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Abstract 

This research investigates the incorporation of an emerging therapy as a new 

randomised arm in a confirmatory clinical trial that is open to recruitment. It may take 

many years to run confirmatory trials from concept to reporting within a rapidly 

changing drug development environment, hence in order to optimally inform policy and 

practice it is advantageous for trials to be able to adapt to emerging developments. It is 

becoming increasingly desirable to researchers, regulators and patients to allow such 

an adaptation to be made within a clinical trial to ensure that new treatments are 

evaluated as quickly as possible, and resources are optimised. 

 

A comprehensive literature review confirmed that there is currently no clear 

methodological guidance on this topic, although treatment arms have been added into 

confirmatory trials in practice. Unfortunately the statistical considerations were not 

always appropriately addressed, often leading to uninterpretable or invalid outcomes. 

In this research, the necessary considerations to ensure statistical validity are identified 

and considered. The probability of false positive conclusions must be controlled, whilst 

ensuring that trial outcomes are not compromised or biased by the amendment. The 

need for multiple testing adjustment due to assessing multiple hypotheses within the 

same protocol and with shared control data is investigated, and recommendations are 

provided that apply to multi-arm trials in general. Adaptive analysis methods using p-

value combination across the trial stages are compared to non-adaptive methods, with 

appropriate multiplicity adjustment considered. The findings are implemented to 

successfully incorporate a new experimental therapy within a large, confirmatory 

leukaemia trial.  

 

Guidance is presented detailing the requirements deemed necessary to ensure 

statistical validity, including recommendations so that the adaptation to add a new 

experimental arm to an ongoing trial is appropriate and acceptable. It is hoped that this 

will encourage consideration of adding arms more widely in future.  
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Introduction 

1.1 Overarching aim 

The aim of this research is to identify, review and investigate statistical considerations 

when incorporating an emerging therapy as a new randomised arm to be included in a 

confirmatory clinical trial that is already open to recruitment. When adapting a trial in this 

way, it is vital that the methodology is appropriate in order to maintain the validity of the 

conclusions. As a result of this work, recommendations are made to help researchers 

feel confident in considering and applying this type of adaptation to their trial designs 

efficiently and without statistical bias. 

 

1.2 Background and rationale 

Confirmatory clinical trials can take many years to run, requiring considerable 

resources. In addition, new therapies or therapy combinations are often in different 

stages of development, and new evidence of promising therapies for a particular 

population may emerge from early stages of development at different times. It would 

therefore be advantageous to be able to incorporate emerging therapies into ongoing 

trials as a new randomised arm. This would help to ensure that the outcomes of trials 

are relevant at the time of reporting; whilst benefitting patients, funders, trialists and 

regulatory bodies by shortening the overall process of comparing and selecting 

experimental treatments. This allows optimal therapies to be determined faster than 

would otherwise be the case, and can reduce costs and patient numbers. In addition, 

increasing the number of experimental arms in a trial increases the probability of 

identifying a successful treatment1. 

 

Ongoing treatment advances are continually improving survival rates in many 

therapeutic areas, including, for example, in most types of cancer2. The Cancer 

Research UK (CRUK) website states that “Half (50%) of people diagnosed with cancer 

in England and Wales survive their disease for ten years or more”3. Improving survival 

times are fantastic for patients, but presents challenges to researchers in continuing to 
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progress and further improve these survival rates within feasible trials settings. Whilst 

shorter term surrogate outcome measures can help to improve the efficiency of trials, 

where good substitutes exist, trial set up times and recruitment periods can still be long 

and further efficiencies would be beneficial. New promising treatments are continually 

being developed and tested in early phase trials, and it is difficult for researchers to 

address them in a confirmatory setting in a timely manner. It can be considered 

unethical to delay a phase III trial to assess currently available treatments whilst waiting 

for the results of ongoing promising early phase trials. The ability to add new arms to 

ongoing trials could help to advance the pace of research by allowing emerging 

therapies to be investigated in populations where trials already exist without introducing 

competition, and by reducing the set-up time for designing a new trial.   

 

This type of amendment falls under the umbrella topic of ‘adaptive designs’. An 

adaptive design refers to a “clinical study design that uses accumulating data to decide 

how to modify aspects of the study as it continues, without undermining the validity and 

integrity of the trial”4. The aim is to improve efficiency by reducing the overall resources 

needed to be able to answer the relevant questions for a particular group of patients. 

Adaptive design methodology for confirmatory trials has been discussed in statistical 

literature for over 25 years5 with continually growing popularity, and is a key topic in the 

statistical community with significant contributions in statistical literature including major 

regulatory guidance documents. Adding a new arm, however, is not strictly an adaptive 

design because the evidence informing the amendment is likely to emerge from data 

external to the trial being adapted rather than accumulating data internal to the study, 

which has a different impact on the statistical implications. It is not clear which of the 

considerations related to adaptive designs are relevant for this type of amendment, or 

how to address them. Such an adaptation could be just as advantageous as other, 

standard, adaptive designs for improving efficiency, and comes without some of the 

complexity or controversy due to using internal trial data. Therefore guidance is needed 

in this area to encourage and inform this type of amendment.  

 

1.3 Motivating example 

Treatment for Chronic Lymphocytic Leukaemia (CLL), a cancer of the white blood cells, 

is currently a rapidly moving field in which multiple new therapies are being developed 

which show considerable early promise. Early phase trials are continually researching 

new targeted therapies, both alone and in combination, and a platform is needed for 
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promising emerging therapies to be rapidly included within a confirmatory trial. The 

generally accepted primary endpoint in a CLL trial is progression-free survival (PFS), 

which is defined as time from randomisation to clinical progression or death from any 

cause. Currently the median PFS in newly diagnosed patients is approximately 5 years, 

meaning that a confirmatory trial assessing a survival improvement is likely to take at 

least 10 years to be reported. If it is possible to add a new promising treatment to an 

ongoing trial should one emerge during the recruitment phase, this would clearly be 

beneficial for the reasons outlined above. 

 

The motivating example for this research is the FLAIR trial in newly diagnosed CLL 

(detailed in Chapter 6). An example of the scenario at the time of designing the original 

trial is used as the basis for this research, illustrated in Figure 1-1. Treatment A was 

immediately available for assessment in a large, confirmatory phase III trial in newly 

diagnosed CLL patients in the UK. However, a promising Treatment B was undergoing 

assessment in a phase II trial in the same population. The phase II trial was shortly due 

to complete recruitment, but required 12 months of follow-up for the outcomes. The 

tchoice was either to delay the assessment of Treatment A, therefore denying patients 

that promising new therapy in a trial setting and delaying the research; or opening the 

phase III trial and denying Treatment B the possibility of a timely phase III investigation 

in that population. Ideally the phase III trial assessing Treatment A would be opened 

immediately, with Treatment B incorporated at a later time if the phase II evidence was 

promising. 
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Figure 1-1 Scenario in which it would be beneficial to add a treatment arm to a 
phase III trial 

 

 

1.4 Scope of the research 

This thesis investigates the addition of a new treatment arm to an ongoing trial under 

the following situations:  

 The trial has a confirmatory primary objective. 

 The trial has already begun recruitment and the randomisation is still open when 

the new treatment is to be added.  

 The new therapy is to be assessed within the current trial population, against the 

same standard-of-care. If any changes are necessary to eligibility criteria, these 

are minimal and do not materially change the trial population. 

 The entire treatment arm will be new; an amendment to an existing arm to include 

a new treatment is not relevant.    

 The treatment arm will be added to the existing randomisation; rather than 

including a new separate randomisation for a subgroup of patients within a master 

protocol. 

 The trial is designed using frequentist methodology.  

 The evidence for the new treatment has arisen externally to the trial being 

adapted, rather than due to the findings within an internal trial analysis. Adaptive 

dose finding trials, for example, are not relevant. 
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Since the motivating example is in a cancer trial, this research focuses on trials with 

survival outcomes, using trials in haematological oncology as exemplars, with 

generalisability into other disease areas and endpoints. It is assumed that the control 

treatment is the same for all experimental arms, and primary comparisons will be 

pairwise between each experimental treatment and control. 

 

1.5 Framework 

In Chapter 2 we report a comprehensive literature review on methodologies for, and 

practical examples of, amending an ongoing trial by adding a new treatment arm. 

Relevant methodological literature describing statistical considerations required when 

making this specific type of amendment is identified, and the key statistical concepts 

when planning the addition of a new treatment arm are extracted, assessed and 

summarised. This includes an assessment of statistical recommendations within 

general adaptive design guidance documents, for completeness. An assessment is 

made as to how the relevant statistical considerations have been addressed in 

practice, and the related implications to the statistical validity of the trial outcomes. 

Uncertainties or inconsistencies within the literature around the statistical concepts that 

were identified were used to inform the focus of the remainder of this research. The 

findings from this review were published in the Trials journal6 to help researchers 

wishing to implement this type of amendment in practice. 

 

When an arm is added to an ongoing trial, by definition it becomes a multi-arm trial with 

multiple hypotheses assessed within the same protocol. A key statistical consideration, 

with mixed views in the literature, was identified to be the necessity for familywise error 

rate control in order to maintain the chance of at least one false positive outcome to be 

less than the required significance level. In Chapter 3 the concept of adjustment and 

conflicting viewpoints within the literature are reviewed, and common adjustment 

methods are described. Whilst multiplicity adjustment is a very common statistical 

issue, there is surprisingly little literature that considers the need to adjust for multiple 

hypotheses with shared control data. In a recent conference expert panel discussion on 

adaptive clinical trial designs7, Michael Proschan commented “I think there needs to be 

more research on whether you really need to adjust and when you need to adjust. I try 

to be consistent and coherent with multiple comparisons and I’m not. There are too 

many papers on how to do multiple comparisons and not enough on when you really 

need to do such adjustments.” The reasons why false positive findings may be inflated 
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in multi-arm trials over independent trials are broken down into: multiple chances of 

making a claim of effectiveness due to the efficiency of testing more than one 

hypothesis in the same protocol; and the shared use of control data. Whilst the first 

point is widely debated, the second is less well addressed and generally not well 

understood. In Chapter 4 the effect of the correlation between the test statistics for the 

hypotheses due to a shared control group on the probability of one or more false 

positive errors is comprehensively investigated. In addition, various multiple adjustment 

methods are reviewed as to how well they control these errors, leading to some 

unexpected results. A decision diagram is included to aid researchers in determining 

the requirement for multiple testing adjustment in their multi-arm trial, with examples. 

Since adjustment can have a significant effect on the power for hypotheses in a multi-

arm trial, it is important that it is only implemented if necessary, in order to ensure that 

the trial design is as efficient as possible. The research within these chapters has been 

published in Statistical Methods in Medical Research8. 

 

Under the standard definition of adaptive designs in which a trial is amended based on 

accumulating data from within the trial, the design of the stage after the amendment is 

dependent on data from the stage before. In this case, it is required that the analysis 

accounts for this using adaptive design analysis methodology. One common technique 

is to use a combination test, where the p-values are calculated separately for each trial 

stage and then combined to produce the overall p-value. In the case of adding an arm, 

since the new treatment to be added is likely to have emerged from evidence external 

to the trial being adapted, such as from an exploratory phase of development, adaptive 

design analysis methodology may not be necessary. It is still possible, however, that 

the amendment could have consequences for the hypotheses of interest within each 

stage, causing a stage effect. In addition, although the evidence to add an arm is 

assumed to have arisen externally, data internal to the trial may have been analysed, 

and could influence the design characteristics. The requirements for analysis of a trial 

adding an arm are therefore assessed in Chapter 5. Depending on the nature of the 

experimental therapies, multiplicity adjustment may or may not be necessary, and this 

is also considered alongside the recommended analysis methods. In the case of 

adding am arm, it may be that the stage prior to the amendment does not include 

multiple hypotheses, but the stage after does. Where p-value combination methods are 

used, it is possible to adjust within stage rather than adjusting the final p-values across 

the stages, which is often the method recommended in adaptive design literature. 

However, in Chapter 5 it is shown that this may not be appropriate. A summary is 

provided on the recommended methods of analysis when a new arm is added to an 

ongoing trial, with and without multiple testing adjustment. 
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In Chapter 6 a real trial in Chronic Lymphocytic Leukaemia is described, in which a 

new experimental arm has been added based on the findings within this research. In 

addition, a second control arm was also added to protect the trial in case of a change in 

practice, and the original experimental treatment was discontinued on completion. The 

trial was increased from a planned 754 patients being randomised between two arms, 

to 1515 being randomised to up to four arms. By the time the amendment was 

implemented, there were only 61 control patients remaining for the original 

randomisation. Although the savings in patient numbers due to sharing control patients 

was relatively small, large advantages were gained in the time to assess the promising 

new treatment within a confirmatory trial, and the use of the existing trial structure. The 

amendment obtained all necessary approvals, was positively received and the trial 

remained ahead of its recruitment target. The methodological and logistical 

considerations are presented in detail. 

 

The discussion and summary of the research in Chapter 7 describes all of the key 

results from the work. It also includes guidance and recommendations for researchers 

wishing to add a new experimental arm into an ongoing trial.  
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Framing the research: 

review and summary of statistical considerations and 

practical implementation when adding a treatment arm 

into an ongoing clinical trial 

2.1 Introduction 

2.1.1 Aims 

A literature review was conducted to identify and assess existing literature regarding 

statistical methods and design considerations, or their implementation, when adapting 

an ongoing trial by adding a new treatment arm. Literature was deemed to be relevant 

if it included either methodological considerations or practical discussions of trials 

which had implemented this type of adaptation, and it was within the scope of the 

research defined in Section 1.4. In addition, adaptive designs guidance documents 

were included in the review to identify the key statistical considerations when adapting 

a trial generally and to consider their relevance in this situation. The aim was to identify 

the potential statistical issues when adding an arm to an ongoing clinical trial, so that 

these can be appraised and summarised to form guidance when planning or reviewing 

this type of amendment. Areas of uncertainty and contradictions within the literature are 

identified to generate objectives for investigation within this research.  

 

Firstly, some clinical trials and survival analysis terminology is introduced to inform the 

work in this chapter and the wider research. In Section 2.2 the literature review 

methods are described and the literature identified is summarised. In Section 2.3 the 

relevant considerations and methodology identified are reviewed, and it is assessed 

how these have been addressed in practice. Where recommendations are not clear, 

whether it is an area that has not arisen previously or there is contradiction in the 

literature, future chapters addressing these issues are signposted.  
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Part of the work presented in this chapter has been published as a review article in the 

Trials journal (Cohen et al. 2015)6. The publication is entitled “Adding a treatment arm 

to an ongoing clinical trial: a review of methodology and practice”. The work contained 

within the publication is directly attributable to myself as first author, with input from the 

co-authors who are all part of my PhD supervisory team.   

 

2.1.2  Clinical trials terminology 

Randomised controlled trials (RCTs) are the gold standard in clinical trials, in which, in 

the simplest case, an experimental therapy of interest is prospectively compared to the 

current standard of care in a population to establish whether it is efficacious and safe. 

A confirmatory, or phase III, clinical trial is typically designed to conclusively 

demonstrate efficacy within acceptably small and controlled margins of error. Trial 

participants must meet the eligibility criteria to enter the trial, and are randomised to 

either the experimental or control arm. Once complete, the trial is analysed in order to 

assess whether there is evidence to reject the null hypothesis (𝐻0) of no significant 

difference between the therapies under comparison. The treatment effect, 𝜃, can be 

calculated to be the difference in outcomes between participants randomised to the 

experimental arm and those randomised to the control arm. The null hypothesis can 

therefore be written as 𝐻0: θ = 0, with the two-sided alternative hypothesis 𝐻1: θ ≠ 0. A 

minimal clinically important difference is determined, which is the smallest treatment 

effect that would influence practice. The trial is designed so that the minimal clinically 

important effect size is able to be reliably detected9, and reported as a significant 

difference between treatment arms with appropriate and controlled levels of error, 

whilst preventing smaller true effect sizes from influencing practice. That is, the type I 

error (or false positive) rate, which is the probability of incorrectly declaring that there is 

a significant difference of clinical importance between the therapies under comparison 

when actually H0 is true, is less than the significance level, 𝛼, as follows: 

𝑃(𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0) ≤ 𝛼. 

Conventionally, a two-sided 𝛼 is generally accepted to equal 5%, such that the chance 

of falsely declaring the experimental therapy to be better than control is 2.5%. Trial 

results typically report a p-value (𝑝), which is the probability of observing data as or 

more extreme than the observed difference between treatment outcomes given that the 

null hypothesis is true, thus the convention is that a clinical trial outcome is declared 

significant when 𝑝 ≤ 0.05.  
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Also of interest is the probability of correctly rejecting the null hypothesis and declaring 

a significant difference of clinical importance between the therapies under comparison, 

known as the power. A type II error (𝛽) is the false negative rate, or probability of failure 

to reject a false null hypothesis, and therefore the power = 1 − 𝛽. Conventionally this is 

not required to be as stringent as the probability of a type I error, and typically the 

power is set to be 80% to 90%. 

 

It is possible for a clinical trial to have ‘multiple arms’ such that it includes more than 

one experimental arm to be compared to the control, and therefore to have more than 

one primary hypothesis. In this case, there is an increased chance of a type I error over 

the set of hypotheses across the trial as a whole, known as the family-wise error rate 

(FWER). ‘Multiplicity’ is the term used to describe this increased chance of at least one 

false positive conclusion over the protocol as a whole due to multiple testing. Multiple 

testing adjustment methods can be applied to adjust for multiplicity to control the 

overall type I error across the set of hypothesis to be less than 5%, and will be 

discussed in Chapter 3. In contrast, the pairwise error rate (PWER) is the individual 

probability of a type I error for a single comparison within the protocol. 

