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Abstract

A gas sales agreement, also called a gas swing contract, is an agreement be-
tween a supplier and a purchaser for the delivery of variable daily quantities
of gas, between specified minimum and maximum daily limits, over a certain
number of years at a strike price. The main constraint of such an agreement is
that there is a minimum volume of gas for which the buyer will be charged at
the end of the year, regardless of the actual quantity of gas taken. For multiple
year contracts, there are also features called the make-up and carry-forward
banks which add another level of complexity to the analysis. We propose a
framework for pricing such multiple year contracts where both the gas price
and strike price are stochastic processes. With the help of a two-dimensional
trinomial tree, we are able to price such swing contracts with both make-up
and carry-forward banks, and find the optimal daily decisions and the opti-
mal yearly usage of the make-up and carry-forward banks. We also provide
a detailed analysis of the different features that these contracts possess. Fur-
thermore, another feature, called the indexation principle, is popular in real
markets, under which the strike price is called the index. In each month, the
value of the index is determined by the weighted average price of some en-
ergy products in the previous month. We design a lattice-based algorithm to
price such swing contracts and find optimal daily decisions by using graphics
processing units. Since the least-squares Monte Carlo method is well-known
to handle sophisticated models, such as multi-factor models, models with
regime-switching, or models with jumps, we build this method for the pric-
ing of gas sales agreements and analyze the performance of it, especially the
impacts of explanatory variables. With the help of concrete numerical exam-
ples, various features of such contracts with indexation are demonstrated.
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Chapter 1

Introduction and literature
review

1.1 Introduction

A gas sales agreement (GSA), also termed a gas swing option, or a take-or-
pay option, is a contract for the purchase and sale of gas in the natural gas
industry. GSAs are designed in such a way as to offer flexibility concern-
ing both the volume and the timing of the delivery of gas. They allow the
gas buyer to purchase a quantity of gas from the gas provider periodically
in the future at a contractual price. At each delivery date agreed in the con-
tract, the buyer has the obligation to buy a pre-determined base load of gas
from the gas provider. Then the buyer has the right to require the delivery
of more gas as long as the total gas delivered on this date does not exceed a
pre-fixed limit. That is, the buyer has the right to choose both the timing and
the quantity of the delivery while the security of the gas provider is protected
by the existence of the base load. Besides the limits on each delivery, some
global constraints also apply to the total volume of gas delivered through the
contract. The global constraints usually require the total volume of gas pur-
chased under the GSA to lie between a pre-determined lower limit (termed
the minimum bill) and a pre-determined upper limit (termed the annual con-
tract quantity).

Thanks to the deregulation of the energy market, both the price and the
contract details of the GSA are now negotiated between the gas seller and the
gas buyer. This makes the understanding and valuation of the optionality
built in the GSA more important than before. In addition, unlike a typical



Chapter 1. Introduction and literature review 2

European option or American option, the gas buyer in a GSA contract has
multiple opportunities to demand the delivery of gas. Due to the existence
of the global constraints, on each agreed contract date, the gas buyer should
make a decision as to the volume of gas to be delivered considering not only
the current profits but also the impact of this decision on future dates. That
is, the understanding of the GSA is not only about the contract price, but also
about the impact of the contract features on the volume of gas which should
be taken to maximize the profit of the buyers.

The GSA usually offers the gas buyer daily (as well as weekly or monthly)
opportunities to purchase gas from the gas seller. That is, regardless of the
current market price of the natural gas, on each day, the gas buyer has to buy
a base load of gas (called the daily minimum) at a contractual price while
making a decision as to whether he/she should ask for a extra purchase of
gas under the GSA. Due to the existence of this base load of gas, the GSA can
be decomposed into two parts: a swap part and a swing part. The swap part
makes sure the gas seller can sell a base load of gas every day. Since daily
exercise opportunities are offered, there is no early exercise feature involved
in the swap part. The swing part, also called the normalized GSA, gives the
buyer the right to purchase extra quantities of gas up to a daily limit (called
the daily maximum). This element of the agreement introduces early exercise
features and makes the swing part the main challenge in the evaluation of
GSAs.

Based on whether the global constraints can be violated or not, GSAs can
be divided into two types: GSAs with penalties and GSAs with firm con-
straints. GSAs with penalties allow the gas buyer to violate the global con-
straints. That is, the total volume of gas purchased under the GSA can be be-
low the minimum bill or above the annual contract quantity. Once the global
constraints are violated, however, the gas buyer has to pay some penalties to
the gas seller at the end of each year. The value of the penalties to be paid is
also negotiated between the gas buyer and the gas seller, but is often linked
to the extra or shortfall quantity of gas purchased. In contrast, GSAs with
firm constraints require the total volume of gas purchased to lie strictly be-
tween the minimum bill and the annual contract quantity. Compared with
GSAs with firm constraints, GSAs with penalties involve extra cashflow gen-
erated by the penalties and hence introduce extra challenge. In this thesis, we
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mainly focus on GSAs with penalties.
In addition to the daily minimum constraint, the daily maximum con-

straint and the global constraints, there are other popular features in GSA
contracts: the make-up bank, the carry-forward bank and the indexation
principle.

1.1.1 The make-up bank and the carry-forward bank

GSAs usually last multiple years. There are two common and important fea-
tures in multi-year GSA contracts: the make-up bank and the carry-forward
bank. In a year where the GSA contract is out-of-the-money1 on most days,
due to the existence of the minimum bill, the buyer is at risk of facing great
losses under the contract. These losses can be from the delivery of gas on
those out-of-the-money days, the year-end penalties, or both. In this case,
the buyer needs ways to reduce losses, and the so-called make-up bank is
introduced. With the make-up bank, the buyer can take some quantities of
gas which are less than the minimum bill and pay penalties in an out-of-the-
money year, and the shortfall between the actual gas taken and the minimum
bill is then added to the make-up bank. In later years, where the gas taken
is greater than some reference level2, the extra gas purchased can be with-
drawn from the make-up bank and a refund paid. Whereas the make-up
bank encourages the buyer to pay penalties, in the hope that these will be
refunded later, the so-called carry-forward bank gives the buyer the right
to reduce the minimum bill and hence reduce possible penalties. With the
carry-forward bank, if the buyer anticipates that the contract will be out-of-
the-money in future years, he/she can take more gas in the current year. If the
gas taken is greater than some reference level3, the excess gas can be added
to the carry-forward bank. In later years, where the buyer is under pres-
sure to pay penalties, the gas in the carry-forward bank can be withdrawn
to reduce the minimum bill in those years. Both the make-up bank and the

1 On each day, we say the GSA contract is out-of-the-money if the gas price is below the
strike price, and the GSA contract is in-the-money if the gas price is above the strike price.

2In this thesis, we consider the make-up and carry-forward banks introduced in Breslin et
al. (2008). This reference level is the sum of the minimum bill and the volume of gas available
in the carry-forward bank.

3This reference level is called the carry-forward base. However, if the buyer is withdrawing
gas from the make-up bank and adding gas to the carry-forward bank at the same time, other
constraints may apply, see Section 3.3.2.
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carry-forward bank offer the buyer opportunities to apply flexible strategies
in order to minimize losses, hence the way how they affect the contract values
and the trading strategies should be investigated carefully. In addition, the
make-up bank and the carry-forward bank introduce extra optionality and
two more dimensions, which makes the evaluation of the GSA more chal-
lenging.

1.1.2 The indexation principle

Besides the make-up bank and the carry-forward bank, there is one more fea-
ture, the indexation, which introduces a further difficulty in the evaluation
of the GSA. When the contractual price (the strike price) in a GSA is a con-
stant, the valuation of the GSA is a classical dynamic programming problem.
In real contracts, however, the contractual price is set based on the indexa-
tion principle, under which the contractual price is called the index. In each
month, the value of the index is determined by the weighted average price of
some energy substitutions (e.g. crude oil) in the previous month (see Asche,
Osmundsen and Tveterås (2002) for details). Under the indexation principle,
the value of the GSA contract not only depends on the current state, but also
depends on the past values of some other energy products. This feature links
the valuation of the GSAs to the moving average problem. So far, however,
no effective method has been derived in the literature to value GSAs embed-
ded with moving average features.

1.2 Existing methods

Since the GSA is widely used in the natural gas industry, it has received exten-
sive treatment in the literature, but this work has only focused on the classic
GSA contracts, containing neither the make-up and carry-forward banks nor
the indexation principle. Furthermore, in most of the existing literature, the
contractual price is assumed to be a constant and the GSA contract usually
lasts only one year. This section, therefore, reviews these existing methods to
evaluate the classic GSA.
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1.2.1 Lattice-based methods

The first treatment of gas swing valuations appeared in Thompson (1995),
where the author applies a binomial tree method extended from Hull and
White (1993) to take-or-pay gas contracts. The spot price in this paper is as-
sumed to be a simple geometric Brownian motion. Lari-Lavassani, Simchi
and Ware (2001) develop the idea of the binomial tree by considering a two-
factor mean-reverting process. Clewlow, Strickland and Kaminski (2001),
meanwhile, provide a discussion of the optimal exercise decisions with the
help of a recombining trinomial tree. In Jaillet, Ronn and Tompaidis (2004),
the authors proposed a method which values the swing options based on the
dynamic programming on a trinomial tree. This method starts from the end
point of the contract and works backwards in time by considering a mean-
reverting spot price model. In Barrera-Esteve et al. (2006), the authors pro-
pose and summarize several methods to evaluate GSAs with penalties using
both simulations and dynamic programming techniques. A so-called optimal
quantization tree method is also built in Bardou, Bouthemy and Pagès (2009)
and Bardou, Bouthemy and Pagès (2010) for mean-reverting spot prices. This
method is said to be efficient since the quantization tree only needs to be con-
structed once if the underlying price model does not change. In Wahab and
Lee (2011), the authors assume that the spot price follows a regime switching
model, where the volatility can switch between different values based on the
state of a hidden Markov chain and thence evaluate the swing option on a
pentanomial tree. In Benth, Lempa and Nilssen (2012), the authors study the
swing option on electricity markets and show that its value is the solution
of a Hamilton–Jacobi–Bellman (HJB) equation. Following the theory built in
Benth, Lempa and Nilssen (2012), Edoli (2013) models the gas swing option
and solves the HJB equation by using finite difference methods.

1.2.2 Simulation-based methods

The least-squares Monte Carlo simulation method (Longstaff and Schwartz
(2001)) is well known in the valuation of American options, and has been ex-
tended by many authors to accommodate the evaluation of swing options.
In Dörr (2003), the author introduces the least-squares Monte Carlo on the
evaluation of swing options. In Thanawalla (2006), the author proposes the
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use of non-parametric regression using splines, and evaluates the GSAs with
penalties. Meinshausen and Hambly (2004) build the so-called dual-pricing
approach to get the upper bound of the swing options when a take-or-pay
provision is not included. The dual-pricing approach has been further de-
veloped in Aleksandrov and Hambly (2010) and Bender (2011) to price the
swing options which allow multiple exercise rights on a single date. An-
other simulation-based approach can be found in Ibáñez (2004), where the
authors apply the technique in Ibáñez and Zapatero (2004) by finding opti-
mal exercise prices before pricing swing options. In a recent work, Hanfeld
and Schlüter (2017) analyze the least-squares Monte Carlo method by com-
paring it with a so-called myopic approach which simply exercises rights if
the current payoff is positive.

1.3 Motivation

GSAs embedded with two features have been less highlighted in the litera-
ture: multiple year GSAs with make-up and carry-forward banks, and GSAs
with indexation.

1.3.1 Multiple year GSAs with make-up and carry-forward banks

We have introduced the basic functionalities of the make-up bank and the
carry-forward bank in Section 1.1.1. The multiple year GSAs with these banks
have only received a few treatments in the literature. In Breslin et al. (2008),
the authors explained the basic features of both the make-up bank and the
carry-forward bank. In Holden, Løland and Lindqvist (2011), an algorithm
is proposed using the least-squares Monte Carlo method to evaluate GSAs
with a carry-forward bank, although the authors only price the contract val-
ues and do not extract optimal decisions. The evaluation of GSAs is not only
about the contract value, however, but also about finding the optimal daily
decisions based on various gas prices and index prices. The first formally
quantitative treatment of GSAs containing the make-up provision appears in
Edoli et al. (2013). The authors modelled one type of make-up clause and
performed a sensitivity analysis of the contract value with respect to various
parameters. The GSA in Edoli et al. (2013) uses hard constraints. That is,
their GSAs do not have penalties and the volume taken in each year must be
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within a pre-specified range. Also, the volume of gas in the make-up bank
must be zero at the end of the contract. There are GSA contracts in the market,
however, that offer more flexibility (see contracts in Subsection 3.3.2); further-
more, in Edoli et al. (2013), the GSAs contain either the make-up clause or the
carry-forward clause, but not both. The second treatment of make-up and
carry-forward banks appears in Chiarella, Clewlow and Kang (2016), where
the authors evaluate GSAs with both make-up and carry-forward banks in
a regime-switching forward price curve model. This paper, however, only
evaluates GSAs with constant strike prices. In addition, while the optimal
daily decisions and optimal usage of both make-up and carry-forward banks
are given in Chiarella, Clewlow and Kang (2016), there is no detailed analysis
of how the contract features (daily constraints, global constraints, etc.) affect
the values and decisions. Furthermore, in both Chiarella, Clewlow and Kang
(2016) and Edoli et al. (2013), the effect of the make-up and carry-forward
banks on the optimal decisions is not given. In Chapter 3, therefore, we eval-
uate multiple year GSAs with both make-up and carry-forward banks, as in
Breslin et al. (2008), but with stochastic strike prices, while also providing
a detailed analysis of how the make-up bank, the carry-forward bank, the
stochastic strike prices and the different parameter settings affect both values
and decisions.

1.3.2 GSAs with indexation

As introduced in Section 1.1.2, indexation links the evaluation of GSAs to
the moving average problem. In the literature, very few articles discuss the
valuation of options embedded with both the moving average feature and
the early exercise feature. Among those that do, a common approach is the
least-squares Monte Carlo simulation, as in Broadie and Cao (2008). The idea
is simply to find the continuation value by performing regression on polyno-
mials of the current realized values of the underlying price (gas price) and the
strike price (index). Based on the indexation principle, however, the index is
determined by the average of past oil prices, hence these oil prices should
also have their impact on the contract value. In Grau (2008) and Dirnstorfer,
Grau and Zagst (2013), the authors suggest that, in the least-squares Monte
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Carlo simulation, the regression should be performed not only on the under-
lying price and the strike price, but also on the all past values used to com-
pute the strike price. This action leads to a very high dimensional problem,
especially in the evaluation of the GSAs, since the computation of the index
needs 30 past oil values (we assume one month contains 30 days). Although
both Grau (2008) and Dirnstorfer, Grau and Zagst (2013) propose a technique
based on the sparse grid to reduce the number of basis functions used in the
least-squares Monte Carlo simulation, they can only solve a problem up to
ten dimensions and the computing time is very long. In Bernhart, Tankov and
Warin (2011), the authors develop a method which uses a finite-dimensional
approximation of the infinite-dimensional dynamics of the moving average
process based on weighted Laguerre polynomial expansion. They use sev-
eral so-called Laguerre processes to approximate the moving average pro-
cess, and they are able to prove that the accuracy of this approximation is
better if more Laguerre processes are used. The regression in the least-squares
Monte Carlo simulation is performed on all underlying prices and all realized
values of these Laguerre processes. This new methodology, however, can be
not only very time-consuming but also memory-consuming, especially when
the memory is quite limited. In addition, as reported in Warin (2012), there is
no big improvement of the option value compared with the usual regression
method in Broadie and Cao (2008).

There are also works which valuing options with moving average fea-
tures using the lattice-based method. In Kao and Lyuu (2003), the authors
price moving average lookback options with the help of a binomial tree. The
binomial tree is also used in Dai, Li and Zhang (2010) to price moving average
barrier options, while Xu, Hong and Qin (2013) develop the so-called willow
tree method, which was first introduced in Curran (2001), to price moving
average American options.

There are even fewer studies that discuss the evaluation of GSAs with in-
dexation. In Bernhart (2011), the author uses the methodology built in Bern-
hart, Tankov and Warin (2011) to price a GSA contract with only one exercise
opportunity, which is an American option where the strike price is computed
based on the indexation. In the least-squares Monte Carlo simulations, how-
ever, since all simulated paths of all underlying processes and Laguerre pro-
cesses have to be stored, one would have to store the path information on the
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hard drive due to the lack of memory on RAM. This would slow the compu-
tation speed significantly due to the need for file writing/reading operations.
In an example in Bernhart (2011), it took 20 hours to evaluate such a GSA with
only one exercise opportunity (normally, GSAs have daily exercise opportu-
nities, that is, 365 early exercise opportunities for a one-year contract). Edoli
(2013) implements the GSA evaluation by assuming that the moving aver-
age process is Markovian and implemented it by using the finite difference
method. To the author’s knowledge, no efficient method has been derived
without making those assumptions. In Chapter 4, we propose a new numer-
ical method based on a two-dimensional trinomial tree to fill the gap. Since
the least-squares Monte Carlo simulation is well-known to handle sophisti-
cated models, such as multi-factor models, models with regime-switching, or
models with jumps, we build this method for the pricing of gas sales agree-
ments with indexation and analyze its performance in Chapter 5.

1.4 Structure of the thesis

Before proceeding to the discussion of the make-up bank, the carry-forward
bank and the indexation, we give an introduction to the classic GSA which
contains a number of common features in Chapter 2. In addition, since the
two-dimensional trinomial tree is intensively used in this thesis to evaluate
the GSA, we also provide a description on how to construct such a two-
dimensional tree in this chapter.

The rest of this thesis can be divided into two parts. The first part includes
Chapter 3 which investigates the evaluation of the multiple year GSAs with
both make-up and carry-forward banks. With the help of a two-dimensional
trinomial tree, we are able to price these complex GSA contracts and the find
optimal daily decisions and optimal yearly usage of both the make-up bank
and the carry-forward bank. With the help of a number of numerical ex-
amples, we also provide a detailed analysis, not only of the different features
these contracts have, but also how different model parameters will affect both
the optimal value and the optimal decisions. The main contents of Chapter 3
have been published in Dong and Kang (2018).

The second part of this thesis, which includes Chapter 4, Chapter 5 and
Chapter 6, focuses on the GSAs with indexation. In Chapter 4, we propose an
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algorithm based on a two-dimensional trinomial tree that can be used to eval-
uate GSAs with indexation. In addition, we also formulate the framework of
GSAs with indexation in continuous time and prove that the algorithm we
proposed has a first-order consistency to a Hamilton–Jacobi–Bellman equa-
tion. In Chapter 5, we generalize and propose several algorithms based on
the Monte Carlo simulation to evaluate GSAs with indexation. We also in-
vestigate the performance of the least-squares Monte Carlo simulations for
the evaluation of the GSA contracts through numerous numerical examples.
In Chapter 6, we first introduce the general-purpose computing on graphics
processing units and provide a description on how to implement the algo-
rithms in Chapter 4 and Chapter 5 on graphics processing units. Then we
investigate the performance of the algorithms proposed in the second part of
this thesis through numerical examples.

Finally, in Chapter 7, we draw conclusions and suggest future work.
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Chapter 2

Gas sales agreements
foundations

In this chapter, we give an introduction to the classic gas sales agreement in
Section 2.1. The classic GSA is the GSA embedded with daily constraints and
global constraints. The daily constraints require the delivery of daily quan-
tities of gas to be between pre-determined minimum and maximum daily
limits. The global constraints require the total volume of gas delivered under
the GSA to lie within a pre-determined interval. These GSAs can be divided
into two types: GSAs with firm constraints and GSAs with penalties. We in-
troduce these two types of GSAs along with their properties in Section 2.1.1
and 2.1.2, respectively. In addition, since the two-dimensional trinomial tree
is intensively used in this thesis, in Section 2.2 we provide a description on
how we can construct such a tree for mean-reverting processes.

2.1 Classic gas sales agreements

A GSA between a gas provider and a gas buyer can have many specific fea-
tures to satisfy the needs of both sides in the agreement. Next, we present an
example of a one-year GSA that contains a number of common features.

• The contract lasts T = 1 year and there are N time periods, N is a
positive integer.

• Let the length of the time interval be ∆t = T/N , then the contract du-
ration is equally spaced into N periods. Let tn = n · ∆t, n = 0, . . . , N ,
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then the n-th time interval is given by [tn−1, tn]. Hence we have:

0 = t0 < t1 < t2 < . . . < tN−1 < tN = T.

We assume that, at each tn, n = 1, . . . , N , there is a base load of gas
delivered from the gas seller to the gas buyer. In addition, at each tn,
n = 1, . . . , N , the buyer has exactly one opportunity to ask for a deliv-
ery of more gas from the gas seller, which amounts to N opportunities
for a whole year. We call these opportunities the exercise rights. Usu-
ally, GSAs can be exercised monthly, weekly or daily.

• Denote the risk-free rate by r. Let Sn and In be the gas price and the
strike price (the contractual price) at time tn, respectively. At this point,
we assume that the gas price (Sn)0≤n≤N is a Markovian process defined
on a probability space (Ω,F ,Q) and the strike price In is a fixed con-
stant for all n = 0, 1, . . . , N . Sn can be the observation of a continuous-
time process at time tn. If we denote FS(t, T ) as the forward price of
gas at time t ∈ [0, T ], then, ideally, the gas price Sn should be given
by Sn = FS(tn, tn). Since FS(tn, tn) is not a tradeable instrument,
however, in practice one has to consider the day-ahead forward price.
That is, the gas price is given by Sn = e−r·∆tFS(tn, tn+1) (see Bardou,
Bouthemy and Pagès (2009) and Hinz (2006)).

• Let qtn be the amount of gas taken at time tn, n = 1, . . . , N , which is con-
strained by the minimum daily quantity qmin and the maximum daily
quantity qmax, that is

qmin ≤ qtn ≤ qmax, (2.1)

where qmin and qmax are constants specified in the contract. In this the-
sis, qtn is called the exercise decision, and qmin and qmax are called the
daily minimum and the daily maximum, respectively. Indeed, qmin is
the base load of gas that has to be delivered at each tn, n = 1, . . . , N .

• We call the sequence of exercise decisions (qt1 , qt2 , . . . , qtN ) the consump-
tion policy, and denote it by

q = {qtn}n=1,2,...,N .
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Also we write

n2∑
n=n1

q =

n2∑
n=n1

qtn , and
∑

q =

N∑
n=1

qtn ,

where qtn is the exercise decision in the consumption policy q on the
n-th period.

• Let Qtn be the cumulative amount of gas taken before time tn. That is,

Qtn =

n−1∑
m=1

q for n ≥ 2,

and Qtn = 0 for n = 0, 1. We also call Qtn the period to date at time tn.
In addition, if we let QT be the total gas taken during the contract, then

QT =
N−1∑
n=1

q + qtN

= QtN + qtN .

Note that QtN is the period to date at time tN = T , it does not include
the volume of gas taken at time tN . However, QT contains the volume
of gas taken at time tN .

• Then, upon taking the volume qtn , the payoff from the buyer’s point of
view at time tn is equal to

qtn(Sn − In).

We call this payoff the instant payoff.

• Besides the daily exercise constraints (2.1), we also have global con-
straints on the total gas taken QT :

MB ≤ QT ≤ ACQ, (2.2)

where MB and ACQ are also constants written in the contract. MB is
called the minimum bill andACQ is called the annual contract quantity.
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Usually,
qmin ·N < MB < ACQ ≤ qmax ·N. (2.3)

Remark 2.1. In Edoli et al. (2013), the inequality (2.3) is called the non-trivial
condition. They also suggest that this condition should be

qmin ·N < MB < ACQ < qmax ·N.

That is, if the buyer takes the daily maximum qmax on all tn, n = 1, . . . , N ,
then the resulting total consumption qmax ·N should be strictly larger than the
annual contract quantity ACQ. There are contracts where ACQ = qmax · N
(see Breslin et al. (2008)), however, since it is natural that the gas supplier
encourages the buyer to purchase more gas.

According to whether the global constraints (2.2) can be violated or not,
GSAs can be divided into two types: GSAs with penalties and GSAs with
firm constraints.

2.1.1 Gas sales agreements with firm constraints

In GSAs with firm constraints, the imposed constraints (2.2) cannot be vi-
olated. That is, any policy q = {qtn}n=1,2,...,N has to satisfy the following
condition:

MB ≤
∑

q ≤ ACQ.

We call this kind of policy the admissible policy and denote the collection of
such policies by qadmis. It means that the gas buyers may not have the access
to the policy q = {qtn = qmax}n=1,2,...,N or q = {qtn = qmin}n=1,2,...,N .

Through some simple calculations, we can obtain the policy:

qlow = {qlow
tn }n=1,2,...,N

which gives the lower bound of the period to date Qtn at each time step tn,
n = 1, 2, . . . , N . That is, following qlow, the buyer has the lowest period to
date Qtn at each time tn such that the period to date QtN at time tN equals
MB − qmax. The policy qlow can be obtained as follows:
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• Let m1 be the largest integer such that

m1 ≤
N · qmax −MB

qmax − qmin
+ 1 (2.4)

• If m1 = 1,

– for n = m1 = 1, set qlow
tn = MB − (N −m1)qmax.

– for n = 2, . . . , N , set qlow
tn = qmax.

• If 1 < m1 < N ,

– for n = 1, . . . ,m1 − 1, set qlow
tn = qmin.

– for n = m1, set qlow
tn = MB − (m1 − 1)qmin − (N −m1)qmax.

– for n = m1 + 1, . . . , N , set qlow
tn = qmax

• If m1 = N ,

– for n = 1, . . . ,m1 − 1, set qlow
tn = qmin.

– for n = m1 = N , set qlow
tn = MB − (m1 − 1)qmin.

• If m1 > N ,

– for n = 1, . . . , N , set qlow
tn = qmin.

Remark 2.2. Indeed, the integer m1 is obtained by finding the intersection
between two lines: the line passing the point (t1, 0) with the slope of qmin and
the line passing the point (tN ,MB − qmax) with the slope of qmax. Due to the
fact that qmin < qmax and the non-trivial condition (2.3), we have N · qmax −
MB > 0 and qmax−qmin > 0. It follows thatm1 is an integer such thatm1 ≥ 1.
From (2.4), we have

N · qmax −MB

qmax − qmin
≤ m1 ≤

N · qmax −MB

qmax − qmin
+ 1. (2.5)

In addition, we have qlow
tm1

at time tm1 which is given by

qlow
tm1

= MB − (m1 − 1)qmin − (N −m1)qmax

= MB −N · qmax + qmin +m1(qmax − qmin).

Together with (2.5), we have qmin ≤ qlow
tm1
≤ qmax.
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Similarly, we can obtain the following policy:

qup = {qup
tn }n=1,2,...,N

which gives the upper bound of the period to date Qtn at each time step tn,
n = 1, 2, . . . , N . Following qup, the buyer has the largest period to date Qtn at
each time tn such that the period to date QtN at time tN equals ACQ − qmin.
The policy qup can be obtained as follows:

• Let m2 be the largest integer such that

m2 ≤
ACQ−N · qmin

qmax − qmin
+ 1 (2.6)

• If m2 = 1,

– For n = m2 = 1, set qup
tn = ACQ− (N −m2)qmin.

– For n = m2 + 1, . . . , N , set qup
tn = qmin

• If 1 < m2 < N ,

– For n = 1, . . . ,m2 − 1, set qup
tn = qmax.

– For n = m2, set qup
tn = ACQ− (m2 − 1)qmax − (N −m2)qmin.

– For n = m2 + 1, . . . , N , set qup
tn = qmin

• If m2 = N ,

– For n = 1, . . . ,m2 − 1, set qup
tn = qmax.

– For n = m2 = N , set qup
tn = ACQ− (m2 − 1)qmax.

• If m2 > N ,

– For n = 1, . . . , N , set qup
tn = qmax.

Remark 2.3. The integer m2 is obtained by finding the intersection between
two lines: the line passing the point (t1, 0) with the slope of qmax and the line
passing the point (tN , ACQ − qmin) with the slope of qmin. Due to the non-
trivial condition (2.3) and qmin < qmax, we have ACQ − N · qmin > 0 and
qmax − qmin > 0. It follows that m2 ≥ 1. From (2.6), we have

ACQ−N · qmin

qmax − qmin
≤ m2 ≤

ACQ−N · qmin

qmax − qmin
+ 1. (2.7)
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In addition, we have qup
tm2

at time tm2 which is given by

q
up
tm2

= ACQ− (m2 − 1)qmax − (N −m2)qmin

= ACQ−N · qmin + qmax −m2(qmax − qmin).

Together with (2.7), we have qmin ≤ q
up
tm2
≤ qmax.

FIGURE 2.1: Admissible period to date areas the GSA with
firm constraints

Period to date Qtn

(t1, 0)
Time tn

ACQ

MB

(N − 1) · qmax

(N − 1) · qmin

tm1 tm2 tN = T

Given qlow and qup, the collection of the admissible period to date Qadmis
tn at

time tn, n = 2, . . . , N , is given by:

Qadmis
tn =

{
Q :

n−1∑
i=1

qlow ≤ Q ≤
n−1∑
i=1

qup

}
.

In Figure 2.1, the green area shows the possible period to date at each time
step. The lower bound policy, qlow, and the upper bound policy, qup, can be
obtained by following the red and blue lines, respectively.

We have the initial contract value at time 0, which is given by

V (0) = sup
qtn∈[qmin,qmax]∑N

n=1 qtn∈[MB,ACQ]

E

[
N∑
n=1

e−tnrqtn · (Sn − In)

]
,
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where E is the expectation with respect to risk-neutral probability measure Q
which is the probability under which the gas price S has the dynamics. We
call the decisions qtn , n = 1, 2, . . . , N , which give the initial contract value
V (0), the optimal decisions.

It is suggested in Bardou, Bouthemy and Pagès (2009) (also see Bardou,
Bouthemy and Pagès (2010)) that the GSA can be split into two parts: a swap
part and a normalized GSA. This is called the decomposition of the GSA (also
see Lari-Lavassani, Simchi and Ware (2001)). That is, the initial contract value
V (0) can be expressed in the following way:

V (0) =E

[
N∑
n=1

e−tnrqmin · (Sn − In)

]
︸ ︷︷ ︸

The swap part

+

sup
qtn∈[0,q̄]∑N

n=1 qtn∈[Q̄min,Q̄max]

E

[
N∑
n=1

e−tnrqtn · (Sn − In)

]
︸ ︷︷ ︸

The normalized GSA

. (2.8)

The normalized GSA is a GSA contract with the following inputs: the daily
minimum 0, the daily maximum q̄ = qmax − qmin, the minimum bill Q̄min =

MB − N · qmin and the annual contract quantity Q̄max = ACQ − N · qmin.
The collection of the admissible policies of this normalized GSA q

[0,q̄]
admis =

{qtn}n=1,2,...,N is given by

q
[0,q̄]
admis =

{
qtn , n = 1, 2, . . . , N

∣∣∣∣
0 ≤ qtn ≤ q̄, n = 1, 2, . . . , N and Q̄min ≤

N∑
n=1

qtn ≤ Q̄max.

}
.

In Bardou, Bouthemy and Pagès (2010), the following theorem has been
proved:

Theorem 2.1. Consider the GSA formulated in Section 2.1.1, if the quantity

ACQ−MB

qmax − qmin
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is an integer, then the optimal exercise decision qtn , n = 1, 2, . . . , N is either the
daily maximum qmax or the daily minimum qmin.

This kind of consumption is called bang-bang consumption.

2.1.2 Gas sales agreements with penalties

In gas sales agreements with penalties, the constraints (2.2) can be violated.
At the end of the contract, the total gas delivered under the GSA can be below
the minimum bill or above the annual contract quantity. That is, the following
scenarios are possible:

QT < MB or QT > ACQ.

When (2.2) is violated, the contract holder has to pay penalties at the end of
the contract, that is, at time T = tN . The penalty functions are customized
in different contracts, but they usually have the following form (see Barrera-
Esteve et al. (2006)):

P(x,QT ) = −Axmax{MB −QT , 0} −Bxmax{QT −ACQ, 0}, (2.9)

where x can be the terminal gas price SN , the terminal strike price IN or
a fixed constant. A and B are fixed constants written in the contract, and
usually A = B. In this thesis, we let x be the terminal strike price IN .

In addition, since constraints (2.2) can be violated, the gas buyer can pur-
chase any quantity of gas qtn at each exercise date as long as it meets the
daily exercise constraints qmin ≤ qtn ≤ qmax. The collection of the admissible
policies qadmis = {qtn}n=1,2,...,N is given by:

qadmis = {qtn , n = 1, 2, . . . , N : qmin ≤ qtn ≤ qmax}.

It follows that the collection of the admissible period to date Qadmis
tn at time

tn, n = 1, 2, . . . , N is given by:

Qadmis
tn =

{
Q : (n− 1)qmin ≤ Q ≤ (n− 1)qmax

}
. (2.10)

In Figure 2.2, the combination of the green, yellow and pink areas gives the
possible period to date at each time step. If the period to date stays in the
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FIGURE 2.2: Admissible period to date areas of the GSA with
penalties

Period to date Qtn

(t1, 0)
Time tn

ACQ

MB

(N − 1) · qmax

(N − 1) · qmin

tm1 tm2 tN = T

green area, then the buyer is free of penalties at the end of the contract. If
the period to date lies in the pink area, then the buyer has to pay penalties
because of the violation of the annual contract quantity. If the period to date
is in the yellow area, then the buyer is obligated to pay penalties because of
the violation of the minimum bill.

For such a GSA contract, we have the initial contract value:

V (0) = sup
qtn∈[qmin,qmax]

E

[
N∑
n=1

e−tnrqtn · (Sn − In) + e−TrP(IN , QT )

]
.

Similar to the GSA with firm constraints, we can also have the decomposition
of the GSA with penalties. The initial value of the GSA with penalties can be
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formulated in the following way:

V (0, S, I) = E

[
N∑
n=1

e−tnrqmin · (Sn − In)

]
︸ ︷︷ ︸

The swap part

+

sup
q̄tn∈[0,q̄]

E

[
N∑
n=1

e−tnr q̄tn · (Sn − In) + e−TrP̄(IN , Q̄T )

]
︸ ︷︷ ︸

The normalized GSA

. (2.11)

This normalized GSA has the following inputs: the daily minimum 0, the
daily maximum q̄ = qmax − qmin. The penalty function of this GSA is given
by:

P̄(IN , Q̄T ) = P(IN , Q̄T +N · qmin),

where Q̄T =
∑N

n=1 q̄tn .
Now, consider a GSA which has the penalty function B(IN , QT ) = IN ·

P(QT ), where P(Q) is a continuously differentiable function with respect to
Q. In Barrera-Esteve et al. (2006), the following theorem has been proved:

Theorem 2.2. Consider the GSA with the penalty function B(IN , QT ) = IN ·
P(QT ). Suppose P(Q) is continuously differentiable with respect to Q, and the
following condition holds

P
[
e−rtn

(
Sn − In

)
+ E

(
e−rT · INP′(Q∗T )

∣∣∣In, Q∗tn) = 0

]
= 0,

where Q∗ is the period to date obtained through optimal decisions, then the optimal
decision at time tn, n = 1, 2, . . . , N − 1, is necessarily given by

q∗(tn, Sn, In, Q
∗
tn) =qmax1{e−rtn

(
Sn−In

)
+E
(
e−rT ·INP′(Q∗T )|In,Q∗tn

)
>0
}+

qmin1{e−rtn

(
Sn−In

)
+E
(
e−rT ·INP′(Q∗T )|I(tn),Q∗tn

)
<0
}.

