norm in (2.56)) with the stability

of solution (solution norm). From Figures 2.13(b) and 2.14(b), and Table 2.4, it

can be seen that stable and reasonable accurate numerical results for the thermal

conductivity a(t) are obtain for λ = 3 or 4 (suggested by the L-curve in Fig-

ure 2.12(a)), for p = 1% noise, and with λ = 6 or 7 (suggested by the L-curve in

Figure 2.12(b)), for p = 3% noise.

Finally, details about the number of iterations, the rmse(a) in (2.18), and the

computational time are given in Table 2.4, for various levels of noise and with

and without regularization.
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Figure 2.9: The graph of the function U(t), as a function of t.
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Figure 2.10: The exact (2.53) and numerical solutions for the temperature u(x, y, 1),

for Example 3, for the direct problem.

Table 2.3: The exact (2.52) and numerical solutions for χ(t), for Example 3, for
the direct problem.

t 0.1 0.2 0.3 0.4 ... 0.8 0.9 rmse
χ(t) -0.5657 -0.6166 -0.6678 -0.7191 ... -0.9245 -0.9755 6.5E-4

Exact -0.5648 -0.6161 -0.6675 -0.7188 ... -0.9242 -0.9755 0
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Figure 2.11: (a) The unregularized objective function (2.48), as a function of the

number of iterations, and (b) the solution for the thermal conductivity a(t), with no

noise and no regularization, for Example 3.
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Figure 2.13: The exact (2.54) and numerical solutions, for the thermal conductivity

a(t), for p = 1% noise, with (a) no regularization and (b) with regularization, for

Example 3.
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Figure 2.14: The exact (2.54) and numerical solutions, for the thermal conductivity

a(t), for p = 3% noise, with (a) no regularization and (b) with regularization, for

Example 3.
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Table 2.4: The rmse(a) values, number of iterations and computational time for
p ∈ {0, 1%, 3%} noise, with and without regularization, for Example 3.

p Regul rmse(a) Iter Time
0 λ = 0 3.3E-5 25 5 mins

1%

λ = 0
λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

0.0044
0.0041
0.0036
0.0033
0.0037
0.0040

21
11
11
11
11
11

4 mins
2 mins
2 mins
2 mins
2 mins
2 mins

3%

λ = 0
λ = 5
λ = 6
λ = 7
λ = 8

0.0098
0.0070
0.0066
0.0067
0.0069

21
11
11
11
11

4 mins
2 mins
2 mins
2 mins
2 mins

2.7 Conclusions

This chapter has initially presented (Sections 2.2–2.5) the determination of the

time-dependent thermal conductivity from heat flux measurements in the one-

dimensional parabolic heat equation. The resulting inverse problem has been

reformulated as a nonlinear least-squares optimization problem, which has been

solved using the MATLAB toolbox routine lsqnonlin. Accurate and reason-

ably stable (with no regularization necessary to be employed) numerical results

have been obtained. An extension to a two-dimensional coefficient identification

problem, which is a variant of the one-dimensional problem, has been presented

in Section 2.6. For this newly formulated problem the use of regularization is

necessary in order to ensure that a numerically stable solution is obtained. Nev-

ertheless, future work (both theoretical and numerical) could concern replacing

the additional observation (2.38) by the more physical heat flux combination

a(t)(v1(t)ux(0, Y0, t) + v2(t)ux(h, Y0, t)) = χ(t) for t ∈ [0, T ].



Chapter 3

Reconstruction of

time-dependent coefficients from

heat moments

3.1 Introduction

In the previous chapter, the reconstruction of a single time-dependent coefficient

from heat flux measurement has been performed. In this chapter, the identifica-

tion of multiple coefficients is analysed.

Simultaneous determination of several unknown physical property coefficients

in heat transfer which dependent on time, space or temperature has been inves-

tigated in various studies, see e.g. [62, 65, 78, 79, 104]. In particular, in [62],

the authors investigated the inverse problems of simultaneous numerical recon-

struction of time-dependent thermal conductivity and convection coefficients in

a one-dimensional parabolic equation from Cauchy boundary data measurements

represented by the boundary temperature and heat flux. In this chapter, we in-

vestigate the reconstruction of the same coefficients, as well as of the absorption

coefficient, using the measurement of the heat moments instead of the heat flux.

The chapter is organized as follows: In Section 3.2, the mathematical of formu-

lation of the inverse problems are reformulated and uniqueness results are stated.

In Section 3.3, the numerical solution of the direct problem based on the FDM

is presented. In Section 3.4, the numerical approach to solve the minimization of

the nonlinear Tikhonov regularization functional is presented. The numerical re-

sults for various examples are presented and discussed in Section 3.5. The choice

of multiple regularization parameters is also addressed. Finally, conclusions are

presented in Section 3.6.
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3.2 Mathematical formulation

We consider an extended version of (2.1) given by

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + b(t)

∂u

∂x
(x, t) + c(t)u(x, t) + f(x, t), (x, t) ∈ QT , (3.1)

where b and c are coefficients representing convection and absorption. Equation

(3.1) has to be solved subject to the initial condition

u(x, 0) = φ(x), x ∈ [0, L], (3.2)

and the Dirichlet boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), t ∈ [0, T ]. (3.3)

If a, b, c and f are given then (3.1)–(3.3) constitute a direct Dirichlet problem

for the temperature u(x, t). Other outputs of interest are the heat fluxes

a(t)ux(0, t) = q0(t), a(t)ux(L, t) = qL(t), t ∈ [0, T ], (3.4)

and the heat moments of order k = 0 and k = 1, namely,

Hk(t) =

∫ L

0

xku(x, t)dx, k = 0, 1, t ∈ [0, T ]. (3.5)

However, if any of the coefficients a, b, c and/or f are not known then we are

dealing with inverse coefficient identification problems.

Prior to this study, the simultaneous identification of the coefficients a(t)

and b(t) in the problem (3.1)–(3.3) with the additional flux data (3.4) has been

considered in [62]. In this chapter, we consider the simultaneous reconstruction of

the same time-dependent coefficients, as well as c(t), but from the heat moments

(3.5) instead of the heat fluxes (3.4). The heat moment of order k = 0, i.e.

H0(t) =
∫ L

0
u(x, t)dx, is also called the mass (or energy) of the heat conducting

system, [22, 92], whilst the heat moment of order k = 1, i.e. H1(t) =
∫ L

0
xu(x, t)dx

represents the barycenter (the center of mass of two or more bodies that are

orbiting each other, which is the point around which they both orbit) of the

system, [105]. The uniqueness of solution of these inverse problems is stated in

the next two subsections.
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3.2.1 Inverse Problem 1

Assuming that c(t) = 0, the inverse problem 1 (IP1) requires the simultane-

ous determination of the time-dependent thermal conductivity a(t) > 0 and the

convection (or advection) coefficient b(t), together with the temperature u(x, t)

satisfying

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + b(t)

∂u

∂x
(x, t) + f(x, t), (x, t) ∈ QT , (3.6)

subject to (3.2), (3.3) and (3.5). The sketch of the IP1 is shown in Figure 3.1(a).

The uniqueness of solution (a(t), b(t), u(x, t)) of this inverse problem was es-

tablished in [107] and reads as follows.

Theorem 3.2.1. Let φ ∈ C1[0, L], µk ∈ C1[0, T ], Hk ∈ C1[0, T ] for k = 0, 1,

and f ∈ C(QT ).

Suppose that the following condition is satisfied:

U1(t) :=
(
µ2(t)− µ1(t)

)∫ L

0

xf(x, t)dx

−
(
Lµ2(t)−H0(t)

)∫ L

0

f(x, t)dx 6= 0, ∀t ∈ [0, T ]. (3.7)

Then a solution (a(t), b(t), u(x, t)) ∈ C[0, T ]×C[0, T ]×
(
C2,1(QT )∩C(QT )

)
with

a(t) > 0 for t ∈ [0, T ], to the problem (3.2), (3.3), (3.5) and (3.6) is unique.

Remark 1. Observe that by multiplying equation (3.6) by xk, k = 0, 1, integrat-

ing with respect to x from 0 to L, and taking into account condition (3.5), we

obtain,

H ′0(t) = a(t)
(
ux(L, t)− ux(0, t)

)
+ b(t)

(
u(L, t)− u(0, t)

)
+
∫ L

0
f(x, t)dx,

H ′1(t) = a(t)
(
Lux(L, t)−u(L, t)+u(0, t)

)
+b(t)

(
Lu(L, t)−H0(t)

)
+
∫ L

0
xf(x, t)dx.

Taking t = 0 in these equations, using the compatibility conditions ux(0, t) =

φ′(0), ux(L, t) = φ′(L), the Dirichlet boundary conditions (3.3) and solving for

a(0) and b(0), we obtain,

a(0) =
(

∆(0)
)−1
[(
H ′0(0)−

∫ L

0

f(x, 0)dx
)(
Lµ2(L)−H0(0)

)

−
(
µ2(L)− µ1(0)

)(
H ′1(0)−

∫ L

0

xf(x, 0)dx
)]
,
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b(0) =
(

∆(0)
)−1
[(
φ′(L)− φ′(0)

)(
H ′1(0)−

∫ L

0

xf(x, 0)dx
)

−
(
H ′0(0)−

∫ L

0

f(x, 0)dx
)(
Lφ′(L)− µ2(L) + µ1(0)

)]
, (3.8)

where

∆(0) =
(
µ2(L)−µ1(0)

)2

+L
(
φ′(L)µ1(0)−φ′(0)µ2(L)

)
−H0(0)

(
φ′(L)−φ′(0)

)
6= 0.

(a)

x

t

T

0 L

u(0, t) = µ1(t)

Find u(x, t), b(t) and

0 < a(t) satisfying

ut = a(t)uxx + b(t)ux + f(x, t),

H0(t) =
∫ L

0
u(x, t)dx,

H1(t) =
∫ L

0
xu(x, t)dx

u(x, 0) = φ(x)

u(L, t) = µ2(t)

(b)

x

t

T

0 L

u(0, t) = µ1(t)

Find u(x, t), c(t) and

0 < a(t) satisfying

ut = a(t)uxx + c(t)u+ f(x, t),

H0(t) =
∫ L

0
u(x, t)dx,

H1(t) =
∫ L

0
xu(x, t)dx

u(x, 0) = φ(x)

u(L, t) = µ2(t)

Figure 3.1: Sketch of the inverse problems under investigation (a) IP1 and (b)
IP2.

3.2.2 Inverse Problem 2

Assuming that b(t) = 0, the inverse problem 2 (IP2) requires the simultaneous

determination of the time-dependent thermal conductivity a(t) > 0 and the ab-

sorption coefficient c(t), together with the temperature u(x, t) satisfying
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∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + c(t)u(x, t) + f(x, t), (x, t) ∈ QT , (3.9)

subject to (3.2), (3.3) and (3.5). The sketch of the IP2 is shown in Figure 4.1(b).

In bio-heat transfer, equation (3.9) is known as the Pennes bio-heat equation

and c(t) represents the perfusion coefficient, [127]. In case where the thermal

conductivity coefficient a(t) is known, and taken to be unity, the inverse problem

(3.2), (3.3), (3.9) with the the integral condition (3.5) for k = 0, for recovering

the perfusion coefficient c(t) and the temperature u(x, t) was studied both theo-

retically and numerically in [16] and [127], respectively.

The uniqueness of solution (a(t), c(t), u(x, t)) of the IP2 was established in

[78] and reads as follows.

Theorem 3.2.2. Let φ ∈ C1[0, L], µk ∈ C[0, T ], Hk ∈ C1[0, T ] for k = 0, 1, and

f ∈ C(QT ).

Suppose that the following condition is satisfied:

U2(t) := H0(t)H
′

1(t)−H ′0(t)H1(t) +

∫ L

0

(
H1(t)− xH0(t)

)
f(x, t)dx 6= 0,

∀t ∈ [0, T ]. (3.10)

Then a solution (a(t), c(t), u(x, t)) ∈ C[0, T ] × C[0, T ] ×
(
C2,1(QT ) ∩ C1,0(QT )

)
with a(t) > 0 for t ∈ [0, T ], to the problem (3.2), (3.3), (3.5) and (3.9) is unique.

Remark 2. Observe that by multiplying equation (3.8) by xk, k = 0, 1, integrat-

ing with respect to x from 0 to L, and taking into account condition (3.5), we

obtain, [78],

H ′0(t) = a(t)
(
ux(L, t)− ux(0, t)

)
+ c(t)H0(t) +

∫ L
0
f(x, t)dx,

H ′1(t) = a(t)
(
Lux(L, t)− u(L, t) + u(0, t)

)
+ c(t)H1(t) +

∫ L
0
xf(x, t)dx.

As before in Remark 1, taking t = 0 in these equations and solving for a(0) and

c(0), we obtain,

a(0) =
1

Θ(0)

[
H1(0)

(
H ′0(0)−

∫ L

0

f(x, 0)dx
)
−H0(0)

(
H ′1(0)−

∫ L

0

xf(x, 0)dx
)]
,

c(0) =
1

Θ(0)

[(
H ′1(0)−

∫ L

0

xf(x, 0)dx
)(
φ′(L)−φ′(0)

)
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−
(
H ′0(0)−

∫ L

0

f(x, 0)dx
)(
Lφ′(L)− µ2(L) + µ1(0)

)]
, (3.11)

where

Θ(0) = H1(0)
(
φ′(L)− φ′(0)

)
−H0(0)

(
Lφ′(L)− µ2(L) + µ1(0)

)
6= 0.

3.3 Numerical solution of direct problem

Equation (3.1) can be discretised in the form of (2.6) as

−Aj+1ui−1,j+1 + (1 +Bj+1)ui,j+1 − Cj+1ui+1,j+1

= Ajui−1,j + (1−Bj)ui,j + Cjui+1,j +
∆t

2
(fi,j + fi,j+1),

i = 1, (M − 1), j = 0, (N − 1), (3.12)

where

bj = b(tj), cj = c(tj), Aj =
(∆t)aj
2(∆x)2

− (∆t)bj
4(∆x)

, Bj =
(∆t)aj
(∆x)2

− (∆t)cj
2

,

Cj =
(∆t)aj
2(∆x)2

+
(∆t)bj
4(∆x)

.

At each time step tj+1, for j = 0, (N − 1), using the Dirichlet boundary

conditions (2.8), the above difference equation can be reformulated as a (M −
1)× (M − 1) system of linear equations of the form

D̃uj+1 = Ẽuj + b̃j, (3.13)

where uj+1 = (u1,j+1, u2,j+1, ..., uM−2,j+1, uM−1,j+1)T,

D̃ =



1 +Bj+1 −Cj+1 0 ... 0 0 0

−Aj+1 1 +Bj+1 −Cj+1 ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... −Aj+1 1 +Bj+1 −Cj+1

0 0 0 ... 0 −Aj+1 1 +Bj+1


,
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Ẽ =



1−Bj Cj 0 ... 0 0 0

Aj 1−Bj Cj ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... Aj 1−Bj Cj

0 0 0 ... 0 Aj 1−Bj


,

and

b̃j =



∆t
2

(f1,j + f1,j+1) + Ajµ1(tj) + Aj+1µ1(tj+1)
∆t
2

(f2,j + f2,j+1)
...

∆t
2

(fM−2,j + fM−2,j+1)
∆t
2

(fM−1,j + fM−1,j+1) + Cjµ2(tj) + Cj+1µ2(tj+1)


.

As an example, consider the direct problem (3.1)–(3.3) with T = L = 1,

c(t) = 0, φ(x) = u(x, 0) = e−x + x2, µ1(t) = u(0, t) = et,

µ2(t) = u(1, t) = (e−1 + 1)et, f(x, t) = et
(

(1 + t)e−x + x2 − 2(1 + t)

−2x(1 + 2t)
)
, (3.14)

and

a(t) = 1 + t, b(t) = 1 + 2t. (3.15)

The exact solution is given by

u(x, t) = (e−x + x2)et. (3.16)

The numerical results for the interior temperature u(x, t) have been obtained

and are in excellent agreement with the exact solution (3.16) and therefore they

are not presented.

Apart from the interior temperature u(x, t), other outputs of interest are the

heat moments in equation (3.5) over the time interval [0, T ], which analytically

are given by

H0(t) =

∫ 1

0

et(e−x + x2)dx = et
(
− e−1 +

4

3

)
, t ∈ [0, 1], (3.17)
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H1(t) =

∫ 1

0

xet(e−x + x2)dx = et
(
− 2e−1 +

5

4

)
, t ∈ [0, 1]. (3.18)

Figure 3.2 shows that the exact and numerical solutions for the heat moments

(3.5) are indistinguishable. The exact solutions are given in equations (3.17) and

(3.18), whilst the numerical solutions have been calculated using the trapezoidal

rule formula:

Hk(tj) =

∫ 1

0

xku(x, tj)dx =
1

2N

(
xk0u0,j + xkMuM,j + 2

M−1∑
i=1

xki ui,j

)
,

k = 0, 1, j = 0, N, (3.19)

with the convention that x0
0 = 1. Note that for j = 0 in (3.17) and (3.18), using

(3.2) and (3.5), we obtain,

Hk(0) =

∫ 1

0

xku(x, 0)dx =
1

2N

(
xk0φ(x0) + xkMφ(xM) + 2

M−1∑
i=1

xki φ(xi)
)
,

k = 0, 1. (3.20)
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H
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t)

exact

numerical

k=1

k=0

Figure 3.2: The exact and the numerical heat moments Hk(t), k = 0, 1, for M = N =

40, for the direct problem.

The root means square errors (rmse) between the numerical and exact solu-

tions heat moments (3.5) are shown in Table 3.1. These have been calculated

using the formula

rmse(Hk) :=

√√√√ 1

N

N∑
j=1

(
Hnumerical
k (tj)−Hexact

k (tj)
)2

, k = 0, 1. (3.21)

From Table 3.1 it can be seen that the rmse (3.21) decreases, as M = N increases.
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Table 3.1: The (rmse) given by eqution (3.21) between the exact and numerical solu-

tions for the heat moments, for M = N ∈ {10, 20, 40}, for the direct problem.

M = N 10 20 40
rmse(H0)
rmse(H1)

0.0041
0.0031

0.0009
0.0007

0.0002
0.0001

3.4 Numerical solution of inverse problem

Here we assume that the coefficients a(t), b(t) or c(t) are unknown. Usually,

nonlinear inverse problems can be formulated as a nonlinear minimization. The

regularized objective function which is minimized is given by

F (a, b) =
∥∥∥∫ 1

0

u(x, t)dx−H0(t)
∥∥∥2

+
∥∥∥∫ 1

0

xu(x, t)dx−H1(t)
∥∥∥2

+β1‖a(t)‖2+β2‖b(t)‖2, (3.22)

or

F (a, c) =
∥∥∥∫ 1

0

u(x, t)dx−H0(t)
∥∥∥2

+
∥∥∥∫ 1

0

xu(x, t)dx−H1(t)
∥∥∥2

+β1‖a(t)‖2+β2‖c(t)‖2, (3.23)

where u solves (3.2), (3.3) and (3.6) or (3.9) for given (a, b) or (a, c), respectively,

β1, β2 ≥ 0 are regularization parameters and the norm is usually the L2[0, T ]-

norm. The discretizations of (3.22) and (3.23) are:

F (a,b) =
N∑
j=1

[ ∫ 1

0

u(x, tj)dx−H0(tj)
]2

+
N∑
j=1

[ ∫ 1

0

xu(x, tj)dx−H1(tj)
]2

+β1

N∑
j=1

a2
j + β2

N∑
j=1

b2
j (3.24)

and

F (a, c) =
N∑
j=1

[ ∫ 1

0

u(x, tj)dx−H0(tj)
]2

+
N∑
j=1

[ ∫ 1

0

xu(x, tj)dx−H1(tj)
]2

+β1

N∑
j=1

a2
j + β2

N∑
j=1

c2
j . (3.25)

The case β1 = β2 = 0 yields the ordinary nonlinear least-squares method

which is usually unstable. The minimization of F subject to the physical con-
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straints a > 0 is accomplished using the MATLAB toolbox routine lsqnonlin.

We take the parameters of the routine as follows:

• Number of variables M = N = 40.

• xTolerance (xTol) = 10−30.

• Function Tolerance (FunTol) = 10−30.

• Initial guess (a(0),b(0)) = (a(0),b(0)) for IP1 and (a(0), c(0)) = (a(0), c(0))

for IP2. The values of a(0), b(0) and c(0) are calculated from equations (8)

and (11).

• The lower and upper simple bounds are 10−10 and 103 for a, and −103 and

103 for b and c.

3.5 Numerical results and discussion

In this section, we discuss a few test examples to illustrate the accuracy and

stability of the numerical solutions. We take T = L = 1. We investigate the

cases when the coefficients a(t), b(t) or c(t) are smooth and non-smooth. In

addition, we add noise to the measured heat moments input data (3.5) as

Hε
k(tj) = Hk(tj) + εjk, k = 0, 1, j = 1, N, (3.26)

where εjk are random variables generated from a Gaussian normal distribution

with mean zero and standard deviations σk, given by

σk = p× max
t∈[0,T ]

|Hk(t)|, k = 0, 1, (3.27)

where p represents the percentage of noise. We use the MATLAB function

normrnd to generate the random variables as

εk = normrnd(0, σ,N), k = 0, 1. (3.28)

The root mean square error (rmse) to analyse the error between the exact

and estimated coefficients, is defined by (2.18) and similar expressions exist for

b(t) and c(t).
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3.5.1 Example 1 (for IP1)

Consider the IP1 given by equations (3.2), (3.3), (3.5) and (3.6) with unknown

coefficients a(t), b(t) and solve this inverse problem with the input data (3.14),

(3.17) and (3.18). The graph of the function U1(t) given by equation (3.7) is shown

in Figure 3.3. From this figure it can be seen that this function never vanishes

over the time interval t ∈ [0, 1] and hence condition (3.7) is satisfied. Conse-

quently, according to Theorem 3.2.1, a solution to the IP1 given by equations

(3.3), (3.4), (3.6) and (3.7) with data (3.14), (3.17) and (3.18) is unique. In fact,

it can easily be verified by direct substitution that the solution (a(t), b(t), u(x, t))

is given by equations (3.15) and (3.16). Note also that the direct problem (3.1)–

(3.3) associated to this example has been previously solved numerically using the

FDM in Section 3.3.

First, we consider that there is no noise in the input data (3.6). The unreg-

ularized objective function (3.24), i.e. with β1 = β2 = 0, as a function of the

number of iterations, is shown in Figure 3.4. From this figure it can be seen

that it decreases rapidly to a very low value of O(10−28) in 20 iterations. The

numerical results for the corresponding coefficients a(t) and b(t) are presented in

Figure 3.5. From this figure it can be seen that the retrieved coefficients are in

very good agreement with the exact solution (3.15).

Next, we add p = 1% noise to the heat moments H0(t) and H1(t), as given

by equation (3.26). Taking first β1 = β2, the L-curve, [48], for the choice of the

regularization parameter is shown in Figure 3.6, where the

Residual norm =

√√√√ 1∑
k=0

∥∥∥∫ 1

0

xku(x, ·)dx−Hnoise
k (·)

∥∥∥2

. (3.29)

From this figure it can be seen that the three regularization parameters near the

”corner” of the L-curve are β1 = β2 ∈ {10−4, 10−3, 10−2}. Second, allowing for

independent values of β1 and β2 we obtain the numerical results summarised in

Table 3.2. In this table, we have highlighted some representative choices for β1

and β2 with the corresponding numerical solutions for a and b plotted in Figure 3.7

and the absolute errors between numerical and exact solutions for u plotted in

Figure 3.8.

We note that for the choice of the two-parameter family of regularization

parameters (β1, β2) we have initially tried to apply the heuristic L-surface method,

[7], but without obtaining a clear graphical indication of an L-shaped surface.

Next, we investigate the application of the discrepancy domain principle, [41],
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which selects the regularization parameters (β1, β2) belonging to the domain

D(ε) =
{

(β1, β2) ∈ R2
+

∣∣∣ ε < Residual norm ≤ τε
}
, (3.30)

for some constant τ > 1 independent on β1, β2 and ε, where

ε = ε(p) =

√√√√ 1∑
k=0

N∑
j=1

(εjk)
2 (3.31)

represents the total amount of noise which is input in (3.26). For p = 1%, from

(3.31) we report ε(1%) = 0.2459. By inspecting Table 3.2 and invoking criterion

(3.30) one can discard choices with β1 ≤ 10−3 as producing unstable solutions.

Also, one can observe that the choices β1 = 10−2, β2 = 10−3 and β1 = 10−2,

β2 = 10−2 satisfy criterion (3.30) for some τ > 1, but the choice β1 = 10−3,

β2 = 10−4 does not. This is consistent with the numerical results presented in

Figure 3.7 where the numerical solution obtained with the under-regularization

parameters β1 = 10−3, β2 = 10−4 is rather unstable, whilst the choice β1 = 10−2,

β2 = 10−3 seems optimal.

From the above discussion and related solution [7, 41, 95] one can realise that

the choice of multiple regularization parameters is a difficult and open topic and

more research needs to be undertaken in the future. In what follows, in Examples

2–4, for simplicity, we present results obtained with some trial-and-error typical

values of β1 and β2 which ensure that stable solutions are obtained.
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Figure 3.3: The graph of the function U1(t), as a function of t, given by (3.7) for

Example 1 ( ) and Example 2 (−−−).
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Figure 3.4: Objective function (3.24), for Example 1 (−x−) and Example 2 (−4−),

with no noise and no regularization.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

t

a(
t)

 

 

exact
final iteration 20
initial guess

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

t

b(
t)

 

 

exact
final iteration 20
initial guess

Figure 3.5: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 1 with no noise

and no regularization.
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Figure 3.6: The residual norm (3.29) versus the solution norm
√
||a||2+||b||2 for the

L-curve with various regularization parameters, for Example 1 with p = 1% noise.
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Table 3.2: The objective function (3.24), rmse, residual and norms for estimated
coefficients for IP1 of Example 1 with p = 1% noise and various regularization
parameters.

