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Abstract 

Fault tolerant control and evolutionary algorithms are two different research areas. 

However with the development of artificial intelligence, evolutionary algorithms have 

demonstrated competitive performance compared to traditional approaches for the 

optimisation task. For this reason, the combination of fault tolerant control and 

evolutionary algorithms has become a new research topic with the evolving of 

controllers so as to achieve different fault tolerant control schemes. 

However most of the controller evolution tasks are based on the optimisation of 

controller parameters so as to achieve the fault tolerant control, so structure 

optimisation based evolutionary algorithm approaches have not been investigated as 

the same level as parameter optimisation approaches. For this reason, this thesis 

investigates whether structure optimisation based evolutionary algorithm approaches 

could be implemented into a robot sensor fault tolerant control scheme based on the 

phototaxis task in addition to just parameter optimisation, and explores whether 

controller structure optimisation could demonstrate potential benefit in a greater 

degree than just controller parameter optimisation. 

This thesis presents a new multi-objective optimisation algorithm in the structure 

optimisation level called Multi-objective Cartesian Genetic Programming, which is 

created based on Cartesian Genetic Programming and Non-dominated Sorting Genetic 

Algorithm 2, in terms of NeuroEvolution based robotic controller optimisation. In order 

to solve two main problems during the algorithm development, this thesis investigates 

the benefit of genetic redundancy as well as preserving neutral genetic drift in order to 

solve the random neighbour pick problem during crowding fill for survival selection and 

investigates how hyper-volume indicator is employed to measure the multi-objective 

optimisation algorithm performance in order to assess the convergence for Multi-

objective Cartesian Genetic Programming. 

Furthermore, this thesis compares Multi-objective Cartesian Genetic Programming with 

Non-dominated Sorting Genetic Algorithm 2 for their evolution performance and 

investigates how Multi-objective Cartesian Genetic Programming could be performing 

for a more difficult fault tolerant control scenario besides the basic one, which further 

demonstrates the benefit of utilising structure optimisation based evolutionary 

algorithm approach for robotic fault tolerant control.  
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Chapter 1 Introduction 

1.1 Motivation 

Fault tolerant control and evolutionary algorithms (EA) are two different research areas, 

yet have a natural synergy. With the development of artificial intelligence, EA has 

demonstrated competitive capability compared to traditional approaches for 

optimisation problems. In this case, the combination of fault tolerant control and EA 

shows great potential, with the ability to evolve new solutions that have the ability to 

adapt over time, and have greater potential for robustness to failure. 

Typically, fault tolerant control based approaches employ EA to optimise the controller 

parameters for a given set of scenarios. However, the controller’s structure usually 

remains fixed when parameters are being optimised. Although the parameter 

optimisation based EA approaches have demonstrated effective performance for fault 

tolerant control, work in this thesis considers optimising the controller structure, in 

addition to the parameter space, with a view to observing a greater degree of fault 

tolerance.  

1.2 Thesis contributions 

The research question that this thesis aims to investigate is: “how can structure 

optimisation based EA approaches be utilised to evolve, at a structural level, fault 

tolerant robotic controllers?” In order to answer the research question, some main 

contributions are made in the thesis, which are:   

 The review of literatures in fault tolerant control with structure optimisation 

based EA approaches and Cartesian Genetic Programming of Artificial Neural 

Networks is identified as the best suited controller structure optimisation 

approach used for designing a robot fault tolerant control system 

 The investigation of how Cartesian Genetic Programming of Artificial Neural 

Networks could be utilised to design a robust fault tolerant control system  

 The review of survival selection along with population diversity and the 

investigation of how it could be utilised to improve the crowding fill strategy 

for Multi-objective Cartesian Genetic Programming of Artificial Neural 

Networks 
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 The review of how hyper-volume indicator is used for performance measure 

and the investigation of how it could be utilised to assess the convergence for 

Multi-objective Cartesian Genetic Programming of Artificial Neural Networks 

 The development of a complete library of Multi-objective Cartesian Genetic 

Programming of Artificial Neural Networks based on a new crowding fill 

strategy and the investigation of how it could be utilised instead of single 

objective optimisation to obtain a Pareto set of controllers used for the design 

of a robust as well as switched fault tolerant control system 

 The investigation of how Non-dominated Sorting Genetic Algorithm 2 could be 

utilised to design a robust as well as switched fault tolerant control system 

based on multi-objective controller parameter optimisation  

 The comparison between Multi-objective Cartesian Genetic Programming of 

Artificial Neural Networks and Non-dominated Sorting Genetic Algorithm 2 for 

controller evolution in order to investigate the difference between controller 

structure optimisation and controller parameter optimisation 

 The investigation of how Multi-objective Cartesian Genetic Programming of 

Artificial Neural Networks could be utilised to design a robust as well as 

switched fault tolerant control system based on multi-objective controller 

structure optimisation for a more difficult fault tolerance scenario 

1.3 Thesis outline 

This section gives an outline of each chapter for the remaining thesis summarised as 

below: 

 Chapter 2 reviews fault tolerant control and different structure optimisation 

based evolutionary algorithms along with artificial neural networks in order to 

find out a suitable approach to design a fault tolerant control system. 

Moreover, different multi-objective optimisations are also reviewed and 

survival selection based on crowding measure is also mentioned along with 

population diversity. Finally, convergence criteria and statistics analysis are 

both introduced.  

 Chapter 3 presents how Cartesian Genetic Programming of Artificial Neural 

Networks, which is the approach obtained in chapter 2, is utilised to achieve 

the robust fault tolerant control. 
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 Chapter 4 demonstrates how genetic redundancy and crowding measure along 

with hyper-volume indicator are utilised to develop the library of Multi-

objective Cartesian Genetic Programming of Artificial Neural Networks and 

displays how it could be utilised to achieve both of robust and switched fault 

tolerant control. 

 Chapter 5 shows how Non-dominated Sorting Genetic Algorithm 2 could be 

utilised to evolve feasible controllers so as to achieve both of robust and 

switched fault tolerant control and presents how it is compared with Multi-

objective Cartesian Genetic Programming of Artificial Neural Networks for the 

evolution experiment performance. 

 Chapter 6 presents how Multi-objective Cartesian Genetic Programming of 

Artificial Neural Networks is performed to achieve a more difficult fault 

tolerant control scenario for both of robust and switched fault tolerant control. 

 Chapter 7 gives a summary about the thesis and the proposed future work. 

  



 

4 
 

Chapter 2 Literature review 

2.1 Introduction 

The aim of this thesis is to fill the research gap that controller structure optimisation 

based EA approach has not been investigated as the same level as controller parameter 

optimisation for fault tolerant control. In this case, the thesis will explore how 

controller structure optimisation could be utilised to design a fault tolerant control 

system. For this reason, this chapter will review the area of fault tolerant control firstly 

and then review how different structure optimisation based EA approaches have been 

performed in the controller structure optimisation tasks. This chapter will also estimate 

the respective benefit and drawback for different structure optimisation based EA 

approaches along with an investigation of artificial neural network for the controller 

type in order to find out the most suited approach to be utilised for the design of a 

fault tolerant control system. 

2.2 Fault tolerant control 

Faults in automated processes will usually cause undesired results especially the shut-

down of controlled plants. These consequences could be harmful to the plant, to 

personnel or the environment. In this case, fault tolerant control was developed which 

is used to increase the plant availability and reduce the risk of safety hazards so as to 

avoid a simple fault becoming a serious failure [1].  

Fault tolerant control can be classified into two aspects: passive or active [2]. Passive 

fault tolerant control uses a specific fixed controller to be robust against certain faults 

[3]. And active fault tolerant control redesigns the control system in order to maintain 

an acceptable performance after a fault occurs [4]. In active fault tolerant control, [2]  

indicates two necessary tasks: fault detection and isolation and fault accommodation 

or controller reconfiguration. Fault detection and isolation consist of a fault diagnosis 

scheme and fault accommodation or controller reconfiguration can be regarded as 

controller redesign [5]. Active fault tolerant control has more fault tolerant capabilities 

than passive fault tolerant control just equipped with a robust controller [6]. Because 

there will be more solutions to cover more classes of faults if the controller can be 

changed [7].  

As for the controller redesign in active fault tolerant control, fault accommodation 
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means that the dynamic structure and parameters of the controller will change to 

accommodate the fault, but the relationship between controller and plant still 

maintains fixed including the reference signal and control value. So the fault can be 

accommodated only if the controller has a solution to deal with the faulty system [4]. 

Although fault accommodation can be quick to find a suitable controller in order to 

realize some hard real time constraints [5], the controllers need to be pre-designed for 

all the possible types of faults. So the fault accommodation cannot work well if no 

solution is found among the controllers especially the relationship between controller 

and plant needs to be adjusted if a degraded performance has to be accepted in some 

cases. On the other hand, controller reconfiguration will establish a new control loop 

including a reconfigured controller with the introduction of alternative input and 

output signals between the controller and the plant [7]. In this sense, the controller can 

be reconfigured online to achieve the performance of different faulty systems including 

some degraded performance. However, the controller reconfiguration emphasizes the 

parameter reconfiguration based on some optimization techniques [2], so the research 

of controller structure reconfiguration is still in an early stage. Although the evolution 

of controller structure has been studied, this research field hasn’t been put into the 

fault tolerant control scheme. Therefore the hypothesis of this work can be described 

that the fault tolerant control can work better if the controller structure evolution is 

associated with the controller reconfiguration.  

2.2.1 Passive fault tolerant control 

In the field of passive fault tolerant control, the robust control is the main approach [2]. 

It designs the controller with constant parameters as well as the structure to correct a 

specific fault so as to guarantee the required performance [7]. And the control 

objectives of robust control mainly include the following fields: stability, disturbance 

rejection and noise rejection [8]. Typically the most effective way of robust control is to 

cope with the faults which can be modelled as plant uncertainties [7]. For example, [9] 

designs a robust control system against the plant uncertainty. This work belongs to a 

kind of model following control which uses a correction mechanism to cope with the 

deviations between the real plant and the reference model to achieve the reference 

tracking task. The reference model reflects the expected performance of the plant and 

the correction mechanism is used to force the plant to follow the model. However due 

to the parameter variations or system disturbance, the uncertainty is always a problem 

occurred in the real plant. So the correction scheme is designed equivalently as a 
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controller to control the plant in the worst case of uncertainty [9]. This work is a typical 

example to apply the robust control scheme to cope with the system uncertainty. So 

the effectiveness of the passive fault tolerant control emphasizes on the robustness of 

control system against certain faults as well as the disturbance and noise in the system 

with fixed controllers. However, this approach has limited fault tolerant capabilities 

with just robust controllers [6]. Therefore if the controller can be changed, there will be 

more solutions to cover more classes of faults compared to the passive approaches [7]. 

So that’s why the active fault tolerant control was developed. 

2.2.2 Active fault tolerant control 

In the research area of active fault tolerant control, [5]mentions two tasks: fault 

diagnosis and controller redesign. Fault diagnosis means an early detection, isolation 

and also identification of faults. And controller redesign needs to be performed after 

the fault is diagnosed to achieve fault tolerant control. Controller redesign contains two 

main approaches: fault accommodation and controller reconfiguration which are 

respectively shown in Figure 2.1 and Figure 2.2.  

 

 

Figure 2.1: Fault accommodation (from [5]) 
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Figure 2.2: Controller reconfiguration (from [5]) 

In these two figures, f is the fault,      is the reference input, u is the control value, y is 

the system output,     
 ,    and    are the corresponding new signals. These two 

approaches both need to change the parameters and structures of controllers to avoid 

the consequences of faults. However the difference is that controller reconfiguration 

needs to change the input and output signals between the controller and system so 

that a new control loop will be generated. But the fault accommodation maintains the 

same values for all the signals [5]. 

 Fault accommodation 

In fault accommodation, one of the representative approaches is the switched control. 

It is based on the bank of controllers designed for the normal and different faulty 

systems [5]. The pre-designed controllers are generated offline to process different 

types of faults. So their internal structures may be different, but the I/O signals will 

remain the same to achieve accommodation [7]. Therefore it is a switching mechanism 

that a suitable controller needs to be selected in terms of the type of fault. The benefit 

of fault accommodation is that it can be quick to find a suitable controller so that some 

strong real time constraints could be realized [5]. However this approach needs to pre-

design the controllers for all the possible types of faults. If none of the pre-designed 

controllers is available to deal with a typical fault, the required performance cannot be 

achieved.  
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 Controller reconfiguration 

In controller reconfiguration, a new control loop is established with the introduction of 

alternative input and output signals between the controller and the system [7]. This 

approach could be applied when a fault is occurred in the system sensor or actuator. In 

this sense, a new control loop with a new controller and alternative signals needs to be 

established when alternative components are introduced [5]. This approach is able to 

process unplanned faults by changing the new control objectives and constraints, so a 

new control loop is also required. However designing a new control system based on a 

new control loop is definitely not an instant work, so the controller reconfiguration 

would be more suited to the tasks where sufficient time is allowed to designing a new 

control system during the system operation. 

As can be seen from these two approaches, fault accommodation and controller 

reconfiguration have their own benefits and drawbacks. Actually fault accommodation 

refers to the offline designing controllers where the controllers need to be designed 

well before loaded to the real system. However controller reconfiguration always refers 

to the online designing controllers where the controllers are being designed during the 

system operation. In this case, the fault accommodation can guarantee that the 

controller will be working well since it was well designed offline. However controller 

reconfiguration cannot ensure when the controller design is finished before loaded to 

the system in order to avoid a crashed system. On the other hand, fault 

accommodation has to design all the possible types of controllers offline, if a 

unplanned fault occurs online, there is no way to tolerate this fault. However, 

controller reconfiguration is capable to deal with all the possible types of faults 

including unplanned one as long as the fault can be diagnosed. In conclusion, fault 

accommodation and controller reconfiguration both have benefits and drawbacks. 

Therefore, which one to be utilised for fault tolerant control is dependent on the 

difficulty of the given task including the passive fault tolerant control approaches. 

2.3 Evolutionary algorithms in controller structure optimisation 

2.3.1 Introduction of evolutionary algorithms 

EA is a kind of optimization algorithms in the artificial intelligence area which was 

developed based on the inspiration of natural selection and survival of the fittest in 

Darwinian evolution [10] [11]. Generally speaking, there are several steps to constitute 
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a complete evolution loop. Firstly, the initial population needs to be created randomly 

as the first generation. Secondly, this population needs to be evaluated for the given 

problem and their performance is recorded as fitness values where the given problem 

is normally called fitness function. After that, this population needs to be selected 

based on the fitness value and the selected parents will be utilised to create their 

children for the next generation based on genetic operator including crossover and 

mutation. And when the children are obtained, they also need to be evaluated based 

on the fitness function. Now it comes to the crucial step called survival selection. In the 

survival selection, one option is just utilising the children as the next generation, which 

is easy and straight forward for many EA applications. The other will compare the 

obtained children with their parents. If children’s fitness is not better than the parent, 

the parents will be directly copied into the next generation without any change, which 

is also called elitism strategy. However whether elitism is required depends on the 

given task since elitism will not always be the suited idea to obtain the new blood for 

the next generation. Nevertheless, one significant benefit of elitism is that it always 

guarantees the next generation to be at least performing equivalent as the last 

generation, which is convenient for convergence observation and helps to achieve a 

better convergence especially for multi-objective EA (MOEA) [12]. The above is a whole 

evolution loop and EA will only stop when termination condition is met such as the 

target fitness value is obtained, the maximum generation number is reached or the 

convergence criteria is realised [10] [11].   

In terms of fault tolerant control, genetic algorithm (GA) based approaches have been 

investigated extensively. GA is used as an optimization tool that the task is normally 

about how to optimize the parameters of a controller to deal with different types of 

faults [2]. For example, [13] designs a fault tolerant control system for an active 

magnetic bearing task using a multi-objective GA. In this work, the active magnetic 

bearing system is used to tolerate the faults occurred in a coil or an amplifier in a 

machine. To design an active magnetic bearing system, PID controller is applied with 

multi-objective GA to tune the parameter of the PID controller to achieve different 

configuration of this active magnetic bearing system.  

This work shows a typical example of using GA as an effective approach to tune the 

parameters of controllers to achieve the fault tolerant control. However, GA is just one 

of the simplest EA which can be only used for the parameter reconfiguration so that 
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the controller structure always maintains fixed. If the controller structure could also be 

changed, more solutions might be generated to deal with more types of faults. 

However controller structure optimisation hasn’t been developed as the same level as 

controller parameter optimisation in the fault tolerant control area and that’s why the 

combination of controller structure optimisation with fault tolerant control would be a 

new research topic. On the other hand, active fault tolerant control needs rigorous 

identification of all classes of faults so that the controller redesign could be carried out 

[14]. Therefore the controller structure configuration could also be a promising 

approach to deal with a wider range of faults as long as the fault could be diagnosed. 

For this reason, there are some other EA approaches which were developed to work for 

the optimisation of the structure as well as the parameters. Those structure 

optimization based EA approaches are reviewed in the following sections.  

2.3.2 Genetic programming 

Genetic programming (GP) is a kind of structure optimisation based evolutionary 

algorithms (EA) approach which is normally used to automatically create a computer 

program to solve a problem using program trees [15]. GP was firstly introduced in [16] 

based on the parse trees as the genome encoding in order to create programs. In this 

kind of tree based GP, the computer programs are created in tree structures where a 

tree node is an operator such as [+, -, *, /] and the terminal node is a variable such as [a, 

b, c, d]. Based on this tree structure, the programs will be evaluated for each 

generation and the evolution will be finally terminated when an acceptable program 

expression is found. In this case, Lisp became the first programming language applied 

to this tree based GP since Lisp is also expressed in a tree structure that matches the 

genotype of this tree based GP. In terms of the genetic operator, there are two 

different types applied for the mutation including the point mutation and sub-tree 

mutation. Point mutation randomly changes the functions or terminals of a proportion 

of the nodes within a parse tree and the number of nodes are determined by the 

mutation rate. Sub-tree mutation randomly changes the whole sub-tree to a new one 

with randomly selected functions and terminals. On the other hand, sub-tree crossover 

is the only type for crossover which creates two children with the swapped two sub-

trees from the selected two parents [16]. An example of tree based GP genotype is 

shown in Figure 2.3.   
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Figure 2.3: An example of GP genotype [17] 

Besides the basic approach of GP to write a computer program, the program trees can 

be also interpreted to construct a complex structure, such as an electrical circuit [18]. 

Moreover, the program trees could be interpreted to represent the block diagram of a 

controller so as to achieve the controller evolution [15]. In this research field, several 

related works are reviewed as following including control system design and robotic 

controller design based on GP. Among these works, [17] presents a typical implement 

of how to use GP to evolve a controller so as to design a control system, so this work 

will be described in more details.  

 GP for control system design 

[17] considers a simple feedback control loop to be used for controller evolution which 

is shown in Figure 2.4. In this control loop, the process is a continuous time dynamic 

system, the controller is also a dynamic system with unknown structure and 

parameters, y is the controlled variable, r is the reference variable, u is the control 

variable, e is the control error. 
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Figure 2.4: A simple feedback loop [17] 

In this case, a simple integral performance index is chosen as the cost function which is 

defined in equation 2.1 where T is the simulation time and  ̇ is the controlled variable 

derivative. 

 

  ∫|e(t)|dt

T

0

  ∫|ẏ|dt

T

0

 

                                                                                                                                               (2.1) 

The aim of controller design is actually an optimization task which searches for a 

controller so that the chosen performance index could be minimized [17]. This cost 

function consists of two parts. One is a basic integral absolute error (IAE) form which 

integrates the absolute error over time in order to minimize it. The other is described in 

a form of integral absolute output derivative multiplied by a coefficient. It could be 

used to minimize the output slope over time so that the output trajectory could 

become smoother with an appropriate choice of the coefficient.  

To demonstrate the performance of GP, two different case studies are implemented in 

this work including a continuous time and a discrete time controllers design. The first 

test case uses a continuous time interconnected network to describe the control 

algorithm with a table based representation of individuals which is different from 

classical tree based representation in GP. The function blocks include integrator, 

derivative unit, amplifier (multiplication by a constant) and summation/multiplication 

unit. The objective is to find an optimal controller network with these function blocks 

which minimizes the above cost function. The crossover used here will exchange the 

corresponding parts of two random positions between two columns of the table. And 

mutation will change the type of block or delete and add a block or change the value of 

a constant [17]. In the second test case, a discrete time recurrent control algorithm is 

designed with a classical tree representation of genotype. The crossover exchanges the 
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randomly selected sub- trees from two trees and the mutation replaces a randomly 

selected sub-tree by another one. To demonstrate the effectiveness of using GP for 

controller design, two linear dynamic systems are implemented, which are shown in 

transfer function 2.2 and 2.3. 

 ( )  
       

                     
 

                                                                                                                                               (2.2) 

 ( )  
    

  (               )
 

                                                                                                                                               (2.3) 

The optimization results and algorithm running time of obtained controllers of two 

linear dynamic systems are demonstrated in Table 2.1 compared with the results of a 

PID controller tuned by GA for the first system. GP1 means the table based continuous 

time controller, GP2 means the tree based discrete time controller and GA PID means 

GA based PID controller.  

Table 2.1: The obtained results for two different linear dynamic systems [17]. 

Experiment 1 Cost function value Time 

GA PID 11268 3h55min 

GP 1 3950 18h57min 

GP 2 12265 5h53min 

Experiment 2 Cost function value Time 

GP 1 6509 20h27min 

GP 2 19646 5h24min 

 

As can be seen from the Table 2.1, GA PID has the fastest running time but high cost 

function values. GP1 achieves the lowest cost function values but much slower running 

speed. And GP2 has similar results compared to GA PID and higher cost function values 

and faster running time compared to GP1. So the table form based GP method could be 

a promising approach due to its obvious benefit of lowest cost function values 

compared to GA tuned PID controller. However the running time of this approach is 

much longer than the other two approaches and this issue needs to be improved. 

According to the performance index, GP1 obtains the best dynamic performance which 

has the shortest rise time and settling time with no overshoot for the first system. In 
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terms of the second system, GP1 is also better than GP2 with slightly faster rise time, 

shorter settling time and lower overshoot.  

As can be seen from this work, GP is capable to find acceptable solutions for controller 

design based on the feedback closed loop, which outperforms the GA based PID 

controller. Furthermore, table based GP also produces better performance than classic 

tree based GP, which indicates that the tree based GP may not be a first choice 

depending on the given task in spite of a shorter running time. Finally, this work also 

notes that GP can be used to design the controller with complex systems, but the only 

limitation is the high requirement of computation time, which may be a common issue 

for GP based approaches.  

 Improvement of GP based control system design 

Besides a description of how to use GP to construct the controller [17], there are also 

some approaches to improve the performance of GP based controller design. According 

to [19], GP can be used to construct a discrete recursive feedback control law using the 

equation 2.4.  

 ( )   (   )  [                         ] 

                                                                                                                                               (2.4) 

For a population size of M the output of the ith {i 1,2,3…M} controller at time k is equal 

to the output at time step k-1 plus some correction term applied by the ith GP 

individual. The fitness function is shown in equation 2.5. This is calculated using P 

independent and randomly generated set point changes: △  {j 1,2,3…P}. 

   ∑
∑  | ( )|      ( ) 

   

   

 

   
 

                                                                                                                                               (2.5) 

In 2.5, n is the number of discrete time steps which is decided by trial and error before 

GP runs. k|e(k)| is the integral time absolute error (ITAE) term and     ( ) is a 

weighted penalty term for excessive control effort u(k) with a constant r determined by 

trial and error [19]. This fitness function minimizes two aspects of the controller 

performance which are the error and the controller output. Although the output slope 
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is not minimized here which is mentioned in [17], the excessive control effort could be 

decreased in this case. To demonstrate the effectiveness of this approach, [19] uses 

two chemical processes for controller design including a constrained second order 

ARX(auto-regressive exogenous) process and a non-linear CSTR(continuous stirred tank 

reactor) process. The ARX process is defined in equation 2.6. And the non-linear 

dynamic model of CSTR is referred from [20]. 

 ( )       (   )       (   )      (   )       (   ) 

                                                                                                                                               (2.6) 

As can be seen from the ARX process response comparison, the evolved controller has 

longer rise time than the PID controller but without any overshoot. While for the 

settling time, they have similar performance. And according to the CSTR process 

response comparison, they both perform similarly just the evolved controller has 

slightly larger overshoot. Therefore, GP is capable of producing dynamic recursive 

controllers which provide similar performance compared with PID controllers [19]. 

Hence the concept of recursive feedback control law used in GP could be applied to the 

controller design in the discrete time domain. Although its performance is similar to 

PID controller, it is still an encouraging idea to use GP for the discrete controller design. 

[21] also improves the performance of GP based controller design by creating a 

controller with a free variable. The reason to introduce a free variable in the controller 

design is that the evolved controller could control an entire category of plants through 

modifying the value of the free variable instead of a particular plant with a fixed 

variable. The tree format is used to present the controller. A three-lag plant is used for 

the controller design and the controller contains a free variable representing the plant 

time constant τ. This free variable can be changed among 0.1, 0.3, 1.0, 3.0 and 10.0 

which are defined in this work. In this sense, the evolved controller becomes a function 

of this free variable which corresponds to the plant time constant. The transfer 

function of this three-lag plant is defined in equation 2.7 where K is the plant’s internal 

gain(tested by values of 1.0 and 2.0) [21]. 

 ( )  
 

(    ) 
 

                                                                                                                                             (2.7) 
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The fitness is measured by means of 42 separate fitness measurements. Among these 

42 fitness measurements, the first 40 are based on a modified integral of time-

weighted absolute error (ITAE) which is shown in equation 2.8 where e(t) is the error; 

  is the externally supplied value of the time constant; B is a constant; A is an additional 

weight value which varies depending on the error so that unacceptable overshoot 

could be avoided; and finally each integral value needs to be divided by    so as to 

equalize the influence of five different values of  . The 41st One is in frequency domain 

which constrains the frequency of the control value to avoid extreme high frequencies 

applied into the plant. The last one is also in frequency domain measuring the effect of 

sensor noise. 

  
∫  | ( )| ( ( ))   

   

   

  
 

                                                                                                                                             (2.8) 

This obtained controller is compared with the Astrom and Hagglund controller which is 

a PID controller tuned with a new simple tuning rule by Astrom and Hagglund [22].  

As can be seen from the result, [21] calculates that the controller created by genetic 

programming is better than 3.69 times as effective as the Astrom and Hagglund 

controller as measured by the integral of the time-weighted absolute error(ITAE), has 

only 57% by the rise time, and has only 55% by the settling time. Moreover, the 

genetically evolved controller is more robust to the disturbance than Astrom and 

Hagglund controller indicated from the disturbance sensitivity. The computation time 

to find the best of run evolved controller is 23.43 hours. The conclusion demonstrates 

that GP can be used to create a controller with a free variable which outperforms 

Astrom and Hagglund controller [21]. Therefore the evolution of robot controller could 

be referred to this approach using a free variable in the controller design. Although this 

approach has much better performance than the Astrom and Hagglund controller, its 

computation time of 23.43 hours is still high.  

 GP based robust controller design 

GP can be also used to construct a robust controller. [23] applies GP to construct a 

robust flight controller against the wind shear. The occurrence of strong downbursts 

could cause serious crashes of landing aircrafts. So the problem is how to construct a 
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robust flight controller with GP to make the aircraft land along the reference trajectory: 

                 in the case of wind shear. The performance of the generated 

controller is illustrated using the aircraft trajectories in terms of different sizes of wind 

shear. The result shows that the GP based robust controller could achieve effective 

performance for aircraft to be landed safely in spite of different sizes of wind shear. 

Therefore this work describes another application of GP in the robust controller design, 

and the results show that GP is able to get effective solutions. 

 GP for tuning controller parameters 

[24] describes the application of GP to tune a controller parameters. In this work, GP is 

used to construct a self-evolved Model Reference Adaptive System (MRAS) which is 

designed for a second order system based on a pre-defined reference model. MRAS is 

one of the adaptive controllers, its performance is described through a reference 

model which  gives the desired response to a reference signal [25]. The aim of this work 

is to evolve a suitable controller which is based on the desired model to control a 

process. Actually this work applies GP to automatically tune the controller to meet the 

desired performance. Because the structure of the controller is already given, so the 

work of GP is to provide the correct controller parameters [24]. The block diagram of 

this work is shown in Figure 2.5.  

 

Figure 2.5: Block diagram of GP system design for MRAS controller [24] 

In this diagram, uc is the controller input, u is the plant input, y is the plant output, ym 

is the model output and e is the error between the model output and the plant output. 

Although this work doesn’t use GP to evolve the structure of a controller, it presents 

another approach of GP to generate the controller parameters. According to the 
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conclusion of [24], GP is able to generate desired parameters of MRAS controller based 

on the model following without any prior knowledge about the system parameters [24]. 

Therefore this work presents another application field of GP for the controller 

parameter generation and GP is also able to find acceptable solutions.  

 GP in the evolution of robotic controller 

Apart from the controller design, GP can be also used for the evolution of robotic 

controllers [26] [27] [28]. [26] uses GP to achieve a robot reactive navigation task. The 

aim of GP is to evolve the best trajectory that the robot follows the environment 

without bumping into a wall. [27] uses GP to achieve the task of wall-following for a 

robot. In this work, different types of walls are tested for GP to evolve the acceptable 

solutions of robot behaviours without priori information about the environment. [28] 

also uses GP to evolve a robot behaviour controller. The aim of GP is evolving an 

appropriate relation between the sensor terminals and motor commands in order to 

manage the robot to achieve desired behaviours. Therefore two tasks are applied for 

GP to get acceptable controllers which are obstacle avoidance and box-pushing. 

Obstacle avoidance is to make the robot not bump any obstacle and box-pushing is to 

keep the robot pushing a box forward as straight as possible [28]. The results of these 

three works all show that GP can get good behaviours for a robot task based on the 

evolution of a robotic controller. Although they are not related to typical controller 

design problems in control theory area to realise dynamic performance index as well as 

the steady state error of static performance index, these works still present another 

application area of GP to achieve the robotic controller design. Moreover, GP is also 

suited to the multi-input multi-output (MIMO) controller design problems for robotics 

where the sensor readings can be used as the controller input values and the controller 

output values actually stand for different motor speeds, where a standard single input 

single output (SISO) controller is not able to achieve. In conclusion, the GP based 

robotic controller evolution is a promising way to achieve the robot behaviour 

management so as to achieve different robot tasks. In this sense, it would be 

interesting to investigate it into the robot fault tolerant control area and explore how it 

will be working.  
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2.3.3 Cartesian genetic programming 

Cartesian genetic programming (CGP) is another type of GP which uses a two-

dimensional grid of nodes to represent a program rather than the tree form used in GP 

[29]. In terms of the CGP genotype, each one is described with a directed acyclic graph 

of computational nodes. An example of CGP genotype is shown in Figure 2.6. 

 

Figure 2.6: An example of CGP genotype [30] 

The genotype of CGP consists of function genes, connection genes and output genes. 

One advantage of CGP over GP is that the node outputs can be reused more than once 

without recalculating the same required value, which can be seen in Figure 2.6. 

Another advantage is that CGP is quite suited to MIMO problems with the specified 

number of inputs and outputs. Moreover, CGP also does not suffer from program bloat 

problem and the details can be referred to section 2.4.4.2. Finally, CGP is also benefit 

from the inactive genes, where the details can be referred to section 2.4.4.5.     

Basically, CGP utilises (1+4) for the evolutionary strategy with point or probabilistic 

mutation. Point mutation changes the randomly selected genes with a fixed amount, 

which is determined by the total number of genes times the mutation rate. In terms of 

the probabilistic mutation, each gene will get a chance to be mutated based on a given 

mutation rate. Apart from the mutation, there is however no crossover utilised for CGP. 

A possible reason is that using crossover for CGP has not generally demonstrated any 

advantage for a wide range of task domains [30].     

In terms of the CGP applications, three different fields are described which are related 

to CGP based controller design tasks. [31] and [32] are directly related to how to design 

a control system by CGP for two different nonlinear systems, so they will be discussed 

in more details. [33] is about how to evolve a robotic controller based on the relations 

between the input sensor signals and output motor speed of the robot. And [34] is 
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about how to evolve the input signals of a motor controller to achieve sensor fault 

tolerant control.  

 CGP for control system design 

The work in [31] demonstrates that CGP can be also used for control system design 

besides the basic GP approach. [31] mentions that the computation time for GP based 

approach is extremely high so that an acceptable solution could take days of time to be 

evolved for a simple SISO controller design. So CGP is considered to be an alternative 

way with some limitations or simplifications in the task definition such as the 

orthogonal network for the individual representation. Since the interconnection of the 

nodes in this kind of network is not arbitrary as GP, so the solutions with much lower 

computation time could be obtained due to the reuse of nodes for the program 

description [31]. In this approach, CGP is used to design a controller for a nonlinear 

hydro-turbine system whose model can be referred to [35]. 

According to [31], each individual contains N interconnected building blocks where 

each block consists of three parts: the arithmetic operators (summation, subtraction, 

multiplication or division), the gain and the dynamic operators (integrator, derivative or 

unit gain). And the interconnection number between the controller inputs, building 

blocks and controller output is limited to M. N and M are priori determined based on 

the complexity of the system. So an appropriate selection of N and M by the designer 

will maximize the controller performance [31]. 

The fitness function is presented in the form of integral absolute error (IAE) which is 

defined in equation 2.9 where T is the simulation time. 

    ∫| ( )|  

 

 

 

                                                                                                                                              (2.9) 

This fitness function is just used to minimize the error between the reference signal 

and output signal. In this sense, unstable individual will be eliminated due to their high 

performance index. Moreover, a GA designed PID controller is also utilized as a 

comparison with CGP controller for the same problem. 



 

21 
 

As can be seen from the result, CGP designed controller achieves shorter rise time, 

shorter settling time and lower overshoot compared with GA tuned PID controller. And 

with the increase of generation number, CGP approach can get a lower cost function 

values compared with GA approach. The conclusion in [31] indicates that CGP is 

effective to obtain acceptable controller design result. And it uses additional limitations 

related to the controller structure and its size to reduce the computation effort 

compared to GP. In the future work, CGP can be used for controller design with 

complex MIMO and any type non-linear systems [31]. Therefore CGP based controller 

optimization could be a useful approach to design a control system. The only condition 

to apply this method is the existence of a suitable model of the controlled system [31]. 

As long as the system model is obtained and sufficient computation capacity is given, 

this approach is a promising method to obtain acceptable controllers.  

[32] also uses CGP for the controller design of nonlinear system. This work uses a 

different system to demonstrate the ability of CGP to design acceptable controllers. [32] 

conducts an explicit comparison between CGP and GP. In terms of CGP, it has an 

exclusive limitation which defines the individual structures that the building blocks are 

normally organized in a fixed grid with a priori defined size and the task is to find the 

optimal types, parameters and interconnections among them. However GP generates 

the individuals with unlimited structures. So the limitation of GP is just the number of 

building blocks or the size of program tree or table [32]. 

The individual representation and fitness function of [32] is the same as [31]. The 

controlled system of [32] is a SISO system which is described by a differential equation 

in 2.10 where y is the system output value and u is the control value. Furthermore, a 

GA designed PID controller is also implemented as a comparison with CGP designed 

controller for the same system.  

 

                 

                                                                                                                                              (2.10) 

As can be seen from result, CGP approach can get controllers with acceptable 

performance while GA tuned PID controller has the problem of steady state error and 

even cannot reach the reference value when it changes. Therefore the  conclusion of 
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[32] points out that PID controller doesn’t meet the requirements of all the different 

references for the time response due to its linear behaviour and insufficient robustness. 

However CGP controller is able to reach the reference value in an entire range. 

Although it is difficult to obtain the optimal controller because of the huge search 

space, this approach can still produce acceptable solutions [32]. In conclusion, [31] and 

[32] use two different systems to demonstrate the effectiveness of CGP to obtain 

acceptable controllers compared with GA tuned PID controller, which also indicates 

that CGP is capable to design a nonlinear control system based on the controller 

optimization. 

 CGP in the evolution of robotic controller 

Apart from control system design in the control theory field mentioned in the above 

two works, Cartesian genetic programming can be also used to generate controllers to 

manage robot behaviours [33] in addition to the GP based robot controller evolution 

[28]. In this work, the nodes from the first column of the evolved controller consist of 

two sensor inputs and two nodes from the last column stand for two motor speeds. 

The following functions can be selected for the nodes including Add, Subtract, Multiply, 

Divide, Compare, Min, Max, Fixed integer and Input node. The fitness functions are 

developed based on these factors such as time spent moving forward, total path length 

and Euclidian distance travelled [33]. Based on the utilizing of CGP, this work 

successfully creates controllers for two experiment tasks, which are escaping a room 

and solving a maze. As can be seen form this work, the approach could evolve a 

controller which constructs relations between the inputs of sensor values and outputs 

of motor speeds to complete the robot tasks such as obstacle avoidance and maze 

solving for robotic controller design mentioned in this work. What’s more, this kind of 

controller evolution based on CGP is quite suited to the MIMO controller design 

problems especially in robotic area since it could evolve a MIMO controller which 

utilizes the sensor readings as the controller inputs and creates controller outputs for 

each of the motor speeds respectively. In this case, this kind of MIMO controller will be 

working well to manage the robot behaviour rather than a typical SISO controller which 

is just designed on the utilize of the error as the unique controller input to generate an 

output value as the control signal to control the plant. In conclusion, this work indicates 

an interesting area of using CGP to evolve robotic controllers to manage robot 

behaviour to achieve different robot tasks. Based on this work, it would be interesting 
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to consider evolving controllers to achieve robot fault tolerant control as long as the 

fault has been diagnosed.   

 CGP in fault tolerance 

[34] tries to use CGP to achieve sensor fault tolerant control. This work is related to 

controller design in the case of a sensor fault. However it is not about designing a 

controller, it is focused on how to generate the correct inputs to the controller using 

CGP with the remaining working sensors [34]. The controlled system is the Shaky Hand 

plate. The inputs of CGP are the plate sensor signals and the outputs will be the lateral 

and angle offset error voltages which are the inputs of controllers and used to drive 

motors to compensate for them. Therefore the aim of CGP is to generate the relation 

between the remaining working sensor signals and two offset error voltage values [34]. 

As can be seen from this work, CGP is still effective to search for reliable solutions for 

the sensor fault tolerant control. Although this work is not about the controller 

evolution, it indicates a new idea to evolve the inputs of controller which could also be 

helpful for fault tolerant control.   

2.3.4 Grammatical evolution 

Grammatical evolution (GE) is also another type of GP. It can evolve a program using 

arbitrary languages with a variable-length binary string. This binary genome determines 

which rule in the grammar is used to achieve the mapping from genotype to phenotype 

so that the program could be completed. Basically, Backus-Naur Form (BNF) is utilised 

as the original grammar rule employed for the mapping based on the building blocks in 

order to create the potential program. However, any language could be created based 

on this kind of simple binary string as long as an effective mapping process is available 

to implement [36].    

In terms of GE applications, [37] presents a whole scheme about how to use GE to 

evolve a controller to design a control system and [38] talks about how to use GE to 

evolve a robotic controller for robot behaviour management.   

 GE for control system design 

According to [37], grammatical evolution can be used for controller design for arbitrary 

continuous time dynamic systems. The controller is represented in a continuous time 
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function   which includes the selected arguments  , the mathematical relations and 

the parameters of the mathematical operations. The arguments of input variables are  

                
                   

where e is the control error, ie is integral of control error, de is derivative of e, r is the 

reference signal, y is the controlled value and other arbitrary variables. The individual 

can be represented in 4n genes: 

                                                          

where    is the code of a mathematical operation,    is the argument of input variables, 

   is the parameter representing the coefficient of each    and    is the coefficient of 

the power operation. The grammar of the mathematical operation    is in the coding: 

            (   )      (   )      (   )      (
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where          

The fitness function is in a form of simple integral performance indices defined in 

equation 2.11 or 2.12 where T is the simulation time. 
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A parallel evolutionary algorithm [39] is used in this work which is illustrated in Figure 

2.7. 



 

25 
 

 

Figure 2.7: Migration topology of the used Parallel evolutionary algorithm [37] 

In simple population of EA, this is always a conflict between the selective pressure and 

population diversity. Therefore by introducing multiple populations in parallel 

evolutionary algorithm, it is possible to simultaneously increase the selective pressure 

in some populations and improve the diversity of other populations [39]. In this kind of 

parallel EA shown in Figure 2.7, the individual representation is described using 9 

islands in parallel architecture which are interconnected with migration connections 

and each island contains 50 individuals. It is a hierarchical structure that island 1 is the 

upper-level node while others are low-level nodes. Hence the difference between this 

kind of parallel evolutionary algorithm and the simple population evolutionary 

algorithm is the migration that in each generation, the best individual from island 2-9 

will be selected and copied into the island 1 [37]. 

A non-linear stable controlled object is used for GE based controller design which is 

displayed in a differential equation 2.13. As a comparison, GA designed PID controller is 

also utilised for the same system. 

 

 ̈        ̇         

                                                                                                                                              (2.13) 

As can be seen from the result, GE based controller has a faster rise time than GA 

based PID controller in terms of system output. And GA based PID controller also 

causes some oscillation when the reference signal drops to 0. Moreover, GA based PID 

controller generates much higher control value than GE based controller which means 
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PID controller needs more control effort to control the system. In conclusion, the result 

demonstrates that GE is an effective approach which could generate more effective 

controller than GA tuned PID controller. 

On the other hand, a non-linear unstable system is also used for the design of GE based 

controller which is described in a differential equation 2.15. 

 ̈        ̇          

                                                                                                                                              (2.15) 

According to the result, GA based PID controller leads much higher overshoot of system 

output than GE based controller. In addition, GA based controller generates much 

higher control value which means more control effort is required for GA based PID 

controller than GE based controller. In conclusion, the result also demonstrates that GE 

designed controller achieves better performance than GA tuned PID controller.  

According to this work, the GE based controller has obvious advantages for the control 

of non-linear system due to its non-linear properties of the controller compared to GA 

based linear controller. The future research of this approach will design the controller 

for complex, non-linear and MIMO systems. On the other hand, this approach just uses 

five mathematical operations which are {+, -, *, /, ^}. In this case, more kinds of 

operations and functions can be considered to be added into the individual 

representation if they are needed. In summary, [37] demonstrates that GE is an 

effective approach to construct acceptable controllers to deal with nonlinear systems, 

which could be an effective approach for control system design. 

 GE in the evolution of robotic controller 

Similar to GP based robot controller evolution [28] and CGP based robot controller 

evolution [33], [38] also describes how to evolve a controller to achieve robot task but 

with GE. In this work, the task is navigating a robot toward a point light source and 

avoiding obstacles at the same time. The evolved controller by GE is a piece of 

computer program that generates C code in order to make robot achieve the task. The 

obtained program maps a relation between the sensor signals and the motor speeds in 

order to control the robot behaviour. The genotype is evolved using a steady state GA 

where only a small part of population is replaced each generation. The only difference 
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is that the genomes in GE are represented in computer programs rather than binary or 

real values in GA for only evolving parameters. The fitness function is designed with 

two factors including a reward for finding a light and a penalty for collisions [38]. As can 

be seen from this work, it is quite similar to [28] and [33] where the evolved controllers 

are suited to solve MIMO controller design problems especially in robotics research 

area, which is also a potential way to achieve the robot fault tolerant control.  

2.4 Evolutionary algorithms with artificial neural networks 

2.4.1 Artificial neural networks 

2.4.1.1 Introduction of artificial neural networks 

Based on the reviewed literatures, EA is an effective optimization tool to design 

structurally evolvable controllers not only for SISO control problems but also for MIMO 

control scenarios. As can be seen from [28], [33] and [38], structurally evolvable EA 

approaches could also be promising to design controllers in terms of robot behaviour 

management. Although these approaches demonstrate benefits to design structurally 

evolvable controllers, those evolved controllers are created based on stochastic initial 

structures. That is to say, the output values of the controllers are actually arbitrary 

depending on which node functions are utilised and connected to the controller 

outputs. However the robot motor speed has the upper and lower limitations 

respectively. In this sense, the range of the controller output values has to be assessed 

and truncated before the output values can be utilised as the robot motor speed values 

[33], which is quite tricky with lots of extra work to do before initialising and evolving 

controllers.    

Therefore, an alternative option is to use neuron transfer functions instead of basic 

mathematics functions as the controller node functions. The benefit is that the neuron 

transfer functions basically have their own output limitations such as [0, 1] or [-1, 1], 

which is well suited as the controller node functions in order to obtain output values in 

limited range as the robot motor speed without extra works to assess the controller 

output limits. In this sense, the work will become the evolution of neuron transfer 

function based controllers. In other words, artificial neural network (ANN) would be a 

suited choice as the basic controller type and EA could optimise a structurally evolvable 

controller based on it, which is called the training for the neural network. In addition, 

ANN has been investigated in the fault tolerance area extensively, which will be 



 

28 
 

reviewed in section 2.4.1.2. Therefore it is also a promising idea to implement EA to 

realise a structurally evolvable ANN so as to achieve the fault tolerant control.  