Remark 2.4. The above condition is hard to check since it involves the period
to date Q∗ which is obtained through optimal decisions. In addition, in our
case, the penalty function is given by

P(IN , Q) = −IN ·max
{
MB −Q, 0

}
− IN ·max

{
Q−ACQ, 0

}
,
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which is clearly not differentiable at Q = MB or Q = ACQ. That is, com-
pared with Theorem 2.1, Theorem 2.2 is less useful since the penalty function
is always not differentiable at some points in real contracts. For similar re-
sults which apply to the real contracts, we refer to Theorem 2.1(3) in Edoli et
al. (2013) and Theorem 2 in Edoli and Vargiolu (2013). However, these theo-
rems are derived for GSAs with firm constraints. Nonetheless, the bang-bang
consumption is observed in our numerical examples.

Remark 2.5. As we can see in (2.8) and (2.11), the GSAs with firm constraints
and the GSAs with penalties can both be decomposed to a swap part and a
normalized GSA contract. In this thesis, we mainly focus on the part of the
normalized GSA contract. Without loss of generality, we usually let qmin = 0

and qmax = q̄, where q̄ is a constant.

Remark 2.6. Based on Theorem 2.2, if we assume bang-bang consumption for
the GSA with penalties and let qmin = 0 and qmax = q̄, then the possible
periods to date (2.10) at time tn, n = 1, . . . , N , are 0, q̄, 2q̄, . . . , (n− 1)q̄.

2.2 Construction of the two-dimensional trinomial tree

In this thesis, the pricing frameworks we build in Chapter 3 and Chapter 4
mainly evaluate the price of the gas sales agreement on a two-dimensional
trinomial tree. In this section, we give a description on how we can construct
a two-dimensional trinomial tree1.

Suppose we have two energy products, E1 and E2. The log prices of E1
and E2 at time t ∈ [0, T ] are denoted by X(t) and Y (t), respectively. We
assume that these log prices follow the mean-reverting processes

dX(t) =
[
θ1(t)− α1X(t)

]
dt+ σ1dB

1(t), (2.12)

dY (t) =
[
θ2(t)− α2Y (t)

]
dt+ σ2dB

2(t), (2.13)

where B1(t) and B2(t) are standard Brownian motions with correlation ρ,
and α1, σ1, α2 and σ2 are constants. Let F 1(t, T ) and F 2(t, T ) be the forward
prices of E1 and E2 at time t ∈ [0, T ] with the maturity T , respectively. θ1(t)

1 This section contains essentially the content within Section 3 in the published paper Dong
and Kang (2018).
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and θ2(t) are functions of time chosen to provide an exact fit to the observed
forward curves F 1(0, t) and F 2(0, t). These processes are standard models
when it comes to the commodity price in the energy market (see Hull (2011),
Section 33.4).

In order to build a two-dimensional tree for (X,Y ), we first build a simpli-
fied two-dimensional fundamental tree for a two-dimensional Markov pro-
cess2 (x, y) below, which is obtained by assuming θ1(t) = θ2(t) = 0 in (2.12)
and (2.13):

dx(t) =− α1x(t)dt+ σ1dB
1(t) (2.14)

dy(t) =− α2y(t)dt+ σ2dB
2(t) (2.15)

Then we shift the nodes on the simplified tree by adding the correct drift in
order to be consistent with the observed forward curve. In the rest of this sec-
tion, we summarize the tree building procedures in Clewlow and Strickland
(1999), Hull and White (1994a) and Hull and White (1994b).

Step one We build two separate fundamental one-dimensional trees for
both x and y. Taking the lognormal price x as an example, the trinomial
tree for y will be built in a very similar manner.

We discretize the time interval [0, T ] into N equally spaced time steps.
That is, the time values are denoted by tn = n4t, where n = 0, 1, . . . , N and
4t = T

N is the time step. Similarly, the values of x at time tn are referenced by
xn,s = s4X , where s is an integer representing the level index and4X is the
space step. This means that any node on the tree can be referenced by a pair of
integers (n, s). In addition, due to convergence and stability considerations,
it is suggested in Hull and White (1994a) that

4X = σ1

√
34t. (2.16)

Because of the mean-reverting nature of this model, the trinomial tree will
reach its maximum level, smax, at some point (the minimal level, smin, is also
reached at the same time, smin = −smax). In the trinomial tree, the nodes
emanating from node (n, s) are (n + 1, k + 1), (n + 1, k) and (n + 1, k − 1),

2The Markov property of this two-dimensional process can be checked by applying Theo-
rem 7.1.2 in Øksendal (2003)



Chapter 2. Gas sales agreements foundations 24

where k is chosen so that the value of x reached by the middle branch is as
close as possible to the expected value of x at time tn+1. Indeed,

k =


s− 1 s = smax

s smin < s < smax

s+ 1 s = smin

. (2.17)

We approximate (2.14) in discrete time as follows:

x(tn+1) = x(tn)− α1x(tn)4t+ σ1

(
B1(tn+1)−B1(tn)

)
. (2.18)

Since B1(tn+1) − B1(tn) ∼ N (0,4t), together with (2.18), we would like the
following properties to hold:

E
[
x(tn+1)− x(tn)

∣∣x(tn) = xn,s

]
= −α1xn,s4t, (2.19)

Var
[
x(tn+1)− x(tn)

∣∣x(tn) = xn,s

]
= σ2

14t.

It follows that

E
[(
x(tn+1)− x(tn)

)2∣∣x(tn) = xn,s

]
= σ2

14t+
(
− α1xn,s4t

)2
. (2.20)

Let pu,n,s, pm,n,s and pd,n,s be the probabilities associated with the upper, mid-
dle and lower branches emanating from node (n, s) respectively. Now, we
find these probabilities in such a way as to satisfy (2.19) and (2.20):

−α1xn,s4t =E
[
x(tn+1)− x(tn)

∣∣x(tn) = xn,s

]
=pu,n,s((k + 1)− s)4X + pm,n,s(k − s)4X

+ pd,n,s((k − 1)− s)4X,

(2.21)

and

σ2
14t+ (α1xn,s4t)2 =E

[(
x(tn+1)− x(tn)

)2∣∣x(tn) = xn,s

]
=pu,n,s((k + 1)− s)24X2 + pm,n,s(k − s)24X2

+ pd,n,s((k − 1)− s)24X2.

(2.22)
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FIGURE 2.3: A one-dimensional trinomial tree

Together with pu,n,s + pm,n,s + pd,n,s = 1, we obtain

pu,n,s =
1

2

[
σ2

14t+ (α1xn,s4t)2

4X2
+ (k − s)2 − α1xn,s4t

4X
(1− 2(k − s))

− (k − s)

]
, (2.23)

pd,n,s =
1

2

[
σ2

14t+ (α1xn,s4t)2

4X2
+ (k − s)2 +

α1xn,s4t
4X

(1 + 2(k − s))

+ (k − s)

]
, (2.24)

pm,n,s =1− pu,n,s − pd,n,s. (2.25)

It is shown in Hull and White (1994a) that, in order to ensure that pu,n,s, pm,n,s
and pd,n,s are all in the interval [0, 1], smax should be an integer between 0.184

α14t
and 0.816

α14t . To achieve the best efficiency, it is also suggested to set smax at the
smallest integer greater than 0.184

α14t . In the rest of this thesis, we will call this
tree the fundamental tree. Figure 2.3 shows the structure of a fundamental
tree with smax = 2.

Remark 2.7. Based on the above discussion, we can compute the probabilities
by using (2.23), (2.24) and (2.25).

• If smin < s < smax, we have
pu,n,s = 1

6 +
α2
1s

2∆t2−α1s∆t
2

pm,n,s = 2
3 − α

2
1s

2∆t2

pd,n,s = 1
6 +

α2
1s

2∆t2+α1s∆t
2

. (2.26)
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• If s = smax, we have
pu,n,s = 7

6 +
α2
1s

2∆t2−3α1s∆t
2

pm,n,s = −1
3 − α

2
1s

2∆t2 + 2α1s∆t

pd,n,s = 1
6 +

α2
1s

2∆t2−α1s∆t
2

.

• If s = smin, we have
pu,n,s = 1

6 +
α2
1s

2∆t2+α1s∆t
2

pm,n,s = −1
3 − α

2
1s

2∆t2 − 2α1s∆t

pd,n,s = 7
6 +

α2
1s

2∆t2+3α1s∆t
2

.

Step two Once we have built two fundamental trinomial trees for both x

and y, we combine these two trees together. Let node (n, z) be the node on
the E2 tree at time tn where the E2 price level is z. Any node on our new
two-dimensional tree can be referenced by a triplet of integers (n, s, z), which
indicates that the time is tn, the level of the E1 price on the E1 tree is s, and the
level of the E2 price on the E2 tree is z. There are three possible movements
(an up movement, a middle movement and a down movement) at each node
on both the E1 tree and the E2 tree, which gives a total of nine possible move-
ments at each node on the two-dimensional tree. We let {m1,m2} represent
the movement on the two-dimensional tree, which is the combination of the
m1 movement on the E1 tree and the m2 movement on the E2 tree. This
means that we have the following nine movements with their corresponding
probabilities:

{up, up}with Puu {up,middle}with Pum {up, down}with Pud
{middle, up}with Pmu {middle,middle}with Pmm {middle, down}with Pmd
{down, up}with Pdu {down,middle}with Pdm {down, down}with Pdd

Denote the probabilities associated with the upper, middle and lower branc-
hes on the E1 tree by pu, pm and pd, respectively. Similarly, denote the proba-
bilities associated with the upper, middle and lower branches on the E2 tree
by qu, qm and qd, respectively. By assuming the correlation ρ = 0, the prob-
abilities on the two-dimensional tree are the product of the corresponding
probabilities associated with the branches on the E1 tree and the E2 tree. The
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probability matrix is given by:

Πρ=0 =

Puu Pum Pud

Pmu Pmm Pmd

Pdu Pdm Pdd

 =

puqu puqm puqd

pmqu pmqm pmqd

pdqu pdqm pdqd

 . (2.27)

When the correlation is non-zero, according to Appendix F in Brigo and Mer-
curio (2006), each probability is shifted to maintain the marginal distribution
and the covariance structure of x and y. The probabilities are given by:

Πρ>0 =

Puu Pum Pud

Pmu Pmm Pmd

Pdu Pdm Pdd

 =

puqu + 5ε puqm − 4ε puqd − ε
pmqu − 4ε pmqm + 8ε pmqd − 4ε

pdqu − ε pdqm − 4ε pdqd + 5ε

 (2.28)

and

Πρ<0 =

Puu Pum Pud

Pmu Pmm Pmd

Pdu Pdm Pdd

 =

puqu − 1ε puqm − 4ε puqd + 5ε

pmqu − 4ε pmqm + 8ε pmqd − 4ε

pdqu + 5ε pdqm − 4ε pdqd − ε

 , (2.29)

where ε = ρ
36 if ρ ≥ 0 and ε = − ρ

36 if ρ < 0.

Remark 2.8. Given any node (n, s, z) on the two-dimensional trinomial tree,
(2.27), (2.28) and (2.29) can be calculated by using (2.23), (2.24) and (2.25).
That is, given any node (n, s, z), we have pu = pu,n,s, pm = pm,n,s and pd =

pd,n,s. Same rule applies to qu, qm and qd. It may happen that one or more
entries in Πρ>0 or Πρ<0 are negative. To overcome this drawback, Brigo and
Mercurio (2006) (Appendix F) suggest that one can substitute Πρ>0 or Πρ<0

with Πρ=0 on a node when negative probabilities happen on this node. That
is, we assume different correlations on the nodes where some probabilities
are negative. As reported in Brigo and Mercurio (2006), this action has a
negligible impact on a derivative price as long as we have a sufficiently small
∆t.

Step three Returning to the notations in Step one, we now make both the
E1 tree and the E2 tree to be consistent with the observed forward curve by
adding an amount, an, at each node of each time step tn. Again, we use the E1
tree as an example, but the E2 tree can be adjusted in a very similar manner.

We define the state price, Gn,s, as the value of a security that pays 1 if the
node (n, s) is reached, and 0 otherwise, at time 0. Then the state price at each
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node can be obtained by forward induction:

Gn+1,s =
∑
s′

Gn,s′ps′ ,se
−r4t,

where (n, s
′
) represents the node at time n4t that has a branch leading to

node (n+1, s) and ps′ ,s is the probability of moving from node (n, s
′
) to node

(n+ 1, s), r is the risk-free rate. Denote the E1 price by S, that is S(t) = eX(t).
In addition, let Sn,s be the E1 price where the time equals tn and the level
of the E1 price on the adjusted E1 tree is s. Thus, the price at time 0 of any
European claim with payoff function C(Sn,s) at time step n on the tree is
given by

C0 =
∑
s

Gn,sC(Sn,s), (2.30)

where the summation takes place through all nodes (n, s) at time tn. Now
consider a case where C(Sn,s) = Sn,s, then according to (2.30), we have

e−rtnF 1(0, tn) =
∑
s

Gn,sSn,s. (2.31)

Let Xn,s = xn,s + an. By letting Sn,s = exn,s+an and through equation (2.31),
we obtain

e−rtnF 1(0, tn) =
∑
s

Gn,se
xn,s+an .

It follows that

an = ln

(
e−rtnF 1(0, tn)∑

sGn,se
xn,s

)
. (2.32)

Therefore, by adding an at each node at each time tn, we obtain the trinomial
tree we need.

The right panel of Figure 2.4 demonstrates some examples of trinomial
trees that have been constructed to be consistent with the forward curves
shown in the left panel of Figure 2.4.
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FIGURE 2.4: Trinomial tree examples
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Note: The red plots refer to the E1 price and the blue plots
refer to the E2 price. The parameters used are as follows: T =
1, N = 24, α1 = 1.5, α2 = 5, σ1 = 0.2, σ2 = 0.1 and r = 0.05.
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Chapter 3

Analysis of a multiple year gas
sales agreement

The main contents of this chapter have been published in Dong and Kang
(2018).

3.1 Introduction

A gas sales agreement (GSA) is an American-style option with daily exer-
cise opportunities. The delivery of daily quantities is constrained between
pre-determined minimum and maximum daily limits. Under a GSA, the gas
supplier encourages the buyer to purchase more gas when the market gas
price is low, however, the buyer prefers to postpone the purchase until the
market gas price is high. To protect the interests of gas suppliers, a minimum
volume of gas, which is called the minimum bill, appears in the GSA. If the
actual quantity of gas taken at each year end does not meet the minimum
bill, the buyer will face a penalty. Typically, there is also a maximum annual
quantity that can be taken. There are also two common and important fea-
tures in multi-year GSA contracts: the make-up bank and the carry-forward
bank. In the years where the gas taken is less than some reference level, the
shortfall is added to a make-up bank. In later years, where the gas taken is
greater than some reference level, the buyer can get some refund based on
the quantity of extra gas purchased. In years where the gas taken is greater
than some reference level, the excess gas is added to the carry-forward bank.
In later years, the gas in the carry-forward bank can be used to reduce the
minimum bill for that year. In addition, the amount that can be used from
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the make-up and carry-forward banks each year is usually constrained by a
recovery limit.

A number of papers have discussed the valuation of general swing op-
tions (GSAs without the make-up and carry-forward banks). Lattice-based
numerical methods can be found in Thompson (1995), Jaillet, Ronn and Tom-
paidis (2004), Barrera-Esteve et al. (2006) and Bardou, Bouthemy and Pagès
(2009) while simulation-based methods can be found in Dörr (2003), Mein-
shausen and Hambly (2004), Thanawalla (2006) and Ibáñez (2004). When
the strike price of a GSA is a constant, the valuation of the GSA is a clas-
sical dynamic programming problem. In real contracts, however, the strike
price is set based on the indexation principle under which the strike price is
called the index. In each month, the value of the index is determined by the
weighted average price of some energy substitutions in the previous month
(see Asche, Osmundsen and Tveterås (2002) for details). This feature links
the valuation of the GSAs to the moving average problem. So far, however,
no effective method has been derived in the literature to value GSAs embed-
ded with moving average features. In order to perform a detailed analysis
of GSAs in terms of values, decisions, make-up usage, carry-forward usage,
etc., we follow the assumption in Edoli et al. (2013) that the evaluation of the
index follows a mean-reverting Markov process.

In cases where there are make-up and carry-forward banks, the GSA be-
comes even more complicated to evaluate. The basis features of both the
make-up and carry-forward banks are explained in Breslin et al. (2008). In
Holden, Løland and Lindqvist (2011), the authors propose an algorithm whi-
ch uses the least-squares Monte Carlo method to evaluate GSAs with a carry-
forward bank, although the authors only price the contract values and do
not extract optimal decisions. The first formally quantitative treatment of
GSAs containing the make-up provision was done in Edoli et al. (2013). The
authors modelled one type of make-up clause and performed a sensitivity
analysis of the contract value with respect to various parameters. The GSAs
in Edoli et al. (2013) do not have penalties and the volume of gas in the
make-up bank must be zero at the end of the contract. In addition, their
GSAs contain either the make-up clause or the carry-forward clause, but not
both. The second treatment of make-up and carry-forward banks appears
in Chiarella, Clewlow and Kang (2016), where the authors evaluate GSAs
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with both make-up and carry-forward banks in a regime-switching forward
price curve model. The authors, however, only evaluate GSAs with constant
strike prices and do not take the indexation into account. Furthermore, in
both Chiarella, Clewlow and Kang (2016) and Edoli et al. (2013), the effect of
the make-up and carry-forward banks on the optimal decisions is not given.
The main contribution of this chapter, therefore, is to evaluate multiple year
GSAs with both make-up and carry-forward banks, as in Breslin et al. (2008),
but with stochastic strike prices (indexation), while also providing a detailed
analysis of how the make-up bank, the carry-forward bank, the indexation
and the different parameter settings affect both values and decisions. With
the help of our numerical examples in Section 3.4, traders can have a better
understanding of the impact of various important contract features on both
the contract value and the trading strategies, such as recovery limits, penal-
ties, the minimal bill, etc..

This chapter is organized as follows: In Section 3.2, we propose a mean-
reverting model for the gas price and the index. Section 3.3 formulates both
the cases of GSAs that do not have make-up and carry-forward banks and
those that do. Section 3.4 compares GSAs with indexation with those with
constant strike prices, and also analyzes the effect of make-up and carry-
forward clauses, and how various parameters affect the contract value. At
the end of Section 3.4 the ways in which the indexation affects decisions about
weekly takes, make-up takes and carry-forward takes are analyzed. We draw
conclusions in Section 3.5.

3.2 Modelling the gas price and the index

This chapter considers the one factor forward curve model built in Clewlow
and Strickland (1999).1 We assume the forward prices of both gas and index
follow the stochastic differential equations below:

dFS(t, T )

FS(t, T )
= σSe

−αS(T−t)dBS(t), (3.1)

1To model the whole forward price curve, a multi-factor model is usually required, but
since we focus on computing the price and optimal decisions of the GSA, the overall volatility
level matters more than the individual factors.



Chapter 3. Analysis of a multiple year gas sales agreement 33

dF I(t, T )

F I(t, T )
= σIe

−αI(T−t)dBI(t), (3.2)

where FS(t, T ) and F I(t, T ) are the forward prices of gas and index at time
t ∈ [0, T ] with the maturity T , respectively. BS(t) and BI(t) are standard
Brownian motions with correlation ρ, and αS , σS , αI and σI are constants.

We now proceed to get the spot and log prices of the gas and index in
analogy with Clewlow and Strickland (1999). Given (3.1), we have the fol-
lowing solution:

FS(t, T ) = FS(0, T ) exp

[
−1

2
σ2
S

∫ t

0
e−2αS(T−u)du+ σS

∫ t

0
e−αS(T−u)dBS(u)

]
.

Then the spot price is obtained by setting T = t:

S(t) = FS(0, t) exp

[
−1

2
σ2
S

∫ t

0
e−2αS(t−u)du+ σS

∫ t

0
e−αS(t−u)dBS(u)

]
.

(3.3)
According to Appendix A in Clewlow and Strickland (1999) (equations (A.3)
and (A.4)), we have the following equation:

dS(t)

S(t)
=

[
∂ lnFS(0, t)

∂t
+ αSσ

2
S

∫ t

0
e−2αS(t−u)du

− αSσS
∫ t

0
eαS(t−u)dBS(u)

]
dt+ σSdB

S(t).

By (3.3), we have

lnS(t) = lnFS(0, t)− 1

2
σ2
S

∫ t

0
e−2αS(t−u)du+ σS

∫ t

0
e−αS(t−u)dBS(u),

which gives

αSσS

∫ t

0
eαS(t−u)dBS(u) = αS

[
lnS(t)− lnFS(0, t) +

1

2
σ2
S

∫ t

0
e−2αS(t−u)du

]
.

By the fact that ∫ t

0
e−2αS(t−u)du =

1− e−2αSt

2αS
,
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we have

dS(t)

S(t)
=

[
∂ lnFS(0, t)

∂t
+ αS(lnFS(0, t)− lnS(t)) +

σ2
S(1− e−2αSt)

4

]
dt

+ σSdB
S(t).

After applying Itô’s formula with X(t) = lnS(t), we get

dX(t) = φS(t,X(t))dt+ σSdB
S(t), (3.4)

where

φS(t, x) =
∂ lnFS(0, t)

∂t
+ αS(lnFS(0, t)− x) +

σ2
S

4
(1− e−2αSt)− 1

2
σ2
S .

Through similar calculations, with Y (t) = ln I(t), for (3.2) we have

dY (t) = φI(t, Y (t))dt+ σIdB
I(t),

where

φI(t, y) =
∂ lnF I(0, t)

∂t
+ αI(lnF

I(0, t)− y) +
σ2
I

4
(1− e−2αI t)− 1

2
σ2
I .

To check the Markov property of the two-dimensional process (X,Y ), we
rewrite X and Y . The Brownian motions BS and BI can be expressed in
terms of two independent Brownian motionsB1 andB2, whereBS = B1 and
BI = ρB1 +

√
1− ρ2B2. Then (X,Y ) can be written as follows:

d

(
X(t)

Y (t)

)
= A2×3

 dt

dB1

dB2

 ,

where

A2×3 =

(
φS(t,X(t)) σS 0

φI(t, Y (t)) σIρ σI
√

1− ρ2

)
.

Being each entry of matrix A2×3 a Lipschitz function and (t, B1(t), B2(t)) a
set of independent Lévy processes, one can apply Theorem 32 of Chapter V
in Protter (2005) to confirm the Markov property of (X,Y ).
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To use the tree building procedures in Section 2.2, we rewrite the log
prices of the gas and index as follows:

dX(t) =
[
θS(t)− αSX(t)

]
dt+ σSdB

S(t), (3.5)

dY (t) =
[
θI(t)− αIY (t)

]
dt+ σIdB

I(t), (3.6)

where

θS(t) =φS(t,X(t)) + αSX(t)

=
∂ lnFS(0, t)

∂t
+ αS lnFS(0, t) +

σ2
S

4
(1− e−2αSt)− 1

2
σ2
S ,

and

θI(t) =φI(t, Y (t)) + αIY (t)

=
∂ lnF I(0, t)

∂t
+ αI lnF I(0, t) +

σ2
I

4
(1− e−2αI t)− 1

2
σ2
I .

3.3 Multiple year gas sales agreements

As introduced in Section 3.1, the GSA is an American-style option between
a gas supplier and a gas buyer for the delivery of daily quantities of gas
at variable strike prices over several years. In the absence of make-up and
carry-forward banks, the main constraint in a GSA is the minimum bill. In
each year, a penalty is applied if the actual gas taken is below the minimum
bill. When it comes to the make-up and carry-forward banks, however, the
contract becomes more complicated. In the years where the gas taken is less
than the minimum bill, the shortfall is added to a make-up bank. In years
where the gas taken is greater than some reference level (this level is called
the carry-forward base), the excess gas is added to the carry-forward bank. In
later years, under some pre-specified conditions, the gas in the make-up bank
can be withdrawn to get a refund, while the gas in the carry-forward bank
can be withdrawn to reduce the minimum bill. Since both the make-up and
carry-forward banks offer the buyer opportunities to reduce possible losses,
some pre-specified limits are imposed to protect the interests of the gas sup-
plier. For example, in each year, the gas withdrawn from these banks cannot
exceed some pre-specified limits: the carry-forward bank recovery limit and
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the make-up bank recovery limit. These recovery limits will play large roles
in the contract value. Also, since both the make-up and carry-forward banks
are related to the minimum bill (and hence related to the penalty), how the
penalty is calculated will also greatly affect the contract value. In addition, in
each year, the evaluation of the make-up and carry-forward banks should be
formulated carefully.

In this section, we provide an analytical representation of GSA contracts
with the above features. GSA contracts without make-up and carry-forward
banks are presented in Subsection 3.3.1. GSA contracts with make-up and
carry-forward banks are formulated in Subsection 3.3.2.

3.3.1 Gas sales agreements in the absence of make-up and carry-
forward banks

A gas sales agreement with indexation between the gas provider and the gas
user could have many specific features to satisfy the needs of both parties to
the agreement but these contracts usually have a number of common features
as set out below:

• The contract lasts L years and there are J time periods (typically days)
in each year, L and J are positive integers. Let Ti be the end of each
year i, for i = 1, . . . , L. Obviously, TL is the maturity of this contract.

• Let the time interval be4t = 1/J , then the contract duration is equally
spaced into J · L periods. Denote the j-th period of the i-th year by
[ti,j−1, ti,j ], i = 1, . . . , L and j = 0, . . . , J , where ti,j = (i − 1) + j · ∆t.
Hence we have

0 = t1,0 < t1,1 < . . . < t1,J = T1 = t2,0 < t2,1 < . . .

. . . < tL−1,J = TL−1 = tL,0 < tL,1 < . . . < tL,J = TL.

We assume that the holder of a GSA has exactly one exercise oppor-
tunity at each time ti,j in each gas year where i = 1, . . . , L and j =

1, . . . , J , which amounts to J rights for a whole year. Typical GSAs can
usually be exercised daily (J = 365) or weekly (J = 52).

• Let qti,j be the amount of gas taken (exercise decision) at time ti,j , which
is constrained by the minimum daily quantity qmin and the maximum
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daily quantity qmax, that is qmin ≤ qti,j ≤ qmax. Let qadmis be the collec-
tion of admissible policies which is given by

qadmis =
{
qti,j , i = 1, . . . , L and j = 1, . . . , J : qmin ≤ qti,j ≤ qmax

}
.

Let Qti,j be the cumulative amount of gas taken before time ti,j in year
i (also known as the period to date). It is straightforward to see that

Qti,j =

j−1∑
k=1

qti,k . (3.7)

In addition, we let QTi be the total amount of gas taken during the year
i. That is,

QTi = Qti,J + qti,J . (3.8)

• Let Si,j and Ii,j be the gas price and the index at time ti,j , respectively.
Then, upon taking the volume qti,j , the payoff from the buyer’s point of
view at time ti,j is

qti,j (Si,j − Ii,j) .

• In each year, there is a maximum quantity of gas the buyer can take,
which is called the annual contract quantity. Denote the annual contract
quantity in year i by ACQi. In each year, the amount of gas the buyer
has taken cannot exceed the annual contract quantity. That is, QTi ≤
ACQi for each year i. Similarly, there is a minimum quantity of gas the
buyer has to take in each year, which is called the minimum bill. Denote
the minimum bill in year i by MBi. The total gas taken in each year can
be below the minimum bill, however, in which case the buyer has to
pay penalties at the end of that year. More precisely, if QTi < MBi in
year i, at the end of year i, there is an out cash flow generated by the
penalty, in addition to the cash flow generated by the exercise decision.

• Usually, the penalty rate is a percentage of the index price. In this chap-
ter, we let the penalty be given by

η · Ii,J ·min
{
QTi −MBi, 0

}
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for each year i, where η ∈ [0, 1] is a constant, which is called the penalty
coefficient.

• The risk-free rate is denoted by r.

From the buyer’s point of view, the goal is to maximize the total expected
discounted payoff of the contract, including the penalty. That is, to find the
value V0 of this contract at time 0 which is given by

V0 = sup
qti,j∈[qmin,qmax]

E

[
L∑
i=1

(
J∑
j=1

e−rti,jqti,j (Si,j − Ii,j)+

e−rti,J · η · Ii,J ·min{QTi −MBi, 0}

)]
. (3.9)

Remark 3.1. In Edoli et al. (2013), the author claims that the non-trivial con-
straints below are extremely important:

qmin · J < MBi ≤ QTi ≤ ACQi < qmax · J for each i.

Since under normal circumstances, however, the gas supplier would encour-
age the buyer to purchase more gas, it is natural to have ACQi = qmax · J,
namely

qmin · J < MBi ≤ QTi ≤ ACQi = qmax · J for each i.

In a GSA contract, the user and the supplier can specify an existing volume
of gas which has been taken at the beginning of each gas year. That is, if the
gas supplier would like to offer the gas buyer a discount in a specific year,
he/she can assume that there is an existing volume of gas has been taken at
the beginning of this year. We denote this volume of gas by Q̃i. In this thesis,
we let Q̃i = 0, ∀i, but it is straightforward to relax this assumption as long
as we know the exact value specified in a particular contract. In addition,
we further assume that, once the annual contract quantity is met, the daily
minimum quantity can be violated, since the amount of gas the buyer has
taken cannot exceed the annual contract quantity. That is, we let qti,j = 0 as
long as Qti,j = ACQi, and we omit the discussion of this scenario in the rest
of this chapter.
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Dynamic Programming On the last day of the contract tL,J , we have the
following three scenarios: if SL,J > IL,J , that is the payoff is increasing in
the volume purchased then we should take as much gas as we can; if SL,J ≤
IL,J and IL,J − SL,J < η · IL,J , we can reduce the total loss by purchasing a
quantity up to that required to avoid the penalty, or the maximum possible,
whichever is smaller; if SL,J ≤ IL,J and IL,J − SL,J ≥ η · IL,J , that is the loss
on the purchase of the gas is not compensated by the reduction in the penalty
payment, we take as little gas as we can.

More precisely, let q∗ = q∗(S, I,Q, t) be the optimal take decision where
the gas price equals S, the index equals I and the period to date equals Q at
time t. In particular, on the last day tL,J of the contract, we have:

q∗ =


qmax, S > I,

min
{

max
{
MBL −Q, qmin

}
, qmax

}
, S ≤ I and (1− η)I < S,

qmin, S ≤ I and (1− η)I ≥ S,

On the final day, the buyer still has to face the penalty if the minimum bill is
not reached. After the last decision q∗(S, I,Q, tL,J), the total amount of gas
taken in the last year is known. Then the penalty becomes:

η · IL,J ·min
{
QtL,J + q∗(S, I,Q, tL,J)−MBL, 0

}
.

Denote the value of the contract by V (S, I,Q, t) where the gas price equals
S, the index equals I and the period to date equals Q at time t. The termi-
nal payoff V (S, I,Q, tL,J) is determined by the instant strike payoff and the
penalty, which leads to the following expression:

V (S, I,Q, tL,J)

=q∗(S, I,Q, tL,J) · (S − I) + η · I ·min
{

0, Q+ q∗(S, I,Q, tL,J)−MBL

}
.

Now that we have the terminal payoff, we can work backwards in time to
find the optimal take and optimal value through the life of the contract. In
fact, at each day ti,j within a year, we should choose the optimal exercise
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decision according to

q∗(S, I,Q, ti,j)

=argmaxqti,j∈[qmin,qmax]

{
qti,j (S − I)+

E
[
e−r4tV (Si,j+1, Ii,j+1, Q+ qti,j , ti,j+1)

∣∣∣Si,j = S, Ii,j = I
]}

,

and the contract value is

V (S, I,Q, ti,j)

=q∗(S, I,Q, ti,j) · (S − I)+

E
[
e−r4tV (Si,j+1, Ii,j+1, Qti,j + q∗(S, I,Q, ti,j), ti,j+1) | Si,j = S, Ii,j = I

]
.

On the last day of each year (except the final year of the contract), we choose
the optimal exercise decision according to

q∗(S, I,Q, ti,J)

=argmaxqti,J∈[qmin,qmax]

{
qti,J (S − I) + η · I ·min

{
0, Q+ qti,j −MBi

}
+

E
[
e−r4tV (Si+1,1, Ii+1,1, Q̃i, ti+1,1) | Si,J = S, Ii,J = I

]}
, (3.10)

where Q̃i is the existing volume of gas which has been taken at the beginning
of year i (recall Remark 3.1). Then the contract value is obtained by

V (S, I,Q, ti,J)

=q∗(S, I,Q, ti,J) · (S − I) + η · I ·min
{

0, Q+ q∗(S, I,Q, ti,J)−MBi

}
+

E
[
e−r4tV (Si+1,1, Ii+1,1, Q̃i, ti+1,1) | Si,J = S, Ii,J = I

]
. (3.11)

3.3.2 Multi-year gas sales agreements with both make-up and carry-
forward banks

Turning now to the make-up and carry-forward features of multiple year
GSA contracts, which were previewed in Section 3.1 of this chapter, we now
formulate these two banks based on the notations in Subsection 3.3.1 above:

• Denote the amount of gas available in the carry-forward bank in year i
by Ci, i = 1, . . . , L. Let CRLi be the carry-forward bank recovery limit
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and CBi be the carry-forward base in year i. In addition, denote the us-
age of gas in the carry-forward bank by ci in year i. Denote the amount
of gas available in the make-up bank in year i by Mi, i = 1, . . . , L. Let
MRLi be the make-up bank recovery limit and mi be the usage of gas
in the make-up bank in year i.

• In year i, when the total gas taken is QTi > max{MBi +mi, CBi}, then
the excess gas is added to the carry-forward bank, which gives Ci+1 =

Ci + (QTi − max{MBi + mi, CBi}). In year i, if the total gas taken is
QTi < MBi, the buyer can use the gas in the carry-forward bank to
reduce the minimum bill, which adjusts the minimum bill in year i to
MBi − ci. In addition, the possible year end penalty becomes η · Ii,J ·
min{QTi − (MBi − ci), 0}. The usage ci, however, is constrained by the
amount of gas in the carry-forward bank and the recovery limit, that
is, ci ≤ min{Ci, CRLi}. Based on the above formulation, we obtain the
evolution of the carry-forward bank, which is given by

Ci+1 = (Ci − ci) + max
{
QTi −max

{
MBi +mi, CBi

}
, 0
}
.

• In year i, when the gas taken is less than the adjusted minimum bill,
that is QTi < MBi − ci, the shortfall is added to the make-up bank and
Mi+1 = Mi + (MBi − ci −QTi). In year i, when the gas taken is QTi >
MBi + Ci, a refund will be given based on the excess gas. Then at the
end of those years, in addition to the instant exercise payoff, an income
cashflow is generated from the refund, which is given by Ii,J ·mi; noting,
of course, that mi ≤ min{Mi,MRLi,max{QTi − (MBi + Ci), 0}}. We
can also obtain the evolution of the make-up bank by

Mi+1 = (Mi −mi) + max
{
MBi − ci −QTi , 0

}
.

The objective function With both make-up and carry-forward banks, the
payoff at the end of each year not only depends on the instant exercise and
the possible penalty, but also the possible income from the refund. That is, at
the end of each year i, we have the following cash flows:

• the instant exercise payoff qti,J (Si,J − Ii,J).
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• the possible penalty if the total gas taken is less than the adjusted mini-
mum bill MBi − ci:

η · Ii,J ·min
{
Qti,J + qti,J − (MBi − ci), 0

}
.

• the income generated by the possible refund when the total gas taken
exceeds MBi + Ci:

Ii,J ·min
{
mi,max

{
Qti,J + qti,J − (MBi + Ci), 0

}}
.

The payoff for each day within a year is the same as that with GSAs in the
absence of make-up and carry-forward banks. Thus, from the perspective of
the buyer, the goal is to find the initial contract value V0 that is given by

V0 = sup
qti,j ,mi,ci

E

[
L∑
i=1

( J∑
j=1

e−rti,jqti,j (Si,j − Ii,j)

+ e−rti,J · η · Ii,J ·min
{
Qti,J + qti,J − (MBi − ci), 0

}
+ e−rti,J · Ii,J ·min

{
mi,max

{
Qti,J + qti,J − (MBi + Ci), 0

}})]
.