 

2.1.3 Survival analysis  

2.1.3.1 Survival and hazard functions 

In confirmatory cancer clinical trials, the primary endpoint is often a survival outcome 

such as progression-free or overall survival. Since the motivation for this research 

arose within a cancer trial, it will primarily focus on trials with survival primary 

outcomes, also known as time-to-event outcomes.  

 

For each patient, they either have an event at time t, or they don’t have an event and 

they are censored at time c, which is when they were last known to be event free. The 

survival function S(t) is the probability of surviving longer than time t, 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡), 

where T is a random variable associated with the survival time. F(t) is the lifetime 

distribution function or cumulative distribution function (CDF), which can be expressed 

as the integral of the probability density function (PDF) 𝑓(𝑡), so 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
𝑡

−∞
, 

where 𝑓(𝑡) is the rate of events per unit time. 
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The hazard function of T, h(t), gives the instantaneous probability of an event at time t, 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

−𝑑
𝑑𝑡⁄ 𝑆(𝑡)

𝑆(𝑡)
= −

𝑑

𝑑𝑡
𝑙𝑜𝑔𝑆(𝑡). 

  

The cumulative hazard function, 𝐻(𝑡), is the probability of an event over time, so 

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 = −𝑙𝑜𝑔𝑆(𝑡)
𝑡

0
. 

 

2.1.3.2 The logrank test 

The logrank test is a non-parametric test that compares the survival patterns of two or 

more trial arms, typically defined by treatment, by comparing estimates of their hazard 

functions. The logrank statistic is calculated based on the number of events observed 

(𝑜) minus the number of events expected (𝑒) if there were no difference between the 

arms, over each event time 𝑟 = 1,2, … , 𝑅. There are 𝑜𝑗𝑟 events at time 𝑡𝑗𝑟  in arm 

𝑗 (𝑗 = 1,2, … , 𝐽). Let 𝑛𝑟 = ∑ 𝑛𝑗𝑟
𝐽
𝑗=1  be the number of patients at risk at the start of period 

r. The expected values are therefore 𝑒𝑗𝑟 = 𝑜𝑟
𝑛𝑗𝑟

𝑛𝑟
. 

 

The logrank test statistic comparing the number of observed events to those expected 

in arm j can therefore be written as 

𝑍𝑗 =
∑ (𝑜𝑗𝑟−𝑒𝑗𝑟

𝑅
𝑟=1 )

√∑ 𝑉𝑟
𝑅
𝑟=1

~𝑁(0,1), under 𝐻0, 

where 𝑉𝑟 is the variance. 

 

Since it is assumed that the 𝑍𝑗  are independent standard Normally distributed random 

variables, ∑ 𝑍𝑗
2~𝜒𝐽−1

2𝐽
𝑗=1 . The p-value can therefore be found by comparing the sum of 

the squared test statistics for each arm to a chi-squared distribution with degrees of 

freedom equal to the number of arms (J) minus 1.  

 

Note that whilst this non-parametric test is useful when comparing survival patterns, it 

is limited in that it does not account for explanatory covariates such as differences in 

baseline demographics between the treatment arms. In this case, the semi-parametric 

Cox proportional hazards regression model10 can be used to model the hazard function 
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between treatment arms after accounting for covariates, based on the assumption that 

the hazard remains proportional over time. The hazard ratio between two trial arms is 

defined below (Section 2.1.3.3). The Cox model estimates the treatment effect in terms 

of the hazard ratio between the treatment arms, adjusted for covariates, and calculates 

a test statistic and p-value to assess whether the treatments are significantly different, 

as described in Section 5.2.2. 

 

2.1.3.3 Sample size and power calculation based on an exponential 

survival assumption 

It is a generally accepted approximation that survival curves follow an exponential 

distribution with rate parameter 𝜆, which is proportional to the median survival (med) 

such that  𝜆𝑗 =
𝑙𝑛2

𝑚𝑒𝑑𝑗
 in arm j. The proportion surviving to a fixed time t, S(t), can be 

written 𝜋𝑗, where 𝜋𝑗 = 𝑒−𝜆𝑗𝑡, because the CDF of an exponential distribution (signifying 

the failure rate at time t, F(t)) is 1 − 𝑒−𝜆𝑡, and if a proportion 𝜋 have survived to time t, 

then 1 − 𝜋 have failed.  

 

The hazard ratio (HR), which is the ratio of the hazard rates between two trial arms 

(𝑗 = 1,2), is therefore 

𝐻𝑅 =
𝜆2

𝜆1
=

𝑚𝑒𝑑1

𝑚𝑒𝑑2
=

𝑙𝑛(𝜋2)

𝑙𝑛(𝜋1)
= ln(𝜋2 − 𝜋1). 

The hazard ratio is assumed to be constant over time, therefore requiring that the 

hazard functions for each arm are proportional over time. In this case, the treatment 

effect, 𝜃, is the difference in outcomes between participants randomised to each trial 

arm assuming the log-hazard ratio scale. A 𝐻𝑅 > 1 implies that survival times are 

shorter for arm 2, and a 𝐻𝑅 < 1 implies that survival times are longer for arm 2.  

 

In the case of powering a trial to assess whether two treatment arms are significantly 

different, the minimum clinically relevant effect between the two treatment arms in 

terms of the hazard ratio, and the minimum acceptable type I and II error rates, need to 

be agreed. These are used to calculate the number of events (E) needed, as follows11: 

𝐸 =
(𝑍

1−
𝛼
2

+𝑍1−𝛽)

2

(𝐻𝑅+1)2

(𝐻𝑅−1)2 , 

where Z is inverse of the CDF of the standard normal distribution, 𝛼 is the required two-

sided type I error rate, and 1 − 𝛽 is the required power.  
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The number of patients required is determined based on observing this number of 

events by time t in the case of an equal allocation ratio, by: 

𝑛 =
2𝐸

(2−𝜋1−𝜋2)
. 

 

Rearranging to calculate the power for a given sample size gives 

𝑍1−𝛽 =
|𝐻𝑅−1|

𝐻𝑅+1
√

𝑛(2−𝜋1−𝜋2)

2
 −𝑍1−

𝛼

2
. 

 

Note that when the allocation is unequal with ratio 1:φ, with φ being the proportion 

randomised to the experimental arm, this equation becomes: 

𝑍1−𝛽 =
|𝐻𝑅−1|

𝜑𝐻𝑅+1
√

𝑛𝜑

(1+𝜑)
[(1 + 𝜑) − 𝜋1 − 𝜑𝜋2] − 𝑍(1−𝛼

2). 

 

2.2 Comprehensive Literature Review 

2.2.1 Methods 

A protocol for the literature search was written in advance to fully define the aims, 

methods and search strategy to be used to obtain existing literature regarding 

statistical methods and design considerations when adapting an ongoing trial by adding 

a new treatment arm. In summary, search terms were defined for the following major 

electronic databases: MEDLINE (Ovid), EMBASE (Ovid), Science Citation Index (Web 

of Science) and the Cochrane Library (Wiley), each from their dates of inception. The 

ProQuest database was also searched to identify further relevant grey (unpublished) 

material such as dissertations and theses, and conference abstracts. The search terms 

are provided in Appendix A, and include: Medical Subject Heading (MeSH) terms 

relating to ‘clinical trials’ and ‘research design methodology’, as appropriate for the 

database; a term relating to ‘adaptive’, ‘flexible’, ‘multi-stage’ or ‘platform’ designs, 

methods or trials; and a term around adding or incorporating or an additional or extra 

‘treatment’, ‘arm’, ‘group’, ‘therapy’, ‘randomisation’ or ‘hypothesis’. The search was 

initially conducted in November 2012, and auto alerts were set up where possible to 

keep abreast of any further literature throughout the research period. The searches 

were also run periodically. In order to identify any additional relevant publications, 

searches were performed on references, authors and citations of directly relevant 
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literature, and key methodologists in the field were identified and publications reviewed. 

Titles and abstracts were assessed to determine whether the literature was relevant, 

and shortlisted results were reviewed in full.   

 

An assessment of summary, regulatory, guidance and review documents on flexible or 

adaptive designs in general was manually undertaken to identify methodologies that 

may be relevant. Books on adaptive or flexible trial design were also included. 

Literature was identified with direct relevance to general guidance or reviews on 

adaptive designs, but not including documents relating to a particular disease or 

methodology. The types of adaptation and key statistical considerations discussed in 

each document were listed and summarised, and their relevance to adaptation when 

adding an arm was determined in discussions with supervisors.  

 

The literature review aimed to include identification of practical examples of trials that 

had added a new treatment part-way through recruitment and within the scope of the 

research, as described in Section 1.4. However, these were rarely identified as the 

design amendment is not the primary aim of trial results publications and does not 

feature in the title or abstract, or else trials were ongoing and had not yet been 

published. In order to identify as many trials as possible, key statisticians and 

researchers were contacted directly, and references from relevant methodological 

papers were reviewed. Statisticians or researchers from each of the twenty-two 

UKCRC registered trials units (in 2012) were contacted, along with six prominent 

international researchers who were known to have an interest in adaptive designs, and 

two large UK funding bodies for cancer trials (CRUK and NIHR HTA). If a statistician 

from a trials unit did not reply, a second statistician was approached. In total, replies 

were received from eighteen of the trials units, five of the international researchers and 

both of the funding bodies. However, only CRUK was able to provide high level 

information on trials that had applied to be amended; the NIHR HTA declined for 

confidentiality reasons. In addition, relevant trials and ongoing research developments 

in the area continued to emerge when presenting or discussing this work at national 

and international conferences, workshops and seminars, which aimed to target wide 

audiences of trialists.  

 

2.2.2 Literature on the methodology of adding arms 

Following the methods described in Section 2.2.1, there were 55 hits from MEDLINE, 

of which 6 were identified for full review; 88 hits from EMBASE, of which 5 were 
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identified for full review; 30 hits from the Science Citation Index related to ‘Statistics 

and Probability’, of which 10 were identified for full review; 42 hits from the Cochrane 

library, of which 1 was identified for full review; and 11 hits from ProQuest, of which 2 

dissertations were identified for full review. Literature was discarded immediately if 

there was clearly no mention of adding a new arm to a trial, for example because the 

trial has an adaptive design but incorporates something other than a new treatment 

arm, such as treatment selection; if relevant words were near one another, such as 

“surgical treatment can relieve pain. Additional benefits…”; or other aspects of the 

design were deemed flexible and the abstract included a key word such as ‘additional’ 

in an unrelated phrase. In total, seventeen distinct publications, abstracts or 

dissertations were identified for full review. Ten of these were determined not to be 

directly relevant because: they were based on Bayesian methodology; they discussed 

potential to add arms in future but with no statistical considerations discussed; or they 

discussed early phase dose-response, platform or response adaptive randomisation 

designs. Only seven publications were identified which discussed methodological 

considerations when adding an arm to an ongoing confirmatory trial within the scope of 

this research. These were reviewed in detail to assess and summarise research 

previously carried-out on this topic, and the recommendations or methodology 

discussed. It was noted that recently there have been increasing numbers of 

methodological publications on platform type designs, in which arms are added and 

dropped in a perpetual manner as part of a master protocol12, 13, but these are primarily 

based on Bayesian methodology, often in exploratory rather than confirmatory studies, 

and therefore where this is the case they were not considered within scope. A 

summary of the seven identified publications now follows. 

 

Phillips et al. (2006)14 summarise discussion points on adaptive designs from the PSI 

Adaptive Design Expert Group. Within the paper there is a brief paragraph stating that 

it is possible to add new treatment arms, although no details or relevant considerations 

are provided. Three references are given, two of which are within scope: one is 

methodological (Hommel 2001)15; and another is a practical results paper (van Leth et 

al. 2004)16, discussed in Section 2.2.3.The third is out of scope as it is based on 

exploratory dose finding endpoints17.  

 

Hommel15, along with two of the other papers identified, Posch et al. (2005)18 and 

Bauer et al. (2008)19, mention adding an arm or hypothesis as being possible within a 

flexible framework. The primary purpose of the papers are to discuss methodology for 

analysing trials in order to control error rates and prevent bias when a general mid-trial 
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design adaptation is made at an internal interim analyses. Methods are based on 

adaptive combination test principles, which analyse the data within stage and then 

combine the information over the stages in order to control for use of the interim data 

informing the ongoing design. These methods are used in combination with multiple 

testing adjustment for multiple hypotheses. Analysis of trials over stages when adding 

an arm forms the basis of Chapter 5, in which these methods are reviewed and 

assessed in detail. 

 

Elm et al. (2012)20 provide a highly relevant paper on “flexible analytical methods for 

adding a treatment arm mid-study to an ongoing clinical trial”, which considers adding 

an independent treatment based on external considerations. The main aim is to 

compare methods for analysing continuous outcome data over the trial stages before 

and after the amendment, accounting for potential differences in patient cohorts. The 

trial design has an adjusted allocation ratio so that all three arms complete recruitment 

at the same time with the same patient numbers, and analysis compares the new 

experimental treatment to all control patients rather than only those recruited 

concurrently. Whilst their work is highly relevant to this research, there are a number of 

assumptions that limit their conclusions, and may not be realistic to many trials in 

practice. The limitations are detailed in Section 5.3, and their work is extended in 

Chapter 5 to increase the generalisability of the outcomes. 

 

Sydes et al. (2012)21 discuss ‘STAMPEDE’, an ongoing multi-arm multi-stage (MAMS) 

randomised, controlled trial in prostate cancer, designed to be able to drop and add 

arms throughout the recruitment period. The publication is not written as a general 

guidance document, but presents trial specific methodological and practical issues for 

this situation. At the time of publishing, a new research arm had been added to the 

existing control and five experimental arms, based on the same parameters and targets 

designed at the outset to ensure appropriate power for the new hypothesis. The trial 

has a pragmatic design in which only concurrent control patients are used as 

comparators to patients randomised to the new treatment, and since the experimental 

arms are not formally compared against each other, no type I error adjustment is made 

for multiplicity. That is, only the PWERs are controlled and not the FWER. Since this 

publication, four further treatment arms have been added, and the control group has 

changed to be one of the original experimental therapies based on a positive result 

from an initial comparison within the trial22. Results are reported as the data reaches 

maturity for each planned comparison, which is prior to the close of recruitment to the 

new arms. The analysis methods are not discussed, but in a publication on the 
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outcomes from one of the first comparisons, the data is pooled across the whole 

recruitment period, and the analysis is “stratified by time periods defined by addition of 

a new research group or end in recruitment to an ongoing research group”23. Whilst the 

literature relating to this trial is very interesting and shows that adding experimental 

arms mid-trial can be successful in practice, it does not provide comprehensive 

guidance to researchers wishing to add an arm in their own situation.  

 

Wason et al. (2012)24 make general recommendations for MAMS trials, including a 

section on adding treatment arms at planned interim analyses. The example is 

theoretical, based on continuous outcomes, and focuses on strong FWER control due 

to multiple arms and analysis points, adjusting the existing group sequential stopping 

bounds to account for the additional hypothesis. This methodology is not applicable for 

amendments based on external data that were not planned at the outset, and therefore 

is not directly relevant. The discussion argues against only controlling the PWER rather 

than considering the FWER where there are multiple hypotheses because this situation 

is “conceptually quite different to running a series of separate trials” and strong FWER 

control is required for confirmatory claims. This is considered in detail in Chapters 3 

and 4.  

 

In addition to the seven publications summarised above, two text books were identified 

with chapters that made reference to adding an arm to an ongoing trial25, 26. The 

chapters were contributed by Hommel and Posch respectively, and contain similar 

ideas on the analysis methods to the publications discussed above.  

 

2.2.3 Practical examples of ongoing trials in which an arm has been 

added 

Following the methods presented in Section 2.2.1, 38 unique trials were identified for 

further review as being possibly relevant. Each of these were assessed, with trials 

teams contacted where appropriate, and nine trials were identified to be within scope. 

Reasons for exclusion included that the amendment was planned but not implemented, 

the trial was early phase with exploratory outcomes, Bayesian methodology was used 

(usually in early phase designs), the trial included a whole new randomisation, or 

existing arms were modified sometimes resulting in a factorial design. Of the relevant 

examples, most have results published in high-impact journals, some of which went on 

to change clinical practice, and two are still ongoing having recently added arms in 
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MAMS settings. All of these trials had obtained appropriate ethical and regulatory 

approvals. 

 

AML1627, STAMPEDE21, 22 and CompARE28 are all cancer trials with MAMS or platform 

type designs assessing survival as a primary outcome with intermediate outcomes for 

early stopping, each having added new arms. AML16 in acute myeloid leukaemia is 

described as a ‘pick a winner’ trial, in which arms could be introduced on a rolling basis 

at any time. It includes two phase II assessment points for each primary comparison to 

determine continuation of the experimental therapy to phase III. The non-intensive 

randomisation was open to recruitment for just over 5 years from 2006 to 2011. It 

included 4 experimental arms against a control arm from the outset, but two arms were 

dropped at interim, and one further experimental arm was then added to the 

randomisation 4 years into the recruitment period. Since the new arm had recently 

been added when the trial closed, the new assessment was carried into another trial 

that is currently recruiting until 2019, and the analysis of the new trial will include the 

relevant AML16 patients. Publications report pairwise comparisons arising from this 

trial, with the other comparisons in the same protocol briefly mentioned, and no 

multiplicity adjustment to the analysis29. STAMPEDE (introduced in Section 2.2.2) is 

still open to recruitment and has currently added five arms; 6, 7, 8 and more than 10 

years after the trial opened. All original experimental arms have closed, and the control 

therapy has been modified. Individual comparisons are reported as the data matures, 

and the trial has a large number of high impact publications and has changed practice 

for treatment of prostate cancer (http://www.stampedetrial.org/media-

section/publication-repository/). CompARE evaluated three experimental arms against 

one control in oropharyngeal cancer from the outset, and in 2017 one arm was dropped 

for futility, and another added. The statistical error rates were reported to have been 

controlled for both the existing and new hypotheses, and the amendment was reviewed 

and approved by the funder (CRUK) and drug company, however because this 

amendment is very recent, there is no further information available. 