ANN is a significant research area in artificial intelligence and it has a wide application 

scope. Due to the nonlinear characteristic, ANN is capable to model a complex system 

where the accurate mathematical model is hard to obtain or just act as a nonlinear 

controller for a given task [2].  

ANN is inspired by the animal brain’s structure to mimic how the neurons transfer 

information in the real neural networks. Basically ANN describes a weighted directed 

acyclic/cyclic graph with a set of nodes implementing the neuron transfer functions so 

as to approximate the real biological neurons. In biological neural networks, the signals 

are transmitted as spikes between two connected neurons. In this case, the ANN which 

models the spiking behaviour for the information transmission is considered as Spiking 

Neural Networks. However most of ANNs utilise non-spiking neurons to constitute the 

network due to the less expensive computation effort with a wider application scope 

for the non-spiking ANNs.  

Figure 2.8 shows a generalised neuron model for the non-spiking ANN. In this figure, x 

is the input from previous neurons; w is the connection weight which indicates the 

strength of the current connection; ϕ() stands for the neuron transfer function which 

processes the weighted sum of input signals to generate one output signal, and that 

output y in this figure represents the output from this neuron. In addition, there is an 

extra element for the ANN called the bias, which is b in this model. Bias is just used for 

any internal thresholds with respect to the neuron transfer function.       

   

Figure 2.8: A generalised artificial neuron model [30] 
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There are many types of neuron transfer functions in the literature and most of them 

generate the output in the interval of [0, 1] or [-1, 1] [40]. Based on the implement of 

neuron transfer functions, ANN could be also used to describe graphs with different 

structures. For example, [41] and [42] demonstrate how feed-forward and recurrent 

ANN could be utilised respectively for universal system approximation based on a finite 

number of neurons, which indicate that both the feed-forward and recurrent ANN have 

wide application scope as long as they can be trained for the given task.       

 ANN different structure types 

To be more specific, several different ANN structures are reviewed as following. Feed-

forward neural networks have the simplest structure. In this type of neural networks, 

each neuron outputs only the neurons of the next layer and there may be more than 

one hidden layer depending on the complexity of the system. Its architecture is 

presented in Figure 2.9 where each neuron outputs only to the neuron of the next layer 

[43]. 

 

Figure 2.9: Feed-forward neural networks [44] 

Recurrent neural networks have more complex structures than the simple feed-

forward neural networks. This type of neural networks needs more computational 

power for training and implementation because of the reuse of past signals. Moreover, 

each input activity pattern passes through the network more than once before it 

generates an output [43]. Their structure is displayed in Figure 2.10. 
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Figure 2.10: Recurrent networks [44] 

Radial basis function neural networks are a kind of single hidden layer feed-forward 

networks which use radial basis function as activation functions. In this type of neural 

networks, the distance between the input vector and the vector of centres is calculated 

for each input which needs to be passed through the activation function [44]. Its 

structure is shown in Figure 2.11. 

 

Figure 2.11: Radial basis function neural networks [44] 

In this diagram, f is a radial basis function used for the activation function, y is the 

output, x is the input vector and c is the vector of centres. ||x-c|| is the distance 

between the input vector and the vector of centres.  



 

31 
 

Besides the above mentioned different kinds of neural networks, fuzzy logic can be also 

combined with neural networks using a fuzzifier to form the fuzzy neural networks [43]. 

Fuzzifier is used to convert the input data patterns to fuzzy categories which can be 

used as the inputs of neural networks. So this kind of neural networks is useful to deal 

with the system with imprecise information or noise with the aid of fuzzy logic [44]. 

Their structure is presented in Figure 2.12. 

 

Figure 2.12: Fuzzy neural networks [44] 

In summary, different types of ANN could be utilised in different scenarios depending 

on the complexity of the given task. Due to the nonlinear characteristic, ANN would be 

feasible to act as nonlinear controllers especially when MIMO are required to design 

the controller, where a standard SISO controller is not able to achieve. 

 ANN training methods 

Back propagation is the most widely adopted traditional ANN training method 

especially for multi-layered feed-forward network, where its first description is 

presented in [45]. Back propagation is working based on the error signal, which is 

defined as the difference between the real output and the expect output of the 

network. During the ANN training, the error signal will be propagated from the output 

to the input through each layer including all the hidden layers. In this way, the weight 

value of the network can be regulated by the error feedback and the real output will 

finally get quite close to the expect output based on the continuous modification of the 

weight values [46]. The mathematics details of back propagation can be referred to 

[46].   

Apart from back propagation, EA is a new training method for ANN. There are many 

benefits that EA outperforms back propagation for ANN training. [47] compares EA 

with back propagation for ANN training based on five different test cases. The result 
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shows that EA converges faster with a more accurate performance than back 

propagation. Moreover, EA demonstrates a better robustness than back propagation 

with a better average performance for these case studies when some neurons are lost 

before the training [47]. As can be seen from this work, EA demonstrates significant 

benefit over back propagation for ANN training. Although the comparison is conducted 

on those five test cases in [47], it still indicates that EA could be a new approach as the 

ANN training method rather than back propagation. The details of the five test cases 

can be referred to the work in [47]. 

2.4.1.2 Artificial neural networks in fault tolerant control 

In terms of fault tolerant control, ANN has also been investigated widely not only for 

controllers but also as fault detectors. [48] applied ANN as controller, fault detector 

and fault compensator all together to achieve a fault tolerant control system. In this 

work, the neural network controller and fault detector are trained offline. When there 

is no fault, the controller is able to make the plant work normally. And when a fault is 

presented in the plant, the fault detector can generate a residual signal which indicates 

that a fault is detected. After that, an extra neural network based fault compensator 

will be trained online in order to ensure the closed loop stability [48]. This work 

demonstrates a wide application of ANN in the fault tolerant control area. However the 

fault tolerant control capability is based on the online training of a fault compensator in 

the face of detected fault while the ANN based controller’s structure still remains fixed. 

In this case, if the ANN based controller could be redesigned, it would be interesting to 

see whether it will be working better other than the dependence on the fault 

compensator. [49] applied a dynamic radial basis function ANN as the controller to 

achieve a fighter aircraft fault tolerant control system in the case of severe winds when 

it is landing. This approach just utilises ANN as a feedback controller to design a fault 

tolerant control system. This work demonstrates that the ANN controller is capable to 

be trained online in order to deal with the fault. So this work indicates a possibility to 

investigate the controller redesign especially the controller reconfiguration with 

respect to the ANN based controller utilised to design an online fault tolerant control 

system. [2] made a comparison between a PID controller and ANN controller in order 

to achieve the fault tolerant control based on a Model Reference Adaptive Control 

(MRAC) system. In the MRAC system, the process output will be compared with the 

reference model output and the comparison result, which is the error in this system, 

will be processed by an adaptation mechanism in order to tune the controller 
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parameters. In this sense, the process output will be following the reference model 

output until the controller’s optimal parameters are found, which means the system 

response will be matched with the reference model output and the whole closed loop 

system will be stable. Based on the MRAC scheme, this work utilised a PID controller 

and an ANN controller to do the comparison to achieve the fault tolerant control for a 

heat exchanger system where abrupt and gradual faults will be both injected on the 

sensors and actuators respectively. As can be seen from the experiment results, ANN 

controller based MRAC system represents the best performance for both of two types 

of faults in two different scenarios. ANN controller could be robust to these two faults 

injected in the sensors but PID controller has to reply on the adaption mechanism to 

re-tune the parameters in order to make the system response stable. In terms of 

actuator faults, although both PID and ANN controllers have degraded performance, 

ANN controller still outperforms than PID controller with a less degraded performance. 

In conclusion, this work demonstrates the benefits of utilising an ANN controller to do 

the fault tolerant control other than a traditional PID controller. In this sense, it would 

be interesting to investigate how ANN controller can be utilised into the robot fault 

tolerant control scheme. 

As can be seen from these three works, ANN displays significant advantages when 

being acted as controllers in the fault tolerant control system. However the training 

method of these ANN is the back propagation, which belongs to the most typical 

traditional ANN training approaches. In order to investigate how EA could be used to 

train the ANN, [50] utilised GA for the weight retraining of a ANN controller which is 

used to realize the fault tolerance in single chip or silicon wafer. In this sense, the ANN 

controller can be reconfigured online to process different faults with the help of GA. 

This work is actually a typical example of employing EA approaches for the ANN 

training to design a fault tolerant control system, which belongs to a kind of 

NeuroEvolution (NE) approaches. Up to now, there are lots of similar works using GA to 

train the ANN in order to achieve fault tolerant control. However those ANNs have 

fixed structures and the only factor to be optimised is the connection weight, which is 

quite fitted for GA in terms of the ANN training. However if the whole structure of ANN 

could be optimised, those reviewed EA techniques which are working for the structure 

optimization mentioned in the section 2.3 will be promising approaches to help design 

a structurally evolvable ANN controller to achieve the fault tolerant control scheme, 

which would be interesting for further investigation. 
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2.4.2 NeuroEvolution 

2.4.2.1 Connection weight evolution 

As is mentioned in section 2.4.1.2, NE [51] [52] is a kind of optimisation technique that 

it applies evolutionary algorithms into the training of ANN to achieve the given tasks. 

As is reviewed from [50], this work combines GA with ANN together to achieve a fault 

tolerant control scheme, which belongs to a typical simple NE approach called 

Conventional NeuroEvolution (CNE).  

CNE [53] [54] is the earliest NE approach which just applies a simple GA into the 

training of ANN’s weights with a fixed network structure. CNE can be utilised to train 

either a feed-forward or recurrent ANN depending on the required network type for 

the task. Generally speaking, the genotypes of GA for the CNE are comprised of a string 

of floating point values which stand for the weight value for each connection in the 

ANN for training. So the phenotypes would be the corresponding weight values for 

each connection with a predetermined network structure. The fitness function is 

determined by the task which evaluates how well the genomes perform onto the ANN. 

The mutation could change a given percentage of the genomes by new random values 

and crossover could exchange the corresponding gene proportions of two parents in 

order to create two children. The initial population is made up of random values 

describing random connection weights. Finally the evolution could be terminated when 

an acceptable string of connection weights for the ANN are obtained to achieve the 

given task or the convergence criterion has been reached. Based on the description of 

CNE, it indicates that GA could be easily applied into the training of ANN’s weights to 

complete given tasks. However there are also many different NE approaches working 

beyond the simple application of a simple GA into the training of ANN’s weights. 

2.4.2.2 Network structure evolution 

Apart from CNE based ANN’s weight training approach, there is another area that trains 

the network structure as well as connection weights, which is also important in NE area 

[51] [52]. [30] mentions that the search space of NE is actually comprised of structure 

and connection weight; or just the weight space with a given network structure. So 

only training the connection weights for a fixed network structure may limit the search 

space depth. In general, it is beneficial to just train the connection weight for a given 

suitable network structure since the dimensionality of search space is lower than 
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training the whole structure. However a suitable network structure may not be 

determined in advance before the training and the effectiveness of the search is highly 

dependent upon a suited selected network structure. Therefore, it is a crucial drawback 

of just training the connection weights for NE. In other words, the structure training 

based NE approach can help determine the most suited network structure and 

sometimes it could also obtain an unusual structure but with a better performance, 

which otherwise may not be considered by a human designer [30]. In summary, other 

than just weight training, the network structure evolution can be also considered for 

NE approaches and many different NE approaches were developed for it. 

Symbiotic Adaptive NeuroEvolution (SANE) [55] is a feed-forward, limited network 

structure evolution based NE approach. In SANE, each individual actually stands for 

each neuron. So the population is a combination of individuals which represent 

different neurons and the whole network will be created based on a random selection 

of these neurons. In terms of the genotype, each one is described as a hidden node 

with its connectivity and connection weights with the input and output nodes. 

However the limitation of SANE in the network structure evolution is that the network 

always just contains one hidden layer with the given number of nodes, arity and 

connections to output.  In this case, only the connection placement and connection 

weights can be evolved, which restricts the evolution for a more complex network 

structure [30]. 

NeuroEvolution of Augmenting Topologies (NEAT) [56] is another typical network 

structure evolution based NE approach. It can evolve the weights as well as the 

structure of feed-forward and recurrent ANNs. Moreover, each individual stands for a 

whole network, which is quite different from SANE of using single neuron as individual. 

In terms of the genotype, each one is represented by a list of nodes and connections. 

The node is identified by an ID indicating whether it is an input, hidden or output node. 

And the connection gene includes an input and output node, a connection weight and 

whether this connection is enabled or not. In this case, a complete network can be 

constructed based on these node and connection genes for each individual. 

Interestingly, the initial individuals are created for simple network structures without 

any hidden nodes, where input nodes are directly connected to the output nodes. And 

new nodes or connections will be added only when they are required. However a 

crucial disadvantage is that this kind of incremental mutation could result in a local 
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research of the network structure evolution, which would make the search trapped in 

local optima eventually [57]. Even though, a significant benefit of the evolution based 

on an initial small program size could be a solution to avoid the program bloat [30]. The 

program bloat is a common issue for many EAs especially for GP where the program 

size would be growing in an uncontrollable way during the evolutionary search [58] 

[59]. The main consequence of program bloat is that the training time may be 

increased and the computational effort could also be expensive for those solutions 

which would be extremely complex at the end of the evolution. However [60] also 

mentions that whether NEAT is suffered from program bloat is highly dependent on the 

choice of its parameters, where the typical parameter values in the early publications 

still cause program bloat.  

2.4.2.3 Recurrent network evolution 

In terms of recurrent ANN evolution, all fixed network structure evolution approaches 

are able to evolve recurrent network structures. Although some approaches like SANE 

do not allow the evolution of recurrent connection, it is simple to just modify the node 

connection such as to the input nodes, the previous nodes or even the node itself 

depending on the user requirement. In this way, it is not difficult for this kind of 

approaches such as SANE to obtain a recurrent ANN despite that the evolve network 

structure is still restricted to be a fixed structure [30]. As for the adaptive network 

structure evolution approaches, it seems that all of them are able to obtain recurrent 

ANNs. A possible explanation is that the connection placement can be also easily 

evolved just like the fixed network structure evolution approaches no matter which 

node it wants to connect as long as it is permitted by the user [30].    

2.4.2.4 Transfer function evolution 

Besides the recurrent network evolution, the neuron transfer function can be also 

evolved. Typically, if an ANN just utilises a single type of neuron transfer function, this 

kind of ANN is called homogeneous ANN. And if an ANN utilises more than two types of 

neuron transfer function, it is called heterogeneous ANN. [30] mentions a significant 

benefit of heterogeneous ANN over homogeneous ANN that homogeneous ANN may 

limit the ANN performance since different ANN training methods restrict the neuron 

transfer function types. However it has demonstrated that neuron transfer functions 

affect the capability of an ANN significantly [61] [52]. In this case, NE can be also 

utilised to manipulate the selection of neuron transfer functions without any restriction 



 

37 
 

during the training especially for heterogeneous ANN as long as sufficient types of 

neuron transfer functions are given. Theoretically, the transfer functions can be simply 

described as extra genes added into the genotype for each node in order to be evolved. 

In this case, evolving a heterogeneous ANN could be possible as long as the extra 

transfer function genes can be also evolved [30].  

2.4.3 NEAT/HyperNEAT 

2.4.3.1 Introduction 

 NEAT 

As is mentioned in section 2.4.2.2, NEAT is one of the most important approaches in 

network structure optimisation based NE area in spite of a potential problem of 

program bloat. NEAT was developed by [62] based on ANN structure optimisation in 

the NE area. Each genome in NEAT is made up of a list of connection genes where each 

gene connects two node genes. Each connection gene specifies what input and output 

nodes is connected; what the weight values is; whether the connection is enabled or 

not and an innovation number which is utilised during the crossover [62]. An example 

of the genome encoding is shown in Figure 2.13.  

 

 Figure 2.13: An example of NEAT genotype and phenotype [62] 

In NEAT, the mutation could be occurred for both of connection gene and network 

structure. Like the normal weight mutation, each weight gene could be mutated with a 

fixed probability to a new floating point number. In terms of the structure mutation, 

each mutation will increase the genome size by adding new genes. To be more specific, 

there are two ways for NEAT to conduct the structure mutation. One is the adding 
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connection mutation, where a new connection is added with two previously 

unconnected nodes. The other is the adding node mutation, where a current 

connection is split into two parts with a new added node [62]. An example of these two 

way mutations is shown in Figure 2.14. 

  

Figure 2.14: An example of two mutation ways of NEAT [62] 

Besides mutation, crossover is conducted with the help of innovation number in NEAT. 

When a new gene appears, an innovation number is incremented and attached to the 

gene. The benefit is that when crossover takes place, the children will inherit the same 

innovation numbers from each gene, which guarantees that the historical origin of each 

gene is known during the evolution. Based on the innovation numbers, the crossover 

lines up the genes with the same innovation numbers and just chooses them randomly 

to create the children. If the genes are not shared with the same innovation number, 

the crossover adds them from a fitter parent into the children. In this way, the 

genomes with different structure could be combined compatibly during the crossover 

[62].  

One significant benefit of this kind of crossover is that the competing conventions 

problem could be avoided. “Competing conventions means having more than one way 

to express a solution to a weight optimization problem with a neural network. When 

genomes representing the same solution do not have the same encoding, crossover is 

likely to produce damaged offspring” [56]. That is to say, when crossover is executed 
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on two parents who have the same fitness but different genotypes, their children 

created from the crossover may lack genetic information and no longer function like 

either parent. Competing conventions problem is actually a common issue in NE 

approaches which utilise crossover to create children. However due to the utilise of 

innovation numbers, NEAT could identify which genetic material is shared or not share 

between their parents and the crossover could take place by selecting random shared 

genes or non-shared genes from a fitter parent, which prevents the competing 

conventions problem [30]. And at the moment, NEAT and the following reviewed 

HyperNEAT are the only two approaches in NE which utilise crossover but do not suffer 

from competing conventions problems. An example of crossover with the implement of 

innovation number is shown in Figure 2.15. 

  

Figure 2.15: An example of crossover based on innovation number in NEAT [62] 

 HyperNEAT 
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Apart from NEAT, Hypercube-based NeuroEvolution of Augmenting Topologies 

(HyperNEAT) is also another important approach in network structure optimisation 

based NE area. HyperNEAT was first introduced in [63] which was developed based on 

connective Compositional Pattern Producing Networks (connective CPPNs) as the 

encoding genotype with NEAT for the evolution. CPPNs are used to represent 

connectivity patterns since they can produce spatial patterns made up of different 

basic functions. For this reason, HyperNEAT firstly creates the spatial patterns onto a 

hypercube whose dimensionality is determined by the dimension of the input 

coordinates. And then HyperNEAT maps the connection weights onto the neural 

network whose neurons and connections should be in a spatial location. Now the 

genomes are created and the genetic operator including mutation and crossover will be 

the same as NEAT for the network structure evolution [63].  

2.4.3.2 NEAT/HyperNEAT in controller structure optimisation 

 NEAT 

Although [60] mentions that NEAT may also suffer from program bloat if inappropriate 

parameter values are set for the evolution, NEAT still demonstrates more effective 

performance than the fixed network structure optimisation NE approaches utilised to 

highly complex problems, such as the double pole balancing [62]. Moreover, an online 

evolution with NEAT also produces effective performance in terms of video game 

characters evolution, where the approach is also referred to a real-time enhancement 

of NEAT (rtNEAT) [64]. In recent years, a novel online and distributed version of NEAT 

(odNEAT) is developed by [65] which is quite similar to rtNEAT. The significant 

difference between them is that reNEAT utilises a centralised manner for evolution but 

odNEAT is completely decentralised. For this reason, odNEAT is quite suited to the 

robot control area where the controllers of multiple robots can be evolved 

independently online and onboard. Each controller is represented by an ANN indicating 

a candidate solution for the task on the corresponding robot and odNEAT is running on 

this group of robots with parallel evolution to perform the same task with genomes 

migrated between each [65], which is actually quite similar to parallel evolutionary 

algorithm interconnected with migration connections [39] mentioned in work [37].  

[65] utilises odNEAT to conduct a simulated collective robotics experiment. odNEAT is 

used to create an ANN controller loaded to each robot. The input of the ANN is the 
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robot proximity sensor values and the output is the speed for each wheel. The task 

selected is an aggregation task where each robot needs to move close to each other in 

order to create a cluster. The result shows that 22 evolutionary runs are successful to 

make the group of robots achieve the aggregation task of all 30 runs. Although not all 

the runs are successful, the result still demonstrates that odNEAT is able to evolve 

adequate robot behaviours so as to achieve the same goal including the searching, 

locating and joining other robots in the environment. In conclusion, [65] is a typical 

work that demonstrates the effectiveness of utilising odNEAT to achieve the online 

controller evolution for group robot behaviours based on the parallel evolution with 

genome migration between each robot. 

As can be seen from these reviewed works, odNEAT mentioned in [65] is one of the 

most typical approaches based on NEAT to be successfully utilised in robot controller 

optimisation. Due to the effective performance of odNEAT, [66] utilises odNEAT to 

achieve an online ANN controller optimisation but based on the real robots, which 

additionally demonstrates the performance for robot fault tolerance. [66] utilises the 

same odNEAT as that mentioned in [65] to evolve ANN controllers but for real robotic 

hardware rather than simulation robotic platform. The tasks selected in [66] include 

two single-robot tasks: the navigation with obstacle avoidance and the homing towards 

a target area. Moreover, aggregation is also selected as a collective robotics task to be 

conducted with a group of robots. In terms of the fault tolerance, the task is still the 

aggregation with pre-evolved controllers for the fault-free scenario. The fault is 

injected into a random robot’s wheel within the robot group during the task, so the aim 

of fault tolerance is to investigate whether the robot will continue doing the 

aggregation with resumed online evolution for the faulty robot’s controller. To be more 

specific, there are 3 test cases for the online controller evolution for the fault tolerance 

including one fault, two faults and three faults occurred among the group of robots. 

Each group consists of 3 robots and the fault is randomly injected in either the left or 

the right wheel of the randomly selected robot. The result shows that the online 

evolution with odNEAT is effective to produce a considerable set of successful 

controller in each run in terms of both of two single robot tasks and a collective robot 

task for the real robotic hardware. In terms of the fault tolerance, all of these three 

scenarios successfully evolve controllers online to overcome the injected faults for the 

selected robots in order to make the group continue doing the aggregation task, which 
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demonstrates that odNEAT is effective to achieve the fault tolerant control with the 

controller online optimisation based on real robotic hardware [66].  

As can be seen from these works, NEAT demonstrates effective performance in NE area 

especially for ANN controller structure optimisation. Among them, [66] is currently one 

of the typical works that utilises NEAT into the fault tolerant control field in terms of 

robot control optimisation. However [66] still displays a potential problem with a time-

consuming work based on the online controller evolution for fault tolerance. Although 

[66] mentions that all the experiments conducted in this work require less than an hour 

to obtain an acceptable controller, those evolved fault tolerant controllers are just 

suited to the aggregation task. In other words, an hour evolution time is fine for the 

robots to overcome fault when they are doing the aggregation task since there is no 

criteria that the robots have to overcome the fault in order to continue performing the 

aggregation in a limited time. However if there is a requirement that the robot has to 

achieve the fault tolerance immediately right after the fault is diagnosed, which refers 

to a kind of real time fault tolerance, the online fault tolerance will be definitely not a 

suitable solution. An alternative solution is that the online fault tolerance could evolve 

the controller before the fault occurs rather than after it, which shortens the evolution 

time. However this idea needs the fault prediction technique, which is another 

research topic related to the fault tolerant control area. In this case, a simple but still 

effective approach is the offline fault tolerance based on the controller evolved offline. 

As is mentioned in section 2.2, the benefit of the offline fault tolerance is that some 

real time fault tolerance tasks could be achieved based on either robust or switched 

control with the offline evolved controllers. However a significant drawback is that all 

the possible fault types have to be considered in order to conduct the controller 

evolution. That is to say, if an unplanned fault is occurred during the online task, there 

is no way to overcome the fault and that is why online fault tolerance is needed. 

However it can be assumed that the possible fault types have already be considered for 

evolving fault tolerant controllers offline since this thesis is just focused on the fault 

tolerant control area, which does not matter whether all the possible fault types are 

considered or not. For this reason, the offline controller evolution could be a primary 

approach based on the ANN controller structure optimisation for fault tolerance before 

the online task is performed, which would be much more efficient than evolving a 

controller online.  
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 HyperNEAT 

Besides NEAT, HyperNEAT also demonstrates competitive performance in the 

controller structure optimisation for robot control. [67] [68] and [69] all investigate 

how HyperNEAT could be utilised to achieve the robot gait learning. [67] implements 

HyperNEAT for the online gait training for modular robots in simulation and compares 

its performance with the reinforcement learning method. The result shows that the 

reinforcement learning method outperforms HyperNEAT where even the best 

controller in the best run of HyperNEAT produces a worse performance than the 

reinforcement learning method during the first 400 evaluations and the median value 

from HyperNEAT is also much lower than the reinforcement learning during the 1000 

evaluations. Moreover, HyperNEAT also requires a much longer learning time than the 

reinforcement learning method to obtain an effective solution for the online gait 

learning task. For this reason, HyperNEAT may not be a suitable approach for the online 

gait learning based on modular robots in the task mentioned in [67]. [68] investigates 

how HyperNEAT could be utilised to achieve the gait training for a legged robot and 

tests the hypothesis that whether hyperNEAT will outperform the simpler encoding if 

the gait is firstly evolved in simulation and then transferred to real robot. When the 

evolution is finished in simulation, the best solution of each of 20 runs is transferred 

onto the real robot and distance travelled will be the measurement. The result shows 

that HyperNEAT produces a better performance than the simpler encoding for robot 

gait training in terms of the simulation task. Furthermore, this work also demonstrates 

that it is effective to evolve gait in simulation and then transfer the solutions onto real 

robot, although the solution just performs slightly better that directly evolved on real 

robot. Nevertheless, evolving gait in simulation first and then transferring onto real 

robot indicates another option for gait training with real robot based on the implement 

of hyperNEAT [68]. [69] is actually quite similar to [68] where HyperNEAT is also utilised 

to train the gait on a legged robot, but the difference is that [69] directly evolves gait 

on a real robot without any concern from the simulation work. Moreover, this work 

compares HyperNEAT with locally searching parameterized motion models based on 

their performance for real robot gait training. The result shows that HyperNEAT 

outperforms all the parameterized local search methods mentioned in this work and 

obtains a gait much faster than a hand-designed gait, which demonstrates the benefit 

of using HyperNEAT for real robot gait training.  
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Except for these three works, [70] develops a new version of HyperNEAT called iterated 

evolvable-substrate HyperNEAT (iterated ES-HyperNEAT). And this work shows that 

iterated ES-HyperNEAT reduces the computational costs compared to the original ES-

HyperNEAT. In addition, this works also demonstrates that iterative ES-HyperNEAT 

outperforms original HyperNEAT in terms of a robot maze navigation task [70]. In 

conclusion, this work demonstrates that HyperNEAT could also be improved to achieve 

better performance for robot control. [71] utilises HyperNEAT to evolve controllers so 

as to achieve organism locomotion with obstacle avoidance. This work belongs to the 

field of evolution of robot organisms, where the robot organisms usually refer to the 

structures consisting of physically connected individual robots. In this work, controllers 

are evolved based on HyperNEAT in order to achieve the locomotion of a quadruped 

organism composed of 14 simple modules in addition to obstacle avoidance. The result 

shows that the evolved gaits are smooth and seem natural when the organism moves 

in a controlled, co-ordinated manner while negotiating obstacles [71]. In conclusion, 

this work shows that HyperNEAT is effective to develop a reactive quadruped gait with 

individual robot’s controllers acting autonomously to achieve the successful 

locomotion of a given organism, which demonstrates the benefit of using HyperNEAT in 

the field of robot organism evolution.  

As can be seen from these works, all of them are about how HyperNEAT is 

implemented for the robot controller evolution, which demonstrates the effectiveness 

of HyperNEAT in this area in terms of ANN structure optimisation. In addition, these 

works successfully implement HyperNEAT for controller optimisation of either single or 

modular robots based on simulation or real robotic platform. Although HyperNEAT 

demonstrates effective performance especially in robot controller optimisation area, 

there is currently no literature that implements HyperNEAT for fault tolerant control. 

Even though, it is not a difficult task for HyperNEAT since NEAT already achieves fault 

tolerant control with online controller optimisation [66] and the only difference 

between HyperNEAT and NEAT is the way of genome encoding. For this reason, 

HyperNEAT could be an alternative approach besides NEAT to achieve the fault tolerant 

control based on the ANN structure optimisation.   

2.4.3.3 Summary 

As can be seen from these works, both of NEAT and HyperNEAT demonstrate effective 

performance in terms of the ANN controller structure optimisation for robot controller 
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evolution. Especially, [66] also utilises odNEAT to investigate how it will be performing 

for robot fault tolerant control, which is quite related to this thesis topic. However, as is 

mentioned in 2.4.3.2, the only problem in [66] is from the online fault tolerant control 

scheme, which needs at least a period of time to obtain an acceptable controller. In this 

sense, evolving controller offline before robot performs the online task would be 

another scheme to achieve the fault tolerance, which avoids the problem of a time-

consuming work for online controller evolution as long as it is assumed that the 

possible types of faults have been considered for the evolution. For this reason, offline 

fault tolerant control could be a primary scheme to investigate how ANN structure 

optimisation approaches could be performed for it.  

2.4.4 CGPANN 

2.4.4.1 Introduction of CGPANN 

Apart from NEAT, Cartesian Genetic Programming of Artificial Neural Networks 

(CGPANN) is also another important approach in network structure optimisation based 

NE area. CGPANN was first developed by [72] to achieve the network structure 

optimisation of ANN based on the original CGP but in the NE area. CGPANN has the 

similar framework with CGP to describe structurally evolvable graphs but for ANN 

training. Figure 2.16 shows an example of a simple CGPANN’s genotype [30]. 

 

Figure 2.16: An example of CGPANN genotype [30] 

In Figure 2.16, this CGPANN has three inputs and one output with three nodes. Each 

node acts as each neuron in ANN’s framework. Moreover, each node has two 

connections from previous inputs, where the arity of the node is two in this case. Each 

connection is also coupled with a value to stand for the connection weight for ANN 

description. Finally, each node also implements its own node function. In this 

phenotype, the node function will be neuron transfer functions instead of basic 
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mathematics functions. It needs to note that sometimes the node will not be 

connected to any other nodes including the inputs and outputs. As a result, this node is 

inactive for the graph description, so this node’s relative genes are called redundant 

genes in this case, which is an important feature for NE and will be talked about in 

section 2.4.4.5. Therefore, the significant difference between CGPANN and CGP is that 

CGPANN adds an extra gene used to represent the neuron’s connection weight for each 

connection among different nodes. In addition, CGPANN utilises neuron transfer 

functions to act as the node functions rather than basic mathematics functions. Other 

aspects will be remained the same from CGP.  

Actually, CGP has some benefits over GP for the ANN’s structure evolution. [73] 

mentions that CGP is more suited for ANN training rather than GP based approaches. 

The reason is that GP describes the program in a tree based structure, which is not 

suited to ANN encoding. However, CGP arranges the nodes in a graph based structure, 

which enables the reuse of nodes so as to make it possible to describe ANN. Apart from 

that, CGP also has further advantages including the management of explicit genetic 

redundancy [74] and the ability to overcome program bloat problem [75], which will be 

discussed in the next section 2.4.4.2 and 2.4.4.5. Moreover, the benefit of evolving 

network structure and heterogeneous ANN based on CGPANN will also be talked about 

in the section 2.4.4.3 and 2.4.4.4.  

2.4.4.2 Program bloat 

Resilience to program bloat is a benefit of CGP as well as CGPANN. Program bloat is a 

common problem for many GP based NE approaches which were developed with 

similar features as GP. Although [60] talks about how to ease the program bloat 

problem based on NEAT, the resilience is still highly dependent on a careful choice of 

its parameters. Therefore, more works are needed to investigate how to solve the 

program bloat problems for NE approaches and CGPANN is one of the approaches 

which present an effective resilience to program bloat. 

To be specific, program bloat refers to a phenomenon that the size of evolved program 

increases dramatically but without significant improvement on the fitness [76]. This 

definition of program bloat is actually a metric applied in [77] to measure the amount 

of bloat for each generation. Figure 2.17 shows the comparison of the average bloat 

amount of the population for a standard tree-based GP (grey line) and DynOpEq GP 
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(black line) from the work of [77]. In this figure, (a) shows the result of a symbolic 

regression problem and (b) (c) are referred to two real world classification tasks. As can 

be seen from the comparison results, a standard tree-based GP is seriously affected by 

the program bloat that the bloat amount is going up continuously with the increase of 

generations. 

 

Figure 2.17: The comparison of GP and (gray line) and DynOpEq GP (black line) on (a) symbolic 
regression and (b) (c) two real world classification tasks in terms of program bloat investigation. 
[77] 

In [30], the program bloat metric is modified slightly to suite the CGPANN framework 

which is demonstrated in equations 2.17 to 2.19: 
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Where  ( ) is the bloat at generation g,  ̂ ( ) is the number of active nodes utilised 

by the fittest individual of the population at generation g,  ̅( ) is the average number 

of active nodes for each individual in the population at generation 0,  ̅ ( ) is the 

average fitness for the population at generation 0 and  ̂ ( ) is the fitness of the fittest 

individual of the population at generation g. Actually equation 2.19 represents the ratio 
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of the increase of program size to the improvement of fitness from the first generation. 

So if  ( ) is becoming bigger, that means program size is increasing disproportionately 

to the fitness improvement, which indicates that the program bloat is existed. In other 

words, if the bloat value is constant, that means there is no program bloat over the 

past generations [30].  

Based on equations 2.17 to 2.19, [30] utilised three benchmarks to investigate whether 

the program bloat exists in CGPANN. The three experiments include a double pole 

balancing, ball throwing and the Monks Problem 1. The first two experiments belong to 

control problems and the last one is a kind of classification task. The details of the 

experiments setup can be referred to [30]. The results of these three experiments are 

averaged over fifty runs in terms of fitness, number of active nodes and the bloat value 

at each generation. 

According to the result, CGPANN actually does not suffer from the program bloat at all 

since the bloat is in a low level with nearly stable values over generations. Moreover, 

CGPANN is utilised in three different benchmarks, which also demonstrates the 

generalisation of CGPANN to overcome the program bloat. Since program bloat is a 

common problem in tree-based GP approaches resulting in slower evaluation time for 

extremely bloated programs, CGP would be another choice instead of the standard tree 

based GP in terms of the ANN’s structure optimisation tasks.  

2.4.4.3 Network structure evolution  

Apart from the resilience to program bloat, network structure optimisation is another 

significant benefit for CGPANN. Generally speaking, network structure evolution based 

NE approaches are considered to have more advantages than the traditional training 

method based approaches. A significant benefit is that evolving the whole network 

structure removes the requirement for users to design a suitable network structure 

beforehand, which reduces the workload of human designers instead. Another benefit 

is that the network structure optimization could evolve an ANN structure that cannot 

be considered by a human designer but may achieve better performance than 

traditional ANN structures [51] [52].  

As is reviewed in section 2.4.2.2, there are some approaches which are able to train 

ANN not only in connection weights but also in network structure. However there is 

nearly no literature that really talks about whether evolving network structure brings 
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any benefit for ANN training. The only example is found in [78] where the results 

indicate that the evolution for a network structure may take more time than just for 

connection weights in order to find a suitable solution. So the fixed network structure 

based on weight evolution would be a first choice rather than those based on both of 

structure and weight evolution. However [30] suggests that it is an unfair comparison. 

Although it is possible to just compare the performance between these two 

approaches, it is still quite difficult to make a comprehensive comparison. One possible 

reason is that these two approaches utilise different genotypes to describe ANN during 

evolution. Some approaches are working at neuron level like SANE and some are 

working at network level like NEAT. So it is not clear to demonstrate whether their 

performance difference is due to the difference between connection weight 

optimization and network structure optimization or just the genotype difference or 

other factors between these two approaches. On the other hand, most of the 

connection weight optimization approaches are working based on a pre-designed 

network structure, whose effort is not considered into the comparison. But the 

network structure optimization approaches have to evolve both of structure and 

weights at the same time. So it does not make any sense when comparing the 

optimisation time of connection weight evolution based on a pre-optimised structure 

and the evolution for both connection weights and network structure. 

In this case, [30] investigates two problems based on the comparison between network 

structure optimisation and connection weight optimisation. One problem is whether 

network structure optimisation is better than connection weight optimisation and the 

other problem is the relative importance between these two approaches. 

 Network structure optimisation better than connection weight optimisation? 

[30] conducts a comprehensive comparison between connection weight optimisation 

based approach and network structure optimisation based approach with CNE and 

CGPANN respectively for NE. This comparison investigates two possible perceived 

benefits of structure optimisation in the literature: 

1) There is no requirement for network structure optimisation that a suitable 

structure needs to be obtained in advance. 

2) Network structure optimisation could obtain a network structure which will 

unlikely to be considered by human designer. 
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In terms of the first perceived benefit, CNE is used to optimise the connection weight 

for ANN with a series of different network structures based on a number of benchmark 

tasks. And CGPANN will also be utilised for the same experiment as a comparison in 

order to investigate whether network structure optimisation approach could alleviate 

the requirement to choice a suitable structure by the human designer before evolving 

the connection weights with CNE. However due to the implementation difference for 

CNE and CGPANN, the comparison will be conducted based on the effect of adjusting 

the fixed structure for CNE and the impact of tuning the structure limits for CGPANN. In 

terms of the second benefit, an ANN’s structure which could be considered by human 

designer can be defined as the structure with the standard layers including nodes per 

layer, which is normally utilised by standard ANN. In this case, if an effective network 

structure is obtained but cannot be described with a standard type, it can be concluded 

that those evolved network structures will not be considered by human designer. 

[30] conducts the comparison experiments between CNE and CGPANN for the same 

three benchmarks and the results demonstrate that the network structure has a 

considerable impact on the CNE performance for ANN training. As for CGPANN, the 

results demonstrate a reversed phenomenon that different structure limits seem not to 

influence the evolutionary. That is to say, even if a suitable network structure is not 

acquired before the evolution, CGPANN will still be able to obtain the fittest network 

structure with the connection weight as well. In other words, poor performance could 

be avoided even if a suitable structure is not obtained in advance. So that is why there 

is no large difference for the performance in terms of different structures. In addition, 

there is an interesting result from the Double Pole Balancing benchmark that CGPANN 

obtains better results than CNE for a wide range of structure limits. On the one hand, 

this result may indicate that CGPANN’s performance could be improved with the 

simultaneous tuning of connection weight and network structure. On the other hand, it 

also implies that CGPANN could obtain an effective network structure which is not 

available for CNE to utilise, which may be the reason why CGPANN outperforms CNE. 

According to the obtained solutions from CGPANN, it shows that all of the solutions do 

not have the conventional ANN structure based on the layers with a number of nodes 

per layer, which demonstrates that the network structure optimisation approach is 

able to obtain effective ANNs whose structure is not considered by human designer.  

 Relative importance between them? 
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Apart from the comparison between structure optimization and weight optimization, 

the relative importance between them is still an open question. In the literature of NE 

area, it is assumed that network structure optimization has significant benefit to the 

evolutionary search. However there is currently no literature that explores the relative 

importance of network structure optimization to the connection weight optimization. 

In this case, [30] also investigated the relative importance between them by conducting 

experiments based on CGPANN in three different scenarios: 

1) Only evolving connection weights. 

2) Only evolving network structure. 

3) Evolving both of them. 

In the first case, the network structure is initialised randomly but remains fixed and 

only the connection weights will be evolved. In the second case, the connection 

weights are initialised randomly but still remain unchanged and only the network 

structure will be evolved. And the last case will evolve both of randomly initialised 

weights and structure. The experiments will be conducted based on a range of 

benchmarks and the final fitness will be utilised to investigate the relative importance 

between them. 

As can be seen from the results, [30] mentions three interesting features. Firstly, 

evolving connection weights with random fixed network structure significantly 

performs worse than evolving network structure with random fixed connection weights 

with medium or larger effect size. This result indicates that evolving network structure 

may be more important than evolving connection weights for ANN training. Secondly, 

evolving both of weights and structure significantly performs much better than just 

evolving weights with large effect sizes. This result implies that evolving the network 

structure may have a large impact on evolutionary search. Finally, there is little 

difference between the performance of evolving both and just evolving structure, 

which means the evolution of connection weights actually has no such impact as the 

evolution of network structure.  

In conclusion, evolving network structure has a more significant influence on the 

evolutionary search than just connection weight evolution for ANN training at least for 

CGPANN compared to CNE. Moreover, the comparison results also indicate that the 

evolution of network structure may be more important than the evolution of 
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connection weights for the evolutionary search. Although random fixed structure and 

random fixed weights may be never utilised for real applications, those results still 

demonstrate the relative importance of network structure and connection weights 

evolutions for ANN training in NE area [30].  

2.4.4.4 Heterogeneous ANN evolution  

According to section 2.4.4.3, network structure optimisation outperforms connection 

weight optimisation at least for CGPANN with CNE in three different benchmarks. 

However both of these two approaches utilise the same fixed neuron transfer function 

for each ANN, which is the homogeneous ANN. At present, it is not clear whether 

evolving heterogeneous ANN with more than two types of neuron transfer functions 

indeed has any benefit for NE [40] [61] [52]. [52] mentions that there is relatively little 

research which evolves node transfer function rather than the network structure. [40] 

also indicates that the current researches of ANN focus on the learning algorithms and 

architecture, where the importance of transfer function is ignored. What’s more, [61] 

further demonstrates that in terms of complex problems, the evolution of transfer 

functions displays little benefit to improve the ANN performance. Therefore, there is 

currently no literature that conducts a fully investigation on the creation of 

heterogeneous ANNs with the transfer function evolution in NE area [30]. In this case, 

[30] conducts a comparison between CNE and CGPANN in terms of evolving 

homogenous and heterogeneous networks respectively based on five different 

benchmarks.   

This comparison in [30] is conducted with two steps for evolving homogeneous and 

heterogeneous networks respectively. In terms of evolving homogeneous networks, 

different types of neuron transfer function are available for implementation but only 

one type will be utilised for ANN evolution to conduct the benchmarks based on CNE 

and CGPANN respectively so as to achieve the homogeneous network optimisation. 

This work investigates how different types of neuron transfer functions influence the 

homogeneous ANN performance and the results demonstrate that the selection of 

neuron transfer functions has a large impact on the ANN’s performance for both of CNE 

and CGPANN.  

On the other hand, heterogeneous networks will also be evolved based on CNE and 

CGPANN respectively for the same benchmarks. The results will be compared with the 
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evolved homogeneous networks’ performance in order to see whether evolving 

heterogeneous networks has better performance. The results of this comparison 

indeed demonstrate that evolving heterogeneous network outperforms evolving 

homogeneous network in the majority of cases, which indicates that evolving 

heterogeneous network could be a better choice for ANN optimisation at least for 

CGPANN and CNE unless a suitable neuron transfer function type is known for the given 

task [30]. Furthermore, [30] mentions that when evolving homogeneous network, the 

type of neuron transfer function is always not known in advance with respect to the 

given task. That is to say, the selected neuron transfer function has to be random. 

However evolving heterogeneous network could select the suited neuron transfer 

functions during the evolution, which removes the requirement to know a suited 

neuron transfer function in advance and that could be the most important benefit of 

evolving heterogeneous ANN [30]. 

2.4.4.5 Explicit genetic redundancy 

Genetic redundancy is also an important feature of CGP and CGPANN, even of the 

original GP. Actually genetic redundancy is a well-studied topic in evolutionary 

algorithms(EA) [79]. In GP, genetic redundancy refers to the genes which do not have 

any contribution to the phenotype output. A typical example is when a section of genes 

is multiplied by zero, in this sense that section of genes has no influence on the 

computation of phenotype output. And this type of genetic redundancy is considered 

as implicit genetic redundancy [30] [29]. Apart from the standard GP, there is another 

type of genetic redundancy which exists in other forms of GP. In this kind of genetic 

redundancy, there are some genes which are removed during the decoding of 

genotype into phenotype such as inactive genes in CGP. This form of genetic 

redundancy is called explicit genetic redundancy since it removes the redundant genes 

explicitly during the mapping from genotype to phenotype, which is an important 

feature in CGP [30] [29].  