(3.12)

Remark 3.2. Recall (2.8) and (2.11) in Section 2.1, we have shown that a one-
year GSA can be split into two parts: a swap part and a normalized GSA. The
multiple years GSA can also be split into these two parts. Rewrite (3.12) as
follows:

V0 =E

[
L∑
i=1

( J∑
j=1

e−rti,jqmin(Si,j − Ii,j)
)]

+ sup
q̄ti,j ,mi,ci

E

[
L∑
i=1

( J∑
j=1

e−rti,j q̄ti,j (Si,j − Ii,j)

+ e−rti,J · η · Ii,J ·min
{
Qti,J + q̄ti,J + qmin − (MBi − ci), 0

}
+ e−rti,J · Ii,J ·min

{
mi,max

{
Qti,J + q̄ti,J + qmin − (MBi + Ci), 0

}})]
,

(3.13)
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where q̄ti,j ∈ [0, qmax − qmin],

Qti,j =

j−1∑
k=1

(
q̄ti,j + qmin

)
, (3.14)

i = 1, . . . , L, j = 2, . . . , J and Qti,1 = 0. The first expectation in (3.13) refers
to the swap part, and the rest of (3.13) refers to the normalized GSA. This
normalized GSA holds basically the same characteristics with the multi-year
GSA introduced in this subsection except two differences. The first difference
is that this normalized GSA uses (3.14) to calculate the period to date Qti,j
instead of using (3.7). The second difference is that this normalized GSA
calculate the total amount of gas taken during the year i = 1, . . . , L through

QTi = Qti,J + q̄ti,J + qmin

instead of using (3.8). Since the multi-year GSA also have the so-called de-
composition of the GSA, without loss of generality, we can let qmin = 0 and
qmax = 1.

The terminal condition With both make-up and carry-forward banks, the
decision to be made on the last day is much more complicated. On the
last day of the contract, we need to use as much of the balance in both the
make-up and carry-forward banks as possible. Let q∗(S, I,Q,C,M, t) and
V (S, I,Q,C,M, t) be the optimal exercise decision and the contract value re-
spectively where the gas price equals S, the index equals I , the period to
date equals Q, the amount of gas in the carry-forward bank equals C and the
amount of gas in the make-up bank equals M , at time t. Next, let us find
q∗(S, I,Q,C,M, tL,J). On the last day, if S > I , that is the payoff is increas-
ing in the volume purchased, then we should take as much gas as we can. If
S ≤ I , however, we have the following scenarios:

• If there is no gas available in the make-up bank, or the buyer has to take
more gas to meet the minimum bill, that is M = 0 or Q < MBL.

– If (1− η) I < S, that is the loss on the purchase of the gas is com-
pensated by the reduction in the penalty payment, then the opti-
mal choice is to purchase a quantity up to the amount required to
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avoid the penalty, or the maximum possible, whichever is smaller.
It follows that

q∗ (S, I,Q,C,M, tL,J) = min
{

max
{
MBL − C −Q, qmin

}
, qmax

}
.

– If (1− η) I ≥ S, that is the loss on the purchase of the gas is not
compensated by the reduction in the penalty payment, then

q∗ (S, I,Q,C,M, tL,J) = qmin.

• If there is gas available in the make-up bank, that is M > 0, and Q ≥
MBL+C, this means that the buyer can get a refund from the make-up
bank.

– If there is gas available in the make-up bank, that is 0 ≤ Q −
(MBL + C) < M , the buyer should buy a quantity of gas up to
the gas available in the make-up bank, or the maximum possible:

q∗(S, I,Q,C,M, tL,J)

= max
{

min
{
M − (Q− (MBL + C)), qmax

}
, qmin

}
.

– If the buyer cannot take more refund because of a shortage of gas
in the make-up bank, that is Q − (MBL + C) ≥ M , then they
should take the daily minimum so as to avoid the loss:

q∗ (S, I,Q,C,M, tL,J) = qmin.

• If M > 0, but the period to date is not yet large enough to get a refund,
that is MBL ≤ Q < (MBL + C).

– If (MBL + C) − Q < qmax, the buyer can get some refund by tak-
ing qmax. In this scenario, if the buyer decides to get a refund,
they should take as much as they can, that is qmax. Then the buyer
makes a payment congruent with the gas purchased to meet the
condition of refund taking. However, the buyer may lose money
if he/she decides to take qmax. In this transaction, the payment
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equals ((MBL + C)−Q) · I . At the same time, the buyer receives
gas which has a value of qmax · S.

∗ If ((MBL + C)−Q)·I > qmax ·S, that is the buyer loses money
through this transaction, then

q∗ (S, I,Q,C,M, tL,J) = qmin.

∗ If ((MBL + C)−Q) · I ≤ qmax · S, that is the buyer makes a
profit through this transaction, then

q∗ (S, I,Q,C,M, tL,J) = qmax.

– If (MBL + C) − Q ≥ qmax, the buyer cannot get a refund, even if
the daily maximum quantity of gas has been purchased, and they
should therefore take the daily minimum.

q∗ (S, I,Q,C,M, tL,J) = qmin.

Dynamic programming Once we have the terminal optimal decision q∗tL,J

= q∗(S, I,Q,C,M, tL,J), we can obtain the terminal value of the contract

V (S, I,Q,C,M, tI,J) =q∗tL,J
· (S − I)

+ η · I ·min
{
Q+ q∗tL,J

− (MBL − C), 0
}

+ I ·min
{
M,max

{
Q+ q∗tL,J

− (MBL + C), 0
}}
.

Then we work backwards in time. On the last day of each year i (except the
final year) the buyer should choose the optimal exercise quantity, the optimal
usage of the carry-forward bank and the optimal usage of the make-up bank
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(q∗, c∗,m∗)(S, I,Q,C,M, ti,J) according to

(q∗, c∗,m∗)(S, I,Q,C,M, ti,J)

=argmaxqti,J ,ci,mi

{
qti,J (S − I)

+ η · I ·min
{
Q+ qti,J − (MBi − ci), 0

}
+ I ·min

{
mi,max

{
Q+ qti,J − (MBi + C), 0

}}
+ E

[
e−r4tV (Si+1,1, Ii+1,1, Q̃i, Ci+1,Mi+1, ti+1,1) | Si,J = S, Ii,J = I

]}
,

where Q̃i is the existing volume of gas which has been taken at the begin-
ning of year i. Once the optimal decisions (q∗ti,J , c

∗
i ,m

∗
i ) = (q∗, c∗,m∗)(S, I,Q,

C,M, ti,J) are determined, we have the contract value

V (S, I,Q,C,M, ti,J)

=q∗ti,J (S − I) + η · I ·min
{
Q+ q∗ti,J − (MBi − c∗i ), 0

}
+ I ·min

{
m∗i ,max

{
Q+ q∗ti,J − (MBi + C), 0

}}
+ E

[
e−r4tV (Si+1,1, Ii+1,1, Q̃i, Ci+1,Mi+1, ti+1,1) | Si,J = S, Ii,J = I

]
.

On each day within a gas year, the buyer should choose the optimal quantity
q∗(S, I,Q,C,M, ti,j) according to

q∗(S, I,Q,C,M, ti,j)

=argmaxqti,j

{
qti,j (S − I)+

E
[
e−r4tV (Si,j+1, Ii,j+1, Q+ qti,j , C,M, ti,j+1) | Si,j = S, Ii,j = I

]}
.

Again, once we have the optimal quantity q∗ti,j = q∗(S, I,Q,C,M, ti,j), we
have the contract value

V (S, I,Q,C,M, ti,j)

=q∗ti,j (S − I)+

E
[
e−r4tV (Si,j+1, Ii,j+1, Q+ q∗ti,j , C,M, ti,j+1) | Si,j = S, Ii,j = I

]
.
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TABLE 3.1: Parameters set for Contract A and Contract B.

Contract A with a constant strike price K = 100
αS = 5 σS = 0.5 r = 0.05 qmin = 0 qmax = 1
MB1 = 273 ACQ1 = 365 η = 1 FS(0, t) = 100, for 0 ≤ t ≤ L

Contract B with indexation
αI = 15 σI = 0.2 ρ = 0.5 F I(0, t) = 100, for 0 ≤ t ≤ L

Remark 3.3. Recall that the bang-bang consumption is introduced in Section
2.1. The bang-bang consumption means that the optimal decision of the GSA
on each day is either the daily maximum or the daily minimum. In Edoli et
al. (2013), the authors show that GSAs with both hard constraints and make-
up banks have the bang-bang consumption (similar results can be found in
Edoli and Vargiolu (2013)). For GSAs with penalties, make-up banks and
carry-forward banks, although no theoretical result available, we observe the
bang-bang consumption in our numerical examples.

3.4 Numerical analysis

In this chapter, we evaluate the price of the gas sales agreement on a two-
dimensional trinomial tree. We first construct two fundamental trees for both
the gas price and the index by assuming θS(t) = θZ(t) = 0 in (3.5) and (3.6).
Then we shift the nodes on the these two fundamental trees by adding proper
drifts in order to be consistent with the observed forward curves. The tree
building procedures can be found in Section 2.2.

3.4.1 Comparison with the constant strike GSA

In this subsection, we provide two contracts, one with a constant strike price
and one with indexation. These contracts last one year with daily exercise
opportunities. That is, L = 1 and J = 365. We show the features of the
daily decision surface and the difference between these two contracts. The
parameter inputs of those two contracts are shown in Table 3.1.

Contract A is a normal one-year contract with daily exercise opportuni-
ties and an at-the-money constant strike, K = 100. Since we focus on the
strike price, we use a flat gas price forward curve to minimize the effect of



Chapter 3. Analysis of a multiple year gas sales agreement 48

the gas price. In addition, we let the daily take constraints be qmin = 0 and
qmax = 1. Contract B uses the same parameter inputs as Contract A, ex-
cept for the constant strike K. Since the index is driven by (3.6), we have
those inputs in Table 3.1. For the index process, we choose a relatively large
mean-reverting speed and small volatility since the index is determined by
the weighted average prices of some other energy products in order to re-
duce uncertainty. Also, to offer a relatively fair comparison, we let the index
forward curve be F I(0, t) = K = 100, for 0 ≤ t ≤ L.

FIGURE 3.1: Decision surfaces for Contract B
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Decision surfaces Since we have observed the bang-bang consumption in
our numerical examples, we define the exercise threshold as the gas price
equal to or above which the buyer would be better off taking the daily max-
imum qmax. A low exercise threshold means that the buyer is willing to buy



Chapter 3. Analysis of a multiple year gas sales agreement 49

FIGURE 3.2: Comparison of decision surfaces between Con-
tract A and Contract B

gas under the contract, while a high exercise threshold means the buyer is re-
luctant to purchase gas. For the buyers, the most important thing is to make
the optimal daily exercise decision at the beginning of each gas day, based on
the current gas price and the index price. In Figure 3.1 we present some deci-
sion surfaces for Contract B. Note that the buyer and supplier can specify an
existing volume of gas which has been taken before entering a GSA contract.
That is why the “Day 1” surface also provides decisions for the period-to-
date greater than zero. As we can observe in Figure 3.1, Contract B captures
almost all the key features of the decision surfaces of a typical GSA with a
constant strike (for the analysis of decision surfaces of constant strike GSAs,
we refer interested readers to Breslin et al. (2008)). In these plots, the exer-
cise threshold is below the index price when the period to date is low, which
would cause an immediate loss. This is due to the minimum bill condition.
If the buyers try to avoid any loss at this point then they would have to face
more losses in order to meet the minimum bill, or even face penalties, in the
future. In addition, as is shown in the “Day 120”, “Day 240” and “Day 365”
plots, as the time approaches the year end, there will be a quantity of the
period to date below which the exercise threshold is the minimum gas price
obtained from the tree, regardless of the index price. This is due to the need
to meet the minimum bill or reduce the possible penalty. We call this quantity
the minimum bill constrained quantity.

Next, we present the difference in decision surfaces between Contract A
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FIGURE 3.3: Comparison of value surfaces
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Note: The left plot shows the value surface of Contract B. The
right plot shows the difference of values between Contract A

and Contract B.

and Contract B. As we can see in Figure 3.2, the exercise threshold of Con-
tract A (the yellow line) is above the decision surface of Contract B when
the period to date is high and beneath the surface when the period to date is
low. This means that, as long as the period to date exceeds the minimum bill
constrained quantity, the Contract B holder would purchase more gas when
the period to date is high and purchase less gas when the period to date is
low. With a high period to date, the possibility of failing to meet the mini-
mum bill, or facing a penalty, is low. In this scenario, the holder of Contract
B buys more gas, indicating that the indexation increases the uncertainty of
future cashflow. In contrast, with a small period to date, the possibility of
failing to meet the minimum bill, or facing a penalty, is high. In this scenario,
exercising less gas indicates that the holder of Contract B benefits from the
indexation.

Contract values The left-hand plot in Figure 3.3 shows the value surface
at day 0 of Contract B. The right-hand one is obtained by using the value
of Contract B minus the value of Contract A at day 0. As we can see, the
value of Contract A dominates the value of Contract B at each point, which
means that the GSA contract holder may not benefit from the indexation.
Furthermore, it can be seen that the difference between the values of the two
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contracts first becomes larger as the period to date increases. This is because,
with an initially small period to date, the possible need to meet the mini-
mum bill reduces as the period to date increases. The difference then becomes
smaller as the period to date increases. This is due to the fact that the exercise
strategies of both contracts become less flexible as the number of possible ex-
ercise opportunities decreases. Less flexibility means more similarity, that is,
the exercise strategies of both contracts converge to each other as the period
to date increases.

3.4.2 The effect of the make-up and carry-forward banks

In GSA contracts, make-up and carry-forward banks offer buyers the oppor-
tunity to reduce the potential risk. These rights are constrained, however,
by the make-up and carry-forward recovery limits. In this subsection, we
investigate the effects of these limits. All contracts appearing in this subsec-
tion share the parameters of Contract B in Table 3.1. Since the make-up and
carry-forward banks appear in multi-year contracts, we let L = 3, J = 365.
In addition, we have the same minimum bill, carry-forward base and annual
contract quantity in all three years: MBi = 273, CBi = 292 and ACQi = 365

for i = 1, 2, 3.

The effect of the make-up recovery limit We first present one example
where CRLi = 0, i = 1, 2, 3. That is, there is no carry-forward clause in
the contract. Figure 3.4 shows the difference between Contract M36 with
MRLi = 36 and Contract M73 with MRLi = 73, i = 1, 2, 3. In (a) and (b), we
can see that the value difference increases rapidly if the period to date is less
than 51 (i.e. Qt1,180 < 51). This coincides with our expectations. Intuitively
speaking, at the beginning of day 180, once Qt1,180 < 87, the buyer cannot
meet the minimum bill even if he/she takes the maximum daily gas every
day for the rest of the current year (Qt1,180 + 1 + (365 − 180) < 273). It is at
this point that the make-up bank starts to work; in other words, the shortfall
is added to the make-up bank. Once Qt1,180 < 87 − 36 = 51, however, the
quantity of gas in the make-up bank of Contract M36 will reach the make-up
recovery limit, even if the buyer takes the maximum daily gas every day for
the rest of the current year. That is, the holder of Contract M36 faces penalties
at the year end due to the shortfall, and the extra gas cannot be added to the
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FIGURE 3.4: Plots at day 180
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gas prices in (a), we get (b). (c) shows both the decision sur-

faces for Contracts M73 and M36.

make-up bank and cannot be refunded in the future. At the same time, the
shortfall is still being added to the make-up bank of Contract M73, and can
be used in future years. The difference then becomes stable when the period
to date is less than 14 (Qt1,180 < 51− (73− 36) = 14). At this stage, the gas in
the make-up bank of Contract M73 also reaches its recovery limit.

In addition, as we can see in (b) that when the period to date is larger than
51, the difference increases faster in a lower gas price regime than in a higher
gas price regime, since the period to date decreases. This means that when the
gas price is low, the buyer with more make-up rights has the opportunity to
gain more profit by taking less gas in the current year and getting a refund in
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FIGURE 3.5: Plots at day 180
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Note: (a) is obtained by using the value of Contract M73
15 mi-

nus the value of Contract M36
15. By selecting some specified

gas prices in (a), we get (b). (c) shows both the decision sur-
faces for Contracts M73

15 and M36
15.

future years. As we can see in the decision surfaces (Figure 3.4(c)), however,
the exercise threshold of Contract M73 is still low, and the buyer with more
make-up rights only takes less gas when the period to date is very small. This
means that, even with more make-up rights, paying a penalty at year end is
still a risky action.

For the sake of completeness, we also provide one example where the
carry-forward recovery limit is greater than zero. Figure 3.5 shows the dif-
ference between Contract M36

15 with MRLi = 36 and Contract M73
15 with

MRLi = 73, i = 1, 2, 3. Both Contract M36
15 and Contract M73

15 have the carry-
forward recovery limit CRLi = 15, i = 1, 2, 3. As we can see, Figure 3.4 and
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Figure 3.5 hold the same characteristics.

FIGURE 3.6: Plots at day 180
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prices in (a), we get (b). (c) shows the decision surfaces of

both Contracts C54 and C36.

The effect of the carry-forward recovery limit We first present one example
where MRLi = 0 ,i = 1, 2, 3. That is, there is no make-up clause in the
contract. Figure 3.6 shows the difference between Contract C54 with CRLi =

54 and Contract C36 with CRLi = 36, i = 1, 2, 3. In (a) and (b), we can see
that the difference starts to increase when the period to date is larger than
106 (Qt1,180 > 106) in the high gas price regime. This is because the buyer can
meet the carry-forward base if he/she takes the maximum daily gas every
day for the rest of the current year (Qt1,180 + 1 + (365− 180) > 292). At this
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stage, both holders of Contract C54 and C36 could have carry-forward gas
at the year end, but the difference starts to increase. This indicates that the
buyer with more carry-forward rights has the chance to buy more gas when
the period to date is relatively low. Once the period to date is larger than
142 (Qt1,180 > 106 + 36 = 142), the difference starts to increase rapidly in the
high gas price regime. This is because, once Qt1,180 > 142, the quantity of
gas in the carry-forward bank of Contract C36 will reach its carry-forward
recovery limit if the buyer takes the maximum daily gas every day for the
rest of the current year. That is, the extra gas cannot be added to the carry-
forward bank of Contract C36 and cannot be used to reduce the minimum bill
in future years. At the same time, the extra gas is added to the carry-forward
bank of Contract C54, and can be used in future years. The difference then
becomes stable when the period to date is larger than 346. At this stage, for
both contracts, the gas in the carry-forward bank has already reached the
respective recovery limits, regardless of future purchases.

In addition, as we can see in (b), when the carry-forward bank comes
into play, the difference is less sensitive with respect to the period to date in
the low gas price regime than in the high gas price regime. This is because,
with a lower gas price, the possibility of low gas prices in the future is high,
and thus the buyer may not buy enough gas to meet the carry-forward base.
As we can see in Figure 3.6(c), which shows the decision surfaces for these
two contracts, the buyer with more carry-forward rights even takes more gas
when the contract is out of the money (i.e. when the exercise threshold is
smaller than its corresponding index price). This means that the possible
penalty has a big influence on the daily decisions. The buyer intends to do
whatever they can to avoid possible penalties. Also, compared with Figure
3.4, it seems that the effect of the carry-forward recovery limit is much less
significant than the effect of the make-up recovery limit. This is because the
adding of make-up gas would mean an immediate penalty at the current year
end, and in future years, the buyer will try to make full use of the make-up
gas in order to get refunds. Adding gas to the carry-forward bank, however,
usually comes without a loss in the current year, and the buyer may not make
full use of the carry-forward gas in the future.

For the sake of completeness, we also provide one example where the
make-up recovery limit is greater than zero. Figure 3.7 shows the difference
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FIGURE 3.7: Plots at day 180
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between Contract C36
15 with CRLi = 36 and Contract C54

15 with CRLi = 54,
i = 1, 2, 3. Both Contract C36

15 and Contract C54
15 have the make-up recovery

limit MRLi = 15, i = 1, 2, 3. Generally speaking, Figure 3.6 and Figure 3.7
share the same characteristics. However, we find that Figure 3.7(a) behaves
differently from Figure 3.6(a) when the gas price is high. This phenomena
becomes clear in Figure 3.7(b). In Figure 3.7(b), the difference increases as the
period to date decreases from Qt1,180 = 87 to Qt1,180 = 72 when the gas price
is high. This is because that, once Qt1,180 < 87, the buyer cannot meet the
minimum bill even if he/she takes the maximum daily gas every day for the
rest of the current year (Qt1,180+1+(365−180) < 273). It is at this point that the
shortfall is added to the make-up banks of both Contract C36

15 and Contract
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αS = 2 σS = 0.5 αI = 3 σI = 0.4 r = 0.05 ρ = 0.5
qmin = 0 qmax = 1 MB = 39 CB = 42 ACQ = 52 η = 1

TABLE 3.2: Parameter values.

C54
15. The difference starts to increase as the period to date decreases indicates

that the carry-forward bank slightly amplifies the functionality of the make-
up bank. Once Qt1,180 < 87 − 15 = 72, the gas in the make-up banks of both
Contract C36

15 and Contract C54
15 will reach the make-up recovery limits. This

is why the difference stops increasing when the period to date is less than 72.

3.4.3 The effect of various parameters

In this subsection, we provide a detailed analysis of how various parameters
affect the contract values.

Parameter settings We choose a three-year GSA contract with weekly ex-
ercise opportunities. That is L = 3, J = 52. When the parameters are not
variable, we use those values in Table 3.2. By the nature of make-up and
carry-forward banks, for such a three-year example, the make-up bank will
play a large role if the contract is out-of-the-money in the first year and at-the-
money or in-the-money in the future years. Similarly, the carry-forward bank
would contribute more if the contract is in-the-money in the first year and at-
the-money or out-of-the-money in the future years. Thus one cannot have a
fair analysis without taking the forward curves into consideration, since the
forward curves can control the price movement in some sense. Although we
can adjust either the gas forward curve or the index forward curve, since the
index is obtained by the average of other energy substitutes, and is there-
fore more stable than the gas price, we choose the gas forward curve so as
to model a changeable situation. We use a flat index forward curve, that is
F I (0, t) = 100, for 0 ≤ t ≤ L. Let the gas forward curve be given as follows:

FS (0, t) =


100 + d, 0 ≤ t ≤ 1, Year 1,

100, 1 < t ≤ 2, Year 2,

100− d, 2 < t ≤ 3, Year 3,
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where d ∈ (−100, 100) is a constant. We call d the decoupling level. When
d < 0, then the contract is likely to be out-of-the money in the first year,
at-the-money in the second year and in-the-money in the third year. In this
situation, we say the gas forward curve is negatively decoupled. Curve I and
Tree I in Figure 2.4 present an example of a negatively decoupled gas forward
curve and its corresponding trinomial tree. When d = 0, then the contract is
likely to be at-the-money in all three years. In this situation, we say that
the gas forward curve is not decoupled. Curve II and Tree II in Figure 2.4
present an example of a gas forward curve that is not decoupled, along with
its corresponding trinomial tree. When d > 0, then the contract is likely to
be in-the-money in the first year, at-the-money in the second year and out-
of-the-money in the third year. In this situation, we say that the gas forward
curve is positively decoupled. Curve III and Tree III in Figure 2.4 present an
example of a positively decoupled gas forward curve, along with its corre-
sponding trinomial tree.

The risk-free rate By the nature of the make-up bank, the addition of make-
up gas in some years comes with penalties at the year end. The make-up gas
is refunded in future years, which means that there is a time gap between
the penalty and the refund. Thus the benefit of the make-up bank is affected
by the risk-free rate. Intuitively speaking, the higher the risk-free rate is,
the less contribution the make-up bank makes. Recall that the make-up and
carry-forward rights are measured by the make-up and carry-forward recov-
ery limits. The larger these limits are, the more make-up and carry-forward
rights the holder has. Furthermore, a contract that has larger make-up and
carry-forward recovery limits should also have a larger contract value. Fig-
ure 3.8(a) evidences our intuitions. The benefit of the greater make-up rights
peaks when the risk-free rate is 0, and reduces as the risk-free rate increases.
For the carry-forward bank, although there is no penalty when the holder
gains carry-forward gas, this gas carried forward could be used to reduce the
minimum bill in the future years, and when the carry-forward gas is with-
drawn, the possible loss is reduced. There is also a time gap between the
addition and withdrawal of carry-forward gas. Thus, the benefit of the carry-
forward bank should also be reduced by a higher risk-free rate. Figure 3.8(b)
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FIGURE 3.8: The contract value w.r.t. r
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shows these intuitions. As we can see, the benefit of more carry-forward be-
comes less significant when the risk-free rate increases. Also, compared with
the positively decoupled gas forward curve (d = 10), these phenomena are
less significant when the forward curve is not decoupled (d = 0). This is be-
cause the holder may have fewer opportunities to withdraw carry-forward
gas with d = 0. As we can see in Figure 3.8(c), the benefits of both make-up
and carry-forward banks are reduced by a higher risk-free rate. In addition,
when the forward curve is highly positively decoupled (d = 20), the contract
value increases as the risk-free rate increases. This is due to the fact that the
contract is highly in-the-money in the first year and highly out-of-the-money
in the third year. A higher risk-free rate, therefore, amplifies the benefit of the
in-the-money period.
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FIGURE 3.9: The contract value w.r.t. η
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The penalty coefficient To minimize the time value of money, we let the
risk-free rate be r = 0. The adding of make-up gas in some years comes with
penalties at the year end, which means the penalty coefficient should have a
significant effect on the make-up clause. A smaller penalty coefficient leads
to smaller possible penalties, and thus to buyers potentially accruing more
benefit from their make-up rights. Intuitively speaking, the greatest potential
benefit arising from make-up rights is probably when η equals zero, since
at that level buyers can store make-up gas without paying penalties. As we
can see in plot Figure 3.9(a), however, the benefit arising from having more
make-up rights is at its greatest when the penalty coefficient is around 0.3.
Furthermore, as we can see in Figure 3.9(b) and (c), the penalty coefficient
also affects the carry-forward bank. When η = 0, the contract values are the
same regardless of how many carry-forward rights the holder has (Figure
3.9(c)). This is because the carry-forward bank loses its function when η = 0;
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FIGURE 3.10: The contract value w.r.t. MRL and CRL.
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there is no need to reduce the minimum bill by using the carry-forward gas
if there is no penalty. The gap between these lines becomes stable when the
penalty coefficient is larger. This is because, at this point, the penalty is large
enough to maximize the carry-forward bank’s functionality. It also suggests
that, without a make-up bank, when η is large enough, the buyer will do
whatever they can to avoid possible penalties.

The make-up and carry-forward recovery limits Figure 3.10(a) shows that
the contract value increases as the make-up recovery limit increases. It also
evidences that the increasing speed is faster with a negatively decoupled for-
ward curve than a positively decoupled curve, or a curve that is not decou-
pled. Figure 3.10(b) shows that the contract value increases as the carry-
forward recovery limit increases. It also shows that the increasing speed is
faster with a positively decoupled forward curve.

The decoupling level As can be seen in the previous figures, with make-
up and carry-forward clauses, the decoupling level has a huge impact on the
contract. Figure 3.11(a) and (b) shows that the benefit of more make-up rights
increases as the decoupling level d decreases, while the benefit of more carry-
forward increases as the decoupling level increases. The more the forward
curve is negatively decoupled, the more make-up gas the holder can store
in the first year and withdraw in the third year when the contract is highly
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FIGURE 3.11: The contract value w.r.t. d
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in-the-money. When the forward curve is highly positively decoupled, mean-
while, the holder can buy more gas and gain more carry-forward gas, since
when the contract is highly out-of-the-money in the third year, the holder
will have more carry-forward gas to use to reduce the minimum bill. Figure
3.11(c) also evidences that, when the forward curves are not decoupled, the
carry-forward bank contributes more to the contract value than the make-up
bank.

The correlation The effect of the correlation ρ is presented in Figure 3.12.
It can be observed that the contract value decreases when the correlation in-
creases. This means that the buyer can benefit more when the gas price and
the index are negatively correlated. Figure 3.12(b) and (c) also show that
a positive correlation weakens the function of both the make-up and carry-
forward banks.
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FIGURE 3.12: The contract value w.r.t. ρ
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The volatility In respect to the effect of for the volatility of both the gas
price and the index, Figure 3.13 shows that the contract value decreases as
the volatility increases in a lower volatility regime, but then increases in a
higher volatility regime. In addition, the contract value peaks at the largest
value of the volatility. This is because the buyer could implement a more
flexible trading strategy when the gas price or the index price is fluctuat-
ing more. Figure 3.13(a) also shows that, when the forward curve is less
decoupled (the absolute value of d is small) the holder with more make-up
and carry-forward rights would benefit more from higher gas price volatility,
while Figure 3.13(c) shows that one would not appreciate this feature when
it comes to the volatility of the index. As we can see in Figure 3.13(b), when
the forward curve is highly decoupled (the absolute value of d is large), the
holder with more make-up and carry-forward rights would not gain any sig-
nificant benefit from higher volatility. This is because the highly decoupled
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FIGURE 3.13: The contract value w.r.t. σS and σI
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curve has already made sure the make-up or carry-forward bank works to its
full capacity.

The mean-reverting speed Figure 3.14 shows that the contract value is de-
creasing in αS and increasing in αI . This also shows that the speed of re-
version to the mean for both gas price and index does not have a significant
impact on the benefit of having more make-up and carry-forward rights.

3.4.4 How the indexation affects the decisions

In this section, we show how the indexation affects the decisions on weekly
exercise, carry-forward bank and make-up bank, and also the influences on
the volume taken. We use a six-year GSA contract with weekly exercise op-
portunities (L = 6, J = 52) as an example. The forward curves for both gas
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FIGURE 3.14: The contract value w.r.t. αS and αI
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FIGURE 3.15: Forward curves
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price and index are given in Figure 3.15. Using the parameters in Table 3.2,
we let MRLi = 10 and CRLi = 10 for i = 1, . . . , 6. We simulate a path of gas
spot prices and two paths of index at the same time. Then we make decisions
based on the optimal decision surface we calculated by using the dynamic
programming technique in Section 3.3. Figures 3.16 and 3.17 demonstrate
how decisions change when the realizations of the index are different.

In the first year of this example the gas forward curve is above the index
forward curve (i.e. in-the-money). Assuming that the spot price and the
index both follow their forward curves (we call this the intrinsic strategy), the
optimal strategy would then be to take the maximum possible (QT1 = 52) and
create ten units of carry-forward (C2 = 52−42 = 10). In Figure 3.16, however,
the simulated take is 50 (QT1 = 50), which creates eight units of carry-forward
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FIGURE 3.16: One realization
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Note: One realization of the index and the corresponding op-
timal takes, volume taken, and the evolution of both make-up

and carry-forward banks.

FIGURE 3.17: Another realization
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optimal takes, volume taken, and the evolution of both make-

up and carry-forward banks.
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gas (C2 = QT1 − 42 = 8). While in Figure 3.17, the simulated take is 36
(QT1 = 36), which creates three units of make-up gas (M2 = 39−QT1 = 3).

In the second year, the gas forward curve is below the index curve (i.e.
out-of-the-money) and so the optimal intrinsic strategy would be to use all
the carry-forward gas (c2 = 10) so as to reduce the minimum bill to 29 (39 −
c2 = 29) and then take 19 (QT2 = 19) to create a make-up bank of ten units
(M3 = 39− c2−QT2 = 10, the maximum that can be recovered in the coming
year). In Figure 3.16, the simulated strategy uses all the carry-forward gas
(c2 = 8) to reduce the minimum bill to 31 (39− c2 = 31 ) and taking 30 (QT2 =

30), which also creates a make-up bank of one unit (M3 = 31 − QT2 = 1).
In the case of Figure 3.17, the simulated take is 32 (QT2 = 32), increasing the
make-up bank to ten units (M3 = M2 + (39− 32) = 10).

The third year is also out-of-the-money, so the intrinsic strategy is to take
the minimum bill plus the amount of gas in the make-up bank (m3 = 10) that
will be refunded, giving a take of 49 (QT3 = MB + m3 = 49). In Figure 3.16,
the simulated strategy is to take 42 (QT3 = 42) and use one unit of make-
up gas (m3 = 1), which makes the make-up bank next year to be 0 (M4 =

M3 −m3 = 0). The simulated take in Figure 3.17 is QT3 = 50 but we only use
five units of gas (m3 = 5) in the make-up bank, thus reducing the make-up
bank to 5 (M4 = M3 −m3 = 5). We also create six units of carry-forward gas
(C4 = QT3 −max {39 +m3, 42} = 6).

In the fourth year the contract is in-the-money, so the optimal intrinsic
strategy is to take the maximum quantity of gas (QT4 = 52) and create another
ten units of carry-forward (C5 = 10). The simulated strategy in Figure 3.16
is to take 52 (QT4 = 52), which also creates ten units of carry-forward gas
(QT4 − 42 = 10). The simulated strategy in Figure 3.17 is also to take 51
(QT4 = 51) and use all the make-up gas (m4 = M4 = 5), and thus create
a carry-forward bank of ten units for the next year (C5 = max{C4 + QT4 −
max {39 +m4, 42} , CRL5} = 10).

In the fifth year the contract is out-of-the-money, so the intrinsic strategy
would be the same as that seen in year two. The simulated strategy in Figure
3.16 is to use all the carry-forward gas (c5 = 10) to reduce the minimum bill
to 39-10=29 and take 20 units of gas (QT5 = 20) which makes the make-up
bank for the next year to be nine units (M6 = 29 − QT5 = 9). The simulated
strategy in Figure 3.17, meanwhile, is to use ten units of the carry-forward
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gas (c5 = 10) to reduce the minimum bill to 39-10=29 and take 19 units of
gas (QT5 = 19), which makes the make-up bank next year to be ten units
(M6 = 29−QT5 = 10).

In the final year the contract is in-the-money, so the intrinsic strategy
would be to take the maximum possible, with ten units being taken from the
make-up bank. The simulated strategy in Figure 3.16 is to take 52 (QT6 = 52)
and use all the make-up gas, which leaves no gas left in either the make-up
or carry-forward banks. The simulated strategy in Figure 3.17 is to take 50
(QT6 = 50), which also leaves no gas in either the make-up or carry-forward
banks.

3.5 Conclusion

In this chapter, we have proposed a two-dimensional trinomial tree frame-
work for pricing multiple year GSAs with make-up, carry-forward and in-
dexation, given knowledge of forward price dynamics of both gas and index.
GSAs are complicated to evaluate both because the buyers can exercise their
rights in a daily manner while making decisions on the make-up bank and
carry-forward bank on a yearly basis, and because the strike prices are able to
move stochastically. Hence, in the evaluation, we need to keep track of mul-
tiple variables on a daily basis over a number of years. These complexities
require efficient numerical procedures to value these contracts, and herein
lies the main contribution of this chapter.

With the help of a two-dimensional trinomial tree, we are able efficiently
to evaluate the prices of the contracts so as to find both the optimal daily
decisions and the optimal yearly use of both the make-up bank and carry-
forward bank. We also demonstrate various features of this complex contract
with the help of a number of numerical studies. For example, a buyer with
more make-up rights only intends to take less gas when the period to date
is very small; whereas a buyer with more carry-forward rights intends to
take more gas even when the contract is out-of-the-money. A high interest
rate weakens the functionality of both the make-up and carry-forward banks,
while a large penalty coefficient increases the value of the carry-forward bank
and decreases the value of the make-up bank. The values of both make-up
and carry-forward banks are most affected by the decoupling level; and when
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the forward curves are not decoupled, the carry-forward bank contributes
more to the contract value than the make-up bank.

