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Abstract 
 The global bedbug resurgence has left the scientific community racing to fill 

large gaps in our understanding of the biology and ecology of this forgotten pest. 

Studying the ecology of a species so closely associated with humans has inherent 

difficulties, necessitating the development of laboratory arenas that replicate natural 

infestations. The arena developed herein provides bedbugs with the opportunity to 

exhibit natural foraging, hiding and dispersal behaviours on a scale that reflects their 

natural environment. 

 Using this arena I test hypotheses relating to; 1) how bedbugs use harbourage 

space, and 2) the factors affect their dispersal. My research revealed that harbourages in 

the vicinity of the host are used first and peripheral harbourages only form as the 

infestation develops. The preferential use of harbourages adjacent to the host is 

explained by the finding that feeding frequency was negatively correlated with distance 

from the host. However, despite this advantage of residing in close proximity to the 

host, bedbugs form discontinuous harbourages, leaving regions of unoccupied space. 

This suggests that there are factor(s) that limit harbourage density. 

 Female dispersal was unaffected by males presence, suggesting that sexual 

harassment does not drive dispersal in the bedbug. However, variation in the 

distribution of the sexes across harbourages suggests that females may be able to avoid 

males through harbourage selection. 

Increased harbourage availability significantly delayed the onset of dispersal, 

suggesting that competition for harbourages near the host is a factor driving dispersal 

from the natal infestation. Given that a host is an almost unlimited food source and that 

the cost of dispersing is likely to be high, it is not immediately apparent why bedbugs 

choose to actively disperse. However, theoretical models show that where relatedness is 

high, dispersal always occurs to reduce competition. The high cost of dispersal may 

therefore be offset by kin selection. 
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Terms and Definitions 

 

These terms are given specifically in the context of this thesis and the bedbug system. 

 

Active dispersal – the process of an individual moving away from the natal infestation 

using its own locomotory system(s). 

(Other authors do not distinguish local movement, between harbourages in the vicinity 

of the same host with active dispersal to a new infestation (and new host).) 

 

Artificial host – the artificial feeding system I developed for use in my bedbug 

laboratory arenas. 

(It is comprised of vertebrate blood treated with an anticoagulant and presented behind a 

membrane through which the haematophage can feed. Depending upon the sensory 

biology of the insect it may also be necessary to provide host cues such as heat, carbon 

dioxide or skin secretions to facilitate feeding.) 

 

Bedbug - the single species Cimex lectularius L. 

(Other authors use the term to refer to either the Cimicidae, or to those members of the 

Cimicidae that are associated primarily with humans.) 

 

Conspecifics – other members of the same species. 

 

Feeding status – the time since feeding, which is manifested by the amount of 

undigested blood present in the bedbug’s gut. The distension of the abdomen relative to 

body size can be used as a metric for feeding status. 

 

Foraging – the process of leaving the harbourage in search of a vertebrate host. 

 

Harbourages (in context of natural infestation) – cracks or crevices in which one or 

more bedbugs reside between foraging trips. This is typically where eggs are laid and 

moulting occurs. 
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Harbourages (in context of laboratory arena) – the regions of the 10 mm wide, 3 m 

long paper strip under which one or more bedbugs reside. Where aggregations of 

bedbugs are separated by ≥1 cm, they are considered to occupy two separate 

harbourages. 

 

Harbourage fidelity – the tendency of an individual bedbug to return to the same 

harbourage after foraging. 

 

Host – a warm blooded vertebrate from which a bedbug is able to gain a blood meal. 

 

Infestation – a population of bedbugs living in the abode of one (or more co-localised) 

host(s). 

 

Mating status – the time since mating, which is manifested by the ability of a female 

bedbug to lay fertile eggs while in sexual isolation. 

(Mating status may have important consequences for the success dispersal decision.)  

 

Passive dispersal – the process of moving away from the natal infestation utilising the 

locomotory system of another organism (or other forms of naturally occurring kinetic 

energy in the environment). 
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1 Introduction 

 

 

“The global rise of bed bugs early into the 21st century seems to be the culmination of 

numerous phenomena. Perhaps the most telling of these is the lack of understanding of 

the ecology and biology of the pest, which is essential for control.” 

(Doggett et al. 2004) 

 

1.1 Conceptual Framework of this Thesis 
 

The aim of this thesis is to develop our understanding of the biology and ecology 

of bedbugs in a pure science context, but with a view to informing control strategies. 

The findings of this thesis therefore have implications for our understanding of fields 

such as dispersal ecology and group living, as well as implications for the successful 

management and eradication of this emerging pest. For this reason the implications of 

the research will be discussed from a control perspective separately at the end of each 

discussion section. 

The research presented in this thesis was conducted in three phases. The first 

phase involved the collection of observational data from natural infestations (Chapter 

2). This data was used to inform the design of a laboratory arena that replicated the 

bedbugs’ natural ecology, in the second phase (Chapter 3). The third phase of the 

research utilised this laboratory arena to conduct a series of manipulations to investigate 

the ecology of the bedbug and define some of the biological parameters that affect its 

dispersal (Chapters 4, 5 & 6). 
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1.2 Historical Context 
 

1.2.1 The Arrival 

The first record of bedbugs in the UK was published by Thomas Moufet (1634) 

(referenced in Usinger 1966), and consists of an account is of two noble ladies who 

were bitten while staying in Mortlake in 1503. Southall’s “A Treatise of Buggs” (1730) 

gives details of the arrival and spread of bedbugs in the UK, along with some control 

measures. According to Southall, “[at the time of publishing] not one seaport in 

England is free from [bedbugs], in inland towns buggs are hardly known.”. This early 

pattern of infestations could be interpreted as evidence for repeated colonisation events 

from overseas source populations. However this may equally be a reflection of the 

population density of English coastal towns of this time period compared to inland 

towns, or a result of better transport links via the shipping routes resulting in a greater 

movement of people and goods. 

By the 1930s (and probably long before) bedbug infestations throughout the UK 

were common (Busvine 1957). In fact, by the early 1930s a ‘Royal Commission on Bed 

Bugs’ was established. Data from Busvine (1964) showed that in one English town in 

1934 more than 10% of homes were infested with bedbugs, while in London, the Royal 

Commission’s report stated that in some areas up to 100% of homes had bedbug 

infestations (Ministry of Health 1934). 

 

1.2.2 The Decline 

Following the 1930s bedbugs in Britain declined, initially sharply and then more 

steadily, until the 1980s and remained at very low levels into the latter part of the 1990s 

(Busvine 1957, 1964, Boase 2008). Although evidence from the Environmental Health 

Departments of ten cities within the Greater Manchester area shows that a handful of 

reservoirs of bedbugs, primarily in Manchester and Salford, persisted at relatively high 

levels throughout the later part of the 20th century (Dunn 1993). These reservoirs may 

have played a significant part in the recent upsurge throughout the UK. 

The organochlorine insecticide Dichloro-diphenyl-trichloroethane (DDT) is 

widely cited as being significant in, or even responsible for, the post 1930s decline in 

bedbugs (Busvine 1957, 1964, Doggett & Russell 2008, Mumcuoglu 2008). However, 

its widespread introduction following World War II coincided with many other factors 

also likely to have been involved in the bedbug decline (Pinto et al. 2007, Boase 2008). 
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These include major improvements in hygiene, sanitation and housing (Pinto et al. 

2007). Busvine’s (1964) own study of houses in an English town shows that bedbugs 

had already declined by 80% prior to the introduction of DDT in about 1945 (Figure 

1.1) (see also Boase 2008). 

In the UK one of the most significant factors likely to be involved in the 

dramatic decline in bedbugs was the 1930 Housing Act. After it was passed, work 

began clearing the slums and building properly planned houses with access to light, 

water, ventilation and sanitation. 

In 1936 the findings of the Royal Commission on Bed Bugs contributed to the 

passing of the Public Health Act, making it the “duty [of the local authority]…in the 

case of verminous premises…[to take] such steps as may be necessary for destroying or 

removing vermin.” (Public Health Act 1936, Boase 2008). Local authorities were now 

accountable for controlling pests in their areas, and had new powers of entry into 

infested premises, so that control measures could be carried out. 

There is currently no published data on the abundance of bedbug infestations on 

mainland Europe, prior to the mid 1940s. It is therefore difficult to know if Europe 

experienced the same pattern of decline as occurred in the UK. In 1948 an extensive 

survey of public buildings and domestic premises (mainly flats) in Berlin (Germany), 

showed that bedbug infestation rates were as high as 40% in the city centre, decreasing 

to around 2% in the suburbs (Busvine 1957). In Denmark it has been mandatory to have 

a survey for bedbugs whenever a person wants to move house since 1945. Records of 

the findings from these surveys in one district between 1945 and 1955 provide some of 

the best data we have of the occurrence of bedbugs anywhere in Europe for that time 

period (Figure 1.2). 
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Figure 1.1 Decline in bedbugs through the 20th Century in an English town (modified from 
Busvine 1964 and Boase 2008). 
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Figure 1.2 shows the number of bedbug infested premises found in one district of Denmark 
between 1945 and 1955. The total population is about 600 000 living in a total of about 225 000 
habitations (mainly flats) (from Busvine 1957). 
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1.2.3 The Resurgence 

Since ca. 2000 many reports have shown a dramatic increase in the number of 

new bedbug infestations in the UK (Boase 2001, Richards et al. 2008), Australia 

(Doggett et al. 2004, Doggett 2008), Asia (Hirao 2010, Lee et al. 2008, Tawatsin et al. 

2011) and the US (Potter et al. 2008). Although, records since 1950 from the advisory 

service of the Danish Pest Infestation Laboratory (DPIL), show that bedbug enquiries, 

as a proportion of the total number of enquiries received, rose from 0.5% to 2.5% 

between 1960 and 1985, indicating that the resurgence may have begun in Denmark as 

much as forty years prior to the resurgence in the UK, Australia and the US (Kilpinen et 

al. 2008). 

 

1.3 Overview of Previous Research 
 

Virtually all of the descriptive biology of the bedbug was carried out in the first 

half of the Twentieth Century. Patton & Cragg (1913) first described the unusual mating 

behaviour of the bedbug and the tropical bedbug (C. hemipterus). They realised for the 

first time that the male copulatory organ, the paramere, is never introduced into the 

vagina of the female. Instead it is used to pierce the female’s body wall, between the 5th 

and 6th abdominal sternites, so that the ejaculate is pumped into the body cavity via the 

“organ of Berlese” (later retermed the spermalege (Carayon 1959)). Through the 1930s 

and early 1940s Mellanby (1932, 1935, 1938, 1939a, 1939b), Johnson (1937, 1940, 

1941) and Omori (1941) published the foundations of our current knowledge on the 

physiology, ecology and behaviour of both the bedbug and the tropical bedbug. In the 

1950s and 1960s Carayon (1966) advanced our understanding of the reproductive 

physiology of the bedbug, and other cimicids. He examined the structure and function 

of the whole paragenital system and the process of insemination in detail, and described 

its significance in classification and in understanding how the group evolved. The 

“Monograph of the Cimicidae” (Usinger 1966) consolidated all prior knowledge and 

still forms the basis of our understanding of the group. 

Following the publication of the monograph (Usinger 1966) there was a lull in 

bedbug research for about two decades, probably as a result of the pest’s decline. 

However, interest in the group was revived when it was identified as a model organism 

for studying cryptic female choice (Eberhardt 1996) and later sexual conflict (Stutt & 

Siva-Jothy 2001). Since the 21st Century much of the new bedbug literature has focused 
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on the bedbug resurgence (Krueger 2000, Paul & Bates 2000, Boase 2001, 2004, 

Burgess 2003, Doggett et al. 2003, 2004, Doggett & Russell 2008, Poorten & Prose 

2005, Potter 2005, Kilpinen et al. 2008) and their control (Temu et al. 1999, Cleary & 

Buchanan 2004, Doggett 2004, 2005, Potter 2005, 2006, Potter et al. 2006, 2007, 

Romero et al. 2007). 

 

1.4 General Biology of the Bedbug 
 

Bedbugs are true bugs (Order: Heteroptera), belonging to the family Cimicidae. 

Like all other members of this family they are obligate haematophages requiring blood 

from one of a range of vertebrate hosts in order to develop between instars and to 

reproduce (Figure 1.3). Along with C. hemipterus (the “tropical bedbug” found in the 

Old and New World tropics) and Leptocimex boueti (found in W. Africa) bedbugs are 

primarily associated with humans (Usinger 1966). However, wild populations have also 

been found on several species of birds and bats as well as rats, and under laboratory 

conditions they can be cultured on rabbits, mice and guinea pigs (Johnson 1941, Davis 

1956, Adkins & Arant 1959, Usinger 1966, Reinhardt & Siva-Jothy 2007). 

Bedbugs are negatively phototropic and hide in narrow crevices, typically within 

a few metres of the host (Butler 1893, Johnson 1941). For this reason host species are 

characterised by their spatial and temporal predictability and their tendency to aggregate 

in enclosed spaces such as caves or buildings (Reinhardt & Siva-Jothy 2007). 
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Figure 1.3 shows the lifecycle of the bedbug. With ad libitum food nymphs develop from one 
instar to the next in 5-7 days at 26°C, so the minimum duration of the lifecycle is approximately 
6 weeks. In the absence of food most instars are capable of surviving many months, particularly 
at cooler temperatures. 
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1.4.1 Intraspecific communication and host detection 

 Bedbugs have a complex array of sensory receptors which are used in both 

communication and host location (Siljander 2006). They have been shown to respond to 

heat (Rivnay 1930, 1932b), humidity (Mellanby 1935), pheromones and kairomones 

(Levinson & Bar Ilan 1971, Levinson et al. 1974a/b, Rivnay 1932b), air movement 

(Kemper 1936, Johnson 1941), and carbon dioxide (Hase 1917 in Usinger 1966). The 

bedbug’s ability to detect the host and its conspecifics is likely to be important in the 

selection of suitable harbourages, which may in turn be important in driving dispersal if 

suitable harbourages become a limiting resource. 

 

1.4.1.1 Communication 

Like nearly all Heteroptera, bedbugs have scent glands (Aldrich 1988). These 

glands produce both aggregation and alarm pheromones (Levinson & Bar Ilan 1971, 

Levinson et al. 1974a/b, Siljander 2006). Levinson & Bar Ilan (1971) identified the 

primary constituents of the scent glands as (E)-2-hexenal (73-92%) and (E)-2-octenal 

(8-27%). They showed that there was no aggregation effect of (E)-2-hexenal and (E)-2-

octenal when applied to filter papers in choice-chamber experiments, but that these 

chemicals could cause rapid dispersal of aggregations if applied in the same proportions 

as they occur in the scent glands. It was thus concluded that (E)-2-hexenal and (E)-2-

octenal were alarm pheromones. However, Siljander et al. 2008 identified and 

synthesised the aggregation pheromones and showed that (E)-2-hexenal and (E)-2-

octenal were in fact two of ten essential components. They concluded that there was a 

threshold effect, whereby the aggregation pheromones become alarm pheromones when 

released at high concentrations. 

The production of airborne aggregation pheromones is likely to be important in 

harbourage location after feeding (Siljander et al. 2008). Aside from reducing the search 

time and energetic costs associated with finding a harbourage, there is good evidence 

that bedbugs can also use pheromones to determine the demography of the harbourage 

occupants. In a dual-choice experiment Siljander et al. (2007) showed that both males 

and females preferred to aggregate on male-exposed paper discs compared to controls. 

Neither adult males nor adult females showed any significant preference for discs 

previously exposed to females or to nymphs over the control. By contrast, nymphs 

preferred nymph-exposed discs but showed no preference or avoidance of discs 
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previously exposed to adults of either sex. At first glance the responses of the adults 

seem counterintuitive: why should males or females choose male-dominated refuges? 

However, in none of the trials were bedbugs given the opportunity to choose between 

male-exposed and female-exposed discs. Thus, assuming that untreated discs were not 

identifiable as potential harbourages, it can only be inferred that both male and female 

bedbugs prefer male dominated refuges to residing outside a harbourage. 

In laboratory cultures foraging is often triggered by the arrival of a freshly fed 

bug returning to the refuge (pers. obs.). It is not currently known what signals are 

received by the unfed bugs but they are likely to include visual, chemical and thermal 

stimuli. Although bedbugs do make “appetitive searches” in the absence of any external 

cues (Johnson 1941, Lehane 2005), there is clearly an advantage to knowing the host is 

present before leaving the safety of the harbourage. A freshly engorged conspecific is a 

very good indicator that the host is present and that successful feeds are currently taking 

place.  

 

1.4.1.2 Host detection and location 

Temperature is clearly an important cue in host location (Rivnay 1930, 1932b, 

Usinger 1966). However, the range over which bedbugs can detect body heat has been a 

matter of some debate. Rivnay (1932b) believed that bedbugs foraged randomly until 

they were within 3-4 cm of the host, at which point thermotaxis was initiated. However, 

Marx (1955 – in Usinger 1966) showed that bedbugs can detect the host from 150 cm 

away, and attributed the attraction to a combination of warmth and carbon dioxide. 

Bedbugs only use host-derived volatiles (kairomones) such a sweat and sebaceous gland 

materials for very short range host location (Rivnay 1932b). Immediately after feeding, 

the attractive cues become neutral or repellent, which ensures that the bedbug leaves the 

potentially hazardous feeding site as quickly as possible (Aboul-Nasr & Erakey 1968, 

Reinhardt & Siva-Jothy 2007). 

 

1.4.2 Harbourage dynamics and availability 
One factor likely to affect population growth in bedbugs is the availability of 

suitable harbourages. This factor was identified but not explored by Johnson (1941). 

There is currently very little known about the way bedbugs use harbourages. Whether or 

not they return to the same harbourage after feeding has not been determined. Similarly 

we do not know if access to harbourages is on a ‘first come, first served’ basis or if, for 
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example, larger bedbugs are able to displace smaller ones. Females may choose 

harbourages with fewer males, in order to reduce the costs of traumatic insemination 

(see Stutt & Siva-Jothy 2001). Similarly males may chose harbourages with more 

females in order to advance mating opportunities. 

Mellanby (1938) showed that bugs starved for one week and then forced to run 

around for several minutes, paid a significant energetic cost; so much so that if a meal 

was not provided, the bedbugs died within a few hours. A bedbug travelling several 

metres from the harbourage to the host (and back) is therefore likely to suffer an 

energetic cost compared to one only travelling a few centimetres, particularly if the host 

is found to be absent and the journey is fruitless. Furthermore, Mellanby’s (1938) 

experiments were carried out on unfed bedbugs, but adult bedbugs can take 4-5 times 

their bodyweight in blood in a single feed (Usinger 1966, Richard Naylor unpublished 

data). So although a feed will mitigate the effects of starvation, a bedbug that feeds to 

repletion and then has to walk for several minutes to find an available harbourage may 

pay significant costs, either directly in terms of reproductive output, or through 

requiring a shorter feeding interval to maintain egg production. It is not known if the 

energetic costs of travelling have a role in harbourage selection or what defines a 

suitable harbourage to a bedbug, however I will explore this in Chapter 4. Aside from 

the energetic costs, travelling between the host and the harbourage increases exposure to 

predators, primarily spiders (Usinger 1966), and increases the likelihood of being 

discovered by the host. Females that have to travel longer distances may also suffer 

from increased exposure to traumatic inseminations from males, which Stutt & Siva-

Jothy (2001) have shown to be costly both in terms of longevity. 

As well as distance from the host, harbourages may vary in quality. There is 

currently no data on what constitutes a ‘good’ harbourage. Bedbugs often show 

preferences for particular sites on a given design of bed (Pinto et al. 2007), but we do 

not know if, for example, harbourages are abandoned when they become too dirty or if 

harbourage requirements change with maturity. Given the tendency for bedbugs to 

defecate in their harbourages (Pinto et al. 2007), and that traumatic insemination 

routinely leads to the introduction of environmental microbes into the body cavity of the 

female (Reinhardt & Siva-Jothy 2007), it may be in the interests of the female to avoid 

particularly unsanitary harbourages. The dynamics of harbourage selection are 

potentially complex but their implications for pest management make this an important 

factor to consider, especially as it may also have a role in driving dispersal. 
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1.4.3 Influence of abiotic conditions 
Like all insects the abiotic conditions of the bedbug’s environment have a 

profound effect on its activity and reproductive rate. Richards et al. (2009) looked at the 

number of calls to pest control teams of London local authorities between 2000 and 

2006 and showed that the highest levels of bedbug activity were recorded in the summer 

months (August-September), which is attributed to the warmer weather. Understanding 

the influence of the abiotic conditions is important for successful culturing and the 

development of a laboratory setup to house bedbugs under controlled conditions that 

reflect their natural environment. It is also important to understand the influence of 

environmental factors from a control perspective, since this will affect the rate at which 

an infestation grows and spreads. 

1.4.3.1 Temperature 

Of the abiotic factors affecting bedbug population growth, temperature is by far 

the most important (Usinger 1966). Temperature affects many aspects of their 

physiology and behaviour including feeding activity, development time and egg laying 

rate (Mellanby 1935, Johnson 1942). The mean total development time increases 

fourfold from 36.4 days to 127.9 days when bedbugs are cultured at 18ºC compared to 

33ºC (Johnson 1942). Similarly, at 30ºC eggs hatch in 4 days, while at 23ºC eggs hatch 

in 7.92 days (Johnson 1942). At 13ºC bedbugs stop feeding and laying eggs altogether 

and any eggs that have been laid usually fail to hatch. (Jones 1930, Mellanby 1935). 

