

Evolving Fault Tolerant Robotic Controllers

Yuyuan Zhang

PhD

University of York

Electronic Engineering

April 2018

i

Abstract

Fault tolerant control and evolutionary algorithms are two different research areas.

However with the development of artificial intelligence, evolutionary algorithms have

demonstrated competitive performance compared to traditional approaches for the

optimisation task. For this reason, the combination of fault tolerant control and

evolutionary algorithms has become a new research topic with the evolving of

controllers so as to achieve different fault tolerant control schemes.

However most of the controller evolution tasks are based on the optimisation of

controller parameters so as to achieve the fault tolerant control, so structure

optimisation based evolutionary algorithm approaches have not been investigated as

the same level as parameter optimisation approaches. For this reason, this thesis

investigates whether structure optimisation based evolutionary algorithm approaches

could be implemented into a robot sensor fault tolerant control scheme based on the

phototaxis task in addition to just parameter optimisation, and explores whether

controller structure optimisation could demonstrate potential benefit in a greater

degree than just controller parameter optimisation.

This thesis presents a new multi-objective optimisation algorithm in the structure

optimisation level called Multi-objective Cartesian Genetic Programming, which is

created based on Cartesian Genetic Programming and Non-dominated Sorting Genetic

Algorithm 2, in terms of NeuroEvolution based robotic controller optimisation. In order

to solve two main problems during the algorithm development, this thesis investigates

the benefit of genetic redundancy as well as preserving neutral genetic drift in order to

solve the random neighbour pick problem during crowding fill for survival selection and

investigates how hyper-volume indicator is employed to measure the multi-objective

optimisation algorithm performance in order to assess the convergence for Multi-

objective Cartesian Genetic Programming.

Furthermore, this thesis compares Multi-objective Cartesian Genetic Programming with

Non-dominated Sorting Genetic Algorithm 2 for their evolution performance and

investigates how Multi-objective Cartesian Genetic Programming could be performing

for a more difficult fault tolerant control scenario besides the basic one, which further

demonstrates the benefit of utilising structure optimisation based evolutionary

algorithm approach for robotic fault tolerant control.

ii

List of contents

Abstract ... i
List of contents ... ii
List of tables .. iv

List of figures ... vi
Acknowledgements ... viii
Declaration .. ix

Chapter 1 Introduction ... 1
1.1 Motivation ... 1
1.2 Thesis contributions ... 1
1.3 Thesis outline ... 2

Chapter 2 Literature review ... 4
2.1 Introduction ... 4
2.2 Fault tolerant control ... 4

2.2.1 Passive fault tolerant control .. 5
2.2.2 Active fault tolerant control .. 6

2.3 Evolutionary algorithms in controller structure optimisation 8
2.3.1 Introduction of evolutionary algorithms ... 8
2.3.2 Genetic programming ... 10
2.3.3 Cartesian genetic programming .. 19
2.3.4 Grammatical evolution .. 23

2.4 Evolutionary algorithms with artificial neural networks 27
2.4.1 Artificial neural networks .. 27
2.4.2 NeuroEvolution ... 34
2.4.3 NEAT/HyperNEAT ... 37
2.4.4 CGPANN ... 45
2.4.5 Comparison between CGPANN and NEAT ... 57
2.4.6 Comparison between EA and NE .. 57

2.5 Multi-objective evolutionary algorithms ... 58
2.5.1 Parameter optimisation approach .. 59
2.5.2 Structure optimisation approach .. 62
2.5.3 Survival selection .. 64
2.5.4 Population diversity .. 65
2.5.5 Comparison between multi-objective and single objective optimisation 66

2.6 Convergence criteria .. 68
2.6.1 Termination condition ... 68
2.6.2 Performance measure for multi-objective optimisation ... 70

2.7 Statistics analysis ... 71
2.7.1 Significant difference test.. 71
2.7.2 Spartan package .. 72

2.8 Summary .. 73

Chapter 3 CGPANN in fault tolerant control .. 75
3.1 Introduction ... 75
3.2 Experiment setup ... 75

3.2.1 Robot platform and task ... 76
3.2.2 Fault type .. 77
3.2.3 Evolution experiment .. 80
3.2.4 Generalisation experiment.. 81

3.3 Result and discussion ... 82
3.3.1 Faultless scenario evolved controller .. 82
3.3.2 Faulty scenario evolved controller .. 85

3.4 Summary .. 88

iii

Chapter 4 MOCGPANN in fault tolerant control .. 90
4.1 Introduction ... 90
4.2 Research gap in MOCGP .. 90

4.2.1 MOCGP development ... 90
4.2.2 Crowding fill problem .. 91
4.2.3 Convergence problem ... 93

4.3 Methodology.. 94
4.3.1 Methodology for new crowding fill ... 94
4.3.2 Methodology for convergence assessment .. 99

4.4 Experiment setup ... 99
4.4.1 Evolution experiment .. 100
4.4.2 Generalisation experiment.. 111

4.5 Result and discussion ... 115
4.5.1 Evolution experiment .. 115
4.5.2 Generalisation experiment.. 124

4.6 Summary .. 129

Chapter 5 NSGA2 for ANN in fault tolerant control ... 132
5.1 Introduction ... 132
5.2 Experiment setup ... 133

5.2.1 Evolution experiment .. 133
5.2.2 Generalisation experiment.. 138

5.3 Result and discussion ... 139
5.3.1 Evolution experiment .. 139
5.3.2 Generalisation experiment.. 145

5.4 Summary .. 149

Chapter 6 MOCGPANN in extension fault tolerant control 152
6.1 Introduction ... 152
6.2 Experiment setup ... 152

6.2.1 Evolution experiment .. 153
6.2.2 Generalisation experiment.. 153

6.3 Result and discussion ... 154
6.3.1 Evolution experiment .. 154
6.3.2 Generalisation experiment.. 157

6.4 Summary .. 159

Chapter 7 Conclusion ... 161
7.1 Summary and contributions .. 161
7.2 Future works .. 163

7.2.1 Future works about the optimisation algorithms ... 163
7.2.2 Future works about the robotic test case ... 164

Appendix A ... 167

Appendix B ... 182

Appendix C ... 209

Bibliography ... 219

iv

List of tables

Table 2.1: The obtained results for two different linear dynamic systems [17]. 13

Table 3.1: Success rate comparison of faultless evolved controller in 3000 ticks 82

Table 3.2: Success rate comparison of faultless evolved controller in 1200 ticks 83

Table 3.3: Success rate comparison of faulty evolved controller in 3000 ticks 85

Table 3.4: Success rate comparison of faulty evolved controller in 1200 ticks 86

Table 4.1: Experiment index in terms of percentage deviation of cumulative mean

result ... 105

Table 4.2: Baseline parameter values for evolution experiment 107

Table 4.3: U-test scores for the comparison between baseline and calibration values 116

Table 4.4: A-test scores for the comparison between baseline and calibration values 116

Table 4.5 Calibration parameter values for evolution experiment 117

Table 4.6: U-test score for three different MOCGPANN comparisons 118

Table 4.7: A-test score for three different MOCGPANN comparisons 118

Table 4.8: U-test score for four different crowding fill strategies comparisons with

modified fitness function .. 122

Table 4.9: A-test score for four different crowding fill strategies comparisons with

modified fitness function .. 122

Table 4.10: Result of number of experiment runs required from cumulative mean

approach ... 123

Table 4.11: Success rate for generalisation experiment results in terms of robust fault

tolerant control ... 125

Table 4.12: Success rate for generalisation experiment results in terms of switched fault

tolerant control ... 126

Table 4.13: Comparison between the success rate of robust and switched fault tolerant

control based on the controllers evolved by MOCGPANN ... 128

Table 5.1: Different aspects between NSGA2 and MOCGP for ANN evolution 137

Table 5.2: Baseline values for NSGA2 parameters .. 140

Table 5.3: Calibration values for NSGA2 parameters ... 140

Table 5.4: U-test scores for the comparison between NSGA2 parameter baseline values

and calibration values ... 141

Table 5.5: A-test scores for the comparison between NSGA2 parameter baseline values

and calibration values ... 141

v

Table 5.6: U-test and A-test scores for hyper-volume comparison between NSGA2 and

MOCGP .. 143

Table 5.7: Success rate for five obtained Pareto sets by NSGA2 in terms of robust fault

tolerant control ... 145

Table 5.8: Success rate for five obtained Pareto sets by NSGA2 in terms of switched

fault tolerant control .. 147

Table 5.9: Comparison between the success rate of robust and switched fault tolerant

control based on the controllers evolved by NSGA2 .. 148

Table 6.1: U-test scores for hyper-volume and generation number in terms of extension

experiment .. 155

Table 6.2: A-test scores for hyper-volume and generation number in terms of extension

experiment .. 155

Table 6.3: Result of number of experiment runs required from cumulative mean

approach for the extension experiment ... 156

Table 6.4: Success rate for extension generalisation experiment results in terms of

robust fault tolerant control ... 157

Table 6.5: Success rate for extension generalisation experiment results in terms of

switched fault tolerant control ... 158

Table 6.6: Comparison between the success rate of robust and switched fault tolerant

control based on the controllers evolved by MOCGPANN for this extension experiment

 .. 158

vi

List of figures

Figure 2.1: Fault accommodation (from [5]) ... 6

Figure 2.2: Controller reconfiguration (from [5]) ... 7

Figure 2.3: An example of GP genotype [17] .. 11

Figure 2.4: A simple feedback loop [17] ... 12

Figure 2.5: Block diagram of GP system design for MRAS controller [24] 17

Figure 2.6: An example of CGP genotype [30] .. 19

Figure 2.7: Migration topology of the used Parallel evolutionary algorithm [37] 25

Figure 2.8: A generalised artificial neuron model [30] ... 28

Figure 2.9: Feed-forward neural networks [44] .. 29

Figure 2.10: Recurrent networks [44] ... 30

Figure 2.11: Radial basis function neural networks [44] .. 30

Figure 2.12: Fuzzy neural networks [44] ... 31

Figure 2.13: An example of NEAT genotype and phenotype [62] 37

Figure 2.14: An example of two mutation ways of NEAT [62] .. 38

Figure 2.15: An example of crossover based on innovation number in NEAT [62] 39

Figure 2.16: An example of CGPANN genotype [30] .. 45

Figure 2.17: The comparison of GP and (gray line) and DynOpEq GP (black line) on (a)

symbolic regression and (b) (c) two real world classification tasks in terms of program

bloat investigation. [77] .. 47

Figure 2.18: Crowding distance calculation [92]. .. 61

Figure 3.1: Light sensor distribution of foot-bot [145] ... 77

Figure 3.2: An example of CGPANN evolved controller without the connection to the

failed sensor .. 79

Figure 3.3: Boxplot for success rate comparison of faultless evolved controller in 3000

ticks ... 83

Figure 3.4: Boxplot for success rate comparison of faultless evolved controller in 1200

ticks ... 84

Figure 3.5: Boxplot for success rate comparison of faulty evolved controller in 3000

ticks ... 85

Figure 3.6: Boxplot for success rate comparison of faulty evolved controller in 1200

ticks ... 86

Figure 4.1: The evolved population from the final generation for one evolution run . 103

vii

Figure 4.2: The first Pareto optimal front solutions for the evolved population from the

final generation for one evolution run ... 103

Figure 4.3: Hyper-volumes of baseline parameters .. 106

Figure 4.4: Number of generations of baseline parameters... 107

Figure 4.5: Hyper-volume comparison between baseline and calibration parameter

values .. 116

Figure 4.6: Generation number comparison between baseline and calibration

parameter values .. 116

Figure 4.7: Hyper-volume comparison for three different MOCGPANN 118

Figure 4.8: Generation number comparison for three different MOCGPANN 118

Figure 4.9: Hyper-volume comparison for four different crowding fill strategies with

modified fitness function .. 121

Figure 4.10: Generation number comparison for four different crowding fill strategies

with modified fitness function .. 122

Figure 5.1: Hyper-volume comparison between the NSGA2 parameter baseline values

and calibration values ... 141

Figure 5.2: Generation number comparison between the NSGA2 parameter baseline

values and calibration values .. 141

Figure 5.3: Hyper-volume comparison between NSGA2 and MOCGP......................... 143

Figure 6.1: Hyper-volume comparison for different crowding fill strategies in terms of

extension experiment ... 154

Figure 6.2: Generation number comparison for different crowding fill strategies in

terms of extension experiment .. 154

viii

Acknowledgements

Firstly, I would like to thank my parents Mr Chaoyi Zhang and Mrs Xiaodong Zhang for

their support to let me finish my PhD course in the University of York. Especially, I

would like to thank my wife Xiaotong Huang for her company with me during our life in

UK.

Secondly, I would like to thank my supervisors Prof Jon Timmis and Dr Andy Pomfret as

well as my internal examiner Prof Steve Smith for their help during my PhD study. In

addition, I would like to thank our department graduate administrator Camilla Danese

who helped me a lot whenever I got a problem during my work in our department.

And then, I would like to thank my colleagues Guangsha Xu, Danesh Tarapore, Richard

Redpath, Alan Millard and other people, who helped me a lot when I got stuck in my

research.

Finally, I would like to thank all my friends I have ever made during these four years’

time in UK.

Thank you all.

ix

Declaration

I declare that this thesis is a presentation of original work, which I undertook at the

University of York during 2014 - 2018 and I am the sole author. This work has not

previously been presented for an award at this, or any other, University.

1

Chapter 1 Introduction

1.1 Motivation

Fault tolerant control and evolutionary algorithms (EA) are two different research areas,

yet have a natural synergy. With the development of artificial intelligence, EA has

demonstrated competitive capability compared to traditional approaches for

optimisation problems. In this case, the combination of fault tolerant control and EA

shows great potential, with the ability to evolve new solutions that have the ability to

adapt over time, and have greater potential for robustness to failure.

Typically, fault tolerant control based approaches employ EA to optimise the controller

parameters for a given set of scenarios. However, the controller’s structure usually

remains fixed when parameters are being optimised. Although the parameter

optimisation based EA approaches have demonstrated effective performance for fault

tolerant control, work in this thesis considers optimising the controller structure, in

addition to the parameter space, with a view to observing a greater degree of fault

tolerance.

1.2 Thesis contributions

The research question that this thesis aims to investigate is: “how can structure

optimisation based EA approaches be utilised to evolve, at a structural level, fault

tolerant robotic controllers?” In order to answer the research question, some main

contributions are made in the thesis, which are:

 The review of literatures in fault tolerant control with structure optimisation

based EA approaches and Cartesian Genetic Programming of Artificial Neural

Networks is identified as the best suited controller structure optimisation

approach used for designing a robot fault tolerant control system

 The investigation of how Cartesian Genetic Programming of Artificial Neural

Networks could be utilised to design a robust fault tolerant control system

 The review of survival selection along with population diversity and the

investigation of how it could be utilised to improve the crowding fill strategy

for Multi-objective Cartesian Genetic Programming of Artificial Neural

Networks

2

 The review of how hyper-volume indicator is used for performance measure

and the investigation of how it could be utilised to assess the convergence for

Multi-objective Cartesian Genetic Programming of Artificial Neural Networks

 The development of a complete library of Multi-objective Cartesian Genetic

Programming of Artificial Neural Networks based on a new crowding fill

strategy and the investigation of how it could be utilised instead of single

objective optimisation to obtain a Pareto set of controllers used for the design

of a robust as well as switched fault tolerant control system

 The investigation of how Non-dominated Sorting Genetic Algorithm 2 could be

utilised to design a robust as well as switched fault tolerant control system

based on multi-objective controller parameter optimisation

 The comparison between Multi-objective Cartesian Genetic Programming of

Artificial Neural Networks and Non-dominated Sorting Genetic Algorithm 2 for

controller evolution in order to investigate the difference between controller

structure optimisation and controller parameter optimisation

 The investigation of how Multi-objective Cartesian Genetic Programming of

Artificial Neural Networks could be utilised to design a robust as well as

switched fault tolerant control system based on multi-objective controller

structure optimisation for a more difficult fault tolerance scenario

1.3 Thesis outline

This section gives an outline of each chapter for the remaining thesis summarised as

below:

 Chapter 2 reviews fault tolerant control and different structure optimisation

based evolutionary algorithms along with artificial neural networks in order to

find out a suitable approach to design a fault tolerant control system.

Moreover, different multi-objective optimisations are also reviewed and

survival selection based on crowding measure is also mentioned along with

population diversity. Finally, convergence criteria and statistics analysis are

both introduced.

 Chapter 3 presents how Cartesian Genetic Programming of Artificial Neural

Networks, which is the approach obtained in chapter 2, is utilised to achieve

the robust fault tolerant control.

3

 Chapter 4 demonstrates how genetic redundancy and crowding measure along

with hyper-volume indicator are utilised to develop the library of Multi-

objective Cartesian Genetic Programming of Artificial Neural Networks and

displays how it could be utilised to achieve both of robust and switched fault

tolerant control.

 Chapter 5 shows how Non-dominated Sorting Genetic Algorithm 2 could be

utilised to evolve feasible controllers so as to achieve both of robust and

switched fault tolerant control and presents how it is compared with Multi-

objective Cartesian Genetic Programming of Artificial Neural Networks for the

evolution experiment performance.

 Chapter 6 presents how Multi-objective Cartesian Genetic Programming of

Artificial Neural Networks is performed to achieve a more difficult fault

tolerant control scenario for both of robust and switched fault tolerant control.

 Chapter 7 gives a summary about the thesis and the proposed future work.

4

Chapter 2 Literature review

2.1 Introduction

The aim of this thesis is to fill the research gap that controller structure optimisation

based EA approach has not been investigated as the same level as controller parameter

optimisation for fault tolerant control. In this case, the thesis will explore how

controller structure optimisation could be utilised to design a fault tolerant control

system. For this reason, this chapter will review the area of fault tolerant control firstly

and then review how different structure optimisation based EA approaches have been

performed in the controller structure optimisation tasks. This chapter will also estimate

the respective benefit and drawback for different structure optimisation based EA

approaches along with an investigation of artificial neural network for the controller

type in order to find out the most suited approach to be utilised for the design of a

fault tolerant control system.

2.2 Fault tolerant control

Faults in automated processes will usually cause undesired results especially the shut-

down of controlled plants. These consequences could be harmful to the plant, to

personnel or the environment. In this case, fault tolerant control was developed which

is used to increase the plant availability and reduce the risk of safety hazards so as to

avoid a simple fault becoming a serious failure [1].

Fault tolerant control can be classified into two aspects: passive or active [2]. Passive

fault tolerant control uses a specific fixed controller to be robust against certain faults

[3]. And active fault tolerant control redesigns the control system in order to maintain

an acceptable performance after a fault occurs [4]. In active fault tolerant control, [2]

indicates two necessary tasks: fault detection and isolation and fault accommodation

or controller reconfiguration. Fault detection and isolation consist of a fault diagnosis

scheme and fault accommodation or controller reconfiguration can be regarded as

controller redesign [5]. Active fault tolerant control has more fault tolerant capabilities

than passive fault tolerant control just equipped with a robust controller [6]. Because

there will be more solutions to cover more classes of faults if the controller can be

changed [7].

As for the controller redesign in active fault tolerant control, fault accommodation

5

means that the dynamic structure and parameters of the controller will change to

accommodate the fault, but the relationship between controller and plant still

maintains fixed including the reference signal and control value. So the fault can be

accommodated only if the controller has a solution to deal with the faulty system [4].

Although fault accommodation can be quick to find a suitable controller in order to

realize some hard real time constraints [5], the controllers need to be pre-designed for

all the possible types of faults. So the fault accommodation cannot work well if no

solution is found among the controllers especially the relationship between controller

and plant needs to be adjusted if a degraded performance has to be accepted in some

cases. On the other hand, controller reconfiguration will establish a new control loop

including a reconfigured controller with the introduction of alternative input and

output signals between the controller and the plant [7]. In this sense, the controller can

be reconfigured online to achieve the performance of different faulty systems including

some degraded performance. However, the controller reconfiguration emphasizes the

parameter reconfiguration based on some optimization techniques [2], so the research

of controller structure reconfiguration is still in an early stage. Although the evolution

of controller structure has been studied, this research field hasn’t been put into the

fault tolerant control scheme. Therefore the hypothesis of this work can be described

that the fault tolerant control can work better if the controller structure evolution is

associated with the controller reconfiguration.

2.2.1 Passive fault tolerant control

In the field of passive fault tolerant control, the robust control is the main approach [2].

It designs the controller with constant parameters as well as the structure to correct a

specific fault so as to guarantee the required performance [7]. And the control

objectives of robust control mainly include the following fields: stability, disturbance

rejection and noise rejection [8]. Typically the most effective way of robust control is to

cope with the faults which can be modelled as plant uncertainties [7]. For example, [9]

designs a robust control system against the plant uncertainty. This work belongs to a

kind of model following control which uses a correction mechanism to cope with the

deviations between the real plant and the reference model to achieve the reference

tracking task. The reference model reflects the expected performance of the plant and

the correction mechanism is used to force the plant to follow the model. However due

to the parameter variations or system disturbance, the uncertainty is always a problem

occurred in the real plant. So the correction scheme is designed equivalently as a

6

controller to control the plant in the worst case of uncertainty [9]. This work is a typical

example to apply the robust control scheme to cope with the system uncertainty. So

the effectiveness of the passive fault tolerant control emphasizes on the robustness of

control system against certain faults as well as the disturbance and noise in the system

with fixed controllers. However, this approach has limited fault tolerant capabilities

with just robust controllers [6]. Therefore if the controller can be changed, there will be

more solutions to cover more classes of faults compared to the passive approaches [7].

So that’s why the active fault tolerant control was developed.

2.2.2 Active fault tolerant control

In the research area of active fault tolerant control, [5]mentions two tasks: fault

diagnosis and controller redesign. Fault diagnosis means an early detection, isolation

and also identification of faults. And controller redesign needs to be performed after

the fault is diagnosed to achieve fault tolerant control. Controller redesign contains two

main approaches: fault accommodation and controller reconfiguration which are

respectively shown in Figure 2.1 and Figure 2.2.

Figure 2.1: Fault accommodation (from [5])

7

Figure 2.2: Controller reconfiguration (from [5])

In these two figures, f is the fault, is the reference input, u is the control value, y is

the system output,
 , and are the corresponding new signals. These two

approaches both need to change the parameters and structures of controllers to avoid

the consequences of faults. However the difference is that controller reconfiguration

needs to change the input and output signals between the controller and system so

that a new control loop will be generated. But the fault accommodation maintains the

same values for all the signals [5].

 Fault accommodation

In fault accommodation, one of the representative approaches is the switched control.

It is based on the bank of controllers designed for the normal and different faulty

systems [5]. The pre-designed controllers are generated offline to process different

types of faults. So their internal structures may be different, but the I/O signals will

remain the same to achieve accommodation [7]. Therefore it is a switching mechanism

that a suitable controller needs to be selected in terms of the type of fault. The benefit

of fault accommodation is that it can be quick to find a suitable controller so that some

strong real time constraints could be realized [5]. However this approach needs to pre-

design the controllers for all the possible types of faults. If none of the pre-designed

controllers is available to deal with a typical fault, the required performance cannot be

achieved.

8

 Controller reconfiguration

In controller reconfiguration, a new control loop is established with the introduction of

alternative input and output signals between the controller and the system [7]. This

approach could be applied when a fault is occurred in the system sensor or actuator. In

this sense, a new control loop with a new controller and alternative signals needs to be

established when alternative components are introduced [5]. This approach is able to

process unplanned faults by changing the new control objectives and constraints, so a

new control loop is also required. However designing a new control system based on a

new control loop is definitely not an instant work, so the controller reconfiguration

would be more suited to the tasks where sufficient time is allowed to designing a new

control system during the system operation.

As can be seen from these two approaches, fault accommodation and controller

reconfiguration have their own benefits and drawbacks. Actually fault accommodation

refers to the offline designing controllers where the controllers need to be designed

well before loaded to the real system. However controller reconfiguration always refers

to the online designing controllers where the controllers are being designed during the

system operation. In this case, the fault accommodation can guarantee that the

controller will be working well since it was well designed offline. However controller

reconfiguration cannot ensure when the controller design is finished before loaded to

the system in order to avoid a crashed system. On the other hand, fault

accommodation has to design all the possible types of controllers offline, if a

unplanned fault occurs online, there is no way to tolerate this fault. However,

controller reconfiguration is capable to deal with all the possible types of faults

including unplanned one as long as the fault can be diagnosed. In conclusion, fault

accommodation and controller reconfiguration both have benefits and drawbacks.

Therefore, which one to be utilised for fault tolerant control is dependent on the

difficulty of the given task including the passive fault tolerant control approaches.

2.3 Evolutionary algorithms in controller structure optimisation

2.3.1 Introduction of evolutionary algorithms

EA is a kind of optimization algorithms in the artificial intelligence area which was

developed based on the inspiration of natural selection and survival of the fittest in

Darwinian evolution [10] [11]. Generally speaking, there are several steps to constitute

9

a complete evolution loop. Firstly, the initial population needs to be created randomly

as the first generation. Secondly, this population needs to be evaluated for the given

problem and their performance is recorded as fitness values where the given problem

is normally called fitness function. After that, this population needs to be selected

based on the fitness value and the selected parents will be utilised to create their

children for the next generation based on genetic operator including crossover and

mutation. And when the children are obtained, they also need to be evaluated based

on the fitness function. Now it comes to the crucial step called survival selection. In the

survival selection, one option is just utilising the children as the next generation, which

is easy and straight forward for many EA applications. The other will compare the

obtained children with their parents. If children’s fitness is not better than the parent,

the parents will be directly copied into the next generation without any change, which

is also called elitism strategy. However whether elitism is required depends on the

given task since elitism will not always be the suited idea to obtain the new blood for

the next generation. Nevertheless, one significant benefit of elitism is that it always

guarantees the next generation to be at least performing equivalent as the last

generation, which is convenient for convergence observation and helps to achieve a

better convergence especially for multi-objective EA (MOEA) [12]. The above is a whole

evolution loop and EA will only stop when termination condition is met such as the

target fitness value is obtained, the maximum generation number is reached or the

convergence criteria is realised [10] [11].

In terms of fault tolerant control, genetic algorithm (GA) based approaches have been

investigated extensively. GA is used as an optimization tool that the task is normally

about how to optimize the parameters of a controller to deal with different types of

faults [2]. For example, [13] designs a fault tolerant control system for an active

magnetic bearing task using a multi-objective GA. In this work, the active magnetic

bearing system is used to tolerate the faults occurred in a coil or an amplifier in a

machine. To design an active magnetic bearing system, PID controller is applied with

multi-objective GA to tune the parameter of the PID controller to achieve different

configuration of this active magnetic bearing system.

This work shows a typical example of using GA as an effective approach to tune the

parameters of controllers to achieve the fault tolerant control. However, GA is just one

of the simplest EA which can be only used for the parameter reconfiguration so that

10

the controller structure always maintains fixed. If the controller structure could also be

changed, more solutions might be generated to deal with more types of faults.

However controller structure optimisation hasn’t been developed as the same level as

controller parameter optimisation in the fault tolerant control area and that’s why the

combination of controller structure optimisation with fault tolerant control would be a

new research topic. On the other hand, active fault tolerant control needs rigorous

identification of all classes of faults so that the controller redesign could be carried out

[14]. Therefore the controller structure configuration could also be a promising

approach to deal with a wider range of faults as long as the fault could be diagnosed.

For this reason, there are some other EA approaches which were developed to work for

the optimisation of the structure as well as the parameters. Those structure

optimization based EA approaches are reviewed in the following sections.

2.3.2 Genetic programming

Genetic programming (GP) is a kind of structure optimisation based evolutionary

algorithms (EA) approach which is normally used to automatically create a computer

program to solve a problem using program trees [15]. GP was firstly introduced in [16]

based on the parse trees as the genome encoding in order to create programs. In this

kind of tree based GP, the computer programs are created in tree structures where a

tree node is an operator such as [+, -, *, /] and the terminal node is a variable such as [a,

b, c, d]. Based on this tree structure, the programs will be evaluated for each

generation and the evolution will be finally terminated when an acceptable program

expression is found. In this case, Lisp became the first programming language applied

to this tree based GP since Lisp is also expressed in a tree structure that matches the

genotype of this tree based GP. In terms of the genetic operator, there are two

different types applied for the mutation including the point mutation and sub-tree

mutation. Point mutation randomly changes the functions or terminals of a proportion

of the nodes within a parse tree and the number of nodes are determined by the

mutation rate. Sub-tree mutation randomly changes the whole sub-tree to a new one

with randomly selected functions and terminals. On the other hand, sub-tree crossover

is the only type for crossover which creates two children with the swapped two sub-

trees from the selected two parents [16]. An example of tree based GP genotype is

shown in Figure 2.3.

11

Figure 2.3: An example of GP genotype [17]

Besides the basic approach of GP to write a computer program, the program trees can

be also interpreted to construct a complex structure, such as an electrical circuit [18].

Moreover, the program trees could be interpreted to represent the block diagram of a

controller so as to achieve the controller evolution [15]. In this research field, several

related works are reviewed as following including control system design and robotic

controller design based on GP. Among these works, [17] presents a typical implement

of how to use GP to evolve a controller so as to design a control system, so this work

will be described in more details.

 GP for control system design

[17] considers a simple feedback control loop to be used for controller evolution which

is shown in Figure 2.4. In this control loop, the process is a continuous time dynamic

system, the controller is also a dynamic system with unknown structure and

parameters, y is the controlled variable, r is the reference variable, u is the control

variable, e is the control error.

12

Figure 2.4: A simple feedback loop [17]

In this case, a simple integral performance index is chosen as the cost function which is

defined in equation 2.1 where T is the simulation time and ̇ is the controlled variable

derivative.

 ∫|e(t)|dt

T

0

 ∫|ẏ|dt

T

0

 (2.1)

The aim of controller design is actually an optimization task which searches for a

controller so that the chosen performance index could be minimized [17]. This cost

function consists of two parts. One is a basic integral absolute error (IAE) form which

integrates the absolute error over time in order to minimize it. The other is described in

a form of integral absolute output derivative multiplied by a coefficient. It could be

used to minimize the output slope over time so that the output trajectory could

become smoother with an appropriate choice of the coefficient.

To demonstrate the performance of GP, two different case studies are implemented in

this work including a continuous time and a discrete time controllers design. The first

test case uses a continuous time interconnected network to describe the control

algorithm with a table based representation of individuals which is different from

classical tree based representation in GP. The function blocks include integrator,

derivative unit, amplifier (multiplication by a constant) and summation/multiplication

unit. The objective is to find an optimal controller network with these function blocks

which minimizes the above cost function. The crossover used here will exchange the

corresponding parts of two random positions between two columns of the table. And

mutation will change the type of block or delete and add a block or change the value of

a constant [17]. In the second test case, a discrete time recurrent control algorithm is

designed with a classical tree representation of genotype. The crossover exchanges the

13

randomly selected sub- trees from two trees and the mutation replaces a randomly

selected sub-tree by another one. To demonstrate the effectiveness of using GP for

controller design, two linear dynamic systems are implemented, which are shown in

transfer function 2.2 and 2.3.

 ()

 (2.2)

 ()

 ()

 (2.3)

The optimization results and algorithm running time of obtained controllers of two

linear dynamic systems are demonstrated in Table 2.1 compared with the results of a

PID controller tuned by GA for the first system. GP1 means the table based continuous

time controller, GP2 means the tree based discrete time controller and GA PID means

GA based PID controller.

Table 2.1: The obtained results for two different linear dynamic systems [17].

Experiment 1 Cost function value Time

GA PID 11268 3h55min

GP 1 3950 18h57min

GP 2 12265 5h53min

Experiment 2 Cost function value Time

GP 1 6509 20h27min

GP 2 19646 5h24min

As can be seen from the Table 2.1, GA PID has the fastest running time but high cost

function values. GP1 achieves the lowest cost function values but much slower running

speed. And GP2 has similar results compared to GA PID and higher cost function values

and faster running time compared to GP1. So the table form based GP method could be

a promising approach due to its obvious benefit of lowest cost function values

compared to GA tuned PID controller. However the running time of this approach is

much longer than the other two approaches and this issue needs to be improved.

According to the performance index, GP1 obtains the best dynamic performance which

has the shortest rise time and settling time with no overshoot for the first system. In

14

terms of the second system, GP1 is also better than GP2 with slightly faster rise time,

shorter settling time and lower overshoot.

As can be seen from this work, GP is capable to find acceptable solutions for controller

design based on the feedback closed loop, which outperforms the GA based PID

controller. Furthermore, table based GP also produces better performance than classic

tree based GP, which indicates that the tree based GP may not be a first choice

depending on the given task in spite of a shorter running time. Finally, this work also

notes that GP can be used to design the controller with complex systems, but the only

limitation is the high requirement of computation time, which may be a common issue

for GP based approaches.

 Improvement of GP based control system design

Besides a description of how to use GP to construct the controller [17], there are also

some approaches to improve the performance of GP based controller design. According

to [19], GP can be used to construct a discrete recursive feedback control law using the

equation 2.4.

 () () []

 (2.4)

For a population size of M the output of the ith {i 1,2,3…M} controller at time k is equal

to the output at time step k-1 plus some correction term applied by the ith GP

individual. The fitness function is shown in equation 2.5. This is calculated using P

independent and randomly generated set point changes: △ {j 1,2,3…P}.

 ∑
∑ | ()| ()

 (2.5)

In 2.5, n is the number of discrete time steps which is decided by trial and error before

GP runs. k|e(k)| is the integral time absolute error (ITAE) term and () is a

weighted penalty term for excessive control effort u(k) with a constant r determined by

trial and error [19]. This fitness function minimizes two aspects of the controller

performance which are the error and the controller output. Although the output slope

15

is not minimized here which is mentioned in [17], the excessive control effort could be

decreased in this case. To demonstrate the effectiveness of this approach, [19] uses

two chemical processes for controller design including a constrained second order

ARX(auto-regressive exogenous) process and a non-linear CSTR(continuous stirred tank

reactor) process. The ARX process is defined in equation 2.6. And the non-linear

dynamic model of CSTR is referred from [20].

 () () () () ()

 (2.6)

As can be seen from the ARX process response comparison, the evolved controller has

longer rise time than the PID controller but without any overshoot. While for the

settling time, they have similar performance. And according to the CSTR process

response comparison, they both perform similarly just the evolved controller has

slightly larger overshoot. Therefore, GP is capable of producing dynamic recursive

controllers which provide similar performance compared with PID controllers [19].

Hence the concept of recursive feedback control law used in GP could be applied to the

controller design in the discrete time domain. Although its performance is similar to

PID controller, it is still an encouraging idea to use GP for the discrete controller design.

[21] also improves the performance of GP based controller design by creating a

controller with a free variable. The reason to introduce a free variable in the controller

design is that the evolved controller could control an entire category of plants through

modifying the value of the free variable instead of a particular plant with a fixed

variable. The tree format is used to present the controller. A three-lag plant is used for

the controller design and the controller contains a free variable representing the plant

time constant τ. This free variable can be changed among 0.1, 0.3, 1.0, 3.0 and 10.0

which are defined in this work. In this sense, the evolved controller becomes a function

of this free variable which corresponds to the plant time constant. The transfer

function of this three-lag plant is defined in equation 2.7 where K is the plant’s internal

gain(tested by values of 1.0 and 2.0) [21].

 ()

()

 (2.7)

16

The fitness is measured by means of 42 separate fitness measurements. Among these

42 fitness measurements, the first 40 are based on a modified integral of time-

weighted absolute error (ITAE) which is shown in equation 2.8 where e(t) is the error;

 is the externally supplied value of the time constant; B is a constant; A is an additional

weight value which varies depending on the error so that unacceptable overshoot

could be avoided; and finally each integral value needs to be divided by so as to

equalize the influence of five different values of . The 41st One is in frequency domain

which constrains the frequency of the control value to avoid extreme high frequencies

applied into the plant. The last one is also in frequency domain measuring the effect of

sensor noise.

∫ | ()| (())

 (2.8)

This obtained controller is compared with the Astrom and Hagglund controller which is

a PID controller tuned with a new simple tuning rule by Astrom and Hagglund [22].

As can be seen from the result, [21] calculates that the controller created by genetic

programming is better than 3.69 times as effective as the Astrom and Hagglund

controller as measured by the integral of the time-weighted absolute error(ITAE), has

only 57% by the rise time, and has only 55% by the settling time. Moreover, the

genetically evolved controller is more robust to the disturbance than Astrom and

Hagglund controller indicated from the disturbance sensitivity. The computation time

to find the best of run evolved controller is 23.43 hours. The conclusion demonstrates

that GP can be used to create a controller with a free variable which outperforms

Astrom and Hagglund controller [21]. Therefore the evolution of robot controller could

be referred to this approach using a free variable in the controller design. Although this

approach has much better performance than the Astrom and Hagglund controller, its

computation time of 23.43 hours is still high.

 GP based robust controller design

GP can be also used to construct a robust controller. [23] applies GP to construct a

robust flight controller against the wind shear. The occurrence of strong downbursts

could cause serious crashes of landing aircrafts. So the problem is how to construct a

17

robust flight controller with GP to make the aircraft land along the reference trajectory:

 in the case of wind shear. The performance of the generated

controller is illustrated using the aircraft trajectories in terms of different sizes of wind

shear. The result shows that the GP based robust controller could achieve effective

performance for aircraft to be landed safely in spite of different sizes of wind shear.

Therefore this work describes another application of GP in the robust controller design,

and the results show that GP is able to get effective solutions.

 GP for tuning controller parameters

[24] describes the application of GP to tune a controller parameters. In this work, GP is

used to construct a self-evolved Model Reference Adaptive System (MRAS) which is

designed for a second order system based on a pre-defined reference model. MRAS is

one of the adaptive controllers, its performance is described through a reference

model which gives the desired response to a reference signal [25]. The aim of this work

is to evolve a suitable controller which is based on the desired model to control a

process. Actually this work applies GP to automatically tune the controller to meet the

desired performance. Because the structure of the controller is already given, so the

work of GP is to provide the correct controller parameters [24]. The block diagram of

this work is shown in Figure 2.5.

Figure 2.5: Block diagram of GP system design for MRAS controller [24]

In this diagram, uc is the controller input, u is the plant input, y is the plant output, ym

is the model output and e is the error between the model output and the plant output.

Although this work doesn’t use GP to evolve the structure of a controller, it presents

another approach of GP to generate the controller parameters. According to the

18

conclusion of [24], GP is able to generate desired parameters of MRAS controller based

on the model following without any prior knowledge about the system parameters [24].

Therefore this work presents another application field of GP for the controller

parameter generation and GP is also able to find acceptable solutions.

 GP in the evolution of robotic controller

Apart from the controller design, GP can be also used for the evolution of robotic

controllers [26] [27] [28]. [26] uses GP to achieve a robot reactive navigation task. The

aim of GP is to evolve the best trajectory that the robot follows the environment

without bumping into a wall. [27] uses GP to achieve the task of wall-following for a

robot. In this work, different types of walls are tested for GP to evolve the acceptable

solutions of robot behaviours without priori information about the environment. [28]

also uses GP to evolve a robot behaviour controller. The aim of GP is evolving an

appropriate relation between the sensor terminals and motor commands in order to

manage the robot to achieve desired behaviours. Therefore two tasks are applied for

GP to get acceptable controllers which are obstacle avoidance and box-pushing.

Obstacle avoidance is to make the robot not bump any obstacle and box-pushing is to

keep the robot pushing a box forward as straight as possible [28]. The results of these

three works all show that GP can get good behaviours for a robot task based on the

evolution of a robotic controller. Although they are not related to typical controller

design problems in control theory area to realise dynamic performance index as well as

the steady state error of static performance index, these works still present another

application area of GP to achieve the robotic controller design. Moreover, GP is also

suited to the multi-input multi-output (MIMO) controller design problems for robotics

where the sensor readings can be used as the controller input values and the controller

output values actually stand for different motor speeds, where a standard single input

single output (SISO) controller is not able to achieve. In conclusion, the GP based

robotic controller evolution is a promising way to achieve the robot behaviour

management so as to achieve different robot tasks. In this sense, it would be

interesting to investigate it into the robot fault tolerant control area and explore how it

will be working.

19

2.3.3 Cartesian genetic programming

Cartesian genetic programming (CGP) is another type of GP which uses a two-

dimensional grid of nodes to represent a program rather than the tree form used in GP

[29]. In terms of the CGP genotype, each one is described with a directed acyclic graph

of computational nodes. An example of CGP genotype is shown in Figure 2.6.

Figure 2.6: An example of CGP genotype [30]

The genotype of CGP consists of function genes, connection genes and output genes.

One advantage of CGP over GP is that the node outputs can be reused more than once

without recalculating the same required value, which can be seen in Figure 2.6.

Another advantage is that CGP is quite suited to MIMO problems with the specified

number of inputs and outputs. Moreover, CGP also does not suffer from program bloat

problem and the details can be referred to section 2.4.4.2. Finally, CGP is also benefit

from the inactive genes, where the details can be referred to section 2.4.4.5.

Basically, CGP utilises (1+4) for the evolutionary strategy with point or probabilistic

mutation. Point mutation changes the randomly selected genes with a fixed amount,

which is determined by the total number of genes times the mutation rate. In terms of

the probabilistic mutation, each gene will get a chance to be mutated based on a given

mutation rate. Apart from the mutation, there is however no crossover utilised for CGP.

A possible reason is that using crossover for CGP has not generally demonstrated any

advantage for a wide range of task domains [30].

In terms of the CGP applications, three different fields are described which are related

to CGP based controller design tasks. [31] and [32] are directly related to how to design

a control system by CGP for two different nonlinear systems, so they will be discussed

in more details. [33] is about how to evolve a robotic controller based on the relations

between the input sensor signals and output motor speed of the robot. And [34] is

20

about how to evolve the input signals of a motor controller to achieve sensor fault

tolerant control.

 CGP for control system design

The work in [31] demonstrates that CGP can be also used for control system design

besides the basic GP approach. [31] mentions that the computation time for GP based

approach is extremely high so that an acceptable solution could take days of time to be

evolved for a simple SISO controller design. So CGP is considered to be an alternative

way with some limitations or simplifications in the task definition such as the

orthogonal network for the individual representation. Since the interconnection of the

nodes in this kind of network is not arbitrary as GP, so the solutions with much lower

computation time could be obtained due to the reuse of nodes for the program

description [31]. In this approach, CGP is used to design a controller for a nonlinear

hydro-turbine system whose model can be referred to [35].

According to [31], each individual contains N interconnected building blocks where

each block consists of three parts: the arithmetic operators (summation, subtraction,

multiplication or division), the gain and the dynamic operators (integrator, derivative or

unit gain). And the interconnection number between the controller inputs, building

blocks and controller output is limited to M. N and M are priori determined based on

the complexity of the system. So an appropriate selection of N and M by the designer

will maximize the controller performance [31].

The fitness function is presented in the form of integral absolute error (IAE) which is

defined in equation 2.9 where T is the simulation time.

 ∫| ()|

 (2.9)

This fitness function is just used to minimize the error between the reference signal

and output signal. In this sense, unstable individual will be eliminated due to their high

performance index. Moreover, a GA designed PID controller is also utilized as a

comparison with CGP controller for the same problem.

21

As can be seen from the result, CGP designed controller achieves shorter rise time,

shorter settling time and lower overshoot compared with GA tuned PID controller. And

with the increase of generation number, CGP approach can get a lower cost function

values compared with GA approach. The conclusion in [31] indicates that CGP is

effective to obtain acceptable controller design result. And it uses additional limitations

related to the controller structure and its size to reduce the computation effort

compared to GP. In the future work, CGP can be used for controller design with

complex MIMO and any type non-linear systems [31]. Therefore CGP based controller

optimization could be a useful approach to design a control system. The only condition

to apply this method is the existence of a suitable model of the controlled system [31].

As long as the system model is obtained and sufficient computation capacity is given,

this approach is a promising method to obtain acceptable controllers.

[32] also uses CGP for the controller design of nonlinear system. This work uses a

different system to demonstrate the ability of CGP to design acceptable controllers. [32]

conducts an explicit comparison between CGP and GP. In terms of CGP, it has an

exclusive limitation which defines the individual structures that the building blocks are

normally organized in a fixed grid with a priori defined size and the task is to find the

optimal types, parameters and interconnections among them. However GP generates

the individuals with unlimited structures. So the limitation of GP is just the number of

building blocks or the size of program tree or table [32].

