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Abstract 
 

This research experimentally tests some recent theories of ‘sub-optimal’ behaviour in 

individual decision making. The first chapter experimentally tests a theory by Manski 

(2017), addressed to explaining ‘satisficing’ behaviour. He addresses two key 

questions: when should the decision-maker (DM) satisfice?; and how should the DM 

satisfice? The theoretical results are simple and intuitive; we have tested them 

experimentally. Our results show that some of his propositions (those relating to the 

‘how’) appear to be empirically valid while others (those relating to the ‘when’) are less 

so. The second chapter tests two ‘limited attention’ theories, namely, those of 

Masatlioglu et al (2012), and Lleras et al (2017). These theories are built upon axioms 

which are weakenings of WARP and are experimentally testable using standard choice 

data. We found that one weakening is a more plausible weakening of WARP than the 

other. The third chapter involves the concept of salience. Leland and Schneider (2016) 

proposes axioms of salience perception. We experimentally test these. We also test the 

implications of these axioms for risky choice as encapsulated in their SWUP model. The 

results show general support for the axioms; while those from the implication section 

show some support for the CARA SWUP model, in that, for the majority of the subjects, 

SWUP fitted better than EU. 
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Introduction 
 

 

This thesis consists of three distinct chapters. The over-riding theme of the thesis is the 

experimental investigation of some recent theories of ‘sub-optimal’ behaviour in 

individual decision making. Traditional economic theory assumes that a decision maker 

(DM) is fully rational. By this, it means that the DM must have (near) complete relevant 

information as well as powerful cognitive power in order to achieve global 

optimisation. For example in a choice context, a DM must have a complete preference 

ordering then he/she must be able to deliberate all available options and choose 

consistently according to those ordering. However, as postulated in Simon (1955), DMs 

face constraints as to limits to the amount of information one can possess or limits on 

computational ability. Empirical evidences1 suggest that these lead to departures from 

complete rationality and/or a shortfall from optimal outcomes. A real life example 

would be when someone performs a Google search, most likely he/she will not look 

beyond the first couple of pages of the results. One might argue that the costs involved 

in coming into decisions are already implicitly incorporated in economic models. 

However, unlike any other costs that can be easily incorporated as constraints, 

deliberation cost or the cost of thinking has a special characteristic that prevents itself 

from entering into conventional optimization problem.  Savage (1954) was the first to 

mention informally that an attempt to consider these costs as an act that the people 

must decide will lead to an endless regression. He states: 

‘It might ... be stimulating, and it is certainly more realistic, to think of consideration or 

calculation as itself an act on which the person must decide. Though I have not ex- 

                                                           
1 See Grether and Plott (1979) and Caplin et al (2011), for example. 
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plored the latter possibility carefully, I sus- ect that any attempt to do so leads to fruit- 

Iess and endless regression.’ (Savage (1954), p. 30). 

If there is a cost of thinking then there must also be a cost to think whether it is worth 

thinking and so on. This infinite regress problem prevents optimization from being a 

logical model from the behavioural point of view2. Therefore, there could be other 

models that human actually use. One plausibal hypothesis, which is being investigated 

here, is that DMs simply use heuristics or behavioural rules. 

With respect to decision theory, Subjective Expected Utility Theory (Savage (1954)) is 

considered as the standard, and normatively appealing, theory of rational choice. The 

theory suggests that choices are made under the assumption of a fixed set of 

alternatives with probability or belief of each outcome or alternative formed 

subjectively. These underlying assumptions are simple and elegant. However, they 

might not be true empirically. Another example is the Weak Axiom of Revealed 

Preference (WARP) (Samuelson (1938)) which is regarded as the foundation stone of 

preference theory. Its inference method is sound empirically in that the preferences 

are inferred from observed choices. Again, it receives much empirical criticism possibly 

because it also operates under the full rationality assumption. Hence, the descriptive 

validity of these theories is not clear. A recent development of theoretical research has 

been aimed at describing or addressing ‘sub-optimal’ or ‘boundedly rational’ behaviour 

by incorporating different heuristics or biases. Most of the experimental works that 

test normative models do not perform particularly well3 as they observe ‘what’ people 

choose based on theories that internally assume complete consistency. The failure of 

these theories according to experimental results could stem from the lack of a 

deliberation process in the models. This thesis attempt to shed some light on how 

behavioural heuristics might play a role in bridging the gap between rational theories 

and actual behaviour. Each chapter of the thesis investigates a ‘sub-optimal’ theory, 

                                                           
2 I refer the reader to Conlisk (1966) for the detailed discussion regarding this problem. 
3 See the results of Hey and Pace (2014) and Bone et al. (2009), for example. 



13 
 

concentrating particularly on recently-proposed areas that include the question on 

‘how’ do people come to make a decision. 

The first chapter experimentally tests a new theory by Manski (2017), addressed to 

explaining ‘satisficing’ behaviour. Satisficing occurs when the decision-maker (DM) 

does not go for the ‘best’ option, but is satisfied with something less. Rather 

tautologically, this is when decision-makers are satisfied with achieving some objective, 

rather than in obtaining the best outcome. The term was coined by Herbert Simon in 

1955, and has stimulated many discussions and theories. Prominent amongst these 

theories are models of incomplete preferences, models of behaviour under ambiguity, 

theories of rational inattention, and search theories. However, all seem to lack an 

answer to at least one of two key questions: when should the DM satisfice?; 

and how should the DM satisfice? In a sense, search models answer the latter question 

(in that the theory tells the DM when to stop searching), but not the former; moreover, 

usually the question as to whether any search at all is justified is left to a footnote. 

Manski addresses these questions by setting the decision problem in an ambiguous 

situation (so that probabilities do not exist, and many preference functionals can 

therefore not be applied) and by using the Minimax Regret criterion as the preference 

functional. The theoretical results are simple and intuitive. Deliberation costs play a 

central role. ‘Optimising’ or ‘Satisficing’ will be the decision if their respective 

associated cost is low enough. If both costs are sufficiently large then ‘No Deliberation’ 

will be preferred.  The theory also suggests what is the level of the threshold level of 

satisficing (aspiration level) should be. We have tested these propositions 

experimentally. Our results show that some of them (those relating to the ‘how’) 

appear to be empirically valid while others (those relating to the ‘when’) are less so. 

Subjects do not follow the theory in term of what strategy to choose. However, when 

they chose to satisfice, the aspiration level is close to theory prediction that is, is half 

way between the relevant upper and lower bounds of the payoffs. Choosing a strategy 

is a particularly difficult task but choosing an aspiration level is less difficult and is more 

intuitive.  These results may not be surprising. The more straightforward bit of the 

theory is more likely to be empirically accurate. 
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The second chapter investigates one of the plausible alternative explanations for the 

assumption of complete and exhaustive deliberation process that has recently received 

attention. The motivating example is that it is unlikely that people go through every 

item in the supermarket shelves or go through every result of their Google search. 

Instead, DMs have limited attention. We employ an experimental procedure similar to 

that of Manzini and Mariotti (2010) to test and compare two ‘limited attention’ 

theories, namely, those of Masatlioglu et al (2012), and Lleras et al (2017). These 

theories are built upon axioms which are weakenings of WARP. The validity of the 

predictions coming out of these theories depends upon the validity of the underlying 

axioms. This paper uses standard choice data to determine the (relative) violation rate 

of their underlying axioms. We observe the number of actual violations of the axiom 

underlying each theory and compare them with a benchmark so that we can penalise 

them for different degree of restrictions. A ‘benchmark’ was derived from simulations 

of random behaviour. We found that Lleras et al is the more restricted version when 

compared to Masatlioglu et al. Its ability to extract preferences is higher. Masatlioglu 

et al seems to perform the best in the consistencies analyses which is the main 

observation for the axiom violations and appears to be the empirically more plausible 

weakening of WARP using this criteria.  

The third chapter involves the concept of salience. Leland and Schneider (2016a) 

propose three principles to characterise properties of the salience perceptual system. 

We experimentally test these directly using non-symbolic stimuli. We also test the 

implications of these axioms for risky choice as encapsulated in their SWUP model on 

the same experimental participants. SWUP model differs from Expected Utility (EU) 

theory in that outcomes and probabilities are weighted by their salience. The 

experiments involved pairwise choice questions which were divided into two sections. 

The first section tests the axioms directly. The axioms are designed to say when a pair 

of items (x,y) is ‘more salient’ than another pair (x’,y’). We had to interpret what this 

means. Dictionaries define ‘salient’ as something important or noticeable, or, 

occasionally, as something very important or very noticeable. Nowhere is ‘more salient’ 

defined, but, in the spirit of the dictionary definitions, we take it to mean ‘more 
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noticeable’. So, in keeping with this spirit, we devised an experiment to see whether 

subjects could detect ‘more noticeable’.  To do so, in each problem subjects were 

presented with two boxes, each containing red and blue circles. The task implicitly, but 

not explicitly, was to choose whichever box was more salient according to the axioms. 

The second section tests the implications of these axioms for risky choice. Subjects 

were presented with a series of pairwise lottery choices. The results from the first 

section show general support for the axioms; while those from the second section show 

some support for the CARA SWUP model, in that, for the majority of the subjects, SWUP 

fitted better than EU. There is also a modest connection between the violations of the 

axioms and the violations of the predictions. The finding provides a link between a basic 

property of salience perception and risk seeking behaviour in long-shot lotteries. 

What we have learned from these experiments is that it is likely people employ 

heuristics somewhere in their decision process. This is part of the reason why 

optimality or consistency is difficult to achieve. However, there are sceptics, 

particularly from theorists’ points of view, that heuristics are inconsistent and that we 

could need one model for each type of deviation from optimality. We also find some 

support for the traditional theories such as WARP in the second chapter and EU in the 

third chapter. This suggests that DMs are not solely using heuristics but, possibly with 

learning and more careful deliberation, also conform to consistent models. Hence, the 

answer for better explanatory model possibly lies between the end of two spectrums 

in which one extreme is the complete consistency to full rationality and another is 

heuristics and biases. ‘How’ people come to make a decision must be taken into 

account.     
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Chapter 1 

 

When and How to Satisfice: 

An Experimental Investigation 
 

 

 

1.1  Introduction 

 

This paper is about satisficing behaviour. Way back in 1955 Herbert Simon made a 

call for a new kind of economics stating that:   

 

“the task is to replace the global rationality of economic man with a 

kind of rational behavior that is compatible with the access to 

information and the computational capacities that are actually 

possessed by organisms, including man, in the kinds of environment in 

which such organisms exist”. (p 99)                                                                                                                                             

 

There is a fundamental conflict here provoked by the use of the word ‘rational’, and 

economists’ obsession with it. The problem is that the expression ‘rational behaviour’ 

covers virtually all forms of behaviour, as long as it is motivated by some ‘rational’ 

objective function, and the decision-maker has all relevant information available to him 
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or to her, and the decision-maker (henceforth, DM) can perform all the necessary 

calculations costlessly. If calculations are costly, then we are led into the infinite 

regression problem, first pointed out by Conlisk in 1996, and rational behaviour, as 

defined by economists, cannot exist. We are therefore constrained to operate with 

rational models, defined as above. The way forward, within the economics paradigm, 

is therefore to weaken our ideas of what we mean by rational behaviour. This is the 

way that economics has been moving. Prominent amongst these latter weaker theories 

are theories of incomplete preferences (Ok et al (2012), Nau (2006), Mandler (2005), 

Dubra et al (2004)); theories of behaviour under ambiguity (Etner et al (2012), Gajdos 

et al (2008), Ghirardarto et al (2004), Hayashi and Wada (2010), Klibanoff et al (2005), 

Schmeidler (1989) and Siniscalchi (2009)); theories of rational inattention (Sims (2003), 

Manzini and Mariotti (2014), Matejka and McKay (2015), Caplin and Dean (2015)); and 

search theories (Masatlioglu and Nakajima (2013),  McCall (1970), Morgan and 

Manning (1985), and Stigler (1961)). A useful survey of satisficing choice procedures 

can be found in Papi (2012). 

Almost definitionally, models of incomplete preferences have to be concerned with 

satisficing: if the DM does not know his or her preferences, it is clearly impossible to 

find the best action. These models effectively impose satisficing as the only possible 

strategy. The problem here is that complete predictions of behaviour must also be 

impossible. Prediction is possible in models of behaviour under ambiguity. But here 

again satisficing behaviour ‘must’ occur, if only because not all the relevant information 

is available to the DM. Unless the DM’s information is objectively correct, there is 

presumably always some action that is better than the one chosen by the DM. But here 

the DM does not choose to satisfice; nor does he or she choose how to satisfice. Models 

of rational inattention also capture the idea of ‘satisficing’ behaviour – in that choice is 

made from a subset of the set of possible actions – those which capture the attention 

of the DM, that is, those which are in the consideration set of the DM. However, these 

theories are silent on the reasons for the formation of a consideration set, and, in some 

of them, on how the consideration set is formed. 
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We examine a new theory – that of Manski (2017) – which might be classified as an 

extended search model. Search models seem to be closest to the scenario in which 

Manski’s paper is set. Standard search models assume that the DM is searching for the 

highest number in some distribution, and that there is a cost of obtaining a drawing 

from that distribution. Because of this cost, the DM does not keep on searching until 

he or she finds the highest number: generally he or she should keep on searching until 

a ‘sufficiently’ high number is found. This could be termed the DM’s aspiration level. 

One interpretation of Manski’s paper is that he generalises the story: in addition to 

being able to search for numbers greater than some (or several) aspiration level(s), the 

DM can pay a higher search cost and be able to find the highest number, and also the 

DM can choose not to indulge in any search and simply receive a lower number. Manski 

not only considers choice between these three strategies, but also the choice of the 

aspiration level(s). This is the ‘how’ of Manski’s theory: he explains how many times 

satisficing should be implemented, how aspiration levels should be formed and how 

they should be changed in the light of the information received4. 

We experimentally test this new theory. Some of the other models that we have 

discussed have also been tested experimentally; for incomplete preferences we refer 

the reader to Cettolin and Riedl (2016), Costa-Gomes et al (2014) and Danan and 

Ziegelmeyer (2006); for behaviour under ambiguity to Abdellaoui et al (2011), Ahn et 

al (2010), Halevy (2007), Hey and Pace (2014) and Hey et al (2010); for rational 

inattention to Chetty et al (2009), De Los Santos et al (2012); and for search theories to  

Caplin et al (2011), De Los Santos et al (2012), Hayashi and Wada (2010) and Reutskaja 

et al (2011). Our experimental test has some similarities in common with some of these 

and some differences. In some ways our test is closest to that of Hayashi and Wada 

(2010), though they test minimax, α-maximin and the (linear) contraction model 

                                                           
4 There are echoes of this in Selten (1998), though he notes on page 201 that “In this respect, 
the role of aspiration levels in [Selten’s] model is different from that in the satisficing processes 
described by Simon, where it is assumed that it can be immediately seen whether an alternative 
satisfies the aspiration level or not. The situation of the decision maker in [Selten’s] model is 
different.” 
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(Gajdos et al (2008)). We test Manski’s model and have a different way of generating 

imprecise information/ambiguity. 

In the next section we describe the Manski model, while in section 3 we discuss the 

experimental design. Our results are in section 4, and section 5 concludes.  

 

1.2  Manski’s Model of Satisficing 

 

In the model the DM has to choose some action. The DM knows that there is a set of 

actions, each member of the set implying some payoff. The payoffs of these actions are 

bounded between a lower bound, L, and an upper bound, U, which are known to the 

DM. Hence, without costly deliberation, the DM faces a problem under ambiguity as he 

or she does not have sufficient knowledge to determine the optimal decision – that of 

choosing the action which yields the highest payoff. However, the DM can learn more 

about the payoff values subject to different costs, which in turn, yield different 

benefits. There are three available deliberation strategies: ‘No Deliberation’, 

‘Satisficing’, and ‘Optimising’. ‘No Deliberation’ incurs no cost and yields only the value 

of the payoff of an arbitrarily chosen action. ‘Optimising’ has a positive cost (K) and 

reveals the maximum payoff value. ‘Satisficing’ has a positive cost (k) and provides 

information whether there are actions that are at least as large as some specified 

aspiration level.  

 

Crucial to the model is that the assumed objective of the DM is the minimisation of 

maximum regret (MMR). One reason for this is that there is no known probability 

distribution of the payoffs, so, for example Expected Utility theory and its various 

generalisations cannot be applied5. Additionally, and crucially for our experiment, the 

solution is an ex ante solution, saying what the DM should plan to do as viewed from 

                                                           
5 Manski notes that “The maximin criterion gives the uninteresting result that the person should 

always choose the null option when deliberation is costly.” 
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the beginning of the problem. As Manski writes “I study ex ante minimax-regret (MMR) 

decision making with commitment”. So the DM is perceived of as choosing a strategy 

at the beginning of the problem, and then implementing it. This implies a resolute 

decision-maker. If the DM is not resolute the solution may not be applicable. 

The paper applies the ex ante minimax-regret rule to this environment and derives a 

set of simple, yet intuitive, decision criteria for both the static and the dynamic choice 

situation. Simon (1955) also suggested that there can be a sequence of 

deliberations/satisficing where the DM adjusts his or her aspiration level in the light of 

information discovered. Hence, the dynamic choice situation is of particular interest. 

Manski’s theory (in his Proposition 2) is that: 

(1) The optimal (maximum) number of rounds of deliberation (M*) if the DM uses 

a satisficing strategy is given by: 

)
log(

* int[ ]
log(2)

U L

kM



  

(2) If the DM uses a satisficing strategy, the DM sets the aspiration level tm in the 

m’th round of satisficing as follows: 

2
m m

m

L U
t


  

Here tm denotes the aspiration level in round m and Lm and Um are the lower and 

upper bounds on the payoffs given what the DM has observed up to round m. 

(3)  

a. Optimisation is an MMR decision if: 

*
 and *

2M

U L
K U L K kM


     

b. Satisficing with M* and tm (m=1,…,M*) is an MMR decision if: 

*
 and *

2 2M

U L U L
k K kM

 
    

c. No Deliberation is an MMR decision if: 
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 and 
2

U L
k K U L


    

The intuition of the theory is simple. Deliberation costs play a central role. ‘Optimising’ 

or ‘Satisficing’ will be the decision if their respective associated cost (K,k) is low enough. 

If both costs are sufficiently large then ‘No Deliberation’ will be preferred. If ‘Satisficing’ 

is chosen, the aspiration level is midway between the relevant lower bound and the 

relevant upper bound, while the number of deliberation rounds is decreasing in its 

associated cost. This theory is different from the existing search literature in that it 

provides the concept of satisficing search that follows more closely Simon’s perception 

of adaptive aspiration levels than standard search models.  It clearly states when the 

DM should satisfice. It also provides a solution to the choice of aspiration levels. 

Before we move on to the experiment, let us briefly translate the above theory into a 

description of behaviour. The DM starts with knowing that there is a set of payoffs (the 

number of them unknown) lying between some lower bound L and some upper bound 

U. The DM is told the values of k and K. The first thing that the DM needs to do is to 

design a strategy. This depends on the values of k and K. If these are sufficiently large 

(see 3c above), the DM decides not to incur these costs and chooses ‘No Deliberation’. 

The DM is then told and given the payoff of the first action in the choice set, and that 

is the end of the story.  

If K is sufficiently small (see 3a above) the DM decides to incur this cost and ‘Optimise’ 

and hence learn the highest payoff. He or she gets paid the highest payoff minus K, and 

that is the end of the story.  

The interesting case is 3b, where k is sufficiently small and K sufficiently large. The DM 

then decides to satisfice with (a maximum6 of) M* rounds (as given by 1 above)7 of 

satisficing. In each of these M* rounds, the DM sets an aspiration level, pays k, and is 

told at the end of the round whether or not there are payoffs greater than or equal to 

                                                           
6 Depending on what the DM learns he or she may not implement all M* rounds. 
7 After these M* rounds, the DM should choose ‘No Deliberation’. Subjects were informed about 
that. 



22 
 

the stated aspiration level. More precisely, the DM is told whether there are 0, 1 or 

more than 1 payoffs greater than or equal to the stated aspiration level .The DM then 

updates his or her views about the lower and upper bounds on the payoffs in the light 

of the information received. This updating procedure is simple: 

 If there are no payoffs greater than aspiration level  tm
 
 then Lm+1 = Lm  and 

Um+1 = tm 

 

 If there are payoffs greater than aspiration level tm then Lm+1 = tm  and Um+1 = 
Um 

 

where Lm  and Um  are the lower and upper bounds after m rounds of satisficing. 