This temperature is referred to as the “developmental zero”. 

Johnson (1941) made the first attempts to model population growth in the 

bedbug. The major factor in his models was the affect of temperature, which cycled 

annually. Johnson’s assumptions of annual temperature change were based on a survey 

of 5 houses in the London area, all of which showed a significant drop in temperature 

over the winter months. In fact 3 of the 5 properties that were surveyed had average 

temperatures below 13°C for approximately 6 months over the winter of 1935-36. Since 

the developmental zero of bedbugs is around 13ºC, Johnson’s models of population 

growth in bedbugs were based on a relatively short reproductive season followed by a 

long period of stasis and winter die-off (Johnson 1941). However, today, room 

temperatures in houses are typically in the range 18-24°C. Consequently the primary 

assumptions of Johnson’s (1941) models are no longer accurate. Seasonal affects are 

likely to be limited, since room temperatures in most houses are thermostatically 

controlled and are therefore unlikely to fall below the 13°C threshold. This allows 
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bedbugs to continue feeding and reproducing throughout the year, which may be an 

important factor in their resurgence. 

The upper thermal death-point for bedbugs is 44ºC when exposed for 1 hour 

(Mellanby 1935). However, Chang (1974) showed that bedbugs cultured at 36ºC for 

two weeks suffered a 90% reduction in fecundity compared to those cultured at 27ºC, 

which was attributed to the loss of bacterial symbionts from their mycetomes 

(specialised organs containing symbiotic bacteria). It is therefore important to maintain 

culture temperatures well below 36ºC to avoid damage to the bacterial symbionts. 

 

1.4.3.2 Humidity 

Bedbugs have a number of behavioural and physiological adaptations, which 

allow them to resist desiccation in low humidity environments. An impermeable waxy 

cuticle, a very low rate of transpiration when inactive, and a tendency to aggregate to 

form water-conserving clusters helps them to reduced water loss (Benoit et al. 2007). 

They also have a very high tolerance to desiccation, surviving 30-40% loss of body 

water. Together, these adaptations allow them to survive for up to 2 weeks (in adults) at 

0% RH (Benoit et al. 2007). Mellanby (1935) showed that when food is available, 

freshly fed bedbugs regulated the amount of superfluous water they excreted after 

feeding, according to the humidity of the environment. Thus, bedbugs cultured at lower 

humidities retained more water than those cultured at higher humidities, allowing them 

to resist desiccation for longer in drying environments. 

Rivnay (1932a) showed that there was little or no effect of humidity (in the 

range 10-70% RH) on the rate of development of bedbugs, although Kemper (1936) 

noted that very high humidity often caused the death of laboratory cultures through 

encouraging fungal growth. The same effect may also occur in natural infestations if the 

density of bedbugs in a harbourage becomes sufficiently high. There may therefore be a 

selection pressure acting to limit the maximum density of bedbugs within a harbourage. 

 

1.4.4 Dispersal 
The demographic and genetic structure of populations can be greatly affected by 

dispersal (Denno & Peterson 1995, Lee et al. 2010, Strevens & Bonsall 2011), so 

understanding the phenomenon is of profound importance to the fields of population 

ecology, molecular biology and conservation among others. However, in many systems 

dispersal is, or until recently has been, immeasurable (Nathan 2001). Recent advances 
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in molecular techniques as well as the use of satellite tags, radio tags and transponders 

have led to improvements in our ability to detect and study dispersal (see Bilton et al. 

2001, Nathan 2001). However, laboratory systems that allow the study of dispersal 

through careful manipulation of its influencing factors are scarce (but see Bengtsson et 

al. 1994, Strevens & Bonsall 2011 for examples). Consequently the first challenge of 

this research will be to develop a setup in which bedbug dispersal can be monitored and 

the factors affecting dispersal manipulated. 

 

1.4.4.1 Active dispersal in bedbugs 

Active dispersal can be driven by the absence of the host(s), such as in a vacated hotel 

room (Pinto et al. 2007), or by the application of pesticides such as synthetic 

pyrethroids, which have an excitatory affect on many insects (Barcay et al. 1990). 

However it also commonly occurs while the host is still present. It is not yet understood 

what triggers a bedbug to make the apparently risky decision to disperse away from an 

established infestation where there is a host providing an ad libitum source of food. The 

dangers associated with leaving a harbourage in search of a new host are likely to be 

high. Predation, primarily from spiders as well as several species of ant (Usinger 1966), 

which is virtually absent within the harbourage, is greatly increased once the bug is in 

the open. Furthermore, there is no guarantee that the dispersing bedbug will ever locate 

a new host, and yet active dispersal is a major factor in the spread of bedbugs 

throughout multiple-occupancy dwellings such as apartment blocks, hotels, hospitals 

and nursing homes (Pinto et al. 2007, Doggett & Russell 2008). 

 

1.4.4.2 Passive dispersal in bedbugs 

Unlike active dispersal, which is presumed to be limited to a few tens of metres, 

passive dispersal has the potential to transport bedbugs to and from anywhere in the 

world, hitchhiking on clothing, luggage, or other items (Boase 2001, Doggett et al. 

2004, Pinto et al. 2007, Potter et al. 2008). Bedbugs have been widely reported on 

passenger aircraft (Doggett et al. 2004), trains (Busvine 1957), and ships (Rucker 1912, 

Doggett 2008). Arevad (1987, reported in Kilpinen 2008), has speculated that the 

resurgence in bedbugs after 1960 may have been due to an increase in the number of 

migrant workers and holiday makers from Southern Europe. Similarly Potter believes 

that the bedbug problem in the US was triggered by an increase in the number of 

migrant workers from Central America, many of whom were employed in the 
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hospitality industry, and may have been responsible for the accidental reintroduction of 

bedbugs into the hotels where they worked (Potter pers. comm.). However, Boase 

(2008) argues that an assumption of the importation hypothesis is that “there are large 

reservoirs of bedbugs in some countries, which are being exported to those countries 

experiencing an increase”. He argues that there is no evidence that sufficiently large 

reservoirs exist. Furthermore, if foreign import of bedbugs was a key factor in driving 

the increase, then one would expect to find a large increase in the tropical cousin of the 

bedbug, C. hemipterus. Although this species has occasionally been found in the UK 

(Boase pers. comm.) and is now widespread in Northern Australia (Doggett et al. 2003, 

Doggett & Russell 2008), it is not the species primarily responsible for the global 

increase in reports of bedbugs (Boase 2008). 

Little is known about those bedbugs that passively disperse. It is assumed that 

the dispersing individuals are a random sample of the population that have become 

accidentally associated with clothing or belongings, however in a close relative of the 

bedbug, the swallow bug (Oeciacus vicuarius), adults will actively enter a passive 

dispersal phase, clustering around the entrance of the nest in order to climb onto the 

returning swallow (Loye 1985). While the significance of the role passive dispersal has 

played in the current bedbug pandemic is still in debate, it has undoubtedly facilitated 

their spread. 
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1.5 Summary 
 

Since the beginning of the 21st Century the occurrence of bedbug infestations in 

the UK has increased dramatically; a pattern reflected in the northern and southern 

temperate zones across the world. This recent trend has sparked a new wave of interest 

in bedbugs, largely from a control perspective. The reason for the recent upsurge is not 

clear and has been attributed to many different factors. However it is likely that there is 

no single underlying factor to which the bedbug pandemic can be attributed, but rather a 

combination of factors facilitating their reproduction, survival and dispersal. The 50 

year near-absence of bedbugs combined with the suddenness with which they have re-

emerged as a global pest has left chasms in our understanding of their biology and 

ecology; information which is essential for their control. 

  

1.6 Thesis Outline and Core Questions 
 

In Chapter 2 I will examine four case studies where dispersal is know to have 

occurred. 

 

In Chapter 3 I will use this information to develop a laboratory arena that replicates 

the ecology of natural bedbug infestations. 

 

In Chapter 4 I will use the laboratory arena (developed in Chapter 3) to answer the 

following questions about the way bedbugs utilise harbourages: 

1) Does the number and distribution of harbourages increase with population size? 

2) Are bedbugs faithful to particular harbourages or localities? 

3) Does harbourage location influence the feeding frequency of the individuals 

within? 

4) Is there a measurable energetic cost associated with commuting to the host? 

 

In Chapter 5 I will use the laboratory arena (developed in Chapter 3) to answer the 

following questions about the factors affecting dispersal from an infestation: 

1) Is dispersal driven by a lack of available harbourages? 

2) Do females disperse to avoid sexual harassment from males? 
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3) Do females avoid males through harbourage selection within an infestation? 

 

In Chapter 6 I will compare dispersing individuals with non-dispersing individuals 

to see if they differ in terms of: 

1) Feeding status (time since feeding) 

2) Mating status (time since mating) 

3) Sexual harassment (number of copulatory wounding scars) 

4) Body size 

In Chapter 7 I will discuss the significance of my results. 
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2 Natural Infestations 

 

2.1 Introduction 
 

Studying bedbugs in the field is difficult because eradication normally begins 

immediately after an infestation is detected/reported. There are also ethical issues 

associated with allowing an infestation to develop and disperse to neighbouring 

properties for the purposes of research. Consequently I needed to construct a realistic 

laboratory arena  that had no need for a human host. Any laboratory arena must enable 

bedbugs to behave in as natural a way as possible, allowing foraging, hiding and 

dispersal behaviours within an enclosure that is simple enough to manipulate and ensure 

repeatability of observed behaviours. 

It was therefore necessary to examine natural infestations and measure the abiotic 

parameters, the size and duration of the infestations and the scale over which bedbugs 

move within and between infestations. 

More than 95% of domestic infestations encountered in London are identified and 

treated before active dispersal to neighbouring properties begins (Cain, Bed-bugs Ltd., 

pers. comm.). Although actively dispersing infestations make up only a small 

proportion of the total, they are the most important from a control perspective as these 

infestations are responsible for producing the founders that potentially begin many new 

infestations. Since the primary focus of this thesis is to understand the factors affecting 

active dispersal in bedbugs, case studies focussed specifically on infestations where 

there was evidence for active dispersal. 

 

2.1.1 Chapter aims 

In this chapter I will determine the spatial and abiotic parameters necessary to 

construct a tractable laboratory-based arena setup. I will: 

1) Measure the temperature and humidity in natural infestations. 

2) Determine the minimum and maximum distances from the host that 

harbourages naturally occur. 

3) Look for patterns in the spatial distribution of harbourages, relative to the host. 
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4) Identify aspects of behaviour and/or ecology that have direct relevance to the 

question of “what drives dispersal in bedbugs?”. 
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2.2 Methods 
 

All field studies were conducted in conjunction with D. Cain (Bed-bugs Ltd.). D. 

Cain is a former research biologist, with a background in molecular biology, who set up 

the first pest control company in the UK that specialises solely in the eradication of 

bedbugs. Although he no longer has direct ties with academia, he is internationally 

considered to be an expert in the field of bedbug behaviour and control. 

Cain was asked to contact me when multiple adjacent infested dwellings had been 

identified. This is a good indication that the bedbugs are actively dispersing from one or 

more dwellings, as the probability of independent adjacent infestations is extremely 

small. Reliance on a pest control officer (Cain) for access to infestations typically gave 

me less than 48 hours notice and a window of approximately 30-60 minutes within 

which to collect data and samples before treatment to eradicate the infestation began. 

For each infestation the abiotic conditions of the room were recorded and a scale 

plan of the premises was constructed, showing the nighttime location of the host, 

bedbug harbourages and any other key features that might influence the ecology and 

behaviour of the bedbugs. The population size of the bedbugs at each infestation was 

estimated and where it was known, the duration of the infestation was also recorded. 

However, this can be highly subjective, as people often do not notice the presence of 

bedbugs until the infestation is well established (pers. obs.). 

If dispersal from the infestation was known to have occurred, this was noted, and 

where possible, neighbouring premises were surveyed so that comparisons could be 

made between recently colonised and more established infestations within the same 

building. 

As well as marking the locations of the harbourages on the plan, the nearest and 

furthest harbourages were identified. For these harbourages the minimum distance a 

bedbug would have to travel to reach the host was measured as accurately as possible, 

taking terrain into account. Where bedbug harbourages were easily accessible, all 

individuals from within each harbourage were collected for analysis. Sex ratios and 

proportions of nymphs were established for each of these harbourages. 

 

2.2.1 Statistics 

All means are presented ± 1 standard error. Calculations were performed in Microsoft 

Excel 2008 for Mac. 
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2.3 Case Studies 
 

2.3.1 Case Study 1 

 

Large Victorian house in London W14, split into 5 flats, visited June 2007 

 

The basement flat (Flat A) had no signs of an infestation. The ground floor flat 

(Flat B) had a very light infestation, with only a few bugs, all of which were found in 

the bed. The first floor flat (Flat C) had a moderate infestation that was believed to have 

been present for about six months, with no attempt made to treat it. There were 

approximately 100 bedbugs, all of which were found on the bed frame. The second 

floor flat (Flat D, Figure 2.1) was the most heavily infested flat, estimated to have had 

as many as 50 000-100 000 bedbugs present. It was therefore likely to be the source of 

the infestation. The flat was owned and occupied by an elderly man who horded 

newspapers. The newspapers were kept in stacks 50-80 cm high throughout his house 

(Figure 2.1 & 2.2). The duration of the infestation in Flat D was believed (by the 

occupant) to have only been 6-8 weeks. However, the number of bedbugs in the flat, 

along with the vast number of eggs, exuvia and bedbug faecal material, suggests this is 

likely to be a gross underestimate. The pest control officer (Cain – Bed-bugs Ltd.) 

estimated the duration of the infestation to have been approximately five years. This 

seems equally unlikely, as there was a notable absence of dead bedbugs within any of 

the harbourages, suggesting that the infestation had not persisted for much longer than 

the lifespan of a bedbug (6-12 months). 

The occupants of the top floor flat (Flat E) (where the infestation was first 

reported) were first aware of bedbugs in their flat nine months previously. This was 

successfully treated at the time by a pest control company, but they had recently become 

re-infested, leading to the suspicion that an adjoining flat might be the source of the 

infestation. At the time of my visit the infestation in Flat E had 10-20 bedbugs, all of 

which were found on the bed frame. 
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Figure 2.1 shows the room plan of Case Study 1, Flat D (2nd floor). 
 

 

 

 

 

 

(1 metre) 
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Figure 2.2 (a) shows stacks of newspapers piled up against the side of the bed. The debris on 
the bed is primarily exuvia (cast skins) from the bedbugs. (b) shows one of the newspapers from 
the side of the bed unfolded to reveal many bedbugs, exuvia and faecal material. 

a 

b 
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Table 2.1 summarises the main characteristics of the infestation in Case Study 1, Flat D. 

 
* Host occasionally changed nighttime location from bed to sofa (in lounge) to avoid bedbugs. The 
bedbugs in harbourages on sofa were therefore believed to feed when the host slept on sofa rather than 
travelling 450 cm to the bed. 
 

Case Study 1: Flat D  

duration of infestation 1-5 years 

total number of bedbugs present 50 000-100 000 

dispersal to neighbouring flats yes 

number of hosts 1 (male) 

number of harbourages 800-1000 

minimum harbourage-host distance  < 10 cm 

maximum harbourage-host distance 450 cm (220 cm) * 

temperature in room 26˚C 

relative humidity in room 43 % 
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2.3.2 Case Study 2 

 

Large Victorian house in London NW1, split into 4 flats, visited September 2008 

 

This building was believed, by the tenants, to have been infested for 

approximately 2-3 months. The ground floor flat (Flat A) had a minor infestation with a 

total of eight adults and nymphs found closely associated with the bed. The first floor 

flat (Flat B) was the most heavily infested flat and is also believed to have been the 

initial source of the infestation, which had subsequently spread to other flats in the 

building. A total of 185 live bedbugs were found in Flat B, comprised primarily of 

adults (n=50) and first and second instar nymphs (n=123). The uneven demographic 

suggests that the infestation was in its second to third generation. The adults were likely 

to be the first generation of offspring from the initial coloniser(s), which have since 

reached maturity and produced the large number of small nymphs. Given that a single 

female can produce around 50 eggs in two weeks, and that nymphs hatch and develop 

through each of the 5 nymphal instars at approximately weekly intervals, this would 

make the infestation approximately 10 weeks old. This ties in closely with the estimate 

of infestation duration given by the tenants. A total of n=21 bedbugs were found in the 

second floor flat (Flat C); most of these were small nymphs, all of which were found on 

the frame of the divan-style bed. The top floor flat (Flat D) had one small area of faecal 

traces on the wall but no live or dead bedbugs were found. 
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Figure 2.3 shows the room plan of Case Study 2: Flat D. 

metal bed-frame lacks any 
suitable harbourage space 

harbourage identified by 
fecal staining but all 
bugs had been removed 
by the occupant 

(1 metre) 
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Figure 2.4 shows the room plan of Case Study 2: Flat C with the age structure of the bedbugs 
found within each harbourage in the flat overlaid. 
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Figure 2.5 shows the plan of the room for Case Study 2: Flat B with the age structure of the 
bedbugs found within each harbourage in the flat overlaid. 
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Table 2.2 summarises the main characteristics of the infestation in Case Study 2, Flat 3. 

 

Case Study 2: Flat 3  

duration of infestation 2-3 months 

total number of bedbugs present < 200 

dispersal to neighbouring flats yes 

number of hosts 1 (male) 

minimum harbourage-host distance  40 cm 

maximum harbourage-host distance 245 cm 

temperature in room 19˚C 

relative humidity in room 26 % 
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Figure 2.6 shows the plan of the room for Case Study 2: Flat A, with the age structure of the 
bedbugs found within each harbourage in the flat overlaid. 
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2.3.3 Case Study 3 

 

Apartment in large housing complex in London SW11, visited November 2010 

 

This infestation was identified when several adjoining flats had become infested 

and independently reported the problem. The tenant had been sleeping in the bedroom 

until four months before our visit (Figure 2.7). He had then been taken ill and spent the 

following three months in hospital. On his return to the flat he spent one night in his bed 

and had been severely bitten. Consequently he had slept in his armchair every night for 

the month leading up to my visit. 

 Neither the sofa or the armchairs had legs, so their bottom edges sat directly on 

the floor. This provided a long, continuous crevices at ground level, in which the 

majority of the bedbugs were found. Bedbugs were also found around the cushions of 

the sofa and armchairs (Figure 2.8) as well as crawling over the tenant. 

 There were several large bowls of water on the floor of the flat which the tenant 

used to brush bedbugs into when he caught them walking over himself. These bowls of 

water in conjunction with a general lack of ventilation probably contributed to an 

unusually high ambient relative humidity of around 75%. 
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Figure 2.6 shows the plan of the room for Case Study 3. The armchair marked with “*” is 
where the tenant spent the majority of each day and slept for the month leading up to the visit. 
 

 

 

 

* 

(1 metre) 
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Figure 2.8 shows bedbugs and exuvia (cast skins) around the cushions of the armchair (a & b) 
and the sofa (c) of for Case Study 3. 

a b 

c 
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Table 2.3 summarises the main characteristics of the infestation in Case Study 3. 

 

Case Study 3  

duration of infestation 1-2 years 

total number of bedbugs present 2500-3000 

dispersal to neighbouring flats yes 

number of hosts 1 (male) 

number of harbourages 25 

minimum harbourage-host distance  0 cm 

maximum harbourage-host distance 900 cm (175 cm)* 

temperature in room 18˚C 

relative humidity in room 75 % 
* Host had moved nigh time location from bedroom to living room, to avoid bedbugs. Bedbugs in 
harbourages in bedroom appeared not to have fed since host had moved, and were therefore not travelling  
900 cm to feed. 
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2.3.4 Case Study 4 

 

Sheltered accommodation complex in London S3, visited November 2010 

 

This single story complex comprised eight flats connected by a central corridor. 

Each flat had a sleeping area and a living area with only partial separation between the 

two (Figure 2.9). There was also a separate kitchen and a bathroom in each flat. Flat 2 

was the most severely infested flat with 1500-2000 bugs (Figure 2.9). The majority of 

these bedbugs were located in the divan bed base (Figure 2.10); however there were 

also several hundred bedbugs inside the sofa. Although the occupant did not sleep on 

the sofa, he did spend the majority of each day there. 

The only other flat in the complex with an infestation was Flat 3, on the opposite 

side of the corridor (Figure 2.11). The infestation in Flat 3 was comparatively minor, 

with only 42 bugs found in the entire flat. All of these were dead and most were found 

in the entrance to the flat, which had apparently been treated liberally with an 

unidentified insecticide. 

In addition to the two flats, bedbugs were found in a number of sticky traps, 

which were located in the central corridor and adjacent to the beds in flats 2 and 3 

(Figure 2.11). These sticky traps provide two valuable insights into bedbug dispersal. 