β1\β2 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

10−9

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0116
1.1252
2.8876
0.1078
12.199
23.242

0.0116
1.1252
2.8862
0.1078
12.201
23.231

0.0117
1.1253
2.8717
0.1078
12.211
23.122

0.0121
1.1254
2.7267
0.1079
12.303
22.063

0.0152
1.1235
1.7860
0.1144
12.941
14.508

0.0193
1.2054
1.8301
0.1359
14.207
2.8511

0.0200
1.1365
2.0577
0.1411
14.087
0.2680

0.0201
1.1261
2.0829
0.1416
14.062
0.0265

0.0201
1.1252
2.0854
0.1416
14.060
0.0027

10−8

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0116
1.1251
2.8876
0.1078
12.199
23.243

0.0116
1.1251
2.8862
0.1078
12.200
23.232

0.0117
1.1253
2.8717
0.1078
12.211
23.123

0.0121
1.1253
2.7268
0.1079
12.302
22.064

0.0152
1.1235
1.7860
0.1144
12.941
14.509

0.0193
1.2054
1.8301
0.1359
14.207
2.8513

0.0200
1.1364
2.0577
0.1411
14.087
0.2679

0.0201
1.1261
2.0829
0.1416
14.062
0.0265

0.0201
1.1252
2.0854
0.1416
14.060
0.0027

10−7

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0116
1.1246
2.8876
0.1078
12.196
23.249

0.0116
1.1246
2.8861
0.1078
12.197
23.238

0.0117
1.1248
2.8717
0.1078
12.208
23.129

0.0122
1.1249
2.7265
0.1079
12.299
22.068

0.0152
1.1231
1.7860
0.1144
12.939
14.5135

0.0193
1.2050
1.8299
0.1359
14.205
2.8518

0.0200
1.1354
2.0577
0.1411
14.083
0.2678

0.0201
1.1251
2.0829
0.1416
14.058
0.0265

0.0201
1.1242
2.0854
0.1416
14.056
0.0026

10−6

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0118
1.1200
2.8884
0.1078
12.163
23.309

0.0118
1.1201
2.8869
0.1078
12.164
23.298

0.0118
1.1203
2.8723
0.1078
12.175
23.187

0.0123
1.1207
2.7245
0.1079
12.270
22.111

0.0154
1.1198
1.7860
0.1143
12.919
14.559

0.0195
1.2016
1.8282
0.1359
14.190
2.8544

0.0202
1.1254
2.0576
0.1411
14.045
0.2665

0.0202
1.1165
2.0828
0.1416
14.026
0.0264

0.0203
1.1158
2.0854
0.1416
14.024
0.0026

10−5

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0131
1.0854
2.9189
0.0856
11.884
23.965

0.0131
1.0854
2.9171
0.1080
11.885
23.952

0.0131
1.0856
2.8995
0.1080
11.899
23.820

0.0136
1.0882
2.7385
0.1080
12.021
22.634

0.0168
1.0938
1.7776
0.1139
12.742
15.023

0.0213
1.1446
1.8147
0.1361
13.960
2.8359

0.0219
1.0713
2.0565
0.0219
13.840
0.2641

0.0220
1.0692
2.0827
0.1417
13.846
0.0263

0.0220
1.0691
2.0854
0.1417
13.847
0.0026

10−4

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0236
0.9040
3.7526
0.1175
9.8774
31.558

0.0236
0.9039
3.7494
0.1175
9.8789
31.538

0.0237
0.9022
3.7169
0.1173
9.8940
31.333

0.0245
0.8995
3.3481
0.1162
10.067
29.148

0.0297
0.9146
1.9023
0.0297
11.154
19.9816

0.0373
0.9100
1.6453
0.1383
12.972
3.6333

0.0385
0.9353
2.0384
0.1437
13.322
0.3591

0.0386
0.9371
2.0809
0.1442
13.353
0.0359

0.0386
0.9372
2.0852
0.1442
13.356
0.0036

10−3

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0581
0.9978
6.1800
0.1996
4.2682
49.073

0.0581
0.9977
6.1775
0.1996
4.2687
49.059

0.0583
0.9968
6.1525
0.1995
4.2743
48.924

0.0604
0.9723
5.4835
0.1983
4.3567
45.311

0.0756
0.8990
4.1854
0.1929
4.8573
38.438

0.1464
0.3452
0.8470
0.1694
9.3536
17.384

0.1737
0.4391
1.8259
0.1837
11.707
1.7106

0.1763
0.4597
2.0598
0.1855
11.901
0.1699

0.1766
0.4618
2.0831
0.1857
11.919
0.0170

10−2

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0868
1.4304
7.4462
0.2815
0.8702
57.551

0.0759
1.4446
8.2955
0.2616
0.8629
62.8293

0.0871
1.4302
7.4317
0.2814
0.8709
57.469

0.0931
1.4166
6.7808
0.2865
0.8974
53.806

0.1141
1.4087
5.3679
0.2898
0.9301
46.3387

0.2812
1.3140
4.4335
0.2942
1.5236
41.400

1.0709
0.2534
0.4258
0.3578
8.4957
14.869

1.2397
0.1848
1.8922
0.4285
10.199
1.2524

1.2535
0.1923
2.0666
0.4348
10.310
0.1231

10−1

Obj.function
rmse(a)
rmse(b)
Residual
||a||
||b||

0.0586
1.5163
9.9355
0.2328
0.2103
73.594

0.0738
1.5173
9.0484
0.2670
0.1573
68.030

0.0722
1.5159
8.8824
0.2619
0.1788
67.018

0.0719
1.5123
8.8319
0.2467
0.2560
67.370

0.0863
1.5217
7.5404
0.2190
0.1255
60.633

0.3054
1.5044
4.7963
0.3327
0.1879
43.724

1.8226
1.4064
4.0608
0.4810
0.8083
39.062

7.0848
0.5129
0.8014
1.3505
6.7276
8.5725

7.5868
0.4327
1.9854
1.4769
7.3235
0.6492
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Figure 3.7: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 1 with p = 1%

noise and regularization.
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Figure 3.8: The absolute error between the exact and numerical temperatures u(x, t),

for Example 1, with (a) β1 = 10−3, β2 = 10−4, (b) β1 = 10−2, β2 = 10−3, (c) β1 = β2 =

10−2, for p = 1% noise.

3.5.2 Example 2 (for IP1)

In this example, we consider the IP1 given by equations (3.2), (3.3), (3.5) and

(3.6) with unknown coefficients a(t) and b(t) and we solve this inverse problem

with the following input data:

φ(x) = e−x + x2, µ1(t) = et, µ2(t) = (e−1 + 1)et, H0(t) =
(
− e−1 +

4

3

)
et,

H1(t) =
(
− 2e−1 +

5

4

)
et, T = L = 1,
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f(x, t) = (e−x +x2)et−
(∣∣∣t− 1

2

∣∣∣+ 1

2

)
(e−x + 2)et−

∣∣∣t2− 1

2

∣∣∣(−e−x + 2x)et. (3.32)

As for Example 1, the graph of the function U1(t) given by equation (3.7)

is shown in Figure 3.3 and it can be seen that this function never vanishes over

the time interval t ∈ [0, 1]. Hence, condition (3.7) is satisfied and consequently,

according to Theorem 3.2.1, a solution to the IP1 given by equations (3.2), (3.3),

(3.5) and (3.6) with the input data (3.32) is unique. In fact, the exact solution

to the inverse problem is given by

a(t) =
∣∣∣t− 1

2

∣∣∣+
1

2
, b(t) =

∣∣∣t2 − 1

2

∣∣∣, (3.33)

and u(x, t) is given by (3.16).

Considering no noise and no regularization the objective function (3.24) plot-

ted in Figure 3.4 shows a rapid decrease to a low value of O(10−29) in 20 iterations.

However, this convergence is slower than in Example 1 for the first 15 iterations.

This is to be expected because the coefficients (3.15) for Example 1 are smoother

than the coefficients (3.33) for Example 2. In Figure 3.9, we obtain a stable and

accurate recovery of a(t) but less stable for b(t).

When p = 0.01% noise is included in the heat moments data (3.26), regular-

ization is even more needed in order to achieve a stable and accurate solution.

Table 3.3 shows the rmse(a) and rmse(b) for some values of the regularization

parameters β1 and β2. Figure 3.10 shows the plots of the recovered coefficients

a(t) and b(t). From both Table 3.3 and Figure 3.10 it can be seen that the re-

trieval of the thermal conductivity coefficient a(t) is more stable and accurate

than that of the convective coefficient b(t).

Finally, we mention that a comparison between Figures 3.9 and 3.10, and Fig-

ures 22 and 24 of [62], respectively, shows that the IP1 based on measuring the

heat moments (3.5) is less stable than when measuring the heat fluxes (3.4). This

is to be expected since supplying the bounded normal derivatives (3.4) contains

stronger information than prescribing the integral average heat moments (3.5).

In the next two examples we consider solving the IP2 formulated in subsec-

tion 3.2.2.
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Figure 3.9: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 2 with no noise

and no regularization.

Table 3.3: The rmse values for estimated coefficients for Example 2 with and without

noise.

rmse
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 10−6)

rmse(a)
rmse(b)

0.0016
0.0434

0.0830
0.5360

0.0250
0.0677
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Figure 3.10: (a) Coefficient a(t) and (b) Coefficient b(t), for Example 2 with p = 0.01%

noise, with and without regularization.

3.5.3 Example 3 (for IP2)

In this example, we consider the IP2 given by equations (3.2), (3.3), (3.5) and

(3.9) with unknown coefficients a(t) and c(t) and solve this inverse problem with

the following input data:

φ(x) = (−2+x)2, µ1(t) = (−2+t)2 +t, µ2(t) = (−1+t)2 +t, H0(t) = t2−2t+
7

3
,

H1(t) =
1

12

(
6t2 − 10t+ 11

)
, f(x, t) = 1− 2(1 + t) + 2(−2 + x+ t)

−(1 + t)
(
t+ (−2 + x+ t)2

)
, T = L = 1. (3.34)

The graph of the function U2(t) given by equation (3.10) is shown in Fig-

ure 3.11 and it can be seen that this function never vanishes over the time in-

terval t ∈ [0, 1]. Hence, condition (3.10) is satisfied and consequently, according

to Theorem 3.2.2, a solution to the IP2 given by equations (3.2), (3.3), (3.5) and
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(3.9) with input data (3.34) is unique. In fact, this solution is given by

a(t) = 1 + t, c(t) = 1 + t, (3.35)

u(x, t) = (x+ t− 2)2 + t. (3.36)

First, we consider the case that there is no noise in the input data (3.5). The

convergence of the objective function (3.25) that is minimized with and without

regularization is shown in Figure 3.12 and the corresponding numerical recon-

structions of the coefficients a(t) and c(t) are shown in Figure 3.13. We also obtain

the rmse values of rmse(a) ∈ {0.0775, 0.1195} and rmse(c) ∈ {0.1007, 0.1522}
with regularization β1 = 10−7, β2 = 10−9 and without regularization β1 = β2 = 0,

respectively. Unlike the Example 1 for IP1, where no regularization was needed

for exact data, in this Example 3 for IP2 the numerical results shown in Fig-

ure 3.13 and the decrease in the rmse values reported above show that including

a little regularization in (3.25) improves the accuracy and stability of the solution.

It also shows that the IP2 is more ill-posed than the IP1.

To show this ill-posedness more dearly next we perturb the input data (3.5)

by p = 0.01% noise as in equation (3.26). Figures 3.14 and 3.15 for this noisy

data are the analogous of Figures 3.12 and 3.13 for exact data. We also report the

values of rmse(a) ∈ {0.0719, 0.2489} and rmse(c) ∈ {0.1025, 0.3709} with regu-

larization β1 = β2 = 10−7 and without regularization β1 = β2 = 0, respectively.

From these figures and rmse values one can observe that the IP2 is ill-posed and

regularization should be included in order to obtain a stable solution. The results

also show that the IP2 is more ill-posed in the absorption coefficient c(t) than in

the diffusion coefficient a(t).
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Figure 3.11: The graph of the function U2(t), as a function of t, given by (3.10) for

Example 3 ( ) and Example 4 (−−−).
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Figure 3.12: Objective function (3.25), for Example 3 with no noise, and with and

without regularization.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

t

a(
t)

 

 

exact
β

1
=β

2
=0

β
1
=10−7,β

2
=10−9

initial guess

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

t

c(
t)

 

 

exact
β

1
=β

2
=0

β
1
=10−7,β

2
=10−9

initial guess

Figure 3.13: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 3 with no noise,

and with and without regularization.
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Figure 3.14: Objective function (3.25), for Example 3 with p = 0.01% noise, with and

without regularization.
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Figure 3.15: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 3 with p = 0.01%

noise, with and without regularization.

3.5.4 Example 4 (for IP2)

In this example, we consider the IP2 given by equations (3.2), (3.3), (3.5) and

(3.9) with unknown coefficients a(t) and c(t) and we solve this inverse problem
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with the following input data:

φ(x) = (−2+x)2, µ1(t) = (−2+t)2 +t, µ2(t) = (−1+t)2 +t, H0(t) = t2−2t+
7

3
,

H1(t) =
1

12

(
6t2 − 10t+ 11

)
, f(x, t) = 1 + 2(−2 + t+ x)− 2

(∣∣∣t− 1

2

∣∣∣+
1

2

)
−
(
t+ (−2 + x+ t)2

)(∣∣∣t2 − 1

2

∣∣∣+
1

2

)
, T = L = 1. (3.37)

As in Example 3, the function U2(t), given by equation (3.10) and plotted in

Figure 3.11, never vanishes over the time interval t ∈ [0, 1] and consequently, the

IP2 given by equations (3.2), (3.3), (3.5) and (3.9) with data (3.37) has at most

one solution. In fact, this solution is given by

a(t) =
∣∣∣t− 1

2

∣∣∣+
1

2
, c(t) =

∣∣∣t2 − 1

2

∣∣∣+
1

2
, (3.38)

and u(x, t) given by (3.36).

Figures 3.16–3.19 for Example 4 are the analogous of Figures 3.12–3.15 for

Example 3. For exact data, we also obtain rmse(a) ∈ {0.0579, 0.0756} and

rmse(c) ∈ {0.0690, 0.0890} with regurarization β1 = β2 = 10−7 and without

regularization β1 = β2 = 0, respectively.

Similar conclusions to those obtained for Example 3 are also obtained for

Example 4.

0 5 10 15 20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

 

 

β
1
=β

2
=0

β
1
=β

2
=10−7

Figure 3.16: Objective function (3.25), for Example 4 with no noise, and with and

without regularization.
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Figure 3.17: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 4 with no noise,

and with and without regularization.
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Figure 3.18: Objective function (3.25), for Example 4 with p = 0.01% noise, with and

without regularization.
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Figure 3.19: (a) Coefficient a(t) and (b) Coefficient c(t), for Example 4 with p = 0.01%

noise, with and without regularization.

3.6 Conclusions

This chapter has presented the simultaneous determination of time-dependent

thermal conductivity and convection, or absorption coefficients from the mea-

surements of heat moments in the one-dimensional parabolic heat equation. The

resulting inverse problems have been reformulated as constrained regularized min-

imization problems which have been solved using the MATLAB optimization

toolbox routine lsqnonlin. The following conclusions can be made:

• the IP2 seems more ill-posed that the IP1

• the retrieval of the diffusivity a(t) is more stable and accurate than the retrieval

of the lower-order coefficients b(t) or c(t)

• the measurement of the heat moments (3.5) formulates a less stable inverse

problem than the measurement of the heat fluxes (3.4)

The determination of three or more unknown coefficients in equation (3.1)

will be investigated in a future work.



Chapter 4

Time-dependent reaction

coefficient identification problems

with a free boundary

4.1 Introduction

Coefficient identification problems involving an unknown free boundary are some

of the most complicated and practically important problems, [117, 118, 120], and

the Stefan problem is a particular example, [27, 45].

In [9, 68], the authors investigated free boundary problems with nonlinear dif-

fusion. The numerical solution of inverse Stefan problems based on the method

of fundamental solutions has been investigated in [51, 81]. The determination of

time-dependent thermal coefficients was solved using the method of suboptimal

stage-by-stage optimization in [11]. The heat equation with an unknown time-

dependent thermal diffusivity or heat source in a domain with a free boundary

has been investigated in [67] and [96], respectively. Time-dependent thermal con-

ductivity identifications subject to various kind of overdetermination conditions

have been studied in [93].

In recent papers, [61, 69], the authors have investigated the identification of

multiple time-dependent coefficients together with an unknown free boundary.

Continuing these analyses, in this chapter, we investigate the numerical recon-

struction of time-dependent reaction coefficients in the heat equation with a free

boundary subject to initial, Dirichlet and Stefan boundary conditions, as well

as heat moment measurements. It should be noted that the fundamental con-

tribution of this work is the proposal of a regularization algorithm to solve the

identification problem and its numerical realization.

The chapter is structured in the following way. The mathematical formulation
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of the inverse problems are formulated in Section 4.2. The numerical solution for

the direct problem based on the FDM is briefly mentioned in Section 4.3. In

Section 4.4, the numerical approach based on the minimization of the nonlinear

Tikhonov regularization functional is introduced. Numerical results are presented

and discussed in Section 4.5. Finally, conclusions are presented in Section 4.6.

4.2 Mathematical formulation

Consider the one-dimensional time-dependent parabolic heat equation

∂u

∂t
(x, t) = a(x, t)

∂2u

∂x2
(x, t) + b(x, t)

∂u

∂x
(x, t) + (c1(t)x+ c2(t))u(x, t)

+f(x, t), (x, t) ∈ ΩT , (4.1)

for the unknown temperature u(x, t) in the moving domain ΩT = {(x, t)|0 < x <

h(t), 0 < t < T} with unknown free boundary x = h(t) > 0 and time-dependent

coefficients c1(t) and c2(t), subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ h(0) =: h0, (4.2)

where h0 > 0 is given, the Dirichlet boundary conditions

u(0, t) = µ1(t), u(h(t), t) = µ2(t), t ∈ [0, T ], (4.3)

and the over-determination conditions

h
′
(t) + ux(h(t), t) = µ3(t), t ∈ [0, T ], (4.4)∫ h(t)

0

u(x, t)dx = µ4(t), t ∈ [0, T ], (4.5)

∫ h(t)

0

xu(x, t)dx = µ5(t), t ∈ [0, T ], (4.6)

where φ(x) and µi(t) for i = 1, 5 are given functions. We assume that the func-

tions in the above equations are sufficiently regular as required in the sequel and

that the input data (4.2)–(4.6) are compatible.

Equation (4.4) represents a Stefan interface moving boundary condition. Also,

equations (4.5) and (4.6) represent the specification of the energy (or mass) and

heat momentum, respectively. In equation (4.1), the coefficients a and b repre-

senting diffusion and convection/advection are assumed to be known, as is the

heat source f . Finally, remark that the reaction coefficient in (4.1) is linearly
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dependent on the space variable x with two unknown time-dependent coefficients

c1(t) and c2(t). This can also be seen as a particular case of a space and time-

dependent blood perfusion coefficient in bio-heat transfer, [130].

We perform the change of variable y = x/h(t), see [120], to reduce the prob-

lem (4.1)–(4.6) to the following inverse problem for the unknowns h(t), c1(t), c2(t)

and v(y, t) := u(yh(t), t):

∂v

∂t
(y, t) =

a(yh(t), t)

h2(t)

∂2v

∂y2
(y, t) +

b(yh(t), t) + yh
′
(t)

h(t)

∂v

∂y
(y, t)

+(yh(t)c1(t) + c2(t))v(y, t) + f(yh(t), t), (y, t) ∈ QT , (4.7)

in the fixed domain QT := {(x, t)|0 < y < 1, 0 < t < T} = (0, 1)× (0, T ),

v(y, 0) = φ(yh0), y ∈ [0, 1], (4.8)

v(0, t) = µ1(t), v(1, t) = µ2(t), t ∈ [0, T ], (4.9)

h
′
(t) +

1

h(t)
vy(1, t) = µ3(t), t ∈ [0, T ], (4.10)

h(t)

∫ 1

0

v(y, t)dy = µ4(t), t ∈ [0, T ], (4.11)

h2(t)

∫ 1

0

yv(y, t)dy = µ5(t), t ∈ [0, T ]. (4.12)

The sketch of the transformed inverse problem under investigation is shown in

Figure 4.1.

y

t

T

0 1

v(0, t) = µ1(t)

Find v(y, t), h(t), c1(t) and c2(t) satisfying

vt = a(yh(t),t)
h2(t)

vyy + b(yh(t),t)+yh′(t)
h(t)

vy

+(yh(t)c1(t) + c2(t))v + f(yh(t), t),

h′(t) + vy(1,t)

h(t)
= µ3(t)h(t)

∫ 1

0
v(y, t)dy = µ4(t),

h2(t)
∫ 1

0
yv(y, t)dy = µ5(t)

v(y, 0) = φ(yh0)

v(1, t) = µ2(t)

Figure 4.1: Sketch of the transformed inverse problem under investigation.

The uniqueness of a solution of the inverse problem (4.7)–(4.12) was estab-

lished in [120] and reads as follows.
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Theorem 4.2.1. Assume that

0 < a ∈ C2,0([0,∞)× [0, T ]), b, f ∈ C1,0([0,∞)× [0, T ]),

φ(x) ≥ φ0 > 0, x ∈ [0,∞), µi(t) > 0, i = 1, 2, 4, t ∈ [0, T ].

Then, a solution (h, c1, c2, v) ∈ C1[0, T ] × (C[0, T ])2 × C2,1(QT ), h(t) > 0 for

t ∈ [0, T ], of the inverse problem (4.7)–(4.12) is unique.

Remark 1.

(i) The values of c1(0) and c2(0) can be determined using the compatibility of

input data in (4.1)–(4.6), see [57, 120].

(ii) As remarked in [61, 69, 117], the Stefan condition (4.4) can be replaced by

the second-order moment specification∫ h(t)

0

x2u(x, t)dx = µ6(t), t ∈ [0, T ], (4.13)

or, in terms of the variable v, by

h3(t)

∫ 1

0

y2v(y, t)dy = µ6(t), t ∈ [0, T ]. (4.14)

4.3 Solution of direct problem

In this section we consider the direct initial boundary value problem given by

equations (4.7)–(4.9), where h(t), c1(t), c2(t), a(x, t), b(x, t), f(x, t), φ(x), and

µi(t), i = 1, 2, are known and the solution v(y, t) is to be determined together

with the quantities of interest µi(t), i = 3, 6. To achieve this, we use the FDM with

the Crank-Nicolson scheme, [69], based on subdividing the solution domain QT =

(0, 1)× (0, T ) into M and N subintervals of equal step lengths ∆y and ∆t, where

∆y = 1/M and ∆t = T/N, respectively. At the node (i, j) we denote v(yi, tj) =

vi,j, where yi = i∆y, tj = j∆t, a(yi, tj) = ai,j, b(yi, tj) = bi,j, h(tj) = hj, c1(tj) =

c1j, c2(tj) = c2j, and f(yi, tj) = fi,j for i = 0,M and j = 0, N . The expressions

in equations (4.10)–(4.12) and (4.14) are calculated using the following finite

difference approximation formula and trapezoidal rule for integrals:

µ3(tj) =
hj − hj−1

∆t
− 4vM−1,j − vM−2,j − 3vM,j

2(∆y)hj
, j = 1, N, (4.15)
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µk+3(tj) =
hkj
2N

(
yk−1

0 v0,j + yk−1
M vM,j + 2

M−1∑
i=1

yk−1
i vi,j

)
, j = 1, N,

k = 1, 2, 3. (4.16)

4.4 Numerical approach for the inverse problem

In this section, we wish to obtain a simultaneous stable determination of the two

unknown coefficients c1(t) and c2(t), together with the free boundary h(t) and the

transformed temperature v(y, t), satisfing equations (4.7)–(4.12), or (4.7)–(4.9),

(4.11), (4.12) and (4.14). The inverse problem can be formulated as a nonlinear

minimization of the Tikhonov regularization function

F (h, c1, c2) =
N∑
j=1

[hj − hj−1

∆t
+
vy(1, tj)

hj
− µ3(tj)

]2

+
N∑
j=1

[
hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2
j

∫ 1

0

yv(y, tj)dy − µ5(tj)
]2

+β1

N∑
j=1

h2
j + β2

N∑
j=1

c2
1j + β3

N∑
j=1

c2
2j, (4.17)

or,

F (h, c1, c2) =
N∑
j=1

[
hj

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2
j

∫ 1

0

yv(y, tj)dy − µ5(tj)
]2

+
N∑
j=1

[
h3
j

∫ 1

0

y2v(y, tj)dy − µ6(tj)
]2

+β1

N∑
j=1

h2
j + β2

N∑
j=1

c2
1j + β3

N∑
j=1

c2
2j, (4.18)

where v solves (4.7)–(4.9) for given (h, c1, c2). The minimization of the objec-

tive function (4.17), or (4.18), is performed using the MATLAB toolbox routine

lsqnonlin. This routine attempts to find the minimum of a sum of squares by

starting from the initial guesses h(0), c1
(0) and c2

(0) for h, c1 and c2, respectively.

We have compiled this routine with the following specifications:

• Algorithm is the Trust Region Reflective (TRR) minimization, [31].

• Maximum number of iterations, (MaxIter) = 10×(number of variables).

• Maximum number of objective function evaluations, (MaxFunEvals)

= 105×(number of variables).
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• Termination tolerance on the function value, (TolFun) = 10−20.

• Solution tolerance value, (xTol)=10−20.

• The lower and upper simple bounds are 10−10 and 103 for h, and −103 and

103 for c1 and c2.

The inverse problems are solved subject to both exact and noisy input data which

is numerically simulated as follows:

µεkk+2(tj) = µk+2(tj) + εkj, j = 1, N, k = 1, 4, (4.19)

where εkj are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σk given by

σk = p× max
t∈[0,T ]

|µk+2(t)|, k = 1, 4, (4.20)

where p represents the percentage of noise. We use the MATLAB function

normrnd(0, σk, N) to generate the random variables (εkj)j=1,N for k = 1, 4.

4.5 Numerical results and discussion

In this section we investigate a couple of examples in order to assess the accuracy

and stability of the numerical methods introduced in Section 4.3 for the direct

problem based on the FDM with M = N = 40, and in Section 4.4 for the nu-

merical approach to solve the inverse problem based on minimizing the nonlinear

Tikhonov regularization objective functional (4.17) or (4.18). Furthermore, we

add noise to the input data in equations (4.10)–(4.12) and (4.14) to mimic the

real situation of measurement errors, by using equations (4.19) and (4.20). We

compute the root mean squares error given by

rmse(h) =

[
T

N

N∑
j=1

(
hnumerical(tj)− hexact(tj)

)2
]1/2

, (4.21)

and similar expressions exist for c1(t) and c2(t). For simplicity, we take T = 1 in

all examples.
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4.5.1 Example 1

We consider the inverse problem (4.1)–(4.6) with unknown coefficients h(t), c1(t)

and c2(t), and the input data given by

a(x, t) =
1

2
(1 + t) + x, b(x, t) = −1− x− t, φ(x) = 2 + x,

µ1(t) = et(2 + t), µ2(t) = et(3 + 2t), µ3(t) = 1 + et,

µ4(t) =
1

2
et(1 + t)(5 + 3t), µ5(t) =

1

4
(1 + t)2(3 + 6t+ t2), h0 = 1,

f(x, t) = et(2 + t+ x)(3 + t+ x+ tx). (4.22)

One can observe that the conditions of Theorem 4.2.1 are satisfied and hence, the

uniqueness of solution is guaranteed. The analytical solution is given by

h(t) = 1 + t, c1(t) = −1− t, c2(t) = −1− t, (4.23)

u(x, t) = et(2 + t+ x). (4.24)

Also, the analytical solution for the transformed temperature v(y, t) satisfying

(4.7)–(4.12) is given by

v(y, t) = et
(

2 + t+ y(1 + t)
)
. (4.25)

The initial guesses for the vectors h, c1 and c2 are taken as

h0(tj) = h(0) = h0 = 1, c0
1(tj) = c1(0) = −1, c0

2(tj) = c2(0) = −1,

j = 1, N, (4.26)

where the values of c1(0) and c2(0) have been obtained exactly using the compat-

ibility of (4.1)–(4.6).

We consider first the case when there is no noise in the input data µ3, µ4 and

µ5, i.e. p = 0 in (4.20). The objective function (4.17), as a function of a number

of iterations, is plotted in Figure 4.2, with and without regularization. From this

figure, it can be seen that a rapid monotonic decreasing convergence is achieved

in a few iterations.
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Figure 4.2: The objective function (4.17), as a function of a number of iterations, no

noise, with and without regularization, for Example 1.

The rmse values for the unknowns coefficients h(t), c1(t) and c2(t), obtained

with and without regularization are presented, versus the number of iterations,

in Figure 4.3. The corresponding numerical solutions obtained after 20 iterations

(in 38 minutes computational time) are illustrated in Figure 4.4 (for h(t), c1(t)

and c2(t)) and Figure 4.5 (for v(y, t)).

First, from Figure 4.3 it can be observed that rmse(h) values are much lower

than the rmse(ci), i = 1, 2, indicating that the free boundary h(t) is retrieved

more accurately than the coefficients c1 and c2. Second, from Figure 4.3 it can

be observed that in the case of no regularization the rmse values settle to sta-

tionary levels after 6 to 8 iterations. However, the numerical results presented

in Figure 4.4 show that whilst the retrieval of h(t), see Figure 4.4(a), is very

accurate, instabilities manifest in the unregularized solutions for the coefficients

c1(t) and c2(t), see Figures 4.4(b) and 4.4(c), respectively. Note that although

there is no random noise numerically simulated through (4.19), there still exists

some small numerical noise caused by the discrepancy between the FDM direct

problem numerical solution with a fixed mesh size and the exact values of the

data (4.22). Thus the instabilities for the unregularized solution illustrated in

Figures 4.4(b) and 4.4(c) show that the inverse coefficient identification problem

is ill-posed in the coefficients c1(t) and c2(t). These will be even more amplified

when later on we will include noise in the data (4.19). Including a small regular-

ization in (4.17) alleviates this instability, as shown in the regularized numerical

results in Figures 4.3 and 4.4. The choice of β1 = 0, β2 = β3 = 10−8 is of course

not optimal and in fact these regularization parameters may still be too small,

see for example, the occurence of minima in the rmse values after a certain num-

ber of iterations. But overall, corroborated with the more stable results achieved

in Figures 4.4(b) and 4.4(c), it shows that regularization is required in order to
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obtain stable solutions for the coefficients c1(t) and c2(t). Finally, by inspecting

Figures 4.4(a) and 4.5 it can be seen that the inverse problem seems stable in

the components h(t) and v(y, t) of the solution for which regularization is not

necessary. Based on this argument we shall take β1 = 0, i.e. we do not penalise

h in (4.17) (or (4.18)), in the remaining of the chapter.
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Figure 4.3: The rmse: (a) rmse(h), (b) rmse(c1) and (c) rmse(c2), as functions of

the number of iterations, no noise, with and without regularization, for Example 1.
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Figure 4.4: The exact (4.23) and numerical solutions for: (a) h(t), (b) c1(t) and (c)

c2(t), no noise, with and without regularization, for Example 1.
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Figure 4.5: The exact (4.25) and numerical solutions for the transformed temperature

v(y, t), for Example 1, no noise, with (a) βi = 0, i = 1, 2, 3 and (b) β1 = 0, βi = 10−8, i =

2, 3. The absolute error between them is also included.