 

When at most M* rounds have been completed the DM gets paid the payoff of the first 

action in the range between his or her current lower bound and the current upper 

bound minus kM (the costs of deliberation), where M is the actual number of rounds 

of satisficing implemented (M≤M*). 

This paper reports on an experiment to test the theory. We test whether subjects 

choose between ‘No Deliberation’, ‘Satisficing’ and ‘Optimising’ correctly (as in (3) 

above). We also test, when subjects choose to satisfice, whether they choose the 

correct number of rounds of satisficing (as in (1) above), and whether aspiration levels 

are chosen correctly (as in (2) above). 

 

1.3  Experimental design 

 

The actual experimental design differs in certain respects from the design of the theory. 

First, we told subjects that if they implemented ‘No Deliberation’ they would be paid 

the lowest payoff in the choice set, rather than the payoff of the first-ordered element 

of the choice set. Second, we only told subjects, when they chose to satisfice with an 

aspiration level t, whether there were or were not payoffs greater than or equal to t, 

and not whether there were 0, 1 or more than 1. Moreover, if after satisficing for m 
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rounds, and discovering that there were payoffs in a set [Lm,Um], if they chose ‘No 

(further) Deliberation’ at that point they would get a payoff equal to the lowest payoff 

in the set [Lm,Um] minus mk. These differences do not change the predictions of the 

theory in that an MMR decision-maker will always assume that the first element is the 

lowest element. Additionally, the ex ante choice of M* remains the same. 

 

Let us give an example (which was included in the Instructions to the subjects). To make 

this example clear, we need to introduce some notation: the variable lvgeal is defined 

as the lowest payoff greater than or equal to the highest aspiration level for which there 

are payoffs greater than or equal to the aspiration level.   

On the screen (see the screenshot below) there were three buttons 

 

 

 

The one on the left corresponds to ‘No Deliberation’, the one in the middle to ‘Satisfice’ 

and the one on the right to ‘Optimise’. In this example k=1 and K=10.  

Suppose – though the DM does not know this and our subjects were not told this – 

that the payoffs are  

55 18 75 19 9 

If the DM clicks on the left-hand button straight away the income would be 9 (the 

lowest payoff). 

If the DM clicks on the right-hand button straight away the income would be 65 (the 

highest payoff, 75, minus K).  

If the DM clicked on the middle button and specified an aspiration level of 40, he or she 

would be told that there are payoffs greater than this, but would not be told how many 
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nor what they are. The software would, however, note that the lowest payoff greater 

than or equal to 40 is 55. This would be the lvgeal defined above. If the DM clicked on 

the left-hand button at this stage his or her income would be 54 (lvgeal minus k). After 

this first round of satisficing the DM’s L1 and U1 are 40 and 100 respectively. 

If the DM now clicks on the middle button again and now specifies an aspiration level 

of 70, he or she would be told that there are payoffs greater than this, but would not 

be told how many nor what they are. The software would, however, note that the 

lowest payoff greater than or equal to 70 is 75. This would become the lvgeal. If the 

DM clicks on the left-hand button at this stage the income for this problem would be 

73 (lvgeal minus 2k). After this second round of satisficing the DM’s L2 and U2 are 70 

and 100 respectively. 

If the DM now clicks on the middle button a third time, and now specifies an aspiration 

level of 80, he or she would be told that there are no payoffs greater than this. The 

software would, however, keep the lvgeal, 75, in memory. If the DM clicks on the left-

hand button at this stage the income for this problem would be 72 (lvgeal minus 3k). 

After this third round of satisficing the DM’s L3 and U3 are 70 and 80 respectively. 

Subjects could keep on clicking on the middle button as often as they wanted, but they 

were told that the cost would be deducted from the payoff each time.  

Note that in this particular case, it is better to click on the middle button twice (with 

aspiration levels of 40 and 70) and then on the left-hand button, rather than to click on 

either the left-hand button or the right-hand button straight away, and better than to 

click on the middle button one or three times (with aspiration levels of 40, 70 and 80) 

and then on the left-hand button. But this is not always the case. 

In the experiment, 48 subjects were sequentially presented with 100 problems on the 

computer screen, all of the same type. They were given written Instructions and then 

shown a PowerPoint presentation of the instruction before going on to the main 

experiment. Subjects were informed of the lower (L) and upper (U) bounds on the 

payoffs in each problem; these were fixed at 1 and 100 respectively. They were also 

https://www.york.ac.uk/economics/research/centres/experimental-economics/research/unpublishedpapers2/
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told the two types of cost; the cost of finding out whether there are any payoffs greater 

or equal to some specified aspiration level (k) and the cost of finding the highest payoff 

(K). The number of payoffs (N) was fixed at 5, though subjects were not given this 

information8. We used the procedure in Stecher et al (2011) to generate the ambiguous 

distributed payoffs. This procedure creates complete ambiguity for subjects as they 

have no way to put any probabilities on the payoffs. To make this clear to the subjects 

we inserted Figures which can be found in the   1A and 1B in the Instructions. Each of 

them contains 49 distributions, each of 10,000 replications. In the Figure in appendix 

1B the drawings were from a uniform distribution over the entire range; in the Figure 

in appendix 1C from an ambiguous distribution as derived using the Stecher et al (2011) 

method. It will be seen that all the distributions in Figure in the appendix 1B  are 

approximately uniform, while those in Figure in the appendix 1C  are all completely 

different. We told the subjects that “this means that one cannot attach probabilities to 

each of the numbers coming up. Probabilities are undefined.” 

We ran two different treatments, Treatment 1 and Treatment 2. In each of these 

subjects were presented with 100 problems. In Treatment 1, we had four different 

values for k and K (with N, L and U fixed across the 100 problems); and we gave the 

subjects these 4 problems in 4 blocks of 25, with the order of the blocks randomised 

across subjects. In Treatment 2, we had 100 different values for k and K in each of the 

100 problems, and presented the problems in a randomised order (again with N, L and 

U fixed across the 100 problems). Figures 1.1 illustrates. Figure 1.2 shows the 

predictions of the theory. 

 

                                                           
8 This is not relevant to the theory. 
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Figure 1.1:  Sets of k and K for Treatment 1 (top) and Treatment 2 (bottom) plotted 

in the parameter space. 
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Figure 1.2:  Partition of the parameter space into areas corresponding to the 

theoretical predictions 

 

All 48 subjects completed the experiment which was conducted in the EXEC Lab at the 

University of York. Subjects’ ages ranged from 18 to 44 years. Educational backgrounds 

were: high school graduate or equivalent (9 subjects); college credit (8); bachelor 

degree (19); master degree (11); and professional degree (1). 46 subjects reported 

themselves as a student (8 subjects in a bachelor degree, 9 subjects in a master degree 

and 11 subjects in doctoral degree); one subject was a member of staff at the University 

of York; one subject did not report his/her current degree/position. Subjects’ 

ethnicities were mainly White (26 subjects) while 18 were Asian/Pacific Islander, 3 were 

Black or African American and 1 other. There were only 5 subjects who had any work 

experience related to finance or economics, but most of them (34 subjects) had 

previously participated in an economics experiment.  

To be a fair test of the theory, we need to give incentives to the subjects to act in 

accordance with it. We should repeat the fact that the theory is an ex ante theory: it 

tells DMs what to do as viewed from the beginning of a problem; it assumes 

commitment. Clearly, given the nature of the experiment, we cannot observe what the 

subjects plan ex ante, nor can we check whether they implement their plan. All we can 

https://www.york.ac.uk/economics/research/centres/experimental-economics/
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observe is what they do, so we are testing the theory in its entirety – meaning the 

validity of all its assumptions9. Ex ante the objective of the theory is to minimise the 

maximum regret. Ex ante Regret is the difference between the maximum possible 

income and their actual income. The maximum possible value of the former is 

exogenous – it depends upon the problem which in our case is always 100 ex ante. So 

minimising the ex ante maximum regret is achieved by maximising their income. So we 

paid them their (average10) income. 

A subject’s payment from the experiment was their average income from all 100 

problems plus the show-up fee of £2.50. Average income was expressed in 

Experimental Currency Units (ECU). Each ECU was worth 33⅓p; that is 3 ECU was 

equivalent to £1. They filled in a brief questionnaire after completing all problems on 

the computer screen, were paid, signed a receipt and were free to go. The average 

payment was £13.05. This experiment was run using purpose-written software written 

(mainly by Paolo Crosetto) in Python 2.7. 

 

1.4  Results and analyses 

 

The purpose of the experiment was to test Proposition 2 of Manski (2017) as stated in 

section 1.2. First, we compare the actual and theoretical decisions for all subjects and 

in each treatment. Second, we compare the actual and theoretical predictions for 

income and regret. Third, we analyse the number of rounds of satisficing by comparing 

the theoretical and actual number for all subjects and both treatments. Finally, we 

                                                           
9 An alternative design would be to ask subjects to state a plan and then we implement it. But 
‘stating a plan’ is not straightforward – not only would subjects have to state whether they want 
to have ‘No Deliberation’, ‘Optimise’ or ‘Satisfice’, they would also have to specify their rules 
for choosing their aspiration levels. Asking subjects to do this would be immeasurably more 
difficult than asking them to play out the problems. We expand on this in our conclusions. 
10 If subjects are maximising their income on each problem they are maximising their average 
income, and vice versa, as problems are independent. 
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analyse the subjects’ actual aspiration levels and compare them with those of the 

theory.  

 

1.4.1  When to Satisfice 

 

Our experiment gives us 4,800 decisions (between ‘No Deliberation’, ‘Satisficing’ and 

‘Optimising’) across 48 subjects and 100 problems. Table 1.1 gives a comparison of the 

actual and the theoretical decisions; here the main diagonal indicates where subjects 

followed the theoretical prediction.  From this table it can be seen that 2,693 out of the 

4,800 decisions (56.10%) are in agreement with the theoretical. The number of 

theoretical predictions for each strategy can be found at the end of each row while the 

total number of subjects’ decisions can be found at the bottom of each column. 

Subjects appear to choose ‘No Deliberation’ significantly more than the theoretical 

prediction (49.88% compared with 17.50%). Comparing Treatment 1 with Treatment 2 

shows that Treatment 2 is closer to the Manski optimal than Treatment 1: 1,476 out of 

2,400 actual decisions (61.50%) match with the theoretical in Treatment 2 compared 

to 1,217 out of 2,400 actual decisions (50.71%) in Treatment 1.11 

 
 

Subjects’ choices 
 

No 
Deliberation 

Satisfice Optimise Totals 

Manski’s 
theory 

No 
Deliberation 

717 
(85.36%) 

98 
(11.67%) 

25 
(2.98%) 

840 
(17.5%) 

Satisfice 
1,079 

(34.58%) 
1,895 

(60.74%) 
146 

(4.68%) 
3,120 
(65%) 

Optimise 
598 

(71.19%) 
161 

(19.17%) 
81 

(9.64%) 
840 

(17.5%)  
Totals 2,394 

(49.88%) 
2,154 

(44.88%) 
252 

(5.25%) 
4,800 

 
*The number in parentheses indicates the percentage by row and column 

 

Table 1.1:  Actual vs Theoretical Decisions for All the Subjects 

                                                           
11 Tables reporting results for treatment 1 and treatment 2 can be found in the Appendix 1A. 
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In Table 1.2 we compare the actual and theoretical average income and average regret. 

Obviously, it must be the case that actual regret is higher than the theoretical regret 

(as subjects were not always following the theory). Subjects also have a higher average 

income. This suggests that subjects may have been working with a different objective 

function12, or making some assumption about the distribution of the payoffs that was 

not true13. Comparing the two treatments, we see that subjects in Treatment 2 have 

relatively better results in terms of the average income (33.40 ECU to 30.10 ECU) and 

regret (95.20 ECU to 121.10 ECU) than in Treatment 1. This is interesting, as the idea of 

Treatment 1 (where each problem was repeated 25 times) was to give subjects a 

chance to learn; we had expected performance to be better there. Perhaps they learnt 

about the ‘distribution’ of payoffs and therefore departed from the theory? 

 

Average Income and Regret 
  

Theoretical Actual 

All Subjects 
Income 24.30 31.80 

Regret 65.70 108.20 

Treatment 1 
Income 21.60 30.10 

Regret 72.70 121.10 

Treatment 2 
Income 270 33.40 

Regret 58.70 95.20 

 

Table 1.2:  Actual Average vs Theoretical Average for Income and Regret 

 

1.4.2  How to Satisfice 

 

                                                           
12 For example, maximising Expected Utility. 
13 For example, assuming that the distribution was uniform. 
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Table 1.3 compares the theoretical (maximum14) and the actual number of rounds of 

satisficing (obviously restricted to the cases where they actually satisficed). There are 

452 problems out of 3,120 problems (14.49%), where the subjects should satisfice, and 

where they choose the same number of rounds of deliberation as the theoretical 

prediction. The difference between treatments is small: 16.67% and 11.89% matches 

of theoretical and actual number of rounds of deliberation, for treatments 1 and 2 

respectively. Generally they choose fewer rounds of satisficing than the theory 

predicts15. 

 

Actual number of rounds of satisficing 

M
an

sk
i’s

 t
h

e
o

ry
 

M 0 1 2 3 4 5 6 7 8 9 11 Totals 

0 1,448 200 19 8 1 2 1 0 0 0 1 1,680 

1 852 312 46 8 4 0 0 1 0 1 0 1,224 

2 132 163 34 7 0 0 0 0 0 0 0 336 

3 190 532 248 69 13 4 0 0 0 0 0 1,056 

4 19 89 85 38 27 4 1 0 1 0 0 264 

5 18 71 67 44 26 10 1 2 0 1 0 240 

Tots 2,659 1,367 499 174 71 20 3 3 1 2 1 4,800 

 

Table 1.3:  Actual vs Theoretical Number of Rounds of Satisficing 

 

Figure 1.3 shows a plot of actual vs theoretical aspiration levels for all subjects (and 

separately for those in Treatments 1 and 2) where the subjects chose to satisfice16. We 

calculate the theoretical aspiration level based on the relevant lower and upper bounds 

at the time of choosing satisficing. The forty-five degree line shows what subjects 

should do if they select their aspiration level according to the theory. The figure shows 

that subjects’ aspiration levels increase with the theoretical levels, although the mean 

                                                           
14 Note that if subjects were following the theory with our design, the actual number of rounds 
would be equal to the M*, while in the theory the actual number could be less than M* (because 
they would stop satisficing if they discovered the highest payoff). 
15 This is not a consequence of our experimental design which encourages subjects to choose 
the maximum number of rounds. Indeed with the theory we might observe numbers below the 
theoretical maximum. 
16 We exclude the few outliers when the subjects put their aspiration level above 100. There 

were 39 (1.2%) out or out of 3347 cases where this happened. 
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equality  test shows a rejection of equal means between the actual and theoretical 

aspiration level when subjects do satisficing (t-test = 15.19, p = 0.000) for all the 

subjects. Doing this analysis for each treatment separately shows the same result. 

 

 

 

Figure 1.3:  Actual vs Theoretical Aspiration Level 

 

We now investigate more closely whether subjects set their aspiration level as the 

theory predicts: equal to the mid-point between the relevant upper and lower bounds. 

We report below regressions of the actual aspiration level against the optimal level. If 

the theory holds, the intercept should be zero and the slope should be equal to 1. We 

omit observations where the aspiration level was above the upper bound (see footnote 

9), and accordingly, carry out truncated regressions. Before we proceed to the 
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regressions, we note that the correlations between the actual and theoretical 

aspiration level 0.544 over all subjects, 0.513 for Treatment 1 and 0.569 for Treatment 

2. 

 

 Model 1 Model 2 

Theoretical aspiration 
level 

0.994 
(0.0208) 

1.144 
(0.0071) 

Constant 
7.662* 
(1.035)  

Observations 3,308 3,308 

Wald chi2 2,273.52 25,592.94 

Note: *indicates significance at 1% against the null that the true is 1.0 or 0.0 as 
appropriate. 

 

Table 1.4:  Regressions of the Actual Aspiration Level on the Theoretical Aspiration 

Level for All Subjects 

 

Table 1.4 shows that the coefficient on the theoretical aspiration level is not 

significantly different from 1 in Model 1. However in Model 1 we have included a 

constant term which should not be there; unfortunately it is significantly different from 

0, which it should not be.  If we remove the constant term to get Model 2, we find that 

the slope coefficient is almost significantly different from 1. So this table tells us that 

subjects are almost but not quite following the Manski’s rule. 

We broke down the analysis of Table 1.4 by treatments. The results are similar for 

Model 1 in both treatments. In Model 2, we find that the slope coefficient is 

significantly different from 1 in both treatments. 

We now delve deeper and try to understand how the actual aspiration levels are 

determined, and in particular, how they are related to the upper and lower bounds. 

We present below regressions of the subjects’ aspiration level as a function of these 

bounds. If following the theory the relationship should be ALim = 0.5Lim + 0.5Uim (where 

ALim is subject i’s aspiration level in round m of satisficing and Lim and Uim are the 
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relevant lower and upper bounds). As before, we have excluded outliers (aspiration 

levels greater than the upper bound) from the regression and performed truncated 

regressions.  

 

 Model 1 Model 2 

Lower bound 
0.439* 

(0.0156) 
0.441* 

(0.0158) 

Upper bound 
0.546* 

(0.0153) 
0.583* 

(0.00421) 

Constant 
3.489* 
(1.315)  

Observations 3,308 3,308 

Wald chi2 2,457.69 32,335.35 

Likelihood ratio 710.82 2,113.65 

Note: *indicates significance at 1% against the null that the true is 0.5 or 0.0 as 
appropriate. 

 

Table 1.5:  Regressions of the Actual Aspiration Level on the Lower and Upper 

Bounds for All Subjects 

 

Table 1.5, over all the subjects, shows that the estimated parameters on the bounds 

are significantly different from the theoretical value of 0.5, and that the subjects put 

more weight on the upper bound and less on the lower bound when they select their 

aspiration levels.  

If we break down the analysis of Table 1.5 by treatments, we see some differences 

between them. In Treatment 1 the estimated parameters are significantly different 

from the theoretical 0.5 (with more weight put on the upper bound than the lower), 

while in Treatment 2 they are much closer (and indeed only significantly different from 

0.5 for one estimated parameter). So in Treatment 2 the subjects are closer to the 

theory in this respect than in Treatment 1. This confirms an earlier result. Possibly it 

was a consequence of the fact that in Treatment 2 each problem was an entirely new 



35 
 

one, while in Treatment 1 (where 4 problems were given in blocks of 25) subjects were 

‘learning’ about the distribution of payoffs17 and thus departing from the theory: as the 

subjects were working through the 25 problems they felt that they were getting some 

information about the ‘distribution’. 

1.5  Conclusions 
 

The overall conclusion must be that subjects were not following the part of the theory 

regarding the ‘when’ question: the choice between ‘No Deliberation’, ‘Satisficing’ and 

‘Optimising’, possibly as a consequence of our experimental design18. However, the 

choice of the number of rounds of satisficing is closer to the theory. The first of these 

is a particularly difficult task and the second slightly less difficult, and therefore these 

results may not be surprising. In addition, subjects may have experienced difficulties in 

understanding what was meant by an ambiguous distribution. However, when it comes 

to the choice of the aspiration levels, subjects are generally close to (though sometimes 

statistically significant from) the optimal choice of (L+U)/2. This latter task is easier and 

more intuitive. So it seems that the ‘when’ part of the theory is not empirically 

validated, while part of the ‘how’ part receives more empirical support. 

One serious problem with our experimental test (which we have already mentioned) is 

that the theory is an ex ante theory, and one with commitment (so the DM is resolute), 

while our experimental test involves observing what subjects actually do. A full ex ante 

test is difficult as we would have to ask subjects to specify, not only their choice of 

deliberation strategy, but also their choice of conditional aspiration levels. Perhaps we 

could go part-way there by getting the computer to implement some stated aspiration 

levels, telling subjects the computer algorithm, and asking subjects simply to choose 

between ‘No Deliberation’, ‘Satisficing’ and ‘Optimisation’. This would be a partial test 

                                                           
17 This raises an interesting theoretical point: if we observe 25 repetitions of an ambiguous 
process, can we learn about it? 
18 Though we should re-iterate that, even though our design differs from that of the theory, the 
theoretical predictions should be the same. 
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‒ one answering only the ‘when’ of the title. Other variations are possible, but all 

appear to be difficult. 