Firstly they confirm that bedbugs actively disperse along corridors, and are not just 

carried passively between flats on clothing, furniture and other movable items. Secondly 

these traps show that all instars and both sexes actively disperse (Figure 2.11). 
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Figure 2.9 shows the plan of the room for Case Study 4: Flat 2. Harbourage  marked with “*” 
is shown in Figure 2.10a (below). 
 

* 

(1 metre) 



 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10a) shows an exposed harbourage of bedbugs with numerous faecal spots and exuvia 
on the wooden internal frame of the divan bed in Case Study 4: Flat 2 (see * in Figure 2.9). b) 
shows a patchy distribution of harbourages along the bed frame in Case Study 4: Flat 2. The 
significance of this patchy distribution in  continuous harbourage space will be discussed in 
Chapters 3, 4 and 5. 

a 

b 
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Table 2.4 summarises the main characteristics of the infestation in Case Study 4: Flat 2. 

 

 

Case Study 4: Flat 2  

duration of infestation 1 year 

total number of bedbugs present 1500-2000 

dispersal to neighbouring flats yes 

number of hosts 1 (male) 

number of harbourages 24 

minimum harbourage-host distance  30 cm 

maximum harbourage-host distance 225 cm 

temperature in room 21˚C 

relative humidity in room 28 % 
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Figure 2.11 shows the age structure of the bedbugs captured in sticky traps in the flats and 
corridors of Case Study 4 overlaid onto a plan of the apartment complex. 

instar 

instar 

instar instar instar 

instar 

(2 meters) 

 

instar 

Flat 2 

 

Flat 3 

 

(1 metre) 
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2.4 Discussion 
 

2.4.1 Abiotic conditions 

A laboratory arena capable of producing biologically meaningful data must 

provide bedbugs with abiotic conditions that reflect those of their natural environment. 

Excessively high or low humidity have been shown to influence the behaviour and 

survival of bedbugs (Kemper 1936, Johnson 1942, Benoit et al. 2007). Temperatures of 

13°C or below have been shown to halt bedbug development and activity (Jones 1930, 

Mellanby 1935), while temperatures of 36°C and above have been shown to damage 

bacterial symbionts resulting in reduced fecundity and mortality (Chang 1974). The 

ambient temperature and humidity of the infested rooms ranged between 18-26˚C and 

26-75% RH respectively (n=4). A laboratory setup with abiotic conditions within these 

ranges therefore reflects the natural conditions under which bedbugs thrive and 

disperse. 

 

2.4.2 Distribution of harbourages and proximity to the host 

To inform the design of the arena it was necessary to determine the scale over 

which bedbugs move to forage. In six of the seven flats that had fewer than 100 

bedbugs, all bedbugs were confined to the bed. The only minor infestation in which the 

bedbugs were not confined to the bed was Case Study 2: Flat D (Figure 2.3, page 39), 

where the frame of the bed was metal and provided no suitable harbourages. This 

suggests that where possible bedbugs seek harbourages close to the host. The more 

peripheral harbourages were only occupied in larger infestations where harbourages 

close to the host were already occupied. Harbourage availability could potentially 

therefore be a limiting resource, which may ultimately influence dispersal. 

For the four infestations where dispersal is believed to have occurred, the 

distances from the furthest harbourage to the host were (from case studies 1 to 4 

respectively) 220 cm, 245 cm, 175 cm and 225 cm. The distance between the furthest 

harbourage and the host was notably smaller in Case Study 3 (Figure 2.6, page 45). 

However, it is possible that dispersal from this flat occurred sooner than it might 

otherwise have done as a result of the host’s 3 month absence. If this is the case, the 

distance from the host to the furthest harbourage in an infestation may be a good 

predictor of the onset of dispersal in situations where the host remains present. Based on 

the distance from the furthest harbourage to the host in the four dispersing infestations, 
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a 3 metre long arena, with an artificial host at one end, should adequately allow within-

infestation movement over a natural scale and distinguish such movement from attempts 

to disperse. 

In all infested flats it was apparent that the bedbugs occupied a patchy distribution 

of harbourages even when continuous harbourage space was available, thus leaving 

unoccupied regions in close proximity to the host. This was particularly apparent in 

Case Study 4: Flat 2 (Figure 2.10, page 50), where good accessibility to the harbourages 

along the bottom of the bed frame made it possible to isolate and count all bedbugs 

from each individual harbourage and accurately identify the boundaries of the 

harbourages (Figure 2.10b, page 50).  In Case Study 4 the average number of bedbugs 

in each harbourage along the bottom of the bed was 30.71±6.56 (n=7) bedbugs, with a 

distance of 7±0.32 cm (n=6) between each harbourage. The adaptive value of restricting 

group size could be to avoid detection by the host or reduce disease transmission 

(Wertheim et al. 2001). Females may also choose to move away from large 

aggregations to reduce sexual harassment from males (Stutt & Siva-Jothy 2001), 

although there was insufficient data from the case studies to examine this directly. 

 

2.4.3 Possible causes of dispersal 

In all four case studies active dispersal is believed to have occurred away from 

the primary infestation to the neighbouring flats. With the possible exception of Case 

Study 3, active dispersal is believed to have occurred while the host remained present. 

The reason for this is unknown. Dispersal is a potentially risky strategy as bedbugs are 

flightless and consequently travel relatively slowly and over limited distances. Since 

bedbugs take less than 10 µl of blood at each feed (Castaneda & Zinsser 1930) and only 

feed approximately weekly (Reinhardt & Siva-Jothy 2007), there is little chance of a 

human becoming a limiting food resource. It is therefore unlikely that food limitation 

drives active dispersal in situations where the host remains present. It is possible that 

dispersal could be driven by lack of harbourage availability. If the energetic cost 

associated with travelling to and from the host limits the maximum distance that the 

harbourage can be from the host, a lack of available harbourages in the vicinity of the 

host could potentially drive dispersal. Alternatively, the maximum distance between the 

harbourage and the host could be limited by the range over which the bedbug can detect 

the host. If the bedbugs cannot detect the presence of the host from the harbourage they 

may either never realise that the host is present and thus never get an opportunity to 
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feed, or have to make multiple potentially dangerous (Usinger 1966) or energetically 

costly (Mellanby 1938) foraging trips in order to establish if there is food available. 

If limited harbourage availability does drive dispersal, this could explain the 

apparent delay in dispersal in Case Study 1 from Flat D (Figure 2.1, page 35) to the 

neighbouring flats. In this Case Study the population of bedbugs was estimated to have 

reached between 50 000 and 100 000 individuals and yet only minor infestations were 

found in the neighbouring flats. Aside from a slightly higher room temperature, the only 

apparent difference between the primary infestation in Case Study 1 and the primary 

infestations in Case Studies 2, 3 and 4, was that the occupant in Case Study 1 had 

horded newspapers throughout his flat and particularly around the bed area (Figure 2.2, 

page 36). These newspapers provided ideal harbourages in close proximity to the host 

and may have allowed the population to get much larger before forcing individuals to 

occupy more of the peripheral harbourages before ultimately dispersed. 

 

2.4.4 Demography of dispersers 

Case Study 4 (Figure 2.10, page 50) provided an unexpected and valuable 

insight into which individuals within the population actively disperse. Specifically it 

revealed that adult males as well as nymphs disperse, and not just adult females as has 

been previously suggested (Stutt & Siva-Jothy 2001, How & Lee 2010b). Wang et al. 

(2010) also used traps in the corridors of an apartment block to catch bedbugs moving 

between apartments, and found that adults were nine times more likely to disperse than 

nymphs. However, they did not establish the sex of the adults or the instar of the 

nymphs that dispersed. How & Lee (2010b) used a laboratory setup comprised of coils 

of plastic tubing to assess the propensity of different instars of the tropical bedbug 

Cimex hemipterus to disperse. Their findings supported those of Wang et al. (2010), 

showing that adults and large nymphs travelled significantly further within the plastic 

tubing than the smaller nymphal instars. They also showed that fed adult females 

travelled furthest (up to 42.3 metres over 120 hrs). This might be predicted, as a mated 

female can potentially found a new infestation as long as it finds a new host. By 

contrast, a dispersing male must locate both a new host and a female to copulate with, 

significantly reducing its chances of dispersal success. However, one problem with How 

& Lee’s (2010b) plastic tubing setup is that it bares little similarity to any natural 

infestation. Test insects have no access to a host, harbourages or other bedbugs. It is 

therefore possible that the differences in the distances each instar travelled actually 
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reflect their physical ability to escape from an unfamiliar, threatening situation, rather 

than giving a true representation of the propensity of each instar to disperse. 

The data from the sticky traps in Case Study 4 (Figure 2.10, page 50) shows that 

males, females and nymphs all actively disperse between the flats via the corridors. Of 

23 bugs caught in the traps in the corridors, eight were adult males, seven were adult 

females and the rest were nymphs. Of the nymphs caught in the corridors the smallest 

was in its 3rd instar. All the rest were either 4th or 5th instars. While this could potentially 

reflect the age structure of the population at the time or the reluctance of small nymphs 

to enter the sticky traps, the traps close to the bed in Flat 2 had more than 161 1st, 2nd 

and 3rd instar nymphs, which comprised more than 75% of the total number of bugs 

caught on the two traps close to the bed. The lack of early instar nymphs captured in the 

sticky traps in the corridors therefore seems to indicate that early instar nymphs do not 

tend to actively disperse from the infestation. This finding supports the findings of How 

and Lee (2010). However, due to the small amount of data available from the case 

studies, it will be necessary to explore this under controlled conditions. 

 

2.4.5 Summary 

In this chapter I have: 

(1) Measured the range of ambient temperatures and humidities in natural 

infestations. 

(2) Established that harbourages can be found 0-2.5 metres from the host 

suggesting that a 3 metre long arena with the host located at one end would be 

sufficient to allow bedbug movement over a natural scale. 

(3) Determined that infestations of less than 100 bedbugs were primarily on the 

bed, while peripheral harbourages were only utilised in the larger infestations.  

(4) Shown that few harbourages were found further than 2-2.5 metres from the 

host, and that the use of these peripheral harbourages seems to tie in with 

dispersal from the infestation, suggesting that harbourage limitation may be an 

important factor in the onset of dispersal. 
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3 Developing a laboratory-based “Infestation 
Arena” 

 

3.1 Introduction 
 

It is rarely feasible to conduct ecological field studies on natural bedbug 

infestations and although bedbugs are periodically found infesting poultry breeding 

houses (Kulash 1947, Axtell & Arends 1990, Lyon & Sprays 1995, Axtell 1999), 

studies of such infestations are unlikely to provide the insight necessary for informing 

control strategies for human infestations. Poultry breeding houses are comprised of 

rows of relatively small adjacent nest boxes, making it easy for bedbugs to move short 

distances between multiple hosts. If an infested poultry breeding house was considered 

to be a single infestation with multiple hosts then it is unlikely that active dispersal from 

the poultry house could be detected at all, as poultry houses tend to be free standing 

without adjoining buildings into which bedbugs could disperse. 

There are practical restrictions on the field data that can be collected from natural 

infestations of human dwellings, because researchers usually rely on pest controllers to 

report active infestations. This means that research access to the infestation tends to be 

limited to the period immediately prior to eradication. In many cases this is restricted to 

less than half an hour (pers. obs.). Consequently field data tends to be limited to 

temporal snap-shots in time and information about the origin and duration of the 

infestations is often vague. For this reason, the factors affecting the distribution and 

dispersal of bedbugs in infestations of human dwellings have received little attention, 

despite the obvious importance of such data for informing bedbug control. 

Wang et al. (2010) conducted one of the only field studies of natural active 

dispersal in C. lectularius (although a similar study was carried out by How & Lee 

(2010a) on the tropical bedbug C. hemipterus). This involved placing pitfall traps in the 

corridors of a 223 unit high-rise apartment building to catch bedbugs (Wang et al. 

2010). This study confirmed that bedbugs actively disperse along corridors in apartment 

buildings and gave insights into the demographic of dispersing individuals (discussed in 
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Chapter 6). However, the study did not attempt to identify the factors affecting dispersal 

or provide any explanation as to why certain bedbugs might actively disperse away 

from an infestation. 

The only feasible approach to studying the ecology of the bedbug and the factors 

affecting its dispersal is to build realistic laboratory arenas to house bedbug infestations 

under conditions that reflect their natural ecology. Some attempts have recently been 

made to look at aspects bedbug biology and behaviour in arena setups (Pfiester et al. 

2009, How & Lee 2010b, Suchy & Lewis 2011). Pfiester et al. (2009) used 15 cm 

diameter glass Petri dishes to assess the tendency of different life stages, sexes and 

feeding states of bedbugs to aggregate or disperse. Pfiester et al. (2009) use the term 

“active dispersal” to refer to any movement away from the original aggregation, even 

where the bedbug moves to form a new harbourage within the vicinity of the same host. 

Consequently their experimental design cannot distinguish movement within and 

between infestations. They therefore infer that the tendency of females, more than any 

other life stage, to sit away from the main aggregation may be an indication that this is 

the primary dispersal stage. However, an alternative explanation for this observation is 

that females move away from aggregations, while staying within close proximity to the 

same host, to reduce unwanted male attention (see Stutt & Siva-Jothy 2001) or to find 

space for egg laying. They may even seek to move closer to the host before laying eggs, 

to reduce the distance that emerging nymphs travel to feed. With a larger arena it may 

be possible to distinguish those bedbugs moving around within an infestation from 

those seeking to disperse from it. However, my field data (Chapter 2) shows that 

bedbugs are often found residing in harbourages up to 2-2.5 metres from the host. This 

suggests that an arena capable of distinguishing bedbugs moving within an infestation 

from those dispersing from it would have to be a minimum of approximately 3 metres 

long with the host at one end and a system for collecting bedbugs attempting disperse at 

the other. 

Suchy and Lewis (2011) used 90 cm x 90 cm arenas to assess the ability of 

bedbugs to locate a source of human breath. While this in an improvement in terms of 

arena size (similar studies have been conducted in 15-20 cm Petri dishes (e.g. Olson et 

al. 2009, Weeks et al. 2010)), it still doesn’t come close to allowing foraging to occur 

over the ranges observed in natural infestations (Chapter 2, pers. obs.). As the bedbugs 

were released in the centre of the arena and the source of the human breath was at one 

corner, the bedbugs started foraging from a point less than 64 cm from the target. Had it 

been possible to conduct the same study in much larger arenas it may have been 
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possible to determine the range over which bedbugs can detect human breath as well as 

establishing whether bedbugs can determine directionality over the full detection range. 

How and Lee (2010) used 20 metre lengths of plastic tubing to look at the 

propensity of bedbugs of different instars and feeding states to move. Their setup had 

the benefit of allowing bedbug movement over a scale comparable to that of a natural 

infestation, and was very easy to observe and measure. However it has little similarity 

to a natural infestation as it lacks a host, harbourages or conspecifics. Although the 

investigators postulate that the distance a bedbug travels along the plastic tubing reflects 

its propensity to disperse, it may alternatively reflect the bedbug’s desire or ability to 

escape from an unfamiliar/hostile situation. 

For the bedbugs to behave naturally in laboratory arenas, they are likely to require 

light and dark phases of the daily cycle; suitable harbourages to hide in during the ‘day’; 

and an artificial host from which they can receive blood feeds during the ‘night’. For 

bedbugs to successfully forage for the artificial host, they are likely to need both CO2 

and temperature gradients (Lehane 2005, Marx 1955 reviewed in Reinhardt and Siva-

Jothy 2007). The scale of the arena is important to distinguish within-infestation 

movement from active dispersal. As harbourages were not found at distances of greater 

than 2.5 metres from the host (Chapter 2), a 3-metre long arena, with the host situated at 

one end, should provide sufficient space for unrestricted distributions of harbourages to 

develop. 

 

3.1.1 Chapter aims  

In this chapter I will: 

1) Develop an arena in which to house and observe laboratory-based infestations 

that exhibit near natural foraging, aggregating and dispersal behaviour. 

2) Compare four different bedbug stock cultures from different origins to test how 

stereotyped the observed behaviours are. 

3) Assess which of the stock cultures behaves most naturally in the infestation 

arena and is therefore most suitable to answer questions on the ecology and 

dispersal behaviour of bedbugs. 
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3.2 Materials and Methods 
 

3.2.1 Insect stock cultures 

We currently maintain four main stocks (populations) of bedbugs. Two stocks 

have been housed in the laboratory for more than 40 years (L1 & B1), and two stocks 

have been collected more recently; one from an infestation in London in 2006 (F4), and 

one from an infestation in Kenya in 2008 (K1). 

Stock cultures are housed in 60 ml plastic containers with gauze lids and fed 

weekly using the protocol of How & Lee (2010b) to facilitate normal development and 

egg production. All insects are housed at 26±1oC with 70±5% RH, and a 12:12 

light:dark cycle. 

 

3.2.2 Laboratory arenas 

Plastic arenas were built to house infestations within the laboratory (Figure 3.1). 

Since harbourages in natural infestations were never found beyond 2.5 metres from the 

nighttime location of the host (Chapter 2, page 53), 3 metre long arenas were built. The 

arenas (and harbourage strips within) were long and narrow. This design allowed the 

bedbugs to distribute themselves in only one dimension, such that each bug’s location 

could be recorded as its distance from the host (which was placed at one end of the 

arena (Figure 3.1)). This was not an unnatural situation, as rows of harbourages were 

often found along the edges of bed frames and skirting boards in the natural infestations 

(Chapter 2, page 34). Consequently it was only necessary for the arenas to be 0.15 

metres wide. A 10 mm wide paper “harbourage strip” was placed down the centre of the 

arena and secured along the long edge, to form a continuous 10 mm wide paper flap 

down the full length of the arena, under which bedbugs would be able to form 

harbourages (Figure 3.1b/c). The paper was slightly bent up to allow bedbugs to crawl 

underneath. Similar harbourages are often found behind peeling wallpaper in natural 

infestations (Figure 3.2). 
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Figure 3.1 shows the arena setup. a) shows a plan view of the arena, connected to a side view 
of the pitfall trap. b) shows a cross section of the arena. c) shows a photograph of the inside of 
the arena with the central paper strip folded back to reveal bedbug aggregations. 
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Figure 3.2 shows a typical bedbug harbourage under a flap of pealing wallpaper. 
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The tops of the arenas were painted with FluonTM to prevent the bedbugs from 

climbing out. The corners were sealed with silicone sealant to prevent the previously 

sharp right-angled corners from providing potential harbourages for bedbugs. The floor 

of the arena was covered with plain wall-lining paper to provide a realistic surface for 

the bedbugs to walk over (Figure 3.1b/c). The lining paper was removable so that it 

could be discarded and the arena cleaned out after each trial to avoid potential effects of 

residual aggregation/alarm pheromones from previous trials. 

In order to study dispersal, it was necessary to provide the bedbugs with a 

dispersal route. A 10 mm wide hole was drilled in the corner of the arena at the end 

furthest from the artificial host (see Figure 3.1a). The hole was fitted with a 30 cm 

length of tubing that lead into a dispersal trap, so that dispersing bedbugs could be 

collected. Early observations of prototype arenas revealed that bedbugs in the tubing 

were easily able to cling to the inside and were reluctant to drop into the trap. 

Consequently the lower 3 cm of tubing was dipped into FluonTM and allowed to dry. 

This prevented the bedbugs from clinging to the inside of the tubing, causing them to 

lose their footing and fall into the trap. 

 

3.2.3 Artificial host 

An artificial host (see Appendix 1) containing heparinised sheep blood was used 

to provide food for the bedbugs, as well as to stimulate the natural foraging and 

returning behaviour.  The artificial host was located at one end of the arena (see Figure 

3.1a). 

In order to alert the bedbugs to the availability of the artificial hosts, the carbon 

dioxide (CO2) concentration in the insectary where the arenas are housed was 

artificially elevated to 13000 ppm over 8-9 minutes and maintained at the elevated 

concentration for a further 60 minutes before being allowed to gradually return to 

ambient. This CO2 concentration is sufficient to trigger foraging (see Appendix 2). 
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3.2.4 Do bedbugs show conserved patterns of harbourage distribution? 

Bedbug harbourages often showed a patchy distribution relative to the host 

(Chapter 2). In Case Study 4 (Figure 2.9, page 49) the average group size in each 

harbourage along the base of the bed was 30.71±6.56 (n=7) with an average distance 

between harbourages of 5±0.32 cm (n=6). If the bedbugs showed the same patchy 

distribution of harbourages in the arena as they did in the field, a direct comparison 

between the harbourage sizes and spacing could be made. If different laboratory stocks 

show variations in patterns of harbourage usage, then comparison with Case Study 4 

could indicate which of the four stocks would be most appropriate for studying aspects 

of bedbug ecology and dispersal in the later chapters. 

In order to simplify the comparison between the distributions of harbourages in 

the arenas to the distributions observed in Case Study 4, I compared approximately the 

same number of individuals. For further simplicity, I only compared the distributions of 

mixed sex cohorts of adults from each of our populations. However, as the bedbugs 

collected from the harbourages in Case Study 4 were comprised of a proportion of 

nymphs, some correction had to be made, since the spatial influence of a 1 mm long 1st 

instar nymph is unlikely to be equivalent to that of an adult. 

