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Chapter 1

Introduction

1.1 Atmospheric Convection

Earth’s atmosphere is constantly convecting. From large cells, providing
teleconnections between the tropics and poles, to single isolated clouds,
a rich variety of convective events span a range of scales. Often visibly
manifest in clouds, convection plays an intricate, not to say leading role
in the dynamics of the Earth’s weather and climate. Few would argue
that the most striking meteorological features encountered on Earth are
hurricanes, tornados and tropical storms (all of which invariably involve
cumulonimbus convection) and all would recognise that forecasting these
systems is a social and economic necessity, as their high wind speeds and
potential flash flooding can cause large destruction of infrastructure and,
indeed, direct loss of human life.

This thesis will focus, in part, on cumulonimbus convection, which
occurs due to highly buoyant, localised regions (O(10 kms)) of air punch-
ing rapidly upwards, through the troposphere. Strong vertical motions
result in phase changes in the water vapour in moist air, which help the
observer to notice dramatic, bubbling clouds which can precipitate in-
tensely. Since thermally-driven mixing moves air parcels from the lower
to the upper troposphere, meteorologists often refer to cumulonimbus as
“deep” convection. But while some aspects of deep convection are well
understood, others continue to challenge our understanding.

1.1.1 The Physics of Moist Convection

The stratification of the atmosphere and its base temperature distribu-
tion arise out of the competition between incoming short-wave (solar)
radiation, which heats the surface, and emitted outgoing long-wave radi-
ation, which cools the troposphere. Broadly, the resulting stratification
of the troposphere, with its negative temperature lapse rate (the rate at
which temperature reduces with height, see e.g. Holton & Hakim (2012))
permits convective processes.
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1.1 Atmospheric Convection

Figure 1.1: Stable (non-convective) vs. non-stable (convective) atmo-
spheric conditions. In (a) the parcel is cooler than the environment and
is therefore not buoyant. In (b) the parcel is warmer than the environ-
ment and is therefore buoyant.

The work of this thesis relies heavily on the concept of buoyancy
forcing, which may be conveniently connected to convection. This is
perhaps best illustrated initially considering dry air, using a Boussinesq
vertical momentum equation, which, at its simplest (see Chapter 7 of
Houze Jr (2014)) may be written

Dw

Dt
≈ b, b ≡ g

θ

θ0(z)
≈ −g ρ

ρ0(z)
(1.1)

in which b is a buoyancy term, which creates vertical acceleration, θ is
potential temperature perturbation, θ0(z) is a reference potential tem-
perature and all other symbols have their usual meaning. θ is the tem-
perature which a dry parcel of air at pressure p would have, were it
brought adiabatically to pressure ps = 1000 hPa. From the first law of
thermodynamics

θ ≡ T

(
ps
p

)R/cp
. (1.2)

Here, R is the universal gas constant and cp the specific heat at constant
pressure. Note that in our formulations in Chapters 2..4, an equivalent
regime of approximations will be used to couple-in induced buoyancy
perturbations, instead using a thermodynamic equation. It is immediate
from equation 1.1 that the root, physical cause of buoyancy forcing is is
the action of strong, terrestrial gravity on density perturbations which,
in turn, are determined by potential temperature, θ.

Consider now moist air. As well as direct heating, the potential tem-
perature and buoyancy of a parcel may also arise from internal micro-
physics. Most relevant here is the phase change of water vapour. As
the water vapour content of a parcel condenses, latent heat of condensa-
tion is released and the parcel heats (or cools less rapidly). Conversely,
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1.1 Atmospheric Convection

evaporation of liquid within the parcel requires a source of latent heat
of evaporation, which is drawn from the substance of the parcel, cooling
it. The equivalent potential temperature, θe is defined as the potential
temperature which a parcel of air would have, were all its water vapour
content condensed and the resulting latent heat of condensation used

to warm the parcel. One approximate expression is θe ≈ θ exp
(
Lcqs
cpT

)
,

where Lc is the latent heat of condensation and qs is the mass of water
vapour per unit mass of dry air. Importantly, θe is conserved during
changes of a parcel’s pressure (say during vertical motion) even if the
water vapour condenses whereas θ is only conserved for vertical motions
whilst unsaturated (Holton & Hakim, 2012). To capture the effects of
e.g. latent heat forcing necessarily associated with convection, in a de-
scription based upon θ, it is therefore essential to include in the basic
set of Chapter 2..4 an explicit buoyancy forcing (in the thermodynamic
equation), which, note, might also be interpreted as diabatic or sensible
heating, if convenient.

Atmospheric convection is the result of a temperature difference be-
tween a parcel of air which has been lifted and its environment. Should a
parcel of air at a certain height have a temperature different to its envi-
ronment, there is a parcel-environment instability, leading to buoyancy-
driven movement of the parcel, or convection, which mixes the parcel
with the environment. Figure 1.1 is a schematic of the atmospheric con-
ditions convection requires. An air parcel cooler and therefore denser
than its environment will not have upward buoyancy, meaning it is sta-
ble within the atmosphere i.e. it will not be upwardly displaced readily,
rather it will tend to subside and return to its position of mechanical
equilibrium. Conversely, a parcel warmer than its environment will have
upward buoyancy, meaning it is unstable within the atmosphere i.e. it
will be easily displaced upwards, away from its position of mechanical
equilibrium, and convect.

More quantitatively now, the development of convective storms de-
pends on such predisposition in the environment. Several scalar indices
exist, to measure susceptibility of given temperature and moisture fields
to deep convection. Meteorologists quantify rate of and propensity to
deep convection perhaps most widely using the parcel and environmen-
tal lapse rates and the convectively available potential energy (CAPE
hereafter). To understand CAPE, consider a parcel whose temperature
is greater than that of the environment it is within. Such a parcel is less
dense than the surrounding air i.e. it is buoyant and will rise aloft, from
the level of free convection (LFC hereafter), as shown in figure 1.2. As
the parcel rises, it is subject to reduced pressure, it expands (we presume
adiabatically, since air is an insulator), and thus its temperature will fall,
according to the conservation of its potential temperature (equation 1.2).
If the temperature of the surroundings decreases more quickly than the
parcel’s, it remains buoyant, instability and convection are maintained
(see figure 1.1). Convection will continue until the parcel inevitably is no
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longer warmer than its environment- which must happen in an environ-
ment of finite depth (due e.g. to the troposphere-stratosphere boundary
i.e. the tropopause lid). The parcel is therefore no longer buoyant. At
this equilibrium level (EL hereafter), convection ceases. Note, the par-
cel’s momentum will usually cause it to overshoot and oscillate about the
EL (see figure 1.2 below). Integrating the buoyancy force over the par-
cel’s vertical displacement yields the CAPE measure, with units J kg−1 of
potentially buoyant air. CAPE is an upper limit for an ideal, undiluted
parcel. Equation 1.3, which is equation (8.1) of Houze (2014), gives the
integral used to calculate CAPE

CAPE = g

∫ ZEL

ZLFC

(
θ(z)− θ̄(z)

θ̄(z)

)
dz, (1.3)

where θ̄ is the potential temperature of the environment, g is the accel-
eration due to gravity, ZLFC is the level of free convection and ZT is the
cloud top, assumed to be the level where θ = θ̄, i.e. the equilibrium
level. Apparently CAPE is a functional of θ. In figure 1.2, the amount of
CAPE is represented by the shaded region between the saturated adiabat
and the sounding, above the LFC.

Now, how does a parcel reach the LFC? Consider the situation in
which there is a layer of warmer environmental air above the surface
(say) preventing the cooler parcels at the surface from rising into the
atmosphere. Here, convection is inhibited unless something other than a
temperature difference can cause the parcel to rise. The amount of energy
required for our parcel to overcome this inhibition, and reach the LFC,
is know as convective inhibition (CIN hereafter). CIN, conceptually, is
the opposite to CAPE in that it indicates the amount of energy available
to prevent an air parcel from rising from the surface to the level of free
convection. It is, again, measured with a vertical integral similar to that
of 1.3, covering our hypothetical, inhibiting layer from the surface to the
level of free convection or, more generally, form the bottom to the top of
the inhibiting layer

CIN = g

∫ Ztop

Zbottom

(
θ(z)− θ̄(z)

θ̄(z)

)
dz. (1.4)

The above is a simplified account. In real convection, as a parcel
rises, drag provides a counter force to buoyancy, and entrainment of en-
vironmental air alters the parcel’s lapse rate. Moisture vapour in the
parcel plays an appreciable role, as it changes phase in response the par-
cel cooling and releases latent heat of fusion (Reif, 2009), which, through
enthalpy exchange (Kittel & Kroemer, 1970), is a major contributor to
the positive buoyancy driving updrafts. These phase changes are nonlin-
ear processes, and entrainment of dry air affects them in complex ways
which we cannot go into here.

Interpretation of CAPE and CIN data is often counter-intuitive. For
instance, one might expect minimal, or no CIN to be favourable for thun-
derstorms, but it is actually the case that large amounts of CIN provide
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a lid on convection, allowing warm, humid air to accumulate at low lev-
els, so that the CAPE increases and when storms finally occur, they are
more intense (Colby Jr, 1984). Here, we are concerned most with gravity
wave coupling to convection, for which CAPE and CIN can provide a
useful tool. In chapters 2..4, we will formulate a model of gravity wave
adjustment to buoyancy forcing. Most obviously, our gravity waves com-
municate potential temperature adjustments in θ (and hence T ), thus
modifying the environmental CAPE and CIN, via equations 1.3 and 1.4.
This mathematical fact may be refined into more physical statements as
we see in Chapter 2, where we argue that gravity waves transport mo-
mentum, which over time can erode CIN, which assists in lifting parcels
to the level of free convection. Figure 1.2 is a skew-T diagram graphically
demonstrates a convecting parcel’s journey through CIN and CAPE and
in the process depicts the convective state of a given atmosphere.

Figure 1.2: A skew-T diagram to demonstrate computed CAPE, CIN
and LFC. Note, the dry adiabat connecting the point labelled T close
to the mid-abscissa to the 600mb isobar on the right ordinate, and also
saturated adiabat. This extends from the foot of the sounding. When the
saturated adiabat, which we consider to represent a parcel, lies to the left
of the sounding, for z < zLFC here, CIN will be negative (see equation
1.4). When the saturated adiabat lies to the right of the sounding, for
zLFC < z < zEL, CAPE will be positive (see equation 1.3).

For convection to initiate, or “trigger”, some other physical process
must be present to overcome CIN. We give some known examples. At
the surface, changes in the Earth’s topography or spatial temperature
variations (e.g. land/sea gradients) can trigger vertical motions which,
under favourable conditions, can trigger coherent cloud patterns (Kir-
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shbaum & Durran, 2005; Nastrom & Fritts, 1992). Further, the land
surface use can play a role, as e.g. moisture stored in soil evaporates and
injects latent heat into the system, creating a feedback loop (Koster et al.,
2004; Walker & Rowntree, 1977). Cold pools, a density current caused
by condensation and precipitation, can also provide dynamical lifting in
the low levels (Schlemmer & Hohenegger, 2014; Tompkins, 2001), and
atmospheric waves have also been observed to trigger convection as the
momentum they transport acts to erode CIN (Birch et al., 2013; Lane
et al., 2001; Mapes, 2000).

1.1.2 The Role of Tropical Convection in the Weather
and Climate System

Tropical convection generates kinetic energy in the atmosphere. Ther-
mally driven, turbulent vertical mixing leads to ascent of warm, moist air
and, ultimately, precipitation, which releases further heat into the atmo-
sphere. The atmosphere compensates via fast gravity waves with charac-
teristic phase speeds of roughly 30ms−1), which communicate adjustment
into the environment. We reserve a qualitative description of the adjust-
ment process for later in this chapter and quantitative descriptions for
Chapters 2, 3 and 4. The horizontal spatial range of influence over which
the adjustment occurs, conventionally quantified by the Rossby radius

LR =
NH

f
, (1.5)

where N is the Brunt-Vaisala frequency, H is the height of the tropopause
and f is Coriolis’ parameter, is heavily influenced by latitude. In the trop-
ics, where f tends to zero, LR approaches infinity and, in some sense,
perturbations in the tropics affect the whole tropical belt, for exam-
ple via the equatorial waveguide effect, to be discussed shortly. In the
mid-latitudes, where f is non-zero, the adjustment to convection is re-
stricted, and is characterised by a Rossby radius which is of the order
of a few thousand kilometres (f 10−4s−1, H = 8 − 15km, N 0.01s−1,
g = 9.81ms−2).

Unfortunately, too little is known about the interaction of convec-
tive perturbations with the larger-scale circulations (the chicken and
egg problem), even after modern, high-resolution large-domain numer-
ical simulations of tropical convection, together with spectral analysis
methods, have been applied.

Another, important way in which the tropics is dynamically interest-
ing is in its capacity to host a spectrum of waves which are trapped about
the equator. Theoretically predicted by Matsuno (1966) and Gill (1980),
who worked from the primitive equations, the change in sign of Coriolis
parameter at the equator acts as a waveguide for a set of Matsuno modes,
which are propagating modes which may be classified as Kelvin, Rossby,
gravity and mixed Rossby gravity waves. These phenomena, which are
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particular significance to the present work, are now widely accepted to
interact with, organise and even force convection. See e.g. Wheeler &
Kiladis (1999). We defer further discussion of these phenomena until
chapter 5.

1.1.3 Modelling and Forecasting

Numerical modelling is clearly a valuable resource which, nevertheless,
provides hurdles to overcome. Despite huge increases in computing speed
and memory in recent years, deep convection is still a sub-grid processes
in general circulation models (GCMs hereafter) and thus it needs to
be parameterised. It is safe to say that convection parameterisations
remain imperfect. In current GCMs deep convection is designated a
sub-grid process in that a convection scheme -essentially an algorith-
mic extension- adjusts the temperature, moisture and cloud fields within
a mesh-resolved grid column, leaving the resolved, mesh-based dynam-
ics to propagate this adjustment more remotely, and thereby influence,
for instance, the convective available potential energy (CAPE) of the
wider environment (Stensrud, 2009). Therefore, the dynamical response
to convection is highly dependent upon the model convection scheme,
which itself is sensitive to the closures and assumptions placed upon the
underlying parameterisations.

There are several types of deep convective parametrisation scheme
in operational use (Stensrud, 2009). Typically, a convection scheme at-
tempts to represent an ensemble of clouds within a given gridbox, through
a bulk formulation. For instance, the Gregory and Rowntree mass-flux
scheme used in the MetUM (Gregory & Rowntree, 1990; Walters et al.,
2017) models the effects of entrainment and detrainment on the ensem-
ble convective-cloud mass flux by analogy with a single, model plume
in the gridbox. The resulting heating tendencies are applied at the grid
scale, and it is assumed that all compensating subsidence occurs within
that gridbox, whereas, in reality, it has long been known that gravity
waves propagate laterally, to move the zones of subsidence away from
the location of the forcing (e.g. Yanai et al. (1973)). While gravity-wave
modes are themselves represented only by the resolved grid, representa-
tion of the drag caused by gravity-wave breaking and initiated by sub-grid
orography (and sometimes precipitating convection) is parametrised sep-
arately (e.g. Bushell et al. (2015); Walters et al. (2017)). Some sub-grid
statistics of the cloud field are diagnosed in GCMs (via e.g. the Prog-
nostic Cloud Scheme), but these are principally used to interact with
the radiation scheme and do not, at present, feedback onto the dynamic,
thermodynamic and cloud fields.

From the above discussion, we conclude that convection schemes need
to provide a physically realistic forcing and response on the resolved
model scales. The basic ingredients necessary to achieve this in a pa-
rameterisation are (i) a method to trigger the convection, (ii) a cloud
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1.2 Gravity Waves

model and (iii) a closure assumption. Further, they need to force the
correct dynamical response, part of which is the spectrum of gravity
waves. While current convection schemes hold some information about
the sub-grid cloud field, they do not use any sub-grid cloud information in
the excitation of gravity waves, which are only forced by the grid-resolved
tendencies imposed by the convection scheme. This leads to a possible
mis-match between the true field of gravity waves excited by sub-grid
convection, on the kilometre scale, and the gravity waves forced on the
grid-scale, by the convection scheme. It is still an open question whether
such effects need to be handled explicitly, within convection schemes, or
whether the model grid will handle them satisfactorily.

1.2 Gravity Waves

Gravity waves are common in Earth’s atmosphere as they can be pro-
duced by a variety of sources. A key property of all waves is their abil-
ity to transport energy away from the disturbances that generate them.
Gravity waves are said to communicate the atmospheric adjustment to
some disturbance. In the present context, the causal disturbance is con-
vection. However, it is well known that many other gravity wave sources,
including mountains and wind shear also have meteorological significance.

1.2.1 Introduction

A fluid is said to be stably stratified if the density of a lifted parcel is
greater than that of its environment. Such a fluid is host to wave mo-
tions able to propagate horizontally and vertically. Since the Earth’s
atmosphere is almost always stably stratified, common sense alone sug-
gests that it is safe to assume atmospheric waves exist and, indeed, no
formal assumption is, however, necessary for an overwhelming body of
evidence for atmospheric gravity waves has accumulated over the past
half a century. Moreover, on occasion, even the amateur meteorologist
can observe the normally invisible wave field as it interacts with the vis-
ible cloud field (an important concept for this work, note) as illustrated
in figure 1.3.
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1.2 Gravity Waves

Figure 1.3: Satellite image of patterned cloud above the Indian Ocean.
The cloud or water vapour ‘ripples’ make gravity waves visible, Photo-
graph by NASA.

Were all atmospheric waves visible, and were it possible to accelerate
their motion, one would see a rich tapestry of propagating waves of many
shapes, sizes and speeds. Figure 1.4, reproduced from Hines (1974),
is a surreal representation of an imagined scene. Here, we see waves
propagating in all directions. Some extend through the whole image,
others are localised and are intended to appear stationary, some have a
frequency and amplitude which grows with height and some even break or
change direction. Currently, it is clear that gravity waves are not present
only in the isolated or bounded layers of the atmosphere (its boundary
layer, troposphere or stratosphere), but instead transcend layers, as they
do so becoming subject to well-known, generic wave phenomena such as
reflection, refraction and breaking- a complex picture in which the level
of the complexity is just beginning to be appreciated. In the present
context, the question is how, and to what extent do gravity waves impact
the weather and climate system as a result of coupling to convection?
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1.2 Gravity Waves

Figure 1.4: A surrealist representation of samples from the range of
atmospheric gravity waves. Taken from ‘The Upper Atmosphere in Mo-
tion’, Hines (1974).

Atmospheric waves add a significant contribution to circulation and
mixing in the Earth system. Like ripples in a pond, gravity waves trans-
port energy and momentum, providing telecommunications down field
from their source and are thus an essential part of atmospheric dynam-
ics, on all meteorological scales. Calculations of the atmospheric budgets,
whether at the largest scales of general circulation, or the smaller scales
of surface turbulence, routinely include contributions from wave trans-
port and mixing. On the synoptic scale, for example, Lindzen (1981)
and Holton (1982) investigate the effect of gravity waves on the general
circulation (see Fritts (1984) for a review). On the mesoscale, Uccellinni
(1987), Koch et al. (1988), Fritts (1992), Lane and Reeder (2001) and Wei
and Zhang (2014), to name a few, study the interaction between convec-
tive storms and gravity waves. Mountain-generated gravity waves have
been studied by e.g. Clark and Peltier (1977), Smith (2007). Chimonas
(1972) has shown that, even on micro-scales, gravity waves interact with
turbulence in a stable boundary layer. There is a continuing interest
in the meteorology of atmospheric gravity waves, supported by periodic
field campaigns, such as TOGA-COARE (Webster & Lukas, 1992) and
DEEPWAVE (Fritts et al., 2016), with devoted resources for their obser-
vation. Indeed, evaluating the role of waves in each dynamical situation
is now accepted as necessary.

It is appropriate to remark that any real, physical process is made
unique (for instance, by its initial conditions) and that what are repre-
sented in Fig 1.4 are samples from a continuous spectrum. Accordingly,
a full review of gravity waves is beyond the scope of this thesis and even
the state of the computational art and observational methodology. The
object here is to select a few smoother pebbles from the vast atmosphere
of truth (only slightly to mis-quote): that is to extract qualitative under-
standing from simple analytical models based upon linear theory, better
to understand the role of gravity waves in atmospheric convection. It
is therefore also appropriate to sound a cautionary note. The basis for
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1.2 Gravity Waves

most theoretical studies (including this) is linear theory. Broadly, this
removes wave-wave interactions, and splits variables into a sum of a base
state, which is unaffected by waves, and a small, first-order perturba-
tion, which is attributed to waves effects. These approximations are not
without cost, as in the physical atmosphere, waves do interact with other
waves and turbulence, which are now neglected. However, linear theory
provides a tractable tool for an analysis which is a good estimate for
wave phenomena at first order. In Chapter 2 of this thesis, we will touch
further upon the extent to which we can trust linear gravity wave the-
ory. At this stage, we simply seek to reassure the reader that analysis
with linear theory is a worthwhile where qualitative understanding is at
issue, for -rhetorically- is it even possible to think in terms of a nonlinear
world?

1.2.2 Gravity Wave Modelling

In the stably stratified atmosphere of Earth, the potential temperature,
θ, increases with height. Imagine, then, adiabatically displacing a parcel
of air aloft. The parcel will then be negatively buoyant and the force of
gravity acting on its anomalous density will restore the parcel back to a
neutral level. In doing so, the parcel will gather momentum and over-
shoot its level of neutral buoyancy and become positively buoyant and so
forth. Clearly, a stratified atmosphere is conducive to parcels oscillating
vertically about their equilibrium altitude. Put more succinctly, the pres-
ence of buoyancy as a restoring force in a fluid leads to the occurrence of
oscillations and hence waves.

Modelling the above-described process mathematically, by construct-
ing a mechanical force balance on a buoyant parcel, the ideal gas equa-
tion of state, which is suitable for air, and the hydrostatic approximation
(Holton & Hakim, 2012), one can quite straightforwardly determine an
expression for a characteristic frequency of buoyancy-driven oscillations
as

N(z) =

√
θ

g

∂θ

∂z
, (1.6)

which is known as the Brunt-Vaisala frequency. For stably stratified fluid,
∂θ
∂z
> 0, so N > 0. A typical value of N in the troposphere is 0.012s−1,

(Holton & Hakim, 2012), giving a buoyancy period of roughly 8 minutes.
Note that this above expression for N(z) is not unique.

Evidently, the atmosphere is prone to oscillatory motion and little
imagination is required to see that once the parcel moves, adjacent parcels
will be induced to move also. To model buoyancy-driven, gravity wave
effects (indeed, any wave motion) one typically seeks, within some regime
of mathematical approximations, the dynamics i.e. an equation of mo-
tion (or wave equation) governing some field variable. Subject to the
initial assumptions, its solutions describe some phenomenon- for present
purposes, internal, linear gravity waves.
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1.2 Gravity Waves

Gravity waves rely on the physics of buoyancy (Gill, 1982; Vallis,
2006) the understanding of which is facilitated by the Boussinesq ap-
proximation. This assumes (i) changes in density caused by the motion
are primarily the result of temperature, rather than pressure changes and
(ii) in the equations expressing the conservation of momentum (the Euler
equation) and mass (the continuity equation), density changes may be
neglected except where they are coupled to the gravitational accelera-
tion, i.e. in the Euler equation, in its buoyancy force term. Assumptions
(i) and (ii) are referred to as the Boussinesq approximation (Spiegel &
Veronis, 1960). We remark that acoustic waves, which propagate by den-
sity variations, are effectively filtered from a description which uses the
Boussinesq approximation. Within the Boussinesq approximation, which
we shall use in this introduction, the continuity equation is replaced by
two statements

Dρ

Dt
= 0, ∇ · u = 0. (1.7)

Note, here we are approximating dθ
θ

by dρ
ρ

(allowable under the Boussinesq

approximation) in order to use density as the state variable. Further
discussion of this important point is reserved for Chapters 2, 3.

For a rotating, 2D system in the x, z plane, without variation in
the y direction (our foundation geometry), we consider the following
Boussinesq formulation of linear theory, in the usual notation

∂u

∂t
− fv = −1

ρ̄

∂p

∂x
, (1.8)

∂v

∂t
+ fu = 0,

∂w

∂t
+
g

ρ̄
ρ = −1

ρ̄

∂p

∂z
,

∂u

∂x
+
∂w

∂z
= 0,

∂ρ

∂t
+ w

dρ0

dz
= 0.

Here, the base state is rest, ρ̄ is an average density, ρ0(z) is the base state
of density and the last two equations represent a linearisation of equation
1.7. In equations 1.8, it is implicit that Rossby number, Ro (see section
1.4.4) is large, note.

Typically, it is easiest to apply physical boundary or matching condi-
tions to field variable w. We therefore eliminate variables from basic set
1.8 in favour of w

∇2
H

∂2w

∂t2
+ f 2∂

2w

∂z2
+N2(z)

∂2w

∂x2
= 0. (1.9)

Here, the buoyancy frequency is

N2(z) ≡ −g
ρ̄

dρ0

dz
. (1.10)
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Since we have used linear theory, all solutions to equation 1.9 above are
superposable.

The basic set in equations 1.8 and the field variables chosen are suit-
able for this introduction. However, they are not used everywhere in
this thesis. For instance, in Chapter 2, we shall replace the last equa-
tion with a thermodynamic equation (Gill, 1982; Vallis, 2006) (to inves-
tigate gravity waves which are forced by heating), remove the second
(by initially neglecting rotation, which is reinstated in Chapter 3) and
take a hydrostatic approximation in the third equation. Moreover, the
vertical variation in base state density ρ0(z) and the physics briefly dis-
cussed in section 1.1.1 cause N(z) (equation 2.17) to change value at
the tropopause, producing a complicated stratification, which influences
gravity wave propagation. The influence of stratification on gravity wave
mediated atmospheric adjustment to heating, both dynamic and steady-
state, is our central concern. Hence, we reserve for Chapters 2..4 treat-
ments of gravity wave propagation in the presence of stratification. In
this introduction, we shall consider certain, relatively simple scenarios
which serve as limiting cases for work of later chapters, where we shall
be particularly concerned with trapped and radiating dynamics. Accord-
ingly, we consider here trapped and unbounded gravity wave propagation,
with rotation but without stratification.

1.3 Reference Gravity Wave Problems

In this and the next section, we consider reference cases which will pro-
vide a “orthogonal” framework in which the results of chapters 2,3 and
5 may be understood. We start with more straightforward phenomena
and reserve for the next section the more problematic gravity wave in-
teractions which are, probably most relevant.

1.3.1 Trapped Gravity Waves with Rotation

First consider trapped gravity waves in z ∈ [0, H] with physical boundary
conditions representative of a lid

w(x, 0, t) = w(x,H, t) = 0, ∀x, t, (1.11)

and N constant but f 6= 0. Note that the boundary conditions here and
throughout are the kinematic boundary conditions of inviscid fluid dy-
namics (Landau & Lifshitz, 1959). Substituting a x-propagating solution

w(x, z, t) = <
(
W (z)ei(kx−ωt)

)
, k =

2π

λ
(1.12)

which is adapted to the physical domain, note, into equation 1.9, it is
straightforward to obtain the following

d2W

dz2
+ κ2W = 0, κ2 ≡ k2

(
N2 − ω2

ω2 − f 2

)
, W (0) = W (H) = 0. (1.13)
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1.3 Reference Gravity Wave Problems

Above, λ is the horizontal wavelength of the motion, hence k ∈ [0,∞).
Non-trivial solutions only exist for the system in equations 1.13 for the
following conditions

κH = nπ, n ∈ Z+, ω = ±

√
N2k2 + n2π2

H2 f 2

k2 + n2π2

H2

, W (z) = sin
(nπz
H

)
.

(1.14)
Various choices of n produce different physical patterns of wave motion
but propagation is by assumption in the x direction, with a point on
wave of constant phase (e.g. a crest or trough) moving with phase speed

cp ≡
ω

k
= ±

√
N2 + n2π2

H2k2
f 2

k2 + n2π2

H2

, (1.15)

where we have used the second of equations 1.14, which relates ω−k and
as such is a dispersion relation. Gravity waves are dispersive i.e. have
a range of phase speeds. Moreover, it appears that increasing rotation,
f →∞, will tend to make a trapped gravity wave mode (i.e. a choice of
n) of given k propagate faster.

A group of superposing waves, or wave packet, may be formed from
an integral superposition of modes over a localised range of k i.e. a
range of Fourier components. In light of the above, initially coherent,
superposing waves will propagate at different speeds, cp, and change rel-
ative phase. However, if the superposition weight function peaks sharply
at k = k0 (say) the propagating disturbance can be characterised by a
time-evolving envelope function with slow spreading, which allows one
to introduce a group speed, which characterises the speed at which the
envelope moves and is given by dω

dk
(Arfken, 1966). For gravity waves,

this group speed, from the second of equations 1.14 is

cg ≡
dω

dk
=

n2π2

H2 (N2 − f 2)(
N2 + n2π2

H2k2
f 2
)1/2 (

k2 + π2n2

H2

)3/2
. (1.16)

The derivative in the above is typically evaluated at k = k0. For f = 0
it is easy to show that cp > cg and so, in that limit, peaks always move
forwards through the envelope- as can be observed in gravity waves, or
ripples, propagating on the air-water interface of pond.

1.3.2 Gravity Waves in Unbounded Media with Ro-
tation

Return to equation 1.9 and substitute a trial solution consistent with a 2D
system with no variation in the y direction, which is vertically unbounded
i.e. a wave which can propagate in both the x and z directions

w(x, z, t) = <
(
W ei(kx+mz−ωt)) = <

(
W ei(k·r−ωt)

)
, (1.17)
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where, we have
r ≡ (x, 0, z), k ≡ (k, 0,m), (1.18)

where k is now the wave vector. W is now constant, note.
We now obtain, by simple algebra, the following dispersion relation

for gravity waves in an unbounded system

ω = ±
√
m2f 2 +N2k2

√
k2 +m2

. (1.19)

Positions (x, z) in physical space with kx+mz = c (c is a constant) have,
at a given instant, t, the same phase. Hence, positions such that (k · r =
c correspond to 2D wavefronts. Let δr ≡ (δx, δz) be a displacement
perpendicular to k. Then k ·(r+δr) = k ·r = c with k = |k|. Put another
way, all points in a plane perpendicular to wave vector k have the same
phase and comprise a wavefront. Let s denote displacement parallel to
k, perpendicular to a wavefront. Now our gravity wave adjustment may
be written w(x, z, t) = <

(
W ei(ks−ωt)

)
implying, a phase speed cp = ω/k

and in the direction k̂, that is a phase velocity

cp =
ω

k
k̂ = ±

√
m2f2

k2
+N2

k2 +m2
(k, 0,m). (1.20)

The velocity of a group of waves is also generalised as follows

cg = ∇kω ≡
(
∂ω

∂k
, 0,

∂ω

∂m

)
, (1.21)

which, on appeal to dispersion relation, equation 1.19, yields

cg =
mk(N2 − f 2)

(k2 +m2)3/2 (m2f 2 +N2k2)1/2
(m, 0,−k) . (1.22)

Several remarks are in order now. First, it is immediate from equa-
tions 1.20 and 1.22 that cp ·cg = 0: that is, the group and phase velocities
are perpendicular.

1.3.3 Gravity Waves Reflection and Transmission

Waves reflect and transmit where there are discontinuities in the prop-
agation medium properties. For example, light (electromagnetic) waves
as they pass from air to water, or long wavelength gravity waves in the
ocean surface change direction as the ocean depth changes. The process
can be understood as a consequence of physical change in plane wave
propagation velocity and modelled by matching two infinite medium so-
lutions, using appropriate physical constraints at the boundary e.g. w
conditions.

For the 2D plane gravity waves considered in the previous sub-section,
a change in buoyancy frequency, N , will cause such a change in the prop-
agation speed. It follows that in a discontinuously stratified medium, in
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which N changes from one value to another at the tropopause (with ρ0(z)
still continuous, note), there will be gravity wave reflection back into the
troposphere and refraction, or transmission into the stratosphere. This
physical process has significant impact on our approach to the dynamics
of adjustment in Chapters 2 and 3 and so is treated in context, in section
2.5.3.

1.3.4 Taylor-Goldstein Equation

In this section, we set Coriolis parameter f = 0. To provide further con-
text for the work of Chapters 2, 3 we consider here the Taylor-Goldstein
equation (Holton & Hakim, 2012), named after G. I. Taylor and S. Gold-
stein, who derived it independently in 1931. It is a differential equation
which governs the behaviour of gravity wave perturbations in a flow with
a vertically stratified base state, again derived from the two-dimensional
Euler and continuity equations, using the Boussinesq approximation,
elimination of variables and, importantly, an assumption of horizontally
propagating solutions for density, pressure and the stream-function of
the perturbation flow

[ρ, p, ψ] =
[
ρ̂(z), p̂(z), ψ̂(z)

]
exp(ik(x− ct)). (1.23)

In equation 1.23 above, k is a wavenumber and c ∈ C is a phase speed,
or eigenvalue. The Taylor-Goldstein equation is

(U − c)
(
d2

dz2
− k2

)
ψ̂ − ∂2U

∂z2
ψ̂ +

N2

U − c
ψ̂ = 0. (1.24)

Here, U(z) is the assumed base state of steady shear. For an imaginary
c, the flow is unstable. We shall consider the process of solving equations
similar to equation 1.24 in Chapters 2 and 3, using a modal expansion
approach, where we shall derive an equivalent equation for an increased
number of field variables and thermodynamic and fluid dynamic physics.

Returning to the discursive test-bench of the Taylor-Goldstein equa-
tion, we note that, for given k, if ψ is a solution for wave speed c, then ψ∗

is a solution for wave speed c∗, that is, for every stable solution there is
an unstable solution of the Taylor-Goldstein equation (Gill, 1982; Vallis,
2006). One could find solutions to equation 1.24 by applying boundary
conditions from a physical boundary condition that w = 0 at the Earth’s
surface and on some effective lid a distance H aloft

ψ̂(0) = ψ̂(H) = 0. (1.25)

We shall see in Chapters 2 an 3 that it is such boundary conditions as
1.25 above that facilitate the determination of the wave speeds, c, as
eigenvalues which then allow the solutions of equation 1.24. (Note, this
is not the only boundary conditions to yield solutions. For example, over
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a sinusoidal hill a radiative upper boundary condition would also yield
solutions).

Our test-bench discussions regarding atmospheric gravity waves in
this section could be designated ‘textbook’. However, Chapter 2 consid-
ers domain and physical stratification which is, essentially, a combination
of the cases outlined in this introduction. Not surprisingly, therefore,
the mathematical treatment there uses discrete, superposing spatially
separable solutions, each with the essential character of a solution for
trapped gravity waves. Their interpretation in the context of meteorol-
ogy will rely on understanding of infinite media gravity waves and their
interaction with a material discontinuity.

In the next two sections we delve deeper into the science, to consider
further example cases which are still the focus of much research, which
illustrate the interaction, or coupling between atmospheric convection
and, among other things, gravity waves.

1.4 The Influence of Gravity Waves on the

Weather and Climate System

As we have discussed, gravity waves influence the general circulation of
the atmosphere through their transport and deposition of momentum.
The equations which govern the atmosphere, under statically stable con-
ditions, permit a further range of wave solutions and gravity waves can
be generated by airflow over mountains, vertical shear or the penetration
of stable layer by convection, to name a few. As they propagate, these
gravity waves make adjustments to mass and momentum fields, moving
and manoeuvring the atmosphere towards a balanced state.

In this section, in order to give context to our subsequent results
chapters, particularly Chapter 5, we discuss some well-known, relatively
simple examples of gravity waves’ influence on the weather and climate
system, reserving for the next section an introduction to the problem of
gravity wave coupling to convection.

1.4.1 Ducted Gravity Waves

Typically, waves generated in the lower atmosphere will transfer much of
their energy upward, thus losing much of their energy by the time they
have travelled a few wavelength horizontally from their source. How-
ever, if some mechanism, such as a change in wind shear, alters the
static stability with height, upward propagating waves can be reflected,
channelling the waves to propagate large horizontal distances from their
source. An example recipe for wave ducting is low stability air (which
implies evanescent waves) overlying a stable layer, which is often found
near the ground at night in arid regions. Strong curvature in a jet flow
can also cause trapping. The mathematics of such ducted, or trapped,
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gravity wave was discussed in section 1.3.1.
Ducted gravity waves can impact the weather by producing bands

of clouds and precipitation remote from their source, or even contribute
to convection initiation. For an extensive case study, see Ralph et al.
(1993), who measured ducted gravity waves over Southern France. For
further reading, see, e.g., Francis (1975), Lindzen & Tung (1976), Fritts
& Alexander (2003).

1.4.2 Mountain Gravity Waves

Varying orography beneath an airflow provides a mechanism of vertical
displacement, and as such, gravity wave generation. Wave energy orig-
inating from the terrain can propagate upward to the top of the tropo-
sphere, and relatively small mountains may affect airflow a considerable
distance above the ground. Under other atmospheric conditions, such
as those responsible for ducted gravity waves, most of the wave energy
can be trapped in a layer near the surface extending downstream from
a mountain. These are known as trapped lee waves, the mathematics
of which is described by the Taylor-Goldstein equation (see section 1.3.4
above). A well known solution of the Taylor-Goldstein equation was first
found by Scorer (1949), who wrote a modified version of equation 1.24
for perturbation vertical velocity, which reads

d2ŵ

dz2
+ (l2 − k2)ŵ = 0, (1.26)

where

l =

√
N2

U2
− 1

U

d2U

dz2
, (1.27)

where U = U(z) is the vertical profile of horizontal wind. Here l is
known as the Scorer parameter. Whether the Scorer parameter is big-
ger or smaller than k2, we obtain fundamentally different solutions to
1.26, which relate to the nature of lee wave vertical propagation or trap-
ping. Trapping conditions are favoured when l2(z) decreases strongly
with height (especially if the Scorer parameter drops suddenly in the
mid-troposphere which then separates into a lower layer with high sta-
bility (l2 large) and an upper layer with low stability (l2 small)). As
such, the Scorer parameter is often used by meteorologists who wish to
determine if gravity waves will develop or not. In practice, it is derived
from vertical soundings or wind and temperature upstream of a mountain
chain to forecast the probability of lee wave development.

If sufficient moisture is present, orographic gravity waves can lead to
the formation of beautiful lenticular clouds, as shown in figure 1.5.
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Figure 1.5: Schematic of clouds related to trapped lee waves. From
the Cooperative Program for Operational Meteorology, Education, and
Training (COMET), adapted from (Durran & Klemp, 1983).

For an overview on mountain-generated gravity waves, see e.g. Fritts
& Alexander (2003); Nappo (2013); Scorer (1949); Smith (1979).

1.4.3 Stratospheric Gravity Waves

Gravity waves forced by disturbance in the troposphere, such as orogra-
phy or convection can propagate to large altitudes high up in the strato-
sphere and mesosphere. As the air thins, the amplitude of the waves
increases, and eventually non-linear effects lead to wave breaking, which
transfers their momentum to the mean flow. As such, stratospheric grav-
ity waves can play a role in interesting meteorological features such as the
Quasi-Biennial Oscillation (Baldwin et al., 2001). It is beyond the scope
of this thesis for a detailed discussion on stratospheric gravity waves, but
one could read Fritts & Alexander (2003) for a review.

1.4.4 Atmospheric Rossby Adjustment

The ratio of the horizontal, non-linear term in the fluid momentum equa-
tions to the Coriolis term defines Rossby number

Ro ≡
non-linear horizontal acceleration

Coriolis acceleration
=
U2/L

fU
=

U

fL
. (1.28)

Here U is a chosen, reference horizontal velocity, and L is a reference
horizontal distance. In Chapter 4 we shall choose for L the horizontal
length scale of the applied heat forcing. It is sometimes convenient use
the Rossby radius of deformation as an alternative to Ro to characterise
the response of the atmosphere to forcing. This is the distance, LR, over
which rotational effects become as important as gravity wave effects.
We can conveniently approximate this distance for present purposes as
follows. Again return to equation 1.9, for gravity waves, and observe
that this balance is reached when its term in f compares to the other
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terms i.e. f 2 ∂2w
∂z2
≈ N2(z)∂

2w
∂x2

. Applying simple scaling arguments and
considering the nth mode (so that z derivatives scale as H/n ), we have
f2w
n2H2 = N2w

L2
R,n

that is

LR,n =
NH

nf
. (1.29)

For quasi-steady, large-scale, bulk motions in the atmosphere (or
ocean) an often acceptable approximation is Ro � 1, which simplifies
the steady, horizontal momentum equations 1.8 to a geostrophic bal-
ance between Coriolis’ force and the pressure gradient: −fv = 1

ρ0(z)
∂p
∂x

,

fu = 1
ρ0(z)

∂p
∂y

. p serves as the horizontal velocity stream-function to the
horizontal velocity adjustment, which defines a geostrophic equilibrium.
Specifically, a geostrophic equilibrium in non-viscous geophysical fluid
dynamics is a motion with Coriolis force balancing horizontal pressure
forces.

The approach of perturbed, rotating fluids to steady-state, geostrophic
equilibria (if they exist) is a classic problem in several branches of geo-
physical fluid dynamics, widely dubbed the Rossby adjustment process.
On synoptic scales, rotation in fluids couples to planetary rotation, so
the determination of a geostrophic equilibrium and the formulation of
the Rossby adjustment dynamics commonly is based upon potential vor-
ticity Gill (1982), which is a conserved quantity for many systems. We
shall return to this matter in Chapter 4.

In terms of recent history, the dynamics of Rossby adjustment is
most transparently addressed in the context of rotating shallow layers of
incompressible liquid with mechanical perturbations, for example with
initial surface discontinuities (Gill et al., 1986), with surface discontinu-
ities and boundaries (Gill, 1976) and with atmospheric storm-induced
stresses stirring the mixing layer (Gill, 1984). This is because shallow
water formulation may be reduced to three field variables. Typically, the
final state of the system, after all transients have propagated off, has a
structure which is controlled by LR. For example, Gill (1976) has shown
that final state currents parallel to a left boundary (for the Northern
Hemisphere) represent a geostrophic adjustment to flow in a long, rotat-
ing channel when LR is small compared with channel width. A compact,
self-contained account of the prediction of a final state of surface defor-
mation, after Rossby adjustment, may be found in section 7.2 of Gill
(1982). This steady solution (equation (7.2.22)) for an initial surface dis-
continuity contains only one length scale- that of the Rossby radius of
deformation, LR. For further reading, see Bannon (1995) and Chagnon
& Bannon (2005).

Gill’s solution, despite neatly having only one length scale, does not
take account for the upward dispersion of energy as we see in the real
atmosphere. In Chapter 4 we address this by considering a deep atmo-
sphere, subject to a thermodynamic perturbation i.e. a finite interval
of heat forcing. To investigate the effects of rotation on the systems of
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Chapters 2,3, we shall formulate a Rossby adjustment problem analogous
to the those outlined above, but with the steady-state thermal wind and
a pressure fields used to define an analog of geostrophic adjustment. We
consider what effect upward radiation of wave energy has on LR. The
steady solution presented in Chapter 4 will be shown to contain two ef-
fective length scales: the Rossby radius and a scale determined by the
scale of the applied buoyancy forcing.

1.5 Interaction Between Atmospheric Grav-

ity Waves and Convection

Various sources of gravity wave generation have long been identified.
These include the waves generated, or forced, by orography and wind
shear, considered in the last section and, of most interest in this thesis,
convection. The mechanisms for the generation of gravity waves by to-
pography and wind shear have been studied extensively, but convective
generation mechanisms are less well understood, probably because the
case of convectively forced gravity waves is not simple.

Convection modifies its environment primarily through gravity waves,
and the rapid onset of deep convection (order of minutes) typically leads
to a wave-front which communicates compensating subsidence into the
environment (Bretherton & Smolarkiewicz, 1989). Figure 1.6, taken from
Fovell et al. (1992) graphically illustrates this process.

Figure 1.6: Schematic of convective adjustment mediated by gravity
waves. Taken from Fovell et al. (1992).

1.5.1 Convectively Forced Gravity Waves

Convection can be triggered, or suppressed, by gravity waves. Further,
convection and waves occur in concert- it is difficult to deduce cause and
effect from either alone.

Although it has been known for some time that convection can excite
gravity waves, only more recently have observations and models begun to
characterise the source mechanisms and dynamics of convectively forced
waves. This is in large part due to the lack of single characteristic phase
speed or frequency- convection generates waves throughout a range of
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phase speeds, frequencies and vertical and horizontal scales. We shall see
this clearly, in our work in chapters 2, 3.

Numerical Models have greatly enhanced our understanding of waves
generated by convection, but there remain many open questions. Possibly
most significant, moist convection provides a time-dependent thermal
forcing (due to latent heat release) that can interact with overlaying
stable layers and shear in complex ways that are not fully understood.
Three mechanisms have been proposed to describe convective generation.
In simplified form

1. Gravity waves are forced by temporal variations of the diabatic
heating within the cloud. Studies based on numerical simulations
and models have shown that, in this mechanism, the dominant
vertical wavelength of the excited tropospheric gravity waves is
approximately twice the depth of the heating (e.g. Alexander
et al. (1995); Bretherton (1988); Lane & Reeder (2001); Piani et al.
(2000)).

2. “Obstacle effect”: an up-draught develops in shear and blocks the
flow, producing cloud-relative flow across the top of the cloud (e.g
Clark et al. 1986). Thus, waves are generated in a similar way to
the mountain waves discussed above.

3. A “mechanical oscillator” individual up-draught decelerates rapidly
at the tropopause, and oscillates about the level of neutral buoy-
ancy (Fovell et al. 1992).

In reality, the three mechanisms are not distinct, but coupled. This thesis
will focus on the dynamics of thermally forced gravity waves in chapters
2 and 3, on their environmental legacy in chapter 4 and their signature
in chapter 5.

1.5.2 Convectively Coupled Waves

Tropical deep convection is observed to be organised on the synoptic
and mesoscale (Tulich et al., 2007; Wheeler & Kiladis, 1999), and it is
argued that gravity waves provide a mechanism for the aggregation of
cumulonimbus storms (Tulich et al., 2011) as they communicate the nec-
essary atmospheric adjustment to the neighbouring troposphere through
subsidence or lifting. The “gregarious” nature of mesoscale tropical con-
vection cells is thought to be driven (at least in part) by a low-level rising
mode in the vicinity of a convecting storm, which increases the depth of
moisture at low-levels, making conditions more favourable for new con-
vective events (Fovell et al., 1992; Mapes, 1993). Momentum and tem-
perature changes, communicated through the propagation of convectively
generated gravity waves may also condition the remote troposphere to
convection triggering or suppression (Bretherton & Smolarkiewicz, 1989;
Pandya et al., 2000; Shige & Satomura, 2000).
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Gravity waves modify the troposphere through vertical motion. If the
vertical motion at low levels is strong, of the order of metres per second
as may occur in a trapped gravity wave or bore, then this may directly
trigger deep convection (Emanuel et al., 1994). However, even relatively
weak vertical motion on the order of centimetres per second will induce
adiabatic warming and cooling that modifies the stability of the atmo-
spheric profile, through its CAPE and convective inhibition (CIN). A
number of case studies focus upon tropospheric gravity waves’ initiation
and/or control of the initiation of convection at locations remote from
the parent storm (Hankinson et al., 2014; Lac et al., 2002; Zhang et al.,
2001). In particular, gravity waves have been observed to suppress the
second initiation of convection through waves of subsidence for up to six
hours after initial forcing, until waves of low-level ascent remove the in-
hibition and allow the convection to occur (Birch et al., 2013; Marsham
& Parker, 2006).

In any such study, there is an open question of whether the strength
of the gravity wave signal in the far field from the source is dependent
on trapping of the waves within the troposphere. For example Lindzen
and Tung (1976) showed that a change in stability at the tropopause
plays a part in the formation of deep tropospheric gravity wave modes
as waves will be partially reflected due to the sudden change in stabil-
ity. The trapping conditions can be non-trivial to diagnose on a case
by case basis. Conditions of trapping could be met for certain ranges
of horizontal wavenumber if there are suitable patterns of wind profile
and stratification (Birch et al., 2013), and when trapping occurs, a rigid
lid model may be suitable to analyse the wave field. More generally a
radiative boundary condition located at the tropopause is, physically,
more realistic than a rigid lid but it is mathematically disruptive (Ed-
man & Romps, 2017). Certainly, such a condition does not lend itself
to an analytical treatment of forced convection. However, previous the-
oretical studies have shown that one can circumvent this difficulty with
a high rigid lid (Holton et al., 2002; Mapes, 1998; Nicholls et al., 1991)
and still retain wave-like structures in the troposphere. Nicholls et al.
constructed a restricted, idealised semi-analytical model using a Dirich-
let rigid lid condition, the location of which is raised aloft, to address
the influence of gravity waves in adjusting the neighbouring cloud-free
troposphere. The importance of mode 1 and 2 gravity waves is apparent
in their results and confirmed by Lane and Reeder (2011), who show
that the mode 3 gravity wave also plays a significant role in modifying
convective inhibition in the neighbourhood of deep convection.

The Earth’s rotation also affects the tropospheric response to deep
convection: the gravity waves are part of a Rossby adjustment to the
convection, and their propagation establishes a larger-scale balanced re-
sponse to the potential vorticity field created by the convective sources.
Inclusion of planetary rotation also significantly increases the complexity
of the problem, by perturbing the gravity wave dispersion relation, mak-
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ing mathematically tractable gravity wave modes elusive . Numerical
studies that have examined isolated clouds in rotating frames (Andersen
& Kuang, 2008; Shutts & Gray, 1994) and indicate that the Coriolis force
is important in reducing the radius of influence of the wave modes (Liu
& Moncrieff, 2004).