Let us restate that the theory is an ex ante theory and one with commitment: the DM 

is committed to his or her ex ante plan and implements it resolutely. The theoretical 

predictions may be different if the DM is not resolute. Let us illustrate this with the 

choice of M*. At the beginning of the problem the DM calculates M* – which depends 

on L and U at the beginning. After m rounds of satisficing the DM will have updated 

lower and upper bounds. Suppose he or she re-calculates the relevant M*  – call this 

Mm*. Will it be true that Mm* is equal to M*-m? We see no reason why that should be 

so – it depends upon the information that the DM has acquired. So it seems perfectly 

reasonable that a DM should revise his or her plan as he or she works through a 

problem. But then this is not the optimal way to solve the problem even if the DM is a 

MMR agent – backward induction should be employed. Perhaps this is what our 

subjects were doing? 

In conclusion we should note that there are three crucial elements to the theory: the 

use of the MMR preference functional, commitment and the perception of the payoffs 

as having an ambiguous ‘distribution’. The violation of any of these would lead to a 

breakdown of the theory. We tried to ensure that subjects perceived the ‘distribution’ 

as being ambiguous in our experiment. We tried to incentivise the use of the MMR 

preference functional by our payment rule, but the subjects could well have had a 

different objective function19. Unfortunately it seems difficult to force commitment on 

the subjects, and they may well have been revising their strategy as they were working 

through a problem. Nevertheless subjects seem to have been following the theory in 

at least one key respect ‒ the choice of their aspiration levels. 

 

                                                           
19 For example they could have been Expected Utility maximisers operating under the (wrong) 
assumption that the distributions were uniform. 
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Appendix 1  

 
1A Actual vs Theoretical Decisions 
 

 
Subjects’ choices 

 

No 
Deliberation 

Satisfice Optimise Totals 

Manski’s 
theory 

No 
Deliberation 

524 
(87.33%) 

64 
(10.67%) 

12 
(2.00%) 

600 
 

Satisfice 522 
(43.50%) 

645 
(53.75%) 

33 
(2.75%) 

1,200 
 

Optimise 452 
(75.33%) 

100 
(16.67%) 

48 
(8.00%) 

600 
  

Totals 1,498 
(62.42%) 

809 
(33.71%) 

93 
(3.88%) 

2,400 
 

Note: the number in parentheses indicates the percentage by row. 

Table 1A.1: Actual vs Theoretical Decisions in Treatment 1 

 

Note: the number in parentheses indicates the percentage by row. 

Table 1A.2: Actual vs Theoretical Decisions in Treatment 2 

 

 
Subjects’ choices 

 

No 
Deliberation 

Satisfice Optimise Totals 

Manski’s 
theory 

No 
Deliberation 

193 
(80.42%) 

34 
(14.17%) 

13 
(5.42%) 

240 
 

Satisfice 557 
(29.01%) 

1,250 
(65.10%) 

113 
(5.89%) 

1,920 
 

Optimise 146 
(60.83%) 

61 
(25.42%) 

33 
(13.75%) 

240 
  

Totals 896 
(37.33%) 

1,345 
(56.04%) 

159 
(6.63%) 

2,400 
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1B Uniform Risky distributions20 

       

       

       

       

       

       

       

                                                           
20 This is figure 1 in the instructions shown to subjects. 
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1C Ambiguous Distributions21 

       

       

       

       

       

       

       

                                                           
21 This is figure 2 in the instructions shown to subjects. 
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1D Instructions 
 

 

 

Instructions 

 

Preamble  

Welcome to this experiment. Thank you for coming. Please read carefully these 

instructions. They are to help you to understand what you will be asked to do. You 

are going to earn money for your participation in the experiment and you will be 

paid immediately after its completion. 

 

The Experiment 

You will be presented with a series of 100 problems, all of the same type. In each 

problem, there are a set of integer payoffs, about which you initially know nothing. 

During any problem, you might choose to incur some costs to get information about 

the payoffs. At the end of any problem you will get a particular one of these payoffs. 

We call your income for any problem this payoff minus any costs of information 

that you expended in that problem. Your payment for participating in this 

experiment will be determined by the average income from these problems, plus a 

£2.50 show-up fee.  

 

At the beginning of each problem you will not be told anything about these payoffs 

other than they are between 1 and 100; the payoffs can be anywhere between and 

including 1 and 100. In fact, they will be randomly distributed between these 

bounds with what is known as an ambiguous distribution.  As such a distribution is 

important to the experiment; we should describe it in more detail. 

 

Ambiguous and uniform risky distributions 
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Examine Figures 1 and 2 at the end of these instructions. To produce each of these 

figures we replicated 49 times the drawing of 10,000 random numbers. For Figure 

1 we generated them as uniformly distributed random numbers. You will see that 

the number of times that each number between 1 and 100 came up was roughly 

the same (around 100) on each replication; so one can conclude that the probability 

of any number coming up in the experiment is 1 in 100. For Figure 2, we generated 

them as ambiguously distributed random numbers. You will notice that, whereas in 

Figure 1, each of the 49 replications the distributions are approximately the same, 

in Figure 2, this is emphatically not the case: the distributions vary enormously 

across the replications. This means that one cannot attach probabilities to each of 

the numbers coming up. Probabilities are undefined. 

 

Part of the screen 

 

On the screen you will see some information about the payoffs and you will also 

see three buttons – an example is above. These relate to information that you can 

buy if you wish. 

 

Information 

You can choose, if you want, to buy information about the payoffs, but you do not 

need to.  

 

If you do not want to buy information, then you should click on the left-hand button 

shown above, and then your income for that problem will simply be the lowest 

payoff in the set of payoffs.  

 

If you do decide to buy information, there are two types you can buy ‒ with high 

(denoted by K) and low (denoted by k) costs.  

 

If you spend the high cost, K, by clicking on the right-hand button above, then the 

software will tell you the highest payoff in the set of payoffs, so that your income 

for that problem would be the highest payoff minus the high cost. In the example 

screen shot above, the high cost is 10 ECU. 
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If you want to spend the low cost, k, then you should click on the middle button 

above (in the screen shot above this low cost is 1 ECU), and then you will be asked 

to specify an aspiration level. The software will tell you whether there are any 

payoffs greater than or equal to this value. You will be told either that “there are 

payoffs greater than or equal to your aspiration level” or that “there are no payoffs 

greater than or equal to your aspiration level”. If there are payoffs greater than or 

equal to the aspiration level, then the software will keep a record of these payoffs, 

and, in particular, will keep a record of the lowest one of these payoffs (greater 

than or equal to the aspiration level). We call this payoff the lowest payoff greater 

than or equal to the highest aspiration level for which there are payoffs greater than 

or equal to the aspiration level. For succinctness in what follows, we denote this by 

lvgeal. We note that the software automatically updates lvgeal in the sense that if 

you try a higher aspiration level and there are payoffs greater than or equal to this 

aspiration level, then lvgeal will become the lowest payoff greater than or equal to 

this new aspiration level. 

You can pay this low cost as many times as you wish (though the costs will be 

deducted from your final payoff to determine your income for this problem) and 

you can change your aspiration level.  

When you have decided that you have obtained enough information, simply click 

on the left-hand button, and your income for that problem will be lvgeal minus the 

costs you incurred in finding it. You could, of course, click on the right-hand button 

and your income for that problem will be the highest payoff minus all the costs you 

incurred up to that point, including the K. 

 

Payment 

Your payment from the experiment will be the average income from these 

problems plus the show-up fee of £2.50. When you have finished all 100 problems, 

the software will calculate your average income across all 100 problems. In the 

experiment all amounts are denominated in ECU (Experimental Currency Units). 

Each ECU is worth 33⅓p; that is 3 ECU is equivalent to £1. The show up fee is £2.50 

and this will be added to your payment from the experiment, as described above. 
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Example (Note crucially – you will NOT be told the values of the payoffs. This 

example is simply to demonstrate how the software works.) 

 

Suppose that k=1 and K=10. Suppose – though you will not be told this – that the 

payoffs are  

55 18 75 19 9  

 

If you clicked on the left-hand button straight away your income for this problem 

would be 9 (the lowest payoff). 

 

If you clicked on the right-hand button straight away your income for this problem 

would be 65 (the highest payoff, 75, minus the high cost). 

 

If you clicked on the middle button and specified an aspiration level of 40, you 

would be told that there are payoffs greater than this, but you would not be told 

how many nor what they are. The software would, however, note that the lowest 

payoff greater than or equal to 40 is 55. This would be the lvgeal referred to earlier. 

If you clicked on the left-hand button at this stage your income for this problem 

would be 54 (lvgeal minus the low cost). 

 

If you now clicked on the middle button again and now specified an aspiration level 

of 70, you would be told that there are payoffs greater than this, but you would not 

be told how many nor what they are. The software would, however, note that the 

lowest payoff greater than or equal to 70 is 75. This would become the lvgeal. If 

you clicked on the left-hand button at this stage your income for this problem 

would be 73 (lvgeal minus the low cost twice). 

 

If you now clicked on the middle button again and now specified an aspiration level 

of 80, you would be told that there are no payoffs greater than this. The software 

would, however, keep the lvgeal, 75, in memory. If you clicked on the left-hand 

button at this stage your income for this problem would be 72 (lvgeal minus the 

low cost three times). 
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You can keep on clicking on the middle button as often as you want, but you should 

note that the costs will be deducted from the payoff each time. You should also 

note that your income from a problem can be negative. 

 

Note that in this particular case, it is better to click on the middle button twice (with 

aspiration levels of 40 and 70) and then on the left-hand button, than to click on 

either the left-hand button or the right-hand button straight away, and better than 

to click on the middle button three times (with aspiration levels of 40, 70 and 80) 

and then on the left-hand button. But this is not always the case. 

 

 

 

What to next 

Your screen is off when you enter the lab. After every subject has read and 

understood these Instructions (and had any doubts clarified by asking an 

experimenter), we will tell you to switch the screen on (by pressing the bottom right 

button). You will see a PowerPoint presentation of these Instructions. To run this, 

click on the ‘From Beginning’ button which is located on the top left of your screen. 

The presentation goes at a predetermined speed and lasts about 5 minutes. When 

it gets to the end ‒ to a screen saying ‘THANK YOU’ ‒ please call over an 

experimenter, and, if necessary, clarify any doubts with him or her. You will then 

be told how to start the experiment proper. 

If you have any questions, please raise your hand and an experimenter will come 

to you. 

 

John Hey                         Yudistira Permana                          Nuttaporn Rochanahastin 

May 2016 
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Chapter 2 

 

Assessing Axioms of Theories 

of Limited Attention 

 

 
2.1  Introduction 

 

Most economic theories are built upon axioms. This is particularly true for decision 

theories and social choice theories. The validity of the predictions coming out of 

these theories depends upon the validity of the underlying axioms. In a strict sense 

an axiom can only be right or wrong: one observation violating an axiom can be 

considered proof that it is wrong. A cynic would argue that all axioms are wrong, 

and, while that is almost certainly true of axioms in economics, it is not particularly 

helpful. One way of rationalising violations is to posit that decision-makers make 

‘occasional’ mistakes – that is, there is some noise in their behaviour. We then need 

to find a way of measuring the amount of noise in behaviour (relative to the theory 

being tested). We need to measure ‘how right’ an axiom is.  

 

Research on a new batch of theories addressed to satisficing, or sub-optimal, 

behaviour has stimulated the direct test of axioms as most of them are 

axiomatically based, but the testing methodology can also be applied in other 

contexts. The word satisficing was coined by Simon (1955) as describing behaviour 
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which is not optimising ‒ behaviour in which the decision-maker aims for a 

satisfactory outcome rather than an optimal one. There are many theories which 

try and describe satisficing behaviour, including models of incomplete preferences, 

models of behaviour under ambiguity, theories of rational inattention, and search 

theories.  

 

An area which is particularly active is that of theories of rational inattention. This 

current paper focuses on a particular sub-branch of work in this area, namely 

Limited Attention. This has recently caught the attention of researchers following 

the pioneering works of Sims (1998, 2003, 2010). The applications of this body of 

research extend to wide areas such as Macroeconomics, Games, and so on.22 Here 

we focus on the works that use standard choice data and Revealed Preference in 

two-stage shortlisted procedures.  

 

Manzini and Mariotti (2007), Masatlioglu et al (2012), and Lleras et al (2017) all 

have the same structure: a decision-maker (DM) is being asked to choose one 

element out of some large choice set, but the set is so large that the DM, in order 

to simplify a complex problem, pays attention to, and hence chooses from, a subset 

of this set – a subset called the Consideration Set. Axioms characterise how the DM 

does this. The similarity of these three papers is that all (have to) weaken a standard 

axiom of decision theory, namely the Weak Axiom of Revealed Preference (WARP) 

(Samuelson (1938)). They do this in different ways with different weakenings. This 

sub-branch of limited attention theories can be tested with standard choice data 

and hence can be investigated with the experimental design used in this research. 

 

Some of the example of theories include Manzini and Mariotti (2007) which 

suggests a ‘shortlisting method’. The method is a two-stage procedure, in which the 

DM in the first stage weeds out unacceptable choices using one criterion and then 

proceeds in the second stage to a choice using another criterion. Such a procedure 

is called a ‘Rational Shortlist Method’ (RSM). They later, in 2012, suggested a 

relaxation to RSM called ‘Categorise Then Choose’ (CTC) which allows the DM to 

                                                           
22 Caplin (2016) provides a useful and comprehensive review. 
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compare sets of alternatives in the first stage. They suggest that the theories are 

testable by testing axioms such as WARP, weakening of WARP, and the Expansion 

axiom (an alternative chosen from each of two sets is also chosen from their union). 

Cherepanov et al (2013) suggest a similar procedure to CTC in that the DM 

compares several rationales or ‘motivations’ in the first stage and then maximises 

preference among shortlisted alternatives in the second stage. Manzini and 

Mariotti (2010) experimentally tested some of these theories; their results are 

reported in the next section. 

 

2.2  Theories being tested and relevant literatures 

 

Masatlioglu et al (2012) suggest the use of an ‘attention filter’23 to be the main 

property of, and which determines, whether some element is a member of a 

consideration set. In essence, their attention filter requires that a consideration set 

is unaffected when an alternative that a DM does not pay attention to becomes 

unavailable. As a result of this property, the DM is revealed to pay attention to 

some alternatives. A direct contradiction or violation of WARP is needed in order to 

elicit the DM’s preference. An example of the violation is when a DM chooses a1 

from the choice set {a1, a2, a3} and chooses a3 from the choice set {a1, a3}. We will 

refer to this situation as a choice inconsistency. The model is empirically testable 

by testing the axiom of WARP with Limited Attention (WARP(LA)) which is:  

 

For any nonempty S, there exists x* ∈ S such that, for any T including x*  

if c(T ) ∈ S and c(T ) ≠ c(T \x* ), then c(T ) = x*. 

 

According to this model, x is revealed preferred to y if and only if when y is taken 

out of the choice set, x is no longer chosen. y is revealed to attract attention from 

the DM while x is chosen in the original set. This axiom provides an interesting and 

crucial implication which is the acyclicity property. Preferences implied using the 

                                                           
23 The property of the attention filters is that the consideration sets are unaffected when an 
alternative the DM does not pay attention to becomes unavailable. 
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theory are acyclic. An example of a cycle preference relation would be: 𝑎1 ≻ 𝑎2 ≻

⋯ ≻ 𝑎𝑘 ≻ 𝑎1. 

 

Lleras et al (2017) also point out that a consideration set and its primitives might 

not be directly observable. However, the acyclicity property of the axiom is 

empirically testable. Their paper bases its theory on the assumption of contraction 

consistency24  and it coined the term ‘competition filter’ to be the main property of 

a consideration set, and subsequently, the revealed preference. Their paper’s main 

axiom is Limited Consideration WARP (LC-WARP): 

 

 For any nonempty S, there exists b*∈ S such that for any T including b*, 

 if   (i) c(T) ∈ S, and    

(ii) b* = c(T’) for some T’ ⊃ T  

then c(T) = b* 

 

Again, this axiom’s main implication is that it does not allow any cycle in the implied 

preference relation. Masatlioglu et al (2012) and this paper are the main focus of 

this research. We should note that WARP assumes full attention, unlike Lleras et al 

and Masatlioglu et al assume limited attention. These two papers are, to the 

author’s knowledge, the first papers in the rational inattention field that provide a 

method to reveal attention to a particular item and do not impose unobservable 

criteria to try to identify an item in a consideration set25.They have not been 

experimentally tested. Their characterisations are also based on the revealed 

preference method which is empirically testable from directly observed choices.  

 

There are also other related models that involve two-stage shortlisted procedures. 

However, they are not investigated experimentally in this paper because the 

models impose some requirements or assumptions on consideration set formation 

or the shortlisting procedures which make them incompatible with the 

                                                           
24 If an alternative was considered in a set then it must be considered in its subset. 
25 Consideration set formation is crucial in rational inattention but it is very difficult to 
observe or pin down. These two papers provide methods (through characterisations) on 
inferring the existence of a particular element in a consideration set. Papers assuming a 
stochastic consideration set for example  Manzini and Mariotti (2014) raise questions as to 
whether they are testable. 
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experimental design in this paper26. Manzini et al (2013) provides characterisation 

for Two-Stage Threshold representation (TST). Alternatives survive the first stage 

screening if a threshold value is reached. In a series of papers, Tyson (2008, 2013, 

2015) developed extensively two-stage incomplete preference models which 

provide some connections between satisficing to attention. A DM maximises a 

binary relation from imperfectly perceived preferences in the first stage and 

maximises a binary relation over alternatives that survived in the second stage. 

Finally, search and costly information acquisition was developed in Caplin et al 

(2011), Caplin and Dean (2011, 2015), and Matějka and McKay (2015). Manzini and 

Mariotti (2014) provides a probabilistic version of a consideration set. A random 

consideration set is a randomly drawn subset of the choice set. The actual choice is 

the most preferred item in the consideration set.  

 

In terms of empirical literatures, Manzini and Mariotti (2010) is the closest in spirit 

to this research. They report on a choice experiment using remuneration 

instalments as alternatives. There are 4 instalment plans and subjects were 

presented with all combinations of them. The paper investigates axioms from 

standard decision theory (WARP) as well as other three theories, namely RSM, CTC 

and Cherepanov et al (2013)’s version of Rationalisation. They find that one aspect 

of WARP (Condorcet) is violated substantially more than the other (pairwise 

choice). Therefore, models that are more compatible with the Condorcet property, 

for example, CTC, are more likely to be successful in the experiment. As expected, 

WARP is violated the most. On the other hand, CTC and Order Rationalisation 

perform well. They also use Selten’s Measure of Predictive Success, which 

introduces a parsimony factor, to take into consideration some of the nested-ness 

of these models.  

 

Chetty et al (2009) observed inattention in the case of taxation. They conducted a 

field experiment observing the difference between tax-inclusive and tax-exclusive 

price tags in a grocery store and find that changes in tax policy affect demands more 

in tax-inclusive price tags. De los Santos et al (2012) uses data on web browsing and 

                                                           
26 The design in this chapter focuses only on choice data. 
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online book purchasing to test search models. The paper rejects a sequential search 

model in which a consumer always buys from the last store she visited, when 

he/she crosses the reservation benchmark and favours the fixed sample size search 

strategy.  

 

Caplin et al (2011) report on a search experiment within which there were four 

‘Experiments’. In Experiment 1 search was over a set of payoffs expressed as simple 

sums (“two plus eight minus six”) differing in their number and complexity, with no 

time constraint; the sums were generated from an exponential distribution (shown 

to the subjects). In Experiment 2, subjects were told that their payment will be at a 

random time in a decision problem. This is to incentivise subjects to always choose 

the best alternative at that moment in time. Experiment 3 was designed to explore 

how screen position and object complexity impacts search order. Experiment 4 was 

the same as Experiment 1 with a two-minute time constraint. The novelty of this 

paper is that it recorded provisional choice data and contemplation times. They find 

evidence supporting the sequential search and satisficing model. 