The individual representation and fitness function of [32] is the same as [31]. The

controlled system of [32] is a SISO system which is described by a differential equation

in 2.10 where y is the system output value and u is the control value. Furthermore, a

GA designed PID controller is also implemented as a comparison with CGP designed

controller for the same system.

 (2.10)

As can be seen from result, CGP approach can get controllers with acceptable

performance while GA tuned PID controller has the problem of steady state error and

even cannot reach the reference value when it changes. Therefore the conclusion of

22

[32] points out that PID controller doesn’t meet the requirements of all the different

references for the time response due to its linear behaviour and insufficient robustness.

However CGP controller is able to reach the reference value in an entire range.

Although it is difficult to obtain the optimal controller because of the huge search

space, this approach can still produce acceptable solutions [32]. In conclusion, [31] and

[32] use two different systems to demonstrate the effectiveness of CGP to obtain

acceptable controllers compared with GA tuned PID controller, which also indicates

that CGP is capable to design a nonlinear control system based on the controller

optimization.

 CGP in the evolution of robotic controller

Apart from control system design in the control theory field mentioned in the above

two works, Cartesian genetic programming can be also used to generate controllers to

manage robot behaviours [33] in addition to the GP based robot controller evolution

[28]. In this work, the nodes from the first column of the evolved controller consist of

two sensor inputs and two nodes from the last column stand for two motor speeds.

The following functions can be selected for the nodes including Add, Subtract, Multiply,

Divide, Compare, Min, Max, Fixed integer and Input node. The fitness functions are

developed based on these factors such as time spent moving forward, total path length

and Euclidian distance travelled [33]. Based on the utilizing of CGP, this work

successfully creates controllers for two experiment tasks, which are escaping a room

and solving a maze. As can be seen form this work, the approach could evolve a

controller which constructs relations between the inputs of sensor values and outputs

of motor speeds to complete the robot tasks such as obstacle avoidance and maze

solving for robotic controller design mentioned in this work. What’s more, this kind of

controller evolution based on CGP is quite suited to the MIMO controller design

problems especially in robotic area since it could evolve a MIMO controller which

utilizes the sensor readings as the controller inputs and creates controller outputs for

each of the motor speeds respectively. In this case, this kind of MIMO controller will be

working well to manage the robot behaviour rather than a typical SISO controller which

is just designed on the utilize of the error as the unique controller input to generate an

output value as the control signal to control the plant. In conclusion, this work indicates

an interesting area of using CGP to evolve robotic controllers to manage robot

behaviour to achieve different robot tasks. Based on this work, it would be interesting

23

to consider evolving controllers to achieve robot fault tolerant control as long as the

fault has been diagnosed.

 CGP in fault tolerance

[34] tries to use CGP to achieve sensor fault tolerant control. This work is related to

controller design in the case of a sensor fault. However it is not about designing a

controller, it is focused on how to generate the correct inputs to the controller using

CGP with the remaining working sensors [34]. The controlled system is the Shaky Hand

plate. The inputs of CGP are the plate sensor signals and the outputs will be the lateral

and angle offset error voltages which are the inputs of controllers and used to drive

motors to compensate for them. Therefore the aim of CGP is to generate the relation

between the remaining working sensor signals and two offset error voltage values [34].

As can be seen from this work, CGP is still effective to search for reliable solutions for

the sensor fault tolerant control. Although this work is not about the controller

evolution, it indicates a new idea to evolve the inputs of controller which could also be

helpful for fault tolerant control.

2.3.4 Grammatical evolution

Grammatical evolution (GE) is also another type of GP. It can evolve a program using

arbitrary languages with a variable-length binary string. This binary genome determines

which rule in the grammar is used to achieve the mapping from genotype to phenotype

so that the program could be completed. Basically, Backus-Naur Form (BNF) is utilised

as the original grammar rule employed for the mapping based on the building blocks in

order to create the potential program. However, any language could be created based

on this kind of simple binary string as long as an effective mapping process is available

to implement [36].

In terms of GE applications, [37] presents a whole scheme about how to use GE to

evolve a controller to design a control system and [38] talks about how to use GE to

evolve a robotic controller for robot behaviour management.

 GE for control system design

According to [37], grammatical evolution can be used for controller design for arbitrary

continuous time dynamic systems. The controller is represented in a continuous time

24

function which includes the selected arguments , the mathematical relations and

the parameters of the mathematical operations. The arguments of input variables are

where e is the control error, ie is integral of control error, de is derivative of e, r is the

reference signal, y is the controlled value and other arbitrary variables. The individual

can be represented in 4n genes:

where is the code of a mathematical operation, is the argument of input variables,

 is the parameter representing the coefficient of each and is the coefficient of

the power operation. The grammar of the mathematical operation is in the coding:

 () () () (

) ()

where

The fitness function is in a form of simple integral performance indices defined in

equation 2.11 or 2.12 where T is the simulation time.

 ∫| ()|

 (2.11)

 ∫| ()|

 ∫| ̇|

 (2.12)

A parallel evolutionary algorithm [39] is used in this work which is illustrated in Figure

2.7.

25

Figure 2.7: Migration topology of the used Parallel evolutionary algorithm [37]

In simple population of EA, this is always a conflict between the selective pressure and

population diversity. Therefore by introducing multiple populations in parallel

evolutionary algorithm, it is possible to simultaneously increase the selective pressure

in some populations and improve the diversity of other populations [39]. In this kind of

parallel EA shown in Figure 2.7, the individual representation is described using 9

islands in parallel architecture which are interconnected with migration connections

and each island contains 50 individuals. It is a hierarchical structure that island 1 is the

upper-level node while others are low-level nodes. Hence the difference between this

kind of parallel evolutionary algorithm and the simple population evolutionary

algorithm is the migration that in each generation, the best individual from island 2-9

will be selected and copied into the island 1 [37].

A non-linear stable controlled object is used for GE based controller design which is

displayed in a differential equation 2.13. As a comparison, GA designed PID controller is

also utilised for the same system.

 ̈ ̇

 (2.13)

As can be seen from the result, GE based controller has a faster rise time than GA

based PID controller in terms of system output. And GA based PID controller also

causes some oscillation when the reference signal drops to 0. Moreover, GA based PID

controller generates much higher control value than GE based controller which means

26

PID controller needs more control effort to control the system. In conclusion, the result

demonstrates that GE is an effective approach which could generate more effective

controller than GA tuned PID controller.

On the other hand, a non-linear unstable system is also used for the design of GE based

controller which is described in a differential equation 2.15.

 ̈ ̇

 (2.15)

According to the result, GA based PID controller leads much higher overshoot of system

output than GE based controller. In addition, GA based controller generates much

higher control value which means more control effort is required for GA based PID

controller than GE based controller. In conclusion, the result also demonstrates that GE

designed controller achieves better performance than GA tuned PID controller.

According to this work, the GE based controller has obvious advantages for the control

of non-linear system due to its non-linear properties of the controller compared to GA

based linear controller. The future research of this approach will design the controller

for complex, non-linear and MIMO systems. On the other hand, this approach just uses

five mathematical operations which are {+, -, *, /, ^}. In this case, more kinds of

operations and functions can be considered to be added into the individual

representation if they are needed. In summary, [37] demonstrates that GE is an

effective approach to construct acceptable controllers to deal with nonlinear systems,

which could be an effective approach for control system design.

 GE in the evolution of robotic controller

Similar to GP based robot controller evolution [28] and CGP based robot controller

evolution [33], [38] also describes how to evolve a controller to achieve robot task but

with GE. In this work, the task is navigating a robot toward a point light source and

avoiding obstacles at the same time. The evolved controller by GE is a piece of

computer program that generates C code in order to make robot achieve the task. The

obtained program maps a relation between the sensor signals and the motor speeds in

order to control the robot behaviour. The genotype is evolved using a steady state GA

where only a small part of population is replaced each generation. The only difference

27

is that the genomes in GE are represented in computer programs rather than binary or

real values in GA for only evolving parameters. The fitness function is designed with

two factors including a reward for finding a light and a penalty for collisions [38]. As can

be seen from this work, it is quite similar to [28] and [33] where the evolved controllers

are suited to solve MIMO controller design problems especially in robotics research

area, which is also a potential way to achieve the robot fault tolerant control.

2.4 Evolutionary algorithms with artificial neural networks

2.4.1 Artificial neural networks

2.4.1.1 Introduction of artificial neural networks

Based on the reviewed literatures, EA is an effective optimization tool to design

structurally evolvable controllers not only for SISO control problems but also for MIMO

control scenarios. As can be seen from [28], [33] and [38], structurally evolvable EA

approaches could also be promising to design controllers in terms of robot behaviour

management. Although these approaches demonstrate benefits to design structurally

evolvable controllers, those evolved controllers are created based on stochastic initial

structures. That is to say, the output values of the controllers are actually arbitrary

depending on which node functions are utilised and connected to the controller

outputs. However the robot motor speed has the upper and lower limitations

respectively. In this sense, the range of the controller output values has to be assessed

and truncated before the output values can be utilised as the robot motor speed values

[33], which is quite tricky with lots of extra work to do before initialising and evolving

controllers.

Therefore, an alternative option is to use neuron transfer functions instead of basic

mathematics functions as the controller node functions. The benefit is that the neuron

transfer functions basically have their own output limitations such as [0, 1] or [-1, 1],

which is well suited as the controller node functions in order to obtain output values in

limited range as the robot motor speed without extra works to assess the controller

output limits. In this sense, the work will become the evolution of neuron transfer

function based controllers. In other words, artificial neural network (ANN) would be a

suited choice as the basic controller type and EA could optimise a structurally evolvable

controller based on it, which is called the training for the neural network. In addition,

ANN has been investigated in the fault tolerance area extensively, which will be

28

reviewed in section 2.4.1.2. Therefore it is also a promising idea to implement EA to

realise a structurally evolvable ANN so as to achieve the fault tolerant control.

ANN is a significant research area in artificial intelligence and it has a wide application

scope. Due to the nonlinear characteristic, ANN is capable to model a complex system

where the accurate mathematical model is hard to obtain or just act as a nonlinear

controller for a given task [2].

ANN is inspired by the animal brain’s structure to mimic how the neurons transfer

information in the real neural networks. Basically ANN describes a weighted directed

acyclic/cyclic graph with a set of nodes implementing the neuron transfer functions so

as to approximate the real biological neurons. In biological neural networks, the signals

are transmitted as spikes between two connected neurons. In this case, the ANN which

models the spiking behaviour for the information transmission is considered as Spiking

Neural Networks. However most of ANNs utilise non-spiking neurons to constitute the

network due to the less expensive computation effort with a wider application scope

for the non-spiking ANNs.

Figure 2.8 shows a generalised neuron model for the non-spiking ANN. In this figure, x

is the input from previous neurons; w is the connection weight which indicates the

strength of the current connection; ϕ() stands for the neuron transfer function which

processes the weighted sum of input signals to generate one output signal, and that

output y in this figure represents the output from this neuron. In addition, there is an

extra element for the ANN called the bias, which is b in this model. Bias is just used for

any internal thresholds with respect to the neuron transfer function.

Figure 2.8: A generalised artificial neuron model [30]

29

There are many types of neuron transfer functions in the literature and most of them

generate the output in the interval of [0, 1] or [-1, 1] [40]. Based on the implement of

neuron transfer functions, ANN could be also used to describe graphs with different

structures. For example, [41] and [42] demonstrate how feed-forward and recurrent

ANN could be utilised respectively for universal system approximation based on a finite

number of neurons, which indicate that both the feed-forward and recurrent ANN have

wide application scope as long as they can be trained for the given task.

 ANN different structure types

To be more specific, several different ANN structures are reviewed as following. Feed-

forward neural networks have the simplest structure. In this type of neural networks,

each neuron outputs only the neurons of the next layer and there may be more than

one hidden layer depending on the complexity of the system. Its architecture is

presented in Figure 2.9 where each neuron outputs only to the neuron of the next layer

[43].

Figure 2.9: Feed-forward neural networks [44]

Recurrent neural networks have more complex structures than the simple feed-

forward neural networks. This type of neural networks needs more computational

power for training and implementation because of the reuse of past signals. Moreover,

each input activity pattern passes through the network more than once before it

generates an output [43]. Their structure is displayed in Figure 2.10.

30

Figure 2.10: Recurrent networks [44]

Radial basis function neural networks are a kind of single hidden layer feed-forward

networks which use radial basis function as activation functions. In this type of neural

networks, the distance between the input vector and the vector of centres is calculated

for each input which needs to be passed through the activation function [44]. Its

structure is shown in Figure 2.11.

Figure 2.11: Radial basis function neural networks [44]

In this diagram, f is a radial basis function used for the activation function, y is the

output, x is the input vector and c is the vector of centres. ||x-c|| is the distance

between the input vector and the vector of centres.

31

Besides the above mentioned different kinds of neural networks, fuzzy logic can be also

combined with neural networks using a fuzzifier to form the fuzzy neural networks [43].

Fuzzifier is used to convert the input data patterns to fuzzy categories which can be

used as the inputs of neural networks. So this kind of neural networks is useful to deal

with the system with imprecise information or noise with the aid of fuzzy logic [44].

Their structure is presented in Figure 2.12.

Figure 2.12: Fuzzy neural networks [44]

In summary, different types of ANN could be utilised in different scenarios depending

on the complexity of the given task. Due to the nonlinear characteristic, ANN would be

feasible to act as nonlinear controllers especially when MIMO are required to design

the controller, where a standard SISO controller is not able to achieve.

 ANN training methods

Back propagation is the most widely adopted traditional ANN training method

especially for multi-layered feed-forward network, where its first description is

presented in [45]. Back propagation is working based on the error signal, which is

defined as the difference between the real output and the expect output of the

network. During the ANN training, the error signal will be propagated from the output

to the input through each layer including all the hidden layers. In this way, the weight

value of the network can be regulated by the error feedback and the real output will

finally get quite close to the expect output based on the continuous modification of the

weight values [46]. The mathematics details of back propagation can be referred to

[46].

Apart from back propagation, EA is a new training method for ANN. There are many

benefits that EA outperforms back propagation for ANN training. [47] compares EA

with back propagation for ANN training based on five different test cases. The result

32

shows that EA converges faster with a more accurate performance than back

propagation. Moreover, EA demonstrates a better robustness than back propagation

with a better average performance for these case studies when some neurons are lost

before the training [47]. As can be seen from this work, EA demonstrates significant

benefit over back propagation for ANN training. Although the comparison is conducted

on those five test cases in [47], it still indicates that EA could be a new approach as the

ANN training method rather than back propagation. The details of the five test cases

can be referred to the work in [47].

2.4.1.2 Artificial neural networks in fault tolerant control

In terms of fault tolerant control, ANN has also been investigated widely not only for

controllers but also as fault detectors. [48] applied ANN as controller, fault detector

and fault compensator all together to achieve a fault tolerant control system. In this

work, the neural network controller and fault detector are trained offline. When there

is no fault, the controller is able to make the plant work normally. And when a fault is

presented in the plant, the fault detector can generate a residual signal which indicates

that a fault is detected. After that, an extra neural network based fault compensator

will be trained online in order to ensure the closed loop stability [48]. This work

demonstrates a wide application of ANN in the fault tolerant control area. However the

fault tolerant control capability is based on the online training of a fault compensator in

the face of detected fault while the ANN based controller’s structure still remains fixed.

In this case, if the ANN based controller could be redesigned, it would be interesting to

see whether it will be working better other than the dependence on the fault

compensator. [49] applied a dynamic radial basis function ANN as the controller to

achieve a fighter aircraft fault tolerant control system in the case of severe winds when

it is landing. This approach just utilises ANN as a feedback controller to design a fault

tolerant control system. This work demonstrates that the ANN controller is capable to

be trained online in order to deal with the fault. So this work indicates a possibility to

investigate the controller redesign especially the controller reconfiguration with

respect to the ANN based controller utilised to design an online fault tolerant control

system. [2] made a comparison between a PID controller and ANN controller in order

to achieve the fault tolerant control based on a Model Reference Adaptive Control

(MRAC) system. In the MRAC system, the process output will be compared with the

reference model output and the comparison result, which is the error in this system,

will be processed by an adaptation mechanism in order to tune the controller

33

parameters. In this sense, the process output will be following the reference model

output until the controller’s optimal parameters are found, which means the system

response will be matched with the reference model output and the whole closed loop

system will be stable. Based on the MRAC scheme, this work utilised a PID controller

and an ANN controller to do the comparison to achieve the fault tolerant control for a

heat exchanger system where abrupt and gradual faults will be both injected on the

sensors and actuators respectively. As can be seen from the experiment results, ANN

controller based MRAC system represents the best performance for both of two types

of faults in two different scenarios. ANN controller could be robust to these two faults

injected in the sensors but PID controller has to reply on the adaption mechanism to

re-tune the parameters in order to make the system response stable. In terms of

actuator faults, although both PID and ANN controllers have degraded performance,

ANN controller still outperforms than PID controller with a less degraded performance.

In conclusion, this work demonstrates the benefits of utilising an ANN controller to do

the fault tolerant control other than a traditional PID controller. In this sense, it would

be interesting to investigate how ANN controller can be utilised into the robot fault

tolerant control scheme.

As can be seen from these three works, ANN displays significant advantages when

being acted as controllers in the fault tolerant control system. However the training

method of these ANN is the back propagation, which belongs to the most typical

traditional ANN training approaches. In order to investigate how EA could be used to

train the ANN, [50] utilised GA for the weight retraining of a ANN controller which is

used to realize the fault tolerance in single chip or silicon wafer. In this sense, the ANN

controller can be reconfigured online to process different faults with the help of GA.

This work is actually a typical example of employing EA approaches for the ANN

training to design a fault tolerant control system, which belongs to a kind of

NeuroEvolution (NE) approaches. Up to now, there are lots of similar works using GA to

train the ANN in order to achieve fault tolerant control. However those ANNs have

fixed structures and the only factor to be optimised is the connection weight, which is

quite fitted for GA in terms of the ANN training. However if the whole structure of ANN

could be optimised, those reviewed EA techniques which are working for the structure

optimization mentioned in the section 2.3 will be promising approaches to help design

a structurally evolvable ANN controller to achieve the fault tolerant control scheme,

which would be interesting for further investigation.

34

2.4.2 NeuroEvolution

2.4.2.1 Connection weight evolution

As is mentioned in section 2.4.1.2, NE [51] [52] is a kind of optimisation technique that

it applies evolutionary algorithms into the training of ANN to achieve the given tasks.

As is reviewed from [50], this work combines GA with ANN together to achieve a fault

tolerant control scheme, which belongs to a typical simple NE approach called

Conventional NeuroEvolution (CNE).

CNE [53] [54] is the earliest NE approach which just applies a simple GA into the

training of ANN’s weights with a fixed network structure. CNE can be utilised to train

either a feed-forward or recurrent ANN depending on the required network type for

the task. Generally speaking, the genotypes of GA for the CNE are comprised of a string

of floating point values which stand for the weight value for each connection in the

ANN for training. So the phenotypes would be the corresponding weight values for

each connection with a predetermined network structure. The fitness function is

determined by the task which evaluates how well the genomes perform onto the ANN.

The mutation could change a given percentage of the genomes by new random values

and crossover could exchange the corresponding gene proportions of two parents in

order to create two children. The initial population is made up of random values

describing random connection weights. Finally the evolution could be terminated when

an acceptable string of connection weights for the ANN are obtained to achieve the

given task or the convergence criterion has been reached. Based on the description of

CNE, it indicates that GA could be easily applied into the training of ANN’s weights to

complete given tasks. However there are also many different NE approaches working

beyond the simple application of a simple GA into the training of ANN’s weights.

2.4.2.2 Network structure evolution

Apart from CNE based ANN’s weight training approach, there is another area that trains

the network structure as well as connection weights, which is also important in NE area

[51] [52]. [30] mentions that the search space of NE is actually comprised of structure

and connection weight; or just the weight space with a given network structure. So

only training the connection weights for a fixed network structure may limit the search

space depth. In general, it is beneficial to just train the connection weight for a given

suitable network structure since the dimensionality of search space is lower than

35

training the whole structure. However a suitable network structure may not be

determined in advance before the training and the effectiveness of the search is highly

dependent upon a suited selected network structure. Therefore, it is a crucial drawback

of just training the connection weights for NE. In other words, the structure training

based NE approach can help determine the most suited network structure and

sometimes it could also obtain an unusual structure but with a better performance,

which otherwise may not be considered by a human designer [30]. In summary, other

than just weight training, the network structure evolution can be also considered for

NE approaches and many different NE approaches were developed for it.

Symbiotic Adaptive NeuroEvolution (SANE) [55] is a feed-forward, limited network

structure evolution based NE approach. In SANE, each individual actually stands for

each neuron. So the population is a combination of individuals which represent

different neurons and the whole network will be created based on a random selection

of these neurons. In terms of the genotype, each one is described as a hidden node

with its connectivity and connection weights with the input and output nodes.

However the limitation of SANE in the network structure evolution is that the network

always just contains one hidden layer with the given number of nodes, arity and

connections to output. In this case, only the connection placement and connection

weights can be evolved, which restricts the evolution for a more complex network

structure [30].

NeuroEvolution of Augmenting Topologies (NEAT) [56] is another typical network

structure evolution based NE approach. It can evolve the weights as well as the

structure of feed-forward and recurrent ANNs. Moreover, each individual stands for a

whole network, which is quite different from SANE of using single neuron as individual.

In terms of the genotype, each one is represented by a list of nodes and connections.

The node is identified by an ID indicating whether it is an input, hidden or output node.

And the connection gene includes an input and output node, a connection weight and

whether this connection is enabled or not. In this case, a complete network can be

constructed based on these node and connection genes for each individual.

Interestingly, the initial individuals are created for simple network structures without

any hidden nodes, where input nodes are directly connected to the output nodes. And

new nodes or connections will be added only when they are required. However a

crucial disadvantage is that this kind of incremental mutation could result in a local

36

research of the network structure evolution, which would make the search trapped in

local optima eventually [57]. Even though, a significant benefit of the evolution based

on an initial small program size could be a solution to avoid the program bloat [30]. The

program bloat is a common issue for many EAs especially for GP where the program

size would be growing in an uncontrollable way during the evolutionary search [58]

[59]. The main consequence of program bloat is that the training time may be

increased and the computational effort could also be expensive for those solutions

which would be extremely complex at the end of the evolution. However [60] also

mentions that whether NEAT is suffered from program bloat is highly dependent on the

choice of its parameters, where the typical parameter values in the early publications

still cause program bloat.

2.4.2.3 Recurrent network evolution

In terms of recurrent ANN evolution, all fixed network structure evolution approaches

are able to evolve recurrent network structures. Although some approaches like SANE

do not allow the evolution of recurrent connection, it is simple to just modify the node

connection such as to the input nodes, the previous nodes or even the node itself

depending on the user requirement. In this way, it is not difficult for this kind of

approaches such as SANE to obtain a recurrent ANN despite that the evolve network

structure is still restricted to be a fixed structure [30]. As for the adaptive network

structure evolution approaches, it seems that all of them are able to obtain recurrent

ANNs. A possible explanation is that the connection placement can be also easily

evolved just like the fixed network structure evolution approaches no matter which

node it wants to connect as long as it is permitted by the user [30].

2.4.2.4 Transfer function evolution

Besides the recurrent network evolution, the neuron transfer function can be also

evolved. Typically, if an ANN just utilises a single type of neuron transfer function, this

kind of ANN is called homogeneous ANN. And if an ANN utilises more than two types of

neuron transfer function, it is called heterogeneous ANN. [30] mentions a significant

benefit of heterogeneous ANN over homogeneous ANN that homogeneous ANN may

limit the ANN performance since different ANN training methods restrict the neuron

transfer function types. However it has demonstrated that neuron transfer functions

affect the capability of an ANN significantly [61] [52]. In this case, NE can be also

utilised to manipulate the selection of neuron transfer functions without any restriction

37

during the training especially for heterogeneous ANN as long as sufficient types of

neuron transfer functions are given. Theoretically, the transfer functions can be simply

described as extra genes added into the genotype for each node in order to be evolved.

In this case, evolving a heterogeneous ANN could be possible as long as the extra

transfer function genes can be also evolved [30].

2.4.3 NEAT/HyperNEAT

2.4.3.1 Introduction

 NEAT

As is mentioned in section 2.4.2.2, NEAT is one of the most important approaches in

network structure optimisation based NE area in spite of a potential problem of

program bloat. NEAT was developed by [62] based on ANN structure optimisation in

the NE area. Each genome in NEAT is made up of a list of connection genes where each

gene connects two node genes. Each connection gene specifies what input and output

nodes is connected; what the weight values is; whether the connection is enabled or

not and an innovation number which is utilised during the crossover [62]. An example

of the genome encoding is shown in Figure 2.13.

 Figure 2.13: An example of NEAT genotype and phenotype [62]

In NEAT, the mutation could be occurred for both of connection gene and network

structure. Like the normal weight mutation, each weight gene could be mutated with a

fixed probability to a new floating point number. In terms of the structure mutation,

each mutation will increase the genome size by adding new genes. To be more specific,

there are two ways for NEAT to conduct the structure mutation. One is the adding

38

connection mutation, where a new connection is added with two previously

unconnected nodes. The other is the adding node mutation, where a current

connection is split into two parts with a new added node [62]. An example of these two

way mutations is shown in Figure 2.14.

Figure 2.14: An example of two mutation ways of NEAT [62]

Besides mutation, crossover is conducted with the help of innovation number in NEAT.

When a new gene appears, an innovation number is incremented and attached to the

gene. The benefit is that when crossover takes place, the children will inherit the same

innovation numbers from each gene, which guarantees that the historical origin of each

gene is known during the evolution. Based on the innovation numbers, the crossover

lines up the genes with the same innovation numbers and just chooses them randomly

to create the children. If the genes are not shared with the same innovation number,

the crossover adds them from a fitter parent into the children. In this way, the

genomes with different structure could be combined compatibly during the crossover

[62].

One significant benefit of this kind of crossover is that the competing conventions

problem could be avoided. “Competing conventions means having more than one way

to express a solution to a weight optimization problem with a neural network. When

genomes representing the same solution do not have the same encoding, crossover is

likely to produce damaged offspring” [56]. That is to say, when crossover is executed

39

on two parents who have the same fitness but different genotypes, their children

created from the crossover may lack genetic information and no longer function like

either parent. Competing conventions problem is actually a common issue in NE

approaches which utilise crossover to create children. However due to the utilise of

innovation numbers, NEAT could identify which genetic material is shared or not share

between their parents and the crossover could take place by selecting random shared

genes or non-shared genes from a fitter parent, which prevents the competing

conventions problem [30]. And at the moment, NEAT and the following reviewed

HyperNEAT are the only two approaches in NE which utilise crossover but do not suffer

from competing conventions problems. An example of crossover with the implement of

innovation number is shown in Figure 2.15.

Figure 2.15: An example of crossover based on innovation number in NEAT [62]

 HyperNEAT

40

Apart from NEAT, Hypercube-based NeuroEvolution of Augmenting Topologies

(HyperNEAT) is also another important approach in network structure optimisation

based NE area. HyperNEAT was first introduced in [63] which was developed based on

connective Compositional Pattern Producing Networks (connective CPPNs) as the

encoding genotype with NEAT for the evolution. CPPNs are used to represent

connectivity patterns since they can produce spatial patterns made up of different

basic functions. For this reason, HyperNEAT firstly creates the spatial patterns onto a

hypercube whose dimensionality is determined by the dimension of the input

coordinates. And then HyperNEAT maps the connection weights onto the neural

network whose neurons and connections should be in a spatial location. Now the

genomes are created and the genetic operator including mutation and crossover will be

the same as NEAT for the network structure evolution [63].

2.4.3.2 NEAT/HyperNEAT in controller structure optimisation

 NEAT

Although [60] mentions that NEAT may also suffer from program bloat if inappropriate

parameter values are set for the evolution, NEAT still demonstrates more effective

performance than the fixed network structure optimisation NE approaches utilised to

highly complex problems, such as the double pole balancing [62]. Moreover, an online

evolution with NEAT also produces effective performance in terms of video game

characters evolution, where the approach is also referred to a real-time enhancement

of NEAT (rtNEAT) [64]. In recent years, a novel online and distributed version of NEAT

(odNEAT) is developed by [65] which is quite similar to rtNEAT. The significant

difference between them is that reNEAT utilises a centralised manner for evolution but

odNEAT is completely decentralised. For this reason, odNEAT is quite suited to the

robot control area where the controllers of multiple robots can be evolved

independently online and onboard. Each controller is represented by an ANN indicating

a candidate solution for the task on the corresponding robot and odNEAT is running on

this group of robots with parallel evolution to perform the same task with genomes

migrated between each [65], which is actually quite similar to parallel evolutionary

algorithm interconnected with migration connections [39] mentioned in work [37].

[65] utilises odNEAT to conduct a simulated collective robotics experiment. odNEAT is

used to create an ANN controller loaded to each robot. The input of the ANN is the

41

robot proximity sensor values and the output is the speed for each wheel. The task

selected is an aggregation task where each robot needs to move close to each other in

order to create a cluster. The result shows that 22 evolutionary runs are successful to

make the group of robots achieve the aggregation task of all 30 runs. Although not all

the runs are successful, the result still demonstrates that odNEAT is able to evolve

adequate robot behaviours so as to achieve the same goal including the searching,

locating and joining other robots in the environment. In conclusion, [65] is a typical

work that demonstrates the effectiveness of utilising odNEAT to achieve the online

controller evolution for group robot behaviours based on the parallel evolution with

genome migration between each robot.

As can be seen from these reviewed works, odNEAT mentioned in [65] is one of the

most typical approaches based on NEAT to be successfully utilised in robot controller

optimisation. Due to the effective performance of odNEAT, [66] utilises odNEAT to

achieve an online ANN controller optimisation but based on the real robots, which

additionally demonstrates the performance for robot fault tolerance. [66] utilises the

same odNEAT as that mentioned in [65] to evolve ANN controllers but for real robotic

hardware rather than simulation robotic platform. The tasks selected in [66] include

two single-robot tasks: the navigation with obstacle avoidance and the homing towards

a target area. Moreover, aggregation is also selected as a collective robotics task to be

conducted with a group of robots. In terms of the fault tolerance, the task is still the

aggregation with pre-evolved controllers for the fault-free scenario. The fault is

injected into a random robot’s wheel within the robot group during the task, so the aim

of fault tolerance is to investigate whether the robot will continue doing the

aggregation with resumed online evolution for the faulty robot’s controller. To be more

specific, there are 3 test cases for the online controller evolution for the fault tolerance

including one fault, two faults and three faults occurred among the group of robots.

Each group consists of 3 robots and the fault is randomly injected in either the left or

the right wheel of the randomly selected robot. The result shows that the online

evolution with odNEAT is effective to produce a considerable set of successful

controller in each run in terms of both of two single robot tasks and a collective robot

task for the real robotic hardware. In terms of the fault tolerance, all of these three

scenarios successfully evolve controllers online to overcome the injected faults for the

selected robots in order to make the group continue doing the aggregation task, which

42

demonstrates that odNEAT is effective to achieve the fault tolerant control with the

controller online optimisation based on real robotic hardware [66].

As can be seen from these works, NEAT demonstrates effective performance in NE area

especially for ANN controller structure optimisation. Among them, [66] is currently one

of the typical works that utilises NEAT into the fault tolerant control field in terms of

robot control optimisation. However [66] still displays a potential problem with a time-

consuming work based on the online controller evolution for fault tolerance. Although

[66] mentions that all the experiments conducted in this work require less than an hour

to obtain an acceptable controller, those evolved fault tolerant controllers are just

suited to the aggregation task. In other words, an hour evolution time is fine for the

robots to overcome fault when they are doing the aggregation task since there is no

criteria that the robots have to overcome the fault in order to continue performing the

aggregation in a limited time. However if there is a requirement that the robot has to

achieve the fault tolerance immediately right after the fault is diagnosed, which refers

to a kind of real time fault tolerance, the online fault tolerance will be definitely not a

suitable solution. An alternative solution is that the online fault tolerance could evolve

the controller before the fault occurs rather than after it, which shortens the evolution

time. However this idea needs the fault prediction technique, which is another

research topic related to the fault tolerant control area. In this case, a simple but still

effective approach is the offline fault tolerance based on the controller evolved offline.

As is mentioned in section 2.2, the benefit of the offline fault tolerance is that some

real time fault tolerance tasks could be achieved based on either robust or switched

control with the offline evolved controllers. However a significant drawback is that all

the possible fault types have to be considered in order to conduct the controller

evolution. That is to say, if an unplanned fault is occurred during the online task, there

is no way to overcome the fault and that is why online fault tolerance is needed.

However it can be assumed that the possible fault types have already be considered for

evolving fault tolerant controllers offline since this thesis is just focused on the fault

tolerant control area, which does not matter whether all the possible fault types are

considered or not. For this reason, the offline controller evolution could be a primary

approach based on the ANN controller structure optimisation for fault tolerance before

the online task is performed, which would be much more efficient than evolving a

controller online.

43

 HyperNEAT

Besides NEAT, HyperNEAT also demonstrates competitive performance in the

controller structure optimisation for robot control. [67] [68] and [69] all investigate

how HyperNEAT could be utilised to achieve the robot gait learning. [67] implements

HyperNEAT for the online gait training for modular robots in simulation and compares

its performance with the reinforcement learning method. The result shows that the

reinforcement learning method outperforms HyperNEAT where even the best

controller in the best run of HyperNEAT produces a worse performance than the

reinforcement learning method during the first 400 evaluations and the median value

from HyperNEAT is also much lower than the reinforcement learning during the 1000

evaluations. Moreover, HyperNEAT also requires a much longer learning time than the

reinforcement learning method to obtain an effective solution for the online gait

learning task. For this reason, HyperNEAT may not be a suitable approach for the online

gait learning based on modular robots in the task mentioned in [67]. [68] investigates

how HyperNEAT could be utilised to achieve the gait training for a legged robot and

tests the hypothesis that whether hyperNEAT will outperform the simpler encoding if

the gait is firstly evolved in simulation and then transferred to real robot. When the

evolution is finished in simulation, the best solution of each of 20 runs is transferred

onto the real robot and distance travelled will be the measurement. The result shows

that HyperNEAT produces a better performance than the simpler encoding for robot

gait training in terms of the simulation task. Furthermore, this work also demonstrates

that it is effective to evolve gait in simulation and then transfer the solutions onto real

robot, although the solution just performs slightly better that directly evolved on real

robot. Nevertheless, evolving gait in simulation first and then transferring onto real

robot indicates another option for gait training with real robot based on the implement

of hyperNEAT [68]. [69] is actually quite similar to [68] where HyperNEAT is also utilised

to train the gait on a legged robot, but the difference is that [69] directly evolves gait

on a real robot without any concern from the simulation work. Moreover, this work

compares HyperNEAT with locally searching parameterized motion models based on

their performance for real robot gait training. The result shows that HyperNEAT

outperforms all the parameterized local search methods mentioned in this work and

obtains a gait much faster than a hand-designed gait, which demonstrates the benefit

of using HyperNEAT for real robot gait training.

44

Except for these three works, [70] develops a new version of HyperNEAT called iterated

evolvable-substrate HyperNEAT (iterated ES-HyperNEAT). And this work shows that

iterated ES-HyperNEAT reduces the computational costs compared to the original ES-

HyperNEAT. In addition, this works also demonstrates that iterative ES-HyperNEAT

outperforms original HyperNEAT in terms of a robot maze navigation task [70]. In

conclusion, this work demonstrates that HyperNEAT could also be improved to achieve

better performance for robot control. [71] utilises HyperNEAT to evolve controllers so

as to achieve organism locomotion with obstacle avoidance. This work belongs to the

field of evolution of robot organisms, where the robot organisms usually refer to the

structures consisting of physically connected individual robots. In this work, controllers

are evolved based on HyperNEAT in order to achieve the locomotion of a quadruped

organism composed of 14 simple modules in addition to obstacle avoidance. The result

shows that the evolved gaits are smooth and seem natural when the organism moves

in a controlled, co-ordinated manner while negotiating obstacles [71]. In conclusion,

this work shows that HyperNEAT is effective to develop a reactive quadruped gait with

individual robot’s controllers acting autonomously to achieve the successful

locomotion of a given organism, which demonstrates the benefit of using HyperNEAT in

the field of robot organism evolution.

As can be seen from these works, all of them are about how HyperNEAT is

implemented for the robot controller evolution, which demonstrates the effectiveness

of HyperNEAT in this area in terms of ANN structure optimisation. In addition, these

works successfully implement HyperNEAT for controller optimisation of either single or

modular robots based on simulation or real robotic platform. Although HyperNEAT

demonstrates effective performance especially in robot controller optimisation area,

there is currently no literature that implements HyperNEAT for fault tolerant control.

Even though, it is not a difficult task for HyperNEAT since NEAT already achieves fault

tolerant control with online controller optimisation [66] and the only difference

between HyperNEAT and NEAT is the way of genome encoding. For this reason,

HyperNEAT could be an alternative approach besides NEAT to achieve the fault tolerant

control based on the ANN structure optimisation.

2.4.3.3 Summary

As can be seen from these works, both of NEAT and HyperNEAT demonstrate effective

performance in terms of the ANN controller structure optimisation for robot controller

45

evolution. Especially, [66] also utilises odNEAT to investigate how it will be performing

for robot fault tolerant control, which is quite related to this thesis topic. However, as is

mentioned in 2.4.3.2, the only problem in [66] is from the online fault tolerant control

scheme, which needs at least a period of time to obtain an acceptable controller. In this

sense, evolving controller offline before robot performs the online task would be

another scheme to achieve the fault tolerance, which avoids the problem of a time-

consuming work for online controller evolution as long as it is assumed that the

possible types of faults have been considered for the evolution. For this reason, offline

fault tolerant control could be a primary scheme to investigate how ANN structure

optimisation approaches could be performed for it.

2.4.4 CGPANN

2.4.4.1 Introduction of CGPANN

Apart from NEAT, Cartesian Genetic Programming of Artificial Neural Networks

(CGPANN) is also another important approach in network structure optimisation based

NE area. CGPANN was first developed by [72] to achieve the network structure

optimisation of ANN based on the original CGP but in the NE area. CGPANN has the

similar framework with CGP to describe structurally evolvable graphs but for ANN

training. Figure 2.16 shows an example of a simple CGPANN’s genotype [30].

Figure 2.16: An example of CGPANN genotype [30]

In Figure 2.16, this CGPANN has three inputs and one output with three nodes. Each

node acts as each neuron in ANN’s framework. Moreover, each node has two

connections from previous inputs, where the arity of the node is two in this case. Each

connection is also coupled with a value to stand for the connection weight for ANN

description. Finally, each node also implements its own node function. In this

phenotype, the node function will be neuron transfer functions instead of basic

46

mathematics functions. It needs to note that sometimes the node will not be

connected to any other nodes including the inputs and outputs. As a result, this node is

inactive for the graph description, so this node’s relative genes are called redundant

genes in this case, which is an important feature for NE and will be talked about in

section 2.4.4.5. Therefore, the significant difference between CGPANN and CGP is that

CGPANN adds an extra gene used to represent the neuron’s connection weight for each

connection among different nodes. In addition, CGPANN utilises neuron transfer

functions to act as the node functions rather than basic mathematics functions. Other

aspects will be remained the same from CGP.

Actually, CGP has some benefits over GP for the ANN’s structure evolution. [73]

mentions that CGP is more suited for ANN training rather than GP based approaches.

The reason is that GP describes the program in a tree based structure, which is not

suited to ANN encoding. However, CGP arranges the nodes in a graph based structure,

which enables the reuse of nodes so as to make it possible to describe ANN. Apart from

that, CGP also has further advantages including the management of explicit genetic

redundancy [74] and the ability to overcome program bloat problem [75], which will be

discussed in the next section 2.4.4.2 and 2.4.4.5. Moreover, the benefit of evolving

network structure and heterogeneous ANN based on CGPANN will also be talked about

in the section 2.4.4.3 and 2.4.4.4.

2.4.4.2 Program bloat

Resilience to program bloat is a benefit of CGP as well as CGPANN. Program bloat is a

common problem for many GP based NE approaches which were developed with

similar features as GP. Although [60] talks about how to ease the program bloat

problem based on NEAT, the resilience is still highly dependent on a careful choice of

its parameters. Therefore, more works are needed to investigate how to solve the

program bloat problems for NE approaches and CGPANN is one of the approaches

which present an effective resilience to program bloat.

To be specific, program bloat refers to a phenomenon that the size of evolved program

increases dramatically but without significant improvement on the fitness [76]. This

definition of program bloat is actually a metric applied in [77] to measure the amount

of bloat for each generation. Figure 2.17 shows the comparison of the average bloat

amount of the population for a standard tree-based GP (grey line) and DynOpEq GP

47

(black line) from the work of [77]. In this figure, (a) shows the result of a symbolic

regression problem and (b) (c) are referred to two real world classification tasks. As can

be seen from the comparison results, a standard tree-based GP is seriously affected by

the program bloat that the bloat amount is going up continuously with the increase of

generations.

Figure 2.17: The comparison of GP and (gray line) and DynOpEq GP (black line) on (a) symbolic
regression and (b) (c) two real world classification tasks in terms of program bloat investigation.
[77]

In [30], the program bloat metric is modified slightly to suite the CGPANN framework

which is demonstrated in equations 2.17 to 2.19:

 ()
 ̂ () ̅ ()

 ̅()

(2.17)

 ()
 ̅ () ̂ ()

 ̅()

(2.18)

 ()
 ()

 ()

(2.19)

Where () is the bloat at generation g, ̂ () is the number of active nodes utilised

by the fittest individual of the population at generation g, ̅() is the average number

of active nodes for each individual in the population at generation 0, ̅ () is the

average fitness for the population at generation 0 and ̂ () is the fitness of the fittest

individual of the population at generation g. Actually equation 2.19 represents the ratio

48

of the increase of program size to the improvement of fitness from the first generation.

So if () is becoming bigger, that means program size is increasing disproportionately

to the fitness improvement, which indicates that the program bloat is existed. In other

words, if the bloat value is constant, that means there is no program bloat over the

past generations [30].

Based on equations 2.17 to 2.19, [30] utilised three benchmarks to investigate whether

the program bloat exists in CGPANN. The three experiments include a double pole

balancing, ball throwing and the Monks Problem 1. The first two experiments belong to

control problems and the last one is a kind of classification task. The details of the

experiments setup can be referred to [30]. The results of these three experiments are

averaged over fifty runs in terms of fitness, number of active nodes and the bloat value

at each generation.

According to the result, CGPANN actually does not suffer from the program bloat at all

since the bloat is in a low level with nearly stable values over generations. Moreover,

CGPANN is utilised in three different benchmarks, which also demonstrates the

generalisation of CGPANN to overcome the program bloat. Since program bloat is a

common problem in tree-based GP approaches resulting in slower evaluation time for

extremely bloated programs, CGP would be another choice instead of the standard tree

based GP in terms of the ANN’s structure optimisation tasks.

2.4.4.3 Network structure evolution

Apart from the resilience to program bloat, network structure optimisation is another

significant benefit for CGPANN. Generally speaking, network structure evolution based

NE approaches are considered to have more advantages than the traditional training

method based approaches. A significant benefit is that evolving the whole network

structure removes the requirement for users to design a suitable network structure

beforehand, which reduces the workload of human designers instead. Another benefit

is that the network structure optimization could evolve an ANN structure that cannot

be considered by a human designer but may achieve better performance than

traditional ANN structures [51] [52].

As is reviewed in section 2.4.2.2, there are some approaches which are able to train

ANN not only in connection weights but also in network structure. However there is

nearly no literature that really talks about whether evolving network structure brings

49

any benefit for ANN training. The only example is found in [78] where the results

indicate that the evolution for a network structure may take more time than just for

connection weights in order to find a suitable solution. So the fixed network structure

based on weight evolution would be a first choice rather than those based on both of

structure and weight evolution. However [30] suggests that it is an unfair comparison.