1.6 Motivation and Previous Studies

As we have seen, it has been known for some decades that deep convec-
tion interacts with gravity waves. Convection is known to force a spec-
trum of gravity waves, which communicate the adjustment to convection
into the environment (Bretherton & Smolarkiewicz, 1989). These waves
have been observed to feed back onto convection (Fritts, 1984; Tulich
& Kiladis, 2012), and can even be responsible for further convection
(Birch et al., 2013; Marsham & Parker, 2006). However, observations
have proved difficult, and have not yet provided a complete description
of the convection-wave relationship due to poor coverage (e.g. Alexander
et al. (2008)).

Most of our knowledge of convectively coupled waves has relied on
numerical models. Successful studies have clarified the dynamics of wave
generation (Clark et al., 1986; Fritts & Nastrom, 1992; Lane & Reeder,
2001; Lane et al., 2001; Zhang, 2004), determined the role of wind shear
(Beres et al., 2002), examined the effects of rotation (Liu & Moncrieff,
2004; Shutts & Gray, 1994), interrogated the wave field forced by a real-
istic cloud (Alexander et al., 1995; Beres, 2004) and found evidence for
convection-wave coupling (Lane & Zhang, 2011; Tulich et al., 2007).

Whilst models are extremely useful, they are not perfect. Large-scale
GCMs are extremely complex and contain many interacting processes,
meaning convection-wave relationships are difficult to untangle. Further,
in the case of GCMs, whose resolution is on the order of 100 km, con-
vection and gravity waves are not fully resolved, leading to incorrect
convectively coupled gravity wave spectra. In order to obtain accurate
predictions, modelers apply a gravity wave drag parameterisation scheme
(e.g. Lindzen (1981)). Whilst current convection schemes hold some in-
formation about the subgrid cloud field, they do not use any subgrid cloud
information in the excitation of gravity waves: waves are only forced by
the grid-resolved tendencies imposed by the convection scheme. This
leads to a possible mis-match between the true field of gravity waves ex-
cited by subgrid convection on the kilometre scale and the gravity waves
forced on the grid scale by the convection scheme.

In order to develop accurate parameterisation schemes, it is important
to understand the mechanisms that generate gravity waves. However,
the convective generation mechanisms are not well understood. Existent
parameterisation schemes do not satisfactorily capture of the spatial and
temporal distribution of cumulonimbus storms- a clear indicator that
current understanding is deficient (Stephens et al., 2010). Whilst this
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may be attributable to other, omitted physical processes and feedbacks,
an improved representation of gravity wave-convection interactions also
provides a candidate process worthy of deeper investigation.

A mathematical study with relatively few parameters allows a more
straightforward investigation. Most mathematical studies have been based
on linear theory, in which waves can be considered perturbation to the
base state. Idealised studies have interrogated the interaction and self-
organisation between tropospheric gravity waves and deep convection
(Emanuel, 1986; Lindzen, 1974; Raymond, 1983). More fundamental
models based on simple equations have also been useful in , for example,
unveiling the “gregarious” nature of convection (Mapes, 1993), predicting
the dynamics of convectively forced gravity waves (Nicholls et al., 1991;
Parker & Burton, 2002) and quantifying the effect of the tropopause
boundary (Edman & Romps, 2017).

In summary, we need to study convective-gravity wave interactions
as they play an important role in the weather and climate. Observations
have not provided concrete descriptions, and therefore numerical mod-
elling is needed. Since convection and some wave activity is not resolved
in complicated GCMs, a parameterisation scheme is required in order to
provide accurate predictions of convection-wave interactions. In order to
apply an accurate, successful parameterisation, we need to understand
the fundamental physics. Mathematical models simplify the problem,
and allow quantitive estimates of the characteristics of convection and
gravity wave interactions.

We now outline the problems addressed in this thesis, which is largely
(but not exclusively) based on mathematical models.

1.7 Thesis Outline

The bulk of this thesis (Chapters 2, 3, 4) is organised around the math-
ematics and meteorology of three, related, essentially analytical models,
all of which address buoyancy-forced, gravity-wave mediated adjustment
to convection, in a stratified atmosphere, with a potentially radiating
tropopause. These models only capture one part of the problem: the
forcing of gravity waves by convection, without feedback of gravity waves
onto convection. However, Chapter 5 does attempt to assess gravity wave
coupling to predominantly equatorial convection, by examining cutting-
edge, high resolution, convection-permitting Unified Model data. The
guiding ethos of all the work (other than that of Chapter 5) is the devel-
opment of analytical models and qualitative understanding.

In Chapter 2 we use a prescribed tropospheric heat source to model
convective heating to investigate: (1) What is the gravity wave response,
and (2) how does the response depend upon (i) the lengthscale of the
forcing? and (ii) the upward radiation of energy at the tropopause?
The latter is a key question, and the solution can depend upon whether
the troposphere is bounded by a rigid lid, or instead has some model
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stratosphere. To facilitate our investigations, we develop a transient, non-
rotating model of buoyancy forcing, in a 2D stratified atmosphere, with
a radiating tropopause and a variable base state of density, after Nichols
et al. 1991 and Edman and Romps 2017. This model is predominantly
analytical (except for a reliance on a numerical solution of its eigenvalue
equation). Notably, it separates horizontal and vertical variation, the
latter being based upon a modal decomposition, it derives from a closed
description, in linear theory, based upon field variables u, w, b and p
with prescribed ρ0(z) variation (necessitated by the deep nature of the
convection we aim to address) and heat or buoyancy forcing, S (mainly
the first baroclinic mode). After suitable assessment, the 2D model of
Chapter 2 is used to examine the effects of radiation at the tropopause
from a fundamental perspective, to assess its impacts in the context of
numerical models’ parametrisation and to assess secondary convection
triggering. A pleasing mathematical feature of the 2D model of Chapter
2 is that its predicted adjustments all emerge from superposed modes,
each with a propagation speed equal to the eigenvalue which enters the
vertical problem.

Having established the credentials of our essential approach to up-
ward gravity wave radiation, a compellingly simple question arises from
the work of Chapter 2, namely: what is the impact of the third, spatial
dimension? In Chapter 3 we develop an axially symmetric 3D model
with, we stress, an otherwise equivalent physical and mathematical com-
position as that in Chapter 2. In cylindrical geometry, a key difference
is that the forced gravity waves decay as they move outward due to ge-
ometrical constraints (to conserve energy), and studies of gravity waves
show concentric wave bands being emitted from a central storm (e.g.
Lane & Reeder (2001); Piani et al. (2000)). What might be the knock-on
effects for the triggering of further convection? In Chapter 3, we modify
the model of Chapter 2 to an extended basic set which includes v and,
based upon more general Sturm-Liouville theory (Arfken, 1966). Here,
Hankel-Laplace (rather than Fourier-Laplace) transform techniques be-
come necessary to address a modified horizontal variation. Moreover, the
inversion from reciprocal space must be performed numerically.

Another simple question arises: what is the influence of rotation?
Without background rotation, a period of transient forcing does not lead
to a local response at large time (with the large time response taking
the form of radiating gravity waves, which may decay in amplitude as
they radiate upwards and outwards). With background rotation, there
is a completely different possibility: the generation of a local pressure
anomaly (with associated buoyancy anomaly), that is in geostrophic bal-
ance with a transverse wind. We regard the study of this ultimate bal-
anced vortex state as being a fundamental question. In particular, how
does the horizontal lengthscale of the balanced state depend upon that
of the forcing and the underlying system (i.e., the deformation radius)?
What is the vertical structure of the response? We do this by consid-
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ering the changes to the potential vorticity via the prescribed heating,
in what may be regarded as a Rossby adjustment problem. Chapter 4
deals with the post-convection steady state, but again, we stress, with
otherwise equivalent physical and mathematical composition as that in
Chapter 2. A more substantial generalisation of the mathematical frame-
work will be required, as we now include a transverse wind component.
Furthermore, limiting cases must be considered analytically, using a non-
dimensionalisation approach, fully to interpret our meteorologically rel-
evant data.

Chapter 2...4 have dealt with analysing the gravity wave response
to prescribed thermal forcing. However, what is often seen in the real
world is the outcome of a fully-coupled system, in which the convection
forces gravity waves and the gravity waves force convection. In Chapter
5, we examine the nature of this fully coupled response. In particular,
we use high-resolution, convection permitting Met Office Unified Model
simulations of the sub-Saharan African climate to analyse the frequency-
wavenumber spectra of moisture and dynamical fields (OLR, rainfall, ver-
tical velocity and potential temperature) for gravity wave-like response.
Tulich and Kiladis (2012) found evidence of coupling between convection
and gravity waves in analysis of TRMM data. TRMM, however, has
the limitation of being relatively low resolution. Here, we are using a
dynamical model at much higher resolution, and thus see the outcome
of a fully coupled grave wave-convective system. In such systems, what
are the typical speeds of (coupled) gravity waves? Do these couple to
equatorial modes? How is the spectrum the result of many individual
storm events? Chapter 5 characterises the structure and properties of
convectively coupled gravity and e.g. Matsuno (1966) wave modes, now
based upon a numerical approach. Our methodology is adapted from
that of Wheeler and Kiladis (1999) and involves a latitudinal compres-
sion of physical fields which are suitable proxies for convection and then
filtration and subsequent Fourier inversion of data in reciprocal space.

The pursuit of relatively simple (semi-)analytical models has been
fruitful and has illuminated some non-trivial aspects of convective ad-
justment, and has opened many avenues for further research. Analysis
of high-resolution, fully coupled convection gives insight into the nature
of real system and provides some context for our analytical results. We
finish in Chapter 6 with a discussion of our results, and reflect on further
research questions that arise.
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Chapter 2

Forced Gravity Waves and
the Tropospheric Response to
Convection

2.1 Introduction

In this chapter we will present theoretical work directed toward improv-
ing our understanding of the mesoscale influence of deep convection on
its tropospheric environment through forced gravity wave effects. From a
simple set of linear, hydrostatic, non-rotating, incompressible equations,
we find a two-dimensional analytical solution to prescribed heating in a
stratified atmosphere, which is upwardly radiating when the domain lid
is sufficiently high. We interrogate the spatial and temporal sensitivity of
both the vertical velocity and potential temperature to different heating
functions, considering both the near-field and remote responses to steady
and pulsed heating. We find that the mesoscale tropospheric response
to convection is significantly dependent on the upward radiation char-
acteristics of the gravity waves, which are in turn dependent upon the
temporal and spatial structure of the source, and the assumed stratifi-
cation. Finally, we will make comparisons with an idealised Met Office
Unified Model simulation. The majority of this chapter has (at the time
of writing) recently been published in the Quarterly Journal of the Royal
Meteorological Society.

2.2 Background

Here, based on an analytical description of a deep atmosphere which
is thermally forced via a prescribed heating function, we build a model
capable of addressing two questions:

1. What is the effect of the conditions of upward wave radiation on the
spatial and temporal distribution of convective adjustment, over
the timescales of a few hours, relevant to mesoscale dynamics?
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2. What is the influence of spatial and temporal structure of thermal
forcing on gravity wave characteristics? In particular, do changes
in the thermal forcing function, on a scale unresolved by a GCM,
lead to significant differences in the tropospheric response to that
forcing?

In this Chapter, we extend the analytical work of Nicholls et al.
(1991), Holton et al. (2002) and Edman and Romps (2017) to ad-
dress the above questions, assessing the mesoscale effect of horizontal
and vertical variation in the pattern of convective forcing, with special
attention paid to the sensitivity of the remote horizontal response, as well
as atmospheric stratification. Specifically, we develop and apply a suit-
able analytical model that accommodates variation in both the spatial
and temporal patterning of thermal forcing. To facilitate an analytical
study, we will found our model on idealised, linear equations for a deep
atmosphere and generalise a technique due to Nicholls et al. (1991) in
which the upper boundary or lid of the domain is many times higher
aloft than the tropopause, so that the solution asymptotes to what can
be considered a pseudo-radiating regime. As in those previous studies, we
choose two-dimensional planar geometry in an environment without ver-
tical shear. The importance of shear in squall line development has been
shown by Thorpe et al. 1982, Rotunno et al. 1988 and Schmidt et al.
1990, but studies have confirmed it is not necessary in all cases (Barnes
& Sieckman, 1984), and a symmetrical response can even be found in
simulations with complicated environmental wind (Nicholls, 1987). Fur-
thermore, real deep convection also occurs in more complex geometries,
and there are a number of interesting studies tackling aspects of this prob-
lem by utilising fully 3D numerical simulations with complex physics. In
such simulations, more realistic physical features, such as typhoon gen-
erated gravity waves (Kim et al., 2014; Kim & Chun, 2011; Ong et al.,
2017), mesoscale circulation around squall lines (Pandya et al., 2000),
and gravity waves generated by deep convection (Lane & Reeder, 2001;
Piani et al., 2000) can be understood. Two-dimensional planar geom-
etry in the absence of shear (which achieves wave reflection/refraction
through a change in stratification) is chosen here as the simplest model
with which we can confront the above questions.

Before we begin, it is pertinent to cast a closer eye over two publica-
tions which contain a similar content to that of this chapter.

2.2.1 Previous Work

Whilst this Chapter will consist of original work, we will on occasion make
reference to a couple of similar studies, namely Nicholls et al. (1991) and
Edman and Romps (2017). Both previous studies have sought analytical
solutions to a forced, 2D, hydrostatic deep atmosphere. Here, we will
address different problems to those considered by Nicholls et al. (1991)
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and Edman et al. (2017), but it is still useful to take care in comparing
models. Table 2.2.1 details the differences.

Model Composition
Halliday et al.
2018

Nicholls et al.
1991

Edman et al.
2017

Horizontal
Forcing
Structure

exp (− x2

2L
) L2

(x2+L2)
δ(x)

Vertical Forc-
ing Structure

sin(nπz
H

) sin(nπz
H

) δ(z)

Heating rate
(K s−1)

0.01 0.02 0.01

Method Modal Expan-
sion

Modal Expan-
sion

Green’s Func-
tion

Tropopause
Height (km)

10 10 17

Trapped
cases

yes yes no

Piecewise
N(z)

yes no yes

Nt 0.01 0.01 0.01
Ns/Nt 2 1 2.5

Table 2.1: Differences in the analytical models of Halliday et al. (2018)
Nicholls et al. (1991) and Edman et al. (2017)

We will now detail the derivation of our analytical model.

2.3 Mathematical Model

2.3.1 Governing equations

We consider small disturbances about a state of rest, in a two-dimensional
incompressible fluid. The governing equations for hydrostatic flow are

∂u

∂t
= − 1

ρ0(z)

∂p′

∂x
,

1

ρ0(z)

∂p′

∂z
= b,

∂b

∂t
+N2w = S,

∂u

∂x
+
∂w

∂z
= 0,

(2.1)

where (u,w) is the wind vector, p′ is the perturbation pressure, ρ0(z)
is the basic state density, b = −gρ′/ρ0(z) is the buoyancy (where ρ′ is
the perturbation density), S(x, z, t) is a prescribed buoyancy forcing, and
N(z) is the buoyancy frequency, defined by

N2(z) = − g

ρ0(z)

dρ0(z)

dz
. (2.2)
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We do not make the Boussinesq approximation, i.e., ρ0 is not taken to
be constant in the horizontal momentum equation, so that the effects of
a deep (albeit incompressible) atmosphere are included. (e.g., see §6.4
of Gill (1982). This is a widely-used system of equations in dynamical
meterology (e.g., Lindzen (1974), Chumakova et al. (2013))

The buoyancy forcing S, with units of m s−3, arises due to a thermal
forcing Q, with units of K s−1, which in a more complete description
would appear in the potential temperature equation Dθ/Dt = Q. We
use a Boussinesq-like correspondence between the two, with

S =
gQ

θ0

, (2.3)

where θ0 is a reference potential temperature (taken to be 273 K). Later
on, we will also evaluate a potential temperature perturbation θ′ from b,
again using a Boussinesq-like correspondence

b =
gθ′

θ0

. (2.4)

Eliminating variables in (2.1), a single equation for the vertical veloc-
ity w may be obtained in terms of S:

∂

∂z

(
ρ0(z)

∂

∂z

∂2w

∂t2

)
+ ρ0(z)N2(z)

∂2w

∂x2
= ρ0(z)

∂2S

∂x2
. (2.5)

This is to be solved between rigid lower and upper boundaries at z = 0
and z = H:

w(z = 0) = 0, w(z = H) = 0. (2.6)

2.3.2 Modal Expansion

Free modes of the form w = A(x − cnt)φn(z) (where A is any given
function) with horizontal wave speed cn, satisfy (2.5) and (2.6) provided

d

dz

(
ρ0

dφn
dz

)
+
ρ0N

2

c2
n

φn = 0,

φn(0) = φn(H) = 0,

(2.7)

where ρ0(z) and N(z) are linked via (2.2). From (2.7), it follows that
the eigenvalues cn are real, and that the eigenfunctions φn(z) satisfy an
orthonormality condition:∫ H

0

ρ0N
2φnφm dz = δnm. (2.8)

Since the eigenfunctions, φn(z), are complete, the vertical structure
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of w(x, z, t) and S(x, z, t) can be written as

w(x, z, t) =
∞∑
j=1

wj(x, t)φj(z),

S(x, z, t) = N2(z)
∞∑
j=1

Sj(x, t)φj(z).

(2.9)

The inclusion of the pre-factor N2(z) in S is for mathematical conve-
nience, so that when multiplied by ρ0φn and integrated over 0 < z < H
we obtain

Sn(x, t) =

∫ H

0

ρ0(z)φn(z)S(x, z, t) dz, (2.10)

i.e. Sn(x, t) is completely determined by the given buoyancy forcing
S(x, z, t). However, the modal expansion coefficients wn(x, t) must be
found from evolution equations, which are obtained by multiplying (2.5)
by φn and integrating over 0 < z < H yielding

− 1

c2
n

∫ H

0

ρ0N
2φn

∂2w

∂t2
dz +

∫ H

0

ρ0N
2φn

∂2w

∂x2
dz

=

∫ H

0

ρ0φn
∂2S

∂x2
dz, (2.11)

where the first term has been twice integrated by parts, and we have
used (2.7). Substituting the modal expansions (2.9) and using (2.8) we
obtain

∂2

∂x2
wn(x, t)− 1

c2
n

∂2

∂t2
wn(x, t) =

∂2

∂x2
Sn(x, t), (2.12)

which, for S = 0 simplifies to the second order wave equation, for free
modes of horizontal speed cn.

Equation (2.12) is the basis for the rest of this study. Once solved,
we shall find the full solutions for w(x, z, t) from (2.9) and for b(x, z, t)
by integrating ∂b/∂t = S −N2w.

2.3.3 Buoyancy forcing: temporal structure

We assume a separable buoyancy forcing of finite duration, T

S(x, z, t) = S0X(x)Z(z) (Θ(t)−Θ(t− T )) , T > 0. (2.13)

Here Z(z) and X(x) are vertical and horizontal structure functions with
maximum amplitude unity, Θ(t) is the Heaviside function, and S0 is the
maximum value of the buoyancy forcing. Then (2.12) becomes

∂2wn
∂x2

− 1

c2
n

∂2wn
∂t2

= S0σn
∂2X

∂x2
(Θ(t)−Θ(t− T )) ,
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where

σn =

∫ H

0

ρ0(z)φn(z)Z(z) dz. (2.14)

This may be solved, for arbitrary X(x), using a Fourier transform in x
(with conjugate variable k) and a Laplace transform in t (with conjugate
variable p), following Nicholls et al. (1991). Using standard transform
relations (e.g., Arfken, 1966) we obtain

˜̃wn(k, p) =
S0c

2
nσnk

2X̃(k)

p (p+ icnk) (p− icnk)

(
1− e−pT

)
. (2.15)

Here X̃ denotes the Fourier transform of X(x), and ˜̃w the Fourier and
Laplace transform of w. The above result assumes quiescent initial con-
ditions, and that w → 0 as |x| → ∞ sufficiently quickly for the Fourier
transform to exist.

Using the delay theorem of Laplace transforms (e.g., Arfken, 1966)
on the partial fraction expansion of (2.15), taking inverse Laplace and
Fourier transforms yields

wn(x, t) = S0 (1−Θ(t− T ))X(x)σn (2.16)

− S0

2
(X(x+ cnt) +X(x− cnt))σn

+
S0

2
Θ(t− T ) (X(x− cn(t− T )))σn

+
S0

2
Θ(t− T ) (X(x+ cn(t− T )))σn.

A few remarks are now appropriate. As in Nicholls et al. (1991) and
Parker and Burton (2002), the modal solution contains non-dispersive
waves moving leftwards and rightwards with speed cn. Also note (2.16)
holds for any buoyancy forcing for which the horizontal and vertical struc-
ture is separable, and for any stratification; the response to steady buoy-
ancy forcing may be obtained on setting T →∞, when terms with factor
Θ(t− T ) disappear.

The full vertical velocity, w(x, z, t), can be determined from (2.16)
when used with (2.9). The corresponding buoyancy response, b(x, z, t),
is obtained by substituting (2.16) and (2.9) into (2.1), to give

∂

∂t

(
b

S0

)
=
N2

2
Θ(t)

∑
n

σn (X(x+ cnt) +X(x− cnt))φn(z)

−N
2

2
Θ(t− T )

∑
n

σn (X(ξ − cnt) +X(ξ′ + cnt))φn(z),

(2.17)

where, for convenience, we have defined ξ = x + cnT , ξ′ = x − cnT .
Note that the buoyancy frequency, N , appears as a factor in the above.
Since eigenfunction φn(z) is continuous (see section 2.3.5) equation 2.17
implies that the z-variation of b will be discontinuous at the tropopause,
if N is discontinuous there.
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2.3.4 Buoyancy forcing: spatial structure

To obtain quantitative predictions of w and b (and hence θ) a horizontal
variation X(x) and a vertical variation Z(z) must be chosen. For X(x)
we choose a Gaussian function of horizontal width L:

X(x) = exp

(
− x2

2L2

)
, (2.18)

since in localised deep convection the horizontal variation of buoyancy
peaks at the hot-tower centre and weakens, due to, e.g., turbulent mix-
ing with distance. The choice of Z(z) is informed by observed heating
profiles, which peak in the mid troposphere and are small at the surface
and tropopause due to low-level cooling and the cessation of convective
instability respectively. As in Nicholls et al. (1991), a suitable first ap-
proximation is

Z(z) = sin

(
πz

Ht

)
(Θ(z)−Θ(z −Ht)), (2.19)

which is continuous and has a single peak at z = Ht/2, where Ht is the
height of the tropopause. Note, the tropopause now coincides with the
top of the buoyancy forcing used throughout this chapter, i.e., Z(z) = 0
when z > Ht. Figure 2.1 is a schematic representation of the horizontal
and vertical variation of the buoyancy forcing function we use throughout,
except for section 2.6.2 (which we shall address at that time).
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Figure 2.1: Schematic of the horizontal and vertical variation of our
buoyancy forcing function. The top panel shows the vertical and hori-
zontal variation described by Z(z), X(x), respectively. The characteristic
width of the forcing is L. The bottom panel shows the time dependence.
The vertical variation chosen corresponds to the first baroclinic mode
of heating in the troposphere, between the ground and the tropopause
(broken red line).
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With this assumed form for X, the vertical velocity may be deter-
mined straightforwardly from (2.9) and (2.16). We may also now inte-
grate (2.17), using the initial condition b = 0, to obtain

b = S0
N2L

2

√
π

2

∑
j

σj
cj
φj(z)

×{Θ(t)G(cj, L, x, t) + Θ(t− T )G(cj, L, x, t− T )},
(2.20)

where we have defined

G(cj, L, x, t) = erf

(
cjt− x√

2L

)
+ erf

(
cjt+ x√

2L

)
. (2.21)

The potential temperature immediately follows from (2.4).

2.3.5 Model Stratification

The simplest possible representation of the tropospheric and stratospheric
stratification is

N(z) =

{
Nt, z ≤ Ht,

Ns, H > z > Ht,
(2.22)

where Nt and Ns are constants, which corresponds to a basic state of
density of

ρ0(z) =

{
ρse
− z
Dt , z ≤ Ht,

ρse
−Ht
Dt e−

(z−Ht)
Ds , H > z > Ht.

(2.23)

For definiteness, let Ns > Nt. The tropospheric and stratospheric scale
heights are given by

Dt =
g

N2
t

, Ds =
g

N2
s

. (2.24)

We seek the corresponding free modes φn(z) and wavespeeds cn from
(2.7), which yields a solution

φn(z) = An sin (knz) e
z

2Dt , z < Ht, (2.25)

φn(z) = A′n sin (k′n(z −H)) e
z

2Ds , Ht ≤ z < H, (2.26)

where we have defined

kn =

√
N2
t

c2
n

− 1

4D2
t

, k′n =

√
N2
s

c2
n

− 1

4D2
s

. (2.27)

The solutions (2.25) and (2.26) must be matched at the tropopause,
z = Ht, by applying continuity of φn and dφn/dz, yielding an equation
for cn:

kn
k′n

+

(
1

Dt

− 1

Ds

)
tan(knHt)

k′n
− tan (knHt) cot (k′n(Ht −H)) = 0.

(2.28)
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2.3 Mathematical Model

We solved (2.28) numerically, using a bisector method, to determine seed-
ing values of cn which were then refined using a Newton-Raphson method.
Recall that the wave speeds, cn, are real.

We pause to consider the continuity conditions imposed upon eigen-
functions φn(z) above. These may be derived as follows. From equations
(2.9) it is immediate for w continuous φn(z) must be continuous. In-
tegrating equation (2.7) on a narrow range of z across the tropopause[

ρ0
dφn
dz

]Ht+δ
Ht−δ

+
1

c2
n

∫ Ht+δ

Ht−δ
ρ0N

2φn(z′)dz′ = 0. (2.29)

Setting δ → 0 in the above, the integral limits converge, the integral
vanishes and we are left with the condition

[
dφn
dz

]
Ht−δ

=
[

dφn
dz

]
Ht+δ

i.e dφn
dz

and φn(z) are both continuous at z = Ht.
Return to considering limiting cases of equation (2.28). If Nt = Ns ≡

N , then kn = k′n and(2.28) becomes 1 = tan(knHt) cot(k(Ht −H)) =⇒
tan(knH) (1 + tan2(knHt)) = 0, which gives Hkn = nπ, and from (2.27)
we obtain for the wave speeds

cn =
NH√

n2π2 + H2

4D2
t

. (2.30)

The wavespeeds of Nicholls et al. (1991) are recovered in the Boussinesq
limit, H � Dt, with cn → NH/nπ, corresponding to Fourier modes
φn(z) → An sin (nπz/H). The wavespeeds of Parker and Burton (2002)
are recovered by further setting H = Ht. Returning to Nt 6= Ns, from
(2.8) the normalization coefficients in (2.25) and (2.26) are

An =

(
N2
t ρs
2

(
Ht −

sin(2knHt)

2kn

)
+
N2
s ρs
2

(
sin2(knHt)

sin2(k′n(Ht −H))

)

×
(
H −Ht +

sin(2k′n(Ht −H))

2k′n

))1/2

,

A′n =

(
sin(knHt)

sin(k′n(Ht −H))

)
× exp

((
1

2Dt

− 1

2Ds

)
Ht

)
An.

(2.31)

From (2.32), with our choice Z(z) = sin (πz/Ht) (Θ(z)− Θ(z −Ht))
we now find

σn =
ρsAn

2
Re

(
exp (iknHt −Ht/2H) + 1

ikn + i π
Ht
− 1

2Dt

− exp (iknHt −Ht/2H) + 1

ikn − i πHt −
1

2Ds

)
,

(2.32)
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with the An determined from (2.31), and the cn and kn via a numerical
solution of (2.28).

2.4 Numerical Implementation and Con-

vergence

2.4.1 Computation of the Wave Speeds, cn

We return to the matter of the numerical solution of equation 2.28 for the
wave speeds, cn. It is convenient to consider the solutions as particular
values, cn, of the continuous variable x, x ∈ R+, with c = H

x
, and to seek

the solution of
f(x) = 0, (2.33)

where

f(x) ≡ Kn(x)

K ′n(x)
+

(
1

Rt

− 1

Rs

)
tan(R0Kn(x))

K ′n(x)
(2.34)

+ tan(R0Kn(x)) cot((1−R0)K ′n(x)).

In the above we have defined

Kn(x) ≡

√
N2
t x

2 − 1

4R2
t

, K ′n(x) ≡

√
N2
s x

2 − 1

4R2
s

, (2.35)

using the following dimensionless ratios

Rt ≡
Dt

H
, Rs ≡

Ds

H
, R0 ≡

Ht

H
. (2.36)

Note that Rt, Rs and R0 change value with lid height, H. Note also that,
from the first term of equation (2.34), for real solutions, x, it is clearly
necessary to restrict the domain of x, such that x ≥ xmin with

xmin ≡ max

(
1

2NsRs

,
1

2NtRt

)
=

1

2NsRs

. (2.37)

The solid blue line in figure 2.2, was obtained as discussed below. It
shows typical variation of f(xH) for xH ∈ [xminH, xminH + 2000], with
H = 10Ht i.e. R0 = 0.1 (which is a large value of R0). This choice
of data produces, in a convenient range of scaled variable xH, all the
features of function f(xH), discussed in the following three paragraphs,
which must be considered to produce numerical solutions.

Since Ns > Nt and, in general, R0 � 1, it is clear that (1−R0)K ′n(x)
will always increase more rapidly with x than R0Kn(x). Consequently,
the same cotangent term in equation 2.34 varies most rapidly, with the
term in tan(R0Kn(x)) responsible for the “reversal” visible in figure 2.2,
after 9 cycles. In figure 2.2, the position xmin is indicated by the black
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asterisk. The period of the f(x) quickly attains a constant value. The
smaller period for small x visible in figure 2.2 may be understood by
noting that the rate of increase with x of the argument of the cotangent
term

dK ′n
dx

=
N2
s x√

N2
s x

2 − 1
R2
s

, (2.38)

is very large for x close to xmin = 1
2NsRs

. For x � xmin, the range in x,
δx, corresponding to a single cycle of the variation of the cotangent term
in equation 2.34 is bounded : (1 − R0)Nsδx < π. Accordingly, we can
approximate the period of the great majority the oscillations of f(x) as
follows

δx ≈ π

(1−R0)Ns

, (2.39)

which, for given R0, is an upper bound, note. Note also that δx is
relatively insensitive to the height of the lid, since R0 ≤ 0.1 for the range
of H studied in the sequel.

For purposes of a numerical solution, the most rapid variation in
equation (2.34) (for small x) must be adequately resolved. For the range
of H values to be studied, the requisite level of resolution was deemed to
correspond to

∆x =
δx

200
, R0 = 0.1. (2.40)

Since the tangent and cotangent functions have an infinite number
of zeros, it is clear that equation 2.34 will have an infinite number of
real solutions. Of course, we shall truncate the sequence, xn, for some
finite, large n. However, M = max(n) must increase with H, since
relatively sharp diabatic heating profiles require more modal terms to
achieve consistent resolution and we have

M = m0
H

Ht

. (2.41)

In the sequel we will choose a value of the proportionality constant of
m0 = 20.

We may now state the problem of finding the cn numerically as fol-
lows. For a given lid height H, we seek the xn = H

cn
from a numerical

solution of the problem:

f(x) = 0, x ∈ [xmin, kδx] , δx =
π

(1−R0)Ns

, ∆x =
δx

200
. (2.42)

In practice, the number of solutions of f(x) obtained in the chosen in-
terval will slightly exceed the value of M = m0

H
Ht

, and the set was
truncated.

For a given value of parameter H, the range of x in equation 2.42
was defined as a Matlab vector, with components xi. The Matlab vector
fi(xi), which is plotted against vector xi in figure 2.2, was determined
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from equation 2.34, using Matlab mesh operations. Initial seeds, x∗n, were
determined for further refinement (see below) by a synchronised search
of the Matlab vectors fi and xi, using the following algorithm, which
simply records abscissa crossing points

n = 1 (2.43)

for i = 1 : length(f)

if (fifi+1 < 0) ∧ ((|fi| < 5) ∨ (|fi+1| < 5))

x∗n = xi

n := (n+ 1)

end if

end for

The location of the converged seeds are displayed as red asterisks in figure
2.2. Note, the extra conditions above are required to avoid seeding the
fictitious “ fly-back” crossing points on the abscissa, corresponding to
the vertical connection between one cycle of the cotangent graph and the
next, the threshold values of 5 being determined by trial and error. Seeds
x∗n were converged using a maximum of 20 cycles of Newton-Raphson
iteration, using the convergence criterion:∣∣∣∣∣x∗(p+1)

n − x∗(p)n

x
∗(p)
n

∣∣∣∣∣ < 10−5, (2.44)

where x
∗(p)
n denotes the pth estimate of the nth root.

Converged values of xn were all converted to the corresponding wave
speed using the relationship:

cn =
1

xn
. (2.45)

A specimen set of converged wave speeds are plotted along with the
corresponding heating expansion coefficients, σn, in figure 2.5, which are
considered in the next section.
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Figure 2.2: The solid blue line shows the variation of the left hand
side of the secular equation 2.28 for H = 10Ht i.e. ratio R0 = 0.1
using a restricted range of independent variable Hx = H

c
. The cotangent

term in equation 2.34 varies most rapidly, the term in tan(R0Kn(x))
being responsible for the “reversal” occurring after 9 cycles. The position
of xmin is indicated by the black asterisk. The position of converged
solutions, Hxn, are indicated by red asterisks.

2.4.2 Convergence of the Heating Profile

It is appropriate to verify the expansion coefficients, σn, in equation 2.31.
Moreover, given the reliance of our solution on the numerical calculation
detailed in section 2.4.1, it is necessary to verify that a complete set of
wave speeds have been extracted, for a given lid height, H. Accordingly,
for all the data presented in the sequel, the vertical variation of our
defined, diabiatic heating profile was recovered, from its modal expansion
in equation (2.9) and compared with the target form, Z(z), defined in
equation (2.19) and illustrated in schematic figure 2.1. Figure 2.3, below,
shows the vertical variation of the applied buoyancy forcing, recovered
from its modal expansion

Zr(z) ≡
M∑
n=0

σnφn(z). (2.46)
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Figure 2.4, below, shows the vertical variations of the associated absolute
error:

ε(z) ≡ (Zr(z)− Z(z)) , (2.47)
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Domain variation of reconstructed applied diabatic heating, Z
r
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z / H
t

Z
r (

z
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Figure 2.3: Checking the modal expansion. A domain plot of the re-
constructed vertical variation of assumed diabatic heating, Zr(z) (see
equation 2.46), plotted over a range of vertical coordinate, to confirm
correct behaviour. For this data Ht = 1, H = 50Ht, m = 50.
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Figure 2.4: A domain plot of the absolute error, between the target dia-
batic heating profile and that recovered by its modal expansion, equation
2.46. As for the previous figure, for this dataHt = 1, H = 50Ht, m0 = 50.
The maximum absolute error occurs at the model tropopause.

Note that a sensible relative error cannot be defined, given Z(z) = 0,
z > Ht. The data in figures 2.3 and 2.4 was compiled for Ht = 1,
H = 50Hy, k = 50 (see next section). However, the visualised region is
reduced to z ∈ [1, 6Ht]. As expected, the relative error in the heating
profile and, by extension, the whole atmospheric adjustment, is greatest
at the location of the model tropopause. This data is indicative of a
non-uniform convergence in the modal expansion. However, convergence
is seen to be satisfactory over the domain.

For the data shown in figures 2.3 and 2.4, we show, in figure 2.5, the
variation with n, mode number, of the heating expansion coefficients, σn
and the associated wave speeds, cn.
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Figure 2.5: Converged wave speeds and corresponding heating expan-
sion coefficients plotted against mode number, for the data used produce
figures 2.3 and 2.4.

2.4.3 Convergence to a Radiating Solution

The existence of a model lid at z = H means that upwards propagating
waves are inevitably reflected downwards, and will thus return to disrupt
the tropospheric response in 0 < z < Ht, in which we are most interested.
This aphysical effect could perhaps be eliminated by taking H ≈ 50 km
and introducing a sponge layer at the top of the domain. However, a
neater solution - and one which is compatible with our mathematical
formulation - is simply to take H � Ht, so that upwards propagating
waves do not have time to reflect and return to disrupt the tropospheric
response, which can then be considered as quasi-radiating. The values
of H that are required to achieve this may themselves be aphysical (e.g.,
hundreds of km), in which case the response only makes sense physically
in the troposphere and stratosphere (say). The response far above that,
where our equations are motion are not valid, is ignored: this part of the
domain simply serves to implement a radiating boundary condition for
the lower atmosphere.

But how large need H be for such a quasi-radiating response? We
probe the convergence of the tropospheric response as H increases for
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Figure 2.6: The transition to a radiating solution with increasing lid
altitude H � Ht = 10 km. Shown is the w response for x > 0 in m s−1,
30 mins after onset of forcing. L = 10 km, N = 0.01 s−1, Ht = 10 km.
(a) H = 10 km, (b) H = 30 km, (c) H =100 km, (d) H = 640 km, (e)
H =3000 km.

the case of a uniformly stratified atmosphere N(z) = N = 0.01 s−1 and
with steady forcing such that L = 10 km, Ht = 10 km, which shall be
the standard choice throughout. Figure 2.6 shows the w response for
x > 0, 30 mins after forcing onset, for a lid at 10 km (tropopause), 30 km,
100 km, 640 km, 3000 km. We are thus moving from the trapped mode
(H = Ht) of Parker and Burton (2002), to a model with H = 30 km
and limited upward radiation (Nicholls et al., 1991), and then eventually
converging to radiating solution when H � Ht. In particular, we see
large differences as H increases from 10 to 100 km (a to b): higher order
modes (with larger horizontal phase speeds) are excited and propagate
more rapidly into the environment, and an upwardly radiating gravity
wave field develops aloft. However, increasing lid height above 100 km
has almost no effect on tropospheric response, although the stratospheric

44



2.4 Numerical Implementation and Convergence

response changes somewhat. Indeed, figure 2.6(d, e) are indistinguish-
able, which indicates a converged solution. This convergence is quantified
using an absolute difference

∆w(x, z, t,H, L) = w(x, z, t,H, L)− w∞(x, z, t, L), (2.48)

where w∞ is the converged solution with H = 3000 km (figure 2.6(e)).
We calculate the tropospheric relative error

ε(H,L) =
∆wrms(x, z, t,H)

(w∞)rms
,

frms ≡

√∑
x

∑
z (f(x, z, t))2

NxNz

,

(2.49)

where the uniform grid on which a response f is evaluated contains Nx×
Nz points, in the domain 0 < x < 300 km, 0 < z < 10 km. In figure
2.6, the calculated values of ε are, reading upwards, 1.06, 0.12, 8.5×10−4,
2.3×10−12 (panel (e) is w∞). Arbitrarily, we deem that a value of ε ≤
10−3 corresponds to a converged solution, and therefore figure 2.6(c,d)
can be considered converged.

It is also important to consider how ε depends upon L. Figure 2.7
shows the convergence for a range of horizontal forcing widths 1 km< L <
100 km. We observe that, generally, when L is smaller, ε is larger. For the
range of L used in this study, 10 km≤ L ≤ 100 km, taking Ht = 640 km
we are guaranteed ε ≤ 10−3 (for this choice of parameter space). We
therefore take this value of H for rest of this study.

We can understand the dependence of ε on L by considering hydro-
static gravity waves ∼ exp{i(kx+mz−ωt)} in an unbounded atmosphere
with uniform N , taken here in the Boussinesq limit for simplicity. Taking
this limit in (2.5), we obtain the usual gravity wave dispersion relation,
ω = Nk/m, and hence a group velocity

cg =

(
∂ω

∂k
, 0,

∂ω

∂m

)
=
N

m

(
1, 0,− k

m

)
. (2.50)

The time taken for wave energy to reflect from the lid and return

tr =
2H

cgz
=

2H

Nk/m2
=

2Hm2

Nk
. (2.51)

Such unphysical reflections can then be avoided be taking t < tr, or
equivalently, H > Nkt/2m2. Since we expect the gravity wave response
to have the same characteristic scales as the forcing, i.e. k ≈ L−1 and
m ≈ Ht

−1, we require

H >
NHt

2t

2L
. (2.52)
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Figure 2.7: Convergence with H of the simplified (constant N) model.
Plots of the relative error in the w-response, ε, with lid height, H, com-
piled for t = 30 mins after the onset of forcing, 0 < x < 300 km and a
range of forcing widths L: 1 km< L <100 km (see key) with the same
total heat input. As expected, horizontally narrower forcing profiles con-
verge more slowly with H.

So, for a quasi-radiating solution at large t, we would need a large H.
For our convergence tests with t = 30 mins, N = 0.01 s−1, L = 10 km
and Ht = 10 km, we thus expect a converged solution with H > 250 km.

The number of modes M retained in the modal expansion also need
to vary with H to ensure a consistent resolution of both the forcing and
the response. We achieve this by taking M = 20H/Ht.

2.5 The Dynamics of Convective Adjust-

ment

We now test the sensitivity of the gravity wave response to different model
configurations (e.g., constant versus varying N) and to the temporal and
spatial structure of the thermal forcing. Of particular interest is the
speed and magnitude of the resulting dominant tropospheric response,
and how this may pre-condition the troposphere to further convection.
We also identify aspects of the tropospheric response that may be absent
in low-resolution atmospheric models. Throughout we analyse the verti-
cal velocity w and the potential temperature perturbation θ, since both
are influential in the organisation of deep convection.

We use results from three different model configurations: (i) a trapped
regime with a rigid lid at the tropopause (TRAP hereafter), (ii) a radi-
ating regime with a high model lid and constant N (RAD1 hereafter),
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(iii) a radiating regime with a high model lid but different values of N in
the troposphere and stratosphere (RAD2 hereafter). For cases (ii) and
(iii) we follow §2.4.3 and take the model lid at H = 64Ht = 640 km.
We choose the maximum buoyancy forcing to be S0 = 3.6× 10−5 m s−3,
which, using equation (3.8), corresponds to a maximum heating rate
Qmax = 0.001 K s−1, and a maximum rainfall rate of 14 mm hr−1, typical
of a cumulonimbus storm. Note, our heating rate is half of that used by
Nicholls et al. (1991). Note also that, since our system is linear, any
other choice of S0 will scale the solution accordingly.

2.5.1 Response to Steady Heating: Trapping and
Radiation

In order to characterise the effects of upward radiation, we compare the
response from TRAP and RAD1 (both with uniform N = 0.01 s−1)
to steady heating with horizontal lengthscale L = 10 km. In TRAP,
the w response takes the form shown in figure 2.6a, with a single non-
dispersive pulse of subsidence emanating from the heating at x = 0,
which travels uniformly at the speed ct of the first gravity wave mode
(i.e. ct = NHt/π ≈ 30 m s−1 in the Boussinesq limit). The response
is more complex in RAD1, as illustrated in figure 2.8, where the time
evolution of both the w and θ responses are shown. (Note that, as in
§2.4.3, the solutions are symmetric about x = 0, and are only shown
for x > 0). In the deep atmosphere, an entire spectrum of deeper grav-
ity wave modes is excited, which travel at a range of horizontal speeds,
each of which exceeds ct. So, (i) the adjustment is communicated more
rapidly into the neighbourhood of the forcing relative to TRAP, (ii) the
dominant tropospheric response now inevitably disperses, leading to a
reduction in the magnitude of the tropospheric response in w relative to
TRAP.

This reduction is quantified in figure 2.9, which shows the maxi-
mum tropospheric value of |w| for |x| > 100 km. This automatically
excludes the steady w response around x = 0, and instead focusses on
the outwardly propagating subsidence pulse. For TRAP, |w|max ≈ 0 until
t ≈ 50 mins (i.e., t ≈ 100 km/ct, when the single gravity wave appears),
after which it rises and then quickly settles to a constant value, since
this pulse is non-dispersive. For RAD1, there is a signature in |w|max

for smaller times (due to the spectrum of deeper and faster gravity wave
modes), and then decay at large times. For these parameters, the implied
maximum in |w| is only 20% of that in TRAP: the remote response with
upward radiation is significantly less than with a lid. We return to this
issue in §2.5.3, where the case RAD2 is discussed. We will also use figure
2.9 as the basis for comparisons in Chapter 3.
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Figure 2.8: The time evolution of the response for w (left) and θ (right)
to steady heating with L = 10 km, uniform N = 0.01 s−1, H = 640 km in
RAD1. Note that t increases down each column.
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Figure 2.9: Time series of maximum tropospheric values of |w| for |x| >
100 km when forced with a steady heating of width L = 10 km.

2.5.2 Steady versus Transient Heating

We now consider differences between the response for steady heating
(applied for all t > 0), and pulsed heating (applied only for 0 < t < T ,
as in equation (2.13)). Figure 2.10 shows the response in w and θ at
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t = 60 mins, for each of TRAP, RAD1 and RAD2 with T = 30 mins. In
all cases, the remote tropospheric response consists of a pulse of negative
w, followed by an elongated pulse of positive θ, then a pulse of positive
w, after which the response dies out.

Figure 2.11 provides a more detailed comparison between steady heat-
ing and a (different) case with T = 60 min. Shown is the time-evolution
of the horizontal variation of the vertically-averaged tropospheric w (bro-
ken) and θ (solid) responses. Since heating is steady for the initial 60 mins
in both cases, the responses are identical, as shown in panels (a) and
(b). Panels (c) and (d) show results from a simulation where heating
is steady for all time, whilst (e) and (f) show results from a simulation
where heating is terminated at 60 mins. In the pulsed case, note the
regions of ascent, which propagate away from x = 0 immediately after
heating terminates. The maximum values of w decrease with time, in
exactly the same way as shown in figure 2.9 for the preceding subsidence
pulse. However, the regions of vertically-averaged ascent give values of
w that remain significant for the initiation of convection (in the sense to
be discussed in §2.5.4) for up to 4 hrs after initiation of heating.

Figure 2.10: Response at t = 60 mins to a pulsed heating of length
T = 30 mins, with L = 10 km, Nt = 0.01 s−1, Ns = 0.02 s−1 (RAD2 only),
and H = 640 km (RAD1, RAD2).
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Figure 2.11: Vertically averaged response for steady heating (left) and a
60 min pulse of heating (right), in RAD1. Shown are vertical averages
over the troposphere for w (blue lines) and θ (red lines), with L = 10 km,
uniform N = 0.01 s−1, and H = 640 km. Panels (a,b) show the response
to heating over 0 < t < T = 60 mins (same for both steady and pulsed
heating). Panels (c, d) show the response for a further 60 mins of (steady)
heating. Panels (e, f) show the response when the heating is terminated
after 60 mins (pulsed heating).

2.5.3 Effects of a Model Stratosphere

Whilst interrogation of RAD1 has been informative on the tropospheric
response, in reality N varies with height. We model this using a piecewise
constant N(z), with Nt = 0.01 s−1 in the troposphere, and Ns = 0.02 s−1

in the stratosphere (RAD2). Since the jump in N at the tropopause
leads to partial reflection of upwardly propagating waves (e.g. Sutherland
1996), RAD2 is expected to be an intermediate case between TRAP
(total wave reflection at rigid lid) and RAD1 (no tropopause, so no wave
reflection). Note that in RAD2 the choice Ns = 2Nt, Nt = 0.01 s−1 is
physically representative.
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2.5 The Dynamics of Convective Adjustment

Figure 2.12: Vertically-averaged response for the results of figure 2.10.
Shown are the vertical averages over the troposphere for w (blue lines)
and θ (red lines) at t = 60 mins, to a 30 min heat pulse. Solid lines:
TRAP. Dashed lines: RAD1. Dotted lines: RAD2 (Nt = 0.01 s−1, Ns =
0.02 s−1)

.

Figure 2.10(c,d) shows the response after 60 mins in RAD2 to a pulsed
heating of length 30 mins. The response in RAD2 has the same general
form as that in RAD1, although in RAD2 the dominant tropospheric
response propagates slightly faster (consistent with the larger average
values of N in RAD2), and is more intense (consistent with the antic-
ipated wave reflection at the tropopause). Of course, the tropospheric
response in TRAP is stronger still. This is confirmed in figure 2.12 which
shows the horizontal variation of the vertically-averaged tropospheric re-
sponses shown in figure 2.10. The peak values of |w| in RAD1 and RAD2
are 50% and 30% of those in TRAP, whilst the peak values of |θ| are 70%
and 60% of those in TRAP. Apparent is the increased dispersion of the
dominant response in RAD1 and RAD2 (as higher order modes of vary-
ing speed contribute to the adjustment), although the timing of the peak
responses remains constant across all configurations. The time evolutions
of the corresponding first subsidence pulses are shown in figure 2.9, for
the simpler case of steady heating (i.e. where there is no trailing pulse
of ascent). Note how the (remote) response in RAD2 is consistently
50-100% higher than in RAD1 over 1 h< t <4 h.

Although the above choice Ns = 2Nt for RAD2 is physically realistic,
it is interesting to examine how the response depends upon the ratio
Ns/Nt (with Ns/Nt = 1 corresponding to RAD1). To do so, we first
consider reflection and transmission of gravity waves at the tropopause.
From equation (2.1), applied to our chosen stratification, we have, for
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2.5 The Dynamics of Convective Adjustment

Figure 2.13: Horizontally-averaged vertical energy flux |qz| = |pw|, at a
fixed time t = 60 min, plotted as a function of ratio Ns/Nt, measured with
our model RAD2 in response to a 60 min pulse of heating with L = 10 km,
Nt = 0.01 s−1. The horizontal averaging is done over 0 < x < 100 km.
Values have been normalised by the maximum value of qz across all values
of Ns/Nt.
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(2.53)
where we have neglected density variation in the vicinity of the tropopause.
Plane wave solutions with dispersion relations ω = Ndk

m
, Nd ∈ [Nt, Ns],

are easily verified, so we have, for the pressure adjustment of a gravity
wave

p′(x, z, t) =

{
p0(t)e

i(ktx+mtz−ωtt), z ≤ Ht,

p0(s)e
i(ksx+msz−ωst), z > Ht,

with ωt = Ntkt
mt

etc. Note, for the present discussion subscript t refers
to tropospheric value, not the usual time derivative. Pressure (and w)
is continuous at the troposphere, at all x, t. Hence kt = ks ≡ k and
ωt = ωs ≡ ω. Now, the pressure adjustments, dispersion relations and

52



2.5 The Dynamics of Convective Adjustment

velocity adjustments (obtained from equations 2.1) are

p′t = p0(t)e
i(kx+mtz−ωt), ut =

kp′t
ρ0(z)ω

, wt =
k2p′t

ρ0(z)ωmt

, mt =
Ntk

ω
,

(2.54)

p′s = p0(s)e
i(kx+msz−ωt), us =

kp′s
ρ0(z)ω

, ws =
k2ps

ρ0(z)ωms

, ms =
Nsk

ω
.