 

2.3  Experimental Design 

 

The purpose of this research is to experimentally determine which of Masatlioglu 

et al (2012) or Lleras et al (2017) appears to be the empirically more plausible WARP 

weakenings, if at all empirically better than WARP itself. Therefore, the 

experimental procedure is relatively close to Manzini and Mariotti (2010). It is a 

choice-function-eliciting experiment where the alternatives are risky lotteries. 

Lotteries are used because the experimenter can provide a real monetary incentive 

through them without the objects having any objective value. Neither theory 

imposes a minimum number of alternatives facing the DM, but the more 

alternatives presented to the subject the better, as this is an attention-related 

experiment. This gives a higher chance of preventing subjects from recognizing the 

pattern of the alternatives or carefully deliberating through each of the problems. 

The drawback is that there is a limitation on the number of problems that the 
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experimenter can present to the subjects. Therefore, we presented only subsets of 

problems.  

 

This experiment had 10 baseline lotteries27 which imply a total of 1,023 possible 

subsets. The subjects were presented with 118 of them28. The analyses and 

comparison between theories will be done using these problems29. The lotteries 

are designed to be similar but contain some differences30. The expected value of 

the lotteries varied from a minimum of £8.00 to a maximum of £9.80. The 

randomisation process for selecting the subsets started from randomly selecting a 

subset of two alternatives and based on that randomly selecting a higher number 

of alternatives’ subsets. We, first, randomly selected 5 2-alternative subsets and 

based on that, we randomly selected 3-alternative subsets that are supersets of 

one of those 5 2-alternatives subsets. After that, we randomly selected 4-

alternative subsets that are supersets of one of those 3-alternatives subsets, and 

so on.  

 

The lottery visualisation is in a two-dimensional figure where the x-axis represents 

probabilities and the y-axis represents money outcomes; we used this because 

there are two important attributes that comprise a lottery: the money outcome 

and the probability. We feel that a two-dimensional figure best captures this 

concept as well as giving the subject some idea of the expected value of a lottery in 

the form of the shaded area. Figure 2.1 shows an example of a lottery and how it 

                                                           
27 Lotteries details can be found in Appendix 2A. 
28 Randomised lotteries in each problem can be found in Appendix 2B. 
29 de Clippel and Rozen (2014) notes that there could be a problem in a limited dataset. One 
would need a choice function which is defined for all choice problems in order to conclude 
that observed choices are consistent with a theory. However, we intend to measure ‘how 
right’ the axiom is by identifying how many violations a subject makes, given the 
information available from these problems. Unlike Manzini and Mariotti (2010), we do not 
assume that a subject is either consistent or inconsistent which require complete 
knowledge over dataset. We will further address to this point in the results and analysis 
section.      
30 There are stochastically dominated lotteries. If the DM paid attention and weeded out 
these lottery, WARP, which assumes full attention, will capture this. Therefore, the DM’s 
behaviour should satisfy WARP. This does not affect the analysis of the two limited attention 
axioms either because if the DM paid attention to these lotteries, the DM’s preference 
inference method remain unchanged.   
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was presented to the subjects. This example lottery has 8 in 10 chance of gaining 

£7 and 2 in 10 chance of gaining £11. 

 

Figure 2.1:  A visualisation of a lottery. 

 

Figure 2.2 shows an example screenshot of a problem faced by the subjects. The 

subject’s task is relatively straightforward: to choose the most preferred lottery in 

each problem. Taking into account that this is an attention experiment, an upper 

bound of 45 seconds per problem was imposed. Subjects had to wait a minimum of 

10 seconds before confirming their choice, to minimise them clicking at random.  
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Figure 2.2: An experimental screenshot. 

 

At the end of the experiment, for each subject the chosen lottery in a randomly 

selected problem was played out for real. Each subject randomly selected a 

problem for their payment in private by drawing a disk from a bag containing 

numbered disks from 1 to 118. Their lottery choice in that problem was then played 

out for real by drawing from another bag containing 10 disks, a multiple of 10 from 

10 to 100. The total payment for the experiment was the lottery payoff plus a £3 

show-up fee. Subjects were informed that some lotteries involve losses. The 

maximum loss outcome of any lottery is £3. If subject’s lottery payoff is a loss then 

this is taken out from the show-up fee. After the payment, subjects were free to go. 

We recruited a total of 65 subjects for the experiment which was conducted in the 

EXEC Lab at the University of York. Subject’s ages ranged from 18 to 44 years. 64 of 

whom were students and one was a member of staff at the University of York. There 

were 34 females (52.31%) and 31 males (47.69%). The average total payment per 

subject was £11.25. Subjects spent an average of less than one hour in the 
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laboratory. This experiment was run using purpose-written software written in 

Visual Studio. 

 

2.4  Results and Analyses 

 

The Weak Axiom of Revealed Preference (WARP) is the textbook normative axiom 

and a baseline description of utility maximisation behaviour. Choice inconsistencies 

violate the axiom which is essential to the utility maximisation model but they have 

long been confirmed by a large volume of empirical literature31. Much of this 

literature uses observed individual choice because it is the most obvious and 

appealing as a measure of preference. As an outside observer, we can infer that the 

chosen item is revealed to be at least as preferred as items that were not chosen 

(assuming WARP) . Therefore, preference from observed choices plays an 

important role in this analysis. Choice inconsistencies and cycles of revealed 

preference serve as a key measurement of axiom violations in the various models. 

 

Suppose a DM faces a choice set which consists of a complete subset of n 

alternatives. First, let us consider the preference inference. If a DM fully conforms 

to and behaves according to WARP, we will be able to uncover a complete and 

transitive preference ordering: there will not be any choice inconsistencies. Each 

problem will provide us with information on the preference relation. In addition, if 

we assume that a DM obeys WARP, we will not be able to infer anything (any 

preference) using the two limited attention theories. However, if we drop WARP 

and want to use one of the other two limited attention theories, we need at least 

one violation of WARP or choice inconsistency from two choice problems in order 

to be able to infer something from these theories. How much we can infer depends 

upon the extent of choice inconsistencies (as defined earlier) we observe from the 

data.  

 

                                                           
31 for example, Grether (1978), Grether and Plott (1979). 
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Now let us take a look at the violations. Choice inconsistency is a violation of WARP. 

We need at least two choice problems to extract this information. This is not 

necessarily true with Masatlioglu et al (2012) or Lleras et al (2017). They allow for 

a choice inconsistency in two problems. In order for a cycle to happen to the 

inferred preferences, using any of the two limited attention method, we need at 

least four choice problems: two problems to infer a binary relation and other two 

problems to infer a contradiction. This is when a violation of the two limited 

attention axioms happen. We can be certain that this is a true violation rate of the 

axiom for this particular DM as a result of a complete subset. Also, this conjecture 

is under a crucial assumption that a DM has a complete and transitive underlying 

preference. The cycles represent the violation of the axiom and not that the subject 

does not have complete underlying preference. Otherwise, a DM is behaving 

irrationally and we cannot infer anything from the data.  

 

Our experiment design presented subjects with a subset of a complete set of 10 

alternatives. In term of preference inference, if a subject fully conformed to WARP, 

we might not be able to uncover a complete preference under WARP as we did not 

present subjects with every possible pairwise problems. If a subject behaves 

according to WARP but we assume Masatlioglu et al (2012) or Lleras et al (2017), 

we still will not be able to infer anything from the two limited attention theories. 

However, if there is a choice inconsistency and WARP is violated, we will be able to 

infer some preferences according to the two limited attention axioms. Again, how 

much we can infer depends on the choice inconsistency displays in the data. If there 

are cycles in those preferences inferred, they are the violations. But there could be 

more violations to the axiom from the unobserved choices. In the actual analysis, 

we will compare the relative violations based on the problems given and with the 

simulations of random behaviour using the same problems that the subject faced.   

 

The preferences will be extracted from choice(s) given each model’s requirement. 

First, the preference inference for WARP is direct and straight forward. The axiom 

states that, in every choice set, there is the best alternative that must be chosen. It 

means that the chosen alternative from a choice set is revealed preferred to the 

other alternatives in the set. Therefore, for every problem, pairwise preference(s) 
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can be inferred. Clearly, the axiom has an implicit assumption of full attention, 

namely that a DM considers every alternative in the choice set.  

 

For Masatlioglu et al (2012), limited attention consideration is taken into account 

for the inferred preferences. We need to make sure that the alternative attracts 

attention in order to be able to extract a preference. An alternative x is revealed 

preferred to y if and only if when y is taken out of the choice set, x is no longer 

chosen. For example, if a DM choses a1 from a choice set {a1, a2, a3} and a3 from a 

choice set {a1, a3}, we can conclude that a1 is revealed preferred to a2 because 

dropping a2 changes the choice which means that DM must have paid attention to 

a2 when he/she chose from {a1, a2, a3}. Notice that this is a direct contradiction to 

WARP. WARP needs to be violated in order for Masatlioglu et al model to infer 

anything. Also, we need at least two problems and a choice inconsistency for it to 

be possible to infer any preference. Note that a ‘choice inconsistency’ here is not 

caused by inconsistencies in the underlying preferences but by limited attention as 

assumed in the analysis. 

 

Lleras et al (2017) based their consideration set formation under the assumption 

that if an alternative attracts the DM in the menu with more alternatives, it will also 

attract his/her attention in subsets of the menu.  A choice change in a smaller menu 

suggests that the choice is preferred to that from the bigger menu that is its 

superset. For example, if a DM chose a1 from a choice set {a1, a2, a3} and a3 from a 

choice set {a1, a3}, we can conclude that a3 is revealed preferred to a1 because the 

DM must have seen a1 from the choice set {a1, a3}. This behaviour is also a direct 

contradiction to WARP and there is a possibility that preferences inferred are 

incomplete. These three models uncover preferences from observed choices under 

different (and contradictory) assumptions. The analysis tries to identify the relative 

strength in term of explanatory power of each axiom. It begins by examining how 

complete in terms of preference inference. Then, the violations in various aspects 

are analysed. The preference inference and the violations are two separate issues. 

Even though there are no violations of the axioms, the inferred preference relation 

may be only partial.  Let us provide an example where this happens using 

Masatlioglu et al model. For simplicity and without the loss of generality, suppose 
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there are four alternatives, a1, a2, a3, and a4 and a DM complete preference 

ordering is 𝑎1 ≻ 𝑎2 ≻ 𝑎3 ≻ 𝑎4. Suppose a DM’s choices are as follow: 

 

Problem No. Choice set Decision 

1 {a1, a2, a3, a4,} a1 

2 {a1, a2, a3} a1 

3 {a1, a2, a4} a1 

4 {a1, a3, a4} a1 

5 {a2, a3, a4} a3 

6 {a1, a2} a1 

7 {a1, a3} a3 

8 {a1, a4} a4 

9 {a2, a3} a2 

10 {a2, a4} a2 

11 {a3, a4} a3 

 

Table 2.1: Example of problems and decision (1). 

 

Because preferences inferred from all three theories are in term of binary of 

pairwise comparisons, the completeness or consistency analysis will be in term of 

the pairwise (2 alternatives) permutations or combinations of a set of the total 

alternatives which can be represented by the matrices in the example below. In this 

example, there are 4 alternatives, hence, the analysis matrix is 4*4 in dimension. In 

the actual experiments, there are 10 alternatives, hence, 10*10 matrices. The 

following table below show the matrix of all inferred preference from the above 

example using Masatlioglu et al. The ✗ mark in each cell represents the preference 

of the row alternative over the column alternative. 

 

Masatlioglu et al a1 a2 a3 a4 

a1  ✗ ✗ ✗ 

a2     

a3    ✗ 

a4     

 

Table 2.2: All inferred pairwise preference according to Masatlioglu et al. 
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Using the model, we can infer that 𝑎1 ≻ 𝑎2, 𝑎1 ≻ 𝑎3, 𝑎1 ≻ 𝑎4, and 𝑎3 ≻ 𝑎4 This is 

only partial preference as we cannot elicit the relationship between 𝑎2 ≻ 𝑎3. The 

preference inferences in this case are without any inconsistencies to Masatlioglu et 

al’s axiom. 

 

To make it clearer, let us provide another example to show how (partial) 

preferences can be inferred and that there are violations from each theory given 

the experimental design. Suppose that the DM is now choosing at random and 

his/her arbitrary decisions are those in column 3 of table 2.3. 

 

Problem No. Choice set Decision 

1 {a1, a2, a3, a4,} a3 

2 {a1, a2, a3} a1 

3 {a1, a2, a4} a2 

4 {a1, a3, a4} a1 

5 {a2, a3, a4} a4 

6 {a1, a2} a1 

7 {a1, a3} a3 

8 {a1, a4} a4 

9 {a2, a3} a2 

10 {a2, a4} a2 

11 {a3, a4} a4 

 
 Table 2.3: Example of problems and decision (2). 

 

Figure 2.3 reports all the pairwise preferences that can be inferred from table 2.332 

for this particular DM. For an example of how to infer preferences according to 

WARP, let us take a look at problem number 1. a3 is chosen, therefore, we can infer 

a3≻ a1, a3 ≻a2, and a3≻ a4. Applying the same process to other problems give us 

the top table of Figure 2.3. Masatlioglu et al requires at least two problems to infer 

any preference. Let us take a look at the first and the second problems: we note 

that dropping a4  changes the choice; therefore, we can conclude that a4  must 

attract attention of the DM in problem 1 but  a3 is chosen. Hence, a3 is revealed 

preferred to a2. Applying the same process to every pair of problems give us the 

middle table of Figure 2.3. The inference for Lleras et al also requires at least two 

                                                           
32 Note that these are all direct inferences. We do not assume transitivity at this point. 
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problems. Again, let us take a look at the first two problems: a3 is chosen in the first 

problem suggesting that a3 must attract DM attention in every smaller subset that 

contains a3. Hence, we can infer a1≻ a3 because a1 is chosen in the second problem. 

All preferences inferred by Lleras et al for this example are shown in the bottom 

table of figure 2.3. 
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WARP a1 a2 a3 a4 

a1  ✗ ✗ ✗ 

a2   ✗ ✗ 

a3 ✗ ✗  ✗ 

a4 ✗ ✗   

All inferred pairwise preference according to WARP. 

 

Masatlioglu et al a1 a2 a3 a4 

a1  ✗  ✗ 

a2    ✗ 

a3 ✗ ✗  ✗ 

a4   ✗  

All inferred pairwise preference according to Masatlioglu et al. 

 

Lleras et al a1 a2 a3 a4 

a1  ✗ ✗  

a2   ✗ ✗ 

a3 ✗    

a4 ✗  ✗  

All inferred pairwise preference according to Lleras et al. 

 

 

Figure 2.3: All inferred pairwise preference. 

 

This analysis of all inferred pairwise preference aims to measure the ‘completeness’ 

of the revealed preference from each model. As discussed in Masatlioglu et al 

(2012), their approach depends upon choice inconsistency and the preference 

inferred can be very incomplete. We calculate the percentage of the revealed 

preference that can be extracted from the data, by dividing the number of the 

inferred preferences over the number of possible permutation, to show and 
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compare the ‘completeness’ of these different models33. For this example, WARP 

can infer 83.33% (10/12) of the binary preference while Masatlioglu et al and Lleras 

et al can infer 58.33% (7/12). The hypothesis is that the higher the inferred 

preference percentage, the more information we can extract from the data.  

 

It is noticeable that there are conflicting pairwise preference relationships in tables 

in Figure 2.3 For example, both a1 ≻a3 and a3 ≻a1 are observed for WARP. These 

represent cycles which are violations to the axioms. In this next analysis, we extract 

these conflicting or cycles of pairwise preferences for this DM. We use the term 

‘depth of the cycles’ to represent this analysis.  

 

 

  

                                                           
33 Because each model has different degree of restrictions, we compare these numbers to 
the simulations for the actual analysis. The simulation procedure will be explained in the 
next section. 
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WARP a1 a2 a3 a4 

a1   ✗ ✗ 

a2   ✗ ✗ 

a3 ✗ ✗   

a4 ✗ ✗   

Depth of the cycles from preferences inferred according to WARP. 

 

Masatlioglu et al a1 a2 a3 a4 

a1     

a2     

a3    ✗ 

a4   ✗  

Depth of the cycles from preferences inferred according to Masatlioglu et al. 

 

Lleras et al a1 a2 a3 a4 

a1   ✗  

a2     

a3 ✗    

a4     

Depth of the cycles from preferences inferred according to Lleras et al. 

 

 

Figure 2.4: Depth of the cycles. 

 

The percentages of the violations can be calculated by dividing these number of 

conflicting preferences over the number of the all inferred preference as observed 

in Figure 2.3 For this example, WARP cycle preferences account for 80.00% (8/10) 

of the all inferred preference while Masatlioglu et al and Lleras et al cycles account 

for 28.57% (2/7). This analysis assesses violations of the axioms. The hypothesis is 

that the lower the violation rate, the better the axiom is, descriptively.  
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The cycles raise the question about the underlying preferences. We cannot infer 

actual preferences from these violations. If we extract only non-conflicting or 

acyclic pairwise preference from Figure 2.3 for this DM, we can fill another table 

which reports only the pairwise combinations of the alternatives. The marks in the 

following table show that we can infer the valid cycle-free34 relationships within the 

pair. For example, a mark in the cell (a1, a2) can be either a1 ≻ a2 or a1 ≺a2. This is 

the analysis to show both the validity of the axioms and the completeness of the 

inferred preference in term of only the consistent preferences.  

  

                                                           
34 This refers to the cycle of length two as transitivity is still not assumed at this point. 
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WARP a1 a2 a3 a4 

a1  ✗   

a2    ✗ 

a3     

a4     

Valid inferred pairwise preference according to WARP. 

 

Masatlioglu et al a1 a2 a3 a4 

a1  ✗ ✗ ✗ 

a2   ✗ ✗ 

a3     

a4     

Valid inferred pairwise preference according to Masatlioglu et al. 

 

Lleras et al a1 a2 a3 a4 

a1  ✗  ✗ 

a2   ✗ ✗ 

a3    ✗ 

a4     

Valid inferred pairwise preference according to Lleras et al. 

 

 

Figure 2.5: Valid inferred pairwise preference. 

 

The validity percentage is calculated by dividing the number of these consistent 

preferences over the number of the possible combinations. For this example, WARP 

cycle-free preferences account for 33.33% (2/6) of the all inferred preference while 

Masatlioglu et al’s and Lleras et al’s valid part of the preferences account for 83.33% 

(5/6). The hypothesis for this analysis is that the higher the percentage, the more 

valid and complete the axiom is.  Next section we present sequentially these 

analyses from the actual data. 
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2.4.1  Inferred preferences 

 

First, we take a look at how much of (or how complete are) the preferences each 

theory can infer, given the same set of problems (choice sets) and decisions. All 

these theories can infer direct pairwise preferences according to the methods 

mentioned above. In term of permutations, there are 90 possible pairwise 

preference relationships which can in principle be inferred from the experimental 

data35. The inference percentage per subject is calculated out of these 90 

relationships. Table below reports the average percentages over all subjects. The 

simulation’s method and procedure will be explained after the table.  

 

All inferred 
pairwise 

preferences 
Actual Simulation 

Absolute 
Difference 

Relative 
Difference 

WARP 69.62% 96.32% -26.70 p.p.36 -38.35% 

Masatlioglu et al 28.10% 45.89% -17.79 p.p. -63.61% 

Lleras et al 47.18% 89.24% -42.06 p.p. -89.15% 

 
Table 2.4: All inferred pairwise preferences. 

 

Since crudely comparing these numbers to determine the relative validity of axioms 

will not work, we have developed a method of providing a ‘benchmark’. This is 

derived from simulations of random behaviour and counting the number of 

inferred preferences. At the end of the day we can compare the observed number 

of violations of each axiom with the benchmark figures and hence provide a relative 

measurement of ‘how good’ is each axiom. Different subsets of problems will also 

give different inference. Therefore, simulations using the same set of problems 

penalise for different degrees of restriction of each theory to give a fairer 

competing ground in the comparisons. In this case, the simulation is done by 

creating 100,000 repetition of random decisions using the same 118 problems that 

subjects faced. These decisions are used to extract preferences in the same manner 

                                                           
35 The extraction procedures are similar to example provided in Figure 2.3. The difference 
is that in the actual experiment, the grand set of 10 alternatives were presented to subjects 
and table 2.4 reports the average over all subjects or repetitions. 
36 Percentage points. 
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as the actual data (the same procedures explained in the example given in table 2.2 

and 2.3 above). This method can serve as one of the suggestions for a direct and 

non-parametric test of these theories.  