Although it is possible to just compare the performance between these two

approaches, it is still quite difficult to make a comprehensive comparison. One possible

reason is that these two approaches utilise different genotypes to describe ANN during

evolution. Some approaches are working at neuron level like SANE and some are

working at network level like NEAT. So it is not clear to demonstrate whether their

performance difference is due to the difference between connection weight

optimization and network structure optimization or just the genotype difference or

other factors between these two approaches. On the other hand, most of the

connection weight optimization approaches are working based on a pre-designed

network structure, whose effort is not considered into the comparison. But the

network structure optimization approaches have to evolve both of structure and

weights at the same time. So it does not make any sense when comparing the

optimisation time of connection weight evolution based on a pre-optimised structure

and the evolution for both connection weights and network structure.

In this case, [30] investigates two problems based on the comparison between network

structure optimisation and connection weight optimisation. One problem is whether

network structure optimisation is better than connection weight optimisation and the

other problem is the relative importance between these two approaches.

 Network structure optimisation better than connection weight optimisation?

[30] conducts a comprehensive comparison between connection weight optimisation

based approach and network structure optimisation based approach with CNE and

CGPANN respectively for NE. This comparison investigates two possible perceived

benefits of structure optimisation in the literature:

1) There is no requirement for network structure optimisation that a suitable

structure needs to be obtained in advance.

2) Network structure optimisation could obtain a network structure which will

unlikely to be considered by human designer.

50

In terms of the first perceived benefit, CNE is used to optimise the connection weight

for ANN with a series of different network structures based on a number of benchmark

tasks. And CGPANN will also be utilised for the same experiment as a comparison in

order to investigate whether network structure optimisation approach could alleviate

the requirement to choice a suitable structure by the human designer before evolving

the connection weights with CNE. However due to the implementation difference for

CNE and CGPANN, the comparison will be conducted based on the effect of adjusting

the fixed structure for CNE and the impact of tuning the structure limits for CGPANN. In

terms of the second benefit, an ANN’s structure which could be considered by human

designer can be defined as the structure with the standard layers including nodes per

layer, which is normally utilised by standard ANN. In this case, if an effective network

structure is obtained but cannot be described with a standard type, it can be concluded

that those evolved network structures will not be considered by human designer.

[30] conducts the comparison experiments between CNE and CGPANN for the same

three benchmarks and the results demonstrate that the network structure has a

considerable impact on the CNE performance for ANN training. As for CGPANN, the

results demonstrate a reversed phenomenon that different structure limits seem not to

influence the evolutionary. That is to say, even if a suitable network structure is not

acquired before the evolution, CGPANN will still be able to obtain the fittest network

structure with the connection weight as well. In other words, poor performance could

be avoided even if a suitable structure is not obtained in advance. So that is why there

is no large difference for the performance in terms of different structures. In addition,

there is an interesting result from the Double Pole Balancing benchmark that CGPANN

obtains better results than CNE for a wide range of structure limits. On the one hand,

this result may indicate that CGPANN’s performance could be improved with the

simultaneous tuning of connection weight and network structure. On the other hand, it

also implies that CGPANN could obtain an effective network structure which is not

available for CNE to utilise, which may be the reason why CGPANN outperforms CNE.

According to the obtained solutions from CGPANN, it shows that all of the solutions do

not have the conventional ANN structure based on the layers with a number of nodes

per layer, which demonstrates that the network structure optimisation approach is

able to obtain effective ANNs whose structure is not considered by human designer.

 Relative importance between them?

51

Apart from the comparison between structure optimization and weight optimization,

the relative importance between them is still an open question. In the literature of NE

area, it is assumed that network structure optimization has significant benefit to the

evolutionary search. However there is currently no literature that explores the relative

importance of network structure optimization to the connection weight optimization.

In this case, [30] also investigated the relative importance between them by conducting

experiments based on CGPANN in three different scenarios:

1) Only evolving connection weights.

2) Only evolving network structure.

3) Evolving both of them.

In the first case, the network structure is initialised randomly but remains fixed and

only the connection weights will be evolved. In the second case, the connection

weights are initialised randomly but still remain unchanged and only the network

structure will be evolved. And the last case will evolve both of randomly initialised

weights and structure. The experiments will be conducted based on a range of

benchmarks and the final fitness will be utilised to investigate the relative importance

between them.

As can be seen from the results, [30] mentions three interesting features. Firstly,

evolving connection weights with random fixed network structure significantly

performs worse than evolving network structure with random fixed connection weights

with medium or larger effect size. This result indicates that evolving network structure

may be more important than evolving connection weights for ANN training. Secondly,

evolving both of weights and structure significantly performs much better than just

evolving weights with large effect sizes. This result implies that evolving the network

structure may have a large impact on evolutionary search. Finally, there is little

difference between the performance of evolving both and just evolving structure,

which means the evolution of connection weights actually has no such impact as the

evolution of network structure.

In conclusion, evolving network structure has a more significant influence on the

evolutionary search than just connection weight evolution for ANN training at least for

CGPANN compared to CNE. Moreover, the comparison results also indicate that the

evolution of network structure may be more important than the evolution of

52

connection weights for the evolutionary search. Although random fixed structure and

random fixed weights may be never utilised for real applications, those results still

demonstrate the relative importance of network structure and connection weights

evolutions for ANN training in NE area [30].

2.4.4.4 Heterogeneous ANN evolution

According to section 2.4.4.3, network structure optimisation outperforms connection

weight optimisation at least for CGPANN with CNE in three different benchmarks.

However both of these two approaches utilise the same fixed neuron transfer function

for each ANN, which is the homogeneous ANN. At present, it is not clear whether

evolving heterogeneous ANN with more than two types of neuron transfer functions

indeed has any benefit for NE [40] [61] [52]. [52] mentions that there is relatively little

research which evolves node transfer function rather than the network structure. [40]

also indicates that the current researches of ANN focus on the learning algorithms and

architecture, where the importance of transfer function is ignored. What’s more, [61]

further demonstrates that in terms of complex problems, the evolution of transfer

functions displays little benefit to improve the ANN performance. Therefore, there is

currently no literature that conducts a fully investigation on the creation of

heterogeneous ANNs with the transfer function evolution in NE area [30]. In this case,

[30] conducts a comparison between CNE and CGPANN in terms of evolving

homogenous and heterogeneous networks respectively based on five different

benchmarks.

This comparison in [30] is conducted with two steps for evolving homogeneous and

heterogeneous networks respectively. In terms of evolving homogeneous networks,

different types of neuron transfer function are available for implementation but only

one type will be utilised for ANN evolution to conduct the benchmarks based on CNE

and CGPANN respectively so as to achieve the homogeneous network optimisation.

This work investigates how different types of neuron transfer functions influence the

homogeneous ANN performance and the results demonstrate that the selection of

neuron transfer functions has a large impact on the ANN’s performance for both of CNE

and CGPANN.

On the other hand, heterogeneous networks will also be evolved based on CNE and

CGPANN respectively for the same benchmarks. The results will be compared with the

53

evolved homogeneous networks’ performance in order to see whether evolving

heterogeneous networks has better performance. The results of this comparison

indeed demonstrate that evolving heterogeneous network outperforms evolving

homogeneous network in the majority of cases, which indicates that evolving

heterogeneous network could be a better choice for ANN optimisation at least for

CGPANN and CNE unless a suitable neuron transfer function type is known for the given

task [30]. Furthermore, [30] mentions that when evolving homogeneous network, the

type of neuron transfer function is always not known in advance with respect to the

given task. That is to say, the selected neuron transfer function has to be random.

However evolving heterogeneous network could select the suited neuron transfer

functions during the evolution, which removes the requirement to know a suited

neuron transfer function in advance and that could be the most important benefit of

evolving heterogeneous ANN [30].

2.4.4.5 Explicit genetic redundancy

Genetic redundancy is also an important feature of CGP and CGPANN, even of the

original GP. Actually genetic redundancy is a well-studied topic in evolutionary

algorithms(EA) [79]. In GP, genetic redundancy refers to the genes which do not have

any contribution to the phenotype output. A typical example is when a section of genes

is multiplied by zero, in this sense that section of genes has no influence on the

computation of phenotype output. And this type of genetic redundancy is considered

as implicit genetic redundancy [30] [29]. Apart from the standard GP, there is another

type of genetic redundancy which exists in other forms of GP. In this kind of genetic

redundancy, there are some genes which are removed during the decoding of

genotype into phenotype such as inactive genes in CGP. This form of genetic

redundancy is called explicit genetic redundancy since it removes the redundant genes

explicitly during the mapping from genotype to phenotype, which is an important

feature in CGP [30] [29].

One typical utilisation of explicit genetic redundancy is preserving the neutral genetic

drift. Neutral genetic drift was first proposed and discussed by [80] in the area of

evolutionary biology. Neutral genetic drift means that a genotype created by the

neutral mutation is preserved through the selection into the next generation [30]. In

this case, the genotype is drifting in an unguided way through generations but the drift

genes have no influence on the phenotype due to the neutral mutation. Based on

54

different types of genetic redundancy, there are two different types of neutral genetic

drift. Implicit neutral genetic drift describes the drift based on implicitly redundant

genes whereas explicit neutral genetic drift based on explicit redundant genes [30].

One of the significant benefit of neutral genetic drift is that it ensures the genotype

diversity among population and that is helpful for escaping from local optima during

the evolution [81] [82]. However, a typical difficulty in studying neutral genetic drift is

how to identify which part of genes is redundant. In GP, it is challenging to make sure

which part is implicit genetic redundancy since it involves learning how the phenotype

contributes to the program output [83]. However in CGP, it is not a difficult task to

identify which part of genes is explicitly redundant. If the genes associate a node that

does not connect any inputs to outputs in the phenotype, then these genes are

explicitly redundant [30]. Because of this benefit, neutral genetic drift has become a

widely studied area in CGP. Some works just examined whether CGP benefits from

neutral genetic drift by preventing children selected over parents for identical fitness in

order to disable neutral genetic drift [29] [81]. Some works investigated whether

increasing explicit genetic redundancy would benefit to CGP by increasing the number

of available nodes in order to enlarge the portion of inactive genes [74]. [30]

summarized his work and presented some new findings based on the previous studies

about neutral genetic drift in CGP. [30]mentioned that the explictly genetic redundancy

has significant further advantages in explictly neutral genetic drift for CGP since it’s far

easier to be controlled than implictly genetic redundancy, which makes the study of

explicit neutral genetic drift much simpler. Moreover, [30] also mentioned that

preserving the neutral genetic drift not only helps the evolution escaping from local

optima but also presents an ability to aid the evolutionary search even if the evolution

is not trapped in local optima [81] [82]. Finally, [30] talked about how explicit neutral

genetic drift influences Cartesian Genetic Programming of Artificial Neutral Networks

(CGPANN). However the results showed no benefit of considering explicit neutral

genetic drift into CGPANN. A possible explanation is that the additional weight genes in

CGPANN lead to finer mutations to take place than CGP, which indicates that the

evolution may less likely get stuck into local optima. So that may be the reason why

preserving explicit neutral genetic drift has not demonstrated any benefit in CGPANN

[30].

55

2.4.4.6 CGPANN in controller structure optimisation

One typical application of CGPANN is the controller design for a dynamic control

system. [84] investigates how CGPANN will perform to evolve a ANN controller in order

to achieve a double pole balancing task. The double pole balancing task belongs to a

typical example for designing a control system, where the hinged poles need to be

balanced on a wheeled cart with a finite length track. The objective is to make sure that

the angle of poles is maintained within a threshold, otherwise task will be failed. In

terms of the ANN, the inputs of the network are the pole-angle, velocity of the poles,

position of the cart and the velocity of the cart. The ANN output is the force applied to

the cart to make sure that the poles could be balanced for 30 minutes. The result

shows that CGPANN spends much less evaluation numbers than other NE approaches

on the same double pole balancing tasks including CNE, SANE and NEAT. Furthermore,

the generalisation of the evolved solutions by CGPANN is also investigated where 28

evolved solutions are tested for 625 different random initial states for the double pole

balancing task. The result shows that 532 out of 625 initial states are successful to

achieve the double pole balancing task, which indicates that the evolved solutions

present effective general behaviour [84]. As can be seen from this work, CGPANN

demonstrates effective performance to design a dynamic control system to achieve the

double pole balancing task, which displays the capability of CGPANN in the control

system design field.

Apart from the control system design, CGPANN also demonstrates effective

performance in the pattern recognition field. [85] investigates how CGPANN is

implemented for the diagnosis of Breast Cancer from the FNA (Finite Needle Aspiration)

data samples. CGPANN in this work is used to classify the data set in order to diagnose

whether it is benign or malignant. Firstly, CGPANN needs to be trained based on

training data set and then CGPANN will be applied for the diagnosis with unseen FNA

data set in order to do the classification. The result shows that the best evolved

solution achieves 99.5% successful rate for the training with 200 cases. Moreover, this

solution also achieves a 98% accuracy rate for the diagnosis based on new 200 cases,

which demonstrates a quite high accuracy for the Breast Cancer diagnosis [85]. This

work presents how CGPANN is used for the medical diagnosis based on the data

classification, which demonstrates the effective performance of CGPANN applied in the

pattern recognition field.

56

Besides the control system and pattern recognition, [86] demonstrates how CGPANN

performs for a prediction task of forecasting the foreign exchange rate. In this work,

CGPANN is added with recurrent connections which create RCGPANN implemented for

the task. This work uses 500 days of the historical data of foreign exchange from the

Australian Reserve Bank to train the ANN for the forecasting model in order to predict

the 11th day exchange rate based on the 10 days of historical data. In terms of the

testing, 13 different currencies are used for the historical data spanning 1000 days. The

evolved ANN is assessed by comparing the estimated values with the actual values

from the known historical data. The result shows that the evolved ANN model achieves

a 98.872% accuracy rate for this test. Moreover in terms of more than a single day’s

data rate in advance, the evolved ANN model produces a 92% accuracy rate when the

currencies’ exchange rates are up to 1000 days (4 years) in advance for the prediction

[86]. This work demonstrates how CGPANN is implemented in another field of currency

exchange rate prediction with added recurrent genes for the ANN structure encoding.

And the result indicates that RCGPANN produces a high accuracy rate for the prediction,

which displays an effective performance of CGPANN in the prediction modelling field.

As can be seen from these three works, CGPANN produces effective performance as a

controller, a classifier and a predictor. However unlike NEAT, CGPANN hasn’t been

employed into robot control field as well as the fault tolerant control. Even though, it is

still quite interesting to investigate how CGPANN could perform to design a fault

tolerant robotic controller in the network structure optimisation space.

2.4.4.7 Summary

This section reviews CGPANN and its benefits in the NE field. The most significant

benefit is that CGPANN outperform CNE in a series of benchmarks, which indicates that

network structure optimisation approach could produce better performance than just

connection weight optimisation approach at least for CGPANN and CNE. In addition,

CGPANN demonstrates great resilience to the program bloat and the benefit of

evolving heterogeneous networks rather than homogeneous network. Apart from

those benefits, explicit genetic redundancy is also an important feature of CGP and the

literature demonstrates that preserving neutral genetic drift based on the utilise of

explicit genetic redundancy is helpful for the evolutionary search especially to help

escape from the local optima during the evolution, although CGPANN has not benefit

from it. Finally, CGPANN is effective in a wide application field including the design of

57

controller, classifier and predictor. However, CGPANN has not been investigated in the

robot controller optimisation field as well as the fault tolerant control. Even though,

CGPANN could still be a promising approach to design a fault tolerant robotic controller

based on the optimisation of a structurally evolved heterogeneous ANN controller.

2.4.5 Comparison between CGPANN and NEAT

[73] conducts a comparison between CGPANN and NEAT in terms of the double pole

balancing benchmark experiment referred from [54]. Double pole balancing belongs to

a typical control problem with only one controller output, whose task is to balance two

poles attached to a cart. The result shows that CGPANN needs much less evaluation

numbers than NEAT and even SANE, which could demonstrate that CGPANN produce a

better performance than NEAT in terms of the convergence for the double pole

balancing benchmark. However there is still some weakness in this comparison. A

crucial problem is that NEAT utilises a slightly modified sigmoid transfer function to

conduct the experiment [56] rather than a normal sigmoid transfer function used in

[73]. So this difference might have some influence on the performance comparison, but

whether the influence is significant is unknown currently. Even though, [73] is the only

work that compares CGPANN with NEAT and other NE approaches such as SANE in

terms of the double pole balancing control problem. And the result could demonstrate

that CGPANN produces a better performance than NEAT regardless of the slightly

modified transfer function problem.

2.4.6 Comparison between EA and NE

Actually, ANN has demonstrated effective performance in wide field not only for the

controller design but also for the modelling. [87] and [88] demonstrate the

effectiveness of a feed-forward network of logistic sigmoid function and radial basis

function respectively for universal function approximation based on a finite number of

neurons. Moreover, [89] and [90] both demonstrate the capability of recurrent ANN

used for universal dynamical system approximations. Those works indicate that both of

feed-forward ANN and recurrent ANN are effective for a wide application range besides

the controller design, as long as the ANN could be trained sufficiently no matter in a

traditional way or with NE approaches.

On the other hand, structure optimisation based EA approaches also demonstrate

effective performance in a wide application range according to reviewed works in

58

chapter 2.3. However there is very little work that really compares EA with NE in terms

of the structure optimisation applications. Currently, [91] is the only work that

investigates the performance difference between EA and NE approach based on a

comparison between GP and GP-Artificial Neural Network (GP-ANN) in terms of the

system modelling problem. This work utilises both of GP and GP-ANN for the

formulation of mathematical models for vibratory finishing process. The result shows

that GP-ANN performs better than GP in terms of modelling accuracy where GP-ANN

produces more accurate generalised models. Moreover, when the data samples are

few and there is a requirement for rigorous tuning of GP parameters so as to obtain the

optimal model, the computation effort will be increased significantly. In order to avoid

the high cost analysis, ANN also demonstrates effective performance to improve the

modelling accuracy utilised either in parallel or as compensation to the GP model [91].

As can be seen from this work, one significant benefit of NE approach is the more

accurate modelling result compared to just EA based result in terms of the structure

optimisation problem. Although this work is conducted based on the comparison

between GP and GP-ANN, it at least demonstrates that GP-ANN produces a better

performance than just GP in the system modelling field, which also indicates the

importance of ANN in this task. Nevertheless, this work still demonstrates the benefit

of NE over EA for the structure optimisation problems. For this reason, the structure

optimisation based NE approach could be considered as a primary scheme utilised for

designing a fault tolerant control system in terms of robotic tasks.

2.5 Multi-objective evolutionary algorithms

The multi-objective optimization algorithm (MOEA) was developed driven by the need

of multiple objectives in a problem where a set of optimal solutions, which are known

as Pareto-optimal solutions, would be obtained rather than a single optimal solution. In

terms of the performance measure, convergence to the Pareto optimal front and

maintenance of solution diversity are two essential indexes for multi-objective

optimisation [92]. Although [39] mentions that parallel evolution algorithms with

migration topology is able to simultaneously increase the selective pressure in some

populations and improve the diversity of other populations, it is still focused on single

objective optimization rather than multi-objective optimisation.

59

Up to now, there are several MOEA approaches developed [93] [94] [95] [96]. Among

them, the non-dominated sorting genetic algorithm II (NSGA2) [92] and the pareto

archived evolution strategy (PAES) [97] are two well-studied MOEA algorithms for

parameter optimisation. Both of them belong to elitist MOEA and utilise crowding

measure to encourage the population diversity [12], which will be talked about in

section 2.5.1. In terms of the structure optimisation, multi-objective genetic

programming (MOGP) and multi-objective Cartesian genetic programming (MOCGP)

are two well-studied approaches based on GP and CGP respectively for the genome

encoding with multi-objective optimisation, which will be talked about in section 2.5.2.

2.5.1 Parameter optimisation approach

2.5.1.1 NSGA2

NSGA2 was developed by [92] for the multi-objective optimisation in the parameter

space. NSGA2 works in a common elitist EA loop based on GA for the genome encoding

but with a capability to evaluate the individuals for multiple objectives. The elitism

works during the survival selection where parents and children are combined together

in order to be sorted and then survived. The main difference between NSGA2 and GA is

that each individual in NSGA2 will be evaluated with multiple objectives. In this case,

each individual will be set two extra attributes: the ranking number and the crowding

distance, which will be used for the parent selection and the survival selection, rather

than just a fitness value in GA.

The ranking number is obtained by the non-dominated sorting where each individual

will be compared with each other in order to check what the dominance relationship is

between them. The ranking number is decided by their dominance levels. So if the

individual is not dominated by anyone in the population, it is ranked in the first front.

And if the individual is dominated by everyone in the population, it is ranked in the last

front. Especially, if the individuals are non-dominated between each other, they will be

set a same ranking number. Based on the ranking number, individuals can be sorted in

different fronts so as to achieve the parent selection and survival selection, where the

individuals are selected if they are in a prior front. However there is a problem when

the individuals are located in the same front. In this case, they cannot be distinguished

and that is why crowding distance is required.

60

Crowding distance was developed along with NSGA2, which belongs to a kind of

crowding measure approaches. Crowding distance is working in the fitness domain of

each individual. It gives each individual an extra attribute which describes how the

individual is crowded with its two neighbours. So if the crowding distance is larger, it

means the individual is less crowded. To be specific, crowding distance measure works

in two steps: the density estimation and the crowded comparison operator. The

density estimation measures the density of a certain solution in the population based

on the calculation of the average distance of two points on either side of this point for

each objective. This density value is calculated by “the estimate of the perimeter of the

cuboid formed by using the nearest neighbours as the vertices (call this the crowding

distance)” [92]. The process of crowding distance calculation is shown in Figure 2.18. In

Figure 2.18, the length of the dashed box formed by the cuboid is the density

estimation result for solution i in its front, where solutions i-1 and i+1 serve as the

solution i’s nearest neighbours to act as the vertices of the cuboid. When density

estimation is completed for each individual, the crowded comparison operator guides

the selection to generate a spread set of Pareto-optimal solutions. In this case, when

two solutions belong to different fronts, the one with the better rank will be selected. If

they belong to the same front, the one with the less crowded region will be selected. In

NSGA2, crowding distance measure will also be utilised in the two steps along with

ranking number: the parent selection and survival selection. During the parent

selection, crowding distance measure will help tournament selection to select the

parent from two candidates if they are non-dominated to each other. And during the

survival selection, crowding distance measure will help individuals from the same rank

to be sorted and then filled into the next generation until the new population is full. For

this reason, crowding measure could also maintain the population diversity in the

fitness domain which is relevant for multi-objective optimization [98].

61

Figure 2.18: Crowding distance calculation [92].

2.5.1.2 PAES

PAES was developed in [97] based on a (1+1) ES. In each generation, PAES creates just

one candidate solution based on the mutation of the current solution. After the

evaluation of the candidate solution, it will be compared with the current solution

based on the dominance relationship. If the candidate solution dominates the current

solution, the candidate solution will be accepted as the next current solution and vice

versa. However if they are non-dominated between each other, the candidate solution

will be compared with the archive solutions which are the best solutions found so far. If

the candidate solution dominates any member of the archive solution, the candidate

solution will be accepted as the new archive solution and all the other solution will be

eliminated from the archive and vice versa. If the candidate solution is still non-

dominated with the solutions in the archive, there are two options. If the archive is not

full, the candidate solution will be just added to the archive. Else if the archive is

already full, the one in the most crowded region will be eliminated. Finally, the

candidate solution will still be compared with the current solution in the case that they

are non-dominated. If the candidate solution resides in a less crowded region than the

current solution, the candidate will be accepted. Otherwise, the candidate solution will

still be rejected. This is the whole process of the evolution loop for PAES [97].

In terms of the crowding measure, it is different from that in NSGA2. The crowding

measure in PAES is computed based on the solutions’ grid location, which is

determined by the number of objectives for the problem. The grid location of each

solution is generated using recursive subdivision and noted using a tree encoding. A

map of the grid is also maintained in order to indicate how the solutions are located in

the current archive. In this case, the solutions will be located in a deterministic and pre-

specified number of equal-sized cells, where the crowding measure will be working

based those cells in the search space [97]. The details of how this crowding measure is

utilised in PAES can be referred to [97].

2.5.1.3 Comparison between NSGA2 and PAES

As can be seen from section 2.5.1.1 and 2.5.1.2, although NSGA2 and PAES both belong

to the elitist MOEA approaches for the parameter optimisation, they are actually quite

different. The main differences include the difference between GA and ES for the

62

population composition, whether the archive is used to preserve elitist individuals and

the difference between the crowding measures utilised in these two approaches.

Nevertheless, [92] still conducts a comprehensive performance comparison between

these two approaches based on nine different test problems where the experiment

details can be referred to [92]. The comparison result shows that NSGA2 performs

better than PAES in terms of the diversity preserving mechanism. However, PAES

outperforms NSGA2 in terms of the convergence where the non-dominated solutions

found by PAES are able to get closer to the true Pareto optimal front than the solution

found by NSGA2. One exception is that NSGA2 performs better than PAES when the

problem has strong parameter interactions. Furthermore, NSGA2 is also integrated

with a simple extension for constraint multi-objective optimisation. And the result

shows that this proposed constraint handling mechanism produces more effective

performance to solve four different problems than the approach developed in [99]. In

conclusion, either NSGA2 or PAES has its own benefit for multi-objective optimisation

and NSAS2 is also integrated with an effective constraint handling strategy.

2.5.2 Structure optimisation approach

2.5.2.1 MOGP

Except for NSGA2 and PAES utilised for the parameter optimisation in the MOEA field,

multi-objective genetic programming (MOGP) is a typical approach that works for the

structure optimisation based on GP. [100] develops a MOGP algorithm based on the

integration of GP and NSGA2 utilised for software development effort estimation. This

MOGP implements GP for the genome encoding but the whole evolution process is

totally the same as NSGA2 based on the ranking and crowding distance instead of just

fitness values for the population sorting in order to conduct the parent and survival

selection. The crossover and mutation are the same as that employed in GP. The

evolution will be stopped if a user set termination criteria is achieved [100]. [101]

develops a MOGP algorithm for the figure-ground image segmentation. This MOGP is

called non-dominated sorting genetic programming (NSGP), but it is also created based

on NSGA2 with GP instead of GA for genome encoding and genetic operator. [102] also

develops its own MOGP algorithm for the classification with unbalanced data. Again,

this MOGP still utilises NSGA2 for the multi-objective optimisation process including

the same dominance ranking and crowding distance as each individual’s attributes in

addition to their fitness. [103] presents a scheme of how the UAV navigation controller

63

is designed based on multi-objective GP approach. In this approach, four fitness

functions are used for multi-objective GP to evolve controllers to respectively locate

three different radar sources. Three different goals need to be satisfied for each type of

radar including moving toward the emitter, circling the emitter closely and flying in an

efficient way. Four fitness functions can be used to describe the three different goals

which are normalized distance, circling distance, level time and turn cost. The MOGP

algorithm is still created based on NSGA2 whereby the non-dominated sorting is an

effective method to rank solutions in terms of each fitness functions to achieve multi-

objective optimization [103].

As can be seen from these works, all of them utilise NSGA2 for the multi-objective

optimisation process based on GP for the genome encoding and genetic operator,

which produce effective result for obtaining a Pareto optimal front of solutions in terms

of corresponding objectives. A possible reason of implementing NSAG2 for the multi-

objective optimisation process is that NSGA2 is currently one of the well-studied MOEA

algorithms, which outperforms other approaches in the parameter optimisation area

[92]. And that may be the reason why NSGA2 is effective to be selected for GP based

MOEA algorithm development in these works.

2.5.2.2 MOCGP

Except for MOGP, there are several works that try to develop their own MOCGP

algorithm. [104] develops a MOCGP algorithm based on CGP and NSGA2 for the circuit

approximation. In this MOCGP, the (1 λ) ES is replaced by the normal population size

used in NSGA2 where same number of parents create the same number of children.

The non-dominated sorting procedure in NSGA2 is also modified in a way that “when

all components of the fitness score of a parent and its offspring remain unchanged, the

offspring is classed as dominating the parent, and is therefore ranked higher than the

parent” [104]. However this modification is quite unclear that it does not mention what

the components are for the fitness score and why the children will dominate parents

when the fitness score remains unchanged. Even though, the MOCGP developed in this

work still demonstrates effective performance to successfully approximate circuits

including adders and multipliers. [105] develops its own MOCGP algorithm to improve

the circuit design as well. This MOCGP is also integrated based on NSGA2 and CGP.

However this work does not mention how the population is composed such as whether

it still utilises ES or not. The only point it mentions is that this MOCGP will use a large

64

population size in order to create a Pareto front for different objectives. Even though,

this work still shows that MOCGP is effective to design the circuit especially for multi-

objectives including the optimisation of gate count and path length.

As can be seen from these works, MOCGP is also developed based on the integration of

NSGA2 and CGP, which further indicates that NSGA2 is well suited for the integration of

a multi-objective optimisation algorithm even in the structure optimisation field.

2.5.3 Survival selection

Survival selection in EA is a necessary stage for ensuring the elitism strategy not only in

single-objective optimization but also in multi-objective optimization. The survival

selection is actually a method to ensure that the elitist will be always preserved. In

order to do this, the children need to compete with their parents to make sure that the

best current individuals or the so called elitists can be survived into the next generation

[29] [92] [11].

As can be seen from section 2.5.1.1, the survival selection in NSGA2 works in two steps

based on the ranking number and crowding distance. Firstly, the children will be

merged with the parents based on the non-dominated sorting. After the sorting, the

individuals can be survived based on their rankings. However when the number of

individuals in the current same rank is larger than the left available survival places,

crowding measure will be utilised to distinguish them and sort them until the next

generation is full. The crowding distance measure utilised for survival selection in

NSGA2 is called crowding fill [92].

Similar to NSGA2, PAES has its own survival selection. According to section 2.5.1.2,

PAES compares the candidate solution with the current solution firstly. If they are non-

dominated between each other, the candidate solution will also need to be compared

with the archive solutions. And if they are still non-dominated, crowding measure will

be conducted to distinguish them, which is also a kind of crowding fill [97].

As can be seen from these two works, crowding fill is actually an essential stage in the

survival selection, which further distinguishes the individuals who are located in the

same front but still need to be survived sequentially. In this case, crowding fill based on

different crowding measures would be important for a wide range of MOEA

approaches where the individuals are ranked based on non-dominated sorting.

65

2.5.4 Population diversity

Population diversity is always a key issue in EA to overcome premature convergence

problems by means of escaping from local optima. Moreover, in multi-objective

optimization, maintaining high diversity is also significant to ensure that the Pareto

front is large enough to reflect the trade-off among different conflict objectives [98].

2.5.4.1 Genotype diversity

Genotype diversity is a kind of population diversity which considers the diversity in the

genomes among each individual. A famous approach to measure the genotype diversity

is to measure the distance between individuals [106], or in another word: genetic

distance. Genetic distance was firstly proposed by [107] in biology area. However it has

the same definition in the EA area that it just demonstrates the distance between

individuals in genotype domain [106]. There are actually different ways to evaluate the

genetic distance between the current individual and the one that is compared with,

such as the mean spatial position of the population [98] [108] [109], the position of the

fittest individual [110], or the position of each individual [111]. But no matter which

position the individual is compared with, Euclidian distance is the most common

approach to estimate genetic distance not only in EA [106] but also in biology area

[112].

Hamming distance is another approach for measuring the genetic distance, which was

first introduced in [113]. The primitive usage of it is to check the difference between

two words in fixed length. In this way, Hamming distance will reflect how far the two

words are in terms of how many entries are different in the corresponding positions

between each other [114]. Based on this technique, Hamming distance has become an

essential metric in coding theory, such as error correcting code. The creation of error

correcting code is due to the data transmission in the information technology. The data

being transmitted are in the form of binary string, so there will be a chance that some

unavoidable error occurs during the process of transmission. As a result, the received

data may be different from the original ones. In this sense, an error correcting code

was developed based on Hamming distance in order to detect and correct the

erroneous messages during the data transmission [114]. The main working mechanism

of Hamming distance is based on the computation of an Exclusive-Or operation (XOR,

for short) between two binary strings. As a result, the number of the sum of ones will

be the number of different bits between each other [115].

66

2.5.4.2 Phenotype diversity

Besides genotype diversity, phenotype diversity also has its own impact in evolutionary

algorithms. A typical example is the crowding measure mentioned in NSGA2 which is

actually working in the fitness domain. The crowding measure encourages the

phenotype diversity among the individuals in the current front and the individuals will

be selected based on its crowding distance from largest to smallest for both of parent

selection and survival selection in addition to the non-dominated sorting [92].

Just like the importance of genetic distance used to measure the genotype diversity,

fitness distance will be also a possible method to demonstrate the phenotype diversity

in the fitness domain. However, fitness distance is actually not a common metric used

to measure phenotype diversity. The phrase of fitness distance is always appeared in

the problem of fitness distance distribution [116]. Suppose a global optimum is known

before GA is executed and the Hamming distance can be used to measure the genetic

distance between the current individual and the global optimum if the genome is

encoded in binary string. And the fitness value of this individual can be also computed

along with the Hamming distance. If the computational effort is sufficient, all the

possible genotypes can be presented by the distance and fitness values so that a fitness

distance distribution can be displayed [116]. With the help of fitness distance

distribution, the GA can be demonstrated to be effective if the Hamming distance is

becoming smaller while the fitness is becoming better [117].

However the fitness distance distribution is about the relationship between fitness and

genetic distance during evolution, so it is not quite helpful for measuring the

phenotype diversity. Even so, the fitness distance may still be a possible metric to

measure the phenotype diversity among individuals just like how crowding measure

works based on crowding distance among individuals to measure the population

diversity. So the usage of crowding measure actually provides a possibility to apply

fitness distance to measure phenotype diversity.

2.5.5 Comparison between multi-objective and single objective optimisation

Generally speaking, multi-objective optimisation based EA approaches would have

more solution options than single objective optimisation approaches based on the

Pareto optimal front to deal with more than just one objective. However, it does not

mean that single objective optimisation is not able to obtain a solution that could be

67

suited to different objectives. [118] mentions that the classical approach of using single

objective optimisation to deal with multiple objective problems is to develop a tailored

fitness function that aggregate different objectives in some way to create a single-

valued function, which can be optimised by the single objective optimisation

approaches. In terms of the aggregation strategies for multiple objectives, the

weighted sum is often utilised to create the single-valued function. However, a serious

drawback of the weighted sum strategy is that this strategy may be arbitrary and the

weight value is also hard to determine before running the evolution. On the other hand,

multi-objective optimisation does not need such a choice since it could let the

evolution explore different trade-offs between different objectives and the designer

can choose any solution from the obtained Pareto optimal front in terms of the task

requirement without determining which objective is more related to the problem in

advance [119]. Although the weighted sum based single objective optimisation

approaches have some limitations compared to multi-objective optimisation

approaches, [119] still presents a comprehensive comparison between these two

approaches in terms of two typical robotic tasks based on the robot controller

evolution for multiple objectives including the maze navigation task for a single robot

and the flocking task for swarm robots.

In terms of the maze navigation task, one objective is to make the robot move straight

and fast and the other objective is to keep the robot away from the obstacle and walls.

In terms of the flocking task, one objective is to reward the group motion based on the

maximisation of the swarm robots’ displacement measured from the centre of mass of

the group. And the other objective is to maximise the cohesion whereby the average

distance of the robots from the centre of mass of the group should be minimised. Both

of these two tasks will be utilised for the robot controller evolution based on their

corresponding multiple objectives. As a comparison, multi-objective optimisation

approach will be compared with weighted sum based single objective optimisation

approach in terms of these two objectives for each of these two tasks. The experiment

result shows that multi-objective optimisation approach outperforms weighted sum

based single objective optimisation approach for robot controller evolution based on

these two objectives for each task. Both of these two tasks demonstrate that multi-

objective optimisation attains a much wider solution region than weighted sum based

single objective optimisation. This result is not surprised since the main advantage of

multi-objective optimisation is the capability to explore a wide objective space where

68

single objective optimisation is not able to achieve. However, this work further

demonstrates that even a weighted sum based single objective optimisation for

multiple objective problems is still not able to obtain that wide objective space despite

that a variety of weight values has been tested for it. The only exception occurs when

the weight value is set 0.5 for the maze navigation task. For this scenario, the obtained

solutions are located in the most trade-off region where each objective is maximised at

the same time, which achieves the equivalent performance as multi-objective

optimisation if the most trade-off solutions are required for this task. However, that is

the only equivalent performance that weighted sum based single objective

optimisation is able to achieve compared to multi-objective optimisation, which also

indicates that the solutions evolved by multi-objective optimisation have a larger

behaviour diversity than that evolved by weighted sum based single objective

optimisation [119].

In conclusion, the comparison result of [119] demonstrates that multi-objective

optimisation approach is able to produce better performance than weighted sum

based single objective optimisation approach for multiple objective problems due to

the capability of multi-objective optimisation to achieve a wide exploration of the

objective space to meet different solution requirement. Although only maze navigation

and flocking tasks are tested as the comparison between these two approaches in this

work, it at least demonstrates that multi-objective optimisation approach outperforms

weighted sum based single objective optimisation approach to deal with multiple

objectives for these two typical robotic tasks. For this reason, multi-objective

optimisation could be considered as the main approach in the case that multiple

objective problems are needed to evolve robot controllers rather than a tailored single-

valued fitness function based single objective optimisation, such as the weighted sum

approach.

2.6 Convergence criteria

2.6.1 Termination condition

Convergence criteria is actually used to decide when to stop the evolution in EA [120].

As mentioned before, a common knowledge about the description of convergence was

raised by [121] where the best performance values have been stabilized after a

particular time. What’s more, [11] mentioned that a known optimum may not be a

69

good choice to terminate evolution. Since EA is a stochastic optimization technique, so

there is no guarantee that the known optimum will be reached. In this case, the

termination condition may not be satisfied and the evolution will never stop [11]. For

this reason, [11] presented a list of options of how to certainly terminate the evolution:

1. The allowed CPU time has reached

2. The number of fitness evaluation reaches the highest limit

3. The fitness improvement reaches the lowest limit within the given period of

time such as the number of generations or fitness evaluations

4. The population diversity drops below the lowest threshold

[122] also presented two similar options of termination conditions which are the upper

limit of number of generations or fitness evaluations has reached and the opportunity

to get a significant improvement in next generations is quite low. And [123] gave some

comments on these two options. [123] mentioned that the first option needs some

knowledge about the maximum search ability while the second one does not. In the

second one, there are two different types to represent termination conditions including

genotype and phenotype termination criteria. Genotype termination condition means

that when a large enough proportion of genes have converged to a certain value

among the whole population, the evolution could stop. And phenotype termination

condition is expressed in the fitness domain that when the average fitness exceeds a

pre-set threshold, the evolution will be terminated [123].

However no matter which termination condition is used for EA, most of the multi-

objective optimization convergence measurements still rely on the true Pareto-optimal

front [92] [124] [125] or a surrogate of the true Pareto-optimal front obtained by

multiple runs if the true front exists but is unknown [126]. If the current Pareto front is

approaching the true Pareto-optimal front, the algorithm is supposed to be converged.

This problem is quite similar to that in single objective optimization where the true

Pareto-optimal front may not be reached at the end because of the stochastic feature

in EA. Moreover if the true Pareto-optimal front cannot be obtained before the

evolution loop starts, there is no way to estimate the termination condition.

In this case, a new convergence measurement was developed by [127] which just relies

on the current Pareto front to terminate the evolution. In this work, the convergence of

a multi-objective optimizer is based on the track of the improvement of the number of

70

non-dominated solutions in the population. To quantify the convergence criteria, [127]

proposed two metrics which are consolidation ratio and improvement ratio. The

consolidation ratio is the proportion of the old solutions which are still remained non-

dominated in the current population compared to the whole population. So when this

proportion increases to a stable high value approximate 90%, the evolution could be

stopped. The improvement ratio is the proportion of the old solutions that are still

dominated by new solutions in the whole population. The evolution could also be

stopped when this proportion decreases and maintains to a stable value [127].

2.6.2 Performance measure for multi-objective optimisation

Although this mentioned work [127] about the convergence criteria has been discussed

to deal with termination condition problem without the need of the true Pareto-

optimal front, it has no certain metric to really reflect the performance of a multi-

objective optimizer. At the moment, hyper-volume indicator is currently the only

known metric to display the performance of a multi-objective optimizer [128] and it is

also the only unary indicator which represents the performance in unary values [129].

The indicator is usually used to estimate the goodness that how the current Pareto

front is approximated to the true Pareto-optimal front. Moreover, the indicator can be

also used for selection since it can measure the distribution of each individual across

the current front. [130] firstly applied an indicator into the framework of a multi-

objective optimizer in order to do the selection. Hyper-volume indicator was firstly

proposed by [131] where it measures the volume covered by all the Pareto-optimal

front solutions with a user-defined reference point. The reference point is normally

selected as the nadir point of the investigated Pareto front [132] [133] or a point that is

slightly worse than the nadir point [134] [135]. In recently years, hyper-volume

indicator has become one of the most used techniques among indicators [124] [126].

The hyper-volume based approaches have also been studied extensively where the aim

of these approaches are trying to demonstrate the largest hyper-volume of the non-

dominated individuals in the current Pareto-optimal front in order to see how it is

approximated to the true front [125] [136] [126]. Hyper-volume indicator can be not

only used as an offline indicator to evaluate a multi-objective optimizer [134] but also

as an online indicator to lead the evolution process [137] [136] [138]. The significant

benefit of using hyper-volume indicator is that it is strictly Pareto compliant, which

means the hyper-volume will always reflect the size the Pareto-optimal front no matter

how many fronts it dominates [126]. Nevertheless, one serious drawback is that the

71

reference point needs to be selected accurately, otherwise it will become an arbitrary

point depending on the magnitude of the current Pareto-optimal front [126].

Although hyper-volume indicator is a well-established indicator to represent a front’s

quality, it is just discussed in statistics literatures [126]. To the best of our knowledge,

there is no work proving that the hyper-volume based approaches work well for the

convergence analysis when the true or surrogate Pareto-optimal front is not available

to obtain. In this case, it would be worth investigating how hyper-volume indicator

could be acted as a performance measurement to do the convergence analysis for a

multi-objective optimisation algorithm in the case that the true Pareto-optimal front is

not available to obtain.

2.7 Statistics analysis

2.7.1 Significant difference test

When the experiment data are obtained, a technique needs to be conducted in order

to investigate whether the obtained data are statistically significantly different. In this

field, Mann-Whitney U-Test and Vargha-Delaney A-Test are two famous approaches,

which will be reviewed as following.

 Mann-Whitney U-Test

In order to see whether the obtained data difference is significant, the Mann-Whitney

U-Test [139] would be an effective approach based on how much p value is. Mann-

Whitney U-Test is used to check whether the null hypothesis can be rejected or not.

The null hypothesis is that there is no significant difference between 2 data sets. If the

p value is 5%, it means there is only 5% possibility that the null hypothesis can be

accepted. That is to say, there is 95% possibility to reject the null hypothesis. So 5% is a

criterion of p value, if p value is less than 5%, we can say that the null hypothesis can be

rejected. In other words, there is a significant difference between 2 data sets [139].

 Vargha-Delaney A-Test

In addition, if the investigation is required to measure how large the difference is,

Vargha-Delaney A-Test [140] can be used to quantify the difference based on the

computation of effect size. The score of Vargha-Delaney A-Test normally returns a

value between 0 and 1. If it returns 0.5, that means there is no significant difference

72

between two data sets. Basically, the large effect size is set to 0.21, which means if the

score is above 0.71 or below 0.29, there is a large difference between these two data

sets. Moreover, 0.06 is set as a small effect size and 0.14 is set as a medium effect size,

where the corresponding A-test scores will be 0.56 and 0.64 or 0.44 and 0.36

respectively [140]. In other words, the A-test scores between [0.36, 0.44] and [0.56,

0.64] belong to the small effect size, [0.29, 0.36] and [0.64, 0.71] belong to the medium

effect size and the scores below 0.29 and above 0.71 belong to large effect size [140].

This analysis regulation is applicable for all the result analysis where A-test is utilised to

estimate the significant difference between different experiment responses.

In a word, the A-test combined with U-test would be a meaningful way to judge

whether two data sets are statistically significantly different and how large the

difference is, which will be utilised for the required experiment result and discussion

throughout the thesis.

2.7.2 Spartan package

[141] developed a package called Spartan, which was designed as a kind of statistical

techniques used to help researchers investigate the relationship between their

simulation and the real system. There are several techniques developed in Spartan

including the cumulative mean approach to assess the sufficient number of experiment

runs and the Parameter Robustness approach to investigate how parameter values

affect the experiment responses.