Of the bedbugs collected from the sample of harbourages in Case Study 4, 

67.8% were adult. Fifth instar nymphs are approximately the same sizes as adults and 

comprised 10.0% of the total number collected. Of the remaining nymphs, 78.8% were 

in their 1st instar and were thus very small. Therefore, for the purposes of the 

comparison of spatial distribution, 5th instar nymphs were counted as adults and all 

other nymphs were disregarded. This resulted in 116 bedbugs being counted across a 

region of the bed containing 5 harbourages, making an average of 19.83±3.69 bedbugs 

per harbourage. 

For the long-term laboratory stocks (L1 & B1) and the more recently collected 

field stocks (K1 & F4), 3 replicate cohorts of 116 unfed, mixed sex adult bedbugs were 

used. All cohorts were released at the release point (see Figure 3.1a) at the beginning of 

the dark phase of the daily cycle as this is biologically more realistic than releasing in 

the light when dispersal along the arena and harbourage choice may be influenced by 

negative phototaxis. 

Observations were made at days 1, 2, 7, 14 and 21, however no change was 

found in the distribution of bedbugs between days 14 and 21, so all except the day 14 

observations were abandoned. For each observation the distance of every bedbug from 
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the release point was recorded so that frequency distributions could be produced for 

each arena. 

 

3.2.5 Analysis of spatial distribution data 

For each laboratory stock the distribution of bedbugs within each arena was 

plotted as a frequency distribution. The statistical package R was used to calculate the 

pair-wise distances of every bug to every other bug. To establish if bedbugs distribute 

themselves randomly in the arenas, 10 000 random distributions were generated to 

estimate how often the observed distributions could be expected by chance. The 

statistical probability of obtaining each observed distribution by chance was then 

calculated. 

For each of the bedbug stocks where the distribution of harbourages in the arena 

was found to be significantly non-random, the mean and standard error of the number of 

bedbugs per harbourage, the number of harbourages and the distance between the 

harbourages was calculated for comparison with the data collected from the case studies 

in Chapter 2. 
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3.3 Results 
 

3.3.1 Do bedbugs show conserved patterns of harbourage distribution? 

For each of the stock cultures tested, Figure 3.3 shows the frequency 

distributions of the 116 bedbugs in each of the three replicate arenas two weeks after 

their introduction. None of the replicates of the L1 stock had distributions that differed 

significantly from random (see Table 3.1). 

 Stock cultures B1, F4 and K1 were similar in terms of the number of 

harbourages and number of bedbugs per harbourage, but differed in their mean inter-

harbourage distances (Table 3.1). The mean inter-harbourage distance across all 

replicates was 62.61 cm for the B1 stock, but only 17.66 cm and 10.75 cm for the F4 

and K1 stock respectively (Table 3.1). 
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Figure 3.3 shows the frequency distribution of three replicates of 116 mixed sex adult bedbugs from each 
of the four stocks. 
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Table 3.1 shows the descriptive statistics of the distributions in Figure 3.2. # denotes significant p-
values, indicating non-random bedbug distributions. As the distributions of the bedbugs in the L1 strain 
did not differ significantly from randomly generated distributions, no further descriptive statistics were 
calculated. 
 
 

 

stock and 
replicate 

probability of distribution 
occurring by chance 

number of bedbugs per 
harbourage (mean±SE) 

distance between 
harbourages (mean±SE) 

L1, rep. 1 0.2884 - - - - 

L1, rep. 2 0.34 - - - - 

L1, rep. 3 0.3917 - - - - 

L1 means 
 

 - - - - 

B1, rep. 1 0.00010 # 40 ± 11 56.5 ± 28.5 

B1, rep. 2 0.00000 # 29 ± 8.58 58.33 ± 15.84 

B1, rep. 3 0.00002 # 28.75 ± 6.3 73 ± 29.02 

B1 
means 

 

 32.58 8.63 62.61 24.45 

F4, rep. 1 0.00000 # 29 ± 10.58 16.33 ± 4.41 

F4, rep. 2 0.00000 # 29 ± 14.91 20.33 ± 6.96 

F4, rep. 3 0.00050 # 29 ± 9.94 16.33 ± 3.84 

F4 means 
 

 29 11.81 17.66 5.07 

K1, rep. 1 0.00000 # 29 ± 6.62 14.33 ± 5.70 

K1, rep. 2 0.00000 # 28.75 ± 13.59 10.67 ± 3.38 

K1, rep. 3 0.00001 # 23.2 ± 7.82 7.25 ± 1.11 

K1 
means 

 

 26.98 9.34 10.75 3.40 
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3.4 Discussion 
 

No previous study of bedbug ecology has utilised laboratory arenas of a scale that 

reflects the distances observed in natural infestations. The arena setup developed in this 

chapter makes it possible to study the ecology and dispersal behaviour of bedbugs in a 

controlled laboratory setting. 

The first observations of bedbugs in the arena revealed that they establish a patchy 

distribution of harbourages even where the available harbourage space is continuous. In 

natural infestations harbourage locations are often influenced by the patchy availability 

of suitable cracks and crevices. Bedbug-defined spatial patterns of harbourage usage are 

consequently rarely apparent. However, patchy distributions that can’t be explained by 

harbourage availability can be found where bedbugs utilise long, uninterrupted crevices 

such as behind the top edge of a skirting board or the junction between the edge of a 

mattress and a wooden bed frame. The harbourages along the edge of the bed in Case 

Study 4 (Figure 2.9 & 2.10b, pages 49-50) are a good example of a patchy distribution 

of bedbug harbourages in a continuous environment. 

 

3.4.1 Comparison of laboratory stocks 

Many laboratory studies of bedbug ecology and behaviour have been conducted 

on bedbug stocks that have been cultured in the laboratory for 25-30 years (e.g. Olsen et 

al. 2009, Pfeister et al. 2010, Suchy & Lewis 2011). However, my results show that 

stocks derived from different populations and cultured for varying durations in the 

laboratory can differ dramatically in their aggregation behaviour. It is therefore essential 

that behavioural and ecological studies of bedbugs are carried out on biologically 

relevant stock cultures that have spent as little time under unnatural laboratory 

conditions as possible. Similar consideration should be given to behavioural studies of 

other laboratory model organisms where the subjects are maintained in long-term 

cultures rather than collected from natural populations (e.g. Bonsall et al. 2002, 

Strevens & Bonsall 2011). 

The spatial distribution of the laboratory stock L1 did not differ significantly from 

a random distribution, suggesting it may have lost its aggregation behaviour, probably 

as a result of more than 40 years in laboratory culture conditions. Interestingly the 

laboratory stock B1 appears to have retained its aggregating behaviour despite having 

been under identical culture conditions for a similar period. Laboratory stock B1 and 
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field stocks K1 and F4 were all similar in terms of the number of harbourages and 

number of bedbugs per harbourage, but differed in their inter-harbourage distances. The 

average distance between harbourages for the B1, K1 and F4 stocks was 62.61 cm, 

10.75 cm and 17.66 cm respectively. The average distance between the harbourages 

along the side of the bed in Case Study 4 was only 7±0.32 cm (n=6). This suggests that 

the B1 strain would be least suitable, which is perhaps not surprising since this stock 

has been kept under lab culture conditions for several decades. Although the K1 stock 

bears closest similarity to those in Case Study 4, in terms of inter-harbourage distance, 

this strain tends to be reluctant to feed and respond to elevated CO2. Moreover the K1 

strain was originally collected in rural Kenya where ecological conditions of the 

bedbugs are likely to differ dramatically from those found in the UK. By contrast the F4 

strain was recently collected (2010) from a flat in London, making it the most suitable 

strain for use in the laboratory model system to answer questions about the ecology and 

dispersal of bedbugs in the UK. 

 

3.4.2 Implications for control 

The highly consistent pattern of harbourages between replicates of the same 

stock, and (to a slightly lesser extent) between stocks suggests that for a given bed 

design the pattern of harbourages is likely to be highly conserved. This spatial 

predictability should allow insecticidal treatments and traps to be targeted towards very 

specific locations. Bedbug monitors designed to mimic harbourages may also be an 

effective way of establishing if bedbugs are present, as long as they are positioned with 

reference to the bedbug’s natural patterns of harbourage usage. 

 

3.4.3 Summary   

In this Chapter I have: 

1) Developed an arena to house bedbug infestations under semi-natural, 

controlled conditions. I have developed an artificial host, which provides the 

bedbugs in the arenas with a source of nutrition and facilitates the natural 

foraging and returning behaviour. I have fitted the arena with a dispersal route, 

which makes it possible to monitor and collect those bedbugs that choose to 

disperse. 

2) Identified variation in the spatial patterns of harbourage usage between bedbug 

stock populations, which may have implications for the validity of previous 

studies that have been conducted on long-term laboratory stocks. 
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3) Selected stock F4 as the most suitable stock culture to explore the ecology and 

dispersal of bedbugs in the following chapters. The process of evaluating the 

arena’s suitability as a model system for studying bedbug ecology and 

dispersal will continue throughout the following chapters by reference back to 

data and observations from the case studies in Chapter 2 wherever possible. 

 



 70 

 

 

4 The Dynamics of Harbourage Usage 

 

4.1 Introduction 
 

Understanding how new harbourages are formed may make it possible to estimate 

the age of a population, predict the onset of active dispersal and even explore issues of 

relatedness. Understanding, how bedbugs use harbourages also has important 

implications for their control. For example, if bedbugs regularly move between 

harbourages, then only treating the easily accessible harbourages with a long-lasting 

residual insecticide may be sufficient to control a population since individuals in 

untreated harbourages will eventually come into contact with the insecticide. 

Chapter 2 revealed that small infestations tend to be spatially associated with the 

nighttime location of the host, while larger infestations tend to spread out into the 

peripheries of the room. There may therefore be competition for harbourages in close 

proximity to the host. In order to examine this, it is necessary to determine if the same 

patterns can be observed in the experimental arena designed in Chapter 3. 

It is presently unknown if bedbugs return to the same harbourage after each feed. 

It is possible that the bedbugs cycle between different harbourages, utilising the closest 

ones to the host immediately after feeding and then moving to more peripheral, and 

potentially safer, harbourages throughout the course of the feeding interval. 

Alternatively it may be that competition exists between bedbugs for harbourages in 

close proximity to the host (as suggested in Chapter 2). Thus bedbugs further from the 

host may have restricted access to food. Harbourage fidelity could also be adaptive; if 

bedbugs show strong harbourage fidelity, a higher degree of relatedness within, versus 

between, harbourages could result in the evolution of kin-selected traits such as parental 

care. Harbourage fidelity may also have implications for male mating behaviour, as it 

may be necessary for them to visit different harbourages in order to find less related 

females to mate with. 

Aside from the evolutionary implications of harbourage fidelity, there may be 

important consequences for control. Passive monitors have begun to be used to identify 

and control bedbug infestations. Passive monitors are designed to provide suitable 
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harbourages close to the host that can easily be removed and examined. If bedbugs 

show fidelity to one harbourage then an infestation may go undetected until the 

population has increased sufficiently for bedbugs to spill out into the passive monitors. 

However, if bedbugs readily move around between harbourages, one might expect a 

well placed monitor to be occupied quickly, leading to the early detection of the 

infestation. 

 

4.1.1 Chapter aims 

In this chapter I will explore the factors effecting harbourage usage within an 

infestation. I will: 

1) Establish how the number and distribution of harbourages increases with 

population size. 

2) Determine if bedbugs are faithful to particular harbourages. 

3) Determine whether feeding status differs between harbourages 

4) Establish if there is a measurable energetic cost associated with commuting 

from peripheral harbourages to the host. 
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4.2 Materials and Methods 
 

4.2.1 How does the Pattern of Harbourage Use Change with Population 

Growth? 
Chapter 2 revealed that small infestations tend to be localised to the position of 

the host, while larger infestations tend to utilise more peripheral harbourages. To see if 

this pattern of harbourage usage is seen in the laboratory, three replicate arenas were set 

up as described in 3.2.2. At the beginning of each dark phase of the daily cycle the 

artificial hosts were replaced and the CO2 concentration around the arenas was elevated 

as described in 3.2.3. For every 250 bedbugs in the arena, an additional artificial host 

was provided (stacked on top) to ensure that food did not become a limiting resource 

(see Appendix 1 for rationale). Each day, immediately after replacing the artificial 

host(s), 10 mixed sex adult bedbugs from the F4 strain were introduced at the release 

point (Figure 3.1a). 

All bedbugs introduced into the arenas had eclosed into adults within 1 week of 

introduction. Thus the newly introduced bedbugs were younger than those already in the 

arena, thereby simulating natural population growth by reproduction as closely as 

practicable. Although natural infestations are comprised of a mix of adults and nymphs, 

nymphs were not included in my experiments for logistical reasons. Furthermore, any 

nymphs born in the arena, were removed by pooter to limit competition with adults for 

harbourage space and food. 

Each day the number of bedbugs caught in each dispersal trap was recorded. If 

bedbugs were caught in any of the dispersal traps, the traps were replaced to remove 

aggregation pheromones that might attract other bedbugs into it. Once per week the 

location of every bedbug was recorded by its distance from the release point, and 

plotted as a frequency distribution. The trial was terminated on day 50, at which point 

each arena contained 500 adults (less those that had dispersed). 

 

4.2.2 Are bedbugs faithful to particular harbourages? 

To establish if bedbugs showed any fidelity to particular harbourages three 

replicate 3 metre long arenas were used (Chapter 3), with a continuous 10 mm wide 

strip of paper down the centre of the arena to provide suitable harbourage space.  

Five males and five females from the F4 stock were introduced daily for 20 days 

at the beginning of each dark phase, so that harbourages could develop as naturally as 
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possible. An artificial host, with associated heat and CO2 (see 2.2.3), was also provided 

daily at the beginning of each dark phase to facilitate normal foraging behaviour. On 

day 21 the locations of the harbourages were identified and marked. Harbourages were 

defined as regions of the paper strip where two or more bedbugs reside with a distance 

of less than 1 cm between any individual and its nearest neighbour. All bedbugs were 

then removed from the harbourages and isolated. Any dead individuals, or individuals 

found not to be in a harbourage, were also removed. 

All bedbugs from each harbourage were marked, according to the harbourage 

they came from, using quick drying enamel paint (Humbrol Enamel, Hornby Hobbies 

Ltd., UK). As soon as the paint had dried, all bedbugs were returned to their 

harbourages. A glass barrier, assembled from four glass slides was placed around each 

harbourage to encourage bugs to resettle in the harbourage from which they had been 

removed. The glass barrier was removed after 24 hours, and feeding resumed at the start 

of the following dark phase. 

After 21 days, the glass barriers were replaced in the same locations as they had 

previously been. All individuals in all harbourages were then removed and their sex and 

colour recorded. Any individuals found not to be in one of the previously defined 

harbourages were removed separately and their locations recorded. 

 

4.2.3 What is the Energetic Cost of Commuting from Peripheral 

Harbourages? 
Bedbugs consume approximately five times their weight in blood during a single 

feed (Johnson 1937). It is therefore likely that the return journey, when the bedbug is 

full of blood, is energetically costly, at least compared to the outward journey 

(Mellanby 1938). As the distance from the host to the harbourage increases, the net 

benefit of the foraging trip will decline. This could potentially explain why harbourages 

appear to be limited to a maximum distance of 2-2.5 metres from the host (see Chapter 

2), and potentially explain what drives bedbugs to disperse (i.e. limited harbourage 

availability within a cost-effective range of the host). 

To establish whether there was an energetic cost of travelling over the distances 

encountered in natural infestations, a cohort of 60 adult female bedbugs from the F4 

strain were assigned randomly to one of three treatments: walk then feed; feed then 

walk; feed only (control). As a metric for energetic cost, the number of eggs produced 

by each female was recorded over the following week, along with egg length for a 

random sample of five eggs from each clutch. To control for large between-individual 
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variations in weekly egg number, individuals were grouped into threes according to 

their egg production prior to the start of the experiment, and then split randomly across 

the treatments. This was achieved by establishing the mean weekly egg numbers for 

each individual, based on a three-week lead-in immediately prior to the start of the 

experiment. During this lead-in the females were fed but prevented from walking. This 

was achieved by housing them in isolation in flat-bottomed 96-well tissue culture plates 

(Scientific Laboratory Supplies Ltd.: MIC9036). Since each well had a diameter of 6.5 

mm (only slightly greater than the length of a fed female bedbug), the movement of the 

bedbugs within the wells was restricted. The same plates were used to house the 

bedbugs individually throughout the experiment. The mean weekly egg numbers for 

each individual were ranked and then grouped into threes sequentially. Within each 

group the individuals were then assigned randomly across the three treatments by dice 

roll. 

So that the females remained fertilised throughout the duration of the experiment 

they each received a 60 second copulation immediately after the first feed. This has 

been shown to standardise the amount of ejaculate received and be sufficient to 

maintain full fertility for more than 5 weeks (Stutt & Siva-Jothy 2001, Reinhardt & 

Siva-Jothy 2007). 

Those bedbugs required to walk were placed into a paper-lined 60 cm x 80 cm 

arena during the light phase of the daily cycle. Because no harbourage was provided, 

and because bedbugs are photophobic (Usinger 1966), they actively walked about 

searching for somewhere to hide. To control the distance the bedbugs travelled they 

were each followed around with a digital opisometer (map measurer). They were each 

required to walk 6 metres (slightly further than the maximum distance likely to be 

encounter in a natural infestation). Once each bedbug had walked the required 6 metres 

it was removed from the arena and replaced into the 96-well plate. 

The treatment was carried out weekly over 5 successive weeks and the eggs 

were removed immediately prior to each treatment. The eggs from the first two weeks 

were discarded to give time for any energetic costs to be manifest and for egg numbers 

to stabilise. Thus a mean egg number and egg size was produced for each individual 

based on the egg clutches from weeks 3, 4 and 5. 
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4.2.4 Does the proximity of the harbourage to the host effect the feeding 
status of the bedbugs within? 

Even without measurable energetic costs associated with travelling, travelling is 

likely to increase exposure to predators (Reinhardt & Siva Jothy 2007), sexual 

harassment (Stutt & Siva-Jothy 2001), or even detection by the host (Reinhardt & Siva 

Jothy 2007). Bedbugs in the peripheries of the infestation may therefore have a lower 

optimum feeding frequency compared to bedbugs living adjacent to the host, resulting 

in a lower fecundity. The mean feeding frequency was established from the current 

feeding status of a sample of the individuals within the infestation using the protocol of 

Reinhardt et al. (2010). 

Following on from the experiment in 4.2.2, a photograph was taken of every 

individual on day 21 after marking (the same day that they were removed from the 

arenas for assessment of harbourage fidelity), using an image analysis setup (camera: 

Micropublisher 3.3 RTV, Q Imaging, USA, with software: Image-Pro Plus 5.1.2, 

Mediacybernetics, USA) for analysis of feeding status.  

 

4.2.4.1 Analysis of feeding status 

The abdomen length of each individual was measured from the images using 

image analysis software (ImagePro Plus 6.2.1). Pronotum width was also measured to 

correct for body size as this does not change size when the bedbug feeds and 

subsequently digests it food. The ratio of abdomen length to pronotum width changes 

predictably over time as the bedbug digests its blood meal. Using Figure 4.1 (modified 

from Reinhardt et al. 2010) the abdomen length : pronotum width ratio of each 

individual was converted into days since feeding. As most of the change in body size 

occurs in the first six days after feeding, it becomes more difficult to assess the time 

since feeding after the sixth day (pers. obs.). For this reason feeding status was recorded 

as days since feeding to the nearest day for the first 5 days and then as ‘6 days or more’. 
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Figure 4.1 shows the decrease in abdomen length : pronotum width ratio over time at 26˚C. The 
formula of the polynomial cubic fit was: Y = 3.0576 + (−0.0096 ∗ t) + (4.0E-05 ∗ t2) + (−6.E-08 
∗ t3), where t is time (number of days since last blood meal)(adapted from Reinhardt et al. 
2010).  
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4.2.4.2 Propensity of unfed bedbugs to feed 

To establish whether unfed bedbugs would feed if given the opportunity, all 

bedbugs from the “6 days or more” feeding category were removed from the arena at 

the end of the experiment and offered food. This was achieved by placing groups of up 

to 100 individuals into small paper-lined arenas (L:W:H, 25:15:10 cm) with an artificial 

host on a heat mat. The number of fed individuals was scored after 1 hour. 

 

4.2.5 Statistical Analysis 

The effects of harbourage space availability (number of harbourage strips) on (1) 

the rate of new harbourage acquisition and (2) the rate of increase of the maximum host-

harbourage distance were analysed using generalised linear mixed models (GLMM) 

using the lmer function contained within the lme4 and matrix packages in R. Models 

were fitted using Poisson and Gaussian error structure respectively. Replicates of each 

arena setup were included as a random effect. Minimum adequate models were derived 

using backwards, stepwise procedures to remove non-significant effects. The effects of 

harbourage availability on dispersion time were analysed using two-sample weighted 

log-rank test contained in a R package “surv2sample”. Both models were checked for 

normality using plots in R (Residuals vs Fits and Normal Q-Q). 