 

The 2NN trial16 was a large international phase III trial in HIV published in the Lancet, 

2004, designed to assess a binary composite outcome of treatment failure. It was 

initially a three-arm trial, with the new arm being a different dosing schedule of the 

control arm, added 5 months into recruitment. The new arm became the control in the 

primary comparisons, and an investigation of the original versus new control therapy 

was included to assess superiority of the original schedule. The overall sample size 

was reduced from 1350 to 1200 when the new arm was added, and the allocation ratio 

http://www.stampedetrial.org/media-section/publication-repository/
http://www.stampedetrial.org/media-section/publication-repository/
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amended from 1:1:1 to 1:2:2:1 with the new control and primary experimental arm 

having the higher proportions. Although the trial was designed to require 450 patients 

per arm, the final numbers were 387 to the new arm and 400, 220 and 209 to the 

others. Initial logistic regression models included trial stage and treatment*stage 

interaction as covariates, and when these were not significant, the data were pooled 

over the stages in all analyses without adjustment. There was no indication of the 

power for this interaction test or for the primary comparisons. A Bonferroni adjustment 

was applied for having four multiple primary hypotheses. The authors refer to the 

amendment as a drawback, and state that the overall efficacy estimates should be 

interpreted with caution, but believe that the main conclusions of the study are robust.  

 

CATIE30 was a double-blind, 4-arm, phase III, trial in schizophrenia published in the 

NEJM, 2005, with a primary endpoint of ‘time to treatment discontinuation’. A 5th arm 

was added after 1 year of the 4 year recruitment period, due to it receiving FDA 

approval and therefore emerging as being of interest within the population. The 

randomisation continued with even allocation. Patient numbers were not increased to 

the trial as a whole, impacting slightly on the power for all the trial comparisons. 

Adjustment for multiple comparisons was planned using the Hochberg method, but did 

not include the new hypothesis in order not to further reduce the power. Instead the 

evaluation of the new treatment was a secondary comparison against concurrent 

comparators only, with approximately 58% power. The trial statistician commented 

(personal communication) that they “had a limited budget and could not add enough 

patients for good power, and yet it was felt by investigators if it was not added then the 

study might be missing an important evaluation”.  

 

SANAD31 was an HTA-funded 4-arm non-inferiority phase III epilepsy trial published in 

the Lancet, 2007, with joint primary endpoints time to treatment failure and time to 

remission of seizures. An unplanned 5th arm was added after 19 months of a 56 month 

recruitment period. There was no increase in overall trial size, and the randomisation 

ratio remained even (1:1:1:1:1), so the new arm included fewer patients (210 compared 

to 378 in the other four arms). Pairwise comparisons were carried out between all trial 

arms, but only concurrent patients were included for the analyses of the new arm. 

There was no adjustment for multiple testing. The lack of power for the new 

comparison cast doubt on the finding that the treatment was not non-inferior due to a 

wide confidence interval, with the discussion stating that “the smaller numbers of 

patients available to the comparison reduce the statistical power and we could not 

conclude that they are equivalent”. 
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N974132, 33 and N014734 were two large phase III, US regulatory colorectal cancer trials 

published in the JCO, 2004, and JAMA, 2012. During the trials there were a number of 

treatments added and dropped due to new evidence coming to light and safety 

concerns or futility. Each time an amendment was made, recruitment was paused, 

sometimes for up to a year. The trial publications report on the comparisons that 

remained in the trial until the end, and briefly mention that several changes were made 

early in the study that do not materially affect the results. In personal communication 

with the trial statistician it was determined that the type I error was adjusted for 

multiplicity due to having multiple comparisons at the end, but there was no adjustment 

for treatments that were dropped or for having different stages. The power was 

ensured to be adequate for all primary comparisons, only concurrent comparators were 

used, and the allocation ratio remained equal throughout. Interim analyses were 

included but the addition of new arms was prior to any formal analyses of efficacy. The 

changes were “remarkably logistically complicated” since they were registration trials 

involving multiple pharmaceutical companies, and the FDA were involved in 

discussions. However the outcome of the trials changed practice and they were very 

important and successful. 

 

A pulmonary tuberculosis trial (TB trial) in India35, published in PLOS ONE, 2013, was 

designed to be a three arm trial to enrol 400 patients on a 1:1:1 ratio. However, one of 

the experimental drugs was not available at the outset of the trial, and therefore it 

opened as a 1:1 randomisation with the additional experimental treatment being added 

after a year of recruitment with a 1:2:1 ratio to compensate for the delay in recruiting to 

the new experimental arm. The trial was analysed as though all arms had been 

included from the outset as originally planned, with no consideration for non-concurrent 

control patients or trial stages, and no multiple testing adjustment. 

 

This review confirmed that there is the desire to add new experimental arms into 

ongoing confirmatory trials, although this was not always done without undermining the 

trial’s statistical validity. This suggested that further research and guidance into 

statistical considerations when making this type of amendment was needed. 

 

2.2.4 General guidance on adaptive designs  

The assessment of summary, regulatory, guidance and review documents on flexible 

or adaptive designs in general was undertaken firstly to investigate whether there was 
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any mention of adapting a trial by adding an arm, and secondly to identify 

methodological themes and topics that are investigated within the field of adaptive 

designs in general in order to determine those that are relevant to this thesis. A 

MEDLINE (Ovid) search, with criteria provided in Appendix B, had 344 hits, of which 29 

publications were identified for full review. In addition, citations from key papers and 

authors revealed other major contributions to the field. Manuscripts and texts on 

adaptive designs have been studied over the course of the research, which included 

the assessment of: two textbooks25, 36; regulatory documents from the FDA (Food and 

Drug Administration)37, 38 and EMA (European Medicines Agency)39, 40; summaries from 

four expert adaptive designs working groups4, 14, 41, 42; and a number of publications 

summarising views on adaptive designs, of which the most relevant were considered in 

detail5, 43-48. 

 

None of these documents discussed the addition of a trial arm other than briefly 

mentioning that it may be possible in a flexible framework. The statistical 

considerations discussed within each of these documents were extracted and 

summarised to form a list of key statistical concerns when adapting a trial. There was a 

great deal of overlap, as most of the documents included the same points. The 

following were extracted for discussion with the supervisory team: type I error control 

due to combination of information across trial stages, multiple analysis points and 

multiple hypotheses; type II error (power); consistency of the treatment effect over trial 

stages; analysis methods accounting for the adaptation; estimates of treatment effects 

and confidence intervals; interpretability of results; introduction of statistical or 

operational bias; pre-specification of adaptations or methods used; definition of the 

patient population to whom the results apply; blinding issues; unintentional release of 

interim data; optimal allocation ratio; comparisons to concurrent control data; full 

documentation of all decisions and reporting requirements. The logistics of 

implementation was also a key consideration, although not necessarily statistical. 

Those determined to be most relevant when adding an arm within the scope of this 

research are included within the summary below. 
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2.3 Key statistical considerations when adding a treatment 

arm to an ongoing trial 

The literature review as previously described identified a number of statistical 

considerations of relevance when amending ongoing clinical trials by adding a new 

treatment arm based on external evidence. The main considerations identified are 

discussed in the following sections, and are illustrated in Figure 2-1. 

 

Figure 2-1 Illustration of a trial timeline in which an arm is added. The trial has 
two distinct stages and the key statistical considerations are displayed.  

 

 

It was noted to what extent the statistical considerations that were identified were 

addressed in trials where an arm was added in practice. Of the nine trials that were 

identified to have added an arm, eight have reported details (Section 2.2.3). A 

summary of the considerations implemented within each of these trials is provided in 

Table 2-1 at the end of this chapter. 
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2.3.1 Family-wise error rate control due to multiple primary 

hypotheses 

When a new arm is added to a trial, multiplicity concerns are introduced due to multiple 

primary hypotheses within the same protocol, and comparisons with a shared control 

group. There are conflicting views within the literature on whether strong control of the 

FWER is needed in this case, or whether it is adequate to control the PWER for each 

experimental arm versus control. Some literature21, 49 argues that if the experimental 

arms would have otherwise been assessed in different protocols and are only being 

tested in the same trial for efficiency purposes, this is analogous to running separate 

trials and therefore FWER control is not necessary. However, others argue that 

multiplicity issues arise due to multiple use of the same control population and the 

efficiency of testing multiple hypotheses within the same protocol, and that strong 

FWER control may be a regulatory requirement for confirmatory claims24, 37, 50, 51. This 

issue is investigated in detail within Chapters 3 and 4 in order to be able to make 

recommendations.  

 

Using the equations in Section 2.1.3.3, a basic Bonferroni multiple testing adjustment 

applied to a trial with two hypotheses, such that the significance level becomes 0.025 

for each hypothesis, would decrease the power from 90% to around 84% for the 

individual hypotheses. Of the eight confirmatory trials that have been identified to have 

added an arm, the family-wise error rate was strongly controlled for multiplicity due to 

having more than one primary comparison in four, and was not in four (Table 2-1). This 

illustrates the discrepancies in practice. 

 

2.3.2 Analysis methods to account for multiple stages  

The primary statistical concern in most methodological publications discussing adaptive 

or flexible designs is to ensure that there is no increased error or bias due to the 

adaptation of the design features, creating a distinction in the stages before and after 

the amendment. Of the seven relevant methodological publications described above, 

all but the practical paper on the STAMPEDE trial21 primarily focus on analysis 

methods. In all cases, the analysis is performed within each stage and a p-value 

combination approach is used to derive an overall outcome. Typically in adaptive 

designs, the amendment is based on interim data that are internal to the trial being 

adapted, so it is necessary to analyse the stages individually and use combination 

methods to derive an overall p-value in order to control the type I error rate in the final 

analysis52. In the scenario considered in this thesis, however, it is assumed that an arm 
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is added based on external information, and therefore the second stage isn’t informed 

by interim data. Consequently, a p-value combination approach may not be necessary. 

However, changes to the trial design could affect the trial population, causing a ‘stage 

effect’. Even if the eligibility criteria are unchanged, the new treatment could be more or 

less appealing in terms of efficacy and/or toxicity, and therefore attract different types 

of patients to the different stages causing a population drift. If data are simply pooled 

across the trial in the analysis, ignoring the stages, this might lead to a stage effect bias 

due to the treatment effects being different in each stage. Referring to Figure 2-1, stage 

effects would only affect the comparison for the original experimental arm (A vs Z), 

since the new arm B only exists in the second stage. However if multiple testing 

adjustment is also required this could impact the trial analysis as a whole. Analysis 

methods are comprehensively investigated in Chapter 5, both assuming FWER 

adjustment for multiple hypotheses is not necessary, and also in combination with 

FWER adjustment methods. 

 

In contrast to the methodological literature primarily focusing on analysis by stage, 

none of the trials adding an arm in practice analysed the results by stage. Only 

STAMPEDE reported adjusting for stage within multivariable analyses. The 2NN trial 

tested for a stage effect within a multivariable analyses, but when this was not 

significant, simply pooled the data without adjustment in further analyses. The contrast 

between methodological literature and practical implementation illustrates the need for 

further research and guidance in this area. 

 

2.3.3 Concurrent control data 

If there is a shift in the patient population in the second stage, after the new arm has 

been added, the control data collected prior to the amendment may lead to different 

results to that collected after. For this reason, the control data collected prior to the 

amendment may not be an unbiased comparator for the new arm. One of the 

methodological papers on adding arms stipulates the use of concurrent controls21. The 

others do not discuss this directly, but by applying methods for analysing the data by 

stage and then combining the p-values, this is implicit. A test for heterogeneity across 

trial stages is unlikely to have enough power to be meaningful. A minority of literature 

on adaptive designs considers the use of non-concurrent controls, although these are 

usually in early phase trials and/or based on Bayesian methodology12, 13 and further 

investigations are required to assess or adjust for a potential population drift. In 

general, the use of non-concurrent control data in confirmatory trials goes against the 
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principles of a ‘Randomised Controlled Trial’ in the same way as historical control data 

is not generally acceptable for a confirmatory hypothesis test, and is unlikely to be 

accepted as good practice. Altman (2018)53 confirmed this with relation to adding or 

dropping an arm in particular, saying “between-group comparisons are valid only when 

restricted to participants who were randomised concurrently”. Therefore, it is 

recommended that only concurrent control patients are used. 

 

Six of the eight trials used concurrently recruited control patients only. In the 2NN trial a 

stage effect was assessed before analysing the new hypothesis against all control 

patients, although power for this test was likely to be very low. The TB trial used all 

controls, including those recruited prior to the amendment, without further 

consideration. 

 

2.3.4 Power recalculation 

When a new treatment is included within a confirmatory trial, care needs to be taken 

that there is adequate power to assess the primary hypothesis associated with that 

treatment. The power to assess the original hypotheses must also be preserved. In 

addition, if an adjustment is made to control the FWER due to the new hypothesis, this 

will reduce the power for each of the individual hypotheses26. If the hypotheses are 

powered and considered independently from one another (rather than as a family 

informing a single claim), it would be necessary to increase the sample size for all arms 

in the trial in order to maintain appropriate power. See Chapter 4 for further detail. 

 

Whilst it seems obvious that a confirmatory trial should always be appropriately 

powered, this wasn’t always the case in practice. Three of the eight trials were 

underpowered for some or all primary comparisons (Table 2-1), and all of these 

reported this as a limitation as it compromised the ability to report clear trial outcomes. 

Some of the trials reduced the sample size for all trial arms in order not to inflate the 

sample size for the trial overall. For example, in the CATIE trial in which a 5th arm was 

added 1 year into the 4 year recruitment period with no adjustment to the overall 

sample size, it is estimated based on the information available and the equations in 

Section 2.1.3.3 that the power for the original hypotheses to assess time to treatment 

failure decreased from 85% to approximately 80%, and the power for the new 

hypothesis was only 58%. None of the trials that implemented FWER control to adjust 

for the new hypothesis inflated the sample size to account for this.  
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2.3.5 Areas to improve efficiency: allocation ratio, length of 

recruitment and time to amendment 

The allocation ratio and length of recruitment to each treatment arm could be adjusted 

to improve efficiency in terms of total number of patients required and time taken to 

answer the primary hypotheses, and these need to be carefully balanced considering 

the requirements for the trial.  

 

Dunnett (1955)54 showed that the optimal allocation to the control group in multi-arm 

trials is approximately the square root of the number of experimental arms, in order to 

minimise the total numbers of patients required. Wason et al. (2012)24 investigated the 

optimal allocation ratio in MAMS trials with varying numbers of experimental arms and 

numbers of stages, allowing for early stopping. They found that “Although efficiency (in 

terms of maximum sample size) can be gained by deviating from an optimal allocation 

to each arm, the gain is generally fairly small”. This was due to the chance of 

experimental arms being dropped at each stage, suggesting that optimal allocation is 

not necessarily straightforward where the number of treatment arms varies throughout 

the trial. Patient acceptability also needs to be considered, since the more attractive a 

trial, often perceived as being related to the higher the chance of receiving an 

experimental treatment, the better recruitment rates tend to be. So long as the error 

rates are controlled for each hypothesis based on the number of concurrent patients 

included in the analyses, the allocation ratio should be determined on a trial by trial 

basis with consideration of what is most appropriate for each particular case. 

 

Elm et al. (2012)20 believe that the allocation ratio should be adjusted so that all arms 

complete recruitment at the same time to ensure maintenance of blinding and to 

prevent a ‘Stage 3’ effect due to dropping the original arm. This may lead to very 

unbalanced randomisation allocations depending on when the new arm is added, 

which may not be desirable. Other trialists such as those who design MAMS trials, 

however, advocate that arms can be added or dropped throughout the trial at different 

times as required, which could lead to a rolling design with multiple trial stages. These 

trial stages may need to be accounted for in the analysis if there is a population shift 

due to closing a completed arm, in the same way as when an arm is added. This also 

creates further logistical complications due to multiple major trial amendments. These 

issues are not insurmountable however, and are discussed in more detail in Chapters 5 

and 6.  
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Three trials deviated from a 1:1 allocation ratio: the 2NN trial changed from its original 

1:1:1 design to recruit at 1:2:2:1 after the amendment to recruit higher numbers to the 

more important arms; the TB trial added the new arm with double the ratio of the others 

to compensate for the delay, which they did because they were not restricting 

comparisons to concurrent controls; and STAMPEDE recruited more to control initially 

because “It is more efficient to have more patients allocated to the control arm when 

there are more research arms co-recruiting”. Once some arms had been dropped and 

there were fewer experimental arms in STAMPEDE, the new comparisons were 

randomised with even allocation, although the allocation ratios remained constant 

within any given comparison. All but STAMPEDE stopped recruitment at the same time 

in all confirmatory arms, excluding those that were dropped early for futility at interim 

analyses. 

 

Another area of efficiency when adding an arm is the time to making the amendment 

from opening the trial. The earlier the new arm is added, the more beneficial it is likely 

to be in terms of savings in patient numbers and associated costs due to sharing 

control patients. However, there may still be substantial savings in time and cost by 

amending a trial at any time over setting up a new trial. The majority of trials that added 

an arm did so relatively early in the trial. However, AML16 and STAMPEDE both added 

arms towards the end of the planned recruitment periods; AML16 carried the 

randomisation forward to a new trial, and STAMPEDE continues to add and drop arms 

on a rolling basis. In STAMPEDE it was estimated that the cost of adding a new arm 

was approximately 60% as much as for a separate stand-alone trial21.  