Next, we add a small amount of p = 0.01% noise to the data µ3(t), µ4(t)

and µ5(t), as in (4.19), in order to model the errors which are inherently present

in any practical measurement and moreover, to investigate the stability of the

numerical results. We have also experimented with higher amounts of noise p in

equation (4.20), but the results obtained were less accurate and therefore they are

not presented. From the previous analysis, we anticipate that the regularization

is needed in order to achieve stable and accurate results because the problem is

ill-posed and very sensitive to noise. The decreasing convergence of the objective

function (4.17), as a function of the number of iterations, is shown in Figure 4.6

with and without regularization. Notice that the total amount of noise included

in the input data when p = 0.01% is 0.0220.



Chapter 4. Time-dependent reaction coefficient identification
problems with a free boundary 80

0 5 10 15 20 25 30
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

 

 

β
i
=0, i=1,2,3

β
1
=0, β

i
=10−4, i=2,3

Figure 4.6: The objective function (4.17), as a function of a number of iterations,

p = 0.01% noise, with and without regularization, for Example 1.

As previously argued, since there is no need to regularize the free boundary

h(t) we fix β1 = 0. Also, taking β2 = β3, as positive regularization parameters

in (4.17), the L-curve, [47, 48], for the choice of the regularization parameter is

shown in Figure 4.7, by plotting the solution norm
√
||h||2+||c1||2+||c2||2, as a

function of the residual norm given by square root of the sum of first three terms

in the right-hand side of (4.17). From this figure, it can be seen that regularization

parameters near the ”corner” of the L-curve are β2 = β3 ∈ {10−6, 10−5, 10−4}.
The exact and numerical solutions for the free boundary h(t), and the co-

efficients c1(t) and c2(t), with and without regularization are shown in Figure

4.8. From this figure, it can be noticed that the accurate and stable results are

achieved for the free boundary h(t) both with and without regularisation, but

unstable results are obtained for the coefficients c1(t) and c2(t), if no regular-

ization is imposed with rmse(c1) = 0.5645 and rmse(c2) = 0.5949. In order to

stabilise the coefficients c1(t) and c2(t), we employed regularization with β1 = 0,

β2 = β3 = 10−4 (given by the L-curve in Figure 4.7), obtaining rmse(c1) = 0.1089

and rmse(c2) = 0.1040. Finally, the numerical solutions for v(y, t) were obtained

stable and accurate and, for brevity, they are not presented.
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Figure 4.7: The residual norm versus the solution norm for various regularization

parameters β2 = β3 ∈ {10−i|i = 1, 7}, for Example 1 with p = 0.01% noise.
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Figure 4.8: The exact (4.23) and numerical solutions for: (a) h(t), (b) c1(t) and (c)

c2(t), p = 0.01% noise, with and without regularization, for Example 1.
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Figure 4.9: The exact (4.25) and numerical solutions for the transformed temperature

v(y, t), for Example 1, p = 0.01% noise, with (a) βi = 0, i = 1, 2, 3 and (b) β1 = 0, βi =

10−4, i = 2, 3. The absolute error between them is also included.

4.5.2 Example 2

In this example we consider the second inverse problem given by equations (4.1)–

(4.3), (4.5), (4.6) and (4.13), with the same input data (4.22) as in Example 1,

except that the data µ3(t) given by equation (4.4) is replaced by the second-order

heat moment µ6(t) given by equation (4.14) as

µ6(t) =
1

12
et(t+ 1)3(7t+ 11), t ∈ [0, 1]. (4.27)

Also, the initial guesses for the vectors h, c1 and c2 are given by equation (4.26),

the same as in Example 1.

Figures 4.10–4.17 for Example 2 are the corresponding analogues of Fig-

ures 4.2–4.9 for Example 1 and, in order to avoid repetition, we shall discuss

below only the main similarities and differences between the two examples.
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Figure 4.10: The objective function (4.18), as a function of a number of iterations, no

noise, with and without regularization, for Example 2.

Whilst all the results of Examples 1 and 2 are consistent in terms of the nu-

merical regularization method employed being accurate and stable, overall one

can see that the second inverse problem (Example 2) is more ill-posed than the

first inverse problem (Example 1). This can be seen by:

(i) the larger number of iterations required to achieve convergence in the case of

no noise (compare Figures 4.2 and 4.10);

(ii) the more enhanced non-monotonic behaviour of the rmse curves (compare

Figures 4.3 and 4.11);

(iii) the higher and larger oscillations manifested in retrieving the coefficients

c1(t) and c2(t) in case of no regularization (compare Figures 4.4, 4.8 and 4.12,

4.16);

(iv) the larger rmse values, as illustrated by the comparison shown in Table 4.1.

Table 4.1: The rmse values for Examples 1 and 2.

Example 1 rmse(h) rmse(c1) rmse(c2)
p = 0, β1 = β2 = 0 2.5E-4 0.1534 0.0788

p = 0, β1 = β2 = 10−8 1.3E-4 0.0452 0.0222
p = 0.01%, β1 = β2 = 0 6.1E-4 0.5645 0.5949

p = 0.01%, β1 = β2 = 10−4 4.7E-4 0.1089 0.1040
Example 2 rmse(h) rmse(c1) rmse(c2)

p = 0, β1 = β2 = 0 6.8E-4 0.4892 0.4480
p = 0, β1 = β2 = 10−8 6.8E-4 0.1968 0.0504
p = 0.01%, β1 = β2 = 0 3.3E-3 6.6965 3.7308

p = 0.01%, β1 = β2 = 10−4 2.2E-3 0.3587 0.2376
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Figure 4.11: The rmse: (a) rmse(h), (b) rmse(c1) and (c) rmse(c2), as functions of

the number of iterations, no noise, with and without regularization, for Example 2.
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Figure 4.12: The exact (4.23) and numerical solutions for: (a) h(t), (b) c1(t) and (c)

c2(t), no noise, with and without regularization, for Example 2.
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Figure 4.13: The exact (4.25) and numerical solutions for the transformed temperature

v(y, t), for Example 2, no noise, with (a) βi = 0, i = 1, 2, 3 and (b) β1 = 0, βi = 10−8, i =

2, 3. The absolute error between them is also included.
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Figure 4.14: The objective function (4.18), as a function of a number of iterations,

p = 0.01% noise, with and without regularization, for Example 2. Notice that the total

amount of noise included in the input data when p = 0.01% is 0.0349.
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Figure 4.15: The residual norm (given by the square root of the first three terms in the

right-hand side of (4.18)) versus the solution norm for various regularization parameters

β2 = β3 ∈ {10−i|i = 1, 7}, for Example 2 with p = 0.01% noise.
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Figure 4.16: The exact (4.23) and numerical solutions for: (a) h(t), (b) c1(t) and (c)

c2(t), p = 0.01% noise, with and without regularization, for Example 2.
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Figure 4.17: The exact and numerical solutions for the transformed temperature

v(y, t), for Example 2, p = 0.01% noise, with (a) βi = 0, i = 1, 2, 3 and (b)

β1 = 0, βi = 10−4, i = 2, 3. The absolute error between them is also included.

4.6 Conclusions

In this chapter, inverse nonlinear problems consisting of simultaneously identify-

ing time-dependent reaction coefficients in the heat equation with a free boundary

have been investigated. The direct solver based on the FDM with the Crank-

Nicolson scheme has been employed. The inverse problem was solved using the

MATLAB optimisation toolbox routine lsqnonlin for minimizing the nonlinear

Tikhonov regularization functional. The accuracy and stability of the numerical

results for the two inverse problems, for Examples 1 and 2, have been assessed.

Based on the numerical results and discussion we can conclude that the Stefan

condition (4.4) contains more information than the second-order heat moment

condition (4.13). Although not illustrated, it is reported that similar conclusions

have been obtained for many other numerical tests that we have investigated in-



Chapter 4. Time-dependent reaction coefficient identification
problems with a free boundary 91

cluding the recovery of non-smooth reaction coefficients. Extension to the case

when both ends of the finite slab are moving, [119, 121], will be addressed in the

next chapter.



Chapter 5

Determination of time-dependent

coefficients and multiple free

boundaries

5.1 Introduction

Free boundary problems involving Stefan condition have been considered to be

one of the most important directions in the analysis of PDEs, with an abundance

of applications to real world problems, including physics, chemistry, biology, [42],

engineering, industry and other areas, [9, 26, 43]. For instance, during heat diffu-

sion in melting ice, the boundary of the ice keeps on shifting, [69], and the latent

heat is absorbed or released by the thermodynamic system without a change in

temperature, [25]. In [24], the authors have discussed free boundary problems

arising in two new scenarios, nonlocal diffusion and aggregation processes. The

challenge of free boundary problems lies in the fact that the solution domain is

unknown and has to be determined.

Determination of time-dependent coefficients problems involving free bound-

aries have been the point of interest of some recent works by Snitko [117, 118, 120].

In addition, in [96], the author investigated the parabolic heat equation with an

unknown heat source and with a known moving boundary.

Inverse coefficient determination problems with one or several unknown coef-

ficients play a substantial role in the theory and application of inverse problems.

Using a simple change of variables, free boundary problems can be reduced to

inverse coefficient problems in a fixed domain.

In recent papers, [57, 69] and the previous chapter the authors have inves-

tigated the determination of multiple time-dependent coefficients together with

an unknown one side free boundary of the finite slab 0 < x < h(t). In this
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chapter, we extend these analyses and investigate the determination of time-

dependent coefficients together with two unknown free boundaries of the finite

slab h1(t) < x < h2(t). The inverse problems investigated in this chapter have

already been proved to be locally uniquely solvable by Snitko [119, 121], but no

reconstruction has been attempted, and it is the aim of this chapter to undertake

the numerical solution of these problems.

The organization of the chapter is as follows. The mathematical statements

of the inverse problems are described in Section 5.2. In Section 5.3, the solution

of the direct problem based on the FDM with the Crank-Nicolson scheme is pre-

sented. Since the inverse problem is ill-posed (in the sense that the continuous

dependence upon the input data is violated), the numerical method based on

the FDM direct solver is combined with the Tikhonov regularization method, as

described in Section 5.4. In Section 5.5, numerical results for a couple examples

are presented and discussed. Finally, conclusions are highlighted in Section 5.6.

5.2 Statements of the inverse problem

In the moving domain ΩT = {(x, t)| h1(t) < x < h2(t), 0 < t < T}, see Fig-

ure 5.1, where h1(t) < h2(t) are unknown free boundaries, with unknown temper-

ature u(x, t) and unknown time-dependent coefficients b1(t) and b2(t), we consider

solving the one-dimensional time-dependent parabolic equation given by

x

t

T

0 h1(0) h2(0)

liquid solid liquid

−→h1(t)
(unknown)

←−h2(t)
(unknown)

Figure 5.1: Sketch of the three-phase Stefan problem, with two unknown moving
boundaries h1(t) and h2(t).

∂u

∂t
(x, t) = a(x, t)

∂2u

∂x2
(x, t) + (b1(t)x+ b2(t))

∂u

∂x
(x, t) + c(x, t)u(x, t)

+f(x, t), (x, t) ∈ ΩT , (5.1)
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where a > 0 is the given thermal diffusivity, f is a given heat source and c is a

given reaction rate, subject to the initial condition

u(x, 0) = ϕ(x), x ∈ [h1(0), h2(0)], (5.2)

where h1(0) = h01 and h2(0) = h02 are given numbers satisfying h01 < h02, the

Dirichlet boundary conditions

u(h1(t), t) = µ1(t), u(h2(t), t) = µ2(t), t ∈ [0, T ], (5.3)

and the over-determination conditions

h
′

1(t)− ux(h1(t), t) = µ̃3(t), t ∈ [0, T ], (5.4)

h
′

2(t) + ux(h2(t), t) = µ3(t), t ∈ [0, T ], (5.5)∫ h2(t)

h1(t)

u(x, t)dx = µ4(t), t ∈ [0, T ], (5.6)

∫ h2(t)

h1(t)

xu(x, t)dx = µ5(t), t ∈ [0, T ], (5.7)

where ϕ(x), µ̃3(t), µi(t) for i = 1, 5 are given functions satisfying compatibility

conditions.

Note that the equations (5.4) and (5.5) represent Stefan conditions of melting

between a solid and liquid. Also, equations (5.6) and (5.7) represents the mass

(energy) and the first-order heat moment, respectively. The term b1(t)x + b2(t)

in (5.1) represents a convective fluid velocity which is linear in x with unknown

time-dependent coefficients b1(t) and b2(t).

Introducing the new variable y = x−h1(t)
h2(t)−h1(t)

, we recast the problem (5.1)–

(5.7) into the following inverse problem for the unknowns (h1(t), h3(t), b1(t),

b2(t), v(y, t)), where h3(t) := h2(t) − h1(t) and v(y, t) := u(yh3(t) + h1(t), t), see

[119],

∂v

∂t
(y, t) =

a(yh3(t) + h1(t), t)

h2
3(t)

∂2v

∂y2
(y, t)

+
(b1(t)(yh3(t) + h1(t)) + b2(t)

h3(t)
+
h′1(t) + yh′3(t)

h3(t)

)∂v
∂y

(y, t)

+c(yh3(t) + h1(t), t)v(y, t) + f(yh3(t) + h1(t), t), (y, t) ∈ QT , (5.8)

in the fixed domain QT := {(x, t)| 0 < y < 1, 0 < t < T} = (0, 1)× (0, T ),

v(y, 0) = ϕ(yh3(0) + h1(0)), y ∈ [0, 1], (5.9)
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v(0, t) = µ1(t), v(1, t) = µ2(t), t ∈ [0, T ], (5.10)

h
′

1(t)− vy(0, t)

h3(t)
= µ̃3(t), t ∈ [0, T ], (5.11)

h
′

3(t) +
vy(0, t) + vy(1, t)

h3(t)
+ µ̃3(t) = µ3(t), t ∈ [0, T ], (5.12)

h3(t)

∫ 1

0

v(y, t)dy = µ4(t), t ∈ [0, T ], (5.13)

h2
3(t)

∫ 1

0

yv(y, t)dy + h1(t)µ4(t) = µ5(t), t ∈ [0, T ]. (5.14)

The sketch of the transformed inverse problem under investigation is shown in

Figure 5.2.

y

t

T

0 1

v(0, t) = µ1(t)

Find v(y, t), h1(t), h3(t), b1(t) and b2(t)

satisfying vt = a(yh3(t)+h1(t),t)

h23(t)
vyy

+
(
b1(t)(yh3(t)+h1(t))+b2(t)+h′1(t)+yh′3(t)

h3(t)

)
vy

+c(yh3(t) + h1(t), t)v + f(yh3(t) + h1(t), t),

h3(t)
∫ 1

0
v(y, t)dy = µ4(t),

h2
3(t)

∫ 1

0
yv(y, t)dy + h1(t)µ4(t) = µ5(t)

v(y, 0) = φ(yh3(0) + h1(0))

v(1, t) = µ2(t)

Figure 5.2: Sketch of the transformed inverse problem under investigation.

Definition 1. As a solution to the inverse problem (5.8)–(5.14), we consider

the quintet (h1(t), h3(t), b1(t), b2(t), v(y, t)) ∈ (C1[0, T ])2 × (C[0, T ])2 ×C2,1(QT ),

h3(t) > 0 for t ∈ [0, T ], that satisfies equations (5.8)–(5.14).

The local existence and uniqueness of the solution of problem (5.8)–(5.14)

were established in [119] and read as follows.

Theorem 5.2.1. (Local existence of the solution) Assume that the following
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conditions hold:

(A1) a ∈ C1,0(R× [0, T ]), c, f ∈ Cα,0(R× [0, T ]) for some α ∈ (0, 1),

ϕ ∈ C2[h01, h02], µi ∈ C1[0, T ], i = 1, 2, 4, 5, µ̃3, µ3 ∈ C[0, T ];

(A2) 0 < a0 ≤ a(x, t) ≤ a1, c(x, t) ≤ 0 and f(x, t) ≥ 0

for (x, t) ∈ R× [0, T ], ϕ(x) ≥ ϕ0 > 0 for x ∈ [h01,∞),

ϕ′(x) > 0 for x ∈ [h01, h02], ϕ′(x)− ϕ′(h02 + h01 − x) > 0 and

(h02 − x)ϕ′(h02 + h01 − x)− (x− h01)ϕ′(x) > 0 for x ∈
[
h01,

h01 + h02

2

)
,

µi(t) > 0, i = 1, 2, 4, for t ∈ [0, T ].

(A3) Compatibility conditions of the zero and first orders.

Then, it is possible to indicate a time T0 ∈ (0, T ], determined by the input data,

such that there exists a (local) solution to problem (5.8)–(5.14) for (y, t) ∈ QT0 .

Theorem 5.2.2. (Local uniqueness of the solution) Assume that the following

conditions are satisfied:

a ∈ C2,0(R× [0, T ]), ϕ ∈ C1[h01, h02], c, f ∈ C1,0(R× [0, T ]),

a(x, t) > 0 for (x, t) ∈ R× [0, T ], ϕ(x) ≥ ϕ0 > 0 for x ∈ [h01,∞),

ϕ′(x)− ϕ′(h02 + h01 − x) > 0 and (h02 − x)ϕ′(h02 + h01 − x)− (x− h01)ϕ′(x) > 0

for x ∈
[
h01,

h01 + h02

2

)
, µi(t) > 0, i = 1, 2, 4, for t ∈ [0, T ].

Then, it is possible to indicate a time T1 ∈ (0, T ], determined by the input data,

such that problem (5.8)–(5.14) cannot have two different solutions for (y, t) ∈ QT1 .

5.2.1 Related inverse problem statement

A related inverse problem has been considered in [121], where the Stefan con-

ditions (5.4) and (5.5) (or (5.11) and (5.12)), were replaced by the second and

third-order heat moment measurement∫ h2(t)

h1(t)

xi−4u(x, t)dx = µi(t), i = 6, 7, t ∈ [0, T ], (5.15)

or, in terms of change of variable y = x−h1(t)
h2(t)−h1(t)

,

h3
3(t)

∫ 1

0

y2v(y, t)dy + 2h1(t)µ5(t)− h2
1(t)µ4(t) = µ6(t), t ∈ [0, T ], (5.16)
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h4
3(t)

∫ 1

0

y3v(y, t)dy + 3h1(t)µ6(t)− 3h2
1(t)µ5(t) + h3

1(t)µ4(t) = µ7(t),

t ∈ [0, T ]. (5.17)

The local existence and uniqueness to the inverse problem (5.8)–(5.10), (5.13),

(5.14), (5.16) and (5.17), were established in [121] and read as follows.

Theorem 5.2.3. (Local existence of the solution) Assume that conditions (A2)

and (A3) of Theorem 5.2.1 are satisfied and that (A4) a, c, f ∈ C1,0(R×[0, T ]), ϕ ∈
C2[h01, h02], µi ∈ C1[0, T ], i = 1, 2, 4, 5, 6, 7. Then, there is a time T2 ∈ (0, T ], de-

termined by the input data, such that there exists a (local) solution to problem

(5.8)–(5.10), (5.13), (5.14), (5.16) and (5.17) for (y, t) ∈ QT2.

Theorem 5.2.4. (Local uniqueness of the solution) Assume that the conditions

of Theorem 5.2.2 are satisfied. Then, there is a time T3 ∈ (0, T ], determined by

the input data, such that problem (5.8)–(5.10), (5.13), (5.14), (5.16) and (5.17)

cannot have two different solutions for (y, t) ∈ QT3 .

5.3 Numerical solution of direct problem

Consider the direct initial boundary value problem given by equations (5.8)–

(5.10), where h1(t), h2(t), b1(t), b2(t), a(x, t), c(x, t), f(x, t), ϕ(x), µ1(t) and µ2(t)

are known and the solution v(y, t) is to be determined together with the quantities

of interest µ̃3(t), µi(t), i = 3, 7. To achieve this, we use the FDM with the Crank-

Nicolson scheme, [123], based on subdividing the solution QT = (0, 1) × (0, T )

into M and N subintervals of equal lengths ∆y and ∆t, where ∆y = 1/M and

∆t = T/N, respectively. At the node (i, j) we denote v(yi, tj) = vi,j, where

yi = i∆y, tj = j∆t, a(yi, tj) = ai,j, c(yi, tj) = ci,j, h1(tj) = h1j , h3(tj) = h2(tj)−
h1(tj) = h3j , b1(tj) = b1j , b2(tj) = b2j , and f(yi, tj) = fi,j for i = 0,M and

j = 0, N . Based on the FDM, equation (5.8) can be approximated as:

−Ai,j+1vi−1,j+1 + (1 +Bi,j+1)vi,j+1 − Ci,j+1vi+1,j+1

= Ai,jvi−1,j + (1−Bi,j)vi,j + Ci,jvi+1,j +
∆t

2
(fi,j + fi,j+1),

for i = 1, (M − 1), j = 0, (N − 1), (5.18)
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where

Ai,j =
(∆t)ζi,j
2(∆y)2

− (∆t)ηi,j
4(∆y)

, Bi,j =
(∆t)ζi,j
(∆y)2

− (∆t)ci,j
2

,

Ci,j =
(∆t)ζi,j
2(∆y)2

+
(∆t)ηi,j
4(∆y)

, ζi,j =
ai,j
h2

3j

,

ηi,j =
b1j(yih3j + h1j) + b2j + h′1j + yih

′
3j

h3j

. (5.19)

The initial and boundary conditions in equations (5.9) and (5.10) are dis-

cretized as

vi,0 = ϕ(yih03 + h01), i = 0,M, (5.20)

where h03 = h3(0),

v0,j = µ1(tj), vM,j = µ2(tj), j = 0, N. (5.21)

At each time step tj+1, for j = 0, (N − 1), using the Dirichlet boundary conditions

(5.21), the difference equation (5.18) can be reformulated as a (M − 1)× (M − 1)

system of linear equations of the form,

Gvj+1 = Hvj + r, (5.22)

where vj+1 = (v1,j+1, v2,j+1, ..., vM−2,j+1, vM−1,j+1)T,

G =



1 +B1,j+1 −C1,j+1 ... 0 0

−A2,j+1 1 +B2,j+1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 +BM−2,j+1 −CM−2,j+1

0 0 ... −AM−1,j+1 1 +BM−1,j+1


,

H =



1−B1,j C1,j ... 0 0

A2,j 1−B2,j ... 0 0
...

...
. . .

...
...

0 0 ... 1−BM−2,j CM−2,j

0 0 ... AM−1,j 1−BM−1,j


,
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r =



A1,jµ1(tj) + A1,j+1µ1(tj+1) + ∆t
2

(f1,j + f1,j+1)
∆t
2

(f2,j + f2,j+1)
...

∆t
2

(fM−2,j + fM−2,j+1)

CM−1,jµ2(tj) + CM−1,j+1µ2(tj+1) + ∆t
2

(fM−1,j + fM−1,j+1)


.

The expressions (5.11)–(5.14), (5.16) and (5.17) can be approximated using

the following finite difference approximation formulae and trapezoidal rule for

integrals:

µ̃3(tj) =
h1j − h1j−1

∆t
− 4v1,j − v2,j − 3v0,j

2(∆y)h3j

, j = 1, N, (5.23)

µ3(tj) =
h3j − h3j−1

∆t
+
(4v1,j − v2,j − 3v0,j

2(∆y)h3j

− 4vM−1,j − vM−2,j − 3vM,j

2(∆y)h3j

)
+µ̃3(tj), j = 1, N, (5.24)

µk+3(tj) =
hk3j
2N

(
yk−1

0 v0,j + yk−1
M vM,j + 2

M−1∑
i=1

yk−1
i vi,j

)
, j = 1, N,

k = 1, 4. (5.25)

5.4 Numerical solution of inverse problem

For the inverse problems described in Section 5.2, our aim is to obtain simul-

taneously stable reconstructions of the two unknown coefficients b1(t) and b2(t),

together with the moving boundaries h1(t) and h3(t), and the transformed temper-

ature v(y, t), satisfying the equations (5.8)–(5.14) or, (5.8)–(5.10), (5.13), (5.14),
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(5.16) and (5.17), by minimizing the nonlinear Tikhonov regularization function

F (h1,h3,b1,b2) =
N∑
j=1

[
h′1j −

vy(0, tj)

h3j

− µ̃3(tj)
]2

+
N∑
j=1

[
h′3j +

vy(0, tj) + vy(1, tj)

h3j

+ µ̃3(tj)− µ3(tj)
]2

+
N∑
j=1

[
h3j

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2

3j

∫ 1

0

yv(y, tj)dy + h1(tj)µ4(tj)− µ5(tj)
]2

+β1

N∑
j=1

h2
1j

+ β2

N∑
j=1

h2
3j

+ β3

N∑
j=1

b2
1j

+ β4

N∑
j=1

b2
2j
, (5.26)

or,

F1(h1,h3,b1,b2) =
N∑
j=1

[
h3j

∫ 1

0

v(y, tj)dy − µ4(tj)
]2

+
N∑
j=1

[
h2

3j

∫ 1

0

yv(y, tj)dy + h1(tj)µ4(tj)− µ5(tj)
]2

+
N∑
j=1

[
h3

3j

∫ 1

0

y2v(y, tj)dy + 2h1(tj)µ5(tj)− h2
1(tj)µ4(tj)− µ6(tj)

]2

+
N∑
j=1

[
h4

3j

∫ 1

0

y3v(y, tj)dy + 3h1(tj)µ6(tj)− 3h2
1(tj)µ5(tj) + h3

1(tj)µ4(tj)

−µ7(tj)
]2

+ β1

N∑
j=1

h2
1j

+ β2

N∑
j=1

h2
3j

+ β3

N∑
j=1

b2
1j

+ β4

N∑
j=1

b2
2j
, (5.27)

respectively, where v solves (5.8)–(5.10) for given (h1,h3,b1,b2), and βi ≥ 0 for

i = 1, 4 are regularization parameters to be prescribed. The minimization of F ,

or F1, is performed using the MATLAB toolbox routine lsqnonlin, which does

not require the user to supply the gradient of the objective function, [99]. This

routine attempts to find the minimum of a sum of squares by starting from an

arbitrary initial guesses, subject to the physical constraint h3(t) > 0. Thus, we

take the lower and upper simple bounds for h3(t) to be 10−8 and 103, respectively,

and the lower and upper bounds for the quantities h1(t), b1(t) and b2(t) to be −103

and 103, respectively. Furthermore, within lsqnonlin, we use the TRR algorithm

[31], which is based on the interior-reflective Newton method. We also take the
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parameters of the routine as follows:

• Maximum number of iterations, (MaxIter)= 10×(number of variables).

• Maximum number of objective function evaluations, (MaxFunEvals)

= 105×(number of variables).

• Termination tolerance on the function value, (TolFun)= 10−20.

• Solution tolerance, (XTol) = 10−20.