Fidelity was assessed at two levels; 1) harbourage fidelity - the number of 

bedbugs found in exactly the same harbourage after 21 days, presented as a percentage 

of the total; and 2) local fidelity – the tendency of bedbugs to return to the same area 

after feeding, but not the same harbourage presented as a linear regression between the 

initial location (x-axis) and the final location (y-axis) of any individuals not found in the 

same harbourage after 1 day. A significant positive linear regression between the initial 

and final locations of individuals that left their original harbourages would be evidence 

for fidelity to the locality of their original harbourage. 

Mixed-model nested ANOVAs were used to test the significance of the null 

hypotheses that the energetic cost of walking has no effect on either the number or size 

of eggs produced. To prevent the large inter-specific variation in weekly egg output 

from masking any potential treatment effects, individuals were grouped into threes 

according to their mean weekly fecundity based on a three week lead-in. Each group 

was then split randomly across the treatments and group was used as a factor, nested 
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within treatment, in the model. Both models were checked for normality using plots in r 

(Residuals vs Fits and Normal Q-Q). 

Chi-square contingency table was used to test the null hypothesis that the feeding 

status of bedbugs is unaffected by their location in the arena. Because expected values 

were too low, feeding statuses 1 to 5 were combined. This resulted in less than 80% of 

expected values falling below 5 and no expected values falling below 2.6 in any of the 

three replicates. 
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4.3 Results 
 

4.3.1 How Does Harbourage Use Change with Population Growth? 

Figure 4.1 shows the spatial distribution (recorded weekly) of all bedbugs in the 

three replicate arenas. There was a significant positive correlation between harbourage 

number and population size (GLMM with Poisson error, F6,14=20.27, p<0.001, Figure 

4.2). There was also a significant positive correlation between the maximum host-

harbourage distance and population size (GLMM with Gaussian error, F6,14=118.39, 

p<0.001, Figure 4.3). This supports the field observations that small bedbug populations 

are localised in the immediate vicinity of the host, while peripheral harbourages are 

only utilised as the bedbug population increases. 

 

4.3.2 Are Bedbugs Faithful to Particular Harbourages? 

Of the 200 bedbugs initially present in each of the three arenas 194, 186 and 192 

(for arenas 1 to 3 respectively) were still alive and occupying harbourages after 21 days. 

Of these individuals 188, 183 and 187 (for arenas 1 to 3 respectively) were occupying 

the previously defined harbourages after a further 21 days. 

Figure 4.4 shows the frequency distribution of the bedbugs within each arena 21 

days after the bugs had been marked with paint. The pie charts represent the proportion 

of bedbugs of each colour occupying each harbourage. The “harbourage fidelity” for 

each replicate (i.e. the proportion of bedbugs found in exactly the same harbourage after 

21 days) is presented in Figure 4.5. The mean “harbourage fidelity” across the replicates 

was 40.67±1.56% (n=3). 

Figure 4.5 shows the initial location plotted against the final location of every 

bedbug that left the harbourage, for each of the three replicates. There was only a 

significant positive correlation between the initial and final location of the non-

harbourage faithful bedbugs in Replicate 1. This suggests that some fidelity to the 

locality of the original harbourage exists. However the low R2 value of 11.9% suggests 

that the proportion of individuals that moved to nearby harbourages was relatively 

small. 
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Figure 4.1 shows the change in distribution of bedbugs with population growth for three 
replicate arenas.  
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Figure 4.2 shows a significant increase in number of harbourages with population size for each 
of the three replicate arenas (GLMM with Poisson error, F6,14=20.27, p<0.001). Error bars 
represent 1 standard error,  n=3 at all data points. 
 
 
 
 

 
 
 
Figure 4.3 shows how the distance between the artificial host and the furthest bedbug in a 
harbourage increases with population size (GLMM with Gaussian error, F6,14=118.39, p<0.001). 
Error bars represent 1 standard error,  n=3 at all data points. 
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Figure 4.4 shows the frequency distribution of bedbugs in the three replicate arenas. Pie charts 
indicate the proportion of bedbugs of each colour in each harbourage. Colour marks along the x-
axes indicate the colours assigned to all bugs in each corresponding harbourage at t0. 
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Figure 4.5 shows the initial distribution of non-harbourage faithful individuals (x-axis) against 
the final distribution of non-harbourage faithful individuals (y-axis) for the three replicates. 
There was a significant linear correlation between the initial and final locations in Replicate 1, 
but not in Replicates 2 or 3. Harbourage-faithful individuals were not included in the analysis, 
but the percentage of harbourage faithful individuals is presented against each replicate for 
reference. 
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4.3.3 Does the proximity of the harbourage to the host affect the feeding 

status of the bedbugs within? 
Figure 4.6 shows the variation in feeding status across the harbourages for the 

three replicate arenas. Bedbugs nearest the host were significantly more likely to have 

fed in the past 5 days (χ2 (Contingency Tables)=84.79, 92.42, 55.34 respectively; df=8, 

6, 7 respectively; all p values < 0.00001). 

 

Propensity of unfed bedbugs to feed 

All bedbugs in the “6 days or more” feeding category (115.67±6.94, n=3) were 

moved to a small arena and given access to an artificial host. Within 1 hour 96.4% had 

fed to repletion, suggests that the low feeding status of the bedbugs in the peripheral 

harbourages did not reflect a negative appetitive state. 
 
4.3.4 What is the Energetic Cost of Commuting from Peripheral 

Harbourages? 
There was no effect of walking 6 metres on the number of eggs produced 

(Mixed-model nested ANOVA: F2, 59=0.036, p=0.965) or on the size of the eggs 

produced (Mixed-model nested ANOVA: F2, 59=0.157, p=0.855) for either recently fed 

or unfed bedbugs, suggesting that the energetic cost of commuting between peripheral 

harbourages and the host is unlikely to constrain the maximum host-harbourage distance 

or explain why bedbugs in peripheral harbourages tend to be unfed. 
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Figure 4.6 shows the proportion of bedbugs of each feeding status in each harbourage. Feeding 
statuses 1 to 5 denote individuals that fed 1 to 5 days ago respectively. Feeding status 6 denotes 
individuals that fed 6 or more days ago. 
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Figure 4.7 shows the percentage of bedbugs in each harbourage that had fed in the past 5 days. 
There was a highly significant effect of the location of the harbourage on the proportion of 
occupants that had fed in the previous 5 days (χ2 (Contingency Tables)=84.79, 92.42, 55.34 
respectively; df=8, 6, 7 respectively; all p values<0.00001). 

distance along arena (cm) 

%
 o

f i
nd

iv
id

ua
ls

 th
at

 fe
d 

in
 p

as
t 5

 d
ay

s 



 87 

4.4 Discussion 
 

4.4.1 Effect of population size on number and distribution of harbourages 

Figures 4.1, 4.2 and 4.3 demonstrate that bedbugs occupy harbourages close to the 

host first, and spread out into the peripheral harbourages as the infestation develops. It 

is not clear why bedbugs have a preference for harbourages close to the host but still 

retain a patchy distribution, leaving regions of unoccupied harbourage space in 

relatively close proximity to the host. This suggests that there is some benefit of 

aggregation that is limited by a density-dependent effect that eventually causes the costs 

of aggregation to outweigh the benefits (Pulliam & Caraco 1984, Wertheim et al. 2005).  

Siljander et al. (2008) observed that when aggregation pheromones were supplied 

in higher concentrations, aggregated bedbugs quickly dispersed, leading the authors to 

conclude that the same chemicals could act as an alarm pheromone above a threshold 

concentration. If aggregation pheromones are continually produced while the bedbugs 

are present in the harbourage, a high density of bedbugs may eventually raise the 

concentration of aggregation pheromone, making it unattractive or even repellent to 

approaching bedbugs. This density dependent feedback on harbourage size could 

potentially provide a proximate mechanism capable of controlling harbourage density, 

however, it does not provide an ultimate explanation. 

Aggregating bedbugs have been shown to benefit from enhanced water 

conservation giving them greater resistance to dehydration compared to solitary 

individuals (Benoit et al. 2007). It is possible that the same mechanism could be 

responsible for restricting the maximum group size as high humidity can promote 

bacterial and fungal growth (Kemper 1936). If this were the case one might expect 

harbourage size, number and spacing to be influenced by microclimatic humidity. 

Alternatively limiting the size of aggregations may help reduce the likelihood of being 

discovered by the host, or even reduce the spread of bedbug pathogens. 

 

4.4.2 Fidelity of bedbugs to particular harbourages 

It was important to see if bedbugs show fidelity to particular harbourages or 

localities as this has implications for relatedness and a range of associated issues. More 

than 40% of bedbugs were found in the same harbourages after 21 days. 

Fidelity of bedbugs to the locality of their original harbourage was assessed by 

correlating the initial and final locations of all individuals that moved away from their 
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initial harbourage. A significant positive correlation between the initial and final 

locations was only found in one of the replicates suggesting that bedbugs that move 

away from their initial harbourage tend not to move to the nearby harbourages more 

than would be expected by chance. Even in the replicate where a significant positive 

correlation between the initial and final locations was identified, the low R2 value 

(11.9%) suggests that only a small proportion of individuals actually showed fidelity to 

the locality of their original harbourage. 

One limitation of the experimental design was that it was only possible to assess 

harbourage fidelity at a single time point, because identifying the colour code of each 

bedbug involved removing them from the harbourages. It is likely that harbourage 

fidelity, or lack thereof, is a function of time, but without additional time points, we 

cannot infer anything about this dynamic. 

These results suggest that bedbugs are, to some extent, faithful to specific 

harbourages. However, true harbourage fidelity implies that the bedbugs leave their 

harbourages to forage and then return to their original locations after feeding. It was 

therefore necessary to examine the feeding status of the bedbugs within each 

harbourage for evidence that they had left and then returned. 

 

4.4.3 Variation in feeding status between harbourages 

There was a clear negative relationship between feeding status and distance from 

the host (Figure 4.7). Approximately 60-80% of the bedbugs in the harbourages 

adjacent to the host had fed in the past five days, while the majority of bedbugs in 

harbourages further than 50 cm from the host had not fed for at least 6 days. One 

limitation of using body size as an estimate of the duration since the last feed is that 

after the first 6 days (at 26ºC) there is little additional shrinkage. It is therefore 

impossible to determine if the bedbugs in the harbourages that hadn’t fed in the past 5 

days had in fact fed during the first 2 weeks after being marked. However it seems 

highly unlikely that successful foraging of bedbugs in the peripheral harbourages was 

occurring in the first two weeks of the trial but then ceased for the week immediately 

prior to recapture and analysis of feeding status. 

A limitation of the laboratory arena is that the artificial host is considerably 

smaller than a natural host. It is therefore possible that the range over which the 

bedbugs are able to detect the artificial host is shorter than the range over which they 

are able to detect a host in a natural infestation. Host detection range could influence the 

feeding status of bedbugs within harbourage if, for example a bedbug is unable to detect 



 89 

the presence of the host from within its harbourage, it may never receive the cues 

necessary to trigger foraging. Further fieldwork is needed to look specifically at the 

feeding status of bedbugs in harbourages at different distances from the host. 

Even if the feeding status of bedbugs in harbourages is influenced by the range 

over which the bedbugs can detect the host and the detection range is reduced in the 

arena setup, this should not influence the qualitative result that feeding status is higher 

nearer the host. Assuming the observed variation in feeding status is not an artefact of 

the arena setup, there are two possible biological explanations for the observed 

distribution. Firstly, it may be that within a single feeding cycle, bedbugs move between 

harbourages. There are several reasons why this could occur. It may be that a bedbug in 

the peripheries of the infestation locates and feeds on the host, and then hides in the 

nearest established harbourage. Freshly fed bedbugs move relatively slowly and freshly 

fed females in particular are vulnerable to male harassment (Reinhardt et al. 2009), so it 

would be in the interests of the individual to find a harbourage as quickly as possible. 

Once the blood meal has been partially digested, the bedbug might then benefit by 

moving further away, for example, to avoid aggression from conspecifics, detection by 

the host, or to find a suitable space for egg laying. An alternative explanation for the 

skewed distribution of feeding status may be that only the bedbugs in those harbourages 

closest to the host have regular opportunities to feed. This could therefore generate 

competition for access to the high quality harbourage resources (i.e. those close to the 

host). However, I have never observed aggression between bedbugs (over >10 years) 

and it has never been reported, although it is possible that the “resident always wins” (as 

suggested by Maynard Smith & Parker 1976 and demonstrated by Davies 1978). If it is 

difficult to displace a resident bedbug from a harbourage and harbourages tend to be 

abundant, then aggression may never evolve.  

The variation in feeding status, and specifically the lack of recently fed 

individuals over most of the length of the arena, combined with the data on harbourage 

fidelity (4.3.2), suggests that the majority of bedbugs in harbourages beyond 50 cm 

from the host do not return to the same harbourages after feeding. Fidelity to 

harbourages appears to be a consequence of bedbugs failing to leave the harbourages 

over the 21 day period, rather than returning to the same place after foraging. 

 

4.4.4 Energetic cost of travelling 

It is not known why bedbugs in peripheral harbourages do not feed regularly. One 

explanation is that the cost of travelling greater distances to and from the host 
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outweighs the nutritional benefit. There are several potential costs of long foraging 

trips, which are not mutually exclusive. Firstly, females outside harbourages are at 

greater risk of being traumatically inseminated by males, especially when returning 

from the host, when their distended abdomens restrict their ability to escape (Reinhardt 

et al. 2009), and high male-imposed mating rates have already been shown to be costly 

to females (Stutt & Siva-Jothy 2001). Any time spent out of the harbourage also 

increases exposure to predators such as spiders and discovery by the host (Reinhart & 

Siva-Jothy 2007). Lastly, there must be some energetic cost of travelling, particularly on 

the return trip when they are carrying a large blood meal. However, I found no 

measureable energetic travelling cost (in terms of egg number or size) over the distances 

normally encountered in natural infestations, suggesting that this is unlikely to be a 

factor in the decision to not forage. 

An observation from the case studies (Chapter 2) was that harbourages tend not to 

be found further than 2-2.5 m from the nighttime location of the host. The argument for 

the energetic constraint of long foraging trips could also be applied here, but since no 

measurable cost was detected over simulated foraging trips of 6 metres, it seems 

unlikely that energetic constraints could be responsible for restricting the maximum 

host-harbourage distance either. 

 

4.4.5 Implications for control 

No explanation was found for the apparent maximum host-harbourage distance of 

2-2.5 metres found in Chapter 2 (although the energetic cost of travelling can now be 

ruled out). In all infestations where harbourages were found beyond 2 metres, dispersal 

to neighbouring flats was already occurring. Severe infestations tend to develop as a 

result of underlying social issues such as a mentally or physically impaired host, which 

delays the reporting and treatment of the infestation (pers. obs. from 4 severe 

infestations). However, the probability of an infestation going undetected/unreported 

declines dramatically once dispersal to neighbouring flats begins. All the infestations in 

Chapter 2 where dispersal is believed to have occurred were identified and reported, not 

by the tenant, but by neighbours as a result of active dispersal to the neighbouring 

properties. Assuming the probability of dispersal increases as bedbugs are forced to 

occupy harbourages further from the bed then infestations where harbourages have 

formed beyond 2.5 metres may be scarce. The maximum host-harbourage distance 

would therefore tend to be limited by the increasing likelihood of the infestation being 

detected by people in the neighbouring flats. 
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The discovery that feeding status is much higher in harbourages adjacent to the 

host has implications for the use of passive monitors that mimic harbourages. Many of 

these monitors do not trap the bedbugs, but work by providing them with an ideal 

harbourage in close proximity to the host (e.g. BB Alert Passive, MIDMOS Solutions 

Ltd., UK), which can be removed and checked for signs of bedbugs. If the monitors are 

checked regularly they have the potential to prevent an infestation from becoming 

established, particularly if alternative harbourages are limited. However, if the monitors 

are setup but not checked regularly, the bedbugs will benefit from ideal harbourages in 

the vicinity of the host, which could facilitate a higher feeding rates than in the 

monitor’s absence and thus speed up population growth. 

 

4.4.6 Summary 

In this chapter I have shown that : 

1) The number of harbourages increased with population size, retaining a patchy 

distribution of harbourages in continuous space. This process pushes 

harbourages out into the peripheries of the infestation. 

2) Approximately 40% of bedbugs were found in the same harbourages after three 

weeks, suggesting some level of harbourage fidelity exists. However… 

3) Feeding status declined dramatically with distance from the host, suggesting 

that the apparent harbourage fidelity was due to many individuals failing to 

leave the harbourage over the duration of the experiment. This finding also 

raises questions over competition for harbourage resources, although no overt 

conflict has ever been observed. 

4) There was no measurable energetic cost commuting to the host (in terms of 

female fecundity), suggesting that energetic constraints are unlikely to be 

responsible for either the apparent 2.5 metre limit on host-harbourage distance, 

or on the low feeding status of individuals in peripheral harbourages. 
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5 Factors Affecting Active Dispersal 

 

5.1 Introduction 
 

Passive dispersal in bedbugs occurs when individuals are carried accidentally on 

clothes, furniture or other belongings. It has been studied and described by several 

authors (Usinger 1966, Boase 2001, Reinhardt & Siva-Jothy 2007, Kilpinen et al. 

2008). However, active dispersal - where the bedbugs actively move between nearby 

rooms and buildings -  has received relatively little attention (but see Wang et al. 2010, 

How & Lee 2010b – tropical bedbug). Consequently the factors that initiate active 

dispersal from an established infestation are poorly understood, and perhaps as a result 

of this, active dispersal is a major problem in gaining control of bedbug infestations 

(Pinto et al. 2007, Doggett & Russell 2008). 

Chapter 2 demonstrated how the population size at which infestations began to 

disperse varied greatly. One explanation for this could be that with more available 

harbourage space infestations can become larger before bedbugs begin to disperse. In 

Flat D of Case Study 1 (Figures 2.1/2.2, page 35-36), horded newspapers provided 

considerably more suitable harbourage space than was available in any of the other 

infestations. Flat D also had at least 25 times more bedbugs than any of the other 

infestations visited, and yet dispersal to the neighbouring flats had only been apparent 

for a short time. Using the arena setup it is possible to test if harbourage availability 

influences the onset of dispersal by varying harbourage availability and increasing the 

population size until dispersal occurs. 

There are important practical implications of understanding how harbourage 

availability affects bedbug ecology and dispersal. Beds with few available harbourages 

may cause infestations to occupy peripheral harbourages more rapidly and consequently 

be harder to treat. Passive monitors, designed to provide suitable harbourages for 

bedbugs, that can be easily removed and checked, may have the added benefit of 

delaying dispersal to neighbouring rooms or flats. 

Female bedbugs pay a 25% longevity cost, as a result of natural mating rates 

(Stutt & Siva-Jothy 2001), and are most vulnerable to male mating attempts 
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immediately after feeding, as the large blood meal reduces their mobility and exposes 

the region of the abdomen where traumatic insemination usually occurs (Reinhardt et al. 

2009). It has been proposed that female bedbugs might attempt to disperse from 

infestations to avoid unwanted male attention (Stutt & Siva-Jothy 2001, Pfiester et al. 

2009). However, field studies have yet to identify any differences in the natural sex 

ratios that would be expected if females were dispersing in significant numbers. 

Furthermore, Case Study 4 (Chapter 2) showed that both sexes were caught in roughly 

equal numbers on sticky traps located in the corridors of a multiple occupancy dwelling, 

which suggests that both sexes disperse, although the sample size was too small to draw 

firm conclusions. 

As well as dispersing from an infestation, female bedbugs may be able to avoid 

males simply by moving to new harbourages. In this case one might expect to find 

variation in the sex ratios between harbourages. Using the laboratory arena setup I have 

developed, it is possible to test whether female bedbugs disperse in response to the 

presence of males as well as assess if there is any variation in sex ratio between 

harbourages. 

Active dispersal may be an accidental consequence of having to utilise 

peripheral harbourages beyond the range that the host can be directly detected. Direct 

detection of the host by heat, host kairomone(s) and/or CO2 has only been shown over 

distances of up to 1.5 metres (reviewed in Reinhardt & Siva-Jothy 2007). However, 

elevated CO2 has been observed to trigger foraging over several metres in a semi-

enclosed environment where the CO2 concentration was able to build up (see Appendix 

2). Although CO2 and/or other chemical components of breath have been shown to 

provide directional cues to bedbugs, this has only been shown over a distance of  less 

than 65 cm (Suchy & Lewis 2011). It is unlikely that CO2 and other chemical cues 

provides directional information at the peripheries of the infestation, since the 

concentration gradient of these chemicals will decline exponentially with distance from 

the host. Consequently at the peripheries of the infestation, the local gradient in CO2 

concentration is unlikely to be sufficient to indicate the direction of the host to the 

foraging bedbug. It is therefore possible that bedbugs in a harbourage at the peripheries 

of an infestation can detect elevated CO2 due to the presence of the host, begin foraging, 

but in the absence of any detectable directional cues, walk in the wrong direction, 

resulting in an ‘accidental’ departure from the established infestation. In this situation 

one would expect the dispersing individuals to be a random sample of bedbugs from the 

peripheral harbourages rather than individuals in a particular phase of their life cycle. 
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5.1.1 Chapter aims 

In this chapter I will explore factors affecting active dispersal in bedbugs. I will: 

1) Determine whether dispersal is influenced by the availability of space for 

harbourages. 

2) Establish if females disperse to avoid sexual harassment from males. 