 

2.3.6 Changes to the control therapy 

Potentially a new therapy may receive approval during the course of the trial which 

would make the existing control therapy inferior to standard of care and therefore 

unethical, and would also impact on the relevance of the trial outcomes. None of the 

methodological papers mention changing the control group therapy, but for very long or 

rolling trials where new treatments are rapidly emerging, this is likely to arise. It could 

happen in any long trial, but in rolling trials where new arms are still recruiting when 

earlier hypotheses are planned to report, this is a particular risk. Changing the control 

therapy would require a new power calculation and recruitment of concurrent patients 

between the relevant treatments. In some situations, this might be something that could 

be pre-empted and planned for when adding an arm by ensuring the arm is 

concurrently compared to both the existing and potential new control arms, if feasible, 
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as discussed in Chapter 6. However in many cases this might not be possible, but this 

risk needs to be carefully considered when determining whether to add a new arm and 

choosing the appropriate control treatment. 

 

Three of the trials changed the control group therapy when adding a new arm. The 

2NN trial amended the primary hypotheses so the new arm became the control group 

for all primary analyses. In contrast, the N9741 trial changed the control group for the 

whole trial to one of the existing experimental arms because of a change in the 

standard of care, requiring the original control arm to be dropped. This occurred a year 

into the trial after 300 patients had been randomised, but since the new control therapy 

had been present from the outset, it was concurrent to all experimental arms. The 

STAMPEDE trial used a different control group for the later therapies to be added than 

for earlier therapies because of positive results from an early comparison leading to a 

change in practice. However, the control group therapy did not change mid-way 

through the randomisation for an experimental therapy.  

 

2.3.7 Analysis timelines  

When comparisons are staggered, such as in rolling type designs where arms could be 

added and dropped over time, analyses can fall at different times for different 

comparisons. It needs to be considered how these affect the other components of the 

trial. For example, if one comparison reaches analysis while another is still recruiting, 

could the results affect the ongoing randomisation by releasing information for a 

partially shared control group? If so, it should be carefully considered whether it is 

appropriate to add an arm in this case, since it would not be ethical to delay the 

planned analysis and reporting for the existing hypothesis. This is somewhat less likely 

in trials with survival endpoints than those with shorter term endpoints because of the 

follow-up period, but could still be an issue. In addition, could a positive finding lead to 

the control therapy being superseded, as described in Section 2.3.6, and if so could 

this be managed?  

 

If there is an interim analysis prior to the addition of the new arm, information from this 

comparison may influence the design amendment, in which case the assumption that 

only data external to the trial has informed the amendment may not hold. This is 

particularly likely if an arm is added into a seamless phase II/III trial, as is often the 

case in MAMS type designs. The inclusion of information internal to the trial into the 

design amendment is considered in Chapter 5. 
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In the STAMPEDE trial, new arms were added after interim analyses had taken place 

and internal data had been assessed by the trial team, although this was not reported 

to be a necessary consideration within the analysis. In addition, some arms were still 

open to recruitment as the first comparisons reached their final analysis and reporting 

points, however the later arms were only added as the original arms had almost 

completed recruitment so there is relatively little overlap of shared control patients and 

therefore analysis sets. 

 

2.3.8 Publication of results 

It is important that all publications are clear about the entire trial design, even if just 

focusing on results from one of the hypotheses. All trial arms and comparisons must be 

detailed, whether planned from the outset or added later. This is a requirement as 

described in the CONSORT statement for transparent reporting of trials55. 

 

All of the trials identified in this review discussed the wider design in results 

publications. It is possible that arms were added to other trials but without featuring in 

publications, and were therefore not picked up in this review.  

 

2.3.9 Logistical considerations 

There are many important logistical and practical considerations discussed within the 

literature that need to be overcome for the amendment to be feasible. They include: 

applications for approvals, funding and drug supply; amendments to the protocol and 

patient information; data management considerations such as changes to the 

database, Case Record Forms (CRFs), monitoring plan and processes; changes to the 

randomisation system; implementation and training at centres, and centre attrition; 

whether to continue or pause recruitment; maintaining blinding; oversight committees 

and their roles; contracts and negotiations, particularly if multiple pharmaceutical 

companies are involved; and interactions with regulators. The logistics of adapting a 

trial in this way may be difficult to manage, and problems at any step could increase 

the time it takes to implement the amendment. However, the trials identified and 

reviewed in this section managed to overcome these issues in order to add new 

treatment arms to the randomisation. In Chapter 6 we discuss the implementation of 

adding new arms into an ongoing trial in practice, and describe how the logistical 

challenges were addressed so that the amendment was achieved. 
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2.3.10 Summary of statistical considerations in practice 

The statistical considerations that were identified within the methodological literature 

have been addressed to varying extents in practice, as reviewed throughout this 

section. Not all considerations need to be addressed in each case, as they are 

dependent on the nature of the trials and their objectives. When designing or critically 

evaluating the results of different trials, it should be determined for each trial whether 

the considerations are necessary for the results to be robust, or advantageous to 

improve efficiency or feasibility. Table 2-1 summarises whether each consideration was 

addressed in the trials that were identified to have added an arm, as described above. 

This illustrates the differences in practice between confirmatory trials that have been 

amended by adding a new experimental arm. 
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Table 2-1 Summary of statistical considerations implemented by trials when 
adding an arm 

 Trial 

Statistical 
Consideration 

AML16 
STAMP

-EDE 
2NN CATIE SANAD N9741 N0147 

TB 
India 

FWER control for 
multiplicity of 
primary 
hypotheses 

        

Accounted for 
multiple stages 
in analysis  

        

Used only 
concurrently 
recruited control 
patients 

        

Ensured 
adequate power 
for primary 
hypotheses 

        

Varied  allocation 
ratio from even 

        

Varied end of 
recruitment for 
existing and new 
arms 

        

Changed the 
control therapy 
for the primary 
comparison 

        

Amendment 
clearly 
mentioned in 
results 
publications 

        

Key: = done,  = not done  

 

2.4 Discussion 

This literature review has confirmed that very few publications have addressed the 

topic of how to add a treatment arm to an ongoing trial, and none have done so either 

systematically or comprehensively. Only a small number of trials were identified to 
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have added arms in practice, indicating that although this type of amendment may be 

advantageous, it is has not been implemented widely. Of the trials that had added an 

arm, some failed to adequately address the statistical issues, and suffered from lack of 

power and difficulties in interpretability. However, it is clear that this type of amendment 

is desirable and advantageous, with the statistical and logistical issues seeming by no 

means insurmountable. 

 

Guidance is needed to enable amendments to add new arms to existing trials to be 

made with robust statistical validity. In particular, current literature is contradictory on 

the requirement for familywise error rate control due to the inclusion of multiple 

hypotheses in the same trial with some shared control data; and this is 

comprehensively addressed in Chapters 3 and 4. Analysis methods to account for the 

different stages when amending a trial by adding a new treatment arm have not be 

adequately addressed, and therefore it is not clear to researchers how or whether to 

control for ‘Trial Stage’ in the analysis. Analysis methods accounting for the trial stage 

are investigated in Chapter 5. Other recommendations are clearer, such as: only using 

concurrent control data; ensuring adequate power for all primary hypotheses, including 

accounting for any multiple testing adjustment; and ensuring all results publications 

clearly report the entire trial design. Some design issues need to be addressed on a 

trial-by-trial basis at the discretion of the trial team with consideration of the trial design 

as a whole. These include: choosing the allocation ratio, noting that it is not necessary 

for all arms to complete recruitment at the same time, although any additional stages 

caused by closing completed arms may need to be considered in the analysis as 

discussed in Chapter 5; considering whether extending the trial increases the chance 

of a change to the standard of care within the treatment period, requiring consideration 

as to whether the concurrent control treatment is likely to be appropriate for the 

duration of the trial; and considering the effect of timelines for each planned analysis on 

the other hypotheses within the trial. In addition, the logistical complexities of making 

this type of amendment need to be discussed and planned with the wider trial team. 

 

The aims in the following chapters are to investigate the statistical considerations that 

are currently unclear in the case of adding an arm to an ongoing trial. This work is used 

to inform the guidance and recommendation topics that were identified here, in order 

that they are updated and clarified in the discussion, Chapter 7.   
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Multiple testing adjustment in multi-arm trials with a 

shared control group: background, literature and 

existing research 

3.1 Background and aims 

Clinical trials are designed so they have an acceptable probability of obtaining the 

correct answer to their primary research objective. There are two types of error that 

could occur: a false positive result, in which a difference is declared where one does 

not exist; or a false negative result, in which no difference is declared although there is 

truly a difference. The chance of a false positive result is required to be most stringently 

and carefully controlled in order for the outcomes of clinical trials to be accepted and to 

be able to influence practice. The convention is to set this error to be no greater than 

5%, and this is usually denoted by α. 

 

A typical confirmatory two arm trial compares an experimental therapy against the 

current standard within the population of interest. In this case, the probability of falsely 

declaring there to be a difference in efficacy between the experimental therapy and the 

current standard would be set so that it does not exceed 5%. That is, there is a 2.5% 

chance of incorrectly finding the experimental therapy to be significantly superior, and a 

2.5% chance of an inferior finding. For several reasons, it is advantageous to conduct 

multi-arm trials, in which a number of experimental treatments are compared to the 

current standard. Firstly, such trials are more efficient since they use the data collected 

on the control group more than once so fewer patients are required. Secondly, trial set-

up times and costs can be reduced over running separate trials. Finally, increasing the 

number of experimental arms increases the chance of finding a successful treatment1.  

 

When adding a new experimental arm to an ongoing trial, this will inevitably create a 

multi-arm trial in which the concurrent control data can be used as a comparator for 

multiple experimental arms, as discussed in Chapter 2. Therefore the concept of 

multiple testing adjustment also arises in this situation as well as in trials which have 
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multiple experimental arms from conception. For this reason, appropriate multiple 

testing adjustment in multi-arm trials, regardless of whether all the arms are recruiting 

concurrently or not, is a primary consideration when adding an arm to an ongoing trial6. 

Chapter 2 highlights that there are conflicting viewpoints within the literature regarding 

appropriate control for the chance of a false positive error when multiple experimental 

treatments are included in the same protocol with shared control data. In Section 3.2, 

various points of view on multiple-testing adjustment from within guidance documents 

and key authors in the field are identified and summarised. Common multiple-testing 

adjustment methods are reviewed in Section 3.3 so that they can be applied within this 

research. The factors that cause multiplicity concerns, and how well understood they 

are within the literature, are broken down in Section 3.4. In Section 3.5, the most 

relevant literature that informs the remainder of this research is described. This chapter 

serves as an introduction to the existing work on this topic in order to inform the novel 

research presented in Chapter 4, leading to informed recommendations on the 

requirement for multiplicity adjustment in multi-arm trials with various research goals. 

 

Part of the work presented in this chapter has been published alongside the work from 

Chapter 4 in the journal Statistical Methods for Medical Research (Howard et al., 

2018)8. The publication is entitled “Recommendations on multiple testing adjustment in 

multi-arm trials with a shared control group”. The work contained within the publication 

is directly attributable to myself as first author with input from the co-authors who are all 

part of my PhD supervisory team.   

 

3.2 Summary of the literature 

3.2.1 Aims of the literature review 

There are conflicting points of view within the literature regarding multiple testing 

adjustment in the situation of multi-arm trials. Some authors believe the comparisons of 

experimental arms against control can be treated as separate trials, so that the relevant 

errors to control are the pairwise error rates (PWER). Others argue that the familywise 

error rate (FWER) needs to be strongly controlled across all hypotheses in all cases 

where multiple hypotheses are tested within a shared protocol. There are further 

arguments that some cases require FWER control across all hypotheses, whereas in 

other cases PWER control is adequate. With only a few exceptions, many of these 

arguments are based on philosophical opinions, rather than statistical theory 

considering the actual effects of the shared control group on the type I error rate 
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compared to running separate trials. The aims of the literature review conducted in this 

chapter are to fully understand the arguments for and against multiple testing 

adjustment that inform the conflicting viewpoints; to learn about the statistical 

considerations that guide these arguments; and to ascertain whether there is scope to 

build on the body of research in order to make informed recommendations for multi-

arm trials in practice. 

 

3.2.2 Literature review methods 

This literature review is intended to identify the fundamental guidance available to 

researchers and key publications in the field on whether to adjust for multiple testing 

due to multiple hypotheses in a clinical trial. It is not intended to be a comprehensive 

summary of the literature on multiplicity adjustment in multi-arm trials. Literature was 

deemed to be relevant if recommendations or viewpoints were expressed on whether 

adjustment for multiple hypotheses is necessary. Using the search methods described 

here, 93 manuscripts and text books were initially identified and abstracts reviewed, 45 

of these were selected for review in further detail, of which 16 were found to be 

relevant. Those that were relevant are broadly categorised depending on whether they 

always recommend strict control of the FWER in multi-arm confirmatory clinical trials 

(Section 3.2.3) or whether they discuss exceptions to strict control in at least some 

confirmatory cases (Section 3.2.4). Literature that provides informed justification on the 

need for adjustment is of particular interest. 

 

3.2.2.1 Regulatory and guidance documents 

Initially, regulatory and guidance documents on multiple testing in clinical trials were 

identified and reviewed. Key documents were authored by: the European Medicines 

Agency (EMA) (2017)56; the International Conference on Harmonisation (ICH) of 

Technical Requirements for the Registration of Pharmaceuticals for Human Use 

(1998)51; and Statisticians in the Pharmaceutical Industry (PSI) (Phillips et al., 2013)57. 

Guidance documents from the Food and Drug Administration (FDA) were also 

reviewed but were not found to address multiplicity requirements in multi-arm trials. In 

addition, relevant chapters of a book entitled ‘Multiple Testing Problems in 

Pharmaceutical Statistics’ (Dmitrienko et al., 2009)58 were included in the review, but it 

was found that they do not discuss the need for adjustment in multi-arm trials. 
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3.2.2.2 Database search 

A literature search was conducted in MEDLINE (Ovid) to identify relevant papers and 

key authors in the field. The following search terms were used: 

1. exp Clinical Trials as Topic/ 

2. ((multiplicity) or (multiple adj1 testing) or (multiple adj1 comparison*)).mp. 

3. ((multi* adj1 arm*) or (three adj2 arm*) or (four adj2 arm*) or (several adj2 arm*) or 

(multi* adj1 treat*) or (three adj2 treat*) or (four adj2 treat*) or (several adj2 treat*) or 

(common adj1 control*) or (shared adj1 control*) or (correlated adj1 comp*) or 

(correlated adj2 stat*)).mp. 

4. 1 and 2 and 3 

 

The review was carried out in February 2014 and updated throughout the research. 

Sixty-four results were returned, of which five were duplicates or replies to original 

articles. The remaining 59 abstracts were reviewed to determine whether the papers 

discussed the requirement for adjustment, rather than just methods for adjustment. 

Nine of the manuscripts were shortlisted for full review, five of which were determined 

to be relevant when considering the requirement for multiple testing adjustment49, 59-62.  

 

3.2.2.3 Grey literature review 

Further references were identified during the review of relevant manuscripts, and were 

also obtained and reviewed. This efficient strategy led to identification of the most 

commonly referenced and widely cited, relevant literature. This was an iterative 

process, as each time a publication was reviewed it was assessed for further relevant 

references. This continued until new references stopped emerging. Three review or 

guidance papers led to the identification of the most relevant further references: 

Freidlin et al. (2008)49, Wason et al. (2014)59, and Proschan and Waclawiw (2000)62. 

Thirty further publications were identified in this way, of which 8 were relevant24, 63-69 

and are included in the summary below. 

 

During the search, one paper was particularly interesting as it included statistical theory 

considering the dependence between the test statistics due to having a common 

control, which is key to this research (Proschan and Follman, 1995)63. Therefore, 

articles that have cited this paper were also reviewed for relevance to see how the 

findings were taken forward. The article has been cited seventeen times, but no 
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additional papers were identified that have either expanded on the methodological work 

or considered in detail how the findings affect the need to control the FWER. 

 

3.2.3 Key publications for strict control of FWER in multi-arm 

confirmatory trials 

Of the sixteen manuscripts identified, five give the clear message that they believe 

multiple testing adjustment to control the FWER is necessary in confirmatory multi-arm 

trials, regardless of the nature of the trial and its hypotheses. 

 

The EMA (2017) ‘Guideline on multiplicity issues in clinical trials’56 draft document 

states that multiple-testing adjustment is likely to be required in confirmatory clinical 

studies ‘with more than two treatment arms’: “As a general rule it can be stated that 

control of the study-wise type I error is a minimal prerequisite for confirmatory claims”. 

 

Bender & Lange (2001) ‘Adjusting for multiple testing – when and how?’64 state that 

“Adjustments for multiple testing are required in confirmatory studies whenever results 

from multiple tests have to be combined in one final conclusion and decision”. They 

believe this includes multi-arm trials, even though the conclusions may differ for each 

experimental arm, because they are obtained within a single ‘experiment’. The ‘final 

conclusion’ of the trial could be that all arms are better than the standard, and this 

needs to be based on rigorous control of the MEER (maximum experiment-wise error 

rate, equivalent to control of the FWER in a strong sense). “For example, if each new 

treatment is significantly different from the standard treatment, the conclusion that all 

three treatments differ from the standard treatment should be based on adequate 

control of the MEER. Otherwise the type I error of the final conclusion is not under 

control, which means that the aim of significance testing is not achieved.” In their 

example they talk about “three different new treatments” rather than different doses, 

clarifying that they believe adjustment is required regardless of the nature and aim of 

the hypotheses. The views in this paper seem to be based entirely on testing more 

than one hypothesis in a shared protocol, and do not consider the impact of the shared 

use of control data. 