In the expressions (5.19) and (5.26), we approximate the derivatives of h1(t) and

h3(t) as

h′1j := h
′

1(tj) ≈
h1(tj)− h1(tj−1)

∆t
=
h1j − h1j−1

∆t
, j = 1, N, (5.28)

h′3j := h
′

3(tj) ≈
h3(tj)− h3(tj−1)

∆t
=
h3j − h3j−1

∆t
, j = 1, N. (5.29)

The measured data are (5.4)–(5.7) and (5.15). In order to model the errors in

this data, we replace µ̃3(tj) and µk+2(tj), k = 1, 5, in equations (5.11)–(5.14) or,

(5.16) and (5.17) by µ̃3
ε and µεkk+2(tj), respectively, as

µ̃3
ε(tj) = µ̃3(tj) + εj, µεkk+2(tj) = µk+2(tj) + εkj, k = 1, 5, j = 1, N, (5.30)

where εj, εkj are random variables generated from a Gaussian normal distribution

with mean zero and standard deviations σ, σk given by

σ = p× max
t∈[0,T ]

|µ̃3(t)|, σk = p× max
t∈[0,T ]

|µk+2(t)|, k = 1, 5, (5.31)

where p represents the percentage of noise.

5.5 Numerical results and discussion

In this section, we present a couple of benchmark numerical test examples to illus-

trate the accuracy and stability of the numerical methods based on the FDM with

Crank-Nicolson scheme described in Section 5.3 combined with the minimization

of the objective function F, or F1 described in Section 5.4. Furthermore, we add

noise to the input measurement data (5.11)–(5.14), (5.16) and (5.17) to simu-

late the real situation of measurement noisy data, by using equations (5.30) and
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(5.31). To quantify the accuracy of the approximate solution, we employ the root

mean squares error (rmse) defined by

rmse(h1) =

[
T

N

N∑
j=1

(
hNumerical1 (tj)− hExact1 (tj)

)2
]1/2

, (5.32)

and similar expressions exist for h3(t), b1(t) and b2(t). For simplicity, we take

T = 1 in all examples.

5.5.1 Example 1 (for inverse problem I)

We consider the first inverse problem given by (5.1)–(5.7) with unknown coeffi-

cients h1(t), h2(t), b1(t) and b2(t), and solve this with the following input data:

a(x, t) =
1

100
(1 + t) + x, c(x, t) = −1− x− t,

ϕ(x) = π + tan−1(x), µ1(t) = (1 + t)
(
π + tan−1

(5 + t

10

))
,

µ2(t) = (1 + t)
(
π + tan−1

(15 + 2t

10

))
,

f(x, t) = π +
(1 + t)x(1 + t+ 100x)

50 (1 + x2)2 − t(1 + t)(1 + x)

1 + x2

+ tan−1(x) + (1 + t)(1 + t+ x)(π + tan−1(x)), (5.33)

µ̃3(t) =
1

10
− 1 + t

1 +
(

1
2

+ t
10

)2 , µ3(t) =
1

5
+

1 + t

1 +
(

3
2

+ t
5

)2 , (5.34)

µ4(t) =
1

10
(1 + t)

[
10π + πt+ (15 + 2t) tan−1

(15 + 2t

10

)
−(5 + t) tan−1

(5 + t

10

)
+ 5 ln

( 125 + t(10 + t)

325 + 4t(15 + t)

)]
, (5.35)

µ5(t) =
1

200
(1 + t)

[
(10 + t)

(
− 10 + π(20 + 3t)

)
+
(

325 + 4t(15 + t)
)

tan−1
(15 + 2t

10

)
−
(

125 + t(10 + t)
)

tan−1
(5 + t

10

)]
. (5.36)

Remark that conditions of Theorems 5.2.1 and 5.2.2 are satisfied and therefore,

the local existence and uniqueness of the solution are guaranteed. In fact, one

can easily check that the analytical solution of the transformed inverse problem
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(5.8)–(5.14) is given by

v(y, t) = u(yh3(t) +h1(t), t) = (1 + t)
(
π+ tan−1

( 1

10
(5 + t+ 10y+ ty)

))
, (5.37)

h1(t) =
1

2
+

t

10
, h2(t) =

3

2
+
t

5
, b1(t) = t, b2(t) = t. (5.38)

Also,

u(x, t) = (1 + t)
(
π + tan−1(x)

)
. (5.39)

In the direct problem given by (5.8)–(5.10) and (5.38), the numerical results

for the interior transformed temperature v(y, t) have been obtained in excellent

agreement with the analytical solution (5.37) and therefore, they are not pre-

sented. Apart from the interior transformed temperature v(y, t), other outputs of

interest are the overdetermination data (5.4)–(5.7), which analytically are given

by (5.34)–(5.36). Table 5.1 shows that the analytical and numerical solutions for

these quantities obtained with various mesh sizes M = N ∈ {10, 20, 40} are in

very good agreement.
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Table 5.1: The analytical and numerical solutions for µ̃3(t), µk(t), k = 3, 7, with
M = N ∈ {10, 20, 40}, for the direct problem.

t 0.1 0.2 0.3 ... 0.8 0.9 1

µ̃3(t)

-0.7732
-0.7731
-0.7730
-0.7729

-0.8444
-0.8447
-0.8446
-0.8446

-0.9147
-0.9150
-0.9149
-0.9149

...

...

...

...

-1.2451
-1.2466
-1.2469
-1.2469

-1.3072
-1.3090
-1.3093
-1.3094

-1.3679
-1.3701
-1.3705
-1.3706

M = N = 10
M = N = 20
M = N = 40
exact

µ3(t)

0.5320
0.5322
0.5323
0.5323

0.5551
0.5559
0.5559
0.5559

0.5779
0.5786
0.5786
0.5786

...

...

...

...

0.6778
0.6791
0.6793
0.6793

0.6955
0.6969
0.6971
0.6971

0.7124
0.7140
0.7141
0.7141

M = N = 10
M = N = 20
M = N = 40
exact

µ4(t)

4.3474
4.3478
4.3479
4.3479

4.7984
4.7988
4.7990
4.7990

5.2587
5.2592
5.2594
5.2594

...

...

...

...

7.7009
7.7018
7.7020
7.7021

8.2176
8.2185
8.2187
8.2188

8.7436
8.7446
8.7448
8.7449

M = N = 10
M = N = 20
M = N = 40
exact

µ5(t)

4.4615
4.4610
4.4608
4.4608

4.9966
4.9960
4.9958
4.9958

5.5550
5.5544
5.5542
5.5541

...

...

...

...

8.7139
8.7130
8.7128
8.7127

9.4220
9.4211
9.4208
9.4208

10.1566
10.1556
10.1553
10.1552

M = N = 10
M = N = 20
M = N = 40
exact

µ6(t)

4.9522
4.9461
4.9446
4.9441

5.6234
5.6166
5.6149
5.6143

6.3379
6.3303
6.3284
6.3277

...

...

...

...

10.6167
10.6044
10.6014
10.6004

11.6254
11.6121
11.6087
11.6076

12.6891
12.6746
12.6710
12.6698

M = N = 10
M = N = 20
M = N = 40
exact

µ7(t)

5.8339
5.8248
5.8226
5.8218

6.7142
6.7039
6.7013
6.7005

7.6683
7.6567
7.6538
7.6528

...

...

...

...

13.6917
13.6721
13.6672
13.6656

15.1780
15.1565
15.1512
15.1494

16.7692
16.7457
16.7399
16.7379

M = N = 10
M = N = 20
M = N = 40
exact

In the inverse problem (5.8)–(5.14), we take the initial guesses for the vectors

h1, h3, b1 and b2 as follows:

h0
1j

= h01 = 0.5, h0
3j

= h02 − h01 = 1, b0
1j

= b1(0) = 0, b0
2j

= b2(0) = 0,

j = 1, N, (5.40)

where the values of b1(0) and b2(0) have been obtained exactly using the compat-

ibility of (5.1)–(5.7).

We start the investigation for reconstructing the time-dependent unknowns

coefficients h1(t), h3(t), b1(t) and b2(t), when there is no noise in the input data

(5.11)–(5.14), i.e. p = 0 in (5.31). The objective function F , as a function of

the number of iterations, is plotted (curve −�−) in Figures 5.3 and 5.4, for no

noise, without and with regularization, respectively. From these figures, it can

be seen that a rapid monotonic decreasing convergence to a very low value of

O(10−24) is achieved in about 16 iterations in the case of no regularization, i.e.

βi = 0, i = 1, 4, and of O(10−6) in the case of regularization with β1 = β2 = 0,
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β3 = β4 = 10−7.

The analytical (5.37) and numerical solutions for the transformed temperature

v(y, t), with no noise, with and without regularizarion are shown in Figure 5.5.

From this figure, it can be noticed that the inverse problem is stable and accurate

in the transformed temperature v(y, t). The rmse values for the unknowns coef-

ficients h1(t), h3(t), b1(t) and b2(t) are presented in Figure 5.6 with and without

regularization, versus the number of iterations. It can be seen that the rmse

values settle rapidly to stationary values after 5 to 6 iterations. It can also be

observed that rmse(h1) and rmse(h3) values are much lower than the rmse(b1)

and rmse(b2), pointing out that the free boundaries h1(t) and h3(t) are recovered

more accurately than the coefficients b1(t) and b2(t).

The numerical results presented in Figure 5.7 show that although the retrieval

of free boundaries h1(t) and h3(t), see Figures 5.7(a) and 5.7(b), are very accu-

rate, some slight instability starts to manifest in the unregularization solutions for

the coefficients b1(t) and b2(t), see Figures 5.7(c) and 5.7(d), respectively. Thus,

some slight regularization with, β1 = β2 = 0, β3 = β4 = 10−7, is applied in order

to obtain stable and accurate solutions for the coefficients b1(t) and b2(t), see

Figures 5.9(c) and 5.9(d). As the numerical results for the free boundaries h1 and

h3 have been found stable, in the remaining of the chapter we take β1 = β2 = 0

and vary only the regularization parameter β3 = β4 > 0.

Next, we investigate the stability of the numerical solution with respect to

various levels of p ∈ {0.01%, 0.1%} noise in (5.31) included in the input data

µ̃3(t), µ3(t), µ4(t) and µ5(t). From the previous discussion, we anticipate that

regularization is required in order to obtain stable and accurate solutions be-

cause the inverse problem is ill-posed. The L-curve, [48], for the choice of the

regularization parameter is shown in Figure 5.8, by plotting the solution norm√
||h1||2+||h3||2+||b1||2+||b1||2, as a function of the residual norm given by

square root of the sum of first four terms in the rigth-hand side of equation

(5.26). Form this figure, it can be observed that regularization parameters near

the ”corner” of the L-curve are β3 = β4 ∈ {10−5, 10−4} for p = 0.01% noise, and

β3 = β4 ∈ {10−5, 10−4, 10−3} for p = 0.1%.

The decreasing monotonic convergence of the objective function F , as a func-

tion of the number of iterations, without and with regularization are shown

in Figures 5.3 and 5.4, respectively. In case of no regularization, Figure 5.3

shows that convergence is more rapidly achieved as the amount of noise p de-

creases. In order to stabilise the coefficients b1(t) and b2(t), we employ regu-

larization with β3 = β4 = 10−4 (suggested by the L-curve in Figure 5.8(a)),

obtaining rmse(b1) = 0.0469 and rmse(b2) = 0.0526 for p = 0.01% noise, and
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with β3 = β4 = 10−3 (suggested by the L-curve in Figure 5.8(b)), obtaining

rmse(b1) = 0.0999 and rmse(b2) = 0.1018 for p = 0.1% noise. Numerical results

are shown in Figure 5.9. For more, information about the rmse values for various

levels of noise and with and without regularization, see Table 5.2.
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Figure 5.3: The objective function F , as a function of the number of iterations, for

p ∈ {0, 0.01%, 0.1%} noise, no regularization, for Example 1.
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iterations, for noise p = 0 (−�−), p = 0.01% (− B −) and p = 0.1% (− ◦ −), with

regularization, for Example 1.
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Figure 5.5: The analytical (5.37) and numerical solutions for the transformed temper-

ature v(y, t), for Example 1, no noise, with β1 = β2 = 0 and: (a) β3 = β4 = 0 and (b)

β3 = β4 = 10−7. The absolute error between them is also included.
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Figure 5.6: The rmse values: (a) h1(t), (b) h3(t), (c) b1(t) and (d) b2(t), as functions

of the number of iterations, no noise, with and without regularization, for Example 1.
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Figure 5.7: The analytical (5.38) and numerical solutions for: (a) h1(t), (b) h3(t), (c)

b1(t) and (d) b2(t), for p ∈ {0, 0.01%, 0.1%} noise, no regularization, for Example 1.
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Figure 5.8: The residual norm versus the solution norm for various regularization

parameters, for Example 1, with (a) p = 0.01% and (b) p = 0.1% noise.



Chapter 5. Determination of time-dependent coefficients and
multiple free boundaries 111

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

t

h 1(t)

 

 

Analytical solution

β
i
=0, i=1,2, β

i
=10−7, i=3,4

β
i
=0, i=1,2, β

i
=10−4, i=3,4

β
i
=0, i=1,2, β

i
=10−3, i=3,4

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

t

h 3(t)

 

 

Analytical solution

β
i
=0, i=1,2, β

i
=10−7, i=3,4

β
i
=0, i=1,2, β

i
=10−4, i=3,4

β
i
=0, i=1,2, β

i
=10−3, i=3,4

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

b 1(t)

 

 

Analytical solution

β
i
=0, i=1,2, β

i
=10−7, i=3,4

β
i
=0, i=1,2, β

i
=10−4, i=3,4

β
i
=0, i=1,2, β

i
=10−3, i=3,4

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

b 2(t)

 

 

Analytical solution

β
i
=0, i=1,2, β

i
=10−7, i=3,4

β
i
=0, i=1,2, β

i
=10−4, i=3,4

β
i
=0, i=1,2, β

i
=10−3, i=3,4

Figure 5.9: The analytical (5.38) and numerical solutions for: (a) h1(t), (b) h3(t), (c)

b1(t) and (d) b2(t), for noise p = 0 (−�−), p = 0.01% (−B−) and p = 0.1% (− ◦ −),

with regularization, for Example 1.
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Table 5.2: The rmse values for p ∈ {0, 0.01%, 0.1%} noise, with and without
regularization, for Example 1.

p Regularization rmse(h1) rmse(h3) rmse(b1) rmse(b2)

0

βi = 0, i = 1, 4
β3 = β4 = 10−8

β3 = β4 = 10−7

β3 = β4 = 10−6

β3 = β4 = 10−5

3.8E-5
2.0E-5
2.0E-5
2.0E-5
2.8E-5

5.0E-5
1.3E-5
1.3E-5
1.1E-5
1.6E-5

0.0183
9.5E-3
9.6E-3
0.0107
0.0195

0.0375
9.9E-3
9.8E-3
0.0101
0.0164

0.01%

βi = 0, i = 1, 4
β3 = β4 = 10−8

β3 = β4 = 10−7

β3 = β4 = 10−6

β3 = β4 = 10−5

β3 = β4 = 10−4

β3 = β4 = 10−3

β3 = β4 = 10−2

β3 = β4 = 10−1

4.0E-4
3.6E-4
3.4E-4
3.0E-4
2.3E-4
1.9E-4
7.1E-4
3.5E-3
0.0183

5.2E-4
4.2E-4
3.8E-4
2.8E-4
1.6E-4
1.3E-4
5.0E-4
2.6E-3
0.0112

0.3523
2.1264
0.3124
0.2043
0.0799
0.0469
0.0931
0.1896
0.3260

0.3406
2.1329
0.3030
0.2311
0.1099
0.0526
0.0822
0.1610
0.2793

0.1%

βi = 0, i = 1, 4
β3 = β4 = 10−8

β3 = β4 = 10−7

β3 = β4 = 10−6

β3 = β4 = 10−5

β3 = β4 = 10−4

β3 = β4 = 10−3

β3 = β4 = 10−2

β3 = β4 = 10−1

3.4E-3
3.5E-3
3.5E-3
3.2E-3
2.4E-3
1.7E-3
1.3E-3
3.6E-3
0.0154

3.7E-3
4.2E-3
4.4E-3
3.5E-3
1.8E-3
1.2E-3
9.5E-4
2.8E-3
0.0115

3.3290
3.0069
2.8401
1.7770
0.8622
0.3243
0.0999
0.1799
0.3251

3.0690
3.0316
2.9265
2.2791
1.0312
0.3048
0.1018
0.1542
0.2791

5.5.2 Example 2 (for inverse problem II)

In this example, we consider the second inverse problem given by equations (5.1)–

(5.3), (5.6), (5.7) and (5.15), with the same input data (5.33) and (5.35)–(5.39)

as in Example 1, except that the data µ̃3(t) and µ3(t) given by equations (5.4)

and (5.5) are replaced by the second and third-order heat moment µ6(t) and µ7(t)

given by equations (5.16) and (5.17) as

µ6(t) =
1 + t

3000

(
− 1000 + 3250π − 250t+ 1275πt− 15t2 + 165πt2

+7πt3 + (15 + 2t)3 tan−1
(15 + 2t

10

)
− (5 + t)3 tan−1

(5 + t

10

)
+500 ln

(325 + 60t+ 4t2

125 + 10t+ t2

))
, (5.41)
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µ7(t) =
1 + t

120000

(
5(10 + t)(3π(20 + 3t)(50 + t(14 + t))− 2(25

+t(95 + 7t))) + 3(5 + 2t)(25 + 2t)(325 + 4t(15 + t)) tan−1
(15 + 2t

10

)
−3(−5 + t)(15 + t)(125 + t(10 + t)) tan−1

(5 + t

10

))
. (5.42)

Table 5.1 shows that the analytical ((5.41) and (5.42)) and numerical solutions

for µ6(t) and µ7(t) obtained with various mesh sizes M = N ∈ {10, 20, 40} are in

very good agreement.

One can remark that the conditions of Theorems 5.2.3 and 5.2.4 are satisfied

and therefore, the local existence and uniqueness of the solution are guaranteed.

The initial guesses for the vectors h1, h3, b1 and b2 are given by (5.40), the same

as in Example 1. Note that the values of b1(0) and b2(0) can be determined using

the compatibility of input data in (5.1)–(5.7), see [56, 119, 121].

As we did in Example 1, we start the investigation with the case of exact

input data (5.13), (5.14), (5.16) and (5.17), i.e. p = 0 in (5.30). The objec-

tive function F1, as a function of the number of iterations without and with

regularization is plotted in Figure 5.10. From this figure, it can be seen that

a monotonic convergence is rapidly achieved in a few iterations. The objective

function F1 decreases and takes a very low stationary value of O(10−27) in about

19 iterations when we do not employ any regularization, i.e. βi = 0, i = 1, 4,

and of O(10−5) in the case of regularization with β1 = β2 = 0, β3 = β4 = 10−6.

The numerical reconstruction results for the unknown coefficients are illustrated

in Figure 5.11. From Figures 5.11(a) and 5.11(b) it can be noticed that very

accurate recoveries for the free boundaries h1(t) and h3(t) are obtained. With

no regularization, the numerical results for the coefficients b1(t) and b2(t) pre-

sented in Figures 5.11(c) and 5.11(d) are quite inaccurate with the values of

rmse(b1) = 0.3001 and rmse(b2) = 1.4094, respectively. However, when we ap-

ply the regularization with β1 = β2 = 0, β3 = β4 = 10−6 to F1, we obtain more

accurate reconstructions for b1(t) and b2(t), with rmse(b1) and rmse(b2) values

decreasing to 0.0589 and 0.0498, respectively.
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Figure 5.10: The objective function F1, as a function of the number of iterations, no

noise, with and without regularization, for Example 2.
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Figure 5.11: The analytical (5.38) and numerical solutions for: (a) h1(t), (b) h3(t),

(c) b1(t) and (d) b2(t), no noise, with and without regularization, for Example 2.
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Next, we consider the case of noisy data (5.13), (5.14), (5.16) and (5.17)

perturbed by p = 0.01% noise, as in (5.31). We have also investigated higher

amounts of noise p in (5.31), but the results obtained were less accurate and

therefore, they are not presented. The investigation of the inversion of noisy data

performed in this subsection, when compared with that of Example 1, indicates

that the second inverse problem (5.1)–(5.3), (5.6), (5.7), (5.16) and (5.17) is more

ill-posed than the first inverse problem (5.1)–(5.7).

The objective function F1, as a function of the number of iterations, is shown in

Figure 5.12. From this figure, it can be seen that in the case of no regularization,

i.e. βi = 0, i = 1, 4, a slow convergence is recorded and, in fact, the process of

minimization of the routine lsqnonlin is stopped when the prescribed maximum

number of 400 iterations is reached. The corresponding numerical results for

the unknown coefficients are presented in Figure 5.13. From Figures 5.13(a) and

5.13(b) it can be seen that stable and accurate numerical results are obtained for

the free boundaries h1(t) and h3(t). However, from Figures 5.13(c) and 5.13(d)

one can observe that unstable (highly oscillatory) and very inaccurate solution

for b1(t) and b2(t) are obtained with rmse(b1) = 48.1 and rmse(b1) = 49.8. This

is expected since the problem under investigation is ill-posed and small errors in

the input data (5.13), (5.14), (5.16) and (5.17) lead to a drastic amount of error

in the output coefficients b1(t) and b2(t). Therefore, regularization is required in

order to restore the stability of the solution in the coefficients b1(t) and b2(t).
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Figure 5.12: The objective function F1, as a function of the number of iterations, for

p = 0.01% noise, with and without regularization, for Example 2.
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Figure 5.13: The analytical ( ) and numerical solutions (−�−) for: (a) h1(t), (b)

h3(t), (c) b1(t) and (d) b2(t), for p = 0.01% noise, without regularization, for Example

2.
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The L-curve, [48], for the choice of the regularization parameters is shown

in Figure 5.14, by plotting the solution norm, as a function of the residual

norm. From this figure, it can be observed that regularization parameters near

the ”corner” of the L-curve are β3 = β4 ∈ {10−6, 10−5}. The regularized de-

creasing monotonic convergence of the objective function F1, as a function of

the number of iterations, is shown in Figure 5.12. To stabilise the coefficients

b1(t) and b2(t), we employ regularization with β3 = β4 ∈ {10−6, 10−5} (sug-

gested by the L-curve in Figure 5.14), obtaining rmse(b1) ∈ {0.3062, 0.1594} and

rmse(b2) ∈ {0.2920, 0.1590}, see Figures 5.15(c) and 5.15(d), for these coeffi-

cients. Furthermore, from Table 5.3 it can be seen that the computational time

is reduced from 32 hours to 3 hours by the inclusion of regularization in F1. For

more, information about the rmse values for p = 0.01% noise, with and without

regularization, see Table 5.4.
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Figure 5.14: The residual norm versus the solution norm for various regularization

parameters, for Example 2, with p = 0.01% noise.

Table 5.3: The rmse values and computational time with p = 0.01% noise, for
Example 2.

βi = 0, i = 1, 2 βi = 0, i = 3, 4 βi = 10−6, i = 3, 4 βi = 10−5, i = 3, 4
rmse(h1)
rmse(h3)
rmse(b1)
rmse(b2)
Computational time

3.9E-3
2.6E-3
48.1629
49.8146
32 hours

1.6E-3
1.4E-3
0.3062
0.2920
3 hours

1.4E-3
1.1E-3
0.1594
0.1590
3 hours
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Figure 5.15: The analytical (5.38) and numerical solutions for: (a) h1(t), (b) h3(t),

(c) b1(t) and (d) b2(t), for p = 0.01% noise, with regularization, for Example 2.
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Table 5.4: The rmse values for p ∈ {0, 0.01%} noise, with and without regular-
ization, for Example 2.

p Regularization rmse(h1) rmse(h3) rmse(b1) rmse(b2)

0

βi = 0, i = 1, 4
β3 = β4 = 10−8

β3 = β4 = 10−7

β3 = β4 = 10−6

β3 = β4 = 10−5

2.3E-4
2.8E-4
3.0E-4
3.0E-4
3.5E-4

5.2E-4
5.5E-4
5.6E-4
5.4E-4
4.2E-4

0.3001
0.1284
0.0620
0.0589
0.0739

1.4094
0.0729
0.0339
0.0498
0.0779

0.01%

βi = 0, i = 1, 4
β3 = β4 = 10−8

β3 = β4 = 10−7

β3 = β4 = 10−6

β3 = β4 = 10−5

β3 = β4 = 10−4

β3 = β4 = 10−3

β3 = β4 = 10−2

β3 = β4 = 10−1

3.9E-3
1.4E-3
1.5E-3
1.6E-3
1.4E-3
1.8E-3
5.0E-3
6.7E-3
6.9E-3

2.6E-3
1.4E-3
1.4E-3
1.4E-3
1.1E-3
1.9E-3
6.6E-3
8.9E-3
9.2E-3

48.1629
3.1935
0.7338
0.3062
0.1594
0.1632
0.4278
0.5657
0.5860

49.8146
3.2308
0.6982
0.2920
0.1590
0.1810
0.4377
0.5673
0.5858

5.6 Conclusions

A simultaneous determination of time-dependent coefficients and multiple free

boundaries in the heat equation has been numerically investigated for the first

time. The free boundary problems have been reduced to inverse coefficient prob-

lems in a fixed domain. The numerical solution of the direct problem based on

the FDM with the Crank-Nicolson scheme has been employed. The inverse prob-

lem has been solved using the MATLAB optimisation toolbox routine lsqnonlin

for minimizing the objective function F , or F1. The Tikhonov regularization has

been employed in order to obtain stable and accurate results because the inverse

problem is ill-posed and very sensitive to noise. The numerical results have been

presented and discussed for the two inverse problems, showing that accurate and

stable approximate solutions have been achieved. Based on the numerical results

and discussion we can conclude that the Stefan conditions (5.4) and (5.5) con-

tain more information than the heat moments of several orders (5.16) and (5.17).

Therefore, the second inverse problem (5.1)–(5.3), (5.6), (5.7), (5.16) and (5.17) is

more ill-posed than the first inverse problem (5.1)–(5.7). Although not illustrated,

similar conclusions have been obtained for other numerical tests concerning the

recovery of non-smooth coefficients with multiple unknown free boundaries.



Chapter 6

Determination of time-dependent

coefficients for degenerate

parabolic PDEs

6.1 Introduction

In the previous chapters, inverse problems concerned with simultaneously deter-

mining several time-dependent coefficients for non-degenerate (regular) parabolic

PDEs, with fixed or even moving boundaries, have been investigated. On the

other hand, only a few papers were concerned with degenerate parabolic PDEs,

[53, 54, 70, 71, 80, 116, 133]. These studies are theoretical and they are impor-

tant because they establish sufficient conditions for the unique solvability of the

time-dependent coefficient identification problems. However, no numerical recon-

struction has been attempted and it is the purpose of this chapter to numerically

recover the unknown coefficients in a stable and accurate manner. Therefore,

in this chapter inverse problems concerned with determining the time-dependent

thermal diffusivity and convection coefficients for a (weakly) degenerate parabolic

heat equation, together with the temperature from over-determination data is,

for the first time, numerically solved. It is supposed that the thermal diffusivity

coefficient vanishes at the initial moment of time. Here, we investigate the case

of weakly degeneration where the degeneracy is given by a time-dependent power

law tα with α ∈ (0, 1), though stronger degeneracies with α ≥ 1 can also be

addressed.

The structure of the chapter is as follows. The mathematical formulations of

the inverse problems are described in Section 6.2. In Section 6.3, the numerical

solution of the direct problem is based on FDM with the Crank-Nicolson scheme,

used as direct solver for these problems. The Tikhonov regularization method is
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described in Section 6.4. Numerical results for a few examples are presented and

discussed in Section 6.5. Finally, conclusions are presented in Section 6.6.

6.2 Mathematical formulations of the inverse prob-

lems

We consider the convection-diffusion equation in a finite slab of length l > 0 over

a time duration T > 0 satisfying the parabolic PDE

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + b(t)

∂u

∂x
(x, t) + f(x, t),

(x, t) ∈ QT := (0, l)× (0, T ), (6.1)

where u is the unknown temperature, f is a given heat source, and a and b

are time-dependent thermal diffusivity and convection coefficients, respectively,

which may be known or unknown. For simplicity, we have assumed that no

reaction term c(x, t)u(x, t) is present in (6.1). Furthermore, we assume that the

PDE (6.1) is weakly degenerate and becomes non-uniformly parabolic, with a

belonging to the admissible class

Aα :=
{
a ∈ C[0, T ]

∣∣∣ a(t) > 0 for t ∈ (0, T ], and there exists the finite

lim
t↘0

a(t)

tα
> 0
}
, (6.2)

where α ∈ (0, 1) is the given degree of weakly power law degeneration. The case

α ≥ 1 corresponding to strong degeneration will be investigated in the future.