 Number of experiment runs

[142] demonstrates a promising approach about how to select suitable number of

experiment runs. This approach is based on confidence interval of the cumulative mean

of the experiment result, which is a kind of statistical analysis method to estimate

where the true mean value would be located. The narrower the interval, the more

accurate the estimated data would be located. So if sufficient data are obtained to

compute the confidence interval, the interval would become narrower and narrower

until the user set criteria is met. In terms of the significance level, 5% is often selected.

And that means there is 95% probability that the true mean value will be located in this

interval. In other words, there is only 5% probability that the true mean value is not laid

inside that interval [143].

73

In order to measure how narrow the confidence interval is, percentage deviation of

either side of the interval against the cumulative mean value would be a solution. In

this work, 5% of the percentage deviation is selected as a criterion to indicate the width

of the confidence interval. So if the percentage deviation of the current cumulative

mean value compared to either side of the interval reaches 5% and also remains below

it, the current number of experiment runs would be sufficient and no more runs

needed [142].

 Parameter values for experiment responses

Due to the uncertainty of parameter value, the Parameter Robustness technique can

be utilised to examine how the parameter alteration influences on the simulation

responses. If adjusting a parameter from baseline value has significant influence on the

simulation output, then this parameter would be sensitive to the experiment and more

efforts should be made to determine a suitable value for it [141]. Parameter

Robustness technique only works for the independent parameters by tuning each

parameter’s value individually by ‘one at a time’ approach [144]. So when one

parameter is being tuned, others remain the same on their baseline values. And when

all the parameters are investigated, those simulation responses from the adjusted

parameter values will be compared with the one from the baseline values, using the

Vargha-Delaney A-Test [140]. In this sense, when there is large difference of the

simulation response from perturbed parameter compared with that from baseline

values, this simulation response would be sensitive to this perturbed parameter and a

suitable value need to be figured out.

2.8 Summary

This chapter firstly reviews what fault tolerant control is and proposes that robust and

switched fault tolerant control could both be considered to design fault tolerant

robotic controllers in offline scenario. Secondly, different structure optimisation based

EA approaches including GP, CGP and GE are reviewed respectively in terms of control

system design and robotic controller evolution and all of them produce considerable

performance in these two task domains. Next, NE approaches are also reviewed

including two famous approaches NEAT/HyperNEAT and CGPANN. Both of them are

working in the ANN structure optimisation domain with respective advantages.

Especially, NEAT/HyperNEAT has demonstrated effective performance in the robotic

74

controller optimisation field as well as the fault tolerance, which is quite related to this

thesis topic. However, this work belongs to online robotic fault tolerant controller

optimisation task, where the relatively long online evolution time is still an unavoidable

problem rather than the offline fault tolerance scenario. On the other hand, CGPANN

could still be a choice since its performance is actually unknown in terms of robotic

controller optimisation, which worth a further investigation. Moreover, GP and GP-

ANN are compared in terms of a system modelling problem. The result shows that GP-

ANN produces a more accurate modelling result than GP, which indicates a potential

benefit of NE over EA. Apart from that, different MOEA approaches are also reviewed

including NSGA2 with PAES for the parameter optimisation based tasks and MOGP with

MOCGP for the structure optimisation based tasks. In terms of MOGP and MOCGP,

both of them are developed based on NSGA2 for the multi-objective optimisation,

which further demonstrates the effective performance of NSGA2 in MOEA field. In

addition, survival selection is reviewed based on different crowding fill strategies,

which is a key step for elitism in MOEA. And then, different approaches to encourage

the population diversity are also talked about since population diversity is also a

significant research field in MOEA. Finally, weighted sum based single objective

optimisation is compared with multi-objective optimisation in terms of multiple

objective problems. Although weighted sum based single objective optimisation could

produce a trade-off solution, its solution diversity is much lower than that of multi-

objective optimisation, which is a significant drawback. Apart from the introduction of

EA related approaches, convergence criteria topic is also reviewed along with the

performance measure in terms of MOEA. And hyper-volume indicator is found to be a

promising metric which could also be used to observe the convergence of MOEA. At

last, statistics analysis approaches are also mentioned in order to test the significant

difference between obtained experiment responses. Moreover, Spartan package is an

effective statistics analysis tool which could not only estimate how many runs are

sufficient to demonstrate the algorithm performance but also present a technique to

help find out the best suited parameter values in order to obtain the optimal

experiment responses.

The next chapter will present how CGPANN is implemented for a preliminary robot

fault tolerant control experiment and investigate how a single objective optimisation

algorithm will be working for evolving a fault tolerant robotic controller.

75

Chapter 3 CGPANN in fault tolerant control

3.1 Introduction

As is reviewed in the section 2.2, fault would be possibly occurred during the system

operation, which could result in serious consequence such as a total failure of the

system. In this case, a fault tolerant control system needs to be developed to tolerate

the fault especially when it is occurred during the system operation. To be specific,

robust fault tolerant control, which belongs to one of the passive fault tolerant control

approaches, could be a first choice since only one robust controller is required to be

evolved in order to tolerate the predicted fault without any concern about the fault

diagnosis. In terms of the methodology, NE could be a better choice rather than EA due

to its better performance shown from section 2.4.6. Moreover, CGPANN will be used as

the main optimization approach instead of NEAT/HyperNEAT to design a structurally

evolvable ANN controller in order to achieve the fault tolerant control due to the

benefit of utilising explicit genetic redundancy in CGPANN as reviewed in section

2.4.4.5. However the reason why explicit genetic redundancy is significant for this work

will be talked about in section 4.2.2 where crowding measure may have a problem for

multi-objective optimisation and the utilisation of explicit genetic redundancy could be

a solution for it. The details can be referred to section 4.2.2. It needs to note that the

whole work is based on the optimisation of a structurally evolvable controller to

achieve fault tolerance, so no fault compensation loop is required for this work and the

whole work will just concentrate on the design of the controller in order to develop a

fault tolerant control system.

3.2 Experiment setup

The whole experiment design is split into two parts: the evolution experiment and the

generalisation experiment. The evolution experiment will design a controller offline.

When the evolution is finished, the best evolved controller will be tested online, which

will be the generalisation experiment.

Since CGPANN has never been applied into a robust fault tolerance scheme, the

controllers can be firstly evolved by CGPANN in two simple scenarios: the fault-free one

and the faulty one. And the aim is to investigate which one could achieve the robust

fault tolerant control for the online test. In terms of the fault-free scenario, the

76

controllers are evolved without any fault injected. And in terms of the faulty scenario,

the controllers are evolved when the fault is injected at the beginning the task.

When the controllers are obtained, they will be tested in the fault-free and faulty

scenarios respectively in order to see which one is capable to achieve the robust fault

tolerant control. It is normal that the evolved controllers are suited to their own

evolution scenarios. However it is worth investigating how they will be performing for

the opposite scenario and that is the key for the robust fault tolerant control since it

cannot guarantee whether the fault will be definitely occurred or not. So the

hypothesis of the experiment is that CGPANN is capable to evolve controllers that are

effective to achieve the robust fault tolerant control.

Additionally, the generalisation experiment will be conducted in two conditions: the

unlimited time test and limited time test. Basically, the limited time test will be much

harder than the unlimited time test for the evolved controllers to achieve the robust

fault tolerant control. However it is still interesting to investigate how the evolved

controllers will be performing for different time condition tests, especially when the

time limit is not a strict restriction.

3.2.1 Robot platform and task

For both of evolution and generalisation experiments, a robot platform simulator

ARGoS [145] is used throughout the whole work. ARGoS is a multi-physics robot

simulator and it can simulate large-scale swarms of robots with some kinds of robots

efficiently. In this sense, a foot-bot robot platform is selected to be used as the

experimental platform. It has 24 light sensors which are used to detect a light source. In

addition, it is also equipped with 24 proximity sensors which are used to observe the

surrounding environment in order to avoid obstacles. The robot task selected is a

phototaxis mission achieved by a single robot in 1200 ticks, which is 120 seconds. The

beacon is placed in the centre of the arena and the robot is placed in 10 different

random initial positions and orientations with a fixed distance 4.5 m to the beacon. The

light sensors would be used for this task, but 24 sensors make it quite easy for the

robot to achieve the phtotaxis. In this case, only 8 sensors are picked evenly distributed

around the robot, which are number 1, 4, 7, 10, 13, 16, 19 and 22. A sensor distribution

graph of the foot-bot is shown in Figure 3.1 where only those mentioned 8 sensors

were selected to do phototaxis. In this case, the controller would be evolved and tested

77

based on these selected 8 sensors to make the robot achieve the phototaxis task in

terms of faultless and fault scenarios respectively.

Figure 3.1: Light sensor distribution of foot-bot [145]

3.2.2 Fault type

In terms of the fault type that needs to be tolerated, the fault could be just a complete

sensor failure which sets the faulty sensor signal reading to be 0 into the controller and

the fault could be just injected from the beginning of the phototaxis task. To be specific,

robot sensor 1 and 7 can be selected as the predicted sensor faults which will be

utilised to evolve controllers in offline scenarios where both of these 2 sensor’s

readings are set 0 into the controller. It needs to note that actually any sensor could be

failed when the robot is doing the task online. However, it is not an easy task to evolve

a fault tolerant controller that is able to tolerate any kinds of fault especially when

there is more than one fault occurred at the same time or sequentially when the robot

is doing the task online. For this reason, evolving a controller based on predicted

78

possible fault types could be an easier solution. Although this work needs a fault

prediction technique from another research area, it can be assumed that a specific

fault type has already been predicted in order to evolve a fault tolerant controller to

deal with it. In this case, sensor 1 and 7 are selected as the predicted fault types in

order to evolve a fault tolerant controller for it. Although this work lacks generalisation

to tolerate unplanned fault, it makes the whole work concentrate on this single

scenario based on the assumed predicted fault types. That is to say, as long as the fault

prediction technique is effective enough, there is no need to evolve controllers to

tolerate any fault types and evolving controllers based on the predicted fault types

could be the most efficient way.

Moreover, it also needs to note that it is essential to choose 2 sensor faults to evolve

controllers rather than just 1 sensor fault as the predicted fault type. Figure 3.2 shows

an example of a best evolved controller’s internal structure with just sensor 1 failure. In

this controller, there is no connection from the faulty sensor (input 0) to the controller,

so it doesn’t matter whether the sensor is really failed or not when testing this

controller. In this case, the robot will perform the phototaxis with the left 7 sensors and

as long as an acceptable controller is evolved, it will definitely achieve the robot sensor

fault tolerance for both of faultless and faulty test.

This idea is fine with controller connections just from the working sensors to design a

fault tolerant control system, but it's not a sufficient scheme. Suppose there is more

than 1 sensor failed during the task. If a controller was designed without any

connection from these failed sensors, it could make robot be robust to the upcoming

faults. But the performance in the faultless condition will be definitely degraded

compared to the full sensor connection evolved controller especially in the multi-

sensor failures situation. In addition, faults will not always be occurred at the beginning

of task. So there is always a period that the robot performs the task in a faultless

circumstance. In this case, a fully connected controller will definitely be the first choice

with all of the sensors working around to achieve tasks.

On the other side, another possible reason to obtain a controller like this one in Figure

3.2 would be that 7 sensors may be already sufficient for robot to perform phototaxis

due to the compensation of the neighbouring working sensors besides the failed one.

So in order to prevent the sensor compensation effect, 2 sensor faults occurred

together would be a feasible solution, which could also reduce the chance to obtain a

79

controller just connected to the working sensors. And that’s why sensor 1 and 7 failed

together would be used as a primary scenario for this work.

Figure 3.2: An example of CGPANN evolved controller without the connection to the failed sensor

80

3.2.3 Evolution experiment

In terms of the evolution experiment, each evaluation would choose the worst fitness

value among 10 trials as the last fitness value. This kind of evaluation method could

minimise the wrong behaviours of the robot in order to make sure that the evolved

controller is able to make the robot achieve phototaxis for all of the 10 trials. In other

words, if the robot could achieve the phototaxis in the worst case trial, the robot will

definitely achieve the phototaxis in the other 9 trials with better performance.

However there are some potential drawbacks for this kind of fitness function. One

problem is that choosing the worst case fitness value among 10 trials may not fully

demonstrate the controller performance since only the worst case is utilised as the

final fitness and there is no information preserved for the other 9 trials during the

evolution. The other problem is due to the similarity of the individuals if just the worst

case fitness value stands for the individual’s performance. For example, if two

individuals have the same fitness value for the worst case performance but different

fitness values for the other 9 trials, there is no way to further rank these two

individuals in terms of their final fitness values. This problem will impact the

performance of crowding fill during the survival selection in the multi-objective

optimisation, which will be talked about in more details in section 4.5.1.2. Even though,

choosing the worst case performance as the final fitness value of the current individual

could still be a suitable choice for single objective optimisation like this evolution

experiment since wrong behaviours could be minimised in this way and extremely poor

performance could also be prevented during the evolution.

The fitness function would be made up of two parts: the constraint function and

objective function. The constraint function evaluates the individuals to see whether

they can make the robot reach the beacon in an area of 0.01 m as the radius within the

maximum allowed time: 1200 ticks. So the worst fitness value would be the longest

distance of the robot to the beacon after 1200 ticks. If the robot can reach the beacon

in that area in 1200 ticks, the individual will be evaluated on the objective function

which is the time spent of the robot to reach that area. When an individual can make

robot reach the area in all of 10 trials, the worst fitness, which is the longest time spent,

will be selected as the final fitness value of this individual. This constraint handling

process is quite basic since it just evaluates the individuals for the constraint function

first and then for the objective function, which is much simpler than the one developed

in NSGA2 [92]. However this basic constraint handling process is already adequate for

81

this single objective CGPANN experiment, so it could still guarantee that the best

evolved controller would be able to perform the phototaxis well in all of these 10 trials

with these 10 random initial positions and orientations of the robot.

In terms of CGPANN parameters, a (1+4) evolution strategy was used for the

population size which is the same as CGP. The number of nodes was set 20, the number

of arity was set 5, the weight range was set +/-5, and mutation rate was set 5% with a

probabilistic mutation. The selected node functions were hyperbolic tangent and soft

sign neuron transfer functions. Both of these 2 functions generate output in the range

of [-1, 1], which is suited to robot wheel speed. The robot wheel speed was set 5 times

larger of the controller output, which is [-5, 5]. In this case, each of the wheels can

move forward or backward with a maximum speed of 5 m/s. So the shortest time of

the robot to complete phototaxis task is when the robot moves straightforward to the

beacon with the maximum speed, which is 900 ticks. In terms of convergence criteria,

50 generations were set to observe the convergence. So if the fitness value hadn’t been

changed for 50 generations, the evolution could be terminated.

3.2.4 Generalisation experiment

To check the capability of the evolved controllers for the robust fault tolerant control,

30 best evolved controllers obtained offline from 30 independent different evolution

experiments for faultless and faulty scenarios respectively would be tested online for

each of these two scenarios respectively. After the generalisation experiments were

finished, success rate would be used for the assessment of these evolved 30 controllers

and a comparison between them was conducted to see how the evolved controller

would be performing for the robust fault tolerant control.

Apart from the fault scenario test, the best evolved controller would also be tested in

10 new different random initial positions and orientations of the robot with the same

distance 4.5 m to the beacon, and these 10 new positions and orientations are

different from that in the evolution experiment. The motivation of the test is to

investigate whether the evolved controller can make the robot do a real phototaxis

task no matter what the robot initial position and orientation are. In this case, each

controller would be tested to make the robot start with 10 new random different initial

positions and orientations and success times among 10 trials would be the final success

rate of this controller.

82

In terms of the online generalisation experiment length, 1200 ticks were utilised as a

first choice since the offline evolution experiment utilised the same experiment length

for the controller evolution. However due to the experiment difference between offline

evolution and online test, 1200 ticks may be too difficult for the robot to complete the

phototaix in the online testing scenario. For this reason, 3000 ticks were utilised as

another option to test the controller performance in order to find out whether the

robot could complete the phototaxis task if more experiment time is given for this

online testing scenario. As a result, if the robot cannot complete the phototaxis in 1200

ticks or 3000 ticks, the success rate would be set 0 for this current trial.

3.3 Result and discussion

3.3.1 Faultless scenario evolved controller

3.3.1.1 3000 tick test

Table 3.1 is the test result of success rate comparison from faultless evolved controller.

Firstly 30 best evolved controllers were tested for faultless condition and then tested

for faulty condition. All of these 30 controllers could make robot achieve phototaxis in

1200 ticks from evolution results. So the generalisation experiment would check

whether these 30 controllers could still make robot achieve phototaxis with 10 new

different random robot initial positions and orientations for both of faultless and faulty

conditions.

Table 3.1: Success rate comparison of faultless evolved controller in 3000 ticks

 Success rate in 3000 ticks

Faultless
test

1 1 1 1 1 1 1 1 1 1 0.8 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Faulty
test

1 0 1 1 1 1 0 0.9 0 1 0.9 1 0 1 1

1 0.3 1 1 1 1 0.8 1 1 0 1 1 1 0 0

As can be seen from Table 3.1, the success rate of faultless test among 30 controllers is

much higher than that of faulty test. To demonstrate the data distribution, a boxplots

was used for it, which is shown in Figure 3.3.

As presented in Figure 3.3, the data distribution of faulty test has a much lower success

rate area than that of faultless test. Based on the Mann-Whitney U-Test calculation, p

value is 0.02444. So the difference between the faultless and faulty tests is significant.

Based on the utilising of Vargha-Delaney A-Test, the score is 0.67 which is located in

83

the medium effect size interval. In this sense, there is a medium effect between the

faultless test and faulty test based on the faultless scenario evolved controller in terms

of 3000 tick test.

Figure 3.3: Boxplot for success rate comparison of faultless evolved controller in 3000 ticks

3.3.1.2 1200 tick test

As is mentioned in the section 3.2.4, 1200 tick test was also conducted as a comparison

of the same 30 controllers. The success rate is listed in Table 3.2 and the boxplot is

displayed in Figure 3.4.

 Table 3.2: Success rate comparison of faultless evolved controller in 1200 ticks

 Success rate in 1200 ticks

Faultless
test

1 1 1 1 1 1 1 1 1 1 0.8 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Faulty
test

0.8 0 0 0 0 1 0 0.9 0 1 0.5 1 0 1 0

1 0.3 0 0 0.2 1 0.8 1 1 0 0 0 1 0 0

From Table 3.1 and Figure 3.4, the success rate of faulty test now is much lower than

the faultless test among 30 controllers with a declined median value compared to the

3000 tick test. The p value calculated is less than 0.00001 from Mann-Whitney U-Test

and Vargha-Delaney A-Test score calculated is 0.8427778 which is above 0.71.

84

Therefore there is a large difference between the faultless and faulty tests for the

faultless scenario evolved controller in terms of 1200 tick test.

Figure 3.4: Boxplot for success rate comparison of faultless evolved controller in 1200 ticks

3.3.1.3 Conclusion

Based on the comparison results of faultless scenario evolved controller, the faultless

tests outperform faulty tests with significant difference for both of 3000 tick and 1200

tick tests. Although there is a medium difference for 3000 tick test, there is a large

difference for 1200 tick test. And that means if the time is limited for the robot to

perform phototaxis, the robot will have a worse performance in the face of sensor

faults.

In conclusion, the faultless evolved controller cannot be robust to the robot sensor

faults for phototaxis task especially when there is a strict time limit such as 1200 ticks.

In this sense, a fault tolerant control system is really necessary to make robot continue

doing phototaxis task in the face of sensor faults. The next section 3.3.2 will consider

using CGPANN to evolve a controller with sensor faults injected at the beginning of the

phototaxis and investigae whether the faulty scenario evolved controller can achieve

the robust fault tolerance control.

85

3.3.2 Faulty scenario evolved controller

3.3.2.1 3000 tick test

Table 3.3 presents the test result of success rate comparison from 30 best faulty

evolved controllers and Figure 3.5 shows the data distribution of them. The p value

calculated is 0.00194 from Mann-Whitney U-Test and the Vargha-Delaney A-Test score

is 0.7333333.

As can be seen from this result, the faulty condition evolved controllers make the robot

work well for faulty conditions but not for faultless condition. The boxplot also

demonstrates a large difference between their data distributions. According to Mann-

Whitney U-Test, there is a significant difference between these 2 data sets and Vargha-

Delaney A-Test also indicates a large difference between them.

Table 3.3: Success rate comparison of faulty evolved controller in 3000 ticks

 Success rate in 3000 ticks

Faulty
test

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Faultless
test

0.6 0 1 1 1 0.6 0 0 1 1 1 0 1 0 1

1 1 0 0.2 1 0 1 0 1 0.2 0 0.5 1 1 1

Figure 3.5: Boxplot for success rate comparison of faulty evolved controller in 3000 ticks

86

3.3.2.2 1200 tick test

In terms of 1200 tick test, Table 3.4 shows the success rate comparison result of 2 data

sets and Figure 3.6 displays the distribution of them. Mann-Whitney U-Test gives a p

value of less than 0.00001 and the Vargha-Delaney A-Test score is 0.8166667.

As is shown from these results, the faulty test still outperforms than faultless test. The

best evolved controllers from faultless test also have a much lower performance with a

lower median value compared to the 3000 tick test. Mann-Whitney U-Test implies a

significant difference between these 2 data sets and Vargha-Delaney A-Test indicates a

large difference between them, which is even larger than the A-test score of the 3000

tick test.

Table 3.4: Success rate comparison of faulty evolved controller in 1200 ticks

 Success rate in 1200 ticks

Faulty
test

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Faultless
test

0 0 1 1 1 0.6 0 0 1 1 0.9 0 1 0 0

0 1 0 0.2 1 0 1 0 0.5 0 0 0.5 1 1 0

Figure 3.6: Boxplot for success rate comparison of faulty evolved controller in 1200 ticks

87

3.3.2.3 Conclusion

As can be seen from these two generalisation experiments, the results are quite similar

to the previous experiment of faultless scenario evolved controller test. The faulty

condition evolved controllers still work well for faulty condition but not for faultless

condition especially when the experiment time is limited.

As a result, one scenario designed offline controller seems not sufficient to make the

robot perform phototaxie online in both of faultless and faulty conditions so as to

achieve robust fault tolerant control. In this sense, one option is to design two or more

controllers offline to deal with different objectives. As is reviewed in the fault

accommodation area in section 2.2.2, a bank of controllers can be pre-designed offline

with CGPANN to achieve the switched fault tolerant control. And when the robot is

doing the phototaxis task online, the bank of controllers can be switched to each other

whenever there are faults or not. This idea is suitable for the real time fault tolerance

situations where the controllers can be just switched online based on the assumption

that all the predicted possible faulty conditions have been considered to design offline

bank controllers and the fault can be diagnosed immediately right after its occurrence

by an effective online fault diagnosis mechanism.

Another option is still designing one controller to be robust to both of faultless and

faulty conditions. One solution is to implement a weighted sum based CGPANN where

the controllers can be evaluated based on the weighted sum for faultless and faulty

objectives. The other solution is to utilise a multi-objective CGPANN in order to obtain a

trade-off controller, which could produce an equivalent performance for each of

faultless and faulty objectives. One significant advantage of a multi-objective

optimization algorithm is that it can obtain a set of controllers for all of the objectives

respectively, which is called Pareto-optimal solutions [92]. From the Pareto set, any

controller can be selected depending on what the objective is required.

As can be seen from section 2.5.5, multi-objective optimisation has a significant benefit

over weighted sum based single objective optimisation for multiple objective problems,

which is the larger behaviour diversity. According to [119], weighted sum based single

objective optimisation could produce the most trade-off solution as multi-objective

optimisation where the evolved solution is able to achieve an equivalent performance

for both objectives at the same time. However it is quite hard for weighted sum based

88

single objective optimisation to obtain other trade-off solutions that multi-objective

optimisation is able to obtain just from the Pareto optimal front due to its larger

behaviour diversity. And this is a serious drawback for weighted sum based single

objective optimisation.

In terms of the fault tolerant control in this work, weighted sum based single objective

optimisation at least needs three evolution loops in order to obtain a trade-off solution

to achieve the robust control or two solutions performing well on each objective in

order to achieve the switched control. This scheme may achieve the fault tolerant

control for this work but it needs multiple evolution loops to obtain the desired

solutions especially when there are more than two objectives, where multi-objective

optimisation just needs one evolution loop to obtain a set of solutions based on the

Pareto optimal front no matter how many objectives to deal with. And this would be

another significant advantage of multi-objective optimisation over weighted sum based

single objective optimisation.

In conclusion, a multi-objective CGPANN could be an alternative promising approach

utilised for designing fault tolerant controllers rather than just single objective CGPANN

since it is able to evolve a Pareto optimal set of solutions not only for robust but also

for switched fault tolerant control. Although the performance of the robust control

with this trade-off controller will be degraded compared to switched control with bank

of controllers, robust control could still be a promising scheme since this strategy

doesn’t need a pre-designed controller switch procedure along with a fault diagnosis

mechanism and just one controller also saves the memory space when the robot is

controlled by an embedded single chip microcomputer for the real world experiment.

Nevertheless, robust or switched fault tolerant control could both be worth an

investigation by multi-objective CGPANN.

3.4 Summary

This chapter shows how CGPANN is utilised for designing a robust fault tolerant control

system for the robot phototaxis task in the face of sensor failures. In terms of the fault

tolerant control scheme, robust fault tolerant control could be a first choice since just

one controller is required to be evolved without any consideration of controller switch

and fault diagnosis. However, as can be seen from the result in section 3.3, CGPANN is

failed to obtain controllers that are able to achieve the robust fault tolerant control

89

since only one objective optimisation is not sufficient for CGPANN to obtain a robust

controller. For this reason, a multi-objective CGPANN could be an alternative solution

which will be able to obtain a Pareto set of controllers working not only for the robust

fault tolerant control but also for the switched fault tolerant control depending on

which controller is selected for the task requirement.

The next chapter will discuss how to develop a multi-objective CGPANN algorithm and

investigate how it will be working for both of robust and switched fault tolerant control

based on the robot phototaxis task.

90

Chapter 4 MOCGPANN in fault tolerant control

4.1 Introduction

As is concluded in chapter 3, CGPANN is not able to evolve controllers that are capable

to achieve the robust fault tolerant control scheme in terms of the robot phototaxis

task. In this sense, a multi-objective CGPANN could be an alternative choice. One

significant benefit of MOCGP is that it could evolve a set of controllers which are

capable to make the robot achieve different objectives as mentioned in section 3.3.2.3.

In this sense, the MOCGP will be a promising solution to evolve not only a robust

controller but also a bank of controllers with respect to different objectives so as to

achieve the robust as well as the switched fault tolerant control scheme.

CGP has been successfully implemented in many areas, including the digital circuit

design, the image processing and many medical applications [29]. However in the case

of multi-objective optimisation, CGP has not been fully explored as well as CGPANN.

Although there have been developments of various types of multi-objective CGP

(MOCGP) [104] [105], there is no formally published MOCGP library. Therefore the

integration of a MOCGP as well as a MOCGPANN library would be essential and

interesting to be utilised for the robust fault tolerant control where CGPANN was failed

to achieve. Furthermore, there will be two main problems when developing MOCGP,

which are the problem of crowding fill strategy during survival selection and the

problem of assessing the convergence of MOCGP. And these two problems need to be

investigated before developing the library.

4.2 Research gap in MOCGP

4.2.1 MOCGP development

This MOCGP is a combination of CGP and NSGA2. In MOCGP, the whole evolution loop

is based on CGP except for the evaluation stage which is created from NSGA2. MOCGP

still implements a kind of (1+4) evolutionary strategy with a random parent selection

strategy from CGP [29] to create each population. The mutation is also the same as CGP,

however the survival selection stage is quite different. Since it evaluates the population

in multiple objectives, the survival selection is mainly borrowed from NSGA2 and the

crowding measure is also implemented to encourage population diversity in the face of

different objectives during crowding fill [92].

91

 NSGA2:

According to section 2.5.1.3, NSGA2 performs better than PAES in terms of the diversity

preserving mechanism. However, PAES outperforms NSGA2 in terms of the

convergence except for one case when the problem has strong parameter interactions.

Generally speaking, each of these two algorithms has its own benefit, but the

advantage of PAES is only suited to the problem whose true Pareto optimal front is

known. If the true front cannot be obtained before the experiment is run, then this

advantage of PAES will be weak. On the other hand, NSGA2 integrates an effective

constraint optimisation mechanism which is suited for a wide range of constraint

handling problem. For these reasons, NSGA2 could be a suitable choice along with its

crowding measure for the survival selection in MOCGP development.

 CGPANN:

According to section 2.4.5, CGPANN outperforms NEAT and SANE in terms of the

double pole balancing control problem. The result demonstrates that CGPANN needs

much less evaluation numbers than NEAT as well as SANE, which indicates that

CGPANN realises a better convergence. Although the transfer function utilised in NEAT

is slightly modified compared to the one used in CGPANN, whether the difference is

significant for performance comparison is unknown at the moment. Generally speaking,

CGPANN could be a first choice rather than NEAT to be utilised for designing NE based

structurally evolvable controllers for multi-objective optimisation due to its effective

performance. Moreover, another significant advantage of CGPANN is the implement of

explicit genetic redundancy which could also be utilised to improve the crowding fill

performance, where NEAT is not able to achieve due to the lack of genetic redundancy.

The details of why genetic redundancy in CGPANN could improve the crowding fill will

be talked about in the next section 4.2.2.

4.2.2 Crowding fill problem

However there are still some problems inside MOCGP. In multi-objective optimisation,

the population diversity of the final Pareto-optimal front and the convergence to it are

two main issues, which are still in the research [146] [124]. During the survival selection

of NSGA2, the population diversity can be guaranteed based on the computation of

crowding distance for each individual. In this case, the individuals in the same set will

be ranked based on its crowding distance from highest to lowest in order to be

92

survived into the next generation, which is also called the crowding fill [92]. However

the most significant difference between CGP and GA is the representation of

individual’s genomes. In GA, all the genes are active for the mapping from its genotype

to phenotype. So encouraging the population diversity in the fitness domain is

necessary and enough in a parameter based multi-objective optimisation algorithm.

And that’s why NSGA2 is famous for its crowding distance technique. This rule also

applies to any EA approaches that do not have genetic redundancy in the genome

encoding, such as NEAT/HyperNEAT in the ANN structure optimisation domain in terms

of multi-objective optimisation. However in CGP, there is a large part of genes which

are inactive to the mapping from genotype to phenotype for each individual. Since the

inactive genes have no contribution to the mapping from genotype to phenotype,

those inactive genes could be quite different among the individuals. Once some of the

inactive genes become active during mutation, it is possible that the fitness could have

a great change. For this reason, this kind of explicit genetic redundancy is quite useful

for CGP based approaches [29] [30]. According to section 2.4.4.5, one significant

implement of explicit genetic redundancy is preserving the genetic drift, which is

beneficial to not only the evolutionary search but also the escaping from local optima.

In this case, it is necessary to distinguish the individuals with the same fitness at least

between children and parents in order to preserve the neutral mutated individuals

during the crowding fill in the survival selection. However, in terms of those algorithms

without genetic redundancy such as GA or NEAT/HyperNEAT, there is no need to

distinguish individuals with the same fitness since preserving genetic drift has no effect

on them.

On the other hand, the distinction between individuals may be helpful to improve the

crowding fill performance as well. As is mentioned in section 2.5.1.1, the crowding

distance measure referred from NSGA2 is actually an estimate of the density of the

current individual based on its two neighbours around it in the current population. The

computation of crowding distance is the value of the cuboid perimeter of this current

individual enclosed by its nearest two neighbours as the vertices from each side [92].

However the crowding distance measure may not be working well for those algorithms

with the genetic redundancy such as CGP since it cannot tell the difference of

individuals with same fitness. In this sense, crowding distance has to pick two random

individuals as two neighbours to compute the cuboid perimeter of the current

individual. For this reason, some individuals may have the neighbours with the same

93

fitness while some may have the neighbours with different fitness. Therefore it may be

unfair to set different crowding distance values for the individuals who have the same

fitness based on a random neighbour pick strategy during the crowding fill, which is not

beneficial for survival selection in terms of genetic redundancy based genome encoding

approaches like CGP. Actually, the random picking problem in crowding measure is not

serious for the algorithms which have no genetic redundancy such as GA or NEAT since

the individuals with the same fitness will always have the same or quite similar

genotypes. In this case, even if the individuals with the same fitness have different

crowding distance values, there will be no significant influence on the crowding fill

performance. In a word, distinguishing or re-ranking individuals with the same fitness

during crowding fill is quite necessary not only to preserve the genetic drift but also to

improve the performance of crowding fill to fit MOCGP/MOCGPANN.

In conclusion, due to the explicit genetic redundancy in CGP, the individuals with the

same fitness may have huge difference in their inactive genes and the original crowding

measure referred from NSGA2 is not working to distinguish them. For this reason,

distinguishing individuals at least between children and parents during crowding fill is

essential for MOCGP/MOCGPANN development. On the other hand, the distinction

between individuals with the same fitness may also be helpful to improve the crowding

fill performance so as to avoid the random neighbour pick problem caused by the

crowding measure. Although [30] mentions that CGPANN does not benefit from

preserving genetic drift rather than CGP, it is still worth a further investigation for

MOCGPANN based on an improved crowding fill strategy.

4.2.3 Convergence problem

Another problem is how to set the convergence criteria in MOCGP. In single objective

optimisation such as GA, the convergence of population is not difficult to measure.

Convergence criteria is actually used to decide when to stop the evolution [120]. A

well-known approach about how to stop GA was developed by [121] where GA can be

stopped if the best performance values have stabilized. And this is actually the

description of convergence measurement [120]. However in multi-objective

optimization, there is no straight forward method to measure the convergence since

there is no best evolved individual for each population. In [92], the convergence criteria

is based on the observation whether the current pareto front is close enough to the

pareto optimal front. If it reaches the pareto optimal front, that means NSGA2 has

94

converged. However there is a premise that the pareto optimal front should be known

before running the evolution. If the pareto optimal front cannot be obtained or

calculated beforehand, then the convergence cannot be measured. In this sense, the

convergence criteria should also be considered for MOCGP if pareto optimal front

cannot be obtained in advance. So how to find a metric to measure convergence is also

an relavant and essential stage for MOCGP development.

4.3 Methodology

4.3.1 Methodology for new crowding fill

As can be seen from section 4.2.2, an improved crowding fill strategy needs to be

developed in order to fit MOCGP/MOCGPANN. Firstly, a distinction between children

and parents has to be carried out during the crowding fill in order to preserve the

neutral mutated individuals into the next generation if there are more than one

individual have the same fitness. This idea is feasible to preserve the genetic drift like

how CGP does. However the children actually still have quite different inactive genes

between each other although they have the same fitness. Due to the random

neighbour pick problem in crowding fill, it may be worth a further distinction between

these children to avoid that problem. In this sense, if only one child who has the largest

genotype diversity among the children with the same fitness is allowed to take part in

the crowding measure, the random neighbour pick problem may be solved since there

is no need to consider how to choose the neighbours for those individuals with the

same fitness.

4.3.1.1 Population diversity measures

 Genotype diversity measure

According to section 2.5.4.1, genetic distance is an effective and a promising metric to

assess the genotype diversity for the population based on the implement of Euclidean

distance or Hamming distance. Although it is a commonly used approach, there may be

some problems to fully represent the genotype diversity especially for MOCGP. The

problem is caused from the MOCGP real-coded genotypes where some genes stand for

the transfer function of the node, some for the connection of the node and some for

the weight of the current connection. In addition, there is another type of genes

representing which nodes the outputs connect [29]. This kind of genes always belongs

to the active genes so they are not related to the neutral genetic drift. Apart from the

95

output genes, those three kinds of genes could be utilised into the computation of

Euclidean distance. The weight genes can be used to calculate Euclidean distance since

larger distance means larger changes of the corresponding weight values. However the

changes of connection and function genes may not be suitably utilised for Euclidean

distance computation. The connection genes are integer numbers of nodes where the

current node is connecting and the function genes are also integer numbers

demonstrating which function the current node is using. In this sense, Euclidean

distance may not be effective to display the real genetic distance between those genes.

The reason is that larger distance based on Euclidean distance with those integer

numbers may not mean larger distance between the corresponding genes. For example,

a child mutates one of its node’s connection from number 1 (the parent) to 2 and

another child mutates its corresponding node’s connection from number 1 (the same

parent) to 9. Obviously, the second child has a larger Euclidean distance of this gene

from the parent but actually that may not mean the second child has a larger genetic

distance of this gene. This result just means these two children have different

connection of this node but it cannot conclude that the second child has a larger

genetic distance just because the difference between 1 and 9 is larger than 1 and 2.

Similarly, it is the problem occurred in function genes.

In this case, Hamming distance could be an alternative choice to deal with this problem.

One significant usage of Hamming distance is to measure the genetic distance in DNA

sequences [147] [148]. Although the genetic distance mentioned there is for the real

genes of alphabetical strings in biology area, it provides a solution to measure the

genetic distance for the genotype diversity problem in MOCGP. Since the Hamming

distance can be used to measure the difference between two alphabetical strings from

DNA sequence, it will possibly be used to reflect the difference of inactive genes

between two individuals in MOCGP. Based on Hamming distance as a metric to

measure genetic distance, the possible approach to measure the genotype diversity is

just to check how many genes have been mutated in the corresponding nodes among

individuals. This approach is simpler for computation than Euclidean distance for

genetic distance, but it may be more effective to reflect the real genetic distance

between two individuals.

 Phenotype diversity measure

96

Apart from the neutral mutation, there is a special situation occurred during the

evolution in MOCGP where the same fitness individuals are also created resulting in the

random neighbour pick problem during crowding fill. This special situation is from the

normal mutation and it only happens when different fitness parents create the same

fitness children between each other. This kind of special situation based on normal

mutation may not be occurred frequently as that one based on the neutral mutation,

but it does take place by chance as long as some parents create the same fitness

children who have the same fitness with those created by neutral mutation. In this

special situation, the population diversity cannot be improved by utilising genotype

diversity measurement since the genetic distance only demonstrates the genotype

diversity among the children who are created by neutral mutation from their parents.

In this case, phenotype diversity measurement could be an alternative solution to deal

with this special situation. According to section 2.5.4.2, Fitness distance can be directly

used for the individuals who have the same fitness but created from the normal

mutation rather than neutral mutation. The computation of fitness distance of an

individual could be just the difference between its fitness and its parent’s fitness. And

Euclidean distance can be a primary metric to calculate the fitness distance since the

fitness is presented in real number. In this way, the phenotype diversity could be

possibly maximised during survival selection for individuals created from normal

mutation but with identical fitness.

 Procedure of a complete population diversity measure

As mentioned before, genotype diversity measurement uses Hamming distance as the

metric of genetic distance to compute the difference between the current individual

created by neutral mutation and its parent, who are the same in fitness. Hamming

distance counts the number of different genes between these two individuals for

inactive genes. In this way, large Hamming distance means this individual has a large

difference of its inactive genes compared to its parent and vice versa. So the genotype

diversity can be maximised based on the ranking of the Hamming distance of those

individuals.

On the other hand, phenotype diversity measurement uses Euclidean distance as a

fitness distance metric for the computation of the difference between the individual

and its parent. This situation only applies to the individuals who are created by normal

97

mutation but still have the same fitness with others in the current generation. In terms

of the computation, it is not just the Euclidean distance between the fitness of two

individuals since each one has at least two objective values. For this reason, the

dominance will firstly be checked. If the individual dominates its parent, the Euclidean

distance between them will be the real Euclidean distance. If they are non-dominated,

which means they are the same in fitness, the Euclidean distance will be zero. And

finally if the individual is dominated by its parent, the Euclidean distance will be the

negative value of real Euclidean distance. The reason to set a negative value is that

since the individual is dominated by its parent, it means the individual is worse than its

parent in fitness. So in this way, all the individuals can be ranked from large to small in

fitness distance, which means the phenotype diversity can be maximally preserved.

In addition, parents with the same fitness can be also available for the computation of

the genotype and phenotype diversity measurements. Although parents have a zero

distance between itself in spite of genotype or phenotype, it still retains the diversity

information from last generation. So as long as the diversity information from previous

generations are still kept, the parents with the same fitness in the current generation

can be also compared and ranked depending on its preserved genotype or phenotype

distance. However the ranking of parents are executed after the ranking of children to

maximise the population diversity during crowding fill.

It needs to note that the individuals from normal mutation may need to be ranked

before those from neutral mutation. The possible reason is that the individuals created

from normal mutation may have more chance to still produce children with normal

mutation. So the fitness could have more chance to be changed no matter improve or

decline, which is beneficial to the evolutionary search. However those created from

neutral mutation may have less chance to produce children in normal mutation, which

means the fitness will possibly be the same into next generation and that is not helpful

for evolutionary search. However this is just an intuitive strategy, so whether it is

beneficial for the survival selection to guide the evolutionary search will still need to be

investigated by the experiment.

In conclusion, when the individuals have the same fitness in the current generation

during survival selection, the children with the same fitness from normal mutation will

be ranked with Euclidean distance in fitness domain and survived first. And the children

from neutral mutation will be ranked with Hamming distance in genotype domain and

98

survived following. Finally the parents with the same fitness will be ranked and

survived depending on normal or neutral mutation from previous generations.

4.3.1.2 New crowding fill in the survival selection

Based on the genotype and phenotype diversity measurements, this new crowding fill

strategy involves some improvements in crowding distance sorting during the survival

selection. Before the children and parents are merged for the non-dominated sorting,

every individual needs to be checked if it has the same fitness with each other in the

current generation. If so, each child will be attached an extra attribute of fitness

distance or genetic distance from its parent by means of Euclidean distance or

Hamming distance and the parents will keep their distance information from previous

generations.

During the new crowding fill strategy, each individual in the current front will be

compared to each other and separated into different groups based on their fitness. In

this sense, the individual with the same fitness will be classified into the corresponding

group depending on what the objective value is. Then in each group, the individual who

ranks the first in the population diversity measurement will be removed from this

group in order to take part into the crowding distance sorting while others still remain

unchanged in their own group. After that, all the left individuals in their groups will be

merged together into a new bigger group. Now the crowding distance sorting will work

on the individuals in the current front including the first ranking individual of

population diversity picked from the corresponding group. When the crowding distance

sorting is finished, the left group members will be sorted based on their population

distance values and filled one by one until the next generation is full. This whole

process will be the modified crowding fill strategy for MOCGP instead of the original

one developed for NSGA2.

This new crowding fill strategy not only solves the random neighbour pick problem in

crowding distance computation, but also ensures the population diversity maximisation

in survival selection. The individual ranking the first in population diversity

measurement is survived before the others with the same fitness, which guarantees

that only the individual with the largest distance value will be allowed to take part in

the crowding distance sorting. And the left group members will be survived later on

depending on their distance values, which also maintain the population diversity for

99

the new generation. In this sense, this new crowding fill strategy designed especially for

MOCGP will be utilised as the main approach for the evolution experiment throughout

the thesis.

4.3.2 Methodology for convergence assessment

Based on the review of termination conditions in section 2.6, the upper limit of the

number of generations or fitness evaluations is not a suitable choice since the limit

cannot be obtained before the experiment starts to run. This termination condition

only works if the experiment has run multiple times, so the estimated upper limit could

be acquired based on them. The population diversity could be a choice, but it will be

working better for single objective optimization problem. The multi-objective optimizer

has already maintained the population diversity for each generation from the Pareto-

optimal front based on the optimization of different conflict objectives, so there is little

chance that the individuals in the whole population will converge to a certain solution.

For this reason, the threshold could be the only way used as a convergence criterion

when there is no significant improvement for fitness during a number of successive

generations.

In terms of performance measure, it will be adequate to use hyper-volume indicator to

assess the performance of MOCGP. The threshold will demonstrate the hyper-volume

improvement among those continuous generations. Therefore, if the hyper-volume

improvement approaches this threshold, then the evolution will supposed to be

converged and then stopped. The reference point will be selected based on the

supposed maximum objective value depending on what the fitness function is for this

experiment.

4.4 Experiment setup

The whole experiment will be designed to investigate how MOCGP will be performing

to evolve feasible Pareto sets of controllers so as to achieve the robust as well as

switched fault tolerant control and how hyper-volume indicator will be working to

assess the convergence of MOCGP. So the hypothesis of the experiment is that MOCGP

and hyper-volume indicator can be integrated together in order to obtain effective

Pareto sets of controllers so as to achieve both of robust and switched fault tolerant

control in generalised scenarios.