One typical utilisation of explicit genetic redundancy is preserving the neutral genetic 

drift. Neutral genetic drift was first proposed and discussed by [80] in the area of 

evolutionary biology. Neutral genetic drift means that a genotype created by the 

neutral mutation is preserved through the selection into the next generation [30]. In 

this case, the genotype is drifting in an unguided way through generations but the drift 

genes have no influence on the phenotype due to the neutral mutation. Based on 
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different types of genetic redundancy, there are two different types of neutral genetic 

drift. Implicit neutral genetic drift describes the drift based on implicitly redundant 

genes whereas explicit neutral genetic drift based on explicit redundant genes [30]. 

One of the significant benefit of neutral genetic drift is that it ensures the genotype 

diversity among population and that is helpful for escaping from local optima during 

the evolution [81] [82]. However, a typical difficulty in studying neutral genetic drift is 

how to identify which part of genes is redundant. In GP, it is challenging to make sure 

which part is implicit genetic redundancy since it involves learning how the phenotype 

contributes to the program output [83]. However in CGP, it is not a difficult task to 

identify which part of genes is explicitly redundant. If the genes associate a node that 

does not connect any inputs to outputs in the phenotype, then these genes are 

explicitly redundant [30]. Because of this benefit, neutral genetic drift has become a 

widely studied area in CGP. Some works just examined whether CGP benefits from 

neutral genetic drift by preventing children selected over parents for identical fitness in 

order to disable neutral genetic drift [29] [81]. Some works investigated whether 

increasing explicit genetic redundancy would benefit to CGP by increasing the number 

of available nodes in order to enlarge the portion of inactive genes [74]. [30] 

summarized his work and presented some new findings based on the previous studies 

about neutral genetic drift in CGP. [30]mentioned that the explictly genetic redundancy 

has significant further advantages in explictly neutral genetic drift for CGP since it’s far 

easier to be controlled than implictly genetic redundancy, which makes the study of 

explicit neutral genetic drift much simpler. Moreover, [30] also mentioned that 

preserving the neutral genetic drift not only helps the evolution escaping from local 

optima but also presents an ability to aid the evolutionary search even if the evolution 

is not trapped in local optima [81] [82]. Finally, [30] talked about how explicit neutral 

genetic drift influences Cartesian Genetic Programming of Artificial Neutral Networks 

(CGPANN). However the results showed no benefit of considering explicit neutral 

genetic drift into CGPANN. A possible explanation is that the additional weight genes in 

CGPANN lead to finer mutations to take place than CGP, which indicates that the 

evolution may less likely get stuck into local optima. So that may be the reason why 

preserving explicit neutral genetic drift has not demonstrated any benefit in CGPANN 

[30]. 
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2.4.4.6 CGPANN in controller structure optimisation  

One typical application of CGPANN is the controller design for a dynamic control 

system. [84] investigates how CGPANN will perform to evolve a ANN controller in order 

to achieve a double pole balancing task. The double pole balancing task belongs to a 

typical example for designing a control system, where the hinged poles need to be 

balanced on a wheeled cart with a finite length track. The objective is to make sure that 

the angle of poles is maintained within a threshold, otherwise task will be failed. In 

terms of the ANN, the inputs of the network are the pole-angle, velocity of the poles, 

position of the cart and the velocity of the cart. The ANN output is the force applied to 

the cart to make sure that the poles could be balanced for 30 minutes. The result 

shows that CGPANN spends much less evaluation numbers than other NE approaches 

on the same double pole balancing tasks including CNE, SANE and NEAT. Furthermore, 

the generalisation of the evolved solutions by CGPANN is also investigated where 28 

evolved solutions are tested for 625 different random initial states for the double pole 

balancing task. The result shows that 532 out of 625 initial states are successful to 

achieve the double pole balancing task, which indicates that the evolved solutions 

present effective general behaviour [84]. As can be seen from this work, CGPANN 

demonstrates effective performance to design a dynamic control system to achieve the 

double pole balancing task, which displays the capability of CGPANN in the control 

system design field.  

Apart from the control system design, CGPANN also demonstrates effective 

performance in the pattern recognition field. [85] investigates how CGPANN is 

implemented for the diagnosis of Breast Cancer from the FNA (Finite Needle Aspiration) 

data samples. CGPANN in this work is used to classify the data set in order to diagnose 

whether it is benign or malignant. Firstly, CGPANN needs to be trained based on 

training data set and then CGPANN will be applied for the diagnosis with unseen FNA 

data set in order to do the classification. The result shows that the best evolved 

solution achieves 99.5% successful rate for the training with 200 cases. Moreover, this 

solution also achieves a 98% accuracy rate for the diagnosis based on new 200 cases, 

which demonstrates a quite high accuracy for the Breast Cancer diagnosis [85]. This 

work presents how CGPANN is used for the medical diagnosis based on the data 

classification, which demonstrates the effective performance of CGPANN applied in the 

pattern recognition field.   
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Besides the control system and pattern recognition, [86] demonstrates how CGPANN 

performs for a prediction task of forecasting the foreign exchange rate. In this work, 

CGPANN is added with recurrent connections which create RCGPANN implemented for 

the task. This work uses 500 days of the historical data of foreign exchange from the 

Australian Reserve Bank to train the ANN for the forecasting model in order to predict 

the 11th day exchange rate based on the 10 days of historical data. In terms of the 

testing, 13 different currencies are used for the historical data spanning 1000 days. The 

evolved ANN is assessed by comparing the estimated values with the actual values 

from the known historical data. The result shows that the evolved ANN model achieves 

a 98.872% accuracy rate for this test. Moreover in terms of more than a single day’s 

data rate in advance, the evolved ANN model produces a 92% accuracy rate when the 

currencies’ exchange rates are up to 1000 days (4 years) in advance for the prediction 

[86]. This work demonstrates how CGPANN is implemented in another field of currency 

exchange rate prediction with added recurrent genes for the ANN structure encoding. 

And the result indicates that RCGPANN produces a high accuracy rate for the prediction, 

which displays an effective performance of CGPANN in the prediction modelling field. 

As can be seen from these three works, CGPANN produces effective performance as a 

controller, a classifier and a predictor. However unlike NEAT, CGPANN hasn’t been 

employed into robot control field as well as the fault tolerant control. Even though, it is 

still quite interesting to investigate how CGPANN could perform to design a fault 

tolerant robotic controller in the network structure optimisation space.  

2.4.4.7 Summary 

This section reviews CGPANN and its benefits in the NE field. The most significant 

benefit is that CGPANN outperform CNE in a series of benchmarks, which indicates that 

network structure optimisation approach could produce better performance than just 

connection weight optimisation approach at least for CGPANN and CNE. In addition, 

CGPANN demonstrates great resilience to the program bloat and the benefit of 

evolving heterogeneous networks rather than homogeneous network. Apart from 

those benefits, explicit genetic redundancy is also an important feature of CGP and the 

literature demonstrates that preserving neutral genetic drift based on the utilise of 

explicit genetic redundancy is helpful for the evolutionary search especially to help 

escape from the local optima during the evolution, although CGPANN has not benefit 

from it. Finally, CGPANN is effective in a wide application field including the design of 
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controller, classifier and predictor. However, CGPANN has not been investigated in the 

robot controller optimisation field as well as the fault tolerant control. Even though, 

CGPANN could still be a promising approach to design a fault tolerant robotic controller 

based on the optimisation of a structurally evolved heterogeneous ANN controller.  

2.4.5 Comparison between CGPANN and NEAT 

[73] conducts a comparison between CGPANN and NEAT in terms of the double pole 

balancing benchmark experiment referred from [54]. Double pole balancing belongs to 

a typical control problem with only one controller output, whose task is to balance two 

poles attached to a cart. The result shows that CGPANN needs much less evaluation 

numbers than NEAT and even SANE, which could demonstrate that CGPANN produce a 

better performance than NEAT in terms of the convergence for the double pole 

balancing benchmark. However there is still some weakness in this comparison. A 

crucial problem is that NEAT utilises a slightly modified sigmoid transfer function to 

conduct the experiment [56] rather than a normal sigmoid transfer function used in 

[73]. So this difference might have some influence on the performance comparison, but 

whether the influence is significant is unknown currently. Even though, [73] is the only 

work that compares CGPANN with NEAT and other NE approaches such as SANE in 

terms of the double pole balancing control problem. And the result could demonstrate 

that CGPANN produces a better performance than NEAT regardless of the slightly 

modified transfer function problem.  

2.4.6 Comparison between EA and NE 

Actually, ANN has demonstrated effective performance in wide field not only for the 

controller design but also for the modelling. [87] and [88] demonstrate the 

effectiveness of a feed-forward network of logistic sigmoid function and radial basis 

function respectively for universal function approximation based on a finite number of 

neurons. Moreover, [89] and [90] both demonstrate the capability of recurrent ANN 

used for universal dynamical system approximations. Those works indicate that both of 

feed-forward ANN and recurrent ANN are effective for a wide application range besides 

the controller design, as long as the ANN could be trained sufficiently no matter in a 

traditional way or with NE approaches. 

On the other hand, structure optimisation based EA approaches also demonstrate 

effective performance in a wide application range according to reviewed works in 
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chapter 2.3. However there is very little work that really compares EA with NE in terms 

of the structure optimisation applications. Currently, [91] is the only work that 

investigates the performance difference between EA and NE approach based on a 

comparison between GP and GP-Artificial Neural Network (GP-ANN) in terms of the 

system modelling problem. This work utilises both of GP and GP-ANN for the 

formulation of mathematical models for vibratory finishing process. The result shows 

that GP-ANN performs better than GP in terms of modelling accuracy where GP-ANN 

produces more accurate generalised models. Moreover, when the data samples are 

few and there is a requirement for rigorous tuning of GP parameters so as to obtain the 

optimal model, the computation effort will be increased significantly. In order to avoid 

the high cost analysis, ANN also demonstrates effective performance to improve the 

modelling accuracy utilised either in parallel or as compensation to the GP model [91]. 

As can be seen from this work, one significant benefit of NE approach is the more 

accurate modelling result compared to just EA based result in terms of the structure 

optimisation problem. Although this work is conducted based on the comparison 

between GP and GP-ANN, it at least demonstrates that GP-ANN produces a better 

performance than just GP in the system modelling field, which also indicates the 

importance of ANN in this task. Nevertheless, this work still demonstrates the benefit 

of NE over EA for the structure optimisation problems. For this reason, the structure 

optimisation based NE approach could be considered as a primary scheme utilised for 

designing a fault tolerant control system in terms of robotic tasks. 

2.5 Multi-objective evolutionary algorithms 

The multi-objective optimization algorithm (MOEA) was developed driven by the need 

of multiple objectives in a problem where a set of optimal solutions, which are known 

as Pareto-optimal solutions, would be obtained rather than a single optimal solution. In 

terms of the performance measure, convergence to the Pareto optimal front and 

maintenance of solution diversity are two essential indexes for multi-objective 

optimisation [92]. Although [39] mentions that parallel evolution algorithms with 

migration topology is able to simultaneously increase the selective pressure in some 

populations and improve the diversity of other populations, it is still focused on single 

objective optimization rather than multi-objective optimisation. 
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Up to now, there are several MOEA approaches developed [93] [94] [95] [96]. Among 

them, the non-dominated sorting genetic algorithm II (NSGA2) [92] and the pareto 

archived evolution strategy (PAES) [97] are two well-studied MOEA algorithms for 

parameter optimisation. Both of them belong to elitist MOEA and utilise crowding 

measure to encourage the population diversity [12], which will be talked about in 

section 2.5.1. In terms of the structure optimisation, multi-objective genetic 

programming (MOGP) and multi-objective Cartesian genetic programming (MOCGP) 

are two well-studied approaches based on GP and CGP respectively for the genome 

encoding with multi-objective optimisation, which will be talked about in section 2.5.2. 

2.5.1 Parameter optimisation approach 

2.5.1.1 NSGA2 

NSGA2 was developed by [92] for the multi-objective optimisation in the parameter 

space. NSGA2 works in a common elitist EA loop based on GA for the genome encoding 

but with a capability to evaluate the individuals for multiple objectives. The elitism 

works during the survival selection where parents and children are combined together 

in order to be sorted and then survived. The main difference between NSGA2 and GA is 

that each individual in NSGA2 will be evaluated with multiple objectives. In this case, 

each individual will be set two extra attributes: the ranking number and the crowding 

distance, which will be used for the parent selection and the survival selection, rather 

than just a fitness value in GA.  

The ranking number is obtained by the non-dominated sorting where each individual 

will be compared with each other in order to check what the dominance relationship is 

between them. The ranking number is decided by their dominance levels. So if the 

individual is not dominated by anyone in the population, it is ranked in the first front. 

And if the individual is dominated by everyone in the population, it is ranked in the last 

front. Especially, if the individuals are non-dominated between each other, they will be 

set a same ranking number. Based on the ranking number, individuals can be sorted in 

different fronts so as to achieve the parent selection and survival selection, where the 

individuals are selected if they are in a prior front. However there is a problem when 

the individuals are located in the same front. In this case, they cannot be distinguished 

and that is why crowding distance is required. 
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Crowding distance was developed along with NSGA2, which belongs to a kind of 

crowding measure approaches. Crowding distance is working in the fitness domain of 

each individual. It gives each individual an extra attribute which describes how the 

individual is crowded with its two neighbours. So if the crowding distance is larger, it 

means the individual is less crowded. To be specific, crowding distance measure works 

in two steps: the density estimation and the crowded comparison operator. The 

density estimation measures the density of a certain solution in the population based 

on the calculation of the average distance of two points on either side of this point for 

each objective. This density value is calculated by “the estimate of the perimeter of the 

cuboid formed by using the nearest neighbours as the vertices (call this the crowding 

distance)” [92]. The process of crowding distance calculation is shown in Figure 2.18. In 

Figure 2.18, the length of the dashed box formed by the cuboid is the density 

estimation result for solution i in its front, where solutions i-1 and i+1 serve as the 

solution i’s nearest neighbours to act as the vertices of the cuboid. When density 

estimation is completed for each individual, the crowded comparison operator guides 

the selection to generate a spread set of Pareto-optimal solutions. In this case, when 

two solutions belong to different fronts, the one with the better rank will be selected. If 

they belong to the same front, the one with the less crowded region will be selected. In 

NSGA2, crowding distance measure will also be utilised in the two steps along with 

ranking number: the parent selection and survival selection. During the parent 

selection, crowding distance measure will help tournament selection to select the 

parent from two candidates if they are non-dominated to each other. And during the 

survival selection, crowding distance measure will help individuals from the same rank 

to be sorted and then filled into the next generation until the new population is full. For 

this reason, crowding measure could also maintain the population diversity in the 

fitness domain which is relevant for multi-objective optimization [98]. 
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Figure 2.18: Crowding distance calculation [92]. 

2.5.1.2 PAES 

PAES was developed in [97] based on a (1+1) ES. In each generation, PAES creates just 

one candidate solution based on the mutation of the current solution. After the 

evaluation of the candidate solution, it will be compared with the current solution 

based on the dominance relationship. If the candidate solution dominates the current 

solution, the candidate solution will be accepted as the next current solution and vice 

versa. However if they are non-dominated between each other, the candidate solution 

will be compared with the archive solutions which are the best solutions found so far. If 

the candidate solution dominates any member of the archive solution, the candidate 

solution will be accepted as the new archive solution and all the other solution will be 

eliminated from the archive and vice versa. If the candidate solution is still non-

dominated with the solutions in the archive, there are two options. If the archive is not 

full, the candidate solution will be just added to the archive. Else if the archive is 

already full, the one in the most crowded region will be eliminated. Finally, the 

candidate solution will still be compared with the current solution in the case that they 

are non-dominated. If the candidate solution resides in a less crowded region than the 

current solution, the candidate will be accepted. Otherwise, the candidate solution will 

still be rejected. This is the whole process of the evolution loop for PAES [97].  

In terms of the crowding measure, it is different from that in NSGA2. The crowding 

measure in PAES is computed based on the solutions’ grid location, which is 

determined by the number of objectives for the problem. The grid location of each 

solution is generated using recursive subdivision and noted using a tree encoding. A 

map of the grid is also maintained in order to indicate how the solutions are located in 

the current archive. In this case, the solutions will be located in a deterministic and pre-

specified number of equal-sized cells, where the crowding measure will be working 

based those cells in the search space [97]. The details of how this crowding measure is 

utilised in PAES can be referred to [97].  

2.5.1.3 Comparison between NSGA2 and PAES 

As can be seen from section 2.5.1.1 and 2.5.1.2, although NSGA2 and PAES both belong 

to the elitist MOEA approaches for the parameter optimisation, they are actually quite 

different. The main differences include the difference between GA and ES for the 
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population composition, whether the archive is used to preserve elitist individuals and 

the difference between the crowding measures utilised in these two approaches. 

Nevertheless, [92] still conducts a comprehensive performance comparison between 

these two approaches based on nine different test problems where the experiment 

details can be referred to [92]. The comparison result shows that NSGA2 performs 

better than PAES in terms of the diversity preserving mechanism. However, PAES 

outperforms NSGA2 in terms of the convergence where the non-dominated solutions 

found by PAES are able to get closer to the true Pareto optimal front than the solution 

found by NSGA2. One exception is that NSGA2 performs better than PAES when the 

problem has strong parameter interactions. Furthermore, NSGA2 is also integrated 

with a simple extension for constraint multi-objective optimisation. And the result 

shows that this proposed constraint handling mechanism produces more effective 

performance to solve four different problems than the approach developed in [99]. In 

conclusion, either NSGA2 or PAES has its own benefit for multi-objective optimisation 

and NSAS2 is also integrated with an effective constraint handling strategy.     

2.5.2 Structure optimisation approach 

2.5.2.1 MOGP 

Except for NSGA2 and PAES utilised for the parameter optimisation in the MOEA field, 

multi-objective genetic programming (MOGP) is a typical approach that works for the 

structure optimisation based on GP. [100] develops a MOGP algorithm based on the 

integration of GP and NSGA2 utilised for software development effort estimation. This 

MOGP implements GP for the genome encoding but the whole evolution process is 

totally the same as NSGA2 based on the ranking and crowding distance instead of just 

fitness values for the population sorting in order to conduct the parent and survival 

selection. The crossover and mutation are the same as that employed in GP. The 

evolution will be stopped if a user set termination criteria is achieved [100]. [101] 

develops a MOGP algorithm for the figure-ground image segmentation. This MOGP is 

called non-dominated sorting genetic programming (NSGP), but it is also created based 

on NSGA2 with GP instead of GA for genome encoding and genetic operator. [102] also 

develops its own MOGP algorithm for the classification with unbalanced data. Again, 

this MOGP still utilises NSGA2 for the multi-objective optimisation process including 

the same dominance ranking and crowding distance as each individual’s attributes in 

addition to their fitness. [103] presents a scheme of how the UAV navigation controller 
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is designed based on multi-objective GP approach. In this approach, four fitness 

functions are used for multi-objective GP to evolve controllers to respectively locate 

three different radar sources. Three different goals need to be satisfied for each type of 

radar including moving toward the emitter, circling the emitter closely and flying in an 

efficient way. Four fitness functions can be used to describe the three different goals 

which are normalized distance, circling distance, level time and turn cost. The MOGP 

algorithm is still created based on NSGA2 whereby the non-dominated sorting is an 

effective method to rank solutions in terms of each fitness functions to achieve multi-

objective optimization [103].  

As can be seen from these works, all of them utilise NSGA2 for the multi-objective 

optimisation process based on GP for the genome encoding and genetic operator, 

which produce effective result for obtaining a Pareto optimal front of solutions in terms 

of corresponding objectives. A possible reason of implementing NSAG2 for the multi-

objective optimisation process is that NSGA2 is currently one of the well-studied MOEA 

algorithms, which outperforms other approaches in the parameter optimisation area 

[92]. And that may be the reason why NSGA2 is effective to be selected for GP based 

MOEA algorithm development in these works.  

2.5.2.2 MOCGP   

Except for MOGP, there are several works that try to develop their own MOCGP 

algorithm. [104] develops a MOCGP algorithm based on CGP and NSGA2 for the circuit 

approximation. In this MOCGP, the (1 λ) ES is replaced by the normal population size 

used in NSGA2 where same number of parents create the same number of children. 

The non-dominated sorting procedure in NSGA2 is also modified in a way that “when 

all components of the fitness score of a parent and its offspring remain unchanged, the 

offspring is classed as dominating the parent, and is therefore ranked higher than the 

parent” [104]. However this modification is quite unclear that it does not mention what 

the components are for the fitness score and why the children will dominate parents 

when the fitness score remains unchanged. Even though, the MOCGP developed in this 

work still demonstrates effective performance to successfully approximate circuits 

including adders and multipliers. [105] develops its own MOCGP algorithm to improve 

the circuit design as well. This MOCGP is also integrated based on NSGA2 and CGP. 

However this work does not mention how the population is composed such as whether 

it still utilises ES or not. The only point it mentions is that this MOCGP will use a large 
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population size in order to create a Pareto front for different objectives. Even though, 

this work still shows that MOCGP is effective to design the circuit especially for multi-

objectives including the optimisation of gate count and path length.  

As can be seen from these works, MOCGP is also developed based on the integration of 

NSGA2 and CGP, which further indicates that NSGA2 is well suited for the integration of 

a multi-objective optimisation algorithm even in the structure optimisation field.  

2.5.3 Survival selection 

Survival selection in EA is a necessary stage for ensuring the elitism strategy not only in 

single-objective optimization but also in multi-objective optimization. The survival 

selection is actually a method to ensure that the elitist will be always preserved. In 

order to do this, the children need to compete with their parents to make sure that the 

best current individuals or the so called elitists can be survived into the next generation 

[29] [92] [11]. 

As can be seen from section 2.5.1.1, the survival selection in NSGA2 works in two steps 

based on the ranking number and crowding distance. Firstly, the children will be 

merged with the parents based on the non-dominated sorting. After the sorting, the 

individuals can be survived based on their rankings. However when the number of 

individuals in the current same rank is larger than the left available survival places, 

crowding measure will be utilised to distinguish them and sort them until the next 

generation is full. The crowding distance measure utilised for survival selection in 

NSGA2 is called crowding fill [92].  

Similar to NSGA2, PAES has its own survival selection. According to section 2.5.1.2, 

PAES compares the candidate solution with the current solution firstly. If they are non-

dominated between each other, the candidate solution will also need to be compared 

with the archive solutions. And if they are still non-dominated, crowding measure will 

be conducted to distinguish them, which is also a kind of crowding fill [97]. 

As can be seen from these two works, crowding fill is actually an essential stage in the 

survival selection, which further distinguishes the individuals who are located in the 

same front but still need to be survived sequentially. In this case, crowding fill based on 

different crowding measures would be important for a wide range of MOEA 

approaches where the individuals are ranked based on non-dominated sorting.  
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2.5.4 Population diversity 

Population diversity is always a key issue in EA to overcome premature convergence 

problems by means of escaping from local optima. Moreover, in multi-objective 

optimization, maintaining high diversity is also significant to ensure that the Pareto 

front is large enough to reflect the trade-off among different conflict objectives [98]. 

2.5.4.1 Genotype diversity 

Genotype diversity is a kind of population diversity which considers the diversity in the 

genomes among each individual. A famous approach to measure the genotype diversity 

is to measure the distance between individuals [106], or in another word: genetic 

distance. Genetic distance was firstly proposed by [107] in biology area. However it has 

the same definition in the EA area that it just demonstrates the distance between 

individuals in genotype domain [106]. There are actually different ways to evaluate the 

genetic distance between the current individual and the one that is compared with, 

such as the mean spatial position of the population [98] [108] [109], the position of the 

fittest individual [110], or the position of each individual [111]. But no matter which 

position the individual is compared with, Euclidian distance is the most common 

approach to estimate genetic distance not only in EA [106] but also in biology area 

[112].  

Hamming distance is another approach for measuring the genetic distance, which was 

first introduced in [113]. The primitive usage of it is to check the difference between 

two words in fixed length. In this way, Hamming distance will reflect how far the two 

words are in terms of how many entries are different in the corresponding positions 

between each other [114]. Based on this technique, Hamming distance has become an 

essential metric in coding theory, such as error correcting code. The creation of error 

correcting code is due to the data transmission in the information technology. The data 

being transmitted are in the form of binary string, so there will be a chance that some 

unavoidable error occurs during the process of transmission. As a result, the received 

data may be different from the original ones. In this sense, an error correcting code 

was developed based on Hamming distance in order to detect and correct the 

erroneous messages during the data transmission [114]. The main working mechanism 

of Hamming distance is based on the computation of an Exclusive-Or operation (XOR, 

for short) between two binary strings. As a result, the number of the sum of ones will 

be the number of different bits between each other [115].  
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2.5.4.2 Phenotype diversity 

Besides genotype diversity, phenotype diversity also has its own impact in evolutionary 

algorithms. A typical example is the crowding measure mentioned in NSGA2 which is 

actually working in the fitness domain. The crowding measure encourages the 

phenotype diversity among the individuals in the current front and the individuals will 

be selected based on its crowding distance from largest to smallest for both of parent 

selection and survival selection in addition to the non-dominated sorting [92]. 

Just like the importance of genetic distance used to measure the genotype diversity, 

fitness distance will be also a possible method to demonstrate the phenotype diversity 

in the fitness domain. However, fitness distance is actually not a common metric used 

to measure phenotype diversity. The phrase of fitness distance is always appeared in 

the problem of fitness distance distribution [116]. Suppose a global optimum is known 

before GA is executed and the Hamming distance can be used to measure the genetic 

distance between the current individual and the global optimum if the genome is 

encoded in binary string. And the fitness value of this individual can be also computed 

along with the Hamming distance. If the computational effort is sufficient, all the 

possible genotypes can be presented by the distance and fitness values so that a fitness 

distance distribution can be displayed [116]. With the help of fitness distance 

distribution, the GA can be demonstrated to be effective if the Hamming distance is 

becoming smaller while the fitness is becoming better [117]. 

However the fitness distance distribution is about the relationship between fitness and 

genetic distance during evolution, so it is not quite helpful for measuring the 

phenotype diversity. Even so, the fitness distance may still be a possible metric to 

measure the phenotype diversity among individuals just like how crowding measure 

works based on crowding distance among individuals to measure the population 

diversity. So the usage of crowding measure actually provides a possibility to apply 

fitness distance to measure phenotype diversity.  

2.5.5 Comparison between multi-objective and single objective optimisation 

Generally speaking, multi-objective optimisation based EA approaches would have 

more solution options than single objective optimisation approaches based on the 

Pareto optimal front to deal with more than just one objective. However, it does not 

mean that single objective optimisation is not able to obtain a solution that could be 
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suited to different objectives. [118] mentions that the classical approach of using single 

objective optimisation to deal with multiple objective problems is to develop a tailored 

fitness function that aggregate different objectives in some way to create a single-

valued function, which can be optimised by the single objective optimisation 

approaches. In terms of the aggregation strategies for multiple objectives, the 

weighted sum is often utilised to create the single-valued function. However, a serious 

drawback of the weighted sum strategy is that this strategy may be arbitrary and the 

weight value is also hard to determine before running the evolution. On the other hand, 

multi-objective optimisation does not need such a choice since it could let the 

evolution explore different trade-offs between different objectives and the designer 

can choose any solution from the obtained Pareto optimal front in terms of the task 

requirement without determining which objective is more related to the problem in 

advance [119]. Although the weighted sum based single objective optimisation 

approaches have some limitations compared to multi-objective optimisation 

approaches, [119] still presents a comprehensive comparison between these two 

approaches in terms of two typical robotic tasks based on the robot controller 

evolution for multiple objectives including the maze navigation task for a single robot 

and the flocking task for swarm robots. 

In terms of the maze navigation task, one objective is to make the robot move straight 

and fast and the other objective is to keep the robot away from the obstacle and walls. 

In terms of the flocking task, one objective is to reward the group motion based on the 

maximisation of the swarm robots’ displacement measured from the centre of mass of 

the group. And the other objective is to maximise the cohesion whereby the average 

distance of the robots from the centre of mass of the group should be minimised. Both 

of these two tasks will be utilised for the robot controller evolution based on their 

corresponding multiple objectives. As a comparison, multi-objective optimisation 

approach will be compared with weighted sum based single objective optimisation 

approach in terms of these two objectives for each of these two tasks. The experiment 

result shows that multi-objective optimisation approach outperforms weighted sum 

based single objective optimisation approach for robot controller evolution based on 

these two objectives for each task. Both of these two tasks demonstrate that multi-

objective optimisation attains a much wider solution region than weighted sum based 

single objective optimisation. This result is not surprised since the main advantage of 

multi-objective optimisation is the capability to explore a wide objective space where 
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single objective optimisation is not able to achieve. However, this work further 

demonstrates that even a weighted sum based single objective optimisation for 

multiple objective problems is still not able to obtain that wide objective space despite 

that a variety of weight values has been tested for it. The only exception occurs when 

the weight value is set 0.5 for the maze navigation task. For this scenario, the obtained 

solutions are located in the most trade-off region where each objective is maximised at 

the same time, which achieves the equivalent performance as multi-objective 

optimisation if the most trade-off solutions are required for this task. However, that is 

the only equivalent performance that weighted sum based single objective 

optimisation is able to achieve compared to multi-objective optimisation, which also 

indicates that the solutions evolved by multi-objective optimisation have a larger 

behaviour diversity than that evolved by weighted sum based single objective 

optimisation [119].     

In conclusion, the comparison result of [119] demonstrates that multi-objective 

optimisation approach is able to produce better performance than weighted sum 

based single objective optimisation approach for multiple objective problems due to 

the capability of multi-objective optimisation to achieve a wide exploration of the 

objective space to meet different solution requirement. Although only maze navigation 

and flocking tasks are tested as the comparison between these two approaches in this 

work, it at least demonstrates that multi-objective optimisation approach outperforms 

weighted sum based single objective optimisation approach to deal with multiple 

objectives for these two typical robotic tasks. For this reason, multi-objective 

optimisation could be considered as the main approach in the case that multiple 

objective problems are needed to evolve robot controllers rather than a tailored single-

valued fitness function based single objective optimisation, such as the weighted sum 

approach.  

2.6 Convergence criteria 

2.6.1 Termination condition 

Convergence criteria is actually used to decide when to stop the evolution in EA [120]. 

As mentioned before, a common knowledge about the description of convergence was 

raised by [121] where the best performance values have been stabilized after a 

particular time. What’s more, [11] mentioned that a known optimum may not be a 
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good choice to terminate evolution. Since EA is a stochastic optimization technique, so 

there is no guarantee that the known optimum will be reached. In this case, the 

termination condition may not be satisfied and the evolution will never stop [11]. For 

this reason, [11] presented a list of options of how to certainly terminate the evolution: 

1. The allowed CPU time has reached 

2. The number of fitness evaluation reaches the highest limit 

3. The fitness improvement reaches the lowest limit within the given period of 

time such as the number of generations or fitness evaluations 

4. The population diversity drops below the lowest threshold 

[122] also presented two similar options of termination conditions which are the upper 

limit of number of generations or fitness evaluations has reached and the opportunity 

to get a significant improvement in next generations is quite low. And [123] gave some 

comments on these two options.  [123] mentioned that the first option needs some 

knowledge about the maximum search ability while the second one does not. In the 

second one, there are two different types to represent termination conditions including 

genotype and phenotype termination criteria. Genotype termination condition means 

that when a large enough proportion of genes have converged to a certain value 

among the whole population, the evolution could stop. And phenotype termination 

condition is expressed in the fitness domain that when the average fitness exceeds a 

pre-set threshold, the evolution will be terminated [123].   

However no matter which termination condition is used for EA, most of the multi-

objective optimization convergence measurements still rely on the true Pareto-optimal 

front [92] [124] [125] or a surrogate of the true Pareto-optimal front obtained by 

multiple runs if the true front exists but is unknown [126]. If the current Pareto front is 

approaching the true Pareto-optimal front, the algorithm is supposed to be converged. 

This problem is quite similar to that in single objective optimization where the true 

Pareto-optimal front may not be reached at the end because of the stochastic feature 

in EA. Moreover if the true Pareto-optimal front cannot be obtained before the 

evolution loop starts, there is no way to estimate the termination condition.  

In this case, a new convergence measurement was developed by [127] which just relies 

on the current Pareto front to terminate the evolution. In this work, the convergence of 

a multi-objective optimizer is based on the track of the improvement of the number of 
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non-dominated solutions in the population. To quantify the convergence criteria, [127] 

proposed two metrics which are consolidation ratio and improvement ratio. The 

consolidation ratio is the proportion of the old solutions which are still remained non-

dominated in the current population compared to the whole population. So when this 

proportion increases to a stable high value approximate 90%, the evolution could be 

stopped. The improvement ratio is the proportion of the old solutions that are still 

dominated by new solutions in the whole population. The evolution could also be 

stopped when this proportion decreases and maintains to a stable value [127]. 

2.6.2 Performance measure for multi-objective optimisation 

Although this mentioned work [127] about the convergence criteria has been discussed 

to deal with termination condition problem without the need of the true Pareto-

optimal front, it has no certain metric to really reflect the performance of a multi-

objective optimizer. At the moment, hyper-volume indicator is currently the only 

known metric to display the performance of a multi-objective optimizer [128] and it is 

also the only unary indicator which represents the performance in unary values [129]. 

The indicator is usually used to estimate the goodness that how the current Pareto 

front is approximated to the true Pareto-optimal front. Moreover, the indicator can be 

also used for selection since it can measure the distribution of each individual across 

the current front. [130] firstly applied an indicator into the framework of a multi-

objective optimizer in order to do the selection. Hyper-volume indicator was firstly 

proposed by [131] where it measures the volume covered by all the Pareto-optimal 

front solutions with a user-defined reference point. The reference point is normally 

selected as the nadir point of the investigated Pareto front [132] [133] or a point that is 

slightly worse than the nadir point [134] [135]. In recently years, hyper-volume 

indicator has become one of the most used techniques among indicators [124] [126]. 

The hyper-volume based approaches have also been studied extensively where the aim 

of these approaches are trying to demonstrate the largest hyper-volume of the non-

dominated individuals in the current Pareto-optimal front in order to see how it is 

approximated to the true front [125] [136] [126]. Hyper-volume indicator can be not 

only used as an offline indicator to evaluate a multi-objective optimizer [134] but also 

as an online indicator to lead the evolution process [137] [136] [138]. The significant 

benefit of using hyper-volume indicator is that it is strictly Pareto compliant, which 

means the hyper-volume will always reflect the size the Pareto-optimal front no matter 

how many fronts it dominates [126]. Nevertheless, one serious drawback is that the 
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reference point needs to be selected accurately, otherwise it will become an arbitrary 

point depending on the magnitude of the current Pareto-optimal front [126].  

Although hyper-volume indicator is a well-established indicator to represent a front’s 

quality, it is just discussed in statistics literatures [126]. To the best of our knowledge, 

there is no work proving that the hyper-volume based approaches work well for the 

convergence analysis when the true or surrogate Pareto-optimal front is not available 

to obtain. In this case, it would be worth investigating how hyper-volume indicator 

could be acted as a performance measurement to do the convergence analysis for a 

multi-objective optimisation algorithm in the case that the true Pareto-optimal front is 

not available to obtain. 

2.7 Statistics analysis 

2.7.1 Significant difference test 

When the experiment data are obtained, a technique needs to be conducted in order 

to investigate whether the obtained data are statistically significantly different. In this 

field, Mann-Whitney U-Test and Vargha-Delaney A-Test are two famous approaches, 

which will be reviewed as following.  

 Mann-Whitney U-Test 

In order to see whether the obtained data difference is significant, the Mann-Whitney 

U-Test [139] would be an effective approach based on how much p value is.  Mann-

Whitney U-Test is used to check whether the null hypothesis can be rejected or not. 

The null hypothesis is that there is no significant difference between 2 data sets. If the 

p value is 5%, it means there is only 5% possibility that the null hypothesis can be 

accepted. That is to say, there is 95% possibility to reject the null hypothesis. So 5% is a 

criterion of p value, if p value is less than 5%, we can say that the null hypothesis can be 

rejected. In other words, there is a significant difference between 2 data sets [139]. 

 Vargha-Delaney A-Test 

In addition, if the investigation is required to measure how large the difference is, 

Vargha-Delaney A-Test [140] can be used to quantify the difference based on the 

computation of effect size. The score of Vargha-Delaney A-Test normally returns a 

value between 0 and 1. If it returns 0.5, that means there is no significant difference 
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between two data sets. Basically, the large effect size is set to 0.21, which means if the 

score is above 0.71 or below 0.29, there is a large difference between these two data 

sets. Moreover, 0.06 is set as a small effect size and 0.14 is set as a medium effect size, 

where the corresponding A-test scores will be 0.56 and 0.64 or 0.44 and 0.36 

respectively [140]. In other words, the A-test scores between [0.36, 0.44] and [0.56, 

0.64] belong to the small effect size, [0.29, 0.36] and [0.64, 0.71] belong to the medium 

effect size and the scores below 0.29 and above 0.71 belong to large effect size [140]. 

This analysis regulation is applicable for all the result analysis where A-test is utilised to 

estimate the significant difference between different experiment responses. 

In a word, the A-test combined with U-test would be a meaningful way to judge 

whether two data sets are statistically significantly different and how large the 

difference is, which will be utilised for the required experiment result and discussion 

throughout the thesis. 

2.7.2 Spartan package 

[141] developed a package called Spartan, which was designed as a kind of statistical 

techniques used to help researchers investigate the relationship between their 

simulation and the real system. There are several techniques developed in Spartan 

including the cumulative mean approach to assess the sufficient number of experiment 

runs and the Parameter Robustness approach to investigate how parameter values 

affect the experiment responses.  

 Number of experiment runs 

[142] demonstrates a promising approach about how to select suitable number of 

experiment runs. This approach is based on confidence interval of the cumulative mean 

of the experiment result, which is a kind of statistical analysis method to estimate 

where the true mean value would be located. The narrower the interval, the more 

accurate the estimated data would be located. So if sufficient data are obtained to 

compute the confidence interval, the interval would become narrower and narrower 

until the user set criteria is met. In terms of the significance level, 5% is often selected. 

And that means there is 95% probability that the true mean value will be located in this 

interval. In other words, there is only 5% probability that the true mean value is not laid 

inside that interval [143].  
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In order to measure how narrow the confidence interval is, percentage deviation of 

either side of the interval against the cumulative mean value would be a solution. In 

this work, 5% of the percentage deviation is selected as a criterion to indicate the width 

of the confidence interval. So if the percentage deviation of the current cumulative 

mean value compared to either side of the interval reaches 5% and also remains below 

it, the current number of experiment runs would be sufficient and no more runs 

needed [142]. 

 Parameter values for experiment responses 

Due to the uncertainty of parameter value, the Parameter Robustness technique can 

be utilised to examine how the parameter alteration influences on the simulation 

responses. If adjusting a parameter from baseline value has significant influence on the 

simulation output, then this parameter would be sensitive to the experiment and more 

efforts should be made to determine a suitable value for it [141]. Parameter 

Robustness technique only works for the independent parameters by tuning each 

parameter’s value individually by ‘one at a time’ approach [144]. So when one 

parameter is being tuned, others remain the same on their baseline values. And when 

all the parameters are investigated, those simulation responses from the adjusted 

parameter values will be compared with the one from the baseline values, using the 

Vargha-Delaney A-Test [140]. In this sense, when there is large difference of the 

simulation response from perturbed parameter compared with that from baseline 

values, this simulation response would be sensitive to this perturbed parameter and a 

suitable value need to be figured out. 

2.8 Summary 

This chapter firstly reviews what fault tolerant control is and proposes that robust and 

switched fault tolerant control could both be considered to design fault tolerant 

robotic controllers in offline scenario. Secondly, different structure optimisation based 

EA approaches including GP, CGP and GE are reviewed respectively in terms of control 

system design and robotic controller evolution and all of them produce considerable 

performance in these two task domains. Next, NE approaches are also reviewed 

including two famous approaches NEAT/HyperNEAT and CGPANN. Both of them are 

working in the ANN structure optimisation domain with respective advantages. 

Especially, NEAT/HyperNEAT has demonstrated effective performance in the robotic 
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controller optimisation field as well as the fault tolerance, which is quite related to this 

thesis topic. However, this work belongs to online robotic fault tolerant controller 

optimisation task, where the relatively long online evolution time is still an unavoidable 

problem rather than the offline fault tolerance scenario. On the other hand, CGPANN 

could still be a choice since its performance is actually unknown in terms of robotic 

controller optimisation, which worth a further investigation. Moreover, GP and GP-

ANN are compared in terms of a system modelling problem. The result shows that GP-

ANN produces a more accurate modelling result than GP, which indicates a potential 

benefit of NE over EA. Apart from that, different MOEA approaches are also reviewed 

including NSGA2 with PAES for the parameter optimisation based tasks and MOGP with 

MOCGP for the structure optimisation based tasks. In terms of MOGP and MOCGP, 

both of them are developed based on NSGA2 for the multi-objective optimisation, 

which further demonstrates the effective performance of NSGA2 in MOEA field. In 

addition, survival selection is reviewed based on different crowding fill strategies, 

which is a key step for elitism in MOEA. And then, different approaches to encourage 

the population diversity are also talked about since population diversity is also a 

significant research field in MOEA. Finally, weighted sum based single objective 

optimisation is compared with multi-objective optimisation in terms of multiple 

objective problems. Although weighted sum based single objective optimisation could 

produce a trade-off solution, its solution diversity is much lower than that of multi-

objective optimisation, which is a significant drawback. Apart from the introduction of 

EA related approaches, convergence criteria topic is also reviewed along with the 

performance measure in terms of MOEA. And hyper-volume indicator is found to be a 

promising metric which could also be used to observe the convergence of MOEA. At 

last, statistics analysis approaches are also mentioned in order to test the significant 

difference between obtained experiment responses. Moreover, Spartan package is an 

effective statistics analysis tool which could not only estimate how many runs are 

sufficient to demonstrate the algorithm performance but also present a technique to 

help find out the best suited parameter values in order to obtain the optimal 

experiment responses.   

The next chapter will present how CGPANN is implemented for a preliminary robot 

fault tolerant control experiment and investigate how a single objective optimisation 

algorithm will be working for evolving a fault tolerant robotic controller. 
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Chapter 3 CGPANN in fault tolerant control 

3.1 Introduction 

As is reviewed in the section 2.2, fault would be possibly occurred during the system 

operation, which could result in serious consequence such as a total failure of the 

system. In this case, a fault tolerant control system needs to be developed to tolerate 

the fault especially when it is occurred during the system operation. To be specific, 

robust fault tolerant control, which belongs to one of the passive fault tolerant control 

approaches, could be a first choice since only one robust controller is required to be 

evolved in order to tolerate the predicted fault without any concern about the fault 

diagnosis. In terms of the methodology, NE could be a better choice rather than EA due 

to its better performance shown from section 2.4.6. Moreover, CGPANN will be used as 

the main optimization approach instead of NEAT/HyperNEAT to design a structurally 

evolvable ANN controller in order to achieve the fault tolerant control due to the 

benefit of utilising explicit genetic redundancy in CGPANN as reviewed in section 

2.4.4.5. However the reason why explicit genetic redundancy is significant for this work 

will be talked about in section 4.2.2 where crowding measure may have a problem for 

multi-objective optimisation and the utilisation of explicit genetic redundancy could be 

a solution for it. The details can be referred to section 4.2.2. It needs to note that the 

whole work is based on the optimisation of a structurally evolvable controller to 

achieve fault tolerance, so no fault compensation loop is required for this work and the 

whole work will just concentrate on the design of the controller in order to develop a 

fault tolerant control system.  

3.2 Experiment setup 

The whole experiment design is split into two parts: the evolution experiment and the 

generalisation experiment. The evolution experiment will design a controller offline. 

When the evolution is finished, the best evolved controller will be tested online, which 

will be the generalisation experiment.   

Since CGPANN has never been applied into a robust fault tolerance scheme, the 

controllers can be firstly evolved by CGPANN in two simple scenarios: the fault-free one 

and the faulty one. And the aim is to investigate which one could achieve the robust 

fault tolerant control for the online test. In terms of the fault-free scenario, the 
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controllers are evolved without any fault injected. And in terms of the faulty scenario, 

the controllers are evolved when the fault is injected at the beginning the task.  

When the controllers are obtained, they will be tested in the fault-free and faulty 

scenarios respectively in order to see which one is capable to achieve the robust fault 

tolerant control. It is normal that the evolved controllers are suited to their own 

evolution scenarios. However it is worth investigating how they will be performing for 

the opposite scenario and that is the key for the robust fault tolerant control since it 

cannot guarantee whether the fault will be definitely occurred or not. So the 

hypothesis of the experiment is that CGPANN is capable to evolve controllers that are 

effective to achieve the robust fault tolerant control. 

Additionally, the generalisation experiment will be conducted in two conditions: the 

unlimited time test and limited time test. Basically, the limited time test will be much 

harder than the unlimited time test for the evolved controllers to achieve the robust 

fault tolerant control. However it is still interesting to investigate how the evolved 

controllers will be performing for different time condition tests, especially when the 

time limit is not a strict restriction.  