It should be noted that the definition and properties of the index have
been simplified in this chapter. The index in the current month in a real con-
tract is determined by the weighted average of some other energy prices in
the previous month, which links the valuation to the moving average prob-
lem. These non-Markovian and non-continuous properties make the eval-
uation of such a real contract much harder than the scenario envisaged in
the current chapter, we investigate this problem in Chapter 4, Chapter 5 and
Chapter 6.
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Chapter 4

Evaluation of gas sales
agreements with indexation

4.1 Introduction

When the strike price of a GSA is a constant, the valuation of the GSA is a
classic dynamic programming problem. When the strike price is set based
on the indexation principle, however, it is called the index. In each month,
the value of the index is determined by the weighted average price of some
energy products in the previous month (see Asche, Osmundsen and Tveterås
(2002) for details). This feature links the evaluation of the GSAs to the moving
average problem. Works on general moving average pricing can be found in
Dai, Li and Zhang (2010) (a binomial tree approach), Bernhart, Tankov and
Warin (2011) (a simulation-based approach) and Xu, Hong and Qin (2013) (a
willow tree approach).

There is very limited research in the literature that discusses GSAs with
indexation. Edoli et al. (2013) and Dong and Kang (2018) implement GSA
evaluation using a two-dimensional tree by assuming that the index process
is Markovian. Edoli (2013) relaxes this assumption by assuming that the mov-
ing average process is Markovian and implements it using the finite differ-
ence method. In Bernhart (2011), the author uses the approximation method
in Bernhart, Tankov and Warin (2011) to model the index and implements it
using the least-squares Monte Carlo approach. To the author’s knowledge,
no efficient method has been derived without making those assumptions. In
this chapter, inspired by the lattice algorithm used to value the Asian options
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(see Dai, Li and Zhang (2010) and Klassen (2001)), we propose a new numer-
ical method to fill the gap.

The chapter is organized as follows: mean-reverting models for the gas
price and the oil price are suggested in Section 4.2. In Section 4.3, we for-
mulate the detail of the index price based on the indexation principle in the
real GSAs. We generalize and formulate the key features of a GSA with in-
dexation in Section 4.4. Section 4.5 formulates the gas price, the oil price, the
index and the running average variable using a two-dimensional tree and
generates the grids for both the running average variable and the index. A
detailed numerical method for pricing GSAs with indexation is proposed in
Section 4.6. Section 4.7 gives a simple example of what the generated grid
looks like. Section 4.8 models GSAs with indexation in continuous time and
derives the HJB equation which drives the value of a GSA. Section 4.9 proves
that the algorithm built in Section 4.6 has the first order consistency to the
HJB equation in Section 4.8.

4.2 The pricing framework

Denote the spot prices of gas and oil at time t by S (t) and Z (t), respectively.
This chapter assumes that the log prices of the gas and the oil follow the
mean-reverting processes

d lnS(t) =
[
θS(t)− αS lnS(t)

]
dt+ σSdB

S(t), (4.1)

d lnZ(t) =
[
θZ(t)− αZ lnZ(t)

]
dt+ σZdB

Z(t), (4.2)

where BS(t) and BZ(t) are standard Brownian motions with correlation ρ,
and αS , σS , αZ and σZ are constants. Let FS(t, T ) and FZ(t, T ) be the forward
prices of gas and oil at time t ∈ [0, T ] with maturity T , respectively. θS(t)

and θZ(t) are functions of time chosen to provide an exact fit to the observed
forward curves FS(0, t) and FZ(0, t). These processes are standard models
when it comes to the commodity price in the energy market (see Edoli et al.
(2013) and Hull (2011)).
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4.3 The indexation principle

We have the time horizon [0, T ] equally spaced into L periods. Let δ be the
interval of each period, δ = T

L . Denote the beginning of the l-th period by Tl,
l = 0, 1, . . . , L− 1, and TL = T . That is,

0 = T0 < T1 = δ < T2 = 2δ < . . .

< Tl = lδ < . . . < TL−1 = (L− 1)d < TL = Lδ = T.

Let I(t) be the index at time t ∈ [0, T ]. For t ∈ [T0, T1], the index is a fixed con-
stantK which is specified in the contract. For t ∈ (Tl, Tl+1], l = 1, 2, . . . , L−1,
the index is the average value of the crude oil price Z in the previous period
(Tl−1, Tl]. That is,

I(t) =

{
K for t ∈ [T0, T1],
1
δ

∫ Tl
Tl−1

Z(u)du for t ∈ (Tl, Tl+1], l = 1, . . . , L− 1.
(4.3)

In the period (Tl, Tl+1], l = 0, 1, . . . , L − 2, since the average value of the oil
prices is the index value for the next period, we need another variable, M ,
to track how the average moves. Thus, we introduce the running average
variable M , which is given by

M(t) =
1

t− Tl

∫ t

Tl

Z(u)du. (4.4)

where t ∈ (Tl, Tl+1], and l = 0, 1, . . . , L − 2, since we do not need to track
the running average in the last month. At this point, we can see that the
running average variable M is defined on (0, TL−1]. In addition, note that M
is piecewise continuous on the intervals (Tl, Tl+1] for l = 0, 1, . . . , L − 2 with
a jump at time Tl for l = 1, . . . , L − 2. Also, it is straightforward to observe
that, for t ∈ (Tl, Tl+1], l = 1, 2, . . . , L− 1,

I(t) = M(Tl)

=
1

δ

∫ Tl

Tl−1

Z(u)du,
(4.5)
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Furthermore, (4.4) gives

dM(t) =
Z(t)−M(t)

t− Tl
dt,

where t ∈ (Tl, Tl+1], l = 0, 1, . . . , L− 2.

4.4 Gas sales agreements with indexation

We have introduced the one year GSA contract in Section 2.1. Since we have
to adopt new notations and build a new framework, we introduce the one
year GSA again in this section.

• T is the terminal date of the contract. Since we focus on the one-year
GSA, we let T = 1. L corresponds to the number of months and δ

coincides with the length of each month. That is, T = L · δ. In the rest
of this chapter, we call the first month “Month 0”, the second month
“Month 1”, ..., the last month “Month L− 1”.

• Let the period [Tl, Tl+1], l = 0, . . . , L−1, be equally spaced intoD pieces
with interval ∆t = δ

D , where Tl = l · δ and D is a positive integer. Then
the time horizon [0, T ] is equally spaced into L ·D pieces. Let N = L ·D
and tn = n ·∆t, where n = 0, 1, . . . , N , we have

Tl = tlD < Tl + ∆t = tlD+1 < Tl + 2∆t = tlD+2 < . . .

< Tl + (D − 1)∆t = tlD+(D−1)∆t < Tl +D∆t = t(l+1)D = Tl+1.

• We assume that the holder of a GSA has exactly one exercise right at
each time tn for n = 1, . . . , N , which amounts to D rights for a whole
month (Tl, Tl+1] and N rights for a whole year [0, T ]. Typical GSAs can
usually be exercised daily (we assume that one year contains 360 days,
that is L = 12, D = 30 and N = 360).

• Let qtn be the amount of gas taken (exercise decision) at time tn, which
is constrained by the minimum daily quantity qmin and the maximum
daily quantity qmax, that is qmin ≤ qtn ≤ qmax. Such an admissible policy
is denoted by q = {qtn}. LetQtn be the cumulative amount of gas taken
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before time tn (also known as the period to date) which is given by

Qtn =

n−1∑
k=1

qtk for n = 2, . . . , N,

and Qtn = 0 for n = 0, 1. In addition, we let QT be the total amount of
gas taken. That is, QT = QtN + qtN .

• S(tn), Z(tn), M(tn) and I(tn) are the gas price, oil price, the value of
the running average and the index at time tn, respectively. Then, upon
taking the volume qtn , the payoff from the buyer’s point of view at time
tn = tlD+d ∈ (Tl, Tl+1], l = 0, . . . , L− 1 and d = 1, . . . , D, is given by

qtlD+d

(
S(tlD+d)− I(tlD+d)

)
.

• There is a maximum quantity of gas the buyer can take, which is called
the annual contract quantity. Denote the annual contract quantity by
ACQ. Similarly, there is a minimum quantity of gas the buyer has to
take, which is called the minimum bill. Denote the minimum bill by
MB. Both the minimum bill and the annual contract quantity can be
violated. If the total gas taken is below the minimum bill or above the
annual contract quantity, the buyer has to pay penalties at the end of the
contract. More precisely, if QT < MB or QT > ACQ at time T , there is
an out cash flow generated by the penalty, in addition to the cash flow
generated by the instant payoff. The possible penalty at time T is given
by

P (I,QT ) = −I ·max
{
MB −QT , 0

}
− I ·max

{
QT −ACQ, 0

}
. (4.6)

• At time tlD+d ∈ (Tl, Tl+1], l = 0, . . . , L−1 and d = 1, . . . , D, by (4.4) and
(4.5), we have the index and the approximated value of the running
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average in discrete time as follows:

M(tlD+d) =
1

d

d∑
j=1

Z(tlD+j) for l = 0, 1, . . . , L− 2. (4.7)

I(tlD+d) =

{
K for l = 0,
1
D

∑D
j=1 Z(t(l−1)D+j) = M(tlD), for l = 1, 2, . . . , L− 1.

(4.8)

In addition, for tlD+d within the period (Tl, Tl+1], that is, d = 1, 2, . . . , D

−1, given the values of M(tlD+d) and I(tlD+d), we have the evaluations
of the running average with respect to the oil price and the index, which
can be described by

M(tlD+d+1) =
d ·M(tlD+d) + Z(tlD+d+1)

d+ 1
(4.9)

and
I(tlD+d+1) = I(tlD+d), (4.10)

respectively.

• The risk-free rate is a fixed constant r.

Remark 4.1. In Chapter 3, the penalty involves a penalty coefficient η ∈ [0, 1]

(for instance, see (3.9)). η is the coefficient which controls the functionality
of the penalty. In this chapter, we focus on the indexation problem and no
longer provide treatment of η. Throughout the rest of this thesis, we simply
let η = 1.

From the buyer’s point of view, the goal is to maximize the total expected
discounted payoff of the contract, including the penalty. That is, to find the
value V (tn, S, I,Q) where the gas price is S, the index is I and the period to
date is Q of this contract at time tn, which is given by

V (tn, S, I,Q) = sup
qtk ,n≤k≤N

E

[
N∑
k=n

e−r(tk−tn)qtk

(
S(tk)− I(tk)

)
+ e−r(T−tn)P

(
I(tN ), QT

)∣∣∣∣S(tn) = S, I(tn) = I,Qtn = Q

]
.

(4.11)
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Or, equivalently, for tn = tlD+d ∈ (Tl, Tl+1], we have

V (tn, S, I,Q) = sup
qtm

E

[
D∑
k=d

e−r(tlD+k−tn)qtlD+k

(
S(tlD+k)− I(tlD+k)

)
︸ ︷︷ ︸

part 1

+

L−1∑
g=l+1

D∑
k=1

e−r(tgD+k−tn)qtgD+k

(
S(tgD+k)− I(tgD+k)

)
︸ ︷︷ ︸

part 2

+ e−r(T−tn)P
(
I(tN ), QT

)
︸ ︷︷ ︸

part 3

∣∣∣∣S(tn) = S, I(tn) = I,Qtn = Q

]
,

where m = lD + d, lD + d + 1, . . . , N , “part 1” gives the value of all the
other instant payoffs in the current month at tn, “part 2” gives the value of all
instant payoffs in all future months at tn, and “part 3” gives the value of the
penalty at tn.

From (4.11), we have the following result by Bellman’s principle of opti-
mality:

V (tn, S, I,Q) = sup
qtn

{
qtn

(
S(tn)− I(tn)

)
+ e−r(tn+1−tn)E

[
V (tn+1, S(tn+1), I(tn+1), Q+ qtn)

∣∣∣∣
S(tn) = S, I(tn) = I,Qtn = Q

]}
. (4.12)

In the rest of this chapter, we design an algorithm based on a two-dimensional
trinomial tree to compute the expectation of the optimal contract value at
time tn+1 in (4.12).

4.5 The structure of a trinomial tree

In this chapter, we evaluate the price of the gas sales agreement using a two-
dimensional trinomial tree. We first build two separate one-dimensional tri-
nomial trees for the gas price (the gas tree) and the oil price (the oil tree),
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FIGURE 4.1: A one-dimensional trinomial tree

respectively. By combining these two one-dimensional trees together, we ob-
tain a two-dimension trinomial tree. The tree building procedures are shown
in Section 2.2. Once the tree is built, each node on the 2-D tree can be refer-
enced by a vector of integers (n, s, z), where n indicates that the current time
is n∆t, s and z are the price levels on the gas tree and the oil tree, respectively.

As we can see in Figure 4.1, which shows a typical one-dimensional tri-
nomial tree, there are three possible forms of the tree branching. Denote
the highest indexes that can be reached by the gas tree and the oil tree by
smax and zmax, respectively. Since both the gas tree and the oil tree are sym-
metrical, the lowest indexes that can be reached by the gas tree and the oil
tree are −smax and −zmax, respectively. Let Sn,s be the gas price at time tn
where the price level on the gas tree is s, s = −smax,−smax + 1, . . . , smax.
Let Zn,z be the oil price at time tn where the price level on the oil tree is z,
z = −zmax,−zmax +1, . . . , zmax. We can see all the forms of the tree branching
of both the gas tree and the oil tree in Figure 4.2.

Define the following functions:

g(s, b) =


s+ b if −smax < s < smax

s+ b− 1 if s = smax

s+ b+ 1 if s = −smax

, (4.13)

and

h(z, c) =


z + c if −zmax < z < zmax

z + c− 1 if z = zmax

z + c+ 1 if z = −zmax

, (4.14)

where b, c ∈ {−1, 0, 1}. Here we use integers −1, 0 and 1 to represent the
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FIGURE 4.2: Possible forms of the tree branching for a mean-
reverting trinomial tree

Sn,s

Sn+1,s+1

Sn+1,s

Sn+1,s−1

Sn,smax Sn+1,smax

Sn+1,smax−1

Sn+1,smax−2

Sn,−smax Sn+1,−smax

Sn+1,−smax+1

Sn+1,−smax+2

Zn,z

Zn+1,z+1

Zn+1,z

Zn+1,z−1

Zn,zmax Zn+1,zmax

Zn+1,zmax−1

Zn+1,zmax−2 Zn,−zmax Zn+1,−zmax

Zn+1,−zmax+1

Zn+1,−zmax+2

lower, middle and upper branches on the trees, respectively. Then (n +

1, g(s, b), h(z, c)) gives the node associated with the b branch on the gas tree
and the c branch on the oil tree emanating from the node (n, s, z). Now, we
define one more function:

j(n) = min{n, zmax}.

As we can see in Figure 4.1, the trinomial tree stops growing at some point.
Before the oil tree stops growing, the size of the tree grows over time and n

returns the highest level of the oil tree at time tn. Once the tree stops growing,
the size of the tree stops growing and the highest level of the oil tree is simply
zmax. Hence, j(n) gives the highest level of the oil tree at any tn ∈ [0, T ]. Since
the oil tree is symmetrical, −j(n) gives the lowest level of the oil tree at any
tn ∈ [0, T ]. It follows that the total number of nodes on the oil tree at time tn
is 2 · j(n) + 1. Similarly, we can define such a function k(n) for the gas tree:

k(n) = min{n, smax}.

In addition, we denote the probability associated with the b branch on the gas
tree and the c branch on the oil tree emanating from node (n, s, z) by ps,z,b,c.
These probabilities can be computed using (2.27), (2.28) and (2.29).
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Remark 4.2. Recall the tree building procedures in Section 2.2. Let ∆X and
∆Y be the space steps on the gas fundamental tree and the oil fundamental
tree, respectively. That is,

∆X = σS
√

3∆t and ∆Y = σZ
√

3∆t.

Let an and bn, n = 0, 1, . . . , N , be the amounts added on each node of the gas
fundamental tree and the oil fundamental tree such that the gas tree and the
oil tree are consistent with the observed forward curves (see (2.32)), respec-
tively. Then the gas price of level s on the gas tree and the oil price of level z
on the oil tree are given by

Sn,s = es·∆X+an and Zn,z = ez·∆Y+bn , (4.15)

respectively.

4.5.1 The discretization of the running average and the index

To perform the evaluation, at each time tn, we generate two vectors, Mn and
In, in both the running average dimension and the index dimension by dis-
cretization, respectively. Since in the first L − 1 months (i.e. in Month l,
l = 0, 1, . . . , L− 2), we have the running average variable M , then an integer
m which represents the value of the running average should be introduced
(we do not need to track the running average in the last month). Similarly, in
the last L − 1 months (i.e. in Month l, l = 1, 2, . . . , L − 1), we have the index
price which is not a constant, thus we have to add one more integer i which
represents the level of the value of the index (we do not need this integer i in
the first month where the index is simply a constant K).

4.5.2 The running average vector Mn

Mn is the vector containing the possible values of the running average M at
time tn. Let Mn,m be the value of the running average at time tn where the
level in the running average vector Mn is m. Let H be the total number of
values in Mn, then

Mn = (Mn,0,Mn,1, . . . ,Mn,H−1).
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We also assume that Mn is constructed in such a way that

Mn,0 < Mn,1 < . . . < Mn,H−1.

Once the two-dimensional tree is built, we assume that the level m value
of the running average at each time tn, n = 1, 2, . . . , N , is referenced by a
deterministic function dn(m) where the value solely depends on m. That is,

Mn,m = dn(m).

Denote the lowest and highest values of the running average M that can be
achieved at time tn through the tree by Mmin

n and Mmax
n , respectively. Re-

ferring back to Figure 4.1, Mmin
n and Mmax

n can be obtained by following the
blue branches and red branches, respectively. Then, for tlD+d ∈ (Tl, Tl+1],
d = 1, . . . , D and l = 0, 1, . . . , L− 2,

Mmin
lD+d =

1

d

d∑
k=1

ZlD+d,−j(lD+d) (4.16)

and

Mmax
lD+d =

1

d

d∑
k=1

ZlD+d,j(lD+d). (4.17)

The evaluation of the value of the running average At time tn, n = lD+d,
d = 1, . . . , D − 1 and l = 0, 1, . . . , L − 2, for a given value of the running
average Mn,m, we can get the evaluation of Mn,m by following these three
possible movements of the oil price Z in Figure 4.2. Note that the evaluation
of the running average M only depends on the oil price Z, while the gas
price S has no impact on M (see (4.4)). Denote the one time-step forward
evaluation of Mn,m byMn,m,c, together with (4.9), we have

Mn,m,c =
d ·Mn,m + Zn+1,h(z,c)

d+ 1
, (4.18)

where c = −1, 0, 1. Figure 4.3 shows the evaluation of Mn,m corresponding
to the red, green and blue branches in Figure 4.2.

For the discretization in the running average dimension, we propose two
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FIGURE 4.3: One step forward evaluation of the running av-
erage

Mmax
n = Mn,H−1

Mn,H−2

· · ·
Mn,m+1

Mn,m

Mn,m−1

· · ·
Mn,1

Mmin
n = Mn,0

Mn+1,H−1

· · ·
Mn,m,1

· · ·
Mn,m,0

· · ·
Mn,m,−1

· · ·
Mn+1,0

possible approaches: further discretization of the space step on the oil funda-
mental tree and the non-uniform grid.

Further discretization We use the same discretization method as in Dai, Li
and Zhang (2010). Let the space step ∆M in the running average dimension
be given by

∆M =
∆Y

F
,

where ∆Y = σZ
√

3∆t is the space step on the oil fundamental tree. (see
Remark 4.2) and F is a positive integer. Then dn(m) is given by

dn(m) = Mmin
n em∆M . (4.19)

Recall that the total number of nodes on the oil tree at time tn is 2 · j(n) + 1,
through the further discretization, the total number of values of the running
average in the running average vector Mn is

H = 2 · j(n) · F + 1. (4.20)
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Non-uniform grid We adopt the non-uniform grid in in’t Hout and Foulon
(2010). Let Mn, n = lD + d, d = 1, . . . , D and l = 0, 1, . . . , L− 2, be given by

MlD+d =
1

d

d∑
k=1

ZlD+k,0. (4.21)

That is, M approximates the value of the running average M by assuming
that the oil price moves on the oil tree by following the middle branches only
(that is, we follow the green branches only in Figure 4.1). Let H be a positive
integer and wn, n = 1, 2, . . . , N , be a series of positive constants. At each time
tn, we first construct a series of equidistant points

ξ0 < ξ1 < ξ2 < . . . < ξH ,

where

ξm = sinh−1
(Mmin

n −Mn

wnMn

)
+m∆ξ,

and

∆ξ =
1

H

[
sinh−1

(Mmax
n −Mn

wnMn

)
− sinh−1

(Mmin
n −Mn

wnMn

)]
.

Then a non-uniform grid at time tn in the running average dimension can be
obtained through the transformation

Mn,m = dn(m)

= Mn + wnMnsinh(ξm). (4.22)

As reported in in’t Hout and Foulon (2010), this grid is smooth, and these
constants wn control the fraction of points Mn,m that lie in the neighbour-
hood of Mn. A smaller wn gives more points in the neighbourhood of Mn.
Intuitively speaking, the non-uniform grid could be a better approach than
the further discretization if we let more points be in the neighbourhood of
Mn. Due to the mean-reverting nature of the oil price, the oil price is unlikely
to be too high or too low for a long time period. It follows that value of the
running average is even more unlikely to be too large or too small.
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4.5.3 The index vector In

In is the vector containing the possible values of the index I at time tn. Let
In,i be the index at time tn in Month l where the level in the index vector is
i. Recall (4.5) and (4.8), the value of the index in Month l, l = 1, 2, . . . , L − 1,
equals the value of the running average on the last day of Month l − 1. Then
we use the same vectors for IlD+d, d = 1, . . . , D, as the vector for MlD. That
is, for tlD+d ∈ (Tl, Tl+1], d = 1, 2, . . . , D and l = 1, 2, . . . , L− 1, we have

IlD+d,i = MlD,i = dlD(i). (4.23)

4.6 Pricing algorithm

In this section, we present an algorithm to price the GSA contract formulated
in Section 4.4. This algorithm works backwards in time. Since in the last
month there is no further month we do not need to track the running average,
which means we also do not need to track the oil price. It follows that the
contract value is driven by three variables: the gas price, S, the index, I , and
the period to date, Q. In the middle months, i.e. Month 1, Month 2, . . .,
Month L − 2, we need to track the running average and the oil price since
they will be used to calculate the index in the coming month, which means
the contract value is driven by five variables: S, I , Q, the running average,
M , and the oil price, Z. In the first month, since the index is a constant K, the
contract value is driven by just four variables: S, Q, M and Z.

Based on the above facts, the contract value at time tn of Month l on the
tree can be referenced by

V 0(Sn,s, Zn,z,Mn,m, Q) the first month
V l(Sn,s, Zn,z,Mn,m, In,i, Q) the middle months, i.e. l = 1, . . . , L− 2

V L−1(Sn,s, In,i, Q) the last month

,

where the gas price is Sn,s, the oil price is Zn,z , the value of the running aver-
age is Mn,m, the index is In,i and the period to date is Q. Similarly, we have
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the optimal exercise decisions
q0,∗(Sn,s, Zn,z,Mn,m, Q) the first month
ql,∗(Sn,s, Zn,z,Mn,m, In,i, Q) the middle months, i.e. l = 1, . . . , L− 2

qL−1,∗(Sn,s, In,i, Q) the last month

,

corresponding to values of those variables on the tree.

Terminal value Since we have introduced the penalty when the total gas
taken during the contract exceeds the annual contract quantity, the terminal
optimal decision is different from the case in Section 3.3.1. On the last day of
the contract tN , where l = L−1, by letting q∗ = qL−1,∗(SN,s, IN,i, Q), we have
the following scenarios:

• If SN,s ≤ IN,i,

– ifQ < MB, that is the period to date at the terminal is less than the
minimum bill. Upon taking a quantity of gas q̆ up to that required
to avoid the penalty, or the maximum possible, the actual payoff
of this decision q̆ is

q̆ · (SN,s − IN,i) + q̆ · IN,i = q̆ · SN,s > 0,

where q̆ · IN,i is the reduced value of penalty by taking q̆. Hence,

q∗ = min{max{MB −Q, qmin}, qmax}.

– if Q ≥ MB, the buyer is under no pressure to meet the minimum
bill. Since SN,s ≤ IN,i, the optimal decision is to take the daily
minimum so to reduce the loss from the instant payoff. The daily
minimum also avoids or minimizes the penalty from taking more
gas than the annual contract quantity. That is,

q∗ = qmin.

• If SN,s > IN,i,
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– if Q + qmax ≤ ACQ, the buyer can safely take the daily maxi-
mum to maximize the profit of the instant payoff without wor-
rying about the penalty arising from violating the annual contract
quantity. Then,

q∗ = qmax.

– if 0 < ACQ − Q < qmax, it means the buyer can take a quan-
tity of gas less than the daily maximum in order to gain the profit
of the instant payoff without worrying about the penalty. In ad-
dition, he/she has the choice of further taking gas and making
profit from the instant payoff and increasing the penalty at the
same time. Suppose the buyer further takes a quantity of gas q̆,
then the actual payoff of this decision is

q̆ · (SN,s − IN,i)− q̆ · IN,i = q̆ · (SN,s − 2IN,i), (4.24)

where q̆ · IN,i is the increased value of penalty by further taking q̆.
Then, we have the optimal decision in this scenario:

q∗ =

qmax if SN,s > 2IN,i,

max
{

min
{
ACQ−Q, qmax

}
, qmin

}
if SN,s ≤ 2IN,i.

(4.25)

– ifQ ≥ ACQ, this means that, by taking a quantity of gas, the buyer
is profiting from the instant payoff and losing money from the
penalty at the same time. That is, upon taking q̆, the actual payoff
of this decision is again given by (4.24), and the optimal decision
is also given by (4.25).

In summary, we have the optimal decision at the last day of the contract
which is given by:

q∗ =


min

{
max

{
MB −Q, qmin

}
, qmax

}
if SN,s ≤ IN,i

max
{

min
{
ACQ−Q, qmax

}
, qmin

}
if IN,i < SN,s ≤ 2IN,i

qmax if SN,s > 2IN,i

. (4.26)
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Then the contract value on the last day is given by:

V L−1(SN,s, ZN,z, IN,i, Q) = q∗ · (SN,s − IN,i) + P (IN,i, Q+ q∗) .

Remark 4.3. Recall Remark 2.1. In this thesis, we mainly focus on the GSAs
introduced in Breslin et al. (2008) where ACQ = N · qmax. That is, we mainly
focus on the penalty paid when the total volume of gas taken is below the
minimum bill. However, for the purpose of completeness, we have also pro-
vided the optimal terminal decision for GSAs where ACQ ≤ N · qmax.

Days within the last month For n = (L−1)D+d, d = 1, . . . , D−1, we find
the optimal exercise decision by

qL−1,∗(Sn,s, In,i, Q) =argmaxqtn∈[qmin,qmax]

{
qtn(Sn,s − In,i)+

1∑
b=−1

ps,be
−r∆tV L−1(Sn+1,g(s,b), In,i, Q+ qtn)

}
,

where ps,b is the probability associated with the b branch emanating from the
node (n, s) on the gas tree. ps,b can be computed by using (2.23), (2.24) and
(2.25). By letting q∗ = qL−1∗(Sn,s, In,i, Q), we have the contract value:

V L−1(Sn,s, In,i, Q) =q∗(Sn,s − In,i)+
1∑

b=−1

ps,be
−r∆tV L−1(Sn+1,g(s,b), In,i, Q+ q∗). (4.27)

Days within middle months Similarly, for n = lD+d, d = 1, . . . , D−1 and
l = 1, 2, . . . , L− 2, we find the optimal exercise decision by

ql,∗(Sn,s, Zn,z,Mn,m, In,i, Q) =argmaxqtn∈[qmin,qmax]

{
qtn(Sn,s − In,i)+

1∑
b,c=−1

ps,z,b,ce
−r∆t·

V l(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, In,i, Q+ qtn)

}
.

(4.28)
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By letting q∗ = ql,∗(Sn,s, Zn,z,Mn,m, In,i, Q), we have the contract value

V l(Sn,s, Zn,z,Mn,m, In,i, Q) =q∗(Sn,s − In,i)+
1∑

b,c=−1

ps,z,b,ce
−r∆t·

V l(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, In,i, Q+ q∗).

(4.29)

Days within the first month Again, for n = d, d = 1, . . . , D− 1, we find the
optimal exercise decision by

q0,∗(Sn,s, Zn,z,Mn,m, Q) =argmaxqtn∈[qmin,qmax]

{
qtn(Sn,s −K)+

1∑
b,c=−1

ps,z,b,ce
−r∆t·

V 0(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, Q+ qtn)

}
.

(4.30)

By letting q∗ = q0,∗(Sn,s, Zn,z,Mn,m, Q), we have the contract value

V 0(Sn,s, Zn,z,Mn,m, Q) =q∗(Sn,s −K)+

1∑
b,c=−1

ps,z,b,ce
−r∆t·

V 0(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, Q+ q∗). (4.31)

Linear interpolation Recall in Section 4.5, we have a discretized grid in the
running average dimension. When

V l(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, In,i, Q+ qtn)

or
V 0(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, Q+ qtn)
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in (4.28) and (4.30) (for simplicity, we use V (Mn,m,b)) does not fall exactly on
the discrete nodes of the grid, we use linear interpolation:

V (Mn,m,b) = V (Mn+1,m̄) + (Mn,m,b −Mn+1,m̄)
V (Mn+1,m̄+1)− V (Mn+1,m̄)

Mn+1,m̄+1 −Mn+1,m̄
,

(4.32)
where m̄ is an integer such that Mn+1,m̄ is the largest value in the running
average vector Mn+1 less than or equal toMn,m,b.

Matching point At time tlD, l = 2, . . . , L−2, we are on the last day of Month
l − 1. Given the current value of the running average M(tlD), the index for
time tlD+1, which is the first day of Month l, is I(tlD+1) = M(tlD) (see (4.8)).
In addition, at time tlD+1, l = 2, . . . , L − 2, by (4.7), the value of the running
average is

M(tlD+1) =
1

1

1∑
j=1

Z(tlD+j) = Z(tlD+1). (4.33)

That is, at time tlD, if the contract value V l(SlD,s, ZlD,z,MlD,m, In,i, Q) is given,
upon taking the volume qtlD , the contract value corresponding to the b branch
on the gas tree and c branch on the oil tree is

V l(SlD+1,g(s,b), ZlD+1,h(z,c), ZlD+1,h(z,c),MlD,m, Q+ qtlD).

Then we can find the optimal decision ql∗(SlD,s, ZlD,z,MlD,m, IlD,i, Q) by

ql,∗(SlD,s, ZlD,z,MlD,m, IlD,i, Q)

=argmaxqtlD∈[qmin,qmax]

{
qtlD(SlD,s − IlD,i)+

1∑
b,c=−1

ps,z,b,ce
−r∆tV l+1(SlD+1,g(s,b), ZlD+1,h(z,c), ZlD+1,h(z,c),MlD,m, Q+ qtlD)

}
.

(4.34)
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By letting q∗ = ql,∗(SlD,s, ZlD,z,MlD,m, IlD,i, Q), we have the contract value

V l(SlD,s, ZlD,z,MlD,m, IlD,i, Q)

=q∗(SlD,s − IlD,i)+
1∑

b,c=−1

ps,z,b,ce
−r∆tV l+1(SlD+1,g(s,b), ZlD+1,h(z,c), ZlD+1,h(z,c),MlD,m, Q+ q∗).

(4.35)

Similarly, we have the optimal decision and contract value on the last day of
Month 0, that is, at time tD:

q0,∗(SD,s, ZD,z,MD,m, Q)

=argmaxqtD∈[qmin,qmax]

{
qtD(SD,s −K)+

1∑
b,c=−1

ps,z,b,ce
−r∆tV 1(SD+1,g(s,b), ZD+1,h(z,c), ZD+1,h(z,c),MD,m, Q+ qtD)

}
,

and with q∗ = q0,∗(SD,s, ZD,z,MD,m, Q), we have

V 0(SD,s, ZD,z,MD,m, Q)

=q∗(SD,s −K)+

1∑
b,c=−1

ps,z,b,ce
−r∆tV 1(SD+1,g(s,b), ZD+1,h(z,c), ZD+1,h(z,c),MD,m, Q+ q∗).

Also, we have the optimal decision and contract value on the last day of
Month L− 2, that is, at time t(L−1)D:

qL−2,∗(S(L−1)D,s, Z(L−1)D,z,M(L−1)D,m, I(L−1)D,i, Q)

=argmaxqt(L−1)D
∈[qmin,qmax]

{
qt(L−1)D

(S(L−1)D,s − I(L−1)D,i)+

1∑
b,c=−1

ps,z,b,ce
−r∆tV L−1(S(L−1)D+1,g(s,b),M(L−1)D,m, Q+ qt(L−1)D

)

}
,
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and with q∗ = qL−2,∗(S(L−1)D,s, Z(L−1)D,z,M(L−1)D,m, I(L−1)D,i, Q),

V L−2(S(L−1)D,s, Z(L−1)D,z,M(L−1)D,m, I(L−1)D,i, Q)

=q∗(S(L−1)D,s − I(L−1)D,i)+

1∑
b,c=−1

ps,z,b,ce
−r∆tV L−1(S(L−1)D+1,g(s,b),M(L−1)D,m, Q+ q∗).

Remark 4.4. Based on our framework, for a function which is a bit smoother
than (4.6), Theorem 2.2 still applies. In our case, however, (4.6) is clearly not
differentiable at some points with respect toQ. However, the bang-bang con-
sumption is observed in our numerical examples. Based on our numerical
observation, we make the following assumption: the GSAs in this chapter
have the so-called bang-bang consumption, i.e. the optimal decision is either
the daily maximum qmax or the daily minimum qmin. Without loss of gener-
ality, we further assume that qmax = q̄ and qmin = 0 in the rest of this chapter.

Remark 4.5. In (4.29), we need to find the contract values of all possible com-
binations of (Sn,s, Zn,z,Mn,m, In,i, Q). Recall that, at time tn, the numbers of
nodes on the gas tree and the oil tree are 2 · k(n) + 1 and 2 · j(n) + 1, respec-
tively. At the same time, the numbers of values in the running average vector
Mn and the index vector In are both H . Under the bang-bang consumption,
according to Remark 2.6, if we let qmax = 1 and qmin = 0, the possible periods
to date at time tn is 0, 1, . . . , n − 1, then it is not hard to see that (4.29) has
complexity of the order of

O
(
n ·H2 ·

(
2 · k(n) + 1

)(
2 · j(n) + 1

))
.

Similarly, (4.31) has complexity of the order of

O
(
n ·H ·

(
2 · k(n) + 1

)(
2 · j(n) + 1

))
,

and (4.27) has complexity of the order of

O
(
n ·H ·

(
2 · k(n) + 1

))
.
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αS = 0.8 σS = 0.5 αI = 0.6 σI = 0.6 r = 0.05
ρ = 0.5 qmin = 0 qmax = 1 MB = 10 ACQ = 16
T = 1 N = 16 D = 4 L = 4

TABLE 4.1: Parameter values.

4.7 A simple example

In this section, to better illustrate our algorithm, we consider a simple GSA.
The implementation starts by building a two-dimensional trinomial tree.

To keep this example simple, we use the parameters in Table 4.1 so that the
size of the generated tree is small. In addition, we let the observed forward
curves for gas and oil be

FS(0, tn) = FZ(0, tn) = 100 + 50 · sin
(

2π
n

N

)
.

Table 4.2 shows the gas prices on the gas tree and Table 4.3 shows the oil
prices on the oil tree.

When generating the running average vector Mn at time tn, we use the
non-uniform grid approach with the following parameters:

H = 15, wn =
1

3
for n = 1, . . . , N.