 

The actual inference percentages show that we can partially infer the preferences 

from the choice data. The t-test for difference between two population means is 

employed to verify that the average from the actual experimental data is 

significantly different from the average from the simulations for each theory. We 

found that the p-values for WARP, Masatlioglu et al, and Lleras et al are7.71 ∗

10−23, 1.60 ∗ 10−15 𝑎𝑛𝑑5.66 ∗ 10−23respectively, suggesting that the two means 

are significantly different. The hypothesis here is that the higher the inference 

percentage, the more information we can extract from the data. Also, since every 

theory’s percentage is a decrease relative to the simulation, a lower decline rate is 

preferred. WARP is more restricted than the other two models so the random 

behaviour provide the highest inferred preference percentage at 96.32%. This is 

followed by Lleras et al at 89.24% and then by Masatlioglu et al at 45.89%. The 

actual data shows that Lleras et al declines the most in term of absolute percentage 

points, from 89.24% to 47.18%. The ranking in term of the ability to extract 

preferences remains the same which suggests that WARP is the most restricted 

model followed by Lleras et al and the then by  Masatlioglu et al In terms of relative 

differences, both weakening theories have significantly falls, suggesting that they 

are less restricted than anticipated when compared to WARP.   

 

2.4.2  The inconsistencies 

 

Next, the cyclicity of the inferred preferences are analysed in different ways. Choice 

inconsistencies or revealed preference cycles are the main criteria that can be used 

to measure the relative degree of validity of the three axioms, since all three 

characterisations involve a common acyclicity property.  We are going to look at 

the breadth, depth, and length of the cycles based on the categorisation by 

Bouacida and Martin (2017). The breadth of the cycles are how spread cycles are 

observed among experimental subjects. The depth and length of the cycles delve 
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deeper into individual behaviour. The depth investigates direct inferred pairwise 

preferences while the length applies the transitivity assumption to the direct 

inferred preferences. 

 

2.4.2.1 The breadth of the cycles 

First, we want to look at how widespread the inconsistencies are shown among 

experimental subjects. The data revealed that the inconsistencies are much more 

extensive in this experiment (10 alternatives) as compared to Manzini and Mariotti 

(2010) (4 alternatives). We found that 100% of the subjects showed some degree 

of choice inconsistencies according to WARP and Lleras et al while 73.84% (48 out 

of 65 subjects) display inconsistent preferences according to Masatlioglu et al37. 

This finding is as expected and consistent with empirical literatures38 observing 

pervasive preference cycles in choice behaviour.  

  

2.4.2.2 The depth of the cycles  

Next, we take a look at how much cycles invaded into the inferred preference. We 

begin by analysing the all inferred pairwise preference (as presented in table 2.5). 

The depth of the cycles are represented by the proportion of those inferred 

preference that exhibit inconsistencies. This can be calculated by dividing the 

number of inferred pairs that exhibit cycles by the total number of pairs inferred. 

Table 2.5 reports these percentages39.  The hypothesis is that the higher the 

percentage of the cycles, the more violation of the axioms are shown in the data. 

In term of comparison with the simulations, the greatest decline represent the best 

relative performance. 

 

  

                                                           
37 Note that this is the lower bound of the subject that display inconsistency at least one 
inconsistency. There might be more given the complete dataset. However, the focus of this 
analysis is to demonstrate that majority of subjects are inconsistent and cycle behaviour is 
extensive. 
38 Again, see Grether (1978), Grether and Plott (1979), for example. 
39 The calculation procedure is the same as in Figure 2.4. However, table 2.5 reports the 
average over all subjects or repetitions. 



69 
 

Depth of the 
cycles 

Actual Simulation 
Absolute 

Difference 
Relative 

Difference 

WARP 58.73% 96.70% -37.97 p.p. -64.65% 

Masatlioglu et al 20.30% 39.98% -19.68 p.p. -96.95% 

Lleras et al 70.17% 91.38% -21.21 p.p. -30.23% 

Table 2.5: Depth of the cycles. 

 

Because the denominator in the calculations is the inferred preferences, these 

percentages already take into consideration the degree of restriction. Therefore, 

the comparison of the actual percentages is also applicable. Again, we use the t-

test for the difference between two population means and find that the p-values 

for WARP, Masatlioglu et al, and Lleras et al are 1.18 ∗ 10−19, 1.39 ∗ 10−13, 8.88 ∗

10−11respectively, rejecting that the null hypotheses of equal means. Masatlioglu 

et al shows the greatest improvement, in term of the relative difference, compared 

to the simulations while the Lleras et al violation percentage shows the least 

improvement. Masatlioglu et al also has the lowest actual violation percentage 

while Lleras et al has the highest. WARP shows a significant improvement from the 

simulation that displays almost 100% violation rate and the actual violation 

percentage is still relatively higher than Masatlioglu et al 

 

Next, we delve deeper into the validity of each axiom by focusing on the valid 

(consistent) inferred preference. This can be done by observing the inferred 

preferences calculated in section 4.1 and extracting only those pairwise preference 

combinations that do not exhibit any inconsistency40. The proportion of these valid 

relations over the total number of pairwise choice combinations (45 pairs) are 

calculated, and reported in the second column of table 2.6 – ‘Valid inferred pairwise 

preference’. This also shows how complete are the inferred preferences, taken into 

the account only consistent preferences. The hypothesis here is the higher the valid 

inferred preference, the more consistent and complete is the axiom, given the 

problems used in the experiment. Also, an improvement over simulations is 

preferred.   

 

                                                           
40 The procedures are similar to those examples in Figure 2.5. 



70 
 

Valid inferred 
preference 

Actual Simulation 
Absolute 

Difference 
Relative 

Difference 

WARP 50.97% 0.63% 44.71 p.p. 87.72% 

Masatlioglu et al 40.75% 54.57% -13.82 p.p. -33.91% 

Lleras et al 22.50% 15.16% 7.34 p.p. 32.62% 

 

Table 2.6: Valid inferred pairwise preferences. 

 

Intuitively, the valid inferred pairwise preferences are inversely related with the all 

inferred preferences. More restricted models result in higher preference inference, 

which in turn, translates into higher chance of cycles and less valid inferred 

preferences. The t-test of difference in means rejects the null hypothesis of equality 

in means between actual data and simulation for all theories. The results show that 

Masatlioglu et al has the higher percentage of valid inferred preferences when 

compared to Lleras et al; this is as expected because it is the less restrictive model. 

However, it declines by 13.82% relative to the simulation. WARP has the highest 

increment on the relative difference. It is an improvement relative to only 0.63% of 

the inferred preference in the simulation because it is the most restrictive model. 

This shows modest support to both Masatlioglu et al and WARP. Lleras et al perform 

relatively better than Masatlioglu et al in this category. The valid inferred 

preference is 22.50%. Its validity and completeness improved 32.62% over the 

simulation of random behaviour. Lleras et al is more restrictive compared to 

Masatlioglu et al as observed from higher percentage of all inferred pairwise 

preference (table 2.4). It also shows greater improvement over the simulations.   

 

2.4.2.3 The length of the cycles 

 

The violations in each cycle length can be obtained by observing the violations 

assuming transitive preference. The shortest possible length here is a cycle of 

length 2. This is a direct inconsistency or a reversal in preference inference. This 

type of cycle has already been analysed in the previous section. Longer lengths are 

obtained from applying the transitivity assumption and the longest length is 10. We 
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calculate the violation percentage41 at each length. It is unclear whether the longer 

or the shorter the length is more problematic for the underlying complete 

preference ordering: one can argue that a cycle of length 2 is a direct contradiction 

but also on the other hand, it is not sensible for a longer transitive preference to 

have a contradiction as the preference ranking should be clearer.  

                                                           
41 The procedures are similar to those in table 2.5. 
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Table 2.7: Violations in different cycle length from actual data. 

 

Cycle Length WARP Masatlioglu et al Lleras et al 

2 -37.97 p.p. -19.68 p.p. -21.21 p.p. 

3 -24.40 p.p. -43.04 p.p. -14.17 p.p. 

4 -20.07 p.p. -40.77 p.p. -9.26 p.p. 

5 -19.70 p.p. -32.85 p.p. -8.78 p.p. 

6 -19.70 p.p. -32.71 p.p. -8.78 p.p. 

7 -19.70 p.p. -32.71 p.p. -8.78 p.p. 

8 -19.70 p.p. -32.71 p.p. -8.78 p.p. 

9 -19.70 p.p. -32.71 p.p. -8.78 p.p. 

10 -19.70 p.p. -32.71 p.p. -8.78 p.p. 

Table 2.9: Absolute difference of violations in cycle lengths. 

 

 

Cycle Length WARP Masatlioglu et al Lleras et al 

2 96.70% 39.98% 91.38% 

3 99.88% 78.37% 99.62% 

4 99.88% 95.61% 99.68% 

5 99.88% 96.03% 99.68% 

6 99.88% 96.03% 99.68% 

7 99.88% 96.03% 99.68% 

8 99.88% 96.03% 99.68% 

9 99.88% 96.03% 99.68% 

10 99.88% 96.03% 99.68% 

Table 2.8: Violations in different cycle length from simulations. 

 

Cycle Length WARP Masatlioglu et al Lleras et al 

2 -64.65% -96.95% -30.23% 

3 -32.32% -121.78% -16.59% 

4 -25.15% -74.35% -10.24% 

5 -24.57% -52.00% -9.66% 

6 -24.57% -52.00% -9.66% 

7 -24.57% -52.00% -9.66% 

8 -24.57% -52.00% -9.66% 

9 -24.57% -52.00% -9.66% 

10 -24.57% -52.00% -9.66% 

Table 2.10: Relative difference of violations in cycle lengths. 

 

Cycle Length WARP Masatlioglu et al Lleras et al 

2 58.73% 20.30% 70.17% 

3 75.48% 35.34% 85.45% 

4 79.81% 54.83% 90.42% 

5 80.18% 63.18% 90.90% 

6 80.18% 63.18% 90.90% 

7 80.18% 63.18% 90.90% 

8 80.18% 63.18% 90.90% 

9 80.18% 63.18% 90.90% 

10 80.18% 63.18% 90.90% 
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The percentage increases with the length because of the transitivity assumption. 

Table 2.7 reports the results of cycle lengths from the experimental data while table 

2.8 reports results from the simulations.  Tables 2.9 and 2.10 report their 

differences. The differences in means are significant at every length for every 

theory. We can see that the pattern remains through every length in term of actual 

violations. Masatlioglu et al shows the lowest violation rates at every length while 

Lleras et al shows the highest. The maximum violations for Masatlioglu et al is 

63.18% compare to WARP at 80.18% and Lleras et al at 90.90%. All the theories 

improve at every cycle length when compared to the simulations. In term of relative 

difference, Masatlioglu et al still shows greatest improvement over simulations 

when transitivity is fully explored, follows by WARP and Lleras et al.  

 

2.4.3  Results summary and comment 

 

We provide a summary of the direct comparisons between the two weakenings of 

WARP. Table 2.11 shows which theory performs better in term of actual percentage 

in accordance with the hypothesis in each theory. Masatlioglu et al has fewer axiom 

violations (the depth of the cycles)42 and has higher consistent inferred preference 

rates.  Lleras et al is shown to be more restricted and can infer more preference in 

general. 

 

 All inferred 

preference 

Depth of the 

cycles 

Valid inferred 

preference 

Masatlioglu et al  ✗ ✗ 

Lleras et al ✗   

 

Table 2.11: Theories comparison in term of actual percentage. 

 

Table 2.12 reports the results in term of relative difference when compared to 

simulations. Masatlioglu et al shows a smaller decline in the inference percentage. 

It also shows the most improvement over the simulations in term of violation 

                                                           
42 The pattern remains for every cycle length. 
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percentages43. Lleras et al improves more in the valid inferred preference category. 

This results from it being the more restricted theory which causes relatively less 

valid inferred preference in the simulations.  

 

 All inferred 

preference 

Depth of the 

cycles 

Valid inferred 

preference 

Masatlioglu et al ✗ ✗  

Lleras et al   ✗ 

 

Table 2.12: Theories comparison in term of relative difference when compared 

to simulations. 

 

Since these three theories provide different predictions and contain overlapping 

areas, one might argue that there is a need to penalise in order to compare their 

explanatory power. We have tried to address this issue by using the ‘benchmark’ 

procedure. One possible alternative method is using Selten’s measure of predictive 

success (Selten (1991)). The measure is given by: 

𝑚 = 𝑟 − 𝑎 

where  𝑟 is the relative frequency of correct predictions (the number of observed 

outcomes divided by the number of possible outcomes); and 𝑎 is the penalisation 

parameter   ̶ which is given by the size of the predicted subset compared to the set 

of all possible outcomes.  

 

There is a practical difficulty of this measure namely, the number of outcomes 

increases drastically with the number of the number of problems or alternatives. 

For this study, the predictive parsimony variable (𝑎) in the measure for WARP, given 

there are 10 alternatives and 118 problems is (3628800/3*10^74) which is 

approximately zero. The 𝑎 variable is also the same (zero) for Masatlioglu et al and 

Lleras et al since the denominator is also very large. Therefore, the measure is left 

with just the variable 𝑟 in our case and it is the violation percentage itself. 

 

                                                           
43 The pattern also remains for every cycle length. 
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2.5  Conclusion 

 

One of the set of theories that attempts to address the sub-optimality of decision 

making behaviour which has recently emerged and has received much recognition 

is the set of theories of limited attention or rational inattention. Most of these are 

founded upon axioms which make the validity of the predictions coming out of 

these theories dependent upon the validity of the underlying axioms. We 

experimentally test the axioms underlying two of these new theories directly, 

namely those of  Masatlioglu et al (2012), and Lleras et al (2017), which are based 

on the revealed preference framework. The experimental procedure elicits 

standard choice data. We observe the number of actual violations and then 

compare these with a ‘benchmark’ which was derived from simulations of random 

behaviour. 

Out of the two weakenings of WARP, Lleras et al is the more restricted version when 

compared to Masatlioglu et al. Therefore, its ability to extract preferences is higher. 

Masatlioglu et al seems to perform the best in the inconsistencies analyses which 

is the main observation for the axiom violations. Their key axiom is the only axiom 

for which some subjects do not violate it at all. The axiom displays the least 

percentage in term of the depth of the cycles and also shows the greatest 

improvement over simulations. Lleras et al does not perform so well in term of the 

depth of the cycles. However, its validity of the inferred preference shows the 

greatest improvement over simulations. These patterns remain when full 

transitivity is assumed. WARP, which is the standard and normative way of 

describing choice behaviour, received some modest support from the data, in that, 

it is the most informative model. The crude percentage of the valid inferred 

preference according to WARP is the highest.   
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Appendix 2  

 

2A Lottery details 
No. Px (x100) X Py (x100) Y E 

1 0.5 19 0.5 -3 8 

2 0.8 6 0.1 17 8.2 

3 0.6 18 0.4 -3 9.6 

4 0.7 8 0.3 13 9.5 

5 0.1 19 0.9 7 8.2 

6 0.2 16 0.8 7 8.8 

7 0.3 14 0.7 7 9.1 

8 0.4 11 0.6 8 9.2 

9 0.9 7 0.1 17 8 

10 0.8 13 0.2 -3 9.8 
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2B List of alternative(s) in each problem 
 

Prob. No. 
 Alternatives 

  

1 1                 

2 2                 

3 3                 

4 4                 

5 5                 

6 6                 

7 7                 

8 8                 

9 9                 

10 10                 

11 1 2               

12 3 9               

13 4 9               

14 5 9               

15 5 10               

16 1 2 3             

17 1 2 6             

18 1 2 9             

19 1 2 10             

20 1 3 9             

21 1 5 9             

22 3 5 10             

23 3 9 10             

24 4 5 10             

25 4 6 9             

26 4 8 9             

27 5 6 9             

28 5 8 9             

29 5 8 10             

30 1 2 3 10           

31 1 2 4 9           

32 1 2 5 6           

33 1 3 5 9           

34 1 3 5 10           

35 1 3 9 10           

36 1 5 6 9           

37 1 5 7 9           

38 2 3 9 10           
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39 2 4 5 10           

40 2 4 6 9           

41 3 4 5 10           

42 3 4 6 9           

43 3 5 6 9           

44 3 5 6 10           

45 3 5 9 10           

46 4 5 8 9           

47 4 5 8 10           

48 4 8 9 10           

49 1 2 3 5 10         

50 1 2 3 9 10         

51 1 2 4 7 9         

52 1 2 4 8 9         

53 1 2 5 6 8         

54 1 3 4 5 10         

55 1 3 5 6 10         

56 1 3 5 7 10         

57 1 3 5 8 10         

58 1 3 7 9 10         

59 1 3 8 9 10         

60 1 5 6 7 9         

61 2 3 4 9 10         

62 2 3 5 6 9         

63 2 3 6 9 10         

64 2 3 7 9 10         

65 2 4 5 6 10         

66 3 4 5 7 10         

67 3 4 6 9 10         

68 3 5 6 7 10         

69 3 5 6 8 10         

70 3 5 7 9 10         

71 4 5 7 8 9         

72 4 6 8 9 10         

73 1 2 3 4 8 9       

74 1 2 3 4 9 10       

75 1 2 3 5 6 10       

76 1 2 4 7 9 10       

77 1 2 5 6 7 8       

78 1 2 5 6 8 10       

79 1 3 4 5 6 10       

80 1 3 4 5 8 10       

81 1 3 4 5 9 10       
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82 1 3 4 6 9 10       

83 1 3 5 6 8 10       

84 1 3 5 6 9 10       

85 1 4 5 6 7 9       

86 1 5 6 7 9 10       

87 2 3 4 5 6 9       

88 2 3 4 5 7 10       

89 2 3 4 5 9 10       

90 2 3 4 8 9 10       

91 2 4 5 6 7 10       

92 2 4 5 6 8 10       

93 3 4 5 7 9 10       

94 1 2 3 4 5 7 10     

95 1 2 3 4 5 8 9     

96 1 2 4 5 6 7 9     

97 1 2 4 5 6 7 10     

98 1 2 4 5 7 9 10     

99 1 2 5 6 7 9 10     

100 1 3 4 5 6 7 9     

101 1 3 4 5 6 7 10     

102 1 3 4 5 6 8 10     

103 1 3 4 5 6 9 10     

104 1 3 4 5 7 9 10     

105 1 3 4 5 8 9 10     

106 1 5 6 7 8 9 10     

107 2 3 4 5 6 8 9     

108 2 3 4 5 7 9 10     

109 3 4 5 6 7 9 10     

110 1 2 3 4 5 6 7 10   

111 1 2 3 4 5 6 8 9   

112 1 2 3 4 5 6 9 10   

113 1 2 3 5 6 7 9 10   

114 1 3 4 5 6 8 9 10   

115 2 3 4 5 6 7 9 10   

116 1 2 3 4 5 6 7 8 9 

117 1 2 3 4 5 6 7 8 10 

118 1 3 4 5 6 7 8 9 10 
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2C  Instructions 

 

 

 

Instructions 

 

Preamble  

Welcome to this experiment. Thank you for coming. Please read carefully these 

instructions. They are to help you to understand what you will be asked to do and 

how will you get paid. The experiment is simple and gives you the chance to earn a 

considerable amount of money. You will be paid in cash immediately after the 

experiment is completed. 

 

The Experiment 

The experiment is interested in how you take decisions. There are no right or wrong 

answers. You will be presented with a series of 118 problems, all of the same type. 

In each problem, there is a set of lotteries. We will describe in detail what we mean 

about a lottery in the next section. Your task is to choose one of these lotteries or 

not to choose any lottery at all in a problem.  The outcome of playing out this lottery 

will lead to a payoff to you. Your payment for participating in this experiment will 

be the payoff from a randomly chosen one of these problems, (playing out the 

lottery of your choice), plus a £3 show-up fee. If it occurs that you did not choose 

any lottery in the randomly selected problem, your payoff will be your show-up fee. 

Details of all the payment procedures will be explained in the payment section.  

 

 

A Lottery 

We describe now what we mean by a ‘lottery’. Here we represent each lottery 

visually. The visual representation will be like the two examples below,   
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It is simplest to explain these in terms of the implications for your payment if one 

of these is randomly selected to be played out at the end of the experiment. What 

we will do in all cases is to ask you to draw ‒ without looking ‒ a disk out of a bag 

containing 10 disks numbered from 10, and an increments of 10, to 100. (You will 

be able to check that the bag contains all these disks before you do the drawing.) 