3.2.1 Robot platform and task  

For both of evolution and generalisation experiments, a robot platform simulator 

ARGoS [145] is used throughout the whole work. ARGoS is a multi-physics robot 

simulator and it can simulate large-scale swarms of robots with some kinds of robots 

efficiently. In this sense, a foot-bot robot platform is selected to be used as the 

experimental platform. It has 24 light sensors which are used to detect a light source. In 

addition, it is also equipped with 24 proximity sensors which are used to observe the 

surrounding environment in order to avoid obstacles. The robot task selected is a 

phototaxis mission achieved by a single robot in 1200 ticks, which is 120 seconds. The 

beacon is placed in the centre of the arena and the robot is placed in 10 different 

random initial positions and orientations with a fixed distance 4.5 m to the beacon. The 

light sensors would be used for this task, but 24 sensors make it quite easy for the 

robot to achieve the phtotaxis. In this case, only 8 sensors are picked evenly distributed 

around the robot, which are number 1, 4, 7, 10, 13, 16, 19 and 22. A sensor distribution 

graph of the foot-bot is shown in Figure 3.1 where only those mentioned 8 sensors 

were selected to do phototaxis. In this case, the controller would be evolved and tested 
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based on these selected 8 sensors to make the robot achieve the phototaxis task in 

terms of faultless and fault scenarios respectively.  

 

Figure 3.1: Light sensor distribution of foot-bot [145] 

3.2.2 Fault type 

In terms of the fault type that needs to be tolerated, the fault could be just a complete 

sensor failure which sets the faulty sensor signal reading to be 0 into the controller and 

the fault could be just injected from the beginning of the phototaxis task. To be specific, 

robot sensor 1 and 7 can be selected as the predicted sensor faults which will be 

utilised to evolve controllers in offline scenarios where both of these 2 sensor’s 

readings are set 0 into the controller. It needs to note that actually any sensor could be 

failed when the robot is doing the task online. However, it is not an easy task to evolve 

a fault tolerant controller that is able to tolerate any kinds of fault especially when 

there is more than one fault occurred at the same time or sequentially when the robot 

is doing the task online. For this reason, evolving a controller based on predicted 
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possible fault types could be an easier solution. Although this work needs a fault 

prediction technique from another research area, it can be assumed that a specific 

fault type has already been predicted in order to evolve a fault tolerant controller to 

deal with it. In this case, sensor 1 and 7 are selected as the predicted fault types in 

order to evolve a fault tolerant controller for it. Although this work lacks generalisation 

to tolerate unplanned fault, it makes the whole work concentrate on this single 

scenario based on the assumed predicted fault types. That is to say, as long as the fault 

prediction technique is effective enough, there is no need to evolve controllers to 

tolerate any fault types and evolving controllers based on the predicted fault types 

could be the most efficient way. 

Moreover, it also needs to note that it is essential to choose 2 sensor faults to evolve 

controllers rather than just 1 sensor fault as the predicted fault type. Figure 3.2 shows 

an example of a best evolved controller’s internal structure with just sensor 1 failure. In 

this controller, there is no connection from the faulty sensor (input 0) to the controller, 

so it doesn’t matter whether the sensor is really failed or not when testing this 

controller. In this case, the robot will perform the phototaxis with the left 7 sensors and 

as long as an acceptable controller is evolved, it will definitely achieve the robot sensor 

fault tolerance for both of faultless and faulty test.  

This idea is fine with controller connections just from the working sensors to design a 

fault tolerant control system, but it's not a sufficient scheme. Suppose there is more 

than 1 sensor failed during the task. If a controller was designed without any 

connection from these failed sensors, it could make robot be robust to the upcoming 

faults. But the performance in the faultless condition will be definitely degraded 

compared to the full sensor connection evolved controller especially in the multi-

sensor failures situation. In addition, faults will not always be occurred at the beginning 

of task. So there is always a period that the robot performs the task in a faultless 

circumstance. In this case, a fully connected controller will definitely be the first choice 

with all of the sensors working around to achieve tasks.  

On the other side, another possible reason to obtain a controller like this one in Figure 

3.2 would be that 7 sensors may be already sufficient for robot to perform phototaxis 

due to the compensation of the neighbouring working sensors besides the failed one. 

So in order to prevent the sensor compensation effect, 2 sensor faults occurred 

together would be a feasible solution, which could also reduce the chance to obtain a 
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controller just connected to the working sensors.  And that’s why sensor 1 and 7 failed 

together would be used as a primary scenario for this work. 

 

Figure 3.2: An example of CGPANN evolved controller without the connection to the failed sensor  
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3.2.3 Evolution experiment 

In terms of the evolution experiment, each evaluation would choose the worst fitness 

value among 10 trials as the last fitness value. This kind of evaluation method could 

minimise the wrong behaviours of the robot in order to make sure that the evolved 

controller is able to make the robot achieve phototaxis for all of the 10 trials. In other 

words, if the robot could achieve the phototaxis in the worst case trial, the robot will 

definitely achieve the phototaxis in the other 9 trials with better performance. 

However there are some potential drawbacks for this kind of fitness function. One 

problem is that choosing the worst case fitness value among 10 trials may not fully 

demonstrate the controller performance since only the worst case is utilised as the 

final fitness and there is no information preserved for the other 9 trials during the 

evolution. The other problem is due to the similarity of the individuals if just the worst 

case fitness value stands for the individual’s performance. For example, if two 

individuals have the same fitness value for the worst case performance but different 

fitness values for the other 9 trials, there is no way to further rank these two 

individuals in terms of their final fitness values. This problem will impact the 

performance of crowding fill during the survival selection in the multi-objective 

optimisation, which will be talked about in more details in section 4.5.1.2. Even though, 

choosing the worst case performance as the final fitness value of the current individual 

could still be a suitable choice for single objective optimisation like this evolution 

experiment since wrong behaviours could be minimised in this way and extremely poor 

performance could also be prevented during the evolution.     

The fitness function would be made up of two parts: the constraint function and 

objective function. The constraint function evaluates the individuals to see whether 

they can make the robot reach the beacon in an area of 0.01 m as the radius within the 

maximum allowed time: 1200 ticks. So the worst fitness value would be the longest 

distance of the robot to the beacon after 1200 ticks. If the robot can reach the beacon 

in that area in 1200 ticks, the individual will be evaluated on the objective function 

which is the time spent of the robot to reach that area. When an individual can make 

robot reach the area in all of 10 trials, the worst fitness, which is the longest time spent, 

will be selected as the final fitness value of this individual. This constraint handling 

process is quite basic since it just evaluates the individuals for the constraint function 

first and then for the objective function, which is much simpler than the one developed 

in NSGA2 [92]. However this basic constraint handling process is already adequate for 
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this single objective CGPANN experiment, so it could still guarantee that the best 

evolved controller would be able to perform the phototaxis well in all of these 10 trials 

with these 10 random initial positions and orientations of the robot. 

In terms of CGPANN parameters, a (1+4) evolution strategy was used for the 

population size which is the same as CGP. The number of nodes was set 20, the number 

of arity was set 5, the weight range was set +/-5, and mutation rate was set 5% with a 

probabilistic mutation. The selected node functions were hyperbolic tangent and soft 

sign neuron transfer functions. Both of these 2 functions generate output in the range 

of [-1, 1], which is suited to robot wheel speed. The robot wheel speed was set 5 times 

larger of the controller output, which is [-5, 5]. In this case, each of the wheels can 

move forward or backward with a maximum speed of 5 m/s. So the shortest time of 

the robot to complete phototaxis task is when the robot moves straightforward to the 

beacon with the maximum speed, which is 900 ticks. In terms of convergence criteria, 

50 generations were set to observe the convergence. So if the fitness value hadn’t been 

changed for 50 generations, the evolution could be terminated.   

3.2.4 Generalisation experiment 

To check the capability of the evolved controllers for the robust fault tolerant control, 

30 best evolved controllers obtained offline from 30 independent different evolution 

experiments for faultless and faulty scenarios respectively would be tested online for 

each of these two scenarios respectively. After the generalisation experiments were 

finished, success rate would be used for the assessment of these evolved 30 controllers 

and a comparison between them was conducted to see how the evolved controller 

would be performing for the robust fault tolerant control.    

Apart from the fault scenario test, the best evolved controller would also be tested in 

10 new different random initial positions and orientations of the robot with the same 

distance 4.5 m to the beacon, and these 10 new positions and orientations are 

different from that in the evolution experiment. The motivation of the test is to 

investigate whether the evolved controller can make the robot do a real phototaxis 

task no matter what the robot initial position and orientation are. In this case, each 

controller would be tested to make the robot start with 10 new random different initial 

positions and orientations and success times among 10 trials would be the final success 

rate of this controller.  
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In terms of the online generalisation experiment length, 1200 ticks were utilised as a 

first choice since the offline evolution experiment utilised the same experiment length 

for the controller evolution. However due to the experiment difference between offline 

evolution and online test, 1200 ticks may be too difficult for the robot to complete the 

phototaix in the online testing scenario. For this reason, 3000 ticks were utilised as 

another option to test the controller performance in order to find out whether the 

robot could complete the phototaxis task if more experiment time is given for this 

online testing scenario. As a result, if the robot cannot complete the phototaxis in 1200 

ticks or 3000 ticks, the success rate would be set 0 for this current trial.  

3.3 Result and discussion 

3.3.1 Faultless scenario evolved controller 

3.3.1.1 3000 tick test 

Table 3.1 is the test result of success rate comparison from faultless evolved controller. 

Firstly 30 best evolved controllers were tested for faultless condition and then tested 

for faulty condition. All of these 30 controllers could make robot achieve phototaxis in 

1200 ticks from evolution results. So the generalisation experiment would check 

whether these 30 controllers could still make robot achieve phototaxis with 10 new 

different random robot initial positions and orientations for both of faultless and faulty 

conditions. 

Table 3.1: Success rate comparison of faultless evolved controller in 3000 ticks 

 Success rate in 3000 ticks 

Faultless 
test 

1 1 1 1 1 1 1 1 1 1 0.8 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Faulty 
test 

1 0 1 1 1 1 0 0.9 0 1 0.9 1 0 1 1 

1 0.3 1 1 1 1 0.8 1 1 0 1 1 1 0 0 

 

As can be seen from Table 3.1, the success rate of faultless test among 30 controllers is 

much higher than that of faulty test. To demonstrate the data distribution, a boxplots 

was used for it, which is shown in Figure 3.3. 

As presented in Figure 3.3, the data distribution of faulty test has a much lower success 

rate area than that of faultless test. Based on the Mann-Whitney U-Test calculation, p 

value is 0.02444. So the difference between the faultless and faulty tests is significant. 

Based on the utilising of Vargha-Delaney A-Test, the score is 0.67 which is located in 
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the medium effect size interval. In this sense, there is a medium effect between the 

faultless test and faulty test based on the faultless scenario evolved controller in terms 

of 3000 tick test.  

 

Figure 3.3: Boxplot for success rate comparison of faultless evolved controller in 3000 ticks 

 

3.3.1.2 1200 tick test 

As is mentioned in the section 3.2.4, 1200 tick test was also conducted as a comparison 

of the same 30 controllers. The success rate is listed in Table 3.2 and the boxplot is 

displayed in Figure 3.4. 

  Table 3.2: Success rate comparison of faultless evolved controller in 1200 ticks  

 Success rate in 1200 ticks 

Faultless 
test 

1 1 1 1 1 1 1 1 1 1 0.8 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Faulty 
test 

0.8 0 0 0 0 1 0 0.9 0 1 0.5 1 0 1 0 

1 0.3 0 0 0.2 1 0.8 1 1 0 0 0 1 0 0 

 

From Table 3.1 and Figure 3.4, the success rate of faulty test now is much lower than 

the faultless test among 30 controllers with a declined median value compared to the 

3000 tick test. The p value calculated is less than 0.00001 from Mann-Whitney U-Test 

and Vargha-Delaney A-Test score calculated is 0.8427778 which is above 0.71. 
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Therefore there is a large difference between the faultless and faulty tests for the 

faultless scenario evolved controller in terms of 1200 tick test.  

 

 

Figure 3.4: Boxplot for success rate comparison of faultless evolved controller in 1200 ticks 

3.3.1.3 Conclusion 

Based on the comparison results of faultless scenario evolved controller, the faultless 

tests outperform faulty tests with significant difference for both of 3000 tick and 1200 

tick tests. Although there is a medium difference for 3000 tick test, there is a large 

difference for 1200 tick test. And that means if the time is limited for the robot to 

perform phototaxis, the robot will have a worse performance in the face of sensor 

faults. 

In conclusion, the faultless evolved controller cannot be robust to the robot sensor 

faults for phototaxis task especially when there is a strict time limit such as 1200 ticks. 

In this sense, a fault tolerant control system is really necessary to make robot continue 

doing phototaxis task in the face of sensor faults. The next section 3.3.2 will consider 

using CGPANN to evolve a controller with sensor faults injected at the beginning of the 

phototaxis and investigae whether the faulty scenario evolved controller can achieve 

the robust fault tolerance control.  
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3.3.2 Faulty scenario evolved controller 

3.3.2.1 3000 tick test 

Table 3.3 presents the test result of success rate comparison from 30 best faulty 

evolved controllers and Figure 3.5 shows the data distribution of them. The p value 

calculated is 0.00194 from Mann-Whitney U-Test and the Vargha-Delaney A-Test score 

is 0.7333333. 

As can be seen from this result, the faulty condition evolved controllers make the robot 

work well for faulty conditions but not for faultless condition. The boxplot also 

demonstrates a large difference between their data distributions. According to Mann-

Whitney U-Test, there is a significant difference between these 2 data sets and Vargha-

Delaney A-Test also indicates a large difference between them. 

Table 3.3: Success rate comparison of faulty evolved controller in 3000 ticks 

 Success rate in 3000 ticks 

Faulty 
test 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Faultless 
test 

0.6 0 1 1 1 0.6 0 0 1 1 1 0 1 0 1 

1 1 0 0.2 1 0 1 0 1 0.2 0 0.5 1 1 1 

 

 

Figure 3.5: Boxplot for success rate comparison of faulty evolved controller in 3000 ticks 
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3.3.2.2 1200 tick test 

In terms of 1200 tick test, Table 3.4 shows the success rate comparison result of 2 data 

sets and Figure 3.6 displays the distribution of them. Mann-Whitney U-Test gives a p 

value of less than 0.00001 and the Vargha-Delaney A-Test score is 0.8166667. 

As is shown from these results, the faulty test still outperforms than faultless test. The 

best evolved controllers from faultless test also have a much lower performance with a 

lower median value compared to the 3000 tick test. Mann-Whitney U-Test implies a 

significant difference between these 2 data sets and Vargha-Delaney A-Test indicates a 

large difference between them, which is even larger than the A-test score of the 3000 

tick test.  

Table 3.4: Success rate comparison of faulty evolved controller in 1200 ticks  

 Success rate in 1200 ticks 

Faulty 
test 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Faultless 
test 

0 0 1 1 1 0.6 0 0 1 1 0.9 0 1 0 0 

0 1 0 0.2 1 0 1 0 0.5 0 0 0.5 1 1 0 

 

 

Figure 3.6: Boxplot for success rate comparison of faulty evolved controller in 1200 ticks 
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3.3.2.3 Conclusion 

As can be seen from these two generalisation experiments, the results are quite similar 

to the previous experiment of faultless scenario evolved controller test. The faulty 

condition evolved controllers still work well for faulty condition but not for faultless 

condition especially when the experiment time is limited.  

As a result, one scenario designed offline controller seems not sufficient to make the 

robot perform phototaxie online in both of faultless and faulty conditions so as to 

achieve robust fault tolerant control. In this sense, one option is to design two or more 

controllers offline to deal with different objectives. As is reviewed in the fault 

accommodation area in section 2.2.2, a bank of controllers can be pre-designed offline 

with CGPANN to achieve the switched fault tolerant control. And when the robot is 

doing the phototaxis task online, the bank of controllers can be switched to each other 

whenever there are faults or not. This idea is suitable for the real time fault tolerance 

situations where the controllers can be just switched online based on the assumption 

that all the predicted possible faulty conditions have been considered to design offline 

bank controllers and the fault can be diagnosed immediately right after its occurrence 

by an effective online fault diagnosis mechanism.    

Another option is still designing one controller to be robust to both of faultless and 

faulty conditions. One solution is to implement a weighted sum based CGPANN where 

the controllers can be evaluated based on the weighted sum for faultless and faulty 

objectives. The other solution is to utilise a multi-objective CGPANN in order to obtain a 

trade-off controller, which could produce an equivalent performance for each of 

faultless and faulty objectives. One significant advantage of a multi-objective 

optimization algorithm is that it can obtain a set of controllers for all of the objectives 

respectively, which is called Pareto-optimal solutions [92]. From the Pareto set, any 

controller can be selected depending on what the objective is required.  

As can be seen from section 2.5.5, multi-objective optimisation has a significant benefit 

over weighted sum based single objective optimisation for multiple objective problems, 

which is the larger behaviour diversity. According to [119], weighted sum based single 

objective optimisation could produce the most trade-off solution as multi-objective 

optimisation where the evolved solution is able to achieve an equivalent performance 

for both objectives at the same time. However it is quite hard for weighted sum based 
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single objective optimisation to obtain other trade-off solutions that multi-objective 

optimisation is able to obtain just from the Pareto optimal front due to its larger 

behaviour diversity. And this is a serious drawback for weighted sum based single 

objective optimisation.  

In terms of the fault tolerant control in this work, weighted sum based single objective 

optimisation at least needs three evolution loops in order to obtain a trade-off solution 

to achieve the robust control or two solutions performing well on each objective in 

order to achieve the switched control. This scheme may achieve the fault tolerant 

control for this work but it needs multiple evolution loops to obtain the desired 

solutions especially when there are more than two objectives, where multi-objective 

optimisation just needs one evolution loop to obtain a set of solutions based on the 

Pareto optimal front no matter how many objectives to deal with. And this would be 

another significant advantage of multi-objective optimisation over weighted sum based 

single objective optimisation.  

In conclusion, a multi-objective CGPANN could be an alternative promising approach 

utilised for designing fault tolerant controllers rather than just single objective CGPANN 

since it is able to evolve a Pareto optimal set of solutions not only for robust but also 

for switched fault tolerant control. Although the performance of the robust control 

with this trade-off controller will be degraded compared to switched control with bank 

of controllers, robust control could still be a promising scheme since this strategy 

doesn’t need a pre-designed controller switch procedure along with a fault diagnosis 

mechanism and just one controller also saves the memory space when the robot is 

controlled by an embedded single chip microcomputer for the real world experiment. 

Nevertheless, robust or switched fault tolerant control could both be worth an 

investigation by multi-objective CGPANN. 

3.4 Summary  

This chapter shows how CGPANN is utilised for designing a robust fault tolerant control 

system for the robot phototaxis task in the face of sensor failures. In terms of the fault 

tolerant control scheme, robust fault tolerant control could be a first choice since just 

one controller is required to be evolved without any consideration of controller switch 

and fault diagnosis. However, as can be seen from the result in section 3.3, CGPANN is 

failed to obtain controllers that are able to achieve the robust fault tolerant control 
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since only one objective optimisation is not sufficient for CGPANN to obtain a robust 

controller. For this reason, a multi-objective CGPANN could be an alternative solution 

which will be able to obtain a Pareto set of controllers working not only for the robust 

fault tolerant control but also for the switched fault tolerant control depending on 

which controller is selected for the task requirement. 

The next chapter will discuss how to develop a multi-objective CGPANN algorithm and 

investigate how it will be working for both of robust and switched fault tolerant control 

based on the robot phototaxis task.   
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Chapter 4 MOCGPANN in fault tolerant control 

4.1 Introduction 

As is concluded in chapter 3, CGPANN is not able to evolve controllers that are capable 

to achieve the robust fault tolerant control scheme in terms of the robot phototaxis 

task. In this sense, a multi-objective CGPANN could be an alternative choice. One 

significant benefit of MOCGP is that it could evolve a set of controllers which are 

capable to make the robot achieve different objectives as mentioned in section 3.3.2.3. 

In this sense, the MOCGP will be a promising solution to evolve not only a robust 

controller but also a bank of controllers with respect to different objectives so as to 

achieve the robust as well as the switched fault tolerant control scheme. 

CGP has been successfully implemented in many areas, including the digital circuit 

design, the image processing and many medical applications [29]. However in the case 

of multi-objective optimisation, CGP has not been fully explored as well as CGPANN. 

Although there have been developments of various types of multi-objective CGP 

(MOCGP) [104] [105], there is no formally published MOCGP library. Therefore the 

integration of a MOCGP as well as a MOCGPANN library would be essential and 

interesting to be utilised for the robust fault tolerant control where CGPANN was failed 

to achieve. Furthermore, there will be two main problems when developing MOCGP, 

which are the problem of crowding fill strategy during survival selection and the 

problem of assessing the convergence of MOCGP. And these two problems need to be 

investigated before developing the library. 

4.2 Research gap in MOCGP 

4.2.1 MOCGP development 

This MOCGP is a combination of CGP and NSGA2. In MOCGP, the whole evolution loop 

is based on CGP except for the evaluation stage which is created from NSGA2. MOCGP 

still implements a kind of (1+4) evolutionary strategy with a random parent selection 

strategy from CGP [29] to create each population. The mutation is also the same as CGP, 

however the survival selection stage is quite different. Since it evaluates the population 

in multiple objectives, the survival selection is mainly borrowed from NSGA2 and the 

crowding measure is also implemented to encourage population diversity in the face of 

different objectives during crowding fill [92].  
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 NSGA2: 

According to section 2.5.1.3, NSGA2 performs better than PAES in terms of the diversity 

preserving mechanism. However, PAES outperforms NSGA2 in terms of the 

convergence except for one case when the problem has strong parameter interactions. 

Generally speaking, each of these two algorithms has its own benefit, but the 

advantage of PAES is only suited to the problem whose true Pareto optimal front is 

known. If the true front cannot be obtained before the experiment is run, then this 

advantage of PAES will be weak. On the other hand, NSGA2 integrates an effective 

constraint optimisation mechanism which is suited for a wide range of constraint 

handling problem. For these reasons, NSGA2 could be a suitable choice along with its 

crowding measure for the survival selection in MOCGP development. 

 CGPANN: 

According to section 2.4.5, CGPANN outperforms NEAT and SANE in terms of the 

double pole balancing control problem. The result demonstrates that CGPANN needs 

much less evaluation numbers than NEAT as well as SANE, which indicates that 

CGPANN realises a better convergence. Although the transfer function utilised in NEAT 

is slightly modified compared to the one used in CGPANN, whether the difference is 

significant for performance comparison is unknown at the moment. Generally speaking, 

CGPANN could be a first choice rather than NEAT to be utilised for designing NE based 

structurally evolvable controllers for multi-objective optimisation due to its effective 

performance. Moreover, another significant advantage of CGPANN is the implement of 

explicit genetic redundancy which could also be utilised to improve the crowding fill 

performance, where NEAT is not able to achieve due to the lack of genetic redundancy. 

The details of why genetic redundancy in CGPANN could improve the crowding fill will 

be talked about in the next section 4.2.2.   

4.2.2 Crowding fill problem 

However there are still some problems inside MOCGP. In multi-objective optimisation, 

the population diversity of the final Pareto-optimal front and the convergence to it are 

two main issues, which are still in the research [146] [124]. During the survival selection 

of NSGA2, the population diversity can be guaranteed based on the computation of 

crowding distance for each individual. In this case, the individuals in the same set will 

be ranked based on its crowding distance from highest to lowest in order to be 
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survived into the next generation, which is also called the crowding fill [92]. However 

the most significant difference between CGP and GA is the representation of 

individual’s genomes. In GA, all the genes are active for the mapping from its genotype 

to phenotype. So encouraging the population diversity in the fitness domain is 

necessary and enough in a parameter based multi-objective optimisation algorithm. 

And that’s why NSGA2 is famous for its crowding distance technique. This rule also 

applies to any EA approaches that do not have genetic redundancy in the genome 

encoding, such as NEAT/HyperNEAT in the ANN structure optimisation domain in terms 

of multi-objective optimisation. However in CGP, there is a large part of genes which 

are inactive to the mapping from genotype to phenotype for each individual. Since the 

inactive genes have no contribution to the mapping from genotype to phenotype, 

those inactive genes could be quite different among the individuals. Once some of the 

inactive genes become active during mutation, it is possible that the fitness could have 

a great change. For this reason, this kind of explicit genetic redundancy is quite useful 

for CGP based approaches [29] [30]. According to section 2.4.4.5, one significant 

implement of explicit genetic redundancy is preserving the genetic drift, which is 

beneficial to not only the evolutionary search but also the escaping from local optima. 

In this case, it is necessary to distinguish the individuals with the same fitness at least 

between children and parents in order to preserve the neutral mutated individuals 

during the crowding fill in the survival selection. However, in terms of those algorithms 

without genetic redundancy such as GA or NEAT/HyperNEAT, there is no need to 

distinguish individuals with the same fitness since preserving genetic drift has no effect 

on them.  

On the other hand, the distinction between individuals may be helpful to improve the 

crowding fill performance as well. As is mentioned in section 2.5.1.1, the crowding 

distance measure referred from NSGA2 is actually an estimate of the density of the 

current individual based on its two neighbours around it in the current population. The 

computation of crowding distance is the value of the cuboid perimeter of this current 

individual enclosed by its nearest two neighbours as the vertices from each side [92]. 

However the crowding distance measure may not be working well for those algorithms 

with the genetic redundancy such as CGP since it cannot tell the difference of 

individuals with same fitness. In this sense, crowding distance has to pick two random 

individuals as two neighbours to compute the cuboid perimeter of the current 

individual. For this reason, some individuals may have the neighbours with the same 
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fitness while some may have the neighbours with different fitness. Therefore it may be 

unfair to set different crowding distance values for the individuals who have the same 

fitness based on a random neighbour pick strategy during the crowding fill, which is not 

beneficial for survival selection in terms of genetic redundancy based genome encoding 

approaches like CGP. Actually, the random picking problem in crowding measure is not 

serious for the algorithms which have no genetic redundancy such as GA or NEAT since 

the individuals with the same fitness will always have the same or quite similar 

genotypes. In this case, even if the individuals with the same fitness have different 

crowding distance values, there will be no significant influence on the crowding fill 

performance. In a word, distinguishing or re-ranking individuals with the same fitness 

during crowding fill is quite necessary not only to preserve the genetic drift but also to 

improve the performance of crowding fill to fit MOCGP/MOCGPANN.                                

In conclusion, due to the explicit genetic redundancy in CGP, the individuals with the 

same fitness may have huge difference in their inactive genes and the original crowding 

measure referred from NSGA2 is not working to distinguish them. For this reason, 

distinguishing individuals at least between children and parents during crowding fill is 

essential for MOCGP/MOCGPANN development. On the other hand, the distinction 

between individuals with the same fitness may also be helpful to improve the crowding 

fill performance so as to avoid the random neighbour pick problem caused by the 

crowding measure. Although [30] mentions that CGPANN does not benefit from 

preserving genetic drift rather than CGP, it is still worth a further investigation for 

MOCGPANN based on an improved crowding fill strategy. 

4.2.3 Convergence problem 

Another problem is how to set the convergence criteria in MOCGP. In single objective 

optimisation such as GA, the convergence of population is not difficult to measure. 

Convergence criteria is actually used to decide when to stop the evolution [120]. A 

well-known approach about how to stop GA was developed by [121] where GA can be 

stopped if the best performance values have stabilized. And this is actually the 

description of convergence measurement [120]. However in multi-objective 

optimization, there is no straight forward method to measure the convergence since 

there is no best evolved individual for each population. In [92], the convergence criteria 

is based on the observation whether the current pareto front is close enough to the 

pareto optimal front. If it reaches the pareto optimal front, that means NSGA2 has 
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converged. However there is a premise that the pareto optimal front should be known 

before running the evolution. If the pareto optimal front cannot be obtained or 

calculated beforehand, then the convergence cannot be measured. In this sense, the 

convergence criteria should also be considered for MOCGP if pareto optimal front 

cannot be obtained in advance. So how to find a metric to measure convergence is also 

an relavant and essential stage for MOCGP development. 

4.3 Methodology 

4.3.1 Methodology for new crowding fill  

As can be seen from section 4.2.2, an improved crowding fill strategy needs to be 

developed in order to fit MOCGP/MOCGPANN. Firstly, a distinction between children 

and parents has to be carried out during the crowding fill in order to preserve the 

neutral mutated individuals into the next generation if there are more than one 

individual have the same fitness. This idea is feasible to preserve the genetic drift like 

how CGP does. However the children actually still have quite different inactive genes 

between each other although they have the same fitness. Due to the random 

neighbour pick problem in crowding fill, it may be worth a further distinction between 

these children to avoid that problem. In this sense, if only one child who has the largest 

genotype diversity among the children with the same fitness is allowed to take part in 

the crowding measure, the random neighbour pick problem may be solved since there 

is no need to consider how to choose the neighbours for those individuals with the 

same fitness. 

4.3.1.1 Population diversity measures 

 Genotype diversity measure 

According to section 2.5.4.1, genetic distance is an effective and a promising metric to 

assess the genotype diversity for the population based on the implement of Euclidean 

distance or Hamming distance. Although it is a commonly used approach, there may be 

some problems to fully represent the genotype diversity especially for MOCGP. The 

problem is caused from the MOCGP real-coded genotypes where some genes stand for 

the transfer function of the node, some for the connection of the node and some for 

the weight of the current connection. In addition, there is another type of genes 

representing which nodes the outputs connect [29]. This kind of genes always belongs 

to the active genes so they are not related to the neutral genetic drift. Apart from the 
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output genes, those three kinds of genes could be utilised into the computation of 

Euclidean distance. The weight genes can be used to calculate Euclidean distance since 

larger distance means larger changes of the corresponding weight values. However the 

changes of connection and function genes may not be suitably utilised for Euclidean 

distance computation. The connection genes are integer numbers of nodes where the 

current node is connecting and the function genes are also integer numbers 

demonstrating which function the current node is using. In this sense, Euclidean 

distance may not be effective to display the real genetic distance between those genes. 

The reason is that larger distance based on Euclidean distance with those integer 

numbers may not mean larger distance between the corresponding genes. For example, 

a child mutates one of its node’s connection from number 1 (the parent) to 2 and 

another child mutates its corresponding node’s connection from number 1 (the same 

parent) to 9. Obviously, the second child has a larger Euclidean distance of this gene 

from the parent but actually that may not mean the second child has a larger genetic 

distance of this gene. This result just means these two children have different 

connection of this node but it cannot conclude that the second child has a larger 

genetic distance just because the difference between 1 and 9 is larger than 1 and 2. 

Similarly, it is the problem occurred in function genes. 

In this case, Hamming distance could be an alternative choice to deal with this problem. 

One significant usage of Hamming distance is to measure the genetic distance in DNA 

sequences [147] [148]. Although the genetic distance mentioned there is for the real 

genes of alphabetical strings in biology area, it provides a solution to measure the 

genetic distance for the genotype diversity problem in MOCGP. Since the Hamming 

distance can be used to measure the difference between two alphabetical strings from 

DNA sequence, it will possibly be used to reflect the difference of inactive genes 

between two individuals in MOCGP. Based on Hamming distance as a metric to 

measure genetic distance, the possible approach to measure the genotype diversity is 

just to check how many genes have been mutated in the corresponding nodes among 

individuals. This approach is simpler for computation than Euclidean distance for 

genetic distance, but it may be more effective to reflect the real genetic distance 

between two individuals.  

 Phenotype diversity measure 
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Apart from the neutral mutation, there is a special situation occurred during the 

evolution in MOCGP where the same fitness individuals are also created resulting in the 

random neighbour pick problem during crowding fill. This special situation is from the 

normal mutation and it only happens when different fitness parents create the same 

fitness children between each other. This kind of special situation based on normal 

mutation may not be occurred frequently as that one based on the neutral mutation, 

but it does take place by chance as long as some parents create the same fitness 

children who have the same fitness with those created by neutral mutation. In this 

special situation, the population diversity cannot be improved by utilising genotype 

diversity measurement since the genetic distance only demonstrates the genotype 

diversity among the children who are created by neutral mutation from their parents.  

In this case, phenotype diversity measurement could be an alternative solution to deal 

with this special situation. According to section 2.5.4.2, Fitness distance can be directly 

used for the individuals who have the same fitness but created from the normal 

mutation rather than neutral mutation. The computation of fitness distance of an 

individual could be just the difference between its fitness and its parent’s fitness. And 

Euclidean distance can be a primary metric to calculate the fitness distance since the 

fitness is presented in real number. In this way, the phenotype diversity could be 

possibly maximised during survival selection for individuals created from normal 

mutation but with identical fitness. 

 Procedure of a complete population diversity measure  

As mentioned before, genotype diversity measurement uses Hamming distance as the 

metric of genetic distance to compute the difference between the current individual 

created by neutral mutation and its parent, who are the same in fitness. Hamming 

distance counts the number of different genes between these two individuals for 

inactive genes. In this way, large Hamming distance means this individual has a large 

difference of its inactive genes compared to its parent and vice versa. So the genotype 

diversity can be maximised based on the ranking of the Hamming distance of those 

individuals. 

On the other hand, phenotype diversity measurement uses Euclidean distance as a 

fitness distance metric for the computation of the difference between the individual 

and its parent. This situation only applies to the individuals who are created by normal 



 

97 
 

mutation but still have the same fitness with others in the current generation. In terms 

of the computation, it is not just the Euclidean distance between the fitness of two 

individuals since each one has at least two objective values. For this reason, the 

dominance will firstly be checked. If the individual dominates its parent, the Euclidean 

distance between them will be the real Euclidean distance. If they are non-dominated, 

which means they are the same in fitness, the Euclidean distance will be zero. And 

finally if the individual is dominated by its parent, the Euclidean distance will be the 

negative value of real Euclidean distance. The reason to set a negative value is that 

since the individual is dominated by its parent, it means the individual is worse than its 

parent in fitness. So in this way, all the individuals can be ranked from large to small in 

fitness distance, which means the phenotype diversity can be maximally preserved.  

In addition, parents with the same fitness can be also available for the computation of 

the genotype and phenotype diversity measurements. Although parents have a zero 

distance between itself in spite of genotype or phenotype, it still retains the diversity 

information from last generation. So as long as the diversity information from previous 

generations are still kept, the parents with the same fitness in the current generation 

can be also compared and ranked depending on its preserved genotype or phenotype 

distance. However the ranking of parents are executed after the ranking of children to 

maximise the population diversity during crowding fill. 

It needs to note that the individuals from normal mutation may need to be ranked 

before those from neutral mutation. The possible reason is that the individuals created 

from normal mutation may have more chance to still produce children with normal 

mutation. So the fitness could have more chance to be changed no matter improve or 

decline, which is beneficial to the evolutionary search. However those created from 

neutral mutation may have less chance to produce children in normal mutation, which 

means the fitness will possibly be the same into next generation and that is not helpful 

for evolutionary search. However this is just an intuitive strategy, so whether it is 

beneficial for the survival selection to guide the evolutionary search will still need to be 

investigated by the experiment.  

In conclusion, when the individuals have the same fitness in the current generation 

during survival selection, the children with the same fitness from normal mutation will 

be ranked with Euclidean distance in fitness domain and survived first. And the children 

from neutral mutation will be ranked with Hamming distance in genotype domain and 
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survived following. Finally the parents with the same fitness will be ranked and 

survived depending on normal or neutral mutation from previous generations. 

4.3.1.2 New crowding fill in the survival selection 

Based on the genotype and phenotype diversity measurements, this new crowding fill 

strategy involves some improvements in crowding distance sorting during the survival 

selection. Before the children and parents are merged for the non-dominated sorting, 

every individual needs to be checked if it has the same fitness with each other in the 

current generation. If so, each child will be attached an extra attribute of fitness 

distance or genetic distance from its parent by means of Euclidean distance or 

Hamming distance and the parents will keep their distance information from previous 

generations.  

During the new crowding fill strategy, each individual in the current front will be 

compared to each other and separated into different groups based on their fitness. In 

this sense, the individual with the same fitness will be classified into the corresponding 

group depending on what the objective value is. Then in each group, the individual who 

ranks the first in the population diversity measurement will be removed from this 

group in order to take part into the crowding distance sorting while others still remain 

unchanged in their own group. After that, all the left individuals in their groups will be 

merged together into a new bigger group. Now the crowding distance sorting will work 

on the individuals in the current front including the first ranking individual of 

population diversity picked from the corresponding group. When the crowding distance 

sorting is finished, the left group members will be sorted based on their population 

distance values and filled one by one until the next generation is full. This whole 

process will be the modified crowding fill strategy for MOCGP instead of the original 

one developed for NSGA2. 

This new crowding fill strategy not only solves the random neighbour pick problem in 

crowding distance computation, but also ensures the population diversity maximisation 

in survival selection. The individual ranking the first in population diversity 

measurement is survived before the others with the same fitness, which guarantees 

that only the individual with the largest distance value will be allowed to take part in 

the crowding distance sorting. And the left group members will be survived later on 

depending on their distance values, which also maintain the population diversity for 
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the new generation. In this sense, this new crowding fill strategy designed especially for 

MOCGP will be utilised as the main approach for the evolution experiment throughout 

the thesis. 

4.3.2 Methodology for convergence assessment 

Based on the review of termination conditions in section 2.6, the upper limit of the 

number of generations or fitness evaluations is not a suitable choice since the limit 

cannot be obtained before the experiment starts to run. This termination condition 

only works if the experiment has run multiple times, so the estimated upper limit could 

be acquired based on them. The population diversity could be a choice, but it will be 

working better for single objective optimization problem. The multi-objective optimizer 

has already maintained the population diversity for each generation from the Pareto-

optimal front based on the optimization of different conflict objectives, so there is little 

chance that the individuals in the whole population will converge to a certain solution. 

For this reason, the threshold could be the only way used as a convergence criterion 

when there is no significant improvement for fitness during a number of successive 

generations.  

In terms of performance measure, it will be adequate to use hyper-volume indicator to 

assess the performance of MOCGP. The threshold will demonstrate the hyper-volume 

improvement among those continuous generations. Therefore, if the hyper-volume 

improvement approaches this threshold, then the evolution will supposed to be 

converged and then stopped. The reference point will be selected based on the 

supposed maximum objective value depending on what the fitness function is for this 

experiment.  

4.4 Experiment setup 

The whole experiment will be designed to investigate how MOCGP will be performing 

to evolve feasible Pareto sets of controllers so as to achieve the robust as well as 

switched fault tolerant control and how hyper-volume indicator will be working to 

assess the convergence of MOCGP. So the hypothesis of the experiment is that MOCGP 

and hyper-volume indicator can be integrated together in order to obtain effective 

Pareto sets of controllers so as to achieve both of robust and switched fault tolerant 

control in generalised scenarios. 



 

100 
 

The whole experiment of MOCGP was designed in a similar way as the one for CGP in 

section 3.2 where evolution experiment and generalisation experiment would be both 

conducted. The evolution experiment was designed to obtain feasible Pareto sets of 

controllers by MOCGP and the generalisation experiment was designed to test the 

evolved controllers for the robust fault tolerant control where CGP was failed to 

achieve and the switched fault tolerant control as well. Due to the task of evolving a 

neural network controller, MOCGPANN would be implemented rather than a general 

MOCGP with an additional weight gene and the node functions would be neuron 

transfer functions instead of simple mathematics functions. 

Except for the optimisation algorithms used for evolution experiment, all the other 

factors of the experiment framework were totally the same as that in section 3.2 

including the same robot task and the same fault type. The robot task was still a 

phototaxis task designed in section 3.2.1 and the fault type was also the same 

mentioned in section 3.2.2 where two complete sensor failures would be occurred 

together. 

4.4.1 Evolution experiment 

The aim of the evolution experiment is to investigate whether MOCGPANN could 

evolve feasible Pareto sets of controllers so as to achieve both of robust and switched 

fault tolerant control.  

4.4.1.1 Baseline parameters 

The individuals created by MOCGPANN in each generation would be evaluated in 2 

constraint functions firstly and then 2 objectives functions, which implemented the 

same constraint evaluation process of NSGA2 [92]. The constraint functions still utilised 

the area of 0.01 m as the radius and the objective functions were still the time spent 

when the individuals met the constraint condition, which were the same as that 

designed in section 3.2.3. Since the constraint handling process is referred from NSGA2, 

so it would be more effective than the basic one utilised for CGPANN experiment in 

chapter 3. Moreover, due to the multi-objective optimisation features, the individuals 

would also be evaluated for the faultless and faulty objective respectively. The faultless 

objective refers to the normal condition where there is no fault for the robot to 

perform the phototaxis. And the faulty objective is the same condition designed in 

section 3.2.2 where sensor 1 and 7 will be completely failed with 0 sensor reading 
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signal as the controller input. In order to obtain sufficient individuals to represent the 

Pareto optimal front, (1+4) ES was still utilised but 20 times larger which would be 

(20+80) ES. In this case, 20 individuals would be survived from the combination of 80 

children and 20 parents in each generation, which could be used to create the Pareto 

front. 

 MOCGPANN parameters 

In terms of the MOCGPANN baseline parameters, they were the same as the ones in 

CGPANN experiment designed in section 3.2.3. The number of nodes was 20, the arity 

was 5, the mutation rate was 5% with a probabilistic mutation, the weight range was 

+/- 5 and the selected neuron transfer functions were hyperbolic tangent and soft sign 

functions which generate output within [-1,1]. In addition, recurrent connections were 

also included into the controller evolution. As is shown in [30], recurrent connections 

could make the evolution find recurrent solutions, which sometimes perform better 

than the feed forward solutions evolved by a standard CGP. Even if a standard CGP 

could solve the task, the solutions evolved by CGP with recurrent connections would be 

still worth investigating compared to the ones evolved without recurrent connections. 

In this case, recurrent connections could be an additional option if a recurrent artificial 

neural network controller would be considered as well to achieve the fault tolerance. 

The recurrent connection probability is a value between 0 and 1, which presents the 

probability of mutation to create recurrent connections. In this experiment, the 

recurrent connection probability was set 0.10, which means there is 10% possibility 

that the mutation could create recurrent connection. In other words, there is 90% 

possibility that the connections are still feed forward in the controller. 

 Convergence parameters 

In terms of the convergence criteria, a hyper-volume indicator would be a feasible way 

to demonstrate the performance of MOCGPANN as mentioned in section 4.3.2. The 

reference point was set (1200, 1200) in ticks, which is the maximum time point when a 

feasible solution can achieve. And in terms of the convergence criteria used to 

terminate the evolution, 30 generations would be used to look back of the observation 

of the hyper-volume indicator result. It needs to note that it’s still the same constraint 

optimization problem with MOCGPANN, so the unfeasible solutions would be not 

included in the 30 generations. That is to say, the 30 generations would only be 

working when an individual has no constraint violation. The convergence rate, which is 
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the threshold mentioned previously, would be the division result of the current hyper-

volume compared to the one 30 generations before. The convergence rate was set 

1.001, which means if the current hyper-volume divided by the one 30 generations ago 

is less than 1.001, the evolution could be terminated. In other words, if the percentage 

deviation is less than 0.1% within 30 generations, the evolution would be supposed to 

be terminated.  

4.4.1.2 Number of experiment runs and parameter adjustment  

Except for the baseline settings of the mentioned experiment parameters, there are 

two problems that also need to be considered. One problem is the randomness inside 

the evolution experiment for both of optimisation algorithm and the robot task. The 

other problem is the parameter uncertainty for those mentioned parameters for this 

evolution experiment. Both of these two problems need to be considered before 

assessing the MOCGPANN performance for the evolution experiment.   

 Cumulative mean approach 

Figure 4.1 shows the evolved population from the final generation for one evolution 

run and Figure 4.2 shows the first Pareto optimal front solutions for it. The points on 

these figures represent the evolved solutions which are the obtained controllers for 

this evolution experiment in terms of faultless scenario objective and faulty scenario 

objective. The difference between these two figures is that Figure 4.1 presents the 

whole population for the last generation and Figure 4.2 just shows the first Pareto 

optimal front solutions from the last generation. Basically, it seems to be successful for 

MOCGPANN to obtain those controllers which can do the switched control or the 

robust control for fault tolerance depending on which controller to be selected from 

the first Pareto optimal set described in Figure 4.2.  
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Figure 4.1: The evolved population from the final generation for one evolution run 

 

Figure 4.2: The first Pareto optimal front solutions for the evolved population from the final 
generation for one evolution run 

However there is some randomness inside the evolution experiment. The first one is 

due to the random seed used to place the robot into random positions with random 

orientations. Since there are 10 trials to evolve controllers to make robot achieve 

phototaxis, so those 10 trials are based on the selected random seed utilised 

throughout the whole evolution experiment. That is to say, if the random seed is 

changed, the robot will be placed into 10 new different random positions with random 

orientations. In order to get the average performance, the evolution experiment has to 

be conducted multiple times with different random seed used for the robot placement. 