 

Wason et al. (2012) ‘Some recommendations for multi-arm multi-stage trials’24 include 

a section discussing the importance of controlling the family-wise error rate (FWER) in 

the strong sense, stating that the EMA guidance on multiple testing requires type I error 

control for confirmatory trials. They discuss the contrary opinions that adjustment in 
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MAMS trials is not advocated when the different arms correspond to different 

treatments due to the similarity to them being compared in separate trials, however 

they argue that a MAMS situation is “conceptually different to running a series of 

separate trials”, and give the analogy of testing multiple primary outcomes within a trial 

for which there is consensus for requiring adjustment, since each outcome could also 

be tested in a separate trial.  

 

Westfall and Bretz ‘Multiplicity in Clinical Trials’ is a chapter of the Encyclopedia of 

Biopharmaceutical Statistics (3rd edition, 2010)65. They discuss the importance of 

adjustment for multiplicity in general, providing arguments against those who criticise 

the requirement for adjustment, in order that there is “a stronger standard of evidence 

than the unadjusted comparisons”. They believe that multiple comparison procedures 

are necessary to avoid errors that prevent replication of the results, which includes 

“declaring effects when none exist”, “declaring effects in the ‘wrong direction’” and 

“declaring inflated effect sizes”. They aim to dispel common controversies for non-

adjustment, including: why have penalties for efficiency of assessing multiple doses; 

why adjust for questions asked in the same trial but not in separate trials; and why are 

certain tests classed as a ‘family’. They have strong views that multiple comparison 

procedures are always necessary, because going against this stance is “a potentially 

dangerous and irresponsible message”, with negative consequences “that spurious 

associations are published, and that inappropriate therapies are recommended”.  

 

The Statisticians in the Pharmaceutical Industry (PSI) held an expert group discussion 

on multiplicity (Phillips et al., 2013)57. Although they do not mandate that multiplicity 

adjustment is always necessary, “there was consensus that any study aiming to 

‘confirm’ should take into account multiplicity” and that “multiplicity adjustments need to 

be considered when the intention is to make a formal statement about efficacy or safety 

based on hypothesis tests”. They do not discuss multi-arm studies within their paper, 

and instead focus on multiple endpoints, analysis timepoints and multiregional 

developments. However the general message is that the ‘claim-wise error rate’, defined 

as the familywise error rate “when the families relate to multiple clinically important 

endpoints that need to be described in the label”, is the most important to control. 

Although this is discussed in terms of multiple endpoints, it could be extrapolated that 

families relating to multiple clinically important hypotheses within multi-arm trials that 

are described in a single label may also be important to control, although this is 

speculative. 
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3.2.4 Key publications discussing exceptions to strict control in 

some or all confirmatory cases 

Of the sixteen references identified, eleven discuss exceptions to strict control being 

appropriate in at least some cases of confirmatory multi-arm trials. 

 

ICH E9 ‘Statistical Principles for Clinical Trials’ (1998)51, Section 5.6, states: “In 

confirmatory analyses, any aspects of multiplicity which remain after steps of this kind 

have been taken should be identified in the protocol; adjustment should always be 

considered and the details of any adjustment procedure or an explanation of why 

adjustment is not thought to be necessary should be set out in the analysis plan.” By 

‘steps of this kind’ they are referring to methods to avoid or reduce multiplicity, such as 

choosing one of the comparisons to be primary. This is more relaxed than the EMA 

viewpoint, suggesting that adjustment should be considered, but if felt not to be 

necessary this can be justified. 

 

Proschan and Follman (1995) ‘Multiple comparisons with control in a single experiment 

versus separate experiments: why do we feel differently?’63 examine the need for a 

multiple comparison adjustment when treatments are compared to a shared control 

within the same trial, “in terms of the different distributions of the number of Type I 

errors and power”. This is the only publication identified to have assessed the effect of 

the shared control data on the probabilities of errors. The type I error is calculated 

based on two, three and four arm trials assuming both independent (I) and dependent 

(D) hypotheses, where dependent hypotheses are defined by having a shared control 

group. They found that the probability of making one type I error is lower in dependent 

trials, but the probability of making two or more errors is higher (if the control group is 

“bad”). So “the conditional probability of a Type I error on one comparison with control, 

given that a Type I error has been made on another comparison with control, is 

substantially increased in situation (D)”. However, they conclude that “the difference in 

the distributions of type I errors is relatively small when there are not too many 

treatments”. They do not say definitively whether they would be in favour of adjusting or 

not based on this evidence. They suggest that looking at the FWER and per-

comparison error rate (PCER) does not tell the whole story, and in addition baseline 

characteristics of control patients should be compared to other trials’ data to check that 

whether the control group may be “bad”.  
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Freidlin et al. (2008) ‘Multi-arm clinical trials of new agents: some design 

considerations’49 make recommendations on the need for adjustment based on the 

findings from Proschan and Follman (1995). They believe that the need for adjustment 

should be assessed by the “relatedness of clinical questions”. If the same experimental 

treatment is added to different backbone regimes, or for different doses of the same 

treatment, there is more than one chance of success so adjustment is required. 

However, “For the multi-arm trial application being considered here, several 

experimental agents share a control arm for the purpose of improving efficiency and 

the trial is focused on answering the efficacy question for each drug separately; the 

interpretation of the results of one comparison have no direct bearing on the 

interpretation of the others. In this situation, we believe no multiplicity adjustment is 

required”. This paper acknowledges the positive correlation between the individual 

comparisons due to the use of the same control arm, referencing the work of Proschan 

and Follman: “Because of this, a multi-arm trial has a lower overall probability of any 

false-positive result but a higher probability of making more than one false-positive 

conclusion (relative to separate trials). However these probability differences are small, 

especially when the number of experimental arms is in a practical range (two to four 

arms). Therefore, the fundamental issue for the purpose of multiplicity adjustment is the 

relatedness of clinical questions with the statistical correlation having minimal 

relevance”. That is, if the clinical questions are not related, they advocate that there is 

no need to adjust for multiple testing.  

 

Proschan and Waclawiw (2000) ‘Practical guidelines for multiplicity adjustment in 

clinical trials’62 take a middle ground to multiplicity adjustment, advocating that 

adjustment should be determined on a case-by-case basis. They justify this mainly on 

philosophical grounds, giving some scenarios and examples. The issues to be 

considered include “the relatedness of the questions being considered, the number of 

comparisons, the degree of controversy, who stands to benefit, and the nature of the 

study/alternative hypothesis”. The ‘relatedness’ can refer to either: the hypotheses 

being part of a family of experiments assessing related therapies; or statistical 

dependence between the test statistics due to a common control group. In terms of the 

number of comparisons, they argue that there is a stronger case for not adjusting when 

there are two comparisons with control rather than a four arm trial comparing all pairs, 

due to the amount of increase of the FWER. If a company stands to benefit from having 

more chances at success, adjustment is likely to be needed, which might not be the 

case for academic trials. They believe that “the burden of proof is on the investigators 

to defend not adjusting”. A table is provided to summarise the situations in which 

adjustment is necessary. For this situation where different experimental treatments are 
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compared to a shared control group, it reads that discretion is required, but adjustment 

would usually be necessary: to settle controversy; if a single entity benefits; or if there 

is more than once chance of declaring benefit. They mention that “an unusual control 

group affects all comparisons with it”, referencing Proschan and Follman’s 1995 paper, 

but there are no further comments about the implications of the shared use of the 

control data. They conclude in the discussion that “rigid rules for multiplicity adjustment 

are infeasible” and that “it should be the responsibility of the principal investigator to 

justify it [non-adjustment]”. The ideas in Proschan’s other papers in which the need for 

adjustment is discussed (Proschan et al., 199460, and Proschan, 199961) are similar to 

those here, reiterating that the topic is controversial with different viewpoints in the 

literature and no definite guidance, but that there is a positive dependence between the 

test statistics due to the shared control data meaning that there is greater chance of 

more than one type I error than in independent trials. 

 

Cook and Farewell (1996) ‘Multiplicity considerations in the design and analysis of 

clinical trials’66 believe that the p-value represents strength of evidence, and should be 

interpreted by its value as part of the decision-making process, rather than as an 

absolute, artificial, cut-off for decisions. Clinical significance is also important, and 

statistical evidence alone is not sufficient to influence behaviour. Therefore less 

emphasis should be based on the exact cut-off of 0.05, but the results should be 

interpreted considering the questions of main interest. They believe that the concept of 

multiple testing adjustment is therefore non-technical. If hypotheses are defined a priori 

and there are a ‘reasonably small number’ then they argue that no type I error control is 

needed. This is because “in clinical trial designs formally based on two or more 

responses, multiplicity adjustments may not be necessary if marginal, or separate, test 

results are interpreted marginally and have implications in different aspects of the 

prescription of treatments”. That is, if the outcomes inform different claims of 

effectiveness and are interpreted separately, the ‘experimental’ type I error rate may 

not be meaningful. In multi-arm trials, the contrasts of primary interest should be 

defined in advance based on the reasons for including the treatment arms. If these are 

not excessive, “then it is not reasonable to impose constraints solely to control the 

experimental type I error rate. Each contrast can be considered individually with 

separate p-values or type I error rates”. However, if the main contrasts of interest are 

not defined a priori and all pairwise comparisons are planned, multiplicity adjustments 

are a reasonable price to pay for performing an excessive number of tests.   
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Rothman (1990) ‘No adjustments are needed for multiple comparisons’67  offers a 

philosophical rationale for no adjustment based on the probability that a chance finding 

is in fact related to something unobserved other than chance. However, his points are 

abstract and do not consider adjustment in terms of observed error rates, and his 

rationale has not been cited in any other key literature discussing adjustment.   

 

O’Brien (1983) ‘The appropriateness of analysis of variance and multiple-comparison 

procedures’68 is a short Reader Viewpoint in which he describes common literature that 

recommends an ANOVA to test the hypothesis that all populations (trial arms) are 

identical (assuming normal distributions). If the ANOVA suggests no difference, 

pairwise comparisons are not recommended in general “due to the likelihood that at 

least one will be statistically significant by chance”, and if comparisons are made 

following a significant ANOVA result, a multiple testing adjustment should be used. 

O’Brien argues against this strategy, since researchers may want to control the 

comparison-wise error rate rather than the experiment-wise error rate, stating “The 

logic behind this view is that two investigators who have collected exactly the same 

data on two populations (A and B) should arrive at the same conclusions when 

comparing these two populations, despite the fact that additional data on other 

populations may have been collected by one of the investigators”. He notes that 

investigators are penalised for making more effort in asking more questions, and that 

“the investigator should be free to define the questions he wishes to address and to 

avoid assumptions which are unproven”. Therefore, regardless of the outcome of the 

ANOVA, O’Brien advocates that there are situations in which it may be appropriate to 

justify some pairwise comparisons without adjustment.  

 

Wason et al (2014) ‘Correcting for multiple-testing in multi-arm trials: is it necessary 

and is it done’59 review some of the contrasting views on multiple testing adjustment 

and assess what is done in practice. They split the requirements by trial type: 

exploratory; confirmatory with distinct experimental treatments; and confirmatory with 

arms being doses or regimes of the same treatment. Unlike Wason et al. (2012)24, they 

do not mandate multiple testing correction in all circumstances. They summarise some 

of the different views within the literature, highlighting that conflicting viewpoints exist 

on this topic and providing some relevant references. A small literature review of multi-

arm trials that were published in four high impact journals during 2012 was carried out, 

and the level of adjustment was summarised by trial phase and by whether the 

treatment arms are distinct or assess the same therapy. The review identified 59 trials, 

and showed that around half of the trials adjusted for multiplicity (49%), with 55% of 
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exploratory trials adjusting compared to 46% of confirmatory trials. 63% of trials with 

multiple doses or regimens adjusted compared to 35% of trials with distinct treatments 

(6/20 (30%) of confirmatory trials). The discussion includes the authors’ opinions, which 

are based on mainly philosophical arguments, and are that: strict correction is not 

required in exploratory trials, although the final FWER should be reported; adjustment 

is required in confirmatory trials with related treatments, particularly where a single 

company stands to benefit; and in confirmatory trials with unrelated treatments the 

literature is unclear, but guidance from regulators suggests that adjustment is 

necessary. They conclude that more guidance from regulators is required.  

 

Hung and Wang (2010) ‘Challenges to multiple testing in clinical trials’69 is written with 

regulatory trials in mind. There is no specific mention of multi-arm trials with shared 

control data, although some issues are relevant. Rather than mandating strong control, 

they discuss using common sense to define “a relevant family of hypotheses for which 

the type I error needs to be properly controlled”. They discuss the use of a “clinical 

decision tree”, determined in advance, to decide what aspects need to be protected 

from type I error inflation.  

 

3.2.5 Discussion on the literature review 

There are clearly conflicting viewpoints within the literature on the appropriate way to 

handle multiplicity in confirmatory multi-arm trials with shared control data, with some 

authors strongly of the opinion that the type I error needs to be controlled across all 

hypotheses, and others believing that there are at least some cases where this is not 

necessary. Even key regulatory guidance documents do not offer the same advice, 

although scientific advice can be sought from regulators on a case-by-case basis. The 

discrepancies within the literature leave trialists unclear on whether multiple testing 

adjustment is appropriate and necessary, and therefore lead to differences in practice. 

 

The majority of the arguments are philosophical, and do not consider the effect on the 

FWER of having shared control data or making the adjustment compared to error rates 

when running separate trials. None of the papers that advocate strict control at all times 

give a definitive statistical justification for this view. The rationale given is generally that 

adjusting is the safer option to ensure that the chance of recommending an 

inappropriate therapy is not increased. Wason et al. (2012)24 argue that assessing 

multiple hypotheses within a single protocol is equivalent to assessing multiple primary 

outcomes, for which adjustment is generally agreed to be necessary. However, this 
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analogy is not equivalent because multiple outcomes are measured on a group of 

patients receiving an experimental therapy, therefore increasing the chance of at least 

one false-positive finding with relation to that particular therapy. While this argument 

may have some relevance to multi-arm trials with experimental arms that test similar 

therapies, for example different doses or combinations of the same treatment, it does 

not necessarily hold for trials in which the experimental therapies are distinct. In 

contrast, a small number of authors do not believe that adjustment is ever required, 

because this is the same as would have been the case if the hypotheses had been 

assessed in separate protocols, and researchers are therefore being penalised for 

efficiency. Some of these articles have received replies and comments disagreeing 

with their viewpoints, further highlighting the differences of opinion on this topic.  

 

The crux of the opinions can often be attributed to the definition of ‘family’ when 

considering whether the FWER needs to be controlled. Those that advocate 

adjustment at all times believe that all hypotheses belong to a family simply because 

they are being assessed in the same protocol. The authors that recommend 

adjustment in some cases but not others consider a family to be a set of hypotheses 

that are related in that they contribute towards a single claim of effectiveness, and 

believe that if this is not the case the design is essentially running different trials but 

under the same protocol, and therefore adjustment is not necessary. Only one 

publication (Proschan and Follman, 1995)63 calculated the implications of the shared 

control data on the overall error rates for the trial compared to independent trials to 

inform their views on adjustment. However, this work is rarely referenced or considered 

when discussing the requirement for multiplicity adjustment in multi-arm trials. Freidlin 

et al. (2008)49 include it as part their argument for not adjusting where hypotheses are 

not clinically related, but no other literature was found to offer a quantitative rather than 

philosophical perspective on adjustment. This literature review highlights the need for 

further research to enable definitive guidance to be produced in this area. 

 

3.3 Multiplicity adjustment methods 

In this section, some commonly implemented methods for multiple testing adjustment 

are introduced, so that their effects on error rates can be assessed in Chapter 4. Recall 

that multiplicity is the term used to describe the increased risk of a false positive 

conclusion (a type I error) that arises when multiple tests are carried out on a set of 

data. The concern is that if multiple tests are performed, each with a small chance of 
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error, the overall chance of error increases such that the claims made may be a 

consequence of an inflated rate of false positive conclusions.  

 

3.3.1 Familywise Error Rate (FWER)  

If multiple tests are performed within a clinical trial in which the null hypotheses are 

true, the overall chance of making a type I error across the trial as a whole increases. If 

the significance level, 𝛼, is set to 5% for an individual hypothesis, so that p < 0.05 

indicates significance, there is a 95% chance that no error has been made. If a second, 

independent test is also performed, there is also a 95% chance that no error has been 

made in that test. The overall chance of no error in the trial overall is 0.95 x 0.95 = 

0.9025, so the chance of some error is now increased to 9.75%. This is known as the 

familywise error rate (FWER), defined as the overall probability of at least one false 

positive conclusion anywhere within a defined set of trial hypotheses. In order for the 

set, or family, of trial hypotheses to influence practice, it may be required that the 

FWER is controlled at an equivalent level to that for a single hypothesis.  

 

The chance of an exact number of type I errors can easily be calculated for 

independent hypotheses, that is, hypotheses that are tested using entirely different 

populations. Note that hypotheses in multi-arm trials with shared control data are not 

independent, and the impact of this lack of independence is assessed in Chapter 4. 

Each null hypothesis has a binary outcome associated with it, and therefore the 

probability of errors for independent hypotheses can be described using a binomial 

distribution. Define Y to be the random variable associated with the event that a type I 

error occurs. In the independent case, with m comparisons and a probability α of 

finding a significant difference, the probability of exactly y type I errors across the m 

comparisons (y = 1,…,m) can be expressed as 

𝑃(𝑌 = 𝑦) = (
𝑚
𝑦 ) 𝛼𝑦(1 − 𝛼)𝑚−𝑦 , 

Pr(𝑌 = 𝑦) = (
𝑚!

(𝑚 − 𝑦)! 𝑦!
) 𝛼𝑦(1 − 𝛼)𝑚−𝑦 . 