3) Look for variation in the sex ratios within each harbourage as an indication of 

within-infestation male avoidance. 
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5.2 Methods 
 

5.2.1 Does Harbourage Space Availability Influence the Onset of 

Dispersal? 
To test the effect of harbourage availability on dispersal, three replicate arenas 

were set up as described in 3.2.3, but instead of a single 10 mm wide harbourage strip 

down the centre of the arena, each arena had two parallel harbourage strips, spaced such 

that the width of the arenas were divided equally into thirds. A second set of three 

replicate arenas was set up as above but with three 10 mm wide paper harbourage strips 

running parallel up the length of each arena, and spaced such that the width of the 

arenas were divided equally into quarters. In all the arenas the artificial host was 

replaced at the beginning of each dark phase of the daily cycle, in conjunction with a 

period of elevated CO2 (see 3.2.3). An additional artificial host was added for every 250 

bedbugs. Immediately after replacing the artificial hosts, 10 mixed sex adult bedbugs 

from a newly eclosed cohort were introduced into each arena at the release point. In 

order that the distributions of bedbugs in the arenas with two and three harbourage 

strips could be compared to the distributions in Chapter 3 (where only a single 

harbourage strip was provided) all the arenas in this Chapter were set up on the same 

day as those in Chapter 3 and populated with bedbugs from the same cohorts. 

The number of dispersed bedbugs was checked daily. However, it was not 

feasible to establish the distribution of all bedbugs for all arenas every week. 

Consequently the weekly distribution of all bedbugs was only established for Replicate 

1 of the double harbourage arenas and Replicate 1 of the triple harbourage arenas. For 

Replicates 2 and 3 of the double and triple harbourage arenas, the number of 

harbourages and distance from the host to the furthest bedbug in a harbourage was 

recorded weekly (in addition to the daily check for dispersers). Dispersal traps 

containing bedbugs were replaced daily to avoid lingering aggregation or alarm 

pheromones from influencing dispersal. 

The experiment was terminated on day 77 when the total number of bedbugs 

introduced into the arena was 770.  

 

5.2.2 Do Males Influence the Onset of Female Dispersal? 
Typically, freshly fed female bedbugs must pass a series of occupied 

harbourages on their return journey following a foraging trip (pers. obs.). Male sexual 
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interest, and the resulting copulations, are therefore likely to increase proportionally 

with the length of the occupied harbourage that the females must pass before reaching a 

suitable, unoccupied space to reside. Male reproductive ‘attention’ will therefore 

increase with population size, despite the sex ratio remaining constant. 

Sexual harassment is unlikely to be the only trigger for dispersal as the field data 

from Case Study 4 (Chapter 2) revealed that males and females, as well as nymphs, 

disperse. However, if sexual harassment is an important factor in driving dispersal, it 

would be predicted that populations without males would disperse later than populations 

where males and females ware both present. To examine whether male bedbugs 

influence the onset of female dispersal, six identical 3 metre long arenas were set up as 

described in 3.2.2 (page 60), with a continuous 10 mm wide strip of paper down the 

centre of the arena to provide potential harbourage space. Five males and five females 

from the F4 stock were introduced into three of the arenas daily at the beginning of each 

dark phase. Into the remaining three arenas, ten females were released at the beginning 

of each dark phase. 

An artificial host, with associated heat and CO2 (see 3.2.3, page 63), was 

provided daily at the beginning of each dark phase (immediately prior to introducing the 

bedbugs) to facilitate normal foraging and returning behaviour. For every 250 bedbugs 

released into the arena, an additional artificial host was added to prevent food limitation 

from influencing dispersal. The number of dispersed bedbugs was recorded daily. Any 

dispersing bedbugs were removed from the dispersal traps and sexed. The dispersal 

traps were replaced daily to remove any lingering aggregation or alarm pheromones. 

The experiment continued until day 55, at which point 550 bedbugs had been 

introduced 

At the termination of the experiment, the number of males and females in each 

harbourage of the mixed sex arenas was recorded to see if sex influenced the patterns of 

harbourage usage. This could indicate within-infestation male harassment avoidance by 

females. 

 

5.2.3 Statistical Analysis 

A Linear Mixed-Effects Models (LME) were used in the statistical package R to 

assess the effect of increased harbourage space availability on the rate of harbourage 

acquisition, and the rate of increase of distance between the host and furthest bedbug, 

with increasing population size. 
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Survival Analysis (Prentice-Wilcoxon's weighted log-rank test) in the statistical 

package R was used to test the effect of increased harbourage space on time to 

dispersal. 

Survival Analysis (Prentice-Wilcoxon's weighted log-rank test) was also used to 

test the effect of male presence/absence on time to dispersal, and a T-test was used to 

compare the final number of dispersers of each sex in the mixed sex arenas. 

A Chi-Square contingency table was used to test the null hypothesis that the 

distribution of bedbugs across the harbourages in the mixed sex arenas is not influenced 

by sex. 
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5.3 Results 
 

5.3.1 Does Harbourage Space Availability Influence the Onset of 

Dispersal? 
Figure 5.1 shows the distributions of all bedbugs in the first replicate of the 

double harbourage strip and triple harbourage strip arenas. As expected, the number of 

harbourages increased with population size (LME, LRT1 = 174.82, p < 0.001), however 

there was no difference in the rate of harbourage acquisition with increasing population 

size between the single, double and triple harbourage strip setups (LME, LRT2 = 1.15, p 

= 0.56) suggesting that harbourage availability does not affect total harbourage number 

or mean group size. 

The distance between the artificial host and the furthest bedbug was used as a 

measure of peripheral harbourage usage. The number of harbourage strips had a 

significant effect on the rate at which the distance increased between the host and the 

furthest bedbug within a harbourage (LME, LRT1= 43.89, p < 0.001, Figure 5.2), 

suggesting that peripheral harbourage use is driven by lack of harbourage space near the 

host. 

Figure 5.3 shows the cumulative number of bedbugs that dispersed from the 

double harbourage strip arenas over time on the same axis as the cumulative number of 

bedbugs, which dispersed from the single harbourage strip arena. Doubling the available 

harbourage space significantly delayed bedbug dispersal by on average 1.67 times 

(Prentice-Wilcoxon's weighted log-rank test; p<0.001, Figure 5.3). A third harbourage 

strip delayed dispersal still further, as no bedbugs had dispersed from the triple 

harbourage arena by the time the experiment was terminated (week 11). These results 

support the field observation that greater harbourage availability delays the onset of 

dispersal. 
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Figure 5.1 shows the change in distribution of bedbugs with increasing population size for rep. 1 of 3 of 
the double harbourage arenas (left column) and rep. 1 of 3 of the triple harbourage arenas (right column). 
For each time point the frequency distributions of bedbugs under each of the parallel harbourage strips are 
combined onto a single set of axes but remain distinguishable by colour. The distributions at weeks 2, 4, 
6, 8 and 10 are not shown. 
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Figure 5.2 shows how the distance between the host and the most peripheral bedbug within a 
harbourage increases with population size, and how the effect of doubling and tripling the 
available harbourage space reduces the rate and which the distance between the host and most 
peripheral bedbug increases with population size. There was a significant effect of population 
size (GLMM, t = 4.30, p < 0.001), number of harbourage strips (t = 17.29, p < 0.001), and the 
interaction between the two (t = 2.51, p = 0.014) on the distance from the host to the furthest 
bedbug. Error bars represent 1 standard error, n=3 at all data points. 
 
 

 
 
 
Figure 5.3 shows the cumulative dispersal of bedbugs from the single harbourage strip arena 
and the double harbourage strip arena. At the 11 week time point, when the experiment was 
terminated, no bedbugs had dispersed from the triple harbourage strip arena. There was a 
significant effect of the number of harbourage strips on the time to dispersal (Prentice-
Wilcoxon's weighted log-rank test; P < 0.001). Error bars represent 1 standard error, n=3 at all 
data points. 
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5.3.2 Does the Presence of Males Influence the Onset of Female 

Dispersal? 
There was no difference in time to dispersal of bedbugs from the female only 

arenas compared to the mixed-sex arenas (P > 0.05; Prentice-Wilcoxon's weighted log-

rank test, Figure 5.4). Furthermore, there was no significant difference in the numbers 

of males and females that dispersed from the mixed sex arenas (T-test, p>0.05), 

supporting the finding from Case Study 4 and suggesting that dispersal is not driven by 

female avoidance of sexual harassment. 

In two of the three replicates, the distribution of bedbugs across the harbourages 

in the mixed sex arenas was influenced by sex (χ2 (Contingency Tables)=25.45, 20.45 

respectively, df=13,12 respectively, 0.025<p values<0.01, Figure 5.5), while in the third 

arena the difference from the null hypothesis was marginally non-significant (χ2 

(Contingency Tables)=24.27, df=13, 0.1<p value<0.05, Figure 5.5) indicating that at 

least in some cases bedbugs select harbourages on the basis of the sex of the resident 

bugs within. This supports the hypothesis that females may select harbourages to avoid 

males. 
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Figure 5.4 shows cumulative dispersal over time for the female only and mixed sex arenas. 
Error bars represent 1 standard error. There was no significant difference in the time to the onset 
of dispersal between female-only and mixed sex arenas (Prentice-Wilcoxon's weighted log-rank 
test, P > 0.05). Error bars represent 1 standard error, n=3 at all data points. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 shows the proportion of males and females in each harbourage for each of the three 
replicates. The Chi-square statistic is presented for each replicate. * denotes replicates where 
the distribution of bedbugs across the harbourages was significantly influenced by sex. 
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5.4 Discussion 
 

5.4.1 Effect of harbourage space availability on dispersal 

The case studies in Chapter 2 suggested that the population size of infestations at 

the onset of dispersal varied considerably. This was attributed to variation in the 

abundance of harbourage space. The data in Figure 5.3 supports this hypothesis, 

showing that increased harbourage space availability in the arena setup did significantly 

delayed dispersal. 

Doubling the available space for harbourages corresponded to a 1.67 fold increase 

in the population size at the onset of dispersal, suggesting that the two harbourage strips 

were not used equally. Data on the relative usage of the different harbourage strips 

within each arena was only available from the first replicate, in which 53% of bedbugs 

occupied the right harbourage strip compared to 47% on the left (viewed from above 

with the artificial host at the top). This is likely to be due to a tendency of bedbugs to 

follow the edges of the arena before turning and crawling under the harbourage strip. 

Since all harbourage strips were attached down the left side and were therefore open 

down the right side, bedbugs walking down the right side of the arena may have found it 

easier to discover/access the harbourages than bedbugs walking down the left side. 

 

5.4.2 Effect of male presence on female harbourage selection and 

dispersal 
Despite the measurable costs associated with natural mating rates (Stutt & Siva-

Jothy 2001), there was no evidence to suggest that female bedbugs made any attempt to 

avoid males through active dispersal. This result supports the findings of Stutt & Siva-

Jothy (2001) and Johnson (1942), who found no difference in natural sex ratios, 

indicating that females were not dispersing in significant numbers to avoid males. 

Pfeister et al. (2009) looked at the propensity of bedbugs to aggregate in a 15 cm 

diameter Petri dish arena. They found that females tended to be found away from 

aggregations significantly more often than males or nymphs. They also found that 

females aggregate more with increased population density, and suggest that females 

were likely to be the founders of new harbourages and that they were likely to aggregate 

together to avoid male harassment. In two of the three replicate arenas I found evidence 

to support these suggestions as the distributions of males and females within the same 
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arena differed significantly, although it is also possible that the difference in distribution 

could be caused by males avoiding females. 

There were some striking differences in the aggregation behaviour of the bedbugs 

in my study and that of the Pfeister et al. (2009) study. Firstly, the mean number of 

bedbugs per harbourage was 3.5±0.20 (n=9) in the equivalent 50:50 sex ratio treatment. 

By contrast the mean number of bedbugs per harbourage for the F4 strain in the arena 

setup was 29±10.81 (n=3)(see Chapter 3, Table 3.1). Pfeister et al. (2009) found that in 

the 50:50 sex ratio treatment 64.4±2.16% (n=9) of individuals were in aggregations, 

while the remaining individuals sat on their own. However, I found that in the arena 

solitary bedbugs were rarely if ever found. 

There are a number of factors that could explain the observed differences between 

the results of Pfeister et al. (2009) and this study. Firstly, the number of bedbugs per 

arena was dramatically higher in my study (10-40 versus ~500). Pfeister et al. (2009) 

show that the number of individuals per aggregation and the proportion of individuals 

that aggregate both increase with population size in the arena (although they attribute 

the effect to population density rather than number of individuals). 

Another factor that might explain some of the differences is that Pfeister et al. 

(2009) use the ‘Harlan’ bedbug strain, which has been in culture since 1973 (e.g. 

Polanco et al. 2011). Chapter 3 showed that bedbug populations can differ dramatically 

in their aggregation behaviour. This was particularly evident in our L1 stock, which has 

been in culture for approximately the same duration as the Harlan strain (see Chapter 1). 

The arena design that Pfeister et al. (2009) used did not provide the bedbugs with 

any kind of harbourage structure for them to hide under or squeeze into. Instead they 

were forced to aggregate on the floor of an upturned Petri dish, which is quite an 

unnatural situation. For example, aggregations may have been more transient as the 

bedbugs may have moved frequently to find a suitable harbourage. Furthermore, in my 

arenas, and presumably in natural infestations, the confines of the crevice seem to 

prevent males from being able to copulate with females (pers. obs.), so once the female 

is in the harbourage, sexual harassment may be minimal. However, because the arenas 

Pfeister et al. (2009) use lack any confined crevices, females may have been exposed to 

unnaturally high levels of sexual harassment from males. This could potentially explain 

why Pfeister et al. found that >35% of their bedbugs were found away from 

aggregations. 

Lastly, all my observations of bedbug distribution and harbourage usage were 

collected during the light phase of the daily cycle. Pfeister et al. (2009) covered their 
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arenas in a coloured filter gel so that the bedbugs behaved as if they were in darkness 

for the duration of the experiment. Bedbugs are photophobic (Usinger 1966) and 

therefore mainly move around at night. It is likely that if I had conducted my 

observations at night I would also have found a greater proportion of individuals away 

from the main aggregations. 

The lack of evidence for females dispersing to avoid males suggests that the costs 

associated with dispersal are likely to be higher than the costs associated with unwanted 

male attention. This would not be surprising as dispersing bedbugs move slowly 

compared to other haematophagous insects, they are also at high risk of predation and 

have no guarantees of finding a new host. The cost of dispersal is likely to be even 

higher for males, since they require both a host and females to mate with, while a mated 

female would have the potential to found a new infestation as long as a new host was 

located. It is therefore surprising that males do actively disperse and even more 

surprising that they appear to disperse at approximately the same rate as females. 

In order to better understand the nature of active dispersal, it will be necessary to 

examine the dispersing individuals to see how they compare in terms of age, feeding 

status and mating status. If active dispersal is an adaptive decision one would predict 

that freshly mated females should be more likely to disperse since they would be best 

able to establish a new infestation than a virgin. 

 

5.4.3 Implications for control 

The findings in this chapter have several important implications for control. 

Firstly, dispersal only occurs as a consequence of increasing population size and lack of 

space for harbourages in the vicinity of the host. This highlights the importance of early 

detection, particularly in environments where harbourage space is sparse. Furthermore, 

it challenges the use of mattress and bed frame encasements (Pinto et al. 2007) and 

cavity fillers (Cain & Strand 2009), which are designed to eliminate potential bedbug 

harbourages, as these could potentially accelerate dispersal. 

Both the laboratory model and the field data suggest that the onset of dispersal 

ties in with the use of harbourages in the region of 2.5 metres from the host (268.7±8.41 

cm (n=3) in the arena setup). It would therefore be prudent to consider any infestation 

with harbourages beyond 2 metres from the host a dispersal risk and take steps to screen 

neighbouring rooms/flats for signs of an infestation. 
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5.4.4 Summary 
In this chapter I have: 

1) Shown that increased availability of space for harbourages delays the onset of 

dispersal from the infestation. 

2) Found no evidence that females disperse to avoid males. 

3) Found some evidence to suggest that females may choose harbourages with 

reduced numbers of males, although the possibility that males may be avoiding 

females could not be ruled out. 
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6 Characteristics of Dispersers 

 

6.1 Introduction 
 

It is not known if a dispersal phase exists at some point in the lifecycle of the 

bedbug. This is know to occur in swallow bugs (Oeciacus vicarius), which annually 

transit into a dispersal phase, waiting around the entrance of the swallow nest for an 

opportunity to climb onto a swallow and disperse with it (Foster & Oikowski 1968, 

Loye 1985, Brown & Brown 2005). For bedbugs however, little is known even about 

which life stages actively disperse from established infestations. Chapter 5 revealed that 

both sexes disperse in roughly equal numbers. This, along with the case studies from 

Chapter 2, contest the commonly held belief that dispersal is primarily a female strategy 

to avoid sexual harassment, and copulatory wounding. 

If a dispersal phase exists in bedbugs, analysis of the dispersed individuals could 

reveal traits that make it possible to predict those individuals within the population that 

are likely to disperse. If certain individuals are predisposed to dispersal, it does not 

necessarily mean that these represent a dispersal phase or that they are best suited to the 

task. Dispersal may be the only option for the older and/or less competitive individuals 

that, for example, are no longer able to compete for harbourages in close proximity to 

the host. 

If no traits distinguish dispersing from the non-dispersing individuals, it is likely 

that no specific dispersal phase exists. If bedbugs do not have a dispersal phase, 

dispersal could instead be a consequence of having to occupy harbourages situated 

beyond the range that they are able to directionally detect the host. This hypothesis is 

supported by the observation from the field work (Chapter 2) and the arena dispersal 

studies (Chapter 5), i.e. that dispersal only occurs once bedbugs are occupying 

peripheral harbourages. 

The “accidental dispersal” hypothesis predicts that dispersing individuals will be 

unfed and hungry. It also predicts that there will be a positive relationship between 

distance from the host and likelihood of dispersal, as the likelihood of being able to 

discern directionality from host cues will decline with distance from the host. Since 
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there is believed to be no difference in host detection ability between the two sexes 

(Suchy & Lewis 2011), the accidental dispersal hypothesis also predicts that males and 

females are equally likely to disperse (a prediction that is supported by the results of 

Chapter 5, which showed that equal proportions of males and females dispersed from 

the mixed sex arenas). 

 

6.1.1 Chapter aims 

In this chapter I will look for evidence for a dispersal phenotype in the bedbug 

by attempting to identify common characteristics that distinguish them from non-

dispersers. I will compare dispersers and non-dispersers for variation in: 

1) Feeding status. 

2) Mating status (using the number of eggs laid without re-mating as a proxy). 

3) Sexual harassment (females only - using copulatory wounding scars as a 

proxy). 

4) Body size. 
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6.2 Methods 
 

6.2.1 General experimental design 

The data collection followed on from the experiment described in 5.2.2, in 

which ten mixed sex bedbugs were released into three replicate arenas (described in 

Chapter 3) daily for 55 days. 

All dispersing bedbugs were removed from the dispersal traps daily, 

photographed dorsally and ventrally with a digital camera (Canon 1D Mk II N with MP-

E 65 macro lens, 68 mm extension tubes and 2x teleconverter), and isolated in flat-

bottomed 24-well tissue culture plates (SIGMA: Z707791). Dispersal traps containing 

bedbugs were replaced daily to prevent lingering aggregation pheromones from 

influencing dispersal. 

At the termination of the experiment in 5.2.2, all harbourages were identified 

and the number of males and females in each harbourage was recorded. In order to be 

able to draw comparisons between the bugs that had dispersed and those that had 

remained in the arena, 10 males and 10 females were selected at random from three 

locations within each arena; the proximal harbourage (nearest the host), the midrange 

harbourage (half way along the distribution of harbourages), and the peripheral 

harbourage (furthest from the host). All selected individuals were photographed dorsally 

and ventrally, and then isolated in flat-bottomed 24-well tissue culture plates. 

 

6.2.2 Feeding status of dispersers 

Given that feeding status varies dramatically between individuals in harbourages 

adjacent to the host and individuals in the peripheries of the infestation, the feeding 

status of the dispersers gives an indication of where they have come from. For example, 

if most individuals have recently fed, this could indicate that dispersal in primarily 

occurring from the harbourages adjacent to the host. However, if dispersal is an a 

consequence of residing in harbourages beyond the range that the host can be detected 

one would expect all dispersing bedbugs to be unfed and from the periphery of the 

infestation. 

The time since feeding was calculated for each disperser from the photograph 

taken on the day of dispersal. This was done using the abdomen length : pronotum 

width ratio as described in 5.2.2, which was modified from Reinhardt et al. (2010). 

Time since feeding was categorised into days from 1 to 5, and then 6 days or more. 
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6.2.3 Mating status of dispersers 

The chances of successfully founding a new infestation are likely to be much 

greater for a recently mated female than a virgin one. This is because a mated female 

only needs to find a suitable host, while a virgin female must also find a male to mate 

with. Consequently, if females are selected to disperse, they would be expected to do so 

after mating. 