The number on the disk that you draw will determine a point on the horizontal axis; 

your payment would be the amount on the vertical axis implied by that point 

through the figure. At the point on the horizontal axis where the vertical axis 

changes it value, the payment would equal to the value of the vertical axis to the 

left of that point. In each lottery, there are two possible outcomes or payoffs.  

 

So, for example, in the top lottery, if the number on the disk that you draw is 

between 10 and 50 inclusive you would get £19, notice that if the number on the 

disk is 50 you would get £19; if it is between 60 and 100 inclusive you would make 

a loss of £3. This loss will be deducted from your show-up fee. This implies that the 

chance of you getting paid £19 is 50 percent and the chance of you making a loss 

of £3 is also 50 percent. This will also be written in words. The caption will appear 

when you move the mouse cursor over the shaded areas. If the bottom lottery is to 
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be played out, if the number on the disk that you draw is between 10 and 80 

inclusive you would get £7, notice that if the number on the disk is 80 you would 

get £7; if it is between 90 and 100 inclusive you would get £11. 

 

Let us give specific examples. In the top lottery, suppose the number on the disk 

that you draw is 70, then you would make a loss of £3 out of your show-up fee. In 

the bottom lottery, suppose the number on the disk that you draw is 30, you would 

receive £7. 

 

Choices 

In each problem, there is a set of lotteries. The number of lotteries varies from 

problem to problem. Your task is to choose one of these lotteries, or not to choose 

any lottery. You can choose a lottery by clicking at the box below the lottery of your 

choice. If you do not want to choose any lottery, you can do that by clicking the 

‘Prefer not to choose’ button at the bottom part of the screen. Below is an example 

of a problem screen. 
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Payment 

When you complete all 118 problems, please raise your hand and the experimenter 

will come to you. You will be lead to a separate room where the payment will take 

place. You will randomly choose one of the problems to play out for real. This is 

done by you drawing a disk from a bag containing 118 disks, each labelled number 

1 to 118. The number on the disk that you draw is the problem that will be played 

out for real. 

 

 

If you chose one of the lotteries in that problem 

Your payment from the experiment will be from playing out a lottery of your choice 

from the randomly-chosen problem of the experiment plus the show-up fee of £3. 

You will randomly choose one numbered disk from another bag containing 10 disks 

numbered from 10, 20, 30, …, 100, and the number on the disk chosen will 

determine your payoff according to the procedure describe in the lottery section. 

If the payoff in the randomly chosen problem is zero you will receive only a show-

up fee. If the payoff in the randomly chosen problem is negative, this will be 

deducted from your show-up fee.  The maximum loss from a problem is -£3, 

therefore, at worst; you will be receiving £0 from this experiment. 

 

If you did not choose any lottery in that problem 

Your payment from the experiment will be only the show-up fee of £3. 

 

What to do next (About the Experimental Software) 

When you finish reading these Instructions, you should click on the ‘start’ button 

at the bottom of the screen (you will not be able to click this button until at least 5 

minutes have passed). This will lead you to the actual experimental problems, and 

you will then be starting the experiment proper. Each problem screen has a 

countdown timer at the top right corner of the screen. You cannot click any button 

until 10 seconds have passed from when you started on that problem. There is a 

time limit of 45 seconds to make a decision on any problem. You can change your 

decision as many times as you want during this time period. You can click ‘Submit’ 
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button before the time limit is reached. If you chose a choice and the time limit is 

over, that choice will automatically be your choice. If you do not choose any choices 

and the time limit is over, the default option, which is ‘Prefer not to choose’, will be 

taken as your choice on that particular problem. 

 

If you have any questions at any stage of the experiment, please raise your hand 

and an experimenter will come to you. 

 

Thank you for your participation. 

 

 

Nuttaporn Rochanahastin 

October 2017 
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Chapter 3 

 

Axioms of Salience Perception 

and Choice under Risk: An 

Experimental Investigation 

 
 

3.1  Introduction 
 

Formal models of human decision making have been proposed for over half a 

century to explain empirical violations of rational choice theory (Dhami (2016), 

Wakker (2010)). A more unified perspective is now emerging, based on the idea 

that fundamental properties of the perceptual system lead people to focus on 

larger differences in payoffs. These distortions in perceived salience produce 

deviations from models of rational behaviour. This ‘salience-based’ account of 

decision making has been applied to explain decisions under risk (Bordalo et al 

(2012)), decisions over time (Kőszegi and Szeidl (2013)), consumer choice (Bordalo 

et al (2013b)), asset prices in financial markets (Bordalo et al (2013a)), judicial 

decisions (Bordalo et al (2015)), competition between firms (Bordalo et al (2016)), 

and strategy selection in games (Leland and Schneider (2015, 2018)). All of these 

models rely on essentially the same basic properties of the perceptual system. 

However, the link between these properties of the perceptual system and 

economic decision making has not been directly tested.  
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In this paper, we directly test axioms that characterise salience perception and their 

linkage with economic choices under risk. Our experiment also tests for the 

presence of a broader link between the representation of non-symbolic stimuli and 

symbolic stimuli in human decision making. A variety of evidence summarised in 

Dehaene (2011) suggests that both animals and human infants form approximate 

non-symbolic number representations, and that such representations are also used 

by human adults, even when confronted with information that has been presented 

symbolically. A study on number perception, Moyer and Landauer (1967), 

concluded that the mind converts symbolic numerals to analogue magnitudes and 

that “a comparison is then made between those magnitudes in much the same way 

that comparisons are made between physical stimuli.”  More recently, Halberda et 

al (2008) found that individual differences in the perception of non-symbolic stimuli 

(perceptions of arrays of coloured dots) correlates with math achievement on 

symbolic tasks. Authors in Schley and Peters (2014) found that diminishing 

sensitivity in the perception of symbolic stimuli correlates with diminishing 

sensitivity to numerical magnitudes presented symbolically in choices under risk. 

Yet, it is unknown whether there is a link between the perception of symbolic and 

non-symbolic stimuli in human decision making.    

 

We first introduce three axioms to formalise properties of the perceptual system 

that are implied by salience models of decision making. We experimentally test the 

validity of these axioms in a perceptual task involving boxes containing red and blue 

dots. We then have participants make choices between lotteries with different 

possible payoffs and probabilities of winning money. We observe a relationship 

between individual differences in salience perception and participants’ preferences 

for skewness in choices under risk, as would be expected if salience perception 

influences behaviour. The preference for positively skewed lotteries in situations 

involving risk is well known and it generates the purchase of lottery tickets 

(Friedman and Savage (1948), Kahneman and Tversky  (1979), Tversky and 

Kahneman, (1992)), the ‘longshot’ bias in betting markets (Weitzman (1965)), and 

the over-valuation of positively skewed financial assets (Barberis and Huang 

(2008)). However, the determinants of skewness preference are not well 



87 
 

understood. Our findings provide a step in addressing this gap by establishing a 

direct link between salience perception and the economic preference for skewness.  

 

The properties of salience perception have typically been justified on intuitive and 

empirical grounds. Now consider how these properties may also be derived from 

first principles that one might postulate to characterise the perceptual system. 

Consider salience perceptions between pairs of quantities (x, y). These quantities 

may be monetary payoffs, for example.  

 

3.2  Axioms of Salience Perception 
 

Leland and Schneider (2016a) considers salience perceptions between pairs of 

quantities(𝑥, 𝑦). These quantities may be pairs of payoffs or probabilities or time 

delays, for example. Denote the set of quantities being compared by a closed and 

convex set Ω ⊂ ℝ+
2 . Let ⊵𝑠 be a binary relation called a salience relation carrying 

the interpretation “at least as salient as” over pairs in Ω, with strictly greater 

salience and equivalence denoted by ⊳𝑠  and ~𝑠. The following axioms are imposed 

on  ⊵𝑠:  

 

Axiom 1 (ORDERING AND CONTINUITY). ⊵𝑠 is a continuous44 weak order on Ω. For 

𝑥, 𝑦, 𝑥′, 𝑦′ ≥ 0, let ∆(𝑥, 𝑦): = 𝑥 − 𝑦 ≥ 0, and let 𝑟(𝑥, 𝑦): = 𝑥/𝑦 ≥ 1. Note that our 

definitions of differences, ∆(𝑥, 𝑦), and ratios, 𝑟(𝑥, 𝑦) have, without loss of 

generality, set 𝑥 ≥ 𝑦.   

 

A salience relation that ranks the salience of pairs of quantities (x, y) is complete, 

transitive, and continuous.     

 

Axiom 2 (SYMMETRY). For any (𝑥, 𝑦), (𝑦, 𝑥) ∈ 𝑋, (𝑥, 𝑦) ~𝑠 (𝑦, 𝑥). 

                                                           
44 The notion of continuity invoked here is that used in consumer preference theory in 
economics: The relation ⊵𝑠 is continuous if it is preserved under limits. That is, for any 
sequence of pairs {(𝑥𝑛, 𝑦𝑛)}𝑛=1

∞  with 𝑥𝑛 ⊵𝑠 𝑦𝑛  for all 𝑛, 𝑥 = lim
𝑛→∞

𝑥𝑛, and 𝑦 = lim
𝑛→∞

𝑦𝑛 , we 

have 𝑥 ⊵𝑠 𝑦  (Mas-Colell, Whinston, and Green (1995), Definition 3.C.1). 
 



88 
 

 

For any quantities (x, y), the salience of (x, y) is equivalent to the salience of (y, x). 

 

Axiom 3 (MONOTONICITY IN INTERVALS). For any (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝑋, if [𝑦′, 𝑥′] is a 

strict subset of [𝑦, 𝑥] then (𝑥, 𝑦) ⊳𝑠 (𝑥′, 𝑦′). 

 

For any pairs of quantities (x, y), (x’, y’), with  x ≤ y and  x’ ≤ y’, if interval [x’, y’] is 

a strict subset of interval [x, y] then (x, y) is more salient than (x’, y’).     

 

Axiom 4 (MONOTONICITY IN RATIOS). For any (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝑋, if ∆(𝑥, 𝑦) =

∆(𝑥′, 𝑦′) with 𝑥′ > 𝑥,  𝑦′ > 𝑦, then 𝑟(𝑥, 𝑦) > 𝑟(𝑥′, 𝑦′)  implies (𝑥, 𝑦) ⊳𝑠 (𝑥′, 𝑦′). 

 

For any pairs of quantities with the same absolute difference, the pair with the 

larger ratio is more salient.  

 

Axiom 5 (MONOTONICITY IN DIFFERENCES). For any (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝑋, if  

𝑟(𝑥′, 𝑦′) = 𝑟(𝑥, 𝑦), where 𝑥′ > 𝑥 and 𝑦′ > 𝑦, then ∆(𝑥′, 𝑦′) > ∆(𝑥, 𝑦) implies 

(𝑥′, 𝑦′) ⊳𝑠 (𝑥, 𝑦).  

 

For any pairs of quantities with the same ratio, the pair with the larger absolute 

difference is more salient.  

 

These properties characterise45 a general class of salience functions including those 

used in salience models of decision making. Axiom 4 is equivalent to the property 

of diminishing absolute sensitivity (DAS) which is a form of ‘Weber’s law,’ and 

Axiom 5 is equivalent to increasing proportional sensitivity (IPS).  The general 

definition of a salience function follows: 

 

Definition 1: (Salience Function): For any pair of quantities (x, y), a salience function 

𝜎(x, y) is any symmetric and continuous function that satisfies the following three 

properties: 

                                                           
45 Appendix 3A provides a proof which is extracted from Leland and Schneider (2016a). 
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1. Ordering: If  [x’, y’] is a subset of [x, y], then 𝜎(x’, y’) < 𝜎(x, y) 

2. Diminishing Absolute Sensitivity (DAS): For any x, y, ε > 0, 𝜎(x + ε, y + ε) < 𝜎(x, 

y). 

One other natural property for a salience function is the following: 

3. Increasing Proportional Sensitivity (IPS): For any x, y > 0, and k > 1, 𝜎(kx, ky) > 

𝜎(x, y). 

 

Definition 2: A function 𝜎 represents a salience relation ⊵𝑠 if for all (𝑥, 𝑦), (𝑥′, 𝑦′) ∈

𝑋, we have (𝑥, 𝑦) ⊵𝑠 (𝑥′, 𝑦′) if and only if 𝜎(𝑥, 𝑦) ≥ 𝜎(𝑥′, 𝑦′). 

 

To test whether there is a link between salience perception and economic choices, 

we conduct an experimental test of Axioms 3, 4, and 5 in a perceptual task involving 

arrays of red and blue dots (Part I of the experiment) and then test whether salience 

perception predicts risky choice (Part II). Sample tasks from the experiment are 

shown in Figure 3.1  

 

The approach that we use to test the validity of each axiom is to compare the actual 

behaviour in discriminating between the differences or ratios of red and blue dots 

(such as those displayed in Figure 3.1) with random choice46. A distribution 

indistinguishable from random choice would falsify the axioms.  

 

 

 

 

 

                                                           
46A related benchmark to evaluate DAS (Axiom 4) and IPS (Axiom 5) is ‘constant sensitivity’. 

For a salience function s that satisfies Constant Absolute Sensitivity (CAS) and any  ε > 0, s(x 

+ ε, y + ε) = s(x, y).  For a salience function s that satisfies Constant Proportional Sensitivity 

(CPS) and any k > 1, s(kx, ky) = s(x, y). In our experiment, CAS and CPS make the same 

predictions as random choice. 
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3.3  An experimental investigation 
 

We carried out an experiment in two sections. The first section was to test Axioms 

3, 4 and 5; the second section was to test the implications of the axioms for risky 

choice.  

Let us start with the first section – a test of the axioms. The axioms are designed to 

say when a pair of items (x,y) is ‘more salient’ than another pair (x’,y’). We had to 

interpret what this means. Dictionaries define ‘salient’ as something important or 

noticeable, or, occasionally, as something very important or very noticeable. 

Nowhere is ‘more salient’ defined, but, in the spirit of the dictionary definitions, we 

take it to mean ‘more noticeable’. So, in keeping with this spirit, we devised an 

experiment to see whether subjects could detect ‘more noticeable’. To do this, we 

needed a task where subjects were asked to choose between two objects. We could 

not ask them to choose the object that was more salient, as we would have had to 

say what that meant. We decided to reward them if the thing that they chose had 

more of something – that is, was more noticeable. So we would be observing what 

they found as more noticeable – and therefore more salient. Rather tautologically, 

if they noticed whatever it was that we were asking them for, they must have found 

it noticeable.  

 

The way that we implemented this was to give them a series of problems, in each 

of which they had to choose one out of two boxes. Their payment depended upon 

whether the box they chose satisfied a question posed to them. If it did their 

payment was a positive sum of money; if it did not, their payment was zero. This 

method enables us to test these axioms as properties of perception, independent 

of any classical domain of choice behaviour. We give details below. 
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3.3.1  The experimental design in the first section 
 

This section was designed to test the axioms. Subject were presented with 120 

pairwise choice questions; each problem testing one of the three axioms. In each 

problem, subjects were presented with two boxes (Left and Right). Each box 

contained red and blue circles. The numbers of red and blue circles represent a pair 

of alternatives according to the axioms. An example of a problem’s screenshot for 

this section is given in Figure 3.1. The subject’s task implicitly, but not explicitly, was 

to choose whichever box was more salient according to the axioms. We incentivised 

them by paying them £10 if they chose correctly according to a question posed to 

them, and paying them nothing otherwise. Their total payment for part I was the 

average payoff from all 120 problems. 

For testing Axiom 3 (Monotonicity in Intervals) the question was ‘Which box has the 

greatest difference between the number of blue balls and the number of red balls?’. 

For testing Axiom 4 (Monotonicity in Ratios) the question was ‘Which box has the 

greatest ratio of blue balls to red balls?’. To make the question a proper test of the 

axiom, both boxes had the same absolute difference. 

For testing Axiom 5 (Monotonicity in Differences) the question was 'Which box has 

the greatest difference between the number of blue balls and the number of red 

balls?’. To make the question a proper test of the axiom, both boxes had the same 

ratio. 

Although subjects were facing similar questions for Axiom 3 and Axiom 5, the 

underlying parameters (the number of blue balls and red balls) were designed 

differently. For Axiom 3, in one box ‒ the more salient box ‒ the number of blue 

balls and red balls is a super set of the other box - the less salient box. This suggests 

that, in the more salient box, there are more blue balls as well as less red balls 

compared to the less salient box. Hence, the subject task is to identify which box 

has more blue balls and fewer red balls.  

For Axiom 5, we kept the ratio of the blue balls and red balls constant and varied 

the difference. Therefore, the subject’s task was to choose the box with the 
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greatest difference, given a fixed ratio. The questions that asked ‘Which box has 

the greatest difference between blue balls and red balls?’ is sufficient for the 

condition for both Axiom 3 and Axiom 5. 

 

Figure 3.1:  A screenshot of a problem from the first section of the experiment. 

 

There were 16, 22 and 22 problems corresponding to Axioms 3, 4, and 5 

respectively47. These make up 60 baseline problems; each of these was repeated 

twice, giving a total of 120 problems. Subjects were given written instructions 

which were read to them before starting the experiment. After the end of this first 

section of the experiment, subjects were given written instructions for the second 

section; these were also shown on their screens; they had to wait for at least five 

minutes before they could start the second section. This was a way of forcing them 

to read carefully the Instructions. 

 

 

                                                           
47 Parameters for each problem can be found in Appendix 3B. 
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3.3.2  The experimental design in the second section 
 

The second section of the experiment involved a set of risky choice problems. These 

were pairwise lottery choice problems aiming at investigating the relation between 

the salience axioms and violations of rational choice theory under risk. The lotteries 

in the problems were designed so that we could test the implications of the axioms. 

One of the applications of the salience function (implied by the salience axioms) is 

Salience Weighted Utility over Presentations model (SWUP) (Leland & Schneider, 

2016b). The model is derived based on Expected Utility (EU) model with weights 

place on both probabilities and payoffs. Suppose there are two lotteries, A and B. 

There are finite set of outcomes denoted 𝐴𝑖  and 𝐵𝑖, 𝑖 = 1,2, … , 𝑛. Each 𝐴𝑖  occurs 

with probability 𝑝𝑖  and each 𝐵𝑖  with probability 𝑞𝑖. A decision maker (DM) is strictly 

preferred A to B if and only if the following holds: 

 

Σ𝑖=1
𝑛 [𝜙(𝑝𝑖 , 𝑞𝑖)(𝑝𝑖 − 𝑞𝑖)(𝑈(𝐴𝑖) + 𝑈(𝐵𝑖))/2 + 𝜇(𝐴𝑖 , 𝐵𝑖)(𝑈(𝐴𝑖) − 𝑈(𝐵𝑖))(𝑝𝑖 + 𝑞𝑖)/2] > 0 

 

This model assumes that a DM evaluate different attributes across lottery. 

Difference in attribute values are perceived according to salience perception and 

attract disproportionate attention. Therefore, they are weighted in the expected 

utility evaluation process. The weight 𝜙(𝑝𝑖 , 𝑞𝑖) is placed on probability differences 

and 𝜇(𝐴𝑖, 𝐵𝑖) on payoff differences.  

The implications of SWUP include the Fourfold Pattern of Risk Attitudes. Axioms 3 

and 4 – operating through payoff salience functions that exhibit Diminishing 

Absolute Sensitivity (DAS) and Ordering - have implications that push DMs toward 

apparent risk aversion for high-probability gains. In contrast, Axiom 5 – which 

operates through payoff salience functions that exhibit Increasing Proportional 

Sensitivity (IPS) – has implications that push DMs toward apparent risk seeking for 

low-probability gains. In addition, Axiom 5 has also an implication of predicting the 

common ratio effect, operating through probability-weight salience function.  
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There were 36 problems in this section48. The first 26 of these were designed to 

detect the “Fourfold Pattern of Risk attitudes” which is the implication of salience 

perception on lottery payoffs, and the last 10 to detect the effect of IPS on choice.  