The second randomness also comes from the random seed but inside the MOCGPANN. 
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This random seed is also used throughout the evolution experiment, but it’s just used 

in this optimisation algorithm, such as the creation of the initial population and the 

genes selected to do the mutation. In this sense, this random seed also need to be 

changed for each evolution experiment. If both of these 2 random seeds remain 

constant, the evolution experiment will get the same results no matter how many 

times it runs. And that’s also the reason to use different random seeds for experiment. 

In order to get the average performance, multiple runs need to be conducted based on 

different random seeds not only for robot placement but also for the MOCGPANN itself. 

However how many runs are sufficient to do the experiment need to be considered. 

For sure the experiment can obtain absolute average performance if it can be run for 

long enough, but it’s not realistic due the limited experiment time. In this case, 

cumulative mean approach [142] mentioned in section 2.7.2 could be considered as an 

effective approach in order to determine how many number of runs is sufficient and no 

more runs are required.  

Table 4.1 shows part of experiment runs based on the percentage deviation. As is 

mentioned in [142], if there are more than one experiment output, the number of runs 

should be selected based on the output which needs the most number of runs. In this 

case, this table shows the 2 experiment response observed by percentage deviation, 

which are the experiment performance: hyper-volume and the convergence: number 

of generations. Hyper-volume measures the performance from the Pareto optimal 

front, so the larger the better. Number of generations indicate when the evolution is 

converged, so the fewer the better. As can be seen from this table, hyper-volume has 

already reached below 5% for percentage deviation but number of generation is not. 

So the total number of runs would be determined by the number of generations. From 

experiment index 218, the percentage deviation of generation reaches below 5% in the 

first time and still remains below it in the following experiments. In this sense, 218 

experiments are sufficient to present the experiment results in terms of both of hyper-

volume and generation number. 

As can be seen from this example, cumulative mean approach would be feasible to 

assess how many runs are sufficient in order to get the average performance, which 

solves the problem of randomness for the evolution experiment and would be utilised 

for all of the evolution experiments throughout the thesis.   
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Table 4.1: Experiment index in terms of percentage deviation of cumulative mean result 

Experiment 
index 

Percentage deviation 
of hyper-volume 

Percentage deviation 
of generation 

208 1.0334699 5.205573 

209 1.0284702 5.181981 

210 1.0254355 5.165366 

211 1.04011 5.147227 

212 1.0351514 5.124026 

213 1.0303678 5.098388 

214 1.0277646 5.07409 

215 1.0240977 5.05089 

216 1.0202708 5.025861 

217 1.0165072 5.01336 

218 1.0166136 4.990012 

219 1.0119224 4.983859 

220 1.007815 4.973926 

221 1.0037402 4.961616 

222 0.9991721 4.956487 

223 0.9954098 4.939457 

224 0.9910932 4.922203 

225 0.9871541 4.899249 

226 0.9832456 4.883306 

227 0.9791804 4.870532 

228 0.9754496 4.84759 

 

 Parameter Robustness technique 

Apart from the randomness for the evolution experiment, the parameter uncertainty is 

another problem that needs to be solved before getting the optimal performance.  

Figure 4.3 shows the hyper-volume response of 218 runs obtained in Table 4.1 in terms 

of the baseline parameters and Figure 4.4 shows the number of generation response of 

that 218 runs. From these 2 figures, MOCGPANN seems to be working for evolving a 

bank of controllers which can achieve the switched or robust control for robot sensor 

fault tolerance. However this evolution result is based on the baseline parameters 

listed in Table 4.2, which was set in section 4.5.1.1 before the experiment was 

conducted. There are 7 parameters for this experiment, 2 of them are set for 

convergence observation: Nconv and Rconv. Nconv is the number of generations 

looking back to observe the convergence. And Rconv implies the convergence rate 

which is the division result of the current hyper-volume by the one Nconv generations 

ago. The other 5 parameters belong to the optimization algorithm, which are NumNode: 
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number of node, NodeArity: number of arity for each node, WeightRange: connection 

weight range between each node, MutationRate: mutation rate for probabilistic 

mutation and RecurrentProbability: recurrent connection probability between each 

node. However, those parameters may not be the best combinations to demonstrate 

the experiment responses. In this sense, those parameters need to be adjusted in order 

to see whether they have any influence on the experiment responses. If so, a better 

combination of these parameters needs to be figured out. 

 

Figure 4.3: Hyper-volumes of baseline parameters 
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Figure 4.4: Number of generations of baseline parameters. 

Table 4.2: Baseline parameter values for evolution experiment 

Baseline 
parameters 

Nconv Rconv Num 
Node 

Node 
Arity 

Weight 
Range 

Mutation 
Rate 

Recurrent  
Probability 

Parameter 
values 

30 1.001 20 5 +/-5 0.05 0.1 

   

In this case, Parameter Robustness technique from the Spartan package [141] reviewed 

in section 2.7.2 would be a promising approach to help investigate how the parameters 

could affect the evolution experiment responses based on the utilise of A-test analysis. 

In terms of the evolution experiment in this work, each parameter has independent 

effect on the experiment responses, so Parameter Robustness technique could be an 

effective approach to help find out the most suited value for each parameter. To be 

specific, each parameter was tuned by several different values and the simulation 

responses of hyper-volume and generation number were compared with that from the 

baseline values. As is mentioned in section 2.7.1, the A-test scores could indicate 

whether the data set has better or worse performance compared to that of the 

baseline values. If the A-test score for a perturbed parameter data set is above 0.5, it 

means the response is below that of baseline value. If the A-test score is below 0.5, this 

perturbed parameter has higher response than that of baseline value. This rule is 

applicable no matter the response is hyper-volume or generation number. To be more 

specific, a higher response for hyper-volume indicates a better performance for the 
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evolutionary search but a higher response for generation number implies a longer 

convergence. In other words, a lower A-test score demonstrates a better hyper-volume 

response and a higher A-test score indicates a better generation number response. This 

analysis regulation is applicable for all the experiment result analysis throughout the 

thesis where hyper-volume and generation number are employed as the experiment 

responses based on Parameter Robustness technique applied to find out the suitable 

parameter values. 

4.4.1.3 Variants of crowding fill strategies 

As is mentioned in section 4.3.1.2, the new crowding fill will make sure that only the 

individual with the largest distance to its parent will be allowed to take part in the 

crowding measure during the survival when there are more than one individual with 

the same objective values. And then if there are still places available, the left 

individuals will be survived one by one based on their distance values. The benefit of 

this new crowding fill is that the random neighbour pick problem could be solved and 

the population diversity could be preserved as well, which may be considered as a 

better strategy than the original crowding fill developed in NSGA2. For this reason, this 

new crowding fill would be the first version utilised in the evolution experiment as the 

baseline performance.  

As a comparison, two more variants would also be utilised to conduct the same 

evolution experiment. The second version of crowding fill strategy just picks one 

random child into the crowding distance measure when more than one individual have 

the same fitness and the left individuals with their corresponding same fitness will also 

be randomly survived. It needs to note that the children will be still survived ahead of 

parents until the next generation is fulfilled, which is able to preserve the genetic drift.  

The last version is similar to the second one and the only difference is that when more 

than one individual have the same fitness, one random individual is allowed to 

participate in the crowding measure rather than just one random child from the second 

version and the other individuals will also be survived randomly with their 

corresponding same fitness. This version disables the population diversity as well as the 

genetic drift preservation. So it would be suited as a comparison with the first two 

approaches and the comparison may be also helpful to investigate whether preserving 

genetic drift or population diversity has any impact on the experiment responses. 
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To make it clear, the pseudo code for each version of the crowding fill strategies for 

MOCGP is listed as below along with the original crowding fill strategy from NSGA2. 

Generally speaking, the first version has three steps to complete a whole crowding fill 

during the survival selection while other three options only have one step. The first 

version calculates the distance values first for the individuals with the same fitness. And 

then it ranks them according to their distance values. Finally, the new crowding fill will 

be executed. In terms of the other three options, there is no need to differentiate each 

individual with the same fitness as the first version. For this reason, only the crowding 

fill is executed without any information about the distance values for the individuals. 

 The first version 

1. // set distance for the individuals if they have the same fitness with their parents  

Travers each individual, if the current individual has the same fitness with its parent { 

  If the individual is created from normal mutation { 

    Set Euclidean distance for the individual as fitness distance 

  } 

  Else if the individual is created from neutral mutation { 

Set Hamming distance for the individual as genetic distance 

  } 

} 

2. // rank the individuals with their distance values 

Traverse each individual, if more than one individual have the same fitness { 

  Rank those individuals with the order:  

1. child from normal mutation 

2. child from neutral mutation 

3. parent from normal mutation 

4. parent from neutral mutation 

} 

3. // new crowding fill 

Execute the normal survival selection 

If the current Pareto front size is larger than the left available places for the individuals 

to be survived into the next generation { 

  // execute the new crowding fill 
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  Traverse each group of the same fitness and pick the individual ranking the first into 

the new Pareto set combined with the other individuals of the unique fitness in the 

original Pareto set 

  Execute crowding measure for the new Pareto set 

  After the new Pareto set is survived, if there are still places available for individuals to 

be survived into the next generation { 

  Merge all the left individuals together and survive them based on their distance 

values from large to small no matter whether they have the same fitness or not until 

the next generation is full 

} 

} 

 The second version 

Execute the normal survival selection 

If the current Pareto front size is larger than the left available places for the individuals 

to be survived into the next generation { 

  // execute the new crowding fill 

Traverse each group of the same fitness and pick a random child into the new Pareto 

set combined with the other individuals of the unique fitness in the original Pareto set 

  Execute crowding measure for the new Pareto set 

  After the new Pareto set is survived, if there are still places available for individuals to 

be survived into the next generation { 

  Merge all the left individuals together and survive the children first and then the 

parents no matter whether they have the same fitness or not until the next 

generation is full 

} 

} 

 The third version 

Execute the normal survival selection 

If the current Pareto front size is larger than the left available places for the individuals 

to be survived into the next generation { 

  // execute the new crowding fill 
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Traverse each group of the same fitness and pick a random individual into the new 

Pareto set combined with the other individuals of the unique fitness in the original 

Pareto set 

  Execute crowding measure for the new Pareto set 

  After the new Pareto set is survived, if there are still places available for individuals to 

be survived into the next generation { 

  Merge all the left individuals together and survive the individuals randomly no 

matter whether they are parents or children and whether they have the same fitness 

or not until the next generation is full 

} 

} 

 The original crowding fill 

Execute the normal survival selection 

If the current Pareto front size is larger than the left available places for the individuals 

to be survived into the next generation { 

  // execute the original crowding fill  

  Execute crowding measure for the current Pareto set 

  Survive the individuals based on their crowding distance values from large to small 

until the next generation is full 

} 

4.4.2 Generalisation experiment 

Due to the failure of CGPANN evolved controllers to achieve the robust fault tolerant 

control in chapter 3, the aim of this generalisation experiment is to investigate how the 

evolved controllers by MOCGPANN will be performing for the robust and switched fault 

tolerant control as well in terms of the robot phototaxis task based on a series of 

generalised test scenarios. As is mentioned in section 3.3.2.3, the benefit of a multi-

objective optimization algorithm is to obtain a Pareto set of controllers in just one 

evolution loop, which could not only achieve the robust fault tolerant controller but 

also realise the switched fault tolerant control. In this case, the evolved controllers will 

be tested for robust and switched fault tolerant control respectively. Moreover, in 

order to obtain a generalised performance, the fault tolerance settings as well as the 

phototaxis task framework will both be set in a more general way rather than the 

original scenario utilised for the evolution experiment. The aim for the resetting 
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scenarios is to test how the evolved Pareto sets of controllers will be working in a 

different scenario and whether they have the capability for the generalisation.  

4.4.2.1 Fault tolerant control type 

The whole experiment will be conducted with two approaches: the robust fault 

tolerant control and switched fault tolerant control. The switched control utilises the 

Pareto set controllers as bank controllers. Basically only two controllers are sufficient to 

achieve the switched control since there are only two objectives. So one controller 

could be the one that works best for no fault condition and the other could be the one 

that works best for the faulty condition, no matter what the performance is for the 

opposite objective. When the experiment starts, the controller for the normal 

condition is loaded at the beginning. Once the fault occurs, the other controller will be 

loaded to replace the current one in order to tolerate the fault. It needs to note that 

this work is mainly about the controller redesign in fault tolerant control mentioned in 

section 2.2.2, so it is assumed that the fault has already been diagnosed. In this sense, 

when the fault is occurred, the other controller will be loaded immediately without any 

delay for the fault diagnose. In terms of the robust fault tolerant control, it just utilises 

one controller to be robust for both of no fault and faulty conditions. In this case, it is 

like a trade-off that the selected controller has to perform well for both of these two 

objectives. Definitely the performance for each objective will be degraded compared to 

the switched control, but there is no need to carry another controller on board 

especially for the real world experiment and no need to consider the controller switch 

as well, which are the significant benefits for robust control.  

4.4.2.2 Generalised test scenarios 

The evolution experiments designed in section 4.5.1 will investigate whether 

MOCGPANN could evolve a Pareto set of controllers for two objectives respectively in 

terms of different parameters and crowding fill strategies. Those obtained Pareto sets 

of controllers are evolved based on the objectives that the robot is failed from the 

beginning or totally no fault during the experiment, which will be an effective way to 

solve the problem based on the selection of a trade-off controller to achieve the robust 

fault tolerant control where CGPANN was failed as mentioned in the conclusion of 

chapter 3. It needs to note that if MOCGPANN will be able to obtain feasible Pareto 

sets of controllers, a suitable robust controller can be just selected from the Pareto set 

without any further test since this controller is already evolved based on the 
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robustness against both the faultless and faulty objectives. However, it is still not clear 

whether the robot could achieve the fault tolerance when the faults are occurred 

during the experiments, which is a common situation for investigating fault tolerance 

problems. Moreover the sensor faults are just complete failures with input reading as 0 

for the faulty sensors. Actually in real world scenarios, the complete failure may be any 

constant random input reading signal, so it is also worth trying random faulty sensor 

readings as the faulty signal and see whether the evolved controllers are also working 

for this situation. Apart from that, each run of the experiment is based on its own 

randomly selected robot initial positions and orientations with fixed distance from the 

beacon location. And those robot initial conditions will not be changed during the 

evolution. However the phototaxis task designed in section 3.2.1 actually refers to any 

initial conditions for the robot with random distance to the beacon position as long as 

the light can be detected by the robot light sensor. In this case, trying different robot 

initial conditions also needs to be considered with different distance to the beacon 

position as well. In summary, if all the above scenarios could be considered, the 

evolved controllers can be tested in a more general way not only fault tolerance but 

also for phtotaxis experiment. 

 Initial scenario 

The initial scenario set the different fault occurrence time. This scenario utilised 300 

ticks and 700 ticks respectively to trigger the fault rather than no fault and fault from 

beginning designed in section 3.2.4 in order to investigate whether a basic fault 

tolerant control scheme could be achieved when the fault is occurred at different time 

during the experiment. If the fault could be tolerated for this initial scenario, there 

would be three more different conditions added to the initial scenario respectively to 

test the evolved controllers.  

 New faulty signal scenario 

Firstly, the sensor faulty signal will be changed to another constant value such as 0.5 

instead of 0 for complete failures. This situation will investigate whether the evolved 

controllers will also tolerate a different faulty sensor signal to achieve the phototaxis.  

 New robot starting position and orientation scenario 

Secondly, 10 robot initial position and orientation combinations from the evolution 

experiment will be changed to another different 10 combinations in order to 
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investigate whether the evolved controllers could make the robot achieve phototaxis in 

different initial conditions, which is the same as the additional scenario designed in 

section 3.2.4.  

 New beacon location scenario 

Finally, the beacon location will also be modified. In the evolution experiment, the 

beacon is located at the origin of the arena, which is (0, 0). And the robot is placed in 

10 initial conditions to evaluate controllers with a fixed distance 4.5m away from the 

beacon. However in this generalisation experiment, the beacon will be moved to (2, 2) 

of the arena. In this case, the distance between the robot initial position and the 

beacon will be varied depending on how far the robot is away from the new position of 

the beacon. There are two points to be mentioned here that (2, 2) actually could 

guarantee that the robot can detect the light from their initial positions. However, if 

the robot moves in a reserved way towards the light, the robot will not detect the light 

finally and will not achieve the phototaxis forever. In other words, the evolved 

controller is not capable to make the robot achieve phototaxis in the face of fault if the 

robot is moving away from the beacon. The other point is that since the distance 

between the robot and light is varied, so 1200 ticks will not make sense to judge the 

controller performance for the generalisation experiment. In this case, 3000 ticks will 

be used instead of 1200 ticks as the maximum experiment time limit and the success 

rate will be the new criterion instead of time to the beacon in order to assess the 

evolved controllers whereby whether the robot can reach the beacon finally or not.  

These three extra conditions would be added to the initial scenario of the 

generalisation experiment one at a time. So the result will demonstrate which one has 

the most significant impact on the evolved controllers in terms of the robust and 

switched fault tolerant control. 

4.4.2.3 Controller acquirement 

In terms of the selected controllers used to conduct the generalisation experiment, 

section 4.5.1.2 will present more details about the comparison result among different 

versions of crowding fill strategies utilised for MOCGPANN in order to select the best 

one. In summary, the first version of MOCGPANN would be an initial choice to evolve 

the Pareto set of controllers in order to achieve the switched and robust fault tolerant 

control respectively. Although there is actually no significant difference among the four 
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versions of MOCGPANN, the first and second one achieved the relatively more stable 

performance. In this sense, the first version could be utilised as a primary approach to 

obtain the Pareto sets of controllers. The comparison details for different MOCGPANN 

versions can be referred to section 4.5.1.2. On the other side, the aim of the 

generalisation experiment is actually a test of the evolved controllers to see how they 

will perform in more general cases, so which version of MOCGPANN to be used for the 

controller evolution is actually not the point at this stage. For each of the switched and 

robust fault tolerant control, five Pareto set of controllers from five evolution runs are 

utilised for the generalisation experiment and their performance will be assessed in 

terms of the above mentioned different scenarios. 

4.5 Result and discussion 

4.5.1 Evolution experiment 

In terms of the evolution experiment, firstly the parameters for both of MOCGPANN 

and convergence criteria were adjusted in order to obtain the optimal performance. 

And then, different crowding fill strategies were compared to conduct the same 

evolution experiment so as to investigate whether preserving population diversity or 

genetic drift has any significant benefit on the evolutionary search based on the 

evolution experiment.  

4.5.1.1 Sensitivity analysis for MOCGPANN parameters 

As is mentioned in section 4.4.1.2, the baseline parameter values may not be the best 

combination to display the optimal performance for evolution experiment. In this case, 

the parameters should be adjusted before analysing the experiment result. With the 

help of Parameter Robustness technique, those parameters were tuned to their 

optimal calibration values. The details of how these parameters were tuned by the 

Parameter Robustness technique can be referred to Appendix B.  

Based on the result of the sensitivity analysis, an ultimate comparison could be 

conducted between the baseline parameter values and the calibration parameter 

values in terms of both hyper-volume and generation number. The calibration 

parameter values are the ones based on the sensitivity analysis results. The hyper-

volume comparison is shown in Figure 4.5 and generation number for that is shown in 

Figure 4.6. The U-test scores for them are listed in Table 4.3 and the A-test scores for 

them are listed in Table 4.4. 



 

116 
 

 

Figure 4.5: Hyper-volume comparison between baseline and calibration parameter values 

 

Figure 4.6: Generation number comparison between baseline and calibration parameter values 

Table 4.3: U-test scores for the comparison between baseline and calibration values 

 Baseline parameter values Calibration parameter 
values 

Hyper-volume 1 0 .11876 

Generation number 1 < 0.00001 

 

Table 4.4: A-test scores for the comparison between baseline and calibration values 

 Baseline parameter values Calibration parameter 
values 

Hyper-volume 0.5 0.455692 

Generation number 0.5 0.954808 



 

117 
 

According to the ultimate comparison result, the calibration parameter values still 

outperform the baseline parameter values. In term of hyper-volume, although they are 

quite similar, calibration values still achieve a slightly better performance, where the A-

test score is below 0.5. Even if they have got similar hyper-volume responses, 

calibration values spend much less generations to make evolution converged than 

baseline values, which demonstrates that the sensitivity analysis is quite essential 

before analysing the experiment responses. In a word, the calibration parameter values 

outperform the baseline parameter values, especially for the response of generation 

number. 

In summary, all the parameter values are now determined based on this sensitivity 

analysis in terms of Parameter Robustness technique developed in Spartan and the 

optimal values for each parameter are listed in Table 4.5. The following experiments 

will be conducted based on these calibration parameter values throughout the thesis. 

Table 4.5 Calibration parameter values for evolution experiment 

Calibration 
parameters 

Nconv Rconv Num 
Node 

Node 
Arity 

Weight 
Range 

Mutation 
Rate 

Recurrent  
Probability 

Parameter 
values 

20 1.01 20 5 +/-10 0.05 0 

 

4.5.1.2 MOCGPANN comparison based on modified crowding fill strategies 

As can be seen from the previous results of sensitivity analysis in terms of parameter 

robustness technique, all of the parameters have been adjusted to their optimal values 

in order to get the best simulation responses for both of Hyper-volume and generation 

number. This section will investigate whether the population diversity could really 

make a contribution to the experiment responses based on the modified crowding fill 

strategy for survival selection in MOCGPANN. 

To obtain a sensible comparison for how population diversity affects the experiment 

response, three different versions of crowding fill strategies were utilised as mentioned 

in section 4.4.1.3. Figure 4.7 shows the hyper-volume comparison for these three 

different versions of MOCGPANN. Figure 4.8 shows the generation number comparison 

for that. Table 4.6 lists the U-test scores for these two comparisons and Table 4.7 

presents the corresponding A-test scores for them, where the first version of crowding 

fill was utilised as the baseline performance. 
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Figure 4.7: Hyper-volume comparison for three different MOCGPANN 

 

Figure 4.8: Generation number comparison for three different MOCGPANN 

Table 4.6: U-test score for three different MOCGPANN comparisons 

 1st version 2nd version 3rd version 

Hyper-volume 1 0 .05614 0 .4965 

Generation number 1 0 .33204 0 .92034 

 

Table 4.7: A-test score for three different MOCGPANN comparisons 

 1st version 2nd version 3rd version 

Hyper-volume 0.5 0.554296 0.520363 

Generation number 0.5 0.528675 0.494143 

 

As can be seen from Table 4.6, only the second version achieves a p value near 0.05 in 

terms of hyper-volume, which means its hyper-volume may have a significant 
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 version 

          1
st

 version 

          2
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 version 

          2
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          3
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difference compared to the first version. However according to Table 4.7, its 

corresponding A-test score is 0.554296 above 0.5, which indicates that although there 

may be a significant difference, the hyper-volume of second version is lower than that 

of the first version. Actually the A-test score of 0.554296 for the second version’s 

hyper-volume response is even not located in the small effect size interval [0.56, 0.64], 

so this difference between the second and first version for hyper-volume is actually 

quite weak. Apart from the second version’s hyper-volume response, other responses’ 

A-test scores for both of second and third are much more close to 0.5 with nearly no 

effect sizes. In conclusion, all of these three versions of crowding fill strategies spend 

quite similar generations to make the evolution converged. In terms of the hyper-

volume, the second version obtains the worst response but still could be ignored and 

the third one is still quite similar to the first one. 

Generally speaking, all of these three versions actually obtained similar experiment 

responses, which indicates that the preservation of genetic drift as well as population 

diversity may not improve or even effect the experiment responses. A possible 

explanation is that the objective value is the worst performance during 10 trials for the 

phototaxis. In other words, although the worst case is the same, the performance of 

the other 9 trials may be quite different among each individual. So it may be not a 

suitable choice to evaluate individuals by using the worst case performance as the final 

objective value. In addition, utilising the worst case performance as the final objective 

value could also result in the individuals with identical fitness in spite of different 

performance for the other trials.  

In this case, a higher precise objective value need to be considered based on another 

alternative fitness function for each individual evaluation instead of the current one. 

Generally speaking, the mean approach would be more sensible than the worst case 

approach as the alternative fitness function in order to reflect how these trials are 

distributed since the final objective value will be the average value among all the trials. 

However the low precise objective value problem is not fully resolved since the 

obtained objective value is still in a low precise scope, even if the average value is more 

sensible than the worst case value as the final objective value. In this case, a weighted 

sum approach would be more effective to not only reflect the trial value distribution 

but also solve the low precise objective value problem. The only problem that needs to 

be solved is how to set the weight value for each trial. In general, the weight is 
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determined by the frequency that the result is repeated. However in this experiment, 

each trial may have its own value that is different between each other, so the 

frequency may be meaningless to act as the weight value. In this case, the weight value 

could be set by how large the result is using the current trial value divided by the sum 

of all the trial values. In this way, a larger trial value will have a larger weight value for 

this trial and vice versa. This approach is feasible since the final objective value will be 

mainly affected by the large trial values due to their large weights so that the solutions 

with extremely large trial values could be eliminated during the selection, which may 

have similar effects with the worst case approach. 

For example, there are two solutions to be evaluated and there are three trials for each 

individual evaluation. The first solution’s trial values are 910, 950 and 990 and the 

second solution’s trial values are 930, 950 and 970. If the mean approach is utilised to 

act as the final objective value, both of them will get 950 since 950 are the average 

value for both of them. In this case, there is no way to differentiate these two solutions. 

However if the weighted sum approach is utilised, the result will be quite different. The 

final objective value of the first solution will be 951.1228 and the value of the second 

solution will be 950.2807. In this case, the two solutions will be easily distinguished due 

to their high precise objective values. Moreover, the second solution also outperforms 

the first one since the first one has got a largest trial value of 990 among the trials in 

these two solutions, which guarantees that the solution with larger trial values will be 

eliminated during selection due to its larger final objective value. 

In conclusion, this kind of weighted sum approach is actually utilising the sum of 

squares of the trial results divided by the sum of the trial results.  This fitness function 

will produce a measure that is more sensitive to the large values than the small ones 

with a higher resolution objective value. In this case, the final objective value may be 

around the average value among those 10 trials but slightly closer to the worst one. In 

addition, this fitness function will also result in a higher resolution of the objective 

value with the addition of decimal part instead of a total integer value. In this way, the 

distinction among identical fitness individuals will also be promoted that the individuals 

will have a lower chance to get stuck into the same fitness with the others. It needs to 

note that this modified fitness function is still working coupled with the constraint 

function so that only the individuals with no constraint violation will be allowed to be 

evaluated on the fitness function. On the other hand, the original crowding fill strategy 
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referred directly from NSGA2 [92] in the survival selection for MOCGPANN algorithm 

will be also used as an additional comparison with the current 3 different versions. In 

this sense, it will be more sensible to demonstrate whether the modified crowding fill 

strategy will be working better or not compared to the original one.    

Figure 4.9 shows the hyper-volume comparison for four different crowding fill 

strategies with modified fitness function and Figure 4.10 shows the generation number 

comparison for them. Table 4.8 lists the U-test scores for the comparisons and Table 

4.9 lists the A-test scores for them, where the first version of crowding fill is still 

considered as the baseline performance. 

 

Figure 4.9: Hyper-volume comparison for four different crowding fill strategies with modified 
fitness function 
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Figure 4.10: Generation number comparison for four different crowding fill strategies with 
modified fitness function 

Table 4.8: U-test score for four different crowding fill strategies comparisons with modified 
fitness function 

 1st version 2nd version 3rd version Original 

Hyper-volume 1 0.37886 0.58232 0.12602 

Generation 
number 

1 0.3843 0.64552 0.27572 

 

Table 4.9: A-test score for four different crowding fill strategies comparisons with modified 
fitness function 

 1st version 2nd version 3rd version Original 

Hyper-volume 0.5 0.5313329 0.4838644 0.4520385 

Generation 
number 

0.5 0.4682333 0.5130248 0.4614715 

 

As can be seen from Table 4.8, neither of second or third version has significant 

difference compared to the first version in terms of hyper-volume and generation 

number. Although the fourth one has the smallest p values, they are still above 0.05 to 

some extent. According to Table 4.9, all of them have nearly no effect compared to the 

first one where all the A-test scores are even smaller than the small effect size interval 

of [0.36, 0.44] and [0.56, 0.64] in terms of hyper-volume and generation number. To be 

more specific, second version spends more generations to obtain lower hyper-volume 

than the first version and third version spends slightly less generations to achieve 

slightly higher hyper-volume than the first one. The fourth version actually achieves the 

highest hyper-volume, but the generation number is also the largest. Even though, all 

of these four versions obtain similar experiment responses in terms of both of hyper-

volume and generation number. So it could be concluded that these four versions of 

crowding fill strategies have no significant difference between each other for the 

impact of survival selection in MOCGPANN even the fitness function is modified to 

obtain more precise objective values.   

A possible explanation for this result may be due to the effect of connection weight 

genes which make the evolutionary search less likely to be trapped into local optima 

than those algorithms without weight genes [30]. As is mentioned before in section 

2.4.4.5, [30] conducted a comprehensive investigation on how explicit neutral genetic 

drift impacts CGPANN for evolutionary search. However the benefit of neutral genetic 

drift is much lower for CGPANN than for CGP, where the benefit of preserving explicit 
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neutral genetic drift is totally absent. Based on the analysis of the comparison 

experiment, the only difference between CGP and CGPANN in that work is the 

existence of connection weight genes and a higher node arity. Other aspects between 

these two algorithms are the same for the comparison experiment. However [30] 

demonstrates that a higher arity may not have any influence on the average number of 

explicitly inactive genes, which is not the cause for explicit neutral genetic drift being 

useless. Moreover, [30] also indicates that increasing the available number of nodes 

may not increase the number of inactive nodes as well, which is also not the reason for 

promote the benefit of explicit neutral genetic drift. In this case, the only reason that 

results in explicit neutral genetic drift being absent is the utilisation of connection 

weight genes, which maybe acts as a compensation for evolutionary search in CGP. [30] 

infers that due to the additional mutation occurred on connection weight genes, 

CGPANN may be not so easily trapped into local optima and that’s why explicit neutral 

genetic drift does not present the benefit to aid the escape from local optima during 

the evolutionary search.  

Based on the analysis from [30], it could be concluded that MOCGPANN may also not 

benefit from the preserving of explicit neutral genetic drift as well as the population 

diversity. Although the investigation in [30] is based on CGPANN, it can still be inferred 

that MOCGPANN will be suffered from the same problem due to the existence of 

connection weight genes. In conclusion, the preserving of explicit neutral genetic drift 

and the population diversity will not make any impact on the evolutionary search in 

terms of MOCGPANN. Just as mentioned in [30], it can be also concluded that any 

approach in NE area will not benefit from the neutral genetic drift and other form of 

gene redundancy  in spite of single or multiple objective optimisation. 

Although four versions of crowding fill strategies have no significant difference among 

each other in terms of both the hyper-volume and generation number, it still needs to 

note that the number of experiment runs measured from the cumulative means 

approach is different for each version. Table 4.10 lists the cumulative mean approach 

result for each of four versions. 

Table 4.10: Result of number of experiment runs required from cumulative mean approach  

 1st version 2nd version 3rd version Original 

Experiment 
runs 

110 129 189 173 
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As can be seen from Table 4.10, the first and second versions need less experiment 

runs than the other two to sufficiently present the experiment responses. This 

phenomenon may indicate that the first version achieves the most stable performance 

with the least required number of experiment runs to fully demonstrate its experiment 

responses. And the first version also requires the similar number of runs as the second 

one. A possible explanation would be that the first two versions may have more stable 

responses for both the hyper-volume and generation number with much less required 

number of experiment runs than the other two. In other words, the other two versions 

may not have so stable responses as the first two with some extremely bad responses 

and that’s why more runs are still required to sufficiently present their performance.  

In this case, it may be concluded that preserving genetic drift and population diversity 

might have potential benefit to help MOCGPANN achieve a more stable performance. 

However as mentioned before, these four different versions actually have no significant 

difference without any effect size among each other in terms of both the hyper-volume 

and generation number. So whether preserving genetic drift or population diversity 

really has any significant benefit for the evolutionary search is still not clear at the 

moment and further investigation is still required as the future work.  

4.5.2 Generalisation experiment  

In terms of the generalisation experiment, robust and switched fault tolerant control 

would be both discussed respectively based on their performance. The obtained five 

Pareto sets of controllers were tested 10 times for each of 300 and 700 ticks as the 

fault occurrence time based on four different scenarios including a basic scenario and 

three additional scenarios. The data of these five Pareto sets’ generalisation 

experiment result can be referred to the Appendix A.1 and their success rate for each 

scenario would be discussed as following to assess the obtained controllers’ 

performance for robust and switched fault tolerant control respectively. 

4.5.2.1 Robust fault tolerant control 

In terms of the robust fault tolerant control, only one robust controller is required to be 

tested for the generalisation experiment. This controller has to be working relatively 

well for both of faultless and faulty conditions, so its performance will be possibly 
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degraded compared to two bank controllers working best for each objective 

respectively. The robust fault tolerant control utilises the robust controllers from 5 

Pareto sets and each robust controller is selected based on its trade-off performance in 

terms of each objective from the controllers in the Pareto optimal front. Furthermore, 

each robust controller from the corresponding Pareto set will be tested 10 times in 

terms of different scenarios. The success rate result of the selected 5 robust controllers 

from these 5 Pareto sets is listed in Table 4.11 in terms of four tested scenarios. 

 

Table 4.11: Success rate for generalisation experiment results in terms of robust fault tolerant 
control 

 Initial scenario Fault signal Robot condition Beacon position 

 Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Pareto 1 1 1 0 1 1 1 1 1 

Pareto 2 1 1 0 0 1 1 1 1 

Pareto 3 1 1 0 1 1 1 1 0.6 

Pareto 4 1 1 0 0 1 1 0.7 0.7 

Pareto 5 1 1 1 1 1 1 0.7 0.7 

 

As can be seen from Table 4.11, all the 5 robust controllers achieve 100% success rate 

for initial scenarios. What’s more, they also obtain 100% success rate for new robot 

initial conditions in addition to different fault occurrence time. However they are also 

not working well on new fault signal and new beacon position scenarios. In terms of 

new fault signal scenario, only Pareto set 5 realises 100% success rate for both the 

different fault occurrence time but the other 4 sets are all failed to reach the beacon 

within 10 trials when fault occurs at 300 ticks and half of them also cannot make it 

when fault occurs at 700 ticks. As for the new beacon position scenario, only the first 

two Pareto sets achieve 100% success rate but the other three have more or less failed 

trials for both the different fault occurrence time.  

As can be seen from the result, MOCGPANN is successful to evolve controllers so as to 

achieve the robust fault tolerant control where CGPANN was not able to complete. In 

addition, different fault occurrence time for the initial scenario has no influence on the 

evolved controllers’ performance and new robot initial condition scenario also does not 

affect those controllers. However both of new fault signal and new beacon position 

scenarios have more or less impact on the evolved controllers, which demonstrates 
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that the obtained controllers are not suited to these generalised scenarios. In this 

situation, those scenarios need to be considered for evolution experiment including a 

set of random fault signals and varied beacon positions for each solution evaluation so 

as to obtain more robust controllers to accomplish the design of a robust fault tolerant 

control system for the robot phototaxis task, which could be investigated as future 

works. 

4.5.2.2 Switched fault tolerant control 

In terms of the switched fault tolerant control, two controllers are selected as bank 

controllers from the same 5 Pareto optimal sets. One controller is selected working 

best for the normal situation and the other one is selected working best for the faulty 

situation. These two bank controllers will be switched when the fault occurs during the 

robot online phototaxis task based on the assumption that the fault has already been 

diagnosed. Moreover, the switched fault tolerant control will also be tested 10 times 

for each generalised scenario respectively and the success rate result for these 5 pairs 

of bank controllers from these 5 Pareto sets is listed in Table 4.12 in terms of four 

tested scenarios. 

Table 4.12: Success rate for generalisation experiment results in terms of switched fault tolerant 
control 

 Initial scenario Fault signal Robot condition Beacon position 

 Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Pareto 1 1 1 1 1 1 1 1 1 

Pareto 2 1 1 0 0 1 1 1 1 

Pareto 3 1 1 0 1 1 1 1 1 

Pareto 4 1 1 1 1 1 1 0.7* 0.7* 

Pareto 5 1 1 1 1 1 1 0.9 0.8 

Note: * means that in terms of the failed trials, the robot stays still until the other 

controller is loaded. However these trials all make the robot reach the beacon finally, 

so it is actually 10/10 if the criterion is whether the robot achieves the phototaxis 

eventually or not.    

As can be seen from Table 4.12, all of the 5 pairs of bank controllers from these 5 

Pareto sets achieve 100% success rate for initial scenarios in terms of both of 300 and 

700 ticks for fault occurrence time. However, only Pareto set 1, 4 and 5 obtain 100% 

success rate for the new fault signal scenarios. Pareto set 2 just performs a 0% success 

rate at all and Pareto set 3 is only 100% successful for 700 ticks as fault occurrence time 
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but 0% for 300 ticks. In terms of the new robot initial condition scenario, all of the 5 

Pareto sets realise 100% success rate for both of 300 and 700 ticks as fault occurrence 

time. Finally, only Pareto set 1, 2 and 3 achieve 100% success rate for the new beacon 

position scenario. Neither Pareto set 4 nor 5 realises a 100% success rate in terms of 

different fault occurrence time. It needs to note that Pareto set 4 is not really 70% 

successful for the new beacon position scenario since all the trials make the robot 

reach the beacon eventually. However there are 3 trials that the robot stays still at its 

initial position in the faultless condition and starts to move towards the beacon when 

the fault occurs with the loaded new controller. So these 3 Pareto sets actually suite 

the robot faulty condition but not for the normal condition, which may not be 

considered as successful phototaxis task. 

As can be seen from the result, the controllers evolved by MOCGPANN could not only 

achieve the robust fault tolerant control but also realised the switched fault tolerant 

control as well, which also demonstrates the benefit of multi-objective optimisation 

algorithm mentioned in section 3.3.2.3. These 5 Pareto sets of controllers perform well 

on the initial scenario and the new robot initial condition scenario but also do not 

perform very well in the new fault signal and the new beacon position scenarios with 

more or less declined success rate. This phenomenon indicates the same conclusion in 

section 4.5.2.1 that the evolved controllers from the evolution experiment are capable 

to perform well no matter when the fault occurs during the experiment and regardless 

where the robot initial condition is as long as the distance from the beacon is fixed. 

However, if the fault signal is altered rather than 0 from the evolution experiment, 

some of the controllers are not able to make the robot complete phototaxis within 

1200 tick time limit. In addition, when the beacon is moved to a new location, some of 

the controllers are also not capable to make the robot reach the beacon even if there is 

no time limit. As a consequence, if a more effective switched fault tolerant control 

system for phototaxis is required in terms of varied fault signals and beacon positions, 

those scenarios need to be considered during the solution evaluation, which is the 

same as that mentioned in the conclusion of section 4.5.2.1 for future works.  

4.5.2.3 Comparison 

Based on the generalisation experiment result obtained by the five evolved Pareto sets 

of controllers for robust and switched fault tolerant control respectively, this section 
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will conduct a comparison between these two different faulty tolerant control schemes 

and find out which one achieved a better performance. 

Table 4.13 lists the A-test scores for the four different scenarios’ result in terms of 

robust and switched fault tolerant control comparison. This comparison also follows 

the A-test analysis rule mentioned in section 4.4.1.2 that a lower A-test score means a 

higher response. In this comparison, robust fault tolerant control result was used as the 

baseline performance, so the A-test score will reflect the switched fault tolerant control 

performance compared to the robust one. 

Table 4.13: Comparison between the success rate of robust and switched fault tolerant control 
based on the controllers evolved by MOCGPANN  

Scenario Initial scenario Fault signal Robot 
condition 

Beacon 
position 

A-test score 0.5 0.388889 0.5 0.37037 

As can be seen from Table 4.13, the A-test score for the initial scenario and the new 

robot condition scenario is both 0.5 which indicates an identical performance for 

robust and switched fault tolerant control for these two scenarios. However in terms of 

the new fault signal and new beacon position scenarios, the A-test scores are both 

below 0.5 and located in the small effect size interval [0.36, 0.44]. This result means 

that switched fault tolerant control outperforms robust fault tolerant control in terms 

of the success rate for these two scenarios. Although the effect size is small for these 

two scenarios, at least it demonstrates that switched fault tolerant control produced a 

better performance than the robust one, which could be considered as a main 

approach for the offline designed controller in this work. 

Actually it is normal to obtain this comparison result since two bank controllers will 

definitely outperform a single robust controller in terms of each objective as 

mentioned in section 3.3.2.3. But the result does not indicate that robust control is not 

suited to fault tolerance. As is also mentioned in section 3.3.2.3, robust fault tolerant 

control saves the memory to store one more controller on board and there is no need 

to design a controller switch mechanism. The most important aspect is that robust 

control belongs to the passive fault tolerant control mentioned in section 2.2.1 which 

does not need fault diagnose procedure if it is required, when fault occurs during the 

system operation. So robust fault tolerant control saves lots of work to do, but the 

degraded performance cannot be ignored as well.   
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In conclusion, MOCGPANN demonstrates the capability to evolve controllers which 

could be working in more general cases in terms of both the switched and robust fault 

tolerant control based on robot phtotaxis task. Although not all the scenarios are 

working well for MOCGPANN evolved Pareto sets of controllers, MOCGPANN still 

demonstrates the potential capability to evolve promising controllers for generalisation. 

On the other hand, switched fault tolerant control produced a better performance than 

the robust one, which could be considered as a main scheme for fault tolerant control 

in this work. Future work would be considering certain scenarios such as random fault 

signal and varied beacon position to evolve controllers in order to see how the evolved 

Pareto sets of controllers will be working for those generalised scenarios.  

4.6 Summary 

This chapter fills the gap that controller structure evolution has not been investigated 

into the fault tolerant area based on the implementation of a multi-objective network 

structure optimisation based NE approach, which is MOCGPANN in this work. The 

motivation of investigating MOCGPANN is due to the failure of CGPANN to achieve the 

robust fault tolerant control referred in chapter 3. So that is why MOCGPANN needs to 

be developed for fault tolerant control. 

However there are two problems when developing the MOCGPANN algorithm. One is 

the problem occurred in the survival selection where the individuals with the same 

fitness but different inactive genes cannot be distinguished by the crowding distance 

measure. Although it is fine to pick a random individual due to the identical fitness, it is 

still worth developing a new crowding fill strategy driven by the significant benefit of 

preserving neutral genetic drift based on the genetic redundancy of inactive genes in 

each individual. The other is the convergence problem that a multi-objective 

optimisation algorithm normally relies on the convergence against a true Pareto 

optimal front obtained before the evolution. However the true Pareto optimal front 

may not always be acquired before the evolution is conducted. In this case, a new 

convergence criterion needs to be developed based on a performance measurement 

for a multi-objective optimisation algorithm.  

Based on the investigation of population diversity and hyper-volume indicator, the 

MOCGPANN is developed with a modified crowding fill strategy rather than the original 

one from NSGA2 and a new convergence criterion is also developed based on the 
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performance of hyper-volume indicator. However there is no significant difference 

between the modified and original crowding fill strategy including the comparison of 

two more different versions. A possible reason is due to the weight mutation which has 

already helped the evolutionary search and that is why the benefit of preserving 

population diversity and genetic drift is absent. Even though, preserving population 

diversity and genetic drift during the crowding fill strategy still achieved more stable 

performance than the original and a random preservation version. However it is still 

not clear whether a more stable performance could result in any further benefit for the 

evolutionary search at the moment. On the other hand, hyper-volume indicator 

demonstrated excellent performance to observe the convergence without acquiring 

the true Pareto optimal front in advance, which is quite useful for multi-objective 

optimisation algorithm convergence problem. 

Apart from the evolution work, a more significant problem is to investigate how 

MOCGPANN could be used to evolve feasible controllers so as to achieve fault tolerant 

control, where CGPANN was failed to complete. Based on the generalisation 

experiment result, MOCGPANN demonstrates capability to obtain Pareto sets of 

controllers which achieved not only robust but also switched fault tolerant control, 

which fills the gap that controller structure evolution has not been investigated into 

fault tolerant area. Additionally, switched fault tolerant control outperforms robust 

fault tolerant control for the generalisation experiment as expected if fault diagnosis is 

already accomplished on the assumption for this work. However, not all the 

generalised scenarios are suited for the evolved controllers especially when the fault 

signal is changed or the beacon is moved to a new position for the online test.  