As a proxy for the current mating status of the individual, female bedbugs can be 

isolated and fed (a necessity for egg laying, Usinger 1966). The total number of eggs the 

female lays without re-mating and the number of weeks over which the female is able to 

lay fertile eggs is a good indicator of her mating status and therefore ability to found a 

new infestation. 

All dispersed females and all females selected from the arena were fed weekly to 

facilitate egg laying. The eggs were removed at weekly intervals and counted. Females 

were discarded when they did not produce any eggs for two consecutive weeks. 

 

6.2.4 Sexual harassment status of dispersers 

Traumatic insemination produces visible melanised mating scars between the 

sternites in the region of the ectospermalege (Usinger 1966). Since mating scars remain 

visible indefinitely, this was used as a proxy for sexual harassment. If the decision to 

disperse is driven by sexual harassment, one might predict a difference in the number of 

mating scars compared to non-dispersers. 

The number of mating scars might also be expected to correlate with mating 

status, however Stutt & Siva-Jothy (2001) have shown that natural mating rates are far 

above what is required for a female to remain fully fertile. Therefore, if males show a 

preference for particular female phenotypes, there could be large variation in copulatory 

wounding scars with little variation in the number of fertile eggs the female is able to 

lay before re-mating. Wounding scars might therefore be a better predictor of dispersal 

than mating status if dispersal was driven by sexual harassment. 

Once all isolated females had stopped laying fertile eggs for two consecutive 

weeks (see 6.2.3), they were starved to death. This process causes the gut and fat stores 

to shrink out of the way so that light can be shone through the cuticle from underneath 

to visualise the dark, melanised copulatory wounding scars. The area of the abdomen 

containing the spermalege and associated scarring was visualised on a compound 

microscope (Leitz Diaplan, Wild Leitz GmbH, Germany). 
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It is not usually possible to discern individual scars in multiply-mated females, 

as the scarring quickly developed into a large melanised mass. Therefore, the amount of 

scarring was categorised subjectively into three classes: 1) little or no scarring; 2) 

moderate scarring; 3) considerable scarring. 

 

6.2.5 Body size of dispersers 

Chapter 5 revealed that many individuals within the infestation do not feed, 

despite being hungry. One explanation for this is competitive exclusion. Body size is a 

potential factor influencing competitive ability. If larger individuals are able to displace 

smaller ones, a negative relationship between distance from the host and body size 

could be expected. 

Pronotum width was already used as a proxy for body size in 6.2.2 as the 

pronotum width does not change in size when the bedbug feeds (Reinhardt et al. 2010). 

The pronotum widths of males and females that had and had not attempted to disperse 

was therefore compared to see if body size influences dispersal. 

 

6.2.6 Statistical analysis 

The Normal Probability Plot in the statistical package Minitab (version 16.0) 

was used to check for normality in both measures of mating status (egg number and 

laying duration). Since neither data set was normally distributed, the nonparametric  

Kruskal-Wallis test used to see if significant differences exist in the median number of 

eggs laid or the duration of egg laying for females collected from different areas of the 

arenas including those that had dispersed. 

Where the Kruskal-Wallis test revealed significant effects of location on mating 

status, a Kruskal-Wallis Multiple Comparison test (using macro: KrusMC.MAC for 

Minitab 16.0 by Steve Orlich, Minitab Inc.) was used to determine where significant 

differences lay. 

A Chi-square contingency table was used to test the null hypothesis that the 

proportion of females with each class of copulatory wounding was the same across all 

harbourages as well as for the dispersers. Chi-square values were calculated in 

Microsoft Excel 2008 for Mac. 

The Normal Probability Plot in the statistical package Minitab (version 16.0) was 

used to check for normality in male and female body sizes. Bartlett's test was used to 

test for equal variances in the body sizes of the males and females isolated from 

different areas of the arena. ANOVA was used to test for significant differences in the 



 112 

mean body size of male and female bedbugs isolated from different areas of the arenas 

including those that had dispersed. 
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6.3 Results 
 

6.3.1 Feeding status of dispersers 

A total of 146 bedbugs dispersed from the three replicate arenas (44, 47 and 55 

respectively), none of which had fed in at least 6 days. Given that 60-80% of individuals 

adjacent to the host had fed in the past 5 days (see Figure 4.7), this result suggests that 

the dispersers are not dispersing directly from the harbourages adjacent to the host, and 

supports the hypothesis that dispersal occurs from the peripheral end of the arena. 

 

6.3.2 Mating status of dispersers 

Non-dispersing females were isolated from the proximal, midrange and 

peripheral harbourages (relative to the artificial host), for comparison of their mating 

status with that of the dispersers. There was a significant overall effect of location on 

the mating status of females, both in terms of total egg production without re-mating 

(Kruskal-Wallis, H3=66.21, p<0.001, Figure 6.1a) and egg laying duration (Kruskal-

Wallis, H3=59.44, p<0.001, Figure 6.1b). 

As expected (from the feeding status data in Chapter 4) mating status was 

highest in the harbourages closest to the host (Figure 6.1). The mating status of the 

dispersers was lowest and did not differ significantly from that of individuals collected 

from the midrange harbourages, but was significantly lower than that of individuals 

collected from the peripheral harbourages (Kruskal-Wallis Multiple Comparison test, 

see Figure 6.1a & b). Therefore, the dispersing females are among the least suited to the 

task, both in terms of the number of offspring they can produce, and the duration over 

which they can lay fertile eggs without re-mating. These results do not support the 

dispersal phase hypothesis, but do support the accidental dispersal hypothesis. 

Figure 6.2 shows the proportion of females from the harbourages adjacent to the 

host in each mating status class (measured as weeks of fertile egg production), overlaid 

onto a series expected distributions based on fixed weekly mating probabilities. This 

figure suggests that the weekly probability of being mated is around 20-40%.  

 

6.3.3 Sexual harassment status of dispersers 

There was no significant effect of the location from which females were isolated 

on the level of copulatory wound scarring (χ2 (Contingency Tables)=10.2, df=6, 
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p=0.115, Table 6.1). Since mating status is highest in the harbourages nearest the host 

(6.3.2), this result suggests that females may move away from the proximal 

harbourages, towards the peripheries of the infestation. Otherwise, a lower harassment 

status would be expected in the harbourages that midrange and peripheral harbourages 

where mating status was lowest. 

 
6.3.4 Body size of dispersers 

There was no significant effect of harbourage location on body size, for either 

males (ANOVA, F3,154=0.79, p=0.499, Figure 6.3) or females (ANOVA, F3,164=1.84, 

p=0.142, Figure 6.3), suggesting that body size is neither related to harbourage 

occupancy or dispersal. 
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Figure 6.1 shows; a) the significant difference in total egg production from weekly-fed females 
isolated from different areas of the arena (Kruskal-Wallis, H3=59.44, p<0.001), and b) the 
significant difference in the number of weeks over which those isolated females laid fertile eggs 
(Kruskal-Wallis, H3=66.21, p<0.001). Bars with the same letter do not differ at p<0.05 
(Kruskal-Wallis Multiple Comparison test). Error bars represent 1 standard error. 
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Figure 6.2 shows the expected proportion of females of each mating status class (measured as 
duration of fertile egg production) based on a series of fixed weekly mating probabilities. The 
red line shows the actual experimental data for females in harbourages adjacent to the host, 
suggesting that the actual weekly mating probability is approximately 20-40%. 
 
 
 
 
 
 
 copulatory wound scarring level 
location little or no scarring moderate scarring considerable scarring 
proximal harbourage 6 20% 9 30% 15 50% 

midrange harbourage 13 43.3% 8 26.7% 9 30% 

peripheral harbourage 8 26.7% 13 43.3% 9 30% 

dispersed 33 42.4% 26 33.3% 19 24.4% 

 
Table 6.1 is a contingency table showing the frequency and severity of copulatory scarring for 
each location in the arena. Percentages of location (row) totals are presented for each frequency. 
There was no significant effect of location on the level of copulatory wounding of female 
bedbugs (χ2=10.2, df=6, p=0.115). 
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Figure 6.3 shows the body size (pronotum width) of bedbugs isolated from three locations in 
the arena including those that dispersed. There was no effect of location on the body size of the 
bedbugs within (sexes analysed separately, males: ANOVA, F3,154=0.79, p=0.499, females: 
ANOVA, F3,164=1.84, p=0.142). Error bars represent 1 standard error. 
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6.4 Discussion 
 

None of the four characteristics I examined (feeding status, mating status, 

harassment status and body size) varied between dispersers and non-dispersers. 

Dispersers were characterised by their low feeding and mating status, but this is likely 

to indicate where in the arena they dispersed from, rather than indicating a phenotype 

adapted for dispersal per se. 

 

6.4.1 Variation in mating status 

As expected, mating status was highest in the harbourages nearest the host (Figure 

6.1). However, female bedbugs isolated from the midrange harbourages had a 

significantly lower mating status than those in the peripheries, suggesting that bedbugs 

displaced from the harbourages adjacent to the host tend to travel out to the peripheries 

of the infestation, before finding somewhere to settle. 

The mating status of the dispersers is similar to that of the bedbugs in the 

midrange harbourages. This could either indicate that dispersal is primarily occurring 

from the midrange harbourages, or that the dispersers are a subset of the bedbugs from 

the peripheral harbourages that have a lower than average mating status. A colour 

marking experiment similar to 4.2.2 should be carried out to establish where in the 

infestation bedbugs are dispersing from. 

Stutt & Siva-Jothy (2001) observed that under an equal sex ratio, female bedbugs 

are mated 5±3.16 times (n=20) after each blood meal. Since this is approximately 

twenty times higher than is required to remain fully fertile (Stutt & Siva-Jothy 2001), 

one would expect that virtually all of the bedbugs collected from the harbourages 

adjacent to the host should be able to lay fertile eggs for approximately seven weeks. 

However in this experiment only 12 of the 30 isolated females laid fertile eggs for 7 

weeks. Figure 6.2 shows that the observed proportion of females of each mating status 

is in line with that which would be expected by a fixed weekly mating probability of 20-

40%. This is very much lower than Stutt & Siva-Jothy’s (2001) estimate. 

Stutt & Siva-Jothy (2001) established their estimate of weekly mating rate by 

placing five satiated bedbugs of each sex in a 5 cm diameter Petri-dish and observing it 

for 3 days with a digital video camera. In this setup it was neither possible for females 

to move away or squeeze into a harbourage (as no harbourage was provided), which 

may have resulted in an unnaturally high copulation rate. Stutt & Siva-Jothy’s (2001) 
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estimate of five copulations per blood meal could therefore be a better indication of 

male mating propensity than natural mating rates, as their setup did not take into 

account the bedbug’s ecology. 

Reinhardt et al. (2011) looked at the constraints of seminal fluid availability on 

male mating rates and noted that Stutt & Siva-Jothy’s estimate of mating rate may be 

overly high as well, as it does not take into account male recovery time. Reinhardt et al. 

(2011) suggest that 6.5 matings per 17 days may be a more realistic estimate of male 

mating rate, which equates to approximately 2.7 matings per week; only slightly more 

than half the previous estimate, but still much higher than the apparent mating 

frequency calculated from the mating status data in 6.2. 

 

6.4.2 Variation in harassment status 

There was no difference in the number of copulatory wounding scars between 

females isolated from different regions of the arena (including the dispersers). This 

finding was surprising, given that only bedbugs in close proximity to the host feed 

regularly (Chapter 4) and that copulation tends to be associated with feeding (Reinhardt 

et al. 2009). One explanation is that sexual harassment, linked to feeding, in the 

harbourages closest to the host, drives females towards the peripheries. 

 

6.4.3 Variation in body size 
Body size had no effect on the distribution of males or females (6.3.4) suggesting 

that if competitive exclusion is responsible for pushing certain individuals out into the 

peripheries of the infestation, then body size is probably not related to competitive 

ability. An alternative explanation is that the resident always wins regardless of 

competitive ability (see Maynard-Smith & Parker 1976, Davies 1977 and Krebs 1982). 

This situation is normally associated with territory disputes where the cost of elevated 

fighting is high and the benefit of winning is low, or where the resident has more to gain 

than the intruder through better knowledge of the territory. However, bedbugs may 

simply be unable to force a resident out of an occupied harbourage. The harbourage 

residents would therefore be defined solely by the order in which they arrived, and 

would only be subject to change when a resident left the harbourage to forage or, 

potentially in the case of males, look for mates. In this situation one would predict that 

new harbourages would primarily be founded by those individuals that had most 

recently arrived in the arena/infestation, which is supported by the observed pattern of 

mating status (Figure 6.1). 
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6.4.4 Summary 

In this chapter I have shown that: 

1) None of the dispersers were recently fed, suggesting that they are unlikely to 

have dispersed from the harbourages nearest the host. 

2) The mating status of the dispersers was very low compared to the proximal and 

peripheral harbourages, indicating that they are not the individuals within the 

population that would be best able to disperse and found new infestations. 

3) Neither body size or sexual harassment status had any effect on dispersal or 

location in the arena. 
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7   General Discussion 

 

7.1 Introduction 
 

Bedbug research over the past decade has focussed primarily on control, with 

relatively little attention given to understanding the basic ecology and behaviour of this 

ubiquitous pest. However, without an understanding of the fundamental aspects of this 

insect’s biology, control strategies will be poorly informed and thus more likely to fail. 

The aim of this thesis was to develop a laboratory model system and use to study 

bedbug ecology in a controlled environment, so as to unravel questions associated with 

bedbug ecology, focusing particularly on their dispersal. 

 

7.2 Thesis Overview 
 

In Chapter 2 I presented a number of case studies and used them to characterise 

key parameters in a typical bedbug infestation. 

In Chapter 3 I used my observations and field data from Chapter 2 as the basis for 

developing the laboratory arena. This also necessitated the development of an artificial 

host. Trials with the laboratory arena using a variety of different stock cultures revealed 

that bedbugs from different stocks vary in the way they utilise harbourage space. Most 

notably, my long term laboratory culture, stock L1, appeared to have lost its tendency to 

aggregate. Based on these findings, field stock F4 was selected as the most appropriate 

for use in the subsequent research. 

In Chapter 4 I conducted experiments to determine how bedbugs utilised 

harbourage space. These results of these experiments revealed that: i) bedbugs occupied 

harbourages closest to the host first, and spread into more peripheral harbourages as the 

population increased; ii) bedbugs produced a patchy distribution of harbourages in 

continuous space; iii) there appeared to be some level of harbourage fidelity although it 

is likely that this was driven by bedbugs in the peripheries not leaving the harbourages, 
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rather than individuals feeding and then returning to the same harbourage; and iv) 

average feeding status declined dramatically with distance from the host. 

In Chapter 5 I conducted experiments the established which factors influence 

dispersal. The results of these experiments revealed that: i) increasing the availability of 

harbourage space in the vicinity of the host delayed dispersal; ii) contrary to popular 

belief females did not disperse to avoid males; iii) there was some variation in the 

distribution of males and females between harbourages suggesting that some females 

avoided harbourages with too many males or vice-versa. 

In Chapter 6 I compared bedbugs that had dispersed from the arenas with those 

that had not in order to characterise dispersers and potentially identify a dispersal phase. 

I found no evidence for a dispersal phase but dispersers were characterised by their low 

feeding and mating status. Copulatory wounding scars were used as a metric for the 

level of sexual harassment females had received. There was no measurable difference in 

the scarring between dispersed and un-dispersed individuals, providing further evidence 

that females do not appear to disperse as a result of sexual harassment. Body size was 

not a predictor of dispersal. Recording the number of eggs a female is able to produce 

with regular feeding in isolation revealed that the mating rate is highest adjacent to the 

host and lowest in the middle of the distribution of harbourages, with mating rates in the 

peripheral harbourages falling between the two. This could suggest that bugs pushed out 

of the harbourages adjacent to the host tend to move out to the peripheral harbourages. 

 

7.3 Results in the Context of Dispersal Theory 
 

Chapter 5 revealed that harbourage availability (in the vicinity of the host) was by 

far the most important factor influencing the onset of dispersal. Population density in 

the harbourages therefore seems to be the main driving force for dispersal. Density-

dependent dispersal is predicted by many theoretical models (see Poethke & Hovestadt 

2002, Amarasekare 2004a/b, Poethke et al. 2007, Strevens & Bonsall 2011, Nowicki & 

Vrabec 2011 and references therein). But empirical evidence is sparse and inconsistent 

(see review in Lambian et al. 2001, Matthysen 2005, Nowicki & Vrabec 2011 and 

references therein). 

The research presented herein develops a new laboratory system for studying 

dispersal, which allows careful manipulation of population size and structure, as well as 

environmental factors such as food and harbourage resource availability. In natural 
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infestations it is likely that kin show a high degree of relatedness as a result of multiple 

bottle-necks in the population of just one or a few individuals at each colonising event 

of the population’s history. However, in the arena setup it is also possible to manipulate 

the genetic diversity of the population and examine its effects on dispersal. 

Few studies have attempted to document dispersal in species where competition 

is localised and among kin (Lambin et al. 2001), although some examples have been 

found between birds, where one sibling forces the dispersal of the other (see Lambin et 

al. 2001 for review). The empirical data collected from the bedbug laboratory model 

system is therefore valuable for the validation of theoretical models of dispersal. 

Hamilton and May (1977) present simple mathematical models that demonstrate 

that even in temporally stable, patchy environments, avoidance of kin competition can 

favour parents who enforce dispersal of a large proportion of their offspring, even if the 

potential cost of dispersing is high. The assumptions of the models are fairly specific, 

requiring spatially structured populations in stable environments, however these 

assumptions are met perfectly by the bedbug system. Although aggression between 

bedbugs has never been observed (pers. obs. over >10 years), evidence from the mating 

status data collected in Chapter 6, suggests that new arrivals to the infestation 

(potentially including new offspring) tend to be displaced to the peripheries of the 

infestation. While this needs to be examined further, it supports the idea that the parents 

are responsible for the dispersal of their nymphs. 

Gandon (1999) developed a model incorporating: i) the cost of dispersal (0 ≤ c ≤ 

1); ii) the coefficient of relatedness (0 ≤ R ≤ 1); and iii) the cost of inbreeding (0 ≤ δ ≤ 

1). Gandon (1999) used the model to clarify the importance of these three factors in the 

evolution of dispersal, generating predictions about the evolutionarily stable (ES) 

dispersal rate (d*) in different situations.  

For the special case where δ = 0, the ES dispersal rate is described by the 

simplified equation: 

d* = (R – c)/(R – c2) when R > c 

and d* = 0 when R ≤ c. 

(Gandon 1999) 

 

Unpublished data by Otti & Fountain, suggests that the cost of inbreeding 

between siblings of inbred lines of bedbugs is minimal, and only detectable under 

severe starvation stress, making Gandon’s simplified equation (above) appropriate to 

this system. 
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Fountain (unpublished data) also reveals that within an infestation the 

coefficient of relatedness is extremely high (approaching 1), as could be expected given 

that infestations are probably founded by one or few individuals, resulting in extreme 

bottle-necks every time a new population is founded. 

No study has attempted to quantify the cost of dispersal in bedbugs. Given that 

dispersal occurs is the absence of alternative host cues (see previous chapters), it is 

likely that in some situations a dispersing bedbug may take considerable time to find an 

alternative host. Dispersing bedbugs are also likely to be exposed to increased risk of 

predation (Reinhardt & Siva-Jothy 2007) and desiccation (Benoit et al. 2007). In the 

case of nymphs and males, dispersers also need to find conspecifics to mate with for 

there to be any benefit of the dispersal decision. It is therefore likely that the cost of 

dispersal is high, although given the extremely high levels of relatedness, it is likely that 

R is still greater than c, and therefore Gandon’s model predicts that dispersal will 

always occur. 

Gandon’s (1999) model makes no attempt to incorporate ecological factors, which 

are now known to be important in driving bedbug dispersal (Chapter 5). However it still 

manages to provide a compelling explanation for how dispersal can be adaptive in the 

bedbug system: even in a situation where food is apparently unlimited and the cost of 

dispersing is potentially very high, dispersal will remain adaptive as long as the 

coefficient of relatedness is sufficiently high. Dispersal in highly related populations 

can therefore be viewed as a form of altruism to avoid competition between relatives 

(Gandon 1999) and the cost of dispersing is therefore offset by kin selection. Kin 

selection also provides an alternative explanation (to “resident always wins”, see 

Chapter 4) for the lack of aggression and overt competitive behaviour between 

individuals for harbourages adjacent to the host. 
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7.4 Results in the Context of Control Strategies 
 

The bedbug resurgence (Boase 2001, Doggett et al. 2004, Kilpinen 2008 and 

others) combined with (and probably resulting from (Romero et al. 2007)) almost 

universal resistance to the most common classes of insecticides (Doggett et al. 2004, 

Potter 2005, Romero et al. 2007) has necessitated the development of non-chemical 

control products and strategies. These include passive monitoring devices, which 

provide bedbugs with a suitable harbourage in the vicinity of the host that can easily be 

checked and removed if bedbugs are found (Pinto et al. 2007, Cain & Strand 2009), and 

active monitors based on a similar principal but utilising attractants designed to mimic 

either the host or the harbourage (Pinto et al. 2007, Cain & Strand 2009). Other non-

chemical control strategies include mattress encasements designed to eliminate many of 

the cracks and crevices, simplifying the treatment process, and interception/isolation 

devices designed to prevent bedbugs from being able to climb onto the bed (Pinto et al. 