100

The whole experiment of MOCGP was designed in a similar way as the one for CGP in

section 3.2 where evolution experiment and generalisation experiment would be both

conducted. The evolution experiment was designed to obtain feasible Pareto sets of

controllers by MOCGP and the generalisation experiment was designed to test the

evolved controllers for the robust fault tolerant control where CGP was failed to

achieve and the switched fault tolerant control as well. Due to the task of evolving a

neural network controller, MOCGPANN would be implemented rather than a general

MOCGP with an additional weight gene and the node functions would be neuron

transfer functions instead of simple mathematics functions.

Except for the optimisation algorithms used for evolution experiment, all the other

factors of the experiment framework were totally the same as that in section 3.2

including the same robot task and the same fault type. The robot task was still a

phototaxis task designed in section 3.2.1 and the fault type was also the same

mentioned in section 3.2.2 where two complete sensor failures would be occurred

together.

4.4.1 Evolution experiment

The aim of the evolution experiment is to investigate whether MOCGPANN could

evolve feasible Pareto sets of controllers so as to achieve both of robust and switched

fault tolerant control.

4.4.1.1 Baseline parameters

The individuals created by MOCGPANN in each generation would be evaluated in 2

constraint functions firstly and then 2 objectives functions, which implemented the

same constraint evaluation process of NSGA2 [92]. The constraint functions still utilised

the area of 0.01 m as the radius and the objective functions were still the time spent

when the individuals met the constraint condition, which were the same as that

designed in section 3.2.3. Since the constraint handling process is referred from NSGA2,

so it would be more effective than the basic one utilised for CGPANN experiment in

chapter 3. Moreover, due to the multi-objective optimisation features, the individuals

would also be evaluated for the faultless and faulty objective respectively. The faultless

objective refers to the normal condition where there is no fault for the robot to

perform the phototaxis. And the faulty objective is the same condition designed in

section 3.2.2 where sensor 1 and 7 will be completely failed with 0 sensor reading

101

signal as the controller input. In order to obtain sufficient individuals to represent the

Pareto optimal front, (1+4) ES was still utilised but 20 times larger which would be

(20+80) ES. In this case, 20 individuals would be survived from the combination of 80

children and 20 parents in each generation, which could be used to create the Pareto

front.

 MOCGPANN parameters

In terms of the MOCGPANN baseline parameters, they were the same as the ones in

CGPANN experiment designed in section 3.2.3. The number of nodes was 20, the arity

was 5, the mutation rate was 5% with a probabilistic mutation, the weight range was

+/- 5 and the selected neuron transfer functions were hyperbolic tangent and soft sign

functions which generate output within [-1,1]. In addition, recurrent connections were

also included into the controller evolution. As is shown in [30], recurrent connections

could make the evolution find recurrent solutions, which sometimes perform better

than the feed forward solutions evolved by a standard CGP. Even if a standard CGP

could solve the task, the solutions evolved by CGP with recurrent connections would be

still worth investigating compared to the ones evolved without recurrent connections.

In this case, recurrent connections could be an additional option if a recurrent artificial

neural network controller would be considered as well to achieve the fault tolerance.

The recurrent connection probability is a value between 0 and 1, which presents the

probability of mutation to create recurrent connections. In this experiment, the

recurrent connection probability was set 0.10, which means there is 10% possibility

that the mutation could create recurrent connection. In other words, there is 90%

possibility that the connections are still feed forward in the controller.

 Convergence parameters

In terms of the convergence criteria, a hyper-volume indicator would be a feasible way

to demonstrate the performance of MOCGPANN as mentioned in section 4.3.2. The

reference point was set (1200, 1200) in ticks, which is the maximum time point when a

feasible solution can achieve. And in terms of the convergence criteria used to

terminate the evolution, 30 generations would be used to look back of the observation

of the hyper-volume indicator result. It needs to note that it’s still the same constraint

optimization problem with MOCGPANN, so the unfeasible solutions would be not

included in the 30 generations. That is to say, the 30 generations would only be

working when an individual has no constraint violation. The convergence rate, which is

102

the threshold mentioned previously, would be the division result of the current hyper-

volume compared to the one 30 generations before. The convergence rate was set

1.001, which means if the current hyper-volume divided by the one 30 generations ago

is less than 1.001, the evolution could be terminated. In other words, if the percentage

deviation is less than 0.1% within 30 generations, the evolution would be supposed to

be terminated.

4.4.1.2 Number of experiment runs and parameter adjustment

Except for the baseline settings of the mentioned experiment parameters, there are

two problems that also need to be considered. One problem is the randomness inside

the evolution experiment for both of optimisation algorithm and the robot task. The

other problem is the parameter uncertainty for those mentioned parameters for this

evolution experiment. Both of these two problems need to be considered before

assessing the MOCGPANN performance for the evolution experiment.

 Cumulative mean approach

Figure 4.1 shows the evolved population from the final generation for one evolution

run and Figure 4.2 shows the first Pareto optimal front solutions for it. The points on

these figures represent the evolved solutions which are the obtained controllers for

this evolution experiment in terms of faultless scenario objective and faulty scenario

objective. The difference between these two figures is that Figure 4.1 presents the

whole population for the last generation and Figure 4.2 just shows the first Pareto

optimal front solutions from the last generation. Basically, it seems to be successful for

MOCGPANN to obtain those controllers which can do the switched control or the

robust control for fault tolerance depending on which controller to be selected from

the first Pareto optimal set described in Figure 4.2.

103

Figure 4.1: The evolved population from the final generation for one evolution run

Figure 4.2: The first Pareto optimal front solutions for the evolved population from the final
generation for one evolution run

However there is some randomness inside the evolution experiment. The first one is

due to the random seed used to place the robot into random positions with random

orientations. Since there are 10 trials to evolve controllers to make robot achieve

phototaxis, so those 10 trials are based on the selected random seed utilised

throughout the whole evolution experiment. That is to say, if the random seed is

changed, the robot will be placed into 10 new different random positions with random

orientations. In order to get the average performance, the evolution experiment has to

be conducted multiple times with different random seed used for the robot placement.

The second randomness also comes from the random seed but inside the MOCGPANN.

104

This random seed is also used throughout the evolution experiment, but it’s just used

in this optimisation algorithm, such as the creation of the initial population and the

genes selected to do the mutation. In this sense, this random seed also need to be

changed for each evolution experiment. If both of these 2 random seeds remain

constant, the evolution experiment will get the same results no matter how many

times it runs. And that’s also the reason to use different random seeds for experiment.

In order to get the average performance, multiple runs need to be conducted based on

different random seeds not only for robot placement but also for the MOCGPANN itself.

However how many runs are sufficient to do the experiment need to be considered.

For sure the experiment can obtain absolute average performance if it can be run for

long enough, but it’s not realistic due the limited experiment time. In this case,

cumulative mean approach [142] mentioned in section 2.7.2 could be considered as an

effective approach in order to determine how many number of runs is sufficient and no

more runs are required.

Table 4.1 shows part of experiment runs based on the percentage deviation. As is

mentioned in [142], if there are more than one experiment output, the number of runs

should be selected based on the output which needs the most number of runs. In this

case, this table shows the 2 experiment response observed by percentage deviation,

which are the experiment performance: hyper-volume and the convergence: number

of generations. Hyper-volume measures the performance from the Pareto optimal

front, so the larger the better. Number of generations indicate when the evolution is

converged, so the fewer the better. As can be seen from this table, hyper-volume has

already reached below 5% for percentage deviation but number of generation is not.

So the total number of runs would be determined by the number of generations. From

experiment index 218, the percentage deviation of generation reaches below 5% in the

first time and still remains below it in the following experiments. In this sense, 218

experiments are sufficient to present the experiment results in terms of both of hyper-

volume and generation number.

As can be seen from this example, cumulative mean approach would be feasible to

assess how many runs are sufficient in order to get the average performance, which

solves the problem of randomness for the evolution experiment and would be utilised

for all of the evolution experiments throughout the thesis.

105

Table 4.1: Experiment index in terms of percentage deviation of cumulative mean result

Experiment
index

Percentage deviation
of hyper-volume

Percentage deviation
of generation

208 1.0334699 5.205573

209 1.0284702 5.181981

210 1.0254355 5.165366

211 1.04011 5.147227

212 1.0351514 5.124026

213 1.0303678 5.098388

214 1.0277646 5.07409

215 1.0240977 5.05089

216 1.0202708 5.025861

217 1.0165072 5.01336

218 1.0166136 4.990012

219 1.0119224 4.983859

220 1.007815 4.973926

221 1.0037402 4.961616

222 0.9991721 4.956487

223 0.9954098 4.939457

224 0.9910932 4.922203

225 0.9871541 4.899249

226 0.9832456 4.883306

227 0.9791804 4.870532

228 0.9754496 4.84759

 Parameter Robustness technique

Apart from the randomness for the evolution experiment, the parameter uncertainty is

another problem that needs to be solved before getting the optimal performance.

Figure 4.3 shows the hyper-volume response of 218 runs obtained in Table 4.1 in terms

of the baseline parameters and Figure 4.4 shows the number of generation response of

that 218 runs. From these 2 figures, MOCGPANN seems to be working for evolving a

bank of controllers which can achieve the switched or robust control for robot sensor

fault tolerance. However this evolution result is based on the baseline parameters

listed in Table 4.2, which was set in section 4.5.1.1 before the experiment was

conducted. There are 7 parameters for this experiment, 2 of them are set for

convergence observation: Nconv and Rconv. Nconv is the number of generations

looking back to observe the convergence. And Rconv implies the convergence rate

which is the division result of the current hyper-volume by the one Nconv generations

ago. The other 5 parameters belong to the optimization algorithm, which are NumNode:

106

number of node, NodeArity: number of arity for each node, WeightRange: connection

weight range between each node, MutationRate: mutation rate for probabilistic

mutation and RecurrentProbability: recurrent connection probability between each

node. However, those parameters may not be the best combinations to demonstrate

the experiment responses. In this sense, those parameters need to be adjusted in order

to see whether they have any influence on the experiment responses. If so, a better

combination of these parameters needs to be figured out.

Figure 4.3: Hyper-volumes of baseline parameters

107

Figure 4.4: Number of generations of baseline parameters.

Table 4.2: Baseline parameter values for evolution experiment

Baseline
parameters

Nconv Rconv Num
Node

Node
Arity

Weight
Range

Mutation
Rate

Recurrent
Probability

Parameter
values

30 1.001 20 5 +/-5 0.05 0.1

In this case, Parameter Robustness technique from the Spartan package [141] reviewed

in section 2.7.2 would be a promising approach to help investigate how the parameters

could affect the evolution experiment responses based on the utilise of A-test analysis.

In terms of the evolution experiment in this work, each parameter has independent

effect on the experiment responses, so Parameter Robustness technique could be an

effective approach to help find out the most suited value for each parameter. To be

specific, each parameter was tuned by several different values and the simulation

responses of hyper-volume and generation number were compared with that from the

baseline values. As is mentioned in section 2.7.1, the A-test scores could indicate

whether the data set has better or worse performance compared to that of the

baseline values. If the A-test score for a perturbed parameter data set is above 0.5, it

means the response is below that of baseline value. If the A-test score is below 0.5, this

perturbed parameter has higher response than that of baseline value. This rule is

applicable no matter the response is hyper-volume or generation number. To be more

specific, a higher response for hyper-volume indicates a better performance for the

108

evolutionary search but a higher response for generation number implies a longer

convergence. In other words, a lower A-test score demonstrates a better hyper-volume

response and a higher A-test score indicates a better generation number response. This

analysis regulation is applicable for all the experiment result analysis throughout the

thesis where hyper-volume and generation number are employed as the experiment

responses based on Parameter Robustness technique applied to find out the suitable

parameter values.

4.4.1.3 Variants of crowding fill strategies

As is mentioned in section 4.3.1.2, the new crowding fill will make sure that only the

individual with the largest distance to its parent will be allowed to take part in the

crowding measure during the survival when there are more than one individual with

the same objective values. And then if there are still places available, the left

individuals will be survived one by one based on their distance values. The benefit of

this new crowding fill is that the random neighbour pick problem could be solved and

the population diversity could be preserved as well, which may be considered as a

better strategy than the original crowding fill developed in NSGA2. For this reason, this

new crowding fill would be the first version utilised in the evolution experiment as the

baseline performance.

As a comparison, two more variants would also be utilised to conduct the same

evolution experiment. The second version of crowding fill strategy just picks one

random child into the crowding distance measure when more than one individual have

the same fitness and the left individuals with their corresponding same fitness will also

be randomly survived. It needs to note that the children will be still survived ahead of

parents until the next generation is fulfilled, which is able to preserve the genetic drift.

The last version is similar to the second one and the only difference is that when more

than one individual have the same fitness, one random individual is allowed to

participate in the crowding measure rather than just one random child from the second

version and the other individuals will also be survived randomly with their

corresponding same fitness. This version disables the population diversity as well as the

genetic drift preservation. So it would be suited as a comparison with the first two

approaches and the comparison may be also helpful to investigate whether preserving

genetic drift or population diversity has any impact on the experiment responses.

109

To make it clear, the pseudo code for each version of the crowding fill strategies for

MOCGP is listed as below along with the original crowding fill strategy from NSGA2.

Generally speaking, the first version has three steps to complete a whole crowding fill

during the survival selection while other three options only have one step. The first

version calculates the distance values first for the individuals with the same fitness. And

then it ranks them according to their distance values. Finally, the new crowding fill will

be executed. In terms of the other three options, there is no need to differentiate each

individual with the same fitness as the first version. For this reason, only the crowding

fill is executed without any information about the distance values for the individuals.

 The first version

1. // set distance for the individuals if they have the same fitness with their parents

Travers each individual, if the current individual has the same fitness with its parent {

 If the individual is created from normal mutation {

 Set Euclidean distance for the individual as fitness distance

 }

 Else if the individual is created from neutral mutation {

Set Hamming distance for the individual as genetic distance

 }

}

2. // rank the individuals with their distance values

Traverse each individual, if more than one individual have the same fitness {

 Rank those individuals with the order:

1. child from normal mutation

2. child from neutral mutation

3. parent from normal mutation

4. parent from neutral mutation

}

3. // new crowding fill

Execute the normal survival selection

If the current Pareto front size is larger than the left available places for the individuals

to be survived into the next generation {

 // execute the new crowding fill

110

 Traverse each group of the same fitness and pick the individual ranking the first into

the new Pareto set combined with the other individuals of the unique fitness in the

original Pareto set

 Execute crowding measure for the new Pareto set

 After the new Pareto set is survived, if there are still places available for individuals to

be survived into the next generation {

 Merge all the left individuals together and survive them based on their distance

values from large to small no matter whether they have the same fitness or not until

the next generation is full

}

}

 The second version

Execute the normal survival selection

If the current Pareto front size is larger than the left available places for the individuals

to be survived into the next generation {

 // execute the new crowding fill

Traverse each group of the same fitness and pick a random child into the new Pareto

set combined with the other individuals of the unique fitness in the original Pareto set

 Execute crowding measure for the new Pareto set

 After the new Pareto set is survived, if there are still places available for individuals to

be survived into the next generation {

 Merge all the left individuals together and survive the children first and then the

parents no matter whether they have the same fitness or not until the next

generation is full

}

}

 The third version

Execute the normal survival selection

If the current Pareto front size is larger than the left available places for the individuals

to be survived into the next generation {

 // execute the new crowding fill

111

Traverse each group of the same fitness and pick a random individual into the new

Pareto set combined with the other individuals of the unique fitness in the original

Pareto set

 Execute crowding measure for the new Pareto set

 After the new Pareto set is survived, if there are still places available for individuals to

be survived into the next generation {

 Merge all the left individuals together and survive the individuals randomly no

matter whether they are parents or children and whether they have the same fitness

or not until the next generation is full

}

}

 The original crowding fill

Execute the normal survival selection

If the current Pareto front size is larger than the left available places for the individuals

to be survived into the next generation {

 // execute the original crowding fill

 Execute crowding measure for the current Pareto set

 Survive the individuals based on their crowding distance values from large to small

until the next generation is full

}

4.4.2 Generalisation experiment

Due to the failure of CGPANN evolved controllers to achieve the robust fault tolerant

control in chapter 3, the aim of this generalisation experiment is to investigate how the

evolved controllers by MOCGPANN will be performing for the robust and switched fault

tolerant control as well in terms of the robot phototaxis task based on a series of

generalised test scenarios. As is mentioned in section 3.3.2.3, the benefit of a multi-

objective optimization algorithm is to obtain a Pareto set of controllers in just one

evolution loop, which could not only achieve the robust fault tolerant controller but

also realise the switched fault tolerant control. In this case, the evolved controllers will

be tested for robust and switched fault tolerant control respectively. Moreover, in

order to obtain a generalised performance, the fault tolerance settings as well as the

phototaxis task framework will both be set in a more general way rather than the

original scenario utilised for the evolution experiment. The aim for the resetting

112

scenarios is to test how the evolved Pareto sets of controllers will be working in a

different scenario and whether they have the capability for the generalisation.

4.4.2.1 Fault tolerant control type

The whole experiment will be conducted with two approaches: the robust fault

tolerant control and switched fault tolerant control. The switched control utilises the

Pareto set controllers as bank controllers. Basically only two controllers are sufficient to

achieve the switched control since there are only two objectives. So one controller

could be the one that works best for no fault condition and the other could be the one

that works best for the faulty condition, no matter what the performance is for the

opposite objective. When the experiment starts, the controller for the normal

condition is loaded at the beginning. Once the fault occurs, the other controller will be

loaded to replace the current one in order to tolerate the fault. It needs to note that

this work is mainly about the controller redesign in fault tolerant control mentioned in

section 2.2.2, so it is assumed that the fault has already been diagnosed. In this sense,

when the fault is occurred, the other controller will be loaded immediately without any

delay for the fault diagnose. In terms of the robust fault tolerant control, it just utilises

one controller to be robust for both of no fault and faulty conditions. In this case, it is

like a trade-off that the selected controller has to perform well for both of these two

objectives. Definitely the performance for each objective will be degraded compared to

the switched control, but there is no need to carry another controller on board

especially for the real world experiment and no need to consider the controller switch

as well, which are the significant benefits for robust control.

4.4.2.2 Generalised test scenarios

The evolution experiments designed in section 4.5.1 will investigate whether

MOCGPANN could evolve a Pareto set of controllers for two objectives respectively in

terms of different parameters and crowding fill strategies. Those obtained Pareto sets

of controllers are evolved based on the objectives that the robot is failed from the

beginning or totally no fault during the experiment, which will be an effective way to

solve the problem based on the selection of a trade-off controller to achieve the robust

fault tolerant control where CGPANN was failed as mentioned in the conclusion of

chapter 3. It needs to note that if MOCGPANN will be able to obtain feasible Pareto

sets of controllers, a suitable robust controller can be just selected from the Pareto set

without any further test since this controller is already evolved based on the

113

robustness against both the faultless and faulty objectives. However, it is still not clear

whether the robot could achieve the fault tolerance when the faults are occurred

during the experiments, which is a common situation for investigating fault tolerance

problems. Moreover the sensor faults are just complete failures with input reading as 0

for the faulty sensors. Actually in real world scenarios, the complete failure may be any

constant random input reading signal, so it is also worth trying random faulty sensor

readings as the faulty signal and see whether the evolved controllers are also working

for this situation. Apart from that, each run of the experiment is based on its own

randomly selected robot initial positions and orientations with fixed distance from the

beacon location. And those robot initial conditions will not be changed during the

evolution. However the phototaxis task designed in section 3.2.1 actually refers to any

initial conditions for the robot with random distance to the beacon position as long as

the light can be detected by the robot light sensor. In this case, trying different robot

initial conditions also needs to be considered with different distance to the beacon

position as well. In summary, if all the above scenarios could be considered, the

evolved controllers can be tested in a more general way not only fault tolerance but

also for phtotaxis experiment.

 Initial scenario

The initial scenario set the different fault occurrence time. This scenario utilised 300

ticks and 700 ticks respectively to trigger the fault rather than no fault and fault from

beginning designed in section 3.2.4 in order to investigate whether a basic fault

tolerant control scheme could be achieved when the fault is occurred at different time

during the experiment. If the fault could be tolerated for this initial scenario, there

would be three more different conditions added to the initial scenario respectively to

test the evolved controllers.

 New faulty signal scenario

Firstly, the sensor faulty signal will be changed to another constant value such as 0.5

instead of 0 for complete failures. This situation will investigate whether the evolved

controllers will also tolerate a different faulty sensor signal to achieve the phototaxis.

 New robot starting position and orientation scenario

Secondly, 10 robot initial position and orientation combinations from the evolution

experiment will be changed to another different 10 combinations in order to

114

investigate whether the evolved controllers could make the robot achieve phototaxis in

different initial conditions, which is the same as the additional scenario designed in

section 3.2.4.

 New beacon location scenario

Finally, the beacon location will also be modified. In the evolution experiment, the

beacon is located at the origin of the arena, which is (0, 0). And the robot is placed in

10 initial conditions to evaluate controllers with a fixed distance 4.5m away from the

beacon. However in this generalisation experiment, the beacon will be moved to (2, 2)

of the arena. In this case, the distance between the robot initial position and the

beacon will be varied depending on how far the robot is away from the new position of

the beacon. There are two points to be mentioned here that (2, 2) actually could

guarantee that the robot can detect the light from their initial positions. However, if

the robot moves in a reserved way towards the light, the robot will not detect the light

finally and will not achieve the phototaxis forever. In other words, the evolved

controller is not capable to make the robot achieve phototaxis in the face of fault if the

robot is moving away from the beacon. The other point is that since the distance

between the robot and light is varied, so 1200 ticks will not make sense to judge the

controller performance for the generalisation experiment. In this case, 3000 ticks will

be used instead of 1200 ticks as the maximum experiment time limit and the success

rate will be the new criterion instead of time to the beacon in order to assess the

evolved controllers whereby whether the robot can reach the beacon finally or not.

These three extra conditions would be added to the initial scenario of the

generalisation experiment one at a time. So the result will demonstrate which one has

the most significant impact on the evolved controllers in terms of the robust and

switched fault tolerant control.

4.4.2.3 Controller acquirement

In terms of the selected controllers used to conduct the generalisation experiment,

section 4.5.1.2 will present more details about the comparison result among different

versions of crowding fill strategies utilised for MOCGPANN in order to select the best

one. In summary, the first version of MOCGPANN would be an initial choice to evolve

the Pareto set of controllers in order to achieve the switched and robust fault tolerant

control respectively. Although there is actually no significant difference among the four

115

versions of MOCGPANN, the first and second one achieved the relatively more stable

performance. In this sense, the first version could be utilised as a primary approach to

obtain the Pareto sets of controllers. The comparison details for different MOCGPANN

versions can be referred to section 4.5.1.2. On the other side, the aim of the

generalisation experiment is actually a test of the evolved controllers to see how they

will perform in more general cases, so which version of MOCGPANN to be used for the

controller evolution is actually not the point at this stage. For each of the switched and

robust fault tolerant control, five Pareto set of controllers from five evolution runs are

utilised for the generalisation experiment and their performance will be assessed in

terms of the above mentioned different scenarios.

4.5 Result and discussion

4.5.1 Evolution experiment

In terms of the evolution experiment, firstly the parameters for both of MOCGPANN

and convergence criteria were adjusted in order to obtain the optimal performance.

And then, different crowding fill strategies were compared to conduct the same

evolution experiment so as to investigate whether preserving population diversity or

genetic drift has any significant benefit on the evolutionary search based on the

evolution experiment.

4.5.1.1 Sensitivity analysis for MOCGPANN parameters

As is mentioned in section 4.4.1.2, the baseline parameter values may not be the best

combination to display the optimal performance for evolution experiment. In this case,

the parameters should be adjusted before analysing the experiment result. With the

help of Parameter Robustness technique, those parameters were tuned to their

optimal calibration values. The details of how these parameters were tuned by the

Parameter Robustness technique can be referred to Appendix B.

Based on the result of the sensitivity analysis, an ultimate comparison could be

conducted between the baseline parameter values and the calibration parameter

values in terms of both hyper-volume and generation number. The calibration

parameter values are the ones based on the sensitivity analysis results. The hyper-

volume comparison is shown in Figure 4.5 and generation number for that is shown in

Figure 4.6. The U-test scores for them are listed in Table 4.3 and the A-test scores for

them are listed in Table 4.4.

116

Figure 4.5: Hyper-volume comparison between baseline and calibration parameter values

Figure 4.6: Generation number comparison between baseline and calibration parameter values

Table 4.3: U-test scores for the comparison between baseline and calibration values

 Baseline parameter values Calibration parameter
values

Hyper-volume 1 0 .11876

Generation number 1 < 0.00001

Table 4.4: A-test scores for the comparison between baseline and calibration values

 Baseline parameter values Calibration parameter
values

Hyper-volume 0.5 0.455692

Generation number 0.5 0.954808

117

According to the ultimate comparison result, the calibration parameter values still

outperform the baseline parameter values. In term of hyper-volume, although they are

quite similar, calibration values still achieve a slightly better performance, where the A-

test score is below 0.5. Even if they have got similar hyper-volume responses,

calibration values spend much less generations to make evolution converged than

baseline values, which demonstrates that the sensitivity analysis is quite essential

before analysing the experiment responses. In a word, the calibration parameter values

outperform the baseline parameter values, especially for the response of generation

number.

In summary, all the parameter values are now determined based on this sensitivity

analysis in terms of Parameter Robustness technique developed in Spartan and the

optimal values for each parameter are listed in Table 4.5. The following experiments

will be conducted based on these calibration parameter values throughout the thesis.

Table 4.5 Calibration parameter values for evolution experiment

Calibration
parameters

Nconv Rconv Num
Node

Node
Arity

Weight
Range

Mutation
Rate

Recurrent
Probability

Parameter
values

20 1.01 20 5 +/-10 0.05 0

4.5.1.2 MOCGPANN comparison based on modified crowding fill strategies

As can be seen from the previous results of sensitivity analysis in terms of parameter

robustness technique, all of the parameters have been adjusted to their optimal values

in order to get the best simulation responses for both of Hyper-volume and generation

number. This section will investigate whether the population diversity could really

make a contribution to the experiment responses based on the modified crowding fill

strategy for survival selection in MOCGPANN.

To obtain a sensible comparison for how population diversity affects the experiment

response, three different versions of crowding fill strategies were utilised as mentioned

in section 4.4.1.3. Figure 4.7 shows the hyper-volume comparison for these three

different versions of MOCGPANN. Figure 4.8 shows the generation number comparison

for that. Table 4.6 lists the U-test scores for these two comparisons and Table 4.7

presents the corresponding A-test scores for them, where the first version of crowding

fill was utilised as the baseline performance.

118

Figure 4.7: Hyper-volume comparison for three different MOCGPANN

Figure 4.8: Generation number comparison for three different MOCGPANN

Table 4.6: U-test score for three different MOCGPANN comparisons

 1st version 2nd version 3rd version

Hyper-volume 1 0 .05614 0 .4965

Generation number 1 0 .33204 0 .92034

Table 4.7: A-test score for three different MOCGPANN comparisons

 1st version 2nd version 3rd version

Hyper-volume 0.5 0.554296 0.520363

Generation number 0.5 0.528675 0.494143

As can be seen from Table 4.6, only the second version achieves a p value near 0.05 in

terms of hyper-volume, which means its hyper-volume may have a significant

 1
st

 version

 1
st

 version

 2
nd

 version

 2
nd

 version

 3
rd

 version

 3
rd

 version

119

difference compared to the first version. However according to Table 4.7, its

corresponding A-test score is 0.554296 above 0.5, which indicates that although there

may be a significant difference, the hyper-volume of second version is lower than that

of the first version. Actually the A-test score of 0.554296 for the second version’s

hyper-volume response is even not located in the small effect size interval [0.56, 0.64],

so this difference between the second and first version for hyper-volume is actually

quite weak. Apart from the second version’s hyper-volume response, other responses’

A-test scores for both of second and third are much more close to 0.5 with nearly no

effect sizes. In conclusion, all of these three versions of crowding fill strategies spend

quite similar generations to make the evolution converged. In terms of the hyper-

volume, the second version obtains the worst response but still could be ignored and

the third one is still quite similar to the first one.

Generally speaking, all of these three versions actually obtained similar experiment

responses, which indicates that the preservation of genetic drift as well as population

diversity may not improve or even effect the experiment responses. A possible

explanation is that the objective value is the worst performance during 10 trials for the

phototaxis. In other words, although the worst case is the same, the performance of

the other 9 trials may be quite different among each individual. So it may be not a

suitable choice to evaluate individuals by using the worst case performance as the final

objective value. In addition, utilising the worst case performance as the final objective

value could also result in the individuals with identical fitness in spite of different

performance for the other trials.

In this case, a higher precise objective value need to be considered based on another

alternative fitness function for each individual evaluation instead of the current one.

Generally speaking, the mean approach would be more sensible than the worst case

approach as the alternative fitness function in order to reflect how these trials are

distributed since the final objective value will be the average value among all the trials.

However the low precise objective value problem is not fully resolved since the

obtained objective value is still in a low precise scope, even if the average value is more

sensible than the worst case value as the final objective value. In this case, a weighted

sum approach would be more effective to not only reflect the trial value distribution

but also solve the low precise objective value problem. The only problem that needs to

be solved is how to set the weight value for each trial. In general, the weight is

120

determined by the frequency that the result is repeated. However in this experiment,

each trial may have its own value that is different between each other, so the

frequency may be meaningless to act as the weight value. In this case, the weight value

could be set by how large the result is using the current trial value divided by the sum

of all the trial values. In this way, a larger trial value will have a larger weight value for

this trial and vice versa. This approach is feasible since the final objective value will be

mainly affected by the large trial values due to their large weights so that the solutions

with extremely large trial values could be eliminated during the selection, which may

have similar effects with the worst case approach.

For example, there are two solutions to be evaluated and there are three trials for each

individual evaluation. The first solution’s trial values are 910, 950 and 990 and the

second solution’s trial values are 930, 950 and 970. If the mean approach is utilised to

act as the final objective value, both of them will get 950 since 950 are the average

value for both of them. In this case, there is no way to differentiate these two solutions.

However if the weighted sum approach is utilised, the result will be quite different. The

final objective value of the first solution will be 951.1228 and the value of the second

solution will be 950.2807. In this case, the two solutions will be easily distinguished due

to their high precise objective values. Moreover, the second solution also outperforms

the first one since the first one has got a largest trial value of 990 among the trials in

these two solutions, which guarantees that the solution with larger trial values will be

eliminated during selection due to its larger final objective value.

In conclusion, this kind of weighted sum approach is actually utilising the sum of

squares of the trial results divided by the sum of the trial results. This fitness function

will produce a measure that is more sensitive to the large values than the small ones

with a higher resolution objective value. In this case, the final objective value may be

around the average value among those 10 trials but slightly closer to the worst one. In

addition, this fitness function will also result in a higher resolution of the objective

value with the addition of decimal part instead of a total integer value. In this way, the

distinction among identical fitness individuals will also be promoted that the individuals

will have a lower chance to get stuck into the same fitness with the others. It needs to

note that this modified fitness function is still working coupled with the constraint

function so that only the individuals with no constraint violation will be allowed to be

evaluated on the fitness function. On the other hand, the original crowding fill strategy

121

referred directly from NSGA2 [92] in the survival selection for MOCGPANN algorithm

will be also used as an additional comparison with the current 3 different versions. In

this sense, it will be more sensible to demonstrate whether the modified crowding fill

strategy will be working better or not compared to the original one.

Figure 4.9 shows the hyper-volume comparison for four different crowding fill

strategies with modified fitness function and Figure 4.10 shows the generation number

comparison for them. Table 4.8 lists the U-test scores for the comparisons and Table

4.9 lists the A-test scores for them, where the first version of crowding fill is still

considered as the baseline performance.

Figure 4.9: Hyper-volume comparison for four different crowding fill strategies with modified
fitness function

1
st

 version 2
nd

 version 3
rd

 version Original

1
st

 version 2
nd

 version 3
rd

 version Original

122

Figure 4.10: Generation number comparison for four different crowding fill strategies with
modified fitness function

Table 4.8: U-test score for four different crowding fill strategies comparisons with modified
fitness function

 1st version 2nd version 3rd version Original

Hyper-volume 1 0.37886 0.58232 0.12602

Generation
number

1 0.3843 0.64552 0.27572

Table 4.9: A-test score for four different crowding fill strategies comparisons with modified
fitness function

 1st version 2nd version 3rd version Original

Hyper-volume 0.5 0.5313329 0.4838644 0.4520385

Generation
number

0.5 0.4682333 0.5130248 0.4614715

As can be seen from Table 4.8, neither of second or third version has significant

difference compared to the first version in terms of hyper-volume and generation

number. Although the fourth one has the smallest p values, they are still above 0.05 to

some extent. According to Table 4.9, all of them have nearly no effect compared to the

first one where all the A-test scores are even smaller than the small effect size interval

of [0.36, 0.44] and [0.56, 0.64] in terms of hyper-volume and generation number. To be

more specific, second version spends more generations to obtain lower hyper-volume

than the first version and third version spends slightly less generations to achieve

slightly higher hyper-volume than the first one. The fourth version actually achieves the

highest hyper-volume, but the generation number is also the largest. Even though, all

of these four versions obtain similar experiment responses in terms of both of hyper-

volume and generation number. So it could be concluded that these four versions of

crowding fill strategies have no significant difference between each other for the

impact of survival selection in MOCGPANN even the fitness function is modified to

obtain more precise objective values.

A possible explanation for this result may be due to the effect of connection weight

genes which make the evolutionary search less likely to be trapped into local optima

than those algorithms without weight genes [30]. As is mentioned before in section

2.4.4.5, [30] conducted a comprehensive investigation on how explicit neutral genetic

drift impacts CGPANN for evolutionary search. However the benefit of neutral genetic

drift is much lower for CGPANN than for CGP, where the benefit of preserving explicit

123

neutral genetic drift is totally absent. Based on the analysis of the comparison

experiment, the only difference between CGP and CGPANN in that work is the

existence of connection weight genes and a higher node arity. Other aspects between

these two algorithms are the same for the comparison experiment. However [30]

demonstrates that a higher arity may not have any influence on the average number of

explicitly inactive genes, which is not the cause for explicit neutral genetic drift being

useless. Moreover, [30] also indicates that increasing the available number of nodes

may not increase the number of inactive nodes as well, which is also not the reason for

promote the benefit of explicit neutral genetic drift. In this case, the only reason that

results in explicit neutral genetic drift being absent is the utilisation of connection

weight genes, which maybe acts as a compensation for evolutionary search in CGP. [30]

infers that due to the additional mutation occurred on connection weight genes,

CGPANN may be not so easily trapped into local optima and that’s why explicit neutral

genetic drift does not present the benefit to aid the escape from local optima during

the evolutionary search.

Based on the analysis from [30], it could be concluded that MOCGPANN may also not

benefit from the preserving of explicit neutral genetic drift as well as the population

diversity. Although the investigation in [30] is based on CGPANN, it can still be inferred

that MOCGPANN will be suffered from the same problem due to the existence of

connection weight genes. In conclusion, the preserving of explicit neutral genetic drift

and the population diversity will not make any impact on the evolutionary search in

terms of MOCGPANN. Just as mentioned in [30], it can be also concluded that any

approach in NE area will not benefit from the neutral genetic drift and other form of

gene redundancy in spite of single or multiple objective optimisation.

Although four versions of crowding fill strategies have no significant difference among

each other in terms of both the hyper-volume and generation number, it still needs to

note that the number of experiment runs measured from the cumulative means

approach is different for each version. Table 4.10 lists the cumulative mean approach

result for each of four versions.

Table 4.10: Result of number of experiment runs required from cumulative mean approach

 1st version 2nd version 3rd version Original

Experiment
runs

110 129 189 173

124

As can be seen from Table 4.10, the first and second versions need less experiment

runs than the other two to sufficiently present the experiment responses. This

phenomenon may indicate that the first version achieves the most stable performance

with the least required number of experiment runs to fully demonstrate its experiment

responses. And the first version also requires the similar number of runs as the second

one. A possible explanation would be that the first two versions may have more stable

responses for both the hyper-volume and generation number with much less required

number of experiment runs than the other two. In other words, the other two versions

may not have so stable responses as the first two with some extremely bad responses

and that’s why more runs are still required to sufficiently present their performance.

In this case, it may be concluded that preserving genetic drift and population diversity

might have potential benefit to help MOCGPANN achieve a more stable performance.

However as mentioned before, these four different versions actually have no significant

difference without any effect size among each other in terms of both the hyper-volume

and generation number. So whether preserving genetic drift or population diversity

really has any significant benefit for the evolutionary search is still not clear at the

moment and further investigation is still required as the future work.

4.5.2 Generalisation experiment

In terms of the generalisation experiment, robust and switched fault tolerant control

would be both discussed respectively based on their performance. The obtained five

Pareto sets of controllers were tested 10 times for each of 300 and 700 ticks as the

fault occurrence time based on four different scenarios including a basic scenario and

three additional scenarios. The data of these five Pareto sets’ generalisation

experiment result can be referred to the Appendix A.1 and their success rate for each

scenario would be discussed as following to assess the obtained controllers’

performance for robust and switched fault tolerant control respectively.

4.5.2.1 Robust fault tolerant control

In terms of the robust fault tolerant control, only one robust controller is required to be

tested for the generalisation experiment. This controller has to be working relatively

well for both of faultless and faulty conditions, so its performance will be possibly

125

degraded compared to two bank controllers working best for each objective

respectively. The robust fault tolerant control utilises the robust controllers from 5

Pareto sets and each robust controller is selected based on its trade-off performance in

terms of each objective from the controllers in the Pareto optimal front. Furthermore,

each robust controller from the corresponding Pareto set will be tested 10 times in

terms of different scenarios. The success rate result of the selected 5 robust controllers

from these 5 Pareto sets is listed in Table 4.11 in terms of four tested scenarios.

Table 4.11: Success rate for generalisation experiment results in terms of robust fault tolerant
control

 Initial scenario Fault signal Robot condition Beacon position

 Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Pareto 1 1 1 0 1 1 1 1 1

Pareto 2 1 1 0 0 1 1 1 1

Pareto 3 1 1 0 1 1 1 1 0.6

Pareto 4 1 1 0 0 1 1 0.7 0.7

Pareto 5 1 1 1 1 1 1 0.7 0.7

As can be seen from Table 4.11, all the 5 robust controllers achieve 100% success rate

for initial scenarios. What’s more, they also obtain 100% success rate for new robot

initial conditions in addition to different fault occurrence time. However they are also

not working well on new fault signal and new beacon position scenarios. In terms of

new fault signal scenario, only Pareto set 5 realises 100% success rate for both the

different fault occurrence time but the other 4 sets are all failed to reach the beacon

within 10 trials when fault occurs at 300 ticks and half of them also cannot make it

when fault occurs at 700 ticks. As for the new beacon position scenario, only the first

two Pareto sets achieve 100% success rate but the other three have more or less failed

trials for both the different fault occurrence time.

As can be seen from the result, MOCGPANN is successful to evolve controllers so as to

achieve the robust fault tolerant control where CGPANN was not able to complete. In

addition, different fault occurrence time for the initial scenario has no influence on the

evolved controllers’ performance and new robot initial condition scenario also does not

affect those controllers. However both of new fault signal and new beacon position

scenarios have more or less impact on the evolved controllers, which demonstrates

126

that the obtained controllers are not suited to these generalised scenarios. In this

situation, those scenarios need to be considered for evolution experiment including a

set of random fault signals and varied beacon positions for each solution evaluation so

as to obtain more robust controllers to accomplish the design of a robust fault tolerant

control system for the robot phototaxis task, which could be investigated as future

works.

4.5.2.2 Switched fault tolerant control

In terms of the switched fault tolerant control, two controllers are selected as bank

controllers from the same 5 Pareto optimal sets. One controller is selected working

best for the normal situation and the other one is selected working best for the faulty

situation. These two bank controllers will be switched when the fault occurs during the

robot online phototaxis task based on the assumption that the fault has already been

diagnosed. Moreover, the switched fault tolerant control will also be tested 10 times

for each generalised scenario respectively and the success rate result for these 5 pairs

of bank controllers from these 5 Pareto sets is listed in Table 4.12 in terms of four

tested scenarios.

Table 4.12: Success rate for generalisation experiment results in terms of switched fault tolerant
control

 Initial scenario Fault signal Robot condition Beacon position

 Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Pareto 1 1 1 1 1 1 1 1 1

Pareto 2 1 1 0 0 1 1 1 1

Pareto 3 1 1 0 1 1 1 1 1

Pareto 4 1 1 1 1 1 1 0.7* 0.7*

Pareto 5 1 1 1 1 1 1 0.9 0.8

Note: * means that in terms of the failed trials, the robot stays still until the other

controller is loaded. However these trials all make the robot reach the beacon finally,

so it is actually 10/10 if the criterion is whether the robot achieves the phototaxis

eventually or not.

As can be seen from Table 4.12, all of the 5 pairs of bank controllers from these 5

Pareto sets achieve 100% success rate for initial scenarios in terms of both of 300 and

700 ticks for fault occurrence time. However, only Pareto set 1, 4 and 5 obtain 100%

success rate for the new fault signal scenarios. Pareto set 2 just performs a 0% success

rate at all and Pareto set 3 is only 100% successful for 700 ticks as fault occurrence time

127

but 0% for 300 ticks. In terms of the new robot initial condition scenario, all of the 5

Pareto sets realise 100% success rate for both of 300 and 700 ticks as fault occurrence

time. Finally, only Pareto set 1, 2 and 3 achieve 100% success rate for the new beacon

position scenario. Neither Pareto set 4 nor 5 realises a 100% success rate in terms of

different fault occurrence time. It needs to note that Pareto set 4 is not really 70%

successful for the new beacon position scenario since all the trials make the robot

reach the beacon eventually. However there are 3 trials that the robot stays still at its

initial position in the faultless condition and starts to move towards the beacon when

the fault occurs with the loaded new controller. So these 3 Pareto sets actually suite

the robot faulty condition but not for the normal condition, which may not be

considered as successful phototaxis task.

As can be seen from the result, the controllers evolved by MOCGPANN could not only

achieve the robust fault tolerant control but also realised the switched fault tolerant

control as well, which also demonstrates the benefit of multi-objective optimisation

algorithm mentioned in section 3.3.2.3. These 5 Pareto sets of controllers perform well

on the initial scenario and the new robot initial condition scenario but also do not

perform very well in the new fault signal and the new beacon position scenarios with

more or less declined success rate. This phenomenon indicates the same conclusion in

section 4.5.2.1 that the evolved controllers from the evolution experiment are capable

to perform well no matter when the fault occurs during the experiment and regardless

where the robot initial condition is as long as the distance from the beacon is fixed.

However, if the fault signal is altered rather than 0 from the evolution experiment,

some of the controllers are not able to make the robot complete phototaxis within

1200 tick time limit. In addition, when the beacon is moved to a new location, some of

the controllers are also not capable to make the robot reach the beacon even if there is

no time limit. As a consequence, if a more effective switched fault tolerant control

system for phototaxis is required in terms of varied fault signals and beacon positions,

those scenarios need to be considered during the solution evaluation, which is the

same as that mentioned in the conclusion of section 4.5.2.1 for future works.

4.5.2.3 Comparison

Based on the generalisation experiment result obtained by the five evolved Pareto sets

of controllers for robust and switched fault tolerant control respectively, this section

128

will conduct a comparison between these two different faulty tolerant control schemes

and find out which one achieved a better performance.

Table 4.13 lists the A-test scores for the four different scenarios’ result in terms of

robust and switched fault tolerant control comparison. This comparison also follows

the A-test analysis rule mentioned in section 4.4.1.2 that a lower A-test score means a

higher response. In this comparison, robust fault tolerant control result was used as the

baseline performance, so the A-test score will reflect the switched fault tolerant control

performance compared to the robust one.