 

Since the FWER is the probability of at least one error,  

𝐹𝑊𝐸𝑅 = 𝑝(𝑌 > 0) = 1 − 𝑝(𝑌 = 0) = 1 − (1 − 𝛼)𝑚. 
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With two independent hypotheses and 𝛼 = 0.05 for each, it can be calculated that the 

FWER is 0.0975 as expected. Table 3-1 summarises the probabilities of exactly y type 

I errors and the FWERs for trials with two, three and four independent hypotheses, 

each with α = 0.05. 

 

Table 3-1 Probabilities of type I errors in trials with two, three or four 
independent hypotheses, with α = 0.05 for each  

 Number of independent hypotheses (m) 

Exact number of errors (y) 2 3 4 

0 0.9025 0.8574 0.81451 

1 0.095 0.1354 0.17148 

2 0.0025 0.0071 0.01354 

3 - 0.0001 0.00048 

4 - - 0.000006 

FWER 0.0975 0.1426 0.1855 

 

The greater the number of hypotheses, the higher the chance of at least one type I 

error occurring. If the FWER needs to be controlled to reduce this chance to that for a 

single test (0.05), there are many multiplicity adjustment procedures available. 

Appropriate procedures must offer strong control of the FWER, implying that the FWER 

is controlled regardless of whether the null hypotheses are all true or not. In order to 

assess multiplicity adjustment in multi-arm trials, some of the common procedures that 

strongly control the FWER are described here. Section 3.3.2 includes procedures that 

are simple in that they do not take account of any correlation between the comparisons 

which may be present due to having a shared control group, and Section 3.3.3 includes 

those that do account for correlation structures due to the dependency of the shared 

control group. 

 

3.3.2 Common simple multiplicity adjustment methods  

Here the most commonly used multiplicity adjustment procedures that do not account 

for correlation between comparisons due to having a shared control group are 

described. Section 3.3.2.1 summarises a single-step method whilst Section 3.3.2.2 

introduces stepwise closed testing methods. 
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3.3.2.1 Single-step Bonferroni method 

The simplest multiplicity adjustment method is the nonparametric Bonferroni 

adjustment, which is a single-step method that is known to be conservative but 

applicable in all situations. The Bonferroni method states that if you are performing m 

comparisons (j = 1,…,m), and your overall FWER is required to be α, each test should 

be run at a level of significance α/m. That is, the α is split equally between the number 

of tests being performed. 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0𝑗 𝑖𝑓 𝑝𝑗 ≤
𝛼

𝑚
  

 

For independent tests the Bonferroni method is conservative due to an approximation 

to simplify the formula, particularly for large numbers of hypotheses. Recall that if there 

are two tests with significance level set to 5%, the total chance of error is 9.75% rather 

than 10%. This is due to some occurrences when the errors may fall within the same 

pairs of trials, and so the overall chance of ‘at least one’ error is less than αm. The 

Sidak adjustment method is very similar but calculates the adjustment exactly 

(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0𝑗 𝑖𝑓 𝑝𝑗 ≤ 1 − (1 − 𝛼)
1

𝑚 ) so is less stringent than the Bonferroni correction, 

however as this is used less often and the difference between the adjusted significance 

levels is very small, only the Bonferroni method will be considered in this research.  

For example, if there are three comparisons, with the FWER required to controlled at 

0.05, each p-value would be assessed against 0.0167 by the Bonferroni adjustment. 

With the Sidak adjustment method the critical significance level for each comparison 

would be 0.0170. 

 

3.3.2.2 Closed testing (stepwise) methods  

Methods based on the ‘closed testing procedure’70 are less conservative and therefore 

more powerful than single-step methods, whilst still strongly controlling the FWER. The 

closed testing procedure is a hierarchical testing strategy, where hypotheses are tested 

in a pre-defined order and if a null hypothesis is not rejected then further testing stops 

and no further null hypotheses can be rejected. Due to this hierarchical ordering of 

testing, no further α adjustment is necessary70. The closed testing procedure can be 

applied when there are a closed family of null hypotheses. These consist of: 

 Individual null hypotheses H0j, j=1,…,m, where H0j is the null hypothesis 

assessing experimental arm j versus control.  

 All possible intersection hypotheses, where the notation 𝐻0(12) = 𝐻01 ⋂ 𝐻02. 
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Based on the Bonferroni-Holm method, the intersection hypothesis H0(12…m) is rejected 

if p(12…m) ≤ 0.05, where 

𝑝(12…𝑚) = min (1, 𝑚𝑝1, 𝑚𝑝2, … , 𝑚𝑝𝑚). 

Other methods exist to calculate the intersection (such as using Sidak’s formula), but 

differences are small and the Bonferroni-Holm method is the simplest. The closed 

testing principle has led to stepwise procedures to control for multiplicity, such as those 

by Holm and Hochberg which are commonly used and discussed here as exemplars of 

a step-down and step-up procedure respectively. Other stepwise and closed testing 

methods exist and are similarly based on some function of the raw p-values. They vary 

in complexity and some are slightly less conservative although the differences are 

small and do not affect the broad picture, so they are not included as part of this 

research. 

 

Figure 3-1 Diagrammatic representation of the closed testing procedure 

 

 

Figure 3-1 illustrates the closed testing procedure. In order to be able to reject H03 for 

example, the closed testing procedure states that every null hypothesis containing it 

must be rejected, i.e. H0(123), H0(13), H0(23), and H03. That is, p123, p13, p23 and p3 must all 

be less than 0.05, where 𝑝123 = min (1,3𝑝1, 3𝑝2, 3𝑝3) and 𝑝13 = min (1,2𝑝1, 2𝑝3) and so 

on. It is clear that if p3 is less than 0.0167 (i.e. α/m), H03 will always be rejected 

regardless of the other p-values, as it would be with the Bonferroni method. However if 

0.0167 < p3 < 0.05, it is possible that H03 could still be rejected if p1 and p2 are small, as 

long as one is <0.0167 and the other <0.025. This is why the method is less 

conservative than Bonferroni. 

H
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Holm method 

The Holm method is a step-down procedure based on the closed testing principle. For 

m comparisons, the unadjusted p-values are ordered from the most to the least 

significant, so 

𝑝1 < 𝑝2 < ⋯ < 𝑝𝑚. 

 

Firstly, the most significant p-value is compared against α/m. If there is evidence to 

reject the first null hypothesis the next can then be assessed, and so on. Each p-value 

(with order j) is compared in order to α/(m-j+1), so the stepwise procedure continues: 

- The 2nd smallest p-value is compared to α/(m-1) 

- The 3rd smallest p-value is compared to α/(m-2) 

- The largest p-value is compared to α 

As soon as a test fails to reject H0j, no remaining null hypotheses can be rejected. 

 

For example, in the case of three comparisons, if the p-values for H01, H02 and H03 

respectively were 0.01, 0.04 and 0.02, all null hypotheses would be rejected. This is 

because firstly 0.01<α/3 i.e. 0.0167 (so from Figure 3-1 p123 for H0(123) would be 0.03), 

secondly 0.02<α/2 i.e. 0.025 (so p12 and p13 would be 0.02 and p23 would be 0.04), and 

finally 0.04<α i.e. 0.05. Note that for this example, with the Bonferroni adjustment only 

H01 would be rejected. 

  

Hochberg method 

The Hochberg method is a step-up procedure based on the closed testing principle, 

addressing the p-values from least to most significant. It is more powerful than the 

Holm method, but is only applicable if the p-values are positively correlated, which will 

always be the case with shared control data (Section 4.3). For m comparisons, the p-

values are ordered so 

𝑝1 > 𝑝2 > ⋯ > 𝑝𝑚. 

 

Firstly, the largest p-value is compared against α. If there is evidence to reject the least 

significant null hypothesis, all further null hypotheses are automatically rejected. If a 

null hypothesis cannot be rejected, the next largest is assessed, and so on. Each p-

value (with order j) is compared in a stepwise manner to α/j, so: 
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- The 2nd largest p-value would be compared to α/2 

- The 3nd largest p-value would be compared to α/3 

- The smallest p-value would be compared to α/m 

Therefore if the largest p-value is <0.05, all null hypotheses would be rejected, even if 

all p-values equal 0.049. Note that the Holm method requires the smallest p-value to be 

<α/m in order to proceed, so it is clear that the Hochberg method is less conservative.   

 

For example, in the case of three comparisons, if the p-values for H01, H02 and H03 

respectively were 0.01, 0.04 and 0.03, all null hypotheses would be rejected. This is 

because 0.04<α and therefore no further testing is necessary. Note that with both the 

Bonferroni and Holm adjustment methods, only H01 would be rejected in this example. 

 

3.3.3 Multiplicity adjustment methods that account for the lack of 

independence due to a shared control group 

3.3.3.1 Parametric methods (Dunnett’s t) 

If the tests are correlated because they share control data, this increases the 

conservativeness of the non-parametric adjustment methods described above. It is 

possible to use parametric adjustment methods to exploit this correlation in order to 

control the FWER exactly, therefore increasing the power. Many commonly used 

parametric methods, such as Tukey’s Honestly Significant Difference (HSD), adjust for 

all pairwise comparisons. For the purposes of this research, however, we are assuming 

that only comparisons with control are relevant for the primary hypotheses, and 

therefore the most commonly used, relevant parametric adjustment method in this case 

was proposed by Dunnett (1955)54. Dunnett showed that the correlation between test 

statistics in this case can be quantified based on the randomisation allocation ratio, as 

described in 4.3.1. 

 

In simple terms, the Dunnett’s t method adjusts the Bonferroni boundaries so that the 

probability of observing a significant result under H0 is exactly 0.05. In order to 

understand how the method works, it is assumed that the data are continuous and 

normally distributed, although this methodology can be applied to non-normal data 

based on large sample approximations. The group means of normally distributed data 

can be compared using a one-way ANOVA, where the overall mean square (between) 

estimate is the sum of the squared difference between each value and the grand mean, 

divided by the between degrees of freedom. That is, 



- 51 - 

𝑀𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛) =
𝑆𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛)

𝑑𝑓
=

𝑛 ∑ (�̅�.𝑗−�̅�..)
2

𝑗

𝑗−1
, 

where n is the number per arm, j is the number of arms and �̅� represents the means. 

The overall mean square (within) estimate is the sum of the squared differences 

between each value and its group mean, divided by the within degrees of freedom, that 

is, 

𝑀𝑆(𝑤𝑖𝑡ℎ𝑖𝑛) =
𝑆𝑆(𝑤𝑖𝑡ℎ𝑖𝑛)

𝑑𝑓
=

∑ ∑ (�̅�𝑖𝑗−�̅�.𝑗)
2

𝑗𝑖

𝑗(𝑛−1)
, 

for i subjects per arm. The ratio of the mean square between and within gives an F-

ratio to assess overall significance based on the CDF of an F-distribution with j-1 

degrees of freedom for the numerator and j(n-1) degrees of freedom for the 

denominator. Post-hoc tests can be used to look for differences in pairwise 

comparisons, based on t-tests. The mean square (within) can be used to estimate the 

standard error required for unadjusted pairwise comparisons for the t-tests, as follows: 

𝑡 =
�̅�𝐸−�̅�𝐶

𝑆𝐸
,  𝑤ℎ𝑒𝑟𝑒 𝑆𝐸 = √𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 (

1

𝑛1
+

1

𝑛2
). 

 

Parametric adjustment methods compute the required significance level of the t-

statistic such that the error is controlled exactly, after accounting for any correlation. 

Dunnett (1955)54 tabulated the values of t (td) to compare the experimental treatments 

(E) to control (C) based on different numbers of treatments and group sizes, assuming 

either 1 or 2-sided tests performed at 1% or 5% significance, and with equal allocation. 

Statistical software extends this to allow the Dunnett adjustment to be applied to any 

relevant scenario. 

 

Table 2a in Dunnett (1955)54 gives the adjusted t-statistic, td, for two-sided comparisons 

with α=0.05. Assuming a large sample size (so that the degrees of freedom are greater 

than 120), td for 2 comparisons is 2.21. Note that with 1 comparison td is 1.96, as would 

be expected. This translates to a critical significance level for comparison of 0.0271 (2 ∗

(1 − Φ(2.21)). This is clearly less conservative than the equivalent Bonferroni critical 

significance level of 0.025. In the case of three two-sided comparisons td is 2.37 which 

translates to a critical significance level of 0.0178 for comparison to 0.0167 with a 

Bonferroni adjustment. 
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3.3.3.2 A step-up multiple test procedure (Dunnett and Tamhane)  

The procedure described by Dunnett and Tamhane (1992)71, also known as the 

Adjusted Hochberg method, was discussed in Fernandez and Stone (2011)72 as an 

alternative parametric closed testing adjustment method to control the FWER where 

tests are not independent, in order to control the error more exactly to increase the 

power. Similarly to Dunnett’s method, the experimental treatments are compared only 

to the control, and not to one another. This method is similar to the step-up Hochberg 

method discussed in Section 3.3.2.2, except that the critical values for rejection are 

adjusted to account for correlation so that the final FWER is exactly 0.05. As with the 

Hochberg method, there are m comparisons, and j is the iterative test in the step-up 

procedure j=1,…,m. The p-values are ordered from largest to smallest, and each is 

compared in turn to the adjusted critical value, such that as soon as one null 

hypothesis is able to be rejected, testing stops and all remaining null hypotheses are 

also rejected.  

 

The key to this method is determining the critical values such that the FWER is exactly 

0.05. Dunnett and Tamhane (1992)71 solved the critical constants ci for various 

numbers of comparisons, amounts of correlation and sample sizes for both one and 

two-sided tests, and listed them in tables. The largest p-value is compared against (2 ∗

(1 − Φ(𝑐1)). If not significant, the next largest is compared against (2 ∗ (1 − Φ(𝑐2)) and 

so on until one null hypothesis can be rejected. Determining each ci must be done in 

order starting with c1 up to cm. With 2 hypotheses in a 3-arm trial, assuming a large 

sample, two-sided tests and a 1:1:1 randomisation, Table 2 in Dunnett and Tamhane 

(1992)71 can be used to find c1 = 1.96, so (2 ∗ (1 − Φ(𝑐1)) = 0.05, and c2 = 2.223 so 2 ∗

(1 − Φ(𝑐2)) = 0.0262. The latter significance level is less conservative than the 

standard Hochberg significance level of 0.025.  

 

3.3.4 Summary of multiplicity adjustment methods 

There are many different options to adjust for multiple testing in order to control the 

FWER when assessing multiple experimental treatments against a shared control 

group. These can be separated into non-parametric methods that do not account for 

the correlation due to the shared control group, and parametric methods that do. Some 

methods are less conservative, whilst others may be simpler to apply and therefore 

tend to be more widely used in practice. Here a broad selection of different types of 

methods have been described, with an example of a single-step, step-up and step-

down non-parametric method, and a single-step and step-up parametric method being 
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selected for inclusion. These methods are investigated in Section 4.4 in order to 

determine the effect of the different types of adjustment methods on the probabilities of 

type I errors. Section 4.4 also includes figures illustrating the rejection regions for each 

adjustment method, which is a useful aid to understand the differences between them.  

 

In the next section, the factors that affect the need for multiplicity adjustment methods 

to be applied are broken down. These are then considered in turn to assess how well 

understood they are, in order to determine whether any further research could add to 

the current body of evidence on the need for multiplicity adjustment for multiple 

hypotheses.  

 

3.4 Consideration of factors causing multiplicity concerns in 

multi-arm trials compared to independent trials 

If two hypotheses are tested in separate protocols, no multiple testing adjustment is 

considered necessary. However if these same two hypotheses are tested within the 

same protocol, whether this is due to a multi-arm trial from conception or whether an 

experimental arm has been added, there is uncertainty as to whether adjustment is 

required. In this research, the aspects of multi-arm trials that might affect the family 

wise error rate are considered, so that their effect can be investigated.  

 

3.4.1 Shared control data 

If two experimental treatments A and B are compared against the current standard, Z, 

the hypotheses for experimental treatment j (j = A, B) can be expressed as: 

𝐻0𝑗: 𝜇𝑗 = 𝜇𝑍  

𝐻1𝑗: 𝜇𝑗 ≠ 𝜇𝑍 

 

If the hypotheses are assessed in independent trials, it is accepted that there is no 

requirement to adjust for multiple testing, even if they are assessed by the same 

investigators and trials teams in the same centres and based on similar protocols. If 

they are instead assessed in the same trial but are designed to be tested in exactly the 

same way as they would have been in separate trials, where the data are entirely 

independent and non-overlapping with separate control groups Z1 and Z2, and the 

hypotheses are both powered separately and appropriately (as shown in Figure 3-2), it 
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would be difficult to argue for multiple testing adjustment to consider the familywise 

error rate across the whole protocol.  

Figure 3-2: Illustration of two independent hypotheses being tested within the 
same protocol. The control groups are entirely separate.  

 

The sharing of a protocol or even a randomisation system in this case does not affect 

the statistical probability of an error over that for independent trials. Westfall et al. 

(2010)65 report that it may be plausible that multiplicity problems due to sharing a 

protocol could result from “selection effects” such as the method of assessment of the 

primary endpoint. However, this could just as easily occur in two independent trials led 

by the same trials team. Therefore it would seem that there is no additional reason for 

multiplicity concerns due to simply sharing a protocol, when separate pieces of 

confirmatory evidence are not required to be obtained from distinct teams. Asking more 

than one question independently but within the same protocol may be advantageous to 

reduce the burden of trial management issues such as funding applications, approvals, 

CRF development, staffing and set-up time. There are examples of this type of design 

in practice. Umbrella trials, for example, include a number of sub-study randomisations 

under the same protocol. These are often stratified by different eligibility requirements 

such as biomarker profiles, so each randomisation includes patients with different 

characteristics. Recent examples of trials with these designs are FOCUS473 and Lung-

MAP74. Since each randomisation is independent and has its own control patients, the 

trials have not included a multiplicity adjustment for having multiple primary hypotheses 

within the protocol.  