The characteristics of IPS (and Ordering) determined the design of problems 1 to 

12. SWUP predicts that, assuming risk neutrality, DMs would prefer the risky lottery 

over the certainty in these problems. For example, problem 1 is a choice between: 

   A1, B1 PA1, PB1  A2, B2  PA2, PB2 

A 100 0.01 0.01 0.99 

B 1 0.01 1 0.99 

 

SWUP implies that A is preferred to B if and only if μ(100,1)[u(100)-u(1)](0.01)+ 

μ(0.01,1)[u(0.01)-u(1)](0.99) is positive. Assuming risk-neutrality (as in Proposition 

7 of Leland and Schneider (2016a)), the preference depends on whether 

μ(100,1)(100-1)(0.01) + μ(0.01,1)(0.01-1)(0.99) is positive, or on whether 

0.99μ(100,1) ‒ (0.9801)μ(0.01,1) is positive. According to IPS, μ(100,1) > μ(0.01,1). 

This makes the left hand side of the equation positive, and hence A is preferred to 

B.  

The characteristics of DAS (and Orderings) determined the design of problems 13 

to 26. SWUP predicts, assuming risk-neutrality, that DMs would appear to be risk 

averse and would prefer the certainty in these problems. For example, problem 26 

is a choice between: 

   A1, B1 PA1, PB1  A2, B2  PA2, PB2 

A 100 0.99 0.01 0.01 

B 99 0.99 99 0.01 

 

SWUP implies that B is preferred to A if and only if μ(100,99)[u(100)-u(99)](0.99)+ 

μ(0.01,99)[u(0.01)-u(99)](0.01) is negative. Assuming risk-neutrality (as in 

Proposition 7 of Leland and Schneider (2016a)), preference depends on whether 

μ(100,99)(100-99)(0.99)+ μ(0.01,99)(0.01-99)(0.01) is negative; or, on whether 

0.99μ(100,99) ‒ (0.9899)μ(0.01,0.99) is negative. According to DAS and Ordering, 

                                                           
48 Parameters for this section can be found in Appendix 3B and 3C. 
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μ(0.01,99) > μ(100,99) which makes the equation negative and thus, B is preferred 

to A. 

The characteristics of IPS determined the design of Problems 27-3649. Each lottery 

has one non-zero payoff in which we scaled the amount of the payoffs according to 

the common ratio of their relative probabilities. For example, problem 27 was: 

   A1, B1 PA1, PB1  A2, B2  PA2, PB2 

A 9 0.90 0 0.10 

B 18 0.45 0 0.55 

 

There are two sets of common ratio problems. Problems 27-32 have a common 

ratio of 2 while 33-36 have a common ratio of 3. Subjects who conform to Expected 

Utility Theory should not change their choice within a set. However, SWUP predicts 

a pattern of change in choice when the probabilities have been scaled down. 

We used the random lottery incentive mechanism for this section. At the end of the 

experiment, each subject randomly selected a problem for their payment by 

drawing a disk from a bag containing 36 disks, numbered from 1 to 36. Their lottery 

choice in that problem was then played out for real by drawing from another bag 

containing 100 disks, numbered from 1 to 100. The total payment for the 

experiment is the sum of the payments from two sections plus £2.50 show-up fee. 

An example of a screenshot for the second section is shown in Figure 3.2 

We recruited a total of 80 subjects for the experiment which was conducted in the 

EXEC Lab at the University of York. Subject’s ages ranged from 18 to 44 years. 78 of 

whom were students and 2 reported themselves as a member of staff at the 

University of York. There were 54 females (67.50%) and 26 males (32.50%). The 

average total payment was £12.85. This experiment was run using purpose-written 

software written in Visual Studio. 

  

                                                           
49 Parameters for each problem can be found in Appendix 3D. 
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Figure 3.2:  A screenshot of a problem from the second section of the 

experiment. 

 

3.4  Results and Analyses 
 

We begin by reporting the results of the first section ‒ the direct tests of the axioms. 

Then we report the results from the second section of the experiment ‒ 

investigating the axioms’ implications for risky choice. Finally we report on the 

relationship between salience perception (section one) and behavioural biases in 

risky choice (section two). This analysis can be further broken down into (1) the 

relationship between axioms 4 and 5 and their implications on the effects of 

changes in the lottery payoffs, and (2) the relationship between axiom 5 and its 

implications on the effects of changes in the lottery probabilities.  So we should be 

able to see which axioms are driving which behavioural biases. 
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3.4.1  Tests of Axioms for Salience Perception 
 

First, we want to test and compare the strength of each axiom to determine their 

validity. In principle a single violation of an axiom is sufficient to discredit it, but 

that seems rather harsh. The ‘benchmark’ that we will use in measuring ‘how good’ 

is each axiom is by comparing the actual behaviour with random choice. A related 

benchmark that could be considered, particularly for DAS (Axiom 4) and IPS (Axiom 

5) is to compare the violations with the ‘constant sensitivity’ cases. DAS predicts 

that, for a salience function σ and any 0, ( , ) ( , )x y x y        . On the 

contrary, for a salience function σ that satisfies Constant Absolute Sensitivity (CAS) 

and any 0, ( , ) ( , )x y x y        . Also, IPS predicts that, for a salience 

function σ and any 1, ( , ) ( , )x y x y      . On the contrary, for a salience 

function σ that satisfies Constant Proportional Sensitivity (CPS) and any 

1, ( , ) ( , )x y x y      .  In our experiment design, CAS and CPS would make 

the same predictions as random choice. Therefore, a distribution indistinguishable 

from random choice would falsify the axioms. Random choice suggests that the 

violation is equal to 50 percent for each axiom. Table 3.1 shows the average 

violation percentage for each axiom. 

 

 Average St. dev. p-value 

Axiom 3 0.1508 0.0975 0.000 

Axiom 4 0.1210 0.1641 0.011 

Axiom 5 0.2011 0.1493 0.023 
 

Table 3.1: The average violation percentage for each axiom 

 

We employ a simple t-test to compare the sample average with the hypothesised 

average of 50 percent under the benchmark of random choice. The alternative 

hypothesis is that 0.5  . The p-value of the test (the sample size is 80) is reported 

in Table 3.1 The null hypothesis is rejected at the 5% significance level for every 

axiom. Thus, we can conclude that subjects were not behaving randomly. On this 

criterion all axioms are valid and not falsified.  
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Next, we calculate the relative violation rates of the three axioms. The two sample  

t-test for difference in means is employed. The results are presented in Table 3.2 

As the table above shows, the average violation of Axiom 4 is the least and it is 

lower than Axiom 3 (at a 10% significance level) and Axiom 5 (at 1%). Axiom 5 is 

violated the most compared to the other two axioms (both at 1%). Interestingly, 

Axiom 4 which involves comparing the ratios is violated less than Axioms 3 and 5 

which involve comparing differences. 

 

 Axiom 3 Axiom 4 Axiom 5 

Axiom 3   0.0825 0.0064 

Axiom 4 0.0825   0.0000 

Axiom 5 0.0064 0.0000   
 

Table 3.2:  p-values for two sample t-test for difference in means 

 

To understand why subjects may be making mistakes, we use the difference 

between the differences, or the ratios of the two boxes, in each problem as a 

measure of the degree of difficulty. We find that the correlations between the 

number of violations and the degree of difficulty are negative for all the axioms ‒ 

which is as expected. Axiom 4 is the most negatively correlated. The table below 

shows the correlations. 

 

 Correlation 

Axiom 3 -0.263 

Axiom 4 -0.699 
Axiom 5 -0.362 

 

Table 3.3: Correlation between violations and the degree of difficulty 

 

3.4.2  Testing the implications of the axioms for risky choice 
 

We now investigate the behavioural biases found in the results from the second 

section of the experiment. The first 26 problems were designed to test the 



99 
 

implications of the Axioms on the Fourfold Pattern of Risk Preferences (Tversky and 

Kahneman 1992). In these problems, DAS (and Ordering) have implications for risky 

choices at moderate and high probabilities payoffs. This induces risk averse 

behaviour for moderate and high-probability gains. On the other hand, IPS (and 

Ordering) have implications for risky choices involving low probability payoffs, and 

induces risk seeking behaviour for long-shot lotteries. There were 5 problems that 

test Axioms 3 and 5, and there were 7 problems that test Axiom 5 by itself. In these 

problems (problems 1-12 in Appendix 3C), assuming risk neutrality, SWUP predicts 

that subjects should choose lottery A. There were 11 problems that involve testing 

Axioms 3 and 4, and 3 problems that test Axiom 4 independently. Again assuming 

risk neutrality, in these problems (problems 13-26 in Appendix 3C), SWUP predicts 

that subjects should choose lottery B. The percentages of violations of these 

predictions are reported in Table 3.4. The p-value in the final column tests the 

violation rate against the benchmark of random choice. 

 

 Mean St. dev. p-value 

Axioms 3 and 4 (problems 16-26) 0.1875 0.2032 0.063 

Axiom 4 (problems 13-15) 0.3542 0.2722 0.291 

Axioms 3 and 5 (problems 2,4,7,9,11) 0.3675 0.3093 0.334 

Axiom 5 (problems 1,3,5,6,8,10,12) 0.5268 0.3299 0.468 
 

Table 3.4:  The average violation percentage according to SWUP predictions 

 

Axiom 5 seems to be the weakest, and Axioms 3 and 4 are stronger. Although Axiom 

5 has the weakest support, nearly 50% of the choices designed to test it do result 

in the choice of the risky lottery as predicted by Axiom 5. In contrast, even slightly 

risk-averse decision makers under the standard economic model of rational choice 

would select the safer lottery, suggesting that under the standard economic model 

with risk-averse agents, the violation percentage for Axiom 5 should be close to 

100%. Under the salience model, choices under risk are determined by properties 

of perception (represented by salience functions) and the agent’s risk preferences 

(represented by a utility function). Since concavity of the utility function (risk 

aversion) operates against Axiom 5, the violation rates of the salience model for 

subjects satisfying Axiom 5 should vary between those who are more sensitive to 
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large differences (such that lottery choices are driven primarily by the salience 

function), and subjects who are very risk-averse (such that lottery choices are 

driven primarily by the utility function). 

 

An obvious alternative story is that in fact the subjects are not SWUP agents who 

are risk-neutral, but are in fact EU subjects who are not risk-neutral. If they were 

the latter, they would not switch from A to B, but would either choose A throughout  

(if risk-averse) or B throughout (if risk-loving). The table below shows the violations 

of the SWUP and EU predictions. 

 

Predictions Violations 

EU - Risk Averse 36.92% 

EU - Risk Lover 63.08% 

SWUP 33.27% 
 

Table 3.5: Percentage of violations of three hypotheses 

 

This table suggests that SWUP performs better than EU in explaining behaviour. 

Risk-neutral SWUP predicts that subjects will choose A in problems 1 to 12 and B in 

problems 13 to 26. We test this against the alternative hypothesis that subjects are 

not risk-neutral SWUP agents but EU agents who are not risk-neutral. We have 

already tested this in our table above, but here we add a regression of the 

proportion choosing A (P)50 against the problem number (n) with an interactive 

dummy, d, that takes the value 0 for problems 1 to 12, and the value 1 for problems 

13 to 26: 

P d n dn       

If SWUP holds,  = 1,   = -1,   =   = 0; under EU  takes some value depending 

upon the risk-attitude of the subjects,   =   =   = 0. The estimated relationship 

is: 

                                                           
50 The proportion for each problem can be found in Appendix 3E. 
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𝑃 = 0.628 − 0.113𝑑 − 0.014𝑛 − 0.001𝑑𝑛  
(0.075)  (0.177)    (0.010)     (0.013)                 𝑅2  =  0.69 

      

Standard errors are in parentheses.  ,   and   are not significantly different from 

0 while  is significant at 1% level and its value is 0.628. The regression suggests 

that SWUP does not do as well as the EU explanation. 

Another alternative explanation is that subjects are SWUP agents who are not risk-

neutral. In this case, SWUP predictions depend both on salience perception and the 

degree of risk aversion. The most risk-averse subject would choose B throughout, 

but agents who have a more moderate degree of risk aversion would choose A in 

the first few problems and switch to B at some point. We run a regression of the 

proportion choosing A (P) against the problem number (n) without a dummy to test 

this.  

𝑃 = 𝛼 + 𝛽𝑛 

The hypotheses in this case are, 𝛼 > 0 and𝛽 < 0. The estimated relationship is: 

𝑃 = 0.664 − 0.022𝑛 

(0.049)   (0.003)                                   𝑅2 = 0.664  

The estimated coefficient for the intercept is positive and significant.  The slope 

coefficient is negative and significant indicating that subjects do choose A more 

often in the first few problems. SWUP with risk attitudes is a valid explanation of 

the data. 

Next, we look at the common ratio type of problems which involve the implications 

of IPS related to probabilities. For this type, SWUP predicts that people who exhibit 

IPS are also more likely to exhibit the general common ratio effect. The problems 

are designed to detect a change in the pattern of choice from the first few problems 

to the last few. There are two sets of common ratios. The first set51  are designed 

so that there is a common ratio in probabilities equal to 2 while the second set52 

                                                           
51 Problems 27-32 in Appendix 3D. 
52 Problem 33-36 in Appendix 3D. 
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has a common ratio in probabilities equal to 3. The percentage of subjects who 

choose Lottery A and Lottery B is calculated and the results are shown in Table 3.6. 

 

 A B 

27 0.725 0.275 

28 0.688 0.313 

29 0.738 0.263 

30 0.725 0.275 

31 0.638 0.363 

32 0.500 0.500 

33 0.700 0.300 

34 0.663 0.338 

35 0.650 0.350 

36 0.688 0.313 
 

Table 3.6:  The percentage of subjects who choose respective lotteries in the 

common ratio type of problems 

 

We do not observe the common ratio effect in aggregate. Subjects are consistent 

as the majority chose Lottery A over Lottery B for every problem except problem 

32. Here the alternative hypothesis that subjects are EU agents who are not risk-

neutral is supported by the data. 

We now compare the goodness-of-fit of non-risk-neutral SWUP with non-risk-

neutral EU subject by subject. We use Maximum Likelihood Estimation and assume 

the Constant Absolute Risk Aversion (CARA) functional form for EU. For non-risk-

neutral SWUP, to estimate the SWUP equation, we assume a CARA utility function 

and the following salience functional forms: 

 

𝜇(𝑥, 𝑦) =
|𝑥 − 𝑦|

(𝑥 + 𝑦 + 1)
 𝑎𝑛𝑑 𝜑(𝑝, 𝑞) =

|𝑝 − 𝑞|

(𝑝 + 𝑞)
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These specifications generate the Fourfold pattern of Risk Attitudes and the Allais 

common ratio effect53 which are investigated in this paper. They are based on the 

parameter-free functional form introduced by Bordalo et al (2013b). The payoff 

salience functional is adopted so that it satisfies the IPS property. The IPS property 

for probability is needed for the generalisation of the common ratio effect to the 

case where all outcomes are risky. This effect is not a prevalent pattern in our data, 

thus, we maintain the same functional form used in Bordalo et al (2013b). Another 

advantage in using these form is that it has only one parameter (curvature of the 

utility function) which is comparable to EU.   

We find that CARA SWUP has a higher log-likelihood than CARA EU for 65% of the 

subjects, and it has the same number of parameters. We perform a robustness 

check on these parameter-free salience functional forms by estimating SWUP using 

the form of the salience function on probabilities54 suggested in equation (5) of 

Bordalo et al (2012). 

𝜑(𝑝, 𝑞) =
|𝑝 − 𝑞|

𝑝 + 𝑞 + 𝜑
 

With an additional parameter on this functional form, we employ a likelihood ratio 

test to compare the two models. We found that the parameter-free CARA SWUP is 

better fit in 87.5% of the subjects. This confirms that the IPS parameter for 

probabilities is not significantly different from zero. 

 

3.4.3  Relationships between salience perception and 

behavioural  biases in risky choice 
 

We now investigate whether there is a connection between the axioms of salience 

perception and the common behavioural biases or violations of rational choice 

                                                           
53 As demonstrated in Leland and Schneider (2016b). 
54 The primary reason that our specification does not include IPS for probabilities is that it 
is not needed for any robust behavioural predictions (except for the general common ratio 
effect where all outcomes are risky). For this reason and for simplicity we do not use the 
parametric form for 𝜑(𝑝, 𝑞) with the IPS property.  Moreover, the certainty effect version 
of the common ratio effect is predicted even without IPS for the probability salience 
function. 
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theory under risk by finding the relationship between the first section and the 

second section of the experiment – starting from the first 26 problems that were 

designed to detect implications on payoffs, followed by problems 27 to 36 that 

were designed to detect common ratio effects. The data that we take from the two 

sections are the violations of the axioms (section 1) and from the predictions of 

SWUP for risk-neutral agents (section 2)55. We hypothesise that the more a subject 

violates the axioms’ predictions in the first section, the more the subject should 

depart from the theoretical predictions in the second section as well.  This is a 

strong prediction. The first section of the experiment did not involve risk perception 

but rather the perception of relationships between boxes of red and blue dots - a 

task far removed not only from choices under risk but from any standard decision 

environment studied in economics. It would be surprising if there is a systematic 

relationship between visual perception of red and blue dots and monetary 

decisions under risk.  

 

Of the three relationships that we test (DAS for payoffs and aversion to negatively 

skewed lotteries, IPS for payoffs and preference for positively skewed lotteries, and 

IPS for probabilities)56, there are a priori reasons why we would not expect to 

observe a relationship for DAS for payoffs or for IPS for probabilities. Under the 

salience model, risk aversion is determined by both DAS and curvature of the utility 

function. As a consequence, our design cannot separate these potential sources of 

risk aversion. In addition, in the salience model of Bordalo et al (2012), only the 

salience of possible outcomes matters (and not the salience of probabilities). It is 

demonstrated in Bordalo et al (2012) that sensitivity to the salience of payoffs is 

sufficient to explain the major anomalies for choices under risk. In contrast, earlier 

work Prelec and Loewenstein (1991) has proposed, but not tested, the hypothesis 

that IPS also applies to probabilities. Since IPS for probabilities is not necessary to 

generate observed behaviour, it might not significantly influence choices under risk.   

 

                                                           
55 So that we have a clear measurement for violations in the second section. 
56 We need Ellsberg’s paradox type of problem to test for DAS implication on probability. 
We do not want to involve ambiguity in our experiment. Schneider et al (2016) tested this. 
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Our design provides a more natural test of IPS for payoffs. For a linear or concave 

(risk-averse) utility function, the salience model predicts that any skewness 

preference observed must be due to IPS since concavity of the value function 

operates against IPS, and other properties of salience perception such as DAS also 

operate against IPS.  

 

We first regress, subject by subject, the violation percentage of problems involving 

each Axiom from the first section against the deviations from theoretical 

predictions in corresponding problems from the second section for each subject. 

We regress 𝑉2 against 𝑉1where 𝑉1 is violations from section 1 and 𝑉2 is violations 

from SWUP predictions in section 2. The hypothesis is that 𝛽 is positive and 

significant. 

Axiom 4 (implications of DAS): 

For this axiom, we regress the violation percentage from baseline problem 39-60 

from Appendix 3B against violation in SWUP prediction in problem 13-26 from the 

second section (the implications of DAS for payoffs). The result is: 

𝑉2 =  0.233 − 0.079𝑉1 
(0.025)  (0.121)                              𝑅2  =  0.0055  

            

The slope coefficient is negative; however it is not significantly different from zero. 

We found no relationship between the two sections for this axiom. These findings 

are consistent with salience models in which risk preferences and DAS both 

contribute to risk aversion, but are inconsistent with salience models in which DAS 

is the only source of risk aversion. 