(2.55)
We further obtain from the dispersion relation

Nt

mt

=
Ns

ms

. (2.56)

Consider an upward propagating, incident pressure wave AIe
i(kx+mtz−ωt)

and reflected pressure wave ARe
i(kx−mtz−ωt) both in the tropopause and

upward propagating, transmitted wave AT e
i(kx+msz−ωt). Continuity of

pressure, p′, at the tropopause, which is temporarily located at z = zt,
yields

AIe
imtzt + ARe

−imtzt = AT e
imszt , (2.57)

whilst continuity of w and equation 2.56 yield

AIe
imtzt − ARe−imtzt = AT

Nt

Ns

eimszt . (2.58)

It is convenient to set zt = 0 before adding equations 3.1 and 3.3, pro-
ducing an expression for the ratio of wave amplitudes

AT
AI

=
2(

1 + Nt
Ns

) . (2.59)

Adjacent to the tropopause, the vertical component of the energy flux

vector p′(x, t)w′(x, t) is given by expressions
A2
T k

2

ωρ0(z)mt
ei(kx−ωt) (z ≤ 0) and

A2
Ik

2

ωρ0(z)ms
ei(kx−ωt) (z > 0) from which it is immediate that the ratio of

transmitted energy flux, in the stratosphere, to incident energy flux, in
the troposphere, is

R =
A2
T

A2
I

mt

ms

=
4(

1 + Nt
Ns

)2

Nt

Ns

, (2.60)

where we have used equations 2.56 and 2.59. It is straightforward to
show that a maximum of R occurs for Nt = Ns.

For a 60 min pulse of heating, with L = 10 km, Nt = 0.01 s−1 and a
range of values of Ns, we have computed the upward energy flux, p′w,
at the tropopause at a fixed time of t = 60 mins. We denote the hori-
zontal average over 100 km by qz. This is shown in figure 2.13, where, as
predicted by the above model, the upwards radiation is maximised when
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Ns = Nt, i.e., when there is no wave reflection at the tropopause, con-
sistent with the results of Sutherland (1996; 2010), who considered the
simple case of Boussinesq monochromatic waves in an unbounded atmo-
sphere. When Ns 6= Nt, figure 2.13 shows that the upwards radiation (in
energy) is reduced by up to 12% over 0.5 < Ns/Nt < 2. This reduction
is consistent with the results shown in figure 2.10.

2.5.4 Triggering of Convection

The triggering of convection can be controlled by boundary-layer ther-
mals having enough kinetic energy to overcome convective inhibition
(CIN) at the top of the boundary layer (e.g. Mapes 2000), and one
process that can erode the CIN is low-level ascent. This acts to raise
the height of any inversion at the top of the boundary layer, and can
also induce convergence that enhances low-level moisture (Mapes, 1993).
Meanwhile, upper level subsidence acts to stabilise the troposphere, re-
ducing the amount of CAPE.

After a localised convection event of the type modelled here by the
prescribed heating, radiating gravity waves provide the necessary local
dynamical adjustment (Bretherton & Smolarkiewicz, 1989), which in-
volves periods of both tropospheric descent and ascent (figure 2.10). The
initial subsidence pulse with deep tropospheric warming provides an am-
bient atmosphere with reduced CAPE (i.e., less favourable for further
convection), but this disappears in the following pulse, which also has
low-level ascent (to erode CIN, and is thus favourable for further con-
vection). Case studies have shown these processes to be influential in
controlling the triggering of further convection close to a parent storm
(e.g., Marsham and Parker 2006, Birch et al. 2013), even when w is only
of the order of centimetres per second, and is thus too small to act as a
direct trigger for convection.

We now use our model to identify zones where the radiating gravity
waves provide an ambient atmosphere favourable for triggering of convec-
tion, in the above sense. Figure 2.14 shows results from RAD2 following
a 1 h pulse of heating. We consider θ in the middle troposphere (shown
as coloured contours) as a measure of reduced CAPE, and positive w
at 1 km as a measure of CIN erosion (shown as shaded regions). Imme-
diately after the termination of heating at 1 h, a series of zones appear
with small or negative mid-tropospheric θ and positive low-level w, each
of which moves away from the parent storm and is favourable for further
convection. The first such zone is highlighted within the dashed contour;
this moves outwards from the parent storm at approximately 20 m s−1.
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Figure 2.14: Hovmöller plot showing the response to a 1 hr pulse of heat-
ing in RAD2, with L = 10 km, Nt = 0.01 s−1, Ns = 0.02 s−1. The
coloured contours show mid-tropospheric θ; red regions, in which the at-
mosphere is warmed, will have reduced CAPE. The shaded region shows
where w > 0 at 1 km, which will act to erode CIN. The dashed contour
encloses one of several bands that may thus be preferential for triggering
of subsequent storms.

2.6 Implications for Convection Parameter-

isation Schemes and GCMs

In §2.5 we quantified the dynamical response to buoyancy forcing repre-
senting a single convection event with a width of about 10 km. We now
investigate how the dynamical response to such an event would appear
in a coarse model (e.g., a GCM) in which convection is not resolved, and
is instead parametrised by applying heating over a grid cell with width
of about 100 km. We consider how the local and remote responses are
then altered, and the implied changes in the heating tendency.

Note that we are not considering the alternative scenario in which a
population of sub-grid clouds (each of width 10 km, say) is spread over
a grid cell of width 100 km (say). In that case, the differences between
the exact dynamical response (excited by a population of small-scale
heatings) and that due to a single smeared-out heating (perhaps corre-
sponding to a convection scheme) might be smaller. Our experiment,
involving a single isolated sub-grid cloud, might be regarded as a “worst
case scenario” for a convection scheme.
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2.6.1 Sensitivity of Gravity Wave Response to Hor-
izontal Length Scale of Heating

Under conditions of identical total (x-integrated) heat input, our model
shows that variation in the horizontal length scale of the heating, L,
induces significant changes in the timing and magnitude of the immediate
and remote atmospheric adjustment. We now quantify these differences
for the response to pulsed heating of duration 1 h, between cases with L =
10 km, and L = 100 km. The former is representative of single, isolated
convective hot towers, whilst the latter is representative of parameterised
convection in a GCM, where small length scales cannot be resolved and
the heating must be imposed at the grid scale (or larger). To ensure the
same total heat input in both cases, the maximum buoyancy forcing, S0

satisfies S0(L = 10 km) = 10S0(L = 100 km).
Figure 2.15 shows the responses in w and θ. The response is averaged

both vertically over the troposphere 0 ≤ z ≤ 10 km, and horizontally over
|x− x0| ≤ 50 km for each of x0 = 0 (panel a: local response directly over
heating) and x0 = 100 km (panel b: remote response). The horizontal
averaging means we are comparing the response to “real” convection
(L = 10 km) when smeared over a GCM grid cell of width 100 km, with
the response to parameterised convection (L = 100 km) over the same
grid cell. That is, we compare how the response should appear on the
model grid, with how it will appear when convection is parameterised
(ignoring any additional degradation due to the numerical scheme of the
GCM, since the response here is calculated exactly via (2.16) and (2.17)).

We first discuss the local response shown in figure 2.15(a). When
L = 10 km, the w response quickly reaches a steady-state value, but this
“correct” value is never attained when L = 100 km, with w remaining
smaller. It is a similar story for the θ response, but θ does eventually
reach the “correct” steady-state value. When the heating is terminated
at 1 hr, both w and θ decay in about 30 mins when L = 10 km; but the
decay takes twice as long (circa 1 h) when L = 100 km.

The remote response is shown in figure 2.15(b). Here the magnitude
of the response is smaller when L = 100 km than when L = 10 km, for
both w and θ. There is also a non-trivial change in the timing of the peak
warming, which occurs too soon (by about 15 mins) when L = 100 km.
However, the eventual decay (for t > 2 h) is similar in both cases.

There are implications for the accuracy of the entire dynamical ad-
justment in GCMs when small-scale convective heating (L = 10 km) is
replaced by smeared-out parametrised heating on the grid scale (L =
100 km). In particular, this induces errors of about 20% in magnitude
in both w and θ, for both the local and remote responses. Any dynami-
cal processes sensitive to w and θ will be correspondingly compromised.
For example, the suppression and initiation of further convection will be
modified, via the CAPE and CIN mechanisms discussed in §2.5.4. We
stress that such modifications are possible even though the absolute dif-
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ferences in w are only 1−2 cm s−1: these differences would be insignificant
for direct triggering of convection, but they will imply 20% differences in
quantities such as CAPE and CIN.
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Figure 2.15: Time evolution of the averaged tropospheric responses in
RAD2 when L = 10 km (solid lines) and L = 100 km (dotted lines).
Shown are w (blue) and θ (red), with additional horizontal averaging
over (a)−50 km< x < 50 km (local response) and (b) 50 km< x < 150 km
(remote response).

Looking at figure 2.15, one might conclude that, despite differences in
the first few hours after initiation, both cases of heating are in some agree-
ment by around 3 hours. However, figure 2.16, which is an instantaneous
vertical cross section of the corresponding fields at t = 4 hours, reveals
anomalies in the vertical structure. Here, ∆w ≡ (w(L = 100 km)−w(L =
10 km)) and ∆θ ≡ (θ(L = 100 km)− θ(L = 10 km)).

In summary, from figures 2.15 and 2.16 we conclude that narrow, in-
tense heating, representing a convective hot tower, induces the largest
velocities and warming. Less intuitive is the observation that the dif-
ferences in behaviour persist for several hours. Coarse GCM models
with parameterised heating will fail to resolve some of the variation in
responses and, hence, fail to simulate modification of the convective en-
vironment.

Note that the results of this section can also be interpreted in a com-
pletely different way, in which we are comparing the dynamical responses
induced by two fundamentally different kinds of convection. Then, the
narrow intense heating (L = 10 km) models a single isolated hot tower,
whilst the wider less intense heating (L = 100 km) models a mesoscale
convective system.

57



2.6 Implications for Convection Parameterisation Schemes and GCMs

L = 10km

w

10 

7.5

5  

2.5

z
 (

k
m

)

-0.04

-0.02

0

0.02

0.04

θ

0  200 400 600 800

x (km)

10 

7.5

5  

2.5

0  

z
 (

k
m

)

-0.2

0

0.2

L = 100km

w

-0.04

-0.02

0

0.02

0.04

θ

0  200 400 600 800
x (km)

-0.2

0

0.2

Difference

w

-0.01

0

0.01

θ

0  200 400 600 800
x (km)

-0.05

0

0.05

Figure 2.16: Vertical cross sections of w (ms−1) and θ (K) response to
forcing of horizontal lengths L = 10 km (top) and L = 100 km (bottom),
which is pulsed for t = 1 hr. The response at t = 4 hrs is shown. The
right hand column is the difference. Total heating is the same in both
cases.

2.6.2 Redistribution of heating

GCM parameterisation schemes generally make the assumption that all
subsidence happens within the convecting grid box (Arakawa & Schubert,
1974) . In this section we estimate the error associated with the spatial
homogenisation (or smoothing-out) of the grid-box heating (implicit in
a GCM) by comparing adjustments with more realistic heating distri-
butions. Once again, we will consider the “worst case scenario” where
convective heating in the grid box is confined to a single hot tower.

An appreciation of the error associated with GCM-like smoothing of
heating can be achieved through analysis of the heating tendency field,
∂b
∂t

. From (2.1), recall
∂b

∂t
= S −N2(z)w. (2.61)

For steady heating (which allows a constant value of b to develop at all
positions in the domain), in the long-time limit, a steady-state ∂b

∂t
= 0

develops, when there is a balance between heating and w response fields,
with S(x, z, t)−N2(z)w(x, z, t) = 0.

To consider the dynamics of tendency, ∂b
∂t

, in the context of GCMs,
it is first necessary to ensure that all heating is contained within the
spatial domain of our model. For the purposes of this section (alone) we
therefore re-define the x-dependence in our buoyancy forcing function,
S(x, z, t), to be a simple box function

X(x) = Θ

(
x+

L

2

)
−Θ

(
x− L

2

)
, (2.62)

where, recall Θ is the Heaviside function. Whilst the Gaussian x-dependence
used elsewhere in this study is more realistic, a box function has no
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tail, and therefore all heating is contained within the domain which, for
present purposes, we regard equivalent to a parent grid box. We shall
consider two cases. The horizontal heating variation, X(x), is taken to
have i) a realistic horizontal scale with L = 10 km, representative of
a single cloud, and ii) a GCM-like smoothed scale with L = 100 km.
In both cases, the total heating is ensured to be the same by setting
S0(L = 10 km)= 10S0(L = 100 km). This choice of X(x) may be
straightforwardly implemented in (2.16) for w, and then in (2.20) for
b, with G taken as

G(cj, L, x, t) = Θ(ct− x+ L)(ct− x+ L)/L (2.63)

− Θ(ct− x− L)(ct− x− L)/L

− Θ(−ct− x+ L)(−ct− x+ L)/L

+ Θ(−ct− x− L)(−ct− x− L)/L.

Figure 2.17 compares the instantaneous spatial integral (in x and z)
of tropospheric heating tendency over a 100 km box (centred on x = 0)
for our chosen cases (i) and (ii) above. The differences between the red
and blue lines represents the error introduced when there is smoothing
of heating. Shown also is the heating tendency time series of a scaled
heating (black line), which we shall discuss later in this section.

In the L = 10 km heating case, the propagating modes of subsidence
take time to propagate outside the 100 km box. Thus for a small time
almost all the subsidence is within the box, and the average tendency,
< ∂b/∂t >, is almost constant. As the descending modes move through
the edges of the 100 km box, subsidence transfers to neighbouring regions
and the tendency within the box falls. In contrast, when the heating
is artificially smoothed over the 100 km box (red line), the subsidence
immediately occurs outside the box and tendency is immediately reduced
inside the parent box, as the vertical motion begins to compensate the
heating term. However, at around 25 mins, the blue line sinks below the
red, and it approaches equilibrium faster than its smooth counterpart
thereafter. This behaviour is consistent with the longer tendency modes
in the smoothed heating taking more time to separate-out and to leave
the parent box.

A further comparison is made in figure 2.18, which shows Hovmöller
plots of the difference between tropospheric heating tendency for the
cases (i) and (ii) described above. Shown is a high-resolution solution,
in which heating is considered to be structured within the GCM box,
and the same solution coarsened to GCM-like resolution (∆x = 100 km,
∆t = 15 mins) via spatial and temporal box averaging. Again we observe
subsidence modes warming neighbouring grid boxes immediately in the
smooth case, and the heating tendency persisting in the parent grid box
for longer. The parent grid box is therefore too cold for the first 30 mins
and too warm for the subsequent 30 mins, with errors of the order of 10%
apparent. The adjacent grid boxes mirror these differences for the first
hour. Differences in the following hour are attributed to the longer modes
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Figure 2.17: Time series of 100 km spatially integrated heating tendencies
for a 10 km realistic heating (blue), a 100 km smoothed GCM-like heating
(red) and a scaled 100 km heating (black). Total heating is the same in
both cases. The difference between the red and blue lines represents a
time-local error in heating tendency which arises as a consequence of
spatial smoothing of heating, over the domain (GCM box). The black
line shows a scaled heating (see text) which has a reduced error in the
parent grid box.

generated from the smooth heating dispersing the envelope of dominant
response (the narrow heating has a tighter envelope). Differences in the
parent and adjacent grid box after 2hours are minimal (this fact is also
visible in figure 2.17). The domain far-field response shows minimal
difference throughout the simulation.

The errors apparent in figures 2.17 and 2.18 suggest a calibration
might fruitfully be applied to GCM heating parameterisation schemes,
to compensate for the thermodynamic errors associated with incorrect
propagation of the subsidence response away from heating. We postu-
late a simple multiplicative scaling to the smoothed GCM-like heating,
designed to produce a response closer to that observed in a calculation
forced with a more realistic (i.e. narrow) horizontal variation of heating.
Put another way, we propose to scale the time-dependence of the forcing
in such a way that the red line in figure 2.17 moves closer to the blue
line. Accordingly, comparing the smoothed heating with the narrow, it
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Figure 2.18: Hovmöller plot of differences in tropospheric heating ten-
dency (m s−3) between the non-scaled cases considered in figure 2.17.
Panel (a) shows a fully resolved solution, panel (b) shows a solution
which has been coarsened to 100 km grid box and 15 min time step (rep-
resentative of a GCM). In the parent grid box, the smoothed heating is
too cold at 30 mins, then too warm for 30 mins, before reconciling with
the realistic case.

is apparent that the smoothed heating requires an increased amplitude
for some time, followed by a decreased amplitude, before returning back
to its original amplitude for later times, when the responses to smooth
and narrow forcing have reconciled. Denote the first time at which the
lines in figure 2.17 cross by T1 and that at which both reach equilibrium
by T2. For 0 < t < T1, we scale the heat-forcing by factor α1 > 1, for
T1 < t < T2 we scale it by α2 < 1, and for t > T2 no scaling is applied
i.e. we return the buoyancy forcing to its nominal value.

We now seek to minimise the area between the red and blue curves
of figure 2.17. We apply the following practical constraints:

1. T1, T2 are chosen to be multiples of 15 minute blocks. From in-
spection of figures (2.17) and (2.18), we choose T1 = 30 mins,
T2 = 60 mins.

2. (α1 − 1)T1 = (1− α2)T2 =⇒ α2 = T1+T2−α1T1
T2

.

Constraint 2 is chosen to ensure that total heat input is the same in both
the scaled and non-scaled cases for t > T2.

Using an overall cost parameter, ξ, defined as

ξ =

〈∣∣∣∣∣
〈
∂b(1)

∂t

〉
x,z

−
〈
∂b(2)

∂t

〉
x,z

∣∣∣∣∣
〉
t

, (2.64)

where b(1) is the buoyancy response to a L = 10 km forcing and b(2) is the
buoyancy response to a L = 100 km forcing, and the averaging is done
over the troposphere in the central 100 km box. We measure the error,
and minimise it over 1 < α2 < 1.5. We find an initial forcing amplification
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of α1 = 1.15 and then a forcing suppression of α2 = 0.85. The black line
in figure 2.17 shows data from our time-variant scaled smooth heating,
which is now closer to the blue in the parent grid box. However, whilst
our scaling ansatz may improve the response in the parent grid box, the
response in the adjacent field shows the expected increase in error, as
shown in figure 2.19.

Figure 2.19: Hovmöller plot of differences in buoyancy tendency (m s−3)
between a 10km forcing and a 100km forcing which has been scaled in
order to reduce error (see text). The parent box now has a reduced error
to begin, but the far field has an increased error.

In this section, we have quantified error associated with the smoothing-
out of convective heating in a manner similar to that performed in GCMs.
We have proposed a mechanism to improve the grid-box response, with
a simple time-dependent heating parameterisation. Whilst this param-
eterisation led to error reduction in the parent grid box, the adjacent
and neighbouring grid boxes experience increased error. Whether it is
possible to improve the parameterisation with more sophisticated time-
dependent heating remains an open question not addressed here. Cer-
tainly, one place to start would be with a more rigorous analysis of the
parameter space influencing the error, together with consideration of a
global error.

2.7 Comparison with a Unified Model Sim-

ulation

2.7.1 Introduction

We compare an idealised two-dimensional version of the Met Office Uni-
fied Model (iUM hereafter), with a prescribed heating, to the linear an-
alytic model constructed by Halliday et al. (2017) and described in this
Chapter. We evaluate forced gravity wave dynamics, with particular in-
terest in quantifying the extent to which convective adjustment can be
captured with linear dynamics, and supplying a benchmark study for
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Table 2.2: Details of model grid and time step
Model setting

Number of model levels 70
number of model rows 6

number of model columns 600
Horizontal gridlength (km) 1.0

Model top (km) 38.5
time step (s) 10.0

further comparisons. iUM runs were performed by Rachel Stratton at
the UK Met Office.

2.7.2 Model Configuration

The Met Office Unified Model (UM) (Cullen, 1993) is a full 3D latitude-
longitude model which can be run in an idealised mode. In idealised
mode the UM can be configured to run on a Cartesian grid with a small
number of rows in the y-direction and a large number of columns in
the x-direction so that it resembles a “2D like” configuration. The UM
configuration uses the ENDGame (Even Newer Dynamics for General
atmospheric modelling of the environment) dynamics (Wood et al., 2014).
The dynamics is semi-Lagrangian which means that a longer time step
can be used and the model will still remain stable but this will tend to
damp gravity waves. For this simulation a shorter time step of 10 seconds
is being used. The UM is not formulated to ensure energy conservation.
The UM horizontal grid has an Arakawa C-grid staggering. The vertical
grid in idealised mode with a flat surface has a height coordinate with
a Charney-Phillips staggering. A uniform vertical grid could be used
for idealised experiments but we chose to used a vertical grid with more
levels near the surface increasing spacing with height, similar to that
used for numerical weather prediction and climate. The UM idealised
simulation is run in dry mode. At the upper and lower model boundaries
the mass flux is constrained to be zero. All moist processes in the model
are switched off. The radiation scheme is off, so for this simulation the
only physics and diffusion being used is the boundary layer turbulence
scheme which at high resolution is run with 3D turbulent mixing scheme
based on Smagorinsky (1963). The model was initialised to have a similar
potential temperature profile to the theoretical model, with a surface
temperature of 300K and a surface pressure of 1000hPa. Initially the
model is at rest with no winds. The simulation is forced with a heating
in the troposphere identical to that described for the theoretical model
and applied for the first hour of the model simulation. The model is run
for two hours. Note as the UM idealised model is setup with bicyclic
boundary conditions gravity waves can travel out of one end of the grid
back round into the opposite end of the grid.
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2.7.3 Theoretical Model Configuration

We run our 2D model in two configurations: (i) with a rigid lid at 38.5 km
to match that of the iUM (TLow hereafter), and (ii) with a very high
rigid lid so that the solution can be considered fully radiating in the
spatial and temporal domains of interest here (TRad hereafter). We can
therefore test the model structure of the forced waves.

In all runs the prescribed heating has the same spatial and temporal
structure as before, has an aspect ratio of 1, and a maximum heating rate
of 864 K day−1 (note, this is different to what is previously used in this
chapter, but matches the iUM runs). The heating is a one hour pulse,
which is on for the opening hour of the simulation, and then turned off.
Total simulation time is two hours.

2.7.4 Mesoscale Features

We perform a qualitative comparison of the w response in the iUM, TLow
and TRad in figure 2.20. At first order, we recognise consistent features
in all models: (i) agreement in spatial and temporal wave patterns, and
(ii) a tropospheric subsidence mode whilst heating is on, followed by a
propagating “rebound” mode when the heating is turned off. Note also
the width of the mode is proportional to that of the forcing. We conclude
that linear theory captures the main mesoscale features of convective
adjustment.

However, we also observe differences in the amplitude of response.
Indeed in panel (c) of figure 2.20, we see growing differences in the am-
plitude of the waves as they reach the iUM damping layer.

After the first hour of the simulation, from the wave packet, a modal
structure emerges in the iUM and TLow runs (clearly visible in panel
(f) of figure 2.20). TRad does not have this feature, which we speculate
is an artefact of lid height. This detail is not so prevalent in the iUM
(panels b, c of figure 2.20). However, at longer times, after the modes
have had time to separate out, a modal structure (discrete wave pattern)
does emerge in the iUM (also visible in panel (c) of figure 2.21, discussed
below).

2.7.5 Dispersion of Wave Modes

Panels (a,...,c) of figure 2.21 show the time series of mean tropospheric
vertical velocity (< w >trop m s−1) at remote points 50 km, 150 km and
250 km from the heat forcing, respectively. Black lines indicate iUM data,
red indicate TLow and blue lines indicate TRad. The resolution of TLow
and TRad is ∆x,∆z = 100 m ∆t = 0.5 mins.

In panel (a), each model captures a consistent, smooth subsidence
gravity wave mode, followed by the rebound mode when the heating is
turned off. At this point we see no modal dispersion. The iUM has
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Figure 2.20: Vertical cross sections of vertical velocity, wm s−1. Panels
(a,...,c) show iUM data with a lid at 38.5 km, (d,...,f) show theoretical
data with a lid at 38.5 km, and (g,...,i) show theoretical data with a very
high lid. Time advances down the panels in 30 min steps. In all cases,
the heat forcing is 10 km deep, aspect ratio 1 and pulsed for the initial
hour of simulation.

65
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Figure 2.21: Time series of mean tropospheric wm s−1 for points 50 km,
150 km and 250 km respectively, Note the varying range of y-axis. Black
lines indicate iUM data, red indicate TLow and blue indicate TRad.

a reduced amplitude of tropospheric mean w (roughly 80% that of the
theoretical models).

In panel (b) we clearly see certain gravity wave frequency in the TLow
w, which oscillates about the model and TRad response with time period
roughly 10 mins. A quick calculation suggests this is due to the location
of lid, since

T =
2πL

NH
, (2.65)

where T is the time period, L is the width of heat forcing, N buoyancy
frequency, and H height of heat forcing. In our case, L = H = 10 km, N
= 0.01 s−1 in the troposphere and therefore T = 2π/N ≈ 10 mins. Note
also, at this location, the time series is long enough only for the initial
subsidence mode to pass.

In panel (c) of figure 2.21, the iUM too develops this periodicity,
which has an amplitude growing with time.

2.8 Conclusion

Using an analytical solution to a 2D thermally-forced, deep atmosphere,
we have constructed an idealised model of convective adjustment. We
have expressed vertical velocity and potential temperature response in
terms of convectively-forced gravity wave modes and, hence, we have il-
luminated the role of these modes in conditioning the troposphere for
further convection. We find that the characteristics of our forced grav-
ity waves are influenced by the spatial and temporal dependence of the
forcing function, the nature of the upper boundary condition applied to
the domain, and upon model stratification.

We tested the influence of the upper boundary condition and found
that a trapped solution with rigid lid at the tropopause (allowing no wave
radiation into the stratosphere), yields a single gravity mode, communi-
cating high intensity downward motion and warming, which propagates
into the neighbouring troposphere and inhibits the chance of further con-
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vection. Raising the altitude of the upper lid high into the mesosphere
and beyond (to approximate the semi-infinite solution) allows a range of
higher-order gravity wave modes to be excited, with much deeper and
faster modes acquiring importance. The convective adjustment is there-
fore communicated into the immediate environment faster than in the
trapped case. We note also that allowing waves to radiate upward sees
a reduction in the magnitude and intensity of the tropospheric response,
as expected.

Investigating the temporal dependence of gravity wave characteris-
tics through a pulsed forcing function, we find that when the pulse of
forcing is truncated, a rebound mode of upward motion propagates away
from the initially heated region, and the potential temperature response
returns to base state. Further, using figure 2.14, we identify propagating
zones where the radiating gravity waves provide an ambient atmosphere
favourable for further convection. In such zones, there is no longer tropo-
spheric subsidence (which reduces CAPE), and there is low-level ascent
which will erode CIN.

The inclusion of a model stratosphere, with Ns = 2Nt increases the
intensity of the tropospheric response, due to wave reflection at the
tropopause (compared with Ns = Nt). We also notice a slight increase
in the propagation speed of the mode of dominant response. We find
a maximum of energy radiated into the stratosphere (communicated by
gravity waves) for Nt = Ns, as there is no interface and therefore no re-
flection. With this in mind, we consider our trapped model (TRAP) and
optimally-radiating model (RAD1) as respective lower and upper bounds
on radiation at the tropopause. The most realistic intermediate model
(RAD2, with Nt = 2Ns), which has partial trapping and radiation, has
upward radiation between the two bounds.

We quantify the error associated with smoothing out convective heat-
ing from a subgrid, single convective hot tower onto a coarse GCM grid.
Performing “worst case scenario” experiments, in which a convection
scheme spreads heating from a cloud of width 10 km over a full model
grid box of width 100 km, we find that the timing and magnitude of the
adjustment is dependent on the heating distribution. Perturbations in
potential temperature and vertical velocity will be distributed faster and
over a larger region in the parameterised case. Furthermore, an isolated
cloud has a strong response on a sub-GCM-grid scale, which has impli-
cations for the forcing of neighbouring grid cells in current numerical
models, since the timing and magnitude of the response, communicated
by gravity waves, is sensitive to the horizontal length scale of the forcing
function. Further, analysis of the heating tendency reveals errors of the
order of 20% and correspond to a grid-box heating tendency which falls
too quickly when heating is spatially smoothed (parameterised), due to
a failure to account for the finite time taken by small-scale responses to
propagate out of the grid-box. We propose a simple time-varying scaling
to the heating to minimise these errors. Such a scaling decreases the
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error in the grid box that is the parent to convection, but increases error
in adjacent boxes. We propose ways in which to potentially improve this
scaling, but leave this for another study.

The analytical model developed in this work allows us to draw conclu-
sions on the role of convectively forced gravity waves. Notably, even with
maximum upward energy radiation, we observe a significant tropospheric
response to prescribed thermal forcing. Further, the gravity wave char-
acteristics associated with the convective adjustment are highly sensitive
to the upper boundary condition at the tropopause, heating function and
model stratosphere.

We compare the convectively forced gravity wave dynamics in our
2D model with a 2D idealised version of the Met Office Unified Model
(iUM). The iUM runs were performed by Rachel Stratton at the UK Met
Office. The iUM has a lid at 38.5 km. We configure the analytic model in
two different ways: (i) with a lid at 38.5 km, to match that of the iUM,
(TLow), and (ii) a very high lid, so that the response can be considered
radiating in the spatial and temporal domain of interest here (TRad).

We find qualitative agreement in the mesoscale adjustment to con-
vective forcing, with all simulations capturing a tropospheric subsidence
and “rebound” mode generated by a 1 hour forcing. These modes have
horizontal and vertical length scale proportional to that of the forcing
function. However, as time advances we notice a growing discrepancy
in the wave amplitude in the upper stratosphere, which may be worth
further investigation.

In the TLow runs, a modal structure appears as an artefact of lid
height. The iUM response has a more subtle version of this structure,
but is closer to the response of TRad.

An oscillation in the mean tropospheric w, with time period≈ 10 mins
emerges in the time series of a point 150 kms from forcing in the theo-
retical runs due to a relationship with the forcing aspect ratio and lid
height.

We consider our theoretical tool a benchmark for any further model
comparison work. One place to start would be testing iUM resolution,
coarsening from the 1 km runs used here toward global circulation model
(GCM) resolution (O(10 km)). We speculate that as the numerical model
reaches coarser resolution, it will capture only part of the gravity wave
spectrum. Another potentially fruitful study might diagnose wave fluxes
in the stratosphere, and quantify the errors in the iUM against our TRad.

2.9 Summary

We have quantified the effect of upward radiation on the tropospheric re-
sponse to convection, using a two-dimensional, linear, hydrostatic model
after Nicholls et al. (1991) and Edman and Romps (2017). Our model
is directly applicable to certain atmospheric processes (e.g. squall lines),
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furnishes simple, informative, analytic solutions, and provides insight
into numerical models.

However, a 2D model is not without obvious limitations. In reality,
the volume available to a horizontally propagating disturbance increases
linearly with horizontal coordinate - the further the wave propagates,
the more it can spread. Our two dimensional model overlooks this fact,
which we judge to be its most significant limitation. The opportunity
to extend our base model to three dimensions is hard to resist on the
basis of completeness alone. However, there are better, physical, reasons
to found a three dimensional model, suitable for further study, as many
atmospheric phenomena are intrinsically three-dimensional in character,
e.g. MCSs and typhoons (which have some axial symmetry).

In the next Chapter, we will extended our model to the case of axial
symmetry, again seeking semi-analytic solutions to a buoyancy forcing
and investigate the dynamics of convective adjustment in a trapped and
pseudo-radiating atmosphere. We will also make comparisons to the 2D
results presented in this Chapter.
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Chapter 3

Three Dimensional Forced
Gravity Waves

3.1 Introduction

In Chapter 2 we reported on linear analytical solutions for the flow and
thermodynamic response to pulsed buoyancy forcing, within a deep, two-
dimensional atmosphere. These solutions are good approximations for
certain convecting atmospheric features, such as squall lines, and illumi-
nate the fundamental mechanisms of convective adjustment. However,
real convection is often observed in three dimensions which thus implies
radial adjustment and emission into the environment. Example systems
include MCSs or isolated convective hot towers- see section 3.2.

Motivated mainly by a wish to quantify the difference between 2D
and 3D properties, we here extend our previous, 2D forced gravity wave
model into a cylindrical, axisymmetric geometry. The 2D treatment of
Chapter 2 neglected the Coriolis force on grounds of scaling. Had this
been included, it would not have been possible to obtain solutions for
general horizontal variation of heating, which provided an additional,
mathematical motive for setting f = 0. In 3D, it is not possible to write
fully analytical solutions, even for f = 0. In the 3D treatment of this
chapter, we therefore include Coriolis’ parameter in the mathematical
treatment, for completeness, since removing it is no longer advantageous.
However all results have f = 0.

The goal for this Chapter is to develop a cylindrically-symmetric,
pseudo-radiating forced gravity wave model, after Chapter 2, and then
to use it to make selective comparisons with our 2D model. Since it
is possible to retain all the key physical features of the 2D model of
Chapter 2, (heating structure, stratification etc.), differences between
the data from the models of Chapters 2 and 3 may be attributed to the
role of the third spatial dimension. Put another way, an axially sym-
metric, 3D model facilitates an understanding of the effect of 3D under
controlled circumstances, since the vertical variation and stratification
may be “transplanted” from the corresponding 2D problem. One can
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therefore attribute changes to geometrical effects i.e. more realistic do-
main properties and the presence of a fifth field variable- the tangential
velocity component.

We organise as follows. In section 3.2, we consider the background to
the problem. In section 3.3, we will develop the companion mathematical
model, which will be based upon a Hankel transform, for predicting the w
and b adjustments. In 3.4 we consider its numerical implementation and
in section 3.5 we discuss 3D output and quantify key differences relative
to the 2D case.

Throughout, our treatment will emphasise horizontal variation, since
the vertical stratification and modal expansion is identical to that of
Chapter 2 Furthermore, our notation and use of symbols is identical
with those used in Chapter 2 with the following caveats: (i) k is retained
as the variable conjugate to horizontal position, r (which replaces x) even
though the corresponding transfrom space cannot, rightly, be designated
Fourier space, and (ii) a velocity component perpendicular to the r − z
plane will now be admitted.

3.2 Background

As we saw in Chapter 2, thermally forced gravity waves play in impor-
tant role in convective adjustment, and linear theory allows us to accu-
rately predict wave dynamics. However, whilst Chapter 2 illuminates the
nature of two-dimensional forced gravity waves, gravity waves are pre-
dominately three-dimensional in reality, and propagate in horizontally
circular patterns away from their source (Dewan et al., 1998).

Studies characterising the three-dimensional aspect of convectively
forces gravity waves have largely been based on high resolution numerical
models (Beres, 2004; Beres et al., 2002; Hauf & Clark, 1989; Horinouchi
et al., 2002; Lane & Reeder, 2001; Piani et al., 2000) and emphasise
how the wave field is largely determined by response to local forcing, i.e.
individual convective updraughts rather than an ensemble.

Of course, studying a 3D problem begs the question of the influence of
rotation, and the geostrophic adjustment to a 3D forcing is well studied
(e.g. Fritts & Luo (1992) Zhu & Holton (1987)). However, since we
will have f = 0 until Chapter 4, we defer discussion on geostrophic
adjustment until then.

Here, again based on an analytical description of a deep atmosphere
which is thermally forced via a prescribed heating function, we build a
model capable of addressing the question

• What is the effect of the conditions of upward radiation on the
spatial and temporal distribution of convective adjustment over
the timescale of a few hours, relevant to mesoscale dynamics?

Note, this is an identical question to that of Chapter 2, with the focus in
this Chapter being on how the inclusion of a third dimension influences

71



3.3 Mathematical Model

the adjustment. Naturally, we will also make comparisons to the 2D
model.

We will found our model on idealised, linear equations for a deep at-
mosphere (in which the model lid is many times higher than the tropopause).
For a standard set of equations, see e.g. Holton 2002. We apply a pro-
jection method to decompose into eigenmodes, which we can solve using
Fourier and Laplace techniques for solutions to w and θ (recall, this is
a slightly more generalised method than that of Nicholls (1991)). As we
shall see in §3.3 this process is more complicated than in Chapter 2, as
extra terms in the master equation for, say, w mean that the integral
which inverts the spatial Fourier coordinate can no longer be evaluated
analytically. Instead, we apply a Hankel transformation and evaluate the
integral numerically.

3.3 Mathematical Model

We shall formulate a description in three dimensions, using cylindrical
polar coordinates, which is as consistent as possible with our previous,
two-dimensional model. Accordingly, our assumed stratification is iden-
tical to that in Chapter 2, as is the temporal and vertical structure of the
assumed heat or buoyancy forcing. The horizontal variation is re-defined
as follows. We place the vertical, z-axis at the centre of the domain,
assume axial symmetry i.e. partial derivatives of all adjustments with
θ all vanish and we centre heating on r = 0. Physically, our domain
transformation means that we must allow an additional field variable,
the tangential velocity, uθ, which introduces an additional equation in
the basic set. The domain, spatial-temporal distribution of heating and
stratification is very similar to that used in Chapter 2. The modified
heating distribution is summarised in figure 3.1.

3.3.1 Governing Equations

We continue to use the hydrostatic approximation in the vertical equa-
tion. The basic set of flow equations, now expressed within cylindrical
polars contain an axial flow and now read:

∂ur
∂t
− fuθ = − 1

ρ0(z)

∂p

∂r
, (3.1)

∂uθ
∂t

+ fur = 0, (3.2)

b =
1

ρ0(z)

∂p

∂z
, (3.3)

∂b

∂t
+N(z)2w = S, (3.4)
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Figure 3.1: Schematic representation of the heating and stratification
used for the three-dimensional model. All symbols and notation are
identical with those used in Figure 2.1 of Chapter 2. The top panel
shows the vertical and horizontal variation of heating, described by Z(z)
and X(r) respectively. The characteristic width of heating is L. The
bottom panel shows the time dependance. As in Chapter 2, the vertical
variation of heating corresponds to the first baroclinic mode.

1

r

∂

∂r
(rur) +

∂w

∂z
= 0. (3.5)

Above, u = urêr+uθêθ+wêz is the perturbation wind vector, p is the per-
turbation pressure, ρ0(z) is the basic state density, b = −gρ′/ρ0(z) is the
buoyancy (where ρ′ is the perturbation density), S(r, z) is a prescribed
buoyancy forcing, and N(z) is the buoyancy frequency

N2(z) = − g

ρ0(z)

dρ0(z)

dz
. (3.6)

Certain remarks are in order before proceeding. We assume above no
axial variation in any adjustment

∂g

∂φ
= 0, ∀g. (3.7)

Equation 3.5 may be written ∂ur
∂r

+ ur
r

+ ∂w
∂z

= 0. The momentum and
thermodynamic equations are mathematically unchanged from 2D (use
of the r variable notwithstanding). The spatial influence of the third
dimension will be communicated into our analysis solely from the conti-
nuity equation. In the horizontal momentum equations 3.1 and 3.2 of our
basic equation set, the Coriolis acceleration f êz × v has been expressed
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in cylindrical polar coordinates as follows

a =
1

r

∣∣∣∣∣∣
êr rêθ êz
0 0 f
ur ruθ 0

∣∣∣∣∣∣ = −fuθêr + furêθ.

Now, following our 2D treatment of Chapter 2, we do not make the
Boussinesq approximation, i.e., ρ0 is not taken to be constant in the
horizontal momentum equation, so that the effects of a deep (albeit in-
compressible) atmosphere are again included. The buoyancy forcing S,
with units of m s−3, again arises due to a thermal forcing Q, with units
of K s−1, which in a more complete description would appear in the po-
tential temperature equation Dθ/Dt = Q. We use a Boussinesq-like
correspondence between the two, with

S =
gQ

θ0

, (3.8)

where θ0 is a reference potential temperature (taken to be 273 K). Later
on, we will also evaluate a potential temperature perturbation θ′ from b,
again using a Boussinesq-like correspondence

b =
gθ′

θ0

. (3.9)

We again obtain an equation for w by eliminating variables from our
basic set, which now reads as follows

∂

∂z

(
ρ0(z)

∂2

∂t2
∂w

∂z

)
+ f 2 ∂

∂z

(
ρ0(z)

∂w

∂z

)
(3.10)

+ ρ0(z)N(z)2 1

r

∂

∂r

(
r
∂w

∂r

)
= ρ0(z)

1

r

∂

∂r

(
r
∂S

∂r

)
.

By setting f = 0, equation 3.10 is seen to differ from its 2D counter-
part, equation 2.5, in the structure of its two terms of horizontal varia-
tion. These terms generate additional contributions ρ0(z)N(z)2 1

r
∂w
∂r

and
ρ0(z)1

r
∂S
∂r

, which will vanish at large r, as a 2D description re-emerges.
In fact, for f = 0 both equations 3.10 and 2.5 may be written

∂

∂z

(
ρ0(z)

∂2

∂t2
∂w

∂z

)
+ ρ0(x)N2(z)∇2

Hw = ρ0(z)∇2
Hw, (3.11)

in which the horizontal Laplacian ∇2
H (without vertical, z, derivatives)

is adapted to the symmetry to the 2D or 3D problem respectively

∇2
H ≡ ∂2

∂x2
+

∂2

∂y2
→ ∂2

∂x2
, (3.12)

∇2
H ≡ ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
→ ∂

∂r

(
r
∂

∂r

)
.
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Mathematically, handling the 3D horizontal (radial) variation will neces-
sitate the use of a Hankel transform, in place of the Fourier transforms
used previously. We return to this matter in sections 3.3.5 and 3.3.6
below.

For completeness, we note that for the present case of f 6= 0, the
energy equation corresponding to our basic set of equations in 3D is still
given by

∂

∂t

(
Ē + V̄

)
+∇ · (pv) =

ρ0sb

N2
, (3.13)

again with

Ē =
ρ0

2
v · v, V̄ =

ρ0b
2

2N2
. (3.14)

3.3.2 Model Stratification

We maintain equivalence with the model of Chapter 2 by again assuming
the simplest possible, non-trivial representation of the tropospheric and
stratospheric stratification, namely

N(z) =

{
Nt, z ≤ Ht,

Ns, H > z > Ht,
(3.15)

which, again, corresponds to a basic state of density of

ρ0(z) =

{
ρse
− z
Dt , z ≤ Ht,

ρse
−Ht
Dt e−

(z−Ht)
Ds , H > z > Ht.

(3.16)

For definiteness, let Ns > Nt. The tropospheric and stratospheric scale
heights are given by

Dt =
g

N2
t

, Ds =
g

N2
s

. (3.17)

With this stratification, equation 3.10 can be solved, formally, by em-
ploying the modal expansion developed in Chapter 2, notwithstanding
issues of interpretation, discussed in section 3.3.4.

3.3.3 Modal Expansion

The modal expansion applied to the two-dimensional case is formally
applied to equation 3.10. Adopting this procedure requires us to re-
visit the physical interpretation of the eigenvalues cn, below, which, in
the two-dimensional case, without rotation, could be understood as free
wave speeds. With that proviso, it will be shown in this section that
the modal expansion employed in Chapter 2 successfully decomposes the
three-dimensional, extended problem. Write

w(r, z, t) =
∑
j

wj(r, t)φj(z), s(r, z, t) = N(z)2
∑
j

sj(r, t)φj(z),

(3.18)
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with the same equation and vertical boundary conditions for the or-
thonormal functions φj(z) as in Chapter 2, namely

d

dz

(
ρ0(z)

dφn
dz

)
+
ρ0(z)N(z)2

c2
n

φn = 0, φn(0) = φn(H) = 0. (3.19)

We also employ the same matching conditions on the φj(z) at the tropopause,
z = Ht i.e. continuity of the eigenfunction, φn(z), and its first derivative
and the corresponding eigenvalues, cn, were computed using the same
numerical procedure as in Chapter 2, section 2.4.1. Note that assum-
ing the vertical variation satisfies equation 3.19 does not restrict the
stratification- equation 3.19 applies to any N(z).

We now re-write the governing equation 3.10 using the modal expan-
sions in equations 3.18 . The first term in equation (3.10) will transform
as in the 2D case of Chapter 2, when integration by parts and the bound-
ary conditions are used

− 1

c2
n

∫ H

0

ρ0(z)N(z)2φn
∂2w

∂t2
dz − f 2

c2
n

∫ H

0

ρ0(z)N(z)2φnwdz+

+

∫ h

0

ρ0(z)N(z)2φn
1

r

∂

∂r

(
r
∂w

∂r

)
dz =

∫ H

0

ρ0(z)N(z)2φn
1

r

∂

∂r

(
r
∂s

∂r

)
dz.

(3.20)
We now substitute the expansions in equations (3.18) and appeal to the
orthogonality of the φn(z) to separate the horizontal part of the problem
as

− 1

c2
n

∂2wn(r, t)

∂t2
− f 2

c2
n

wn(r, t) +
1

r

∂

∂r

(
r
∂wn(r, t)

∂r

)
=

1

r

∂

∂r

(
r
∂sn(r, t)

∂r

)
.

(3.21)
It will be recognised that the formal decomposition of the 3D problem,
using equation 3.20, succeeds in effecting a separation between the hori-
zontal and vertical part of the problem, the solution of which is our main
current concern. The vertical variation is unchanged from that derived
in section 2.3.5, note.

3.3.4 Free Modes

Before proceeding further, we pause to consider the physics of the eigen-
values, cn. Free modes are solutions for f = S = 0. In this limit, the 2D
convection dynamics equivalent to equation 3.10, above, is expressed in
equation 2.5 (with S=0). It is straightforward to verify the 2D dynamics
then consists of free modes w(x, z, t) = A(x−ct)φ(z) with A as any func-
tion. Phase speeds, c, and functions φ(z) are identified with eigenvalues,
cn, and eigenfunctions, φn(z), of the Sturm-Liouville problem in equation
3.19.

Consider now the 3D trial solution

w(r, z, t) = A(r, t)φ(z), (3.22)
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which does not necessarily have the structure of a horizontally traveling
wave, note. Substitute into equation 3.10 (having set f = S = 0).
After some algebra, equation 3.22 yields a less straightforward, separable
problem

1
r
∂
∂r

(
r ∂A
∂r

)
∂2A
∂t2

= −
d
dz

(
ρ0(z) d

dz
φ(z)

)
ρ0(z)N(z)2φ(z)

≡ 1

κ2
. (3.23)

From equation 3.23, the vertical part of the problem may be reduced to
that expressed in equation 3.19: clearly, we can identify φ(z) with eigen-
function φn(z) and separation constant κ with cn. Hence, eigenvalue, cn,
enters a partial differential equation for A

∂2A

∂r2
+

1

r

∂A

∂r
=

1

c2
n

∂2A

∂t2
. (3.24)

No travelling wave solutions to equation 3.24 are obvious. However, we
expect a cylindrical spreading of energy, and so write

A(r, t) = B(r, t)r−1/2 (3.25)

which, when substituted into equation (3.24), yields

∂2B

∂r2
+
B

r2
=

1

c2
n

∂2B

∂t2
, (3.26)

which, for large r, reduces to the Cartesian form of the second order wave
equations. Appealing to d’Alembert’s solution B(r, t) = B(r − cnt), we
find

lim
r→∞

(A(r, t)) =
B(r − cnt)

r1/2
, (3.27)

which is an outwards travelling wave, with speed cn, having an amplitude
damping corresponding to the expected cylindrical wavefront. Physically,
the factor r−1/2 allows for conservation of energy flux through a squat
cylinder of fixed height and circumference 2πr.

Reverting to function A(r, t), we note that seeking a separable solu-
tion A(r, t) = R(r)T (t) to equation (3.24) leads to Bessel’s equation with
n = 0, for R(r) (see equation (3.33) below).

In the two-dimensional case, the existence of the Fourier inversion
“shift” theorem leads to superposable solutions in equation 2.16, for
wn(x, t). Each has the form of a horizontally traveling wave. As we
shall see, the three-dimensional model requires a Hankel transform (see
3.3.6), rather than a Fourier transform. No equivalent “shift” theorem
exists for a Hankel inversion and solutions, for wn(r, t), determined via
equation 3.21 cannot be written as horizontally traveling waves. This fact
is consistent with the observation that no simple traveling wave solution
to equation 3.24 is obvious. It is apparent that, in three dimensions, we
lose physical connection between free modes’ phase speeds and the eigen-
values, cn (except at large r). The cn are formally taken to parameterise
the solutions wn(r, t) of equation 3.21, which we now continue to seek.
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3.3.5 The Hankel transform and Bessel’s Equation

In this section, we attempt to explain the role, in the present context,
of the Hankel transform. Our intention is not an exhaustive treatment:
rather, we wish to indicate common concepts between 2D treatment and
the present 3D extension. A coherent but succinct account of Bessel’s
equation and the Hankel transform may found in Chapter 3 of Jackson’s
Electrodynamics (Jackson, 1999).