 

The example in Figure 3-2 is unlikely to make practical sense where the eligibility 

criteria and control group for both new experimental treatments are the same. 

Efficiency can be greatly improved by comparing both experimental arms to the same 

group of control patients. If the treatment difference being sought is the same, then 

utilising a single control group offers a saving of 25% of the trial size for an even 

allocation ratio (Figure 3-3). 
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Figure 3-3: Illustration of a multi-arm design where two hypotheses are tested 
within the same protocol and share the same control patients. 

 

As in the previous example, both hypotheses are addressed separately and have both 

been adequately powered. Given the logic that the use of the same protocol alone 

does not cause multiplicity concerns over the same hypotheses being tested in 

independent trials, the difference is around the shared use of the control data. The 

comparisons are no longer independent, but are correlated based on the shared 

comparator group. The impact of this correlation on the chances of errors can be 

formally quantified, although very little literature has been published assessing the 

effect of shared control data on the probabilities of type I errors over those in 

independent trials, and this effect is rarely considered when assessing the requirement 

for multiplicity adjustment in multi-arm trials. Section 3.5 describes the known effects of 

correlation due to control data, and this work is extended in Chapter 4. 

 

Note that when a new experimental arm is added to an ongoing trial, if only 

concurrently randomised control patients are used, it may be that some of the control 

patients differ between the comparisons as in Figure 3-2, but there may also be some 

overlapping patients that are used for both the original and new comparisons as in 

Figure 3-3. In these chapters when considering the implications of having shared 

control data on multiplicity, the ‘worst case’ scenario is that all control patients are used 

in all comparisons, and therefore this will be assumed here in order to offer the most 

conservative findings. If only some of the control patients are shared due to the timing 

of the amendment, the effects of the shared control data will be diluted. This will be 

considered as part of the recommendations, and also in Chapter 5 when investigating 

the appropriate way to analyse a trial in which an arm was added, including applying a 

multiple testing adjustment. 
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3.4.2 Including more hypotheses than would have been assessed in 

independent trials  

Section 3.4.1 highlights that a key statistical implication of running a single multi-arm 

trial compared to separate trials is due to multiple use of shared control data. However, 

another factor that could increase the chance of a false conclusion over that for 

independent trials is the ability to test more hypotheses than would otherwise have 

been assessed. The necessity for adjustment in this case is a largely philosophical, 

rather than necessarily statistical, argument that is well addressed in the literature. The 

majority of the publications identified in the literature review in Sections 3.2.3 and 3.2.4 

debate this issue, and it can be seen from the review that there is no consensus of 

opinion. On interpreting the literature, and ignoring the issues around having shared 

control data on the error rates since that is investigated separately, my opinion is that 

the need for adjustment depends on whether or not the hypotheses inform a single 

claim of effectiveness. If the hypotheses are to be interpreted independently, for 

example because they assess different experimental therapies, they are likely to inform 

entirely separate claims of effectiveness. However, if for example the trial is assessing 

different doses of the same experimental therapy, any success could lead to promotion 

of that therapy and therefore their hypotheses are likely to inform a single claim of 

effectiveness. This has been referred to as the ‘claim-wise error rate’57. My argument 

for adjustment or not in these cases is as follows:  

 

 If the hypotheses inform different claims of effectiveness, FWER control 

is likely to be an unnecessary penalty  

If the hypotheses in a multi-arm trial do not inform the same claim of effectiveness 

because the experimental therapies are distinct, then it can be argued that the 

chance of a false positive error with relation to each therapy is unaffected by the 

inclusion of the other hypotheses. It has been argued, and it stands to reason, that 

the hypotheses should therefore not be interpreted as a ‘family’ since they do not 

contribute towards the same recommendation, and FWER control is an 

unnecessary penalty49, 62.   

 

 If the hypotheses contribute towards a single claim of effectiveness, they 

are likely to be considered a ‘family’ and therefore FWER adjustment may 

be required 

If the ability to assess an increased number of primary hypotheses due to the 

efficiency of the multi-arm trial leads to a single therapy being assessed within a 
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number of experimental arms, the chance of a false positive error occurring with 

respect to that therapy will be increased. For example, if two different doses of a 

therapy are being assessed, each with a 5% probability of a false positive outcome, 

the overall chance of a false positive being reported from either one of those doses 

is increased to up to 9.75%. Due to assessing multiple hypotheses, there is a 

greater chance that there will be at least one false-positive error caused by a 

deviation in at least one of the samples from the true population, whether that is in 

an experimental or control arm. In this case there is general agreement in the 

literature that FWER control is recommended. Note that it also follows that the 

power in this case can be considered to be the overall chance of observing at least 

one true positive outcome, and this will also be increased by testing multiple 

hypotheses. Therefore, the penalty caused by applying the FWER adjustment may 

be compensated to some extent by the gain in overall power, otherwise known as 

the disjunctive power75, as discussed in Section 4.6. 

 

There is an element of common sense and logical argument required in determining 

whether it is necessary to control the FWER across all hypotheses in a multi-arm trial 

due to the increased number of hypotheses, or whether pairwise type I error control is 

adequate. It needs to be considered whether the hypotheses are likely to have 

otherwise been assessed in independent trials; whether they inform a single claim of 

effectiveness, perhaps in full or in part; and whether there is an associated gain in 

power for that claim of effectiveness. This does not contradict ICH E9 ‘Statistical 

Principles for Clinical Trials’51, which states that “adjustment should always be 

considered, and the details of any adjustment procedure or an explanation of why 

adjustment is not thought to be necessary should be set out in the analysis plan.” Hung 

and Wang (2010)69 discuss defining “a relevant family of hypotheses for which the 

type-I error needs to be properly controlled”, and recommend a “clinical decision tree”, 

determined in advance, to decide what aspects need to be protected from type I error 

inflation. The decision on adjustment due to assessing multiple hypotheses should be 

made at the design stage for each trial and documented with full justification. 

 

3.5 The known effects of shared control data 

The previous section separated out the two key causes that can affect the chances of 

errors in multi-arm trials compared to those in independent trials:  

 The effect of correlation due to multiple use of the shared control data  
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 The increased chance of making a single claim of effectiveness due to testing 

more hypotheses involving the same therapy than would have been assessed 

in independent trials 

As previously discussed, the second point is largely philosophical rather than 

necessarily statistical, and has been well addressed in the literature, albeit with varying 

opinions. Adjustment for this reason needs to be considered and justified on a trial-by-

trial basis. However, the first point has been less well addressed and does not appear 

to be as widely understood, and therefore forms the main focus of this investigation into 

multiple testing adjustment for multiple hypotheses.  

 

It is known that when multiple hypotheses have a shared control group, the FWER for 

those comparisons is lower than that for independent comparisons. This has led to the 

development of less conservative adjustment methods such as those discussed in 

Section 3.3.3. However, this phenomenon has rarely been considered in the literature 

addressing the need for multiple testing adjustment in multi-arm trials. In this section, 

the known impact of the correlation due to shared control data on the chances of type I 

errors is reviewed so that the reason for the reduction in the FWER is understood. The 

influence that this has had on the consideration of multiplicity adjustment within the 

literature is reviewed in order to determine what is already understood regarding the 

effect of the shared control data on multiplicity, and whether any further research is 

beneficial to help to inform the need for adjustment in multi-arm trials. 

 

3.5.1 Fernandez & Stone “Multiplicity adjustments in trials with two 

correlated comparisons of interest” 

Fernandez & Stone (2011)72 was identified during the literature review described in 

Section 3.2.2. The paper does not question the need for multiplicity adjustment, since 

they take the assumption that adjustment is necessary in the case of having multiple 

doses of the experimental treatment, so was not relevant to the scope of the review. 

However, the methods used to visualise the type I error regions and the effect of the 

lack of independence between the test statistics are interesting and useful. The authors 

assess the impact of having correlated comparisons on the FWER after applying non-

parametric multiple adjustment methods, and discuss parametric adjustment methods 

that account for this and are therefore less conservative. A ‘Swiss Flag’ diagram is 

introduced to diagrammatically represent the type I error rates, which is a helpful aid in 

understanding the various error regions where there are two comparisons, and 

picturing how the various multiple adjustment methods affect these. They also discuss 
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the concept that the error regions can be calculated based on the joint distribution of 

the comparisons having a bivariate normal distribution, and this assumption is taken 

forward into the research in Chapter 4. 

 

In the manuscript, the ‘Swiss Flag’ is used to illustrate the probability of type I errors for 

two comparisons plotted on the same axes, with comparison A being displayed 

horizontally, and comparison B being displayed vertically, as shown in Figure 3-4. 

 

Figure 3-4 ‘Swiss Flag’ illustrating the rejection regions for two independent 
comparisons  

 

 

Note XA and XB are the test statistics assessing therapies A and B against their 

independent control groups, and Zp represents the pth percentile of the cumulative 

distribution function of a standard normal distribution. The shaded regions around the 

edges represent the critical regions, based on a standard hypothesis test for a normally 

distributed test statistic. It is explained in the Fernandez & Stone paper as follows: “For 

each comparison, under H0, there is a [2.5%] probability of observing a treatment effect 

in favour of the experimental treatment, and a [2.5%] probability of observing a 

treatment effect in favour of the control arm, giving an overall [5%] significance level 

per comparison”. It can be seen that even in the independent case there is some 

‘double counting’ in the rejection regions in the four corners. Since the FWER is the 

probability of ‘at least one error’, it can be calculated by the sum of the edges (4 x 

0.025) minus the amount that is double counted in the corners (4 x 0.0252), which is 

0.0975, agreeing with that expected from Section 3.3.1. This explains why the 
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Bonferroni method (Section 3.3.2.1) is conservative, because the method adjusts 

based on the assumption that the total error region is 0.1 and does not account for the 

occasions where the errors occur within the same pair of comparisons.  

 

Fernandez & Stone then discuss the impact of comparing both therapies to the same 

control, so they are not independent. They show that the correlation between 

comparisons (ρ) can be calculated based on the allocation ratio, such that: 

𝜌 =
1

√(
𝑛𝑍
𝑛𝐴

+1)(
𝑛𝑍
𝑛𝐵

+1)
, 

where nZ is the number of patients in the control arm and nA and nB are the numbers in 

experimental arms A and B respectively. 

 

If the allocation ratio is 1:1:1, the correlation is 0.5. Therefore, Fernandez & Stone state 

“if it is reasonable to assume that the sample size is large enough so that each 

comparison follows a Normal distribution, then their joint distribution will follow a 

bivariate Normal distribution, with correlation = 0.5”. They provide SAS code to 

calculate the probabilities for the critical regions around the edges of the Swiss Flag 

after accounting for the correlation, based on the assumption that the joint distribution 

follows a bivariate Normal. They use these methods to compare various multiple 

testing adjustment procedures in order to make recommendations concerning the most 

efficient in the case where the comparisons share a control group.  

 

3.5.2 Proschan & Follmann “Multiple comparisons with control in a 

single experiment versus separate experiments: why do we 

feel differently?”  

As noted within the literature review in Section 3.2.4, Proschan & Follmann (1995)63 is 

the only publication identified to have assessed the effect of the shared control data on 

the probabilities of type I errors and related this to the requirement for multiple testing 

adjustment. They investigated the impact of the dependency of the control group on the 

overall type I error rates for the multi-arm trial compared to independent trials by 

comparing the error rates for independent trials (I) to trials with a shared control group 

(D). They calculate the type I errors under the theory that in the independent case (I), 

the number of type I errors is a binomial random variable, and in the dependent case 

(D), the distribution is “conditioned on the standardized sample control mean”. This is 
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shown to lead to the following formula, using the notation of this thesis, to calculate the 

probability of type I errors under the dependent case:  

Pr(𝑁𝐷 = 𝑥) = (
1

√2𝜋
) ∫ (

𝑚
𝑥

) [𝑝(𝑧)]𝑥 × [1 − 𝑝(𝑧)]𝑚−𝑥 exp (−
𝑧2

2
) 𝑑𝑧

∞

−∞
, 

where 𝑝(𝑧) = 1 − Φ(𝑧 + √2𝑍𝛼), m is the number of comparisons and α is the one-sided 

significance level.  

 

The probabilities of type I errors are calculated for trials with two, three and four 

hypotheses based on a one-sided 5% significance level, and tabulated. Note that only 

one-sided tests are considered for simplicity in this publication. It isn’t clear how this 

would extend to calculate the probabilities in the common case of two-sided tests. 

 

The authors show that the probability of making one type I error is lower when there is 

a positive dependence between the test statistics than in separate experiments, as 

expected, but that the probability of making two or more errors is higher. They 

calculated that in situation (D) in the case of two hypotheses with even allocation and a 

one-sided 5% error rate, the chance of exactly one type I error is 0.0756 and the 

chance of exactly two errors is 0.0122, therefore the FWER is 0.0878. Recall that in 

situation (I) the FWER is 0.0975 and the chance of exactly two errors is 0.0025. 

Therefore, whilst the FWER is smaller under (D), there is a substantial increase in the 

conditional probability of a type I error for one comparison if a type I error exists for the 

other. This is because “no matter how large [m] is, there is only one control group 

under (D); if it is “bad” then all of the comparisons are affected”. They assess the power 

in situation (I) compared to situation (D) after applying a Dunnett adjustment for 

multiple testing, and conclude that is it still worthwhile to do a single experiment in 

many situations unless there are an ‘unrealistically large’ number of treatments. 

However, they do not quantify the effect that the Dunnett adjustment has on the 

increased probability of more than one type I error.  

  

In their conclusions, the authors discuss the contentiousness of adjustment, countering 

the argument for adjusting only where the hypotheses are families that ‘are formed of 

related statements’ in a single experiment because “related statements are often made 

in separate large experiments, and we feel confident about the significant results”. 

They conclude that “the difference in the distributions of type I errors is relatively small 

when there are not too many treatments”, however a ‘bad’ control group leading to type 

I errors in a single experiment would reduce the chance of a contradicting result over 
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that had the trials been independent. They leave the overall conclusion fairly vague, 

without providing any conclusive guidance on the need for adjustment based on their 

findings regarding the distribution of errors. They suggest that it is not enough to only 

consider the FWER and PCER, but that baseline characteristics of control patients 

should be compared to those in other trials to investigate whether the control group 

may be ‘bad’. However, this would be a subjective investigation based on the choice of: 

the baseline factors investigated; the number of patients involved; the availability of 

similar, concurrent trials data; and the general uncertainty in the comparison in terms of 

power of concluding a difference or not. Therefore this cannot be relied on in order to 

determine the need for adjustment. 

 

Although Proschan and Follmann’s work was published in 1995, it is rarely referenced 

or considered when discussing the requirement for multiplicity adjustment in multi-arm 

trials. Freidlin et al. (2008)49 include it as part their argument for not adjusting where 

hypotheses are not clinically related, as described in Section 3.2.4. No other literature 

was found to consider the effect of the dependency of the shared control data on the 

requirement for multiple testing adjustment. Whilst Proschan & Follmann’s work is 

interesting and relevant, their findings are limited and do not obviously translate into a 

recommendation on the need for adjustment. They only assessed one-sided tests with 

an even allocation ratio, and did not assess the effect of adjustment methods on the 

distribution of the type I errors compared to independent trials in order to fully consider 

their usefulness and make informed recommendations. This research is therefore 

reproduced and extended in Chapter 4. 

 

3.5.3 Senn “Statistical Issues in Drug Development”  

Senn’s book on Statistical Issues in Drug Development (1997)76 includes a chapter on 

multiplicity, with Section 10.2.8 entitled “Even when the probabilities of making at least 

one type I error are controlled, conditional error rates may not be”. This short section 

highlights that in the case that the placebo (or control) results are low by chance, they 

are used as a comparator for all experimental treatments and therefore this will inflate 

the error over all comparisons. Senn demonstrates that in this case, even after 

applying a Bonferroni correction, the ‘conditional probability’ that a contrast is 

significant, given that previously tested contrasts are significant, is inflated due to the 

correlation between the comparisons caused by sharing the placebo arm.  
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Senn recommends that a ‘structured approach’ could be used to test doses in a pre-

defined order if appropriate, or else closed testing methods could be implemented. 

However the effects of these methods on the conditional probability of an error is not 

discussed, and there are no clear recommendations on multiple testing adjustment 

considering the increased probability of a conditional error. 

 

3.6 Summary 

The objective of this chapter was to introduce the concept of multiple testing 

adjustment in multi-arm trials and the conflicting viewpoints on its necessity; 

understand common adjustment methods and how they are applied; consider the 

causes affecting multiplicity where hypotheses are assessed in multi-arm trials 

compared to independent trials; and provide an overview of the most relevant literature 

addressing the impact of having shared control data, in order to inform future work.  

 

Published opinion is divided on the requirement for multiple testing adjustment to 

control the FWER, and there is no comprehensive guidance available for researchers, 

therefore leading to differences in practice. There are two reasons why false positive 

error rates may be affected in multi-arm trials compared to independent trials. The first 

is due to correlation between the comparisons caused by the shared use of the control 

data; and the second is an increased chance of making a claim of effectiveness 

because of an increased ability to test a family of hypotheses. Whilst the second point 

is widely debated, very little literature has been published considering the effect of 

shared control data on the probabilities of type I errors over those in independent trials, 

and how this impacts on the requirement for multiplicity adjustment in multi-arm trials. 

Proschan and Follman (1995)63 showed that the positive correlation between the test 

statistics reduces the FWER over that in independent trials, but that the probability of 

making two or more errors is increased. However, this work is not well cited or 

considered in the literature discussing the requirement for adjustment.   

 

Whether multiple testing adjustment is included or not has the potential to have a real 

impact on the interpretation of the trial results and their influence on practice for 

confirmatory trials. For example, the ALTTO trial in HER2-positive early breast cancer77 

assessed two experimental arms against a shared control in a large, confirmatory trial. 