Equation (6.1) is subjected to the initial condition

u(x, 0) = ϕ(x), x ∈ [0, l], (6.3)

and the Dirichlet boundary conditions

u(0, t) = µ1(t), u(l, t) = µ2(t), t ∈ [0, T ]. (6.4)

We next formulate three inverse problems with respect to whether the coeffi-

cients a(t) and/or b(t) are known or unknown and state sufficient conditions for

the uniqueness of solution. Denote E := C2,1(QT ) ∩ C1,0(QT ).
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6.2.1 Inverse Problem 1 (IP1)

We consider the inverse problem of determining the pair (a(t), u(x, t)) ∈ Aα × E
satisfying (6.1), (6.3), (6.4) and the additional heat flux measurement

a(t)
∂u

∂x
(0, t) = q0(t), t ∈ [0, T ]. (6.5)

We state the following uniqueness theorem, which is accommodated from [80,

116].

Theorem 6.2.1. Assume that the following conditions are satisfied:

(A) ϕ ∈ C2[0, l], µ1, µ2 ∈ C1[0, T ], b ∈ C[0, T ], f ∈ C1,0(QT );

(B) q0(t) 6= 0 for t ∈ (0, T ] and there exists the finite lim
t↘0

q0(t)

tα
6= 0.

Then, the IP1 given by equations (6.1), (6.3)–(6.5) cannot have more than one

solution (a(t), u(x, t)) ∈ Aα × E.

A two-dimensional variant of the IP1 has been considered theoretically in

[133], but its numerical simulation in the context of our investigation is deferred

to a future work.

6.2.2 Inverse Problem 2 (IP2)

We consider the inverse problem of determining the pair (b(t), u(x, t)) ∈ C[0, T ]×
E satisfying (6.1), (6.3), (6.4) and the additional mass integral measurement∫ l

0

u(x, t)dx = µ4(t), t ∈ [0, T ]. (6.6)

We state the following uniqueness theorem, which is accommodated from [53].

Theorem 6.2.2. Assume that the following conditions are satisfied:

(C) ϕ ∈ C1[0, l], µ1, µ2 ∈ C1[0, T ], f ∈ C1,0(QT );

(D) µ1(t)− µ2(t) 6= 0 for t ∈ [0, T ].

Then, the IP2 given by equations (6.1), (6.3), (6.4) and (6.6) cannot have more

than one solution (b(t), u(x, t)) ∈ C[0, T ]× E.
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6.2.3 Inverse Problem 3 (IP3)

We consider the inverse problem of determining the triplet (a(t), b(t), u(x, t)) ∈
Aα×C[0, T ]×E satisfying (6.1), (6.3), (6.4) and the additional measurements (6.5)

and (6.6). We state the following uniqueness theorem, which is accommodated

from [70].

Theorem 6.2.3. Let the assumptions (B) and (D) hold and assume also that

the following condition is satisfied:

(E) ϕ ∈ C3[0, l], µ1, µ2 ∈ C1[0, T ], f ∈ C1,0(QT ).

Then, the IP3 given by equations (6.1), (6.3)–(6.6) cannot have more than one

solution (a(t), b(t), u(x, t)) ∈ Aα × C[0, T ]× E.

The proofs of uniqueness Theorems 1–3 given in [53, 70, 80, 116] rely on

Green’s functions and the theory of Volterra integral equations of the second

kind.

6.3 Numerical solution for the direct problem

The direct initial boundary value problem is given by equations (6.1), (6.3)

and (6.4), where a(t) ∈ Aα, b(t) ∈ C[0, T ], µ1(t) ∈ C1[0, T ], µ2(t) ∈ C1[0, T ],

ϕ ∈ C2[0, l] and f(x, t) ∈ C1,0(QT ) are known, and the solution u(x, t) is to be

determined together with the quantities of interest q0(t) and µ4(t). To achieve

this, we use the FDM with the Crank-Nicolson scheme, based on subdividing the

solution domain QT = (0, l) × (0, T ) into M and N subintervals of equal step

lengths ∆x and ∆t, where ∆x = l/M and ∆t = T/N, respectively. At the node

(i, j) we denote u(xi, tj) = ui,j, where xi = i∆x, tj = j∆t, a(tj) = aj, b(tj) = bj,

and f(xi, tj) = fi,j for i = 0,M and j = 0, N . The initial and boundary condi-

tions in equations (6.3) and (6.4) are discretized as

ui,0 = ϕ(xi), i = 0,M, u0,j = µ1(tj), uM,j = µ2(tj), j = 0, N. (6.7)

The expressions in equations (6.5) and (6.6) are calculated using the following

second-order finite difference approximation formula and trapezoidal rule for in-

tegrals:

q0(tj) =
(4u1,j − u2,j − 3u0,j

2(∆x)

)
aj, j = 1, N. (6.8)
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µ4(tj) =
l

2N

(
u0,j + uM,j + 2

M−1∑
i=1

ui,j

)
, j = 1, N. (6.9)

Using the Crank-Nicolson scheme, we approximate (6.1) by

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1), i = 1, (M − 1), j = 0, (N − 1), (6.10)

where

Gi,j = aj
ui+1,j − 2ui,j + ui−1,j

(∆x)2
+ bj

ui+1,j − ui−1,j

2(∆x)
+ fi,j,

i = 1, (M − 1), j = 1, N. (6.11)

Because of the degeneracy at the initial time t = 0, for j = 0,

Gi,0 = fi,0 + b0ϕ
′(xi) + Ψ(xi), i = 1, (M − 1), (6.12)

where the function

Ψ(x) := lim
t↘0

a(t)
∂2u

∂x2
(x, t). (6.13)

To estimate the function Ψ(x) in (6.13), we proceed as in [58, 116], as follows.

From [116], we know that

∂2u

∂x2
(x, t) =

∫ l

0

G(x, t; ξ, 0)ϕ′′(ξ)dξ

+

∫ t

0

[
∂G
∂ξ

(x, t; 0, τ)
(
µ′1(τ)− f(0, τ)− b(τ)

∂u

∂ξ
(0, τ)

)
−∂G
∂ξ

(x, t; l, τ)
(
µ′2(τ)− f(l, τ)− b(τ)

∂u

∂ξ
(l, τ)

)]
dτ

−
∫ t

0

∫ l

0

∂G
∂ξ

(x, t; ξ, τ)
(∂f
∂ξ

(ξ, τ) + b(τ)
∂2u

∂ξ2
(ξ, τ)

)
dξdτ, (x, t) ∈ QT , (6.14)

where

G(x, t; ξ, τ) =
H(t− τ)

2
√
π(θ(t)− θ(τ))

∞∑
n=−∞

[
exp

(
− (x− ξ + 2nl)2

4(θ(t)− θ(τ))

)

− exp

(
− (x+ ξ + 2nl)2

4(θ(t)− θ(τ))

)]
(6.15)

is the Green function for the equation ut = a(t)uxx with Dirichlet boundary

conditions, H is the Heaviside function and θ(t) =
∫ t

0
a(τ)dτ . From [80], we also
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know that when b ≡ 0, then (6.14) simplifies as

∂2u

∂x2
(x, t) =

∫ l

0

G(x, t; ξ, 0)ϕ′′(ξ)dξ

+

∫ t

0

[
∂G
∂ξ

(x, t; 0, τ)
(
µ′1(τ)− f(0, τ)

)
− ∂G
∂ξ

(x, t; l, τ)
(
µ′2(τ)− f(l, τ)

)]
dτ

−
∫ t

0

∫ l

0

∂G
∂ξ

(x, t; ξ, τ)
∂f

∂ξ
(ξ, τ)dξdτ, (x, t) ∈ QT , (6.16)

and we have the estimates∣∣∣ ∫ l

0

G(x, t; ξ, 0)ϕ′′(ξ)dξ
∣∣∣ ≤ ||ϕ′′||L∞(0,l), (6.17)

∣∣∣ ∫ t

0

∫ l

0

∂G
∂ξ

(x, t; ξ, τ)
∂f

∂ξ
(ξ, τ)dξdτ

∣∣∣ ≤ C0t
(1−α)/2, (6.18)

∣∣∣ ∫ t

0

∂G
∂ξ

(x, t; 0, τ)
(
µ′1(τ)− f(0, τ)

)
dτ
∣∣∣ ≤ C1

tα
, (6.19)

∣∣∣ ∫ t

0

∂G
∂ξ

(x, t; l, τ)
(
µ′2(τ)− f(l, τ)

)
dτ
∣∣∣ ≤ C2

tα
, (6.20)

for some positive constants C0, C1 and C2.

Away from t = 0 the heat equation (6.1) is non-degenerate and it can be

approximated as usual using the Crank-Nicolson FDM, as follows:

−Aj+1ui−1,j+1 + (1 +Bj+1)ui,j+1 − Cj+1ui+1,j+1

= Ajui−1,j + (1−Bj)ui,j + Cjui+1,j +
∆t

2
(fi,j + fi,j+1), (6.21)

for i = 1, (M − 1), j = 1, (N − 1), where

Aj =
(∆t)aj
2(∆x)2

− (∆t)bj
4(∆x)

, Bj =
(∆t)aj
(∆x)2

, Cj =
(∆t)aj
2(∆x)2

+
(∆t)bj
4(∆x)

. (6.22)

At each time step tj+1, for j = 1, (N − 1), using the Dirichlet boundary conditions

(6.7), the difference equation (6.21) can be reformulated as a (M − 1)× (M − 1)

system of linear equations

Gu = k, (6.23)
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where u = (u1,j+1, u2,j+1, ..., uM−2,j+1, uM−1,j+1)T, k = (k1, k2, ..., kM−1)T,

G =



1 +Bj+1 −Cj+1 0 ... 0 0 0

−Aj+1 1 +Bj+1 −Cj+1 ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... −Aj+1 1 +Bj+1 −Cj+1

0 0 0 ... 0 −Aj+1 1 +Bj+1


,

k1 = Ajµ1(tj) + (1−Bj)u1,j + Cju2,j + Aj+1µ1(tj+1) +
∆t

2
(f1,j+1 + f1,j),

ki = Ajui−1,j + (1−Bj)ui,j + Cjui+1,j +
∆t

2
(fi,j+1 + fi,j), i = 2, (M − 2),

kM−1 = AjuM−2,j + (1−Bj)uM−1,j + Cjµ2(tj) + Cj+1µ2(tj+1)

+
∆t

2
(fM−1,j+1 + fM−1,j).

6.4 Numerical solution for the inverse problems

We wish to obtain stable reconstructions of the unknown coefficients a(t) and/or

b(t) together with the temperature u(x, t), by minimizing the nonlinear Tikhonov

regularization function

F1(a) =
N∑
j=1

[
ajux(0, tj)− q0(tj)

]2

+ β
N∑
j=1

a2
j , (6.24)

or,

F2(b) =
N∑
j=1

[ ∫ l

0

u(x, tj)dx− µ4(tj)
]2

+ β

N∑
j=1

b2
j , (6.25)

or,

F3(a,b) =
N∑
j=1

[
ajux(0, tj)− q0(tj)

]2

+
N∑
j=1

[ ∫ l

0

u(x, tj)dx− µ4(tj)
]2

+β
( N∑
j=1

a2
j +

N∑
j=1

b2
j

)
, (6.26)

respectively, where u solves (6.1), (6.3) and (6.4) for given a and b, and β ≥ 0 is

regularization parameter to be prescribed. The minimization of F1, or F2, or F3,

is performed using the MATLAB toolbox routine lsqnonlin. In the numerical

computation, we take the parameters of the routine as follows.
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• Maximum number of iterations, (MaxIter) = 400.

• Maximum number of objective function evaluations, (MaxFunEvals)

= 105×(number of variables).

• Termination tolerance on the function value, (TolFun) = 10−20.

• Solution Tolerance, (SolTol) = 10−20.

The IP1, IP2 and IP3 are solved subject to both exact and noisy measurements

(6.5) and (6.6). The noisy data are numerically simulated as follows:

qε10 (tj) = q0(tj) + ε1j, µε24 (tj) = µ4(tj) + ε2j, j = 1, N, (6.27)

where ε1j and ε2j are random variables generated from a Gaussian normal dis-

tribution with mean zero and standard deviations σ1 and σ2 given by

σ1 = p× max
t∈[0,T ]

|q0(t)|, σ2 = p× max
t∈[0,T ]

|µ4(t)|, (6.28)

where p represents the percentage of noise. We use the MATLAB function

normrnd to generate the random variables ε1 = (ε1j)j=1,N and ε2 = (ε2j)j=1,N

as follows:

ε1 = normrnd(0, σ1, N), ε2 = normrnd(0, σ2, N). (6.29)

6.5 Numerical results and discussion

In this section, we present examples for IP1, IP2 and IP3 in order to test the

accuracy and stability of the numerical methods introduced in Section 6.3 based

on the FDM, described in Section 6.3, combined with the minimization of the

objective function F1, or F2, or F3, described in Section 6.4. Furthermore, we

add noise to the input data (6.5) and (6.6) to simulate the real situation of noisy

measurements, by using equations (6.27)–(6.29). To assess the accuracy of the

approximate solutions, we introduce the root mean square errors (rmse) defined

as follows:

rmse(a) =

[
T

N

N∑
j=1

(
aNumerical(tj)− aExact(tj)

)2
]1/2

, (6.30)
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rmse(b) =

[
T

N

N∑
j=1

(
bNumerical(tj)− bExact(tj)

)2
]1/2

. (6.31)

For simplicity, we take l = T = 1 in all examples. We take the lower and

upper simple bounds for a(t) to be 0 and 102, and for b(t) to be −102 and 102,

respectively. These bounds allow a wide search range for the unknowns. In the

FDM, we take M = N = 40. We also take α = 0.5 as a typical degree of weak

power law degeneracy in (6.2).

6.5.1 Example 1 (for IP1) - Finding a(t) when b(t) is known

Consider the IP1 given by equations (6.1), (6.3)–(6.5) with unknown thermal

diffusivity a(t), and input data

ϕ(x) = x3 + x, µ1(t) = 0, µ2(t) = 2et, f(x, t) = xet(1− t1/2 + x2), (6.32)

b(t) = 0, (6.33)

q0(t) = t1/2et/6. (6.34)

One can observe that the assumptions (A) and (B) of Theorem 6.2.1 are satisfied

and thus the solution of IP1 is unique, if it exists. It can easily be checked by

direct substitution that the analytical solution for the temperature u(x, t) is

u(x, t) = (x3 + x)et, (x, t) ∈ QT (6.35)

and for the thermal diffusivity a(t) is

a(t) = t1/2/6, t ∈ [0, 1]. (6.36)

We take the inital guess for a(t) as a0(t) = t/6 for t ∈ (0, 1], knowing that since

a ∈ Aα we must have a(0) = 0.

Before we attempt any finite-difference numerics it is important to calculate

the function Ψ(x) given by equation (6.13) since its value is needed in initiating

the FDM time-marching procedure in equation (6.12). With the data (6.32) and

(6.33) and using (6.2), equation (6.13) yield that, [59],

Ψ(x) = − lim
t↘0

a(t)

∫ t

0

∂G
∂ξ

(x, t; 1, τ)eττ 1/2dτ = 0. (6.37)
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Figure 6.1: (a) The unregularized objective function F1, as a function of the number

of iterations, and (b) the solution for the thermal diffusivity a(t), for Example 1.
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Figure 6.2: The absolute error between the exact (6.35) and numerical solutions for

the temperature u(x, t), for Example 1, with p ∈ {0, 1, 2, 3}% noise.

We attempt to recover the unknown thermal diffusivity a(t) and the tempera-
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ture u(x, t) for exact input data, i.e. p = 0 in (6.26), as well as for p ∈ {1, 2, 3}%
noisy data. The unregularized objective function F1 given by (6.24) with β = 0,

as a function of the number of iterations, is plotted in Figure 6.1(a). From this

figure, it can be seen that the objective function F1 is rapidly decreasing to a very

low value of O(10−25) in about 10 iterations (in less than 3 minutes CPU time).

The related numerical results for the thermal diffusivity a(t) are presented in Fig-

ure 6.1(b). From this figure it can be seen that there is good agreement between

the numerical results and the analytical solution (6.36) for exact data, i.e. p = 0,

and consistent with the errors in the input data for p > 0. The numerical solu-

tion for the thermal diffusivity converges to the analytical solution (6.36), as the

percentage of noise p decreases, with rmse(a) ∈ {0.0001, 0.0044, 0.0088, 0.0132}
for p ∈ {0, 1, 2, 3}%, respectively.

Finally, Figure 6.2 shows the absolute error between the exact solution (6.35)

and the numerical solutions for the temperature u(x, t) for various amounts of

noise p ∈ {0, 1, 2, 3}%. From this figure it can be seen that the numerical solution

is stable and furthermore, its accuracy improves as the noise level p decreases.

6.5.2 Example 2 (for IP2) - Finding b(t) when a(t) is known

Consider the IP2 given by equations (6.1), (6.3), (6.4) and (6.6) with unknown

covection coefficient b(t), and input data (6.32), (6.36) and

µ4(t) = 3et/4. (6.38)

One can remark that the assumptions (C) and (D) of Theorem 6.2.2 are satisfied

and thus the solution of IP2 is unique, if it exists. In fact, the analytical solution

for the unknown convection coefficient b(t) is given by (6.33) and for the temper-

ature u(x, t) by (6.35). Although the analytical solution (6.33) for b(t) is trivial,

the numerical rmse(b) given by (6.31) can still be calculated and is meaningful.

We take the initial guess for b(t) as b0(t) = t(1− t) for t ∈ (0, 1], knowing that

from (6.1) and (6.13) we have that b(0) = (µ′1(0) − Ψ(0) − f(0, 0))/ϕ′(0). This

parabolic initial guess is sufficiently far from the analytical solution (6.33).

We consider first the case where there is no noise (i.e. p = 0) included in

the input data µ4(t) in (6.38). The objective function F2, as a function of the

number of iterations is displayed in Figure 6.3(a). From this figure, it can be seen

that the decreasing convergence of the objective function F2 is very fast and is

achieved in 5 iterations (in 2 minutes CPU time) to reach a stationary value of

O(10−29). The corresponding numerical results of the time-dependent convection

coefficient b(t) are depicted in Figure 6.3(b) and accurate results of O(10−4) error
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can be observed.

Next, we investigate the stability of the IP2 with respect to noise. We include

p = 1% noise to the data (6.38) simulated numerically, via equation (6.27) for

µ4(t). The rmse values (6.31) versus the number for the unknown convection co-

efficient b(t) are presented in Figure 6.4 with and without regularization, versus

the number of iterations. It can be seen that the rmse values settle rapidly to a

stationary value O(10−3) after 2 to 3 iterations when regularization is included,

but in case of no regularization they increase with the number of iterations, as

expected since the unregularized solution is unstable. In Figure 6.5 and Table 6.1

we present the unknown convection coefficient b(t) and the rmes(b) given by equa-

tion (6.31), the number of iterations and computational time. It can be seen that

the numerical results for the convection coefficient are unstable (highly oscillating

and unbounded), see Figure 6.5(a), if no regularization, i.e. β = 0, is employed,

or even if β is too small such as 10−3. Clearly, one can observe the effect of the

regularization parameter β > 0 in decreasing the oscillatory unstable behaviour

of the convection coefficient b(t). Overall, the numerical results obtained with

β ∈ {1, 2} seem stable and accurate, see Figure 6.5(b) and Table 6.1.
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Figure 6.3: (a) The objective function F2, as a function of the number of iterations,

and (b) the solution for the convection coefficient b(t), for Example 2, with no noise

and no regularization.
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Figure 6.4: The rmse values for the convection coefficient b(t), as functions of the

number of iterations, for Example 2 with p = 1% noise, with and without regularization.
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Table 6.1: The rmse(b) values, number of iterations and computational time for
p ∈ {0, 1%} noise, with and without regularization, for Example 2.

p β rmse(b) Iter Time
0 0 2.5E-4 5 2 mins

1%

0
10−3

10−2

10−1

1
2

2.0557
0.3269
0.0812
0.0186
0.0039
0.0022

9
37
34
36
37
34

3 mins
9 mins
7 mins
8 mins
9 mins
7 mins

6.5.3 Example 3 (for IP3) - Finding a(t) and b(t) together

Consider the IP3 given by equations (6.1), (6.3)–(6.6) with unknown coefficients

a(t) and b(t), and input data (6.32), (6.34) and (6.38). One can observe that

the assumptions (B), (D) and (E) of Theorem 6.2.3 are satisfied and thus the

solution of IP3 is unique. The analytical solution for the triplet (u(x, t), a(t), b(t))

is given by equations (6.35), (6.36) and (6.33), respectively.

We start first with the case of exact data, i.e. p = 0. Figure 6.6 illustrates

the exact and numerical coefficients a(t) and b(t) plotted after 6 iterations of

minimization of the objective function F3 in (6.26) without regularization, i.e.

β = 0. Frome this figure, it can be seen that a very good agreement between the

numerical and analytical solutions are obtained with rmse(a) = 2.8E − 4 and

rmse(b) = 7.0E − 4.
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Figure 6.6: The exact ((6.36) and (6.33)) and numerical solutions for: (a) the thermal

diffusivity a(t) and (b) the convection coefficient b(t), for Example 3, with no noise and

no regularization.
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We next include p = 1% in the input data (6.34) and (6.38). From the previous

IP2 analysis, we anticipate that regularization is needed in order to achieve stable

and accurate results. The numerical results for the thermal diffusivity a(t) and

the convection coefficient b(t) for p = 1% noise are presented in Figure 6.7. From

this figure it can be seen that stable and reasonable accurate numerical results

are obtained for β ∈ {10−2, 10−1}.
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Figure 6.7: The exact ((6.36) and (6.33)) and numerical solutions for: (a) the thermal

diffusivity a(t) and (b) the convection coefficient b(t), with p = 1% noise for Example

3, with and without regularization.

6.6 Conclusions

This chapter has presented the determination of time-dependent thermal diffu-

sivity coefficient and/or the convection coefficient for a weakly degenerate heat

equation from heat flux and/or mass/energy measurement/specification/ overde-

termination. Three coefficient identification problems (termed IP1, IP2 and IP3)

have been investigated. The uniqueness of solution holds under easy verifiable

sufficient conditions on the input data, as proven in the previous theoretical lit-

erature [53, 70, 80, 116] but without numerical realisation. We stress that when

solving parabolic PDEs which are degenerate at the initial time t = 0, the numer-

ical challenge is how to calculate the function Ψ(x) in (6.13) in order to initiate,

via (6.12), the time marching FDM process. The resulting inverse problems have

been reformulated as constrained regularized minimization problems which were

solved using the MATLAB optimization toolbox routine lsqnonlin. The non-

linear Tikhonov regularization has been employed in order to obtain stable and
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accurate results because the inverse problems under investigation are ill-posed

and sensitive to noise. The numerically obtained results are stable and accurate.

The main difficulty in regularization when we solve the IP2 or IP3 is how to

choose an appropriate regularization parameter β which compromises between

accuracy and stability. However, one can use techniques such as the L-curve

method [48] or Morozov’s discrepancy principle [100] to find such a parameter,

but in our work we have used trial and error. As mentioned in [35], the regu-

larization parameter β is selected based on experience by first choosing a small

value and gradually increasing it until any numerical oscillations in the unknown

coefficients disappear.

The reconstruction of time-dependent thermal diffusivity and convection co-

efficients for a weakly degenerate heat equation with free boundary, [75], will be

investigated in a future work.



Chapter 7

Determination of an additive

time- and space-dependent heat

source coefficient

7.1 Introduction

Inverse problems for the parabolic heat equation consisting of determining the

unknown radiative/absorption/perfusion coefficient depending on both time and

space have recently received some attention, [31, 36, 115]. The knowledge of this

physical property is important in understanding the heat transfer in biological

tissue, [128]. Its direct measurement is not available in the general case when it

depends on both space and time. However, it can be inferred by inverse methods

based on the measurement of the interior temperature, as considered in [130]. On

the other hand, this formulation means that infinitely many intrusive temperature

measurements with thermocouples embedded inside the material are necessary at

all space points and for all times. A possible alternative to this general inverse

modelling is to restrict the generality of the coefficient by seeking it as a sum of

a function dependent of time and one dependent of space. This additive class in

which the admissible coefficient is sought allows to formulate an inverse problem

for which the measurement of the temperature in time at a single fixed space

point together with measurement in space at a fixed time are sufficient to en-

sure that the identification is possible. A similar approach has previously been

investigated in related problems concerned with the identification of an additive

heat source, [49, 52]. However, the inverse heat source problem is linear whilst

the coefficient identification problem investigated in this chapter is nonlinear and

this significantly complicates its study.

The chapter is structured as follows: In Section 7.2, the mathematical formu-
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lation of the inverse problem is given. In Section 7.3, the numerical solution of

the direct problem based on the FDM with a Crank-Nicolson scheme is briefly

introduced. In Section 7.4, the numerical approach to solve the inverse problem

based on a minimization algorithm is given. Numerical results are presented and

discussed in Section 7.5. Finally, conclusions are stated in Section 7.6.

7.2 Mathematical formulation

Fix the parameters L > 0 and T > 0 representing the length of a finite slab and

the time duration, respectively. Denote by QT = {(x, t)| 0 < x < L, 0 < t < T}
the solution domain. In the context of bio-heat transfer, [91] or heat transfer

of fins used in condensers and evaporators, [98], we consider the parabolic heat

equation

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + (f(t) + g(x))u(x, t), (x, t) ∈ QT , (7.1)

where f(t) and g(x) are coefficient functions to be identified together with the

temperature u(x, t). In (7.1), the term q(x, t) := f(t)+g(x) represents a radiative

or perfusion coefficient. Previous studies, e.g. [127, 129], considered the cases

g = 0 or f = 0, so in that respect, our identification of an additive coefficient

q(x, t) = f(t) + g(x) with unknown functions f and g, is a generalization. At

the other extreme, when q(x, t) does not separate its identification requires the

measurment of u(x, t) at all points inside the solution domain QT , [36, 37, 130],

which may be impractical.

Equation (7.1) has to be solved subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ L, (7.2)

the homogeneous Neumann boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, 0 ≤ t ≤ T, (7.3)

and the additional temperature measurements

u(X0, t) = β(t), 0 ≤ t ≤ T, (7.4)

at a fixed space location 0 < X0 < L, and

u(x, T ) = ψ(x), 0 ≤ x ≤ L, (7.5)
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at the final time t = T . The sketch of the inverse problem under investigation is

shown in Figure 7.1.

x

t

T
u(x, T ) = ψ(x)

0 LX0

ux(0, t) = 0

Find u(x, t), f(t) and g(x) satisfying

ut(x, t) = uxx(x, t) + (f(t) + g(x))u(x, t),

u(X0, t) = β(t)

u(x, 0) = φ(x, 0)

ux(L, t) = 0

Figure 7.1: Sketch of the inverse problem under investigation.

The conditions (7.3) express that the ends {0, L} of the finite slab (0, L) are

insulated. In order to avoid non-uniqueness reproduced by the trivial identity

f(t) + g(x) = (f(t) + c) + (g(x)− c), where c is an arbitrary non-zero constant,

we take a fixing condition, say at x = X1 fixed in (0, L), assuming that

g(X1) = α (7.6)

is given. Alternatively, one could have a fixing condition on f instead of (7.6).

In the above equations, the functions φ, β, ψ and the constant α are given, whilst

the triplet of functions f(t), g(x) and u(x, t) are unknown. Further, assume that

the conditions (7.2)–(7.5) are compatible, i.e.

φ′(0) = φ′(L) = ψ′(0) = ψ′(L) = 0, β(0) = φ(X0), β(T ) = ψ(X0). (7.7)

The existence and uniqueness of a classical solution to the inverse problem (7.1)–

(7.7) were established in [115]. Without going into too much detail, it is useful

to state the unique solvability of the inverse problem (7.1)–(7.7) in a particular

case, as follows, [60, 115].