The future work will be comprised of two parts including the evolution and 

generalisation experiments respectively. On the one hand, preserving population 

diversity or genetic drift has not presented significant benefit. Although they achieve 

more stable performance, this advantage is so weak compared to the evolutionary 

search. In this case, more work needs to be conducted to investigate whether 

preserving population diversity or genetic drift for the survival selection will result in 

any further benefit. On the other hand, the evolved controllers are not working very 

well for new fault signal and new beacon position scenarios. For this reason, these 

scenarios may need to be considered during the solution evaluation to obtain further 
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optimised controllers so as to achieve not only a more effective fault tolerant control 

scheme but also a more effective robot phototaxis task.  

The next chapter will investigate whether network structure optimisation still 

outperforms connection weight optimisation in the NE based multi-objective 

optimisation in terms of fault tolerant control scheme, which is driven by the 

conclusion in section 2.4.4.3. 
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Chapter 5 NSGA2 for ANN in fault tolerant control 

5.1 Introduction 

As can be seen from chapter 4, MOCGP demonstrates capabilities to achieve the robot 

sensor fault tolerant control based on NE in terms of network structure optimisation, 

which fills the research gap of controller structure optimisation based EA approach not 

investigated into fault tolerant control area. In terms of the evolution experiment, 

although preserving genetic drift and maximising population diversity have not 

demonstrated significant benefits to aid the evolutionary search for the crowding fill 

strategy during the survival selection, MOCGP still obtains feasible Pareto sets of 

controllers which would be promising to realise the fault tolerant control for robot 

phtotaxis task. According to the generalisation experiment, although just one type of 

crowding fill strategy is tested for its evolved Pareto sets of controllers, those 

controllers still demonstrate considerable performance in some of the generalised 

scenarios for both of robust and switched fault tolerant control based on the 

phototaxis task. In addition, switched fault tolerant control also outperforms robust 

fault tolerant control for the generalised experiment, which verifies the proposed 

benefit of switched fault tolerant control for this work mentioned in section 3.3.2.3. 

In this sense, this chapter will investigate whether connection weight optimization 

based NE approach could also achieve the equivalent performance to obtain the 

feasible Pareto sets of controllers so as to realise the fault tolerant control for robot 

phototaxis task, which is a further investigation based on the conclusion in section 

2.4.4.3 where network structure optimisation outperforms just connection weight 

optimisation in a series of basic NE benchmark experiments. In order to achieve the 

connection weight optimization for NE, NSGA2 could be the first choice for the multi-

objective optimization for ANN’s connection weights. As is mentioned in section 2.5.1, 

NSGA2 is a GA based multi-objective optimization algorithm and it has already 

demonstrated competitive performance in the parameter optimisation area. In 

addition, connection weight optimisation based fault tolerant control has been 

investigated extensively, so it is worth trying NSGA2 for the same experiment and see 

whether it can also achieve the fault tolerant control based on multiple objectives.  

In this case, NSGA2 will be utilised to just train the ANN’s connection weight for 

multiple objectives. However it needs to note that connection weight optimization and 
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network structure optimization are actually two different approaches that weight 

optimization is just working to evolve the weight values but structure optimization will 

evolve the network structure and connection weight values at the same time in order 

to obtain a complete ANN. Therefore, to get a sensible comparison, the NSGA2 based 

ANN optimization will evolve the connection weight in different network structures 

firstly and then the ANN with the optimal structure will be used to do the comparison 

with MOCGP evolved ANN. The comparison will be conducted based on the evolution 

experiment and the evolved Pareto sets of controllers will be also investigated for the 

generalisation experiment. 

5.2 Experiment setup 

5.2.1 Evolution experiment 

The aim of the evolution experiment is the same as that in section 4.4.1 where the 

controllers will be evolved in terms of two different objectives including the fault-free 

and faulty conditions so as to investigate whether the evolved Pareto set of controllers 

based on NSGA2 could achieve the robot sensor fault tolerant control. So the 

hypothesis of the NSGA2 based evolution experiment is that a feasible Pareto set of 

controllers could be obtained eventually based on the ANN’s connection weight 

optimisation for fault-free and faulty conditions respectively.    

The experiment setting with regard to the fault tolerant control based robot phototaxis 

task framework will be totally the same as that designed in section 3.2.1. The evolved 

controllers’ performance will be compared to each other in terms of the same 

responses: hyper-volume and generation number. The ANN controllers will be 

evaluated in the same two objectives which are the fault-free condition and faulty 

condition where sensor 1 and 7 will be failed completely with zero signals as the sensor 

input reading to the controller. And the numbers of input and output nodes are still the 

same which are 8 and 2 respectively. 

The only difference is the optimisation algorithm where NSGA2 will be utilised to just 

train the ANN’s connection weight values instead of MOCGP for both the network 

structure and connection weight optimisation. Therefore the ANN’s structure needs to 

be optimally adjusted in order to obtain the best evolved ANN’s performance with 

NSGA2. On the other hand, NSGA2 has different parameters for the optimisation 

algorithm especially for the crossover operator which is not utilised for MOCGP, so it is 
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also required that those algorithm parameter values should be optimised as well in 

order to maximise NSGA2’s performance.  

As is mentioned in section 2.4.4.3, CGPANN outperforms CNE for a series of benchmark 

experiments. In this case, a comparison will be conducted based on the best tuned 

ANN’s structure for NSGA2 in order to investigate whether MOCGP will still outperform 

NSGA2 for multi-objective optimisation task in terms of NE based robot fault tolerant 

control, which will also demonstrate the benefit of network structure optimisation over 

just connection weight optimisation. 

5.2.1.1 ANN parameters 

As can be seen from [149], a single hidden layer ANN will be considered as a primary 

choice since just one hidden layer ANN will normally solve the majority of problems. 

However whether just one hidden layer is still suited for this experiment is unknown at 

the moment. Even though, it may be a time consuming work to try different hidden 

layers with different hidden neurons. For this reason, one hidden layer could be 

considered as the main structure for the ANN training with NSGA2 and the experiment 

of different hidden layer along with different hidden neuron comparison could be put 

in the future work. In this case, the only remaining problem is how many neurons are 

sufficient for this hidden layer. Although [149] mentions that the number of neurons in 

the hidden layer is basically between the number of input nodes and output nodes, it is 

just an empirically-derived conclusion. Therefore it is still worth setting more hidden 

nodes and see how those ANNs will perform for the fault tolerant control experiment. 

In a word, this evolution experiment utilises 5 different numbers of nodes in this single 

hidden layer, which are 6, 8, 10, 12 and 14 nodes respectively. The optimal number of 

hidden nodes will be utilised as the basic ANN’s structure in terms of NSGA2 based 

connection weight optimisation. In addition, the connection weight range will be the 

same as that in section 4.5.1.1 in the interval [-10, 10] so as to achieve a sensible 

comparison with MOCGP. Moreover, since MOCGPANN performs better with feed 

forward than recurrent ANN for the controller evolution mentioned in section 4.5.1.1, 

NSGA2 will still implement feed forward ANN for the evolution and no recurrent 

connections will be considered in this work as well for a reasonable comparison. 

Apart from those mentioned aspects, the last one that needs to be considered is the 

neuron transfer function. The MOCGPANN experiment conducted in section 4.4.1 
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utilises two different neuron transfer functions to create heterogeneous ANN since 

MOCGPANN is able to optimise not only network structure but also transfer functions. 

However NSGA2 is considered to be working well for the weight optimisation but it is 

currently unknown whether it is still working well for the transfer function optimisation. 

To simplify the comparison, the logistic sigmoid function, which is also referred to 

sigmoid function, is selected as the only neuron transfer function utilised for the ANN 

in the NSGA2 experiment. On the other hand, a new evolution experiment with 

MOCGPANN will be conducted along with NSGA2 based evolution experiment. This 

new MOCGPANN based evolution experiment is quite similar to that in section 4.4.1, 

the only difference is that the MOCGPANN disables the neuron transfer function 

optimisation. That is to say, MOCGPANN will only evolve a homogenous ANN with just 

one type of neuron transfer function, which is the same as this NSGA2 based evolution 

experiment. In this case, the sigmoid neuron transfer function will be implemented for 

MOCGP as the only function type for ANN as well as for NSGA2. For this reason, the 

comparison result will demonstrate the only difference between connection weight 

optimisation and network structure optimisation for ANN in terms of fault tolerance, 

where other aspects are totally the same. 

5.2.1.2 NSGA2 parameters 

In terms of the NSGA2 parameters, 20 individuals will constitute each population. The 

reason to set the same population size as MOCGP is due to the hyper-volume indicator 

result. As is mentioned in section 2.6.2, hyper-volume indicator is a famous approach 

to display the performance of a multi-objective optimisation algorithm. However the 

result of hyper-volume indicator is basically affected by the number of solutions in the 

first Pareto-optimal front. That is to say, more solutions in the first Pareto front will 

result in a higher indicator value and vice versa, which will disturb the performance 

comparison between NSGA2 and MOCGP. In this sense, NSGA2 still applies the same 

population size as MOCGP in each population, which guarantees that both of NSGA2 

and MOCGP will utilise 20 individuals at most to demonstrate their performance. 

However, one problem is that whether 20 individuals are the best choice for both of 

NSGA2 and MOCGP is unknown at the moment. So it would be interesting to try 

different population size for NSGA2 and MOCGP at the same time and investigate the 

influence on their performance. However it is also a time consuming work, so 20 

individuals could be still used as the population size and the investigation of different 

population size impact on their performance could be put in the future work.  
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The crossover used in this work is simulated binary crossover and the mutation is 

polynomial mutation, both of them are working for real number encoded weight values 

[150]. Simulated binary crossover was developed with respect to the one-point 

crossover for binary coded GA. And polynomial mutation is working in a way of 

probabilistic mutation where each variable will have a chance to be mutated to a new 

value. In addition, there are two more parameters only used in the simulated binary 

crossover and polynomial mutation, which is called distribution index. The distribution 

index will influence how far the children are from their parents. That is to say, a large 

distribution index will result in the children with higher probability to be closed to their 

parents and a small distribution index will lead to a lower probability [150]. It needs to 

note that MOCGP does not utilise crossover but NSGA2 does. The reason may be that 

CGP actually does not benefit from crossover [29] but NSGA2 relies on it no matter for 

real number or binary number encoding [92]. In this case, it is still a fair comparison 

even though NSGA2 utilises crossover and MOCGP does not. 

In terms of the parameter values, the crossover probability is set 0.9, the mutation 

probability is set 0.02, and the distribution index is set 20 for both the crossover and 

mutation respectively. These values will be considered as the baseline parameter 

values. So when the optimal ANN’s structure is found, those baseline parameter values 

will be adjusted based on the Parameter Robustness technique [141] developed in 

Spartan in order to achieve the sensitivity analysis along with the cumulative mean 

approach [142] for the number of experiment runs determination. Both of Parameter 

Robustness technique and cumulative mean approach are the same as that utilised in 

section 4.4.1.2. It also needs to note that the parameters for convergence criteria will 

be the same from the conclusion in section 4.5.1.1 where Nconv is 20 and Rconv is 1.01. 

Although these two parameters could be also tuned to obtain the optimal values, 

different convergence parameters will result in different responses for both the hyper-

volume and generation number. In this case, it is more sensible to remain the 

calibration values for convergence parameters in order to conduct a fair comparison 

between NSGA2 and MOCGPANN.  

5.2.1.3 Summary of the difference between NSGA2 and MOCGP parameters 

As is referred in section 2.4.4.3, network structure optimisation outperforms 

connection weight optimisation based on the comparison work between CNE and 

CGPANN. In this case, it is interesting to explore whether network structure 
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optimisation still outperforms connection weight optimisation in terms of multi-

objective optimisation with NSGA2 and MOCGP respectively for robot fault tolerant 

control. Table 5.1 presents a conclusion about all the different aspects including the 

ANN parameters and the optimisation algorithm parameters mentioned above 

between NSGA2 and MOCGP for the ANN controller evolution experiment.   

Table 5.1: Different aspects between NSGA2 and MOCGP for ANN evolution 

 NSGA2 MOCGP 

ANN parameters Hidden layer number Node number 

Hidden node number Arity number 

Weight range Weight range 

Feed forward/Recurrent Feed forward/Recurrent 

Neuron transfer function Neuron transfer function 

Algorithm parameters Population size Population size 

Mutation probability Mutation probability 

Crossover probability  

Distribution index for 
crossover 

 

Distribution index for 
mutation 

 

In Table 5.1, all the different aspects have been discussed. As is mentioned in section 

5.2.1.1 and 5.2.1.2, both of ANN and algorithm parameters need to be adjusted in 

order to maximise the performance for these two algorithms. However, The ANN 

parameters are investigated to maintain the consistency between NSGA2 and MOCGP 

in order to obtain a sensible comparison result between the connection weight 

optimisation and network structure optimisation for fault tolerant control. In this case, 

the Hidden node number is adjusted for NSGA2 (Hidden layer number could be set 1 at 

the moment) and the Node number with the Arity number are adjusted for MOCGP. 

Other parameters will be remained consistent including the same Weight range, the 

same Feed forward ANN type and the same Neuron transfer function implemented to 

create homogeneous ANN. The optimisation algorithm parameters are tuned for each 

algorithm respectively since they have no influence on the ANN composition, which 

just benefit to the evolutionary search in order to obtain the best responses. Except for 

the parameter difference in ANN and the algorithm itself, other aspects will be totally 

the same for the phototaxis task framework designed in section 4.4.1. So the aim of 

this comparison is to investigate whether the network structure optimisation will 

outperform the connection weight optimisation in terms of the multi-objective robot 

fault tolerant control.  
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5.2.2 Generalisation experiment 

The generalisation experiment setup is actually totally the same as that designed in 

section 4.4.2. Since the generalisation experiment is just a test for the evolved 

controllers, so it does not matter how the controller is evolved, for example structure 

optimisation or weight optimisation, and that’s why the generalisation experiment 

setup can be remained fixed as that in section 4.4.2. The aim of the generalisation 

experiment is to test whether the evolved Pareto sets of controllers by NSGA2 instead 

of MOCGP could also achieve both of switched and robust fault tolerant control in 

more generalised scenarios. Basically, the fault should be injected during the robot 

phototaxis task as a primary principle for the generalisation experiment, so the 

controllers should be switched between each other for the switched fault tolerant 

control when the fault is occurred. And for the robust fault tolerant control, only one 

controller is loaded all the way through the phtotaxis task no matter when the fault is 

occurred. So the hypothesis of the generalisation experiment is quite similar with that 

in section 4.4.2 where the obtained feasible Pareto sets of controllers by NSGA2 could 

make robot achieve both of switched and robust fault tolerant control based on the 

phototaxis task in more generalised scenarios as well. 

The generalised scenarios are also the same as that designed in section 4.4.2 where the 

obtained controllers will firstly be tested in the same basic scenario as the evolution 

experiment but the fault will be injected during the task including 300 and 700 ticks 

respectively. And then if the evolved controllers are working well in this basic scenario, 

three more generalised scenarios will be utilised to test the evolved controllers 

including the different fault signal, different robot starting position with orientations 

and different beacon position. The new faulty sensor signals will be set 0.5 instead of 0. 

Ten new robot starting positions and orientations will be utilised rather than the 

original robot starting conditions. Finally the beacon will also be placed in position (2, 2) 

instead of original position (0, 0) and the experiment time limit will be set 3000 ticks 

since 1200 ticks is meaningless when the new beacon position is varied to different 

robot starting points and the success rate will be utilised as the new controller 

assessment criteria rather than the time to the beacon. All of the mentioned above 

generalisation experiment setup is totally the same as that in section 4.4.2 and five 

different Pareto sets of controllers obtained by NSGA2 will be utilised for the 

generalisation experiment. In terms of switched fault tolerant control, two controllers 

are selected working well for each objective respectively. And in terms of the robust 
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fault tolerant control, only one controller is required with a similar performance for 

both of the two objectives. The result of switched and robust fault tolerant control will 

be presented and discussed respectively in next section 5.3.2.  

5.3 Result and discussion 

5.3.1 Evolution experiment 

As is mentioned in section 5.2.1, the obtained solutions should be investigated in two 

steps: different ANN’s structure and different NSGA2 parameter values. Therefore, only 

the best tuned ANN’s structure and NSGA2 parameter values could be utilised to 

maximise the evolved controllers’ performance so as to conduct the final comparison 

with the solutions found with MOCGPANN. In this case, the ANN’s structure adjustment 

and NSGA2 parameters’ tuning will be discussed as following.  

5.3.1.1 Number of hidden nodes selection  

In terms of the number of hidden nodes, five different options were selected including 

6, 8, 10, 12 and 14 hidden neurons for this hidden layer in terms of hyper-volume and 

generation number responses in order to find out how many are sufficient. This 

investigation was conducted based on the U-test and A-test as well in order to find out 

the significant difference between these options. The result shows that 12 and 14 

hidden neurons obtained the best and quite similar performance, which indicates that 

12 hidden neurons may be already sufficient for this hidden layer. For this reason, 12 

nodes could be selected for the ANN’s hidden layer and this type of structure will be 

utilised throughout this chapter for the evolution fault tolerant experiment based on 

connection weight optimization with NSGA2. The details of this hidden neuron 

investigation can be referred to Appendix C.1.  

5.3.1.2 Sensitivity analysis for NSGA2 parameters 

Apart from the ANN’s structure optimisation, the NSGA2 parameters also need to be 

adjusted to their optimal values in order to obtain the best responses for the evolved 

controllers. As is mentioned in section 5.2.1.2, there are four parameters for NSGA2 

that needs to be tuned including the crossover probability (PCrossover), mutation 

probability (PMutation), distribution index for crossover (DICrossover) and mutation 

(DIMutation) respectively. The baseline values for them are listed respectively in Table 

5.2 which will be utilised for the Parameter Robustness technique for the sensitivity 
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analysis. All the comparison results will be displayed in boxplot and their corresponding 

A-test scores will also be presented in graphs created by Parameter Robustness 

technique. The details of the sensitivity analysis can be referred to Appendix C.2. 

Table 5.2: Baseline values for NSGA2 parameters 

NSGA2 
parameters 

PCrossover PMutation DICrossover DIMutation 

Baseline values 0.9 0.02 20 20 

 

Now all the parameters have been calibrated to their optimal values which are listed in 

Table 5.3. The next step is to conduct the final comparison between the responses of 

baseline parameter values against the calibration parameter values for NSGA2 in order 

to investigate whether all the NSGA2 parameters in their calibration values will 

outperform their baseline values. 

Table 5.3: Calibration values for NSGA2 parameters 

NSGA2 
parameters 

PCrossover PMutation DICrossover DIMutation 

Calibration 
values 

0.9 0.05 20 5 

 

Figure 5.1 shows the hyper-volume comparison between the NSGA2 parameter 

baseline values and calibration values and Figure 5.2 shows the generation number 

comparison results for them.  
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Figure 5.1: Hyper-volume comparison between the NSGA2 parameter baseline values and 
calibration values 

 

Figure 5.2: Generation number comparison between the NSGA2 parameter baseline values and 
calibration values 

Table 5.4: U-test scores for the comparison between NSGA2 parameter baseline values and 
calibration values 

 Baseline values Calibration values 

Hyper-volume 1 < 0.00001 

Generation number 1 < 0.00001 

 

Table 5.5: A-test scores for the comparison between NSGA2 parameter baseline values and 
calibration values 

 Baseline values Calibration values 

Hyper-volume 0.5 0.34126 

Generation number 0.5 0.846786 

 

As can be seen in Figure 5.1 and Figure 5.2, NSGA2 calibration parameter values 

outperforms baseline parameter values with a higher hyper-volume and a lower 

generation number. According to Table 5.4, there is a significant difference between 

these two approaches where the p values for both of these two comparisons are less 

than 0.0001%. Finally Table 5.5 also demonstrates the same result that the calibration 

values achieve a higher hyper-volume with a medium effect size and it also achieves a 

lower generation number with a large effect size. In conclusion, the NSGA2 parameters 

in their calibration values outperform their baseline values and those calibration values 
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will be utilised for the comparison between NSGA2 and MOCGP in the next section 

5.3.1.3 in terms of multi-objective robot fault tolerant control with ANN optimisation. 

5.3.1.3 Comparison between NSGA2 and MOCGP  

After the ANN and NSGA2 parameters have been adjusted optimally, the NSGA2 based 

evolution experiment results will be compared with MOCGP based evolution 

experiment results. This comparison will demonstrate whether network structure 

optimisation will be able to produce a better performance than just connection weight 

optimisation for NE based multi-objective optimisation in terms of robot fault tolerant 

control.  

There are two points that needs to be mentioned here. One is that NSGA2 and MOCGP 

are actually working in two different ways where NSGA2 is working in parameter level 

and MOCGP is working in both of parameter and structure levels. Due to the different 

evolutionary search areas, it is meaningless to compare the generation or evaluation 

number response for these two approaches. However the hyper-volume response is 

still suited to measure their performance for evolved solutions as long as the solutions 

are feasible to solve the task, which is the robot phototaxis task in the face of sensor 

failures, no matter which evolutionary search level the algorithm is working. Although 

NSGA2 is working in parameter level, the ANN’s structure is already optimised in 

section 5.3.1.1. In this case, the NSGA2 evolved solutions with optimal parameter 

values could be considered with optimal performance.  

The other is that the MOCGP parameters utilised for this comparison is slightly 

different from the one in section 4.5.1.1. As is mentioned in section 5.2.1.1, NSGA2 

implements sigmoid neuron transfer function to create the homogeneous ANN for 

connection weight optimisation. So in order to maintain the consistency for a sensible 

comparison, MOCGP also utilises sigmoid neuron transfer function as the only function 

type to create the homogeneous ANN for network structure optimisation rather than 

two different function types implemented for heterogeneous ANN in section 4.5.1.2. 

Other aspects including the weight range and the feed forward network type are both 

the same between these two approaches. Only in this way, the comparison result will 

demonstrate the difference between network structure and connection weight 

optimisation for the evolution experiment.  
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Figure 5.3 shows the final comparison between NSGA2 and MOCGP in terms of hyper-

volume response. And Table 5.6 lists the corresponding U-test and A-test scores. 

 

Figure 5.3:  Hyper-volume comparison between NSGA2 and MOCGP 

Table 5.6: U-test and A-test scores for hyper-volume comparison between NSGA2 and MOCGP 

 NSGA2  MOCGP  

Hyper-volume with U-test 1 < 0.00001 

Hyper-volume with A-test 0.5 0.337994 

 

As can be seen from Figure 5.3, MOCGP outperforms NSGA2 in terms of hyper-volume 

response. According to Table 5.6, there is a significant difference between these two 

approaches where the p value of U-test is less than 0.00001%. Moreover, the A-test 

score also indicates a higher hyper-volume response for MOCGP where its score of 

0.337994 belongs to the medium effect size interval of [0.29, 0.36]. In a word, MOCGP 

produces a better performance than NSGA2 in terms of hyper-volume for NE based 

multi-objective robot fault tolerant control, which also demonstrates that network 

structure optimisation performs better than just connection weight optimisation for 

this experiment.  

However as is referred in section 2.4.4.3, the comparison between NSGA2 and MOCGP 

is actually not quite convincing to display the performance difference between 

connection weight optimisation and network structure optimisation. One possible 

reason is that the computational effort of these two algorithms is quite different due to 

their different search space. That is to say, NSGA2 optimises the connection weight 
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values in a pre-designed network structure but MOCGP has to optimise both of 

connection weight and network structure at the same time, which is just the same as 

what the comparison work is conducted in this section. In this case, it may be 

considered as an unfair comparison to show the performance difference between 

connection weight optimisation and network structure optimisation due to their 

different search space. However, this comparison result still demonstrates that NSGA2 

is not able to produce an equivalent performance with MOCGP even if the ANN’s 

structure has been well adjusted in advance. 

Generally speaking, this comparison is still able to present the performance difference 

between these two approaches where MOCGP outperforms NSGA2 in terms of the 

hyper-volume measurement. A possible explanation for this comparison result is that 

MOCGP could obtain an efficient ANN’s structure which will not be considered by 

human designer. That is to say, the ANN’s structure for NSGA2 is normally designed in a 

usual way, so it may not be available for NSGA2 to utilise those structures which are 

obtained by MOCGP. And that may be a main reason why MOCGP will outperform 

NSGA2 for the multi-objective robot fault tolerant control experiment. However as 

mentioned in section 5.2.1.1, the ANN structure utilised for NSGA2 just contains a 

single hidden layer. Although a single hidden layer ANN is able to solve a majority of 

problems, it is unknown that whether more than one hidden layer will be helpful to 

increase the ANN performance for this experiment. On the other hand, the ANN’s 

structure evolved by MOCGP is actually not a usual ANN’s structure which may contain 

lots of hidden layers with different hidden neurons for each layer. So it is still not clear 

whether the better performance of MOCGP is due to the unusual structure or due to 

more than one hidden layers evolved in the ANN that may contribute to the ANN’s 

performance for this experiment. Apart from hidden layer problem, population size 

may also influence the evolution result. As is mentioned in section 5.2.1.2, NSGA2 and 

MOCGP both utilise 20 individuals as the population size. Although same population 

size could maintain the measure consistency for hyper-volume indicator, whether 20 

individuals are the best choice to demonstrate the performance of either NSGA2 or 

MOCGP is still unknown at the moment. For these reasons, it is still worth a further 

investigation on the evolved ANN performance with more than one hidden layer 

utilised for NSGA2 to train the ANN’s weights and with different population sizes for 

both of NSGA2 and MOCGP, which will be considered as future works.  
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Even so, the comparison result still demonstrates that MOCGP removes the 

requirement to obtain a suitable network structure in advance even if the obtained 

ANN’s structure is unusual, where NSGA2 has to consider the network structure 

manually by human designer for the given task when training ANN’s connection weight. 

Actually, those mentioned benefits for MOCGP is actually the same as CGP for NE 

which is mentioned in section 2.4.4.3 and this comparison result still indicates that 

MOCGP is benefit from the network structure optimisation for NE. 

In conclusion, the comparison result demonstrates that network structure optimisation 

will be able to produce better performance than just connection weight optimisation 

for NE based multi-objective robot fault tolerant control task, at least for MOCGP and 

NSGA2 respectively. The next section 5.3.2 will investigate how the NSGA2 evolved 

solutions could impact the ANN controllers’ performance in generalised scenarios.  

5.3.2 Generalisation experiment 

As mentioned in section 5.2.2, the whole generalisation experiment is similar to section 

4.5.2, which was conducted with robust and switched fault tolerant control 

respectively based on five Pareto sets of controllers but evolved by NSGA2 instead of 

MOCGP in terms of four generalised scenarios. The success rate would also be used to 

assess the evolved controllers’ performance based on 10 different trials. The data of 

these five Pareto sets’ generalisation experiment result can be referred to the 

Appendix A.2.  

5.3.2.1 Robust fault tolerant control 

In terms of the robust fault tolerant control, there is just one controller that is loaded 

for the robot, so there is no need to consider the controller switch. However the 

controller has to perform relatively well for each objective, so a degraded performance 

could be accepted compared to the switched fault tolerant control. 

Table 5.7: Success rate for five obtained Pareto sets by NSGA2 in terms of robust fault tolerant 
control 

 Initial scenario Fault signal Robot condition Beacon position 

 Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Pareto 1 1 1 0 1 1 1 1 1 

Pareto 2 1 1 0 0 1 1 0.6 0.6 

Pareto 3 1 1 0 0.5 1 1 0.5 0.5 
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Pareto 4 1 1 0 0 1 1 0.5 0.5 

Pareto 5 1 1 0 1 1 1 1 1 

 

Table 5.7 lists the success rate for five obtained Pareto sets by NSGA2 in terms of 

robust fault tolerant control. As can be seen in this table, all the five evolved Pareto 

sets are working well for basic initial scenario and new robot starting conditions as well 

with 100% success rate for both of 300 and 700 ticks. However in terms of new fault 

signal and new beacon position scenarios, none of the five Pareto sets achieves 100% 

success rate no matter the fault occurs at 300 or 700 ticks with better or worse 

performance. Moreover, it is serious that all the five Pareto sets perform 0% success 

rate for the new fault signal scenario when the fault occurs at 300 ticks, which means 

all the evolved Pareto sets of controllers are actually failed to achieve the robust fault 

tolerant control. 

According to the result, the controllers are working very well for basic scenario and 

new robot starting condition scenario. That is to say, no matter when the fault occurs 

or where the robot initial condition is, the evolved controllers by NSGA2 are capable to 

make robot continue performing the phototaxis for robust fault tolerant control, as 

long as the distance between robot initial position and beacon position is fixed as that 

in the evolution experiment. However the evolved controllers are not working well for 

new fault signal scenario and new beacon position scenario. What’s more, all of the five 

Pareto sets perform 0% success rate for new fault signal scenario when fault occurs at 

300 ticks for robust fault tolerant control. That is to say, the evolved controllers are 

completely failed to make the robot continue performing the phototaxis when fault 

occurs at an early stage, for example 300 ticks in this experiment. In conclusion, the 

evolved controllers are suited to the initial and new robot condition scenarios, but not 

suited to the new fault signal and new beacon position scenarios. In this case, it is also 

required that more controllers need to be evolved as future works to deal with those 

two unsuited scenarios so as to achieve the robust fault tolerant control, which is the 

same as the conclusion in section 4.5.2.1. 

5.3.2.2 Switched fault tolerant control 

In terms of switched fault tolerant control, two controllers from each Pareto set 

evolved by NSGA2 will be selected based on their performance for each objective. 

Basically, each controller should achieve the best performance for its corresponding 
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objective among the controllers in this Pareto set. So it does not matter what the 

performance is for the opposite objective of the selected controllers since they can be 

switched to each other when the fault is occurred. 

Table 5.8: Success rate for five obtained Pareto sets by NSGA2 in terms of switched fault tolerant 
control 

 Initial scenario Fault signal Robot condition Beacon position 

 Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Pareto 1 1 1 0 1 1 1 1 1 

Pareto 2 1 1 0 0.1 1 1 0.6 0.6 

Pareto 3 1 1 0 0.9 1 1 0.5 0.5 

Pareto 4 1 1 0 0 1 1 0.5 0.5 

Pareto 5 1 1 1 1 1 1 1 1 

 

Table 5.8 lists the success rate for five obtained Pareto sets by NSGA2 in terms of 

switched fault tolerant control. As can be seen from the table, all the five evolved 

Pareto sets of controllers by NSGA2 are capable of performing the phototaxis task with 

totally 100% success rate for the basic initial scenario and the new robot condition 

scenario when the fault is injected at 300 and 700 ticks respectively during the task. 

However the performance for new fault signal scenario is declined dramatically where 

only the 5th Pareto set achieves 100% success rate for both of 300 and 700 ticks. In 

addition, all the other four Pareto sets obtain 0% success rate for 300 ticks and more or 

less success rate for 700 ticks. Finally in terms of new beacon position scenario, only 

the 1st and 5th Pareto sets realise 100% success rate for both of 300 and 700 ticks and 

the other Pareto sets reach more or less success rate respectively.  

According to the result, it can be seen that the evolved Pareto sets of controllers by 

NSGA2 realise a similar performance of switched fault tolerant control compared to 

robust fault tolerant control where the evolved Pareto sets of controllers are working 

very well not only for the basic scenario of different fault occurrence time but also for 

the new robot starting condition scenario. However in terms of new fault signal 

scenario and new beacon position scenario, only the 5th Pareto set realises 100% 

success rate for both of these two scenarios and all the other Pareto sets achieve 

different more or less success rate. This result demonstrates that the evolved Pareto 

sets of controllers by NSGA2 are working well to achieve the switched fault tolerant 

control no matter what time the fault occurs and where the robot initial condition is as 
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long as the distance from the beacon is fixed as the evolution experiment. However, if 

the fault signal is altered to another value instead of the one from the evolution 

experiment, the evolved controllers may not be working well for the switched fault 

tolerant control. Moreover, if the beacon position is changed with varied distance to 

the robot initial position, the evolved controllers are also not working very well. In this 

case, if different fault signal or different beacon position is required for the switched 

fault tolerant control, more controllers may need to be evolved based on these new 

conditions, which is the same as the conclusion in section 4.5.2.2 for future works.   

5.3.2.3 Comparison between two fault tolerant control schemes 

This section is similar to section 4.5.2.3 where robust and switched fault tolerant 

control performance will be compared to each other based on the obtained 

generalisation experiment result of success rate in terms of 10 different trials. The only 

difference is that this comparison will be conducted based on the NSGA2 evolved 

controllers instead of MOCGP in section 4.5.2.3, but the aim is still the same to 

investigate which one performed better for this work, the robust or the switched fault 

tolerant control. 

Table 5.9 lists the comparison result between robust and switched fault tolerant 

control based on the obtained generalisation rate. This comparison also utilised A-test 

to estimate the difference of switched fault tolerant control compared to the robust 

fault tolerant control, which is the same as that in section 4.5.2.3.   

Table 5.9: Comparison between the success rate of robust and switched fault tolerant control 
based on the controllers evolved by NSGA2 

Scenario Initial scenario Fault signal Robot condition Beacon position 

A-test score 0.5 0.395062 0.5 0.5 

 

As can be seen from Table 5.9, only the A-test score for new fault signal scenario is 

different from the other three scenarios. In terms of the new fault signal scenario, the 

A-test score is 0.395062 which lies in the small effect size interval [0.36, 0.44] and this 

result indicates that switched fault tolerant control outperforms robust fault tolerant 

control in the new fault signal scenario, although it is a small effect size. With respect 

to the other three scenarios, all of them have a same A-test score 0.5, which means 

both of robust and switched fault tolerant control have the identical performance as 

listed in the generalisation experiment results.  



 

149 
 

As can be seen from the comparison result, although switched fault tolerant control 

only produced a better performance in the new fault signal scenario than the robust 

fault tolerant control, neither of these two approaches achieved a total 100% success 

rate among 10 trials as seen from the generalisation result in section 5.3.2.1 and 

5.3.2.2. Additionally, although the performance for the new beacon position scenario is 

the same between robust and switched fault tolerant control, neither of them achieved 

a 100% success rate for the 10 trials and that means both of robust and switched fault 

tolerant control are not working well in spite of an identical performance.   

In conclusion, the comparison result of the NSGA2 evolved controllers is similar to that 

in section 4.5.2.3 where switched fault tolerant control also outperforms robust fault 

tolerant but just in the new fault signal scenario. In terms of the new beacon position 

scenario, neither of robust and switched fault tolerant control achieved a better 

performance, which may indicate that NSGA2 is not as effective as MOCGP to obtain 

better performance controllers as is displayed in the evolution comparison result in 

section 5.3.1.3.  

5.4 Summary 

This chapter is actually a comparison work with chapter 4 to investigate the difference 

between connection weight optimisation and network structure optimisation for NE 

based fault tolerant control. This comparison is driven by the conclusion in section 

2.4.4.3 that network structure optimisation outperforms connection weight 

optimisation on a series of NE based single objective optimisation benchmarks. In this 

case, this work utilises NSGA2 instead of MOCGP as the connection weight optimisation 

approach to investigate whether MOCGP still outperforms NSGA2 for the NE based 

multi-objective optimisation in terms of fault tolerant control with robot phototaxis 

task based on the same evolution and generalisation experiment framework as 

designed in chapter 4.  

In terms of the evolution experiment, NSGA2 is able to obtain feasible Pareto sets of 

controllers for both of fault-free and faulty objectives. As a comparison, MOCGP is also 

utilised to conduct the same evolution experiment with the same feed forward 

network type, same weight range and even same neuron transfer function 

implemented for the homogeneous ANN optimisation as the NSGA2 based evolution 

experiment. However NSGA2’s performance is worse than that of MOCGP in terms of 
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hyper-volume. A possible reason is that MOCGP could obtain a network structure 

which is not considered by NSGA2 but with more effective performance. However the 

ANN’s structure utilised by NSGA2 just contains one hidden layer but MOCGP could 

evolve ANN with lots of hidden layers with different hidden neurons. So it is not quite 

clear whether the performance difference is due to the unusual structure of the 

evolved ANN by MOCGP or due to the number of hidden layers that may contribute to 

the ANN’s performance. On the other hand, both of NSGA2 and MOCGP utilise 20 

individuals as the population size. Although same population size could maintain the 

consistency of hyper-volume measurement, it is also unknown whether 20 individuals 

are the most suited choice for each of these two algorithms. In this case, further 

experiment needs to be conducted to investigate the impact of more than one hidden 

layer on the ANN’s performance for NSGA2 and the impact of different population size 

for both of NSGA2 and MOCGP, which could be considered as future works. In 

conclusion, the result in this chapter demonstrates that network structure optimisation 

still outperforms connection weight optimisation for NE based multi-objective fault 

tolerant control for robot phototaxis task, which further verifies the benefit of network 

structure optimisation over just connection weight optimisation.  

In terms of the generalisation experiment, the evolved controllers by NSGA2 are 

capable to achieve both of switched and robust fault tolerant control in generalised 

scenarios no matter when the fault occurs or the robot initial condition is. However the 

controllers evolved by NSGA2 are not working very well when new fault signal is 

injected instead of the original one and when the beacon is moved to a new position in 

terms of both the switched and robust fault tolerant control. Nevertheless, the 

comparison result also demonstrates that switched fault tolerant control outperforms 

robust fault tolerant control for this work despite that the switched fault tolerant 

control only produced a better performance in the new fault signal scenario. On the 

other hand, this generalisation experiment result obtained by NSGA2 still demonstrates 

that a multi-objective optimisation algorithm is essential to achieve the robust fault 

tolerant control where a single objective optimisation algorithm is not able to achieve 

such as CGP mentioned in the conclusion of chapter 3. Future work will be the same as 

section 4.6 that it is required to investigate how the controllers could be evolved to 

deal with varied fault signals and different beacon positions not only for a more 

effective fault tolerant control system but also for a more effective robot phototaxis 

task.  
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Due to the benefit of network structure optimisation over just connection weight 

optimisation for NE based multi-objective fault tolerant control, the next chapter will 

design an extension experiment with more difficult scenarios for fault types and 

investigate how MOCGPANN will be performing to obtain feasible Pareto sets of 

controllers for this extension experiment in order to achieve robust and switched fault 

tolerant control.  
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Chapter 6 MOCGPANN in extension fault tolerant control  

6.1 Introduction 

As can be seen from section 5.3.1.3, MOCGP demonstrates competitive performance 

compared to NSGA2 for NE in terms of the multi-objective fault tolerant control 

evolution experiment based on the robot phototaxis task. The result in section 5.3.1.3 

also indicates that MOCGP based ANN network structure optimization outperforms 

NSGA2 based ANN connection weight optimization in terms of the controllers’ 

performance based on hyper-volume measurement. In addition, this comparison could 

be considered as a comprehensive work since the ANN’s structure is adjusted firstly in 

order to maximise its performance. And then, the connection weights are evolved 

based on the pre-optimised network structure, which not only guarantees the network 

structure to be optimised, but also ensures optimised connection weight values. 

Although the decision of hidden node number is not a work achieved by NSGA2, this 

comparison is still a sensible work which fully demonstrates the performance 

difference between the network structure optimization and connection weight 

optimization at least for MOCGP with NSGA2 in terms of multi-objective fault tolerant 

control.   

Due to the capability of MOCGPANN for evolving effective fault tolerant controllers, 

this chapter will conduct an extension fault tolerant control experiment based on 

MOCGPANN and investigate how it will be performing for this more difficult fault 

tolerant control scheme in order to find out whether MOCGPANN could still evolve 

feasible controllers to achieve both of robust and switched fault tolerant control. 

6.2 Experiment setup 

The aim of this extension experiment is to investigate how MOCGPANN will be 

performing to evolve fault tolerant controllers for a more difficult scenario with more 

sensor failures. The obtained controllers will be tested for robust and switched fault 

tolerant control respectively but there will be more faulty sensors in the generalised 

scenarios as well. Therefore, the hypothesis is that MOCGPANN could be also effective 

to evolve Pareto sets of controllers so as to achieve the extension experiment for both 

of robust and switched fault tolerant control.  
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This work is definitely more difficult for the robot to still achieve phototaxis task with 

just right side sensors to be working. However, it is still interesting to investigate 

whether MOCGPANN could still obtain a feasible Pareto set of controllers on this 

extension evolution experiment and whether these evolved controllers will be working 

in generalised scenarios. 

6.2.1 Evolution experiment 

The evolution experiment setup is quite similar to section 4.4.1 based on the same 

robot phototaxis task designed in section 3.2.1. The only difference is that the left 4 

light sensors are failed together with zero reading signals as the input to the controller. 

In other words, the robot would become totally blind to perceive light for the left side 

when fault occurs, which is more difficult than the original 2 sensor failure scenario 

designed in section 3.2.2 so as to obtain feasible fault tolerant controllers. In this case, 

one objective would remain the same for the faultless condition, but the other 

objective would become a 4 sensor failures condition. The controllers would be evolved 

for these two objectives respectively in order to create the Pareto optimal set, if the set 

could be obtained. Except for the objective modification, other aspects would still be 

the same as the evolution experiment in section 4.4.1 including the calibrated 

MOCGPANN parameter and convergence measurement parameter values from section 

4.6.1.2. Finally, four different crowding fill strategies would also be utilised respectively 

to assess the performance of MOCGPANN and the comparison among them would be 

conducted based on the hyper-volume and generation numbers, which still utilised the 

same procedure mentioned in section 4.5.1.2. 

6.2.2 Generalisation experiment 

The generalisation experiment is totally the same as that designed in section 4.4.2 

except for 4 sensor failures instead of 2 sensor failures. In this case, each generalised 

scenario would be tested based on 4 sensor failures during the phototaxis task. 

Additionally, in terms of the new fault signal scenario, each of the left 4 sensors will 

produce a 0.5 reading signal into the controller instead of 0 reading signal from the 

evolution experiment. Apart from that, each obtained Pareto set of controllers would 

be tested with 10 different trials and their success rate was also be used to assess the 

controller performance in terms of both the robust and switched fault tolerant control 

in terms of the generalisation tests.  
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6.3 Result and discussion 

6.3.1 Evolution experiment 

Figure 6.1 shows the hyper-volume comparison for different crowding fill strategies in 

terms of the extension evolution experiment. Figure 6.2 shows the generation number 

comparison for that. Table 6.1 lists the U-test scores for these two comparisons and 

Table 6.2 lists the corresponding A-test scores. 

 

Figure 6.1: Hyper-volume comparison for different crowding fill strategies in terms of extension 
experiment 

 

Figure 6.2: Generation number comparison for different crowding fill strategies in terms of 
extension experiment 

1
st

 version               2
nd

 version                3
rd

 version                   Original 

1
st

 version               2
nd

 version                3
rd

 version                   Original 
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Table 6.1: U-test scores for hyper-volume and generation number in terms of extension 
experiment 

 1st version 2nd version 3rd version Original 

HV 1 0.29834 0.0466 0.62414 

Gen 1 0.99202 0.72786 0.28462 

 

Table 6.2: A-test scores for hyper-volume and generation number in terms of extension 
experiment 

 1st version 2nd version 3rd version Original 

HV 0.5 0.528356 0.442516 0.485608 

Gen 0.5 0.501213 0.511243 0.467661 

 

As can be seen from Table 6.1, the third version is the only one that achieves significant 

difference compared to the first version in terms of hyper-volume measurement, 

whose p value is below 0.05. Moreover, as is listed in Table 6.2, the A-test score of the 

third version in terms of hyper-volume is also below 0.5, which means the hyper-

volume is higher than that of the first version where the median value is slightly higher 

than the first one as well according to Figure 6.1. In addition, the A-test score of the 

third version in terms of the generation number also achieves a slightly larger value 

than 0.5, which means the generation number of the third version is slightly less than 

the first one. In this case, it seems that the third version of crowding fill strategy is the 

best choice for the extension evolution experiment since it spends fewer generations 

to obtain better hyper-volume response. However to be more specific, the A-test score 

of the third version for hyper-volume is still quite a small effect size compared to the 

first one, where its A-test score is not even located in the small effect range between 

0.44 and 0.36. Apart from the third version, the second version spends similar 

generations to obtain lower hyper-volume response than the first one; the fourth 

version achieves a higher hyper-volume but the generation number is also larger than 

that of the first one. However neither second nor fourth version achieves the 

significant difference compared to the first one, whose U-test scores are both larger 

than 0.05 in terms of both the hyper-volume and generation number. In conclusion, 

the third version seems to be the best choice for crowding fill strategy utilised for 

MOCGPANN for the extension evolution experiment. Although its A-test score for 

hyper-volume is still a quite small effect compared to the first one, this version of 

crowding fill strategy still demonstrates the competitive performance among each 

other for the extension evolution experiment. In this way, the controllers evolved from 
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this version could be a first choice to conduct the generalisation experiment, whose 

result will be discussed in the next section 6.3.2.  