We note from equation 3.11 that the horizontal variation of our prob-
lem is determined by the appropriate horizontal Laplacian operator.
Chapter 2 essentially used Fourier transform techniques to solve a Carte-
sian form of the Laplacian. In 3D, the equivalent methodology, adapted
to the cylindrical polar form of Laplacian, uses Bessel functions which,
like sine and cosine, have suitably useful orthonormality properties. Based
upon Jackson (Jackson, 1999), we relate the salient aspects of Bessel’s
equation and its solution briefly, now.

Bessel functions arise as the solution of the radial part of the cylin-
drical polar form of the full Laplace equation,

∇2Φ =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0, (3.28)

when a separable solution Φ(r, φ, z) = R(r)Q(φ)Z(z) is sought as follows.
Substitute into equation 3.28 to obtain R′′/R + R′/(rR) + Q′′/(r2Q) +
Z ′′/Z = 0,∀r, φ, z. Since Z ′′/Z is only a function of z, by assumption, it
follows Z ′′/Z = k2, a constant. Then, multiplying the remaining equation
by r2 one obtains r2R′′/R + rR′/R + k2r2 + Q′′/Q = 0,∀r, φ and again
Q′′/Q is seen to be only function of cylindrical angular variable φ, hence
Q′′/Q = −n2, a constant integer (see below). Hence, it follows for the
radial equation R′′/R+R′/(rR) + k2− n2/r2 = 0, which we multiply by
R. In summary, we have straightforwardly separated equation 3.28 into
three ODEs, related by their parameters

d2Z

dz2
− k2Z = 0, (3.29)

d2Q

dφ2
+ n2Q = 0,

d2R

dr2
+

1

r

dR

dr
+

(
k2 − n2

r2

)
R = 0.

Setting aside boundary conditions and superposition, the solutions for
Z(z) and Φ(φ) are essentially straightforward

Z(z) = e±kz, Q(φ) = e±inφ, (3.30)

for n ∈ Z+. The physical constraint Q(φ) = Q(φ+ 2π) is responsible for
the restriction n ∈ Z+ but k is, currently, arbitrary. Note that n ∈ R is
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possible. Make the variable change x = kr in the third of equations 3.29
to yield the radial, nth order Bessel equation:

d2R

dx2
+

1

r

dR

dx
+

(
1− n2

x2

)
R = 0. (3.31)

An indicial solution is assumed, leading to two linearly independent possi-
bilities: Bessel functions Jn(x) and Yn(x) of the order±n. Jn(x) (relevant
here) is bounded as x→ 0

Jn(x) =
(x

2

)n∑
j=1

(−1)j

j!Γ(j + n+ 1)

(x
2

)2j

, (3.32)

whereas Yn(x) is not. For integer arguments, Γ(N) = (N −1)!. We note,
then, that zero-order Bessel function J0(x) satisfies Bessel’s equation with
n = 0

x
d2J0

dx2
+
dJ0

dx
+ xJ0 = 0 ⇐⇒ d

dx

(
x
dJ0

dx

)
= −xJ0. (3.33)

Now, the Fourier transform used in 2D in Chapter 2 (and assumed
there to exist, recall)

F (f(x)) ≡ f̂(k) ≡ 1√
2π

∫ ∞
−∞

f(x)eikxdx, (3.34)

was used essentially for its ability to transform partial derivative expres-
sions characteristic of the Cartesian, horizontal Laplacian

F
(
∇2
Hf
)

= F

(
d2f

dx2

)
= (−ik)2f̂(k) = constantf̂(k). (3.35)

Here we need only have df
dx
→ 0, f → 0, x → ∞. This above property

is responsible from generating an algebraic equation in transform space,
which may be solved for the transform quantity. Equation (3.35) corre-
sponds to the so-called Fourier transform of derivatives theorem (Arfken,
1966).

To solve the equivalent 3D problem, we seek a transformation with
properties after equation 3.35, but which will work on the cylindrical
polar coordinate form of horizontal Laplacian. Such a transform is the
Hankel transform, Han (f(x)) ≡

∫∞
0
xf(x)Jn(kx)dx. We shall require

the zero-order (n = 0) case as we are investigating axisymmetric motion,
which may be suitably defined and written

Ha0(f(r)) = f̂(k) ≡
∫ ∞

0

rf(r)J0(kr)dr. (3.36)

Note, like the Fourier transform, the Hankel transform has an inverse

f(r) = Ha−1
0 (f̂(k)) ≡

∫ ∞
0

kf̂(k)J0(kr)dk. (3.37)
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For present purposes, the essential property of zero-order Hankel trans-
form, equation 3.36, which is analogous the properties of the Fourier
transform expressed in equation 3.35 is

Ha0

(
∇2
Hf(r)

)
= Ha0

(
1

r

∂

∂r

(
r
∂f

∂r

))
= −k2Ha (f(r)) . (3.38)

where, note, it is the cylindrical polar form the horizontal Laplacian in
use. In fact, equation 3.38 relies on conditions regarding the boundary
properties of transformed function, f , and transformation kernel, rJ0(r),
which we shall set-out in detail, in the next section. We conclude this
section by stating key properties of J0(kr) and the zero order Hankel
transform.

J0(kr) may be conveniently defined

J0(kr) ≡ 1

2π

∫ 2π

0

eikr cos(θ)dθ =
1

2π

∫ 2π

0

cos(kr cos(θ))dθ, (3.39)

since J0(kr) must be real. It is immediate from equation (3.39) that

J0(kr) = J0(−kr). (3.40)

J0(kr) has an orthogonality property, or closure function (Arfken, 1966)∫ ∞
0

J0(kr)J0(k′r)rdr =
1

k
δ(k − k′), (3.41)

where δ(k − k′) is the Dirac delta function, which is analogous to the
following property for the Fourier transfrom kernel function, note

1

2π

∫ ∞
−∞

ei(k−k
′)xdx = δ(k − k′). (3.42)

3.3.6 Transformation of the w Equation

We seek wn(r, t) by solving 3D equation (3.21) using a Laplace-Hankel
Transform approach analogous to the Fourier-Laplace approach applied
in Chapter 2. Our analysis makes use of integration by parts and the
results of the previous section to transform integrals. We shall assume
that evaluated terms vanish and indicate where we make this assumption.
Broadly, it is possible to follow our approach in Chapter 2 of making
ˆ̄wn subject in the transformed equation, then performing a Laplace and

Hankel inversion. The Hankel inversion, to find an expression for wn(r, t),
must be performed numerically, as no Hankel inversion theorem exists
analogous to the shift theorem used in our 2D treatment in Chapter 2.
(Recall, in Chapter 2, wn(x, t) was written directly, in terms of translating
and possibly time-shifted, but otherwise general horizontal variation of
the applied heating or buoyancy forcing).
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We first apply the Laplace transform in equation 3.21

−
(
p2 + f 2

c2
n

)
w̄n +

1

r

∂

∂r

(
r
∂w̄n
∂r

)
=

1

r

∂

∂r

(
r
∂s̄n
∂r

)
. (3.43)

Later we will consider the form for s̄n for pulsed heating. Next, apply
the Hankel transform (to the r variable) by multiplying by rJ0(kr), then
integrating over r ∈ [0,∞)

−
(
p2 + f 2

c2
n

)∫ ∞
0

rw̄n(r, t)J0(kr)dr +

∫ ∞
0

J0(kr)
∂

∂r

(
r
∂w̄n
∂r

)
dr

=

∫ ∞
0

J0(kr)
∂

∂r

(
r
∂s̄n
∂r

)
dr. (3.44)

Integrate by parts to obtain(
p2 + f 2

c2
n

)
Ha0(w̄n) +

∫ ∞
0

r
∂w̄n
∂r

∂J0(kr)

∂r
=

∫ ∞
0

r
∂s̄n
∂r

∂J0(kr)

∂r
dr,

(3.45)
where we have assumed that w and s̄ decay sufficiently quickly for terms
at infinity to vanish. Integrate by parts again, taking u = r ∂J0

∂r
and

∂v
∂r

= ∂w̄n
∂r

or ∂v
∂r

= ∂s̄n
∂r

, with the same assumptions on w and s̄, to eliminate
the evaluated terms

−
(
p2 + f 2

c2
n

)
Ha0(w̄n) +

∫ ∞
0

w̄n
∂

k∂r

(
kr
∂J0(kr)

k∂r

)
kdr (3.46)

=

∫ ∞
0

s̄n

(
∂

k∂r

(
kr
∂J0(kr)

k∂r

))
kdr.

It is convenient to change variable, x ≡ kr in the integrands above

−
(
p2 + f 2

c2
n

)
Ha0(w̄n)+

∫ ∞
0

w̄n
d

dx

(
x
dJ0

dx

)
dx =

∫ ∞
0

s̄n
d

dx

(
x
dJ0

dx

)
dx.

(3.47)
We may now use Bessel’s equation (3.33) to substitute d

dx

(
xdJ0
dx

)
= −xJ0

−
(
p2 + f 2

c2
n

)
Ha0(w̄n) +

∫ ∞
0

−xJ0w̄ndx =

∫ ∞
0

−xJ0s̄ndx. (3.48)

Resetting x = kr we find

−
(
p2 + f 2

c2
n

)
Ha0(w̄n)− k2

∫ ∞
0

w̄nrJ0(kr)dr = −k2

∫ ∞
0

s̄nrJ0(kr)dr,

(3.49)
which, we note, may be written(

p2 + f 2

c2
n

)
Ha0(w̄n) + k2Ha0(w̄n) = k2Ha0(s̄n). (3.50)
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We can now solve for Laplace-Hankel transform ˆ̄wn

ˆ̄wn(k, p) =
c2
nk

2

(p+ ign(k))(p− ign(k))
ˆ̄sn(k, p), (3.51)

where we have defined

gn(k) ≡
√
f 2 + k2c2

n. (3.52)

and ˆ̄sn(k, p) is the Hankel-Laplace transform of the horizontal variation
of heating, to be considered in the next section. It will be recognised that
the analytic result in equation 3.51 is the 3D analogue of the Fourier-
Laplace transform for the 2D problem, given in equation 2.15. As such it
has equivalent dependancy on the heating expansion coefficients, ˆ̄sn(k, p).

3.3.7 Buoyancy Forcing: Temporal and Spatial Struc-
ture

Following Chapter 2, we assume the following form for a pulsed, applied
heating

s(r, z, t) = s(r, t)Z(z) = S0F (r) (Θ(t)−Θ(t− T ))
∑
j

σjφj(z), (3.53)

implicit in which is the following definiton for the heating expansion
coefficients

sj(r, t) = S0F (r) (Θ(t)−Θ(t− T ))σj, ∀j. (3.54)

Recall, the σj are determined by the defined vertical variation of the
heating as

σj =

∫ Ht

0

ρ0(z)N(z)2φn(z)Z(z)dz. (3.55)

The horizontal spatial structure of heating is treated below. Figure 3.1 is
a schematic of the heating, or buoyancy forcing assumed here, together
with the assumed stratification, for reference. The vertical variation,
Z(z) is that in equation (2.19) for the 2D case. The σj are again given
by equation (3.55).

In our previous, 2D treatment, one could invert the equivalent of
equation (3.51) for all functions F̂ (k), using general properties of Fourier
transforms. Hankel functions do not possess equivalent properties. It
is therefore necessary to define a horizontal variation for our heating
function, s(r, z, t). We choose a horizontal variation of heat forcing which
is analogous to that used in Chapter 2, namely

F (r) ≡ 1

2πL2
exp

(
− r2

2L2

)
, r ∈ [0,∞). (3.56)

The factor 1
2πL2 again ensures that the domain-integrated heating is in-

dependent of L.
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3.3.8 Solutions for w and b

With our assumed heating structure and stratification, we find straight-
forwardly, for the Laplace-Hankel transform of heating coefficient implic-
itly defined by equations 3.54 and 3.56

ˆ̄sj = σjS0

(
1− e−pT

p

)
F̂ (k). (3.57)

Substituting into equation (3.51) and assuming quiescent initial condi-
tions, we therefore find the Laplace-Hankel transform of wn(r, t) as

ˆ̄wn(k, p)

S0

= σn
c2
nk

2F̂ (k)(1− e−pT )

p(p+ ign(k))(p− ign(k))
. (3.58)

Recall, g(k) is defined in equation 3.52 and F̂ (k) is the Hankel transform
of F (r), which will be assigned shortly. On using partial fractions and the
delay property of Laplace transforms we perform the Laplace inversion
in the 3D case much as in the 2D case

ŵn(k, t)

S0

=
k2F̂ (k)c2

nσn
gn(k)2

Θ(t) (3.59)

− k2F̂ (k)c2
nσn

2gn(k)2
Θ(t)eign(k)t

− k2F̂ (k)c2
nσn

2gn(k)2
Θ(t)e−ign(k)t

− k2F̂ (k)c2
nσn

gn(k)2
Θ(t− T )

+
k2F̂ (k)c2

nσn
2gn(k)2

Θ(t− T )eign(k)(t−T )

+
k2F̂ (k)c2

nσn
2gn(k)2

Θ(t− T )e−ign(k)(t−T ).

In the sequel, we maintain the order of terms in the right hand side of
equation 3.59: we do not factorise the right hand side of the above for
reasons which will emerge.

We now proceed to the Hankel inversion of equation 3.59, which will
be comprised of integrals to be evaluated numerically. We use the fol-
lowing notation for the inverse Hankel transform of a term from equation
3.59 above

F ′(r, t : m, gn(k)) = Ha−1
0

(
k2eimgn(k)tF̂ (k)

gn(k)2

)
, (3.60)

that is, we define

F ′(r, t : m, gn(k)) ≡
∫ ∞

0

(
k3emign(k)tF̂ (k)

gn(k)2

)
J0(kr)dk, m ∈ [−1, 0, 1].

(3.61)
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3.3 Mathematical Model

Clearly F ′(r, t : m, gn(k)) will be complex-valued in general, even if F̂ (k)
is real. However, the structure of equation (3.59) ensures that the imag-
inary parts of the right hand side always cancel. In contradistinction
to the 2D case, the integral in equation 3.61 cannot be performed for
general F̂ (k). The consequence of this mathematical fact is that the
physical structure of 2D equation 2.16 (of superposed, time-shifted, uni-
formly propagating modes) is lost in the 3D case.

To perform a numerical Hankel inverse transformation of equation
3.59 it will be necessary to assume a particular form for the horizontal
variation of heating, F (r). We maintain parity with our 2D case and
take for the horizontal variation of our buoyancy forcing a Gaussian vari-
ation in r which is normalised, so as to conserve the total heat input
into the model atmosphere. It is possible to establish the following cor-
respondence between this F (r) and its Hankel transform (Bracewell &
Bracewell, 1986).

F (r) ≡ 1

2πL2
e

(
− r2

2L2

)
⇐⇒ F̂ (k) =

1

2π
e

(
−L

2k2

2

)
. (3.62)

In terms of F ′(r, t : m, gn(k)), equation 3.59 may be written

wn(r, t)

S0

= c2
nσnΘ(t)F ′(r, t : 0, gn(k)) (3.63)

− c2
nσn
2

Θ(t)F ′(r, t : 1, gn(k))

− c2
nσn
2

Θ(t)F ′(r, t : −1, gn(k))

− c2
nσnΘ(t− T )F ′(r, t : 0, gn(k))

+
c2
nσn
2

Θ(t− T )F ′(r, t− T : 1, gn(k))

+
c2
nσn
2

Θ(t− T )F ′(r, t− T : −1, gn(k)).

where we can now write for F ′(r, t : m, gn(k))

F ′(r, t : m, gn(k)) =
1

2π

∫ ∞
0

(
k3

gn(k)2

)
e

(
−L

2k2

2
+imgn(k)t

)
J0(kr)dk.

(3.64)
Equation 3.63 may be written in a more compact, explicitly real form

wn(r, t)

S0

= c2
nσn (Θ(t)−Θ(t− T ))F ′′(r, t = 0 : gn(k)) (3.65)

− c2
nσnΘ(t)F ′′(r, t : gn(k))

+ c2
nσnΘ(t− T )F ′′(r, t− T : gn(k)),

where

F ′′(r, t : gn(k)) =
1

2π

∫ ∞
0

(
k3

gn(k)2
e−

L2k2

2

)
cos(gn(k)t)J0(kr)dk. (3.66)
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Consider definition 3.66. The three factors of the integrand and their
respective variation with integration variable, k, are considered in detail,
in section 3.4, shortly. Here, we note that for t = f = 0 ( =⇒ gn(k) →
cnk), equation 3.66 gives

lim
f,t→0

(F ′′(r, t : gn(k))) =
1

2πc2
n

∫ ∞
0

ke−
L2k2

2 J0(kr)dk, (3.67)

≡ 1

2πc2
n

Ha−1
0

(
e−

L2k2

2

)
,

=
1

2πc2
nL

2
e−

r2

2L2 ,

where we have used equation 3.62. Also, for t → ∞, r finite, the inte-
grand in definition (3.66) becomes an increasingly rapid oscillation, due
to its cosine term, which is slowly modulated, due to the other terms.
Then, the effective amplitude a single cycle of the cosine variation may be
considered constant and so the positive and negative areas of the cosine
cycle in the quadrature will cancel and

lim
t→∞

(F ′′(r, t : gn(k))) = 0. (3.68)

Equations (3.67) and (3.68) confirm expected limits for equation (3.64)
and hence adjustment wn(r, t) (equation (3.65)).

We have now determined a solution for the w(r, z, t) adjustment to
transient heating. That is, equations (3.18), (3.60), (3.63) determine the
vertical flow response, w(r, z, t).

Before proceeding, a few remarks are now appropriate. Whereas the
equivalent 2D solution of equation 2.16 (see also Nicholls et al. (1991)
and Parker et al. (2002)), is explicitly based upon non-dispersive waves
of constant amplitude, propagating horizontally, with speed cn, we will
see in section 3.4 that 3D modal solution 3.65 contains only disturbances
which propagate in the direction of r increasing, with diminishing ampli-
tude. However, like equation 2.16, equation 3.65 holds for any buoyancy
forcing for which the horizontal and vertical structure is separable, any
stratification and, overall, its composition is similar i.e. it contains di-
rect and time-shifted responses, determined by the form of the forcing.
Again, a response to steady buoyancy forcing may be obtained on setting
T →∞, when terms with factor Θ(t− T ) disappear.

Proceeding, the potential temperature response is found by integrat-
ing equation 3.4, which we write

b(r, z, t) =
∑
n

bn(r, t)N(z)2φn(z), bn(r, t) ≡
∫ t

0

(sn(r, t′)− wn(r, t′)) dt′.

(3.69)
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Substituting in the above with equations 3.60 and 3.63, we have

bn(r, t) = S0F (r)σn

∫ t

0

(Θ(t′)−Θ(t′ − T )) dt′ (3.70)

− S0σnc
2
n

∫ t

0

(Θ(t′)−Θ(t′ − T ))F ′(r, t : 0, gn(k))dt′

+
1

2
S0σnc

2
n

∫ t

0

Θ(t′)F ′(r, t′ : 1, gn(k))dt′

+
1

2
S0σnc

2
n

∫ t

0

Θ(t′)F ′(r, t′ : −1, gn(k))dt′

− 1

2
S0σnc

2
n

∫ t

0

Θ(t′ − T )F ′(r, (t′ − T ) : 1, gn(k))dt′

− 1

2
S0σnc

2
n

∫ t

0

Θ(t′ − T )F ′(r, (t′ − T ) : −1, gn(k))dt′.

Bearing in mind the definition of F ′, it is seen that a majority of terms
in the above are repeated integrals with constant limits. For example,
using the definitions of Θ(t′) and F ′, from equation 3.64, we have, for
the integral in the third term on the right hand side of equation 3.70∫ t

0

Θ(t′)F ′(r, t′ : 1, gn(k))dt′ =
1

2π

∫ t

0

∫ ∞
0

(
k3

gn(k)2

)
e

(
−L

2k2

2
+imgn(k)t′

)
J0(kr)dkdt′,

=
1

2π

∫ ∞
0

(
k3e−

L2k2

2

imgn(k)3

)[
eimgn(k)t′

]t
o
J0(kr)dk,

=
1

2π

∫ ∞
0

(
k3e−

L2k2

2

imgn(k)3

)(
eimgn(k)t − 1

)
J0(kr)dk, (3.71)

having reversed the order of t′ and k integration. Recall, m ∈ [−1, 0, 1].
Return to equation 3.70 and integrate on time. After straightforward
but extensive algebra, we obtain

bn(r, t) = S0F (r)σnξ(t)− S0σnc
2
nF
′(r, t : 0, gn(k))ξ(t) (3.72)

+
1

2
S0σnc

2
nΘ(t)G(r, t : 1, gn(k))

+
1

2
S0σnc

2
nΘ(t)G(r, t : −1, gn(k))

− 1

2
S0σnc

2
nΘ(t− T )G(r, t− T : 1, gn(k))

− 1

2
S0σnc

2
nΘ(t− T )G(r, t− T : −1, gn(k)),

with
ξ(t) = (Θ(t)−Θ(t− T )) t+ Θ(t− T )T, (3.73)
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and

G(r, t : m, gn(k)) =
1

2π

∫ ∞
0

(
k3e−

L2k2

2

(
eimgn(k)t − 1

)
imgn(k)3

)
J0(kr)dk, m ∈ [−1, 0, 1].

(3.74)
The b response may, like the w response, be conveniently transformed
into a more computable, explicitly real form

bn(r, t) = S0F (r)σnξ(t)− S0σnc
2
nF
′′(r, t : gn(k))ξ(t) (3.75)

+ S0σnc
2
nΘ(t)G′(r, t : 1, gn(k))

− S0σnc
2
nΘ(t− T )G′(r, t− T : gn(k)),

with

G′(r, t : gn(k)) =
1

2π

∫ ∞
0

(
k3e−

L2k2

2 sin(gn(k)t)

gn(k)3

)
J0(kr)dk. (3.76)

Following our treatment of the equivalent inversion integral in equa-
tion 3.66 above, it is possible to obtain, for T <∞, the following limits
for 3.76

lim
t→0

(G′(r, t : gn(k))) = 0, lim
t→∞

(G′(r, t : gn(k))) = 0. (3.77)

Note that for T →∞, the term in Θ(t− T ) in equation 3.75 will ensure
a finite b adjustment.

We have now determined a solution for the b(r, z, t) adjustment to
transient heating. That is, equations 3.69, 3.75, and 3.76 determine the
buoyancy response, b(r, z, t).

In this section, we have developed a 3D, axially symmetric, linear
model of buoyancy-forced response in a rotating, stratified atmosphere.
It holds for any vertical stratification and separable heat forcing (how-
ever, we choose to employ the same stratification and assumed heating
structure as in our 2D model of Chapter 2). Physically, the 3D model
solution of this section still relates to those of Nicholls et al. (1991),
Holton et al. (2002) and Edman et al. (2017), in 2D, except that the
factored, horizontal variation is now based upon zero-order Hankel func-
tions (Arfken, 1966): a consequence of its 3D, axial character. The loss
of translational physical symmetry in the domain’s transverse direction
means that it is not possible, as in the 2D case, to write contributions to
the modally-expanded solution directly in terms of the assumed horizon-
tal heating variation, F , which is uniformly translating. Mathematically,
this is because the kernel of the Hankel integral transforms cannot be
combined with time exponentials (even for f = 0) in the same way as
in the corresponding 2D Fourier inversion. Numerical techniques will
be necessary to determine and investigate modal horizontal variations,
wn(r, t) (equation 3.65) and bn(r, t) (equation 3.69).
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3.4 Implementation

For the sake of completeness, we shall continue, in this section, to allow
rotation i.e. f 6= 0. Note, however, for meteorological applications, in
section 3.5, f → 0. All predicted responses clearly depend upon accurate
estimates for F ′′(r, t : gn(k)) (equation 3.66) andG′(r, t : gn(k)) (equation
3.76), which must be carefully evaluated.

3.4.1 Properties of F ′′.

Consider equation 3.66. Its integrand has been expressed as a product of
three factors. Consider these from left to right. As k increases, the first,
envelope, factor does not oscillate, the second (cos(gn(k)t)) oscillates
faster for larger times, t, and eigenvalues, cn, (see equation 3.52). Figure
3.2 below shows how these variations combine in the overall variation of
the integrand of F ′′. The properties of the integrand for G′(r, t : k, gn(k))

Figure 3.2: Composition of the integrand in equation 3.66. Data cor-
responds to N1 = 0.01, N2 = 0.02, L = 1, HL = 64Ht, f = 10−5,
t = 6× 602s, The value of cn chosen is the maximum for this paramter-
isation, r = 10km is also large. Hence, the second factor (cos(gn(k)t))
and the third factor (J0(kr)) in the integrand of equation 3.66 oscillate
rapidly, here.

(equation 3.76)) are similar.
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3.4.2 Numerical Hankel Inversion

The inverse Hankel transform integrals for F ′′(r, t : gn(k)) (equation 3.66)
and G′(r, t : k, gn(k)) (equation 3.76) are performed numerically, using
Simpson’s rule and Matlab. The transform space step, δk, used must be
chosen carefully, to ensure uniform accuracy in the quadrature.

For k ∈ [0, 4
L

], the common envelope factor, e−
L2k2

2 , varies in the range
[1, e−8 ≈ 3.3 × 10−4], i.e. the integrands will decay to 0.04% of their
approximate maximum or minimum within conjugate space interval k ∈
[0, 4

L
]. Hence, a range for the Hankel inversion quadratures of equations

3.66 and 3.76 of k ∈ [0, 4
L

] is chosen. Figure 3.2 shows the integrand
oscillates, due to factors cos(g(k)t) and J0(kr) with respective conjugate
space wavelengths

λc ≈
2π

cnt
, λJ0 ≈

2π

r
, (3.78)

where we are neglecting the role of f , and, in the case of λJ0, the first
few zeros of J0(x) occur at x ∈ [2.4048, 5.5201, 8.6537, 11.7915, 14.9309..],
(Arfken, 1966) with a maximum interval (between the first and second
zero) of 3.1153 admitting the approximation 3.1153 ≈ π.

Figure 3.3 shows a set of variations, in conjugate space, of the inte-
grand for F ′′(r, t : gn(k)) in equation 3.66. This data is parameterised
as that in figure 3.2 and is plotted with quadrature step, δk = 0.005,
constant. Variation of the integrand is plotted for max(cn) and min(cn)
and small and large values of horizontal distance, r. A suitable choice
of inversion quadrature step which places 20 quadrature points in each
oscillation of the integrand, for a given cn, is:

δk ≡ min(λc, λJ0)

20
. (3.79)

We remark that for a majority of cases, δk = 2π
cnt

, that the range of inte-
gration required to accurately evaluate these quadratures is conveniently
restricted by the localized, Gaussian nature of the envelope of the inte-
grand, that the computer execution time taken to evaluate an inversion
integral decreases as cn decreases and that the results from equation 3.79
compare well with a native but slower Matlab numerical integrator, which
selects its own sampling rate.

3.4.3 Modal Propagation

In our 2D investigations of Chapter 2, each mode, wn(x, t), is charac-
terised by a profile which is uniformly translating, at a phase speed
cn, without change of shape. In figure 3.4 we plot the behaviour of
mode w20(r, t) (n = 20 chosen arbitrarily), for selected t, over a range of
r ∈ [0, 10]km. This 3D model data show significant departures from the
2D counterpart, exhibiting both spreading and geometrical dissipation
of the mode (due to geometry i.e. physical spreading of the wavefront).

89



3.5 The Dynamics of Convective Adjustment

Figure 3.3: Behaviour of the integrand in the Hankel inversion integral,
F ′′(r, t : gn(k)) in equation 3.66. Data as figure 3.2. A quadrature step for
Simpson’s rule, δk, must be chosen adequately to resolve the oscillation of
the integrand which originates from various sources. However, the period
of oscillation varies between cases, which must be taken into account.

Plotting the approximate time position of the peak, rmax versus time, t,
indicates a phase speed which is constant, in common with the 2D case
(figure 3.5). We attribute the failure of the plot to intersect the origin
to the lack of an identifiable propagating solution, for small r, which is
not evident in the 2D counterpart. We return to the matter of prop-
agation in section 3.5, when considering the horizontal propagation of
adjustments.

It is appropriate to stress that solutions for w and b are based upon the
numerical inversion process set-out in this section, and upon the eigen-
values, cn, obtained from a numerical solution of the matching conditions
applied to eigenfunctions φn(z) (section 2.4.1) and all data presented in
the sequel was subject to convergence checks identical to those set-out
for 2D, in section 2.4.2.

3.5 The Dynamics of Convective Adjust-

ment

It is not our aim to replicate all the investigations in Chapter 2. The
principal motivation for the present model is to assess the impact of the
third dimension on e.g. the physical decay, of the propagating adjust-
ments, which arise from purely geometrical considerations. Our main
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3.5 The Dynamics of Convective Adjustment

Figure 3.4: Propagation behaviour of the mode w20(r, t), which is equiv-
alent to the Hankel inversion integral, F ′′(r, t : g20(k)) in equation 3.66.
Data as figure 3.2.

interest is to test the sensitivity of the gravity wave response in 3D, to
different model configurations. Of particular interest is the structure and
magnitude of the w and θ response in the troposphere.

We configure three simulations which complement our 2D solutions:
(i) trapped regime with a rigid lid at the tropopause (3D TRAP here-
after), (ii) a radiating regime with a high model lid and constant N
(3D RAD1 hereafter) and, (iii) a radiating regime with a high model lid
and different values of N in the troposphere and stratosphere (3D RAD2
hereafter). The high model lid height is identical to that used in Chapter
2 (namely, H = 64Ht = 640 km), as are the values of Nt ( = 0.01s−1)
and Ns ( = 0.02s−1). The maximum heating rate is also the same
(Qmax = 0.001 K s−1). We now set f = 0.

For all data presented in this sub-section, equations 3.18, 3.60 and
3.63 together determine the vertical flow response, w(r, z, t). Equations
3.18, 3.72 and 3.76 together determine the potential temperature re-
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Figure 3.5: Propagation behaviour of the mode wn(r, t). The location in
time of the local maximum, rmax, apparent in the data of figure 3.5. The
solid line is a guide to the eye. Data as figure 3.4.

sponse, b(r, z, t).

3.5.1 Trapped Solutions

We first characterise the convective adjustment to a prescribed heating in
the simplest configuration of our model - the trapped case now nominated
(3D TRAP).

The top panels of figure 3.10 show the w and θ response at t = 90 mins
when the lid is at z = Ht, thus trapping all energy in the troposphere.
As in the 2D case, there is a steady response directly over the forced
region until the forcing is truncated, at which time a rebound mode
begins to propagate. Whilst this overall picture is consistent between
the two geometries, there are a number of differences, which we shall
discuss further in §3.6.

For now, our interest is in the propagating subsidence mode at the
“head” of the w response. For a forcing with L = 10 km, and aspect
ratio 1, the feature propagates at 33.3 m s−1. The mode of descending air
precedes a tropospheric warming, with larger θ perturbations appearing
closer to the head. The perturbations of both w and θ decay in time, as
the response spreads over a larger radial area (seen in figure 3.11). We
shall now characterise this decay.

We introduce a tropospheric average value for some property g as
follows

gz(r, t) =
1

Ht

∫ Ht

0

g(r, z′, t)dz′. (3.80)

Given the axial symmetry of the problem, the total fluid kinetic
energy, ET , for the fluid contained in a cylindrical shell, height Ht,
radius r, thickness δr, δET (r, t) = 2πrHtĒz(r, t)δr (the total energy
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density for our system is Ē + V̄ = ρ0w2

2
+ ρ0b2

2N(z)2
.) Focusing atten-

tion on the response head, we characterise by positions Rw(t) (centre of
subsidence) and Rb(t) (centre of warmth). Note, Rw(t) ≈ Rb(t) but
Rw(t) > Rb(t). Supposing, within the subsidence, w � ur, uθ and
neglecting variation in the base state of density, ρ0, we therefore have
δET (Rw(t)) ≈ πrHtρ0wz(Rw(t))2δr. In the absence of radiation aloft, we
expect this energy to be approximately conserved, δET (Rw(r)) = α, a

constant. Accordingly w(Rw(t)) =
√

k
πHtρ0rδr

and combining constants

and setting δr = 1 we find

w̄z(Rw(t)) ∼ constant× r−
1
2 , (3.81)

at least for regions in which vertical flow is dominant. We expect a similar
scaling to apply to the vertically averaged buoyancy response, bz(Rb(t)).
See also section 3.3.4.

In computation, we identify the position of the response head at a
given time after heating onset, t, by the horizontal location of min(wz(r, t))
(for Rw(t)) and the horizontal location of max(bz(r, t)) (for Rb(t)). Fig-
ure 3.6 shows the time series of Rw(t) and Rb(t) in response to a 30 min
forcing pulse. The head components propagate into the environment at
very similar, constant speeds, dRw

dt
≡ cw ≈ 33ms−1 (based upon a value

of L = Ht = 10× 103m, i.e. of 10km). In the 2D case of Chapter 2, the
trapped response also propagates into its environment at constant speed.

Figure 3.6: Time series of Rw(t) (left) and Rb(t) (right) (w and θ com-
ponents of the subsidence mode) in 3D TRAP. The propagation speed
of the response head, dRw

dt
, is cw ≈ 33.3ms−1. Note that the heating lags

subsidence slightly.

Figure 3.7 shows computed values of descending subsidence, wz(Rw(t)),
and potential temperature, bz(Rb(t)), as functions of Rw(t) and Rb(t) re-
spectively, for the same range of times as figure 3.6. We see that the
amplitude of both w and θ at the head of the response is dependent
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upon the distance which the head has travelled, and obeys the scaling
prediction 3.81 (figure 3.8).

Figure 3.7: The variation in minimum wz (left) and maximum bz (right)
with radial spreading of subsidence in 3D TRAP.

Figure 3.8: As in figure 3.7, but on a scaled x-axis.

Following our approach in 2D, we will next raise the upper lid aloft, to
investigate how upward radiation affects the response in the troposphere.

3.5.2 Radiation and the Effect of Model Stratosphere

In Chapter 2, we saw that allowing for the upward radiation of energy
reduces the amplitude of the tropospheric response and, less intuitively,
communicates convective adjustment into the environment quicker as
deeper gravity wave modes acquire significance. We expect the 3D case
to display a similar pattern here, with the caveat that the 3D case will
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also experience reduced amplitudes due to the radial spreading of its
response, as the latter spreads into the environment.

Figure 3.9: The time evolution of w (m s−1) (left) and θ (K s−1) (right) in
response to to a transient, 1 hr pulse of heating with L = 10 km, uniform
N = 0.01 s−1, H/Ht = 64. Note that t increases down each column.

Figure 3.9 shows the time evolution of both the w and θ responses in
3D RAD1 subject to a 1 hr pulse of forcing. As in the 2D case, having
a high model lid allows a spectrum of gravity wave modes to be excited,
which travel into the environment surrounding the forcing, thus com-
municating the convective adjustment. Another consistent feature is an
immediate subsidence mode in the troposphere, leading to a spreading in
θ. We observe a rebound mode following the truncation of heating. How-
ever, both w and θ both have a much richer structure in the troposphere
compared with the 2D case, particularly after 1 hr.

The magnitudes of the response are clearly affected by radial decay
(by factor r−1/2), reducing from the 2D solutions by a factor 20. However,
the speed of wave propagation appears consistent with that shown in
figure 2.8.

Figure 3.10 shows the response in w and θ, for each of 3D TRAP,
3D RAD1 and 3D RAD2. As in figure 2.10, we see that the trapped
case (minimum upward radiation) has the largest magnitudes of w and
θ, 3D RAD1 (maximum upward radiation, since there is no interface at
the tropopause) has the smallest magnitudes, and 3D RAD2 lies between
these two bounds. Further, the pattern of horizontal propagation of the
dominant mode across the model configurations is similar to that in the
2D case, where the models with a deep atmosphere propagate slightly
faster than the trapped mode. Finally, the θ response in 3D RAD2 has
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Figure 3.10: The w (left) and θ (right) response at t = 90 mins to a 1 hr
pulse of forcing, with L = 10 km in 3D TRAP (a), 3D RAD2 (b) and
3D RAD1 (c).

a noticeable discontinuity at the tropopause, for the same reasons as
discussed in Chapter 2.

There are, however, a number of notable differences. First, the verti-
cal velocities are much smaller in the 3D than in 2D (also seen in 3.9),
as expected, given the growing volume of the adjusted atmosphere as r
increases. Further, comparing the 3D models, the vertical velocities in
3D RAD1 and 3D RAD2 are much smaller than in 3D TRAP, whereas
the θ response is much more consistent across the regimes. These differ-
ences are quantified in figure 3.11. Second, the tropospheric response is
much less homogenous than the 2D case. The reader is invited to com-
pare the top panel in figures 3.10 and 2.10. The 3D geometry appears to
introduce a head to the response, propagating radially from the forcing
region with larger w and θ perturbations, followed by a tail with reduced
perturbations. Following the truncation of heating, the rebound mode
has the reverse characteristics.

3.6 Comparison to 2D

In 2D, we find trapped solutions which consist of two symmetric single
gravity wave modes which propagate in opposite directions from the forc-
ing. The situation becomes more complicated in a deep atmosphere, as
the excitation of higher modes leads to a more dispersed tropospheric
response, leading to a wider, weaker response (see figure 2.9). In 3D,
this same effect is in play, with a key difference: a radial dispersion of
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convective adjustment.
To compare data from the models of Chapter 2 and the present chap-

ter, we must establish cross-calibrations which relate the heating rate
amplitude, S0 of the two models. Denote the heating rate amplitude of
the 2D slab geometry model of chapter 2 Ss0 and the heating rate am-
plitude of the cylindrical geometry model of the present chapter Sc0. We
consider two cases, both based upon an equivalence of the total heat
input into a finite region of space, in unit time.

First, match the total heat input rate for the model of Chapter 3 with
r ∈ [0,∞), z ∈ [0, Ht] to the model of Chapter 2 with x ∈ (−∞,∞),
y ∈ [0, L], z ∈ [0, Ht]. Recall, L is the characteristic length scale of
the buoyancy forcing, which is assumed identical in the both models.
Balancing the heating rates we have

Ss0

∫ ∞
−∞

e
−
(
x2

2L2

)
dx

∫ Ht

0

sin

(
πz

Ht

)
dz

∫ L

0

dy (3.82)

= Sc0

∫ ∞
0

2πre
−
(
x2

2L2

)
dr

∫ Ht

0

sin

(
πz

Ht

)
dz

and, canceling the common vertical variation and using the standard in-

tegral
∫∞
−∞ e

−
(
x2

2L2

)
dx =

√
2πL we straightforwardly obtain the following

relationship between buoyancy forcing rate amplitudes

Sc0 =
1√
2π
Ss0. (3.83)

Alternatively, match the total heat input rate into finite, identical
volumes. Now, for the model of Chapter 3 take the region r ∈ [0, 10L],
z ∈ [0, Ht] with volume 100πL2Ht and for model of Chapter 2 take the
equivalent volume x ∈ [−10L, 10L], y ∈ [0, 5πL], z ∈ [0, Ht]. Balancing
the heating rates we now have

Ss0

∫ 10L

−10L

e
−
(
x2

2L2

)
dx

∫ Ht

0

sin

(
πz

Ht

)
dz

∫ 5πL

0

dy (3.84)

= Sc0

∫ 10L

0

2πre
−
(
r2

2L2

)
dr

∫ Ht

0

sin

(
πz

Ht

)
dz.

Canceling common factors, transforming variables and simplifying we
obtain

5πL2Ss0

∫ 10

−10

e
−
(
u2

2

)
du = −2πL2Sc0

∫ 10

0

−ue−
(
u2

2

)
du. (3.85)

Any standard normal distribution tabulation shows the integral on the
left of the above to be very close to 1 whilst that on the right may be eval-
uated directly, to obtain 5πL2Ss0 = 2πL2Sc0 (1− e−50) ≈ 2πL2Sc0, which
yields an alternate relationship between buoyancy forcing rate amplitudes

Sc0 =
5

2
Ss0. (3.86)
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Between the calibrations in equations 3.83 and 3.86 there is almost an
order of magnitude difference. For the data presented in this section, we
use the calibration in equation 3.83. However, it is appropriate to note
that the 3D adjustments could be all an order of magnitude larger than
those shown in figure 3.12, below, if the alternative calibration is used.

Figure 3.12 shows the time series of maximum tropospheric w re-
sponse for r > 100 km when forced with steady heating of width L =
10 km. (Note, the equivalent for 2D is shown in figure 2.9).

First, as discussed in §3.5.1 we notice a stark difference in the trapped
case. Unlike the trapped 2D solutions, 3D TRAP no longer remains
constant in time, but, rather, decays in time as the response spreads
further into the environment.

Across the models, as in the 2D case, the amplitude of the response
is much larger in the trapped case at all times. However, more unexpect-
edly, 3D RAD1 and 3D RAD2 produce very similar responses, despite
the interface at the tropopause in the latter. Indeed, whereas there is a
50% difference in the amplitudes between RAD1 and RAD2, 3D RAD1
and 3D RAD2 are consistent after 1.5 hrs. It appears that increasing the
dimensionality has a more significant influence on the response than the
vertical stratification.
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3.6 Comparison to 2D

Figure 3.11: Mid-tropospheric w and θ response to a 1 hr pulse of heating,
with L = 10 km in 3D TRAP, 3D RAD1 and 3D RAD2. Here data is
represented as follows. Blue line is 3D TRAP, the black line is 3D RAD1
and the red line is 3D RAD1.
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3.6 Comparison to 2D

Figure 3.12: Time series of maximum tropospheric values of |w| for r >
100 km when forced with steady heating of width L = 10 km. (a,...,c)
represent the 2D response, (d,...,f) represent the 3D response. Dashed
lines refer to respective 3D TRAP, solid refer to 3D RAD1 and dotted
refer to 3D RAD2.
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3.7 Summary and Discussion

We have extended the analytical model of Chapter 2 into a three-dimensional
cylindrical geometry. Once again, the vertical velocity and potential tem-
perature response to convective adjustment have been expressed in terms
of convectively-forced gravity wave modes. We test the influence of the
upper boundary condition and make comparisons with the 2D model.

A trapped solution, i.e. one with a rigid lid at the tropopause (al-
lowing no radiation in the stratosphere), yields a single gravity wave
subsidence mode (high intensity downward motion and warming in a
localised region) which propagates into the environment and conditions
the troposphere for further convection. This feature is broadly similar
to 2D version, but differs in three ways: (i) a much reduced amplitude,
as expected, since the response can now decay radially, (ii) a bore-like
“head” pilots the response with larger perturbations at the leading edge
of propagating feature (in 2D the response is much more homogeneous),
and (iii) there is a time-dependent decay in the response as the feature
spreads over a growing area. We characterise the decay, predicting a
factor r−

1
2 in the trapped solutions, and confirm with model data.

When the altitude of the upper lid is raised high into the atmosphere
(to approximate a semi-infinite solution), we see some very recognisable
features: (i) a reduction in response amplitudes in the troposphere (since
energy can now escape aloft), and (ii) the excitation of higher-order grav-
ity wave modes, with a range of wave speeds which propagate into the
immediate environment quicker. Further, the addition of a model strato-
sphere partially traps the response, thus producing a response with am-
plitudes which lie between the trapped and constant N case (see §2.5.3
for a detailed discussion). Note also, as in the 2D case, there is a discon-
tinuity in the b response when a model stratosphere is included.

Qualitatively, the tropospheric response in 3D RAD1 and 3D RAD2
are similar (at least for t = 90 mins, as in figure 3.10). This is confirmed
in figures 3.11 and 3.12.

In summary, in Chapter 3 we have have extended the essential phys-
ical content and regime of approximations of the 2D model of Chapter 2
into a 3D, cylindrically symmetric geometry. The treatment of Chapter
2 is found to extend transparently, with the caveat that use of Hankel
rather than Fourier transforms, adds significant mathematical challenge
to the solution of the horizontal part of the problem, thereby removing
attractive analytic properties of the 2D solutions- specifically, its expres-
sion in terms of uniformly translating horizontal heating profile. As in
Chapter 2, we have concentrated on investigating the effect of the pseudo-
radiative, upper boundary condition at the tropopause (recall, we use a
very high lid used to represent a radiating troposphere). Throughout,
we take care to note the differences from 2D to 3D both in terms of
i) the physical consequences of the extended dimensionality and ii) the
mathematical structure of the solutions.
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3.7 Summary and Discussion

The work presented in Chapter 3 forms a clear basis for a benchmark
study, but there are a number of possible avenues we leave unexplored.
For instance, we have presented data for non-rotating (f = 0) cases
only. Whilst this is consistent with our preceding treatment of 2D, in
Chapter 2, it leaves the effect of rotation within our model of stratification
unaddressed.

We raise this restriction in the next Chapter, where we will develop
a new, steady state model which relies upon the same stratification.
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Chapter 4

The Long Time Response to
Convection in a Rotating
Atmosphere

4.1 Introduction

In Chapter 2 we built a simple, analytic model of the non-rotating, ra-
diating transient dynamics of convective adjustment in 2D. Two natural
questions arise regarding i) the role of the third dimension and ii) rota-
tion. In Chapter 3 we assessed the role of dimensionality, by extending
our model’s horizontal formulation whilst preserving all its other fea-
tures, in particular its vertical, modal structure and stratification. In
this chapter, we aim to address the second question.

In keeping with our central paradigm, we aim to use a predominantly
analytic approach on a minimal formulation. This decision tends to rule-
out further use of the 3D model of Chapter 3 which, whilst it was for-
mulated with f 6= 0, relies heavily on numerics to invert from reciprocal
space. To make meaningful comparisons, it is important to maintain as
common a description and regime of physical approximations as possible.
Accordingly, we shall here develop a new, predominantly analytic model
of a rotating atmosphere from a slightly modified 2D description.

In Chapters 2 and 3 we have mainly examined the effect of an upper
boundary at the tropopause, in three dynamic regimes- trapped, radiat-
ing, or a mixture of the two. In fact, the presence of rotation is manifest
before dynamics, in the structure of the steady state of convective ad-
justment. Here we will examine what is, essentially, the same physical
system and regime of approximations as previously, using an enhanced
mathematical model capable of describing the steady state. Whilst such
a model will not inform us on the transients of convective adjustment, but
rather the final state of the atmosphere following convection, we deem
that it does represent the simplest vehicle for an assessment of the effects
of rotation, using our essential base physics and modelling assumptions.

The 2D, Boussinesq basic set of Chapter 2, i.e. equations 2.1 will
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have to be modified to address rotation in what is termed 2.5 dimen-
sions (a suitable basic set of equations for 2D must now contain both
components of horizontal velocity). To retain the stratification of Chap-
ter 2 and Chapter 3 (whilst formulating at least), it will be necessary
to generalise our modal expansion methodology and to calibrate and in-
terpret meteorological data, scalings and non-dimensionalisations will be
developed.

Chapter 4 is organised as follows. We will begin with salient back-
ground physics and consideration of previous studies on rotating systems,
in section 4.2, will then define and solve a steady-state model for a strat-
ification identical to that used in Chapters 2, 3 in section 4.3. In section
4.4 we simplify the model to constant N and further simplify it in sec-
tion 4.5 to constant N , ρ0, in which limit we consider analytical solutions.
Results are presented in section 4.6. Finally, we will end with discussion
and a summary.

4.2 Background

The main motivation here is to understand the effect of Coriolis acceler-
ation on the steady state of convective adjustment. Thus, we will now
investigate a system with a non-zero f . Using a steady state model in
2.5D, with d

dy
= 0, allows us to write simple, analytic solutions, even

with a non-zero f , which is in keeping with the general paradigm of this
thesis (thus far, at least).

In the Earth’s mid-latitudes, a quasi-geostrophic balance is struck
as Coriolis’ force acts rapidly to restore equilibrium, in response to any
changes in pressure gradient (Gill et al., 1986; Hoskins et al., 1985).
Through latent heat release, deep cumulonimbus convection perturbs the
pressure and buoyancy of the troposphere and forces a spectrum of grav-
ity waves which mediate compensating subsidence in the environment
(Bretherton and Smarlokwicz, 1989). In the mid-latitudes, gravity wave
propagation is influenced by the Coriolis force and the subsidence is,
as a consequence, confined to a finite distance (Bretherton, 1988, 1987;
Chagnon & Bannon, 2001). Subsequently, the atmosphere develops a
physical rotation or vorticity, visible in e.g. tropical cyclones or rotating
mesoscale convective systems (MCSs). Such features generate anomalies
in the potential vorticity (Liu & Moncrieff, 2004; Shutts & Gray, 1994),
which, in the absence of diabatic heating and stratification, is a con-
served quantity derived from the vorticity field and planetary rotation
(Gill, 1982). Potential vorticity anomalies can persist long after con-
vection terminates, advect and, indeed, they can trigger new convection
(Raymond & Jiang, 1990).

We know gravity wave propagation facilitates convective adjustment
and is influenced by many considerations, including atmospheric strat-
ification, moist processes and vertical shear. When modelling, further
complications are added through choice of boundary conditions (Edman
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& Romps, 2017; Nicholls et al., 1991), numerical resolution and param-
eterisations (Bretherton, 1988).This chapter focuses on the interaction
of the two controllers of convective Rossby adjustment; (i) Coriolis force
and (ii) upward radiation at the tropopause. The meteorology of these
controls is immediately apparent in two ways. First, in gravity wave prop-
agation, which is more restricted in the mid-latitudes than the tropics,
where the Coriolis force is much weaker (Liu & Moncrieff, 2004). Second,
the upward radiation of convectively forced waves through a leaky lid at
the tropopause which alters the length-scale of tropospheric adjustment
to convection (Edman et al. 2017 and Chapter 2 of this thesis). However,
it is not clear how these processes work in tandem during convective ad-
justment and the sensitivity of Rossby deformation to upward radiation
remains unexplored.