Proposition 1. Suppose

0 < φ ∈ C4[0, L], 0 < ψ ∈ C4[0, L], 0 < β ∈ C1[0, T ] (7.8)
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and assume that

ψ(x) = cφ(x), x ∈ [0, L], (7.9)

where c = β(T )/β(0). Then the inverse problem (7.1)-(7.7) has a unique solution

(u, f, g) ∈ (C2(QT ) ∩ C1(QT ))× C1[0, T ]× C1[0, L] which is explicitly given by

u(x, t) =
β(t)

β(0)
φ(x), (x, t) ∈ QT , (7.10)

f(t) =
β′(t)

β(t)
− α− φ′′(X1)

φ(X1)
, t ∈ [0, T ], (7.11)

g(x) = −φ
′′(x)

φ(x)
+ α +

φ′′(X1)

φ(X1)
, x ∈ [0, L]. (7.12)

This proposition is useful because it indicates how to construct analytical so-

lutions of the inverse problem (7.1)–(7.7) for which numerical methods can be

assessed, see later on Examples 1 and 2 in Section 7.5. In addition, the explicit

formulas (7.11) and (7.12) contain derivatives of the measured data which is nu-

merically unstable. That is, although the inverse problem (7.1)–(7.7) is uniquely

solvable it is still ill-posed since small errors in the input measured data (7.4)

and (7.5) cause large error in the output solution for f and g. Therefore, in the

numerical computation the main focus is on the development of stable nonlinear

optimization algorithms, [113], as will be described in Section 7.4. But before we

do that, in the next section we briefly describe the FDM employed for discretising

the direct problem.

7.3 Numerical solution of the direct problem

In this section, we consider the direct initial boundary value problem given by

equations (7.1)–(7.3) when f and g are given. We use the FDM with a Crank-

Nicholson scheme. The discrete form of the direct problem is as follows. We

denote u(xi, tj) = ui,j, f(tj) = fj and g(xi) = gi, where xi = i∆x, tj = j∆t for

i = 0,M, j = 0, N, and ∆x = L
M
, ∆t = T

N
.

Considering the general partial differential equation

ut = G(x, t, u, uxx), (7.13)
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the Crank-Nicolson method, [123], discretises (7.13), (7.2) and (7.3) as

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1), i = 1, (M − 1), j = 0, (N − 1), (7.14)

ui,0 = φ(xi), i = 0,M, (7.15)

u1,j − u−1,j

2(∆x)
=
uM+1,j − uM−1,j

2(∆x)
= 0, j = 1, N, (7.16)

where

Gi,j = G
(
xi, tj, ui,j,

ui+1,j − 2ui,j + ui−1,j

(∆x)2

)
,

Gi,j+1 = G
(
xi, tj+1, ui,j+1,

ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆x)2

)
,

i = 0,M, j = 0, (N − 1) (7.17)

and u−1,j and uM+1,j for j = 1, N are fictitious values at points located outside

the computational domain.

For our problem, equation (7.1) is of the form (7.13) and the above discreti-

sation then renders the following discrete form of (7.1):

−Aui−1,j+1 + (1 +Bi,j+1)ui,j+1 − Aui+1,j+1

= Aui−1,j + (1−Bi,j)ui,j + Aui+1,j, (7.18)

for i = 0,M, j = 0, (N − 1), where A =
(∆t)

2(∆x)2
, Bi,j =

(∆t)

(∆x)2
− (∆t)

2
(fj + gi).

At each time step tj+1, for j = 0, (N − 1), using the homogeneous Neumann

boundary conditions (7.16), the above difference equation can be reformulated as

an M ×M system of linear equations of the form,

Luj+1 = Euj, (7.19)

where uj+1 = (u0,j+1, u1,j+1, ..., uM,j+1)T,

L =



1 +B0,j+1 −2A 0 ... 0 0 0

−A 1 +B1,j+1 −A ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... −A 1 +BM−1,j+1 −A
0 0 0 ... 0 −2A 1 +BM,j+1


,
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and

E =



1−B0,j 2A 0 ... 0 0 0

A 1−B1,j A ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... A 1−BM−1,j A

0 0 0 ... 0 2A 1−BM,j


.

The grid convergence of the above FDM is considered next for solving the

direct Neumann problem (7.1)–(7.3) with T = L = 1, and input data

φ(x) = u(x, 0) = x2(x− 1)2 + 1, (7.20)

f(t) =
1

1 + t
, g(x) =

−2 + 12x− 12x2

1 + x2 − 2x3 + x4
. (7.21)

The analytical solution for the temperature is given by

u(x, t) =
(
x2(x− 1)2 + 1

)
(1 + t). (7.22)

Figure 7.2 shows the surface plots of the analytical solution (7.22) in comparison

with the numerical FDM solutions obtained with various M = N ∈ {10, 20, 40}.
The absolute errors between those solutions are also included and it can be seen

that these errors decrease as the FDM grid becomes finer.
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Figure 7.2: The exact (7.22) and numerical solutions for the temperature u(x, t), with

various mesh sizes (a) M = N = 10, (b) M = N = 20, and (c) M = N = 40, for the

direct problem. The absolute error between them is also included.

The numerical solutions for the interior temperatures (7.4) and (7.5) are com-
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pared in Figure 7.3 with the exact solutions given by

β(t) = u(X0, t) =
17

16
(1 + t), ψ(x) = u(x, T ) = 2

(
x2(x− 1)2 + 1

)
,

T = 1, X0 =
1

2
. (7.23)

From Figure 7.3 it can be seen that the numerical solutions converge to the

corresponding exact solutions (7.23), as the FDM grid becomes finer. In fact, the

root mean square errors (rmse) defined by

rmse(β) =

√√√√ 1

N

N∑
j=1

(
βnumerical(tj)− βexact(tj)

)2

, (7.24)

rmse(ψ) =

√√√√ 1

M

M∑
i=1

(
ψnumerical(xi)− ψexact(xi)

)2

, (7.25)

indicated in Table 7.1, show more clearly their decreases as the grid size becomes

smaller.
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Figure 7.3: The exact and numerical solutions for: (a) β(t) and (b) ψ(x), various mesh

sizes M = N ∈ {10, 20, 40}, for the direct problem.

Table 7.1: The (rmse) given by equations (7.24) and (7.25) for β(t) and ψ(x), with

various mesh sizes M = N ∈ {10, 20, 40}, for the direct problem.

M = N 10 20 40
rmse(β)
rmse(ψ)

0.0179
0.0374

0.0044
0.0094

0.0011
0.0024

7.4 Numerical approach for the inverse problem

In this section, we wish to obtain simultaneously the unknown functions f(t) and

g(x) in the inverse problem (7.1)–(7.7) reformulated as minimizing the regularized

objective function

F(f, g) = ‖u(x, T )− ψ(x)‖2 + ‖u(X0, t)− β(t)‖2 + β1‖f(t)‖2 + β2‖g(x)‖2

+ (g(X1)− α)2, (7.26)
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where u solves (7.1)–(7.3) for given f and g, β1 ≥ 0 and β2 ≥ 0 are regularization

parameters, and the norm is usually the L2-norm. Assuming, for convenience,

that we take X0 ∈ (0, L) such that there exists i0 ∈ {1, ...,M} for which X0 = xi0 ,

in discrete form (7.26) becomes

F(f ,g) =
M∑
i=1
i 6=i0

[
u(xi, T )− ψ(xi)

]2

+
N∑
j=1

[
u(X0, tj)− β(tj)

]2

+ (g(X1)− α)2

+ β1

N∑
j=1

f 2
j + β2

M∑
i=1

g2
i . (7.27)

The value for i = i0 in the first sum has been excluded in order to avoid du-

plicating the compatibility condition (in (7.7)) u(X0, T ) = u(xi0 , T ) = β(T ) =

β(tN) = ψ(xi0) = ψ(X0). The minimization of (7.27) is performed using the

MATLAB toolbox routine lsqnonlin. We have compiled this routine with the

following parameters:

• Algorithm = TRR, [31].

• Maximum number of iterations, (MaxIter) = 400.

• Maximum number of objective function evaluations, (MaxFunEvals)

= 102×(number of variables).

• Termination tolerance on the function value, (TolFun) = 10−20.

• x Tolerance, (xTol) = 10−20.

• The lower and upper simple bounds are −103 and 103 for f and g.

The inverse problem under investigation is solved subject to both exact and noisy

data which are numerically simulated as

βε1(tj) = β(tj) + ε1j, j = 1, N, (7.28)

ψε2(xi) = ψ(xi) + ε2i, i = 1,M, i 6= i0, (7.29)

where ε1j and ε2i are random variables generated from normal distributions with

mean zero and standard deviations σ1 and σ2 given by

σ1 = p× max
t∈[0,T ]

|β(t)|, σ2 = p× max
x∈[0,L]

|ψ(x)|, (7.30)

where p represents the percentage of noise. We use the MATLAB function

normrnd to generate the random variables ε1 = (ε1j)j=1,N and ε2 = (ε2i)i=1,(M−1)
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given by

ε1 = normrnd(0, σ1, N), ε2 = normrnd(0, σ2,M − 1). (7.31)

7.5 Numerical results and discussion

In this section, we present examples in order to test the accuracy and stability of

the numerical methods introduced in Sections 7.3 and 7.4, respectively. The root

mean square errors (rmse) are used to evaluate the accuracy of the numerical

results and are defined by

rmse(f) =

√√√√ 1

N

N∑
j=1

(
fnumerical(tj)− f exact(tj)

)2

, (7.32)

rmse(g) =

√√√√ 1

M

M∑
i=1

(
gnumerical(xi)− gexact(xi)

)2

. (7.33)

In all examples we take, for simplicity, T = 1, L = 1 and X0 = X1 = L/2 =

0.5. Consequently, i0 = M/2 in (7.27). In all the inverse calculations we take

M = N = 40.

7.5.1 Example 1

We solve the inverse problem (7.1)–(7.7) with unknown coefficients f(t) and g(x)

and the input data (7.20), (7.23) and α = g(0.5) = 16/17. From this data one can

observe that the conditions of Proposition 1 of Section 7.2 are satisfied and hence

the inverse problem has a unique solution given by (7.10)–(7.12) which yield the

expressions (7.21) and (7.22). We take the initial guess as

f 0(t) = 1− t

2
, g0(x) =

−2 + 100
17
x, 0 ≤ x ≤ 0.5,

66
17
− 100

17
x, 0.5 < x ≤ 1,

(7.34)

which are straight lines passing through f(0) = 1, f(1) = 1/2, and g(0) = −2,

g(0.5) = 16/17, g(1) = −2.

Considering no noise in the measurement data (7.4) and (7.5), the unregu-

larized objective function (7.27), i.e. β1 = β2 = 0, as a function of a number of

iterations plotted in Figure 7.4, shows a rapid decrease to a low value of O(10−29)

in 19 iterations. Figure 7.5 shows the exact and numerical solutions of the func-

tions f(t) and g(x), respectively. From this figure it can be seen that very accurate
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numerical solutions are obtained.
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Figure 7.4: Objective function (7.27) for Example 1 with no noise and no regulariza-

tion.

Next, we add a small amount of p = 0.01% noise to the measured data (7.4)

and (7.5). For higher amounts of noise the numerical results were less accurate

and therefore they are not presented. The point to stress here is that since the

inverse problem is ill-posed then we expect that regularization is needed in order

to achieve stable and accurate results. The monotonic decreasing convergence of

the objective function (7.27), as a function of the number of iterations, is shown

in Figure 7.6 with and without regularization. Figure 7.7 shows the graphs of

the recovered functions. From Figure 7.7 it can be seen that, as expected, when

β1 = β2 = 0 we obtain unstable and inaccurate solutions because the problem

is ill-posed and very sensitive to noise. Thus regularization is needed in order

to stabilise the solutions. We selected by trial and error the regularization pa-

rameters β1 = 10−9 and β2 = 10−7 which give stable and reasonablly accurate

solutions for the functions f(t) and g(x). For more elaborate choices of multiple

regularization parameters, see [7, 41].

The related numerical results for the temperature u(x, t) with p = 0.01%

noise, and with and without regularization, are presented in Figure 7.8 showing

good agreement with the exact solution (7.22).

Other details about the number of iterations, the number of function evalua-

tions, the value of the objective function (7.27) at the final iteration, the rmse(f)

and rmse(g) in (7.32) and (7.33), respectively, and the computational time are

given in Table 7.2. Overall, from this table as well as from Figures 7.4-7.8 it can

be seen that accurate and stable numerical results are rapidly achieved by the

MATLAB toolbox iterative routine lsqnonlin minimizing the objective function

(7.27).
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Figure 7.5: (a) Coefficient f(t) and (b) coefficient g(x), for Example 1 with no noise

and no regularization.

Table 7.2: Number of iterations, number of function evaluations, value of the
objective function (7.27) at final iteration, rmse(f) and rmse(g), and computa-
tional time, for Example 1.

Numerical outputs
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = 10−9,
β2 = 10−7)

No. of iterations
No. of function evaluations
Value of objective function
(7.27) at final iteration
rmse(f)
rmse(g)
Computational time (sec)

19
1660
4.4E-29

0.0013
0.0156
163

36
3071
6.5E-11

0.1454
0.6698
306

46
3901
3.2E-6

0.1024
0.1634
386
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Figure 7.6: Objective function (7.27), for Example 1 with p = 0.01% noise, with and

without regularization.
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Figure 7.7: (a) Coefficient f(t) and (b) coefficient g(x), for Example 1 with p = 0.01%

noise, with and without regularization.
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Figure 7.8: The exact and approximate solutions for the temperatures u(x, t), for

Example 1, with (a) β1 = β2 = 0 and (b) β1 = 10−9, β2 = 10−7, for p = 0.01% noise.

The absolute error between them is also included.

7.5.2 Example 2

Consider the inverse problem (7.1)–(7.7) with the input data

φ(x) = u(x, 0) = 2 + cos(πx), (7.35)

β(t) = u(0.5, t) = 2e
t2

1+t , ψ(x) = u(x, 1) =
√
e(2 + cos(πx)),

α = g(0.5) = 0. (7.36)
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As in Example 1, the conditions of Proposition 1 are satisfied and the unique

solution of the inverse problem (7.1)–(7.7) is given by (7.10)–(7.12) which yield

f(t) =
t(t+ 2)

(t+ 1)2
, g(x) =

π2 cos(πx)

2 + cos(πx)
, (7.37)

u(x, t) = e
t2

1+t

(
2 + cos(πx)

)
. (7.38)

We take the initial guess as

f 0(t) = 0, g0(x) =

π2

3
− 2π2

3
x, 0 ≤ x ≤ 0.5,

π2 − 2π2x, 0.5 < x ≤ 1.
(7.39)

Analogous quantities and conclusions to Figures 7.4–7.7 and Table 7.2 of Example

1 are presented and obtained in Figures 7.9–7.12 and Table 7.3 of Example 2.
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Figure 7.9: Objective function (7.27), for Example 2 with no noise and no regulariza-

tion.
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Figure 7.10: (a) Coefficient f(t) and (b) coefficient g(x), for Example 2 with no noise

and no regularization.

Table 7.3: Number of iterations, number of function evaluations, value of the
objective function (7.27) at final iteration, rmse(f) and rmse(g), and computa-
tional time, for Example 2.

Numerical outputs
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = 10−12,
β2 = 10−11)

No. of iterations
No. of function evaluations
Value of objective function
(7.27) at final iteration
rmse(f)
rmse(g)
Computational time (mins)

16
1411
4.9E-27

0.0077
0.0025
2

39
3320
1.5E-10

0.1462
1.2917
5

52
3416
1.2E-8

0.1084
1.2847
7



Chapter 7. Determination of an additive time- and space-dependent
heat source coefficient 154

0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of Iterations

Ob
jec

tiv
e 

fu
nc

tio
n

 

 

β
1
=β

1
=0

β
1
= 10−12,β

2
= 10−11

Figure 7.11: Objective function (7.27), for Example 2 with p = 0.01% noise, with and

without regularization.
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Figure 7.12: (a) Coefficient f(t) and (b) coefficient g(x), for Example 2 with p = 0.01%

noise, with and without regularization.

7.5.3 Example 3

The previous examples possessed an analytical solution available for the triplet

(u(x, t), f(t), g(x)). In this section, we investigate an example for which an an-
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alytical solution for u(x, t) is not available. We take the initial condition (7.2)

given by

u(x, 0) = φ(x) =


1, 0 ≤ x < 1/4,
5
4
− x, 1/4 < x ≤ 1/2,

x+ 1
4
, 1/2 < x ≤ 3/4,

1, 3/4 < x ≤ 1,

(7.40)

which represents a non-smooth function. In the absence of an analytical solution

for u(x, t) being available we generate the input data (7.4) and (7.5) numerically

by solving first the direct problem given by (7.1)–(7.3) with φ(x) given by (7.40),

and the known functions

f(t) = 1 + t, g(x) = 1 + x, (7.41)

using the FDM described in Section 7.3.

The numerical results for β(t) and ψ(x) in equations (7.4) and (7.5), respec-

tivly, are shown in Figure 7.13, for various M = N ∈ {20, 40, 80}. From this

figure, it can be seen that the numerical solution is convergent as the FDM mesh

size decreases.

The example considered in this subsection violates the sufficient conditions of

uniqueness of solution of Proposition 1 and [115] and therefore, it is a severe test

for our method of regularization.

In order to avoid committing an inverse crime the mesh that is used for numer-

ically simulating the measured data (7.4) and (7.5) by solving the direct problem

is taken to be more dense than the one used for the solution of the inverse problem,

[84]. Consequently, in the inverse problem we use the FDM with M = N = 40

and half of the data for β and ψ obtained from solving the direct problem with

M = N = 80. We also take the initial guess as

f 0(t) = 1, g0(x) = 1. (7.42)

The objective function (7.27) with no noise and no regularization, as a function

of the number of iterations, is plotted in Figure 7.14. From this figure it can be

seen that a rapid monotonic decreasing convergence to a low value of O(10−28) is

achieved in about 12 iterations.
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Figure 7.13: The numerically convergent solutions for (a) β(t) and (b) ψ(x), for Ex-

ample 3 with various mesh sizes M = N ∈ {20, 40, 80} for the direct problem.

Figure 7.15 shows the exact and numerical solution of the unknown coefficients

f(t) and g(x), and one can see that stable and accurate solutions are obtained.
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Figure 7.14: Objective function (7.27), for Example 3 with no noise and no regular-

ization.
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Figure 7.15: (a) Coefficient f(t) and (b) coefficient g(x), for Example 3 with no noise

and no regularization.

Next, we add p ∈ {0.01, 0.1, 1}% noise to the measured data (7.4) and (7.5).

The numerical results without regularization have been found unstable and there-

fore they are not presented. The regularized objective function (7.27), as a func-

tion of the number of iterations, is shown in Figure 7.16. Figure 7.17 presents the

graphs of the recovered functions. From this figure one can observe that stabilised

solutions are obtained by employing regularization.

Finally, details about the number of iterations, the rmse(f) and rmse(g) in

(7.32) and (7.33), respectively, and the computational time, are given in Table

7.4 for various values of the regularization parameters β1 = β2. For p = 1%

noise and no regularization the computational time and the number of iterations

increase drastically and the rmse(f) and rmse(g) become very large, which is

expected due to the instability of the inverse and ill-posed problem. However,

as previously obtained from Figure 7.17, it can be seen that accurate and stable

numerical results are achieved if regularization is employed.
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Figure 7.16: Objective function (7.27), for Example 3 with noise p = 0.01% (−�−),

p = 0.1% (−4−) and p = 1% (− ◦ −), with regularization.
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Figure 7.17: (a) Coefficient f(t) and (b) coefficient g(x), for Example 3 with noise

p = 0.01% (−�−), p = 0.1% (−4−) and p = 1% (− ◦ −), with regularization.
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Table 7.4: Number of iterations, computational time, and rmse values for p ∈
{0.01, 0.1, 1}% noise, with and without regularization, for Example 3.

p Regularization rmse(f) rmse(g) Iter Time

0.01%

β1 = β2 = 0
β1 = β2 = 10−5

β1 = β2 = 10−4

β1 = β2 = 10−3

β1 = β2 = 10−2

β1 = β2 = 10−1

0.3373
0.0406
0.0525
0.0613
0.0899
0.1831

0.5775
0.0658
0.0448
0.0403
0.0494
0.1180

18
42
41
38
41
41

3 mins
4 mins
5 mins
6 mins
5 mins
5 mins

0.1%

β1 = β2 = 0
β1 = β2 = 10−5

β1 = β2 = 10−4

β1 = β2 = 10−3

β1 = β2 = 10−2

β1 = β2 = 10−1

3.3704
0.2458
0.1018
0.0678
0.0909
0.1830

5.7759
0.3619
0.0895
0.0335
0.0466
0.1197

47
47
39
39
50
50

8 mins
8 mins
6 mins
6 mins
9 mins
9 mins

1%

β1 = β2 = 0
β1 = β2 = 10−5

β1 = β2 = 10−4

β1 = β2 = 10−3

β1 = β2 = 10−2

β1 = β2 = 10−1

35.9469
2.5250
0.9086
0.2720
0.1139
0.1820

53.9733
3.5760
0.7765
0.1581
0.0527
0.1366

401
50
47
50
38
50

1 hour
9 mins
8 mins
9 mins
6 mins
9 mins

7.6 Conclusions

This chapter has presented the determination of an additive time and space-

dependent perfusion coefficient from data measurements in the one-dimensional

parabolic heat equation. The direct solver based on a Crank-Nicolson finite differ-

ence scheme was employed. The resulting inverse problem has been reformulated

as a constrained regularized minimization problem which was solved using the

MATLAB optimization toolbox routine lsqnonlin. The numerically obtained re-

sults are stable and accurate.

Except for Section 2.6, all the inverses investigated so far considered one-

dimensional space-dependent situations. In the next two chapters we consider

two-dimensional problems.



Chapter 8

Determination of a

time-dependent free boundary in

a two-dimensional parabolic

problem

8.1 Introduction

Free boundary problems for parabolic equations play a very important role in

many branches of physics, engineering, chemistry, biology and other areas, see

[9, 26, 43] to mention only a few. For instance, simultaneous determination of

time-dependent coefficients and multiple free boundaries were recently investi-

gated in [61], whilst in [68], free boundary problems with nonlinear diffusion were

considered. The numerical solution for inverse free boundary and Stefan prob-

lems, based on the method of fundamental solutions, was obtained in [51, 81].

The heat equation with an unknown time-dependent thermal diffusivity or heat

source in a domain with a free boundary was also investigated in [67] and [96],

respectively. In [69], the authors investigated the determination of multiple time-

dependent coefficients together with an unknown free boundary. In [24], the

authors discussed free boundary problems arising in two new scenarios, nonlocal

diffusion and aggregation processes.

The challenge of free boundary problems lies in the fact that the solution

domain is unknown and has to be determined. However, only a few papers are

concerned with time-dependent free boundary for parabolic equations in two-

dimensions or more, [2, 4, 73]. In this chapter, the inverse problem concerned

with determining the time-dependent free boundary together with the temper-
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ature from over-determination mass (average temperature) data, whose unique

local solvability was previously established in [73], is for the first time numerically

investigated.

The organization of the chapter is as follows. The two-dimensional inverse

time-dependent free boundary problem for the heat equation is formulated in Sec-

tion 8.2. In Section 8.3, an alternating direction explicit (ADE) finite-difference

method (FDM) is described. In Section 8.4, the numerical approach based on

the minimization of the nonlinear least-squares objective function is introduced.

Numerical results are presented and discussed in Section 8.5. Finally, conclusions

are highlighted in Section 8.6.

8.2 Mathematical formulation

In the moving domain ΩT := {(y1, y2, t)| 0 < y1 < h, 0 < y2 < g(t)Ψ(y1), 0 <

t < T}, with a free boundary of unknown intensity g = g(t) > 0, but with known

space variation Ψ(y1) > 0, we consider the two-dimensional parabolic equation

ut = ∆u+ b1(y1, y2, t)uy1 + b2(y1, y2, t)uy2 + c(y1, y2, t)u+ f(y1, y2, t),

(y1, y2, t) ∈ ΩT , (8.1)

for the unknown dependent variable u(y1, y2, t), herein called temperature, given

the known convection coefficients b1 and b2, reaction coefficient c and heat source

f . Equation (8.1) has to be solved subject to the initial condition

u(y1, y2, 0) = ϕ(y1, y2), 0 ≤ y1 ≤ h, 0 ≤ y2 ≤ g(0)Ψ(y1), (8.2)

the Dirichlet boundary conditions
u(0, y2, t) = µ11(y2, t), 0 ≤ y2 ≤ Ψ(0)g(t), 0 ≤ t ≤ T,

u(h, y2, t) = µ12(y2, t), 0 ≤ y2 ≤ Ψ(h)g(t), 0 ≤ t ≤ T,

u(y1, 0, t) = µ21(y1, t), 0 ≤ y1 ≤ h, 0 ≤ t ≤ T,

u(y1,Ψ(y1)g(t), t) = µ22(y1, t), 0 ≤ y1 ≤ h, 0 ≤ t ≤ T,

(8.3)

and the additional mass/energy specification∫ h

0

dy1

∫ g(t)Ψ(y1)

0

u(y1, y2, t)dy2 = µ5(t), 0 ≤ t ≤ T. (8.4)

Of course, the additional condition (8.4) giving the mass/energy of the heat con-

ducting system [21, 22] is measured in practice, and is needed in order to supply
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for the missing information represented by the unknown function g(t). Alterna-

tive additional information to (8.4) such as an internal temperature measurement

u(y0
1, y

0
2, t) = µ0

5(t), 0 ≤ t ≤ T, (8.5)

at a fixed interior point (y0
1, y

0
2) with 0 < y0

1 < h, 0 < y0
2 < g(t)Ψ(y1), or a heat

flux measurement

∂u

∂n
(y1

1, y
1
2, t) = q(y1

1, y
1
2, t), (8.6)

at a point (y1
1, y

1
2, t) on the boundary ST := {0} × {(y2, t)| 0 ≤ y2 ≤ Ψ(0)g(t),

t ∈ (0, T ]} ∪{h} × {(y2, t)| 0 ≤ y2 ≤ Ψ(h)g(t), t ∈ (0, T ]} ∪[0, h] × ({0} ∪
{(y1, y2, t)| y1 ∈ [0, h], y2 = Ψ(y1)g(t), t ∈ (0, T ]}) can also be considered. In

(8.6), n denotes the outward unit normal to the boundary ST .

The local existence and uniqueness of solution of the inverse problem (8.1)–

(8.4) were established in [73] and read as stated in the following two theorems.

Theorem 8.2.1. Consider the following conditions:

(A1) ϕ ∈ C([0, h]× [0,∞)), µ11, µ12 ∈ C([0,∞)× [0, T ]), µ21, µ22 ∈ C([0, h]× [0, T ]),

µ5 ∈ C1[0, T ], bk, c, f ∈ C([0, h]× [0,∞)× [0, T ]), k = 1, 2;

(A2) ϕ(y1, y2) ≥ ϕ0 > 0, (y1, y2) ∈ [0, h]× [0,∞), min{µ11(y2, t), µ12(y2, t} ≥

µi0 > 0, i = 1, 2, (y2, t) ∈ [0,∞)× [0, T ], min{µ21(y1, t), µ22(y1, t)} > 0,

(y1, t) ∈ [0, h]× [0, T ], µ5(t) > 0, t ∈ [0, T ], f(y1, y2, t) ≥ 0,

(y1, y2, t) ∈ [0, h]× [0,∞)× [0, T ], Ψ(y1) > 0, y1 ∈ [0, h];

(A3) µ11 ∈ C2,1([0, K1Ψ(0)]× [0, T ]), µ12 ∈ C2,1([0, K1Ψ(h)]× [0, T ]),

µ21, µ22 ∈ C2,1([0, h]× [0, T ]), b1, b2, c, f ∈ C1,0(Q), where

Q := {(y1, y2, t) : 0 < y1 < h, 0 < y2 < K1Ψ(y1), 0 < t < T},

ϕ ∈ C2(D0), where D0 := {(y1, y2) : 0 < y1 < h, 0 < y2 < g(0)Ψ(y1)},

Ψ ∈ C2[0, h], lim
y1→0

Ψ′(y1) = +∞, lim
y1→h

Ψ′(y1) = −∞;
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(A4) conditions of consistency of order zero [90] between the initial condition

(8.2) and the Dirichlet boundary conditions (8.3);

(A5) ϕ ∈ C([0, h]× [0,∞)), µ11, µ12 ∈ C([0,∞)× [0, T ]), µ21, µ22 ∈ C([0, h]× [0, T ]),

µ5 ∈ C1[0, T ], bk, c, f ∈ C1,0([0, h]× [0,∞)× [0, T ]), k = 1, 2, Ψ ∈ C1[0, T ].