Axiom 5 (implication of IPS): 

Next, we take a look at the relationship between the violations of axiom 5 from the 

first section with problems involving common ratio problems in the second section 

(the implications of IPS for probabilities). Expected Utility Theory predicts a 

consistent choice pattern. However, a subject conforming to IPS would switch 

his/her choice. The inconsistencies display by a subject can be considered as a 

violation of EU. Therefore, our measure is to look at the percentage subject’s choice 
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of B over A. We found that there are 26 out of 80 subjects (32.5 percent) and 37 

out of 80 subjects (46.25 percent) who are consistent throughout the problems that 

have a common ratio equal to 2 and 3 respectively. This result is consistent with 

Table 3.6 where we do not observe a strong common ratio effect in this experiment 

at the average level. We can find the correlation between the inconsistencies or the 

common ratio effect in each subject and the violation percentage from the direct 

test of IPS in the first section by regressing 𝑉2 against 𝑉1where 𝑉1 is the violations 

from section 1 and 𝑉2 is the inconsistencies in section 2. If there is a relationship, 

we hypothesise that the more subject conform to IPS (less violations in the first 

section), the more inconsistencies he/she will make in the choice behaviour section 

(EU is violated more). Therefore,  𝛽 is expected to be negative and significant. The 

result for those problems whose common ratio is equal to 3 is: 

𝑉2 =  0.262 − 0.138𝑉1 
(0.051)  (0.205)                                𝑅2 = 0.0058  

          

And the result for those problems whose common ratio is equal to 2 is: 

𝑉2 =  0.246 + 0.166𝑉1 
(0.050)  (0.201)                               𝑅2 = 0.0087  

      

On both type of problems, we fail to reject the null hypothesis that the slope 

coefficient is equal to zero. Therefore, we also do not find a significant relationship 

between the axiom violations from the direct test and the choice inconsistencies 

displayed by subjects. The finding for probabilities is consistent with salience 

models that assume only the salience of rewards (and not the salience of 

probabilities) affects economic decisions under risk.      

 

For this axiom, we also regress, again subject by subject, the violation percentage 

from baseline problem 17-38 from Appendix 3B against violation in SWUP 

prediction in problem 1-12 from the second section (the implications of IPS for 

payoffs). The result is: 

𝑉2 =  0.362 + 0.491𝑉1 
(0.053)  (0.212)                             𝑅2  =  0.0643  
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The relationship here is positive and significant suggesting that a subject who 

violates more in the first section, also violates more from SWUP prediction with 

problems concerning axiom 5, Increasing Proportional Sensitivity. This indicates 

that subjects who are less likely to exhibit IPS in the round dot perceptual task are 

less likely to exhibit a preference for positively skewed lotteries in the decision task. 

This finding provides a link between a basic property of salience perception (IPS), 

and economic choices under risk (preference for skewness). This finding also 

indicates a link between the representation of non-symbolic and symbolic stimuli 

in decision making as salience perception of non-symbolic stimuli (larger 

differences between red and blue dots) is predictive of the salience perception of 

symbolic stimuli (larger differences between monetary rewards). 

 

3.5  Conclusions 
 

What have we learnt from the experiment? First, directly testing the axioms shows 

general support for them: we can conclude that the axioms in general are valid. The 

actual individual perceptions between pairs of quantities seem to be accurate with 

the characterisations. Second, we test the behavioural implications of the axioms 

(embedded in SWUP) in risky choice context and compare with the alternative of 

non-risk-neutral EU agents. We found that the CARA SWUP model is a plausible 

explanation and is a better fit than the CARA EU model. Applying these axioms into 

an application in a risky choice context in terms of Salience Weighted Utility over 

Presentations (SWUP) model, allowing risk aversion in the utility function, receives 

some statistical support from the data. Lastly, there is a modest connection 

between the violations of the axioms and the violations of the predictions. The 

finding provides a link between a basic property of salience perception (IPS) and 

risk seeking behaviour in long-shot lotteries.  

 

 

 



108 
 

Appendix 3  
 

 

3A Proposition 1 for Axioms of Salience Perception:  

Under Axioms 1-4, there exists a salience function 𝜎 that 

represents ⊵𝑠. 

Proof: In this proposition, we establish that Axioms 1 through 5 are 

sufficient for the representation. Axiom 1, well known in consumer theory, 

guarantees the existence (see, for instance Mas-Colell, Whinston, and Green 

(1995), Ch. 3, Proposition 3.C.1) of a continuous function 𝜎: 𝑋 → ℝ such that 

(𝑥, 𝑦) ⊵𝑠 (𝑥′, 𝑦′) ⟺ 𝜎(𝑥, 𝑦) ≥ 𝜎(𝑥′, 𝑦′). Given Axiom 1, it is clear that Axiom 2 

implies that 𝜎 is symmetric, and that Axiom 3 implies that 𝜎 satisfies ordering.  To 

show that in the presence of Axiom 1, Axiom 4 implies diminishing absolute 

sensitivity, we can write 𝑥′ = 𝑥 + 𝜖 and 𝑦′ = 𝑦 + 𝜖 for 𝜖 > 0. Then we have the 

following lemma: 

 Lemma 1: 𝑟(𝑥, 𝑦) > 𝑟(𝑥 + 𝜖, 𝑦 + 𝜖) for all 𝑥 > 𝑦 > 0, and any 𝜖 > 0. 

Proof:  Inequality 𝑟(𝑥, 𝑦) > 𝑟(𝑥 + 𝜖 , 𝑦 + 𝜖) holds for all 𝑥 > 𝑦 > 0 and 

any 𝜖 > 0 if  

𝑥(𝑦 + 𝜖)

𝑦(𝑦 + 𝜖)
>

𝑦(𝑥 + 𝜖)

𝑦(𝑦 + 𝜖)
. 

which requires 𝑥𝑦3 + 2𝑥𝑦2𝜖 + 𝑥𝑦𝜖2 > 𝑥𝑦3 + 𝑥𝑦2𝜖 + 𝑦3𝜖 + 𝑦2𝜖2. Since 

𝑥 > 𝑦, we have 2𝑥𝑦2𝜖 > 𝑥𝑦2𝜖 + 𝑦3𝜖 and 𝑥𝑦𝜖2 > 𝑦2𝜖2. Thus, 𝑟(𝑥, 𝑦) >

𝑟(𝑥 + 𝜖, 𝑦 + 𝜖) = 𝑟(𝑥′, 𝑦′).∎ 

By Axiom 4, the inequality 𝑟(𝑥, 𝑦) > 𝑟(𝑥′, 𝑦′) implies (𝑥, 𝑦) ⊳𝑠 (𝑥′, 𝑦′) which, in the 

presence of Axiom 1, implies σ(𝑥, 𝑦) > σ(𝑥 + 𝜖, 𝑦 + 𝜖).  

To show that in the presence of Axiom 1, Axiom 5 implies increasing 

proportional sensitivity, we can write 𝑥′ = 𝛼𝑥 and 𝑦′ = 𝛼𝑦 for 𝛼 > 1.  Note that 

for any 𝛼 > 1, we have 

∆(𝑥′, 𝑦′) = 𝛼 ∙ ∆(𝑥, 𝑦) > ∆(𝑥, 𝑦). By Axiom 5, ∆(𝑥′, 𝑦′) > ∆(𝑥, 𝑦) 

implies(𝑥′, 𝑦′) ⊳𝑠 (𝑥, 𝑦) which, by Axiom 1, implies σ(𝛼𝑥, 𝛼𝑦) > σ(𝑥, 𝑦). ∎ 
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Proposition 2: For any function 𝜎 that represents  ⊵𝑠: 

(i)  𝜎 satisfies ordering if and only if  ⊵𝑠 satisfies Axiom 3. 

(ii)  𝜎 satisfies DAS if and only if  ⊵𝑠 satisfies Axiom 4. 

(iii)  𝜎 satisfies IPS if and only if  ⊵𝑠 satisfies Axiom 5. 

Proof: That Axioms 3, 4 and 5 are sufficient for ordering, DAS, and IPS, respectively 

was confirmed in Proposition 1. It remains for us to show that Axioms 3, 4 and 5 

necessarily follow from the properties of a salience function. It is clear that Axiom 

3 is implied by ordering. To see that DAS implies Axiom 4, recall that by Lemma 1, 

𝑟(𝑥, 𝑦) > 𝑟(𝑥 + 𝜖 , 𝑦 + 𝜖) for any 𝑥, 𝑦 > 0 and any 𝜖 > 0. Also, note that ∆(𝑥, 𝑦) =

∆(𝑥 + 𝜖 , 𝑦 + 𝜖). By DAS, σ(𝑥, 𝑦) > σ(𝑥 + 𝜖, 𝑦 + 𝜖) which implies (𝑥, 𝑦) ⊳𝑠 (𝑥 +

𝜖, 𝑦 + 𝜖) for any 𝜎 that represents ⊵𝑠. Thus, we have ∆(𝑥, 𝑦) = ∆(𝑥 + 𝜖 , 𝑦 + 𝜖), 

and 𝑟(𝑥, 𝑦) > 𝑟(𝑥 + 𝜖 , 𝑦 + 𝜖) which, by DAS, imply (𝑥, 𝑦) ⊳𝑠 (𝑥 + 𝜖, 𝑦 + 𝜖) and 

Axiom 4 follows.  

To see that IPS implies Axiom 5, recall that ∆(𝑥′, 𝑦′) = 𝛼 ∙ ∆(𝑥, 𝑦) > ∆(𝑥, 𝑦) for any 

𝑥, 𝑦 > 0 and any 𝛼 > 1. Also note that 𝑟(𝑥, 𝑦) = 𝑟(𝛼𝑥, 𝛼𝑦). By IPS, σ(𝛼𝑥, 𝛼𝑦) >

σ(𝑥, 𝑦) which implies (𝛼𝑥, 𝛼𝑦) ⊳𝑠 (𝑥, 𝑦) for any 𝜎 that represents ⊵𝑠. Thus, we 

have 𝑟(𝑥, 𝑦) = 𝑟(𝛼𝑥, 𝛼𝑦), and ∆(𝛼𝑥, 𝛼𝑦) > ∆(𝑥, 𝑦), which, by IPS, imply 

(𝛼𝑥, 𝛼𝑦) ⊳𝑠 (𝑥, 𝑦) and Axiom 5 follows.  
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3B Parameters for the first section of the 

experiment. 

 

  More Salient Box Less Salient Box 

Problem 
No. Axiom Red Blue Red  Blue 

1 3 100 20 70 50 

2 3 100 20 95 25 

3 3 80 20 50 40 

4 3 80 20 70 25 

5 3 80 40 61 41 

6 3 80 40 51 41 

7 3 80 40 75 65 

8 3 80 40 75 55 

9 3 80 40 65 55 

10 3 40 20 30 25 

11 3 40 10 35 15 

12 3 40 10 38 13 

13 3 20 10 16 14 

14 3 10 5 8 6 

15 3 10 5 9 6 

16 3 10 2 5 4 

17 5 80 40 60 30 

18 5 80 40 20 10 

19 5 60 30 40 20 

20 5 40 20 20 10 

21 5 20 10 18 9 

22 5 20 10 10 5 

23 5 60 15 40 10 

24 5 60 15 16 4 

25 5 100 20 50 10 

26 5 100 20 80 16 

27 5 10 2 5 1 

28 5 75 10 60 8 

29 5 75 10 45 6 

30 5 75 10 30 4 

31 5 75 10 15 2 

32 5 80 10 64 8 

33 5 64 8 40 5 

34 5 80 10 32 4 

35 5 40 5 16 2 
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36 5 40 5 32 4 

37 5 36 4 18 2 

38 5 18 2 10 1 

39 4 100 20 110 30 

40 4 100 20 130 50 

41 4 80 10 140 70 

42 4 80 10 90 20 

43 4 80 20 100 40 

44 4 80 20 85 25 

45 4 80 40 85 45 

46 4 80 40 100 60 

47 4 60 10 70 20 

48 4 60 10 100 50 

49 4 40 5 42 7 

50 4 40 5 80 45 

51 4 20 10 25 15 

52 4 20 10 70 60 

53 4 20 2 22 5 

54 4 20 2 40 22 

55 4 10 2 11 3 

56 4 10 2 15 7 

57 4 10 2 20 12 

58 4 10 2 30 22 

59 4 10 2 50 42 

60 4 10 2 100 98 
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3C Fourfold Pattern of Risk Preferences type of problems. 
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3D Common ratio type of problems. 
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3E The percentage of subjects who choose the two  

lotteries in the Fourfold Pattern of Risk Preferences 

type of problems. 
 

 

 

 

 

 

 Problem 
No. 

A B 

1 0.538 0.463 

2 0.738 0.263 

3 0.488 0.513 

4 0.675 0.325 

5 0.538 0.463 

6 0.513 0.488 

7 0.550 0.450 

8 0.388 0.613 

9 0.700 0.300 

10 0.375 0.625 

11 0.500 0.500 

12 0.475 0.525 

13 0.638 0.363 

14 0.200 0.800 

15 0.225 0.775 

16 0.200 0.800 

17 0.288 0.713 

18 0.013 0.988 

19 0.250 0.750 

20 0.200 0.800 

21 0.275 0.725 

22 0.113 0.888 

23 0.250 0.750 

24 0.075 0.925 

25 0.200 0.800 

26 0.200 0.800 
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3F Instructions for the first section. 

 

 

 

Instructions 

 

Preamble  

Welcome to this experiment. Thank you for coming. Please read very carefully these 

instructions. They are to help you to understand what you will be asked to do and how 

will you get paid. The experiment is simple and gives you the chance to earn money. 

You will be paid in cash immediately after the experiment is completed. 

 

The Experiment 

The experiment is interested in how you take decisions. This is an individual decision 

making experiment. Your decision will not affect the payoff of the others nor do their 

decisions affect yours. The experiment is separated into two sections. For the first 

section, you will be presented with a series of 120 problems, while in the second 

section, you will be presented with a series of 36 problems. Details of the first section 

are given in these instructions. Details of the second section will be presented to you 

after you finish the first section.  

 

Your payment for the first section will be the average payoff from the 120 problems in 

this section.  

 

Your total payment for this experiment will be the payment from this first section plus 

the payment from the second section, rounded up to the nearest 10p. In addition, you 

will also be given a £2.50 show-up fee. 
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The first section 

In each problem, there are two boxes. Each box contains a mixture of red and blue 

circles. Each box is labelled ‘Left’ or ‘Right’ according to its position on the screen. Your 

task is to choose one of these boxes corresponding to the question in that problem. 

There are two types of question, namely, ‘Which box has a greater ratio of red balls to 

blue balls’ and ‘Which box has a greater difference between the number of red balls 

and the number of blue balls’. Your payoff on each problem depends upon whether 

you correctly answer the question to that problem. If you answer the question 

correctly, your payoff on that problem is £10; otherwise your payoff on that problem 

is £0.   

 

The visual representation of the box will be like the two examples below. Examples of 

a screenshot of problems will be given next in the ‘Example’ section.  

 

 

 

Example 

For each problem, your task is to choose either the ‘Left’ or the ‘Right’ box according to 

the question in that problem. There are two types of questions. The first type is ‘Which 

box has a greater ratio of red balls to blue balls’. A screenshot of a problem of this type 

is shown below. 
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Your task for this type of question is to identify which box has a greater ratio of red balls 

to blue balls. The ratio of red balls to blue balls is defined as the number of red balls in 

that box divided by the number of blue balls in that box. So, for example, in this 

particular problem, the ‘Left’ box has a greater ratio. If you choose the ‘Left’ box, your 

payoff on this problem would be £10. If you choose the ‘Right’ box, your payoff on this 

problem would be £0.   

 

The second type of question is ‘Which box has a greater difference between the number 

of red balls and the number of blue balls’. A screenshot of a problem of this kind is 

shown below. 
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Your task for this type of question is to identify which box has a greater difference 

between the number of red balls and the number of blue balls. The difference between 

the number of red balls and the number of blue balls is simply defined by the number 

of red balls in that box minus the number of blue balls in that box. So, for example, in 

this particular problem, the ‘Left’ box has a greater difference. If you choose the ‘Left’ 

box, your payoff on this problem would be £10. If you choose the ‘Right’ box, your 

payoff on this problem would be £0.   

 

Choices 

For each problem, your task is to choose either the ‘Left’ or the ‘Right’ box 

corresponding to that problem’s question. There is a minimum time of 10 seconds 

before you can make a choice in each problem. There is also a maximum time of 30 

seconds that you can make a choice in each problem. You can make a choice by clicking 

at the button labelling the box. Then you will have to confirm you choice by clicking the 

‘Confirm’ button. If you do not make a choice within the maximum time, your payoff on 

that problem would be £0.   

 



119 
 

 

What happens next 

When we finish reading these Instructions and have answered any questions that you 

may have, we will start the first section of the experiment. Each problem screen has a 

countdown timer at the top right corner of the screen. You cannot confirm your choice 

any until 10 seconds have passed from the start of that problem. There is a time limit 

of 30 seconds to make a decision on any problem in this section. You can change your 

decision as many times as you want during this time period before clicking the ‘Confirm’ 

button. You can click the ‘Confirm’ button before the time limit is reached. Once you 

click ‘Confirm’ button, that problem is over and you will be immediately led to the next 

problem. If you do not click the ‘Confirm’ button before the time limit is over, your 

payoff on that problem will be £0.   

 

When you finish this section, please click the ‘Continue to the second section’ button at 

the bottom of your screen, it will lead you to the instructions for the second section of 

the experiment. Please read the instructions very carefully as it will affect your income 

from the experiment. If you have any questions, please raise your hand and an 

experimenter will come to you. 

 

 

 

 

If you have any questions at any stage of the experiment, please raise your hand and 

an experimenter will come to you. 

 

Thank you for your participation. 

 

 John Hey 

Nuttaporn Rochanahastin 

 

November 2017 
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3G Instructions for the second section. 

 

 

Instructions 

 

The second section  

This section of the experiment involves pairwise choices. A pairwise choice is a choice 

between two lotteries. There are 36 pairwise problems, all of the same type. In each 

problem, you have to decide which of two lotteries you prefer. A lottery in a problem 

will be presented in terms of a written description. Each lottery involves either one or 

two possible outcomes. All outcomes are either zero or positive amounts. The payment 

for this section will be implemented by you randomly selecting one problem. Then the 

lottery that you chose in that problem will be played out for real. 

Example 

The visual representation of a pairwise choice will be like an example below. 
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There will be two boxes. Outcomes are presented in Experimental Currency Units (ECU); 

we will tell you the exchange rate between ECU and real money at the end of these 

Instructions. Each box represents a lottery. In this example, the left lottery gives you a 

5 per cent chance of a payoff of 80 ECU and a 95 per cent chance of a payoff of 0.05 

ECU; it means that your payoff would be either 80 ECU or 0.05 ECU. For the right 

‘lottery’, it leads to a payoff of 4 ECU with certainty. You can choose a lottery that you 

prefer in a particular problem by clicking ‘I prefer this’ button at the bottom of a lottery 

of your choice. 

A screenshot of a problem of this type is shown below. 
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Payment 

When you complete the 36 problems in this section, please raise your hand and an 

experimenter will come to you. You will be led to a separate room where the payment 

will take place. 

Your choice in a randomly selected problem will determine your payment for this 

section. You will be presented with a closed bag containing the numbered disks from 1 

to 36. You will draw a disk to determine a randomly selected problem. We will recall 

your choice on that problem. If your choice was a lottery you will play out the lottery 

for real; if your choice was a certainty, you will be paid that certainty. 

How Is a Lottery Played Out? 

A lottery has two outcomes X ECU and Y ECU with respective probabilities p and 1-p. 

You will play it out by drawing one disk at random out of a bag containing disks 

numbered from 1 to 100.  
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Let us give an example. Suppose the lottery gives you a 50 percent chance of a payoff 

of 20 ECU and a 50 percent chance of a payoff of 10 ECU. If the disk you draw from the 

bag is numbered from 1 to 50 then your payoff would be 20 ECU; if the disk you draw 

from the bag is numbered from 51 to 100 then your payoff would be 10 ECU. 

ECU will be converted into money at the rate 9 ECU=£1. 

As we have already noted, your payment for the experiment as a whole will be the sum 

of the payments from each section plus a £2.50 show-up fee.  

What you should do next 

When you finish reading these Instructions, you should click on the ‘start’ button at the 

bottom of the screen (you will not be able to click this button until at least 5 minutes 

have passed). This will lead you to the experimental problems; you will then be starting 

the second section of the experiment. Each problem screen has a countdown timer at 

the top right corner of the screen. You cannot confirm your choice any until 10 seconds 

have passed from the start of that problem. There is a time limit of 60 seconds to make 

a decision on any problem in this section. You can change your decision as many times 

as you want during this time period before clicking the ‘Confirm’ button. You can click 

the ‘Confirm’ button before the time limit is reached. Once you click ‘Confirm’ button, 

that problem is over and you will be immediately lead to the next problem. If you do 

not click the ‘Confirm’ button before the time limit is over, your payoff on that problem 

will be 0 ECU.   

 

 

If you have any questions at any stage of the experiment, please raise your hand and 

an experimenter will come to you. 

 

Thank you for your participation. 

 

 John Hey 

Nuttaporn Rochanahastin 

 

November 2017 
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