It needs to note that the cumulative mean result is listed in Table 6.3 for the extension 

evolution experiment. In this table, the first version requires the least number of runs 

to sufficiently present its performance and the last one obtains the most number of 

runs. As is mentioned in section 4.5.1.2, the first and second versions achieve much less 

experiment runs than the other two to obtain a sufficient performance. And in terms of 

this extension evolution experiment, although second version ranks the third for the 

cumulative mean result, the fourth version is the last choice for crowding fill strategy in 

terms of the require number of experiment runs. In a word, preserving population 

diversity based crowding fill strategy is the second most stable version for the basic 

evolution experiment and the most stable version for the extension evolution 

experiment. Original crowding fill strategy is the second most unstable version for the 

basic experiment and the most unstable version for the extension experiment. 

In summary, preserving population diversity based crowding fill strategy is always a 

relatively better approach and original crowding fill strategy is always not a good choice 

with the relatively unstable performance for both of the original and the extension 

evolution experiment. Although there is currently not a best scheme for the improved 

crowding fill strategy utilised for MOCGPANN, the original crowding fill strategy 

referred from NSGA2 seems not to be working very well. Therefore, the cumulative 

mean result for these two evolution experiment implies that the original crowding fill 

strategy may not suite the MOCGPANN’s survival selection. However, which version to 

be utilised for crowding fill strategy is still an open question and whether preserving 

genetic drift or population diversity is beneficial to the evolutionary search is also not 

confirmed. In this sense, further investigation is required to find out whether the 

crowding fill strategy improvement really has any significant benefit for the survival 

selection in MOCGPANN as future works.   

Table 6.3: Result of number of experiment runs required from cumulative mean approach for the 
extension experiment 

 1st version 2nd version 3rd version Original 

Number of 
runs 

147 173 164  191 
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6.3.2 Generalisation experiment 

As is mentioned in section 6.2.2, generalisation experiment was conducted for robust 

and switched fault tolerant control respectively with four generalised scenarios based 

on the success rate for each test. The only difference for this extension experiment is 

that the left 4 sensors of the robot will be failed during the phototaxis instead of the 

original experiment designed in section 4.4.2 with only 2 failed sensors. With regard to 

the controller acquirement, the 3rd version of MOCGPANN was utilised as concluded in 

section 6.3.1 to obtain 5 different Pareto sets of controllers in order to be implemented 

for this generalisation experiment. The data of these five Pareto sets’ generalisation 

experiment result can be referred to the Appendix A.3.  

6.3.2.1 Robust fault tolerant control 

Table 6.4 lists the success rate for 5 obtained Pareto sets of controllers based on 4 

different generalised scenarios with 10 different trials for each test in terms of the 

robust fault tolerant control. As can be seen from Table 6.4, except for the new fault 

signal scenario, all the initial scenario, the new robot condition scenario and the new 

beacon position scenario obtained 100% success rate for each test based on the 

obtained 5 Pareto sets. This result indicates that MOCGPANN is capable to evolve 

effective controllers that could achieve the robust fault tolerant control even for a 

more difficult scenario with 4 sensors not working.  

Table 6.4: Success rate for extension generalisation experiment results in terms of robust fault 
tolerant control 

 Initial scenario Fault signal Robot condition Beacon position 

 Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Pareto 1 1 1 0 1 1 1 1 1 

Pareto 2 1 1 0 0 1 1 1 1 

Pareto 3 1 1 0 1 1 1 1 1 

Pareto 4 1 1 1 1 1 1 1 1 

Pareto 5 1 1 0 0 1 1 1 1 

 

6.3.2.2 Switched fault tolerant control 

Table 6.5 lists the success rate for 5 obtained Pareto sets of controllers based on 4 

different generalised scenarios with 10 different trials for each test in terms of the 

switched fault tolerant control. As can be seen from Table 6.5, the initial scenario and 
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the new robot condition scenarios achieved 100% success rate for each test. However, 

the evolved 5 Pareto sets of controllers were not working very well in terms of the new 

fault signal scenario and the new beacon position scenario. Nevertheless, this result 

still demonstrates that MOCGPANN is capable to obtain effective controllers that could 

be used to achieve the switched fault tolerant control for this extension experiment. 

Table 6.5: Success rate for extension generalisation experiment results in terms of switched fault 
tolerant control 

 Initial scenario Fault signal Robot condition Beacon position 

 Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Time: 
300 

Time: 
700 

Pareto 1 1 1 0 1 1 1 0.7 0.8 

Pareto 2 1 1 0 1 1 1 1 1 

Pareto 3 1 1 0 0.1 1 1 0.8 0.8 

Pareto 4 1 1 1 1 1 1 1 1 

Pareto 5 1 1 0 0 1 1 1 1 

 

6.3.2.3 Comparison between two fault tolerant control schemes 

As can be seen from section 6.3.2.1 and 6.3.2.2, MOCGPANN is capable to obtain 

effective controllers that could be implemented to achieve both of robust and switched 

fault tolerant control for this extension experiment. Based on these generalisation 

results, Table 6.6 lists the comparison result for these two approaches for fault tolerant 

control based on the A-test in terms of the success rate for each test. 

Table 6.6: Comparison between the success rate of robust and switched fault tolerant control 
based on the controllers evolved by MOCGPANN for this extension experiment 

Scenario Initial scenario Fault signal Robot condition Beacon position 

A-test score 0.5 0.469136 0.5 0.666667 

 

As can be seen from Table 6.6, except for the same performance between robust and 

switched fault tolerant control for initial and new robot condition scenarios, the new 

fault signal scenario obtained an A-test score of 0.469136 with nearly no significant 

difference and the new beacon position scenario obtained an A-test score of 0.666667 

which locates in the medium effect size interval. Furthermore, the A-test score of the 

new beacon position scenario is above 0.5 which indicates that switched fault tolerant 

control produced a worse performance than robust fault tolerant control in this 

scenario with a medium effect size. This result is unusual since switched fault tolerant 
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control will normally outperforms robust fault tolerant control as mentioned in section 

2.2. In this case, a possible reason is that this extension experiment is quite 

complicated, so which one will be performing better is not based on their basic 

evolution experiment result. That is to say, due to the more difficult fault tolerance 

scenario with 4 sensors failed instead of 2 sensors, those evolved controllers’ 

performance may not be predicted for these generalised scenarios. On the other hand, 

according to the generalisation results, it is similar to section 4.5.2 where the evolved 

controllers are not working very well in the new fault signal and new beacon position 

scenarios. Therefore, it is still required to consider more generalised scenarios like 

these two into the controller evolution in order to achieve more generalised fault 

tolerant control as future works.  

6.4 Summary 

This chapter investigates how MOCGPANN could be performing to obtain fault tolerant 

controllers for this more difficult extension experiment. This chapter is actually 

motivated by the conclusion in section 5.3.1.3 where MOCGP outperforms NSGA2 for 

NE based fault tolerance evolution experiment, so that is why MOCGPANN is tested for 

this extension work. 

Moreover four different crowding fill strategies are also compared between each other 

for the extension evolution experiment. However the 3rd version is slightly better than 

the other three versions, so this one would be utilised to obtain controllers for the 

generalisation experiment. It also needs to note that the 1st version achieved the most 

stable performance than the other three. The last version, which is the original 

crowding fill strategy, is the most unstable one. This result is similar to that in section 

4.5.1.2 where the 1st version is the most stable one and the 4th version is the second 

most unstable one. Although there is no obvious significant difference among these 

four versions in terms of their performance, at least it can be concluded that preserving 

population diversity based crowding fill strategy could produce relatively more stable 

performance than the original crowding fill strategy. However, whether a more stable 

performance is really helpful for the evolutionary search is still not clear at the moment, 

which needs further investigation as future works. 

In terms of the generalisation result, MOCGPANN demonstrates effective performance 

to obtain controllers so as to achieve both of robust and switched fault tolerant control. 
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Although switched fault tolerant control performed better than robust fault tolerant 

control, it can be inferred that the reason is due to the more difficult scenario for the 

generalisation tests. On the other hand, the obtained controllers were still not working 

very well for new fault signal and new beacon position scenarios, which is the same as 

the conclusion in section 4.5.2 for the basic experiment. In this case, more scenarios 

could be considered during the solution evaluation to obtain more generalised fault 

tolerant controllers in terms of more generalised robot phototaxis task, which could be 

investigated as future works. 
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Chapter 7 Conclusion 

7.1 Summary and contributions 

A summary for each chapter along with the key contributions will be listed as following: 

 Chapter 2 reviewed different fault tolerant control schemes and different 

structure optimisation based EA approaches along with NE approaches. 

Moreover, different multi-objective optimisation algorithms were also 

reviewed along with different crowding measure approaches. Finally, 

convergence criteria and statistics analysis were also reviewed. 

Contribution: CGPANN was selected as the main approach used to evolve ANN 

controllers based on the structure optimisation so as to achieve the design of a 

fault tolerant control system. 

 Chapter 3 investigated how CGPANN could be utilised to design a robust robot 

fault tolerant control system.  

Contribution: The result shows that CGPANN was failed to achieve it since 

single objective optimisation is not adequate to design a robust fault tolerant 

controller. For this reason, MOCGPANN was identified as the new approach to 

achieve the design of a robust as well as a switched fault tolerant control 

system. 

 Chapter 4 presented how MOCGPANN was developed based on the integration 

of CGPANN and NSGA2 as the main approach for multi-objective controller 

structure evolution.  

Contribution: During the development of MOCGPANN, preserving population 

diversity was considered as a solution to solve the problem of the random 

neighbour pick in the original crowding fill strategy and it also displayed a 

relatively more stable performance than the original one, although their 

performance had no significant difference between each other. On the other 

hand, hyper-volume indicator was successfully used to measure the 

performance of MOCGPANN so as to assess its convergence without the 

requirement of a true Pareto optimal front. In terms of the generalisation test, 

the evolved controllers by MOCGPANN demonstrated effective performance to 

achieve both of robust and switched fault tolerant control based on the 

generalised scenarios. Although new fault signal and new beacon position 

scenarios were not suited to the evolved controllers, those controllers achieved 
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100% success rate in terms of the initial scenario and the new robot initial 

condition scenarios, which actually filled the research gap that controller 

structure optimisation had not been investigated into fault tolerant control. 

 Chapter 5 presented how NSGA2 was utilised as the approach for controller 

parameter optimisation in order to conduct a comparison work with MOCGP 

based on the ANN controller evolution.  

Contribution: The result shows that NSGA2 performed worse than MOCGP for 

the controller evolution in spite of a pre-optimised ANN structure for NSGA2, 

which verified that network structure optimisation outperformed connection 

weight optimisation even in multi-objective optimisation for fault tolerant 

control. Nevertheless, the controllers evolved by NSGA2 still achieved the 

robust and switched fault tolerant control. However its result was similar to 

MOCGP where the evolved controllers were just working for some of the 

generalised scenarios.  

 Chapter 6 presented how MOCGPANN was utilised further for a more difficult 

extension experiment where there were more sensors failed during the task. 

Contribution: The result shows that MOCGPANN was still capable to obtain 

feasible controllers so as to achieve robust and switched fault tolerant control. 

Furthermore, different crowding fill strategies were also compared for the 

evolution result. The comparison result also demonstrated that preserving 

population diversity based crowding fill strategy obtained more stable 

performance than the original one, which means the original crowding fill 

strategy is really not suited to MOCGPANN. In terms of the generalisation, it 

was still similar to the basic experiment where just parts of the generalised 

scenarios were suited to the evolved controllers. This work further answered 

the overall research question that MOCGPANN was able to evolve controller 

even for a more difficult fault tolerant control task, which demonstrates the 

effective performance of MOCGPANN implemented into fault tolerant control 

area. In other word, this work also indicates that controller structure 

optimisation will be an effective solution utilised for evolving fault tolerant 

robotic controllers.  
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7.2 Future works 

This thesis also left some future works which may need further investigation. The 

future works can be categorised into two aspects: the optimisation algorithms and the 

robot test cases, which will be presented as following. 

7.2.1 Future works about the optimisation algorithms 

 Further benefit of preserving population diversity 

During the development of MOCGPANN, preserving population diversity based 

crowding fill strategy was demonstrated to achieve a relatively more stable 

performance than the original crowding fill strategy. However they actually had no 

significant difference between each other in terms of the hyper-volume and generation 

number. So at the moment, it is not clear whether a more stable performance could 

result in any further advantages. A possible further investigation is to disable the 

connection weight genes to create the ANN controller. In this case, all the evolved 

ANNs’ weights will be equal to 1. This modification will further demonstrate whether 

preserving population diversity or genetic drift will aid the evolutionary search without 

the contribution of connection weight genes in order to find out the best way of 

improving crowding fill strategy for MOCGP even in general multi-objective 

optimisation problems apart from NE. 

 Further comparison between MOCGP and NSGA2 

This work utilises just a single hidden layer for the basic of the ANN’s structure in terms 

of NSAG2 evolution experiment. Although one hidden layer is considered to solve a 

majority of problems, it is still unknown whether one hidden layer is adequate for this 

work. For this reason, more hidden layers should be worth a further investigation for 

the ANN’s structure evolved by NSGA2. On the other hand, this work just utilises one 

option for the population size. Although the number of this population size is sufficient 

to create the Pareto optimal front, it is unknown whether this number is the best 

choice for either NSGA2 or MOCGP. In this case, different options of population size 

should be considered to conduct the comparison between NSAG2 and MOCGP in order 

to investigate how the population size impacts the performance of these two 

algorithms.   
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 NEAT/HyperNEAT for the same evolution experiment 

Although CGPANN produces better performance than NEAT/HyperNEAT for a wide 

range of application areas, it is actually unknown whether CGPANN still outperforms 

NEAT/HyperNEAT for this work. On the other hand, NEAT/HyperNEAT also belongs to 

structure optimisation based NE approach, so NEAT/HyperNEAT is also worth a further 

investigation in terms of multi-objective optimisation for the same evolution 

experiment. 

7.2.2 Future works about the robotic test case 

 Further investigation about the controller performance for generalised 

scenarios 

In terms of all the generalisation experiments, they all had got a same problem that the 

evolved controllers were not working very well when the fault signal was changed to 

another value and when the beacon was moved to a new position. A possible 

explanation is that the current scenario for controller evolution is restricted to only a 

single type of fault signal, which is 0 in this case. Although the evolved controllers are 

robust to different fault occurrence time and different robot initial conditions, their 

performance could be dramatically degraded once the fault signal is changed during 

the robot task. In this case, the robustness to fault signal value would be the first task 

for further investigation. An initial solution is to consider evolving controllers without 

the connections from the faulty sensors. Although this solution will make the 

controllers capable to tolerate any fault signal values, the performance for the fault-

free scenario may be degraded due to the loss of connections from working sensors. 

For this reason, a more effective solution is to set random fault signals during the 

controller evolution. This approach may improve the performance when different fault 

signal values are injected for the online testing experiment as long as sufficient random 

fault signal values are tested during the solution evaluation for the offline evolution 

experiment. In summary, further investigation should be conducted for the problem of 

the robustness to varied fault signals during the controller evolution. The other 

limitation of this work is that the evolved controllers are not robust to different beacon 

positions so as to achieve the phototaxis task. A possible solution is to set a series of 

different distances covering all the possible positions in the arena rather than a fixed 

distance between the robot initial position and the beacon position, in order to obtain 
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more robust controllers to achieve the phototaxis no matter where the beacon is. If 

both of these two problems could be solved, this work will be possibly able to achieve 

not only a more generalised fault tolerant control system design but also a more 

generalised robot phototaxis task. 

 Online controller evolution 

All this work is about the offline controller evolution utilised for online robot fault 

tolerance task. The reason to conduct the offline controller evolution is based on the 

assumption that the possible upcoming fault types have already be considered into the 

controller evolution such as complete failures occurred in sensor 1 and 7 in this work, 

so offline controller evolution is enough in this case. However it cannot guarantee 

whether all the fault types have been included to evolve controllers especially when 

there are some unplanned faults occurred during the robot online task such as other 

sensor faults apart from sensor 1 and 7. In this sense, an online controller evolution 

needs to be conducted in case that an unplanned fault is occurred during the robot 

online task. In a word, online controller evolution is worth a further investigation in 

order to design a complete fault tolerant control system.   

 Another robotic test case 

This work actually just utilises one test case for evolving the robotic fault tolerant 

controllers, which is the robot phototaxis task. Actually, phototaxis is not a difficult task 

for a single robot to complete. So phototaxis may not be sufficient to test the algorithm 

developed in this work. For this reason, one option is to set some obstacles in the 

simulation area in order to investigate how the evolved controller could be performing 

for phototaxis with obstacle. Another option is to set a completely different robot test 

case such as wall following. Wall following is actually more difficult than phototaxis to 

evolve feasible controllers. In terms of phototaxis, there is always one or more sensors 

that could detect the light source as long as the robot is not too far away from the 

beacon. So it is not quite difficult to evolve feasible controllers to complete the task. 

However in terms of wall following, the robot could easily get stuck to the wall or just 

move away from the wall since the proximity sensor has a much shorter detection 

distance than the light sensor. For this reason, it may be more difficult to obtain 

feasible controllers to complete the wall following rather than phototaxis. In summary, 
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another more difficult robot test case needs to be considered in order to test the 

generality of the algorithm developed in this work. 
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Appendix A  
Appendix A lists all the generalisation experiment data throughout the thesis. Each datum in the tables means the time spent for the tested Pareto set of 

controllers for each trial. If the robot could achieve the phototaxis within 1200 ticks, the result would be in the ticks when the robot finishes the task. 

However, if the robot could not achieve the phototaxis task within 1200 ticks, a result of “n” would indicate a failed test. It needs to note that there is no 

time limit for the “Beacon position” test scenario. In this case, as long as the robot could achieve the phototaxis task, a “y” will represent a successful 

phototaxis task; otherwise an “n” will indicate a failed phtotaxis task. 

A.1 Generalisation result based on MOCGP evolved controllers for the basic experiment 

 Pareto 1 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

943 943 n 965 908 908 y y 943 943 941 941 908 908 y y 

919 919 n 935 911 911 y y 920 920 919 919 911 911 y y 

947 947 n 971 926 926 y y 946 946 944 944 927 927 y y 

948 948 n 972 919 919 y y 946 947 945 945 919 919 y y 

923 922 n 937 937 937 y y 924 921 1015 987 938 939 y y 

929 927 n 943 932 930 y y 929 927 1010 994 932 929 y y 

929 929 n 947 934 934 y y 929 929 928 928 935 935 y y 

916 914 n 927 914 911 y y 917 914 1007 979 915 912 y y 

909 909 n 923 915 913 y y 910 910 909 909 916 913 y y 

929 929 n 948 925 925 y y 930 930 929 929 926 926 y y 
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 Pareto 2 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

918 918 n n 909 912 y y 914 913 n n 910 910 y y 

914 917 n n 912 915 y y 915 915 n n 914 914 y y 

915 915 n n 928 931 y y 911 911 n n 929 929 y y 

935 938 n n 920 923 y y 937 937 n n 922 922 y y 

922 925 n n 939 942 y y 924 924 n n 941 940 y y 

947 947 n n 933 933 y y 942 942 n n 928 928 y y 

921 924 n n 935 938 y y 923 923 n n 937 937 y y 

918 918 n n 915 915 y y 914 914 n n 911 911 y y 

903 906 n n 917 916 y y 904 904 n n 912 912 y y 

938 938 n n 927 930 y y 934 933 n n 928 928 y y 

 

 

 

 

 

 



 

169 
 

 Pareto 3 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

926 926 n 954 910 910 y y 926 926 n 944 908 908 y y 

941 941 n 971 913 913 y y 940 940 n 959 912 912 y y 

940 940 n 971 929 929 y n 940 940 n 958 927 927 y y 

906 906 n 933 921 921 y n 905 905 n 922 919 919 y y 

941 940 n 969 940 940 y y 940 940 n 960 938 938 y y 

939 939 n 969 927 927 y y 938 938 n 957 927 927 y y 

913 912 n 941 936 936 y y 912 912 n 928 935 935 y y 

941 941 n 971 910 910 y y 940 940 n 960 909 909 y y 

945 945 n 976 911 911 y n 943 943 n 962 911 911 y y 

924 923 n 952 928 928 y n 923 923 n 941 926 926 y y 
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 Pareto 4 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

943 943 n n 952 952 n n 942 944 960 953 951 952 y* y* 

904 904 n n 936 936 y y 905 905 921 915 934 935 y y 

924 924 n n 920 919 y y 923 924 940 935 918 919 y y 

937 937 n n 928 928 y y 936 937 953 947 926 927 y y 

922 922 n n 909 909 y y 921 922 938 933 909 910 y y 

916 916 n n 919 919 n n 915 916 932 926 918 920 y* y* 

913 913 n n 912 912 y y 913 914 930 924 911 912 y y 

923 923 n n 936 936 y y 922 923 939 934 935 936 y y 

926 926 n n 935 934 y y 926 928 943 937 934 936 y y 

934 934 n n 921 921 n n 932 934 949 943 919 920 y* y* 

Note: * means that in terms of the current test, the robot stays still until the other controller is loaded. However these trials all make the robot reach the 

beacon finally, so it is actually a successful phototaxis if the criterion is whether the robot achieves the phototaxis eventually or not.    
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 Pareto 5 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

925 925 926 925 937 937 y y 925 925 932 925 938 938 y y 

927 927 928 927 934 934 n n 928 928 934 928 934 934 y n 

940 940 942 940 918 918 y y 940 940 948 940 919 919 y y 

938 938 940 938 926 926 y y 938 938 944 938 926 926 y y 

945 945 945 945 908 908 y y 941 941 948 941 908 908 y y 

918 918 918 918 922 922 y y 915 915 921 915 919 919 y y 

913 911 913 912 911 911 n n 909 909 914 909 911 911 n n 

937 937 939 937 940 940 y y 937 937 943 937 936 936 y y 

908 909 908 908 938 938 n n 905 905 911 905 935 935 y y 

920 920 921 920 920 920 y y 917 917 923 917 920 920 y y 
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A.2 Generalisation result based on NSGA2 evolved controllers for the basic experiment 

 Pareto 1 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

927 925 n 965 987 987 y y 937 927 n 959 982 977 y y 

959 951 n 1038 994 995 y y 965 958 n 1005 976 971 y y 

929 928 n 964 947 939 y y 938 927 n 959 956 948 y y 

930 929 n 964 961 953 y y 939 927 n 959 966 959 y y 

959 958 n 1011 930 925 y y 981 970 n 1019 942 932 y y 

953 953 n 1001 950 950 y y 973 961 n 1006 969 957 y y 

944 935 n 1008 936 928 y y 953 946 n 987 946 938 y y 

966 966 n 1026 969 968 y y 993 984 n 1040 998 990 y y 

991 991 n 1074 967 967 y y 978 973 n 1027 995 986 y y 

943 934 n 1006 949 940 y y 952 944 n 985 957 950 y y 
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 Pareto 2 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

946 947 n n 972 972 y y 944 944 n n 950 951 y y 

953 954 n n 1022 1022 y y 951 951 n n 983 984 y y 

939 940 n n 1002 1003 y y 938 938 n n 1005 1004 y y 

964 965 n n 1032 1033 n n 963 962 n n 1053 1052 n n 

956 957 n n 983 984 y y 955 954 n n 983 982 y y 

933 935 n n 950 950 n n 926 928 n n 948 948 n n 

955 956 n n 989 989 n n 940 941 n n 989 988 n n 

1012 1013 n n 927 928 y y 1019 1018 n 1185 925 926 y y 

990 991 n n 928 929 y y 991 990 n n 927 927 y y 

954 955 n n 1004 1005 n n 953 952 n n 1008 1007 n n 
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 Pareto 3 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

919 918 n 993 976 972 y y 917 925 n 972 975 970 y y 

920 915 n 995 980 976 y y 918 919 n 968 979 973 y y 

974 970 n n 1006 1002 n n 972 967 n 1054 1004 998 n n 

1025 1022 n n 989 985 y y 1020 1016 n n 988 982 y y 

939 935 n 1143 1011 1057 n n 938 933 n 993 n n n n 

920 922 n 1000 936 933 n n 921 930 n 977 936 931 n n 

955 951 n n 1067 1065 y y 953 948 n 1018 1052 1050 y y 

946 943 n n 957 953 n n 945 940 n 1004 956 950 n n 

970 967 n n 955 952 y y 969 964 n 1047 954 949 y y 

932 941 n 1111 1002 999 n n 939 950 n 1003 1000 995 n n 
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 Pareto 4 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

928 991 n n 1054 1050 y y 925 990 n n 1029 1025 y y 

986 985 n n 1028 1026 y y 978 977 n n 1011 1009 y y 

954 952 n n 993 992 n n 947 946 n n 985 984 n n 

980 979 n n 1004 1003 n n 972 971 n n 995 994 n n 

950 948 n n 982 981 n n 944 943 n n 974 973 n n 

985 984 n n 954 952 y y 977 976 n n 947 947 y y 

1008 1007 n n 986 984 n n 998 997 n n 977 977 n n 

982 981 n n 925 991 y y 974 973 n n 924 989 y y 

1024 1022 n n 927 994 y y 1009 1007 n n 925 990 y y 

990 989 n n 995 994 n n 982 981 n n 986 986 n n 
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 Pareto 5 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

975 976 n 1003 978 979 y y 956 963 965 964 959 966 y y 

961 963 n 987 973 974 y y 943 951 952 952 954 961 y y 

966 967 n 993 952 954 y y 948 955 957 957 935 943 y y 

932 935 n 954 962 964 y y 921 930 931 931 944 952 y y 

936 934 n 953 932 934 y y 928 932 938 935 921 929 y y 

960 961 n 985 985 984 y y 941 949 951 951 957 960 y y 

955 957 n 981 940 943 y y 938 946 947 947 926 934 y y 

979 978 n 1004 1074 1070 y y 954 957 966 960 1018 1022 y y 

967 968 n 993 1096 1090 y y 948 956 957 957 1029 1033 y y 

943 945 n 967 954 956 y y 927 936 937 937 936 944 y y 
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A.3 Generalisation result based on MOCGP evolved controllers for the extension experiment 

 Pareto 1 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

937 937 n 968 942 942 y y 934 934 n 1016 1124 1123 n y 

949 949 n 981 939 939 y y 945 945 n 1035 937 937 y n 

907 907 n 928 924 924 y y 904 904 n 964 921 921 y n 

933 933 n 963 931 931 y y 931 931 n 1009 929 929 n y 

931 931 n 959 913 913 y y 928 928 n 1005 910 910 y y 

947 947 n 978 920 920 y y 947 947 n 1039 918 918 y y 

917 917 n 944 916 916 y y 915 915 n 984 913 913 y y 

950 950 n 982 938 938 y y 944 944 n 1033 935 935 y y 

924 924 n 949 936 936 y y 921 921 n 993 934 934 y y 

917 917 n 943 925 925 y y 915 915 n 982 922 922 n y 
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 Pareto 2 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

936 942 n n 941 948 y y 934 939 n 1153 941 946 y y 

937 943 n n 938 945 y y 936 941 n 1163 937 943 y y 

938 944 n n 927 929 y y 937 942 n 1164 922 927 y y 

921 922 n n 933 937 y y 914 920 n 1109 930 935 y y 

932 935 n n 917 918 y y 927 933 n 1139 910 916 y y 

913 913 n n 925 927 y y 906 911 n 1089 920 925 y y 

933 936 n n 920 922 y y 928 934 n 1142 914 920 y y 

936 942 n n 938 944 y y 934 939 n 1157 937 942 y y 

947 954 n n 937 943 y y 947 952 n 1189 936 941 y y 

920 922 n n 928 930 y y 914 920 n 1110 923 928 y y 
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 Pareto 3 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

938 939 n 981 939 940 y y 936 936 n n 938 938 n n 

931 932 n 972 937 936 y y 929 929 n n 934 934 y y 

908 909 n 941 920 921 y y 906 906 n 906 919 918 y y 

928 929 n 967 928 928 y y 926 926 n n 926 926 y y 

903 904 n 936 909 911 y y 902 902 n n 908 908 y y 

904 905 n 936 920 921 y y 902 902 n n 918 918 y y 

914 915 n 947 913 914 y y 912 912 n n 911 911 y y 

937 938 n 979 937 938 y y 936 936 n n 935 935 y y 

939 940 n 981 936 938 y y 938 938 n n 934 934 n n 

938 940 n 980 921 922 y y 936 936 n n 920 920 y y 

 

 

 

 

 

 



 

180 
 

 Pareto 4 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

946 946 1035 961 914 916 y y 942 938 994 938 908 908 y y 

951 951 1042 966 919 919 y y 947 951 994 973 911 911 y y 

911 911 986 924 927 935 y y 907 904 955 904 927 928 y y 

927 927 1009 941 927 927 y y 922 919 974 919 919 920 y y 

902 912 985 917 938 947 y y 902 905 945 927 938 938 y y 

936 947 1030 951 928 939 y y 934 936 980 960 927 929 y y 

938 947 1036 959 942 942 y y 938 938 999 948 934 934 y y 

914 925 1003 927 910 921 y y 913 914 958 941 910 910 y y 

916 916 993 929 912 923 y y 908 908 953 908 911 915 y y 

936 944 1031 957 926 934 y y 936 939 983 965 926 928 y y 
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 Pareto 5 

Fault tolerant control type Robust fault tolerant control Switched fault tolerant control 

Test scenario Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Initial 
scenario 

Fault 
signal 

Robot 
condition 

Beacon 
position 

Fault occurrence time (tick) 300 700 300 700 300 700 300 700 300 700 300 700 300 700 300 700 

Result of the tested Pareto set of 
controllers (tick) or (yes/no) 

914 913 n n 911 910 y y 914 914 n n 907 907 y y 

945 944 n n 910 910 y y 944 944 n n 910 910 y y 

919 919 n n 932 932 y y 919 919 n n 926 926 y y 

903 902 n n 918 918 y y 903 903 n n 918 918 y y 

942 941 n n 945 945 y y 941 941 n n 937 937 y y 

945 944 n n 969 968 y y 944 944 n n 927 927 y y 

949 948 n n 934 933 y y 940 940 n n 933 933 y y 

913 912 n n 979 979 y y 912 912 n n 909 909 y y 

954 953 n n 989 990 y y 935 935 n n 910 911 y y 

933 933 n n 933 935 y y 933 933 n n 925 925 y y 
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Appendix B  
B.1 Sensitivity analysis for MOCGPANN parameters 

This section shows how these parameters for MOCGPANN mentioned in section 4.5.1.1 

are adjusted to their optimal values, which will be shown as the following.  

 Nconv 

In terms of the convergence criteria parameters, Figure B.1 shows the comparison of 

Nconv for hyper-volume and Figure B.2 shows that for generation number. Both of 

these 2 comparisons perturbed the parameter Nconv with value 20, 30 and 40. Figure 

B.3 displays the Vargha-Delaney A-test score for parameter Nconv pertubation from 

the Parameter Robustness technique developed in Spartan.  

 

Figure B.1: Nconv comparison for hyper-volume  
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Figure B.2: Nconv comparison for generation number 

 

As can be seen from Figure B.3, hyper-volume has nearly no difference among 20 to 40 

and number of generations has more impact but still no large difference. Figure B.1 

demonstrates a slight decrease of hyper-volume from 20 to 40 of Nconv, which can be 

ignored and Figure B.2 presents a more significant increase of number of generations 

from 20 to 40 of Nconv but still no large difference. In this sense, Nconv has no 

influence on hyper-volume among 20 to 40 but it has more or less impact on the 

number of generations in spite of no large difference. A possible explanation is that 

more Nconv could result in more generations to make the evolution converged. 

However there is still nearly no difference for hyper-volume, so it is worth trying 

smaller Nconv values and seeing whether it could make any changes for the 

experiment responses.  
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Figure B.3: A-test score for Nconv comparison 

 

 Rconv 

Figure B.4 shows the Rconv comparison for hyper-volume, Figure B.5 shows the Rconv 

comparison for generation number. Both of these 2 comparisons perturbed Rconv with 

1.01, 1.001 and 1.0001. Figure B.6 displays the Vargha-Delaney A-test score for 

parameter Rconv. 
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Figure B.4: Rconv comparison for hyper-volume 

 

 

 

Figure B.5: Rconv comparison for generation number 
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Figure B.6: A-test score for Rconv comparison 

 

As can be seen from these results for Rconv, different parameter values actually lead to 

no significant different for hyper-volume. However larger Rconv values result in smaller 

responses for generation number especially when Rconv is 1.01, which has already 

caused large difference from Vargha-Delaney A-test. In this sense, it seems that larger 

Rconv value could result in better response for convergence. A possible explanation is 

that larger Rconv could make evolution converged earlier, but there is nearly no 

difference for hyper-volume response. So it is still worth trying to set larger values for 

Rconv and see whether there will be any improvement for the experiment responses. 

 NumNode 

In terms of the optimization algorithm parameters, Figure B.7 shows the hyper-volume 

comparison results for NumNode and Figure B.8 shows the generation number 

comparison results for it. Both of these 2 comparisons perturbed NumNode with 10, 20 

and 100. And Figure B.9 indicates the Vargha-Delaney A-test score for those 

comparisons.  
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Figure B.7: NumNode comparison for hyper-volume  

 

 

 

Figure B.8: NumNode comparison for generation number 
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Figure B.9: A-test score for NumNode comparison 

 

As can be seen from the comparison results, hyper-volumes of different NumNode 

values show no large difference. Even so, the hyper-volume of the baseline value 20 

still achieves the best performance with the largest response. On the other hand, the 

generation number of value 100 nearly reaches the large difference criteria with a 

worst performance. Although there is no large difference for value 10, the generation 

number of baseline value 20 still obtains the least number of generations for 

convergence, which still performs the best. In conclusion, the baseline value 20 of 

NumNode achieves the best performance compared with 10 and 100 in terms of both 

hyper-volume and generation number responses. So there is no need to change the 

value of NumNode either for increase or decrease.    

 NodeArity 

Figure B.10 shows the hyper-volume comparison results for different NodeArity. Figure 

B.11 shows the generation number comparison result for them. Both of them 

perturbed NodeArity values with 2, 5 and 10. And Figure B.12 demonstrates the 

Vargha-Delaney A-test scores for those comparisons.  
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Figure B.10: NodeArity comparison for hyper-volume 

 

 

 

Figure B.11: NodeArity comparison for generation number 
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Figure B.12: A-test score for NodeArity comparison 

 

As can be seen from the NodeArity comparison results, the value of 2 performs the 

worst with the lowest hyper-volume in large difference and slightly higher generation 

number compared to baseline value. The value of 10 also doesn’t achieve the best 

performance. Although the hyper-volume is just slightly higher than that from baseline 

value, it needs more generations than baseline value to make the evolution converged. 

And the significant difference of generation number is larger than that of hyper-volume, 

although they are both in the area of no large difference. A possible explanation is that 

more NodeArity may lead to a better response of hyper-volume, but it needs much 

more effort to make the evolution converged, which is not beneficial to the evolution. 

In conclusion, although there is no large difference between value of 10 and the 

baseline value, the results still indicate that the baseline value is the best option for 

NodeArity. So there is no need to further increase the baseline value. 

 WeightRange 

Figure B.13 shows the WeightRange comparison for hyper-volume and Figure B.14 

shows that for generation number. WeightRange was perturbed with +/3, +/-5 and +/-

10. And Figure B.15 illustrates the Vargha-Delaney A-test scores for those comparisons. 
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Figure B.13: WeightRange comparison for hyper-volume 

 

 

 

Figure B.14: WeightRange comparison for generation number 
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Figure B.15: A-test score for WeightRange comparison 

 

According to the comparison results for WeightRange, the value of +/-3 obtains the 

worst performance with the lowest hyper-volume and largest number of generations 

to make evolution converged which has already caused the large difference compared 

to baseline value. However the value of +/-10 achieves a better performance than that 

of the baseline value of +/-5. The value of +/-10 has a slightly larger hyper-volume but 

with a much less generation number. Although there is no large difference for both of 

these 2 responses, the value of +/-10 still achieves larger hyper-volume with less 

generations compared to baseline value responses, which indicates a promising way to 

get better performance with larger WeightRange. In conclusion, it is worth trying to set 

a larger WeightRange value than +/-10 and see whether there will be any further 

improvement on the experiment performance. 

 MutationRate 

Figure B.16 shows the MutationRate comparison for hyper-volume and Figure B.17 

shows that for generation number. MutationRate was perturbed with value of 0.01, 
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0.05 and 0.1. Figure B.18 illustrates the Vargha-Delaney A-test scores for the 

comparisons. 

 

Figure B.16: MutationRate comparison for hyper-volume 

 

 

Figure B.17: MutationRate comparison for generation number 
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Figure B.18: A-test score for MutationRate comparison 

 

As are shown in these MutationRate comparison results, the baseline value of 0.05 

achieves the best experiment performance compared with the others. The value of 

0.01 and 0.1 both result in lower hyper-volumes with more generations to make 

evolution converged compared to the performance of baseline value. In addition, the 

value of 0.1 also reaches the large difference area in terms of generation number, 

which means it costs much more generations to obtain a lower hyper-volume 

compared to baseline value. Although the value of 0.01 has no large difference in terms 

of both 2 responses compared with baseline value, the Vargha-Delaney A-test still 

demonstrates that the baseline value is currently the best option for MutationRate. In 

conclusion, the baseline value achieves better experiment performance than the other 

options. So there is no need to change the current value of MutationRate.  

 RecurrentConnectionProbability 

Finally, Figure B.19 shows the RecurrentConnectionProbability comparison for hyper-

volume and Figure B.20 shows that for generation number. Both of 2 comparisons 

perturbed the value of RecurrentConnectionProbability with 0, 0.1, 0.3 and 0.5. It 

needs to note that the value of 0 actually doesn’t trigger any mutation to create 
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recurrent connections in the controller. In this sense, this neutral network controller 

becomes a feed forward controller without any recurrent connections. In other words, 

this RecurrentConnectionProbability comparison can be considered as a comparison 

between feed forward controller and recurrent controllers with different recurrent 

connection probabilities. Figure B.21 illustrates the final Vargha-Delaney A-test 

comparison for the perturbed values. 

 

Figure B.19: RecurrentConnectionProbability comparison for hyper-volume 

 

 

Figure B.20: RecurrentConnectionProbability comparison for generation number 
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Figure B.21: A-test score for RecurrentConnectionProbability comparison 

 

These comparisons of RecurrentConnectionProbability indicate an unexpected result 

for the parameter value selection. From the value 0 to 0.5, the hyper-volumes drop 

continually with a large difference of 0.5 finally. At the same time, the generation 

numbers also keep increasing from value 0 to 0.5 and the large difference already 

occurs from 0.3. Generally speaking, the experiment performance is declining with the 

increase of RecurrentConnectionProbability. Although there is no large difference 

between the performance of 0 and 0.1, those results still indicate that the value of 0 

achieves a better experiment performance rather than that of 0.1. From the analysis, it 

seems that a feed forward neural network controller performs better than any other 

recurrent neural network controllers with different recurrent connection probabilities. 

Although the recurrent connection probability demonstrates advantages to evolve 

recurrent neural networks in [30], this work doesn’t benefit any more from the 

recurrent neural network controllers. In conclusion, the value of 

RecurrentConnectionProbability needs to be set 0 instead of 0.1 for a better 

experiment performance. That is to say, a feed forward neural network controller is 

currently best suited to this work. 
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In summary, Nconv and Rconv both have impact on the experiment performance 

compared with the baseline values. On the other hand, WeightRange is the only 

parameter which could also result in different experiment performance compared with 

its baseline value. In addition to WeightRange, RecurrentConnectionProbability also 

affects the experiment performance. However the best value of it, which is 0, has 

already been found based on the sensitivity analysis of the currently selected 

parameter values. In this sense, NumNode, NodeArity and MutationRate will keep the 

baseline values. RecurrentConnectionProbability will be the new value found based on 

the sensitivity analysis. Apart from that, a further investigation needs to be conducted 

to see what values of Nconv, Rconv and WeightRange will be most suited to the 

experiment performance, which will be discussed in the next section B.2. 

B.2 Further investigation on the sensitivity analysis of MOCGPANN 
parameters 

This section describes a further investigation based on the previous sensitivity analysis 

results by the Parameter Robustness technique in Spartan. As mentioned in the 

previous section, Nconv, Rconv and WeightRange all have more or less influence on the 

experiment performance rather than their baseline values. In this case, more 

parameter value options were selected to do the evolution experiment again for each 

of these 3 parameters respectively and the Parameter Robustness technique was also 

utilised to check whether the new selected values were more suited to the experiment 

performance. 

 Nconv 

Figure B.22 shows a further Nconv comparison for hyper-volume and Figure B.23 shows 

that for generation number. The value of Nconv was further perturbed with smaller 

values including 5, 10 and 15 in addition to 20, 30 and 40. Figure B.24 demonstrates the 

Vargha-Delaney A-test comparison including those further perturbed values. 

As can be seen from the results, the hyper-volume decreases with the decline of Nconv 

from 20 and the large difference appears when the value reaches 5. On the other hand, 

generation number drops straight from 40 to 5 with the large difference appeared 

around 15. In this sense, the most suited value would be 20 for Nconv since the hyper-

volumes of 20, 30 and 40 are quite similar but the generation number of 20 achieves 

the least. Another option is to select 15. Although its hyper-volume is lower than that 
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of 20, 30 and 40, it is still not far from the no difference criteria but with a much less 

generation number, which has already reached the large difference area. In conclusion, 

the value of Nconv could be set 20 rather than the baseline value 30. Although the 

value of 15 may be another option, the value of 20 may guarantee a better 

performance due to 5 more generations for the convergence observation.  

 

Figure B.22: Nconv further comparison for hyper-volume 

 

 

Figure B.23: Nconv further comparison for generation number 
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Figure B.24: A-test score for Nconv further comparison 

 

 Rconv 

Figure B.25 shows the Rconv further comparison for hyper-volume and Figure B.26 

shows that for generation number. Both of these two further comparisons set slightly 

larger values for Rconv, which were 1.05 and 1.1 in addition to the previously 

perturbed values 1.0001, 1.001 and 1.01. Figure B.27 indicates the Vargha-Delaney A-

test comparison for this further comparison.  

According to the further comparison results for Rconv, the hyper-volumes decrease all 

the way from 1.0001 to 1.1 with a straight decline of generation number at the same 

time. The large difference appears around 1.1 for hyper-volume but it appears around 

1.01 for generation number. Generally speaking, it is common that the hyper-volume 

will decrease with the decline of generation number when Rconv becomes larger since 

larger Rconv could result it earlier convergence with degraded performance. However 

1.01 is still the most suited value for this further comparison since the hyper-volume of 

1.01 has no obvious difference with that from baseline value but the generation 

number drops significantly. As a contrary, 1.05 has less generation number than 1.01 
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but the hyper-volume is far from the no difference criteria to some extent, which is not 

beneficial to experiment performance. In conclusion, the most suited value of Rconv 

could be 1.01 instead of 1.001. 

 

Figure B.25: Rconv further comparison for hyper-volume 

 

 

Figure B.26: Rconv further comparison for generation number 
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Figure B.27: A-test score for Rconv further comparison 

 

 WeightRange 

In terms of the WeightRange, Figure B.28 shows the further comparison result for 

hyper-volume and Figure B.29 shows that for generation number. In this further 

comparison, WeightRange was set more extensive values like +/-15 and +/20 besides 

the previously set values +/3, +/5 and +/-10. Finally, Figure B.30 illustrates the A-test 

score for the WeightRange further comparisons.  

As can be seen from the WeightRange further comparison results, the hyper-volumes 

of +/-10, +/-15 and +/-20 have actually no obvious difference compared to that of the 

baseline value +/-5. However all of the generation numbers of +/-10, +/-15 and +/-20 

are less than that of the baseline value with some difference to some extent. An 

interesting point is that the experiment performances of +/-10, +/-15 and +/-20 are 

actually quite similar not only in hyper-volume but also in generation number. A 

possible explanation is that the WeightRange of +/-10 has already made the 

experiment performance saturated, so there is nearly no improvement when setting 
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even larger values. In conclusion, +/-10 can be utilised as the currently best suited 

value for WeightRange instead of the baseline value +/-5. 

 

Figure B.28: WeightRange further comparison for hyper-volume 

 

 

Figure B.29: WeightRange further comparison for generation number 
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Figure B.30: A-test score for WeightRange further comparison 

 

In summary, the new value of Nconv can be set 20 with 1.01 as the new value for Rconv. 

+/-10 can be used as a new WeightRange value. In addition, 

RecurrentConnectionProbability will be set 0 instead based on the sensitivity analysis in 

the previous section. However it needs to note that this kind of Parameter Robustness 

technique utilises a one at a time approach to tune these parameters. So each 

parameter is tuned with the same values remained for other parameters. In this case, 

the best parameter value may be just suited to the situation where the other 

parameters still keep their baseline values. So it is still not sure whether 2 or more 

parameters with the new values still perform better than that with baseline parameter 

values. To investigate this problem, the parameters could be tuned in two groups 

which are convergence parameters and CGP parameters. The convergence parameters 

refer to Nconv and Rconv, which are used to set a suited convergence criterion for 

observing the performance. And CGP parameters are related to optimization algorithm 

itself which include WeightRange and RecurrentConnectionProbability to be 

investigated based on the Parameter Robustness technique results. In this case, 

convergence parameters will be perturbed firstly with the calibration CGP parameter 
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values from the above results of the further sensitivity analysis. And then CGP 

parameters will be perturbed with the convergence parameter calibration values. Both 

of these two parameter perturbations will be compared with the baseline parameter 

values which were set initially. 