If (A1)–(A3) are satisfied then there exists a number T0 ∈ (0, T ], which is deter-

mined by input data, such that the problem (8.1)–(8.4) has a solution (g(t), u(y1, y2, t)) ∈
C1[0, T0]×

(
C2,1(ΩT0) ∩ C1,0(ΩT0)

)
=: AT0 with g(t) > 0 for t ∈ [0, T0].

If (A2), (A4) and (A5) are satisfied the same existence result holds in the set

(g(t), u(y1, y2, t)) ∈ C1[0, T0]× (C2,1(ΩT0)∩C
(
ΩT0))

)
with g(t) > 0 for t ∈ [0, T0].

In (A3), the positive constant K1 represents an upper bound for the function

g(t) for t ∈ [0, T ], which is obtained from (8.4) and the max-min principle for the

function u, which under assumptions (A1) and (A2), yields, [73],

u(y1, y2, t) ≥M0 > 0, (y1, y2, t) ∈ ΩT (8.7)

for some positive constant M0. Thus, we can take

K1 = max
0≤t≤T

|µ5(t)|/(M0h( min
0≤y1≤h

Ψ(y1))).

Note also that under assumptions (A1) and (A2), equation (8.4) applied at

t = 0 yields the value of g(0) as the unique positive solution of the nonlinear

equation ∫ h

0

dy1

∫ g(0)Ψ(y1)

0

ϕ(y1, y2)dy2 = µ5(0). (8.8)

Theorem 8.2.2. Let the following conditions be fulfilled:

(A6) bi, c, f ∈ C1,0([0, h]× [0,∞)× [0, T ]), µ11, µ12 ∈ C3,1([0,∞)× [0, T ]), i = 1, 2,

0 < Ψ ∈ C2[0, h],

∫ h

0

Ψ(y1)µ22(y1, t)dy1 6= 0 for t ∈ [0, T ];

(A7) ϕ(y1, y2) ≥ ϕ0 > 0, (y1, y2) ∈ [0, h]× [0,∞).

Then, if C1[0, T ] 3 µ5(t) 6= 0 for t ∈ [0, T ], the inverse problem (8.1)–(8.4) cannot

have more than one solution (g(t), u(y1, y2, t)) in the class AT , with g(t) > 0 for
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t ∈ [0, T ].

The following theorem establishes the stability of the inverse problem (8.1)–

(8.4) under small perturbations in the measured additional mass/energy data

(8.4), see [58] for the proof.

Theorem 8.2.3. Assume that (A6) and (A7) are satisfied. Let µ5(t) 6= 0 and

µε5(t) for t ∈ [0, T ], be two given data (8.4) in C1[0, T ] satisfying

||µ5 − µε5||C1[0,T ]≤ ε (8.9)

for some non-negative constant ε. Then, if it exists, the unique solution

(g(t), u(y1, y2, t)) ∈ AT with g(t) > 0 for t ∈ [0, T ], of the inverse problem (8.1)–

(8.4) under the perturbation µε5(t) of µ5(t) in (8.4), satisfying (8.9), is stable for

small ε > 0.

Remark 1. The stability Theorem 8.2.3 obviously implies, by taking ε = 0, the

uniqueness Theorem 8.2.2. Theorem 8.2.3 ensures the stability in case the data

(8.4) is smooth of class C1[0, T ]. However, the presence of the derivative (µε5)′(t)

of the ’noisy’ non-smooth function µε5(t), coming from measurement, in (8.7)

highlights the practical ill-posedness of the inverse free surface problem under

investigation.

8.3 Numerical discretisation of the direct prob-

lem

For the numerical discretization in a fixed domain it is useful to employ fur-

ther the change of variables x1 = y1, x2 = y2/(g(t)Ψ(y1)), see [73], to trans-

form the problem (8.1)–(8.4) to the following inverse problem for the time-

dependent free boundary intensity function g(t) and the new ’temperature’ func-

tion v(x1, x2, t) := u(x1, x2g(t)Ψ(x1), t):

vt = vx1x1 +
1

g2(t)Ψ2(x1)
vx2x2 + b1(x1, x2g(t)Ψ(x1), t)vx1

+

(
b2(x1, x2g(t)Ψ(x1), t) + x2g

′(t)Ψ(x1)

g(t)Ψ(x1)

)
vx2 + c(x1, x2g(t)Ψ(x1), t)v

+f(x1, x2g(t)Ψ(x1), t), (x1, x2, t) ∈ Ω× (0, T ), (8.10)

v(x1, x2, 0) = ϕ(x1, x2g(0)Ψ(x1)), (x1, x2) ∈ Ω, (8.11)
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v(0, x2, t) = µ11(x2g(t)Ψ(0), t), v(h, x2, t) = µ12(x2g(t)Ψ(h), t),

(x2, t) ∈ [0, 1]× [0, T ], (8.12)

v(x1, 0, t) = µ21(x1, t), v(x1, 1, t) = µ22(x1, t), (x1, t) ∈ [0, h]× [0, T ], (8.13)

g(t)

∫∫
Ω

Ψ(x1)v(x1, x2, t)dx1dx2 = µ5(t), t ∈ [0, T ], (8.14)

where Ω = (0, h)× (0, 1).

We consider in this section, the direct initial boundary value problem given by

equations (8.10)–(8.13), where the functions g, Ψ, b1, b2, c, f , ϕ and µi,j for i, j =

1, 2, are known and the solution v(x1, x2, t) is to be determined. We subdivide

the solution domain Ω× (0, T ) into M1, M2 and N uniform subintervals of equal

lengths ∆x1, ∆x2 and ∆t, where ∆x1 = h/M1, ∆x2 = 1/M2, and ∆t = T/N, re-

spectively. At the node (i, j, n), we denote vni,j := v(x1i, x2j, tn), where x1i = i∆x1,

x2j = j∆x2, tn = n∆t, gn := g(tn), Ψi := Ψ(x1i), b
n
1i,j

:= b1(x1i, x2jgnΨi, tn),

bn2i,j := b1(x1i, x2jgnΨi, tn), cni,j := c(x1i, x2jgnΨi, tn) and fni,j := f(x1i, x2jgnΨi, tn)

for i = 0,M1, j = 0,M2 and n = 0, N .

8.3.1 Alternating direction explicit (ADE) method

Alternating direction explicit (ADE) methods not only provide computational

simplicity, but also possess the advantage of the implicit methods in that no

severe limitation is imposed on the time step. Based on the method described

in [5, 6, 106], in this section an unconditionally stable numerical procedure for

solving nonlinear the two-dimensional parabolic heat equation (8.10) with initial

and boundary conditions (8.11)–(8.13) will be described.

Let ṽni,j and ũni,j satisfy the following equations which are multilevel finite

difference discretisations of equation (8.10):

ṽn+1
i,j − ṽni,j

∆t
=
ṽni+1,j − ṽni,j − ṽn+1

i,j + ṽn+1
i−1,j

(∆x1)2

+
1

g2
nΨ2

i

( ṽni,j+1 − ṽni,j − ṽn+1
i,j + ṽn+1

i,j−1

(∆x2)2

)
+ bn1i,j

( ṽni+1,j − ṽn+1
i−1,j

2(∆x1)

)
+
(bn2i,j + x2jg

′
nΨi

gnΨi

)( ṽni,j+1 − ṽn+1
i,j−1

2(∆x2)

)
+ cni,j

( ṽn+1
i,j + ṽni,j

2

)
+

1

2

(
fn+1
i,j + fni,j

)
, i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N − 1, (8.15)
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ũn+1
i,j − ũni,j

∆t
=
ũn+1
i+1,j − ũn+1

i,j − ũni,j + ũni−1,j

(∆x1)2

+
1

g2
nΨ2

i

( ũn+1
i,j+1 − ũn+1

i,j − ũni,j + ũni,j−1

(∆x2)2

)
+ bn1i,j

( ũn+1
i+1,j − ũni−1,j

2(∆x1)

)
+
(bn2i,j + x2jg

′
nΨi

gnΨi

)( ũn+1
i,j+1 − ũni,j−1

2(∆x2)

)
+ cni,j

( ũni,j + ũn+1
i,j

2

)
+

1

2

(
fn+1
i,j + fni,j

)
, i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N − 1. (8.16)

Furthermore, let the ṽni,j and ũni,j also satisfy the initial and boundary conditions

(8.11)–(8.13), namely

ṽ0
i,j = ũ0

i,j = ϕ(x1i, x2j), i = 0,M1, j = 0,M2, (8.17)

ṽn0,j = ũn0,j = µ11(x2jgnΨ(0), tn), ṽnM1,j
= ũnM1,j

= µ12(x2jgnΨ(h), tn),

j = 0,M2, n = 1, N, (8.18)

ṽni,0 = ũni,0 = µ21(x1i, tn), ṽni,M2
= ũni,M2

= µ22(x1i, tn), i = 0,M1,

n = 1, N. (8.19)

In expressions (8.15) and (8.16), the derivative of g is approximated as

g′n := g′(tn) ≈ g(tn)− g(tn−1)

∆t
=
gn − gn−1

∆t
, n = 1, N. (8.20)

Equations (8.15) and (8.16) are rearranged in order to obtain explicit expressions

for ṽn+1
i,j and ũn+1

i,j . They, respectively, become

ṽn+1
i,j = Ani,j ṽ

n
i,j +Bn

i,j(ṽ
n
i+1,j + ṽn+1

i−1,j) + Cn
i,j(ṽ

n
i,j+1 + ṽn+1

i,j−1)

+Dn
i,j(ṽ

n
i+1,j − ṽn+1

i−1,j) + En
i,j(ṽ

n
i,j+1 − ṽn+1

i,j−1) +G∗i,j,

i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N − 1, (8.21)

ũn+1
i,j = Ani,jũ

n
i,j +Bn

i,j(ũ
n+1
i+1,j + ũni−1,j) + Cn

i,j(ũ
n+1
i,j+1 + ũni,j−1)

+Dn
i,j(ũ

n+1
i+1,j − ũni−1,j) + En

i,j(ũ
n+1
i,j+1 − ũni,j−1) +G∗i,j,

i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N − 1, (8.22)
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where

Ani,j =
1− λni,j
1 + λni,j

, Bn
i,j =

∆t

(∆x1)2(1 + λni,j)
,

Cn
i,j =

∆t

g2
nΨ2

i (∆x2)2(1 + λni,j)
, Dn

i,j =
(∆t)bn1i,j

2∆x1(1 + λni,j)
,

En
i,j =

∆t

2∆x2

(
bn2i,j + x2jg

′
nΨi

gnΨi(1 + λni,j)

)
, G∗i,j =

∆t

2(1 + λni,j)

(
fn+1
i,j + fni,j

)
,

λni,j = ∆t

(
1

(∆x1)2
+

1

g2
nΨ2

i (∆x2)2
−
cni,j
2

)
. (8.23)

From (8.21) and (8.17)–(8.19) for ṽ, ṽn+1
i,j can be computed explicitly. In this

case, calculations proceed from the grid point close to the boundaries x1 = 0 and

x2 = 0, as i, j increasing. The needed values such as ṽn+1
i−1,j, ṽ

n+1
i,j−1, ṽni,j, ṽ

n
i+1,j and

ṽni,j+1 will be known from initial and boundary conditions (8.17)–(8.19). Similarly,

ũn+1
i,j can be calculated explicitly from (8.22) and (8.17)–(8.19) for ũ, beginning

at the boundaries x1 = 1 and x2 = 1 and marching in a sequence of decreasing i

and j, i.e. i = M1 − 1,M1 − 2, ..., 1, j = M2 − 1,M2 − 2, ..., 1. These values are

then substituted into the simple arithmetic mean approximation

vn+1
i,j =

ṽn+1
i,j + ũn+1

i,j

2
(8.24)

to obtain the solution vn+1
i,j . This procedure is unconditionally stable, as both

equations (8.21) and (8.22) are unconditionally stable, but the time increment

∆t cannot be taken indefinitely large. It has been noticed in [5] that if the time

increment is taken very large, the solution obtained will be stable but may not

describe the actual physical problem. This behavior is common to all uncondi-

tionally stable explicit or semi-implicit methods.

The double integral in (8.14) is approximated using the trapezoidal rule
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[34, 44], as follows:

∫ h

0

∫ 1

0

Ψ(x1)v(x1, x2, t)dx2dx1 =
1

4M1M2

[
Ψ(0)v(0, 0, tn)

+Ψ(h)v(h, 0, tn) + Ψ(0)v(0, 1, tn) + Ψ(h)v(h, 1, tn)

+2

M1−1∑
i=1

Ψ(x1i)v(x1i, 0, tn) + 2

M1−1∑
i=1

Ψ(x1i)v(x1i, 1, tn)

+2

M2−1∑
j=1

Ψ(0)v(0, x2j, tn) + 2

M2−1∑
j=1

Ψ(h)v(h, x2j, tn)

+4

M2−1∑
j=1

M1−1∑
i=1

Ψ(x1i)v(x1i, x2j, tn)

]
, n = 1, N. (8.25)

8.4 Numerical solution of inverse problem

In this section, we aim to obtain stable reconstructions for time-dependent inten-

sity g(t) of the the free boundary and the transformed temperature v(x1, x2, t),

satisfing equations (8.10)–(8.14). The inverse problem can be formulated as a

nonlinear least-squares minimization of the objective function

F (g) : =
∥∥∥g(t)

∫ h

0

∫ 1

0

Ψ(x1)v(x1, x2, t; g)dx2dx1 − µ5(t)
∥∥∥2

L2[0,T ]
(8.26)

or, in discretizations form,

F (g) =
N∑
n=1

[
gn

∫ h

0

∫ 1

0

Ψ(x1)v(x1, x2, tn; g)dx2dx1 − µ5(tn)
]2

, (8.27)

where g = (gn)n=1,N and v(x1, x2, t; g) solves (8.10)–(8.13) for given g. The mini-

mization of the objective function (8.27) is performed using the MATLAB toolbox

routine lsqnonlin.

In the numerical computation, we take the parameters of the routine as fol-

lows:

• Maximum number of iterations, (MaxIter) = 400.

• Maximum number of objective function evaluations, (MaxFunEvals) = 105.

• Termination tolerance on the function value, (TolFun) = 10−20.

• Solution tolerance value, (xTol) = 10−20.
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8.5 Numerical results and discussion

In this section, we present a test example in order to illustrate the accuracy and

stability of the ADE numerical procedure introduced earlier in Section 8.3 com-

bined with the minimization of the least-squares functional (8.27), as described

in Section 8.4. We employ the root mean square errors (rmse), in order to assess

the accuracy of the numerical results, defined as

rmse(g) =

[
T

N

N∑
n=1

(
gn − gExact(tn)

)2
]1/2

. (8.28)

For simplicity, we take h = T = 1. The lower bounds and upper bounds for

the coefficient g(t) are taken as 10−9 and 102, respectively. The initial guesses for

g(t) is taken as the value of g(0), which is obtainable from (8.14).

The inverse problem given by equations (8.10)–(8.14) is solved subject to both

exact and noisy data. The noisy data in (8.14) is numerically simulated as

µε5(tn) = µ5(tn) + εn, n = 1, N, (8.29)

where εn are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σ = p × maxt∈[0,1]|µ5(t)|, where p rep-

resents the percentage of noise. We use the MATLAB function normrnd to

generate the random variables ε = (εn)n=1,N := normrnd(0, σ,N).

We consider the inverse problem (8.1)–(8.4) with the following input data:

Ψ(y1) = 1, b1(y1, y2, t) =
1

2
(y1 + y2 + t), b2(y1, y2, t) =

1

2
(y1 + y2 + t),

c(y1, y2, t) =
1

2
(y1 + y2 + t), ϕ(y1, y2) = 3− (−1 + 2y1)2 − (−1 + y2)2,

µ11(y2, t) = 2 + t− (−1 + y2)2, µ12(y2, t) = 2 + t− (−1 + y2)2,

µ21(y1, t) = 2 + t− (−1 + 2y1)2, µ22(y1, t) =
1

9
(14 + 13t− t2 + 36y1

−36y2
1)− (−1 + 2y1)2, f(y1, y2, t) = 11 + 2(−1 + 2y1)(t+ y1 + y2)

+(−1 + y2)(t+ y1 + y2)− 1

2
(t+ y1 + y2)(1 + t+ 4y1 − 4y2

1 + 2y2 − y2
2), (8.30)

µ5(t) =
1

81
(1 + t)(53 + 34t− t2). (8.31)

Remark that conditions of Theorem 8.2.2 are satisfied and therefore, the unique-

ness of the solution is guaranteed. In fact, one can easily check that the analytical
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solution of the transformed inverse problem (8.10)–(8.14) is given by

v(x1, x2, t) = u(x1, x2g(t)Ψ(x1), t) = 3 + t− (1− 2x1)2

−1

9
(−3 + x2 + tx2)2, (8.32)

and

g(t) =
1

3
(1 + t). (8.33)

Also,

u(y1, y2, t) = 3 + t− (−1 + 2y1)2 − (−1 + y2)2. (8.34)

First, we assess the accuracy of the direct problem given by equations (8.1)–

(8.3) (or (8.10)–(8.13)) with the input data (8.30) when g(t) is known and given by

(8.33). The numerical results for the interior transformed temperature v(x1, x2, t)

have been obtained in excellent agreement with the analytical solution (8.32) and

therefore they are not presented. Apart from the interior temperature, other out-

put of interest is the data (8.4) (or (8.14)), which analytically is given by (8.31).

Table 8.1 shows that the analytical and numerical solutions for this quantity

obtained with various numbers of space grids M1 = M2 ∈ {5, 10, 20} and with

various numbers of time steps N ∈ {20, 40, 80} are in very good agreement. Also,

the root mean square errors rmse defined by

rmse(µ5) =

[
1

N

N∑
n=1

(
µNumerical5 (tn)− µExact5 (tn)

)2
]1/2

, (8.35)

indicated in Table 8.1, show more clearly the convergence of the numerical ADE

solution to the analytical solution (8.31).



Chapter 8. Determination of a time-dependent free boundary in a
two-dimensional parabolic problem 171

Table 8.1: The exact (8.31) and numerical solutions for µ5(t), with various M1 =
M2 ∈ {5, 10, 20} and N ∈ {20, 40, 80}, for the direct problem. The rmse values
(8.35) are also included.

M1 = M2 N t = 0.1 t = 0.2 t = 0.3 ... t = 0.9 rmse

5
20
40
80

0.7554
0.7556
0.7556

0.8741
0.8741
0.8742

1.0006
1.0007
1.0007

...

...

...

1.9232
1.9233
1.9234

0.0148
0.0147
0.0146

10
20
40
80

0.7629
0.7631
0.7632

0.8823
0.8825
0.8825

1.0096
1.0098
1.0098

...

...

...

1.9369
1.9372
1.9373

0.0039
0.0038
0.0037

20
20
40
80

0.7648
0.7649
0.7651

0.8841
0.8845
0.8846

1.0116
1.0120
1.0121

...

...

...

1.9398
1.9405
1.9408

0.0015
0.0011
0.0009

exact 0.7658 0.8853 1.0129 ... 1.9420 0

Next we investigate the inverse problem. We fix M1 = M2 = 10 and N =

40 and we start the investigation for determining the unknown time-dependent

intensity g(t) and the transformed temperature v(x1, x2, t) for p ∈ {0, 1, 2, 3}%
noise in the measured data (8.29). Although not illustrated, it is reported that a

rapid monotonic decreasing convergence of the objective function (8.27) to a very

small minimum value of O(10−28) is achieved in about 7 iterations. Figure 8.1

shows the absolute error between the exact solution (8.32) and the numerical

solutions for the transformed temperature v(x1, x2, t). From this figure it can be

seen that the accuracy of the numerical solution for the transformed temperature

v(x1, x2, t) improves, as the noise level p decreases.

The numerical results for g(t) are shown in Figure 8.2. For more clarity, we

also report that the rmse(g) values (8.28) are 0.0014, 0.0127, 0.0250 and 0.0373 for

p ∈ {0, 1, 2, 3}% noise, respectively. As expected, for exact data, i.e. p = 0, the

unique solution (8.33), which is guaranteed from Theorem 8.2.2, is retrieved very

accurately. As noise p is included in the input data (8.29), Figure 8.2 shows that

the numerical results are reasonably accurate but start to build up oscillations as

the amount of noise p increases. This is expected since the inverse problem under

investigation is ill-posed. In order to restore stability we penalise the least-squares

function (8.26) by adding a first-order smoothing term λ||g′(t)||2L2[0,T ] to it since

the theory requires g ∈ C1[0, T ], where λ > 0 is a regularization parameter to be

prescribed. Then, in discretised form this first-order Tikhonov functional recasts

as

Fλ(g) = F (g) + λ

N∑
n=1

(
gn − gn−1

∆t

)2

. (8.36)
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For p = 5% noise, Figure 8.3 shows the analytical solution (8.33) in compari-

son with the numerical solutions obtained by minimizing the objective functional

(8.36) for various regularization parameters. The rmse(g) values are 0.0618,

0.0440, 0.0292 and 0.0322 for λ ∈ {0, 10−3, 10−2, 10−1}, respectively. From Fig-

ure 8.3 it can be seen that the numerical unregularized solution obtained with

λ = 0 manifests instability, however, inclusion of regularization with λ = 10−2 to

10−1 provides a stable solution which is consistent in accuracy with the p = 5%

noise with which the input data (8.29) has been contaminated. The last remain-

ing thing to do is to provide some reasoning on how to choose the regularization

parameter λ > 0 in the functional (8.36). One possible argument for this choice

is given by the L-curve plotted in Figure 8.4. For various values of the regulariza-

tion parameter λ, for the obtained minimizer g
λ

of (8.36), we plot the derivative

norm ||g′
λ
||=

√∑N
n=1

(
gn−gn−1

∆t

)2
versus the residual norm

√
F (g

λ
). The corner of

the L-curve around λ = 10−2, illustrated in Figure 8.4, is taken as a good choice

for the regularization parameter λ compromising/balancing the fit of data (resid-

ual comparable to the amount of noise included) with the stability of solution

(bounded derivative solution norm).
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Figure 8.1: The absolute error between the analytical (8.32) and numerical solutions

for the transformed temperature v(x1, x2, 1), for p ∈ {0, 1, 2, 3}% noise, without regu-

larization.
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Figure 8.2: The analytical (8.33) and numerical solutions for the intensity g(t) of the

free boundary, for p ∈ {0, 1, 2, 3}% noise, without regularization.
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Figure 8.3: The analytical (8.33) and numerical solutions for the intensity g(t)

of the free boundary, for p = 5% noise, with various regularization parameters

λ ∈ {0, 10−3, 10−2, 10−1}.
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Figure 8.4: The derivative norm ||g′λ|| versus the residual norm
√
F (gλ) for the L-curve

with various regularization parameters, p = 5% noise.

8.6 Conclusions

This chapter has presented the determination of a time-dependent intensity of a

free boundary and the temperature in a two-dimensional parabolic problem from

mass (energy) measurement. This nonlinear inverse problem has been shown to be

(locally) well-posed and a stability theorem has been stated. The free boundary

problem has been transformed to a fixed domain, and the direct solver based on

ADE finite difference scheme has been employed. The inverse problem has been

solved using the MATLAB optimisation toolbox routine lsqnonlin for minimizing

the least-squares objective function further penalised with first-order regulariza-

tion when noisy data have been inverted. Numerical results have been presented
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and discussed, showing that accurate and stable approximate solutions have been

obtained. Extension to three-dimensions is, in principle, straightforward.



Chapter 9

Reconstruction of an orthotropic

thermal conductivity

9.1 Introduction

The reconstruction of coefficients in the parabolic heat equation, [74], has been

the focus of attention in several fields, e.g. finance, groundwater flow, oil re-

covery, and heat transfer. In particular, the identification of coefficients in two-

dimensional heat conduction problems has received significant attention from

many researchers [28, 29, 76, 137]. Most of these studies relate to isotropic mate-

rials. However, it has been found that factors such as manufacturing and curing

processes have impact on the material properties of a structure, often introduc-

ing extra variations, including anisotropy, [55], which are difficult to measure

directly.

The estimation of thermal properties for multi-dimensional inhomogeneous

and anisotropic media is quite limited in the literature, see e.g. [14, 87]. Such

a coefficient problem presents several difficulties because it is inverse, nonlinear

and ill-posed.

At steady-state, the study on the determination of the diffusivity/conductivity

of a layered and orthotropic medium has been addressed in [3, 14]. At the same

time, the general case of identification of an anisotropic spacewise dependent con-

ductivity in the elliptic Laplace-Beltrami equation was thoroughly investigated

in [132]. However, in the time-dependent case the scenario has received very

limited attention from researchers. Here, we only highlight the nonlinear identi-

fication of a temperature-dependent orthotropic material, [114], the recovery of

the leading coefficients of a heterogeneous orthotropic medium, [63, 64], and the

space-dependent anisotropic case addressed in [87].

The organization of the chapter is as follows. The two-dimensional inverse
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problem is formulated in Section 9.2. In Section 9.3, the alternating direction

explicit (ADE) finite-difference method (FDM) is described. In Section 9.4, the

numerical approach based on the minimization of the nonlinear least-squares ob-

jective function is introduced. Numerical results are presented and discussed in

Section 9.5. Finally, conclusions are presented in Section 9.6.

9.2 Statement of the inverse problem

Consider the inverse problem of finding the orthotropic thermal conductivity

component a(y, t) > 0 in the two-dimensional parabolic heat equation

∂u

∂t
(x, y, t) = a(y, t)

∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t) + f(x, y, t), (x, y, t) ∈ QT , (9.1)

where f is given heat source, along with the unknown temperature u(x, y, t) in

the domain QT = {(x, y, t) : 0 < x < h, 0 < y < l, 0 < t < T}, subject to the

initial condition

u(x, y, 0) = ϕ(x, y), (x, y) ∈ [0, h]× [0, l], (9.2)

the Dirichlet boundary conditions

u(0, y, t) = µ11(y, t), u(h, y, t) = µ12(y, t), (y, t) ∈ [0, l]× [0, T ], (9.3)

u(x, 0, t) = µ21(x, t), u(x, l, t) = µ22(x, t), (x, t) ∈ [0, h]× [0, T ], (9.4)

and the heat flux over-specification

a(y, t)
∂u

∂x
(0, y, t) = κ(y, t), (y, t) ∈ [0, l]× [0, T ], (9.5)

where ϕ, µ1i, µ2i for i = 1, 2 are given functions satisfying compatibility condi-

tions.

The local existence and uniqueness of solution of the inverse problem (9.1)–

(9.5) were established in [76] and read as stated in the following two theorems.

Theorem 9.2.1. Suppose that the following assumptions are satisfied:

(A1) ϕ ∈ C2(D),where D := {(x, y) : 0 < x < h, 0 < y < l},

µ1i ∈ C2,1([0, l]× [0, T ]), µ2i ∈ C2,1([0, h]× [0, T ]), i = 1, 2,

κ ∈ Cγ,0([0, l]× [0, T ]), f ∈ C1+γ,γ,0(QT ) for some γ ∈ (0, 1);
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(A2) ϕx(x, y) > 0, (x, y) ∈ D, µ11t(y, t)− µ11yy(y, t)− f(0, y, t) ≤ 0,

µ12t(y, t)− µ12yy(y, t)− f(h, y, t) ≥ 0, κ(y, t) > 0, (y, t) ∈ [0, l]× [0, T ],

µ2ix(x, t) > 0, i = 1, 2, (x, t) ∈ [0, h]× [0, T ], fx(x, y, t) ≥ 0, (x, y, t) ∈ QT ;

(A3) conditions of compatibility of order zero [90] between the initial condition

(9.2) and the Dirichlet boundary conditions (9.3) and (9.4).

Then, there exists T0 ∈ (0, T ], which is determined by the input data, such that

the problem (9.1)–(9.5) has a solution (a(y, t), u(x, y, t)) ∈ Cγ,0([0, l]× [0, T0])×
C2,1(QT0), with a(y, t) > 0 for (y, t) ∈ [0, l]× [0, T0].