To obtain such a grid, we also need to findMmax
n , Mmin

n and Mn. For instance,
on Day 7, by Figure 4.1 and (4.21),

Mmax
7 =

Z5,5 + Z6,5 + Z7,5

3
=

510.513 + 469.049 + 409.913

3
= 463.158

=M7,14,

Mmin
7 =

Z5,−5 + Z6,−5 + Z7,−5

3
=

37.9906 + 34.9051 + 30.5043

3
= 34.4667

=M7,0,

M7 =
Z5,0 + Z6,0 + Z7,0

3
=

139.265 + 127.954 + 111.822

3
= 136.347.
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Table 4.4 shows the resulting running average vectors Mn for n = 1, 2, . . . ,

12. Days 1, 5 and 9 are the first days in Month 0, Month 1 and Month 2,
respectively. As we can see in Table 4.4, according to (4.33), the values of
the running average on Days 1, 5 and 9 are exactly the same as the oil prices
(see Table 4.3) on these corresponding days. That is, on the first day of each
month, instead of using the non-uniform grid, we use the exact values of the
running average, which are simply the oil prices on the same day.

Once we have the running average vectors, (4.23) is used to generate the
index vectors in Table 4.5. For instance, the index values on Day 13, 14, 15

and 16 in Table 4.5 are the same as the values of the running average on Day
12 in Table 4.4. Furthermore, we do not need to generate either the running
average vectors in Month 3 or the index vectors in Month 0, since they are
irrelevant to the contract value (see(4.27) and (4.31)).

4.8 The modelling of GSAs in continuous time

In Edoli (2013) (also see Basei, Cesaroni and Vargiolu (2014) and Edoli, Fioren-
zani and Vargiolu (2016)), the author models the GSA contract in continuous
time and shows that its value is the solution of a Hamilton–Jacobi–Bellman
(HJB) equation. In this section, we present the work in Edoli (2013) so that
we can show in Section 4.9 that the algorithm built in Section 4.6 is consistent
with the HJB equation.

Our algorithm is based on a two-dimensional trinomial tree. Recall the
tree building procedures in Section 2.2. To get such a trinomial tree, we first
build a fundamental tree for a two-dimensional Markov process:

dX(t) =− αSX(t)dt+ σSdB
S(t), (4.36)

dY (t) =− αZY (t)dt+ σZdB
Z(t), (4.37)

which is obtained by assuming θS(t) = θZ(t) = 0 in (4.1) and (4.2). Then we
shift the nodes on this fundamental tree by adding a proper drift in order to
be consistent with the observed forward curve. Recall Remark 4.2, the gas
price and the oil price on the trinomial tree are given by

Sn,s = es·∆X+an , Zn,z = ez·∆Y+bn .
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an and bn (see (2.32)) are the drifts we have added on the fundamental trees
to capture the information from the observed forward curves of the gas and
oil, respectively. Hence, we make the following assumption:

Assumption 4.1. a(t) and b(t) are continuous real-valued deterministic func-
tions which are continuously differentiable on [0, T ] such that

S(t) = eX(t)+a(t) and Z(t) = eY (t)+b(t)

for t ∈ [0, T ], where S and Z are given by (4.1) and (4.2), respectively. X and
Y are given by (4.36) and (4.37), respectively. Furthermore, we assume that

an = a(tn) and bn = b(tn).

Then, rigorously speaking, our algorithm is built on the following model:

dX(t) = −αSX(t)dt+ σSdB
S(t)

S(t) = eX(t)+a(t)

dY (t) = −αZY (t)dt+ σZdB
Z(t)

Z(t) = eY (t)+b(t)

, (4.38)

where X(0) = Y (0) = 0. Indeed, this model is a particular case of the model
in Schwartz and Smith (2000). By Itô’s formula, one can easily derive

dS(t) =
[
ΘS(t)− αS lnS(t)

]
S(t)dt+ σSS(t)dBS(t), (4.39)

dZ(t) =
[
ΘZ(t)− αZ lnZ(t)

]
Z(t)dt+ σZZ(t)dBS(t). (4.40)

where
ΘS(t) =

∂a(t)

∂t
+ αSa(t) +

1

2
σ2
S ,

ΘZ(t) =
∂b(t)

∂t
+ αZb(t) +

1

2
σ2
Z .

Now, let us recall some notations in Section 4.3 and 4.4 and define some
new notations:

• The time horizon [0, T ] is equally spaced into L pieces of length δ = T
L .
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• Tl = l · δ is the beginning of the l-th period, l = 0, 1, . . . , L − 1 and
TL = T .

• S(t), Z(t),M(t) and I(t) are the gas price, oil price, value of the running
average and index at time t ∈ [0, T ], respectively. In the rest of this
chapter, S(t) and Z(t) are given by (4.39) and (4.40), respectively. M(t)

and I(t) are still given by (4.4) and (4.3), respectively.

• Denote q(t) the amount of gas taken in every sub-period, and 0 ≤ q(t) ≤
q̄.

• Let Q(t) be the cumulative amount of gas taken up to time t (the period
to date),

Q(t) =

∫ t

0
q(u)du. (4.41)

It follows that dQ(t) = q(t)dt.

• MB is the minimum bill and ACQ is the annual contract quantity.

In the same sprit of Section 4.4, we have the contract value of a GSA at time
0, which is given by

V (0) = sup
q(u)

E
[∫ T

0
e−ruq(u)

(
S(u)− I(u)

)
du+ e−rTP

(
I(T ), Q(T )

)]
(4.42)

where P
(
I(T ), Q(T )

)
is given by (4.6).

Remark 4.6. By the nature of the index (see equation (4.5)), the value of I
does not change continuously, it only changes with a jump at each time Tl,
t = 1, 2, . . . , L− 1. In addition, since the index at time t ∈ (0, T1] is a constant,
K, and the index I at time t ∈ (Tl, Tl+1], l = 1, . . . , L − 1, is calculated by
using the oil prices which are already realized, we assume that in each period
(Tl, Tl+1], l = 0, . . . , L − 1, the index I is known and fixed. That is, in each
period (Tl, Tl+1], we have dI(t) = 0.

Now, we introduce the following notations:

• V tml(T, S, I,Q) is the penalty at terminal T where the gas price is S, the
index is I and the period to date is Q.

• V L−1(t, S, I,Q) is the contract value for t ∈ [TL−1, TL] where the gas
price is S, the index is I and the period to date is Q.
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• V l(t, S, Z,M, I,Q) is the contract value for t ∈ (Tl, Tl+1], l = 0, 1, . . . , L−
2, where the gas price is S, the oil price isZ, the index is I and the period
to date is Q.

Then, the value function (4.42) can also be defined on months by the Dynamic
Programming Principle, which gives

V tml(T, S, I,Q) =P
(
I(T ), Q(T )

)
, (4.43)

V L−1(t, S, I,Q) = sup
q(u)

E

[∫ TL

t
e−r(u−t)q(u)

(
S(u)− I

)
du

+ e−r(TL−t)V tml(T, S, I,Q)
∣∣∣S(t) = S,Q(t) = Q

]
for t ∈ [TL−1, TL], (4.44)

V l(t, S, Z,M, I,Q) = sup
q(u)

E

[∫ Tl+1

t
e−r(u−t)q(u)

(
S(u)− I

)
du

+ e−r(Tl+1−t)Ψl(S,Z,M,Q)
∣∣∣S(t) = S,Z(t) = Z,

M(t) = M,Q(t) = Q

]
for t ∈ (Tl, Tl+1],

l = 0, 1, . . . , L− 2. (4.45)

In equations (4.44) and (4.45), the part q(u)
(
S(u)− I

)
gives the instant payoff

upon taking the volume of gas q(u) at time u. By multiplying the discount
factor e−r(u−t), it gives the value of this instant payoff at time t. The integral
from t to Tl+1 gives the value of the sum of all instant payoffs from t to Tl+1 at
time t. In equation (4.43), P

(
I,Q(T )

)
is the penalty function. Note that, due

to the daily constraints, the value of the period to date at time T is limited on
the interval [0, T ]. That is,

0 ≤ Q(T ) ≤ q̄T.

In terms of the part Ψl(x), l = 0, 1, . . . , L − 2, we have the following two
scenarios:

• When l = 0, 1, . . . , L − 3, we find Ψl(x) at time Tl+1 by using V l+1. Let
T+
l = Tl + ε, l = 0, 1, . . . , L − 3. ε is a constant and ε � δ. By the fact
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that

lim
ε→0

M(T+
l+1) = lim

ε→0

1

T+
l+1 − Tl+1

∫ T+
l+1

Tl+1

Z(u)du

= lim
ε→0

1

Tl+1 + ε− Tl+1

∫ Tl+1+ε

Tl+1

Z(u)du

= Z(Tl+1),

and
lim
ε→0

S(T+
l+1) = S(Tl+1), lim

ε→0
Z(T+

l+1) = Z(Tl+1),

together with (4.5), we have

Ψl(S,Z,M,Q) = V l+1(T+
l+1, S, Z,M(T+

l+1),M,Q)

= V l+1(T+
l+1, S, Z, Z,M,Q), (4.46)

where, from now on, T+
l+1 = limε→0(Tl+1 + ε).

• When l = L− 2, by (4.5), Ψl(x) is simply

ΨL−2(S,Z,M,Q) = V L−1(TL−1, S,M,Q). (4.47)

The combination of (4.46) and (4.47) gives

Ψl(S,Z,M,Q) =

{
V L−1(TL−1, S,M,Q) for l = L− 2,

V l+1(T+
l+1, S, Z, Z,M,Q), for l = 0, 1, . . . , L− 3.

(4.48)
It has been proved in Edoli (2013) that, for this type of problem, the value

function (4.44) satisfies

∂V L−1

∂t
− rV L−1 + [ΘS(t)− αS lnS]S

∂V L−1

∂S
+

1

2
σ2
SS

2∂
2V L−1

∂S2

+ maxq∈[0,q̄]

{
q
[
(S − I) +

∂V L−1

∂Q

]}
= 0 (4.49)

with the terminal condition

V L−1(TL, S, I,Q) = V tml(T, S, I,Q),
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and the value function (4.45) satisfies

∂V l

∂t
− rV l + [ΘS(t)− αS lnS]S

∂V l

∂S

+ [ΘZ(t)− αZ lnZ]Z
∂V l

∂Z
+
Z −M
t− Tl

∂V l

∂M

+
1

2
σ2
SS

2∂
2V l

∂S2
+

1

2
σ2
ZZ

2∂
2V l

∂Z2
+ σSσZρ

∂2V l

∂S∂Z

+ maxq∈[0,q̄]

{
q

[
(S − I) +

∂V l

∂Q

]}
= 0 (4.50)

with the terminal condition (4.48). To avoid heavy notations, we have dropped
the dependency of (t, S, I,Q) in V L−1, the dependency of (t, S, Z,M, I,Q) in
V l and all corresponding partial derivatives.

Remark 4.7. The proof can be found in Theorem 2 and Theorem 8 of Edoli
(2013). In Edoli (2013), the author also shows that (4.44) and (4.45) are vis-
cosity solutions of (4.49) and (4.50), respectively. The theory of the viscosity
solution is outside the scope of this thesis, we refer interested readers to Flem-
ing and Soner (2006) and Basei, Cesaroni and Vargiolu (2014).

From (4.50) and (4.49), it can easily be seen that the optimal decision q∗(t)
at time t is

q∗(t) =

{
0 if S(t)− I(t) + ∂V l

∂Q ≤ 0

q̄ if S(t)− I(t) + ∂V l

∂Q > 0

That is, at time t, the optimal decision is either the daily minimum or the
daily maximum.

4.9 First order consistency

Recall Remark 4.2, given a node (n − 1, s, z) where s = −smax,−smax +

1, . . . , smax and z = −zmax,−zmax + 1, . . . , zmax, the gas price and the oil price
can be computed by (4.15). Let Su, Sm and Sd be the gas price obtained by
following the upper, middle and lower branches on the gas tree emanating
from the node (n − 1, s, z), respectively. Similarly, let Zu, Zm and Zd be the
oil price obtained by following the upper, middle and lower branches on the
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FIGURE 4.4: Illustration of Case 1 and Case 8

Gas tree

Oil tree

Case 1

Case 8

oil tree emanating from the node (n− 1, s, z), respectively. Then,

Su = Sn,g(s,1), Zu = Zn,h(z,1),

Sm = Sn,g(s,0), Zm = Zn,h(z,0),

Sd = Sn,g(s,−1), Zd = Zn,h(z,−1).

(4.51)

Recall (4.13) and (4.14), the values in (4.51) depend on the levels s and z. For
the gas price, we have three possible outcomes:

1. −smax < s < smax, which means the node (n−1, s, z) is not on the edges
of the gas tree. In this case,

Su = Sn,s+1 = e(s+1)∆X+an

Sm = Sn,s = es∆X+an

Sd = Sn,s−1 = e(s−1)∆X+an

In Assumption 4.1, we have assumed that an = a(tn). If we define the
following notations:

S = Sn−1,s, X = s∆X, and t = tn,
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we have 
Su = Sn,s+1 = eX+∆X+a(t)

Sm = Sn,s = eX+a(t)

Sd = Sn,s−1 = eX−∆X+a(t)

(4.52)

2. s = smax, which means the node (n − 1, s, z) is on the top edge of the
gas tree. In this case,

Su = Sn,s = eX+a(t)

Sm = Sn,s−1 = eX−∆X+a(t)

Sd = Sn,s−2 = eX−2∆X+a(t)

3. s = −smax, which means the node (n− 1, s, z) is on the bottom edge of
the gas tree. In this case,

Su = Sn,s+2 = eX+2∆X+a(t)

Sm = Sn,s+1 = eX+∆X+a(t)

Sd = Sn,s = eX+a(t)

Similarly, for the oil price, by defining

Z = Zn−1,z, Y = z∆Y, and t = tn,

we also have three possible outcomes:

1. If −zmax < z < zmax, we have
Zu = Zn,z+1 = eY+∆Y+b(t)

Zm = Zn,z = eY+b(t)

Zd = Zn,z−1 = eY−∆Y+b(t)

(4.53)
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TABLE 4.6: Nine cases of node positions on a two-
dimensional trinomial tree.

Node positions
Case 1 (n, ŝ, ẑ)
Case 2 (n, ŝ, zmax)
Case 3 (n, ŝ,−zmax)
Case 4 (n, smax, ẑ)
Case 5 (n, smax, zmax)
Case 6 (n, smax,−zmax)
Case 7 (n,−smax, ẑ)
Case 8 (n,−smax, zmax)
Case 9 (n,−smax,−zmax)

Note: ŝ and ẑ are integers such that −smax < ŝ < smax and
−zmax < ẑ < zmax.

2. If z = zmax, we have
Zu = Zn,z = eY+b(t)

Zm = Zn,z−1 = eY−∆Y+b(t)

Zd = Zn,z−2 = eY−2∆Y+b(t)

3. If z = −zmax, we have
Zu = Zn,z = eY+2∆Y+b(t)

Zm = Zn,z−1 = eY+∆Y+b(t)

Zd = Zn,z−2 = eY+b(t)

The combination of these possible outcomes of the gas price and the oil price
gives us nine scenarios, as in Table 4.6. For the positions of these nodes in
Table 4.6, Figure 4.4 shows examples of Case 1 and Case 8.
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4.9.1 Proof of the first order consistency

In terms of the proof of the consistency, we give a detailed proof for Case 1
and the other cases can be proceeded similarly. First, rewrite (4.50) as follows:

LV l = 0, (4.54)

where L is the operator such that

LV l =
∂V l

∂t
− rV l + [ΘS(t)− αS lnS]S

∂V l

∂S

+ [ΘZ(t)− αZ lnZ]Z
∂V l

∂Z
+
Z −M
t− Tl

∂V l

∂M

+
1

2
σ2
SS

2∂
2V l

∂S2
+

1

2
σ2
ZZ

2∂
2V l

∂Z2
+ σSσZρ

∂2V l

∂S∂Z

+ maxq∈[0,q̄]

{
q

[
(S − I) +

∂V l

∂Q

]}
,

where
ΘS(t) =

∂a(t)

∂t
+ αSa(t) +

1

2
σ2
S ,

ΘZ(t) =
∂b(t)

∂t
+ αZb(t) +

1

2
σ2
Z .

Recall our algorithm in Section 4.6. The combination of equations (4.28) and
(4.29) gives that, for tn ∈ (Tl, Tl+1], l = 1, 2, . . . , L− 2,

V l(Sn,s, Zn,z,Mn,m, In,i, Q) = max
q∈[0,q̄]

{
q · (Sn,s − In,i)+

1∑
b,c=−1

ps,z,b,ce
−r∆t·

V l(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, In,i, Q+ q)

}
.

(4.55)

Until indicated otherwise, we ignore the effect of interpolation (4.32). Now,
we show that the consistency of the tree algorithm (4.55). DenoteD = (0,∞)×
(0,∞)×(0,∞)×(0,∞)×[0, q̄T ].We need to show that, for sufficiently smooth
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function U(t, S, Z,M, I,Q) and D0 = (t0, S0, Z0,M0, I0, Q0) ∈ (Tl, Tl+1)×D,

lim
∆t→0

(t,S,Z,M,I,Q)→D0

1

∆t
(U − F∆tU)(t−∆t, S, Z,M, I,Q) = −LU

∣∣∣
D0

, (4.56)

where F∆tU(t, S, Z,M, I,Q) satisfies

F∆tU(t−∆t, S, Z,M, I,Q)

= max
q∈[0,q̄]

{
q ·∆t ·

(
S − I

)
+ e−r∆tU(t, S, Z,M, I,Q)

}
. (4.57)

Depending on the positions of the nodes on the two-dimensional trinomial
tree, U(t, S, Z,M, I,Q) in (4.57) have different forms. In Case 1, we have

U(t, S, Z,M, I,Q) =Puu · U
(
t, Su, Zu,Mu, I, Q+ q ·∆t

)
+

Pum · U
(
t, Su, Zm,Mm, I, Q+ q ·∆t

)
+

Pud · U
(
t, Su, Zd,Md, I, Q+ q ·∆t

)
+

Pmu · U
(
t, Sm, Zu,Mu, I, Q+ q ·∆t

)
+

Pmm · U
(
t, Sm, Zm,Mm, I, Q+ q ·∆t

)
+

Pmd · U
(
t, Sm, Zd,Md, I, Q+ q ·∆t

)
+

Pdu · U
(
t, Sd, Zu,Mu, I, Q+ q ·∆t

)
+

Pdm · U
(
t, Sd, Zm,Mm, I, Q+ q ·∆t

)
+

Pdd · U
(
t, Sd, Zd,Md, I, Q+ q ·∆t

)
, (4.58)

where Su, Sm, Sd, Zu, Zm and Zd are given by (4.52) and (4.53). Mu, Mm and
Md are the values of the running average if the oil price moves from Z to Zu,
Zm and Zd, respectively. In the same sprit as (4.18), together with (4.53), we
have 

Mu =
(t−∆t− Tl) ·M + Zu∆t

t− Tl
,

Mm =
(t−∆t− Tl) ·M + Zm∆t

t− Tl
,

Md =
(t−∆t− Tl) ·M + Zd∆t

t− Tl
.

(4.59)

Recall the construction of a two-dimensional trinomial tree in Section 2.2,
Puu, Pum, Pud, Pmu, Pmm, Pmd, Pdu, Pdm and Pdd are probabilities associated
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with the nine possible movements on the two-dimensional trinomial tree.
These probabilities are calculated through (2.27), (2.28) and (2.29). Denote
the probabilities associated with the upper, middle and lower branches on
the gas tree by pu, pm and pd, respectively. Similarly, denote the probabilities
associated with the upper, middle and lower branches on the oil tree by qu,
qm and qd, respectively. pu, pm, pd, qu, qm and qd can be calculated by using
(2.26) (also see Remark 2.8).

By (2.26), we have
pu = 1

6 +O(∆t),

pm = 2
3 +O(∆t2),

pd = 1
6 +O(∆t),


qu = 1

6 +O(∆t),

qm = 2
3 +O(∆t2),

qd = 1
6 +O(∆t).

(4.60)

In Section 2.2, these probabilities are obtained matching the theoretical con-
ditional expectation and variance (see (2.21) and (2.22)). In addition, recall
Remark 4.2, ∆X and ∆Y are the space steps on the gas fundamental tree and
the oil fundamental tree, respectively. The value of ∆X and ∆Y are given by

∆X = σS
√

3∆t and ∆Y = σZ
√

3∆t, (4.61)

respectively. Therefore, using (2.21), (2.22) and (4.61), we have the following
equations: 

pu ·∆X + pm · 0 + pd · (−∆X) = −αSX∆t

qu ·∆Y + qm · 0 + qd · (−∆Y ) = −αZY∆t

pu · (∆X)2 + pm · 0 + pd · (−∆X)2 = σ2
S∆t+O(∆t2)

qu · (∆Y )2 + qm · 0 + qd · (−∆Y )2 = σ2
Z∆t+O(∆t2)

. (4.62)

Again, from the tree building procedures in Section 2.2, we have

Puu + Pum + Pud + Pmu + Pmm + Pmd + Pdu + Pdm + Pdd = 1. (4.63)
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Using (4.61) and the Taylor expansions, we derive some equations in (4.64)
which are intensively used in the rest of this section:

e∆X = 1 + ∆X +
1

2
∆X2 +

1

6
∆X3 +O(∆t2),

e−∆X = 1−∆X +
1

2
∆X2 − 1

6
∆X3 +O(∆t2),

ea(t) = ea(t−∆t) + ∆tea(t−∆t) ∂a(t−∆t)

∂t
+O(∆t2),

a(t−∆t) = a(t) +O(∆t),

∂a(t−∆t)

t
=
∂a(t)

∂t
+O(∆t).

(4.64)

From (4.64), we can have similar results for e∆Y , e−∆Y , eb(t), b(t − ∆t) and
∂b(t−∆t)

t . Define the following notations:

∆Su = (Su − S), ∆Sm = (Sm − S), ∆Sd = (Sd − S),

∆Zu = (Zu − Z), ∆Zm = (Zm − Z), ∆Zd = (Sd − Z),

∆Mu = (Mu −M), ∆Mm = (Mm −M), ∆Md = (Md −M).

Using the equalities in (4.64), we can further derive the following equalities
using the Taylor expansions:

∆Su =
[
∆X +

1

2
∆X2 +

1

6
∆X3 + ∆X∆t

∂a(t)

∂t
+ ∆t

∂a(t)

∂t

]
S +O(∆t2),

∆Sm =
∂a(t)

∂t
S∆t+O(∆t2),

∆Sd =
[
−∆X +

1

2
∆X2 − 1

6
∆X3 −∆X∆t

∂a(t)

∂t
+ ∆t

∂a(t)

∂t

]
S +O(∆t2),

∆Zu =
[
∆Y +

1

2
∆Y 2 +

1

6
∆Y 3 + ∆Y∆t

∂b(t)

∂t
+ ∆t

∂b(t)

∂t

]
Z +O(∆t2),

∆Zm =
∂b(t)

∂t
Z∆t+O(∆t2),

∆Zd =
[
−∆Y +

1

2
∆Y 2 − 1

6
∆Y 3 −∆Y∆t

∂b(t)

∂t
+ ∆t

∂b(t)

∂t

]
Z +O(∆t2),

∆Mu =
Z(1 + ∆Y )−M

t− Tl
·∆t+O(∆t2),

∆Mm =
Z −M
t− Tl

·∆t+O(∆t2),

∆Md =
Z(1−∆Y )−M

t− Tl
·∆t+O(∆t2).

(4.65)
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Here, we give explanations on how we derive ∆Su, the rest can be proceeded
similarly:

∆Su =eX+∆X+a(t) − eX+a(t−∆t)

=eX+∆X
[
ea(t−∆t) + ∆t

∂a(t−∆t)

∂t
ea(t−∆t)

]
− eX+a(t−∆t) +O(∆t2)

=
[
e∆X + ∆te∆X ∂a(t−∆t)

∂t
− 1
]
S +O(∆t2)

=
[
∆X +

1

2
∆X2 +

1

6
∆X3 +

[
1 + ∆X

]
∆t

∂a(t−∆t)

∂t

]
S +O(∆t2)

=
[
∆X +

1

2
∆X2 +

1

6
∆X3 + ∆X∆t

∂a(t)

∂t
+ ∆t

∂a(t)

∂t

]
S +O(∆t2).

Using (4.65), we have the following results:

∆t∆Mu = O(∆t2), ∆t∆Mm = O(∆t2), ∆t∆Md = O(∆t2),

(∆Mu)2 = O(∆t2), (∆Mm)2 = O(∆t2), (∆Md)2 = O(∆t2),

(∆Su)2 = ∆X2 + ∆X3 +O(∆t2),

(∆Sm)2 = O(∆t2),

(∆Sd)2 = ∆X2 −∆X3 +O(∆t2),

(∆Zu)2 = ∆Y 2 + ∆Y 3 +O(∆t2),

(∆Zm)2 = O(∆t2),

(∆Zd)2 = ∆Y 2 −∆Y 3 +O(∆t2),

(∆Su)3 = ∆X3 +O(∆t2), (∆Sm)3 = O(∆t3), (∆Sd)3 = −∆X3 +O(∆t2),

(∆Zu)3 = ∆Y 3 +O(∆t2), (∆Zm)3 = O(∆t3), (∆Zd)3 = −∆Y 3 +O(∆t2).

(4.66)
(4.65) together with (4.60), (4.62) and (4.66), one can show that the following
equalities hold:

qu ·∆Mu + qm ·∆Mm + qd ·∆Md =
Z −M
t− Tl

·∆t+O(∆t2),

pu ·∆Su + pm ·∆Sm + pd ·∆Sd =
[
ΘS(t)− αS lnS

]
S∆t+O(∆t2),

qu ·∆Zu + qm ·∆Zu + qd ·∆Zu =
[
ΘZ(t)− αZ lnZ

]
Z∆t+O(∆t2),

pu(∆Su)2 + pm(∆Sm)2 + pd(∆S
d)2 = σ2

SS
2∆t+O(∆t2),

qu(∆Zu)2 + qm(∆Zm)2 + qd(∆Z
d)2 = σ2

ZZ
2∆t+O(∆t2),

pu(∆Su)3 + pm(∆Sm)3 + pd(∆S
d)3 = O(∆t2),

qu(∆Zu)3 + qm(∆Zm)3 + qd(∆Z
d)3 = O(∆t2).

(4.67)



Chapter 4. Evaluation of gas sales agreements with indexation 108

Here, we give explanations on how we derive pu ·∆Su+pm ·∆Sm+pd ·∆Sd,
the rest can be proceeded similarly:

pu ·∆Su + pm ·∆Sm + pd ·∆Sd

=
[
− αSX +

1

2
σ2
S +

∂a(t)

∂t

]
S∆t+O(∆t2)

=
[
αSa(t−∆t)− αS lnS +

1

2
σ2
S +

∂a(t)

∂t

]
S∆t+O(∆t2)

=
[
αSa(t)− αS lnS +

1

2
σ2
S +

∂a(t)

∂t

]
S∆t+O(∆t2)

=
[
ΘS(t)− αS lnS

]
S∆t+O(∆t2).

Starting from (4.65), using (4.61) and (4.64), we have the following equalities:

∆Zu∆Mu =
∆Y · Z −M

t− Tl
∆t+O(∆t2),

∆Zm∆Mm =O(∆t2),

∆Zd∆Md =
−∆Y · Z +M

t− Tl
∆t+O(∆t2),

∆Su∆Zu =
[
∆X∆Y +

1

2
∆X∆Y 2 +

1

2
∆Y∆X2

+ ∆X∆t
∂b(t)

∂t
+ ∆Y∆t

∂a(t)

∂t

]
SZ +O(∆t2),

∆Su∆Zm =
[
∆X∆t

∂b(t)

∂t

]
SZ +O(∆t2),

∆Su∆Zd =
[
−∆X∆Y +

1

2
∆X∆Y 2 − 1

2
∆Y∆X2

+ ∆X∆t
∂b(t)

∂t
−∆Y∆t

∂a(t)

∂t

]
SZ +O(∆t2),

∆Sm∆Zu =
[
∆Y∆t

∂a(t)

∂t

]
SZ +O(∆t2),

∆Sm∆Zm =O(∆t2),

∆Sm∆Zd =
[
−∆Y∆t

∂a(t)

∂t

]
SZ +O(∆t2),

∆Sd∆Zu =
[
−∆X∆Y − 1

2
∆X∆Y 2 +

1

2
∆Y∆X2

−∆X∆t
∂b(t)

∂t
+ ∆Y∆t

∂a(t)

∂t

]
SZ +O(∆t2),

∆Sd∆Zm =
[
−∆X∆t

∂b(t)

∂t

]
SZ +O(∆t2),

∆Sd∆Zd =
[
∆X∆Y − 1

2
∆X∆Y 2 − 1

2
∆Y∆X2

−∆X∆t
∂b(t)

∂t
−∆Y∆t

∂a(t)

∂t

]
SZ +O(∆t2).

(4.68)
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Using (4.68) together with (4.65), we have

∆S∆Z∆M = O(∆t2) (4.69)

for any ∆S ∈ {∆Su,∆Sm,∆Sd}, ∆Z ∈ {∆Zu,∆Zm,∆Zd} and ∆M ∈ {∆Mu,

∆Mm,∆Md}.
Recall ε in (2.28) and (2.29). ε = ρ

36 if ρ ≥ 0 and ε = − ρ
36 if ρ < 0. Using

the probability matrix (2.27), (2.28) and (2.29), we have

(
Puu ·∆Su + Pmu ·∆Sm + Pdu ·∆Sd

)
∆Mu

=

−6ε∆X∆Mu +O(∆t2), ρ ≥ 0,

6ε∆X∆Mu +O(∆t2), ρ < 0,(
Pum ·∆Su + Pmm ·∆Sm + Pdm ·∆Sd

)
∆Mm

=O(∆t2),(
Pud ·∆Su + Pmd ·∆Sm + Pdd ·∆Sd

)
∆Md

=

−6ε∆X∆Md +O(∆t2), ρ ≥ 0,

6ε∆X∆Md +O(∆t2), ρ < 0,

which gives

(
Puu ·∆Su + Pmu ·∆Sm + Pdu ·∆Sd

)
∆Mu +

(
Pum ·∆Su+

Pmm ·∆Sm + Pdm ·∆Sd
)
∆Mm +

(
Pud ·∆Su+

Pmd ·∆Sm + Pdd ·∆Sd
)
∆Md = O(∆t2). (4.70)

(4.68) together with (4.60), (4.62), (2.27), (2.28) and (2.29), one can derive

Puu ·∆Su ·∆Zu + Pmu ·∆Sm ·∆Zu + Pdu ·∆Sd ·∆Zu

+ Pum ·∆Su ·∆Zm + Pmm ·∆Sm ·∆Zm + Pdm ·∆Sd ·∆Zm

+ Pud ·∆Su ·∆Zd + Pmd ·∆Sm ·∆Zd + Pdd ·∆Sd ·∆Zd

=

12ε ·∆X ·∆Y +O(∆t2), ρ ≥ 0

−12ε ·∆X ·∆Y +O(∆t2), ρ < 0

=ρσSσZ∆t+O(∆t2). (4.71)
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(4.68) together with (4.60) and (4.62), we can also have

qu ·∆Zu∆Mu + qm ·∆Zm∆Mm + qd ·∆Zd∆Md = O(∆t2). (4.72)

Now, we perform the Taylor expansions of (4.58) at (t, S, Z,M, I,Q). Together
with the result in (4.69), we have

U(t, S, Z,M, I,Q)

=U
(
t, S, Z,M, I,Q

)
+ A1

∂U

∂S
+ A2

∂U

∂Z
+ A3

∂U

∂M
+ A4

∂2U

∂S2
+ A5

∂2U

∂Z2

+ A6
∂2U

∂S∂Z
+ A7

∂U

∂Q
+ A8

∂2U

∂S∂M
+ A9

∂2U

∂Z∂M
+ A10

∂2U

∂S∂Q
+ A11

∂2U

∂Z∂Q

+ A12
∂3U

∂S3
+ A13

∂3U

∂Z3
+O(∆t2), (4.73)

where A1-A13 are the functions in front of these derivatives obtained through
the Taylor expansions.

After using the Taylor expansions, A1 is given by

A1 = (Puu+Pum+Pud)∆S
u+(Pmu+Pmm+Pmd)∆S

m+(Pdu+Pdm+Pdd)∆S
d.

Using (2.27), (2.28) and (2.29), we have

A1 = pu∆Su + pm∆Sm + pd∆S
d.

From (4.67), we know

A1 =
[
ΘS(t)− αS lnS

]
S∆t+O(∆t2). (4.74)

Similarly, we can get

A2 =
[
ΘZ(t)− αZ lnZ

]
Z∆t+O(∆t2).

For A3, after using the Taylor expansions, we have

A3 =(Puu + Pmu + Pdu)∆Mu + (Pum + Pmm + Pdm)∆Mm

+ (Pud + Pmd + Pdd)∆M
d

=qu∆Mu + qm∆Mm + qd∆M
d.
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By (4.67), we have

A3 =
Z −M
t− Tl

·∆t+O(∆t2).

For A4, we have

A4 =
1

2

[
(Puu + Pum + Pud)(∆S

u)2 + (Pmu + Pmm + Pmd)(∆S
m)2

+ (Pdu + Pdm + Pdd)(∆S
d)2
]

=
1

2

[
pu(∆Su)2 + pm(∆Sm)2 + pd(∆S

d)2
]
.

Together with (4.67), we have

A4 =
1

2
σ2
SS

2∆t+O(∆t2).

Similarly, we have

A5 =
1

2
σ2
ZZ

2∆t+O(∆t2).

For A6, we have

A6 =Puu ·∆Su ·∆Zu + Pmu ·∆Sm ·∆Zu + Pdu ·∆Sd ·∆Zu

+ Pum ·∆Su ·∆Zm + Pmm ·∆Sm ·∆Zm + Pdm ·∆Sd ·∆Zm

+ Pud ·∆Su ·∆Zd + Pmd ·∆Sm ·∆Zd + Pdd ·∆Sd ·∆Zd.

From (4.71), we have

A6 = ρσSσZ∆t+O(∆t2).

For A7, we have

A7 = q ·∆t
(
Puu + Pum + Pud + Pmu + Pmm + Pmd + Pdu + Pdm + Pdd

)
.

From (4.63), we have
A7 = q ·∆t.



Chapter 4. Evaluation of gas sales agreements with indexation 112

For A8, we have

A8 =Puu ·∆Su ·∆Mu + Pmu ·∆Sm ·∆Mu + Pdu ·∆Sd ·∆Mu

+ Pum ·∆Su ·∆Mm + Pmm ·∆Sm ·∆Mm + Pdm ·∆Sd ·∆Mm

+ Pud ·∆Su ·∆Md + Pmd ·∆Sm ·∆Md + Pdd ·∆Sd ·∆Md.

From (4.70), we have
A8 = O(∆t2).

For A9, we have

A9 =(Puu + Pmu + Pdu)∆Zu ·∆Mu + (Pum + Pmm + Pdm)∆Zm ·∆Mm

+ (Pud + Pmd + Pdd)∆Z
d ·∆Md

=qu ·∆Zu ·∆Mu + qm ·∆Zm ·∆Mm + qd ·∆Zd ·∆Md.

From (4.72), we have
A9 = O(∆t2).

For A10,

A10 =
[
(Puu + Pum + Pud)∆S

u + (Pmu + Pmm + Pmd)∆S
m

+ (Pdu + Pdm + Pdd)∆S
d
]
· q ·∆t

=A1 · q ·∆t.

Since A1 =
[
ΘS(t)− αS lnS

]
S∆t+O(∆t2) (see (4.74)), it follows that

A10 = O(∆t2).

Similarly, we have
A11 = O(∆t2).
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For A12,

A12 =
1

6

[
(Puu + Pum + Pud)(∆S

u)3 + (Pmu + Pmm + Pmd)(∆S
m)3

+ (Pdu + Pdm + Pdd)(∆S
d)3
]

=
1

6

[
pu(∆Su)3 + pm(∆Sm)3 + pd(∆S

d)3
]
.

From (4.67), we have
A12 = O(∆t2).

Similarly, we have
A13 = O(∆t2).