Table 4.13: Comparison between the success rate of robust and switched fault tolerant control
based on the controllers evolved by MOCGPANN

Scenario Initial scenario Fault signal Robot
condition

Beacon
position

A-test score 0.5 0.388889 0.5 0.37037

As can be seen from Table 4.13, the A-test score for the initial scenario and the new

robot condition scenario is both 0.5 which indicates an identical performance for

robust and switched fault tolerant control for these two scenarios. However in terms of

the new fault signal and new beacon position scenarios, the A-test scores are both

below 0.5 and located in the small effect size interval [0.36, 0.44]. This result means

that switched fault tolerant control outperforms robust fault tolerant control in terms

of the success rate for these two scenarios. Although the effect size is small for these

two scenarios, at least it demonstrates that switched fault tolerant control produced a

better performance than the robust one, which could be considered as a main

approach for the offline designed controller in this work.

Actually it is normal to obtain this comparison result since two bank controllers will

definitely outperform a single robust controller in terms of each objective as

mentioned in section 3.3.2.3. But the result does not indicate that robust control is not

suited to fault tolerance. As is also mentioned in section 3.3.2.3, robust fault tolerant

control saves the memory to store one more controller on board and there is no need

to design a controller switch mechanism. The most important aspect is that robust

control belongs to the passive fault tolerant control mentioned in section 2.2.1 which

does not need fault diagnose procedure if it is required, when fault occurs during the

system operation. So robust fault tolerant control saves lots of work to do, but the

degraded performance cannot be ignored as well.

129

In conclusion, MOCGPANN demonstrates the capability to evolve controllers which

could be working in more general cases in terms of both the switched and robust fault

tolerant control based on robot phtotaxis task. Although not all the scenarios are

working well for MOCGPANN evolved Pareto sets of controllers, MOCGPANN still

demonstrates the potential capability to evolve promising controllers for generalisation.

On the other hand, switched fault tolerant control produced a better performance than

the robust one, which could be considered as a main scheme for fault tolerant control

in this work. Future work would be considering certain scenarios such as random fault

signal and varied beacon position to evolve controllers in order to see how the evolved

Pareto sets of controllers will be working for those generalised scenarios.

4.6 Summary

This chapter fills the gap that controller structure evolution has not been investigated

into the fault tolerant area based on the implementation of a multi-objective network

structure optimisation based NE approach, which is MOCGPANN in this work. The

motivation of investigating MOCGPANN is due to the failure of CGPANN to achieve the

robust fault tolerant control referred in chapter 3. So that is why MOCGPANN needs to

be developed for fault tolerant control.

However there are two problems when developing the MOCGPANN algorithm. One is

the problem occurred in the survival selection where the individuals with the same

fitness but different inactive genes cannot be distinguished by the crowding distance

measure. Although it is fine to pick a random individual due to the identical fitness, it is

still worth developing a new crowding fill strategy driven by the significant benefit of

preserving neutral genetic drift based on the genetic redundancy of inactive genes in

each individual. The other is the convergence problem that a multi-objective

optimisation algorithm normally relies on the convergence against a true Pareto

optimal front obtained before the evolution. However the true Pareto optimal front

may not always be acquired before the evolution is conducted. In this case, a new

convergence criterion needs to be developed based on a performance measurement

for a multi-objective optimisation algorithm.

Based on the investigation of population diversity and hyper-volume indicator, the

MOCGPANN is developed with a modified crowding fill strategy rather than the original

one from NSGA2 and a new convergence criterion is also developed based on the

130

performance of hyper-volume indicator. However there is no significant difference

between the modified and original crowding fill strategy including the comparison of

two more different versions. A possible reason is due to the weight mutation which has

already helped the evolutionary search and that is why the benefit of preserving

population diversity and genetic drift is absent. Even though, preserving population

diversity and genetic drift during the crowding fill strategy still achieved more stable

performance than the original and a random preservation version. However it is still

not clear whether a more stable performance could result in any further benefit for the

evolutionary search at the moment. On the other hand, hyper-volume indicator

demonstrated excellent performance to observe the convergence without acquiring

the true Pareto optimal front in advance, which is quite useful for multi-objective

optimisation algorithm convergence problem.

Apart from the evolution work, a more significant problem is to investigate how

MOCGPANN could be used to evolve feasible controllers so as to achieve fault tolerant

control, where CGPANN was failed to complete. Based on the generalisation

experiment result, MOCGPANN demonstrates capability to obtain Pareto sets of

controllers which achieved not only robust but also switched fault tolerant control,

which fills the gap that controller structure evolution has not been investigated into

fault tolerant area. Additionally, switched fault tolerant control outperforms robust

fault tolerant control for the generalisation experiment as expected if fault diagnosis is

already accomplished on the assumption for this work. However, not all the

generalised scenarios are suited for the evolved controllers especially when the fault

signal is changed or the beacon is moved to a new position for the online test.

The future work will be comprised of two parts including the evolution and

generalisation experiments respectively. On the one hand, preserving population

diversity or genetic drift has not presented significant benefit. Although they achieve

more stable performance, this advantage is so weak compared to the evolutionary

search. In this case, more work needs to be conducted to investigate whether

preserving population diversity or genetic drift for the survival selection will result in

any further benefit. On the other hand, the evolved controllers are not working very

well for new fault signal and new beacon position scenarios. For this reason, these

scenarios may need to be considered during the solution evaluation to obtain further

131

optimised controllers so as to achieve not only a more effective fault tolerant control

scheme but also a more effective robot phototaxis task.

The next chapter will investigate whether network structure optimisation still

outperforms connection weight optimisation in the NE based multi-objective

optimisation in terms of fault tolerant control scheme, which is driven by the

conclusion in section 2.4.4.3.

132

Chapter 5 NSGA2 for ANN in fault tolerant control

5.1 Introduction

As can be seen from chapter 4, MOCGP demonstrates capabilities to achieve the robot

sensor fault tolerant control based on NE in terms of network structure optimisation,

which fills the research gap of controller structure optimisation based EA approach not

investigated into fault tolerant control area. In terms of the evolution experiment,

although preserving genetic drift and maximising population diversity have not

demonstrated significant benefits to aid the evolutionary search for the crowding fill

strategy during the survival selection, MOCGP still obtains feasible Pareto sets of

controllers which would be promising to realise the fault tolerant control for robot

phtotaxis task. According to the generalisation experiment, although just one type of

crowding fill strategy is tested for its evolved Pareto sets of controllers, those

controllers still demonstrate considerable performance in some of the generalised

scenarios for both of robust and switched fault tolerant control based on the

phototaxis task. In addition, switched fault tolerant control also outperforms robust

fault tolerant control for the generalised experiment, which verifies the proposed

benefit of switched fault tolerant control for this work mentioned in section 3.3.2.3.

In this sense, this chapter will investigate whether connection weight optimization

based NE approach could also achieve the equivalent performance to obtain the

feasible Pareto sets of controllers so as to realise the fault tolerant control for robot

phototaxis task, which is a further investigation based on the conclusion in section

2.4.4.3 where network structure optimisation outperforms just connection weight

optimisation in a series of basic NE benchmark experiments. In order to achieve the

connection weight optimization for NE, NSGA2 could be the first choice for the multi-

objective optimization for ANN’s connection weights. As is mentioned in section 2.5.1,

NSGA2 is a GA based multi-objective optimization algorithm and it has already

demonstrated competitive performance in the parameter optimisation area. In

addition, connection weight optimisation based fault tolerant control has been

investigated extensively, so it is worth trying NSGA2 for the same experiment and see

whether it can also achieve the fault tolerant control based on multiple objectives.

In this case, NSGA2 will be utilised to just train the ANN’s connection weight for

multiple objectives. However it needs to note that connection weight optimization and

133

network structure optimization are actually two different approaches that weight

optimization is just working to evolve the weight values but structure optimization will

evolve the network structure and connection weight values at the same time in order

to obtain a complete ANN. Therefore, to get a sensible comparison, the NSGA2 based

ANN optimization will evolve the connection weight in different network structures

firstly and then the ANN with the optimal structure will be used to do the comparison

with MOCGP evolved ANN. The comparison will be conducted based on the evolution

experiment and the evolved Pareto sets of controllers will be also investigated for the

generalisation experiment.

5.2 Experiment setup

5.2.1 Evolution experiment

The aim of the evolution experiment is the same as that in section 4.4.1 where the

controllers will be evolved in terms of two different objectives including the fault-free

and faulty conditions so as to investigate whether the evolved Pareto set of controllers

based on NSGA2 could achieve the robot sensor fault tolerant control. So the

hypothesis of the NSGA2 based evolution experiment is that a feasible Pareto set of

controllers could be obtained eventually based on the ANN’s connection weight

optimisation for fault-free and faulty conditions respectively.

The experiment setting with regard to the fault tolerant control based robot phototaxis

task framework will be totally the same as that designed in section 3.2.1. The evolved

controllers’ performance will be compared to each other in terms of the same

responses: hyper-volume and generation number. The ANN controllers will be

evaluated in the same two objectives which are the fault-free condition and faulty

condition where sensor 1 and 7 will be failed completely with zero signals as the sensor

input reading to the controller. And the numbers of input and output nodes are still the

same which are 8 and 2 respectively.

The only difference is the optimisation algorithm where NSGA2 will be utilised to just

train the ANN’s connection weight values instead of MOCGP for both the network

structure and connection weight optimisation. Therefore the ANN’s structure needs to

be optimally adjusted in order to obtain the best evolved ANN’s performance with

NSGA2. On the other hand, NSGA2 has different parameters for the optimisation

algorithm especially for the crossover operator which is not utilised for MOCGP, so it is

134

also required that those algorithm parameter values should be optimised as well in

order to maximise NSGA2’s performance.

As is mentioned in section 2.4.4.3, CGPANN outperforms CNE for a series of benchmark

experiments. In this case, a comparison will be conducted based on the best tuned

ANN’s structure for NSGA2 in order to investigate whether MOCGP will still outperform

NSGA2 for multi-objective optimisation task in terms of NE based robot fault tolerant

control, which will also demonstrate the benefit of network structure optimisation over

just connection weight optimisation.

5.2.1.1 ANN parameters

As can be seen from [149], a single hidden layer ANN will be considered as a primary

choice since just one hidden layer ANN will normally solve the majority of problems.

However whether just one hidden layer is still suited for this experiment is unknown at

the moment. Even though, it may be a time consuming work to try different hidden

layers with different hidden neurons. For this reason, one hidden layer could be

considered as the main structure for the ANN training with NSGA2 and the experiment

of different hidden layer along with different hidden neuron comparison could be put

in the future work. In this case, the only remaining problem is how many neurons are

sufficient for this hidden layer. Although [149] mentions that the number of neurons in

the hidden layer is basically between the number of input nodes and output nodes, it is

just an empirically-derived conclusion. Therefore it is still worth setting more hidden

nodes and see how those ANNs will perform for the fault tolerant control experiment.

In a word, this evolution experiment utilises 5 different numbers of nodes in this single

hidden layer, which are 6, 8, 10, 12 and 14 nodes respectively. The optimal number of

hidden nodes will be utilised as the basic ANN’s structure in terms of NSGA2 based

connection weight optimisation. In addition, the connection weight range will be the

same as that in section 4.5.1.1 in the interval [-10, 10] so as to achieve a sensible

comparison with MOCGP. Moreover, since MOCGPANN performs better with feed

forward than recurrent ANN for the controller evolution mentioned in section 4.5.1.1,

NSGA2 will still implement feed forward ANN for the evolution and no recurrent

connections will be considered in this work as well for a reasonable comparison.

Apart from those mentioned aspects, the last one that needs to be considered is the

neuron transfer function. The MOCGPANN experiment conducted in section 4.4.1

135

utilises two different neuron transfer functions to create heterogeneous ANN since

MOCGPANN is able to optimise not only network structure but also transfer functions.

However NSGA2 is considered to be working well for the weight optimisation but it is

currently unknown whether it is still working well for the transfer function optimisation.

To simplify the comparison, the logistic sigmoid function, which is also referred to

sigmoid function, is selected as the only neuron transfer function utilised for the ANN

in the NSGA2 experiment. On the other hand, a new evolution experiment with

MOCGPANN will be conducted along with NSGA2 based evolution experiment. This

new MOCGPANN based evolution experiment is quite similar to that in section 4.4.1,

the only difference is that the MOCGPANN disables the neuron transfer function

optimisation. That is to say, MOCGPANN will only evolve a homogenous ANN with just

one type of neuron transfer function, which is the same as this NSGA2 based evolution

experiment. In this case, the sigmoid neuron transfer function will be implemented for

MOCGP as the only function type for ANN as well as for NSGA2. For this reason, the

comparison result will demonstrate the only difference between connection weight

optimisation and network structure optimisation for ANN in terms of fault tolerance,

where other aspects are totally the same.

5.2.1.2 NSGA2 parameters

In terms of the NSGA2 parameters, 20 individuals will constitute each population. The

reason to set the same population size as MOCGP is due to the hyper-volume indicator

result. As is mentioned in section 2.6.2, hyper-volume indicator is a famous approach

to display the performance of a multi-objective optimisation algorithm. However the

result of hyper-volume indicator is basically affected by the number of solutions in the

first Pareto-optimal front. That is to say, more solutions in the first Pareto front will

result in a higher indicator value and vice versa, which will disturb the performance

comparison between NSGA2 and MOCGP. In this sense, NSGA2 still applies the same

population size as MOCGP in each population, which guarantees that both of NSGA2

and MOCGP will utilise 20 individuals at most to demonstrate their performance.

However, one problem is that whether 20 individuals are the best choice for both of

NSGA2 and MOCGP is unknown at the moment. So it would be interesting to try

different population size for NSGA2 and MOCGP at the same time and investigate the

influence on their performance. However it is also a time consuming work, so 20

individuals could be still used as the population size and the investigation of different

population size impact on their performance could be put in the future work.

136

The crossover used in this work is simulated binary crossover and the mutation is

polynomial mutation, both of them are working for real number encoded weight values

[150]. Simulated binary crossover was developed with respect to the one-point

crossover for binary coded GA. And polynomial mutation is working in a way of

probabilistic mutation where each variable will have a chance to be mutated to a new

value. In addition, there are two more parameters only used in the simulated binary

crossover and polynomial mutation, which is called distribution index. The distribution

index will influence how far the children are from their parents. That is to say, a large

distribution index will result in the children with higher probability to be closed to their

parents and a small distribution index will lead to a lower probability [150]. It needs to

note that MOCGP does not utilise crossover but NSGA2 does. The reason may be that

CGP actually does not benefit from crossover [29] but NSGA2 relies on it no matter for

real number or binary number encoding [92]. In this case, it is still a fair comparison

even though NSGA2 utilises crossover and MOCGP does not.

In terms of the parameter values, the crossover probability is set 0.9, the mutation

probability is set 0.02, and the distribution index is set 20 for both the crossover and

mutation respectively. These values will be considered as the baseline parameter

values. So when the optimal ANN’s structure is found, those baseline parameter values

will be adjusted based on the Parameter Robustness technique [141] developed in

Spartan in order to achieve the sensitivity analysis along with the cumulative mean

approach [142] for the number of experiment runs determination. Both of Parameter

Robustness technique and cumulative mean approach are the same as that utilised in

section 4.4.1.2. It also needs to note that the parameters for convergence criteria will

be the same from the conclusion in section 4.5.1.1 where Nconv is 20 and Rconv is 1.01.

Although these two parameters could be also tuned to obtain the optimal values,

different convergence parameters will result in different responses for both the hyper-

volume and generation number. In this case, it is more sensible to remain the

calibration values for convergence parameters in order to conduct a fair comparison

between NSGA2 and MOCGPANN.

5.2.1.3 Summary of the difference between NSGA2 and MOCGP parameters

As is referred in section 2.4.4.3, network structure optimisation outperforms

connection weight optimisation based on the comparison work between CNE and

CGPANN. In this case, it is interesting to explore whether network structure

137

optimisation still outperforms connection weight optimisation in terms of multi-

objective optimisation with NSGA2 and MOCGP respectively for robot fault tolerant

control. Table 5.1 presents a conclusion about all the different aspects including the

ANN parameters and the optimisation algorithm parameters mentioned above

between NSGA2 and MOCGP for the ANN controller evolution experiment.

Table 5.1: Different aspects between NSGA2 and MOCGP for ANN evolution

 NSGA2 MOCGP

ANN parameters Hidden layer number Node number

Hidden node number Arity number

Weight range Weight range

Feed forward/Recurrent Feed forward/Recurrent

Neuron transfer function Neuron transfer function

Algorithm parameters Population size Population size

Mutation probability Mutation probability

Crossover probability

Distribution index for
crossover

Distribution index for
mutation

In Table 5.1, all the different aspects have been discussed. As is mentioned in section

5.2.1.1 and 5.2.1.2, both of ANN and algorithm parameters need to be adjusted in

order to maximise the performance for these two algorithms. However, The ANN

parameters are investigated to maintain the consistency between NSGA2 and MOCGP

in order to obtain a sensible comparison result between the connection weight

optimisation and network structure optimisation for fault tolerant control. In this case,

the Hidden node number is adjusted for NSGA2 (Hidden layer number could be set 1 at

the moment) and the Node number with the Arity number are adjusted for MOCGP.

Other parameters will be remained consistent including the same Weight range, the

same Feed forward ANN type and the same Neuron transfer function implemented to

create homogeneous ANN. The optimisation algorithm parameters are tuned for each

algorithm respectively since they have no influence on the ANN composition, which

just benefit to the evolutionary search in order to obtain the best responses. Except for

the parameter difference in ANN and the algorithm itself, other aspects will be totally

the same for the phototaxis task framework designed in section 4.4.1. So the aim of

this comparison is to investigate whether the network structure optimisation will

outperform the connection weight optimisation in terms of the multi-objective robot

fault tolerant control.

138

5.2.2 Generalisation experiment

The generalisation experiment setup is actually totally the same as that designed in

section 4.4.2. Since the generalisation experiment is just a test for the evolved

controllers, so it does not matter how the controller is evolved, for example structure

optimisation or weight optimisation, and that’s why the generalisation experiment

setup can be remained fixed as that in section 4.4.2. The aim of the generalisation

experiment is to test whether the evolved Pareto sets of controllers by NSGA2 instead

of MOCGP could also achieve both of switched and robust fault tolerant control in

more generalised scenarios. Basically, the fault should be injected during the robot

phototaxis task as a primary principle for the generalisation experiment, so the

controllers should be switched between each other for the switched fault tolerant

control when the fault is occurred. And for the robust fault tolerant control, only one

controller is loaded all the way through the phtotaxis task no matter when the fault is

occurred. So the hypothesis of the generalisation experiment is quite similar with that

in section 4.4.2 where the obtained feasible Pareto sets of controllers by NSGA2 could

make robot achieve both of switched and robust fault tolerant control based on the

phototaxis task in more generalised scenarios as well.

The generalised scenarios are also the same as that designed in section 4.4.2 where the

obtained controllers will firstly be tested in the same basic scenario as the evolution

experiment but the fault will be injected during the task including 300 and 700 ticks

respectively. And then if the evolved controllers are working well in this basic scenario,

three more generalised scenarios will be utilised to test the evolved controllers

including the different fault signal, different robot starting position with orientations

and different beacon position. The new faulty sensor signals will be set 0.5 instead of 0.

Ten new robot starting positions and orientations will be utilised rather than the

original robot starting conditions. Finally the beacon will also be placed in position (2, 2)

instead of original position (0, 0) and the experiment time limit will be set 3000 ticks

since 1200 ticks is meaningless when the new beacon position is varied to different

robot starting points and the success rate will be utilised as the new controller

assessment criteria rather than the time to the beacon. All of the mentioned above

generalisation experiment setup is totally the same as that in section 4.4.2 and five

different Pareto sets of controllers obtained by NSGA2 will be utilised for the

generalisation experiment. In terms of switched fault tolerant control, two controllers

are selected working well for each objective respectively. And in terms of the robust

139

fault tolerant control, only one controller is required with a similar performance for

both of the two objectives. The result of switched and robust fault tolerant control will

be presented and discussed respectively in next section 5.3.2.

5.3 Result and discussion

5.3.1 Evolution experiment

As is mentioned in section 5.2.1, the obtained solutions should be investigated in two

steps: different ANN’s structure and different NSGA2 parameter values. Therefore, only

the best tuned ANN’s structure and NSGA2 parameter values could be utilised to

maximise the evolved controllers’ performance so as to conduct the final comparison

with the solutions found with MOCGPANN. In this case, the ANN’s structure adjustment

and NSGA2 parameters’ tuning will be discussed as following.

5.3.1.1 Number of hidden nodes selection

In terms of the number of hidden nodes, five different options were selected including

6, 8, 10, 12 and 14 hidden neurons for this hidden layer in terms of hyper-volume and

generation number responses in order to find out how many are sufficient. This

investigation was conducted based on the U-test and A-test as well in order to find out

the significant difference between these options. The result shows that 12 and 14

hidden neurons obtained the best and quite similar performance, which indicates that

12 hidden neurons may be already sufficient for this hidden layer. For this reason, 12

nodes could be selected for the ANN’s hidden layer and this type of structure will be

utilised throughout this chapter for the evolution fault tolerant experiment based on

connection weight optimization with NSGA2. The details of this hidden neuron

investigation can be referred to Appendix C.1.

5.3.1.2 Sensitivity analysis for NSGA2 parameters

Apart from the ANN’s structure optimisation, the NSGA2 parameters also need to be

adjusted to their optimal values in order to obtain the best responses for the evolved

controllers. As is mentioned in section 5.2.1.2, there are four parameters for NSGA2

that needs to be tuned including the crossover probability (PCrossover), mutation

probability (PMutation), distribution index for crossover (DICrossover) and mutation

(DIMutation) respectively. The baseline values for them are listed respectively in Table

5.2 which will be utilised for the Parameter Robustness technique for the sensitivity

140

analysis. All the comparison results will be displayed in boxplot and their corresponding

A-test scores will also be presented in graphs created by Parameter Robustness

technique. The details of the sensitivity analysis can be referred to Appendix C.2.

Table 5.2: Baseline values for NSGA2 parameters

NSGA2
parameters

PCrossover PMutation DICrossover DIMutation

Baseline values 0.9 0.02 20 20

Now all the parameters have been calibrated to their optimal values which are listed in

Table 5.3. The next step is to conduct the final comparison between the responses of

baseline parameter values against the calibration parameter values for NSGA2 in order

to investigate whether all the NSGA2 parameters in their calibration values will

outperform their baseline values.

Table 5.3: Calibration values for NSGA2 parameters

NSGA2
parameters

PCrossover PMutation DICrossover DIMutation

Calibration
values

0.9 0.05 20 5

Figure 5.1 shows the hyper-volume comparison between the NSGA2 parameter

baseline values and calibration values and Figure 5.2 shows the generation number

comparison results for them.

141

Figure 5.1: Hyper-volume comparison between the NSGA2 parameter baseline values and
calibration values

Figure 5.2: Generation number comparison between the NSGA2 parameter baseline values and
calibration values

Table 5.4: U-test scores for the comparison between NSGA2 parameter baseline values and
calibration values

 Baseline values Calibration values

Hyper-volume 1 < 0.00001

Generation number 1 < 0.00001

Table 5.5: A-test scores for the comparison between NSGA2 parameter baseline values and
calibration values

 Baseline values Calibration values

Hyper-volume 0.5 0.34126

Generation number 0.5 0.846786

As can be seen in Figure 5.1 and Figure 5.2, NSGA2 calibration parameter values

outperforms baseline parameter values with a higher hyper-volume and a lower

generation number. According to Table 5.4, there is a significant difference between

these two approaches where the p values for both of these two comparisons are less

than 0.0001%. Finally Table 5.5 also demonstrates the same result that the calibration

values achieve a higher hyper-volume with a medium effect size and it also achieves a

lower generation number with a large effect size. In conclusion, the NSGA2 parameters

in their calibration values outperform their baseline values and those calibration values

142

will be utilised for the comparison between NSGA2 and MOCGP in the next section

5.3.1.3 in terms of multi-objective robot fault tolerant control with ANN optimisation.

5.3.1.3 Comparison between NSGA2 and MOCGP

After the ANN and NSGA2 parameters have been adjusted optimally, the NSGA2 based

evolution experiment results will be compared with MOCGP based evolution

experiment results. This comparison will demonstrate whether network structure

optimisation will be able to produce a better performance than just connection weight

optimisation for NE based multi-objective optimisation in terms of robot fault tolerant

control.

There are two points that needs to be mentioned here. One is that NSGA2 and MOCGP

are actually working in two different ways where NSGA2 is working in parameter level

and MOCGP is working in both of parameter and structure levels. Due to the different

evolutionary search areas, it is meaningless to compare the generation or evaluation

number response for these two approaches. However the hyper-volume response is

still suited to measure their performance for evolved solutions as long as the solutions

are feasible to solve the task, which is the robot phototaxis task in the face of sensor

failures, no matter which evolutionary search level the algorithm is working. Although

NSGA2 is working in parameter level, the ANN’s structure is already optimised in

section 5.3.1.1. In this case, the NSGA2 evolved solutions with optimal parameter

values could be considered with optimal performance.

The other is that the MOCGP parameters utilised for this comparison is slightly

different from the one in section 4.5.1.1. As is mentioned in section 5.2.1.1, NSGA2

implements sigmoid neuron transfer function to create the homogeneous ANN for

connection weight optimisation. So in order to maintain the consistency for a sensible

comparison, MOCGP also utilises sigmoid neuron transfer function as the only function

type to create the homogeneous ANN for network structure optimisation rather than

two different function types implemented for heterogeneous ANN in section 4.5.1.2.

Other aspects including the weight range and the feed forward network type are both

the same between these two approaches. Only in this way, the comparison result will

demonstrate the difference between network structure and connection weight

optimisation for the evolution experiment.

143

Figure 5.3 shows the final comparison between NSGA2 and MOCGP in terms of hyper-

volume response. And Table 5.6 lists the corresponding U-test and A-test scores.

Figure 5.3: Hyper-volume comparison between NSGA2 and MOCGP

Table 5.6: U-test and A-test scores for hyper-volume comparison between NSGA2 and MOCGP

 NSGA2 MOCGP

Hyper-volume with U-test 1 < 0.00001

Hyper-volume with A-test 0.5 0.337994

As can be seen from Figure 5.3, MOCGP outperforms NSGA2 in terms of hyper-volume

response. According to Table 5.6, there is a significant difference between these two

approaches where the p value of U-test is less than 0.00001%. Moreover, the A-test

score also indicates a higher hyper-volume response for MOCGP where its score of

0.337994 belongs to the medium effect size interval of [0.29, 0.36]. In a word, MOCGP

produces a better performance than NSGA2 in terms of hyper-volume for NE based

multi-objective robot fault tolerant control, which also demonstrates that network

structure optimisation performs better than just connection weight optimisation for

this experiment.

However as is referred in section 2.4.4.3, the comparison between NSGA2 and MOCGP

is actually not quite convincing to display the performance difference between

connection weight optimisation and network structure optimisation. One possible

reason is that the computational effort of these two algorithms is quite different due to

their different search space. That is to say, NSGA2 optimises the connection weight

144

values in a pre-designed network structure but MOCGP has to optimise both of

connection weight and network structure at the same time, which is just the same as

what the comparison work is conducted in this section. In this case, it may be

considered as an unfair comparison to show the performance difference between

connection weight optimisation and network structure optimisation due to their

different search space. However, this comparison result still demonstrates that NSGA2

is not able to produce an equivalent performance with MOCGP even if the ANN’s

structure has been well adjusted in advance.

Generally speaking, this comparison is still able to present the performance difference

between these two approaches where MOCGP outperforms NSGA2 in terms of the

hyper-volume measurement. A possible explanation for this comparison result is that

MOCGP could obtain an efficient ANN’s structure which will not be considered by

human designer. That is to say, the ANN’s structure for NSGA2 is normally designed in a

usual way, so it may not be available for NSGA2 to utilise those structures which are

obtained by MOCGP. And that may be a main reason why MOCGP will outperform

NSGA2 for the multi-objective robot fault tolerant control experiment. However as

mentioned in section 5.2.1.1, the ANN structure utilised for NSGA2 just contains a

single hidden layer. Although a single hidden layer ANN is able to solve a majority of

problems, it is unknown that whether more than one hidden layer will be helpful to

increase the ANN performance for this experiment. On the other hand, the ANN’s

structure evolved by MOCGP is actually not a usual ANN’s structure which may contain

lots of hidden layers with different hidden neurons for each layer. So it is still not clear

whether the better performance of MOCGP is due to the unusual structure or due to

more than one hidden layers evolved in the ANN that may contribute to the ANN’s

performance for this experiment. Apart from hidden layer problem, population size

may also influence the evolution result. As is mentioned in section 5.2.1.2, NSGA2 and

MOCGP both utilise 20 individuals as the population size. Although same population

size could maintain the measure consistency for hyper-volume indicator, whether 20

individuals are the best choice to demonstrate the performance of either NSGA2 or

MOCGP is still unknown at the moment. For these reasons, it is still worth a further

investigation on the evolved ANN performance with more than one hidden layer

utilised for NSGA2 to train the ANN’s weights and with different population sizes for

both of NSGA2 and MOCGP, which will be considered as future works.

145

Even so, the comparison result still demonstrates that MOCGP removes the

requirement to obtain a suitable network structure in advance even if the obtained

ANN’s structure is unusual, where NSGA2 has to consider the network structure

manually by human designer for the given task when training ANN’s connection weight.

Actually, those mentioned benefits for MOCGP is actually the same as CGP for NE

which is mentioned in section 2.4.4.3 and this comparison result still indicates that

MOCGP is benefit from the network structure optimisation for NE.

In conclusion, the comparison result demonstrates that network structure optimisation

will be able to produce better performance than just connection weight optimisation

for NE based multi-objective robot fault tolerant control task, at least for MOCGP and

NSGA2 respectively. The next section 5.3.2 will investigate how the NSGA2 evolved

solutions could impact the ANN controllers’ performance in generalised scenarios.

5.3.2 Generalisation experiment

As mentioned in section 5.2.2, the whole generalisation experiment is similar to section

4.5.2, which was conducted with robust and switched fault tolerant control

respectively based on five Pareto sets of controllers but evolved by NSGA2 instead of

MOCGP in terms of four generalised scenarios. The success rate would also be used to

assess the evolved controllers’ performance based on 10 different trials. The data of

these five Pareto sets’ generalisation experiment result can be referred to the

Appendix A.2.

5.3.2.1 Robust fault tolerant control

In terms of the robust fault tolerant control, there is just one controller that is loaded

for the robot, so there is no need to consider the controller switch. However the

controller has to perform relatively well for each objective, so a degraded performance

could be accepted compared to the switched fault tolerant control.

Table 5.7: Success rate for five obtained Pareto sets by NSGA2 in terms of robust fault tolerant
control

 Initial scenario Fault signal Robot condition Beacon position

 Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Pareto 1 1 1 0 1 1 1 1 1

Pareto 2 1 1 0 0 1 1 0.6 0.6

Pareto 3 1 1 0 0.5 1 1 0.5 0.5

146

Pareto 4 1 1 0 0 1 1 0.5 0.5

Pareto 5 1 1 0 1 1 1 1 1

Table 5.7 lists the success rate for five obtained Pareto sets by NSGA2 in terms of

robust fault tolerant control. As can be seen in this table, all the five evolved Pareto

sets are working well for basic initial scenario and new robot starting conditions as well

with 100% success rate for both of 300 and 700 ticks. However in terms of new fault

signal and new beacon position scenarios, none of the five Pareto sets achieves 100%

success rate no matter the fault occurs at 300 or 700 ticks with better or worse

performance. Moreover, it is serious that all the five Pareto sets perform 0% success

rate for the new fault signal scenario when the fault occurs at 300 ticks, which means

all the evolved Pareto sets of controllers are actually failed to achieve the robust fault

tolerant control.

According to the result, the controllers are working very well for basic scenario and

new robot starting condition scenario. That is to say, no matter when the fault occurs

or where the robot initial condition is, the evolved controllers by NSGA2 are capable to

make robot continue performing the phototaxis for robust fault tolerant control, as

long as the distance between robot initial position and beacon position is fixed as that

in the evolution experiment. However the evolved controllers are not working well for

new fault signal scenario and new beacon position scenario. What’s more, all of the five

Pareto sets perform 0% success rate for new fault signal scenario when fault occurs at

300 ticks for robust fault tolerant control. That is to say, the evolved controllers are

completely failed to make the robot continue performing the phototaxis when fault

occurs at an early stage, for example 300 ticks in this experiment. In conclusion, the

evolved controllers are suited to the initial and new robot condition scenarios, but not

suited to the new fault signal and new beacon position scenarios. In this case, it is also

required that more controllers need to be evolved as future works to deal with those

two unsuited scenarios so as to achieve the robust fault tolerant control, which is the

same as the conclusion in section 4.5.2.1.

5.3.2.2 Switched fault tolerant control

In terms of switched fault tolerant control, two controllers from each Pareto set

evolved by NSGA2 will be selected based on their performance for each objective.

Basically, each controller should achieve the best performance for its corresponding

147

objective among the controllers in this Pareto set. So it does not matter what the

performance is for the opposite objective of the selected controllers since they can be

switched to each other when the fault is occurred.

Table 5.8: Success rate for five obtained Pareto sets by NSGA2 in terms of switched fault tolerant
control

 Initial scenario Fault signal Robot condition Beacon position

 Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Pareto 1 1 1 0 1 1 1 1 1

Pareto 2 1 1 0 0.1 1 1 0.6 0.6

Pareto 3 1 1 0 0.9 1 1 0.5 0.5

Pareto 4 1 1 0 0 1 1 0.5 0.5

Pareto 5 1 1 1 1 1 1 1 1

Table 5.8 lists the success rate for five obtained Pareto sets by NSGA2 in terms of

switched fault tolerant control. As can be seen from the table, all the five evolved

Pareto sets of controllers by NSGA2 are capable of performing the phototaxis task with

totally 100% success rate for the basic initial scenario and the new robot condition

scenario when the fault is injected at 300 and 700 ticks respectively during the task.

However the performance for new fault signal scenario is declined dramatically where

only the 5th Pareto set achieves 100% success rate for both of 300 and 700 ticks. In

addition, all the other four Pareto sets obtain 0% success rate for 300 ticks and more or

less success rate for 700 ticks. Finally in terms of new beacon position scenario, only

the 1st and 5th Pareto sets realise 100% success rate for both of 300 and 700 ticks and

the other Pareto sets reach more or less success rate respectively.

According to the result, it can be seen that the evolved Pareto sets of controllers by

NSGA2 realise a similar performance of switched fault tolerant control compared to

robust fault tolerant control where the evolved Pareto sets of controllers are working

very well not only for the basic scenario of different fault occurrence time but also for

the new robot starting condition scenario. However in terms of new fault signal

scenario and new beacon position scenario, only the 5th Pareto set realises 100%

success rate for both of these two scenarios and all the other Pareto sets achieve

different more or less success rate. This result demonstrates that the evolved Pareto

sets of controllers by NSGA2 are working well to achieve the switched fault tolerant

control no matter what time the fault occurs and where the robot initial condition is as

148

long as the distance from the beacon is fixed as the evolution experiment. However, if

the fault signal is altered to another value instead of the one from the evolution

experiment, the evolved controllers may not be working well for the switched fault

tolerant control. Moreover, if the beacon position is changed with varied distance to

the robot initial position, the evolved controllers are also not working very well. In this

case, if different fault signal or different beacon position is required for the switched

fault tolerant control, more controllers may need to be evolved based on these new

conditions, which is the same as the conclusion in section 4.5.2.2 for future works.

5.3.2.3 Comparison between two fault tolerant control schemes

This section is similar to section 4.5.2.3 where robust and switched fault tolerant

control performance will be compared to each other based on the obtained

generalisation experiment result of success rate in terms of 10 different trials. The only

difference is that this comparison will be conducted based on the NSGA2 evolved

controllers instead of MOCGP in section 4.5.2.3, but the aim is still the same to

investigate which one performed better for this work, the robust or the switched fault

tolerant control.

Table 5.9 lists the comparison result between robust and switched fault tolerant

control based on the obtained generalisation rate. This comparison also utilised A-test

to estimate the difference of switched fault tolerant control compared to the robust

fault tolerant control, which is the same as that in section 4.5.2.3.

Table 5.9: Comparison between the success rate of robust and switched fault tolerant control
based on the controllers evolved by NSGA2

Scenario Initial scenario Fault signal Robot condition Beacon position

A-test score 0.5 0.395062 0.5 0.5

As can be seen from Table 5.9, only the A-test score for new fault signal scenario is

different from the other three scenarios. In terms of the new fault signal scenario, the

A-test score is 0.395062 which lies in the small effect size interval [0.36, 0.44] and this

result indicates that switched fault tolerant control outperforms robust fault tolerant

control in the new fault signal scenario, although it is a small effect size. With respect

to the other three scenarios, all of them have a same A-test score 0.5, which means

both of robust and switched fault tolerant control have the identical performance as

listed in the generalisation experiment results.

149

As can be seen from the comparison result, although switched fault tolerant control

only produced a better performance in the new fault signal scenario than the robust

fault tolerant control, neither of these two approaches achieved a total 100% success

rate among 10 trials as seen from the generalisation result in section 5.3.2.1 and

5.3.2.2. Additionally, although the performance for the new beacon position scenario is

the same between robust and switched fault tolerant control, neither of them achieved

a 100% success rate for the 10 trials and that means both of robust and switched fault

tolerant control are not working well in spite of an identical performance.

In conclusion, the comparison result of the NSGA2 evolved controllers is similar to that

in section 4.5.2.3 where switched fault tolerant control also outperforms robust fault

tolerant but just in the new fault signal scenario. In terms of the new beacon position

scenario, neither of robust and switched fault tolerant control achieved a better

performance, which may indicate that NSGA2 is not as effective as MOCGP to obtain

better performance controllers as is displayed in the evolution comparison result in

section 5.3.1.3.

5.4 Summary

This chapter is actually a comparison work with chapter 4 to investigate the difference

between connection weight optimisation and network structure optimisation for NE

based fault tolerant control. This comparison is driven by the conclusion in section

2.4.4.3 that network structure optimisation outperforms connection weight

optimisation on a series of NE based single objective optimisation benchmarks. In this

case, this work utilises NSGA2 instead of MOCGP as the connection weight optimisation

approach to investigate whether MOCGP still outperforms NSGA2 for the NE based

multi-objective optimisation in terms of fault tolerant control with robot phototaxis

task based on the same evolution and generalisation experiment framework as

designed in chapter 4.

In terms of the evolution experiment, NSGA2 is able to obtain feasible Pareto sets of

controllers for both of fault-free and faulty objectives. As a comparison, MOCGP is also

utilised to conduct the same evolution experiment with the same feed forward

network type, same weight range and even same neuron transfer function

implemented for the homogeneous ANN optimisation as the NSGA2 based evolution

experiment. However NSGA2’s performance is worse than that of MOCGP in terms of

150

hyper-volume. A possible reason is that MOCGP could obtain a network structure

which is not considered by NSGA2 but with more effective performance. However the

ANN’s structure utilised by NSGA2 just contains one hidden layer but MOCGP could

evolve ANN with lots of hidden layers with different hidden neurons. So it is not quite

clear whether the performance difference is due to the unusual structure of the

evolved ANN by MOCGP or due to the number of hidden layers that may contribute to

the ANN’s performance. On the other hand, both of NSGA2 and MOCGP utilise 20

individuals as the population size. Although same population size could maintain the

consistency of hyper-volume measurement, it is also unknown whether 20 individuals

are the most suited choice for each of these two algorithms. In this case, further

experiment needs to be conducted to investigate the impact of more than one hidden

layer on the ANN’s performance for NSGA2 and the impact of different population size

for both of NSGA2 and MOCGP, which could be considered as future works. In

conclusion, the result in this chapter demonstrates that network structure optimisation

still outperforms connection weight optimisation for NE based multi-objective fault

tolerant control for robot phototaxis task, which further verifies the benefit of network

structure optimisation over just connection weight optimisation.

In terms of the generalisation experiment, the evolved controllers by NSGA2 are

capable to achieve both of switched and robust fault tolerant control in generalised

scenarios no matter when the fault occurs or the robot initial condition is. However the

controllers evolved by NSGA2 are not working very well when new fault signal is

injected instead of the original one and when the beacon is moved to a new position in

terms of both the switched and robust fault tolerant control. Nevertheless, the

comparison result also demonstrates that switched fault tolerant control outperforms

robust fault tolerant control for this work despite that the switched fault tolerant

control only produced a better performance in the new fault signal scenario. On the

other hand, this generalisation experiment result obtained by NSGA2 still demonstrates

that a multi-objective optimisation algorithm is essential to achieve the robust fault

tolerant control where a single objective optimisation algorithm is not able to achieve

such as CGP mentioned in the conclusion of chapter 3. Future work will be the same as

section 4.6 that it is required to investigate how the controllers could be evolved to

deal with varied fault signals and different beacon positions not only for a more

effective fault tolerant control system but also for a more effective robot phototaxis

task.

151

Due to the benefit of network structure optimisation over just connection weight

optimisation for NE based multi-objective fault tolerant control, the next chapter will

design an extension experiment with more difficult scenarios for fault types and

investigate how MOCGPANN will be performing to obtain feasible Pareto sets of

controllers for this extension experiment in order to achieve robust and switched fault

tolerant control.

152

Chapter 6 MOCGPANN in extension fault tolerant control

6.1 Introduction

As can be seen from section 5.3.1.3, MOCGP demonstrates competitive performance

compared to NSGA2 for NE in terms of the multi-objective fault tolerant control

evolution experiment based on the robot phototaxis task. The result in section 5.3.1.3

also indicates that MOCGP based ANN network structure optimization outperforms

NSGA2 based ANN connection weight optimization in terms of the controllers’

performance based on hyper-volume measurement. In addition, this comparison could

be considered as a comprehensive work since the ANN’s structure is adjusted firstly in

order to maximise its performance. And then, the connection weights are evolved

based on the pre-optimised network structure, which not only guarantees the network

structure to be optimised, but also ensures optimised connection weight values.

Although the decision of hidden node number is not a work achieved by NSGA2, this

comparison is still a sensible work which fully demonstrates the performance

difference between the network structure optimization and connection weight

optimization at least for MOCGP with NSGA2 in terms of multi-objective fault tolerant

control.

Due to the capability of MOCGPANN for evolving effective fault tolerant controllers,

this chapter will conduct an extension fault tolerant control experiment based on

MOCGPANN and investigate how it will be performing for this more difficult fault

tolerant control scheme in order to find out whether MOCGPANN could still evolve

feasible controllers to achieve both of robust and switched fault tolerant control.

6.2 Experiment setup

The aim of this extension experiment is to investigate how MOCGPANN will be

performing to evolve fault tolerant controllers for a more difficult scenario with more

sensor failures. The obtained controllers will be tested for robust and switched fault

tolerant control respectively but there will be more faulty sensors in the generalised

scenarios as well. Therefore, the hypothesis is that MOCGPANN could be also effective

to evolve Pareto sets of controllers so as to achieve the extension experiment for both

of robust and switched fault tolerant control.

153

This work is definitely more difficult for the robot to still achieve phototaxis task with

just right side sensors to be working. However, it is still interesting to investigate

whether MOCGPANN could still obtain a feasible Pareto set of controllers on this

extension evolution experiment and whether these evolved controllers will be working

in generalised scenarios.

6.2.1 Evolution experiment

The evolution experiment setup is quite similar to section 4.4.1 based on the same

robot phototaxis task designed in section 3.2.1. The only difference is that the left 4

light sensors are failed together with zero reading signals as the input to the controller.

In other words, the robot would become totally blind to perceive light for the left side

when fault occurs, which is more difficult than the original 2 sensor failure scenario

designed in section 3.2.2 so as to obtain feasible fault tolerant controllers. In this case,

one objective would remain the same for the faultless condition, but the other

objective would become a 4 sensor failures condition. The controllers would be evolved

for these two objectives respectively in order to create the Pareto optimal set, if the set

could be obtained. Except for the objective modification, other aspects would still be

the same as the evolution experiment in section 4.4.1 including the calibrated

MOCGPANN parameter and convergence measurement parameter values from section

4.6.1.2. Finally, four different crowding fill strategies would also be utilised respectively

to assess the performance of MOCGPANN and the comparison among them would be

conducted based on the hyper-volume and generation numbers, which still utilised the

same procedure mentioned in section 4.5.1.2.

6.2.2 Generalisation experiment

The generalisation experiment is totally the same as that designed in section 4.4.2

except for 4 sensor failures instead of 2 sensor failures. In this case, each generalised

scenario would be tested based on 4 sensor failures during the phototaxis task.