Numerical modelling of convective Rossby adjustment is problematic,
due to the wide range of scales which demand consideration. For exam-
ple, sub hour-long mesoscale convection interacts with day-long synoptic
Rossby deformation. To circumvent this issue, we adopt, here, a theoret-
ical approach and develop an analytical solution to linear, hydrostatic,
steady-state equations, formulated in 2.5 dimensions. Initially we for-
mulate a deep atmosphere, forced with a prescribed transient buoyancy
source of finite duration. Our initial formulation allows for a stratified
atmosphere but whilst vorticity dynamics in the atmosphere are influ-
enced by stratification, we ultimately neglect variations in N2, in order
to attain exact solutions, assume that the important aspects of Rossby
adjustment can be captured with a simpler equation set. Our analytical
solutions reveal a balanced state of the atmosphere following convection
and provide a direct way of investigating the sensitivity to both Coriolis
force and upward radiation.

4.3 Mathematical Model

In this section we shall, for generality and consistency with Chapters 2, 3,
formulate and solve a general mathematical description. Later, in section
4.4, we simplify our description, to uniform N and further, to uniform N
and ρ0(z), in section 4.5. (The latter steps are not motivated by math-
ematical considerations only. Physically, in Chapter 2 we have shown
that, within our formulation, energy radiation into the stratosphere is
optimal for Nt = Ns).

We work throughout this chapter in 2.5 dimensions, with d
dy

= 0,

and consider the steady state atmospheric velocity, buoyancy (potential
temperature) and potential vorticity (PV hereafter) adjustment to a pre-
scribed tropospheric heating, or buoyancy forcing, of finite duration. The
mathematics of the chapter follows that of Chapters 2, 3 but it is more
complicated. For this reason, we now give an overview of subsections.

We define our system in sub-section 4.3.1 and proceed to derive and
briefly discuss the basic physics of its energy and PV in sub-sections 4.3.2
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and 4.3.3. Next we consider the system steady response, in sub-section
4.3.4. Much of the physical behaviour of the model will be deduced
from the steady pressure field, p(x): the equation which we solve for p is
derived in sub-section 4.3.5. This equation is solved, for a stratification
identical to that in Chapters 2, 3, using a generalised modal expansion of
field variables p, v and b, from sub-section 4.3.6 onwards (where we derive
heating expansion coefficients, eigenfunctions, normalisation, matching
conditions etc. for a stratified atmosphere). We point-out in advance
that the steady-state b adjustment is not determined, as in Chapters 2,3
from a time integration of the thermodynamic equation.

4.3.1 Governing Equations and System Geometry

We seek the steady-state atmospheric adjustment, in 2.5D, following
heating of finite duration, T , modelled using a buoyancy forcing. The do-
main is a plane, x−z slab. Initially, we allow an atmospheric stratification
defined by (i) a variable base state density and (ii) a buoyancy frequency
which changes at the tropopause. Our basic rationale and description
are consistent with Chapter 2, where the corresponding dynamics were
considered. Our basic set of equations are

∂u

∂t
− fv = − 1

ρ0(z)

∂p

∂x
, (4.1)

∂v

∂t
+ fu = − 1

ρ0(z)

∂p

∂y
,

∂w

∂t
− b = − 1

ρ0(z)

∂p

∂z
,

∂b

∂t
+N2w = s,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

where

b ≡ g
θ′

θ0

, b̄ = g
θ̄

θ0

, N2 =
db̄

dz
. (4.2)

Here, θ0 is a reference potential temperature, which is constant and b̄(z)
is the base state of potential temperature. The base state of the flow is
rest and the base states of density, ρ0(z), and the buoyancy frequency,
N(z) have the altitude variation defined below. Heating is introduced
in our thermodynamic equation essentially as a buoyancy forcing. The
rationale underlying the above description is set-out in Chapter 2.

The geometry and assumed buoyancy forcing distribution we assume
in this work is defined in Chapter 2. Rigid surface and lid boundaries are
imposed at z = 0, H, well above the troposphere. The latter is assumed
to occupy the range of altitude 0 ≤ z ≤ Ht, with Ht � H.
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4.3.2 System Energy

From an appropriately weighted combination of the first three momentum
equations of equations 4.1 we obtain

u
∂u

∂t
+ v

∂v

∂t
+ w

∂w

∂t
− bw = − 1

ρ0

(
u
∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z

)
, (4.3)

hence

∂

∂t

(
1

2
v · v

)
= − 1

ρ0

(v · ∇) p+ bw = − 1

ρ0

∇ · (pv) +
p

ρ0

∇ · v + bw. (4.4)

Finally, using the continuity equation and our thermodynamic equation,
from equations 4.1, to replace w in the right hand side of the above, we
obtain an energy equation

∂

∂t

(
1

2
ρ0v · v +

1

2

ρ0b
2

N2

)
+∇ · (pv) =

ρ0sb

N2
, (4.5)

from which we infer an energy flux density pv and potential energy den-
sity 1

2
ρ0b2

N2 . That is, from equation 4.5 we have a total scalar energy
density, Ē, and an energy flux density vector, J̄ as follows

Ē =
ρ0

2
v · v +

ρ0b
2

2N2
, J̄ = pv. (4.6)

Note that the right hand side of (4.5) vanishes when buoyancy forcing is
removed, s→ 0.

Henceforth we take the hydrostatic approximation in the vertical mo-
mentum equation.

Equation (4.5) may be written ∂E
∂t

+∇ · J = ρ0sb
N2 . Using a time and

domain integral of this equation, we can obtain an expression for the
total energy.

Etot ≡
∫

Ω

(∫ t

0

∂E

∂t
dt

)
dV =

∫
Ω

(∫ t

0

(
ρ0sb

N2
+∇ · J

)
dt

)
dV,(4.7)

=
ρ0

N2

∫
Ω

(∫ t

0

(sb) dt

)
dV +

∫ t

0

(∫
∂Ω

J · dA
)
dt.

In the above, the flux integral vanishes as follows: domain boundaries,
∂Ω, located at z = 0, H have dA = −dxdyêz, dA = dxdyêz respectively,
so for z = 0 (say), J · dA = −w(x, y, 0)dxdy = 0, since w(x, y, 0) = 0
by the kinematic condition. Moreover, s is assumed zero outside the
troposphere, z > Ht, and for all time t > T . Hence, for t > T

Etot =
ρ0

N2

∫ Ht

0

∫ L

0

(∫ T

0

(sb) dt

)
dxdz, (4.8)

from which we note that a knowledge of the history of the buoyancy
adjustment, b(r, t) is necessary to compute Etot.
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4.3.3 Potential Vorticity

Potential Vorticity (PV hereafter) is the absolute circulation of an air
parcel enclosed between two isentropic surfaces. The derivative following
the motion of that parcel can only be changed by diabatic heating.

PV may be defined as follows

PV ≡ 1

ρ
ζ · ∇θ, ζ = ∇× v + f êz (4.9)

where ζ is the absolute vorticity.
We seek an expression for the PV adjustment. We will require the

following relations (Holton, (2012))

b ≡ gθ

θ0

= −g ρ
ρ0

,
ρ

ρ0

= − θ

θ0

. (4.10)

Eventually, we will simplify the expression, using the Boussinesq approx-
imation, however, we retain the density adjustment for the time being, as
it will eventually assist us to recognise the significance of other terms. We
note that buoyancy adjustment, b, is not to be neglected in the Boussi-
nesq approximation (since it is associated with g) and that ζ is already
first-order in perturbation quantities (we write that it is O(1)) and make
replacements in the definition above

PV =
1

(ρ0 + ρ)
ζ · ∇ (θ0 + θ) , (4.11)

=
1

ρ0

(
1− ρ

ρ0

)
ζ · ∇ (θ0 + θ) ,

where base states= θ0 is allowed z dependence. In particular, we take

N2 ≡ g
d

dz
loge(θ0) =

g

θ0

dθ0

dz
. (4.12)

Expand about base states

PV ≈ 1

ρ0

(
1− ρ

ρ0

)
× (4.13)(

∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
+ f

)
·
(
∂θ

∂x
,
∂θ

∂y
,
dθ0

dz
+
∂θ

∂z

)
,

and retain only terms of O(1) or larger

PV =
1

ρ0

(
1− ρ

ρ0

)(
∂v

∂x
− ∂u

∂y
+ f

)(
dθ0

dz
+
∂θ

∂z

)
+O(2).(4.14)

For the O(1) PV adjustment, we have

PV ′ ≈ 1

ρ0

(
∂v

∂x
− ∂u

∂y

)
dθ0

dz
+
f

ρ0

∂θ

∂z
− ρ

ρ2
0

f
dθ0

dz
, (4.15)
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where we have dropped the term f
ρ0

dθ0
dz

, since it does not belong to the
adjustment in PV. Appealing to our definition of buoyancy frequency,
equation 4.12, we have dθ0

dz
= N2θ0

g
, replacing θ in favour of b, using equa-

tions 4.10, and neglecting the fact that we have a O(1) approximation

PV ′ =
N2θ0

gρ0

(
∂v

∂x
− ∂u

∂y

)
+
f

ρ0

∂

∂z

(
bθ0

g

)
− N2θ0ρ

gρ2
0

f. (4.16)

Recall, the last term in the above arises from density variation which
will be negligible within the Boussinesq approximation. We now expand
the second term on the right hand side using the product rule and again
appeal to equations 4.12 and 4.10

PV ′ =
N2θ0

gρ0

(
∂v

∂x
− ∂u

∂y

)
+
fθ0

gρ0

∂b

∂z
+
fN2θ0b

g2ρ0

− fN2θ0ρ

gρ2
0

.(4.17)

Now, the third and fourth term on the right hand side of the above
result for the potential vorticity adjustment are easily shown to be identi-
cal, using equation 4.10. Since the third term would be neglected within
the Boussinesq approximation (recall, it arises from density variation in
a term not coupled to gravity), one must also neglect the third term in
that approximation. Hence, we arrive at the following non-Boussinesq
and Boussinsesq approximations for a scaled potential vorticity adjust-
ment within the system of Chapter 4, respectively

ρ0g

θ0N2
(PV ′) =

(
∂v

∂x
− ∂u

∂y

)
+

f

N2

∂b

∂z
+

2fb

g
, (4.18)

ρ0g

θ0N2
(PV ′B) =

(
∂v

∂x
− ∂u

∂y

)
+

f

N2

∂b

∂z
.

Both the above allow variable ρ0 and variable N2, note.
Now, seek an alternative expression for the right hand side of equation

4.17, for our PV adjustment. By eliminating variables from the basic set
(4.2) it is possible to obtain

∂

∂t

(
∂v

∂x
− ∂u

∂y
+ f

∂

∂z

(
b

N2

))
= f

∂

∂z

( s

N2

)
. (4.19)

Let us now assume a pulsed heating of finite duration, T . Integrating
over a time t > T , and using quiescent initial conditions (u = v = b = 0,
t = 0) gives

∂v

∂x
− ∂u

∂y
+ f

∂

∂z

(
b

N2

)
=

∫ T

0

f
∂

∂z

( s

N2

)
dt, (4.20)

The right hand side of equation 4.17 and the left hand side of equation
4.20 are similar. Eventually, a compact, analytic expression for PV will
be obtained. To obtain such an expression however, N must be taken
constant and s must be attitudinally integrable. We return to this matter
in sections 4.4 and 4.5, when taking the constant N2 and constant N2,
ρ0 approximations respectively.
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4.3.4 The Steady State Response

At steady state, t � T , with d
dy

= 0 and s = s(x, z), our basic set in

equations (4.2) and equation (4.20) respectively simplify to

u = w = s = 0, fv =
1

ρ0

∂p

∂x
, b =

1

ρ0

∂p

∂z
, (4.21)

∂v

∂x
+ f

∂

∂z

(
b

N2

)
=

∫ T

0

f
∂

∂z

( s

N2

)
dt. (4.22)

It is now possible to construct an equation in pressure only, which
may be solved by modal expansion methods. Equations (4.21) will then
be used to develop corresponding expansions for the other fields, v and
b and (eventually) equation 4.18 will be used to compute PV ′.

4.3.5 Master Equation for Pressure

Using (4.21) and (4.22), we can construct our principal equation for pres-
sure

1

ρ0

∂2p

∂x2
+ f 2 ∂

∂z

(
1

ρ0N2

∂p

∂z

)
= f 2

∫ T

0

∂

∂z

( s

N2

)
dt = f 2T

∂

∂z

( s

N2

)
.

(4.23)
Solving equation (4.23) will allow us to derive equations for b, v and,

eventually, PV. Careful choice of the x-dependence in the buoyancy forc-
ing function, s, will yield analytic expressions for these diagnostics. After
the method used in Chapter 2, we employ a Sturm-Loiuville eigenfunc-
tion expansion (Arfken, 1966). Our approach contains subtle differences
to which will shall draw attention, as necessary. Let Zn(z) be a Sturm-
Liouville eigenfunction, subject to boundary condition

[
dZn
dz

]
0,H

= 0, dis-

cussed in section 4.3.6 shortly. Multiply equation 4.23 by Zn(z), integrate
on z over the interval [0, H]

∂2

∂x2

∫ H

0

1

ρ0

pZndz+f 2

∫ H

0

∂

∂z

(
1

ρ0N2

∂p

∂z

)
Zndz = f 2T

∫ H

0

∂

∂z

( s

N2

)
Zndz.

(4.24)
Use parts twice in the second term on the left hand side. The boundary
terms are eliminated by the pressure boundary condition

[
dp
dz

]
0,H

= 0 and

the condition
[
dZn
dz

]
0,H

= 0. Use parts in the right hand side, where the

condition s(0) = s(H) = 0 was used to eliminate the boundary term. We
obtain

∂2

∂x2

∫ H

0

1

ρ0

pZndz + f 2

∫ H

0

∂

∂z

(
1

ρ0N2

∂Zn
∂z

)
pdz = f 2T

∫ H

0

s

N2

dZn
dz

dz.

(4.25)
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4.3.6 Modal Expansion

It is necessary to generalise the expansions used in Chapters 2 and 3 and
to base the vertical variation of the different field variables on different
sets of orthogonal eigenfunctions. Having established general expansions,
we shall later simplify our description. We shall again use a modal ex-
pansion, now based upon Sturm-Liouville eigenfunctions, Zn, satisfying

d

dz

(
1

ρ0N2(z)

dZn
dz

)
+

1

ρ0c2
n

Zn = 0,

[
dZn
dz

]
0,H

= 0, (4.26)

which, in the notation of Arfken (1966) corresponds to a choice of the
usual polynomial coefficients in the self-adjoint operator as p0(z) = 1

ρ0N2(z)
,

p1(z) = p′0(z), p2(z) = 0, weighting function 1
ρ0(z)

and eigenvalue λ = 1
c2n

.
The Zn will, of course, have appropriate orthogonality properties.

However, in contrast to the analogous procedure in Chapters 2, 3, we
now require a second set of orthogonal eigenfunctions. Re-define

φn(z) =

∫ z

0

(
Zn(z′)

ρ0(z′)

)
dz′, ⇐⇒ dφn

dz
=
Zn(z)

ρ0(z)
, (4.27)

then it is possible to prove the following properties

dZn
dz

+
ρ0N

2

c2
n

φn = 0, (4.28)

φn(0) = φn(H) = 0,

with the second a consequence of the first, using assumed boundary con-
dition 4.26. Equations 4.28 then underwrite the following orthonormali-
ties ∫ H

0

1

ρ0

ZnZmdz = Hδnm, (4.29)∫ H

0

ρ0
dφn
dz

dφm
dz

dz = Hδnm,∫ H

0

1

ρ0N2

dZn
dz

dZm
dz

dz =
H

c2
n

δnm.

The second of the equations 4.29 is immediate from the first, using equa-
tion 4.27. The third follows from the first after using integration by parts
and the second of equations 4.28.

It will now be possible to expand response functions in terms of the
Zn and their derivative functions, dZn

dz
. We now take the following expan-
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sions, which rely on both sets of eigenfunctions, note

p(x, z) =
∑
j

pj(x)Zj(z), (4.30)

s(x, z) =
1

ρ0(z)
F (x)

∑
j

σj
dZj
dz

,

v(x, z) =
1

ρ0(z)

∑
j

vj(x)Zj(z),

b(x, z) =
1

ρ0(z)

∑
j

bj(x)
dZj
dz

.

When substituted into equation (4.25) we obtain from the above an or-
dinary differential equation

d2

dx2
pn(x)− f 2

c2
n

pn(x) = −f
2Tσn
c2
n

F (x), (4.31)

where F (x) is the horizontal structure of the heating and we have used
the orthonormality properties in equations 4.29.

Before continuing, we return to the chosen boundary conditions on
functions dZn

dz
. We see above that the buoyancy or potential tempera-

ture vertical variation is expanded in terms of dZn
dz

. Hence, the bound-
ary condition in equation 4.26 imposes the physical condition that the
temperature and hence the heat flux vanishes at the boundaries of our
system.

We return to the solution for b and v shortly, and continue by consid-
ering steady pressure, p. To determine the particular integral of ordinary
differential equation (4.31), take a Fourier transform

p̂n(k) =
f 2Tσn
c2
n

(
1

k2 + f2

c2n

)
F̂ (k). (4.32)

To proceed, we must assume a particular horizontal variation. We con-
sider a horizontal variation of heating

F (x) = e−
|x|
L ⇐⇒ F̂ (k) =

√
2

π

(
1/L

k2 + 1/L2

)
. (4.33)

This choice represents a good approximation of a heating due to meso-
scale cumulonimbus activity and is mathematically tractable. We obtain

p̂n(k) =

√
2

π

f 2Tσn
Lc2

n

(
1

k2 + f 2/c2
n

)(
1

k2 + 1/L2

)
, (4.34)
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and upon using partial fractions in the right hand side

p̂n(k) = + αn

(√
1

2π

1

ik − f/cn

)
(4.35)

− αn

(√
1

2π

1

ik + f/cn

)

− βn

(√
1

2π

1

ik − 1/L

)

+ βn

(√
1

2π

1

ik + 1/L

)
,

where we have defined

αn ≡
fTσncnL

(L2f 2 − c2
n)
, βn ≡

f 2TσnL
2

(L2f 2 − c2
n)
. (4.36)

We can now perform an inverse Fourier transform. Using the result

F
(

Θ(∓x)e
±x
L

)
=

1√
2π

(
±1

ik ± 1/L

)
, (4.37)

equation 4.35 yields

pn(x) = − αn

(
Θ(x)e−

f
cn
x + Θ(−x)e

f
cn
x
)

(4.38)

+ βn

(
Θ(x)e−

1
L
x + Θ(−x)e

1
L
x
)
,

which simplifies to give the particular integral

pn(x) = −αne−
f
cn
|x| + βne

− 1
L
|x|, (4.39)

provided L 6= cn/f , when αnand βn become infinite. It remains to deter-
mine the heating coefficient σn, the Zn(z) and the eigenvalues, or wave
speeds, cn.

4.3.7 Model Stratification

We assume that the vertical variation of Buoyancy frequency is that used
previously, in Chapters 2, 3

N(z) = (Θ(z)−Θ(z −Ht))Nt + Θ(z −Ht)Ns, (4.40)

and the corresponding variation of the base state of density, likewise, is

ρ0(z) = (Θ(z)−Θ(z −Ht))ρse
− z
Dt + Θ(z −Ht)ρse

−Ht
Dt e−

(z−Ht)
Ds . (4.41)
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4.3.8 Eigenfunctions

Let us derive appropriate eigenfunctions for the representation of the
response fields. With our choice of density and buoyancy frequency vari-
ation, equation (4.27) now gives for the Zn(z) the ordinary differential
equations

d2Z
(1)
n

dz2
+

1

Dt

dZ
(1)
n

dz
+
N2
t

c2
n

Z(1)
n = 0, z < Ht (4.42)

d2Z
(2)
n

dz2
+

1

Ds

dZ
(2)
n

dz
+
N2
t

c2
n

Z(2)
n = 0, z ≥ Ht.

To match the surface and lid boundary conditions, we require oscillatory
solutions. Hence, to ensure complex roots to the auxiliary equations we
assume

N2
t

c2
n

>
1

4D2
t

,
N2
s

c2
n

>
1

4D2
s

, (4.43)

and accordingly

Z(1)
n (z) = e

− 1
2Dt

z (
A(1)
n cos

(
k(1)
n z
)

+B(1)
n sin

(
k(1)
n z
))
, z < Ht(4.44)

Z(2)
n (z) = e−

1
2Ds

z
(
A(2)
n cos

(
k(2)
n z
)

+B(2)
n sin

(
k(2)
n z
))
, z ≥ Ht,

where A
(1)
n ..B

(2)
n are integration constants. Applying boundary conditions[

dZ
(1)
n

dz

]
z=0

= 0,

[
dZ

(2)
n

dz

]
z=H

= 0, (4.45)

we obtain for the model troposphere, z < Ht

Z(1)
n (z) = A(1)

n e
− 1

2Dt
z

sin
(
k(1)
n z + φ(1)

n

)
, (4.46)

and for the model stratosphere z ≥ Ht

Z(2)
n (z) = A(2)

n e−
1

2Ds
z sin

(
k(2)
n z + φ(2)

n

)
, (4.47)

where we have defined

φ(1)
n = tan−1(2Dtk

(1)
n ), (4.48)

φ(2)
n = tan−1

(
2Dsk

(2)
n − tan(k

(2)
n H)

1 + 2Dsk
(2)
n tan(k

(2)
n H)

)
,

= tan−1
(
tan
(
tan−1

(
2Dsk

(2)
n

)
− k(2)

n H
))
,

= tan−1
(
2Dsk

(2)
n

)
− k(2)

n H,

k(1)
n =

√
N2
t

c2
n

− 1

4D2
t

,

k(2)
n =

√
N2
s

c2
n

− 1

4D2
s

.
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For completeness, we give the corresponding functions dZn
dz

, obtained by
differentiation of the Zn. Using the product rule and a number of trigono-
metric identities we obtain, for the model troposphere, z < Ht

dZ
(1)
n

dz
(z) = −A(1)

n

(
k(1)2
n +

1

4D2
t

)1/2

e
− 1

2Dt
z

sin
(
k(1)
n z
)
, (4.49)

and for the model stratosphere z ≥ Ht

dZ
(2)
n

dz
(z) = A(2)

n

(
k(2)2
n +

1

4D2
s

)1/2

e−
1

2Ds
z sin

(
k(2)
n (H − z)

)
. (4.50)

4.3.9 Matching Conditions and Secular Equation

Let us consider the matching conditions on Z
(1)
n and Z

(2)
n to be applied

at z = Ht. Considering that pressure is expanded in the Zn, continuity
of pressure at the tropopause imposes the condition

Z(1)
n (Ht) = Z(2)

n (Ht). (4.51)

To derive a second condition, we integrate equation (4.26) over a narrow
range of z spanning the tropopause[

1

ρ0N2

dZn
dz

]H+
t

H−t

+
1

c2
n

∫ H+
t

H−t

1

ρ0

Zn = 0. (4.52)

As H−t → H+
t the integral vanishes (its integrand is bounded, by assump-

tion) and so, from the evaluated term in the above we have
[

1
ρ0N2

t

dZ
(1)
n

dz

]
H−t

−[
1

ρ0N2
s

dZ
(2)
n

dz

]
H+
t

= 0, which, since ρ0 is continuous, yields a second condi-

tion [
1

N2
t

dZ
(1)
n

dz

]
Ht

=

[
1

N2
s

dZ
(2)
n

dz

]
Ht

. (4.53)

From equation (4.51) we therefore obtain

A(1)
n e
− Ht

2Dt sin(k(1)
n Ht + φ(1)

n )− A(2)
n e−

Ht
2Ds sin(k(2)

n Ht + φ(2))
n ) = 0. (4.54)

In passing, we note that the above equation allows us to write normali-
sation constant A

(2)
n in terms of A

(1)
n . From (4.53) (and the product rule)

we also obtain a second, lengthier condition

A(1)
n N2

s e
− Ht

2Dt

(
k(1)
n cos(k(1)

n Ht + φ(1)
n )− 1

2Dt

sin(k(1)
n Ht + φ(1)

n )

)
− A(2)

n N2
t e
− Ht

2Ds

(
k(2)
n cos(k(2)

n Ht + φ(2)
n )− 1

2Ds

sin(k(2)
n Ht + φ(2)

n )

)
= 0.

(4.55)
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For a non-trivial solution to equations (4.54) and (4.55) (for A
(1)
n and

A
(2)
n ), the determinant of the matrix of coefficients must vanish. There-

fore

N2
t sin(k(1)

n Ht + φ(1)
n )

(
k(2)
n cos(k(2)

n Ht + φ(2)
n )− 1

2Ds

sin(k(2)
n Ht + φ(2)

n )

)
−N2

s sin(k(2)
n Ht+φ

(2)
n )

(
k(1)
n cos(k(1)

n Ht + φ(1)
n )− 1

2Dt

sin(k(1)
n Ht + φ(1)

n )

)
= 0,

(4.56)

in which we have canceled an exponential factor e
−Ht

(
1

2Dt
+ 1

2Ds

)
. After

some algebra, equation (4.56) may be written as

−N2
t k

(2)
n cot(k(2)

n Ht + φ(2)
n ) +N2

s k
(1)
n cot(k(1)

n Ht + φ(1)
n ) =

N2
sDs −N2

t Dt

2DtDs

.

(4.57)
The above equation must be solved numerically for the cn’s. Recall,

k
(1)
n =

√
N2
t

c2n
− 1

4D2
t
, k

(2)
n =

√
N2
s

c2n
− 1

4D2
s
. Equation 4.57 is the secular

equation for the general stratification.

4.3.10 Normalization of the Zn(z)

Given that the Zn is defined piecewise, our assumed normalisation con-
dition (equation 4.29 i.e.

∫ H
0

1
ρ0
ZnZmdz = Hδnm) requires

A(1)2
n

∫ Ht

0

1

ρse
− z
Dt

(
e
− z

2Dt sin(k(1)
n z + φ(1)

n )
)2

dz (4.58)

+ A(2)2
n

∫ H

Ht

1

ρse
−Ht
Dt e−

(z−Ht)
Ds

(
e−

z
2Ds sin(k(2)

n z + φ(2)
n )
)2

dz = H.

Noting the exponentials in both integrands cancel, we obtain

A
(1)2
n

ρs

∫ Ht

0

sin2(k(1)
n z + φ(1)

n )dz

+
A

(2)2
n

ρse
Ht
Ds
−Ht
Dt

∫ H

Ht

sin2(k(2)
n z + φ(2)

n )dz = H. (4.59)

Using condition 4.54 to eliminate A
(2)
n now

A
(1)2
n

ρs

(∫ Ht

0

sin2(k(1)
n z + φ(1)

n )dz +
sin2(k

(1)
n Ht + φ

(1)
n )

sin2(k
(2)
n Ht + φ

(2)
n )

∫ H

Ht

sin2(k(2)
n z + φ(2)

n )dz

)
= H,

which we choose to write as follows

A
(1)2
n

ρs

(∫ Ht

0

sin2(k(1)
n z + φ(1)

n )dz + g2

∫ H

Ht

sin2(k(2)
n z + φ(2)

n )dz

)
= H,

117



4.3 Mathematical Model

where

g ≡ sin(k
(1)
n Ht + φ

(1)
n )

sin(k
(2)
n Ht + φ

(2)
n )

. (4.60)

Performing the integrals using the trigonometric substitution sin2 (x) =
1
2

(1− cos(2x)) we have

A(1)
n =

√
2ρsH

I1 + g2I2

,

I1 ≡ Ht −
sin(2k

(1)
n Ht + 2φ

(1)
n )

2k
(1)
n

+
sin(2φ

(1)
n )

2k
(1)
n

,

I2 ≡ (H −Ht)−
sin(2k

(2)
n H + 2φ

(2)
n )

2k
(2)
n

+
sin(2k

(2)
n Ht + 2φ

(2)
n )

2k
(2)
n

,

A(2)
n = ge

Ht
2

(
1
Ds
− 1
Dt

)
A(1)
n ,

where, to find A
(2)
n in terms of A(1), we have used equation 4.54.

4.3.11 Heating coefficients σn

Now let us consider the heating coefficients, σn. Using equation 4.30 we
have

s(x, z) ≡ F (x) sin

(
πz

Ht

)
(Θ(z)−Θ(z −Ht)) = F (x)

1

ρ0

∑
j

σj
dZj
dz

,

Cancel F (x), multiply by function dZn
dz

, multiply by 1
N2 and integrate

∫ H
0

to obtain∫ H

0

1

N2
sin

(
πz

Ht

)
dZn
dz

dz =
∑
j

σj

∫ H

0

1

ρ0N2

dZj
dz

dZj
dz

dz =
H

c2
n

σn.

Substituting for Zn and noting N = Nt over the range of integration used
here, we obtain

σn =
c2
nA

(1)
n

HN2
t

∫ Ht

0

sin

(
πz

Ht

)
d

dz

(
e
− z

2Dt sin(k(1)
n z + φ(1)

n )
)
dz.

Using parts and replacing all trig functions using complex exponentials,
we have

σn =
c2
nA

(1)
n

2HN2
t

(
k(1)
n (=(ω1) + =(ω2)) +

1

2Dt

(<(ω1) + <(ω2))

)
, (4.61)

where

ω1 =

(
e
ik

(1)
n Ht− Ht

2Dt + 1
)
eiφ

(1)
n(

−i π
Ht

+ ik
(1)
n − 1

2Dt

) , ω2 =

(
e
−ik(1)n Ht− Ht

2Dt + 1
)
e−iφ

(1)
n(

−i π
Ht
− ik(1)

n − 1
2Dt

) . (4.62)
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4.3.12 Solutions for b and v

Having determined the solution for the steady pressure response, p(x, z),
we return to equations 4.2 and 4.30. In the first (third) of equations (4.2)
we substitute the following modal expansions respectively

v(x, z) =
1

ρ0

∑
j

vj(x)Zj(z), (4.63)

b(x, z) =
1

ρ0

∑
j

bj(x)
dZj
dz

.

In the case of v, multiply the first of equations (4.2) by Zn, substitute
for p, integrate on z over [0, H] and apply the orthonormality of the Zns
to obtain∫ H

0

vZn(z′)dz′ =
1

f

∑
j

d

dx
pj(x)

∫ H

0

1

ρ0

ZjZndz
′ =

H

f

d

dx
pn(x), (4.64)

and using the second of equations (4.63) in the left and side expression
and the orthonormality property we have

Hvn(x) =
H

f

d

dx
pn(x) =⇒ vn(x) =

1

f
p′n(x). (4.65)

In the case of b, first multiply the third of equations (4.2) by 1
N2

dZn
dz

,
integrate on z over [0, H] and use integration by parts to obtain∫ H

0

1

N2
b
dZn
dz′

dz′ =

[
p

1

ρ0N2

dZn
dz′

]H
0

−
∫ H

0

p
d

dz′

(
1

ρ0N2

dZn
dz′

)
dz′, (4.66)

and using the boundary condition on Zn to eliminate the evaluated term
and transforming the integrand on the right hand side using (4.26) we
have ∫ H

0

1

N2
b
dZn
dz′

dz′ =
1

c2
n

∫ H

0

1

ρ0

pZndz
′. (4.67)

Finally, substituting the modal expansions for p and b and using or-
thonormality we have

H

c2
n

bn(x) =
1

c2
n

Hpn(x) =⇒ bn(x) = pn(x). (4.68)

4.3.13 Summary of Solutions for p, v, b

Before continuing, we now summarise the steady atmospheric adjust-
ments for p, v and b, for an atmosphere with variable buoyancy fre-
quency and base density, N(z), ρ0(z), subject to a buoyancy forcing
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s(x, z, t) = sin
(
πz
Ht

)
(Θ(z)−Θ(z −Ht)) e

− 1
L
|x|

p(x, z) =
∑
j

pj(x)Zj(z), (4.69)

v(x, z) =
1

ρ0(z)f

∑
j

p′j(x)Zj(z),

b(x, z) =
1

ρ0(z)

∑
j

pj(x)
dZj
dz

,

where pj(x) is (from equation 4.39)

pj(x) = −
(

fTσjcjL

(L2f 2 − c2
j)

)
e
− f
cj
|x|

+

(
f 2TσjL

2

(L2f 2 − c2
j)

)
e−

1
L
|x|, (4.70)

and heating co-efficient σj is given in equation 4.61, above. Above, eigen-

functions Zj(z) and
dZj
dz

are given in section 4.3.8. Recall, the buoyancy
forcing function was expanded as

s(x, z) =
e−

1
L
|x|

ρ0

∑
j

σj
dZj
dz

. (4.71)

4.4 Constant N Approximation

Let us simplify by setting Nt = Ns. In doing so, the mathematics is
simplified. The condition 4.53 is removed, along with the need to par-
tition the solutions and the need to seek a numerical solution for the
wave speeds, cn, thereby producing a fully analytical model, as we shall
shortly show. Following this simplification, it will be possible to consider
non-dimensionalised, trapped solutions and to examine key limits of our
model analytically to provide a benchmark for the discussions of section
4.6.

For the remainder of this section, the base state of density is deter-
mined by a single scale height

ρ0(z) = ρse
− z
Dt , 0 < z < H, (4.72)

but the lid will still be placed at a large height aloft, to allow for the
effects of radiation.

By setting Nt = Ns the physics is also simplified: as we showed in
Chapter 2, radiative losses are a maximum for Nt = Ns.

4.4.1 Simplified Modal Expansion

The vertical variation in our modal expansion (the Zn(z)) now satisfies
a single equation over the whole vertical domain

d2Zn
dz2

+
1

Dt

dZn
dz

+
N2
t

c2
n

Zn = 0, z < H. (4.73)

120



4.4 Constant N Approximation

To match the surface and lid boundary conditions we still require oscilla-
tory solutions, hence, to ensure complex roots to the auxiliary equation

of the above ordinary differential equation, we again assume
N2
t

cn
> 1

4D2
t

and accordingly

Zn(z) = e
− 1

2Dt
z

(A′n cos (knz) +B′n sin (knz)) , kn ≡

√
N2
t

c2
n

− 1

4D2
t

∈ R+.

(4.74)
Note, no superscript now appears on kn. Here A′n, B

′
n are integration

constants. We choose to re-express Zn(z) as follows

Zn(z) = Ane
− 1

2Dt
z

cos (knz + φn) . (4.75)

An 6= A′n and phase angle φ will be determined shortly. Hence, we can
now obtain for our second set of functions, the following

dZn
dz

= Ane
− 1

2Dt
z

(
−kn sin (knz + φn)− 1

2Dt

cos(knz + φn)

)
,

= −Ane−
1

2Dt
z

√
k2
n +

1

4D2
t

sin (knz + φn + θn) ,

= −An
Nt

cn
e
− 1

2Dt
z

sin (knz + φn + θn) ,

(4.76)

where

θn ≡ tan−1

(
1

2Dtkn

)
, (4.77)

and we have used the definition of the kn in the third line. Applying
boundary conditions [

dZn
dz

]
z=0

=

[
dZn
dz

]
z=H

= 0, (4.78)

we straightforwardly obtain

φn = −θn = − tan−1

(
1

2Dtkn

)
, kn =

nπ

H
. (4.79)

We can now summarise the full modal solution in the limit Nt = Ns

Zn(z) = Ane
− 1

2Dt
z

cos
(
k(1)
n z − θn

)
, (4.80)

dZn
dz

= −Ane−
1

2Dt
z

sin
(
k(1)
n z
)
,

kn =
nπ

H
,

θn ≡ tan−1

(
1

2Dtkn

)
. (4.81)
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It is now possible to write-down an analytical expression for the wave-
speeds, cn from the definition of kn, which would otherwise require numer-
ical solution of a secular equation derived from the matching condition.
From equations 4.79 and 4.80 it is immediate that

n2π2

H2
=
N2
t

c2
n

− 1

4D2
t

⇐⇒ cn =

(
n2π2

H2N2
t

+
1

4D2
tN

2
t

)−1/2

. (4.82)

The normalisation coefficient in this caseAn may be obtained from the
orthogonality condition

∫ H
0

1
ρ0
ZnZmdz = Hδnm as follows. Exponentials

cancel in the integrand to leave

A2
n

ρs

∫ H

0

cos2
(
k(1)
n z − θn

)
dz = H, (4.83)

and using the trigonometric identity cos(2x) = (2 cos2(x)−1), properties
of trig functions and some straightforward algebra we easily obtain

An =
√

2ρs, ∀n. (4.84)

The heating expansion coefficient is again given by equation 4.61, with
the simple replacement A

(1)
n → An.

The revised expressions for eigenfunctions Zn(n) and dZn
dz

given in
this sub-section may now be used, together with exact expressions for
the wave-speeds, cn, to evaluate modal solutions for the p, v and b ad-
justment. The PV adjustment warrants a little additional consideration.

4.4.2 Simplified PV Adjustment

Let us now assume constant N (but still retain ρ0 variable) in equations
4.18 and consider the steady state of our system’s PV adjustment, long
after the application of a heat pulse of duration T . Hence, we take
s = u = w = 0 and simplify the first of equations 4.18 to ρ0g

θ0N2 (PV ′) =
∂v
∂x

+ f
N2

∂b
∂z

+ 2f
g
b, in which we may now use equation 4.20 (with N2 taken

constant) to simplify the first term on the right hand side. This yields

gρ0

θ0N2
(PV ′) =

fT

N2

∂s

∂z
+ 2

f

g
b, (4.85)

gρ0

θ0N2
(PV ′B) =

fT

N2

∂s

∂z
.

Clearly, in the constant N limit, we need not seek a modal expansion
for PV ′- one can substitute for an assumed s (differentiated of course)
and substitute for the b solution determined above. Put another way,
equation 4.85 gives the scaled potential vorticity adjustment, at steady
state, directly from the prescribed heating and b adjustment.

We observe the heating (and variables) in the first term of the right
hand side of equation (4.85) is defined i.e. fixed, so changes to the PV
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4.5 Constant N , ρ0 Approximation

adjustment associated with system lid height, HL, will arise only from
the second term on the right hand side, through changes to the b solution.
That term is absent in the Boussinesq approximation. To allow for PV
adjustment with HL, we therefore consider PV ′ in the sequel.

4.5 Constant N , ρ0 Approximation

Within the constant N , constant ρ0 approximation it will be possible to
exact solutions for the trapped case, H = Ht, which exhibit the scaling
of the solution with Rossby radius of deformation (see section 4.5.1).

If we return to section 4.3.4, in the present approximation equations
4.21 and 4.22 simplify to the following

u = w = s = 0, fv =
∂φ

∂x
, b =

∂φ

∂z
, φ ≡

(
p

ρ0

)
, (4.86)

N2 ∂v

∂x
+ f

∂b

∂z
= f

∂stot
∂z

, stot ≡
∫ T

0

sdt, (4.87)

from which is straightforward to obtain a simplified equation for φ

∂2φ

∂x2
+
f 2

N2

∂2φ

∂z2
=

f 2

N2

∂stot
∂z

. (4.88)

4.5.1 Trapped Solutions

It is beneficial, now, to write the above in terms of dimensionless vari-
ables. This will allow us to investigate the role of length scales in limiting
cases, in this section. These cases will provide guidance in our work in
section 4.6, next.

We consider the gravest mode of heating here. Our total heat input is
supposed to have magnitude s̄tot. Recall, the characteristic width of the
diabatic heating profile is L and it extends to the tropopause, which is
now coincident with the lid, implying a suitable vertical scale of H = Ht.
Define dimensionless variables

x̂ =
x

L
, ẑ =

z

H
, φ̂ =

φ

Hs̄tot
, b̂ =

b

s̄tot
, v̂ =

Lfv

Hs̄tot
, ŝtot =

stot
s̄tot

,

(4.89)
whereupon equation 4.88, for φ̂, may be written in dimensionless form

∂2φ̂

∂x̂2
+ ε2

∂2φ̂

∂ẑ2
= ε2

∂ŝtot
∂ẑ

, (4.90)

where we have defined dimensionless group

ε ≡ fL

NHt

. (4.91)
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We also have the following, which may be used to determine b̂ and v̂

b̂ =
∂φ̂

∂ẑ
, v̂ =

∂φ̂

∂x̂
. (4.92)

To estimate the value of parameter ε initially, we use the following data:
f ∼ 10−4s−1, H ∼ 5km, N = 0.01s−1, L ∼ 10km, whereupon we find
ε ≈ 0.02.

Formally, any constant horizontal scaling length could be used to
achieve the non-dimensionalisations considered here. However, in the
present problem, L, is the only physical scale available for the horizontal
variation. Hence, dimensionless parameter ε is unambiguously represen-
tative of the horizontal scales: importantly, it corresponds to the physical
length scale of the heating expressed as a fraction of the Rossby radius
of deformation

ε =
fL

NHt

=
L

Ro

, Ro ≡
NHt

f
. (4.93)

Note that our non-dimensionalisation parameter ε, above, may also be
identified with the Burger number, Bu, for a system in which the scaling
length of the horizontal motion is L

ε−1 =
Ro

L
≡ Bu. (4.94)

In general, Bu expresses the ratio between density stratification in the
vertical and processes affected by terrestrial rotation in the horizontal.
Bu ∼O(1) for many atmospheric phenomena, indicating a balance be-
tween stratification and rotation in governing vertical and other motions
in the fluid- in the present case, motion forced by heating. In the sequel,
we shall consider a larger range of ε. We return to this matter in section
4.5.3.

Continuing, we consider domain 0 < ẑ < π with an assumed diabatic
heating which spans the vertical domain

ŝtot(x̂, ẑ) ≡ X(x̂) sin(ẑ). (4.95)

We seek a separable solution to equation 4.90 for φ̂

φ̂(x̂, ẑ) = Φ(x̂) cos(ẑ). (4.96)

Fields b̂ and v̂ may be determined as follows:

b̂(x̂, ẑ) = −Φ(x̂) sin(ẑ), v̂(x̂, ẑ) =
∂Φ

∂x̂
cos(ẑ), (4.97)

once Φ has been determined from ODE equation 4.90

d2Φ(x̂)

dx̂2
− ε2Φ(x̂) = ε2X(x̂). (4.98)

We proceed, to consider particular cases for horizontal heating distribu-
tion, X(x̂).
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4.5 Constant N , ρ0 Approximation

4.5.2 Trapped Solutions for Narrow Heating: the
Green Function

In this subsection we consider the limiting case heating which is formally
narrow

X(x̂) = δ(x̂), (4.99)

corresponding to a horizontal distribution of heating which is highly lo-
calized relative to the lid height i.e. ε = fL

NHt
→ 0 i.e. we assume a very

small value of L. By definition, the solution to equation 4.98, Φ(x̂), is
then the Green function.

Take the Fourier transform of equation 4.98 to obtain

(−ik)2Φ̂(k)− ε2Φ̂(k) =
ε2√
2π
. (4.100)

Here we have used the Fourier transform of derivatives theorem and the
fact that the Fourier transform of δ(x̂) is 1√

2π

∫∞
−∞ δ(x̂)eikx̂dx̂ = 1√

2π
e0 =

1√
2π

. Solving

Φ̂(k) = − ε2√
2π
.

1

k2 + ε2
⇐⇒ Φ(x̂) = − ε

2

2π

∫ ∞
−∞

e−ikx̂

k2 + ε2
dk. (4.101)

Above, we have simply taken an inverse Fourier transform, which is
to be performed using the calculus of residues (Arfken, 1966). Let us
suppose x̂ > 0, then employ a clockwise contour (winding number −1)
which returns in the lower half complex plane, to ensure integrand fac-
tor e−ikx̂ approaches zero. The chosen contour encircles the first order
pole located at k = −iε and we have Φ(x̂) = − ε2

2π

∫∞
−∞

e−ikx̂

(k−iε)(k+iε)
dk =

(−1)×
(
− ε2

2π
2πiRes(f(k),−iε)

)
where f(k) = e−ikx̂

(k−iε)(k+iε)
, k ∈ C and we

have multiplied by the winding number. Accordingly, we have Φ(x̂) =

ε2i limk→(−iε)

(
(k + iε) e−ikx̂

(k−iε)(k+iε)

)
=
[
iε2e−ikx̂

(k−iε)

]
k=−iε

= − ε
2
e−εx̂, for x̂ > 0

recall. Adapting the above approach to the case of x̂ < 0, we obtain
Φ(x̂) = − ε

2
eεx̂. Hence, for any x̂ we have

Φ(x̂) = − ε
2
e−ε|x̂|, (4.102)

which allows us to write the Green function for the trapped system as

G(x̂, x̂0) = − ε
2
e−ε|x̂−x̂0|. (4.103)

Parameter ε emerges as the parameter of the Green function. Shortly we
will use it to develop other responses for the trapped case, corresponding
to de-localised heating. For the case of X(x̂) = δ(x̂) then, we find the
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following solution to the trapped case, for small ε

φ̂(x̂, ẑ) = −1

2
εe−ε|x̂| cos(ẑ), (4.104)

b̂(x̂, ẑ) =
1

2
εe−ε|x̂| sin(ẑ),

v̂(x̂, ẑ) =
1

2
ε2e−ε|x̂| (Θ(x̂)−Θ(x̂)) cos(ẑ).

From equations 4.104 it is clear that the only length scale characterising
the non-dimensional response of all field variables is the non-dimensional
length scale ε−1 (which is large, given ε is small). Recalling that physical
length is related to non-dimensional length in our analysis by x̂ = x

L

we find that the corresponding physical scale of the responses to a very
narrow heating is given by

Lx̂→ Lε−1 =
L(
fL
NHt

) =
NHt

f
, (4.105)

which is the Rossby radius, Ro ≡ NHt
f

.
In the case of narrow heating, as L→ 0 with f 6= 0, it follows ε→ 0.

From above, ε→ 0 corresponds to the physical length scale of the trapped
response tending to the Rossby radius, Ro. Put another way, for a steady,
trapped, rotating solution, with any f 6= 0, as ε→ 0, the physical scale of
the response is Ro, irrespective of the value of f i.e. latitudinal location.
Note that ε → 0 also when f → 0 i.e. as the effects of rotation become
negligible. In this limit, the length scale of the response is still, formally
Ro, notwithstanding that fact that Ro diverges.

4.5.3 Trapped Solutions for Distributed Heating

In this subsection we consider a horizontally distributed heating with

X(x̂) =
1

2
e−|x̂|. (4.106)

Here the factor 1
2

is included to ensure the domain average of X is unity.
Using the system Greens function developed above (equation 4.103),

the solution to equation 4.98 for X(x̂) = e−|x̂| may be obtained as

Φ(x) =
1

2

∫ −∞
∞

e−|x̂0|G(x̂, x̂0)dx̂0 = − ε
4

∫ −∞
∞

e−|x̂0|e−ε|x̂−x̂0|dx̂0. (4.107)

For definiteness, take x̂ > 0, then decompose the domain of integration
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in the above in accord with the definition of the modulus function

Φ(x) =
(
− ε

4

)∫ 0

−∞
ex̂0eε(x̂0−x̂)dx̂0 (4.108)

+
(
− ε

4

)∫ x

0

e−x̂0e−ε(x̂−x̂0)dx̂0

+
(
− ε

4

)∫ ∞
x

e−x̂0e−ε(x̂0−x̂)dx̂0.

Clearly, each integral in the above is straightforward to perform. After
substituting limits and some algebra, we obtain Φ(x̂) = ε2e−x̂−εe−εx̂

2(1−ε2)
, for

x̂ > 0, recall. After performing an equivalent calculation for x̂ < 0 we
find for X(x̂) = 1

2
e−|x̂|

Φ(x̂) =
ε2e−|x̂| − εe−ε|x̂|

2(1− ε2)
, (4.109)

which is just the difference between two monotonic decays. For the case
of X(x̂) = e−x̂ then, we find the following solution, still for the trapped
case

φ̂(x̂, ẑ) =

(
ε2e−|x̂| − εe−ε|x̂|

2(1− ε2)

)
cos(ẑ), (4.110)

b̂(x̂, ẑ) =

(
εe−ε|x̂| − ε2e−|x̂|

2(1− ε2)

)
sin(ẑ),

v̂(x̂, ẑ) = ε2
(
e−ε|x̂| − e−|x̂|

2(1− ε2)

)
(Θ(x̂)−Θ(x̂)) cos(ẑ).

Evidently, the above solution has two components, the first term is de-
termined by the assumed length scale of the heating and the second is
again determined by the Rossby radius. Note that for ε small, the above
returns to the Green function. The solution in equation 4.109 provides
us with a useful benchmark, as we shall see in the next section.

As in the case of narrow heating, is informative to examine the hori-
zontal scale of the distributed heating solution in equation 4.109. Intro-
duce l̂, where, l̂ is a non-dimensional length scale

l̂ =
l

L
. (4.111)

Φ(x̂) is stationary at x̂ = 0, with value −ε
2(1+ε)

, with d2Φ
dx̂2

= ε2

2(1−ε) , indicat-

ing a minimum (maximum) for ε < 1 (ε > 1). For ε < 1 , we therefore
evaluate l̂ from the e-folding length of Φ by solving the following

Φ(l̂) =
Φ(0)

e
= − ε

2(1 + ε)e
. (4.112)
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Using equation 4.109, we obtain, after some algebra, the following equa-
tion to be solved for characteristic horizontal scale l̂

εe−l̂ − e−εl̂ +
(1− ε)
e

= 0. (4.113)

Equation 4.113 requires a numerical solution (see below) however,
its limiting solutions are obtained by straightforward analysis. We have
εe−l̂ ≈ ε

e
, ε� 1 and e−εl̂ ≈ 1

e
, ε� 1, hence

ε� 1 =⇒ l̂→ ε−1 (4.114)

ε� 1 =⇒ l̂→ 1.