Put A1-A13 into (4.73), we obtain

U(t, S, Z,M, I,Q)

=U
(
t, S, Z,M, I,Q

)
+

{[
ΘS(t)− αS lnS

]
S
∂U

∂S
+
[
ΘZ(t)− αZ lnZ

]
Z
∂U

∂Z

+
Z −M
t− Tl

∂U

∂M
+ q · ∂U

∂Q
+

1

2
σ2
SS

2∂
2U

∂S2
+

1

2
σ2
ZZ

2∂
2U

∂Z2

+ ρσSσZSZ
∂2U

∂S∂Z

}
∆t+O(∆t2).

Since
e−r∆t = 1− r∆t+O(∆t2),

it follows that

e−r∆tU(t, S, Z,M, I,Q)

=U
(
t, S, Z,M, I,Q

)
+

{[
ΘS(t)− αS lnS

]
S
∂U

∂S
+
[
ΘZ(t)− αZ lnZ

]
Z
∂U

∂Z

+
Z −M
t− Tl

∂U

∂M
+

1

2
σ2
SS

2∂
2U

∂S2
+

1

2
σ2
ZZ

2∂
2U

∂Z2

+ ρσSσZSZ
∂2U

∂S∂Z
− rU

(
t, S, Z,M, I,Q

)}
∆t+O(∆t2). (4.75)
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Put (4.75) back into (4.57), we have the following result:

F∆tU(t−∆t, S, Z,M, I,Q)

=U
(
t, S, Z,M, I,Q

)
+

{[
ΘS(t)− αS lnS

]
S
∂U

∂S
+
[
ΘZ(t)− αZ lnZ

]
Z
∂U

∂Z

+
Z −M
t− Tl

∂U

∂M
+ q · ∂U

∂Q
+

1

2
σ2
SS

2∂
2U

∂S2
+

1

2
σ2
ZZ

2∂
2U

∂Z2
+ ρσSσZSZ

∂2U

∂S∂Z

− rU
(
t, S, Z,M, I,Q

)}
∆t+ max

q∈[0,q̄]

{
q ·∆t ·

(
S − I

)
+ q ·∆t∂U

∂Q

}
+O(∆t2) (4.76)

Using Taylor expansions of U
(
t − ∆t, S, Z,M, I,Q

)
on (t, S, Z,M, I,Q), we

have

U
(
t−∆t, S, Z,M, I,Q

)
= U

(
t, S, Z,M, I,Q

)
−∆t

∂U

∂t
+O(∆t2). (4.77)

Using (4.76) and (4.77), we have

1

∆t
(U − F∆tU)(t−∆t, S, Z,M, I,Q)

=− ∂U

∂t
+ rU

(
t, S, Z,M, I,Q

)
−
[
ΘS(t)− αS lnS

]
S
∂U

∂S

−
[
ΘZ(t)− αZ lnZ

]
Z
∂U

∂Z
− Z −M

t− Tl
∂U

∂M
− 1

2
σ2
SS

2∂
2U

∂S2

− 1

2
σ2
ZZ

2∂
2U

∂Z2
− ρσSσZSZ

∂2U

∂S∂Z

− max
q∈[0,q̄]

{
q · (S − I) + q · ∂U

∂Q

}
+O(∆t)

=− LU +O(∆t). (4.78)

Passing the limit of the above equation (4.78), we have the desired result
(4.56).

For other cases in Table 4.6, the proof can be done in a similar way. Now,
we can conclude with the following theorem:

Theorem 4.1. Under Assumption 4.1, if the value ofMn,m,c in (4.55) is one of the
values in the running average vector Mn+1, that is,

dn+1(m̂) =Mn,m,c
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for some non-negative integer m̂ < H , the tree method (4.55) is consistent with the
HJB equation (4.50) in the order of ∆t.

Now we take into account the linear interpolation (4.32). Since it is hard
to measure the interpolation error when using the non-uniform grid, we take
the further discretization as an example. In Case 1, denote the interpolated
value of U by Ũ . Then (4.58) is given by

U(t, S, Z,M, I,Q) =Puu · Ũ
(
t, Su, Zu,Mu, I, Q+ q ·∆t

)
+

Pum · Ũ
(
t, Su, Zm,Mm, I, Q+ q ·∆t

)
+

Pud · Ũ
(
t, Su, Zd,Md, I, Q+ q ·∆t

)
+

Pmu · Ũ
(
t, Sm, Zu,Mu, I, Q+ q ·∆t

)
+

Pmm · Ũ
(
t, Sm, Zm,Mm, I, Q+ q ·∆t

)
+

Pmd · Ũ
(
t, Sm, Zd,Md, I, Q+ q ·∆t

)
+

Pdu · Ũ
(
t, Sd, Zu,Mu, I, Q+ q ·∆t

)
+

Pdm · Ũ
(
t, Sd, Zm,Mm, I, Q+ q ·∆t

)
+

Pdd · Ũ
(
t, Sd, Zd,Md, I, Q+ q ·∆t

)
, (4.79)

Recall the further discretization (4.19). For linear interpolation, we have

Ũ − U = O(∆M2). (4.80)

Together with (4.75), we have

e−r∆tU(t, S, Z,M, I,Q)

=U
(
t, S, Z,M, I,Q

)
+

{[
ΘS(t)− αS lnS

]
S
∂U

∂S
+
[
ΘZ(t)− αZ lnZ

]
Z
∂U

∂Z

+
Z −M
t− Tl

∂U

∂M
+ q · ∂U

∂Q
+

1

2
σ2
SS

2∂
2U

∂S2
+

1

2
σ2
ZZ

2∂
2U

∂Z2

+ ρσSσZSZ
∂2U

∂S∂Z
− rU

(
t, S, Z,M, I,Q

)}
∆t+O(∆t2 + ∆M2)
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It follows that

1

∆t
(U − F∆tU)(t−∆t, S, Z,M, I,Q)

=− LU +O(∆t+
∆M2

∆t
). (4.81)

Recall that

∆M =
∆Z

F
=
σZ
√

3∆t

F
,

if F = O(∆t−
1
2 ),

O(∆t+
∆M2

∆t
) = O(∆t).

That is, if F = O(∆t−
1
2 ), passing the limit of equation (4.81), we can have the

desired result (4.56).
For other cases in Table 4.6, the proof can be done in a similar way. Now,

we can conclude with the following theorem:

Theorem 4.2. Under Assumption 4.1, when using further discretization (4.19) with
F = O(∆t−

1
2 ), the tree method (4.55) is consistent with the HJB equation (4.50) in

the order of ∆t.
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Chapter 5

The least-squares Monte Carlo
approach

5.1 Introduction

The least-squares Monte Carlo simulation (LSMC, see Longstaff and Schwartz
(2001)) is a powerful tool when pricing options with early exercise features. It
has been extended to accommodate options with multiple exercise opportu-
nities in Meinshausen and Hambly (2004), Aleksandrov and Hambly (2010)
and Bender (2011). More specifically, the LSMC method has been used in
Dörr (2003), Barrera-Esteve et al. (2006), Thanawalla (2006), Holden, Løland
and Lindqvist (2011) and Bernhart (2011) to price GSA contracts.

In the existing literature, the strike price, or the index, is commonly as-
sumed to be deterministic. Then, it is enough to perform the regression
simply on the underlying price. When it comes to the evaluation of GSAs
with indexation, in each month, the value of the index is determined by the
weighted average price of the crude oil in the previous month. Since the
index is surely not deterministic, a common approach is to perform the re-
gression on both the gas price and the index. A simplified approach is also
suggested in Holden, Løland and Lindqvist (2011) and Edoli (2013) where the
regression is performed on the instant payoff. Since the index is computed
by using the crude oil price, however, this should also affect the value of a
GSA. This problem is noticed in Bernhart (2011) and Grau (2008), where the
authors suggest the regression should also be performed on the past under-
lying prices which are used to compute the current strike price or index. Two
different approaches have been used in these two references. The regression
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method in Grau (2008) regresses on all past underlying prices which are used
to compute the strike price. This approach leads to a very high-dimensional
problem, especially in the evaluation of the GSA contract, since 30 (we as-
sume one month contains 30 days) past oil prices are used to compute the
index. Although the author proposes a technique based on a sparse grid to
reduce the number of basis functions used, it is still very time consuming and
can hardly be feasible when the dimension exceeds ten. Bernhart (2011) uses
several so-called Laguerre processes in Bernhart, Tankov and Warin (2011) to
approximate the moving average process before performing the regression
on these Laguerre processes together with the gas price and the index. This
action still leads to a very high-dimensional problem, however, since the ap-
proximation the author uses is accurate when many Laguerre processes are
used. In addition, as reported in Warin (2012), this approach does not give
significant improvement compared with the normal regression on the gas
price and the index.

This chapter includes three aspects. Firstly, we build the LSMC algorithm
for the purpose of evaluating the GSAs with indexation. Secondly, we inves-
tigate the performance and find ways to get better results by using the LSMC
algorithm. This is done by comparing the outcomes of the LSMC algorithm
by performing the regression on different variables. Thirdly, we provide al-
gorithms which can be used to compare the contract value with the tree algo-
rithm built in Chapter 4.

Since we have used the model

dX(t) = −αSX(t)dt+ σSdB
S(t)

S(t) = eX(t)+a(t)

dY (t) = −αZY (t)dt+ σZdB
Z(t)

Z(t) = eY (t)+b(t)

, (5.1)

in the tree algorithm (see (4.38)) in Chapter 4, to provide a fair comparison
between the tree algorithm and the LSMC algorithm, we continue to use this
model in this chapter. Due to the flexible nature of the Monte Carlo simula-
tion, however, the LSMC algorithm can surely accommodate other models.
We give a description on how to generate paths by using (5.1) in Remark 5.3.
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This chapter is organized as follows: Section 5.2 builds the LSMC algo-
rithm for the evaluation of GSAs with indexation. Section 5.3 refines the
LSMC algorithm by introducing the exercising rule. Section 5.4 gives an algo-
rithm which can be used to get the upper bound of the GSA contract value.
Section 5.5 provides an algorithm which gives a benchmark contract value
when the penalty of the GSA is not applied. Section 5.6 lists the candidate
variables which can be used in the least-squares regression. Section 5.7 pro-
vides the basis functions we use in the LSMC algorithm. Section 5.8 analyzes
the performance of the LSMC algorithm through numerous examples. We
draw conclusions in Section 5.9.

5.2 The least-squares Monte Carlo Approach

In this section, we build the least-squares algorithm for the evaluation of the
GSA. To ease the notations in this chapter, we denote the gas price, the oil
price, the value of the running average and the index at time tn by Sn, Zn,
Mn and In, respectively. In the same sprit as (4.7) and (4.8), we have, for
n = lD + d, l = 0, . . . , L− 1 and d = 1, . . . , D,

MlD+d =
1

d

d∑
j=1

ZlD+j for l = 0, 1, . . . , L− 2.

IlD+d =

{
K for l = 0,
1
D

∑D
j=1 Z(l−1)D+j = MlD, for l = 1, 2, . . . , L− 1.

Recall that L corresponds to the number of months in a year and D corre-
sponds to the number of days in a month. Denote the contract value of the
GSA by V (tn, S, I,Q) where the gas price is S, the index is I and the period
to date is Q at time tn, n = 1, 2, . . . , N . Recall (4.11), we have

V (tn, S, I,Q) = sup
qtk∈[qmin,qmax]

E

[
N∑
k=n

e−r(tk−tn)qtk

(
Sk − Ik

)
+ e−r(T−tn)P (IN , QT )

∣∣∣∣∣Sn = S, In = I,Qtn = Q

]
. (5.2)
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where

QT = Q+

N∑
k=n

qtk .

Recall that Qtn =
∑n−1

k=1 qtk for n ≥ 2 and Qt1 = 0. For tN = T , we find
the optimal decision q∗ = q∗(tN , S, I,Q) by using (4.26), and the terminal
contract value follows at once,

V (T, S, I,Q) = q∗ · (S − I) + P(I,Q+ q∗). (5.3)

From the contract value (5.2), we have

V (tn, S, I,Q) = sup
qtn ,...,qtN

E

[
qtn

(
S − I

)
+ e−r∆t

[ N∑
k=n+1

e−r(tk−tn+1)qtk

(
Sk

− Ik
)

+ e−r(T−tn+1)P (IN , QT )

]∣∣∣∣∣Sn = S, In = I,Qtn = Q

]

= sup
qtn∈[qmin,qmax]

E

[
qtn

(
S − I

)
+ e−r∆t·

E
[
V (tn+1, Sn+1, In+1, Qtn + qtn)|Sn = S, In = I,Qtn = Q

]]
.

(5.4)

In (5.4), the conditional expectation together with the discount factor

e−r∆t · E
[
V (tn+1, Sn+1, In+1, Qtn + qtn)|Sn = S, In = I,Qtn = Q

]
is called the continuation value. Let C(tn, S, I,Q, q) be the continuation value
where the gas price is S, the index is I , the period to date isQ and the decision
is q at time tn. That is,

C(tn, S, I,Q, q) = e−r∆tE
[
V (tn+1, Sn+1, In+1, Q+ q)

∣∣∣∣Sn = S, In = I

]
. (5.5)

The main idea of the LSMC is that the continuation value can be approxi-
mated by the linear combination of a set of basis functions of the current state
(the gas price, the oil price, the running average, etc.). These basis functions
can be monomials, Laguerre polynomials, splines, radial basis functions, etc..
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In our case, at each time tn, n = 1, 2, . . . , N − 1, (5.5) can be approximated
through

C(tn, S, I,Q, q) ≈
Kb∑
k=1

βQ,qn,k φn,k(En) = ĈKb
(tn, S, I,Q, q),

where Kb is a positive integer. ĈKb
(tn, S, I,Q, q) is the approximated value

of C(tn, S, I,Q, q). βQ,qn,k , k = 1, . . . ,Kb, is the coefficient associated with the
basis function φn,k(En) where the period to date equals Q and the daily de-
cision is q at time tn. We call this the regression coefficient. En is a vector
containing some appropriate explanatory variables at time tn. In the rest of
this chapter, we call En the explanatory vector. The explanatory variables
are the variables which have impacts on the continuation value. Intuitively
speaking, the possible candidate explanatory variables are the gas price, the
oil price, the running average and the index. We discuss the choices of ex-
planatory variables in Section 5.6 and explore different possibilities for En in
Section 5.8.

Remark 5.1. For the LSMC, the approximated continuation value converges to
the continuation value whenKb → +∞ (see Clément, Lamberton and Protter
(2002)). That is

C(tn, S, I,Q, q) = lim
Kb→+∞

Kb∑
k=1

βQ,qn,k φn,k(En),

In practical, however, we can only work with a finite Kb. Fortunately, for
options with early exercises features, a not very large number of the ba-
sis functions usually returns an acceptable approximation of C(tn, S, I,Q, q)

(see Moreno and Navas (2003), Meinshausen and Hambly (2004) and Stentoft
(2004)). More details of the number of basis functions are given in Section 5.8.

In LSMC, the cross-paths information of many simulated paths is used to
approximate the continuation value. Suppose we haveG simulated indepen-
dent paths of the two-dimensional Markov process (S,Z):(

(S
(g)
0 , Z

(g)
0 ), (S

(g)
1 , Z

(g)
1 ), (S

(g)
2 , Z

(g)
2 ), . . . , (S

(g)
N , Z

(g)
N )

)
,
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where g = 1, 2, . . . , G. For each path g, we calculate the explanatory vector
E(g) and get G paths of E :(

E(g)
0 , E(g)

1 , E(g)
2 , . . . , E(g)

N

)
,

where g = 1, 2, . . . , G. Now, denote Ĉ(g)
Kb

(tn, S
(g), I(g), Q, q) as the approxi-

mated continuation value at time tn of the gth realization (path) obtained by
the linear combination of basis functions φk(E

(g)
n ), k = 1, . . . ,Kb. That is,

Ĉ
(g)
Kb

(tn, S
(g), I(g), Q, q) =

Kb∑
k=1

βQ,qn,k φk(E
(g)
n )

We use the same set of basis functions at all times tn, n = 1, . . . , N , which
means we can drop the subscription n in φn,k. Similarly, let V̂ (g)(tn, S

(g), I(g),

Q) be the approximated contract value at time tn of the gth realization calcu-
lated through Ĉ(g)

Kb
(tn, S

(g), I(g), Q, q), which is given by

V̂ (g)(tn, S
(g), I(g), Q) = sup

q∈[qmin,qmax]

[
q ·
(
S(g)−I(g)

)
+ Ĉ

(g)
Kb

(tn, S
(g), I(g), Q, q)

]
.

Given Kb basis functions, let βQ,q,∗n,k be the optimal regression coefficient asso-
ciated with φk(En). To obtain βQ,q,∗n,k , we perform a least-squares regression by
solving

min
βQ,q
n,1 ,...,β

Q,q
n,Kb

G∑
g=1

[
e−r∆tV̂ (g)(tn+1, S

(g), I(g), Q+ q)− Ĉ(g)
Kb

(tn, S
(g), I(g), Q, q)

]2

= min
βQ,q
n,1 ,...,β

Q,q
n,Kb

G∑
g=1

[
e−r∆tV̂ (g)(tn+1, S

(g), I(g), Q+ q)−
Kb∑
k=1

βQ,qn,k φk(E
(g)
n )

]2

(5.6)

Note that, the optimal βQ,q,∗n,k depends on both the period to date Q and the
daily decision q. That is, at each time tn, n = 1, . . . , N − 1, we find the op-
timal coefficients for all possible combinations of Q and q. Once we have
βQ,q,∗n,k , we compute the continuation value of each path g using these optimal
coefficients. Then for each path g, for each fixed period to dateQ, the contract
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value of path g at time tn is given by

V̂ (g)(tn, S
(g), I(g), Q) = sup

q∈[qmin,qmax]

[
q
(
S(g)−I(g)

)
+

Kb∑
k=1

βQ,q,∗n,k φk(E(g)
n )

]
. (5.7)

In addition, at time tN , by using (5.3), we can compute the contract value of
each path g through

V̂ (g)(tN , S
(g), I(g), Q) = q∗ · (S(g) − I(g)) + P(I(g), Q+ q∗), (5.8)

where the optimal decision q∗ = q∗(tN , S
(g), I(g), Q) is found by using (4.26).

The LSMC can be interpreted as follows: First, we simulate G indepen-
dent sample paths of the underlying processes (S,Z) which gives the ex-
planatory vector of each path, and chose a set of Kb basis functions φk, k =

1, . . . ,Kb. Then, at maturity tN = T , the contract value of each path g,
g = 1, . . . , G, is calculated through (5.8). Then we work backwards in time.
At time tn, n = N − 1, N − 2, . . . , 1, for each path g, for all possible periods
to date Q, we need to decide how much gas the buyer should purchase to
maximize the sum of the instant payoff and the continuation value. This is
done by using the information of all simulated paths at time tn+1 to find the
optimal coefficients βQ,q,∗n,k (see (5.6)). Then the desired contract value for each
path is obtained through (5.7). This procedure is repeated backwards in time
until time t1. Since there is no exercise opportunity at time t0, the contract
value then reads

V0 ≈ e−r∆t
1

G

G∑
g=1

V̂ (g)(t1, S
(g), I(g), 0).

Remark 5.2. The regression coefficients βQ,q,∗n,k provide an exercising rule. In
(5.7), the contract value is obtained by finding the decision q which maxi-
mizes the sum of the instant payoff and the approximated continuation value.
Then, at each time tn, for a given period to date Q and any realization of
the underlying (S,Z), we can find the optimal decision q∗ = q∗(tn, S, I,Q)
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through

q∗(tn, S, I,Q) = argmaxq∈[qmin,qmax]

[
q
(
S − I

)
+

Kb∑
k=1

βQ,q,∗n,k φk(En)

]
. (5.9)

As we can see in (5.9), once we have the period to date Q and the realization
of the underlying (S,Z), the exercising rule solely depends on the optimal
coefficients βQ,q,∗n,k , k = 1, . . . ,Kb, since the continuation value is calculated
through these coefficients.

Remark 5.3. In this thesis, the underlying processes S and Z are simulated
using the Euler scheme (see Maruyama (1955)). With X0 = Y0 = 0,

Xn =Xn−1 − αSXn−1∆t+ σS∆BS
n ,

Yn =Yn−1 − αZYn−1∆t+ σZ∆BZ
n ,

n = 1, 2, . . . , N , where ∆BS
n = BS(tn) − BS(tn−1) and ∆BZ

n = BZ(tn) −
BZ(tn−1) are the Brownian increments. Then the realizations of S and Z at
each time tn, n = 0, 1, . . . , N , are given by

Sn = eXn+an , Zn = eYn+bn ,

where an and bn are computed using the tree building procedures. Once we
have the realizations of S and Z, we can compute the explanatory variables.
As we mentioned before, the possible candidate explanatory variables are the
gas price S, the oil price Z, the running average M and the index I . Since we
have the realizations of S and Z, M and I can be computed by (4.7) and (4.8),
respectively.

We now present the numerical implementation in Algorithm I.

Algorithm I

1. Generate G independent paths of the underlying processes (S,Z) and
then compute the explanatory vector E for each path,(

E(g)
0 , E(g)

1 , E(g)
2 , . . . , E(g)

N

)
.
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where g = 1, 2, . . . , G.

2. At time tN = T , for each path g, for each possible period to date Q, set
the terminal contract value by

V̂ (g)(tN , S
(g), I(g), Q) = q∗ · (S(g) − I(g)) + P(I(g), Q+ q∗), (5.10)

where q∗ = q∗(tN , S
(g), I(g), Q) is obtained by using (4.26).

3. For n = N − 1, N − 2, . . . , 1, by backwards induction, for each possible
period to date Q,

(a) for each possible daily decision q,

i. find the optimal coefficients βQ,q,∗n,k by solving (5.6).

ii. for each path g, calculate the approximated continuation value
by

Ĉ
(g)
Kb

(tn, S
(g), I(g), Q, q) =

Kb∑
k=1

βQ,q,∗n,k φk(E(g)
n ) (5.11)

(b) for each path g, find the approximated contract value associated
with the period to date Q by (5.7).

4. For n = 0, for each path g, the contract value V̂ (g)
0 is

V̂
(g)

0 = e−r∆tV̂ (g)(t1, S
(g), I(g), 0).

5. The approximated contract value is

V̂0 =
1

G

G∑
g=1

V̂
(g)

0 .

5.3 LSMC using an exercising rule

When we compute the optimal coefficients (which give us an exercising rule,
see Remark 5.2) by solving the minimization problem (5.6), at time tn, we
have assumed the knowledge of V̂ (g)(tn+1, S

(g), I(g), Q+q). At the same time,
we are applying this exercising rule to the same set of paths in order to get the
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contract values, and this causes a high bias of the contract value (see, for in-
stance, Section 8 in Glasserman (2003) and Broadie and Glasserman (2004)).
To tackle this issue, one should simulate a second independent set of inde-
pendent paths and apply the exercising rule obtained through the first set of
paths to this newly generated set of paths through a forward induction. We
call this algorithm the LSMC using an exercising rule.

The LSMC using an exercising rule contains two steps. In the first step,
given a set of Kb basis functions, at each time tn, n = 1, 2, . . . , N − 1, we
find the optimal coefficients βQ,q,∗n,k , k = 1, . . . ,Kb, by using Algorithm I for
all possible Q and q. In the second step, we generate a second set of paths
and apply the exercising rule (see (5.9)) through a forward induction. In the
rest of this thesis, the first step and the second step are called the backward
scheme and the forward scheme, respectively.

The bang-bang consumption In this chapter, we again assume that our
GSAs have the bang-bang consumption (see Theorem 2.2). Under the bang-
bang consumption, and letting qmin = 0 and qmax = 1 (see Remark 2.6), at
each time tn, for each possible period to date Q, we only need to find the
optimal coefficients βQ,0,∗n,k and βQ,1,∗n,k , and hence calculate the approximated

continuation value Ĉ(g)
Kb

(tn, S
(g), I(g), Q, 0) and Ĉ

(g)
Kb

(tn, S
(g), I(g), Q, 1). Fur-

thermore, based on the same reasons, at time tn, the possible periods to date
Q are integers from 0 to n− 1 (see Remark 2.6). That is, (5.7) becomes

V̂ (g)(tn, S
(g), I(g), Q) = max

{
Kb∑
k=1

βQ,0,∗n,k φk(E(g)
n ),

(
S(g) − I(g)

)
+

Kb∑
k=1

βQ,1,∗n,k φk(E(g)
n )

}
. (5.12)

Now, we present the LSMC with an exercising rule in Algorithm II.
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Algorithm II

1. Generate G1 independent paths of the underlying processes (S,Z) and
then compute the explanatory vector E for each path,(

E(g)
0 , E(g)

1 , E(g)
2 , . . . , E(g)

N

)
.

where g = 1, 2, . . . , G1.

2. At time tN = T , for g = 1, 2, . . . , G1 and Q = 0, 1, 2, . . . , N − 1, set the
terminal contract value V (g)(tN , S

(g), I(g), Q) by (5.10).

3. At time tn, n = N − 1, N − 2, . . . , 1. By backwards induction, at each tn,
for Q = 0, 1, 2, . . . , n− 1,

(a) for q = 0 and q = 1,

i. find the optimal coefficients βQ,q,∗n,k by solving (5.6) (replace G
with G1 in (5.6)).

ii. for g = 1, . . . , G1, calculate the approximated continuation
value by (5.11). That is, calculate Ĉ(g)

Kb
(tn, S

(g), I(g), Q, q).

(b) for g = 1, . . . , G1, find the approximated contract value associated
with the period to date Q by

V̂ (g)(tn, S
(g), I(g), Q) = max

{
Ĉ

(g)
Kb

(tn, S
(g), I(g), Q, 0),

(
S(g) − I(g)

)
+ Ĉ

(g)
Kb

(tn, S
(g), I(g), Q, 1)

}
. (5.13)

4. Generate a second set of G2 independent paths of the underlying pro-
cesses (S,Z) and then compute the explanatory vector E for each path,(

E(g)
0 , E(g)

1 , E(g)
2 , . . . , E(g)

N

)
.

where g = 1, 2, . . . , G2.

5. For each path g = 1, 2, . . . , G2, perform a forward induction,

(a) at time t0, set Q(g)
1 = 0 and proceed to time t1.
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(b) at time tn, n = 1, 2, . . . , N − 1,

i. if we have

Ĉ
(g)
Kb

(tn, S
(g), I(g), Qtn , 0) <

(
S(g) − I(g)

)
+ Ĉ

(g)
Kb

(tn, S
(g), I(g), Qtn , 1),

where

Ĉ
(g)
Kb

(tn, S
(g), I(g), Qtn , 0) =

Kb∑
k=1

β
Qtn ,0,∗
n,k φk(E(g)

n )

and

Ĉ
(g)
Kb

(tn, S
(g), I(g), Qtn , 1) =

Kb∑
k=1

β
Qtn ,1,∗
n,k φk(E(g)

n ),

set q(g)
tn = 1.

ii. otherwise, set q(g)
tn = 0.

iii. set Q(g)
tn+1

= Q
(g)
tn + q

(g)
tn .

(c) at time tN ,

i. find q(g)
tN

= q(tN , S
(g), I(g), Q

(g)
tN

) by (4.26).

ii. get the penalty P(g)(I
(g)
N , Q

(g)
tN

) by (4.6).

(d) the contract value of path g is given by

V̂
(g)

0 =

N∑
n=1

e−r·n·∆t · q(g)
tn

(
S(g)
n − I(g)

n

)
+ e−rT · P(g)(I

(g)
N , Q

(g)
tN

).

6. The contract value is

V̂0 =
1

G2

G2∑
g=1

V̂
(g)

0

and the standard error is given by

SE(V̂0) =

√
1

G2−1

∑G2
g=1(V̂

(g)
0 − V̂0)2

G2
.
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Remark 5.4. Recall that, under the bang-bang consumption, we find βQ,0,∗n,k

and βQ,1,∗n,k for all possible periods to date Q at time tn via (5.6). If the current
period to date is Q, we find βQ,0,∗n,k by

min
βQ,0
n,1 ,...,β

Q,0
n,k

G∑
g=1

[
e−r∆tV̂ (g)(tn+1, S

(g), I(g), Q+ 0)−
Kb∑
k=1

βQ,0n,k φk(E
(g)
n )

]2

. (5.14)

If the current period to date is Q− 1, we find βQ−1,1,∗
n,k by

min
βQ−1,1
n,1 ,...,βQ−1,1

n,k

G∑
g=1

[
e−r∆tV̂ (g)(tn+1, S

(g), I(g), Q−1+1)−
Kb∑
k=1

βQ−1,1
n,k φk(E(g)

n )

]2

.

(5.15)
A simple comparison between (5.14) and (5.15) gives

βQ,0,∗n,k = βQ−1,1,∗
n,k . (5.16)

Under (5.16), together with (5.11), the following result follows at once:

Ĉ
(g)
Kb

(tn, S
(g), I(g), Q, 0) = Ĉ

(g)
Kb

(tn, S
(g), I(g), Q− 1, 1).

(5.16) gives us the opportunity to save a lot of computing time since it re-
duces nearly half of the minimization problem (5.6), although it needs to be
processed with extra care when we use the parallel computing technique.
Without (5.16), at each time tn, the minimization problem (5.6) can be solved
independently for each possible period to date Q. When we apply (5.16), this
is not possible since we cannot update βQ,0,∗n,k until we find βQ−1,1,∗

n,k . We give a
simple example of how to apply (5.16) using parallel computing in Example
5.1.

Example 5.1. At time tn, the possible period to date can be Q ∈ {0, 1, . . . , n −
1}. Suppose we want to implement our LSMC algorithm using M threads,
thread 0, . . ., thread M − 1. Without using (5.16), we can simply put the
minimization problem (5.6) of any possibleQ into any of those threads. When
using (5.16), however, we have to manually divide {0, 1, . . . , n − 1} into M
consecutive parts: {0, . . . , Q̄}, {Q̄+1, . . . , 2Q̄}, . . ., {(M−1)Q̄+1, Q̄+2, . . . , n−
1} and put them into thread 0, . . ., thread M − 1, respectively. Q̄ can be set to
be the largest integer smaller than n−1

M . In each thread, we find βQ,0,∗n,k βQ,1,∗n,k
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through forward induction. Since we update βQ,0,∗n,k using βQ−1,1,∗
n,k , we have

to solve the minimization problem (5.6) for both βQ,0,∗n,k and βQ,1,∗n,k when

Q ∈ {0, Q̄+ 1, 2Q̄+ 1, 3Q̄+ 1, . . . , (M − 1)Q̄+ 1}.

That is, we do not apply (5.16) for the starting period to date in each thread.
The reason we present this example is to show that, when we have many
threads available (M is sufficiently large), we may gain less benefit from
(5.16). Since to the author’s knowledge, however, most modern PCs and
laptops contain CPUs which have 4 cores, then this issue is not a serious
problem.

Remark 5.5. The minimization problem (5.6) can also be written in the form
of

φnβ
Q,q
n = V q

n, (5.17)

where φn is a G1 ×Kb matrix given by

φn =


φ1(E(1)

n ) φ2(E(1)
n ) · · · φKb

(E(1)
n )

φ1(E(2)
n ) φ2(E(2)

n ) · · · φKb
(E(2)
n )

· · · · · · · · · · · ·
φ1(E(G1)

n ) φ2(E(G1)
n ) · · · φKb

(E(G1)
n )

 , (5.18)

βQ,qn is a Kb × 1 vector given by

βQ,qn = (βQ,qn,1 , β
Q,q
n,1 , . . . , β

Q,q
n,Kb

)trans.

and V n is a G1 × 1 vector given by

V q
n =


e−r∆tV̂ (1)(tn+1, S

(1), I(1), Q+ q)

e−r∆tV̂ (2)(tn+1, S
(2), I(2), Q+ q)

· · ·
e−r∆tV̂ (G1)(tn+1, S

(G1), I(G1), Q+ q)

 .

That is, we seek the optimal regression coefficients βQ,q,∗n by solving the over-
determined system (5.17) by least-squares regression. In the rest of this thesis,
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we denote βQ,q,∗n the optimal coefficient vector which is given by

βQ,q,∗n = (βQ,q,∗n,1 , βQ,q,∗n,1 , . . . , βQ,q,∗n,Kb
)trans.

In addition, as mentioned in Remark 5.4, although the minimization problem
(5.6) of each possible period to date cannot be solved independently after
applying (5.16), we can always use the parallel computing technique in the
construction of these vectors and matrix.

5.4 An upper bound of the GSA

Edoli (2013) proposes an algorithm for the upper bound of the GSA, which is
called the Naive Monte Carlo with Linear Programming (NMCLP). The idea
is quite straightforward. This algorithm is similar to the forward scheme.
Instead of using an exercising rule obtained by the backward scheme, NM-
CLP maximizes the contract value of each path by linear programming using
a deterministic algorithm. Of course, at the same time, both the global and
daily constraints are imposed. Then, this upper bound is obtained via the
average of all maximized contract values of all paths. We present NMCLP in
Algorithm III.

Algorithm III

1. Generate G independent paths of the underlying processes (S,Z)(
(S

(g)
0 , Z

(g)
0 ), (S

(g)
1 , Z

(g)
1 ), (S

(g)
2 , Z

(g)
2 ), . . . , (S

(g)
N , Z

(g)
N )

)
,

where g = 1, 2, . . . , G. And calculate the index values I(g)
n , n = 1, . . . , N ,

for each path g.
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2. Find V (g)(0) for each path g through

maximize
q,x1,x2

V (g)(0) =

N∑
n=1

e−rtnqtn(S(g)
n − I(g)

n )− I(g)
N · x1 − I(g)

N · x2

subject to QT =

N∑
n=1

qtn ,

MB −QT ≤ x1 ≤MB,

QT −ACQ ≤ x2 ≤ N −ACQ,

x1 ≥ 0,

x2 ≥ 0,

qtn ∈ {0, 1}, n = 1, 2, . . . , N.

(5.19)

3. The upper bound reads

V̂0 =
1

G

G∑
g=1

V (g)(0).

Actually, the above algorithm is fast and easy to implement using a de-
terministic algorithm. One suggestion is to use the built-in Matlab function
intlinprog(). In addition, the above algorithm gives the upper bound
of the GSA value in the sense that it has the so-called perfect foresight of
the future movements of the underlying prices. That is, at time t0, the con-
tract value V (g)(0) of each path g is calculated via the maximization with the
knowledge of all price realizations in all future time steps tn, n = 1, 2, . . . , N .
Then, the value V (g)(0) is obtained in a deterministic environment instead of
an uncertain environment. The perfect foresight can significantly overprice
the contract value and hence gives an upper bound.

Next, since Edoli (2013) does not elaborate how the global and daily con-
straints are imposed in (5.19), we give some explanations here. Obviously,
since we have assumed the bang-bang consumption, qtn ∈ {0, 1} in (5.19) has
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imposed the daily constraints 0 ≤ qtn ≤ 1. The part

QT =

N∑
n=1

qtn , (5.20)

MB −QT ≤ x1 ≤MB, (5.21)

QT −ACQ ≤ x2 ≤ N −ACQ, (5.22)

x1 ≥ 0,

x2 ≥ 0

makes sure the global constraints are applied. (5.20) means QT is the total
volume of gas taken. Recall (2.3) and Remark 2.1, QT ≤ N , so the inequality
(5.22) always holds. Here we recall the penalty function

P
(
I

(g)
N , QT

)
= −I(g)

N ·max
{
MB −QT , 0

}︸ ︷︷ ︸
Part 1

−I(g)
N ·max

{
QT −ACQ, 0

}︸ ︷︷ ︸
Part 2

.

(5.23)
What we want to do is to use x1 and x2 to mimic Part 1 and Part 2 in (5.23),
respectively. We have the following scenarios:

1. 0 ≤ QT < MB. In this case, the buyer has to pay penalties because of
the insufficient gas taken. By (5.23), the penalty is

P
(
I

(g)
N , QT

)
= −I(g)

N · (MB −QT ).