Additionally, in terms of the new fault signal scenario, each of the left 4 sensors will

produce a 0.5 reading signal into the controller instead of 0 reading signal from the

evolution experiment. Apart from that, each obtained Pareto set of controllers would

be tested with 10 different trials and their success rate was also be used to assess the

controller performance in terms of both the robust and switched fault tolerant control

in terms of the generalisation tests.

154

6.3 Result and discussion

6.3.1 Evolution experiment

Figure 6.1 shows the hyper-volume comparison for different crowding fill strategies in

terms of the extension evolution experiment. Figure 6.2 shows the generation number

comparison for that. Table 6.1 lists the U-test scores for these two comparisons and

Table 6.2 lists the corresponding A-test scores.

Figure 6.1: Hyper-volume comparison for different crowding fill strategies in terms of extension
experiment

Figure 6.2: Generation number comparison for different crowding fill strategies in terms of
extension experiment

1
st

 version 2
nd

 version 3
rd

 version Original

1
st

 version 2
nd

 version 3
rd

 version Original

155

Table 6.1: U-test scores for hyper-volume and generation number in terms of extension
experiment

 1st version 2nd version 3rd version Original

HV 1 0.29834 0.0466 0.62414

Gen 1 0.99202 0.72786 0.28462

Table 6.2: A-test scores for hyper-volume and generation number in terms of extension
experiment

 1st version 2nd version 3rd version Original

HV 0.5 0.528356 0.442516 0.485608

Gen 0.5 0.501213 0.511243 0.467661

As can be seen from Table 6.1, the third version is the only one that achieves significant

difference compared to the first version in terms of hyper-volume measurement,

whose p value is below 0.05. Moreover, as is listed in Table 6.2, the A-test score of the

third version in terms of hyper-volume is also below 0.5, which means the hyper-

volume is higher than that of the first version where the median value is slightly higher

than the first one as well according to Figure 6.1. In addition, the A-test score of the

third version in terms of the generation number also achieves a slightly larger value

than 0.5, which means the generation number of the third version is slightly less than

the first one. In this case, it seems that the third version of crowding fill strategy is the

best choice for the extension evolution experiment since it spends fewer generations

to obtain better hyper-volume response. However to be more specific, the A-test score

of the third version for hyper-volume is still quite a small effect size compared to the

first one, where its A-test score is not even located in the small effect range between

0.44 and 0.36. Apart from the third version, the second version spends similar

generations to obtain lower hyper-volume response than the first one; the fourth

version achieves a higher hyper-volume but the generation number is also larger than

that of the first one. However neither second nor fourth version achieves the

significant difference compared to the first one, whose U-test scores are both larger

than 0.05 in terms of both the hyper-volume and generation number. In conclusion,

the third version seems to be the best choice for crowding fill strategy utilised for

MOCGPANN for the extension evolution experiment. Although its A-test score for

hyper-volume is still a quite small effect compared to the first one, this version of

crowding fill strategy still demonstrates the competitive performance among each

other for the extension evolution experiment. In this way, the controllers evolved from

156

this version could be a first choice to conduct the generalisation experiment, whose

result will be discussed in the next section 6.3.2.

It needs to note that the cumulative mean result is listed in Table 6.3 for the extension

evolution experiment. In this table, the first version requires the least number of runs

to sufficiently present its performance and the last one obtains the most number of

runs. As is mentioned in section 4.5.1.2, the first and second versions achieve much less

experiment runs than the other two to obtain a sufficient performance. And in terms of

this extension evolution experiment, although second version ranks the third for the

cumulative mean result, the fourth version is the last choice for crowding fill strategy in

terms of the require number of experiment runs. In a word, preserving population

diversity based crowding fill strategy is the second most stable version for the basic

evolution experiment and the most stable version for the extension evolution

experiment. Original crowding fill strategy is the second most unstable version for the

basic experiment and the most unstable version for the extension experiment.

In summary, preserving population diversity based crowding fill strategy is always a

relatively better approach and original crowding fill strategy is always not a good choice

with the relatively unstable performance for both of the original and the extension

evolution experiment. Although there is currently not a best scheme for the improved

crowding fill strategy utilised for MOCGPANN, the original crowding fill strategy

referred from NSGA2 seems not to be working very well. Therefore, the cumulative

mean result for these two evolution experiment implies that the original crowding fill

strategy may not suite the MOCGPANN’s survival selection. However, which version to

be utilised for crowding fill strategy is still an open question and whether preserving

genetic drift or population diversity is beneficial to the evolutionary search is also not

confirmed. In this sense, further investigation is required to find out whether the

crowding fill strategy improvement really has any significant benefit for the survival

selection in MOCGPANN as future works.

Table 6.3: Result of number of experiment runs required from cumulative mean approach for the
extension experiment

 1st version 2nd version 3rd version Original

Number of
runs

147 173 164 191

157

6.3.2 Generalisation experiment

As is mentioned in section 6.2.2, generalisation experiment was conducted for robust

and switched fault tolerant control respectively with four generalised scenarios based

on the success rate for each test. The only difference for this extension experiment is

that the left 4 sensors of the robot will be failed during the phototaxis instead of the

original experiment designed in section 4.4.2 with only 2 failed sensors. With regard to

the controller acquirement, the 3rd version of MOCGPANN was utilised as concluded in

section 6.3.1 to obtain 5 different Pareto sets of controllers in order to be implemented

for this generalisation experiment. The data of these five Pareto sets’ generalisation

experiment result can be referred to the Appendix A.3.

6.3.2.1 Robust fault tolerant control

Table 6.4 lists the success rate for 5 obtained Pareto sets of controllers based on 4

different generalised scenarios with 10 different trials for each test in terms of the

robust fault tolerant control. As can be seen from Table 6.4, except for the new fault

signal scenario, all the initial scenario, the new robot condition scenario and the new

beacon position scenario obtained 100% success rate for each test based on the

obtained 5 Pareto sets. This result indicates that MOCGPANN is capable to evolve

effective controllers that could achieve the robust fault tolerant control even for a

more difficult scenario with 4 sensors not working.

Table 6.4: Success rate for extension generalisation experiment results in terms of robust fault
tolerant control

 Initial scenario Fault signal Robot condition Beacon position

 Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Pareto 1 1 1 0 1 1 1 1 1

Pareto 2 1 1 0 0 1 1 1 1

Pareto 3 1 1 0 1 1 1 1 1

Pareto 4 1 1 1 1 1 1 1 1

Pareto 5 1 1 0 0 1 1 1 1

6.3.2.2 Switched fault tolerant control

Table 6.5 lists the success rate for 5 obtained Pareto sets of controllers based on 4

different generalised scenarios with 10 different trials for each test in terms of the

switched fault tolerant control. As can be seen from Table 6.5, the initial scenario and

158

the new robot condition scenarios achieved 100% success rate for each test. However,

the evolved 5 Pareto sets of controllers were not working very well in terms of the new

fault signal scenario and the new beacon position scenario. Nevertheless, this result

still demonstrates that MOCGPANN is capable to obtain effective controllers that could

be used to achieve the switched fault tolerant control for this extension experiment.

Table 6.5: Success rate for extension generalisation experiment results in terms of switched fault
tolerant control

 Initial scenario Fault signal Robot condition Beacon position

 Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Time:
300

Time:
700

Pareto 1 1 1 0 1 1 1 0.7 0.8

Pareto 2 1 1 0 1 1 1 1 1

Pareto 3 1 1 0 0.1 1 1 0.8 0.8

Pareto 4 1 1 1 1 1 1 1 1

Pareto 5 1 1 0 0 1 1 1 1

6.3.2.3 Comparison between two fault tolerant control schemes

As can be seen from section 6.3.2.1 and 6.3.2.2, MOCGPANN is capable to obtain

effective controllers that could be implemented to achieve both of robust and switched

fault tolerant control for this extension experiment. Based on these generalisation

results, Table 6.6 lists the comparison result for these two approaches for fault tolerant

control based on the A-test in terms of the success rate for each test.

Table 6.6: Comparison between the success rate of robust and switched fault tolerant control
based on the controllers evolved by MOCGPANN for this extension experiment

Scenario Initial scenario Fault signal Robot condition Beacon position

A-test score 0.5 0.469136 0.5 0.666667

As can be seen from Table 6.6, except for the same performance between robust and

switched fault tolerant control for initial and new robot condition scenarios, the new

fault signal scenario obtained an A-test score of 0.469136 with nearly no significant

difference and the new beacon position scenario obtained an A-test score of 0.666667

which locates in the medium effect size interval. Furthermore, the A-test score of the

new beacon position scenario is above 0.5 which indicates that switched fault tolerant

control produced a worse performance than robust fault tolerant control in this

scenario with a medium effect size. This result is unusual since switched fault tolerant

159

control will normally outperforms robust fault tolerant control as mentioned in section

2.2. In this case, a possible reason is that this extension experiment is quite

complicated, so which one will be performing better is not based on their basic

evolution experiment result. That is to say, due to the more difficult fault tolerance

scenario with 4 sensors failed instead of 2 sensors, those evolved controllers’

performance may not be predicted for these generalised scenarios. On the other hand,

according to the generalisation results, it is similar to section 4.5.2 where the evolved

controllers are not working very well in the new fault signal and new beacon position

scenarios. Therefore, it is still required to consider more generalised scenarios like

these two into the controller evolution in order to achieve more generalised fault

tolerant control as future works.

6.4 Summary

This chapter investigates how MOCGPANN could be performing to obtain fault tolerant

controllers for this more difficult extension experiment. This chapter is actually

motivated by the conclusion in section 5.3.1.3 where MOCGP outperforms NSGA2 for

NE based fault tolerance evolution experiment, so that is why MOCGPANN is tested for

this extension work.

Moreover four different crowding fill strategies are also compared between each other

for the extension evolution experiment. However the 3rd version is slightly better than

the other three versions, so this one would be utilised to obtain controllers for the

generalisation experiment. It also needs to note that the 1st version achieved the most

stable performance than the other three. The last version, which is the original

crowding fill strategy, is the most unstable one. This result is similar to that in section

4.5.1.2 where the 1st version is the most stable one and the 4th version is the second

most unstable one. Although there is no obvious significant difference among these

four versions in terms of their performance, at least it can be concluded that preserving

population diversity based crowding fill strategy could produce relatively more stable

performance than the original crowding fill strategy. However, whether a more stable

performance is really helpful for the evolutionary search is still not clear at the moment,

which needs further investigation as future works.

In terms of the generalisation result, MOCGPANN demonstrates effective performance

to obtain controllers so as to achieve both of robust and switched fault tolerant control.

160

Although switched fault tolerant control performed better than robust fault tolerant

control, it can be inferred that the reason is due to the more difficult scenario for the

generalisation tests. On the other hand, the obtained controllers were still not working

very well for new fault signal and new beacon position scenarios, which is the same as

the conclusion in section 4.5.2 for the basic experiment. In this case, more scenarios

could be considered during the solution evaluation to obtain more generalised fault

tolerant controllers in terms of more generalised robot phototaxis task, which could be

investigated as future works.

161

Chapter 7 Conclusion

7.1 Summary and contributions

A summary for each chapter along with the key contributions will be listed as following:

 Chapter 2 reviewed different fault tolerant control schemes and different

structure optimisation based EA approaches along with NE approaches.

Moreover, different multi-objective optimisation algorithms were also

reviewed along with different crowding measure approaches. Finally,

convergence criteria and statistics analysis were also reviewed.

Contribution: CGPANN was selected as the main approach used to evolve ANN

controllers based on the structure optimisation so as to achieve the design of a

fault tolerant control system.

 Chapter 3 investigated how CGPANN could be utilised to design a robust robot

fault tolerant control system.

Contribution: The result shows that CGPANN was failed to achieve it since

single objective optimisation is not adequate to design a robust fault tolerant

controller. For this reason, MOCGPANN was identified as the new approach to

achieve the design of a robust as well as a switched fault tolerant control

system.

 Chapter 4 presented how MOCGPANN was developed based on the integration

of CGPANN and NSGA2 as the main approach for multi-objective controller

structure evolution.

Contribution: During the development of MOCGPANN, preserving population

diversity was considered as a solution to solve the problem of the random

neighbour pick in the original crowding fill strategy and it also displayed a

relatively more stable performance than the original one, although their

performance had no significant difference between each other. On the other

hand, hyper-volume indicator was successfully used to measure the

performance of MOCGPANN so as to assess its convergence without the

requirement of a true Pareto optimal front. In terms of the generalisation test,

the evolved controllers by MOCGPANN demonstrated effective performance to

achieve both of robust and switched fault tolerant control based on the

generalised scenarios. Although new fault signal and new beacon position

scenarios were not suited to the evolved controllers, those controllers achieved

162

100% success rate in terms of the initial scenario and the new robot initial

condition scenarios, which actually filled the research gap that controller

structure optimisation had not been investigated into fault tolerant control.

 Chapter 5 presented how NSGA2 was utilised as the approach for controller

parameter optimisation in order to conduct a comparison work with MOCGP

based on the ANN controller evolution.

Contribution: The result shows that NSGA2 performed worse than MOCGP for

the controller evolution in spite of a pre-optimised ANN structure for NSGA2,

which verified that network structure optimisation outperformed connection

weight optimisation even in multi-objective optimisation for fault tolerant

control. Nevertheless, the controllers evolved by NSGA2 still achieved the

robust and switched fault tolerant control. However its result was similar to

MOCGP where the evolved controllers were just working for some of the

generalised scenarios.

 Chapter 6 presented how MOCGPANN was utilised further for a more difficult

extension experiment where there were more sensors failed during the task.

Contribution: The result shows that MOCGPANN was still capable to obtain

feasible controllers so as to achieve robust and switched fault tolerant control.

Furthermore, different crowding fill strategies were also compared for the

evolution result. The comparison result also demonstrated that preserving

population diversity based crowding fill strategy obtained more stable

performance than the original one, which means the original crowding fill

strategy is really not suited to MOCGPANN. In terms of the generalisation, it

was still similar to the basic experiment where just parts of the generalised

scenarios were suited to the evolved controllers. This work further answered

the overall research question that MOCGPANN was able to evolve controller

even for a more difficult fault tolerant control task, which demonstrates the

effective performance of MOCGPANN implemented into fault tolerant control

area. In other word, this work also indicates that controller structure

optimisation will be an effective solution utilised for evolving fault tolerant

robotic controllers.

163

7.2 Future works

This thesis also left some future works which may need further investigation. The

future works can be categorised into two aspects: the optimisation algorithms and the

robot test cases, which will be presented as following.

7.2.1 Future works about the optimisation algorithms

 Further benefit of preserving population diversity

During the development of MOCGPANN, preserving population diversity based

crowding fill strategy was demonstrated to achieve a relatively more stable

performance than the original crowding fill strategy. However they actually had no

significant difference between each other in terms of the hyper-volume and generation

number. So at the moment, it is not clear whether a more stable performance could

result in any further advantages. A possible further investigation is to disable the

connection weight genes to create the ANN controller. In this case, all the evolved

ANNs’ weights will be equal to 1. This modification will further demonstrate whether

preserving population diversity or genetic drift will aid the evolutionary search without

the contribution of connection weight genes in order to find out the best way of

improving crowding fill strategy for MOCGP even in general multi-objective

optimisation problems apart from NE.

 Further comparison between MOCGP and NSGA2

This work utilises just a single hidden layer for the basic of the ANN’s structure in terms

of NSAG2 evolution experiment. Although one hidden layer is considered to solve a

majority of problems, it is still unknown whether one hidden layer is adequate for this

work. For this reason, more hidden layers should be worth a further investigation for

the ANN’s structure evolved by NSGA2. On the other hand, this work just utilises one

option for the population size. Although the number of this population size is sufficient

to create the Pareto optimal front, it is unknown whether this number is the best

choice for either NSGA2 or MOCGP. In this case, different options of population size

should be considered to conduct the comparison between NSAG2 and MOCGP in order

to investigate how the population size impacts the performance of these two

algorithms.

164

 NEAT/HyperNEAT for the same evolution experiment

Although CGPANN produces better performance than NEAT/HyperNEAT for a wide

range of application areas, it is actually unknown whether CGPANN still outperforms

NEAT/HyperNEAT for this work. On the other hand, NEAT/HyperNEAT also belongs to

structure optimisation based NE approach, so NEAT/HyperNEAT is also worth a further

investigation in terms of multi-objective optimisation for the same evolution

experiment.

7.2.2 Future works about the robotic test case

 Further investigation about the controller performance for generalised

scenarios

In terms of all the generalisation experiments, they all had got a same problem that the

evolved controllers were not working very well when the fault signal was changed to

another value and when the beacon was moved to a new position. A possible

explanation is that the current scenario for controller evolution is restricted to only a

single type of fault signal, which is 0 in this case. Although the evolved controllers are

robust to different fault occurrence time and different robot initial conditions, their

performance could be dramatically degraded once the fault signal is changed during

the robot task. In this case, the robustness to fault signal value would be the first task

for further investigation. An initial solution is to consider evolving controllers without

the connections from the faulty sensors. Although this solution will make the

controllers capable to tolerate any fault signal values, the performance for the fault-

free scenario may be degraded due to the loss of connections from working sensors.

For this reason, a more effective solution is to set random fault signals during the

controller evolution. This approach may improve the performance when different fault

signal values are injected for the online testing experiment as long as sufficient random

fault signal values are tested during the solution evaluation for the offline evolution

experiment. In summary, further investigation should be conducted for the problem of

the robustness to varied fault signals during the controller evolution. The other

limitation of this work is that the evolved controllers are not robust to different beacon

positions so as to achieve the phototaxis task. A possible solution is to set a series of

different distances covering all the possible positions in the arena rather than a fixed

distance between the robot initial position and the beacon position, in order to obtain

165

more robust controllers to achieve the phototaxis no matter where the beacon is. If

both of these two problems could be solved, this work will be possibly able to achieve

not only a more generalised fault tolerant control system design but also a more

generalised robot phototaxis task.

 Online controller evolution

All this work is about the offline controller evolution utilised for online robot fault

tolerance task. The reason to conduct the offline controller evolution is based on the

assumption that the possible upcoming fault types have already be considered into the

controller evolution such as complete failures occurred in sensor 1 and 7 in this work,

so offline controller evolution is enough in this case. However it cannot guarantee

whether all the fault types have been included to evolve controllers especially when

there are some unplanned faults occurred during the robot online task such as other

sensor faults apart from sensor 1 and 7. In this sense, an online controller evolution

needs to be conducted in case that an unplanned fault is occurred during the robot

online task. In a word, online controller evolution is worth a further investigation in

order to design a complete fault tolerant control system.

 Another robotic test case

This work actually just utilises one test case for evolving the robotic fault tolerant

controllers, which is the robot phototaxis task. Actually, phototaxis is not a difficult task

for a single robot to complete. So phototaxis may not be sufficient to test the algorithm

developed in this work. For this reason, one option is to set some obstacles in the

simulation area in order to investigate how the evolved controller could be performing

for phototaxis with obstacle. Another option is to set a completely different robot test

case such as wall following. Wall following is actually more difficult than phototaxis to

evolve feasible controllers. In terms of phototaxis, there is always one or more sensors

that could detect the light source as long as the robot is not too far away from the

beacon. So it is not quite difficult to evolve feasible controllers to complete the task.

However in terms of wall following, the robot could easily get stuck to the wall or just

move away from the wall since the proximity sensor has a much shorter detection

distance than the light sensor. For this reason, it may be more difficult to obtain

feasible controllers to complete the wall following rather than phototaxis. In summary,

166

another more difficult robot test case needs to be considered in order to test the

generality of the algorithm developed in this work.

167

Appendix A
Appendix A lists all the generalisation experiment data throughout the thesis. Each datum in the tables means the time spent for the tested Pareto set of

controllers for each trial. If the robot could achieve the phototaxis within 1200 ticks, the result would be in the ticks when the robot finishes the task.

However, if the robot could not achieve the phototaxis task within 1200 ticks, a result of “n” would indicate a failed test. It needs to note that there is no

time limit for the “Beacon position” test scenario. In this case, as long as the robot could achieve the phototaxis task, a “y” will represent a successful

phototaxis task; otherwise an “n” will indicate a failed phtotaxis task.

A.1 Generalisation result based on MOCGP evolved controllers for the basic experiment

 Pareto 1

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

943 943 n 965 908 908 y y 943 943 941 941 908 908 y y

919 919 n 935 911 911 y y 920 920 919 919 911 911 y y

947 947 n 971 926 926 y y 946 946 944 944 927 927 y y

948 948 n 972 919 919 y y 946 947 945 945 919 919 y y

923 922 n 937 937 937 y y 924 921 1015 987 938 939 y y

929 927 n 943 932 930 y y 929 927 1010 994 932 929 y y

929 929 n 947 934 934 y y 929 929 928 928 935 935 y y

916 914 n 927 914 911 y y 917 914 1007 979 915 912 y y

909 909 n 923 915 913 y y 910 910 909 909 916 913 y y

929 929 n 948 925 925 y y 930 930 929 929 926 926 y y

168

 Pareto 2

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

918 918 n n 909 912 y y 914 913 n n 910 910 y y

914 917 n n 912 915 y y 915 915 n n 914 914 y y

915 915 n n 928 931 y y 911 911 n n 929 929 y y

935 938 n n 920 923 y y 937 937 n n 922 922 y y

922 925 n n 939 942 y y 924 924 n n 941 940 y y

947 947 n n 933 933 y y 942 942 n n 928 928 y y

921 924 n n 935 938 y y 923 923 n n 937 937 y y

918 918 n n 915 915 y y 914 914 n n 911 911 y y

903 906 n n 917 916 y y 904 904 n n 912 912 y y

938 938 n n 927 930 y y 934 933 n n 928 928 y y

169

 Pareto 3

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

926 926 n 954 910 910 y y 926 926 n 944 908 908 y y

941 941 n 971 913 913 y y 940 940 n 959 912 912 y y

940 940 n 971 929 929 y n 940 940 n 958 927 927 y y

906 906 n 933 921 921 y n 905 905 n 922 919 919 y y

941 940 n 969 940 940 y y 940 940 n 960 938 938 y y

939 939 n 969 927 927 y y 938 938 n 957 927 927 y y

913 912 n 941 936 936 y y 912 912 n 928 935 935 y y

941 941 n 971 910 910 y y 940 940 n 960 909 909 y y

945 945 n 976 911 911 y n 943 943 n 962 911 911 y y

924 923 n 952 928 928 y n 923 923 n 941 926 926 y y

170

 Pareto 4

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

943 943 n n 952 952 n n 942 944 960 953 951 952 y* y*

904 904 n n 936 936 y y 905 905 921 915 934 935 y y

924 924 n n 920 919 y y 923 924 940 935 918 919 y y

937 937 n n 928 928 y y 936 937 953 947 926 927 y y

922 922 n n 909 909 y y 921 922 938 933 909 910 y y

916 916 n n 919 919 n n 915 916 932 926 918 920 y* y*

913 913 n n 912 912 y y 913 914 930 924 911 912 y y

923 923 n n 936 936 y y 922 923 939 934 935 936 y y

926 926 n n 935 934 y y 926 928 943 937 934 936 y y

934 934 n n 921 921 n n 932 934 949 943 919 920 y* y*

Note: * means that in terms of the current test, the robot stays still until the other controller is loaded. However these trials all make the robot reach the

beacon finally, so it is actually a successful phototaxis if the criterion is whether the robot achieves the phototaxis eventually or not.

171

 Pareto 5

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

925 925 926 925 937 937 y y 925 925 932 925 938 938 y y

927 927 928 927 934 934 n n 928 928 934 928 934 934 y n

940 940 942 940 918 918 y y 940 940 948 940 919 919 y y

938 938 940 938 926 926 y y 938 938 944 938 926 926 y y

945 945 945 945 908 908 y y 941 941 948 941 908 908 y y

918 918 918 918 922 922 y y 915 915 921 915 919 919 y y

913 911 913 912 911 911 n n 909 909 914 909 911 911 n n

937 937 939 937 940 940 y y 937 937 943 937 936 936 y y

908 909 908 908 938 938 n n 905 905 911 905 935 935 y y

920 920 921 920 920 920 y y 917 917 923 917 920 920 y y

172

A.2 Generalisation result based on NSGA2 evolved controllers for the basic experiment

 Pareto 1

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

927 925 n 965 987 987 y y 937 927 n 959 982 977 y y

959 951 n 1038 994 995 y y 965 958 n 1005 976 971 y y

929 928 n 964 947 939 y y 938 927 n 959 956 948 y y

930 929 n 964 961 953 y y 939 927 n 959 966 959 y y

959 958 n 1011 930 925 y y 981 970 n 1019 942 932 y y

953 953 n 1001 950 950 y y 973 961 n 1006 969 957 y y

944 935 n 1008 936 928 y y 953 946 n 987 946 938 y y

966 966 n 1026 969 968 y y 993 984 n 1040 998 990 y y

991 991 n 1074 967 967 y y 978 973 n 1027 995 986 y y

943 934 n 1006 949 940 y y 952 944 n 985 957 950 y y

173

 Pareto 2

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

946 947 n n 972 972 y y 944 944 n n 950 951 y y

953 954 n n 1022 1022 y y 951 951 n n 983 984 y y

939 940 n n 1002 1003 y y 938 938 n n 1005 1004 y y

964 965 n n 1032 1033 n n 963 962 n n 1053 1052 n n

956 957 n n 983 984 y y 955 954 n n 983 982 y y

933 935 n n 950 950 n n 926 928 n n 948 948 n n

955 956 n n 989 989 n n 940 941 n n 989 988 n n

1012 1013 n n 927 928 y y 1019 1018 n 1185 925 926 y y

990 991 n n 928 929 y y 991 990 n n 927 927 y y

954 955 n n 1004 1005 n n 953 952 n n 1008 1007 n n

174

 Pareto 3

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

919 918 n 993 976 972 y y 917 925 n 972 975 970 y y

920 915 n 995 980 976 y y 918 919 n 968 979 973 y y

974 970 n n 1006 1002 n n 972 967 n 1054 1004 998 n n

1025 1022 n n 989 985 y y 1020 1016 n n 988 982 y y

939 935 n 1143 1011 1057 n n 938 933 n 993 n n n n

920 922 n 1000 936 933 n n 921 930 n 977 936 931 n n

955 951 n n 1067 1065 y y 953 948 n 1018 1052 1050 y y

946 943 n n 957 953 n n 945 940 n 1004 956 950 n n

970 967 n n 955 952 y y 969 964 n 1047 954 949 y y

932 941 n 1111 1002 999 n n 939 950 n 1003 1000 995 n n

175

 Pareto 4

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

928 991 n n 1054 1050 y y 925 990 n n 1029 1025 y y

986 985 n n 1028 1026 y y 978 977 n n 1011 1009 y y

954 952 n n 993 992 n n 947 946 n n 985 984 n n

980 979 n n 1004 1003 n n 972 971 n n 995 994 n n

950 948 n n 982 981 n n 944 943 n n 974 973 n n

985 984 n n 954 952 y y 977 976 n n 947 947 y y

1008 1007 n n 986 984 n n 998 997 n n 977 977 n n

982 981 n n 925 991 y y 974 973 n n 924 989 y y

1024 1022 n n 927 994 y y 1009 1007 n n 925 990 y y

990 989 n n 995 994 n n 982 981 n n 986 986 n n

176

 Pareto 5

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

975 976 n 1003 978 979 y y 956 963 965 964 959 966 y y

961 963 n 987 973 974 y y 943 951 952 952 954 961 y y

966 967 n 993 952 954 y y 948 955 957 957 935 943 y y

932 935 n 954 962 964 y y 921 930 931 931 944 952 y y

936 934 n 953 932 934 y y 928 932 938 935 921 929 y y

960 961 n 985 985 984 y y 941 949 951 951 957 960 y y

955 957 n 981 940 943 y y 938 946 947 947 926 934 y y

979 978 n 1004 1074 1070 y y 954 957 966 960 1018 1022 y y

967 968 n 993 1096 1090 y y 948 956 957 957 1029 1033 y y

943 945 n 967 954 956 y y 927 936 937 937 936 944 y y

177

A.3 Generalisation result based on MOCGP evolved controllers for the extension experiment

 Pareto 1

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

937 937 n 968 942 942 y y 934 934 n 1016 1124 1123 n y

949 949 n 981 939 939 y y 945 945 n 1035 937 937 y n

907 907 n 928 924 924 y y 904 904 n 964 921 921 y n

933 933 n 963 931 931 y y 931 931 n 1009 929 929 n y

931 931 n 959 913 913 y y 928 928 n 1005 910 910 y y

947 947 n 978 920 920 y y 947 947 n 1039 918 918 y y

917 917 n 944 916 916 y y 915 915 n 984 913 913 y y

950 950 n 982 938 938 y y 944 944 n 1033 935 935 y y

924 924 n 949 936 936 y y 921 921 n 993 934 934 y y

917 917 n 943 925 925 y y 915 915 n 982 922 922 n y

178

 Pareto 2

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

936 942 n n 941 948 y y 934 939 n 1153 941 946 y y

937 943 n n 938 945 y y 936 941 n 1163 937 943 y y

938 944 n n 927 929 y y 937 942 n 1164 922 927 y y

921 922 n n 933 937 y y 914 920 n 1109 930 935 y y

932 935 n n 917 918 y y 927 933 n 1139 910 916 y y

913 913 n n 925 927 y y 906 911 n 1089 920 925 y y

933 936 n n 920 922 y y 928 934 n 1142 914 920 y y

936 942 n n 938 944 y y 934 939 n 1157 937 942 y y

947 954 n n 937 943 y y 947 952 n 1189 936 941 y y

920 922 n n 928 930 y y 914 920 n 1110 923 928 y y

179

 Pareto 3

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

938 939 n 981 939 940 y y 936 936 n n 938 938 n n

931 932 n 972 937 936 y y 929 929 n n 934 934 y y

908 909 n 941 920 921 y y 906 906 n 906 919 918 y y

928 929 n 967 928 928 y y 926 926 n n 926 926 y y

903 904 n 936 909 911 y y 902 902 n n 908 908 y y

904 905 n 936 920 921 y y 902 902 n n 918 918 y y

914 915 n 947 913 914 y y 912 912 n n 911 911 y y

937 938 n 979 937 938 y y 936 936 n n 935 935 y y

939 940 n 981 936 938 y y 938 938 n n 934 934 n n

938 940 n 980 921 922 y y 936 936 n n 920 920 y y

180

 Pareto 4

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

946 946 1035 961 914 916 y y 942 938 994 938 908 908 y y

951 951 1042 966 919 919 y y 947 951 994 973 911 911 y y

911 911 986 924 927 935 y y 907 904 955 904 927 928 y y

927 927 1009 941 927 927 y y 922 919 974 919 919 920 y y

902 912 985 917 938 947 y y 902 905 945 927 938 938 y y

936 947 1030 951 928 939 y y 934 936 980 960 927 929 y y

938 947 1036 959 942 942 y y 938 938 999 948 934 934 y y

914 925 1003 927 910 921 y y 913 914 958 941 910 910 y y

916 916 993 929 912 923 y y 908 908 953 908 911 915 y y

936 944 1031 957 926 934 y y 936 939 983 965 926 928 y y

181

 Pareto 5

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control

Test scenario Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Initial
scenario

Fault
signal

Robot
condition

Beacon
position

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700

Result of the tested Pareto set of
controllers (tick) or (yes/no)

914 913 n n 911 910 y y 914 914 n n 907 907 y y

945 944 n n 910 910 y y 944 944 n n 910 910 y y

919 919 n n 932 932 y y 919 919 n n 926 926 y y

903 902 n n 918 918 y y 903 903 n n 918 918 y y

942 941 n n 945 945 y y 941 941 n n 937 937 y y

945 944 n n 969 968 y y 944 944 n n 927 927 y y

949 948 n n 934 933 y y 940 940 n n 933 933 y y

913 912 n n 979 979 y y 912 912 n n 909 909 y y

954 953 n n 989 990 y y 935 935 n n 910 911 y y

933 933 n n 933 935 y y 933 933 n n 925 925 y y

182

Appendix B
B.1 Sensitivity analysis for MOCGPANN parameters

This section shows how these parameters for MOCGPANN mentioned in section 4.5.1.1

are adjusted to their optimal values, which will be shown as the following.

 Nconv

In terms of the convergence criteria parameters, Figure B.1 shows the comparison of

Nconv for hyper-volume and Figure B.2 shows that for generation number. Both of

these 2 comparisons perturbed the parameter Nconv with value 20, 30 and 40. Figure

B.3 displays the Vargha-Delaney A-test score for parameter Nconv pertubation from

the Parameter Robustness technique developed in Spartan.

Figure B.1: Nconv comparison for hyper-volume

183

Figure B.2: Nconv comparison for generation number

As can be seen from Figure B.3, hyper-volume has nearly no difference among 20 to 40

and number of generations has more impact but still no large difference. Figure B.1

demonstrates a slight decrease of hyper-volume from 20 to 40 of Nconv, which can be

ignored and Figure B.2 presents a more significant increase of number of generations

from 20 to 40 of Nconv but still no large difference. In this sense, Nconv has no

influence on hyper-volume among 20 to 40 but it has more or less impact on the

number of generations in spite of no large difference. A possible explanation is that

more Nconv could result in more generations to make the evolution converged.

However there is still nearly no difference for hyper-volume, so it is worth trying

smaller Nconv values and seeing whether it could make any changes for the

experiment responses.

184

Figure B.3: A-test score for Nconv comparison

 Rconv

Figure B.4 shows the Rconv comparison for hyper-volume, Figure B.5 shows the Rconv

comparison for generation number. Both of these 2 comparisons perturbed Rconv with

1.01, 1.001 and 1.0001. Figure B.6 displays the Vargha-Delaney A-test score for

parameter Rconv.

185

Figure B.4: Rconv comparison for hyper-volume

Figure B.5: Rconv comparison for generation number

186

Figure B.6: A-test score for Rconv comparison

As can be seen from these results for Rconv, different parameter values actually lead to

no significant different for hyper-volume. However larger Rconv values result in smaller

responses for generation number especially when Rconv is 1.01, which has already

caused large difference from Vargha-Delaney A-test. In this sense, it seems that larger

Rconv value could result in better response for convergence. A possible explanation is

that larger Rconv could make evolution converged earlier, but there is nearly no

difference for hyper-volume response. So it is still worth trying to set larger values for

Rconv and see whether there will be any improvement for the experiment responses.

 NumNode

In terms of the optimization algorithm parameters, Figure B.7 shows the hyper-volume

comparison results for NumNode and Figure B.8 shows the generation number

comparison results for it. Both of these 2 comparisons perturbed NumNode with 10, 20

and 100. And Figure B.9 indicates the Vargha-Delaney A-test score for those

comparisons.

187

Figure B.7: NumNode comparison for hyper-volume

Figure B.8: NumNode comparison for generation number

188

Figure B.9: A-test score for NumNode comparison

As can be seen from the comparison results, hyper-volumes of different NumNode

values show no large difference. Even so, the hyper-volume of the baseline value 20

still achieves the best performance with the largest response. On the other hand, the

generation number of value 100 nearly reaches the large difference criteria with a

worst performance. Although there is no large difference for value 10, the generation

number of baseline value 20 still obtains the least number of generations for

convergence, which still performs the best. In conclusion, the baseline value 20 of

NumNode achieves the best performance compared with 10 and 100 in terms of both

hyper-volume and generation number responses. So there is no need to change the

value of NumNode either for increase or decrease.

 NodeArity

Figure B.10 shows the hyper-volume comparison results for different NodeArity. Figure

B.11 shows the generation number comparison result for them. Both of them

perturbed NodeArity values with 2, 5 and 10. And Figure B.12 demonstrates the

Vargha-Delaney A-test scores for those comparisons.

189

Figure B.10: NodeArity comparison for hyper-volume

Figure B.11: NodeArity comparison for generation number

190

Figure B.12: A-test score for NodeArity comparison

As can be seen from the NodeArity comparison results, the value of 2 performs the

worst with the lowest hyper-volume in large difference and slightly higher generation

number compared to baseline value. The value of 10 also doesn’t achieve the best

performance. Although the hyper-volume is just slightly higher than that from baseline

value, it needs more generations than baseline value to make the evolution converged.

And the significant difference of generation number is larger than that of hyper-volume,

although they are both in the area of no large difference. A possible explanation is that

more NodeArity may lead to a better response of hyper-volume, but it needs much

more effort to make the evolution converged, which is not beneficial to the evolution.

In conclusion, although there is no large difference between value of 10 and the

baseline value, the results still indicate that the baseline value is the best option for

NodeArity. So there is no need to further increase the baseline value.

 WeightRange

Figure B.13 shows the WeightRange comparison for hyper-volume and Figure B.14

shows that for generation number. WeightRange was perturbed with +/3, +/-5 and +/-

10. And Figure B.15 illustrates the Vargha-Delaney A-test scores for those comparisons.

191

Figure B.13: WeightRange comparison for hyper-volume

Figure B.14: WeightRange comparison for generation number

192

Figure B.15: A-test score for WeightRange comparison

According to the comparison results for WeightRange, the value of +/-3 obtains the

worst performance with the lowest hyper-volume and largest number of generations

to make evolution converged which has already caused the large difference compared

to baseline value. However the value of +/-10 achieves a better performance than that

of the baseline value of +/-5. The value of +/-10 has a slightly larger hyper-volume but

with a much less generation number. Although there is no large difference for both of

these 2 responses, the value of +/-10 still achieves larger hyper-volume with less

generations compared to baseline value responses, which indicates a promising way to

get better performance with larger WeightRange. In conclusion, it is worth trying to set

a larger WeightRange value than +/-10 and see whether there will be any further

improvement on the experiment performance.

 MutationRate

Figure B.16 shows the MutationRate comparison for hyper-volume and Figure B.17

shows that for generation number. MutationRate was perturbed with value of 0.01,

193

0.05 and 0.1. Figure B.18 illustrates the Vargha-Delaney A-test scores for the

comparisons.

Figure B.16: MutationRate comparison for hyper-volume

Figure B.17: MutationRate comparison for generation number

194

Figure B.18: A-test score for MutationRate comparison

As are shown in these MutationRate comparison results, the baseline value of 0.05

achieves the best experiment performance compared with the others. The value of

0.01 and 0.1 both result in lower hyper-volumes with more generations to make

evolution converged compared to the performance of baseline value. In addition, the

value of 0.1 also reaches the large difference area in terms of generation number,

which means it costs much more generations to obtain a lower hyper-volume

compared to baseline value. Although the value of 0.01 has no large difference in terms

of both 2 responses compared with baseline value, the Vargha-Delaney A-test still

demonstrates that the baseline value is currently the best option for MutationRate. In

conclusion, the baseline value achieves better experiment performance than the other

options. So there is no need to change the current value of MutationRate.

 RecurrentConnectionProbability

Finally, Figure B.19 shows the RecurrentConnectionProbability comparison for hyper-

volume and Figure B.20 shows that for generation number. Both of 2 comparisons

perturbed the value of RecurrentConnectionProbability with 0, 0.1, 0.3 and 0.5. It

needs to note that the value of 0 actually doesn’t trigger any mutation to create

195

recurrent connections in the controller. In this sense, this neutral network controller

becomes a feed forward controller without any recurrent connections. In other words,

this RecurrentConnectionProbability comparison can be considered as a comparison

between feed forward controller and recurrent controllers with different recurrent

connection probabilities. Figure B.21 illustrates the final Vargha-Delaney A-test

comparison for the perturbed values.

Figure B.19: RecurrentConnectionProbability comparison for hyper-volume

Figure B.20: RecurrentConnectionProbability comparison for generation number

196

Figure B.21: A-test score for RecurrentConnectionProbability comparison

These comparisons of RecurrentConnectionProbability indicate an unexpected result

for the parameter value selection. From the value 0 to 0.5, the hyper-volumes drop

continually with a large difference of 0.5 finally. At the same time, the generation

numbers also keep increasing from value 0 to 0.5 and the large difference already

occurs from 0.3. Generally speaking, the experiment performance is declining with the

increase of RecurrentConnectionProbability. Although there is no large difference

between the performance of 0 and 0.1, those results still indicate that the value of 0

achieves a better experiment performance rather than that of 0.1. From the analysis, it

seems that a feed forward neural network controller performs better than any other

recurrent neural network controllers with different recurrent connection probabilities.

Although the recurrent connection probability demonstrates advantages to evolve

recurrent neural networks in [30], this work doesn’t benefit any more from the

recurrent neural network controllers. In conclusion, the value of

RecurrentConnectionProbability needs to be set 0 instead of 0.1 for a better

experiment performance. That is to say, a feed forward neural network controller is

currently best suited to this work.

197

In summary, Nconv and Rconv both have impact on the experiment performance

compared with the baseline values. On the other hand, WeightRange is the only

parameter which could also result in different experiment performance compared with

its baseline value. In addition to WeightRange, RecurrentConnectionProbability also

affects the experiment performance. However the best value of it, which is 0, has

already been found based on the sensitivity analysis of the currently selected

parameter values. In this sense, NumNode, NodeArity and MutationRate will keep the

baseline values. RecurrentConnectionProbability will be the new value found based on

the sensitivity analysis. Apart from that, a further investigation needs to be conducted

to see what values of Nconv, Rconv and WeightRange will be most suited to the

experiment performance, which will be discussed in the next section B.2.

B.2 Further investigation on the sensitivity analysis of MOCGPANN
parameters

This section describes a further investigation based on the previous sensitivity analysis

results by the Parameter Robustness technique in Spartan. As mentioned in the

previous section, Nconv, Rconv and WeightRange all have more or less influence on the

experiment performance rather than their baseline values. In this case, more

parameter value options were selected to do the evolution experiment again for each

of these 3 parameters respectively and the Parameter Robustness technique was also

utilised to check whether the new selected values were more suited to the experiment

performance.

 Nconv

Figure B.22 shows a further Nconv comparison for hyper-volume and Figure B.23 shows

that for generation number. The value of Nconv was further perturbed with smaller

values including 5, 10 and 15 in addition to 20, 30 and 40. Figure B.24 demonstrates the

Vargha-Delaney A-test comparison including those further perturbed values.

As can be seen from the results, the hyper-volume decreases with the decline of Nconv

from 20 and the large difference appears when the value reaches 5. On the other hand,

generation number drops straight from 40 to 5 with the large difference appeared

around 15. In this sense, the most suited value would be 20 for Nconv since the hyper-

volumes of 20, 30 and 40 are quite similar but the generation number of 20 achieves

the least. Another option is to select 15. Although its hyper-volume is lower than that

198

of 20, 30 and 40, it is still not far from the no difference criteria but with a much less

generation number, which has already reached the large difference area. In conclusion,

the value of Nconv could be set 20 rather than the baseline value 30. Although the

value of 15 may be another option, the value of 20 may guarantee a better

performance due to 5 more generations for the convergence observation.

Figure B.22: Nconv further comparison for hyper-volume

Figure B.23: Nconv further comparison for generation number

199

Figure B.24: A-test score for Nconv further comparison

 Rconv

Figure B.25 shows the Rconv further comparison for hyper-volume and Figure B.26

shows that for generation number. Both of these two further comparisons set slightly

larger values for Rconv, which were 1.05 and 1.1 in addition to the previously

perturbed values 1.0001, 1.001 and 1.01. Figure B.27 indicates the Vargha-Delaney A-

test comparison for this further comparison.

According to the further comparison results for Rconv, the hyper-volumes decrease all

the way from 1.0001 to 1.1 with a straight decline of generation number at the same

time. The large difference appears around 1.1 for hyper-volume but it appears around

1.01 for generation number. Generally speaking, it is common that the hyper-volume

will decrease with the decline of generation number when Rconv becomes larger since

larger Rconv could result it earlier convergence with degraded performance. However

1.01 is still the most suited value for this further comparison since the hyper-volume of

1.01 has no obvious difference with that from baseline value but the generation

number drops significantly. As a contrary, 1.05 has less generation number than 1.01

200

but the hyper-volume is far from the no difference criteria to some extent, which is not

beneficial to experiment performance. In conclusion, the most suited value of Rconv

could be 1.01 instead of 1.001.