In terms of the physical response length scale, l = l̂L, the above limits
are respectively equivalent to the following

L� Ro =⇒ l→ Ro (4.115)

L� Ro =⇒ l→ L,

Consider the scaling properties of our trapped solution Φ(x̂), obtained
from equation 4.109. A characteristic length scale l̂ is obtained from a
numerical solution of equation 4.113 as follows. Observe that there is no
solution for ε = 1 and the l̂-dependant terms in equation 4.113 reduce
monotonically as l̂ increases. Therefore, there is at most one root of
equation 4.113, for any value of ε 6= 1. Thus, the bisector method was
used straightforwardly to obtain solutions for l̂ over a range of ε such
that ε−1 ∈ [0, 20] (which allows us to display the properties of l̂ derived
from equation 4.113). This data is plotted in figure 4.5. It represents the
limiting case of data from the non-trapped solutions, to be considered
in the next section. These non-trapped solutions will characterise the
horizontal length scale of the response for systems with increased lid
heights, H, with Ht, L (and N) all fixed. The range of ε considered
in figure 4.5 was chosen as follows. ε = 0 arises when f = 0, or when
heating is very narrow relative to lid height. Terrestrially, max(f) ≈ 2×
2π/24/60/60 sin(π/2) = 1.45× 10−4rads−1, N = 0.01s−1, and we assume
L/H ≤ 100, hence max(ε) = 1.45 and, for Earth, we have ε ∈ [0, 1.45]
or ε−1 ∈ [0.7,∞). However, for both lidded or trapped solutions and
un-lidded, non-trapped solutions of the next section, a range of ε such
that ε−1 ∈ (0, 20] is seen to be sufficient, from figure 4.5.

4.5.4 Non-trapped Solutions

We continue to examine the limits of our steady-state model, now for
a solution with a lid raised high aloft. In particular, in this section we
are concerned with the effect of lid-height on the response’s characteristic
horizontal scale, l̂. With the lid raised aloft, it is not possible to obtain an
equivalent to equation 4.113, which applies to the trapped case and the
description of vertical stratification is also complicated by the presence of
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two parameters- Ht and H. Hence we will need temporarily to revise non-
dimensional parameter ε. However, informative comparisons between the
behaviour of trapped and non-trapped horizontal scales will be possible.

We proceed by defining an appropriate horizontal scale, l̂, for the
non-trapped case, then examining limits of the non-trapped model an-
alytically and then presenting data for a non-trapped l̂ as a function of
parameter ε. This will facilitate comparison with the equivalent trapped
data. See figure 4.5.

Using equations 4.69, 4.70 we obtain for the pressure response in the
non-trapped regime

p(x, z) = −
∑
j

(
fTσjcjL

L2f 2 − c2
j

)
e
− f
cj
|x|
Zj(z)+

∑
j

(
f 2TσjL

2

L2f 2 − c2
j

)
e−

1
L
|x|Zj(z).

(4.116)
The limit of constant ρ0 corresponds to Dt →∞ hence

cn →
HNt

nπ
, (4.117)

and equation 4.116 therefore becomes, after some algebra

p(x, z) = − δT
∑
j

(
jπ

δ2j2π2 − 1

)(
σj
jπ

)
e−jπδ

|x|
L Zj(z) (4.118)

+ δ2Te−
|x|
L

∑
j

(
j2π2

δ2j2π2 − 1

)
σjZj(z).

Since H 6= Ht in a non-trapped case, we re-introduce a dimensionless
parameter to replace ε as follows

δ ≡ fL

NtH
=
Ht

H

ε

π
, (4.119)

which depends on two parameters of stratification- Ht and H. With this
revision, scale parameter δ remains an effective Bu- it still characterises
relative variation in f and stratification. The factor 1

π
above is required

because scale parameter ε is defined relative to a vertical domain ẑ ∈
[0, π], corresponding to z ∈ [0, πHt] but the domain of equation 4.118 is
z ∈ [0, Ht]. Note, we continue to consider the gravest mode of heating,
so the tropopause location is still Ht.

Throughout this section we choose to define a horizontal scale for the
steady response in the non-trapped case by sampling p(x, z) in equation
4.118 at constant altitude z0 where z0 ≡ 0.8×Ht. At this location aloft,
the variation produced by the two terms in the right hand side of equation
4.118 is straightforward over a wide range of parameter ε (see figure 4.1
and the discussions below). To be consistent with the trapped case, the
e-folding length of the pressure response at z0 is taken to define l̂ for the
non-trapped case: that is

l̂ : p(l̂, z0) =
max (|p(x, z0)|)

e
, z0 = 0.8×Ht. (4.120)
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Note, the maximum or minimum value of p(x, z0) is seen to always occur
very close to the origin.

The overall x-variation in 4.118 allows only one solution for l̂, defined
in equation 4.120: see figure 4.1. Hence, solutions for l̂ were obtained
straightforwardly, using a bisector method on a horizontal mesh for a
range of ε i.e. Coriolis’ parameter f values chosen so as to show the
properties of the scaling of l̂ with ε (not necessarily terrestrial meteorol-
ogy). We note that it is convenient to set the x-mesh horizontal spacing
with interval ∆x ∼ 1

f
.

Before considering numerical data for the variation of l̂ with ε, we
pause to consider what can be deduced about it by analysis. We can
identify dominant terms in equation 4.118 without writing heating ex-
pansion coefficients, σj, in terms of δ (since both terms would be affected
by the substitution in the same way). We therefore proceed to examine
limits of the pressure response.

For δ � 1 (un-physically large f for Earth, note) the approximate
response, obtained from the senior term in δ from equation 4.118 above,
may be written

p(x, z) ≈ δ2Te−
|x|
L G(z), G(z) ≡

∑
j

(
j2π2

δ2j2π2 − 1

)
σjZj(z). (4.121)

From the horizontal variation in the above we recognise an e-folding
dimensionless distance l̂ = 1. This agrees with the limit obtained in
the trapped case, equation 4.114. Of course, the above expression for p
only provides the value of the ordinal intercept (of unity) in the plot of
characteristic scale, l̂ as a function of 1

ε
, figure 4.5, with all other points

shown there being obtained numerically, as previously discussed.
For δ � 1 the approximate pressure response from equation 4.118

may be written

p(x, z) ≈ −δT
∑
j

σje
−jπδ |x|

L Zj(z). (4.122)

For small |x|, the exponential factors disappear and for the response close
to the origin we may write

lim
x→0

(p(x, z)) = −δT
∫
s(x, z)dz, (4.123)

whereas for large |x| the horizontal variation, modelled on jth series term

e−jπδ
|x|
L has a dimensionless e-folding length l̂j = 1

jπδ
= H

jHtε
, which de-

creases with increasing j. For small ε therefore, an overall e-folding length
might be seen, from equation 4.122, as an arithmetic mean, weighted by
the heating coefficient.

Figure 4.5 shows the variation of the characteristic scale, l/L (deter-
mined numerically from plots obtained using equation 4.116 as already

130



4.6 Results

discussed) with ε−1, parameterised by a range of lid-heights, H. Ht re-
mains fixed in all the data and ε was varied using f alone. Data for
values of ε outside the plotted range, in particular for ε−1 > 20, continue
in the trends shown in figure indefinitely. Note also that the variable
H responses converges rapidly and there is no sensible change in the
variation of l̂ with ε after the lid H ≈ 32Ht is reached. Data for the non-
trapped case is presented alongside the trapped solution, for reference.
In light of the preceding discussions of this section, the data of figure 4.5
make sense- plotting numerical l̂ as a function of 1

ε
for a range of H, we

observe numerical data (discrete points) in figure 4.5 confirms (i) linear
variation in l̂ for small ε and (ii) an ordinal intercept of l̂ = 1, for all lid
heights.

Figure 4.1 documents the relative horizontal variation of the two
terms in equation 4.118 at a selected altitude of z = 0.8Ht. There,
we show, for H = 32Ht, a set of responses, parameterised by ε, corre-
sponding to the x-variation of adjustment p(x/L, z = 0.8 × Ht). As δ
(or ε) increases, the x-variation of the first term changes (due to factors

e−jπδ
|x|
L ) but that of the second term does not. Apparently two trends

determine horizontal variation in the steady state pressure response: (i)

the exponential factors in the first term, e−jπδ
|x|
L , all decrease, except

near x = 0, which has the effect of concentrating the contribution of the
first term in equation 4.118 onto the origin, (ii) a reduction of the size
of the first term in equation 4.118 relative to its second. To exhibit this
behaviour we must allow ε to take values well outside the range character-
istic of terrestrial meteorology. For the extremely large value of ε = 100π,
the contribution of the first term is restricted to the immediate region of
the origin and, overall, the horizontal response may be described by the
exponential decay −e− xL of the second term. Note the detail very close
to the origin- the maximum response is, in fact, slightly displaced in x.
As ε decreases, the second term, with horizontal variation e−

x
L ) dimin-

ishes in significance relative to the first term, which also spreads-out, in
response to the reduction in ε. The smallest value of ε used in the data
of figure 4.1 is large compared with any value characteristic of terrestrial
meteorology.

Finally, we remark that, for a planet with rapid rotation (large f ,
ε � 1) equation 4.122 may be written so as to make the connection to
the heating profile explicitly clear. From equation 4.121 we have for all
x

p(x, z) ≈ Tρ0

∫
s(x, z)dz, (4.124)

where we have used equation 4.71.

4.6 Results

Throughout this section we consider a steady state system, where u and
w fields are zero, in the constant N , constant ρ0 limit. We consider
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Figure 4.1: Horizontal cross section of steady state pressure adjustment
p(x/L, z = 0.8Ht) for large lid height H = 32Ht, for a range of f values
chosen to illustrate the qualitative behaviour of the solution given in
equation 4.118. The system has been forced with a heating pulse of
duration 1 hr, L = 10 km and aspect ratio 1.

buoyancy, v-wind and pressure responses and focus on two processes
known to affect the length-scale of convective adjustment: (i) the value
of Coriolis parameter (i.e. latitude), and (ii) radiation of convectively
forced gravity waves vertically into the stratosphere. Moving away from
the equator, where f = 0, toward midlatitudes, where f ≈ 10−4, one
observes an increase in rotational effects, which increase vorticity and
constrain the horizontal range of dynamical perturbations. A higher
upper lid invites upward propagation of gravity waves, tilting the group
speed away from the horizontal, thereby also reducing the horizontal
range of adjustment. How these two effects collaborate is the focus of
our attention, here.

4.6.1 The f-dependence

In the absence of rotation, the atmospheric adjustment to buoyancy forc-
ing is mediated by gravity wave propagation (as seen in Chapter 2 of this
thesis). A finite heat source will induce transient alterations to the dy-
namical fields, but at steady state, all these effects will have propagated
into the far field. The inclusion of rotation effects (f 6= 0) in the formu-
lation generates vorticity, and introduces a Rossby adjustment aspect to
the problem (see e.g. Gill 1982), which now has some local geostrophic
equilibrium at steady state. In such cases, we are left with residual per-
turbations for certain fields, at steady state. Here, we quantify the effect
that the value of Coriolis parameter, f , has on the steady state solutions,
and consider how a leaky lid might alter Rossby adjustment.

Figures 4.2...4.4 show vertical cross sections of steady state b (m s−3),
v (m s−1) and p (Pa) for a range of f (s−1) values in both the trapped case
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Figure 4.2: Vertical cross sections of steady state b (m s−2) for a range of
f values, when the system is forced with a heating pulse of duration 1 hr,
L = 10 km and aspect ratio 1. The top row shows a trapped case with a
rigid lid positioned at HL/Ht = 1, i.e., directly above the heating. The
bottom row shows a case in which the upper lid is located atHL/Ht = 32.,
i.e., well above heating.

Figure 4.3: As in figure 4.2, but for v-wind response.

and high lid case. The responses are the adjustment to a 1 hr tropospheric
buoyancy forcing pulse, of width 10 km, aspect ratio 1 and buoyancy
forcing rate amplitude S0 = 0.01 ms−3. The values of f , from left to
right, begin at 0.000016 s−1 and double in each panel, until we reach
f = 0.000256 s−1. Note, the largest value of f chosen here exceeds that
at the Earth’s poles and is included purely to provide context. A range
of f values comparable to those observed on Earth is shown in figure 4.6,
in which we non-dimensionalise on burger number. Again, for larger f
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Figure 4.4: As in figure 4.2, but for pressure response.

we see larger amplitudes of pressure and buoyancy in the balanced state.
Clearly evident is the constraining effect of the Coriolis force. At small

values of f , we see that the heating pulse has spread by gravity wave
propagation, reaching a steady state with a fairly constant tropospheric
distribution (see figure 4.2). However, as f ramps up, a cool anomaly
persists directly over the forcing, and spreading is confined (also seen
in figure 4.6). In the limiting case of f = 0.000256 s−1, the gravity
waves’ propagation is presumably much more restricted. The effect of the
lid is clear: wave modes propagating vertically transport perturbations
and energy into the stratosphere, attenuating the tropospheric response.
Further discussion of this effect is reserved for §4.6.3.

In order to quantify the extent to which the horizontal lengthscale
of adjustment is altered by Coriolis effects and lid height, we define a
characteristic length-scale, < L >, as the e-folding distance of upper
level pressure perturbations (say). Note, maximum perturbations for all
fields will be located at x = 0. The e-folding distance is evaluated at an
altitude of z = 0.8Ht, as the effect of the lid is most apparent in the other
levels. Figure 4.5 shows the f−dependence of the adjustment scale, for
a range of lid heights. The x-axis is the reciprocal of Burger number
(reference), or

1

ε
=

fL

NHt

(4.125)

where L,N = 0.01 and Ht = 1 are both fixed.
Let us consider the green set of points in figure 4.5, corresponding to

the trapped case H = Ht. In this data we see that, at low values of f ,
scale < L > is large. As f increases, < L > reduces linearly with 1

ε
, with

unit gradient, until we reach very large values of f (see insert figure).
For comparison, we include data for the theoretical trapped solutions,
described in §4.5.1 (black dashed line). This data agrees very well with
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Figure 4.5: The effect of rotation and lid height on Rossby decay, for
a heat source with L = 10 km, aspect ratio 1, N = 0.01 s−1. We see a
normalised characteristic horizontal length scale, defined as the e-folding
distance of pressure perturbations at height z = 0.8Ht, against 1/ε, where
ε = fL/NHt. The dotted line corresponds to the exact solution of the
limiting case of trapped, narrow heating in equation 4.113 .

the full solution of the trapped case, until we reach very large values of
f (small 1

ε
), where the theoretical solutions depart.

4.6.2 Potential Vorticity

The inclusion of rotation, f , in our governing equations confers upon the
system vorticity. In meteorology it is useful to consider the vorticity field,
together with the Earth’s rotation, to derive a conserved quantity known
a potential vorticity, or PV (reference), which can be used a diagnostic
of convective systems and meso-scale dynamics. Details of the derivation
of PV for the system devised here was provided in §4.3.3.

The steady state PV for an isolated cloud is shown in the bottom
panels of figure 4.7. The heating is the same as that shown in figure
4.2. The PV response peaks directly above the heated region, persists
into the balanced state, and has the same length scale of the buoyancy
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forcing. Note, the PV response is unaffected by lid height, as predicted
in section §4.3.3.

Figure 4.6: Vertical cross sections of the steady state b (ms−1) (coloured
contours) and pressure (Pa) (black contours), when the system is forced
with a heating pulse of duration of 1 hr. The response for low and high
lids for a range of f values is shown.

4.6.3 The Effect of Rigid Lid

We now switch our attention to the effect of lid height, H. A trapped so-
lution is useful for understanding the effect variation in f has on the emer-
gent steady state and it permits simple mathematical solutions. Further,
cases of trapped wave propagation have been observed in the atmosphere
(Monserrat & Thorpe, 1996). However, the atmosphere is unbounded
aloft and waves forced in the troposphere can propagate vertically into
the stratosphere, eventually to break high-up, in the mesosphere. The
tropospheric meteorological response may be viewed as lying between the
two regimes; the change in buoyancy frequency at the tropopause acts
partially as a lid, to reflects some wave energy, but the deep structure of
the atmosphere also permits transmission as well as refraction of wave
energy at the tropopause. The effect of this “leaky lid” has been primary
focus of recent theoretical studies by Edman and Romps (2017) and was
discussed in Chapter 2. The numerical models used in weather predic-
tion, which do not require any mesosphere dynamics, will simulate the
essential situation addressed in these studies using a model stratosphere
up to, typically, 35 km, with a thin sponge layer above that. However,
this geometry does not always fully damp waves and some energy will be
reflected into the troposphere, giving rise to spurious physical effects.

Here, we quantify the differences between the steady state of a trapped,
convectively forced system, and a system with a high lid. We will simplify
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matters by retaining N =constant.

Figure 4.7: Vertical cross sections of p, u, v and PV for the case of rigid
lid (left) and high lid (right). Shown is the steady state response to a
1 hr forcing of width 10 km and aspect ratio 1. f = 10−4 for all data
shown here.

Figure 4.7 shows vertical cross sections of p, v, b and PV for f = 10−4.
Pictured is the final steady state response to a 1 hr forcing of width 10 km
and aspect ratio 1. The bottom left and right panels confirm that the
PV response remains unchanged when allowing for upward radiation of
gravity waves. However, clearly visible in the diagnostic variables is the
effect of upward radiation. In all cases we see the response leaking out
of the troposphere, as expected. The pressure field in particular shows
a significant fractional reduction in amplitude in the upper troposphere
when upward radiation is permitted. Here we also note a reduction in
deformation radius. The v and b fields also display these features, albeit
less dramatically.

The differences in the tropospheric solutions with and without the
“leaky lid”, for f = 0.0001 m s−1 are quantified in figure 4.8. In the
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top panel, the coloured contours show the buoyancy anomaly and the
black contours pressure anomaly. In the bottom panel, we see the v-
wind anomaly. In all fields, we observe a large anomaly (O(50%)). The
cold anomaly in the buoyancy field will result in reduced stability. The
pressure contours mirror this pattern, as expected, given pressure is a
vertical integration of buoyancy. However, there are pressure anomalies
of the order of 10% seen at the surface. The velocity field now has a
reduced vorticity in the upper levels.

Figure 4.8: Anomaly plot for data shown in figure 4.7 (high lid - low lid).
Top panel: coloured contours are buoyancy, black are pressure. Bottom
panel: v-wind.

Figure 4.9 shows upper level (z = 0.75Ht) values of steady state b,
v and p for trapped and high lid cases. In all variables we see smaller
perturbations in the high lid case. The pressure field, in particular,
experiences a significant fractional change, on the order of 40%, into the
far field. Buoyancy differences are much smaller (O(10%)) and do not
appear beyond x/L = 50. In the close neighbourhood to heating, the
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v-wind sees no differences until x/L = 5. After this, the trapped and
high lid solutions diverge, with fractional error growing very large in the
far field.

Figure 4.9: Values of steady state buoyancy (red), pressure (black) and
v-wind (blue) at z = 0.75Ht, for trapped (solid) and high lid (dashed)
solutions. The forcing is the same as that in figure 4.2.

4.7 Discussion

We have developed a semi-analytical steady state model of convective
Rossby adjustment in order to investigate the ways in which Coriolis
force affects the final state of the atmosphere following convective ad-
justment. The model geometry is 2.5D: we consider a slab, as in Chapter
2, which additionally experiences a v-wind and a horizontal rotation.
Such a model permits solutions for pressure, buoyancy and horizontal
velocity only, which can be used to derive an expression for potential
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vorticity. As in Chapters 2 and 3, we test the influence of tropospheric
boundary condition.

Without rotation, a pulsed buoyancy forcing will excite a range of
transient gravity waves modes, which will propagate away from the forc-
ing source, communicating the atmospheric adjustment. Such modes (an
initial subsidence mode during forcing, followed by a rebound mode trig-
gered by the truncation of heating - see Chapter 2 for details) leave the
final state of the atmosphere unaltered. The inclusion of f , however,
leads to an atmosphere in geostrophic balance at steady state, meaning
perturbations in the dynamical fields persist for all time.

We find that the value of f restricts the length scale of convective
adjustment: small f has a widespread response, large f has a confined re-
sponse. The characteristic length scale is revealed in the limiting regimes
of the trapped solutions, where very small f respond on a Rossby radius,
and very large f have a response length scale which is determined by the
lengthscale of the forcing.

As we saw in Chapter 2, taking a high upper lid (to simulate a ra-
diative condition at the tropopause), reduces the horizontal distance at
which the response has influence. We characterise the simultaneous in-
teraction of f and lid height, finding that the growing f linearly reduces
the lengthscale of the response. Having a higher lid further reduces the
lengthscale.

Having a high lid leads to a cold anomaly in the upper tropopause
(when compared to the trapped case). We have quantified this for a given
value of f , 10−4s−1, a characteristic value for Earth. Anomalous values
of p and v are of the order of 50% in the upper troposphere. Pressure
anomalies are observed at the surface. The potential vorticity remains
unchanged with lid height.

4.8 Summary

We have addressed rotation without which a period of transient buoyancy
forcing does not lead to a local response at large time. With rotation,
local pressure and buoyancy anomalies are in geostrophic balance with a
transverse wind. This steady vortex state is fundamental.

In this Chapter, we have considered a steady state model, in 2.5D,
again using an analytical approach. The model reveals the post-convection
state of the atmosphere. We have found that the model lid and the value
of Coriolis parameter restrict the lengthscale of the steady, balance re-
sponse to transient convection, and have quantified how the two compete.

Here lies the end of our work with analytical models. We now depart,
to examine a state-of-the-art numerical model to investigate the dynamics
of fully coupled waves, like those seen in the real atmosphere.
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Chapter 5

Convectively Coupled Waves
in a General Circulation
Model

5.1 Introduction

The tropical atmosphere and ocean are home to families of planetary
waves, which propagate horizontally along the equator with meridional
structures which, in the vicinity of the equator, are trapped. Tropical
deep convection interacts with atmospheric waves through wave forcing,
organisation or even coupling. On the synoptic scale, observed features
include African easterly waves (Kiladis et al., 2006; Parker, 2017), con-
vectively coupled Kelvin and Rossby Waves (Wheeler & Kiladis, 1999)
and the Madden-Julian oscillation (MJO), all of which have characteris-
tic zonal scales, visible in cloudiness and precipitation fields, of thousands
of kilometers (see Kiladis et al. (2009), or Gill (1982) for a review).

Additionally, case studies of specific regions reveal evidence for fast-
moving (periods of 1-3 days) mesoscale, tropical wave-like disturbances.
Inertia-gravity waves have been identified in satellite observations of the
tropical western Pacific, Africa and South America (Haertel & Johnson,
1998; Haertel & Kiladis, 2004; Takayabu, 1994; Tulich & Kiladis, 2012)
and, through high-resolution modelling, they have been characterised as
westward-propagating convectively coupled gravity waves, with vertical
wavelengths comparable to the depth of the troposphere (Tulich & Ki-
ladis, 2012).

In a bench-mark experimental study, Wheeler and Kiladis (1999)
produced a wavenumber-frequency spectral (Fourier) analysis of experi-
mental, satellite-observed outgoing long-wave radiation (OLR hereafter),
which is a good proxy for tropical deep convection. Wheeler and Kiladis
were able to correlate statistically significant peaks in their experimental
data to the dispersion relations of east-propagating Kelvin and certain
equatorially-trapped wave modes of shallow water theory. More recently,
Tulich & Kiladis (2012) moved this discussion onto the higher frequency
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modes discussed in the earlier Chapters of this thesis. New, high res-
olution simulations of the whole pan-African continent have provided a
database of predictions amenable to the methods of spectral analysis. In
this chapter, we seek to quantify the extent to which similar correlations
appear in one state-of-the-art convection-permitting model (CP4 here-
after) and how we might exploit that to improve understanding of the
dynamics of convection coupling to gravity waves. Our research objec-
tives are (i) seek evidence for gravity wave modes in a subset of dynamical
and thermodynamical fields to illuminate the nature of particular modal-
ities present in CP4, (ii) explore the extent to which gravity waves couple
to rainfall and OLR and (iii) assess the potential of CP4 as research tool
to illuminate convection coupling dynamics. Of course, understanding
the nature and role of convectively coupled waves is intrinsically impor-
tant, as they are a source of weather and climate predictability on a range
of temporal and spatial scales.

To begin, we first outline the background, mathematically-predicted
properties of convectively coupled, equatorial waves, since these proper-
ties provide our initial interpretative framework.

5.2 Background

As we hope to show, the work of Chapter 5 complements that of Chap-
ters 2..4. However, it relies heavily on concepts not previously discussed
in Chapter 1. We attempt to remedy this by producing in this section
a reasonably self-contained account of convection, wave-convection cou-
pling and the Fourier methods which we use to see if it is present in
data.

5.2.1 Equatorial Wave Theory

The theory of equatorial waves is now very familiar to the tropical me-
teorologist (Gill, 1982; Matsuno, 1966). Families of tropical waves re-
veal themselves through solutions to linearised primitive equations of
motion, which characterise each wave family via unique dispersion re-
lations. Matsuno is generally credited with the first thorough study of
large-scale atmospheric and oceanic waves in the equatorial area. In
essence, he showed particular types of wave identified below, can, in the
equatorial region, propagate eastward or westward along the “equatorial
duct”. These Matsuno modes may, perhaps, be most easily understood
as quasi-horizontal planetary, Rossby, gravity and mixed small ampli-
tude, long wave-length oscillatory disturbances (about a base state of
rest) in a rotating, equatorial layer of homogeneous, incompressible fluid
of constant depth, treated within beta-plane approximation (essentially
a shallow water formulation). It is that formulation which we shall use
as a background framework here, stating salient outcomes, in the form
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of e.g. the wave dispersion relations for Matsuno modes. For the detail
of all that follows in this section, refer to Matsuno (1966) or Gill (1982).

The solution for horizontal flow, on an equatorial beta plane, of the
linearised, shallow-water equations yields:

1. An east-propagating Kelvin wave(
u
v

)
=

( √
g
H
e−

y2

2L2

0

)
G(x− ct), c =

√
gH, (5.1)

which is non-dispersive i.e. has dispersion relation

ω = ck, k > 0, (5.2)

2. a set of equatorial wave modes
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(5.3)
n ∈ Z+, n 6= 0,

3. and another wave mode
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for n = 0, both of which follow the dispersion relation

ω2

c2
− k2 − βk

ω
− β

c
(2n+ 1) = 0, n ∈ Z+. (5.5)

Above, we have used the parabolic cylinder function

Dn(α) ≡ 2−
n
2Hn

(
α√
2

)
e−

α2

4 , (5.6)

where Hn denotes the nth Hermite polynomial (Arfken 1966) and

L ≡
√
c

β
, c =

√
gH, β ≡ 2Ω

a
, (5.7)

with H the depth of the water (or equivalent depth of the atmospheric
layer), Ω = 7.2729 × 10−5rads −1 is the angular velocity of the Earth
and a = 6371km its radius. The dispersion relations in equation 5.5 are

plotted in terms of dimensionless variables k
√

c
2β

and ω√
2βc

, for different

values of n, in figure 5.1. The different branches, corresponding to e.g.

large or small ω are discussed shortly. Note that parameter
√

c
2β

is the

equatorial Rossby radius.
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Figure 5.1: Dispersion relations of upper (red) and lower (blue) branch
Matsuno modes, plotted with modes corresponding to even integer, n,
displayed using solid lines, and odd integer n, displayed as broken lines.
The solid black line is the Kelvin wave dispersion relation ω = kc. The
solid green line line is special solution n = 0.

5.2.2 Symmetric/Anti-Symmetric Spectral Decopo-
sition

The meridional parity of the parabolic cylinder functions, Dn, is deter-
mined by the Hn, which are even for n even, and odd for n odd. From
equation 5.3, horizontal velocity components u and v do not have the
same meridional parity. However, since taking the x-derivative will not
change the parity of u or v, the horizontal divergence field (which, note,
we take to couple to convection) will always have definite, odd or even
parity with respect to the y variable. (Recall, the derivative of an odd
function is even, and vice versa). For the flow associated with the Kelvin
wave defined in equation 5.1, the horizontal divergence

∇H · v =
∂u

∂x
+
∂v

∂y
, (5.8)

will therefore be an even function of the zonal coordinate, y. However,
the equatorial wave modes, classified by integer n, can exist in both odd
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or even form. In equation 5.3 we have

∇H · v = ω

√
2β

c
<
(
ei(kx−ωt)

)
× (5.9)(

1

kc− ω
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.

Note, to take the horizontal divergence of the disturbance flow in equation
5.3, we have used the recursion relation property of parabolic cylinder
functions, namely

d

dα
Dn(α) =

1

2
(nDn−1(α)−Dn+1(α)) . (5.10)

Since ∇H · v will be an odd or even function of y, wave modes will
decompose into symmetric and anti-symmetric parts. We will utilise this
property later, to assist the identification of particular wave modes in
African continent simulation data.

5.2.3 Branch Dispersion Relations

By imposing assumptions on the relative magnitude of zonal wavenum-
ber, k or frequency, ω, one can write simplified dispersion relations for
subsets of the equatorial wave spectrum.

For large, positive k, dispersion relation 5.5 approachs that of the
Kelvin wave (equation 5.2) and also Poincaré waves (Gill 1982) and
disturbances in this regime are designated equatorially-trapped gravity
waves. High frequency modes (large ω) are known as “Matsuno, upper
branch”, for which the dispersion relation 5.3 may be approximated as

ω ≈
√

(2n+ 1)βc+ k2c2, k ∈ R, (5.11)

where, importantly, speed c is a measure of the effective layer depth
(recall c =

√
gH). For lower frequency modes (small ω), which are known

as “Matsuno lower branch”, the dispersion relation 5.3 is approximated
as

ω ≈ −βk
k2 + (2n+1)β

c

, k ∈ R−. (5.12)

These waves are designated trapped planetary waves. For the special
case n = 0 Matsuno mode, the dispersion relation in equation 5.3 may
be factorised. After discarding unphysical spurious solutions we find

ω =


ck
2

(
1−

√
1 + 4β

ck2

)
, k ∈ R+,

ck
2

(
1 +

√
1 + 4β

ck2

)
, k ∈ R−.

(5.13)

The n = 0 mode is designated by Gill (1982) a mixed gravity-Rossby
mode. See figure 5.1.
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Mode Branch n ω − k rel. Physics ∇H · v parity

Kelvin - - Eq. 5.2 Gravity wave Zonally even
Matsuno upper even Eq. 5.11 Gravity wave Zonally odd
Matsuno upper odd Eq. 5.11 Gravity wave Zonally even
Matsuno lower even Eq. 5.12 Rossby wave Zonally odd
Matsuno lower odd Eq. 5.12 Rossby wave Zonally even

Matsuno - n = 0 Eq. 5.13 Mixed wave Zonally odd

Table 5.1: Classification and salient properties of equatorially trapped
wave modes, with the dispersion relations such as those shown in figure
5.1.

As already discussed, evidence for all the wavenumber-frequency dis-
persion relations in equations 5.2, 5.11, 5.12 and 5.13 appears in obser-
vational i.e. experimental data, which must be transformed to Fourier
space for any comparison. Generally, the value of the layer depth, H,
is varied to optimise the correlation between data and the linear theory
outlined above. Note that the effect of vertical shear can be modelled
by varying effective depth H, so, in reality, authors generally compare
experimental data with dispersion relations obtained for a range of H.

Let us summarise the dispersion relations in figure 5.1 in the light of
the discussions of this section. Dispersion relations in figure 5.1 are plot-
ted with modes corresponding to even integer, n, displayed using solid
lines and odd integer n, displayed as broken lines. This decomposition
corresponds to disturbances producing zonally odd or even divergence,
respectively, which will therefore appear in zonally anti-symmetric or
symmetric model data, respectively. We further summarise the discus-
sions of this section in table 5.1.

5.2.4 Theory of Equatorial Wave Coupling to Con-
vection

A number of quantitative hypotheses exist to describe the way in which
convection couples to large scale circulations. In this brief summary we
consider two theoretical, highly idealised dynamical feedback between
convection and waves, namely i) Emmanuel’s (1986) wind-induced sur-
face heat exchange (WISHE) and ii) Lindzen’s (1974) conditional insta-
bility of the second kind (wave-CISK). We examine these theories as
(i) they provide a useful link between this Chapter and the theoretical
work of Chapters 2...4, and (ii) wave-CISK in particular permits a wave
dispersion relation similar to those described by Matsuno 1966.

Neither WISHE nor wave-CISK theory is without flaw, and in reality,
there are a whole host of possibilities for ways in which convection cou-
ples to waves (e.g. convective downdraughts), so neither theory can be
considered wholly responsible. Briefly, the WISHE mechanism involves
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positive feedback between the circulation and heat fluxes from the sea
surface, which are then quickly redistributed aloft by convection, in turn
strengthening the circulation. In contrast, the wave-CISK mechanism
involves low-level convergence in the wind field, which produces convec-
tion, which releases latent heat, which forces waves which enhances the
convergence and further increases convection. For present purposes, we
retain Lindzen’s wave-CISK, since it uses mathematical techniques after
those applied in Chapters 2, 3 and 4, and consequently it is positioned to
link the forced waves considered there to the convectively coupled waves
discussed here. We return to the generalities of wave-CISK at the end
of this section and concentrate first on the emergence of the dispersion
relations of convectively coupled waves.

Lindzen (1974) took a basic set of equations, linearised about a state
of rest, used an equatorial β plane approximation, and introduced a heat
forcing term of the right hand side of his thermodynamic equation. His
system is similar to equations 2.2, indeed his model is, essentially, that
of Chapter 2 but with a simplified stratification, in which the base state
of density is ρ0(z) = ρ0(0)e−z/D but with constant N . The only effect of
the Earth’s sphericity in this model is to permit the vertical, z, compo-
nent of Earth’s rotation to vary linearly with y. All fields were assumed
to have time and longitude dependancies ei(ωt+kx). By straightforward
elimination of variables, Lindzen formed an equation for the y-z depen-
dance of variable v′ = ρ

1/2
0 v, a scaled eastward velocity. This equation is

then separated after the methods of chapters 2,3 and 4, using a modal
expansion

v′(x, y, z, t) =
∑
n

Vn,k,ω(z)Ψn,k,ω(y)ei(kx+ωt) (5.14)

which is based upon solutions to the eigenvalue equation

MyΨn,k,w(y) =

(
1

ghn,k,w
− k2

ω2

)(
(f + βy)2 − ω2

)
Ψn,k,ω, (5.15)

where the operator

My =
∂2

∂y2
+
k

ω

(
β − k

ω
(f + βy)2

)
(5.16)

and eigenvalue hn,k,ω, to be discussed below, termed an effective depth,
also appears in the equation for Vn,k,ω(z)

d2

dz2
Vn(z) +

(
κ

Hhn,k,ω
− 1

4H2

)
Vn(z) = − κ

H
Sn(z), κ =

γ − 1

γ
. (5.17)

Above, the Sn(z) are analogous to our heating expansion coefficients
of Chapters 2..4. For an equatorial β plane (for which f = 0 locally)
the equation 5.16 reduces to the Shroedinger equation for the quantum
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linear harmonic oscillator (Dirac, 1981), with solutions determined by
the Hermite polynomials (Morse & Feshbach, 1946).

Ψn,k,ω = e
− 1

2ξ2Hn(ξ), ξ ≡
(

2Ω

a

) 1
2

(ghn,k,ω)−
1
4 , (5.18)

and the eigenvalue, hn,k,ω is then determined by an equation which is
effectively a dispersion relation for Lindzen’s assumed horizontal wave
motion (

k

ω

2Ω

a
− k2 +

ω2

ghn,k,ω

) √
ghn,k,ω(

2Ω
a

) = 2n+ 1. (5.19)

The horizontal variation in Lindzen’s formulation is similar to Laplace’s
tidal theory and, in fact, Lindzen points-out that equation 5.17 is the
isothermal case of the vertical structure equation of classical atmospheric
tidal theory. Equation 5.19 corresponds to the dispersion relations pre-
dicted, about the same time, by Matsuno (1966), who used a similar basic
set of equations, derived from the shallow water approximation. Lindzen
therefore showed how tropical deep convection and long-wavelength mo-
tions in an atmosphere can couple. His framework is essentially that of
wave-CISK (Lindzen, 1974) to which we now briefly return.

In wave-CISK, if surface air is sufficiently warm, moist and elevated it
can become convectively unstable and give rise to convective hot towers,
which span the troposphere vertically. In Lindzen’s theory, a low-level
convergence field associated with a large-scale meteorological system lifts
air to that height, whereupon cumulonimbus convection initiates and, in
turn, forces the large-scale motion whose low-level convergence gave rise
to the convection. Lindzen investigated such an interaction by seeking
to parameterise the relation between the cumulus heating and the low
level convergence. Although the precise parameterisation of wave-CISK
is disputed, it is reasonable to accept a coupling between convection and
the known long wavelength modalities of shallow water theory.

5.3 CP4 Africa and the IMPALA Project

Here, we consider the capacity to recover coupled waves in one state-of-
the-art model, which provides the data set used in this chapter. First, we
digress slightly, to contextualise this data and the project which provides
it. For a full account of this project’s aims and a model description, see
Stratton et al. (2018).

The Future Climate for Africa (FCFA hereafter) Improving Model
Processes for African Climate (IMPALA hereafter) project aims to de-
liver a step change in global climate model capability for Africa, by de-
livering reductions in model systematic errors, through improved un-
derstanding and representation of the drivers of African climate, hence
reducing uncertainty in future projections. IMPALA is a Met Office-led
consortium of UK and African institutions, including the African Centre
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of Meteorological Applications for Development, the Centre for Ecol-
ogy and Hydrology, and the universities of Cape Town, Exeter, Leeds,
Nairobi, Oxford, Reading and Yaounde. Its essential scientific aim is to
improve understanding of Africa’s climate and, hence, to provide sup-
port for decision making at the continental level. IMPALA is part of the
£20M UK government-funded Future Climate for Africa (FCFA), which
aims better to understand African climate change. FCFA is a joint pro-
gramme of the Department for International Development and Natural
Environment Research Council. Prior to IMPALA high-resolution cli-
mate model prediction capability had not been available across many
parts of sub-Saharan Africa.

One of the key challenges to improve model performance is a better
understanding of how the fundamentals of convective parameterisation
impact on African climate variability and the Met Office Unified Model
(UM hereafter) represents the key tool for that undertaking. Crucially
for IMPALA, a set of high-resolution (4km), convection permitting UM
simulations (CP4) over an Africa-wide domain, mean it is possible to
represent individual convective cloud systems on the whole African con-
tinent for the first time. Within the project, two 10yr. (1997..2007)
duration simulations will provide data for the present day and for an
idealised future climate.

Here, we are interested in the present day runs, and subsets within
that timeseries. The IMPALA initiative has provided a database of pre-
dictions amenable to the essential methods of spectral analysis used by
Wheeler and Kiladis (Wheeler and Kiladis, 1999), who, in a bench-mark
experimental study, produced a wavenumber-frequency spectral (Fourier)
analysis of experimental, satellite-observed outgoing long-wave radiation
(OLR hereafter), which is a good proxy for tropical deep convection.
Wheeler and Kiladis were able to correlate statistically significant peaks
in their experimental data quite well to the dispersion relations of east-
propagating Kelvin and certain equatorially-trapped wave modes of shal-
low water theory. In the first instance, we aim, initially, to apply similar
techniques to numerical model data derived from the CP4 runs to i) diag-
nose the planetary wave coupling model capability, discussed in section
5.3.1 and ii) characterise high frequency gravity waves found in the data.

5.3.1 IMPALA Perspectives and UM Description

The UM is a numerical model of the atmosphere used for both weather
and climate applications, which is in continuous development by the Met
Office and its partners. A single, coherent model family, which can be
used for prediction across a range of timescales, has been a pillar of
Met Office weather and climate prediction since 1990. In the UM, the
same dynamical core and, where possible, the same parameterisation
schemes are used across a broad range of spatial and temporal scales.
The UM is suitable for numerical weather prediction, seasonal forecast-
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ing, climate modelling (with forecast times ranging from a few days to
hundreds of years) and for global and a regional modelling. We consider
relevant scientific and mathematical content of the UM, in relation to
CP4, in more detail, shortly. For present purposes, CP4 should be re-
garded as an high-resolution simulations of a pan-African domain, nested
with a coarse global simulation. The model has been used to compile and
archive extensive predictions of a wealth of dynamic and thermodynamic
prognostic variables.

Our proposed analysis of model data is meaningful only in the con-
text of the physics and mathematics of that model. In the usual oblate
spheroidal system (r, ϕ, λ) (Gill, 1982), using its native symbols and nota-
tion (UM documentation) the zonal, meridional and vertical momentum
equations solved in the UM are respectively

Du

Dt
= −uw

r
− 2Ωw cos(ϕ) +

uv tan(ϕ)

r
− cpdθv
r cos(φ)

∂Π

∂λ
+ Su,(5.20)

Dv

Dt
= −vw

r
− u2 tan(ϕ)

r
− 2Ω sin(ϕ)− cpdθv

r

∂Π

∂ϕ
+ Sv,

Dw

Dt
=

u2 + v2

r
+ 2Ωu cos(ϕ)− g − cpdθv

∂Π

∂r
+ Sw,

(note, the vertical momentum equation is non-hydrostatic), with a con-
tinuity equation

D

Dt
(ρyr

2 cos(ϕ)) + ρyr
2 cos(ϕ)

(
∂

∂λ

[
u

r cos(φ)

]
+

∂

∂ϕ

[v
r

]
+
∂w

∂r

)
= 0,

(5.21)
and thermodynamic and state equations respectively

Dθ

Dt
=

(
θ

T

)
Q̇

cpd
, Π

κd−1

κd ρθv =
p0

κdcpd
. (5.22)

Here, Su represents the u component of the dissipation, ρy is the density

of dry air, θ = T
(
p0
p

) Rd
cpd is potential temperature, Π =

(
p
p0

) Rd
cpd is the

Exner function, κd ≡ Rd
cpd

, reference pressure is p0 = 1000hPa, horizontal

material derivative D
Dt
≡ ∂

∂t
+ u

r cos(ϕ)
∂
∂λ

+ u
r
∂
∂ϕ

+ w ∂
∂r

and:

θv ≡
T

Π

(
1 + 1

ε
mv

1 +mv +mcl +mcf

)
. (5.23)

Above, mv = ρv
ρy

(mcl =≡ ρclρy) [mcf =
ρcf
ρr

] is the mixing ratio of water

vapour (cloud liquid water) [cloud frozen water], with ρ = ρy(1 + mv +
mcl+mcf ). Moisture quantities mv, mcl and mcf do not,of course, remain
constant: the UM has dynamical equations which govern them:

Dmv

Dt
= Smv ,

Dmcl

Dt
= Smcl ,

Dmcf

Dt
= Smcf . (5.24)
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All other symbols have their usual meaning.
Since linear equatorial wave theory effectively derives from simplified

forms of equations 5.20, 5.21 and 5.22, it is apparent form the above that
the UM used to compile CP4 data sets will, in principle, be sufficient,
to recover the phenomena of linear theory, such as Matsuno modes and
Kelvin waves, once the UM is adapted to the appropriate geographical
location.

5.4 Methodology

We consider an equatorial region of a convection permitting UM simu-
lation of the whole pan-African continent (CP4). Specifically, we con-
sider the region is bounded between -30 and 60 degrees longitude and
+/−10N/S latitude. Such a region was chosen because: i) the equa-
tor is a known hot spot for planetary synoptic and mesoscale waves, ii)
successful studies of convection-wave interactions have targeted this re-
gion (Wheeler and Kiladis 1999, Tulich and Kiladis 2012), and ii) this is
the full longitudinal bound of the CP4 convection permitting runs. The
domain is demonstrated in figure 5.2.

Figure 5.2: A schematic of the equatorial domain used in this work. The
black box represents the full simulation domain, the grey shaded region
shows how we have truncated output data to a region in which equatorial
waves will be prevalent.

Our philosophy is first to inspect single-level model fields associated
with moisture, i.e. rainfall and outgoing long wave radiation (OLR here-
after). Note, OLR, a measure of cloud cover, is an accepted proxy for
convection. In such fields, we seek evidence for coupling between convec-
tion to long wavelength atmospheric waves. Specifically, we seek evidence
for those wave modalities discussed in section 5.2, above. Subsequently,
If such a coupling exists, we will look to the dynamical and thermody-
namical fields of vertical velocity and potential temperature (those of our
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analytical investigations, note), to characterise the nature of the convec-
tively coupled waves. As one might expect, the raw model data is noisy
to analyse with the unguided eye. We will therefore utilise well-known
Fourier or spectral analysis methods to filter signal from the noise in
a number of ways, to be discussed. Furthermore, such transformation
to Fourier space facilitates comparison with wave modes (i.e. equations
5.2, 5.11, 5.12 and 5.13). Noting that high accuracy, “black box” code
is readily available, verifiability argues for control of the computational
algorithm used to process our CP4 data. Accordingly, all data presented
here was processed using bespoke code, written in Matlab. We proceed
now to detail our method.

5.4.1 Initial Data Processing

Before we begin spectral analysis, it is advantageous first to perform some
spatial averaging, to produce data with definite zonal parity. This will
aid in the identification of anticipated waves modalities with properties
as summarised figure 5.1.

Let us denote the meridional, zonal and time coordinate of a cer-
tain gridded field, g, by discrete subscripts i, j and n respectively. Here
i, j, n ∈ Z with i ∈ [1, N ], j ∈ [−M,M ] and n ∈ [1, Nt]. g denotes a
single-level model output, such as OLR or rainfall. The equator corre-
sponds to j = 0 on the mesh, with southern latitudes denoted by j < 0
and a range of j corresponding to a range of latitude of ±100. Mesh
coordinate i > 0, with i = 0 corresponding to longitude -30 and 60 de-
grees. Of course time is positive, n > 0. Note that gi,j,n ∈ R+ ∀i, j, n
considered. The temporal resolution varies with CP4 model variable, de-
pending on how the runs are iterated. We return to this matter when
we discuss specific field variables. for present purposes the spatial reso-
lution is nominally 4.5 km. The number of data points in the meridional
direction is denoted Nx.

For the reasons set-out in subsection 5.2, we consider gijn which are
expressed in terms of their zonally-symmetric and anti-symmetric con-
tributions defined as follows

g
(s)
i,j,n ≡

1

2
(gi,j,n + gi,−j,n) , g

(a)
i,j,n ≡

1

2
(gi,j,n − gi,−j,n) , (5.25)

where gi,j,n = g
(s)
i,j,n + g

(a)
i,j,n.

We calculate the symmetric and anti-symmetric components of model
rainfall and OLR from the full time series of the present day CP4A
runs. Table 5.2 details the resultant data sets. For reference, it includes
details of the TRMM data used by Wheeler and Kiladis (Wheeler and
Kiladis, 1999 ) . We have ample data for time series analysis, which will
contain the effects of seasonal variations. Note that table 5.2 contains
certain, equivalent parameter values for the TRMM data of Wheeler and
Kiladis. For a fuller comparison and the appropriate calculations, refer
to Appendix A.
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Prediction Symmetry T/ hr L/km Nt Nx

OLR even 1 4.5 69840 2000
OLR odd 1 4.5 69840 2000

Rainfall even 0.25 4.5 69840 2000
Rainfall odd 0.25 4.5 69840 2000

Wheeler and Kiladis even 12 280 13140 144

Wheeler and Kiladis odd 12 280 13140 144

Table 5.2: Summary of the 4km resolution CP4 data used in the present
chapter, with equivalent parameters for data of Wheeler and Kiladis
(Wheeler and Kiladis, 1999). See also Appendix A.

We now define meridional averages as follows

g
(s)
i,n ≡

1

2M

M∑
j=1

(gi,j,n + gi,−j,n) , g
(a)
i,n ≡

1

2M

M∑
j=1

(gi,j,n − gi,−j,n) . (5.26)

Hovmöller plots of the now “x − t” data are shown in figure 5.3 (Note,

g
(s)
i,n may be distinguished from g

(s)
i,j,n by the occurrence of the j subscript

in the latter). A window of such a long time series is not useful in looking
for features with frequency timescale smaller than the seasonal scale. In
fact, it is hard to see anything propagating at all. However, anything
masked by the contours in these plots will reveal itself in Fourier space.
The seasonal signal, however, is reassuringly clear, note.

Figure 5.3: Hovmöller plots of the raw symmetric and anti-symmetric
OLR, for a 10yr. period derived from CP4.
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5.4.2 Windowing

Ideally, fast Fourier transforms (FFTs hereafter) should be applied to
data which contains integer periods of the modalities it hypothesised to
contain. With many possible modalities and relative phases, it is clearly
impossible to ensure that the captured data is fully periodic e.g. by
varying the spatial range over which measurement takes place. For even
if the acquisition interval were adjusted to capture some wavelengths
without abrupt cut-off, there would be other wavelengths that would
be captured non-periodically. Spectral leakage (essentially, blurring of
peaks in Fourier space) is the consequence of a failure to capture data
periodically. Structures appear more diffuse than they might with more
careful capturing- spectral power is said to have bled or leaked to other
frequencies. The practice of windowing reduces this blurring of data. In
the present context, windowing in x would involve multiplying data in
the sampled interval by some window function, h(x), which decays or
tapers to zero at the limits of the domain, eliminating- or smoothing- its
sharp spatial boundaries. There are a range of functions h(x) designed
to improve the appearance of data in Fourier space in different ways.
We choose to avoid the use of windowing, and to make a retrospective
assessment of its potential impact on IMPALA data, in our discussions,
in section 5.7. We note that Wheeler and Kiladis report tapering their
data’s spatial window.