SinceMB−QT > 0 andQT−ACQ < 0, we haveMB−QT ≤ x1 ≤MB

and 0 ≤ x2 ≤ N−ACQ. Note that, in (5.19), V (g)(0) decreases linearly in
both x1 and x2. Then, through the linear programming, x1 = MB−QT
and x2 = 0, which gives

−I(g)
N · x1 − I(g)

N · x2 = −I(g)
N · (MB −QT ).

2. MB ≤ QT ≤ ACQ. In this case, no penalty needs to be paid. Since
MB − QT < 0 and QT − ACQ < 0, we have 0 ≤ x1 ≤ MB and
0 ≤ x2 ≤ N − ACQ. Through the linear programming, x1 = 0 and
x2 = 0, which gives

−I(g)
N · x1 − I(g)

N · x2 = 0.
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3. ACQ < QT ≤ N . In this case, the buyer has to pay penalties because of
the excess gas taken. By (5.23), the penalty is

P
(
I

(g)
N , QT

)
= −I(g)

N · (QT −ACQ).

Since MB − QT < 0 and QT − ACQ > 0, we have 0 ≤ x1 ≤ MB and
QT − ACQ ≤ x2 ≤ N − ACQ. Then, through the linear programming,
x1 = 0 and x2 = QT −ACQ, which gives

−I(g)
N · x1 − I(g)

N · x2 = −I(g)
N · (QT −ACQ).

Another thing worth mentioning is that, since 0 ≤ QT ≤ N , the maximum
penalty related to insufficient gas purchased (whenQT = 0) the buyer would
pay is−I(g)

N ·MB, and the maximum penalty related to excess gas purchased
(when QT = N ) the buyer would pay is−I(g)

N · (N −ACQ). This is the reason
why we have x1 ≤MB and x2 ≤ N −ACQ in (5.21) and (5.22), respectively.

5.5 A benchmark when penalties are not involved

It is well-known that there is no explicit formula for the values of options with
early exercise features. This is why we seek numerical solutions for our GSA
contracts. In this section, we provide an algorithm which gives a trustworthy
benchmark of GSAs when penalties are not applied.

Suppose the non-trivial condition does not hold. That is,

MB = 0 and N ≤ ACQ. (5.24)

The buyer can freely take gas at any time tn, n = 1, 2, . . . , N , without worry-
ing about the possible penalties as long as the daily constraints are satisfied.
Then, when (5.24) holds, the GSA is equivalent to a strip of N European op-
tions covering the same exercisable dates. The n-th European option has the
terminal date tn and the strike price In. The payoff of the n-th European
option is given by

max{Sn − In, 0}.
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Due to the unclear distribution of the index I , however, we still need to find
the value of those European options via numerical approaches. We present
the algorithm as follows:

Algorithm IV

1. Generate G independent paths of the underlying processes (S,Z) and
get (

(S
(g)
0 , I

(g)
0 ), (S

(g)
1 , I

(g)
1 ), (S

(g)
2 , I

(g)
2 ), . . . , (S

(g)
N , I

(g)
N )

)
,

where g = 1, 2, . . . , G.

2. For each path g, compute the contract value of path g by

V (g)(0) =
N∑
n=1

e−rtn max{S(g)
n − I(g)

n , 0}

3. Take the expectation over all path, the final contract value reads

V̂0 =
1

G

G∑
g=1

V (g)(0).

Similarly to the upper bound algorithm, this benchmark algorithm also gives
full knowledge of all future price realizations. This benchmark algorithm
does not suffer from the perfect foresight, however. Without worrying about
possible future penalties, the buyer only make an “exercise or not” decision
based on the current realization of the underlying prices. That is, in each
path g, the decision made at time tn does not affect the decision which is
going to be made at time tn+1. In addition, Algorithm IV (point 3.) takes the
expectation over all the paths. If the number of paths G is sufficiently large,
based on the strong law of large numbers, V̂0 should converge to the true
contract value.

The value obtained through this benchmark algorithm cannot be used as
a benchmark for Algorithm II, however. This is because, under (5.24), these
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two algorithms are equivalent. Since (5.24) holds, by (5.10),

V (g)(tN , S
(g), I(g), Q) = max{S(g)

n − I(g)
n , 0}

for all possible Q at time tN , which means the terminal values of all paths are
irrelevant to the period to dateQ. Then, at time tN−1, when we solve the min-
imization problem (5.6), all obtained coefficient vectors βQ,q,∗N+1 , q = 0, 1 and
Q = 0, 1, . . . , N − 2, contain the same values. It follows that V (g)(tN−1, S

(g),

I(g), Q) for all paths are also irrelevant to the period to date Q. If we work
backwards in time, at each time tn, the coefficient vectors βQ,q,∗n , q = 0, 1 and
Q = 0, 1, . . . , n − 1, also contain the same values. Then, when we apply the
exercising rule βQ,q,∗n in the forward scheme, the optimal decisions of each
path simply depend on the instant payoffs. The buyer will purchase gas if
the instant payoff is positive and not purchase otherwise, which means that,
for a fixed set of paths, the forward scheme and the benchmark algorithm
return the same result.

5.6 The explanatory variables in the evaluation of GSAs

As we have introduced in the last section, the explanatory variables are the
appropriate variables which are found to affect the continuation value. Intu-
itively speaking, some variables may have strong impacts on the continua-
tion value while some variables may not. Next, we present some choices of
explanatory variables and then seek to find the most optimal through various
numerical examples.

1. In the view of the value function (5.2), one straightforward option for
the explanatory variables is that we use the gas price and the index.
That is, E = (S, I). This is quite understandable since the gas price and
the index are the variables in the calculation of everyday payoffs and
hence should have a great impact on the continuation value. In this
way, (5.6) becomes a two-dimensional fitting problem.

2. Although a two-dimensional fitting is not a considerably challenging
computational problem, Holden, Løland and Lindqvist (2011) and Edoli
(2013) suggest the explanatory variable E to be E = S−I which reduces
(5.6) to a one-dimensional problem. Hence, this choice should be the
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one with the least computing effort without taking account of robust-
ness and accuracy.

3. Recall (4.5) and (4.8), the index I is related to the running average M in
the sense that the value of the index in the current month is the value
of the running average at the end of the previous month. The running
average can affect the contract value by influencing the index. Hence,
we can add one dimension M to E and have E = (S,M, I).

4. Recall (4.4) and (4.7). The value of the running average is calculated by
using oil prices. So, the oil price should also contribute to the contract
value by influencing the running average and hence the index. We can
further add one more dimension, Z, to E and thus have E = (S,Z,M, I).

5. Since the impact of the running average M on the contract value is
originally from the oil price Z, we can let the explanatory vector be
E = (S,Z, I).

In Edoli (2013) and Bernhart (2011), the index has been modelled by using
the so-called moving average variable. Denote this moving average variable
by A. Based on the notations in Section 4.2 and 4.3, the value of A at time
t ∈ [0, T ] is given by

A(t) =
1

δ

∫ t

t−δ
Z(u)du (5.25)

with the convention Z(t) = Z(0) for t < 0. It follows that

dA(t) =
1

δ

(
Z(t)− Z(t− δ)

)
dt.

That is, A is the moving average of the oil price Z over a time window with
the fixed length δ. Then the index I at time t ∈ (T1, T ] is given by

I(t) = A(ϕ(t)), (5.26)

where ϕ(t) = max{Tl|Tl < t, l = 1, 2, . . . , L− 1.}. Again, in [T0, T1], the index
is still the constant strike price K. Then we have

I(t) =

{
K for t ∈ [T0, T1],

A(ϕ(t)) for t ∈ (T1, T ].
(5.27)
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A simple comparison between (4.4) and (5.26) gives us, for t ∈ (Tl, Tl+1],
l = 1, 2, . . . , L− 1,

A(ϕ(t)) = A(Tl) = M(Tl).

It follows that (5.27) is equivalent to (4.3). And of course, we have the value
of the moving average at time tn in discrete time, which is given by

A(tn) =
1

D

n∑
j=n−D+1

Z(tj).

Now, we continue to introduce possible choices of the explanatory variables
E .

6. Since we have introduced the moving average variableA, and the index
I is connected to A through (5.26), we can let E = (S,A, I).

7. The moving average A is computed by using the oil prices through
(5.25), and thus we can let the oil price be one of the explanatory vari-
ables and have E = (S,Z,A, I).

Remark 5.6. Recall that, in the last month, the value of the index is already
realized. So, at this point, the running average M and the moving average A
lose their impacts on the continuation value, because both of them contribute
to the contract value by influencing the future index. It follows that the oil
price Z also loses its impact. That is, in the last month, we do not need to treat
the oil price, the running average and the moving average as the explanatory
variables. In addition, in the first month, since the index I is a constant, we
do not need to include I into our explanatory vector either.

Now, we generalize all the possible choices of explanatory variables we have
explained above as follows:

C.1 En = Sn − In, n = 1, 2, . . . , N .

C.2 En =

(Sn, In), n = D + 1, . . . , N

Sn, n = 1, 2, . . . , D
.

C.3 En =


(Sn, In), n = N −D + 1, . . . , N

(Sn, An, In), n = D + 1, . . . , N −D

(Sn, An) n = 1, 2, . . . , D

.
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C.4 En =


(Sn, In), n = N −D + 1, . . . , N

(Sn, Zn, In), n = D + 1, . . . , N −D

(Sn, Zn) n = 1, 2, . . . , D

.

C.5 En =


(Sn, In), n = N −D + 1, . . . , N

(Sn,Mn, In), n = D + 1, . . . , N −D

(Sn,Mn) n = 1, 2, . . . , D

.

C.6 En =


(Sn, In), n = N −D + 1, . . . , N

(Sn, Zn, An, In), n = D + 1, . . . , N −D

(Sn, Zn, An) n = 1, 2, . . . , D

.

C.7 En =


(Sn, In), n = N −D + 1, . . . , N

(Sn, Zn,Mn, In), n = D + 1, . . . , N −D

(Sn, Zn,Mn) n = 1, 2, . . . , D

.

5.7 The choice of basis functions

The main idea of the LSMC algorithm is that the continuation value can be
approximated by a linear combination of some basis functions through a
least-squares regression. A common choice for these basis functions is the
monomials, {xn}∞n=0, x ∈ R, since they are easy to evaluate. Another com-
mon choice is a set of orthogonal polynomials. Table 5.1 gives some common
families of orthogonal polynomials. These polynomial functions are univari-
ate functions. Since we have multiple explanatory variables (see Section 5.6),
one can form the set of multivariate basis functions by using tensor products
of univariate basis functions (see Section 6.12 in Judd (1998)).

Definition 5.1. Given a basis for functions of the single variable xi, {φin(xi)}∞n=0,
i = 1, 2, . . . , v, the tensor product basis Φ of v variables (x1, x2, . . . , xv) is given by

Φ =

{ v∏
i=1

φini
(xi)|ni = 0, 1, 2, . . .

}
.

In practice, it is natural to use the finite subset of the full polynomial basis.
Suppose for each variable xi, i = 1, 2, . . . , v, we use the polynomials up to the
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TABLE 5.1: Common families of orthogonal polynomials

Family Weighting function The interval Definition

Laguerre e−x [0,∞) Ln(x) = ex

n!
dnx
xn

(
xne−x

)
Legendre (1− x2)−

1
2 [−1, 1] Pn(x) = (−1)n

2nn!
dn

dxn

[
(1− x2)n

]
General Chebyshev

(
1− (2x− 1)2

)− 1
2

[0, 1] Tn(x) = cos
(
ncos−1(2x− 1)

)
Hermite e−x

2
(−∞,∞) Hn(x) = (−1)nex

2 dn

dxn

(
e−x

2
)

Note: The column headed “Weighting function” gives the
weighting function which ensures orthogonality. The column
headed “The interval” indicates the interval over which the

respective family is orthogonal.

degree of h, h ≥ 1. For instance, if we use Laguerre polynomials as the basis
functions, for each variable xi, we have the basis functions

φi0(xi) = L0(xi), φ
i
1(xi) = L1(xi), . . . , φ

i
h(xi) = Lh(xi).

Let Υv
h be the resulting subset of the tensor product basis Φ, it follows that

Υv
h =

{ v∏
i=1

φini
(xi)|ni = 0, 1, 2, . . . , h and i = 1, . . . , v

}
. (5.28)

This tensor product basis has a serious drawback: even with a not very high
degree h, there will be too many functions in Υv

h. As we can see, the total
number of functions in (5.28) is (h+1)v. This number (h+1)v grows rapidly in
both the dimension v and the degree h, which makes it very computationally
challenging to use Υv

h. One way to tackle this issue is to use the complete set
of polynomials proposed in Judd (1998).

Definition 5.2. Given v variables (x1, x2, . . . , xv), the complete set of polynomials
of total degree h in v variables is given by

Pv
h =

{
xh11 xh22 · · ·x

hv
v |hn ≥ 0, n = 1, 2, . . . , v and

v∑
n=1

hn ≤ h
}
. (5.29)
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TABLE 5.2: Number of functions in Pv
h and Υv

h

Degree h #(Pv
h) #(Υv

h)

2 1 + v + v(v+1)
2 (2 + 1)v

3 1 + v + v(v+1)
2 + v2 + v(v−1)(v−2)

6 (3 + 1)v

TABLE 5.3: Parameter values.

αS = 3 σS = 0.3 αI = 3 σI = 0.3 r = 0.05
ρ = 0.5 qmin = 0 qmax = 1 MB = 20 ACQ = 30
T = 1 N = 30 D = 6 L = 5

As reported in Judd (1998), the size of the complete set of polynomials
only grows polynomially in dimension v for a fixed degree h. Table 5.2 re-
ports the number of functions in Pv

h and Υv
h for a fixed dimension v. For

instance, #(P3
2 ) = 10 while #(Υ3

2) = 27, #(P3
3 ) = 20 while #(Υ3

3) = 64.
Obviously, for a fixed degree, the complete set of polynomials has the advan-
tage of containing fewer functions and hence requiring less computing effort.
In this thesis, we use the complete set of polynomials as the basis functions
in our least-squares algorithm.

5.8 Numerical tests on the least-squares Monte Carlo

In this section, we investigate the performance of the LSMC through various
examples. Unless indicated otherwise, the LSMC algorithm in this section
refers to Algorithm II. The CPU we work with is an Intel(R) Core(TM) i7-
7700HQ CPU @ 2.80GHz together with 16 GB RAM. All the computing times
presented in this section are the times without using the parallel computing
technique. In addition, we use (5.16) in all numerical tests in this section.
All the numerical examples in this section evaluate a simple GSA with the
parameters in Table 5.3.
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5.8.1 The impacts of different explanatory vectors

In this subsection, we investigate the appropriate choice of explanatory vec-
tors. The LSMC algorithm (Algorithm II) contains a forward scheme and a
backward scheme. The backward scheme provides an exercising rule by us-
ing one set of simulated paths, and the forward scheme applies this exercising
rule to another set of simulated paths (see Remark 5.2 and Section 5.3). If we
fix a set of paths for the backward scheme, given a fixed choice of explana-
tory vectors, we get different exercising rules by using different degrees of
the complete set of polynomials (CSP). If we fix a set of paths for the forward
scheme, given a fixed choice of explanatory vectors, we get different contract
values by applying different exercising rules. Since the forward scheme is
using the information from a fixed set of simulated paths when applying dif-
ferent exercising rules, a better exercising rule would lead to a higher contract
value. Before we move to the investigation of the choice of explanatory vec-
tors, we present a numerical example which shows that, for a fixed pair of
simulated paths and any given choice of explanatory vectors in Section 5.6,
how the degrees of the CSP affect the contract values. Figure 5.1 shows the
result. As we can see, for all choices of explanatory vectors, the contract value
increases as the degree of the CSP increases. Based on the discussion above,
Figure 5.1 indicates that, for a given choice of explanatory vectors, a higher
degree of the CSP gives a better exercising rule, and hence a higher contract
value. However, for any choice of explanatory vectors, a higher degree of the
CSP gives a larger number of basis functions Kb = #(Pv

h), where h is the
degree of the CSP and v is the number of variables in the explanatory vectors
(see (5.29)). Recall the minimization problem (5.6), a larger Kb means more
computing effort. Table 5.4 gives the number of basis functions in the CSP for
given h and v. Also, to compare the computing effort across different choices
of explanatory vectors, one should look into the number of basis functions
instead of the degree of the CSP, since a fixed degree of the CSP gives differ-
ent number of basis functions for different choices of explanatory vectors (see
(5.29) and Table 5.4).

Following the discussion above, if we fix a set of simulated paths for
the backward scheme, we get different exercising rules by using different
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FIGURE 5.1: Contract values w.r.t. the degree of the CSP
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Note: For each choice of explanatory vectors in Section 5.6,
we simulate a pair of fixed sets of paths, one for the backward
scheme and one for the forward scheme. The number of paths
used in the backward scheme is G1 = 100000 and the number

of paths used in the forward scheme is G2 = 1000000.
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TABLE 5.4: Numbers of basis functions in the CSP

#(Pv
h)

The degree of the CSP h
1 2 3 4 5 6 7 8 9 10

v = 1 2 3 4 5 6 7 8 9 10 11
v = 2 3 6 10 15 21 28 36 45 55 66
v = 3 4 10 20 35 56 84 120 165 220 286
v = 4 5 15 35 70 126 210 330 495 715 1001

Note: #(Pv
h) is the number of basis functions in the CSP (see

(5.29)).

choices of explanatory vectors. Again, if we fix a set of paths for the for-
ward scheme, we get different contract values by applying different exercis-
ing rules obtained from different choices of explanatory vectors. Since the
forward scheme is using the same information from a fixed set of paths, a
higher contract value would indicate a better exercising rule. That is, with
the same computing effort (the same number of basis functions), if a choice
of the explanatory vector returns a higher contract value, it indicates that this
choice is a better one. However, as we can see in Table 5.4, it is hard to find a
common number of basis functions across v = 1, 2, 3, 4 (number of variables
in the explanatory vector). Fortunately, from Figure 5.1, we know that more
computing effort (which means a higher degree of the CSP and more basis
functions) gives a better exercising rule for any given choice of the explana-
tory vector. That is, if we can find a choice of the explanatory vector with less
computing effort which still offers a better exercising rule (a higher contract
value), it indicates that this choice is a better choice. Following this logic, we
design numerical examples in the rest of this subsection. In this subsection,
the number of paths used in the backward scheme is G1 = 100000 and the
number of paths used in the forward scheme is G2 = 1000000.

To make a fair comparison, we simulate a pair of fixed sets of paths, one
for the backward scheme and one for the forward scheme. Then we perform
the LSMC on these two sets of paths by using different choices of explanatory
vectors. That is, the contract values of using different explanatory vectors are
using the same information from the simulated paths in both the backward
scheme and forward scheme. In addition, we use the values obtained by



Chapter 5. The least-squares Monte Carlo approach 145

TABLE 5.5: Comparison between C.1 and C.2

EV Test 1 Test 2 Test 3 Test 4 Test 5

C.1
46.7328 46.5596 46.4432 46.6162 46.5386

0.0799976 0.0801288 0.0801001 0.079951 0.0800532
-1.1751% -1.1901% -1.2105% -1.1959% -1.2035%

C.2
47.2885 47.1204 47.0123 47.1768 47.1055

0.0799626 0.0800548 0.0800585 0.0799066 0.0800009
0% 0% 0% 0% 0%

Note: Each cell contains, from top to bottom, the contract
value, the standard error and by what proportion this value

is lower than the value obtained by using C.2.

TABLE 5.6: The number of basis functions used in the tests
described in Table 5.7.

C.2 C.3 C.4 C.5 C.6 C.7
Degree h 5 3 3 3 2 2
#(Pv

h) 21 20 20 20 15 15

Note: For C.2, the number of variables in the explanatory is
v = 2. For C.3-C.5, v = 3. For C.6 and C.7, v = 4. The degrees
h in this table are chosen in the following way: for a fixed pair
of simulated paths, using C.2 in the LSMC algorithm requires
the most computing effort. Using C.3, C.4 or C.5 requires the
same computing effort which is less than the effort when us-
ing C.2. Using C.6 or C.7 requires the same computing effort

which is the least effort required among using C.2-C.7

using the explanatory vector C.2 as benchmark values when we compare dif-
ferent choices of the explanatory vector, since C.2 is the most commonly used
choice. We first eliminate one choice of the explanatory vector by a compar-
ison between the simplest choice C.1 and our benchmark choice C.2. Table
5.5 gives the results. In Table 5.5, for the explanatory vector C.1, we use the
complete set of polynomials (CSP) of degree 10, which gives us #(P1

10) = 11

basis functions. For the explanatory vector C.2, we use the CSP of degree 2

which gives us #(P2
2 ) = 6 basis functions. As we can see, even with more
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TABLE 5.7: Comparison between explanatory vectors

EV Test 1 Test 2 Test 3 Test 4 Test 5

C.2
47.0937 46.9721 47.2075 47.1979 47.1045

0.0800553 0.0799599 0.0800025 0.0799262 0.0799127
0 % 0% 0% 0% 0%

C.3
48.6803 48.5469 48.7841 48.7775 48.6971
0.079145 0.0790792 0.0791467 0.0790497 0.0790501
3.36909% 3.35264% 3.33971% 3.34675% 3.38104%

C.4
48.7515 48.6192 48.8538 48.853 48.7641

0.0785376 0.0784558 0.0785284 0.0784265 0.0784246
3.52027% 3.50662% 3.48738% 3.50677% 3.52317%

C.5
48.8363 48.703 48.9461 48.9314 48.8538

0.0790028 0.0155308 0.0790012 0.0789076 0.078903
3.70044% 3.68497% 3.68294% 3.67278% 3.71361%

C.6
48.9749 48.8449 49.0763 49.0692 48.9875

0.0784984 0.0784184 0.0785027 0.0784 0.0783985
3.99469% 3.98699% 3.95877% 3.96476% 3.99754%

C.7
48.989 48.8594 49.0902 49.0809 49.0006

0.0784945 0.0784225 0.0785008 0.0784126 0.0783935
4.0247% 4.01785% 3.98826% 3.98956% 4.02544%

Note: Each cell contains, from top to bottom, the contract
value, the standard error and by what proportion this value

is higher than the value obtained by using C.2.

computing effort (#(P1
10) > #(P2

2 )), the value obtained by using C.1 is al-
ways about 1.2% less than the value obtained by using C.2. Table 5.5 in-
dicates that C.2 is a better choice than C.1 since it offers a better exercising
rule with less computing effort. Now, we perform tests on all the remaining
explanatory vectors C.2-C.7. The numbers of basis functions used together
with the degrees of the CSP are given in Table 5.6. The results are shown
in Table 5.7. As we can see, even using the largest number of basis func-
tions (#(P2

5 ) = 21), the value obtained by using C.2 is significantly smaller
compared with other choices of explanatory vectors. C.3-C.5 use the same
number of basis functions, but C.5 always returns the largest value and C.3
always returns the smallest value among these three choices. This evidences
that C.5 is a better choice compared with the other two, and also evidences
that the running average M has more impact on the contract value than the
moving average A. In addition, even with the smallest number of basis func-
tions (#(P4

2 ) = 15), C.6 and C.7 always return larger values compared with
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FIGURE 5.2: Values and computing times w.r.t. the degree h

1 2 3 4 5

Degree of polynomials

48.6

48.65

48.7

48.75

48.8

48.85

48.9

48.95

49

49.05

C
o

n
tr

a
c
t 

v
a

lu
e

0

50

100

150

200

250

300

350

400

450

500

C
o

m
p

u
ti
n

g
 t

im
e

(s
)

Values and computing times w.r.t. the degree

Contract values

Computing times

Note: The number of paths used: G1 = 100000, G2 = 1000000.

the other choices. Although the difference between values obtained by using
C.6 and C.7 is relatively small, C.7 remains the best explanatory vector be-
cause these two choices have the same computing effort for a fixed degree h,
and C.7 always gives better exercising rules. Indeed, this also evidences that
the running average M explains the contract value better than the moving
average A.

5.8.2 The degree of the complete set of polynomials

Since we have chosen C.7, E = (S,Z,M, I), as the explanatory vector, we
now investigate how the degree of the CSP affects the contract values. Re-
call (5.29), since we have a fixed number of variables, v = 4, a high degree h
means more basis functions in P4

h. The purpose of this subsection can there-
fore also be considered as investigating how the number of basis functions
affects the contract value. Numbers of basis functions in P4

h for different de-
grees h can be found in Table 5.4. We again simulate a pair of fixed sets of
paths, one for the backward scheme and one for the forward scheme. Then
we perform the LSMC on these two sets of paths by different degrees of the
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FIGURE 5.3: Stability with respect to the degree h
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CSP. The results are shown in Figure 5.2. As we can see in Figure 5.2, higher
degrees return higher contract values. The contract value grows rapidly from
h = 1 to h = 2. Although the improvement of the contract value becomes
smaller from h = 2 to h = 4, we can still observe a significant jump in Figure
5.2. In addition, the value obtained with h = 5 is only slightly higher than
the value obtained with h = 4, thus demonstrating that the CSP of degree 4

is good enough to value such a GSA contract. Taking into consideration the
efficiency, Figure 5.2 also shows the computing times with respect to the de-
gree h. As we can see, the computing time grows almost exponentially with
respect to the degree. The computing time is doubled from h = 4 to h = 5,
and this gives us another reason to use h = 4. Also, the number of basis
functions #(P4

h) = 70 is reasonable since we have used a large number of
simulated paths.

Next, we give the stability of the LSMC with respect to the degree in Fig-
ure 5.3. In Figure 5.3, we value the GSA contract ten times for each degree
h. The smaller the variance of these ten valuations is, the more stability the
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FIGURE 5.4: Stability w.r.t. G2
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LSMC algorithm has. As we can see, the degree of CSP has no impact on
the stability of the LSMC algorithm. In addition, the average value of these
ten valuations increases as the degree increases. This also demonstrates that
higher degrees give higher contract values.

5.8.3 The number of paths

In this section, we investigate the impact of the number of paths used in the
LSMC algorithm on the valuation of the GSA contract.

The number of paths in the forward scheme First, we consider the number
of paths, G2, in the forward scheme. Figure 5.4 shows the stability of the
LSMC algorithm with respect to the number of paths G2. In Figure 5.4, we
value the GSA contract ten times for each number of paths 10n in the forward
scheme, n = 3, 4, 5, 6, 7. As we can see, the variance of these ten valuations
decreases dramatically as the number of paths increases. If we use G2 =

107, all ten valuations give, more or less, the same value. In addition, the
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FIGURE 5.5: Stability w.r.t. G1

2.5 3 3.5 4 4.5 5 5.5 6 6.5

Number of paths in the backward scheme (log)

44

46

48

50

52

54

56

58

C
o
n
tr

a
c
t 
v
a
lu

e

0

1

2

3

4

5

6

7

8

9

10

V
a
ri
a
n
c
e

Contract values w.r.t. G
1

Average

Variance

NOTE: The degree of the CSP is h = 2.

average of these ten valuations is quite stable from G2 = 103 to G2 = 107,
demonstrating that increasing the number of paths in the forward scheme
does not affect the contract value.

The number of paths in the backward scheme Although the value ob-
tained through the backward scheme is highly biased (see Section 5.3), we
can use this value to see the stability of the backward scheme. Figure 5.5
gives the results. In Figure 5.5, we again value the GSA contract ten times
for each number of paths 10n in the backward scheme, n = 3, 4, 5, 6. If the
variance of these ten valuations is small, it means that all these valuations us-
ing the backward scheme give, more or less, the same exercising rule as that
used in the forward scheme. As we can see, the larger G1 is, the smaller the
variance is. At G1 = 106, it seems that the backward scheme already gives a
good enough exercising rule since the variance is quite small. As will be seen
later, however, we have to compromise to use fewer paths in the backward
scheme thanG1 = 106 since the computational cost is too high. In addition, in
Figure 5.5, the average of these ten valuations increases as G1 increases. This
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FIGURE 5.6: Contract values w.r.t. G1
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demonstrates that using more paths in the backward scheme gives a better
exercising rule, as becomes clear in Figure 5.6. In Figure 5.6, for a fixed set of
paths in the forward scheme, we apply the exercising rule obtained by using
a different number of paths in backward scheme G1 = 10n, n = 3, 4, 5, 6. As
we can see, the exercising rule obtained by using more paths in the backward
scheme gives a higher value in the forward scheme. The improvement of
the contract value is rather less significant from n = 5 to n = 6, indicating
that, although the stability when using G1 = 105 in the backward scheme is
not very high (see Figure 5.5), it remains a reasonable choice since it gives a
satisfactory contract value.

Computing time with respect to the number of paths Figure 5.7 gives the
computing time with respect to the number of paths. For the backward
scheme, we give the computing times when using G1 = 10n, n = 3, 4, 5, 6.
For the forward scheme, we give the computing times when using G2 = 10n,
n = 3, 4, 5, 6, 7. As we can see, if we use the same number of paths in both
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FIGURE 5.7: Computing time w.r.t. the number of paths
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schemes, that is, G1 = G2, the backward scheme is much more time consum-
ing than the forward scheme. This is because of the fact that we have to solve
the minimization problem (5.6) in the backward scheme. At G1 = 106, it al-
ready costs more than ten minutes to value even such a simple GSA contract.
As we mentioned before, although the backward scheme is stable when us-
ing G1 = 106, we may have to use fewer paths in the backward scheme, since
the computing time will increase massively when dealing with a one-year
contract (N = 365). The computing time of the forward scheme is also quite
significant at G2 = 107, which means we would also have to use fewer paths
if we were attempt to value a one-year contract.

5.9 Conclusion

This chapter has proposed several simulation-based algorithms for pricing
GSAs with indexation. Instead of using the value directly from the regres-
sion, we propose to use the LSMC algorithm with an exercising rule which
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does not have the so-called anticipatory character. That is, the LSMC with
an exercising rule does not assume knowledge of future contract values. An
upper bound algorithm is also given and we have explained why this algo-
rithm works on our GSA evaluation problem. We have proposed a bench-
mark algorithm which will be used in Chapter 6 to test the accuracy of the
tree algorithm built in Chapter 4.

Furthermore, we have investigated which explanatory variables should
be used in the LSMC algorithm. We have found that simply performing the
regression on the gas price and the index cannot get a satisfactory result. That
is, the contract value cannot be explained well by the gas price and the index.
More explanatory variables should be used in the regression. Through nu-
merical examples, we conclude that the combination of the gas price, the oil
price, the running average price and the index explains the contract value bet-
ter than other choices of explanatory variables. This gives about 4% higher
contract values than the most commonly used explanatory variables: the gas
price and the index. Our numerical examples also demonstrate that mod-
elling the index through the running average variable is better than mod-
elling it through the moving average variable.

Finally, we have investigated ways to get better outcomes though the
LSMC algorithm. Using more basis functions generally gives better contract
values, and using more paths in the backward scheme generally gives bet-
ter exercising rules. Increasing the numbers of paths in both the backward
scheme and the forward scheme can increase the stability of the LSMC algo-
rithm. We also observe, however, that both increasing the number of basis
functions and increasing the number of simulated paths can significantly in-
crease the computing time.
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Chapter 6

Implementation on GPUs

6.1 Introduction

Due to the high-dimensional nature of the GSA evaluation problem, it is quite
challenging to implement the algorithms described in Chapter 4 in an effi-
cient manner so that practitioners are able to use the approach to evaluate
the real contracts. On the other hand, due to the nature of the tree methods,
the algorithms we designed are highly parallelable, hence we can seek paral-
lel computing platforms to implement our tree algorithm. In addition, when
dealing with the evaluation of the GSA contract, the LSMC algorithm can
also be very time consuming. As we mentioned in Remark 5.4 and Remark
5.5, the LSMC algorithm can also benefit from parallel computing. The amaz-
ing development in the graphics processing units (GPU) technology in recent
years has provided us with a powerful tool to tackle such high-dimensional
problems. Because of the many-core nature of the GPU, it has attracted a lot
of attention in the area of computational finance. Works on the GPU imple-
mentation of simulation-based algorithms can be found in Abbas-Turki and
Lapeyre (2009), Benguigui and Baude (2014), Cvetanoska and Stojanovski
(2012), Dang, Christara and Jackson (2012), Fatica and Phillips (2013), Pagès
and Wilbertz (2012), Leitao and Oosterlee (2015) and the references therein.
Works on the GPU implementation of lattice-based algorithms can be found
in Dang, Christara and Jackson (2009), Egloff (2012), Ganesan, Chamberlain
and Buhler (2009), Jauvion and Nguyen (2008) and the references therein.

This chapter has two aims. First, we introduce GPUs and how they can be
used for general computing purposes. Second, we implement both the tree
algorithm and the LSMC algorithm and provide a comparison between the
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two. This chapter is organized as follows: Section 6.2 and Section 6.3 give a
brief introduction on the general-purpose computing on graphics processing
units. Section 6.4 provides a description on how we can implement both
the tree algorithm and the LSMC algorithm on GPUs. Section 6.6 provides
numerical examples which analyze the performance of the tree algorithm and
the LSMC algorithm. We draw conclusions in Section 6.7.

6.2 General-purpose computing on graphics processing
units

General-purpose computing on graphics processing units (GPGPU) is the
use of GPUs in fields not related to graphics processing. Typically, it means
undertaking the computational work on the GPU instead of the CPU. One
commonly used and successfully built general purpose parallel computing
platform and programming model is the Compute Unified Device Archi-
tecture (CUDA), which was introduced by NVIDIA in 2006 (see NVIDIA
(2018c)). CUDA can be treated as an extension of the traditional program-
ming language C/C++, and hence eases the coding effort for programmers
using C/C++. At the same time, other programming languages, such as FOR-
TRAN, are supported. Mostly, CUDA can only be used on GPUs produced
by NVIDIA itself. An alternative to CUDA is OpenCL (see Gohara, Shi and
Stone (2010)) which can be used on both NVIDIA and non-NVIDIA GPUs. In
this thesis, we use CUDA as our programming model. Since NVIDIA GPUs
are widely installed on computers from personal laptops to high-performance
supercomputers, it is not hard to find a CUDA-supported GPU.

6.3 The programming model

In order to present the implementation of the algorithm built in Chapter 4,
we summarize the basics of the CUDA C/C++ programming model from a
developer’s point of view.
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FIGURE 6.1: Thread hierarchy

Note: Reprint from NVIDIA (2018c).

6.3.1 Host, device and kernels

Although the reason we use CUDA is to perform parallel computing on the
GPU, a CUDA programme is executed on both the CPU side and the GPU
side. In fact, CUDA considers the GPU as a coprocessor to the CPU. In addi-
tion, CUDA uses its own terminology to identity these two sides: host refers
to the CPU and its memory (host memory), device refers to the GPU and its
memory (device memory). At runtime, the serial jobs are executed on the
host while the parallel jobs are executed on the device. That is, the CUDA
C/C++ code contains both the host code, written in C/C++, and the device
code, written in C/C++, together with an extra declaration specifier. In fact,
the host code and the device code are compiled separately. During compila-
tion, the host code is forwarded to the C/C++ compiler (gcc/g++ on Linux,
clang/clang++ on Mac and cl.exe on Windows). The device code is han-
dled by the NVCC compiler (which is the compiler provide by NVIDIA, see
NVIDIA (2018b)).

6.3.2 Thread Hierarchy

On the GPU, the thread is the smallest unit which performs computing. It
is similar to the thread when we use open multi-processing (openMP) on a
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multi-core CPU. The smallest unit of execution is called a warp which con-
tains 32 threads. That is, even if we only want to launch a single thread,
32 threads of the hardware resource on the device will be used. Threads
are grouped into a one-dimensional, two-dimensional or three dimensional
block. Each block contains at most 1024 threads. Furthermore, blocks are
grouped into a one-dimensional, two-dimensional or three-dimensional grid.
Figure 6.1 shows the thread hierarchy. In the CUDA C/C++ programme, a
kernel is a function which is called from the host and executed on the device.
The kernel is defined with the declaration specifier __global__. A kernel
must be called together with triple angle brackets<<<dimGrid,dimBlock
>>>, where dimGrid and dimBlock are one-dimensional, two-dimensional
or three-dimensional vectors which specify the size of the grid and block, re-
spectively.