Figure B.25: Rconv further comparison for hyper-volume

Figure B.26: Rconv further comparison for generation number

201

Figure B.27: A-test score for Rconv further comparison

 WeightRange

In terms of the WeightRange, Figure B.28 shows the further comparison result for

hyper-volume and Figure B.29 shows that for generation number. In this further

comparison, WeightRange was set more extensive values like +/-15 and +/20 besides

the previously set values +/3, +/5 and +/-10. Finally, Figure B.30 illustrates the A-test

score for the WeightRange further comparisons.

As can be seen from the WeightRange further comparison results, the hyper-volumes

of +/-10, +/-15 and +/-20 have actually no obvious difference compared to that of the

baseline value +/-5. However all of the generation numbers of +/-10, +/-15 and +/-20

are less than that of the baseline value with some difference to some extent. An

interesting point is that the experiment performances of +/-10, +/-15 and +/-20 are

actually quite similar not only in hyper-volume but also in generation number. A

possible explanation is that the WeightRange of +/-10 has already made the

experiment performance saturated, so there is nearly no improvement when setting

202

even larger values. In conclusion, +/-10 can be utilised as the currently best suited

value for WeightRange instead of the baseline value +/-5.

Figure B.28: WeightRange further comparison for hyper-volume

Figure B.29: WeightRange further comparison for generation number

203

Figure B.30: A-test score for WeightRange further comparison

In summary, the new value of Nconv can be set 20 with 1.01 as the new value for Rconv.

+/-10 can be used as a new WeightRange value. In addition,

RecurrentConnectionProbability will be set 0 instead based on the sensitivity analysis in

the previous section. However it needs to note that this kind of Parameter Robustness

technique utilises a one at a time approach to tune these parameters. So each

parameter is tuned with the same values remained for other parameters. In this case,

the best parameter value may be just suited to the situation where the other

parameters still keep their baseline values. So it is still not sure whether 2 or more

parameters with the new values still perform better than that with baseline parameter

values. To investigate this problem, the parameters could be tuned in two groups

which are convergence parameters and CGP parameters. The convergence parameters

refer to Nconv and Rconv, which are used to set a suited convergence criterion for

observing the performance. And CGP parameters are related to optimization algorithm

itself which include WeightRange and RecurrentConnectionProbability to be

investigated based on the Parameter Robustness technique results. In this case,

convergence parameters will be perturbed firstly with the calibration CGP parameter

204

values from the above results of the further sensitivity analysis. And then CGP

parameters will be perturbed with the convergence parameter calibration values. Both

of these two parameter perturbations will be compared with the baseline parameter

values which were set initially.

 Nconv with Rconv

In terms of Nconv and Rconv, the parameter values will be perturbed by 20 with 1.01;

20 with 1.001; 30 with 1.01 and 30 with 1.001. WeightRange and

RecurrentConnectionProbability are kept for their calibration values which are +/-10

and 0. All the other CGP parameters including NumNode, NodeArity and MutationRate

are fixed with the baseline values. Finally they will be compared with the baseline

parameter values, which were set at the beginning of the experiment, in terms of

hyper-volume and generation number. However the Parameter Robustness technique

in Spartan is not available for printing the graph based on the A-test score for this kind

of group parameter comparison. So the A-test score will only be listed in table rather

than graph and the Mann-Whitney U-test score will also be utilised in addition to the A-

test for a more meaningful comparison. Figure B.31 shows the hyper-volume

comparisons for these four perturbed Nconv and Rconv combinations with the baseline

values. Figure B.32 shows the generation number comparisons for those Table B.1

displays the U-test scores of the comparisons for the perturbed convergence

parameters and Table B.2 displays the A-test scores for them.

Figure B.31: Hyper-volume comparison for convergence parameter calibration

205

Figure B.32: Generation number comparison for convergence parameter calibration

Table B.1: U-test scores of the comparisons for convergence parameter calibration

 Baseline 20 & 1.01 20 & 1.001 30 & 1.01 30 & 1.001

Hyper-
volume

1 0.11876 0.00288 0.4965 0.03156

Generation
number

1 <0.00001 <0.00001 <0.00001 <0.00001

Table B.2: A-test scores of the comparisons for convergence parameter calibration

 Baseline 20 & 1.01 20 & 1.001 30 & 1.01 30 & 1.001

Hyper-
volume

0.5 0.455692 0.421474 0.481269 0.437491

Generation
number

0.5 0.954808 0.832945 0.895212 0.719441

As can be seen from Table B.1, 20 with 1.001 and 30 with 1.001 demonstrate significant

difference compared to the baseline value response in terms of hyper-volume, where

the p values are below 0.05. However the generation number responses for all of the

four combinations achieve significant difference, where the p values are all below

0.00001. In this case, it is necessary to conduct an A-test to further investigate whether

they have different effect sizes compared to the baseline value response and that’s

why A-test based on effect size is required. As can be seen from Table B.2, all of the

parameter combinations have similar but better hyper-volume responses compared to

the baseline value, where the A-test scores are all below 0.5. However they all obtain

small or even no effect sizes between 0 and 0.14, where the corresponding scores are

206

between 0.5 and 0.36. This consequence indicates that although 20 with 1.001 and 30

with 1.001 have significant difference compared to the baseline value response, they

both actually have small effect. However in terms of generation number, all of them

present more or less effects compared to the baseline value. Among them, the

combination of 20 with 1.01 achieves the least generation number to make evolution

converged, whose A-test score is the largest. Another option is 30 with 1.01 which

achieves the second least generation number. However to be more specific, 20 with

1.01 has slightly larger hyper-volume response than that of 30 with 1.01 but the

generation number of 20 with 1.01 is also less than 30 with 1.01. In other words, 20

with 1.01 spend fewer generations to get a better performance compared to 30 with

1.01. The third place in generation number response is 20 with 1.001. It achieves a

better hyper-volume performance but with a larger generation number. This

phenomenon also implies that a higher resolution Rconv value could result in more

generations but with better performance. So it depends on which response is more

important from the perspective of experiment designer: a faster convergence with a

worse performance or a better performance with a slower convergence. 30 with 1.001

ranks the final place in generation number but still obtains a similar hyper-volume

compared to 20 with 1.001, which could be eliminated. As a consequence, 20 with 1.01

could be currently considered as the first choice for Nconv and Rconv. In addition, 20

with 1.001 would be also an alternative choice since it achieves a better hyper-volume

response than 20 with 1.01 but a worse generation number response. In conclusion, 20

with 1.01 would be currently a first combination for Nconv and Rconv with 20 with

1.001 as an alternative choice depending on which response is more relevant to the

experiment designer. Both of them were investigated coupled with the calibration

values for WeightRange and RecurrentConnectionProbability, which are +/-10 and 0

respectively.

 WeightRange with RecurrentConnectionProbability

In terms of the CGP parameters, WeightRange and RecurrentConnectionProbability are

perturbed with +/-10 with 0; +/-10 with 0.1; +/-5 with 0 and +/-5 with 0.1. All the other

CGP parameters including NumNode, NodeArity and MutationRate are fixed with the

baseline values. Moreover, Nconv and Rconv are kept with 20 and 1.01 as calibration

values for this comparison. Figure B.33 shows the hyper-volume comparison result for

perturbed WeightRange and RecurrentConnectionProbability. Figure B.34 shows that

207

for generation number. Table B.3 displays the U-test scores for these comparisons and

Table B.4 displays the A-test for them.

Figure B.33: Hyper-volume comparison for CGP parameters calibration

Figure B.34: Generation number comparison for CGP parameters calibration

Table B.3: U-test scores of the comparisons for CGP parameter calibration

 Baseline +/-10 & 0 +/-10 & 0.1 +/-5 & 0 +/5 & 0.1

Hyper-
volume

1 0 .11876 0 .18352 0 .04036 < 0.00001

Generation
number

1 < 0.00001 < 0.00001 < 0.00001 < 0.00001

208

Table B.4: A-test scores of the comparisons for CGP parameter calibration

 Baseline +/-10 & 0 +/-10 & 0.1 +/-5 & 0 +/5 & 0.1

Hyper-
volume

0.5 0.455692 0.5391032 0.556328 0.6432423

Generation
number

0.5 0.954808 0.9088182 0.8892483 0.8800448

As can be seen from Table B.3 and Table B.4, the hyper-volume responses for the

perturbed parameter values also have no large effect compared to the baseline values.

Although +/-5 with 0 and +/-5 with 0.1 both achieve significant difference from the U-

test compared to the baseline value response, they actually obtain worse performance

than that of the baseline value, where the A-test scores are both above 0.5. However

the value of +/-10 with 0 is the only one that outperforms the baseline value in terms

of hyper-volume with an A-test score below 0.5 in spite of quite small effect size. In

terms of the generation number, although all of them have similar A-test scores with

the large effect size, +/-10 with 0 still achieves the least generation number to make

evolution converged. That is to say, +/-10 with 0 has got the relatively best experiment

performance with the least generation number. In conclusion, +/-10 with 0 is currently

the best parameter combination for WeightRange and RecurrentConnectionProbability

with Nconv and Rconv remained at 20 and 1.01, which are the calibration values.

209

Appendix C
C.1 Number of hidden nodes selection

The results are obtained based on five different numbers of hidden nodes including 6, 8,

10, 12 and 14 for the ANN in terms of hyper-volume and generation number responses

in order to explore how many numbers of hidden nodes are sufficient. Figure C.1 shows

the hyper-volume comparison for different number of hidden nodes and Figure C.2

shows that for generation number comparison. Table C.1 lists the U-test scores for the

comparison and Table C.2 lists the corresponding A-test scores.

Figure C.1: Hyper-volume comparison for different number of hidden nodes optimized by NSGA2

210

Figure C.2: Generation number comparison for different number of hidden nodes optimized by
NSGA2

Table C.1: U-test scores for different number of hidden nodes comparison based on NSGA2

 6 Nodes 8 Nodes 10 Nodes 12 Nodes 14 Nodes

HV 1 < 0.00001 < 0.00001 < 0.00001 < 0.00001

Gen 1 0.55662 0.885292 < 0.00001 < 0.00001

Table C.2: A-test scores for different number of hidden nodes comparison based on NSGA2

 6 Nodes 8 Nodes 10 Nodes 12 Nodes 14 Nodes

HV 0.5 0.42731 0.412712 0.350605 0.348853

Gen 0.5 0.5082 0.501999 0.573866 0.5743

The statistics analysis uses the responses of 6 nodes as the standard data and other

responses will be compared with it based on U-test and A-test respectively. As can be

seen from Table C.1, apart from the generation number responses for 8 nodes and 10

nodes, other responses all achieve the significant difference compared to 6 nodes with

p values < 0.00001%. To assess how much the difference is, Table C.2 lists the

corresponding effect size scores. According to Table C.2, the generation number

responses for 8 nodes and 10 nodes are both quite close to 0.5, which correspond to

the U-test scores in Table C.1 without any significant difference. However the hyper-

volume of 8 nodes and 10 nodes are both below 0.5 with scores around 0.42, which lie

in the small effect size interval [0.36, 0.44]. That is to say, the performance of 8 nodes

and 10 nodes achieve higher hyper-volume with small effect sizes but the generation

numbers are quite similar compared to 6 nodes. In addition, the performance of 12

nodes and 14 nodes are both much better than that of 8 nodes and 10 nodes. In terms

of the hyper-volume, 12 nodes and 14 nodes achieve much higher responses than that

of 8 and 10 nodes with A-test scores around 0.35, which means their effect sizes are

already located in the medium interval [0.29, 0.36]. On the other side, their generation

number responses are both much less than 8 and 10 nodes with scores around 0.57,

which lie in the small effect size interval [0.56, 0.64]. That is to say, 12 and 14 nodes

realise higher hyper-volume responses with much less generation numbers than 8 and

10 nodes. In this sense, 12 or 14 nodes in the hidden layer seem a suitable choice for

the NSGA2 based ANN’s structure. Although more nodes could be tested for the ANN’s

structure, 14 nodes seem to be already saturated for the hidden layer with quite similar

responses with 12 nodes. In this case, 12 nodes or 14 nodes could be both considered

211

as the optimal ANN’s structure for connection weight evolution. Therefore, 12 nodes

are selected for the ANN’s hidden layer and this type of structure will be utilised

throughout this chapter for the evolution fault tolerant experiment based on

connection weight optimization with NSGA2.

C.2 Sensitivity analysis for NSGA2 parameters

This section shows how these four parameters for NSGA2 are tuned to their optimal

values including the crossover probability (PCrossover), mutation probability

(PMutation), distribution index for crossover (DICrossover) and mutation (DIMutation)

respectively. All the comparison results will be displayed in boxplot and their

corresponding A-test scores will also be presented in graphs created by Parameter

Robustness technique as following.

 PCrossover

Figure C.3 shows the PCrossover comparison results for hyper-volume and Figure C.4

shows that for generation number. Figure C.5 illustrates the A-test scores in the graph

created by Parameter Robustness technique in Spartan.

Figure C.3: PCrossover comparison for hyper-volume

212

Figure C.4: PCrossover comparison for generation number

Figure C.5: A-test score for PCrossover comparison

As can be seen Figure C.3 and Figure C.4, the hyper-volume is increasing but the

generation number is decreasing with the growth of PCrossover, which indicates that

the PCrossover baseline value of 0.9 achieves the best responses with the largest

hyper-volume in the least generation number. Figure C.5 also demonstrates the same

result in the A-test scores. The A-test score for hyper-volume is decreasing to 0.5 of the

213

baseline value response and the score for generation number is increasing to 0.5 of the

baseline value response. That is to say, the hyper-volume is rising and the generation

number is declining until they reach the baseline value responses. In conclusion, the

baseline PCrossover value of 0.9 achieves the best responses for both of hyper-volume

and generation number compared to 0.5 and 0.7.

 PMutation

Figure C.6 shows the PMutation comparison for hyper-volume and Figure C.7 shows

that for generation number. Figure C.8 illustrates the A-test scores for these two

comparisons.

Figure C.6: PMutation comparison for hyper-volume

Figure C.7: PMutation comparison for generation number

214

Figure C.8: A-test scores for PMutation comparison

As can be seen from Figure C.6 and Figure C.7, the PMutation value of 0.05 achieves

the highest hyper-volume and the value of 0.1 obtains the least generation number.

According to Figure C.8, it displays the same result where 0.05 has the lowest A-test

score for hyper-volume and 0.1 has the highest A-test score for generation number

with large difference compared to the baseline value. To be more specific, only 0.05

achieves the highest hyper-volume although its generation number is not the lowest.

0.1 achieves the lowest generation number but its hyper-volume is quite similar to the

baseline response without any obvious difference. In this case, it depends on which

aspect the designer is more focused: the hyper-volume or the generation number. If

hyper-volume is more relevant for the given task, 0.05 is the most suited value. But if

generation number is more relevant, 0.1 would be the most suited one.

However it needs to note that the aim of the NSGA2 based evolution experiment is to

compare its performance with MOCGP based results. Due to the huge difference of

these two optimisation algorithms, it is meaningless to consider the generation number

into the comparison between each other. So only the performance, which is the hyper-

volume response, will be taken into account for the comparison between NSGA2 and

215

MOCGP for the evolution experiment. In this case, the hyper-volume is more focused

for this task, so the value of 0.05 will be considered as the most suited value instead of

the baseline value of 0.02 for parameter PMutation.

 DICrossover

Figure C.9 shows the DICrossover comparison for hyper-volume and Figure C.10 shows

that for generation number. And Figure C.11 illustrates the A-test scores for these two

comparisons.

Figure C.9: DICrossover comparison for hyper-volume

Figure C.10: DICrossover comparison for generation number

216

Figure C.11: A-test score for DICrossover comparison

As can be seen from Figure C.9 and Figure C.10, all the four values for DICrossover are

quite similar in terms of hyper-volume and generation number responses. Figure C.11

also presents the same result with A-test score that all the other three values actually

achieve the similar A-test score with quite small difference compared to the baseline

value. To be more specific, the value of 10 obtains the relatively most obvious

difference than the others. However its response for hyper-volume is the lowest with

the highest value for generation number, which is the worst choice. In conclusion, no

best value has been found for parameter DICrossover since all the four options have

got quite similar responses for both the hyper-volume and generation number. In this

case, the baseline value of 20 could be still utilised for the parameter DICrossover.

 DIMutation

Figure C.12 shows the DIMutation comparison for hyper-volume and Figure C.13 shows

that for generation number. Finally Figure C.14 displays the corresponding A-test

scores for them.

217

Figure C.12: DIMutation comparison for hyper-volume

Figure C.13: DIMutation comparison for generation number

As is shown in Figure C.12 and Figure C.13, the hyper-volume response for DIMitation is

declining gradually until it reaches the baseline point of 20. On the other hand, the

generation number response is growing all the way to the baseline point. This result

indicates that the first value of 5 is the most suited value rather than baseline value of

20. According to Figure C.14, the A-test scores also demonstrate the same result that

the value of 5 achieves the lowest score for hyper-volume and the highest score for

218

generation number. That is to say, its hyper-volume is the highest and its generation

number is the lowest among all the options. In conclusion, the value of 5 is the most

suited value for parameter DIMutation instead of the baseline value of 20.

Figure C.14: A-test score for DIMutation comparison

219

Bibliography

[1] M. Blanke, “What is fault-tolerant control?,” Safeprocess, 2000.

[2] L. E. G. Castanon and A. V. Martinez, “Artificial Intelligence Methods in Fault

Tolerant Control,” 2009.

[3] . Eterno, . Weiss, D. Looze, and A. Willsky, “Design issues for fault tolerant-

restructurable aircraft control,” in 1985 24th IEEE Conference on Decision and

Control, 1985, no. December, pp. 900–905.

[4] M. Blanke, M. Staroswiecki, and N. E. Wu, “Concepts and methods in fault-

tolerant control,” Proc. 2001 Am. Control Conf. Cat No01CH37148, vol. 4, no.

June, pp. 2606–2620, 2001.

[5] M. Blanke, J. Lunze, M. Kinnaert, M. Staroswiecki, and J. Schröder, Diagnosis and

fault-tolerant control. 2006.

[6] Y. Zhang and . iang, “Bibliographical review on reconfigurable fault-tolerant

control systems,” Annu. Rev. Control, vol. 32, pp. 229–252, 2008.

[7] . Lunze and . Richter, “Control Reconfiguration : Survey of Methods and Open

Problems,” 2006.

[8] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and

design, vol. 21. 2005.

[9] A. Numsomran, K. Witheephanich, V. Tipsuwanporn, and N. Klinsmitth, “Robust

controller design for plant uncertainty,” 2006 SICE-ICASE Int. Jt. Conf., pp. 109–

113, 2006.

[10] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. 1996.

[11] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, vol. 12, no. 2.

2003.

[12] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results,” Evol. Comput., vol. 8, no. 2, pp. 173–195, 2013.

220

[13] P. Schroder, a. . Chipperfield, P. . Fleming, and N. Grum, “Fault tolerant

control of active magnetic bearings,” IEEE Int. Symp. Ind. Electron. Proceedings.

ISIE’98 (Cat. No.98TH8357), vol. 2, pp. 573–578, 1998.

[14] M. Blanke, S. A. B, and C. P. Lunau, “Fault-tolerant control systems-- A holistic

view,” Control Eng. Pract., vol. 5, no. 5, pp. 693–702, 1997.

[15] . R. Koza, M. a. Keane, . Yu, F. H. Bennett, and W. Mydlowec, “Automatic

Creation of Human-Competitive Programs and Controllers by Means of Genetic

Programming,” Genet. Program. Evolvable Mach., vol. 1, no. 1, pp. 121–64, 2000.

[16] . Koza, “Genetic programming: on the programming of computers by natural

selection.,” Cambridge,MA:MITPress, 1992.

[17] I. Sekaj and . Perkacz, “Genetic programming - based controller design,” 2007

IEEE Congr. Evol. Comput., pp. 1339–1343, 2007.

[18] . R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, “Genetic programming III:

darwinian invention and problem solving,” IEEE Trans. Evol. Comput., vol. 3, no.

3, 1999.

[19] D. Searson, M. Willis, and G. Montague, “Chemical Process Controller Design

Using Genetic Programming,” in Genetic Programming 1998: Proceedings of the

Third Annual Conference, 1998, pp. 359–364.

[20] B. McKay, M. Willis, and G. Barton, “Steady-state Modelling of Chemical Process

System using Genetic Programming,” Comput. Chem. Eng., vol. 21, pp. 981–996,

1997.

[21] . R. Koza, . Yu, M. A. Keane, and W. Mydlowec, “Evolution of a controller with a

free variable using genetic programming,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2000, vol. 1802, pp. 91–105.

[22] T. Astrom, K. & Hagglund, “PID Controllers: Theory, Design, and Tuning.” 1995.

[23] . Imae, S. Nakatani, and . Takahashi, “GP based flight control in the windshear,”

IEEE SMC’99 Conf. Proceedings. 1999 IEEE Int. Conf. Syst. Man, Cybern. (Cat.

No.99CH37028), vol. 2, no. c, pp. 650–653, 1999.

221

[24] K. L. Ng and R. ohansson, “Evolving Programs and Solutions Using Genetic

Programming with Application to Learning and Adaptive Control,” J. Intell. Robot.

Syst., vol. 35, no. 3, pp. 289–307, 2002.

[25] K. J. Åström and B. Wittenmark, Adaptive Control, vol. 32. 1989.

[26] M. Ebner, “Evolution of a control architecture for a mobile robot,” in

Proceedings of the Second International Conference on Evolvable Systems: From

Biology to Hardware (ICES 98), 1998, vol. 1478, pp. 303–310.

[27] C. Lazarus and H. Hu, “Using genetic programming to evolve robot behaviours,”

in 3rd British Conference on Autonomous Mobile Robotics & Autonomous

Systems, 2001.

[28] W.-P. Lee and . Hallam, “Evolving reliable and robust controllers for real robots

by genetic programming,” Soft Comput. -- A Fusion Found. Methodol. Appl., vol.

3, no. 2, pp. 63–75, 1999.

[29] J. F. Miller, Cartesian Genetic Programming. 2011.

[30] A. . Turner, “Evolving Artificial Neural Networks using Cartesian Genetic

Programming,” 2015.

[31] B. Kadlic, I. Sekaj, and D. Pernecký, “Design of continuous-time controllers using

cartesian genetic programming,” in IFAC Proceedings Volumes (IFAC-

PapersOnline), 2014, vol. 19, no. 2007, pp. 6982–6987.

[32] B. Kadlic and I. Sekaj, “Controller Design Based on Cartesian Genetic

Programming in MATALB,” System, vol. 3, 2007.

[33] S. Harding and . Miller, “Evolution of robot controller using cartesian genetic

programming,” Genet. Program., pp. 62–73, 2005.

[34] Y. Hirayama, T. Clarke, and . F. Miller, “Fault tolerant control using cartesian

genetic programming,” GECCO’08 Proc. 10th Annu. Conf. Genet. Evol. Comput.

2008, pp. 1523–1530, 2008.

[35] P. Kundur, Power System Stability and Control, vol. 23. 2006.

222

[36] M. O’Neill and C. Ryan, “Grammatical Evolution,” vol. 5, pp. 349–358, 2001.

[37] D. Pernecký and I. Sekaj, “Grammatical evolution based controller design,” 19th

Int. Conf. Soft Comput. Brno. Czech Repub., pp. 1–6, 2013.

[38] R. Burbidge, . H. Walker, and M. S. Wilson, “Grammatical evolution of a robot

controller,” 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 357–362, 2009.

[39] I. Sekaj, “Robust Parallel Genetic Algorithms with Re-initialisation,” in Parallel

Problem Solving from Nature - PPSN VIII, vol. 3242, 2004, pp. 411–419.

[40] W. Duch and N. ankowski, “Survey of neural transfer functions,” Neural Comput.

Surv., vol. 2, pp. 163–212, 1999.

[41] G. Cybenko, “Approximations by superpositions of sigmoidal functions,” Approx.

Theory its Appl., vol. 9, no. 3, pp. 17–28, 1989.

[42] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems by

continuous time recurrent neural networks,” Neural Networks, vol. 6, no. 6, pp.

801–806, 1993.

[43] M. Caudill and C. Butler, Understanding Neural Networks: Computer

Explorations, Vols. 1 and 2. 1992.

[44] R. . Patton and F. . Uppal, “Artificial Intelligence Approaches To Fault

Diagnosis,” Intell. Syst. Eng., 1999.

[45] B. Widrow and M. A. Lehr, “30 Years of Adaptive Neural Networks : Perceptron ,

Madaline , and Backpropagation,” vol. 78, no. 9, pp. 1415–1442, 1990.

[46] . Li, . Cheng, . Shi, and F. Huang, “Brief Introduction of Back Propagation (BP)

Neural Description of BP Algorithm in Mathematics,” Adv. Comput. Sci. Inf. Eng.,

vol. 2, pp. 553–558, 2012.

[47] M. Konomi and G. M. Sacha, “Influence of the learning method in the

performance of feedforward neural networks when the activity of neurons is

modified,” pp. 1–11.

[48] H. Wang and Y. Wang, “Neural-network-based fault-tolerant control of

223

unknown nonlinear systems,” IEE Proceedings - Control Theory and Applications,

vol. 146, no. 5. p. 389, 1999.

[49] A. A. Pashilkar, N. Sundararajan, and P. Saratchandran, “A fault-tolerant neural

aided controller for aircraft auto-landing,” Aerosp. Sci. Technol., vol. 10, pp. 49–

61, 2006.

[50] E. S. E. Sugawara, M. F. M. Fukushi, and S. H. S. Horiguchi, “Fault tolerant multi-

layer neural networks with GA training,” Proceedings. 16th IEEE Symp. Comput.

Arith., 2003.

[51] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: From architectures to

learning,” Evolutionary Intelligence, vol. 1, no. 1. pp. 47–62, 2008.

[52] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9, pp. 1423–

1447, 1999.

[53] R. K. Belew, . McInerney, and N. N. Schraudolph, “Evolving Networks: Using the

Genetic Algorithm with Connectionist Learning,” Artif. Life II, vol. 10, pp. 511–

547, 1992.

[54] A. P. Wieland, “Evolving neural network controllers for unstable systems,”

IJCNN-91-Seattle Int. Jt. Conf. Neural Networks, vol. ii, pp. 667–673, 1991.

[55] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through

symbiotic evolution,” Mach. Learn., vol. 22, no. 1–3, pp. 11–32, 1996.

[56] K. O. Stanley and R. Miikkulainen, “Efficient Evolution of Neural Network

Topologies,” Evol. Comput. 2002. CEC’02. Proc. 2002 Congr. Evol. Comput., no.

figure 1, pp. 1757–1762, 2002.

[57] P. . Angeline, G. M. Saunders, and . B. Pollack, “An evolutionary algorithm that

constructs recurrent neural networks.,” IEEE Trans. Neural Netw., vol. 5, no. 1,

pp. 54–65, 1994.

[58] S. Luke and L. Panait, “A Comparison of Bloat Control Methods for Genetic

Programming,” Evol. Comput., vol. 14, no. 3, pp. 309–344, 2006.

[59] S. Silva and E. Costa, “Dynamic limits for bloat control in genetic programming

224

and a review of past and current bloat theories,” Genet. Program. Evolvable

Mach., vol. 10, no. 2, pp. 141–179, 2009.

[60] L. Trujillo, L. Munoz, E. Naredo, and Y. Martinez, “{NEAT}, There’s No Bloat,”

17th Eur. Conf. Genet. Program., vol. 8599, pp. 174–185, 2014.

[61] W. Duch and N. ankowski, “Transfer functions: hidden possibilities for better

neural networks,” 9th Eur. Symp. Artif. Neural Networks, pp. 81–94, 2001.

[62] K. O. Stanley, “Efficient Evolution of Neural Networks through Complexification,”

2004.

[63] K. O. Stanley, D. D. Ambrosio, and . Gauci, “A Hypercube-Based Indirect

Encoding for Evolving Large-Scale Neural Networks,” vol. 15, no. 2, pp. 1–39,

2009.

[64] K. O. Stanley and B. D. Bryant, “Real-Time Neuroevolution in the NERO Video

Game,” no. Thurrott 2002, pp. 1–41, 2005.

[65] F. Silva, P. Urbano, S. Oliveira, and A. L. Christensen, “odNEAT: An Algorithm for

Distributed Online, Onboard Evolution of Robot Behaviours,” Artif. Life 13, no.

July 2012, pp. 251–258, 2012.

[66] F. Silva, L. Correia, and A. L. Christensen, “Evolutionary online behaviour

learning and adaptation in real robots,” R. Soc. Open Sci., vol. 4, no. 7, 2017.

[67] M. D’Angelo, B. Weel, and A. E. Eiben, “HyperNEAT versus RL PoWER for online

gait learning in modular robots,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8602, pp. 777–788, 2014.

[68] S. Lee, . Yosinski, K. Glette, H. Lipson, and . Clune, “Evolving gaits for physical

robots with the HyperNEAT generative encoding: The benefits of simulation,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 7835 LNCS, pp. 540–

549.

[69] M. Kingsley- ones, “Evolving Robot Gaits in Hardware: the HyperNEAT

Generative Encoding Vs. Parameter Optimization,” Aviat. Week Sp. Technol.

(New York), vol. 172, no. 38, p. 47, 2010.

225

[70] S. Risi and K. O. Stanley, “Enhancing es-hyperneat to evolve more complex

regular neural networks,” in Proceedings of the 13th annual conference on

Genetic and evolutionary computation - GECCO ’11, 2011, p. 1539.

[71] E. Haasdijk, A. A. Rusu, and A. E. Eiben, “HyperNEAT for locomotion control in

modular robots,” Int. Conf. Evolvable Syst. Springer, Berlin Heidelb., pp. 169–180,

2010.

[72] M. M. Khan, G. M. Khan, and . F. Miller, “Evolution of neural networks using

Cartesian Genetic Programming,” IEEE Congr. Evol. Comput., pp. 1–8, 2010.

[73] A. J. Turner and . F. Miller, “Cartesian genetic programming encoded artificial

neural networks,” Proceeding fifteenth Annu. Conf. Genet. Evol. Comput. Conf. -

GECCO ’13, p. 1005, 2013.

[74] . F. Miller and S. L. Smith, “Redundancy and computational efficiency in

cartesian genetic programming,” IEEE Trans. Evol. Comput., vol. 10, no. 2, pp.

167–174, 2006.

[75] . Miller, “What Bloat? Cartesian Genetic Programming on {Boolean} Problems,”

2001 Genet. Evol. Comput. Conf. Late Break. Pap., pp. 295–302, 2001.

[76] S. Silva and E. Costa, “Dynamic limits for bloat control in genetic programming

and a review of past and current bloat theories,” Genet. Program. Evolvable

Mach., 2009.

[77] L. Vanneschi, M. Castelli, and S. Silva, “Measuring bloat, overfitting and

functional complexity in genetic programming,” … 12Th Annu. Conf. …, pp. 877–

884, 2010.

[78] C. Igel, “Neuroevolution for reinforcement learning using evolution strategies,”

in The 2003 Congress on Evolutionary Computation, 2003. CEC ’03., 2003, vol. 4,

pp. 2588–2595.

[79] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon, “Neutrality in

evolutionary algorithms... What do we know?,” Evolving Systems, vol. 2, no. 3.

pp. 145–163, 2011.

[80] M. Kimura, “Evolutionary rate at the molecular level,” Nature, vol. 217. pp. 624–

226

626, 1968.

[81] V. K. Vassilev and . F. Miller, “The Advantages of Landscape Neutrality in Digital

Circuit Evolution,” in Ices’00, 2000, pp. 252–263.

[82] T. Yu and . Miller, “Neutrality and the Evolvability of Boolean Function

Landscape,” in Genetic programming, 2001.

[83] T. Blickle and L. Thiele, “Genetic Programming and Redundancy,” Genet.

Algorithms within Framew. Evol. Comput. (KI-94 Work., pp. 33–38, 1994.

[84] M. M. Khan, G. M. Khan, and . F. Miller, “Evolution of optimal ANNs for non-

linear control problems using Cartesian Genetic Programming,” Proc. 2010 Int.

Conf. Artif. Intell. ICAI 2010, vol. 1, pp. 339–346, 2010.

[85] M. Mahsal Khan, A. Masood Ahmad, G. Muhammad Khan, and . F. Miller, “Fast

learning neural networks using Cartesian genetic programming,”

Neurocomputing, vol. 121, pp. 274–289, 2013.

[86] F. Zafari, G. M. Khan, M. Rehman, and S. Ali Mahmud, “Evolving Recurrent

Neural Network using Cartesian Genetic Programming to Predict The Trend in

Foreign Currency Exchange Rates,” Appl. Artif. Intell., vol. 28, no. 6, pp. 597–628,

2014.

[87] . W. Grizzle and A. Isidori, “Approximation by Superpositions of a Sigmoidal

Function*,” Math. Control. Signals, Syst., vol. 2, no. 4, pp. 315–341, 1989.

[88] . Park and I. W. Sandberg, “Universal Approximation Using Radial-Basis-

Function Networks,” Neural Comput., 1991.

[89] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems by

continuous time recurrent neural networks,” Neural Networks, 1993.

[90] A. M. SCHÄFER and H.-G. ZIMMERMANN, “RECURRENT NEURAL NETWORKS ARE

UNIVERSAL APPROXIMATORS,” Int. J. Neural Syst., 2007.

[91] A. Garg and K. Tai, “A Hybrid Genetic Programming – Artificial Neural Network

Approach For Modeling of Vibratory Finishing Process,” Computing, vol. 18, pp.

14–19, 2011.

227

[92] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,

2002.

[93] C. M. Fonseca and P. . Fleming, “Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization,” Icga, vol. 93, pp.

416–423, 1993.

[94] . Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for

multiobjective optimization,” Evol. Comput. 1994. IEEE World Congr. Comput.

Intell. Proc. First IEEE Conf., vol. 1, pp. 82–87, 1994.

[95] N. Srinivas and K. Deb, “Muiltiobj ective Optimization Using Nondominated

Sorting in Genetic Algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221--248, 1995.

[96] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms,” John

Wiley & sons, LTD. p. 497, 2001.

[97] J. Knowles and D. Corne, “The Pareto archived evolution strategy: A new

baseline algorithm for Pareto multiobjective optimisation,” in Proceedings of the

1999 Congress on Evolutionary Computation, CEC 1999, 1999, vol. 1, pp. 98–105.

[98] R. K. U. Evalife, “Diversity-Guided Evolutionary Algorithms.”

[99] T. Ray, K. Tai, and K. C. Seow, “Multiobjective Design Optimization by an

Evolutionary Algorithm,” Eng. Optim., 2001.

[100] F. Sarro, F. Ferrucci, and C. Gravino, “Single and Multi Objective Genetic

Programming for software development effort estimation,” Proc. 27th Annu.

ACM Symp. Appl. Comput. - SAC ’12, p. 1221, 2012.

[101] Y. Liang, M. Zhang, and W. N. Browne, “Multi-objective genetic programming for

figure-ground image segmentation,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2016.

[102] U. Bhowan, M. Zhang, and M. ohnston, “Multi-Objective Genetic Programming

for Classification with Unbalanced Data,” Proc. 22nd Australas. Jt. Conf. Artif.

Intell., 2009.

228

[103] C. K. Oh and G. . Barlow, “Autonomous controller design for unmanned aerial

vehicles using multi-objective genetic programming,” Proc. 2004 Congr. Evol.

Comput. (IEEE Cat. No.04TH8753), vol. 2, pp. 1538–1545, 2004.

[104] Z. Vasicek and L. Sekanina, “Circuit approximation using single- and multi-

objective Cartesian GP,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 9025, pp. 217–229, 2015.

[105] J. Hilder, J. A. Walker, and A. Tyrrell, “Use of a multi-objective fitness function to

improve cartesian genetic programming circuits,” 2010 NASA/ESA Conf. Adapt.

Hardw. Syst. AHS 2010, pp. 179–185, 2010.

[106] G. Corriveau, R. Guilbault, A. Tahan, and R. Sabourin, “Review and study of

genotypic diversity measures for real-coded representations,” IEEE Trans. Evol.

Comput., vol. 16, no. 5, pp. 695–710, 2012.

[107] M. Nei, “GENETIC DISTANCE BETWEEN POPULATIONS,” Am. Nat., vol. 95, no.

949, p. 261, 1961.

[108] H. Abbass and K. Deb, “Searching under Multi-evolutionary Pressures,” in

Proceedings of the Fourth Conference on Evolutionary Multi- Criterion

Optimization, 2003, pp. 391–404.

[109] R. W. Morrison and K. A. De ong, “Measurement of population diversity,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2310, pp. 31–41.

[110] F. Herrera and M. Lozano, “Adaptation of Genetic Algorithm Parameters Based

on Fuzzy Logic Controllers,” Genet. Algorithms Soft Comput., pp. 95–125, 1996.

[111] O. Olorunda and A. P. Engelbrecht, “Measuring exploration/exploitation in

particle swarms using swarm diversity,” in 2008 IEEE Congress on Evolutionary

Computation, CEC 2008, 2008, pp. 1128–1134.

[112] a B. Doeschl-Wilson, D. Vagenas, I. Kyriazakis, and S. C. Bishop, “Exploring the

assumptions underlying genetic variation in host,” Genet. Sel. Evol., vol. 40, no.

June 2002, pp. 241–264, 2008.

[113] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Syst. Tech. J.,

229

vol. 29, no. 2, pp. 147–160, 1950.

[114] D. J. S. Robinson, An Introduction to Abstract Algebra. 2003.

[115] M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi, and M. Ouzzani, “Efficient Processing

of Hamming-Distance-Based Similarity-Search Queries Over MapReduce ,” Edbt,

pp. 361–372, 2015.

[116] . Koljonen, “On Fitness Distance Distributions and Correlations, GA

Performance, and Population Size of Fitness Functions with Translated Optima,”

Proc. 9th Scand. Conf. Artif. Intell., pp. 68–74, 2006.

[117] L. Altenberg, “Fitness distance correlation: an instructive counterexample,”

Seventh Int. Conf. Genet. Algorithms, pp. 57–64, 1997.

[118] A. L. Nelson, G. . Barlow, and L. Doitsidis, “Fitness functions in evolutionary

robotics: A survey and analysis,” Rob. Auton. Syst., 2009.

[119] V. Trianni, “Advantages of Multi-Objective Optimisation in Evolutionary

Robotics : Survey and Case Studies,” 2014.

[120] D. Greenhalgh and S. Marshall, “Convergence criteria for genetic algorithms,”

vol. 30, no. 1, pp. 269–282, 2000.

[121] K. A. De ong, “An Analysis of the Behavior of a Class of Genetic Adaptive

Systems,” 1975.

[122] Z. Michalewicz, “Genetic Algorithms Data Structures Evolution Programs,”

Computational Statistics & Data Analysis, vol. 24, no. 3. pp. 372–373, 1996.

[123] M. Safe, . Carballido, I. Ponzoni, and N. Brignole, “On Stopping Criteria for

Genetic Algorithms,” Adv. Artif. Intell. – SBIA 2004, pp. 405–413, 2004.

[124] H. L. Liu, L. Chen, K. Deb, and E. Goodman, “Investigating the effect of imbalance

between convergence and diversity in evolutionary multi-objective algorithms,”

IEEE Trans. Evol. Comput., vol. PP, no. 99, pp. 408–425, 2016.

[125] P. Chakraborty, S. Das, G. G. Roy, and A. Abraham, “On convergence of the

multi-objective particle swarm optimizers,” Inf. Sci. (Ny)., vol. 181, no. 8, pp.

230

1411–1425, 2011.

[126] Y. Cao, B. . Smucker, and T. . Robinson, “On using the hypervolume indicator to

compare Pareto fronts: Applications to multi-criteria optimal experimental

design,” J. Stat. Plan. Inference, vol. 160, pp. 60–74, 2015.

[127] T. Goel and N. Stander, “A study on the convergence of multiobjective

evolutionary algorithms,” Prepr. Submitt. to 13th AIAA/ISSMO …, pp. 1–18, 2010.

[128] D. Brockhoff, T. Friedrich, and F. Neumann, “Analyzing hypervolume indicator

based algorithms,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008,

vol. 5199 LNCS, pp. 651–660.

[129] R. Berghammer, T. Friedrich, and F. Neumann, “Convergence of set-based multi-

objective optimization, indicators and deteriorative cycles,” Theor. Comput. Sci.,

vol. 456, pp. 2–17, 2012.

[130] E. Zitzler and K. Simon, “Indicator-Based Selection in Multiobjective Search,” 8th

Int. Conf. Parallel Probl. Solving from Nat. (PPSN VIII), vol. 3242, no. i, pp. 832–

842, 2004.

[131] E. Zitzler and L. Thiele, “Multiobjective Optimization Using Evolutionary

Algorithms - A Comparative Case Study,” Proc. Int. Conf. Parallel Probl. Solving

from Nat., no. September, pp. 292–304, 1998.

[132] E. Zitzler, D. Brockhoff, and L. Thiele, “The Hypervolume Indicator Revisited: On

the Design of Pareto-compliant Indicators Via Weighted Integration,” Evol.

Multi-Criterion Optim., vol. 4403, pp. 862–876, 2007.

[133] L. Lu and C. M. Anderson-Cook, “Adapting the hypervolume quality indicator to

quantify trade-offs and search efficiency for multiple criteria decision making

using pareto fronts,” Qual. Reliab. Eng. Int., vol. 29, no. 8, pp. 1117–1133, 2013.

[134] E. Zitzler, . Knowles, and L. Thiele, “Quality assessment of pareto set

approximations,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008,

vol. 5252 LNCS, pp. 373–404.

231

[135] F. Sambo, M. Borrotti, and K. Mylona, “A coordinate-exchange two-phase local

search algorithm for the D- and I-optimal designs of split-plot experiments,”

Comput. Stat. Data Anal., vol. 71, pp. 1193–1207, 2014.

[136] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selection

based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181, no. 3, pp. 1653–

1669, 2007.

[137] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using the

hypervolume measure as selection criterion,” in Evolutionary Multi-Criterion

Optimization: Third International Conference, EMO 2005, 2005, pp. 62–76.

[138] . Bader and E. Zitzler, “HypE: an algorithm for fast hypervolume-based many-

objective optimization.,” Evol. Comput., vol. 19, no. 1, pp. 45–76, 2011.

[139] P. E. McKnight and . Najab, “Mann-Whitney U Test,” in The Corsini Encyclopedia

of Psychology, 2010.

[140] A. Vargha and H. D. Delaney, “A Critique and Improvement of the CL Common

Language Effect Size Statistics of McGraw and Wong,” J. Educ. Behav. Stat., vol.

25, no. 2, pp. 101–132, 2000.

[141] K. Alden, M. Read, P. S. Andrews, . Timmis, and M. Coles, “Applying spartan to

Understand Parameter Uncertainty in Simulations,” R J., vol. 6, no. 2, pp. 63–80,

2014.

[142] S. Robinson, Simulation: The Practice of Model Development and Use, vol. 67.

2004.

[143] M. T. Alexander, D. C. Montgomery, and G. Runger, “Applied Statistics and

Probability for Engineers,” Technometrics, vol. 37, no. 4, p. 455, 1995.

[144] M. Read, P. S. Andrews, J. Timmis, and V. Kumar, “Techniques for grounding

agent-based simulations in the real domain: a case study in experimental

autoimmune encephalomyelitis,” Math. Comput. Model. Dyn. Syst., vol. 18, no.

1, pp. 67–86, 2012.

[145] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews,

E. Ferrante, G. Di Caro, F. Ducatelle, T. S. Stirling, Á. Gutiérrez, L. M. Gambardella,

232

and M. Dorigo, “ARGoS: A pluggable, multi-physics engine simulator for

heterogeneous swarm robotics,” IRIDIA – Tech. Rep. Ser., pp. 1–22, 2011.

[146] Y. Chen, X. Zou, and W. Xie, “Convergence of multi-objective evolutionary

algorithms to a uniformly distributed representation of the Pareto front,” Inf. Sci.

(Ny)., vol. 181, no. 16, pp. 3336–3355, 2011.

[147] S. Hosangadi, “Distance Measures for Sequences,” Arxiv, p. 16, 2012.

[148] C. D. Pilcher, . K. Wong, and S. K. Pillai, “Inferring HIV transmission dynamics

from phylogenetic sequence relationships,” PLoS Medicine, vol. 5, no. 3. pp.

0350–0352, 2008.

[149] . Heaton, “Programming neural networks in ava,” Bttp//Www. Heatonresearch.

Com, 2004.

[150] K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous Search

Space,” Complex Syst., vol. 9, pp. 1–34, 1994.