We remark that a formal elimination of a(y, t) in (9.5) and substitution into

(9.1) result in the nonlinear partial differential equation

ut(x, y, t) =
κ(y, t)

ux(0, y, t)
uxx(x, y, t) + uyy(x, y, t) + f(x, y, t), (x, y, t) ∈ QT (9.6)

to be solved for the temperature u(x, y, t) subject to the initial and boundary con-

ditions (9.2)–(9.4). Also, at the initial time t = 0 the value of the principal direc-

tion component is known and it can easily be obtained form the over-specification

condition (9.5) as follows:

a(y, 0) =
κ(y, 0)

ϕx(0, y)
, y ∈ [0, l]. (9.7)

Theorem 9.2.2. Suppose that the condition Cγ,0([0, l] × [0, T ]) 3 κ(y, t) 6= 0,

is satisfied. Then, the inverse problem (9.1)–(9.5) cannot have more than one

solution in the class (a(y, t), u(x, y, t)) ∈ Cγ,0([0, l] × [0, T ]) × C2,1(QT ), with

a(y, t) > 0 for (y, t) ∈ [0, l]× [0, T ] for some γ ∈ (0, 1).

9.3 Numerical solution of the direct problem

In this section, we consider the direct initial boundary value problem (9.1)–(9.5),

where a(y, t), f(x, y, t), ϕ(x, y), κ(y, t), µ1i(y, t) and µ2i(x, t) for i = 1, 2, are

known and the solution u(x, y, t) is to be determined. To achieve this, we use

the alternating direction explicit (ADE) finite-difference method (FDM) which is

unconditionally stable, as described in the next subsection.

We subdivide the solution domain QT into M1, M2 and N subintervals of equal

step lengths ∆x, ∆y, and uniform time step ∆t, where ∆x = h/M1, ∆y = l/M2,

and ∆t = T/N, respectively. At the node (i, j, n), we denote uni,j := u(xi, yj, tn),



Chapter 9. Reconstruction of an orthotropic thermal conductivity179

where xi = i∆x, yj = j∆y, tn = n∆t, aj,n := a(yj, tn) and fni,j := f(xi, yj, tn) for

i = 0,M1, j = 0,M2, n = 0, N .

9.3.1 Alternating direction explicit finite difference method

(ADE-FDM)

As previously described in subsection 8.3.1, the ADE-FDM makes use of two

approximations that are implemented for computations proceeding in alternating

directions, e.g., from left to right and from right to left, with each approximation

being explicit in its respective direction of computation [5, 6, 23]. This numerical

scheme possesses the advantage of the implicit methods, i.e., no severe limitation

in the size of the time increment. Also, the ADE-FDM has another advantage,

namely, that is unconditionally stable. For solving the direct problem (9.1)–(9.4)

the ADE-FDM is as follows.

Let ũni,j and ṽni,j be the solutions of the following equations which are multilevel

finite difference discretization of equation (9.1):

ũn+1
i,j − ũni,j

∆t
= aj,n

( ũni+1,j − ũni,j − ũn+1
i,j + ũn+1

i−1,j

(∆x)2

)
+
( ũni,j+1 − ũni,j − ũn+1

i,j + ũn+1
i,j−1

(∆y)2

)
+

1

2
(fn+1
i,j + fni,j),

i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N − 1, (9.8)

ṽn+1
i,j − ṽni,j

∆t
= aj,n

( ṽn+1
i+1,j − ṽn+1

i,j − ṽni,j + ṽni−1,j

(∆x)2

)
+
( ṽn+1

i,j+1 − ṽn+1
i,j − ṽni,j + ṽni,j−1

(∆y)2

)
+

1

2
(fn+1
i,j + fni,j),

i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N − 1. (9.9)

Furthermore, let the ũni,j and ṽni,j also satisfy the initial and boundary conditions

(9.2)–(9.4), namely,

ũ0
i,j = ṽ0

i,j = ϕ(xi, yj), i = 0,M1, j = 0,M2, (9.10)

ũn0,j = ṽn0,j = µ11(yj, tn), ũnM1,j
= ṽnM1,j

= µ12(yj, tn), j = 0,M2,

n = 1, N, (9.11)
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ũni,0 = ṽni,0 = µ21(xi, tn), ũni,M2
= ṽni,M2

= µ22(xi, tn), i = 0,M1,

n = 1, N. (9.12)

Rearranging the terms in (9.8) and (9.9), we obtain the explicit calculations

of ũn+1
i,j and ṽn+1

i,j as follows:

ũn+1
i,j = Aj,nũ

n
i,j +Bj,n(ũni+1,j + ũn+1

i−1,j) + Cj,n(ũni,j+1 + ũn+1
i,j−1) +D∗i,j,

i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N − 1, (9.13)

ṽn+1
i,j = Aj,nṽ

n
i,j +Bj,n(ṽn+1

i+1,j + ṽni−1,j) + Cj,n(ṽn+1
i,j+1 + ṽni,j−1) +D∗i,j,

i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N − 1, (9.14)

where

Aj,n =
1− λj,n
1 + λj,n

, Bj,n =
(∆t)aj,n

(∆x)2(1 + λj,n)
, Cj,n =

(∆t)

(∆y)2(1 + λj,n)
,

D∗i,j =
∆t

2(1 + λj,n)

(
fn+1
i,j + fni,j

)
, λj,n =

(∆t)aj,n
(∆x)2

+
∆t

(∆y)2
. (9.15)

From (9.13) and (9.10)–(9.12) for ũ, ũn+1
i,j can be computed explicitly. In this

case, calculations proceed from the grid point close to the boundaries x = 0 and

y = 0, as i, j are increasing. The needed values such as ũn+1
i−1,j, ũ

n
i,j and ũni+1,j

will be known from initial and boundary conditions (9.10)–(9.12). Similarly, ṽn+1
i,j

can be calculated explicitly from (9.14) and (9.10)–(9.12) for ṽ, beginning at the

boundaries x = 1 and y = 1 and marching in a sequence of decreasing i and j,

i.e. i = M1 − 1,M1 − 2, ..., 1, j = M2 − 1,M2 − 2, ..., 1. These values are then

substituted into the simple arithmetic mean approximation

un+1
i,j =

ũn+1
i,j + ṽn+1

i,j

2
. (9.16)

to obtain the solution un+1
i,j . This procedure is unconditionally stable, as both

equations (9.13) and (9.14) are unconditionally stable. The heat flux (9.5) can

be calculated using the FDM approximation

κ(yj, tn) = aj,n

(
4u(1, yj, tn)− u(2, yj, tn)− 3µ11(yj, tn)

2∆x

)
,

j = 1,M2 − 1, n = 1, N. (9.17)
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9.4 Numerical solution of the inverse problem

In this section, our aim is to obtain a stable reconstruction of the orthotropic ther-

mal conductivity component a(y, t) > 0 together with the temperature u(x, y, t),

satisfing equations (9.1)–(9.5). The inverse problem can be formulated as a non-

linear least-squares minimization of the least-squares objective function given by

F (a) =
∥∥∥a(y, t)ux(0, y, t)− κ(y, t)

∥∥∥2

, (9.18)

or, in discretised form

F (a) =
N∑
n=1

M2∑
j=0

[
aj,nux(0, yj, tn)− κ(yj, tn)

]2

, (9.19)

where u(x, y, t) solves (9.1)–(9.4) for given a. The minimization of the objective

function (9.19) is performed using the MATLAB toolbox routine lsqnonlin. Since

the MATLAB routine lsqnonlin accepts only a vector of unknowns we make the

matrice a be a long vector by renumbering its components.

In the numerical computation, we take the parameters of the routine, as fol-

lows.

• Maximum number of iterations, (MaxIter) = 400.

• Maximum number of objective function evaluations, (MaxFunEvals) = 105.

• Termination tolerance on the function value, (TolFun) = 10−20.

• Solution tolerance value, (xTol) = 10−20.

The inverse problem given by (9.1)–(9.5) is solved subject to both exact and noisy

heat flux data (9.5). The noisy data are numerically simulated, as follows:

κε(yj, tn) = κ(yj, tn) + εj,n, j = 0,M2, n = 1, N, (9.20)

where εj,n are random variables generated from a Gaussian normal distribution

with mean zero and standard deviation σ

σ = p× max
(y,t)∈[0,h]×[0,T ]

|κ(y, t)|, (9.21)

where p represents the percentage of noise. We use the MATLAB function

normrnd to generate the random variables ε = (εj,n)j=0,M2,n=1,N , as follows:

ε = normrnd(0, σ,M2 + 1, N). (9.22)
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In the case of noisy data (9.20), we replace κ(yj, tn) by κε(yj, tn) in (9.19).

9.5 Numerical results and discussion

In this section, we present numerical results for the recovery of the orthotropic

thermal conductivity a(y, t) together with the temperature u(x, y, t), in order

to illustrate the accuracy and stability of the numerical methods based on the

ADE-FDM, as described in Section 9.3, combined with the minimization of the

objective function (9.19), as described in Section 9.4. Furthermore, we add noise

to the input measurement data (9.5) to simulate the real situation of measurement

noisy data, by using equations (9.20)–(9.22). We employ the root mean square

errors (rmse), in order to quantify the accuracy of the approximate solutions,

defined by

rmse(a) =

[
1

N(M2 + 1)

N∑
n=1

M2∑
j=0

(
aNumerical(yj, tn)− aExact(yj, tn)

)2
]1/2

. (9.23)

For simplicity, we take h = l = T = 1. We take the lower and upper simple

bounds for a(y, t) to be 10−4 and 102, respectively. These bounds allow a wide

search range for the unknown positive orthotropic thermal conductivity compo-

nent a(y, t).

Consider the inverse problem (9.1)–(9.5) with unknown orthotropic thermal

conductivity a(y, t) and solve this inverse problem with the input data ϕ, µ1i and

µ1i, i = 1, 2, given by

ϕ(y, x) = u(x, y, 0) = x− y, f(x, y, t) =
1

5
et/5(x− y),

µ11(y, t) = u(0, y, t) = −et/5y, µ12(y, t) = u(1, y, t) = et/5(1− y),

µ21(x, t) = u(x, 0, t) = et/5x, µ22(x, t) = u(x, 1, t) = et/5(x− 1), (9.24)

κ(y, t) = a(y, t)ux(0, y, t) =
1

100
et/5(1 + t+ y). (9.25)

Remark that the conditions of Theorems 9.2.1 and 9.2.2 are satisfied and there-

fore, the local solvability of the solution is guaranteed. In fact, it can easily be

checked by direct substitution that the analytical solutions u(x, y, t) and a(y, t)

are given by

u(x, y, t) = et/5(x− y), (x, y, t) ∈ QT , (9.26)
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a(y, t) =
y + t+ 1

100
, (y, t) ∈ [0, 1]× [0, 1]. (9.27)

We assess the accuracy of the direct problem given by equations (9.1)–(9.4) with

the input data (9.24) when a(y, t) is known and given by (9.27). Figures 9.1 and

9.2 shows the absolute error between the exact solutions (9.26) and (9.25) and

the numerical solutions for the temperature u(x, y, t) and the heat flux quantity

of interest κ(y, x). From these figures, it can be seen that the accuracy of the

numerical solution for the temperature u(x, y, t) and heat flux κ(y, x) are improv-

ing, as the time steps ∆t = T/N decreases. The root mean square error rmse(κ)

defined by

rmse(κ) =

[
1

N(M2 + 1)

N∑
n=1

M2∑
j=0

(
κNumerical(yj, tn)− κExact(yj, tn)

)2
]1/2

, (9.28)

indicated in Table 9.1, shows more clearly the convergence of the numerical ADE-

FDM solution to the exact heat flux (9.25).
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Figure 9.1: The absolute errors between the exact (9.26) and numerical solutions for

the temperature u(x, y, 1), with M1 = M2 = 10 and various N ∈ {10, 20, 40}, for the

direct problem.
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Figure 9.2: The absolute errors between the exact (9.25) and numerical solutions for

the heat flux κ(y, t), with M1 = M2 = 10 and various N ∈ {10, 20, 40}, for the direct

problem.

Table 9.1: The exact (9.25) and numerical solutions for κ(y, t), with M1 = M2 =
10 and various N ∈ {10, 20, 40}, for the direct problem. The rmse(κ) values
(9.28) are also included.

N = 10 N = 20 N = 40
y t κ(y, t) κ(y, t) κ(y, t) Exact

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0128
0.0131
0.0154
0.0183
0.0218
0.0239
0.0265
0.0295
0.0329

0.0120
0.0143
0.0169
0.0195
0.0221
0.0248
0.0276
0.0305
0.0335

0.0122
0.0145
0.0169
0.0195
0.0221
0.0248
0.0276
0.0305
0.0335

0.0122
0.0145
0.0169
0.0194
0.0221
0.0248
0.0276
0.0305
0.0335

rmse(κ) 5.8E-4 1.2E-4 2.9E-5 0

Now, we investigate the inverse problem. We take M1 = M2 = 10 and N = 20

and we start our investigation for reconstructing the unknown orthotropic thermal

conductivity a(y, t) and the temperature u(x, y, t) for exact and noisy measured
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input data (9.20), i.e., for the cases p ∈ {0, 1, 3, 5}% of noise. The initial guess

for a(y, t) has been taken as

a0(y, t) = a(y, 0) =
y + 1

100
, y ∈ [0, 1]. (9.29)

Note that the value of a(y, 0) is available from (9.7). The objective function (9.19),

as a function of the number of iterations, is plotted in Figure 9.3. From this fig-

ure, it can be seen that a monotonic decreasing convergence is achieved in about

7 to 8 iterations to reach a very low prescribed tolerance of O(10−28). The nu-

merically obtained results for a(y, t) are illustrated in Figure 9.4 and summarised

in Table 9.2. From this figure and table, it can be seen that as the percentage of

noise p decreases from 5% to 3% to 1% and then to zero the numerically obtained

results becomes more stable and accurate.
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Figure 9.3: The objective function (9.19), as a function of the number of iterations,

for various noise levels p ∈ {0, 1, 3, 5}%.

Table 9.2: The number of iterations, the value of the objective function (9.19) at
final iteration, the rmse(a) values (9.23) and the computational time, for various
noise levels p ∈ {0, 1, 3, 5}%.

Numerical outputs p = 0 p = 1% p = 3% p = 5%
Number of iterations
Minimum value of (9.19)
rmse(a)
Computational time

7
2.5E-25
1.2E-4
19 mins

7
3.6E-24
3.6E-4
19 mins

7
1.1E-23
1.0E-3
19 mins

8
5.6E-28
1.7E-3
22 mins
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Figure 9.4: The exact (9.27) and numerical solutions for the orthotropic thermal

conductivity component a(y, t), for various noise levels: (a) p = 0, (b) p = 1% , (c)

p = 3% and (d) p = 5% noise. The absolute error between them is also included.
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9.6 Conclusions

In this chapter, the inverse problem involving the reconstruction of an orthotropic

thermal conductivity component a(y, t) and the temperature u(x, y, t) in the two-

dimensional parabolic heat equation (9.1) from the heat flux over-specification

(9.5) has been investigated. Sufficient conditions which ensure a unique solv-

ability of solution are provided [76]. The direct solver based on the ADE-FDM

has been employed. The inverse problem solution based on a nonlinear least-

squares minimization problem using the MATLAB optimisation toolbox routine

lsqnonlin has been developed. Numerical results presented and discussed for both

exact and noisy data show that accurate and stable solutions have been obtained.

The reconstruction of both components of the orthotropic thermal conductivity

in the two-dimensional parabolic heat equation from nonlocal over-determination

heat flux specifications is currently ongoing research.



Chapter 10

General conclusions and future

work

10.1 Conclusions

The aim of this thesis was to solve several types of inverse coefficient identification

problems in the parabolic heat equation. Specifically, the problems of coefficient

identification in fixed or moving domains for a single as well as multiple unknowns

have been investigated. Every inverse problem has practical physical applications

in a real-life scenario. Examples of such scenarios include determination of an

unknown free boundary of melting-freezing processes and identification of ther-

mal properties of a given material.

Many physical contexts can be modeled by partial differential equations. If

every required input data is known, then, in general, the solution can be uniquely

obtained and used in the prediction of the system’s output behaviour under var-

ious conditions. However, if part of the required data is not available, then it is

impossible to apply such a model in these physical contexts. Such a situation is

what is referred to as an inverse problem. The application of inverse problems is

of utmost importance in instances where the immediate measurement of appro-

priate parameters is not possible, such as when the rapidity of the process as well

as the unknown material or hostile environment are not accessible.

Inverse coefficient identification problems consist of one or more coefficients

which are unknown along with the primary dependent variable. Thus, one needs

more information to get the unspecified coefficients. The additional informa-

tion is normally given as measured over-specified data containing random noise.

These inverse problems are solved based on several types of over-determination

conditions, including heat momentum of the first, second and third order, Ste-

fan condition, the heat flux, nonlocal observation, general integral type over-
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determination, mass/energy specification, additional temperature measurement,

and Cauchy data. In a case where the underlying problem is ill-posed, the random

noise in these measurements brings about considerable oscillations and uncon-

trolled behavior in the output solution, which makes the inverse problem difficult

to solve using traditional numerical approaches.

In this thesis, the inverse problems are reduced to nonlinear constrained min-

imization problems by incorporating penalty terms to stabilize the solution. Sev-

eral approaches are used to select the regulation parameter, e.g. the L-curve

method, [48]. This method is actually a plot for many positive regularization pa-

rameters of the norm of the regularised solution versus the corresponding residual

norm. If such a curve has an L-shape then one can choose the regularization pa-

rameter at the ’corner’ of it. Simple trial and error can also be used according to

experience by first selecting a small value and consistently raising it till all the nu-

merical oscillations in the unknown coefficients are eliminated. More rigorously,

the regularization parameter is selected by the discrepancy principle technique

which has been adopted in Section 1.6.3.

For every inverse problem considered in the thesis, the stability and accuracy

of the numerical results were carefully tested for several mesh sizes and noise lev-

els incorporated into the input data to simulate the case of real measured data.

Additionally, for every problem, the FDM direct solver has been used in the pro-

cess of minimizing the least-squares functional linked with the gap between the

measured and the computed data. Moreover, an alternating direction explicit

scheme has been used in two-dimensions. The entire iterative process of mini-

mization has been carried out using the lsqnonlin routine from the MATLAB

optimization toolbox, which enables one to impose simple constraints on every

unknown coefficient. Also, the user does not need to supply the gradient of the

minimizing functional.

The Tikhonov regularization approach is only applied where necessary. This

method modifies the residual functional by adding a penalty condition to make the

solution stable. Whenever the Tikhonov regularization approach is applied, each

nonlinear inverse problem has been recast into a nonlinear constrained minimiza-

tion problem subject to bounds on the variables. The choice of the regularization

parameters has been clearly explained throughout the thesis. The stability of the

numerical solutions has been evaluated by including random noise in the input

data. Every numerical solution has been compared with its known analytical

solution where available. Otherwise, the numerical solution is compared with the

matching direct problem numerical solution.

Overall, the numerical results obtained by using the methods established in
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this thesis, i.e. the FDM with a Crank-Nicolson or ADE or FTCS combined

with the minimization of the nonlinear Tikhonov regularization functional us-

ing the MATLAB optimization toolbox routine lsqnonlin and the L-curve, the

discrepancy principle, or trial and error technique for choosing the regulariza-

tion parameter, illustrate that accurate and stable solutions can be obtained

for reconstructing one or more unknown, mainly, time-dependent coefficients in

parabolic PDEs. Moreover, in all the inverse and ill-posed problems considered in

this thesis, the numerical results were thoroughly investigated with various mesh

sizes and up to 5% noise added to the input data, which is a realistic amount

of noise in practical measurement. We have also perturbed the input data with

larger amounts of noise than 5%, but the results obtained were less accurate and

therefore they were not presented. For more details about other types of regular-

ization, see Section 10.2. In summary, all numerical results with/without noise

contamination have been found to be accurate and stable.

In addition, since the FDM with a Crank-Nicolson or ADE or FTCS is applied

to solve the PDEs, which may limit the applications of the nonlinear least-squares

optimization solver proposed in this thesis, the FEM or FVM could be a good

method to solve the PDEs in irregular domains. Also, since we have depended on

the initial guess, only local solutions may be obtained. For a global minimizer to

nonlinear optimization problems as described in Section 1.8, whose convergence

to a better approximation of the true solution is independent of the initial guess

is deferred to a future work.

In the remainder of this section we summarize in more detail the conclusions

that we have drawn from the inverse problems analysed in each chapter.

In Chapter 1, a general introduction to direct and inverse problems has been

presented. General description for the inverse Stefan problem has been given

in Section 1.5 followed by the stability analysis for the inverse problems under

investigation based on Tikhonov’s regularization method with appropriate choice

of regularization parameters, e.g. the L-curve method, the discrepancy principle

criterion and trial and error technique in order to achieve a stable and accurate

solution. A quick overview of numerical methods for discretising and solving

PDE’s has been provided. Moreover, a brief description of MATLAB optimiza-

tion toolbox routine has been explained along with some commands followed by a

description of the TRR algorithm. Finally, the purpose and outline of the thesis

was highlighted in Section 1.9.

In Chapter 2, an inverse problem which requires determining the time-dependent

thermal conductivity and the transient temperature satisfying the one-dimensional

parabolic heat equation with initial data, Dirichlet boundary conditions, and the
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heat flux as an overdetermination condition has been investigated. The inverse

problem is recast as a nonlinear least-squares minimization subject to a physi-

cal positivity bound on the unknown thermal conductivity. Numerically, this is

effectively solved using the lsqnonlin routine from the MATLAB toolbox. Nu-

merical results indicate that accurate and reasonably stable solutions have been

obtained. This problem seems rather stable and hence, in general, no regular-

ization was found necessary to be employed. An extension to a two-dimensional

coefficient identification problem, which is a variant of the one-dimensional prob-

lem, has been discussed in Section 2.6. For this newly formulated problem the use

of regularization is necessary in order to ensure that a numerically stable solution

is obtained.

In Chapter 3, a couple of inverse problems which require the simultaneous

reconstruction of time-dependent thermal conductivity, convection or absorption

coefficients from the measurements of the heat moments in the one-dimensional

parabolic heat equation governing transient heat and bio-heat thermal processes

have been investigated. The measurement of the heat moments formulates a less

stable inverse problem than the measurement of the heat fluxes. The IP2 seems

more ill-posed that the IP1 and regularization was needed in order to obtain a

stable solution. The choice of the regularization parameter was discussed based

on the L-curve method, the discrepancy principle and a trial and error technique.

Numerical results illustrated for several benchmarks test examples show that an

accurate and stable solution has been obtained.

Chapter 4 focused on the simultaneous identification of time-dependent reac-

tion coefficients along with the temperature and a free boundary, whilst Chapter

5 was concerned with two-phase inverse Stefan coefficient identification problems

with multiple free boundaries. In these chapters, numerical investigations for the

recovery of multiple time-dependent coefficients entering the parabolic heat equa-

tion with a free boundary subject to a heat flux, specification of the energy, a

Stefan condition, and several-orders heat moment measurements have been con-

sidered. The moving boundary(ies) value problem(s) was/were first transformed,

by a simple change of variables, to a problem formulated in a fixed domain. In

Chapter 4, the Stefan condition was replaced by a second-order heat moment

specification, whilst in Chapter 5 the Stefan conditions were replaced by the sec-

ond and third-order heat moment measurement. Therefore, the second inverse

problem is more ill-posed than the first one. These inverse problems have been

solved using the MATLAB optimisation toolbox routine lsqnonlin for minimizing

the objective function. It is interesting to remark that, based on the compari-

son between Examples 1 and 2, the Stefan condition contains more information
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than the second or third-order heat moment. Notably, Tikhonov’s regularization

method, apart from restoring the stability of the numerical solution, also reduces

the computational time. The regularization parameter has been chosen based

on the L-curve criterion for both inverse problems. Numerical results presented

and discussed for several test examples show that accurate and stable numerical

solutions have been achieved.

In Chapter 6, three novel inverse problems of determining the time-dependent

thermal diffusivity coefficient for degenerate parabolic PDEs, which vanishes

at the initial time, the convection coefficient and the temperature for a one-

dimensional parabolic equation, from some additional information about the pro-

cess (the so-called overdetermination conditions) have, for the first time, been

investigated. The IP1 was found to be well-posed, whilst the IP2 and IP3 were

found to be ill-posed and sensitive to noise. The resulting inverse problems have

been reformulated as constrained regularized minimization problems which were

solved using the MATLAB optimization toolbox routine lsqnonlin. Nonlinear

Tikhonov regularization has been employed in order to obtain stable and accu-

rate results. The numerical results illustrated for three test examples showed that

an accurate and stable solution has been obtained.

In Chapter 7, the inverse problem concerning the determination of an addi-

tive time and space-dependent heat source coefficient from additional temperature

measurements in the one-dimensional parabolic heat equation has been consid-

ered. The uniqueness of solution of the inverse coefficient problem is briefly

discussed in a particular case. However, the problem is still ill-posed since small

errors in the input data cause large errors in the output solution. The resulting

inverse problem has been reformulated as a constrained regularized minimiza-

tion problem which was solved using the MATLAB optimization toolbox routine

lsqnonlin. Numerical results presented for three examples show the efficiency of

the computational method and the accuracy and stability of the numerical solu-

tion even in the presence of noise in the input data.

In Chapter 8, an inverse problem concerning the determination of the time-

dependent intensity of a free boundary and the temperature in a two-dimensional

parabolic problem in a rectangular domain has been, for the first time, numer-

ically investigated. The measurement which is sufficient to provide a unique

solution was given by energy/mass of the heat conducting system. A stability

theorem was stated. The free boundary problem has been transformed to a fixed

domain. The ADE-FDM has been employed as a direct solver, whilst the in-

verse solver based on a nonlinear least-squares minimization has been efficiently

implemented using the MATLAB optimization toolbox routine lsqnonlin further
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penalised with the first-order regularization when noisy data have been inverted.

Numerical results presented and discussed showed that accurate and stable nu-

merical solutions have been obtained.

Finally, in Chapter 9, the inverse problem concerning the reconstruction of

an orthotropic thermal conductivity and the temperature in the two-dimensional

parabolic heat equation in a rectangular domain from the heat flux overspecifi-

cation has been investigated. The overdetermination condition which ensures a

unique solvability of the solution is given by the specification of the heat flux.

The same numerical method as in Chapter 8 has produced accurate and stable

numerical reconstruction of the orthotropic conductivity component.

10.2 Future work

The numerical results presented in this thesis confirm the fact that efficient ap-

proaches can be developed for solving more complicated coefficient identification

problems, inverse initial value problems or inverse geometric problems. As far

as these features are concerned, one can point out the following possible future

work:

(i) Extend and develop the numerical FDM implementation to three-dimensional

problems;

(ii) Extend the analysis to determine coefficients that depend both on space

and time;

(iii) Chapter 6 details the numerical results concerning the identification of the

time-dependent thermal diffusivity for degenerate parabolic PDEs in one-

dimensions. It would be interesting to study the degenerate inverse problem

in two-dimensions, see [133]. Also, it is possible to extend this study to

strong degenerate parabolic PDEs in the case where α ≥ 1;

(iv) It is also proposed in Chapter 6 to extend the determination of time-

dependent thermal diffusivity and convection coefficients for degenerate

PDEs with free boundary, [75];

(v) Use the FEM or FVM combined with nonlinear least-squares minimiza-

tion to reconstruct unknown coefficients in nonlinear inverse problems for

irregular solution domains;

(vi) Develop a global convergent method, [112], independent of the initial guess;



Chapter 10. General conclusions and future work 194

(vii) Apply the models in this thesis to real world problems concerned with

material characterisation and thermal property identification. It would be

interesting to apply our methods to data from:

(a) Computer simulations that had more of the physics and used a

different numerical technique, e.g. finite elements;

(b) Experimental data obtained from sensor measurements.

(viii) For problems with larger noise, e.g. p > 5% to look at global optimization

schemes, e.g. Monte Carlo Multi Chain methods, to see if one can get better

results. Also, try other types of regularization, e.g. total variation penalty

term or the Landweber method.
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