 Nconv with Rconv 

In terms of Nconv and Rconv, the parameter values will be perturbed by 20 with 1.01; 

20 with 1.001; 30 with 1.01 and 30 with 1.001. WeightRange and 

RecurrentConnectionProbability are kept for their calibration values which are +/-10 

and 0. All the other CGP parameters including NumNode, NodeArity and MutationRate 

are fixed with the baseline values. Finally they will be compared with the baseline 

parameter values, which were set at the beginning of the experiment, in terms of 

hyper-volume and generation number. However the Parameter Robustness technique 

in Spartan is not available for printing the graph based on the A-test score for this kind 

of group parameter comparison. So the A-test score will only be listed in table rather 

than graph and the Mann-Whitney U-test score will also be utilised in addition to the A-

test for a more meaningful comparison. Figure B.31 shows the hyper-volume 

comparisons for these four perturbed Nconv and Rconv combinations with the baseline 

values. Figure B.32 shows the generation number comparisons for those Table B.1 

displays the U-test scores of the comparisons for the perturbed convergence 

parameters and Table B.2 displays the A-test scores for them.  

 

Figure B.31: Hyper-volume comparison for convergence parameter calibration 
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Figure B.32: Generation number comparison for convergence parameter calibration 

Table B.1: U-test scores of the comparisons for convergence parameter calibration 

 Baseline 20 & 1.01 20 & 1.001 30 & 1.01 30 & 1.001 

Hyper-
volume 

1 0.11876 0.00288 0.4965 0.03156 

Generation 
number 

1 <0.00001 <0.00001 <0.00001 <0.00001 

 

Table B.2: A-test scores of the comparisons for convergence parameter calibration 

 Baseline 20 & 1.01 20 & 1.001 30 & 1.01 30 & 1.001 

Hyper-
volume 

0.5 0.455692 0.421474 0.481269 0.437491 

Generation 
number 

0.5 0.954808 0.832945 0.895212 0.719441 

 

As can be seen from Table B.1, 20 with 1.001 and 30 with 1.001 demonstrate significant 

difference compared to the baseline value response in terms of hyper-volume, where 

the p values are below 0.05. However the generation number responses for all of the 

four combinations achieve significant difference, where the p values are all below 

0.00001. In this case, it is necessary to conduct an A-test to further investigate whether 

they have different effect sizes compared to the baseline value response and that’s 

why A-test based on effect size is required. As can be seen from Table B.2, all of the 

parameter combinations have similar but better hyper-volume responses compared to 

the baseline value, where the A-test scores are all below 0.5. However they all obtain 

small or even no effect sizes between 0 and 0.14, where the corresponding scores are 
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between 0.5 and 0.36. This consequence indicates that although 20 with 1.001 and 30 

with 1.001 have significant difference compared to the baseline value response, they 

both actually have small effect. However in terms of generation number, all of them 

present more or less effects compared to the baseline value. Among them, the 

combination of 20 with 1.01 achieves the least generation number to make evolution 

converged, whose A-test score is the largest. Another option is 30 with 1.01 which 

achieves the second least generation number. However to be more specific, 20 with 

1.01 has slightly larger hyper-volume response than that of 30 with 1.01 but the 

generation number of 20 with 1.01 is also less than 30 with 1.01. In other words, 20 

with 1.01 spend fewer generations to get a better performance compared to 30 with 

1.01. The third place in generation number response is 20 with 1.001. It achieves a 

better hyper-volume performance but with a larger generation number. This 

phenomenon also implies that a higher resolution Rconv value could result in more 

generations but with better performance. So it depends on which response is more 

important from the perspective of experiment designer: a faster convergence with a 

worse performance or a better performance with a slower convergence. 30 with 1.001 

ranks the final place in generation number but still obtains a similar hyper-volume 

compared to 20 with 1.001, which could be eliminated. As a consequence, 20 with 1.01 

could be currently considered as the first choice for Nconv and Rconv. In addition, 20 

with 1.001 would be also an alternative choice since it achieves a better hyper-volume 

response than 20 with 1.01 but a worse generation number response. In conclusion, 20 

with 1.01 would be currently a first combination for Nconv and Rconv with 20 with 

1.001 as an alternative choice depending on which response is more relevant to the 

experiment designer. Both of them were investigated coupled with the calibration 

values for WeightRange and RecurrentConnectionProbability, which are +/-10 and 0 

respectively.  

 WeightRange with RecurrentConnectionProbability 

In terms of the CGP parameters, WeightRange and RecurrentConnectionProbability are 

perturbed with +/-10 with 0; +/-10 with 0.1; +/-5 with 0 and +/-5 with 0.1. All the other 

CGP parameters including NumNode, NodeArity and MutationRate are fixed with the 

baseline values. Moreover, Nconv and Rconv are kept with 20 and 1.01 as calibration 

values for this comparison. Figure B.33 shows the hyper-volume comparison result for 

perturbed WeightRange and RecurrentConnectionProbability. Figure B.34 shows that 
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for generation number. Table B.3 displays the U-test scores for these comparisons and 

Table B.4 displays the A-test for them.   

 

Figure B.33: Hyper-volume comparison for CGP parameters calibration 

 

Figure B.34: Generation number comparison for CGP parameters calibration 

Table B.3: U-test scores of the comparisons for CGP parameter calibration 

 Baseline +/-10 & 0 +/-10 & 0.1 +/-5 & 0 +/5 & 0.1 

Hyper-
volume 

1 0 .11876 0 .18352 0 .04036 < 0.00001 

Generation 
number 

1 < 0.00001 < 0.00001 < 0.00001 < 0.00001 
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Table B.4: A-test scores of the comparisons for CGP parameter calibration 

 Baseline +/-10 & 0 +/-10 & 0.1 +/-5 & 0 +/5 & 0.1 

Hyper-
volume 

0.5 0.455692 0.5391032 0.556328 0.6432423 

Generation 
number 

0.5 0.954808 0.9088182 0.8892483 0.8800448 

 

As can be seen from Table B.3 and Table B.4, the hyper-volume responses for the 

perturbed parameter values also have no large effect compared to the baseline values. 

Although +/-5 with 0 and +/-5 with 0.1 both achieve significant difference from the U-

test compared to the baseline value response, they actually obtain worse performance 

than that of the baseline value, where the A-test scores are both above 0.5. However 

the value of +/-10 with 0 is the only one that outperforms the baseline value in terms 

of hyper-volume with an A-test score below 0.5 in spite of quite small effect size. In 

terms of the generation number, although all of them have similar A-test scores with 

the large effect size, +/-10 with 0 still achieves the least generation number to make 

evolution converged. That is to say, +/-10 with 0 has got the relatively best experiment 

performance with the least generation number. In conclusion, +/-10 with 0 is currently 

the best parameter combination for WeightRange and RecurrentConnectionProbability 

with Nconv and Rconv remained at 20 and 1.01, which are the calibration values. 
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Appendix C  
C.1 Number of hidden nodes selection  

The results are obtained based on five different numbers of hidden nodes including 6, 8, 

10, 12 and 14 for the ANN in terms of hyper-volume and generation number responses 

in order to explore how many numbers of hidden nodes are sufficient. Figure C.1 shows 

the hyper-volume comparison for different number of hidden nodes and Figure C.2 

shows that for generation number comparison. Table C.1 lists the U-test scores for the 

comparison and Table C.2 lists the corresponding A-test scores. 

 

Figure C.1: Hyper-volume comparison for different number of hidden nodes optimized by NSGA2 
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Figure C.2: Generation number comparison for different number of hidden nodes optimized by 
NSGA2 

Table C.1: U-test scores for different number of hidden nodes comparison based on NSGA2 

 6 Nodes 8 Nodes 10 Nodes 12 Nodes 14 Nodes 

HV 1 < 0.00001 < 0.00001 < 0.00001 < 0.00001 

Gen 1 0.55662 0.885292 < 0.00001 < 0.00001 

 

Table C.2: A-test scores for different number of hidden nodes comparison based on NSGA2 

 6 Nodes 8 Nodes 10 Nodes 12 Nodes 14 Nodes 

HV 0.5 0.42731 0.412712 0.350605 0.348853 

Gen 0.5 0.5082 0.501999 0.573866 0.5743 

 

The statistics analysis uses the responses of 6 nodes as the standard data and other 

responses will be compared with it based on U-test and A-test respectively. As can be 

seen from Table C.1, apart from the generation number responses for 8 nodes and 10 

nodes, other responses all achieve the significant difference compared to 6 nodes with 

p values < 0.00001%. To assess how much the difference is, Table C.2 lists the 

corresponding effect size scores. According to Table C.2, the generation number 

responses for 8 nodes and 10 nodes are both quite close to 0.5, which correspond to 

the U-test scores in Table C.1 without any significant difference. However the hyper-

volume of 8 nodes and 10 nodes are both below 0.5 with scores around 0.42, which lie 

in the small effect size interval [0.36, 0.44]. That is to say, the performance of 8 nodes 

and 10 nodes achieve higher hyper-volume with small effect sizes but the generation 

numbers are quite similar compared to 6 nodes. In addition, the performance of 12 

nodes and 14 nodes are both much better than that of 8 nodes and 10 nodes. In terms 

of the hyper-volume, 12 nodes and 14 nodes achieve much higher responses than that 

of 8 and 10 nodes with A-test scores around 0.35, which means their effect sizes are 

already located in the medium interval [0.29, 0.36]. On the other side, their generation 

number responses are both much less than 8 and 10 nodes with scores around 0.57, 

which lie in the small effect size interval [0.56, 0.64]. That is to say, 12 and 14 nodes 

realise higher hyper-volume responses with much less generation numbers than 8 and 

10 nodes. In this sense, 12 or 14 nodes in the hidden layer seem a suitable choice for 

the NSGA2 based ANN’s structure. Although more nodes could be tested for the ANN’s 

structure, 14 nodes seem to be already saturated for the hidden layer with quite similar 

responses with 12 nodes. In this case, 12 nodes or 14 nodes could be both considered 
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as the optimal ANN’s structure for connection weight evolution. Therefore, 12 nodes 

are selected for the ANN’s hidden layer and this type of structure will be utilised 

throughout this chapter for the evolution fault tolerant experiment based on 

connection weight optimization with NSGA2. 

C.2 Sensitivity analysis for NSGA2 parameters 

This section shows how these four parameters for NSGA2 are tuned to their optimal 

values including the crossover probability (PCrossover), mutation probability 

(PMutation), distribution index for crossover (DICrossover) and mutation (DIMutation) 

respectively. All the comparison results will be displayed in boxplot and their 

corresponding A-test scores will also be presented in graphs created by Parameter 

Robustness technique as following. 

 PCrossover 

Figure C.3 shows the PCrossover comparison results for hyper-volume and Figure C.4 

shows that for generation number. Figure C.5 illustrates the A-test scores in the graph 

created by Parameter Robustness technique in Spartan.  

 

Figure C.3: PCrossover comparison for hyper-volume 
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Figure C.4: PCrossover comparison for generation number 

 

Figure C.5: A-test score for PCrossover comparison 

As can be seen Figure C.3 and Figure C.4, the hyper-volume is increasing but the 

generation number is decreasing with the growth of PCrossover, which indicates that 

the PCrossover baseline value of 0.9 achieves the best responses with the largest 

hyper-volume in the least generation number. Figure C.5 also demonstrates the same 

result in the A-test scores. The A-test score for hyper-volume is decreasing to 0.5 of the 
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baseline value response and the score for generation number is increasing to 0.5 of the 

baseline value response. That is to say, the hyper-volume is rising and the generation 

number is declining until they reach the baseline value responses. In conclusion, the 

baseline PCrossover value of 0.9 achieves the best responses for both of hyper-volume 

and generation number compared to 0.5 and 0.7.  

 PMutation 

Figure C.6 shows the PMutation comparison for hyper-volume and Figure C.7 shows 

that for generation number. Figure C.8 illustrates the A-test scores for these two 

comparisons. 

 

Figure C.6: PMutation comparison for hyper-volume 

 

Figure C.7: PMutation comparison for generation number 
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Figure C.8: A-test scores for PMutation comparison 

 

As can be seen from Figure C.6 and Figure C.7, the PMutation value of 0.05 achieves 

the highest hyper-volume and the value of 0.1 obtains the least generation number. 

According to Figure C.8, it displays the same result where 0.05 has the lowest A-test 

score for hyper-volume and 0.1 has the highest A-test score for generation number 

with large difference compared to the baseline value. To be more specific, only 0.05 

achieves the highest hyper-volume although its generation number is not the lowest. 

0.1 achieves the lowest generation number but its hyper-volume is quite similar to the 

baseline response without any obvious difference. In this case, it depends on which 

aspect the designer is more focused: the hyper-volume or the generation number. If 

hyper-volume is more relevant for the given task, 0.05 is the most suited value. But if 

generation number is more relevant, 0.1 would be the most suited one.  

However it needs to note that the aim of the NSGA2 based evolution experiment is to 

compare its performance with MOCGP based results. Due to the huge difference of 

these two optimisation algorithms, it is meaningless to consider the generation number 

into the comparison between each other. So only the performance, which is the hyper-

volume response, will be taken into account for the comparison between NSGA2 and 
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MOCGP for the evolution experiment. In this case, the hyper-volume is more focused 

for this task, so the value of 0.05 will be considered as the most suited value instead of 

the baseline value of 0.02 for parameter PMutation.  

 DICrossover 

Figure C.9 shows the DICrossover comparison for hyper-volume and Figure C.10 shows 

that for generation number. And Figure C.11 illustrates the A-test scores for these two 

comparisons. 

 

Figure C.9: DICrossover comparison for hyper-volume 

 

Figure C.10: DICrossover comparison for generation number 
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Figure C.11: A-test score for DICrossover comparison 

 

As can be seen from Figure C.9 and Figure C.10, all the four values for DICrossover are 

quite similar in terms of hyper-volume and generation number responses. Figure C.11 

also presents the same result with A-test score that all the other three values actually 

achieve the similar A-test score with quite small difference compared to the baseline 

value. To be more specific, the value of 10 obtains the relatively most obvious 

difference than the others. However its response for hyper-volume is the lowest with 

the highest value for generation number, which is the worst choice. In conclusion, no 

best value has been found for parameter DICrossover since all the four options have 

got quite similar responses for both the hyper-volume and generation number. In this 

case, the baseline value of 20 could be still utilised for the parameter DICrossover. 

 DIMutation 

Figure C.12 shows the DIMutation comparison for hyper-volume and Figure C.13 shows 

that for generation number. Finally Figure C.14 displays the corresponding A-test 

scores for them. 
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Figure C.12: DIMutation comparison for hyper-volume 

 

 

Figure C.13: DIMutation comparison for generation number 

 

As is shown in Figure C.12 and Figure C.13, the hyper-volume response for DIMitation is 

declining gradually until it reaches the baseline point of 20. On the other hand, the 

generation number response is growing all the way to the baseline point. This result 

indicates that the first value of 5 is the most suited value rather than baseline value of 

20. According to Figure C.14, the A-test scores also demonstrate the same result that 

the value of 5 achieves the lowest score for hyper-volume and the highest score for 
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generation number. That is to say, its hyper-volume is the highest and its generation 

number is the lowest among all the options. In conclusion, the value of 5 is the most 

suited value for parameter DIMutation instead of the baseline value of 20. 

 

Figure C.14: A-test score for DIMutation comparison 

 

  



 

219 
 

Bibliography 

[1] M. Blanke, “What is fault-tolerant control?,” Safeprocess, 2000. 

[2] L. E. G. Castanon and A. V. Martinez, “Artificial Intelligence Methods in Fault 

Tolerant Control,” 2009. 

[3]  . Eterno,  . Weiss, D. Looze, and A. Willsky, “Design issues for fault tolerant-

restructurable aircraft control,” in 1985 24th IEEE Conference on Decision and 

Control, 1985, no. December, pp. 900–905. 

[4] M. Blanke, M. Staroswiecki, and N. E. Wu, “Concepts and methods in fault-

tolerant control,” Proc. 2001 Am. Control Conf. Cat No01CH37148, vol. 4, no. 

June, pp. 2606–2620, 2001. 

[5] M. Blanke, J. Lunze, M. Kinnaert, M. Staroswiecki, and J. Schröder, Diagnosis and 

fault-tolerant control. 2006. 

[6] Y. Zhang and  .  iang, “Bibliographical review on reconfigurable fault-tolerant 

control systems,” Annu. Rev. Control, vol. 32, pp. 229–252, 2008. 

[7]  . Lunze and  . Richter, “Control Reconfiguration : Survey of Methods and Open 

Problems,” 2006. 

[8] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and 

design, vol. 21. 2005. 

[9] A. Numsomran, K. Witheephanich, V. Tipsuwanporn, and N. Klinsmitth, “Robust 

controller design for plant uncertainty,” 2006 SICE-ICASE Int. Jt. Conf., pp. 109–

113, 2006. 

[10] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, 

Evolutionary Programming, Genetic Algorithms. 1996. 

[11] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, vol. 12, no. 2. 

2003. 

[12] E. Zitzler, K. Deb, and L. Thiele, “Comparison of Multiobjective Evolutionary 

Algorithms: Empirical Results,” Evol. Comput., vol. 8, no. 2, pp. 173–195, 2013. 



 

220 
 

[13] P. Schroder,  a.  . Chipperfield, P.  . Fleming, and N. Grum, “Fault tolerant 

control of active magnetic bearings,” IEEE Int. Symp. Ind. Electron. Proceedings. 

ISIE’98 (Cat. No.98TH8357), vol. 2, pp. 573–578, 1998. 

[14] M. Blanke, S. A. B, and C. P. Lunau, “Fault-tolerant control systems-- A holistic 

view,” Control Eng. Pract., vol. 5, no. 5, pp. 693–702, 1997. 

[15]  . R. Koza, M. a. Keane,  . Yu, F. H. Bennett, and W. Mydlowec, “Automatic 

Creation of Human-Competitive Programs and Controllers by Means of Genetic 

Programming,” Genet. Program. Evolvable Mach., vol. 1, no. 1, pp. 121–64, 2000. 

[16]  . Koza, “Genetic programming: on the programming of computers by natural 

selection.,” Cambridge,MA:MITPress, 1992. 

[17] I. Sekaj and  . Perkacz, “Genetic programming - based controller design,” 2007 

IEEE Congr. Evol. Comput., pp. 1339–1343, 2007. 

[18]  . R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, “Genetic programming III: 

darwinian invention and problem solving,” IEEE Trans. Evol. Comput., vol. 3, no. 

3, 1999. 

[19] D. Searson, M. Willis, and G. Montague, “Chemical Process Controller Design 

Using Genetic Programming,” in Genetic Programming 1998: Proceedings of the 

Third Annual Conference, 1998, pp. 359–364. 

[20] B. McKay, M. Willis, and G. Barton, “Steady-state Modelling of Chemical Process 

System using Genetic Programming,” Comput. Chem. Eng., vol. 21, pp. 981–996, 

1997. 

[21]  . R. Koza,  . Yu, M. A. Keane, and W. Mydlowec, “Evolution of a controller with a 

free variable using genetic programming,” in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 2000, vol. 1802, pp. 91–105. 

[22] T. Astrom, K. & Hagglund, “PID Controllers: Theory, Design, and Tuning.” 1995. 

[23]  . Imae, S. Nakatani, and  . Takahashi, “GP based flight control in the windshear,” 

IEEE SMC’99 Conf. Proceedings. 1999 IEEE Int. Conf. Syst. Man, Cybern. (Cat. 

No.99CH37028), vol. 2, no. c, pp. 650–653, 1999. 



 

221 
 

[24] K. L. Ng and R.  ohansson, “Evolving Programs and Solutions Using Genetic 

Programming with Application to Learning and Adaptive Control,” J. Intell. Robot. 

Syst., vol. 35, no. 3, pp. 289–307, 2002. 

[25] K. J. Åström and B. Wittenmark, Adaptive Control, vol. 32. 1989. 

[26] M. Ebner, “Evolution of a control architecture for a mobile robot,” in 

Proceedings of the Second International Conference on Evolvable Systems: From 

Biology to Hardware (ICES 98), 1998, vol. 1478, pp. 303–310. 

[27] C. Lazarus and H. Hu, “Using genetic programming to evolve robot behaviours,” 

in 3rd British Conference on Autonomous Mobile Robotics & Autonomous 

Systems, 2001. 

[28] W.-P. Lee and  . Hallam, “Evolving reliable and robust controllers for real robots 

by genetic programming,” Soft Comput. -- A Fusion Found. Methodol. Appl., vol. 

3, no. 2, pp. 63–75, 1999. 

[29] J. F. Miller, Cartesian Genetic Programming. 2011. 

[30] A.  . Turner, “Evolving Artificial Neural Networks using Cartesian Genetic 

Programming,” 2015. 

[31] B. Kadlic, I. Sekaj, and D. Pernecký, “Design of continuous-time controllers using 

cartesian genetic programming,” in IFAC Proceedings Volumes (IFAC-

PapersOnline), 2014, vol. 19, no. 2007, pp. 6982–6987. 

[32] B. Kadlic and I. Sekaj, “Controller Design Based on Cartesian Genetic 

Programming in MATALB,” System, vol. 3, 2007. 

[33] S. Harding and  . Miller, “Evolution of robot controller using cartesian genetic 

programming,” Genet. Program., pp. 62–73, 2005. 

[34] Y. Hirayama, T. Clarke, and  . F. Miller, “Fault tolerant control using cartesian 

genetic programming,” GECCO’08 Proc. 10th Annu. Conf. Genet. Evol. Comput. 

2008, pp. 1523–1530, 2008. 

[35] P. Kundur, Power System Stability and Control, vol. 23. 2006. 



 

222 
 

[36] M. O’Neill and C. Ryan, “Grammatical Evolution,” vol. 5, pp. 349–358, 2001. 

[37] D. Pernecký and I. Sekaj, “Grammatical evolution based controller design,” 19th 

Int. Conf. Soft Comput. Brno. Czech Repub., pp. 1–6, 2013. 

[38] R. Burbidge,  . H. Walker, and M. S. Wilson, “Grammatical evolution of a robot 

controller,” 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 357–362, 2009. 

[39] I. Sekaj, “Robust Parallel Genetic Algorithms with Re-initialisation,” in Parallel 

Problem Solving from Nature - PPSN VIII, vol. 3242, 2004, pp. 411–419. 

[40] W. Duch and N.  ankowski, “Survey of neural transfer functions,” Neural Comput. 

Surv., vol. 2, pp. 163–212, 1999. 

[41] G. Cybenko, “Approximations by superpositions of sigmoidal functions,” Approx. 

Theory its Appl., vol. 9, no. 3, pp. 17–28, 1989. 

[42] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems by 

continuous time recurrent neural networks,” Neural Networks, vol. 6, no. 6, pp. 

801–806, 1993. 

[43] M. Caudill and C. Butler, Understanding Neural Networks: Computer 

Explorations, Vols. 1 and 2. 1992. 

[44] R.  . Patton and F.  . Uppal, “Artificial Intelligence Approaches To Fault 

Diagnosis,” Intell. Syst. Eng., 1999. 

[45] B. Widrow and M. A. Lehr, “30 Years of Adaptive Neural Networks : Perceptron , 

Madaline , and Backpropagation,” vol. 78, no. 9, pp. 1415–1442, 1990. 

[46]  . Li,  . Cheng,  . Shi, and F. Huang, “Brief Introduction of Back Propagation ( BP ) 

Neural Description of BP Algorithm in Mathematics,” Adv. Comput. Sci. Inf. Eng., 

vol. 2, pp. 553–558, 2012. 

[47] M. Konomi and G. M. Sacha, “Influence of the learning method in the 

performance of feedforward neural networks when the activity of neurons is 

modified,” pp. 1–11. 

[48] H. Wang and Y. Wang, “Neural-network-based fault-tolerant control of 



 

223 
 

unknown nonlinear systems,” IEE Proceedings - Control Theory and Applications, 

vol. 146, no. 5. p. 389, 1999. 

[49] A. A. Pashilkar, N. Sundararajan, and P. Saratchandran, “A fault-tolerant neural 

aided controller for aircraft auto-landing,” Aerosp. Sci. Technol., vol. 10, pp. 49–

61, 2006. 

[50] E. S. E. Sugawara, M. F. M. Fukushi, and S. H. S. Horiguchi, “Fault tolerant multi-

layer neural networks with GA training,” Proceedings. 16th IEEE Symp. Comput. 

Arith., 2003. 

[51] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: From architectures to 

learning,” Evolutionary Intelligence, vol. 1, no. 1. pp. 47–62, 2008. 

[52] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9, pp. 1423–

1447, 1999. 

[53] R. K. Belew,  . McInerney, and N. N. Schraudolph, “Evolving Networks: Using the 

Genetic Algorithm with Connectionist Learning,” Artif. Life II, vol. 10, pp. 511–

547, 1992. 

[54] A. P. Wieland, “Evolving neural network controllers for unstable systems,” 

IJCNN-91-Seattle Int. Jt. Conf. Neural Networks, vol. ii, pp. 667–673, 1991. 

[55] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through 

symbiotic evolution,” Mach. Learn., vol. 22, no. 1–3, pp. 11–32, 1996. 

[56] K. O. Stanley and R. Miikkulainen, “Efficient Evolution of Neural Network 

Topologies,” Evol. Comput. 2002. CEC’02. Proc. 2002 Congr. Evol. Comput., no. 

figure 1, pp. 1757–1762, 2002. 

[57] P.  . Angeline, G. M. Saunders, and  . B. Pollack, “An evolutionary algorithm that 

constructs recurrent neural networks.,” IEEE Trans. Neural Netw., vol. 5, no. 1, 

pp. 54–65, 1994. 

[58] S. Luke and L. Panait, “A Comparison of Bloat Control Methods for Genetic 

Programming,” Evol. Comput., vol. 14, no. 3, pp. 309–344, 2006. 

[59] S. Silva and E. Costa, “Dynamic limits for bloat control in genetic programming 



 

224 
 

and a review of past and current bloat theories,” Genet. Program. Evolvable 

Mach., vol. 10, no. 2, pp. 141–179, 2009. 

[60] L. Trujillo, L. Munoz, E. Naredo, and Y. Martinez, “{NEAT}, There’s No Bloat,” 

17th Eur. Conf. Genet. Program., vol. 8599, pp. 174–185, 2014. 

[61] W. Duch and N.  ankowski, “Transfer functions: hidden possibilities for better 

neural networks,” 9th Eur. Symp. Artif. Neural Networks, pp. 81–94, 2001. 

[62] K. O. Stanley, “Efficient Evolution of Neural Networks through Complexification,” 

2004. 

[63] K. O. Stanley, D. D. Ambrosio, and  . Gauci, “A Hypercube-Based Indirect 

Encoding for Evolving Large-Scale Neural Networks,” vol. 15, no. 2, pp. 1–39, 

2009. 

[64] K. O. Stanley and B. D. Bryant, “Real-Time Neuroevolution in the NERO Video 

Game,” no. Thurrott 2002, pp. 1–41, 2005. 

[65] F. Silva, P. Urbano, S. Oliveira, and A. L. Christensen, “odNEAT: An Algorithm for 

Distributed Online, Onboard Evolution of Robot Behaviours,” Artif. Life 13, no. 

July 2012, pp. 251–258, 2012. 

[66] F. Silva, L. Correia, and A. L. Christensen, “Evolutionary online behaviour 

learning and adaptation in real robots,” R. Soc. Open Sci., vol. 4, no. 7, 2017. 

[67] M. D’Angelo, B. Weel, and A. E. Eiben, “HyperNEAT versus RL PoWER for online 

gait learning in modular robots,” Lect. Notes Comput. Sci. (including Subser. Lect. 

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8602, pp. 777–788, 2014. 

[68] S. Lee,  . Yosinski, K. Glette, H. Lipson, and  . Clune, “Evolving gaits for physical 

robots with the HyperNEAT generative encoding: The benefits of simulation,” in 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 7835 LNCS, pp. 540–

549. 

[69] M. Kingsley- ones, “Evolving Robot Gaits in Hardware: the HyperNEAT 

Generative Encoding Vs. Parameter Optimization,” Aviat. Week Sp. Technol. 

(New York), vol. 172, no. 38, p. 47, 2010. 



 

225 
 

[70] S. Risi and K. O. Stanley, “Enhancing es-hyperneat to evolve more complex 

regular neural networks,” in Proceedings of the 13th annual conference on 

Genetic and evolutionary computation - GECCO ’11, 2011, p. 1539. 

[71] E. Haasdijk, A. A. Rusu, and A. E. Eiben, “HyperNEAT for locomotion control in 

modular robots,” Int. Conf. Evolvable Syst. Springer, Berlin Heidelb., pp. 169–180, 

2010. 

[72] M. M. Khan, G. M. Khan, and  . F. Miller, “Evolution of neural networks using 

Cartesian Genetic Programming,” IEEE Congr. Evol. Comput., pp. 1–8, 2010. 

[73] A. J. Turner and  . F. Miller, “Cartesian genetic programming encoded artificial 

neural networks,” Proceeding fifteenth Annu. Conf. Genet. Evol. Comput. Conf. - 

GECCO ’13, p. 1005, 2013. 

[74]  . F. Miller and S. L. Smith, “Redundancy and computational efficiency in 

cartesian genetic programming,” IEEE Trans. Evol. Comput., vol. 10, no. 2, pp. 

167–174, 2006. 

[75]  . Miller, “What Bloat? Cartesian Genetic Programming on {Boolean} Problems,” 

2001 Genet. Evol. Comput. Conf. Late Break. Pap., pp. 295–302, 2001. 

[76] S. Silva and E. Costa, “Dynamic limits for bloat control in genetic programming 

and a review of past and current bloat theories,” Genet. Program. Evolvable 

Mach., 2009. 

[77] L. Vanneschi, M. Castelli, and S. Silva, “Measuring bloat, overfitting and 

functional complexity in genetic programming,” … 12Th Annu. Conf. …, pp. 877–

884, 2010. 

[78] C. Igel, “Neuroevolution for reinforcement learning using evolution strategies,” 

in The 2003 Congress on Evolutionary Computation, 2003. CEC ’03., 2003, vol. 4, 

pp. 2588–2595. 

[79] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon, “Neutrality in 

evolutionary algorithms... What do we know?,” Evolving Systems, vol. 2, no. 3. 

pp. 145–163, 2011. 

[80] M. Kimura, “Evolutionary rate at the molecular level,” Nature, vol. 217. pp. 624–



 

226 
 

626, 1968. 

[81] V. K. Vassilev and  . F. Miller, “The Advantages of Landscape Neutrality in Digital 

Circuit Evolution,” in Ices’00, 2000, pp. 252–263. 

[82] T. Yu and  . Miller, “Neutrality and the Evolvability of Boolean Function 

Landscape,” in Genetic programming, 2001. 

[83] T. Blickle and L. Thiele, “Genetic Programming and Redundancy,” Genet. 

Algorithms within Framew. Evol. Comput. (KI-94 Work., pp. 33–38, 1994. 

[84] M. M. Khan, G. M. Khan, and  . F. Miller, “Evolution of optimal ANNs for non-

linear control problems using Cartesian Genetic Programming,” Proc. 2010 Int. 

Conf. Artif. Intell. ICAI 2010, vol. 1, pp. 339–346, 2010. 

[85] M. Mahsal Khan, A. Masood Ahmad, G. Muhammad Khan, and  . F. Miller, “Fast 

learning neural networks using Cartesian genetic programming,” 

Neurocomputing, vol. 121, pp. 274–289, 2013. 

[86] F. Zafari, G. M. Khan, M. Rehman, and S. Ali Mahmud, “Evolving Recurrent 

Neural Network using Cartesian Genetic Programming to Predict The Trend in 

Foreign Currency Exchange Rates,” Appl. Artif. Intell., vol. 28, no. 6, pp. 597–628, 

2014. 

[87]  . W. Grizzle and A. Isidori, “Approximation by Superpositions of a Sigmoidal 

Function*,” Math. Control. Signals, Syst., vol. 2, no. 4, pp. 315–341, 1989. 

[88]  . Park and I. W. Sandberg, “Universal Approximation Using Radial-Basis-

Function Networks,” Neural Comput., 1991. 

[89] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems by 

continuous time recurrent neural networks,” Neural Networks, 1993. 

[90] A. M. SCHÄFER and H.-G. ZIMMERMANN, “RECURRENT NEURAL NETWORKS ARE 

UNIVERSAL APPROXIMATORS,” Int. J. Neural Syst., 2007. 

[91] A. Garg and K. Tai, “A Hybrid Genetic Programming – Artificial Neural Network 

Approach For Modeling of Vibratory Finishing Process,” Computing, vol. 18, pp. 

14–19, 2011. 



 

227 
 

[92] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective 

genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 

2002. 

[93] C. M. Fonseca and P.  . Fleming, “Genetic Algorithms for Multiobjective 

Optimization: Formulation, Discussion and Generalization,” Icga, vol. 93, pp. 

416–423, 1993. 

[94]  . Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for 

multiobjective optimization,” Evol. Comput. 1994. IEEE World Congr. Comput. 

Intell. Proc. First IEEE Conf., vol. 1, pp. 82–87, 1994. 

[95] N. Srinivas and K. Deb, “Muiltiobj ective Optimization Using Nondominated 

Sorting in Genetic Algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221--248, 1995. 

[96] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms,” John 

Wiley & sons, LTD. p. 497, 2001. 

[97] J. Knowles and D. Corne, “The Pareto archived evolution strategy: A new 

baseline algorithm for Pareto multiobjective optimisation,” in Proceedings of the 

1999 Congress on Evolutionary Computation, CEC 1999, 1999, vol. 1, pp. 98–105. 

[98] R. K. U. Evalife, “Diversity-Guided Evolutionary Algorithms.” 

[99] T. Ray, K. Tai, and K. C. Seow, “Multiobjective Design Optimization by an 

Evolutionary Algorithm,” Eng. Optim., 2001. 

[100] F. Sarro, F. Ferrucci, and C. Gravino, “Single and Multi Objective Genetic 

Programming for software development effort estimation,” Proc. 27th Annu. 

ACM Symp. Appl. Comput. - SAC ’12, p. 1221, 2012. 

[101] Y. Liang, M. Zhang, and W. N. Browne, “Multi-objective genetic programming for 

figure-ground image segmentation,” Lect. Notes Comput. Sci. (including Subser. 

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2016. 

[102] U. Bhowan, M. Zhang, and M.  ohnston, “Multi-Objective Genetic Programming 

for Classification with Unbalanced Data,” Proc. 22nd Australas. Jt. Conf. Artif. 

Intell., 2009. 



 

228 
 

[103] C. K. Oh and G.  . Barlow, “Autonomous controller design for unmanned aerial 

vehicles using multi-objective genetic programming,” Proc. 2004 Congr. Evol. 

Comput. (IEEE Cat. No.04TH8753), vol. 2, pp. 1538–1545, 2004. 

[104] Z. Vasicek and L. Sekanina, “Circuit approximation using single- and multi-

objective Cartesian GP,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes 

Artif. Intell. Lect. Notes Bioinformatics), vol. 9025, pp. 217–229, 2015. 

[105] J. Hilder, J. A. Walker, and A. Tyrrell, “Use of a multi-objective fitness function to 

improve cartesian genetic programming circuits,” 2010 NASA/ESA Conf. Adapt. 

Hardw. Syst. AHS 2010, pp. 179–185, 2010. 

[106] G. Corriveau, R. Guilbault, A. Tahan, and R. Sabourin, “Review and study of 

genotypic diversity measures for real-coded representations,” IEEE Trans. Evol. 

Comput., vol. 16, no. 5, pp. 695–710, 2012. 

[107] M. Nei, “GENETIC DISTANCE BETWEEN POPULATIONS,” Am. Nat., vol. 95, no. 

949, p. 261, 1961. 

[108] H. Abbass and K. Deb, “Searching under Multi-evolutionary Pressures,” in 

Proceedings of the Fourth Conference on Evolutionary Multi- Criterion 

Optimization, 2003, pp. 391–404. 

[109] R. W. Morrison and K. A. De  ong, “Measurement of population diversity,” in 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2310, pp. 31–41. 

[110] F. Herrera and M. Lozano, “Adaptation of Genetic Algorithm Parameters Based 

on Fuzzy Logic Controllers,” Genet. Algorithms Soft Comput., pp. 95–125, 1996. 

[111] O. Olorunda and A. P. Engelbrecht, “Measuring exploration/exploitation in 

particle swarms using swarm diversity,” in 2008 IEEE Congress on Evolutionary 

Computation, CEC 2008, 2008, pp. 1128–1134. 

[112]  a B. Doeschl-Wilson, D. Vagenas, I. Kyriazakis, and S. C. Bishop, “Exploring the 

assumptions underlying genetic variation in host,” Genet. Sel. Evol., vol. 40, no. 

June 2002, pp. 241–264, 2008. 

[113] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell Syst. Tech. J., 



 

229 
 

vol. 29, no. 2, pp. 147–160, 1950. 

[114] D. J. S. Robinson, An Introduction to Abstract Algebra. 2003. 

[115] M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi, and M. Ouzzani, “Efficient Processing 

of Hamming-Distance-Based Similarity-Search Queries Over MapReduce  ,” Edbt, 

pp. 361–372, 2015. 

[116]  . Koljonen, “On Fitness Distance Distributions and Correlations, GA 

Performance, and Population Size of Fitness Functions with Translated Optima,” 

Proc. 9th Scand. Conf. Artif. Intell., pp. 68–74, 2006. 

[117] L. Altenberg, “Fitness distance correlation: an instructive counterexample,” 

Seventh Int. Conf. Genet. Algorithms, pp. 57–64, 1997. 

[118] A. L. Nelson, G.  . Barlow, and L. Doitsidis, “Fitness functions in evolutionary 

robotics: A survey and analysis,” Rob. Auton. Syst., 2009. 

[119] V. Trianni, “Advantages of Multi-Objective Optimisation in Evolutionary 

Robotics : Survey and Case Studies,” 2014. 

[120] D. Greenhalgh and S. Marshall, “Convergence criteria for genetic algorithms,” 

vol. 30, no. 1, pp. 269–282, 2000. 

[121] K. A. De  ong, “An Analysis of the Behavior of a Class of Genetic Adaptive 

Systems,” 1975. 

[122] Z. Michalewicz, “Genetic Algorithms   Data Structures   Evolution Programs,” 

Computational Statistics & Data Analysis, vol. 24, no. 3. pp. 372–373, 1996. 

[123] M. Safe,  . Carballido, I. Ponzoni, and N. Brignole, “On Stopping Criteria for 

Genetic Algorithms,” Adv. Artif. Intell. – SBIA 2004, pp. 405–413, 2004. 

[124] H. L. Liu, L. Chen, K. Deb, and E. Goodman, “Investigating the effect of imbalance 

between convergence and diversity in evolutionary multi-objective algorithms,” 

IEEE Trans. Evol. Comput., vol. PP, no. 99, pp. 408–425, 2016. 

[125] P. Chakraborty, S. Das, G. G. Roy, and A. Abraham, “On convergence of the 

multi-objective particle swarm optimizers,” Inf. Sci. (Ny)., vol. 181, no. 8, pp. 



 

230 
 

1411–1425, 2011. 

[126] Y. Cao, B.  . Smucker, and T.  . Robinson, “On using the hypervolume indicator to 

compare Pareto fronts: Applications to multi-criteria optimal experimental 

design,” J. Stat. Plan. Inference, vol. 160, pp. 60–74, 2015. 

[127] T. Goel and N. Stander, “A study on the convergence of multiobjective 

evolutionary algorithms,” Prepr. Submitt. to 13th AIAA/ISSMO …, pp. 1–18, 2010. 

[128] D. Brockhoff, T. Friedrich, and F. Neumann, “Analyzing hypervolume indicator 

based algorithms,” in Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, 

vol. 5199 LNCS, pp. 651–660. 

[129] R. Berghammer, T. Friedrich, and F. Neumann, “Convergence of set-based multi-

objective optimization, indicators and deteriorative cycles,” Theor. Comput. Sci., 

vol. 456, pp. 2–17, 2012. 

[130] E. Zitzler and K. Simon, “Indicator-Based Selection in Multiobjective Search,” 8th 

Int. Conf. Parallel Probl. Solving from Nat. (PPSN VIII), vol. 3242, no. i, pp. 832–

842, 2004. 

[131] E. Zitzler and L. Thiele, “Multiobjective Optimization Using Evolutionary 

Algorithms - A Comparative Case Study,” Proc. Int. Conf. Parallel Probl. Solving 

from Nat., no. September, pp. 292–304, 1998. 

[132] E. Zitzler, D. Brockhoff, and L. Thiele, “The Hypervolume Indicator Revisited: On 

the Design of Pareto-compliant Indicators Via Weighted Integration,” Evol. 

Multi-Criterion Optim., vol. 4403, pp. 862–876, 2007. 

[133] L. Lu and C. M. Anderson-Cook, “Adapting the hypervolume quality indicator to 

quantify trade-offs and search efficiency for multiple criteria decision making 

using pareto fronts,” Qual. Reliab. Eng. Int., vol. 29, no. 8, pp. 1117–1133, 2013. 

[134] E. Zitzler,  . Knowles, and L. Thiele, “Quality assessment of pareto set 

approximations,” in Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, 

vol. 5252 LNCS, pp. 373–404. 



 

231 
 

[135] F. Sambo, M. Borrotti, and K. Mylona, “A coordinate-exchange two-phase local 

search algorithm for the D- and I-optimal designs of split-plot experiments,” 

Comput. Stat. Data Anal., vol. 71, pp. 1193–1207, 2014. 

[136] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selection 

based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181, no. 3, pp. 1653–

1669, 2007. 

[137] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using the 

hypervolume measure as selection criterion,” in Evolutionary Multi-Criterion 

Optimization: Third International Conference, EMO 2005, 2005, pp. 62–76. 

[138]  . Bader and E. Zitzler, “HypE: an algorithm for fast hypervolume-based many-

objective optimization.,” Evol. Comput., vol. 19, no. 1, pp. 45–76, 2011. 

[139] P. E. McKnight and  . Najab, “Mann-Whitney U Test,” in The Corsini Encyclopedia 

of Psychology, 2010. 

[140] A. Vargha and H. D. Delaney, “A Critique and Improvement of the CL Common 

Language Effect Size Statistics of McGraw and Wong,” J. Educ. Behav. Stat., vol. 

25, no. 2, pp. 101–132, 2000. 

[141] K. Alden, M. Read, P. S. Andrews,  . Timmis, and M. Coles, “Applying spartan to 

Understand Parameter Uncertainty in Simulations,” R J., vol. 6, no. 2, pp. 63–80, 

2014. 

[142] S. Robinson, Simulation: The Practice of Model Development and Use, vol. 67. 

2004. 

[143] M. T. Alexander, D. C. Montgomery, and G. Runger, “Applied Statistics and 

Probability for Engineers,” Technometrics, vol. 37, no. 4, p. 455, 1995. 

[144] M. Read, P. S. Andrews, J. Timmis, and V. Kumar, “Techniques for grounding 

agent-based simulations in the real domain: a case study in experimental 

autoimmune encephalomyelitis,” Math. Comput. Model. Dyn. Syst., vol. 18, no. 

1, pp. 67–86, 2012. 

[145] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, 

E. Ferrante, G. Di Caro, F. Ducatelle, T. S. Stirling, Á. Gutiérrez, L. M. Gambardella, 



 

232 
 

and M. Dorigo, “ARGoS: A pluggable, multi-physics engine simulator for 

heterogeneous swarm robotics,” IRIDIA – Tech. Rep. Ser., pp. 1–22, 2011. 

[146] Y. Chen, X. Zou, and W. Xie, “Convergence of multi-objective evolutionary 

algorithms to a uniformly distributed representation of the Pareto front,” Inf. Sci. 

(Ny)., vol. 181, no. 16, pp. 3336–3355, 2011. 

[147] S. Hosangadi, “Distance Measures for Sequences,” Arxiv, p. 16, 2012. 

[148] C. D. Pilcher,  . K. Wong, and S. K. Pillai, “Inferring HIV transmission dynamics 

from phylogenetic sequence relationships,” PLoS Medicine, vol. 5, no. 3. pp. 

0350–0352, 2008. 

[149]  . Heaton, “Programming neural networks in  ava,” Bttp//Www. Heatonresearch. 

Com, 2004. 

[150] K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous Search 

Space,” Complex Syst., vol. 9, pp. 1–34, 1994. 

 

 

 