6.3.3 Memory Hierarchy

The device memory also has a hierarchy which contains several types of
memory. Different memory types offer different characteristics and it is im-
portant to understand these in order to optimize the CUDA C/C++ program.
Here we present some commonly used memory types.

Registers The register memory is analogous to the register on a CPU. It
is thread local. That is, when launching a thread, this thread gets its own
registers and these registers cannot be shared with other threads. The register
memory has the same lifetime as the thread. Also, since the register is on-
chip, it has the fastest speed. For the same reason, however, it is the smallest
memory on the device.

Shared memory Each block has access to the shared memory and this mem-
ory is only shared among all threads in this single block. That is, if many
blocks are launched at the same time, each of these blocks has its own shared
memory. The shared memory has the same lifetime as the block. In addition,
the shared memory is also on-chip and very fast.

Global memory The global memory on a GPU is analogous to the RAM on
a CPU. When a kernel is called, all threads in all blocks can access the global
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memory. The bandwidth1 of the global memory is very large, but its speed is
relatively slow since it is off-chip and has high latency. The global memory is
mainly used to store large data which needs to be accessed from all threads.

Constant memory The constant memory can be considered as a part of the
global memory but it is cached and offers faster reading speed than the global
memory. Since the constant memory can only be written to from the host and
it is read-only on the device, it is usually used to store constant parameters
(such as the interest rate) which are intensively read from all threads.

Local memory When the registers for a thread are insufficient, the spilled
data is stored in the local memory. The local memory can also be considered
as a part of the global memory and has a slow speed.

In terms of the speed, the register is the fastest, then the shared memory
and the constant memory while the global memory and the local memory
are the slowest. The memory allocation is very important in CUDA, mainly
because the reading and writing speed of the global memory and the local
memory on the device is not as fast as the speed of the RAM on the host.
There are two basic principles when programming in CUDA. First, try to
make the kernels lightweight, since heavy calculations usually come with
more register usage, and if the registers are insufficient, we have to use the
local memory which causes the CUDA programme slow. Second, load the
data which can be shared within a block into the shared memory from the
global memory. This action reduces the use of the global memory and hence
speeds up the programme.

6.3.4 The memory transfer

Besides the memory allocation, another key aspect in CUDA programming is
the memory transfer. As mentioned above, the CUDA C/C++ code contains
both the host code and the device code. At runtime, data has to be copied
from the device to the host or from the host to the device so that the host code
and the device code can use it, respectively. Since the host and the device are
separate parts in a computer, the memory transfer between them is relatively

1The memory bandwidth is the maximum theoretical rate at which data can be read from
or write into the memory.
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slow, especially when transferring a lot of data. Although NVIDIA intro-
duced the so-called unified memory, which can be accessed from both the
host and the device, access to this memory still involves transferring data be-
tween both sides. Algorithms with lots of memory communications between
the host and the device usually cost more computing time than those that do
not. In addition, high-dimensional problems usually need more memory on
the device to store data. When the memory is insufficient, one has to store
data on the host. This leads to more communications between the host and
the device and hence to increased computational time.

6.3.5 Our host and device

The GPU we work with is a GeForce GTX 1060 on an Acer Helios 300 laptop.
Some details of this GPU are given below:

Number of CUDA cores: 1024
Total amount of global memory: 6078 MBytes
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total amount of registers per block: 65536

The CPU on the same laptop is an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80
GHz together with 16 GB RAM.

6.4 Implementation on GPUs

In this section, we give an illustration of how we can implement our algo-
rithm on GPUs. Recall that the evaluation of the GSA in the middle months
is a five-dimensional problem (S,Z,M, I,Q) while the evaluations in the first
month and the last month are four-dimensional (S,Z,M,Q) and three-dimen-
sional problems (S, I,Q), respectively. In this chapter, we mainly focus on the
evaluation in the middle months since it is this that requires the most com-
puting effort. The evaluations in other months can be conducted in a similar
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way, however. First recall the algorithm in the middle months:

V l(Sn,s, Zn,z,Mn,m, In,i, Q) = max
q∈[0,q̄]

{
q · (Sn,s − In,i)+

1∑
b,c=−1

ps,z,b,ce
−r∆t·

V l(Sn+1,g(s,b), Zn+1,h(z,c),Mn,m,c, In,i, Q+ q)

}
.

(6.1)

Remark 6.1. Note that not everything is paralleled on the GPU. We only let
the GPU do the heavy work, that is equation (6.1). Some easy work, such as
the building of the two-dimensional trinomial tree, are implemented on the
CPU. To ease the burden on the device, we can do some preparation before
launching kernels on the device. Recall that, whenMn,m,c in (6.1) is not one
of the values in the running average vector Mn+1, we use linear interpolation
(4.32). This involves finding Mn+1,m̄ and Mn+1,m̄+1. At any node (n, s, z) on
the two-dimensional tree, the part

Mn,m,b −Mn+1,m̄

Mn+1,m̄+1 −Mn+1,m̄
(6.2)

in (4.32) only depends on the value of the running average Mn,m at time tn
and the oil price Zn+1,h(z,c), c = −1, 1, 1, at time tn+1 (see (4.18)). At time
tn, for each combination of Mn,m and Zn,z , we can find m̄ and the value of
(6.2) by following the up, middle and down movements on the oil tree before
launching the kernels. In addition, at any node (n, s, z), for each combination
of Sn,s and In,i, we can also compute the instant payoff (Sn,s−In,i) in advance.
The reason for these two actions is that, if we do these calculations inside a
kernel, this kernel has to do the same calculations repeatedly, which wastes a
lot of time.

Listing 6.1 gives the thread hierarchy of our CUDA programme. In List-
ing 6.1, H is the number of values in the running average vector Mn, Q is the
number of possible periods to date at time tn, N_s and N_z are the total num-
ber of nodes on the gas tree and the oil tree at time tn, respectively. dim3 is
an integer vector type in CUDA which defines the dimensions of the block
and the grid.
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LISTING 6.1: Block and grid dimensions

dim3 dimBlock(H);

dim3 dimGrid(N_s, N_z, Q);

Listing 6.2 gives the code on how we launch our kernel. The kernel which
implements our algorithm (6.1) is GAS_Middle_Months().

LISTING 6.2: Call the kernel

for(int i = 0; i < H; i++)

{

GAS_Middle_Months<<<dimGrid, dimBlock>>>();

}

Listing 6.1 and Listing 6.2 mean that, if we have a strong enough device, at
any time tn, for each index In,i in the index vector In, the calculations of the
values V l(Sn,s, Zn,z,Mn,m, In,i, Q) for all combinations of Sn,s, Zn,z ,Mn,m and
Q are paralleled on the device. Listing 6.3 shows how we use shared memory
to accelerate the reading and writing speed on the device.

LISTING 6.3: Shared memory allocation

__shared__ float linp_m[H][3];

__shared__ int m_bar[H][3];

__shared__ int n_1[6];

__shared__ float prob[9];

__shared__ float i_p;

__shared__ float n_1_value[3][3][H];

In Listing 6.3, linp_m[H][3] stores the values of (6.2), m_bar[H][3] stores
the values of m̄, n_1[6] stores g(s, b) and h(z, c), prob[9] stores the proba-
bilities associated with the nine possible movements on the two-dimensional
tree, i_p stores the instant payoff and n_1_value[3][3][H] stores the
value of the GSA at time tn+1. As we can see, n_1[6], prob[9] and i_p

consume only a very small amount of memory. linp_m[H][3], m_bar[H]
[3] and n_1_value[3][3][H]may consume more memory since the sizes
of these arrays depend on an integer H, which is the number of values in the
running average vector Mn. If we increase H to get a better approximation of
the running average M , these arrays consume more memory, and this may
reduce the number of blocks which can be paralleled at the same time. The
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advantage of the memory allocation in Listing 6.3, however, is that, if we in-
crease H, the number of threads in each block is also increased. That is, even
with less blocks paralleled, we still have a lot of threads running at the same
time.

Remark 6.2. In each month, we evaluate the GSA for each value of index
in the index vector I. It means that, for each i in Listing 6.2, the kernel
GAS_Middle_Months can also be paralleled. We do not do that mainly be-
cause of the shortage of memory on the device. Although the global memory
is the largest memory on the device, its size is usually smaller than the RAM
on the host. For instance, the size of the global memory on our device (see
Section 6.3.5) is 6 GB while the size of the RAM on our host is 16 GB. Even
when i in Listing 6.2 is not paralleled, we show in Section 6.6 that the com-
puting time is satisfactory.

Remark 6.3. As we mentioned in Section 6.3.4, the data transfer between the
host and the device can significantly slow the CUDA programme. In CUDA
programming, memory transfers usually happen when the data is too large
to store on the device. The advantage of our algorithm is that, under normal
circumstances, we only need to do the data transfer when we want to re-
trieve specific data from the device. The whole evaluation of the GSA can be
done on the device. This because of the matching point condition (4.35). At
the matching point between two consecutive months, we only need to store
data when the oil price equals the value of the running average, hence, one
dimension has been reduced.

6.5 LSMC on GPUs

The LSMC algorithm can also be performed on GPUs. The most inefficient
part of the LSMC algorithm is the backward scheme (see Figure 5.7). This
is because the backward scheme involves solving the minimization problem
(5.6). Obviously, this minimization problem cannot be paralleled since it re-
quires information from all paths. In Fatica and Phillips (2013), the authors
proposed a method to price American options on GPUs, which also involves
solving a minimization problem. In this section, we apply their method to
our problem. Recall notations in Remark 5.5, the minimization problem can
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be written in the following form:

φnβ
Q,q
n = V q

n, (6.3)

where φn is aG1×Kb matrix, βQ,qn is aKb×1 vector and V n is aG1×1 vector.
From (6.3), it can be easily seen that(

φtrans
n φn

)
βQ,qn =

(
φtrans
n V q

n

)
, (6.4)

where φtrans
n is the transpose of φn. Now, we can find the optimal coefficient

vector by solving (6.4). Since φtrans
n φn is a Kb × Kb matrix and φtrans

n V q
n is

a Kb × 1 vector, (6.4) is easy and fast to solve. Since solving (6.4) also re-
quires all the information in φtrans

n φn and φtrans
n V q

n, it can only be done on
a single core (or thread). The matrix multiplication φtrans

n φn and φtrans
n V q

n

can by paralleled on GPUs, however. The matrix multiplication is a classic
CUDA programming problem, NVIDIA also provides the CUBLAS library
(see NVIDIA (2018a)) to ease the programming effort. In addition, since all
the paths in both the backward scheme and the forward scheme are gener-
ated independently, the generations of all paths can be paralleled on the GPU.
This is implemented in a similar manner as the paths generation on the CPU,
except we assign one path to one thread on the GPU and then move forward
in time to generate the full path.

However, computing βQ,qn through (6.4) has a downside. Although (6.4)
is theoretically correct, it causes problems when implemented on a computer.
Recall that each row in the matrixφn contains the values of the basis functions
with respect to the realization of the explanatory vector E . Recall notations
in (5.18), after the matrix multiplication, the entry in the k1th row and k2th
column of the matrix φtrans

n φn is given by

G1∑
g=1

φk1(E(g)
n )φk2(E(g)

n ), (6.5)

k1, k2 = 1, . . . ,Kb. When we use many simulated paths, a not very high
degree h of the complete set of polynomials gives a very high value of (6.5).
The information of all simulated paths at time tn is suppressed into (6.5).
Due to the storage limit, some information is lost. We demonstrate the effect
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TABLE 6.1: Parameters set for numerical examples

αS = 5 σS = 0.5 αZ = 6 σZ = 0.6 r = 0.05
ρ = 0.5 qmin = 0 qmax = 1 MB = 270 ACQ = 360
T = 1 N = 360 D = 30 L = 12

of this problem in Section 6.6.

Remark 6.4. Recall Remark 5.4 and Example 5.1, when we implement the
LSMC algorithm on the CPU, we can apply (5.16) to save a lot of time. The
advantage of using (5.16) weakens if we have many parallel cores. This issue
does not concern the CPU since the CPU usually contains four or eight cores.
When we implement the LSMC algorithm on the GPU, we have hundreds
of cores available. However, as we mentioned before, we mainly use cores
on the GPU to compute the matrix multiplications φtrans

n φn and φtrans
n V q

n in
(6.4). The matrix multiplications for different periods to date Q are not par-
alleled due to the limited storage on the GPU. In addition, (6.4) is solved by
using a single core. Even using a single core, (6.4) can be solved very fast,
since the sizes of φtrans

n φn and φtrans
n V q

n are small. Hence, the advantage of
using (5.16) is much less significant on the GPU compared with it on the CPU.
Nonetheless, we can always use (5.16) to save some time.

6.6 Numerical examples

In this section, we provide numerical examples which evaluate the GSAs by
using the different algorithms we have built in this thesis. These algorithms
are the tree algorithm (see Chapter 4) and the LSMC algorithm using an ex-
ercising rule (see Algorithm II). When not variable, we use parameter values
in Table 6.1. We use both flat forward curves and real forward curves in our
numerical examples. We assume the flat forward curves are given by

FS(0, t) = 100, FZ(0, t) = 100 (6.6)

for t ∈ [0, T ]. The real forward curves are shown in Figure 6.2. For the sake
of the comparison between examples, we scale both the gas forward curve
and the oil forward curve in Figure 6.2 such that FS(0, 0) = FZ(0, 0) = 100.



Chapter 6. Implementation on GPUs 165

FIGURE 6.2: Market forward curves
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In terms of the non-uniform grid, when not variable, we let the constants
wn = 1

3 , n = 1, 2, . . . , N , which control the fraction of points Mn,m that lies
in the neighbourhood of Mn (see (4.22)). Unless indicated otherwise, we use
the contract values obtained by using the LSMC algorithm as pre-computed
benchmark values. The LSMC algorithm has different speeds with GPUs and
CPUs. In addition, unless indicated otherwise, the computing time appearing
in different figures only refers to the tree algorithm.

6.6.1 Contract values

In this subsection, we investigate the performance of our algorithms in terms
of the contract values. In the rest of this section, the tree FD values refer to
the contract values obtained by the tree algorithm with further discretization
(4.19), while the tree NUG values refer to the contract values obtained by the
tree algorithm with the non-uniform grid (4.22), and the LSMC values refer
to the contract values obtained by the LSMC algorithm using an exercising
rule (see Algorithm II).

First, we evaluate the GSA contract with the flat forward curves (6.6). Fig-
ure 6.3 gives the comparison of contract values obtained by using different al-
gorithms. In the left panel of Figure 6.3, F is the positive integer we use to do
the further discretization (see (4.19)). A larger value of F results in a smaller
value of ∆M , and this further leads to a denser grid in the running average
direction. In the right panel of Figure 6.3, H is the number of values in the
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FIGURE 6.3: Contract values w.r.t. the average discretization
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Note: The standard error of the LSMC values on the CPU
and on the GPU are 2.317 and 2.332, respectively. The up-
per bound obtained by Algorithm III is 1611.71 where 100000

paths have been used.

FIGURE 6.4: The convergence and the computing time
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running average vector M and a larger value of H also gives a denser grid in
the running average direction. By (4.23), a denser grid in the running aver-
age direction means a denser grid in the index direction. As we can see, both
the tree FD value and the tree NUG value converge to but remain above the
LSMC values. Furthermore, it seems that the tree FD value converges faster
to the LSMC values than the tree NUG value. By (4.20), however, the running
average vector M already contains 73 values at F = 3. Recall Theorem 4.2,
by using the further discretization, we obtain the first order consistency when
F = O(∆t−

1
2 ). In our numerical example, we can achieve the first order con-

sistency at F = 19. At F = 19, the number of values in the running average
vector M has reached 457. As we can see in Figure 6.3, the tree NUG value at
H = 320 already achieved the same value as the tree FD value at F = 19. This
becomes clear in the left plot of Figure 6.4, which shows the contract values
with respect to the computing time by using these two discretization method.
As we can see, the tree NUG value converges much faster to the LSMC val-
ues than the tree FD value. This demonstrates that the non-uniform grid is a
better discretization method than the further discretization. In the rest of this
chapter, therefore, when we implement the tree algorithm, we only use the
non-uniform grid.

In terms of the LSMC values, as we can see in Figure 6.3, the LSMC value
on the GPU is below the LSMC value on the CPU. This is mainly because of
the problem we mentioned in Section 6.5. That is, when we apply (6.4), some
information of the simulated paths is lost while implementing the LSMC al-
gorithm on a computer. However, the LSMC on the GPU has a great advan-
tage: it is much more efficient than the LSMC on the CPU. In our numerical
example, with 100000 paths in the backward scheme, 1000000 paths in the
forward scheme, and the complete set of polynomials of degree 4, the LSMC
on the CPU takes nearly 20 hours to price our GSA contract. Even if we par-
allel the LSMC algorithm on four cores (the CPU we use contains four cores),
it still needs more than five hours. When the LSMC is implemented on the
GPU, however, only 244 seconds are needed. Recall Remark 4.5, when we
have a larger H , the computational cost of the tree algorithm is higher. The
computing time with respect to H is shown in the right plot of Figure 6.4.
As we can see, the computing time grows rapidly as H increases. Compared
with the LSMC on the CPU, however, the tree algorithm is still very fast.
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FIGURE 6.5: Contract values by using real forward curves
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Note: The standard errors of the LSMC values on the CPU
and GPU are 2.543 and 2.561, respectively. The upper bound
obtained by Algorithm III is 1172.02 with 100000 paths used.

Now, we also give an example of pricing our GSA using real forward
curves (see Figure 6.2). Figure 6.5 gives the comparison of contract values
obtained by using different algorithms. We have omitted the tree FD value,
since the tree NUG value outperforms the tree FD value, as we investigated
before. As we can see, Figure 6.5 preserves the same characteristics as the
right plot of Figure 6.3.

Another thing worth mentioning is that, no matter whether we use flat
forward curves or real forward curves, the contract values obtained by both
the tree algorithm and the LSMC algorithm are below the upper bound ob-
tained by Algorithm III (see notes of Figure 6.3 and Figure 6.5). On the one
hand, it demonstrates that our tree algorithm and LSMC algorithm are pro-
ducing reasonable results in a reasonable time frame. On the other hand, it
also demonstrates that Algorithm III overestimates the contract by about 14%

when using flat forward curves and by about 25% when using real forward
curves because of the perfect foresight.
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FIGURE 6.6: The LSMC value on GPU
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Note: 100000 paths and 1000000 paths have been used in
the backward scheme and the forward scheme, respectively.
From the degree h = 1 to h = 4, the standard errors of the
LSMC values on the GPU are 2.324, 2.319, 2.321 and 2.561, re-
spectively. The standard error of the LSMC value on the CPU
with the degree h = 4 is 2.543. The tree value is obtained by
using non-uniform grid with the number of points H = 320.
In addition, the computing time in this figure refers to the

LSMC algorithm on the GPU.

6.6.2 The LSMC algorithm on the GPU

In Figure 6.4, we see that the LSMC value on the GPU is less optimal com-
pared with the LSMC value on the CPU. In this subsection, we seek a way to
get a better contract value by using the LSMC algorithm on the GPU. Recall
Section 6.5, when we apply (6.4) with many simulated paths and a high de-
gree of the complete set of polynomials, (6.5) gives a very large value. Due to
the storage limit, some information is lost. There are three ways to overcome
this issue, we can use less simulated paths, use a lower degree of the com-
plete set of polynomials, or do both. The Monte Carlo algorithms are based
on convergence of the sampled average to the mathematical one, this is the
reason why we can get better and more stable contract values by using larger
sets of simulated paths (see Figures 5.4, 5.5 and 5.6). That is, as investigated
in Section 5.8.3, we can get very different contract values if we do not use
sufficient large sets of paths in the LSMC algorithm. Therefore, we seek to
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use a lower degree of the complete set of polynomials instead of decreasing
the number of simulated paths. Figure 6.6 reports the outcome. As we can
see in the left panel of Figure 6.6, from the degree of 1 to the degree of 3, the
contract value increases as the degree of polynomials increases, which is con-
sistent with the observation in Figure 5.2. Figure 5.2 also indicates that, if we
further increase the degree of polynomials, we should get a higher contract
value. However, the left panel of Figure 6.6 shows that the contract value at
the degree of 4 is even lower than the contract value at the degree of 3. This
is because that, at this point, the LSMC on the GPU starts to suffer from the
problem we mentioned in Section 6.5. At the degree of 3, the LSMC value
on the GPU is only slightly lower than the LSMC value on the CPU with the
degree of 4. The difference is mainly because the LSMC algorithm on the
CPU dose not suffer from the loss of information and can get a better exer-
cising rule by using the complete set of polynomials of degree 4 (see Section
5.8.3). The right panel of Figure 6.6 shows the computing time with respect
to the degree of polynomials. At the degree of 3, the LSMC algorithm on the
GPU only requires 153 seconds to evaluate such a contract. That is, we can
use a lower degree of polynomials to overcome the problem we mentioned
in Section 6.5, and, at the same time, achieve a faster implementation.

6.6.3 The accuracy of the tree algorithm

Conparison between the tree algorithm and Algorithm IV Now, we inves-
tigate the accuracy of our tree algorithm by a comparison between the tree al-
gorithm and Algorithm IV. That is, we let the minimum bill MB in Table 6.1
be 0, meaning that there is no penalty involved in our GSA. Figure 6.7 reports
the results. At H = 320, the tree value with flat forward curves is only 0.03%

above the benchmark value, while the tree value with real forward curves
is only 0.04% above the benchmark value. Since 10 million paths have been
used in Algorithm IV, these two benchmark values should be trustworthy.

The impact of wn Next, we investigate the impact of wn on our tree algo-
rithm. Recall that wn, n = 1, 2, . . . , N , is the constant which controls the
fraction of points Mn,m in the running average vector Mn that lie in the
neighbourhood of Mn. In addition, a smaller wn gives more points in the
neighbourhood of Mn. In our examples, we let wn be a constant w for all
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FIGURE 6.7: Contract values when penalties are not involved
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FIGURE 6.8: Contract values w.r.t. w
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n = 1, 2, . . . , N . Figure 6.8 reports the impact of w on our tree algorithm
when pricing the GSA contract with flat forward curves. As we can see, both
the convergence speed when using w = 1

6 and the convergence speed when
using w = 1

10 outperforms the convergence speed when using w = 1
2 . That

is, when more points in the non-uniform grid lie in the neighbourhood of
Mn, the convergence speed of our tree algorithm is faster. This is quite un-
derstandable. Recall that Mn equals the value of the running average M by
assuming that the oil price moves on the oil tree by following the middle
branches only (see (4.21)). Due to the mean-reverting nature of the oil price,
the oil price is unlikely to be too high or too low for a long time period. It
follows that the value of the running average is even more unlikely to be too
large or too small. Indeed, this is the reason why the indexation of the GSA
exists: to smooth undesired volatility effects. In addition, as we can observe
in Figure 6.8, the performance of our tree algorithm is worse when using
w = 1

20 than when using w = 1
10 . This means that, although the movement

of the running average is relatively stable, assigning too many points in the
neighbourhood of Mn will not benefit the tree algorithm. No matter which
value of w we have used in Figure 6.8, however, the tree values of different
values of w all converge to, more or less, the same value, at H = 320. This
demonstrates that, when there are a lot of points in the non-uniform grid, the
tree algorithm is unlikely to be affected by the value of w. Figure 6.8 also
demonstrates that, if the non-uniform grid contains fewer points, we can use
a smaller w to get a better contract value. When using w = 1

10 , the contract
value has only changed 0.08% from H = 160 to H = 320. At the same time,
the computing time at H = 160 is only 417 seconds, which is very compet-
itive with the LSMC on the GPU. Even with w = 1

2 , the contract value has
only changed by 0.13% from H = 160 to H = 320. This demonstrates that we
can still get a satisfactory contract value with fewer points in the non-uniform
grid, even with a relatively large w.

6.6.4 Value surfaces and decision surfaces from the tree algorithm

In this section, we investigate the value surfaces and the decision surfaces by
evaluating the GSA with flat forward curves using the tree algorithm.
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FIGURE 6.9: Value sufaces at time t105 by the tree algorithm
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Value surfaces Figure 6.9 shows the value surfaces at time t105, which is the
15th day of Month 3. As we can see, the value surfaces with respect to the
running average, the index and the oil price have similar patterns. This is
due to the fact that both the running average and the oil price influence the
contract values by affecting the index in the coming month. Also, the con-
tract value is more sensitive to the oil price than the running average and the
index, especially when the oil price is low. This is because, if the current oil
price is low, then the oil price in the rest of this month is possibly in the low
price regime. This leads to a low index in the coming month. In addition, in
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the surfaces with respect to the running average, the index and the oil price,
for a fixed period to date Q, the contract value is stable when these corre-
sponding values are high. This is because the running average, the index and
the oil price are large enough to make sure the buyers avoid exercising gas
rights under the contract. The bottom-left surface of Figure 6.9 shows that the
contract value increases as the gas price increases. This is because the buyers
are willing to take gas under the GSA contract when the gas price is high.
This action not only gives profits to the buyers from the instant payoffs, but
also reduces or possibly avoids the penalties since more gas has been taken
under the contract.

Decision surfaces Recall that, we have defined the exercise threshold as the
gas price equal to or above which the buyer would be better to take the daily
maximum qmax in Chapter 3. A low exercise threshold means that the buyer is
willing to take gas under the contract, while a high exercise threshold means
the buyer is reluctant to take gas. For the buyers, the most important thing
is to make the optimal daily exercise decision at the beginning of each gas
day, based on the current gas price, oil price, index price and the value of
the running average. We present decision surfaces obtained by using the tree
algorithm at time t105 in Figure 6.10. As we can see in these surfaces, there
is a big jump in the exercise threshold when the period to date is 15. This
is due to the requirement to meet the minimum bill. At day 105, there are
360 − 105 = 255 exercise opportunities left before the end of the contract. If
the period to date is 15 at day 105, then the buyer can only avoid the penalty
at the end of the contract by taking the daily maximum qmax on the remaining
days. That is, the buyer has to take gas under the contract even when the
instant payoff is negative. This feature is more clear in Figure 6.11 which
shows the decision surfaces at t225. At day 225, there are 360 − 225 = 135

exercise opportunities left before the end of the contract. If the period to
date is 135 at day 225, then the buyer can only avoid the penalty by taking
the daily maximum qmax on the remaining days. As we can see in the top-
right plot of Figure 6.11, the exercise threshold is higher when the index is
very large. This is because the index is so large that the buyer loses more
profits from the instant payoff than the penalty. Again, as we can see in the
top two surfaces of Figure 6.10, the exercise threshold is more sensitive with



Chapter 6. Implementation on GPUs 175

FIGURE 6.10: Decision sufaces at time t105 by the tree algo-
rithm
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respect to the oil price than the running average. In addition, the decision
surfaces with respect to the running average and the oil price have different
patterns with the surface with respect to the index. The exercise threshold
increases as the running average and the oil price decrease. This is because,
if the current oil price and the running average is low, then the index in the
coming month is possibly very small, hence the buyers are willing to save
exercise opportunities in order to take advantages of the small index in the
coming month. The exercise threshold increases as the index increases. This
is because the buyers do not benefit from a high index.
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FIGURE 6.11: Decision sufaces at time t225
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6.6.5 Contract values with respect to parameters

Due to the nature of the LSMC algorithm, for the same GSA contract, sep-
arate valuations can give different contract values (see the stability test in
Section 5.8). On the contrary, for the same GSA contract, with a fixed H and
w, the tree algorithm gives the same contract value through separate valu-
ations. Hence, the tree algorithm provides a powerful tool to analyze how
the parameters of a GSA contract affect the contract value. In this subsection,
we investigate the impact of these parameters by using the tree algorithm.
Again, we focus on the GSA with flat forward curves. Figure 6.12 shows how
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FIGURE 6.12: Values with respect to parameters
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the contract value changes when the values of parameters change. As we can
see, the contract value decreases when the interest rate increases, since a high
interest rate reduces the value of future cashflows. Also, the contract value
decreases as the correlation increases. This is because the buyers have less
opportunities to make high profits when the gas price and the oil price move
in the same direction. In addition, the contract value increases in both the
volatility of the gas price and the volatility of the oil price. This is because
the buyers could implement a more flexible trading strategy when the gas
price or the oil price is fluctuating more. Another thing worth mentioning
is that the volatility of the gas price contributes more to the contract value
than the volatility of the oil price. This is because the volatility of the oil price
is smoothed under the indexation principle. Furthermore, generally speak-
ing, the contract value decreases in both the mean-reverting rates of the gas
price and the oil price. As we can see in the bottom-left plot of Figure 6.12,
the contract value decreases rapidly from αS = 2 to αS = 5, before becom-
ing quite stable as the mean-reverting rate of the gas price increases. This
demonstrates that αS loses its impact on the contract if it is large enough. As
we can see in the bottom-right plot of Figure 6.12, compared with αS , the
mean-reverting rate of the oil price αZ has a much greater impact on the con-
tract value. This is because, when we have a small αZ , the value of the index
can be quite different in different months. This gives the buyers opportu-
nities to take advantage of a low index and avoid taking gas under a high
index. Recall Remark 4.5, different mean-reverting rates give different sizes
of the trinomial tree, hence, the computing time of the tree algorithm should
be related to αS and αZ . Figure 6.13 reports the computing time with respect
to these two mean-reverting rates.

6.6.6 The consumption policy

In this subsection, we simulate a pair sets of gas price paths and oil price
paths, then extract the decisions by using the tree algorithm and the LSMC
algorithm on the GPU, respectively. Parameters are given in Table 6.1, and
we use the market forward curves in Figure 6.2. Figure 6.14 shows the sim-
ulated paths and the corresponding consumption policies obtained by using
the tree algorithm and the LSMC algorithm, respectively. As we can see, the
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FIGURE 6.13: Computing times with respect to mean-
reverting rates
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FIGURE 6.14: Paths and decisions
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FIGURE 6.15: The period to date Q of different algorithms
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tree algorithm and the LSMC algorithm give very similar consumption poli-
cies. Generally speaking, both consumption policies suggest taking gas when
the instant payoffs are positive and avoiding taking gas when the instant pay-
offs are negative. However, in the first quarter of the year, both consumption
policies suggest taking gas even if the instant payoff is a bit less than zero.
This is due to the pressure to avoid penalties. In addition, the total consump-
tions of both policies are both 285, and both consumption policies suggest
to avoid penalties. Figure 6.15 reports the period to date at each time tn ob-
tained by using these two algorithms. As we can see, the difference between
the period to date returned by the tree algorithm and the period to date re-
turned by the LSMC algorithm is quite minimal. Figure 6.15, together with
Figure 6.14, show that the tree algorithm and the LSMC algorithm give the
same decisions on most days of the year. The tree algorithm suggests taking
less gas than the LSMC algorithm on day 120. The difference is compensated
for, however, when the LSMC algorithm suggests taking less gas on day 240.
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Also, the contract values of the simulated paths obtained by the tree algo-
rithm and the LSMC algorithm are very close: the tree algorithm gives the
value 904.91 while the LSMC algorithm gives the value 900.61.

6.7 Conclusion

This chapter has presented numerical examples using all the algorithms built
in Chapter 4 and Chapter 5. Numerical examples show that the LSMC al-
gorithm on the GPU is more efficient than the tree algorithm and the LSMC
algorithm on the CPU. However, the contract value obtained by LSMC algo-
rithm on the GPU is less optimal due to the loss of information. Although one
can use fewer basis functions and simulated paths to ease this loss of infor-
mation, based on our numerical analysis in Section 5.8, fewer basis functions
and simulated paths lead to suboptimal and unstable results. The LSMC al-
gorithm on the CPU does not suffer from this loss of information, but it is
quite time consuming, requiring hours to evaluate a one-year contract. The
tree algorithm can be implemented efficiently on the GPU with the help of
CUDA programming. The contract value obtained by the tree algorithm is
sufficiently accurate when compared with the benchmark value. In addition,
our numerical examples show that the tree algorithm gives satisfactory val-
ues when not too many points are used in the non-uniform grid. The tree
algorithm also has the advantage that, for fixed inputs, it gives a fixed con-
tract value. Hence, it is a powerful tool to analysis the contract features of
GSAs with indexation. Using the tree algorithm and a number of numerical
studies, we demonstrate various features of this complex contract. For ex-
ample, the contract value and the exercise threshold are more sensitive with
respect to the oil price than the value of the running average. The running
average and the oil price have less influence on the contract value when their
values are large.

Being a lattice-based method, the tree algorithm can be very inefficient
when introducing further dimensions. One can easily modify the LSMC al-
gorithm to accommodate basically any sophisticated models, such as multi-
factor models, but it is hard to do the same thing for a lattice-based method.
Thus, the advantage of the LSMC algorithm is its flexibility. When switching
between different models, the only modification that needs to be addressed
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is the simulation of the underlying prices. This is why the LSMC algorithm
is popular among practitioners. To our knowledge, however, no lattice-based
method has been built in the literature that deals with the real GSA contract
with indexation. Hence, the tree algorithm provides a trustworthy bench-
mark for practitioners to test their results.
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Chapter 7

Conclusion and future work

In this thesis, we have explored numerical methods for the evaluation of the
gas sales agreement where the make-up bank, the carry-forward bank and
the indexation are introduced.

The thesis can be divided into two parts. The first part includes Chapter
3, in which we propose a two-dimensional trinomial tree framework for pric-
ing multiple year GSAs with make-up, carry-forward and stochastic strike
prices, given the knowledge of forward price dynamics of both gas and in-
dex. In the evaluation, we keep track of multiple variables on a daily basis
over a number of years and we are able to evaluate efficiently the prices of the
contracts so as to find both the optimal daily decisions and the optimal yearly
use of both the make-up bank and carry-forward bank. We provide numeri-
cal studies in which we compare GSAs with constant strike prices and GSAs
with stochastic strike prices. We also demonstrate various features of this
complex contract with the help of a number of numerical studies, especially
the impact of the make-up and carry-forward banks on both the contract val-
ues and decisions.

The second part includes Chapter 4, Chapter 5 and Chapter 6, in which
we investigate the evaluation of GSAs with indexation. In Chapter 4, we
model the index of a GSA contract by using a running average variable and
build a tree algorithm to evaluate GSAs with indexation. In this chapter, the
GSA with indexation is also modelled in continuous time and we further
prove that the tree-based algorithm can achieve first order consistency to the
continuous model. In Chapter 5, we build the least-squares Monte Carlo al-
gorithm for the evaluation of GSAs with indexation and analyze the perfor-
mance of the LSMC algorithm. Through numerical studies we conclude that
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the commonly used regression method regressing on both the gas price and
the index underestimates the GSA contract value. We also suggest regressing
on the gas price, the oil price, the value of the running average and the index
to get better results. In Chapter 6, we introduce basic programming knowl-
edge of general-purpose GPU computing and implement the tree algorithm
on the GPU and the LSMC algorithm on both the CPU and GPU. From the
numerical experiment, the tree algorithm on the GPU is accurate and effi-
cient while the LSMC algorithm on the CPU is time-consuming. The LSMC
on the GPU is the most efficient but suffers from loss of information at run-
time. The value surfaces and decision surfaces are presented through the tree
algorithm, and various features of the GSA with indexation are discussed in
this chapter.

It should be noted that there are other types of indexation in the market.
For example, there can be a lag between the month where the index is used
and the month where the index is calculated. The index can also be calculated
on more than one energy product. These properties make the evaluation of a
real contract much harder than the scenario envisaged in this thesis, but we
leave this problem to future research. In addition, we do not use parame-
ters estimated from the market data in this thesis. The parameter estimation
based on market data itself is a huge topic, which can not be the focus of this
thesis but do need more proper and thorough study and analysis, hence we
leave it for future research.
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