5.4.3 Data Analysis in Reciprocal or Fourier Space

We are now ready to transform the data into Reciprocal or Fourier space.
We do this using the 2D FFT function in Matlab. Application of Matlab’s
native transform utility fft2 provides us wavenumber-frequency, “Fourier
space” data. Let us denote discrete, complex data ĝ

(s)/(a)
f,kx

ĝ
(s)/(a)
f,kx

≡ F2

(
g

(s)/(a)
i,n

)
, ĝ

(s)/(a)
f,kx

∈ C. (5.27)

Often, we will consider the modulus squared of this quantity, usually
termed the spectral power

G
(s)/a)
f,kx

≡ |ĝ(s)/(a)
f,kx

|2. (5.28)

This quantity is usually expressed in decibels, dB. Specifically, plots of
spectral power measure the latter as 20 log10(|ĝ(s)/(a)

f,kx
|) Above, discrete

wavenumber is denoted kx, with units km−1, discrete frequency is denoted
f , with units hr−1 and f =

nf
TNt

, with nf ∈ [0, (Nt − 1)] and kx = 2πnx
LNx

,
with nx ∈ [0, (Nx − 1)].

It will often be convenient to use dimensionless zonal, or planetary,
wavenumber

s ≡ 2πRe cos(ϕ)

λ
= Rekx. (5.29)
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Here the disturbance has wavelength λ and we have adapted to the equa-
tor, ϕ = 0. The terrestrial radius is taken as Re = 6371km.

Aliasing in the variable kx (f), was eliminated by folding the power
spectrum along the kx axis. Aliasing in frequency was similarly removed
from the data, however, only positive ω is displayed throughout this
chapter. In summary, all data considered in the sequel correspond to the
following ranges of discrete conjugate, Fourier, variable after aliasing has
been removed

f =
nf
TNt

, nf ∈ Z+, nf ∈ [0,
Nt

2
], (5.30)

kx =
2πnx
LNx

, nx ∈ Z, nx ∈ [−Nx

2
,
Nx

2
],

s =
2πRenx
LNx

, nx ∈ Z, nx ∈ [−Nx

2
,
Nx

2
].

It is immediate from the above that all our Fourier space data should be
represented on a mesh with the following spacings:

∆f =
1

TNt

, ∆kx =
2π

LNx

, ∆s =
2πRe

LNx

. (5.31)

5.4.4 Red Background Filtration

Once aliasing has been removed, the broad nature of the resulting spec-
trum in Fourier space was observed to be red in both kx and f . Accord-
ingly, N121 cycles of 1 − 2 − 1 filtration were applied in both kx and f .
A single step of this power-conserving filtration may be defined as

Gf,kx →
1

8
(Gf+∆f,kx + 2Gf,kx+∆kx + 4Gf,kx + 2Gf−∆f,kx +Gf,kx−∆kx) .

(5.32)
It is easy to show that the process of 1 − 2 − 1 filtration conserves the
total power (across all f , kx) in the spectrum.

Denote the red spectrum corresponding to Gf,kx by Rf,kx . Rf,kx for
symmetric/anti-symmetric OLR and rainfall, expressed in dB, is shown
in figure 5.4 for N121 = 150. For their experimental data, Wheeler and
Kiladis effectively take N121 = 10. We note that the CP4 background
spectra in figure 5.4 shows evidence of the diurnal variation, which is not
visible in any data of Wheeler and Kiladis, though these authors do state
that the first few harmonics of the diurnal variation were removed.

1−2−1 filtration is analogous to smoothing using a running average.
It is therefore informative to consider the effective range, or smoothing
length, corresponding to N121 = 2n, n ∈ Z+ cycles, or applications.
Let us work in one dimension, say the variable f . For a single cycle, the
weights applied at f , to data at f−∆f , f and f+∆f are 1× 1

4
, 2× 1

4
, 1× 1

4

respectively. For two cycles, the cumulative weights for combining data
at f , with data at f − 2∆f , f − ∆f , f , f + ∆f and f + 2∆f are
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1 × 1
16
, 4 × 1

16
, 6 × 1

16
, 4 × 1

16
, 1 × 1

16
respectively, which may be written

1 × 1
24
, 4 × 1

24
, 6 × 1

24
, 4 × 1

24
, 1 × 1

24
and, in general, for 2n cycles, the

“stencil” coefficients will be the binomial expansion coefficients of the
expression (1 + p)2n with p = 1

2
, namely:

2n!

(2n− r)!r!
× pr(1− p)(2n−r), p =

1

2
. (5.33)

Let us use the standard deviation of the binomial distribution to charac-
terise an effective smoothing length, or range, of the 1− 2− 1 filtration:

σ =
√

2n(1− p)p =

√
2n× 1

2
× 1

2
=

√
n

2
=

√
N121

4
. (5.34)

The characteristic ranges, [∆f ], of the smoothing in Fourier space, for
the following choices of N121 are therefore incremented by approximately
equal amounts:

N121 = 10, [∆f ] =

√
10

4
≈ 1.5, (5.35)

N121 = 50, [∆f ] =

√
50

4
≈ 3.5,

N121 = 250, [∆f ] =

√
250

4
≈ 8.

Figure 5.4: Red background spectra of all CP4 data shown in figure
5.3, displayed over a restricted region of Fourier (zonal wavenumber-
frequency, s − f) space. Frequency is shown in cycles per day (CPD,
day−1). Left (right) panels show symmetric (antisymmetric) data. Top
row L = 4km OLR, Bottom row, L = 4km rainfall. Power is expressed
in decibels (dB). N121 = 150 for all data shown here.
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Once a red background spectrum has been determined, it is possible
to remove it from the original transform, by real division

Gf,kx →
Gf,kx

Rf,kx

, ĝf,kx →
ĝf,kx
Rf,kx

, (5.36)

which, in the case of the power, helps to identify significant peaks.
Broadly, for the slow, long wavelength data close to the origin in Fourier
space, when more 1−2−1 smoothing has been applied (i.e. when a larger
value of N121 has been used), the more signal remains, after removal of
the background. Later, we choose the level of statistical significance in
background-corrected spectra: this is done in relation to the chosen value
of N121. The key features of all our results (i.e. background and statis-
tically filtered spectra) are robust: a range of values of the statistical
cut-off and N121 all reproduce produce them.

Figure 5.4 shows the red background power, expressed in decibels
(dB) for OLR and rainfall, for the region s ∈ [−500, 500]km−1, f ∈
[0, 3]CPD. Consider the OLR red spectra spectra (top). These spectra
exhibit qualitative similarity- all OLR spectral power lies in a similar
interval. Consider the rainfall data (bottom two panels). These spectra
clearly correspond more closely in shape to the experimental data of
Wheeler and Kiladis.

5.4.5 Diurnal and Annual Cycle Filtration

Given the time span of all data sets considered, the signal associated with
the diurnal cycle in CP4 may be regarded as periodic and coherent, with
period f0 = 1CPD, having a Fourier series expansion (Arfken, 1966)

g(x, t) =
∞∑

n=−∞

An(x)einω0t, ω0 = 2πf0, (5.37)

where

An = A∗−n =
1

2

∫ +1

−1

g(x, t)e−iω0tdt, (5.38)

which, when Fourier transformed, gives a signal comprised of equi-spaced
impulses

ĝ(t, kx) =
1√
2π

∫ ∞
−∞

(
∞∑

n=∞

Ane
−inω0t

)
einωtdt, (5.39)

=
∞∑

n=−∞

An

(
1√
2π

∫ ∞
−∞

ei(ω−nω0)tdt

)
,

=
∞∑

n=−∞

Anδ(ω − nω0),

where we have used a representation of the Dirac delta function (Arfken,
1966). Accordingly, we see in e.g. figure 5.4, a set of peaks, located
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at f = n, n ∈ Z+ across the range of s, which we associate with the
diurnal cycle. Once the red background was removed, the first ten Fourier
coefficients of the diurnal cycle were identified and also removed manually
from the all CP4 data sets, simply by removing data across the range of
s at frequencies in a narrow interval f = n± 0.05CPD.

We estimate that the annual cycle in the CP4 sample corresponds to
ω = 2π

365×24×60×60
≈ 2× 10−7 rad s−1 or f = 1

365
CPD, which is too small

to be resolved in any of the CP4 sets we shall shortly present. Hence, we
take no steps to filter annual variation.

5.4.6 Statistical Significance

We calculate the mean, E, and standard deviation, σ, of the Fourier space
rainfall and OLR. We retain statistically significant data only, according
to the rule:

Gf,kx <

(
E +

5

2
σ

)
=⇒ (Gf,kx → 0) ,∀f, kx. (5.40)

As we have already outlined, any decision about the level of statistical
significance used should be made in conjunction with the level of red
background filtration applied i.e. the value of N121. Here, N121 = 50, re-
call. As one would expect, applying larger levels of 121 filtration produces
a smoother red background. Dividing-out smoother data leaves a larger
level of residual signal, which should therefore be subject to screening for
increased statistical significance. For example, data for N121 = 250 ob-
tained with the rule Gf,kx <

(
E + 5

2
σ
)

=⇒ (Gf,kx → 0) and N121 = 10
using the rule Gf,kx < (E + σ) =⇒ (Gf,kx → 0) produces results which
are very similar indeed.

Figure 5.5 shows statistically significant, Fourier space OLR and rain-
fall, after division by their respective red backgrounds. Note that the
discretisation interval, ∆s, is now particularly apparent in the data (as
a granularity) as is the continued presence of a diurnal cycle.
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Figure 5.5: Statistically significant residual power, expressed in decibels
(dB), after division by the respective red background of all CP4 data
shown in figure 5.4, displayed over a restricted region of Fourier (zonal
wavenumber-frequency, s − f) space. Left panels show symmetric data,
right panels show anti-symmetric. Top row L = 4km OLR, bottom row
L = 4km rainfall.

Figure 5.5 shows the restricted range of frequency f < 3CPD. This in-
terval contains the maximum of the surviving power. This Fourier space
data derives from approximately a decade of x − t Hovmöller data we
emphasise. Data is clearly skewed with a majority of wave power prop-
agating west. Under closer examination (see below), over an extended
range of f ∈ [0, 10]CPD a modality which we nominate a fast gravity
wave may also be observed. We return to this matter in detail in section
5.6.
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5.5 Results 1: Planetary Waves

In this section we principally address correlations with dispersion re-
lations, based upon 10yrs of CP4 data, in the frequency range f ∈
[0, 3]CPD. However, it is necessary briefly to contextualise, by considering
the larger interval f ∈ [0, 10]CPD. The latter interval will be considered
in detail in the section 5.6, next. Henceforth, we use ”low frequency” to
refer to the interval f ∈ [0, 10]CPD.

5.5.1 Kelvin Waves and Matsuno Modes

Recall, the equatorial atmosphere, considered as a shallow layer of effec-
tive depth H, is widely believed to support long wavelength modalities
which couple to convection. In figures 5.6 and 5.7, the certain modal
dispersion relations for upper branch, lower branch Matsuno and Kelvin
waves are superposed on the filtered, symmetric and anti-symmetric parts
of the CP4 data for the OLR data, and rainfall, respectively.

Figure 5.6: 4 km resolved, symmetric and antisymmetric OLR with Mat-
suno mode, Kelvin wave and fast gravity wave dispersion relations su-
perposed. Following figure 5.1, broken lines indicate odd mode number,
n, broken lines indicate even mode number, n. Red lines correspond to
upper branch modalities, blue the lower branch, and the solid green line
corresponds to the mixed gravity-Rossby mode. The solid black lines
correspond to Kelvin wave modes. Odd n dispersion relations pair with
zonally symmetric data, even pair with anti-symmetric. All dispersion
relations correspond to H = 9m. Note, the domain has been truncated
to reflect our interest in low-frequency, large scale planetary waves.
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Figure 5.7: 4km resolved, symmetric and antisymmetric rainfall with
Matsuno mode, Kelvin wave and fast gravity wave dispersion relations
superposed. Following figure 5.1, broken lines indicate odd mode number,
n, broken lines indicate even mode number, n. Red lines correspond to
upper branch modalities, blue the lower branch, and the solid green line
corresponds to the mixed gravity-Rossby mode. The solid black lines
correspond to Kelvin wave modes. Odd n dispersion relations pair with
zonally symmetric data, even pair with anti-symmetric. All dispersion
relations correspond to H = 9m. Note, the domain has been truncated
for interest in low-frequency, large scale planetary waves.

Broadly, the resolution in Fourier space of our CP4 data appears ad-
equate to resolve east-propagating Kelvin, bi-directional upper branch,
bi-directional lower branch Matsuno modes, which favour westward mo-
tion and an intriguing west propagating non-dispersive mode. For such
disturbances, the dispersion relations are approximated by equations 5.2,
5.11 and 5.12 respectively. In each, H, the effective depth of the atmo-
spheric layer, enters via parameter c =

√
gH.

In more detail now, figures 5.6 and 5.7 display a striking correla-
tion, in the higher wavelength and frequencies, with n = 1, 2, westward-
propagating upper branch Matsuno modes - also known as “Westward
inertio gravity waves” (WIG, hereafter). There is a clear envelope of
wave speeds, which appear in both the symmetric and anti-symmetric
plots. Whilst there is some evidence for Kelvin wave modes in figures
5.6 and 5.7, the signal is weak compared to that of the WIG. There is
also a large, non-dispersive signal in the low frequency, which cannot be
explained by either the WIG (whose curves diverge from the model data
at low s) or the Kelvin wave, whose curve sits below the data at low
s. In the anti-symmetric plots, the n = 0 mixed Rossby-gravity (MRG,
hereafter) does correlate well with the low frequencies, but does not sat-
isfactorily explain all of the signal, as there is again a “wave dispersion

161



5.5 Results 1: Planetary Waves

gap” in the westward propagating low frequencies. Notably, it appears
there is no signal at all corresponding to the Rossby wave spectra. We
hypothesise that we are filtering our these waves with our domain choice-
see figure 5.2.

5.5.2 Fast Gravity Waves

At this stage, we have tentatively i) confirmed the existence of the Kelvin
wave and WIG, in CP4, and ii) found some evidence for a MRG in
OLR and rainfall data, at what we now designate low frequencies, f ∈
[0, 3]CPD. It is useful to estimate the speed of the low frequency, west
propagating non-dispersive wave also observed

Cs
g ≡

dω

dk
→ ∆ω

∆k
= 2πRe

δf

δs
≈ −13ms−1. (5.41)

Now, there is a second, large signal, in the lower frequencies, which
does not appear to correlate to any expected wave dispersions. This sig-
nal emerges if we zoom out from figures 5.6 and 5.7, to the larger Fourier
domain, f ∈ [0, 10]CPD: see figures 5.8 and 5.9. A remarkable, new, lin-
ear data correlation in the OLR appears at frequencies f ∈ [0, 10]CPD.
Its dispersion relation seems linear and it appears in both the high and
low frequencies bands. To guide the eye, we have superposed solid black
lines of constant speed in figure 5.8, with corresponding legend “Fast
gravity”. The waves represented here propagate in both an easterly and
a westerly direction, with approximately the same group speed. They
therefore cannot be classified as Kelvin waves.

We estimate the group speed for the non-dispersive waves, fast grav-
ity waves apparent in figure 5.8, which are presumably relatively fast-
propagating gravity waves as

Cf
g ≡

dω

dk
→ ∆ω

∆k
= 2πRe

δf

δs
≈ ±45ms−1, (5.42)

approximately three times greater than Cs
g . Importantly, there seems

to no correlation to these waves in the rainfall spectra, suggesting that
rainfall does not project onto such fast moving disturbances, which will
be the crux of our investigations in §5.6. This is perhaps not surprising,
as no know meteorological convective system propagates at so large a
speed.

In summary, OLR and rainfall spectra both show clear correlation
and cross-correlation with accepted dispersion relations, with values of
H ≈ 9m, and we infer the existence in CP4 of convectively-coupled
Matsuno and Kelvin modes. We deem the predominance of data for
k < 0 to rule-out a westward WIG as a cause and that OLR spectral
plots (figures 5.8 actually show additional activity in the 45ms−1 and
13m−1 bands, which is consistent with the deepest tropospheric mode
(m = 1) and tropospheric mode m = 3 respectively (recall, from Chapter
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1, c ∼ N/m and Cf
g ≈ 3Cs

g). Moreover, there is literature to support the
relevance to convection of each of these two particular modalities (Lane
& Reeder, 2001), note. Highly significantly is the fact that the rainfall
spectral plots in figures 5.9 show activity at 13m−1 but none at 45m−1.

On the basis of the spectra alone, then, we infer that two non-
dispersive gravity wave modes exist in the CP4 data and influence OLR,
that the fast, deeper mode may be a response to rainfall, whilst the
slower mode 3 could be coupled with the rainfall. (However, alternative
explanations for our fast spectral data exist, as we shall see.) The fast
mode is bi-directional, the slower is west propagating. We devote our
subsequent efforts to illuminating the properties of these two particular
modalities, which we henceforth designate slow and fast gravity waves.

Figure 5.8: 4km resolved, symmetric and antisymmetric OLR with Mat-
suno mode, Kelvin wave and fast gravity wave dispersion relations su-
perposed. Following figure 5.1, broken lines indicate odd mode number,
n, broken lines indicate even mode number, n. Red lines correspond to
upper branch modalities, blue the lower branch, and the solid green line
corresponds to the mixed gravity-Rossby mode. The solid black lines
correspond to Kelvin wave modes. Odd n dispersion relations pair with
zonally symmetric data, even pair with anti-symmetric. All dispersion
relations correspond to H = 9m. Note, the domain is now larger than
that of figure 5.6.
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Figure 5.9: 4km resolved, symmetric and antisymmetric rainfall with
Matsuno mode, Kelvin wave and fast gravity wave dispersion relations
superposed. Following figure 5.1, broken lines indicate odd mode number,
n, broken lines indicate even mode number, n. Red lines correspond to
upper branch modalities, blue the lower branch, and the solid green line
corresponds to the mixed gravity-Rossby mode. The solid black lines
correspond to Kelvin wave modes. Odd n dispersion relations pair with
zonally symmetric data, even pair with anti-symmetric. All dispersion
relations correspond to H = 9m. Note, the domain is now larger than
that of figure 5.7

5.6 Results 2: Fast Gravity Waves

Having diagnosed planetary waves in the high resolution CP4 runs, in
§5.5, we now attempt to understand the dynamics of the fast waves re-
vealed in the CP4 spectra. To interpret requires hypotheses: we also
recognise our overall conclusions will rely heavily on the weight of con-
fidence we attach to the competing data. Also, the nature of the slow
wave provides valuable context for an understanding of the fast, so we
shall need to continue to consider it.

In section 5.5, we only investigated two fields -rainfall and OLR- in
spectral space, using accepted dispersion relations. The appearance of
wave features in thermodynamic fields allows us to conclude that coupled
waves exist in the model. However, to draw further conclusions on the
dynamics we must investigate other dynamical fields. Certainly, inves-
tigation of the vertical velocity, w, and temperature, θ (the fields used
to understand forced wave dynamics in chapters 2,..4, note), at multi-
ple altitudes, will illuminate the spatial and temporal structure of the
waves. Using multiple thermodynamic and dynamic fields, we now aim
to extract fast gravity waves, aiming to construct a composite picture of
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the waves, in physical space. In order to reduce computational demand,
we truncate the full data set of section 5.5 for all fields, to a single year,
arbitrarily chosen to be 2000. This choice was made on recommendation
by colleagues at the University of Leeds experienced in processing and
using CP4 data.

It is important to map-out and contextualise our strategy in this sec-
tion, as a wealth of data will now appear rapidly. We will now proceed by
inverting the Fourier transform of selectively filtered, west-propagating
fields, to identify regions in physical space. Note that this filtration im-
plicitly relies on an interpretation of the spectral data. Correlating the
inverse FFT of filtered data with raw OLR and rainfall data in physi-
cal space-time allows us to locate candidate convection wave events in
x-t. Additionally, we examine filtered dynamical fields of w and θ on
two levels (mid and upper troposphere) in order assist our diagnosis of
the dynamics of convectively coupled waves. For instance, correlated,
coherent w and θ fields denote convection activity. In a nutshell, our
approach is simple- identify candidate structures in Fourier space then
try to pick-out and examine the corresponding fields in physical space.
Time constraints limited the number of events which are analysed, but
we nevertheless find some interesting results.

5.6.1 Processing

Guided by accepted dispersion relations, we have so far identified regions
of Fourier space which contain features of interest. With reference to
the spectra of the last section, regions of Fourier space containing signals
tentatively arising from the activity of fast or slow, west-propagating
(say) gravity waves of speed Cg are now identified as having the reciprocal
space coordinates (kx, ω) such that

Cgkx + ∆ ≥ ω ≥ Cgkx −∆, (5.43)

ωmax ≥ ω ≥ 7.2722× 10−5rads−1,

0 ≥ kx.

Here, ω = 7.2722 × 10−5rads−1 corresponds to f = 1CPD, note. ∆ =
1.0 × 10−5rads−1, note. For the fast, m = 1 mode, Cg = Cf

g = 45ms−1,
ωmax = 7.2722×10−4rads−1 corresponding to 10CPD. For the slow, m =
3 mode, Cg = Cs

g = 15ms−1, ωmax = 2.18166× 10−4rads−1 corresponding
to 3CPD.

Unfiltered FFT data without its red background removed, lying within
the region of Fourier space defined in equation 5.6.2 is multiplied by 1.0,
and 0.0 outside, to generate filtered data in Fourier space, which is then
reverse aliased and inverse transformed, using Matlab’s native ifft2 func-
tion. This generates a subset of the original x−t Hovmöller , presumably
attributable to activity of the identified by the filtration in equation 5.6.2.
A range of tests to e.g. check the influence of the Fourier convolution the-
orem (Arfken, 1966 ) etc. were performed on CP4 and benchmark special
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cases. We assure the reader that the full process: Fourier transformation,
feature filtering and inverse transformation, all work as expected.

The faster features of principal concern are present with equal strength
in both symmetric and anti-symmetric data. We deem there is no longer
an advantage in separating data into symmetric and anti-symmetric parts,
to aid diagnosis: we therefore discard signal parity and work, arbitrarily,
with symmetric data henceforth.

5.6.2 Convection-Wave Interaction

We wish to investigate the way in which the model convection dynamics
interact with waves. To begin, we verify the moisture fields, namely
OLR and rainfall for the single chosen year. Figure 5.10 shows the raw
power spectrum of OLR (left) for model year 2000, a red background,
calculated with 20 cycles of 1-2-1 filtration (middle) and the raw signal
divided by the red background (red). This data is reassuringly consistent
with that in section 5.5. Two waves are apparent in these spectra: (i)
a westward-only propagating wave, with strength at a speed of 13 ms−1

(Wslow, hereafter), and (ii) a bi-directional wave with strength at a speed
of 45 ms−1 (Wfast, hereafter). The strength of the signal is stronger in
Wslow. However, in figure 5.11, which is equivalent of figure 5.10 but for
rainfall, there is no power in Wfast, which is consistent with reality, as no
known meteorological feature travels at 45 ms−1 - only waves can travel
that fast. However, these speed estimates both agree with approximate
values of group speeds, Cg ∼ N

m
, of the deepest (m = 1) and m = 3

modes, note. For example, for N = 10−2 s−1, m = 2π / (2 × 15 km
(twice the height of the tropopause)), cg = 50 ms−1. The m = 3 mode,
of course, simply reduces the speed by a factor 3.

In the w and θ spectra (figures 5.12 and 5.13), both Wslow and Wfast

appear.

Figure 5.10: The symmetric OLR power spectra (dB) for UM model year
2000. Shown is the raw spectra (left), red background calculated with 20
cycles of 1-2-1 filtering (middle) and the raw spectra with red background
removed (right).
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Figure 5.11: As in figure 5.10, but for rainfall.

Figure 5.12: As in figure 5.10, but for w at 5 km.

Figure 5.13: As in figure 5.10, but for θ at 5 km.

We now apply two filters to each field in spectral space, in order to
isolate Wslow and Wfast, as shown in figure 5.14. Note, the filters used,
defined in equation 5.6.2, take only westward-propagating features, for
consistency, and take only faster features which have a frequency larger
than 1CPD. The resulting filtered spectra are then inverted, as described
previously.

Figure 5.15 shows the Hovmöller raw OLR field (with its diurnal cycle
removed) for reference, alongside the corresponding OLR, after is has
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been multiplied by the Fourier space filter functions. Figure 5.16 shows
contours of the two filtered and Fourier-inverted functions, superposed
on top of the raw field. The black solid and dashed lines correspond
to 13 ms−1 and 45 ms−1. They are included to guide the eye only. We
notice that Wslow have larger amplitude than Wfast in the filtered OLR,
although the amplitude of Wfast is not insignificant. This observation
suggests that OLR is projecting more strongly onto Wslow (as seen in
figure 5.10 and in section 5.5). Indeed, when we inspect figure 5.16, it
is easy to observe the correlation between the raw OLR and the OLR
filtered for Wslow, particularly between -10 and 10 degrees longitude. Less
easy to spot are x− t regions principally controlled by Wfast. Whilst one
can identify regions where there is Wfast activity only (e.g. at 20 degrees
longitude, between days 143 and 145), it is hard to see well-defined wave
patterns in the raw OLR. Qualitatively, this supports the hypothesis that
the Wslow does couple to convection, but Wfast is moving too quickly to
be interacting with convection.

Figure 5.14: The symmetric OLR power spectra (dB) and filtered power
after the filter function for Wslow and Wfast has been applied. Note
the filters select in westward propagating Fourier space only and do not
collect features with a frequency smaller than one cycle per day (see
equation 5.6.2).
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Figure 5.15: 10 day Hovmöller of raw OLR (K) with 8 harmonics of
diurnal cycle removed (left) and the Fourier inverted OLR after it has
been filtered with functions defined in figure 5.14.
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Figure 5.16: As figure 5.15, but the contours of the inverted, filteredWfast

and Wslow signals are superposed over the raw OLR Hovmöller data and
displayed on a single panel. Filled/solid colour shows raw symmetric
OLR with 8 harmonics of diurnal cycle removed, blue contours show
activity in Wslow (filter 1) and red contours show activity in Wfast (filter
2). Solid black lines indicate a westward propagation speed of 13 ms−1,
dashed black lines indicate a westward-propagation speed of 45 ms−1.
The time series chosen corresponds to that of figure 5.15.
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We apply the same filters as those depicted in figure 5.14 and defined
in equation to rainfall and also to w and θ, now at sectioned mid (5 km)
and upper (10 km) levels. Figures 5.17 and 5.18 show the fields filtered
for Wslow and Wfast.

In figure 5.17 (Wslow) we see a good correlation between the OLR and
the θ (on both levels). However, in the rainfall an w (on both levels),
only a single event stands out, suggesting Wslow are shallower modes,
which only propagate to upper levels in remarkable events.

In figure 5.18 (Wfast), the colour bar on the rainfall is an order a
magnitude smaller than in figure 5.17, again confirming that rainfall does
not couple to Wfast.
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Figure 5.17: Hovmöller of Wslow filtered OLR (K), rainfall (mmhr−1),
w (ms−1) for 5 km and 10 km and θ (K) for 5 km and 10 km. The filter
applied to all fields is identical to filter 1 of figure 5.14. The time series
chosen corresponds to that of figure 5.15.
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Figure 5.18: Hovmöller of Wfast filtered OLR (K), rainfall (mmhr−1, w
(ms−1) for 5 km and 10 km and θ (K) for 5 km and 10 km. The filter
applied to all fields is identical to filter 2 of figure 5.14. The time series
chosen corresponds to that of figure 5.15.
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Figure 5.19: Hovmöller plots of the convecting regions of Wslow and Wfast

at heights of 5 and 10 km associated with convection. A region is defined
to be convecting if there is a strong coherence between w and θ, i.e. w×θ
large. The time series chosen corresponds to that of figure 5.15.

We now seek to correlate our dynamical fields, since a strong coher-
ence between w and θ is indicative of convection. Figure 5.19 shows w×θ
(i.e. a convection field) for Wslow and Wfast on both levels. In the mid-
levels, we see more activity in the faster, deeper mode, which is more
distributed. A single event in Wslow, as seen in figure 5.17, dominates.
This event lives longer than anything in Wfast. Generally, however, Wslow

produces convection which is weaker and also more sparse, over the whole
x− t domain than Wfast. This observation is somewhat at odds with the
stronger coupling of Wslow to moisture fields seen in spectra. In the upper
levels, activity in Wfast is much reduced. In contrast, activity in Wslow

intensifies in the upper levels.
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Figure 5.20: Hovmöller plots of the coherence between OLR and convect-
ing (left) and non-convecting regions (right) at heights of 5 and 10 km
(as shown in figure 5.19). The time series chosen corresponds to that of
figure 5.15.

In figure 5.20, we correlate convection (as defined in figure 5.19) with
OLR by considering the product w × θ × OLR, to seek a coherence be-
tween cloud and convection. We see a strong coherence on both levels
for Wslow, with a distribution which matches the convection field (figure
5.19). The shallower waves, Wslow, which are interacting with convec-
tion are producing cloud uniformly, i.e., for shallow waves, where there is
convection, there is cloud. It is also clear that the strong event in Wslow

is producing deep cloud. For Wfast, the pattern follows the convection
fields; a much reduced signal aloft and a weaker signal in the mid-levels.
Apparently, we confirm that the fast, deep wave, Wfast, is moving too
quickly to interact with the moisture fields. Note, this finding is some-
what at odds with the view that Wfast is a deep tropospheric mode.

Further to defining a convection diagnostic field (w×θ), we can define
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a wave-field diagnostic field w × dθ
dt

. For each of Wslow and Wfast, on
both vertical levels, we plot the wave-field figures 5.21 and 5.22. In the
bottom panels of figures 5.21 and 5.22, we perform a running average,
in the x-direction, on the convection and wave fields. The range of this
running average filter was chosen to correspond to a wavelength which
was calculated from the gravity wave dispersion relation, with Cg chosen
from inspection of the OLR spectra- see discussions immediately after
equation 5.6.2 in section 5.6.1.

Figure 5.21: Hovmöller plots of the convecting regions (w× θ - left) and
non-convecting regions (w × dθ

dt
- right) of Wslow. The top panels show

the filtered field, the bottom panels show the same field after application
of a horizontal running average in x, with wavelength equal to the wave-
length has been applied. The range of the running average was chosen to
correspond to a characteristic wavelength of Wslow, determined using the
gravity wave dispersion relation cp = ω

k
and a wavespeed cp calculated

from the wave signal in the OLR power spectra.

176



5.6 Results 2: Fast Gravity Waves

Figure 5.22: As in figure 5.22, but for Wfast.

In figures 5.23, 5.24 and 5.25, we show time series derived from the
x−t filtered Hovmöllers, as described below, for w, θ (top panels) and the
corresponding moisture fields (bottom panels). This data was obtained
by identifying, by eye, the x (longitude) coordinate of a dominant event
in the data of figures 5.21.. 5.22, then taking a vertical (time slice) of
that data, to obtain the time evolution of the event over a 3 day interval.
The dominant event was chosen to be at longitude x = 0 degrees for
145 ≤ t ≤ 148 for Wslow in figure 5.23. This region is populated by
activity in both Wfast and Wslow. Whilst the fields are filtered, we obtain
control data for x = 0 degrees for 143 ≤ t ≤ 146 for Wslow in figure 5.24,
where we assess only Wslow is active. The dominant event was chosen to
be at longitude x = 25 degrees for 141 ≤ t ≤ 144 for Wfast in figure 5.25.
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Figure 5.23: The data shown here represents a vertical (time) section of
Wslow filtered fields, taken at a longitude of 0 degrees. In the top panel
solid lines represent values at a height of 5 km, dashed represent values
at a height of 10 km. In the bottom panel, where the moisture fields’
covariance is recorded, the left ordinate measures the OLR (dashed),
right measure the rainfall (solid).
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Figure 5.24: A control on data of figure 5.23. The filtered data of figure
5.23 was chosen a region of x−t in which both Wslow and Wfast are active.
The data above corresponds to a different time interval in which onWslow

only is judged to be active, at identical longitude. In the top panel solid
lines represent values at a height of 5 km, dashed represent values at a
height of 10 km. In the bottom panel the left ordinate measures the OLR
(dashed), right measure the rainfall (solid).

Figure 5.25: The data shown here represents a vertical (time) section of
Wfast filtered fields, taken at a longitude of 25 degrees. In the top panel
solid lines represent values at a height of 5 km, dashed represent values
at a height of 10 km. In the bottom panel the left ordinate measures the
OLR (dashed), right measure the rainfall (solid).

179



5.7 Discussion and Conclusions

5.7 Discussion and Conclusions

We consider the results of our investigation of the dynamics of convec-
tion, contained in CP4. Whilst CP4 does not have the spatial extent or
resolution of e.g. satellite observations, it is a highly sophisticated, fully
coupled model, which allows for an in-depth study of many aspects of
convection which could not be accessed with observations. Using spec-
tral methods after Wheeler & Kiladis (1999), we investigate CP4 for the
dynamics of convectively coupled gravity waves.

5.7.1 Estimating the Effect of Windowing

Here, we return to the influence of windowing on the appearance of IM-
PALA data structures in Fourier space. We choose to quantify its po-
tential benefit by comparing two FTTs of IMPALA OLR, obtained with
and without one form of windowing. The Hanning window was chosen
as an all-purpose filter. Named after meteorologist Julius von Hann, it
is realized here as filter spatial weighting function

h(x) =

√
sin
(πx
L

)
, x ∈ [0, L], (5.44)

which was used to multiply the x-variation of OLR data. Figure 5.26
shows the effect on an excerpt of raw OLR x− t Hovmoller data, of the
domain tapering produced by equation 5.44. An identical FFT process
(as described above) was applied to both the raw data sets in figure 5.26
to produce the moisture spectra in figure 5.27. Specifically, both FFTs
were smoothed in s and fCPD, with a 5-point running average filter, both
had a red background corresponding to 50 cycles of 1 − 2 − 1 filtration
removed and both were subject to the same level of statistical signifi-
cance (all data correspond to signal values 2σ greater than the mean).
A comparison of the two data sets in figure 5.27 suggests that Hanning
(and possibly other windowing) represents worthwhile pre-processing in
a more extensive future study, as it has the potential to clarify the ap-
pearance of features in Fourier space. We note, for example, that there
is a noticeable reduction in bleeding at small s, for f > 5CPD, and that
features in the frequency interval f ∈ [2, 5] are usefully sharper.
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Figure 5.26: Symmetric x− t data OLR Hovmoller data with (right) and
without (left) application of the Hanning window defined in equation
5.44.

Figure 5.27: Symmetric x − t filtered FFT from the OLR Hovmoller
data shown in figure 5.26 with (left) and without (right) application of
the Hanning window defined in equation 5.44.
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5.7.2 Summary

Section 5.5 interprets a 10 year time series of CP4 OLR and rainfall in
Fourier space, which we compare against well-known planetary dispersion
relations. Note, the resolution of the CP4 in Fourier space is consider-
ably lower than that achieved in the experimental studies of Wheeler &
Kiladis (1999), but will contain sophisticated physics. As well as Mat-
suno modalities, we see non-dispersive waves of similar frequency, which
project anomalously on moisture fields (OLR and rainfall). The west-
ward branch of the fits to dispersion relations extends over a much larger
range of planetary wavenumber that in corresponding experimental stud-
ies of Wheeler and Kiladis. We infer a relationship between these two
waves, designated Wslow and Wfast, from spectra. Wfast is held to be a
deep, fast mode, with m = 1, Wslow is a shallower, slower mode, with
m = 3. Evidence for such modes arises in moisture fields’ spectra, as the
ratio and magnitudes of fitted group speeds (13 and 45 ms−1) is consis-
tent with literature. There is also evidence for Kelvin wave activity in
the spectra, which we do not investigate further here.

For a shorter time series (to avoid computational expense), we confirm
the existence of Wslow and Wfast in an expanded number data fields
(OLR, rainfall, w and θ). We apply a filtration in order to investigate the
characteristics of Wslow and Wfast individually, and invert filtered Fourier
fields into physical space. Our investigations in section 5.6 show filtration
in Fourier space and subsequent inversion can point-out regions of the
raw OLR space-time field associated waves: Wslow more readily than for
Wfast. See the correlations in figure 5.16. Of course, this may simply
mean Wslow projects more strongly on moisture fields, though not more
frequently. This conclusion is supported by the spectra in section 5.5
and that Wfast is too fast. There are regions of the raw OLR Hovmöller
where clusters of Wslow activity appear to match.

We proceed to explore the related issues of the inter-relationship of
Wfast and Wslow and the individual dynamics of each. We need to address
both together, as conclusions about one have implications for other.

5.7.3 Discussions

Initial correlations of filtered, reverse-transformed data, with raw mois-
ture fields do support convection coupling in Wslow. They do not support
convection coupling in Wfast. To explain this difference we confirm their
nature, by verifying mode number, seeking the signature of convection
(denoted e.g. by cross-correlation of e.g. smoothed w × θ) in other fil-
tered dynamical fields and by examining 1D time series plots. A number
of events were chosen by seeking peak activity in inverted, filtered fields.

Comparing time series plots of filtered w vs. t at 5km and at 10km
(both locations are well within troposphere) for Wfast, we see a strong
correlation between the w on both levels in figure 5.25. The simplest
interpretation, supported by spectral data, is that Wfast indeed corre-
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sponds to a deep mode. Correlation between w at 5km and 10km for
Wslow is similar but less strong. To confirm that Wslow is an m = 3
mode, we might expect to see a change in sign of w between the levels.
However, in figure 5.24, whilst the signals seems to be in phase, it is
hard to infer the vertical structure of Wfast. However, taken with the
ratio of groups speeds, this still seems likely. In figure 5.23, we inspect a
convective event which has a signature in the dynamical fields (as seen
in figure 5.18). Clear is the convective signal, and all dynamical fields
and OLR align in phase and remain coherent for 3 days. In all cases,
the rainfall is very noisy and cannot be attributed to interact with either
Wslow or Wfast.

We turn to covariances. At 5km, Hovmöller plots of w × θ, when
smoothed on x wavelength, show strong signal for Wslow, implying it is
convecting at mid-level. At 5km, Hovmöller plots of smoothed w×θ̇ show
strong signal for Wfast, implying it is not convecting, at mid-level. Note,
at 10km, both w× θ and w× θ̇ fields, when smoothed, show compatible
activity for both Wslow and Wfast implying there in no convection aloft.

We rationalise observations from both moisture spectra, inverse fil-
tration and covariances in the next section.

5.7.4 Conclusions

Ideally, one would use a statistical approach here, as we discuss in this
final chapter. We advance hierarchical firm, tentative and speculative
conclusions and hypotheses. The latter will then be considered further
in the final chapter. We make the following firm conclusions

• CP4 can resolve wave spectra but the range of planetary wavenum-
ber, s for the modes observed in this study is approaching an order
of magnitude greater than the experimental study of Wheeler and
Kiladis.

• CP4 is asymmetrically distributed, and skews to s < 0. This is
consistent with Tulich & Kiladis (2012) who found a similar skew
for observed coupled gravity waves.

• CP4 captures westward propagating features, some planetary wave
modes and fast, and slow, bi-directional, non-dispersive waves.
Both westward gravity waves, and the faster non-dispersive modes
project onto OLR. The faster wave does not project onto rainfall,
whereas the slower wave does.

• The speeds and structure of these modes are consistent with esti-
mates of a deep mode (m = 1) and m = 3 mode.

We can also make some more tentative conclusions.

• There is some evidence of an east-propagating Kelvin mode in the
moisture spectra which was not investigated further.
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• At mid levels, the slower waves are interacting with convection,
whereas the faster waves seem to be purely waves. We regard this
as a tentative conclusion, as evidence for this is currently found
only in a handful of events. If time permitted, we could apply a
statistical approach here to firm up the conclusions.

Finally, we see evidence to make some speculative conclusions.

• From the 1-D time series data, derived from target events in x− t
one can pick-out sub-intervals where fields align.

• By inspection, co-spectra and covariances in the small number of
test cases studied is consistent with the fast mode not being con-
vectively coupled and the slow mode being convectively coupled.
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Chapter 6

Conclusions and Further
Work

In its final chapter, we will reflect upon work presented in this thesis: the
inter-relationship of its different elements, its context, potential impact,
pathways to impact and what opportunities exist to advance it.

In the bulk (Chapters 2, 3, 4) we have considered the mathemat-
ics and meteorology of three, related, essentially analytical models of
buoyancy-forced, gravity-wave mediated adjustment to convection in a
stratified atmosphere without feedback. However, Chapter 5 assesses,
numerically, gravity wave coupling to predominantly equatorial convec-
tion in convection-permitting Unified Model data. Mathematically, our
models all have a potentially radiating tropopause, all are based within
linear theory, all are predominantly analytical, all separate horizontal and
vertical variation (the latter being based upon a modal decomposition),
all derive from a closed description based upon field variables u, w, b and
p with prescribed ρ0(z) variation (necessitated by the deep nature of the
convection we aim to address) and all use a potentially time-dependant
heat or buoyancy forcing, S (mainly the first baroclinic mode).

In Chapter 2 we developed a non-rotating model in a 2D stratified
atmosphere, with a radiating tropopause and a variable base state of
density, after Nicholls et al. 1991 and Edman and Romps 2017. We
used a prescribed tropospheric heat source to consider convective heating
induced gravity wave response and its dependence on the length-scale of
the forcing and the upward radiation of energy at the tropopause. It
was used to examine the effects of radiation at the tropopause from a
fundamental perspective, to assess its impacts in the context of numerical
models’ parametrisation and to assess secondary convection triggering.

Having established the credentials of our essential approach, we pro-
ceeded to quantify the impact of the third, spatial dimension in Chapter
3, developing an axially symmetric 3D model with otherwise equiva-
lent physical and mathematical composition. Data obtained highlight a
key difference in the forced gravity waves’ decay as they move outward,
broadly expected on geometrical and conservation grounds. Indeed, stud-
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ies of gravity waves show concentric wave bands being emitted from a
central storm (e.g. Lane & Reeder (2001); Piani et al. (2000)). Key
mathematical innovations to facilitate this advance from Chapter 2 were
(i) an extended basic set which includes v and (ii) Hankel-Laplace (rather
than Fourier-Laplace) transform techniques and (iii) the development of
a numerical inversion from reciprocal space.

In Chapter 4 we addressed rotation without which a period of tran-
sient buoyancy forcing does not lead to a local response at large time.
With rotation, we predicted local pressure and buoyancy anomalies in
geostrophic balance with a transverse wind. This steady vortex state
is fundamental. Determination of its horizontal length-scale was re-
garded as a Rossby adjustment problem. Chapter 4 considers the post-
convection steady state in 2.5D but has otherwise equivalent physics
(stratification) as the models of Chapters 2, 3. However, another sub-
stantial Mathematical generalisation (vertical modal structure) was nec-
essary and a non-dimensionalisation approach was applied to interpret
our meteorologically relevant data.

Moving-on from prescribed thermal forcing, in Chapter 5, we consid-
ered, numerically, feedback between gravity waves and convection evident
in data from high-resolution, convection permitting Met Office Unified
Model simulations of the sub-Saharan African. We extract frequency-
wavenumber spectra of moisture and dynamical fields (OLR, rainfall, ver-
tical velocity and potential temperature) for gravity wave-like response.
Tulich and Kiladis (2012) found evidence of coupling between convection
and gravity waves in analysis of relatively low resolution TRMM data.
We have used a dynamical model at much higher resolution and we were
thus able to quantify fully coupled, grave wave-convective systems in
terms of typical speeds of (coupled) gravity waves, coupling to equatorial
modes e.g. Matsuno (1966) and to interrogate individual storm events,
using a methodology adapted from that of Wheeler and Kiladis (1999).

The pursuit of relatively simple (semi-)analytical models has been
fruitful and has illuminated some non-trivial aspects of convective ad-
justment and has opened many avenues for further research (see section
6.4 below). Analysis of high-resolution, fully coupled convection in a nu-
merical modes gives insight into the nature of real systems and provides
some context for our analytical results.

6.1 Contextual Review

Emphasis in the predominantly analytical work of Chapters 2...4 was laid
on development of physically and mathematically coherent, tractable,
benchmarks. All are based in linear theory and Sturm-Liouville eigen-
function expansions and all address heat forcing without consideration
of coupling. We do not claim to originate this essential approach and we
have drawn throughout on work originating in the 1990s, which enjoyed
considerable success, (Mapes, 1993; Nicholls et al., 1991) . These workers
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pioneered an approach based, essentially, upon modal decomposition in
the vertical coordinate. One could be forgiven for thinking that, after so
long a time, linear theory in this area is exhausted. However, if not a
renaissance, there is certainly a level of renewed interest ( see e.g. Edman
& Romps (2017)), motivated presumably by a need to understand issues
with numerical models’ paramterisation, such as those addressed in the
applications considered in Chapter 2.

The analytical models we develop were intended transparently to fur-
nish qualitative understanding of adjustment dynamics (Chapters 2, 3)
and geostrophic adjustment (Chapter 4) to heat forcing, whilst consid-
ering for the effects of radiation at the tropopause.

In Chapter 3 our main objective was to take an opportunity to mod-
ify the horizontal variation, whilst transplanting a solved, base vertical
variation from our 2D, non-rotating, model of Chapter 2, into 3D with
axial symmetry, whilst also inserting rotation into the model. The result
is ready to exploit immediately, we note. Our philosophy is also apparent
in Chapter 4. Here, by extending the treatment of Chapter 2 (to 2.5D),
to treat the steady-state response in a rotating atmosphere, we address
the simplest, most fundamental part of the problem- a geostrophic ad-
justment. Again, the resulting model is ready to exploit immediately.
The hierarchy of models developed across Chapters 2 and 4 further il-
lustrate our guiding paradigm -simplicity, tractability and coherence- as
follows. The non-rotating, dynamical 2D model of Chapter 2 applies to
general horizontal variation of heat forcing, with minimal use of numer-
ics (which allows us to consider different horizontal variations of heating
and tendency within a single framework). The model of Chapter 3 rep-
resents the simplest evolution of the 2D model to treat 3D and rotation
(albeit with increased reliance on numerics). The model of Chapter 4 is
an extension of that in chapter 2, which facilitates an analytical solution.

There is also an element of feed-forward learning in effect in Chapters
2..4. For example, from the 2D models developed and used in Chapter 2,
we determine that radiation effects are maximised when Nt = Ns. Hence,
in considering the geostrophic adjustment in the rotating case, in Chapter
4, we can justify the mathematical simplification Nt = Ns on physical
grounds- this case corresponds a steady-state adjustment resulting from
maximum loss of vertically-radiated gravity wave energy.

As we have stressed, our analytical work is limited principally in its
neglect of feedbacks. The coupling between gravity waves and convection
is clearly a large question and some account of it was judged essential-
even in a thesis with a predominantly analytical ethos. The work of
Chapter 5 is our attempt. Very broadly, it shows that the relevant cou-
plings are present in the data of the Met Office Unified model.
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6.1.1 Beneficiaries

Gravity wave energy radiation and reflection at the tropopause has im-
portant consequences. Numerical models, for all their physical sophistica-
tion and numerical accuracy, all must have finite meshes which terminate
at a definite spatial location. That is, they must have some form of lid.
The lid height is typically 40km aloft (corresponding to be that used for
the comparison UM data presented in Chapter 2 of this thesis, note).
Representation of the tropopause and the associated radiation effects are
perhaps a predictable Achilles heel of numerical models. So, whilst the
behaviour of trapped atmospheric layers is well understood, in both nu-
merical and analytical models, what happens as the lid is raised aloft, to
model deep atmospheric effects, is less clear. Numerical models address
the problem of representing radiation at the tropopause typically by us-
ing damping layer, to e.g. restrict the lid reflection effects. Probably
the most significant aim of the work in Chapters 2..4 is to include and,
where appropriate, transparently quantify radiative effects of heating ad-
justment, within a tractable, predominantly analytical framework. With
this in mind, the modelling community will benefit from access to a set of
benchmark models, which are capable of addressing both the dynamics
and the steady-state of adjustment, with and without rotation.

6.2 Summary of Findings

Here we summarise useful, case-specific findings from the individual work
packages which comprise this work.

6.2.1 2D Model without Rotation

Our foundation, 2D model was formulated for generic horizontal variation
of heating in Cartesian coordinates. This is made possible by neglecting
rotation. The model has a tropopause (with buoyancy frequency Nt,
for 0 ≤ z ≤ Ht) and a stratosphere (with buoyancy frequency Ns, for
z > Ht).

We first consider the case Nt = Ns, of no stratosphere or tropopause.
Trapped solutions (with the lid placed at the tropopause, z = Ht) in a
channel (well documented elsewhere, see e.g. Parker & Burton (2002)),
for steady heating correspond to a single wave mode, which propagates
away from forcing region at constant speed, and does not decay in time.
As the lid is raised aloft, the solution becomes more complicated: a higher
lid leads to excitation of higher order modes, with a range of wavespeeds.
Faster (deep) modes communicate the adjustment into the neighbour-
hood of heat forcing more quickly. Furthermore, allowing upward radi-
ation reduces the magnitude of tropospheric response. The maximum
tropospheric vertical velocity, |w|, in fully radiating troposphere (with
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Nt = Ns) has an amplitude that is 30% of those in a trapped tropo-
sphere.

Applying a transient, pulsed heat forcing produces a “rebound” mode
(of ascent). Given the right conditions, this ascent may help further con-
vection develop, since ascent will erode CIN. We identified in Chapter 2
regions of low-level ascent outside tropospheric subsidence zones (which
will have reduced CAPE). The combination of larger CAPE and erod-
ing CIN, communicated via gravity wave adjustment, may well lead to
further convection.

Next, we summarise observations with a piecewise defined N(z) (i,e.
Nt = 2Ns). This stratification of our model (and by extension, the 3D
model of Chapter 3) represents something closer to physical reality. In
solutions for this case, gravity waves have both radiation and trapped
characteristics, but the response in troposphere is only slightly modified.
The maximum tropospheric vertical velocity, |w|, in this case has an
amplitude that is 50% of those in a trapped troposphere.