2007). All these products attempt to exploit the bedbug’s natural behaviour and 

ecology, with varying success. Robust empirical studies of bedbug ecology and 

behaviour are therefore critical to the development of successful control products, as 

well as for the evaluation of existing products on the market. 

 

7.4.1 Active and passive monitors 

The fundamental principal of any pest monitoring device is to facilitate early 

detection and thus simplify the treatment process. The success of monitors that mimic 

harbourages is therefore down to their ability to provide a more suitable and attractive 

harbourage than any of the other potentially numerous harbourages present in the room, 

such that the monitor is occupied while the infestation is still extremely small. 

Monitoring devices that only start to catch bedbugs once the infestation has developed 

and begun to disperse are of little value. The results from Chapter 3 show that in small 

infestations harbourages are closely associated with the host. It is therefore essential that 

harbourage mimicking monitors are placed as close to the host as is feasible. 

Harbourage-mimicking monitors placed under the bed (as is often the case) are only 

likely to catch bedbugs once the harbourages on and around the bed frame and mattress 

are saturated and bedbugs are pushed out towards the peripheries of the infestation.   

Chapter 4 revealed that bedbugs in harbourages closest to the host feed with a 

much higher frequency than those in the peripheries. Since a well placed harbourage-
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mimicking monitor would be situated close to the host, it is essential that it is checked 

regularly as the monitor could contribute to an increased population growth rate. 

 

7.4.2 Bed isolation / interception devices 

A variety of products exist to try and prevent bedbugs from gaining access to the 

bed. These tend to either be pitfall traps around the legs of the bed or sticky tapes that 

bedbugs can’t cross and/or get stuck to. As long as no alternative route exists by which 

bedbugs can gain access to the bed, then these devices have the potential to be 

successful as a preventative measure. If the devices are put in place during an 

infestation, they also have the potential to reduce the spread of bedbugs into 

harbourages away from the bed and potentially therefore reduce active dispersal. The 

success of these devices is dependent on their ability to prevent bedbugs crossing as 

well as the elimination of any alternative route (for example, up the wall). 

 

7.4.3 Mattress and bed frame encasements 

Eliminating harbourages around the mattress and bed frame with encasements is 

often recommended by pest control operators to simplify the treatment of an infestation 

(Pinto et al. 2007). However, the results from Chapter 5 show that with fewer 

harbourages available bedbugs spread out into the peripheries of the infestation and 

ultimately disperse more rapidly. This problem may be appeased by the use of 

harbourage-mimicking monitors in conjunction with the encasements. The monitor 

should provide a suitable harbourage, allowing the infestation to remain in the vicinity 

of the host, as well as delaying dispersal until the room can be treated. The encasements 

are also likely to amplify the success of the monitor by reducing alternative options 

available to the bedbugs. 
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7.5 Conclusions and Future Direction 
 

The work described herein is of fundamental importance to the design of effective 

bedbug control strategies. However, the results generated from the laboratory model 

have an application that extends well beyond understanding bedbug ecology. Numerous 

mathematical models attempt to explain dispersal under various situations, but empirical 

studies to validate these models are scarce and controlled laboratory model systems of 

dispersal are scarcer still. There is consequently considerable potential for further work 

to be done on this system, from both applied and theoretical perspectives. 

 

7.5.1 Nymphal dispersal 

No attempt was made to quantify nymphal dispersal, although from Case Study 4 

(Chapter 2) as well as the study by Wang et al. (2011), nymphs are known to disperse in 

natural infestations. Availability of harbourage space is now known to be an important 

factor in bedbug dispersal (Chapter 5), and because nymphs are smaller than adults, it is 

likely that a harbourage can accommodate more nymphs than adults. It is therefore 

likely that nymphal dispersal would be delayed compared to adult dispersal simply due 

to the relative difference in body size and comparatively larger amount of harbourage 

space available. This is supported by the observations from Case Study 4 (see Figure 

2.11, page 52), which showed that of the nine nymphs that dispersed only one was in its 

third instar and the remainder were all either in their fourth or fifth instars. Wang et al. 

(2010) also found that nymphs were nine times less likely to disperse than adults when 

taking population structure into account, although they did not attempt to distinguish 

instars. It would be relatively straightforward to use the arena setup to ascertain the 

population size at the onset of dispersal for each instar. This might also be predictable 

from the body size measurements, which would provide further evidence of the 

importance of harbourage availability on dispersal. 

 

7.5.2 Assessing variation in competitive ability 

Size was shown not to be important in individual distribution between 

harbourages or dispersal, suggesting that competitive ability may not be a factor in 

bedbug ecology. However, variation in their ability to acquire and hold harbourages 

close to the host can not be ruled out without further investigation. Age, for example, 

may be a factor in competitive ability. This was not tested due to the time restrictions of 
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producing cohorts of “old” bedbugs, which would take six to seven months. One way to 

test directly for the presence of variation in competitive ability would be to move the 

host to the opposite end of the arena and see if the bedbugs “re-sort” themselves 

accordingly. Alternatively one could transplant harbourages from near the host to the 

peripheries and vice-versa and see if the bedbugs within those harbourages return to 

their original positions. As the arenas are lined with a removable wall-paper lining 

paper, it would be relatively straight forward to carefully cut around a harbourage with a 

scalpel and relocate it with minimal disturbance to the occupants. 

As discussed in Chapter 5, one alternative to the competitive exclusion hypothesis 

is that the resident always wins. Assuming bedbugs always seek to occupy harbourages 

closest to the host first, as shown in Chapter 3, and newly arriving bedbugs never 

displace harbourage residents, then the distribution of bedbugs within the arena, should 

precisely reflect the order in which they were introduced. This can easily be tested 

within the arena setup by introducing cohorts of colour-marked bedbugs and 

determining where in the arena they settle. 

 

7.5.3 Origin of dispersers 

As discussed in Chapter 6, it is not known from where in the infestation the 

dispersers are dispersing from. This could be explored relatively easily with a colour 

marking experiment similar to that used in Chapter 4. If dispersal is primarily occurring 

from the harbourages furthest from the host it would support the hypothesis that 

dispersal is a consequence of foraging beyond the range that the host can be detected. 

 

7.5.4 Influence of ambient humidity on harbourage size 

Aggregations are predicted to increase in size until the costs associated with 

aggregating outweigh the benefits (Wertheim et al. 2005, Pfiester et al. 2009). This is 

apparent in the way bedbug harbourages are formed, ultimately producing a patchy 

distribution of harbourages in a continuous environment (Figure 3.2). However, the 

underlying mechanism responsible for producing this patchy distribution has not yet 

been determined. Benoit et al. (2007) showed that bedbugs in aggregations benefit from 

resistance to dehydration, presumably due to elevated humidity within harbourages 

containing multiple individuals. Elevated humidity could also provide the mechanism 

for limiting the maximum size of a harbourage, since high humidity is often associated 

with bacterial and fungal growth (Kemper 1936). It would be possible to test the effect 

of humidity on harbourage size and distribution simply by varying the ambient humidity 
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of the insectary in which the arenas are housed and monitoring harbourage formation 

with increasing population size. If high humidity limits harbourage size then a negative 

correlation between humidity and harbourage size could be predicted. 

 

7.5.5 Future direction for control 

 One of the most striking findings of Chapters 2 and 3 was the spatial 

predictability of bedbug harbourages. Novel approaches to exploiting this aspect of their 

ecology should be explored further. Beds could be designed so that the only available 

harbourages are easily accessible or even removable. In the hotel industry, where the 

time allocated to processing rooms between guests is very limited, a bed design that 

facilitates rapid screening for bedbugs could be a considerable advantage in limiting 

their spread. 
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Appendix 1: Developing the artificial host 

 

Introduction 
 

Artificial hosts for haematophagous insects are comprised of a membrane 

(through which the insect can feed) and a source of vertebrate blood (which must 

usually be treated with an anticoagulant to prevent clotting). Many insects detect 

temperature as a host cue, so it is necessary for the artificial host to incorporate a system 

for keeping the blood at a constant temperature in the region of 30-40˚C. 

Although blood feeding systems for haematophagous insects are commercially 

available, standard designs were found to be unsuitable for feeding foraging bedbugs 

(i.e. bedbugs freely moving around in an arena setup). This is because bedbugs are often 

reluctant to climb onto the artificial host to feed and they are unable to reach the feeding 

membrane from the floor of the arena. It was therefore necessary to design an artificial 

host specifically suited to foraging bedbugs. 

 

Artificial host design 
 

For bedbugs to be able to feed through the membrane without climbing onto the 

artificial host, the membrane had to be mounted vertically (unlike commercially 

available designs) and rest on or close to the floor of the arena, so that the bedbugs 

could reach it. Since competition for space to feed on a host is likely to be minimal in 

natural infestation, a relatively large surface area was required to minimise competition 

around the artificial host. However, since the arena is only 0.15 m wide the maximum 

dimensions of the artificial host are limited by the arena with. For these reasons a 

circular structure with a vertical membrane around the outside and an overall diameter 

of 0.12 m was devised. This allowed sufficient room for the bedbugs to walk around the 

feeder and feed from any point. 

The artificial hosts were constructed out of three CDs, as these were found to be 

a good source of plastic discs of the required dimensions. The radius of one of the CDs 
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was reduced by 2 mm using a bench sander and jig. The CDs were then assembled in a 

sandwich, with the smaller disc in the middle, and held together with silicone sealant 

(Figure A1.1b). The membrane was then wrapped around the circumference of the 

discs, and the void left by reducing the radius of the middle disc, was filled with blood 

by injecting through the membrane with a hypodermic needle. This produced a very low 

profile artificial host design with a feeding membrane easily accessible to bedbugs 

standing on the floor or the arena (See Figure A1.1c). To keep the artificial host at a 

constant, elevated temperature, the whole structure was placed on a 7 watt aquarium 

heat-mat (HabiStatTM: HHM006), which was found to maintain the temperature at 

approximately 36˚C. 

Bedbugs are approximately 3 mm wide, and the artificial host has a total 

circumference of almost 0.38 m, so there should be sufficient room for approximately 

125 adult bedbugs to feed simultaneously. One case study by Reinhardt et al. (2010), 

showed that bedbugs kept at 26˚C fed approximately once every 2.5 days. It is therefore 

reasonable to assume that an artificial host of this design should be sufficient to support 

a laboratory-based infestation of bedbugs in the region of 312 individuals without 

feeding rate being restricted by access to the host. The volume of blood in one artificial 

host is approximately 1.5 ml. Adult bedbugs consume an average of 11.02 ul of blood 

(based on collective weight gain of 20 mixed sex adult bedbugs from the F4 strain, and 

an average human blood density of 1060 mg/m3 (Cutnell & Johnson 1998)). Therefore 

one artificial host should contain enough blood for approximately 136 bedbugs. Based 

on a mean feeding interval of 2.5 days (Reinhardt et al. 2010), this should sustain a 

population of 340 individuals. To ensure that there is never competition for access to the 

host or availability of blood, an additional artificial host will be added (stacked on top) 

for every 250 bedbugs in the arena. 
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Figure A1.1 shows the design and function of the artificial host. a) shows the size and location 
of the artificial host relative to the end of the arena; b) shows a cross-section of part of the 
artificial host revealing the blood-filled cavity; c) shows a photograph of the artificial host in 
use, surrounded by feeding bedbugs. 

a) feeding membrane 
artificial host wall of arena 

0.15 m 

b) 
blood-filled cavity CDs glued together 

feeding membrane 

6mm 

c) 
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Blood 
 

Previous studies have found that the most suitable blood for the artificial 

membrane feeding of bedbugs to be heparinised sheep blood (Montes et al. 2002). This 

was obtained from TCS Biosciences (TCS: SB 075). It was found that this blood 

separates into distinct layers of plasma (on top) and cellular material (below) within a 

few hours if left to stand. This is not usually a problem for most blood feeding setups, 

where the insects are generally given limited time to feed. However, the artificial hosts 

in the arenas need to be available to foraging bedbugs for approximately 8 h per night in 

order to replicate natural conditions as closely as possible. Blood separation is therefore 

a potential problem, as bugs would be unlikely to receive all blood components in a 

single feed. 

By freezing the blood at -80oC until completely solid, it was found that the 

cellular material could be lysed, which prevented it from separating out even after 

several weeks without being agitated (pers. obs.). Some early trials with adults from the 

F4 strain showed good feeding success when offered the frozen/thawed blood (34/40 

fed to repletion within 2 hours). However, more than half of the individuals that fed had 

died by the following day, possibly as a result of bacterial infection of the blood. 

Plating out the blood on blood-agar (SIGMA: 70133) revealed that the blood did 

contain bacterial contaminants. It was consequently necessary to sterilise it before use. 

This was achieved by first centrifuging the blood at 20000 rcf for 40 mins at 4˚C in a 

refrigerated centrifuge (Eppendorf: S417R), to remove the lysed cellular material. After 

discarding the cellular material in the pellet, the blood was pasteurised for 1 hour at 

60oC. The resulting product had the same consistency as the original untreated blood, 

although it was slightly brown in colour. Plating out the heat-treated blood confirmed 

that the contaminant had been removed. 
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Membrane 
 

Parafilm® ‘M’ laboratory film is often used as a membrane for artificial host 

setups (Montes et al. 2002, Romero et al. 2007, 2009, Benoit et al. 2009). However, in 

most cases the membrane can only be used for up to an hour and must then replaced. If 

Parafilm® is used for prolonged periods it tends to lose its integrity and begins to let 

blood seep through. In preliminary arena trials using Parafilm® it was found that the 

blood had drained out into the arena over the course of the night in 4 out of 9 replicates. 

It was therefore necessary to explore alternative feeding membranes.  

Table A1.1 summarises the membranes tested and the proportions of adults and 

5th instar nymphs that successfully fed to repletion in an arena setup within 8 hrs. Adults 

and nymphs were starved for 2 weeks prior to feeding to encourage foraging. The blood 

offered, and artificial hosts design used, were as described above. 

By far the most successful membrane tested was the Sylgard® silicone elastomer 

(Dow Corning: Kit 184) spread over a fine nylon mesh (1089 holes per cm2). Although 

the trial was run for 8 hours, more than half of the bugs offered blood through this 

membrane had fed to repletion within the first 20 minutes. Furthermore, Sylgard® is 

resistant to high temperatures as well as many chemicals including ethanol, making it 

very easy to sterilise between uses. Daily use of the same Sylgard®/mesh membranes 

over > 6 months reveals that these membranes have a considerable lifespan compared to 

any of currently used alternatives (see Hunt & Kinnon 1990). 
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Table A1.1 shows the proportion of bedbugs that fed to repletion within 8 hours for each 
membrane type tested. * indicates membranes that allowed blood to leak out during the trial. 
 

 
proportion that fed to 

repletion 
 membrane manufacture 

5th instar 
nymphs adults 

 
TCPTM Spray-On 
Skin/nylon mesh 
 

 
fine nylon mesh laid onto Parafilm, Spray-On 
Skin applied, Parafilm removed when dry 
 

 
0/40  * 

 
0/40  * 

 
silicone sealant 

 
silicone sealant spread thinly over Parafilm, 
Parafilm removed when dry (24 hrs) 
 

 
3/40 

 
4/40 

 
silicone 
sealant/fine 
nylon mesh  

 
fine nylon mesh laid onto Parafilm, silicone 
sealant applied thinly with plastic spreader, 
Parafilm removed when dry (24 hrs) 
 

 
2/40 

 
1/40 

 
Sylgard® silicone 
elastomer 

 
Sylgard® silicone elastomer poured onto 
Parafilm and spread out with plastic spreader, 
Parafilm removed when dry (24 hrs) 
 

 
0/40 * 

 
0/40 

 
Sylgard® silicone 
elastomer/fine 
nylon mesh 

 
fine nylon mesh laid onto Parafilm, Sylgard® 
silicone elastomer poured on and spread out 
with plastic spreader, Parafilm removed 
when dry (24 hrs) 
 

 
32/40 

 
29/40 
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Appendix 2: Elevating CO2 to Facilitate Foraging 

 

Introduction 
 

Carbon dioxide (CO2) is known to be an important foraging trigger for bedbugs 

and potentially also aids in host location (Reinhardt & Siva-Jothy 2007, Suchy & Lewis 

2011). It was therefore necessary to artificially elevate the CO2 concentration in the 

artificial infestation setup each time the artificial host was replaced, in order to alert the 

bedbugs to the hosts presence. A tank of compressed CO2 with a regulator was used to 

control the CO2 concentration of the insectary where the artificial infestation setups 

were housed. 

 

Natural fluctuations in CO2 concentrations 
 

To establish the CO2 concentrations likely to be present in a natural infestation, a 

CO2 sensor (TelaireTM: 7001i) with a data logger (TelaireTM: HO8-007-02) was placed 

in the bedrooms of ten volunteers for two nights per room. For the first night the sensor 

was placed in the bad, adjacent to the volunteer. For the second night the sensor was 

placed under the mattress at the head of the bed (a common location of bedbug 

harbourages in infested rooms, see Chapter 2). The sensor was placed in the bed 10 

minutes before the volunteer got into the bed and was left in position until the following 

evening, so that the ambient CO2 concentration during the day could also be established. 

The volunteer was asked not to be present in the room during the day, so as not to 

elevate the CO2 concentration of the ambient reading. Figure A2.1 shows a typical 

readout from the CO2 monitor. As expected, the CO2 concentration was highest 

adjacent to the (potential) host (1214.78±97.69 ppm). Although there was a slight 

increase in the CO2 concentration at the site of the harbourage, as a result of the “host’s” 

presence, the difference was not significant (Figure A2.2). 
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Figure A2.1 shows a typical CO2 monitor readout from the bedroom of one of the un-infested 
volunteers, labelled to indicate the location of the monitor and presence of the host. 
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Figure A2.2 shows the variation in mean CO2 concentration (parts per million) in the bedrooms 
of ten un-infested volunteers. The CO2 concentration was recorded on the bed, adjacent to the 
volunteer (host), underneath the head-end of the mattress (harbourage), and on the bed, during 
the day, when the volunteer was absent (ambient). Error bars represent 1 standard error. Bars 
with the same letter do not differ significantly at p<0.05 (ANOVA, F2,27=27.24, p<0.001; 
followed by Tukey Multiple Comparison test). 
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Elevating CO2 to trigger foraging 
 

To establish if the ambient of CO2 concentration in the insectary (where the 

infestation arenas are housed) is realistic, a CO2 monitor (TelaireTM: 7001i) with a data 

logger (TelaireTM: HO8-007-02) was placed adjacent to the infestation setups for 48 hrs.  

The ambient CO2 concentration in the insectary was 484.1±2.6 ppm (n=2880 reads). 

The mean ambient CO2 concentration from the bedrooms of the volunteers was 

553.51±20.60 ppm (n=10) (Figure A2.3). The CO2 concentration of the insectary is 

therefore slightly lower than the average of the volunteers’ bedrooms, but it is still 

within the same range (slightly higher than the three lowest bedroom readings). 

As the CO2 source will be located at the end of the arena nearest the artificial 

host, and the concentration will be monitored from approximately the same location, the 

target concentration should be approximately the same as the levels encountered in the 

beds of the volunteers when the “hosts” were present (ca. 1200 ppm). To establish if 

this concentration is sufficient to trigger foraging in the arena setup, 300 adult female 

bedbugs were taken from the F4 population stock cultures, fed and split evenly between 

three arenas (see Chapter 3). The bedbugs were allowed 3 weeks to settle, establish 

harbourages and then become sufficiently hungry that all individuals should have the 

desire to forage if a host (or host-like cue) was detected. Under red light the CO2 

concentration in the room was steadily elevated by approximately 100 ppm/min for 15 

minutes and the number of bedbugs out of the harbourages was recorded at 1 min 

intervals, along with the current CO2 concentration. 

A2.3 shows the increase in the number of foragers with elevating CO2 

concentration. Approximately 88% of bedbugs had left their harbourages by the time 

the CO2 concentration had reached 12000 ppm. This climbed slightly to approximately 

94% by the time the CO2 concentration had reached 13000 ppm, and thereafter 

relatively few additional bedbugs began foraging. 

Triggering foraging with CO2 is likely to be an effect of time as well as CO2 

concentration. For example a lower CO2 concentration may have been adequate to 

trigger equal levels of foraging if more time had elapsed. The relationship between CO2 

concentration and time, and their effects on the onset of foraging could be explored 

further. However, for the purposes of the laboratory infestation setup it is only 

necessary that the bedbugs are presented with host-like cues at biologically realistic 

levels, so that they are able to forage naturally. I will therefore elevate the CO2 
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concentration of the insectary to 13000 ppm (at a rate of 100 ppm/min) each time the 

artificial hosts are introduced. I will maintain the elevated CO2 concentration for a 

further 60 minutes to allow ample time for the foraging bedbugs to locate the artificial 

host.  
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Figure A2.3 shows the percentage of bedbugs out of their harbourages at increasing 
concentrations of CO2 for three replicate cohorts of 100 females from the F4 stock. Red arrows 
indicate the effect of increasing the CO2 concentration from 1200 ppm to 1300 ppm. Error bars 
(X & Y) represent 1 standard error, n=3 at all data points. 
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