We find that the characteristics of our forced gravity waves are influ-
enced by the spatial and temporal dependence of the forcing function.
Therefore the wave spectra is altered by the nature of the forcing func-
tion. We hypothesis that coarse models that do not resolve convective
heating and instead smooth out the heating function onto their grid will
not produce the correct wave spectra. Indeed, we find a error of 20% in
the grid box mean tendency when a 10 km heating is smoothed out to a
100 km grid.

Finally, a set of comparisons, showed qualitative agreement with“full
physics” iUM model runs, and find a spurious oscillation in the model
due to the model lid.

Allowing for upward radiation of wave energy leads to solutions which
decay with distance. In cylindrical geometry, we know a further decay is
introduced due to geometrical restrictions. How do the length-scales of
each decay compare? This question is considered in Chapter 3.

6.2.2 3D Model

A 3D model answers the need to contextualise preceding 2D investiga-
tions. The most obvious questions arise around the restricted dimen-
sionality of the 2D model. In Chapter 3, we extend to 3D geometry,
with rotational symmetry, for an axially symmetric system treated within
cylindrical polar coordinates. Owing to use of identical stratification and
heating temporal / spatial structure, the essential mathematical ideas of
the 3D model of Chapter 3 are identical to those of 2D model, with one
key proviso. The horizontal variation is more complicated. ( However,
the application of Sturm-Liouville theory proceeds identically). Specifi-
cally, for our 3D treatment of a deep, heat-forced atmosphere, the Fourier
transform methodology of Chapter 2 must be replaced by a Hankel trans-
form methodology (using a zero-order Bessel function), which compli-
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cates the solution of the horizontal part of the separated problem. We
are thus forced to perform a numerical inversion from reciprocal space,
which clearly requires a defined (as opposed to generic) heating function.
This makes it impossible to write-down results for general horizontal vari-
ation of heating and reliance on numerical inversion makes our 3D model
less qualitatively informative than its 2d pre-cursor. Note that our anal-
ysis in Chapter 3 actually treats the case of f 6= 0 but data is obtained
for f = 0, to maintain parity with between the physical regimes studied
in Chapters 2 and 3.

The 3D model results follow a similar overall pattern to 2D- a single
mode is observed in the extended, trapped case with a qualitatively simi-
lar, more geometrically complicated solution emerging as the lid is raised
aloft. However, the single mode is now observed to decay as it propagates
to greater r, due to transformed horizontal (radial) motion. (Physically,
the wavefront is spreading over the area of a cylinder). Tentatively, we

predicted spreading could be modelled by an amplitude decay factor r
−1
2

in the far field, which is confirmed in data. The trapped solution also
now develops a “head” and “tails back” towards the heat forcing in sharp
contrast to the 2D case, which has a constant amplitude i.e. no head and
tail. In 3D, high lid solutions have, overall, a similar set of recognisable
features.

We note that this model is ripe from further exploitation. For in-
stance, one could straightforwardly investigate the role of rotation on
the dynamics of adjustment, using the 3D model in its current form.
However, the role of rotation would then have to inferred by, presum-
ably, comparing data for equivalent cases, with f = 0 and f 6= 0. This
empiricism was removed by choosing, instead, to develop a third, inde-
pendent model of the geostrophic adjustment to an applied, transient
heating of finite duration. A “non-zero” steady state is then entirely due
to rotation- with f = 0 there is zero geostrophic adjustment to heating.
In this sense, the structure of the geostrophic adjustment following a fi-
nite heat pulse provides the simplest measure of the role of rotation for
the class of model under consideration. In Chapter 4, we build such a
model.

6.2.3 Steady state (PV) Model with Rotation

In Chapter 4, we observe that the structure of the geostrophic adjustment
to a finite-duration heat pulse, determined in 2.5 dimensions, provides a
simple, analytically tractable assessment of the role of rotation. Counter-
intuitively, the physical simplification resulting from setting u = w = 0
in the present formulation (our base set, stratification and heating in
chapter 4 is still essentially that of Chapters 2, 3, note) does not offset
the increase in challenge associated with the formulation, which results
from integrating over the duration of the applied heating. The latter step
impacts the treatment of stratification, making it necessary to extend
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the Sturm-Liouville eigenfunction basis in use in Chapter 4. It is also
appropriate to consider the PV of the geostrophic adjustment, so we also
develop and identity PV in Chapter 4.

Key investigations of this Chapter 4 focus on the horizontal length-
scale of geostrophic adjustment, allowed purely by inclusion of f , which
leaves a residue at steady state (i.e. it introduces a geostrophic balance).
Broadly, larger f restricts the range of influence of the convection. We
chose to measure this length-scale control by e-folding length of steady
p adjustment. Simple tests with a trapped case lead to surprising result,
supported by a non-dimensional analysis, suggest that the length scale for
small f tends towards a Rossby radius, whereas in large f the response’s
length scale is determined by the horizontal heating length scale.

An important message from Chapter 4 is that upward radiation only
influences the lengthscale of the response when ε = NHt

fL
corresponds to

a very large-scale heat source (larger than the Rossby radius), in which
case the response lengthscale is that of the forcing. This does not apply
to deep convection, which is much smaller-scale than LR. Therefore, al-
though there are subtleties in the Rossby adjustment problem, the Rossby
radius remains the key scale of response for convection problems.

6.3 Coupled Waves in a High Resolution

Numerical Model

In Chapter 5, we have examined a high resolution, convection-permitting,
fully coupled numerical model (CP4) for convectively coupled gravity
waves. Using Fourier techniques on fields of OLR, rainfall, w and θ,
after Wheeler & Kiladis (1999), we have confirmed the existence of a
bi-directional non-dispersive gravity wave moving at roughly 45 ms−1

(Wfast), and a westward-propagating gravity wave, moving at roughly
13 ms−1 (Wslow). These wave speeds are consistent with “back of the
envelope” calculations for a deep tropospheric mode and a m = 3 mode,
both of which have been shown to interact with convection (Lane &
Reeder, 2001). We have also seen evidence for other planetary waves,
such as the Kelvin wave.

There is no documented evidence for coherent storm systems moving
at the speed of the fast modes shown here. Although the fast modes are
projecting onto OLR, we do not see them coupling significantly with rain-
fall. Therefore, we interpret the fast mode being a dynamical response to
convective forcing, and this fast wave forces a signature in OLR, but no
significant feedback. In contrast, the slow mode exists at a speed which is
common to observations of observed organised convection. It is tempting
then to attribute this slow mode to a convectively coupled wave. How-
ever, there are other well-documented physical processes which can cause
storms to move at these speeds in the atmosphere, most notably the in-
teraction between a low level convective “cold pool” and the ambient
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wind-shear. In other words, at these slower speeds, material advection of
the air (in the cold pool) can be a propagation mechanism, as opposed
to wave propagation. Untangling the real dynamical causes of the slow
mode propagation would involve much deeper investigation: in practice
storms of this nature do excite waves, and they do generate cold pools, so
both phenomena are present in the observations and in the CP4 model.
Attributing the storm propagation to one or the other mechanism (cold
pool versus waves) would be difficult. A suitable modelling approach to
tackle this might be to re-run the CP4 simulations with rainfall evap-
oration switched off in the model, to eliminate the cold pools, and see
whether storm propagation still occurs according to the slow wave mode.
This would be a substantial new study.

6.4 Further Work

Our work in Chapters 2..4 has been highly idealised. Longer term, we
might consider softening, or even removing some restrictions in search of
deeper understanding. This will likely come at computational expense, as
analytical approaches will fail. We immediately see a handful of possible
extensions, briefly categorised below, that could be applied generally to
all three models.

1. Non-linearity.
Inertial waves in the atmosphere can form solitary waves (e.g. the
morning glory wave). Inclusion of non-linear terms in our models
will steepen our waves whilst increasing the mathematical complex-
ity of the description.

2. Dispersion
Introducing dispersion, e.g. by raising hydrostatic balance would
lead to dispersive waves, which, in-turn, leads to shallow waves. It
would be interesting to examine how dispersion and non-linearity
compete.

3. Vertical shear
Inclusion of vertical shear would allow for investigations of Scorer
parameter and dynamical trapping.

4. Boundary layer
Introduction of a boundary layer, through extended, piecewise strat-
ification.

We also foresee a number of research avenues which can be achieved
with the models in their current state. We consider here how the ana-
lytical models we have developed might be used in future, the potential
impact of such efforts and, importantly, we assess the deliverability of
such projects. We consider only the most immediate possibilities.
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In Chapter 2, one possible scenario is to push the iUM grid resolu-
tion, to a much more coarse level and then assess where iUM data loses a
significant part of the wave spectrum predicted in the analytical model.
The outcome of this work, which could be readily performed, would be
of most value and of largest impact to Met Office modellers, who need
to assess the capacity of their models. We assess that this work would
directly impact a small community in the short term, however the provi-
sion of better software may benefit a larger community in time. Using the
model in Chapter 2, we could also evaluate upwards momentum and en-
ergy fluxes, e.g. to provide estimates on the stratospheric / mesospheric
wave drag.

The model of Chapter 3 has rotation formulated within it. The case
of f 6= 0 is already facilitated in the Matlab codes generating the data of
Chapter 3: in particular, the inversion from reciprocal space is already
computing the inverse Hankel transform numerically. The presence of
f 6= 0 in the numerical inversion integral should, if anything, facilitate
(rather than obstruct) the computations and we assess that it will not
add computational expense. We assess that the only data required to
publish this result is qualitative: for example, images such as that in
figure 6.1, which show the structure of the w-wind and the θ response.
This data was not included previously in this thesis simply on logistic
grounds- space had to be devoted to more significant results. Its presence
here is intended purely to support our assertion that a good quality
publication may be delivered almost immediately. An assessment of the
impact upon the 3D dynamics of adjustment, of rotation, is, however,
of limited significance. However, whilst limited in terms of impact, this
effort would nicely bound and contextualise the work of Chapter 3. It is
readily achievable and quickly publishable.

It would be interesting to investigate the temporal response to heating
in the model developed in Chapter 4, as the included transverse wind
would lead to dispersive waves (w2 = c2k2 of Chapter 2 would modify
to w2 = f 2 + c2k2). A different remote response from that in Chapter 2
would develop.

The assessment of data in Chapter 5 clearly has significance for CP4.
An immediate insight could be gathered by a tangential project com-
paring Kelvin waves in 4 km convection-permitting runs to the driving
model at 25 km resolution, seeking to determine if their amplitude and/or
phase correlate, using the filtration methods developed. The outcome of
this investigation would be principally of interest to modellers, as an-
other, timely check not only on Met Office tools but also on development
trajectories.

More broadly, a statistical approach to fast wave diagnosis seems nec-
essary but worthwhile, in order conclusively to characterise convection
and wave dynamics in CP4. The nature of filtering and subsequent identi-
fication of individual, candidate events over longer data timespans (other
years) is needed to calibrate models against physical reality, gain insights
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Figure 6.1: Output from the 3D model developed in Chapter 3 of this
thesis with rotation: f = 10−4. The left column corresponds to the
w adjustments, the right column corresponds to θ adjustments. Rows
(a)..(c) correspond to 2D models designated in Chapter 2 as TRAP,
RAD1 and RAD2 respectively. (b) and (c) have their lid raised aloft,
to z = 64Ht. That is, the row labelled (a) corresponds to a trapped
case, (b) corresponds to Nt = 2Ns and (c) corresponds to uniform Nz).
The heads which develop on the 3D model adjustments are particularly
apparent the top right image. For this data, time t = 150mins, for a heat
pulse of duration 60mins.

for climate prediction and -not least- confirm model parameterisations.
To add further incentive here, it may also be possible to calibrate model
outputs against experimental data sets like TRMM.

There are technical problems to be overcome. For instance, how
would one synchronise fields associated with a set of equivalent events, to
reach well-defined averages? To obtain a statistical sample of (say) Wfast

fields which are meaningfully averaged might require computationally in-
tensive time-shifting of time-series data sets, relative to each other, before
they are combined. Processing all correlations in this way generates a
programming or even machine-learning project which is -presumably-
long term and labour intensive. Even given this level of challenge, the
task has to be worthwhile, given what it might reveal about the UM.

Finally, as we have already alluded, attributing storm propagation to
one or the other mechanism (cold pool versus waves) would an interesting
and worthwhile study. One could re-run CP4 simulations with rainfall
evaporation switched off in the model, to eliminate the cold pools, and see
whether storm propagation still occurs according to the Wslow. Possibly

195



6.5 Epilogue

an optimal outcome for Chapter 5 is that it serves to initiate a PhD
programme, supported and part supervised by the Met Office.

6.5 Epilogue

Figure 6.2 is a snapshot of mid-level (5 km) w (ms−1) from the fully cou-
pled CP4 model, which contains the clear signature of waves: concentric
circles radiate outward from strong up-draught regions. Since strong
up-draughts are associated with deep convection, we speculate that the
waves depicted here are, indeed, forced by convection- we have studied
such waves in chapters 2 and 3. As the CP4 waves travel further from
the equator, they will feel the influence of Coriolis force and our model in
Chapter 3 is ready to investigate the influence of rotation on their tran-
sient dynamics. In Chapter 4, we do investigate the influence of Coriolis
effects, but in the steady state limit (long time response to convection).
In Chapter 5, we studied CP4 directly in an attempt to diagnose some
characteristics of fully coupled gravity waves- which feeds back to the
image in figure 6.2. If I have learned anything, it is that the coupled
dynamics are formidable. This thesis represents my skilfully supervised
attempts to toss a few smooth pebbles into a vast ocean of truth, hoping
to create a few ripples.

Figure 6.2: CP4 wms−1 at 5 km.
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Appendix A

CP4 : Resolution
Comparisons and Processing

A.1 Comparison with Wheeler and Kiladis’

Data Resolution

Wheeler and Kiladis’ OLR experimental data was obtained with differ-
ent spatial-temporal sampling, compared with IMPALA data sets. It
is appropriate to quantify the difference, to understand the resolution
limitations of the resolution of IMPALA at low frequency.

A.1.1 Spatial Resolution

Wheeler and Kiladis report using OLR satellite data on an grid with zonal
spacing defined by the increment δϕ = 2.5o, corresponding to 360/2.5 =
144 points in the meridional direction, with approximate linear spacing:

L(WK) = 2πRe/144 = 2× 3.149× 6371/144 = 280km. (A.1)

This, and the total range of this data (equal to 2πRe) strongly selects for
the small s, long wavelength processes of interest. In fact, these authors
concentrate on data for zonal wavenumber s ∈ [−15, 15]. In comparison,
certain of our IMPALA OLR data is resolved on a grid as fine as 4km,
i.e. L = 4km, so that 280/4 = 70 IMPALA gridded OLR data points
correspond to the spatial region represented by a single datum of Wheeler
and Kiladis. IMPALA, it seems, is resolving much shorter wavelength
disturbances.

A.1.2 Temporal Resolution

Wheeler and Kiladis use approximately 18 consecutive years of satellite
data, sampled twice daily corresponding to a sampling interval T (WK) =
12hr, which, they state, means that it is necessary to take steps to remove
seasonal variations. In comparison, IMPALA model data is sampled
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A.1 Comparison with Wheeler and Kiladis’ Data Resolution

hourly (for OLR) or every 0.25hr (for rainfall) for O(103) days. IMPALA
data resolves much more high frequency phenomena.

A.1.3 Fourier Space Resolution

Since both the spatial and temporal span of Wheeler and Kiladis’ ex-
perimental OLR data is greater than that available in the any of our
IMPALA data, the resolution of their spectra in Fourier space is much
finer. It is appropriate to quantify this difference in resolution to compare
smoothing of data in Fourier space (see below).

Wheeler and Kiladis’ OLR satellite data samples the whole of the
equator, whereas that of the IMPALA data only spans a≤ 8000km range,
over tropical Africa. This means that Wheeler and Kiladis’ resolution
in discrete planetary wave-vector is always more than a factor 5 better
than that for any of our IMPALA data sets, as follows. Let ∆s(WK)

(∆s(IMP )) denote the increment in zonal wavenumber in Wheeler and
Kiladis’ (IMPALA) data, we have

∆s(IMP )

∆s(WK)
≥ 2πRe

8000
=

2π × 6371

8000
= 5.0038 (A.2)

The OLR satellite data of Wheeler and Kiladis is also better resolved in
frequency. Wheeler and Kiladis’ OLR data is of eighteen year duration.
The longest duration IMPALA model rainfall data corresponds to about
10yr. Comparing the frequency step in Fourier space therefore

∆f

∆f (WK)
≥ 18× 365

60480
= 2.6087. (A.3)

Clearly, their enhanced resolution makes it easier for Wheeler and Kiladis
to examine the structure of their experimental OLR frequency spectrum
over more restricted ranges of f , s than that available in the IMPALA
data. However, this disadvantage is somewhat offset, for purposes of
fitting at least. We shall see in the data of Chapter 5 that IMPALA
moisture spectra sets all exhibit trends over larger ranges of f , s than
the corresponding experimental data of Wheeler and Kiladis.

A.1.4 1-2-1 Filtration

We compare the number of cycles of 1− 2− 1 filtration in Fourier space,
N121, to be used to obtain the IMAPLA data red background spectra.
Wheeler and Kiladis state that they set 10 ≤ N121 ≤ 40, to isolate their
experimental red background spectra. Hence, their averaging takes place
over an interval [10×∆s(WK), 40×∆s(WK)] in Fourier space. To average
over a similar interval in Fourier space, the number of cycles of 1− 2− 1
filtration necessary for IMPALA is

10×∆s(WK)

∆s(IMP )
≤ N121 ≤

40×∆s(WK)

∆s(IMP )
, (A.4)

198



A.2 Discussion of DFT Data

which, using equation A.2 reduces to 10
5
≤ N121 ≤ 40

5
. That is, to main-

tain parity with the approach of Wheeler and Kiladis 2 ≤ N121 ≤ 8 i.e.
Initially we set N121 ≈ 10.

A.2 Discussion of DFT Data

Recall, the IMPALA data sets in of Chapter 5 were obtained directly
from Matlab, using that software’s native two-dimensional FFT algo-
rithm. Gf,kx , the residual power, expressed in dB, in typical IMPALA
data sets is shown over the interval s ∈ [−90, 90], f ∈ [0, 3]CPD, once
the red background of figure has been divided-out. Clearly, the DFT
IMPALA data span a much greater range of s but the clearest struc-
tures are apparent only in s ∈ [−90, 90], as expected for long wavelength
correlations characteristic of the convective coupling of interest in this
study. We remark that this range is large compared with that used by
Wheeler and Kiladis. Formally, truncating the range of s effectively fil-
ters for large wave-vector, small wavelengths from the data. The range
of data in both f and s in spectra of Chapter 5 is necessary, honestly
to show the full extent of the candidate structures revealed in the IM-
PALA data. The range of s is considerably greater that that used by
Wheeler and Kiladis, whose experimental data reveals structures over
the smaller interval s ∈ [−15, 15]. The fact that IMPALA data struc-
tures are characterised by a much larger range of s offsets IMPALA’s
increased value of ∆s(IMP ) (which is at least factor 5 larger than that
found by Wheeler and Kiladis) for purposes of fitting spectra- but it is
intrinsically puzzling. The ratio of interval to span typical of our data is

5
2×80

= 0.0313 is compatible to that in the experimental data of Wheeler

and Kiladis’ data, which is 1
2×15

= 0.033. Note that in all the IMPALA
data considered, the power in spectrum decreases as distance from the
origin in Fourier space increases. The discretisation in the IMPALA data
is apparent throughout the spectra of Chapter 5. In particular, ∆s(IMP )

is very visible.

199



References

Alexander, M., Holton, J.R. & Durran, D.R. (1995). The gravity
wave response above deep convection in a squall line simulation. J.
Atmos. Sci., 52, 2212–2226. 22, 24

Alexander, M., Gille, J., Cavanaugh, C., Coffey, M., Craig,
C., Eden, T., Francis, G., Halvorson, C., Hannigan, J.,
Khosravi, R. et al. (2008). Global estimates of gravity wave momen-
tum flux from high resolution dynamics limb sounder observations.
Journal of Geophysical Research: Atmospheres , 113. 24

Andersen, J.A. & Kuang, Z. (2008). A toy model of the instability in
the equatorially trapped convectively coupled waves on the equatorial
beta plane. J. Atmos. Sci., 65, 3736–3757. 24

Arakawa, A. & Schubert, W.H. (1974). Interaction of a cumulus
cloud ensemble with the large-scale environment, part i. J. Atmos. Sci.,
31, 674–701. 58

Arfken, G.B. (1966). Mathematical methods for physicists . Academic
press. 14, 26, 33, 79, 80, 87, 89, 111, 112, 125, 143, 157, 165

Baldwin, M., Gray, L., Dunkerton, T., Hamilton, K., Haynes,
P., Randel, W., Holton, J., Alexander, M., Hirota, I.,
Horinouchi, T. et al. (2001). The quasi-biennial oscillation. Reviews
of Geophysics , 39, 179–229. 19

Bannon, P.R. (1995). Potential vorticity conservation, hydrostatic ad-
justment, and the anelastic approximation. J. Atmos. Sci., 52, 2302–
2312. 20

Barnes, G. & Sieckman, K. (1984). The environment of fast-
and slow-moving tropical mesoscale convective cloud lines. Monthly
Weather Review , 112, 1782–1794. 29

Beres, J.H. (2004). Gravity wave generation by a three-dimensional
thermal forcing. J. Atmos. Sci., 61, 1805–1815. 24, 71

Beres, J.H., Alexander, M.J. & Holton, J.R. (2002). Effects of
tropospheric wind shear on the spectrum of convectively generated
gravity waves. J. Atmos. Sci., 59, 1805–1824. 24, 71

Birch, C., Parker, D., O’Leary, A., Marsham, J., Taylor, C.,
Harris, P. & Lister, G. (2013). Impact of soil moisture and convec-
tively generated waves on the initiation of a West African mesoscale
convective system. Quart. J. Roy. Meteor. Soc., 139, 1712–1730. 6,
23, 24, 54

200



REFERENCES

Bracewell, R.N. & Bracewell, R.N. (1986). The Fourier trans-
form and its applications , vol. 31999. McGraw-Hill New York. 84

Bretherton, C. (1988). Group velocity and the linear response of
stratified fluids to internal heat or mass sources. J. Atmos. Sci., 45,
81–94. 22, 105, 106

Bretherton, C.S. (1987). A theory for nonprecipitating moist convec-
tion between two parallel plates. part i: Thermodynamics and ?linear?
solutions. J. Atmos. Sci., 44, 1809–1827. 105

Bretherton, C.S. & Smolarkiewicz, P.K. (1989). Gravity waves,
compensating subsidence and detrainment around cumulus clouds. J.
Atmos. Sci., 46, 740–759. 21, 22, 24, 54, 105

Bushell, A.C., Butchart, N., Derbyshire, S.H., Jackson,
D.R., Shutts, G.J., Vosper, S.B. & Webster, S. (2015). Pa-
rameterized gravity wave momentum fluxes from sources related to
convection and large-scale precipitation processes in a global atmo-
sphere model. J. Atmos. Sci., 72, 4349–4371. 7

Chagnon, J.M. & Bannon, P.R. (2001). Hydrostatic and geostrophic
adjustment in a compressible atmosphere: Initial response and final
equilibrium to an instantaneous localized heating. J. Atmos. Sci., 58,
3776–3792. 105

Chagnon, J.M. & Bannon, P.R. (2005). Wave response during hy-
drostatic and geostrophic adjustment. part i: Transient dynamics. J.
Atmos. Sci., 62, 1311–1329. 20

Chimonas, G. (1972). The stability of a coupled wave-turbulence system
in a parallel shear flow. Boundary-Layer Meteorology , 2, 444–452. 10

Chumakova, L.G., Rosales, R.R. & Tabak, E.G. (2013). Leaky
rigid lid: New dissipative modes in the troposphere. J. Atmos. Sci.,
70, 3119–3127. 31

Clark, T. & Peltier, W. (1977). On the evolution and stability of
finite-amplitude mountain waves. J. Atmos. Sci., 34, 1715–1730. 10

Clark, T.L., Hauf, T. & Kuettner, J.P. (1986). Convectively
forced internal gravity waves: Results from two-dimensional numerical
experiments. Quart. J. Roy. Meteor. Soc., 112, 899–925. 22, 24

Colby Jr, F.P. (1984). Convective inhibition as a predictor of convec-
tion during ave-sesame ii. Monthly Weather Review , 112, 2239–2252.
5

Cullen, M. (1993). The unified forecast/climate model. Meteorological
Magazine, 122, 81–94. 63

Dewan, E., Picard, R., O’Neil, R., Gardiner, H., Gibson, J.,
Mill, J., Richards, E., Kendra, M. & Gallery, W. (1998).
Msx satellite observations of thunderstorm-generated gravity waves in
mid-wave infrared images of the upper stratosphere. Geophysical Re-
search Letters , 25, 939–942. 71

Dirac, P.A.M. (1981). The principles of quantum mechanics . 27, Ox-
ford university press. 148

201



REFERENCES

Durran, D.R. & Klemp, J.B. (1983). A compressible model for the
simulation of moist mountain waves. Monthly Weather Review , 111,
2341–2361. vii, 19

Edman, J.P. & Romps, D.M. (2017). Beyond the rigid lid: Baroclinic
modes in a structured atmosphere. J. Atmos. Sci., 74, 3551–3566. 23,
25, 26, 29, 30, 87, 105, 106, 136, 186, 188

Emanuel, K.A. (1986). An air-sea interaction theory for tropical cy-
clones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.
25, 146

Emanuel, K.A., David Neelin, J. & Bretherton, C.S. (1994).
On large-scale circulations in convecting atmospheres. Quart. J. Roy.
Meteor. Soc., 120, 1111–1143. 23

Fovell, R., Durran, D. & Holton, J. (1992). Numerical simula-
tions of convectively generated stratospheric gravity waves. J. Atmos.
Sci., 49, 1427–1442. vii, 21, 22

Francis, S.H. (1975). Global propagation of atmospheric gravity waves:
A review. Journal of Atmospheric and terrestrial Physics , 37, 1011–
1054. 18

Fritts, D.C. (1984). Gravity wave saturation in the middle atmosphere:
A review of theory and observations. Reviews of Geophysics , 22, 275–
308. 10, 24

Fritts, D.C. & Alexander, M.J. (2003). Gravity wave dynamics
and effects in the middle atmosphere. Reviews of geophysics , 41. 18,
19

Fritts, D.C. & Luo, Z. (1992). Gravity wave excitation by geostrophic
adjustment of the jet stream. part i: Two-dimensional forcing. J. At-
mos. Sci., 49, 681–697. 71

Fritts, D.C. & Nastrom, G.D. (1992). Sources of mesoscale vari-
ability of gravity waves. part ii: Frontal, convective, and jet stream
excitation. J. Atmos. Sci., 49, 111–127. 24

Fritts, D.C., Smith, R.B., Taylor, M.J., Doyle, J.D., Eck-
ermann, S.D., Dörnbrack, A., Rapp, M., Williams, B.P.,
Pautet, P.D., Bossert, K. et al. (2016). The deep propagating
gravity wave experiment (deepwave): An airborne and ground-based
exploration of gravity wave propagation and effects from their sources
throughout the lower and middle atmosphere. Bulletin of the American
Meteorological Society , 97, 425–453. 10

Gill, A. (1976). Adjustment under gravity in a rotating channel. Jour-
nal of Fluid Mechanics , 77, 603–621. 20

Gill, A. (1980). Some simple solutions for heat-induced tropical circu-
lation. Quart. J. Roy. Meteor. Soc., 106, 447–462. 6

Gill, A. (1984). On the behavior of internal waves in the wakes of
storms. Journal of Physical Oceanography , 14, 1129–1151. 20

Gill, A., Davey, M., Johnson, E. & Linden, P. (1986). Rossby
adjustment over a step. Journal of marine research, 44, 713–738. 20,

202



REFERENCES

105

Gill, A.E. (1982). Atmosphere-ocean dynamics . Elsevier. 12, 13, 16,
20, 31, 105, 132, 141, 142, 143, 145, 150

Gregory, D. & Rowntree, P. (1990). A mass flux convection scheme
with representation of cloud ensemble characteristics and stability-
dependent closure. Monthly Weather Review , 118, 1483–1506. 7

Haertel, P.T. & Johnson, R.H. (1998). Two-day disturbances in the
equatorial western pacific. Quart. J. Roy. Meteor. Soc., 124, 615–636.
141

Haertel, P.T. & Kiladis, G.N. (2004). Dynamics of 2-day equatorial
waves. J. Atmos. Sci., 61, 2707–2721. 141

Halliday, O.J., Griffiths, S.D., Parker, D.J., Stirling, A. &
Vosper, S. (2017). Forced gravity waves and the tropospheric re-
sponse to convection. Quart. J. Roy. Meteor. Soc.. 62

Hankinson, M.C., Reeder, M. & Lane, T. (2014). Gravity waves
generated by convection during TWP-ICE: I. inertia-gravity waves. J.
Geophys. Research: Atmospheres , 119, 5269–5282. 23

Hauf, T. & Clark, T.L. (1989). Three-dimensional numerical exper-
iments on convectively forced internal gravity waves. Quart. J. Roy.
Meteor. Soc., 115, 309–333. 71

Hines, C.O. (1974). The upper atmosphere in motion. Wiley Online
Library. vii, 9, 10

Holton, J., Beres, J. & Zhou, X. (2002). On the vertical scale of
gravity waves excited by localized thermal forcing. J. Atmos. Sci., 59,
2019–2023. 23, 29, 72, 87

Holton, J.R. (1982). The role of gravity wave induced drag and diffu-
sion in the momentum budget of the mesosphere. J. Atmos. Sci., 39,
791–799. 10

Holton, J.R. & Hakim, G.J. (2012). An introduction to dynamic
meteorology , vol. 88. Academic press. 1, 3, 11, 16

Horinouchi, T., Nakamura, T. & Kosaka, J.i. (2002). Convec-
tively generated mesoscale gravity waves simulated throughout the
middle atmosphere. Geophysical research letters , 29, 3–1. 71

Hoskins, B.J., McIntyre, M. & Robertson, A.W. (1985). On the
use and significance of isentropic potential vorticity maps. Quart. J.
Roy. Meteor. Soc., 111, 877–946. 105

Houze Jr, R.A. (2014). Cloud dynamics , vol. 104. Academic press. 2,
4

Jackson, J.D. (1999). Classical electrodynamics. 78

Kiladis, G.N., Thorncroft, C.D. & Hall, N.M. (2006). Three-
dimensional structure and dynamics of african easterly waves. part i:
Observations. J. Atmos. Sci., 63, 2212–2230. 141

Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Straub, K.H.
& Roundy, P.E. (2009). Convectively coupled equatorial waves. Re-
views of Geophysics , 47. 141

203



REFERENCES

Kim, S.H., Chun, H.Y. & Jang, W. (2014). Horizontal divergence of
typhoon-generated gravity waves in the upper troposphere and lower
stratosphere (UTLS) and its influence on typhoon evolution. Atmo-
spheric Chemistry and Physics , 14, 3175–3182. 29

Kim, S.Y. & Chun, H.Y. (2011). Impact of typhoon-generated gravity
waves in the typhoon development. J. Geophys. Research: Letters , 38.
29

Kirshbaum, D.J. & Durran, D.R. (2005). Atmospheric factors gov-
erning banded orographic convection. J. Atmos. Sci., 62, 3758–3774.
5

Kittel, C. & Kroemer, H. (1970). Thermal physics , vol. 9690. Wiley
New York. 4

Koch, S.E., Golus, R.E. & Dorian, P.B. (1988). A mesoscale
gravity wave event observed during ccope. part ii: Interactions be-
tween mesoscale convective systems and the antecedent waves. Monthly
weather review , 116, 2545–2569. 10

Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E.,
Cox, P., Gordon, C., Kanae, S., Kowalczyk, E., Lawrence,
D. et al. (2004). Regions of strong coupling between soil moisture and
precipitation. Science, 305, 1138–1140. 6

Lac, C., Lafore, J. & Redelsperger, J. (2002). Role of gravity
waves in triggering deep convection during TOGA COARE. J. Atmos.
Sci., 59, 1293–1316. 23

Landau, L.D. & Lifshitz, E.M. (1959). Course of theoretical physics .
Elsevier. 13

Lane, T.P. & Reeder, M.J. (2001). Convectively generated gravity
waves and their effect on the cloud environment. J. Atmos. Sci., 58,
2427–2440. 10, 22, 24, 26, 29, 71, 163, 187, 192

Lane, T.P. & Zhang, F. (2011). Coupling between gravity waves and
tropical convection at mesoscales. J. Atmos. Sci., 68, 2582–2598. 23,
24

Lane, T.P., Reeder, M.J. & Clark, T.L. (2001). Numerical mod-
eling of gravity wave generation by deep tropical convection. J. Atmos.
Sci., 58, 1249–1274. 6, 24

Lindzen, R. & Tung, K. (1976). Banded convective activity and
ducted gravity waves. Monthly Weather Review , 104, 1602–1617. 18,
23

Lindzen, R.S. (1974). Wave-CISK in the tropics. J. Atmos. Sci., 31,
156–179. 25, 31, 146, 147, 148

Lindzen, R.S. (1981). Turbulence and stress owing to gravity wave and
tidal breakdown. Journal of Geophysical Research: Oceans , 86, 9707–
9714. 10, 24

Liu, C. & Moncrieff, M.W. (2004). Effects of convectively generated
gravity waves and rotation on the organization of convection. J. Atmos.
Sci., 61, 2218–2227. 24, 105, 106

204



REFERENCES

Mapes, B.E. (1993). Gregarious tropical convection. J. Atmos. Sci., 50,
2026–2037. 22, 25, 54, 187

Mapes, B.E. (1998). The large-scale part of tropical mesoscale convec-
tive system circulations. J. Meteor. Soc. of Japan Series 2 , 76, 29–55.
23

Mapes, B.E. (2000). Convective inhibition, subgrid-scale triggering en-
ergy, and stratiform instability in a toy tropical wave model. J. Atmos.
Sci., 57, 1515–1535. 6, 54

Marsham, J. & Parker, D. (2006). Secondary initiation of multiple
bands of cumulonimbus over southern Britain. II: Dynamics of sec-
ondary initiation. Quart. J. Roy. Meteor. Soc., 132, 1053–1072. 23,
24, 54

Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area.
J. of the Met. Soc. of Japan. Ser. II , 44, 25–43. 6, 27, 142, 143, 146,
187

Monserrat, S. & Thorpe, A.J. (1996). Use of ducting theory in an
observed case of gravity waves. J. Atmos. Sci., 53, 1724–1736. 136

Morse, P.M. & Feshbach, H. (1946). Methods of theoretical physics .
Technology Press. 148

Nappo, C.J. (2013). An introduction to atmospheric gravity waves . Aca-
demic press. 19

Nastrom, G.D. & Fritts, D.C. (1992). Sources of mesoscale variabil-
ity of gravity waves. part i: Topographic excitation. J. Atmos. Sci., 49,
101–110. 6, 10

Nicholls, M.E. (1987). A comparison of the results of a two-
dimensional numerical simulation of a tropical squall line with obser-
vations. Monthly Weather Review , 115, 3055–3077. 29

Nicholls, M.E., Pielke, R.A. & Cotton, W.R. (1991). Thermally
forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48,
1869–1884. 23, 25, 26, 29, 30, 33, 34, 36, 44, 47, 72, 85, 87, 106, 186,
187

Ong, H., Wu, C.M. & Kuo, H.C. (2017). Effects of artificial local
compensation of convective mass flux in the cumulus parameterization.
J. Adv. Model. Earth Syst., 9, 1811–1827. 29

Pandya, R.E., Durran, D.R. & Weisman, M.L. (2000). The influ-
ence of convective thermal forcing on the three-dimensional circulation
around squall lines. J. Atmos. Sci., 57, 29–45. 22, 29

Parker, D.J. (2017). Meteorology of tropical West Africa: The fore-
casters handbook . John Wiley & Sons. 141

Parker, D.J. & Burton, R.R. (2002). The two-dimensional response
of a tropical jet to propagating lines of convection. J. Atmos. Sci., 59,
1263–1273. 25, 33, 36, 44, 85, 189

Piani, C., Durran, D., Alexander, M. & Holton, J. (2000). A
numerical study of three-dimensional gravity waves triggered by deep
tropical convection and their role in the dynamics of the QBO. J.

205



REFERENCES

Atmos. Sci., 57, 3689–3702. 22, 26, 29, 71, 187

Ralph, F., Venkateswaran, V. & Crochet, M. (1993). Observa-
tions of a mesoscale ducted gravity wave. J. Atmos. Sci., 50, 3277–
3291. 18

Raymond, D. & Jiang, H. (1990). A theory for long-lived mesoscale
convective systems. J. Atmos. Sci., 47, 3067–3077. 105

Raymond, D.J. (1983). Wave-CISK in mass flux form. J. Atmos. Sci.,
40, 2561–2574. 25

Reif, F. (2009). Fundamentals of statistical and thermal physics . Wave-
land Press. 4

Rotunno, R., Klemp, J.B. & Weisman, M.L. (1988). A theory for
strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485. 29

Schlemmer, L. & Hohenegger, C. (2014). The formation of wider
and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci.,
71, 2842–2858. 6

Schmidt, J.M. & Cotton, W.R. (1990). Interactions between up-
per and lower tropospheric gravity waves on squall line structure and
maintenance. J. Atmos. Sci., 47, 1205–1222. 29

Scorer, R. (1949). Theory of waves in the lee of mountains. Quart. J.
Roy. Meteor. Soc., 75, 41–56. 18, 19

Shige, S. & Satomura, T. (2000). The gravity wave response in the
troposphere around deep convection. J. Meteor. Soc. of Japan Series
2 , 78, 789–801. 22

Shutts, G. & Gray, M. (1994). A numerical modelling study of the
geostrophic adjustment process following deep convection. Quart. J.
Roy. Meteor. Soc., 120, 1145–1178. 24, 105

Smagorinsky, J. (1963). General circulation experiments with the
primitive equations: I. the basic experiment. Monthly Weather Re-
view , 91, 99–164. 63

Smith, R.B. (1979). The influence of mountains on the atmosphere. In
Advances in geophysics , vol. 21, 87–230, Elsevier. 19

Smith, R.B., Doyle, J.D., Jiang, Q. & Smith, S.A. (2007). Alpine
gravity waves: Lessons from map regarding mountain wave generation
and breaking. Quart. J. Roy. Meteor. Soc., 133, 917–936. 10

Spiegel, E. & Veronis, G. (1960). On the boussinesq approximation
for a compressible fluid. The Astrophysical Journal , 131, 442. 12

Stensrud, D.J. (2009). Parameterization schemes: keys to understand-
ing numerical weather prediction models . Cambridge University Press.
7

Stephens, G.L., L’Ecuyer, T., Forbes, R., Gettlemen, A., Go-
laz, J.C., Bodas-Salcedo, A., Suzuki, K., Gabriel, P. &
Haynes, J. (2010). Dreary state of precipitation in global models.
J. Geophys. Research: Atmospheres , 115. 24

Stratton, R.A., Senior, C.A., Vosper, S.B., Folwell, S.S.,
Boutle, I.A., Earnshaw, P.D., Kendon, E., Lock, A.P., Mal-

206



REFERENCES

colm, A., Manners, J. et al. (2018). A pan-african convection-
permitting regional climate simulation with the met office unified
model: Cp4-africa. Journal of Climate, 31, 3485–3508. 148

Sutherland, B. (1996). Internal gravity wave radiation into weakly
stratified fluid. Physics of Fluids (1994-present), 8, 430–441. 50, 54

Sutherland, B.R. (2010). Internal gravity waves . Cambridge Univer-
sity Press. 54

Takayabu, Y.N. (1994). Large-scale cloud disturbances associated with
equatorial waves. Journal of the Meteorological Society of Japan. Ser.
II , 72, 433–449. 141

Thorpe, A., Miller, M. & Moncrieff, M. (1982). Two-dimensional
convection in non-constant shear: A model of mid-latitude squall lines.
Quart. J. Roy. Meteor. Soc., 108, 739–762. 29

Tompkins, A.M. (2001). Organization of tropical convection in low
vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 1650–
1672. 6

Tulich, S.N. & Kiladis, G.N. (2012). Squall lines and convectively
coupled gravity waves in the tropics: Why do most cloud systems
propagate westward? J. Atmos. Sci., 69, 2995–3012. 24, 27, 141, 151,
183, 187

Tulich, S.N., Randall, D.A. & Mapes, B.E. (2007). Vertical-mode
and cloud decomposition of large-scale convectively coupled gravity
waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64,
1210–1229. 22, 24

Tulich, S.N., Kiladis, G.N. & Suzuki-Parker, A. (2011). Con-
vectively coupled Kelvin and easterly waves in a regional climate sim-
ulation of the tropics. Climate Dynamics , 36, 185–203. 22

Uccellini, L.W. & Koch, S.E. (1987). The synoptic setting and pos-
sible energy sources for mesoscale wave disturbances. Monthly weather
review , 115, 721–729. 10

Vallis, G.K. (2006). Atmospheric and oceanic fluid dynamics . Cam-
bridge University Press. 12, 13, 16

Walker, J. & Rowntree, P. (1977). The effect of soil moisture on
circulation and rainfall in a tropical model. Quart. J. Roy. Meteor.
Soc., 103, 29–46. 6

Walters, D., Boutle, I., Brooks, M., Thomas, M., Stratton,
R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen,
T. et al. (2017). The met office unified model global atmosphere 6.0/6.1
and jules global land 6.0/6.1 configurations. Geoscientific Model De-
velopment , 10, 1487. 7

Webster, P.J. & Lukas, R. (1992). Toga coare: The coupled ocean-
atmosphere response experiment. Bulletin of the American Meteoro-
logical Society , 73, 1377–1416. 10

Wei, J. & Zhang, F. (2014). Mesoscale gravity waves in moist baro-
clinic jet–front systems. J. Atmos. Sci., 71, 929–952. 10

207



REFERENCES

Wheeler, M. & Kiladis, G.N. (1999). Convectively coupled equa-
torial waves: Analysis of clouds and temperature in the wavenumber-
frequency domain. J. Atmos. Sci., 56, 374–399. 7, 22, 27, 141, 149,
151, 152, 153, 180, 182, 187, 192

Wood, N., Staniforth, A., White, A., Allen, T., Diaman-
takis, M., Gross, M., Melvin, T., Smith, C., Vosper, S.,
Zerroukat, M. et al. (2014). An inherently mass-conserving semi-
implicit semi-lagrangian discretization of the deep-atmosphere global
non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 1505–
1520. 63

Yanai, M., Esbensen, S. & Chu, J.H. (1973). Determination of bulk
properties of tropical cloud clusters from large-scale heat and moisture
budgets. J. Atmos. Sci., 30, 611–627. 7

Zhang, F. (2004). Generation of mesoscale gravity waves in upper-
tropospheric jet–front systems. J. Atmos. Sci., 61, 440–457. 24

Zhang, F., Davis, C.A., Kaplan, M.L. & Koch, S.E. (2001).
Wavelet analysis and the governing dynamics of a large-amplitude
mesoscale gravity-wave event along the East Coast of the United
States. Quart. J. Roy. Meteor. Soc., 127, 2209–2245. 23

Zhu, X. & Holton, J.R. (1987). Mean fields induced by local gravity-
wave forcing in the middle atmosphere. J. Atmos. Sci., 44, 620–630.
71

208


	1 Introduction
	1.1 Atmospheric Convection
	1.1.1 The Physics of Moist Convection
	1.1.2 The Role of Tropical Convection in the Weather and Climate System
	1.1.3 Modelling and Forecasting

	1.2 Gravity Waves
	1.2.1 Introduction
	1.2.2 Gravity Wave Modelling

	1.3 Reference Gravity Wave Problems
	1.3.1 Trapped Gravity Waves with Rotation
	1.3.2 Gravity Waves in Unbounded Media with Rotation
	1.3.3 Gravity Waves Reflection and Transmission
	1.3.4 Taylor-Goldstein Equation

	1.4 The Influence of Gravity Waves on the Weather and Climate System
	1.4.1 Ducted Gravity Waves
	1.4.2 Mountain Gravity Waves
	1.4.3 Stratospheric Gravity Waves
	1.4.4 Atmospheric Rossby Adjustment

	1.5 Interaction Between Atmospheric Gravity Waves and Convection
	1.5.1 Convectively Forced Gravity Waves
	1.5.2 Convectively Coupled Waves

	1.6 Motivation and Previous Studies
	1.7 Thesis Outline

	2 Forced Gravity Waves and the Tropospheric Response to Convection
	2.1 Introduction
	2.2 Background
	2.2.1 Previous Work

	2.3 Mathematical Model
	2.3.1 Governing equations
	2.3.2 Modal Expansion
	2.3.3 Buoyancy forcing: temporal structure
	2.3.4 Buoyancy forcing: spatial structure 
	2.3.5 Model Stratification

	2.4 Numerical Implementation and Convergence
	2.4.1 Computation of the Wave Speeds, cn
	2.4.2 Convergence of the Heating Profile
	2.4.3 Convergence to a Radiating Solution

	2.5 The Dynamics of Convective Adjustment
	2.5.1 Response to Steady Heating: Trapping and Radiation 
	2.5.2 Steady versus Transient Heating
	2.5.3 Effects of a Model Stratosphere
	2.5.4 Triggering of Convection

	2.6 Implications for Convection Parameterisation Schemes and GCMs
	2.6.1 Sensitivity of Gravity Wave Response to Horizontal Length Scale of Heating
	2.6.2 Redistribution of heating

	2.7 Comparison with a Unified Model Simulation
	2.7.1 Introduction
	2.7.2 Model Configuration
	2.7.3 Theoretical Model Configuration
	2.7.4 Mesoscale Features
	2.7.5 Dispersion of Wave Modes 

	2.8 Conclusion
	2.9 Summary

	3 Three Dimensional Forced Gravity Waves
	3.1 Introduction
	3.2 Background
	3.3 Mathematical Model
	3.3.1 Governing Equations 
	3.3.2 Model Stratification
	3.3.3 Modal Expansion
	3.3.4 Free Modes
	3.3.5 The Hankel transform and Bessel's Equation
	3.3.6 Transformation of the w Equation
	3.3.7 Buoyancy Forcing: Temporal and Spatial Structure 
	3.3.8 Solutions for w and b

	3.4 Implementation
	3.4.1 Properties of F''.
	3.4.2 Numerical Hankel Inversion
	3.4.3 Modal Propagation

	3.5 The Dynamics of Convective Adjustment
	3.5.1 Trapped Solutions
	3.5.2 Radiation and the Effect of Model Stratosphere

	3.6 Comparison to 2D
	3.7 Summary and Discussion

	4 The Long Time Response to Convection in a Rotating Atmosphere
	4.1 Introduction
	4.2 Background
	4.3 Mathematical Model
	4.3.1 Governing Equations and System Geometry
	4.3.2 System Energy 
	4.3.3 Potential Vorticity
	4.3.4 The Steady State Response
	4.3.5 Master Equation for Pressure
	4.3.6 Modal Expansion
	4.3.7 Model Stratification
	4.3.8 Eigenfunctions
	4.3.9 Matching Conditions and Secular Equation
	4.3.10 Normalization of the Zn(z) 
	4.3.11 Heating coefficients n
	4.3.12 Solutions for b and v
	4.3.13  Summary of Solutions for p, v, b

	4.4 Constant N Approximation 
	4.4.1 Simplified Modal Expansion
	4.4.2 Simplified PV Adjustment

	4.5 Constant N, 0 Approximation
	4.5.1 Trapped Solutions 
	4.5.2 Trapped Solutions for Narrow Heating: the Green Function
	4.5.3 Trapped Solutions for Distributed Heating
	4.5.4 Non-trapped Solutions

	4.6 Results
	4.6.1 The f-dependence
	4.6.2 Potential Vorticity
	4.6.3 The Effect of Rigid Lid

	4.7 Discussion
	4.8 Summary

	5 Convectively Coupled Waves in a General Circulation Model
	5.1 Introduction
	5.2 Background
	5.2.1 Equatorial Wave Theory
	5.2.2 Symmetric/Anti-Symmetric Spectral Decoposition
	5.2.3 Branch Dispersion Relations
	5.2.4 Theory of Equatorial Wave Coupling to Convection

	5.3 CP4 Africa and the IMPALA Project
	5.3.1 IMPALA Perspectives and UM Description

	5.4 Methodology
	5.4.1 Initial Data Processing
	5.4.2 Windowing
	5.4.3 Data Analysis in Reciprocal or Fourier Space
	5.4.4 Red Background Filtration
	5.4.5 Diurnal and Annual Cycle Filtration
	5.4.6 Statistical Significance

	5.5 Results 1: Planetary Waves
	5.5.1 Kelvin Waves and Matsuno Modes
	5.5.2 Fast Gravity Waves

	5.6 Results 2: Fast Gravity Waves
	5.6.1 Processing
	5.6.2 Convection-Wave Interaction

	5.7 Discussion and Conclusions
	5.7.1 Estimating the Effect of Windowing
	5.7.2 Summary
	5.7.3 Discussions
	5.7.4 Conclusions


	6 Conclusions and Further Work
	6.1 Contextual Review
	6.1.1 Beneficiaries

	6.2 Summary of Findings
	6.2.1 2D Model without Rotation
	6.2.2 3D Model
	6.2.3 Steady state (PV) Model with Rotation

	6.3 Coupled Waves in a High Resolution Numerical Model
	6.4 Further Work
	6.5 Epilogue

	A CP4 : Resolution Comparisons and Processing
	A.1 Comparison with Wheeler and Kiladis' Data Resolution
	A.1.1 Spatial Resolution
	A.1.2 Temporal Resolution
	A.1.3 Fourier Space Resolution
	A.1.4 1-2-1 Filtration

	A.2 Discussion of DFT Data

	References