The experimental arms were a sequence of trastuzumab (T) followed by lapatinib (L), 

or the combination of L+T,  both compared to T alone in terms of disease-free survival. 
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Following a Bonferroni adjustment, both hypotheses were assessed against a 

significance level of 0.025. The p-value for the L+T vs T alone hypothesis was 0.048, 

which was not significant due to the Bonferroni adjustment, and therefore the trial 

outcome was that T remains standard of care. Whilst there are efficiencies associated 

with testing multiple hypotheses within the same protocol, adjusting for multiple testing 

can be disadvantageous for the individual hypotheses, and so it must be carefully 

considered in advance whether adjustment is truly necessary. 

 

In the next chapter, the work discussed here is extended in order to fully investigate the 

effect of correlation due to shared control data on the different probabilities of one or 

more type I errors, and the usefulness of multiple testing adjustment methods on 

controlling these errors. This enables informed and comprehensive recommendations 

to be made on the need for a multiple testing adjustment in multi-arm trials with shared 

control data. 
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Multiple testing adjustment in multi-arm trials with a 

shared control group: the effect of positive correlation 

between the test statistics and recommendations 

4.1 Introduction 

4.1.1 Background 

In Chapter 3 the concept of multiplicity was introduced, including some common 

viewpoints for and against adjustment in the context of multi-arm trials with a shared 

control group. The reasons why false positive error rates may be affected in multi-arm 

trials compared to independent trials were identified to be related to: correlation 

between the comparisons due to the shared control data; and the increased chance of 

making a claim of effectiveness due to the ability to assess more hypotheses. Whilst 

the necessity for adjustment because of an increased chance of making a claim of 

effectiveness has been well addressed in the literature, with the opinions related to this 

point summarised in Section 3.4.2, very little literature was found to have been 

published assessing the effect of shared control data on the probabilities of type I 

errors over those in independent trials and the associated impact on the requirement 

for multiplicity adjustment. In Section 3.5, the known effects of having shared control 

data were introduced. In summary, Proschan and Follmann (1995)63 and Senn (1997)76 

reported that where the comparisons are correlated due to a shared control group, the 

FWER is lower than that in independent trials, but the conditional probability of a 

second or further type I error is higher. However, these findings have not led to 

recommendations for multiple testing adjustment that are commonly considered within 

the literature. In this chapter, the work of Proschan and Follmann is extended to fully 

investigate the effect of correlation due to multiple use of the shared control data in 

order to make recommendations on multiple testing adjustment in multi-arm trials. In 

Section 4.2, other relevant types of type I error rate are defined in addition to the 

FWER, relating to the probability of more than one type I error occurring within the 

family. In Section 4.3 each of these error rates are assessed for multi-arm trials with 

shared control data and compared to those for independent hypotheses. This is 

extended in Section 4.4 to consider how well multiplicity adjustment methods control 
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the various error rates. Finally, in Section 4.5 the adjusted significance levels 

necessary to control the rate of multiple type I errors in favour of the experimental 

therapies to that in independent hypotheses are calculated for a three-arm trial. The 

discussion in Section 4.6 includes recommendations on adjustment based on these 

findings. 

 

Note that when an experimental treatment is added to an ongoing trial and uses the 

existing control group as a comparator, the stage at which the arm is added becomes a 

multi-arm stage within the trial, regardless of the original trial design. Therefore 

consideration of a multiple testing adjustment is always relevant when adding an arm, 

whether it relates to the whole trial or only a stage of it. The findings from this chapter 

inform Chapter 5 on the appropriate analysis methods alongside multiple testing 

requirements over the stages of trials following the addition of an arm.  

 

As noted in Chapter 3, the work from these two chapters combined has been published 

in the journal Statistical Methods for Medical Research (Howard et al., 2018)8. The 

work contained within the publication is directly attributable to myself as first author, 

with input from the co-authors who are all part of my PhD supervisory team.   

 

4.1.2 Motivational examples 

Multi-arm trials with different designs and varying levels of relatedness between the 

hypotheses may have different requirements for multiple testing adjustment. The 

research in this chapter aims to investigate the effect of having multiple hypotheses 

with shared control data on the probability of type I errors in order to make 

recommendations on adjustment, considering the individual trial design and aims. The 

following three real life examples each have multiple hypotheses, but differ in terms of 

how the outcomes for the hypotheses are interpreted with relation to one another and 

how they may affect practice. These trials are revisited in the discussion section in 

order to demonstrate how the recommendations could be applied in each case. 

 

4.1.2.1 MRC COIN  

The phase III MRC COIN trial78 in previously untreated patients with colorectal cancer 

had three-arms and two primary hypotheses, and recruited from 2005 to 2008. The 

control treatment (arm Z) was chemotherapy with oxaliplatin and fluoropyrimidine 

(OxFP) given continuously. One experimental arm (arm A) included an additional 
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therapy cetuximab to OxFP, and the other (arm B) assessed the chemotherapy OxFP 

given intermittently. Patients were randomised to the three treatment arms with a 1:1:1 

ratio, and the trial objective was to assess a difference in overall survival at two years 

for each of the comparisons, arm A vs Z and arm B vs Z.  

 

4.1.2.2 AMAGINE-1  

The phase III AMAGINE-1 trial (clinicaltrials.gov identifier: NCT01708590) was run by 

Amgen / AstraZeneca from 2012 to 2015. The trial assessed the safety and efficacy of 

brodalumab taken every two weeks via subcutaneous injection at two doses (140 mg 

or 210 mg) compared with placebo in patients with moderate-to-severe plaque 

psoriasis. The primary hypotheses concerned the efficacy of each dose of brodalumab 

compared to placebo, as assessed by Static Physician Global Assessment (sPGA) 

score and improvement in Psoriasis Area and Severity Index (PASI) at 12 weeks.  

 

4.1.2.3 Myeloma XI+ Intensive 

The Myeloma XI Intensive trial (ClinicalTrials.gov Identifier: NCT01554852) at the 

University of Leeds opened to recruitment in 2010, comparing the current standard 

therapy CTD (cyclophosphamide, thalidomide and dexamethasone) with CRD 

(cyclophosphamide, lenalidomide and dexamethasone) in terms of progression-free 

survival (PFS) in newly diagnosed patients with Multiple Myeloma. It was anticipated 

that recruitment would take up to four years, with the required number of events 

occurring within three years after the close of recruitment. During recruitment, early 

evidence suggested a new therapy, carfilzomib, added to the existing CRD regime 

(CCRD) might improve efficacy. Since it was of interest to assess CCRD as soon as 

possible, the follow-on Myeloma XI+ intensive trial was designed without waiting for the 

results of the original trial, and opened to recruitment in 2013 following on seamlessly 

from Myeloma XI within the same master protocol. The Myeloma XI+ trial therefore 

compared the experimental therapy CCRD to the current standard control CTD and the 

previous experimental therapy CRD at a 2:1:1 randomisation, in order to protect the 

trial in the case that CRD was found superior and superseded CTD as the standard 

therapy before the amended trial had completed and reported. 
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4.2 Definitions of error regions 

The greatest concern in terms of multiple testing adjustment in the literature is control 

of the chance of at least one type I error amongst the family of hypotheses, which has 

been previously defined as the familywise error rate (FWER). However, it is important 

to understand the effect of the correlation on the totality of the error that exists when 

reporting outcomes from multiple hypotheses, which includes not only the chance of at 

least one type I error, but also the probability of more than one type I error occurring 

within the family. Therefore, two other types of error rates to consider when 

determining the effect of the correlation are now defined: the family multiple error rate 

(FMER) and the  probability of multiple superior false positives (MSFP). These error 

regions are not considered in the general literature on multiple testing, but their 

relevance is discussed throughout this chapter and particularly in the discussion 

section. All three error regions are described in this section.  

 

4.2.1 Bivariate normal density rejection regions 

Assume there are two independent hypothesis tests, with the null hypothesis H0A 

assessing Treatment A against Z1 with standardised test statistic 𝑋𝐴, and the null 

hypothesis H0B assessing Treatment B against Z2 with standardised test statistic 𝑋𝐵, as 

illustrated in Figure 3-4, each with a two-sided significance level of 0.05. The test 

statistics for each comparison asymptotically follow a normal distribution when sample 

sizes are reasonable79. Figure 4-1 illustrates the joint density for the standardised test 

statistics based on the probability density function of the standard bivariate normal 

distribution with no correlation. The rejection regions for the hypothesis tests are the 

shaded areas around the outside of the square, as described by Fernandes and Stone 

(2011)72 and discussed in detail in Section 3.5.1. Figure 4-2 is the equivalent 

perspective plot of the 3d surface, with 𝑋𝐴 on the x-axis, 𝑋𝐵 on the y-axis and the 

probability density illustrated on the z-axis. The figures were obtained using the 

software R, version 2.15.2. 
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Figure 4-1 Rejection regions for two independent comparisons plotted on 
orthogonal axes, with the standardised test statistic for the null hypothesis 

H0A being displayed horizontally, and H0B displayed vertically 

 

XA and XB are the test statistics assessing therapies A and B against the control group. The 

contours represent the probability density function of the joint distribution of the standardised 

test statistics with no correlation. 

Figure 4-2 Equivalent perspective plot of the 3d surface with the probability 
density illustrated on the z-axis. 
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As described in Section 3.5.1, the probability of falling within a given shaded region 

along the length of an edge in Figure 4-1 is 2.5%. That is, the probability of concluding 

that either therapy is either falsely inferior or falsely superior to its control therapy is 

2.5%, since the overall two-sided type I error for each hypothesis is set at 5%. The 

darker shaded corner regions represent the probability that both hypotheses have false 

positive outcomes, so there are two type I errors. In order to understand how the 

correlation between the test statistics affects the amount of error in the different error 

regions in Figure 4-1, different types of false positive errors are defined below. These 

will first be quantified in the case of independent comparisons before exploring the 

case where there is shared control data in Section 4.3. 

 

4.2.2 Familywise Error Rate (FWER) 

Recall from Section 3.3.1 that the FWER is the overall probability of at least one false 

positive conclusion anywhere within a defined set of trial hypotheses. In the 

independent case with m comparisons, a probability α of finding a significant difference, 

and y denoting the number of type I errors (y = 1,…,m), the FWER can be calculated 

by 

𝐹𝑊𝐸𝑅 = 𝑝(𝑌 > 0) = 1 − 𝑝(𝑌 = 0) = 1 − (1 − 𝛼)𝑚. 

Thus, with two independent comparisons and α = 0.05 for each, the FWER is 0.0975. 

 

In Section 3.5.1 it was shown that using the joint probability density plot illustrated in 

Figure 4-1, in the case of two independent comparisons and a two-sided significance 

level of 0.05, the FWER can be calculated by the total probability that falls in the 

shaded region, which is (4 ∗ 0.025) − (4 ∗ 0.0252) = 0.0975, as expected. 

 

4.2.3 Family Multiple Error Rate (FMER) 

A second type of false positive error that may be important, although rarely considered 

in the literature, can be defined as the chance of multiple false positive findings across 

the family of hypotheses, which here will be called the Family Multiple Error Rate 

(FMER).  

 

Define the total error rate to be the sum of the errors for each hypothesis. With a family 

of two null hypotheses H0A and H0B respectively relating to the comparisons of 
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therapies A and B against control, and α=0.05 for each, the total error is 0.1. By 

probability theory: 

P(𝐴) + P(𝐵) = P(𝐴 ∪ 𝐵) + P(𝐴 ∩ 𝐵), 

P(𝐴) is the probability of a type I error for the null hypothesis H0A, 

𝑃(𝐵) is the probability of a type I error for the null hypothesis H0B, 

P(𝐴 ∪ 𝐵) is the overall chance of a type I error, i.e. the FWER, 

P(𝐴 ∩ 𝐵) is the chance of two type I errors occurring from the pair of null hypotheses, 

which is the FMER. 

  

In Figure 4-1, the FMER is represented by the sum of the probabilities in the four dark 

shaded corner regions. In the case of two fully independent hypotheses tested in two 

separate trials, the FMER is 4 ∗ 0.0252 = 0.0025. Therefore FWER + FMER is 0.1, as 

expected. Note that the FMER is directly related to the conditional probability of a type I 

error  𝑃(𝐵|𝐴), as discussed by Senn (1997)76 in Section 3.5.3, since 𝑃(𝐵|𝐴) =
𝑃(A∩𝐵)

𝑃(𝐴)
. 

Senn describes the conditional error in terms of a trial comparing different doses of a 

treatment to a placebo as “the probability under the null hypothesis of concluding that a 

given dose is significant given that all other doses tested to date are significantly 

different from placebo”. However, the FMER is easier to interpret in the case of a multi-

arm trial due to the hypotheses not necessarily having any sensible order or not always 

being assessed in conjunction with one another.  

 

In the case of three null hypotheses, H0A, H0B and H0C, each with α=0.05, the total error 

is 0.15. This is equal to the probability of at least one error (FWER), the probability of at 

least two errors (FMER2), and the probability of three errors (FMER3), as follows: 

P(𝐴) + P(𝐵) + P(𝐶) 

= P(𝐴 ∪ 𝐵 ∪ 𝐶) + P(𝐴 ∩ 𝐵) + P(𝐴 ∩ 𝐶) + P(𝐵 ∩ 𝐶) − 2 ∗ P(𝐴 ∩ 𝐵 ∩ 𝐶) + P(𝐴 ∩ 𝐵 ∩ 𝐶) 

= P(𝐴 ∪ 𝐵 ∪ 𝐶) + P(𝐴 ∩ 𝐵) + P(𝐴 ∩ 𝐶) + P(𝐵 ∩ 𝐶) − P(𝐴 ∩ 𝐵 ∩ 𝐶), 

P(𝐴) is the probability of a type I error for the null hypothesis H0A, 

𝑃(𝐵) is the probability of a type I error for the null hypothesis H0B, 

𝑃(𝐶) is the probability of a type I error for the null hypothesis H0C, 

P(𝐴 ∪ 𝐵 ∪ 𝐶) is the overall chance of at least one type I error, i.e. the FWER, 
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P(𝐴 ∩ 𝐵) + P(𝐴 ∩ 𝐶) + P(𝐵 ∩ 𝐶) − 2 ∗ P(𝐴 ∩ 𝐵 ∩ 𝐶) is the chance of at least two type I 

errors, which is the FMER2, 

P(𝐴 ∩ 𝐵 ∩ 𝐶) is the chance of three type I errors occurring, which is the FMER3. 

 

4.2.4 Multiple Superior False Positives (MSFP) 

In Figure 4-1, the lower left dark shaded corner signifies both false positives falling in 

the rejection region in favour of the control, thus falsely declaring the experimental 

treatments significantly inferior in both cases (that is, multiple inferior false positive 

outcomes). The upper right corner signifies both false positives falling in favour of the 

experimental treatments, thus falsely declaring the experimental treatments 

significantly superior to control in both cases, which here will be called multiple superior 

false positive (MSFP) outcomes. The upper left and lower right corners signify one 

false positive favouring the control and the other the experimental treatment. Note that 

in the independent case with two hypotheses, the probability of MSFP outcomes is 

0.0252 = 0.000625. 

 

The chance of MSFP errors in particular are important because they could contribute 

towards a therapy being recommended for use in practice when in truth it is no better 

than the current standard therapy. If multiple hypotheses with a shared control group 

could be used as separate pieces of evidence to inform a single claim of effectiveness, 

for example when assessing different doses of the same therapy, the probability of 

multiple false conclusions of superiority (the MSFP rate) should not be inflated over 

that for independent studies. This is a similar issue to that discussed in two publications 

on regulatory strategies for one large pivotal trial in place of two smaller ones. Fisher 

(1999)80 and Shun et al. (2005)81 discuss that the overall ‘positive rejection region’ in a 

single, large trial is required to be controlled to the same level as in two smaller trials in 

order for both hypotheses to inform regulatory applications. This is not something that 

has been found to have been addressed in the literature when considering type I errors 

in multi arm trials, and is investigated in detail in this chapter. 

 

4.3 The effect of the positive correlation on the error regions  

In Section 3.4.1 it was discussed that in a multi-arm trial with a shared control group, as 

illustrated in Figure 3-3, the comparisons are not independent. If the control group 

sample, by chance, perform worse than the true population, there is an increased 
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probability for all experimental therapies of reporting a false positive outcome to 

conclude that they are superior. The test statistics are therefore positively correlated, 

since the outcomes for the control sample will affect them all in the same way. In this 

section, the effect of the positive correlation on the different types of error are 

quantified. 

 

4.3.1 Calculating the correlation between the test statistics due to 

sharing control data 

Recall from Section 4.2.1 that in the case of multi-arm trials with independent 

experimental therapies and a shared control group, the test statistics for the 

comparisons, 𝑋𝐴 and 𝑋𝐵, can be assumed to follow standard normal distributions when 

sample sizes are reasonable. Follmann et al. (1994)79 state that the test statistic for a 

null hypothesis “asymptotically follows the distribution of a standardized Gaussian 

process for a variety of common test statistics including the t-statistic and the log-rank 

statistic”. Their joint distribution therefore follows a standard bivariate normal with 

correlation 𝜌𝐴𝐵. Dunnett54 notes that the correlation between the test statistics is 

directly linked to the allocation ratio, as follows 

𝜌𝐴𝐵 =
1

√(
𝑛𝑍
𝑛𝐴

+1)(
𝑛𝑍
𝑛𝐵

+1)
 , 

where 𝑛𝑗  is the sample size in arm j (j = A, B, Z). 

 

This correlation can be easily confirmed in the specific case of continuous endpoint 

data. Assume that the data are independent and normally distributed with means �̅�𝑗 

and common variance 𝜎2, for arm j. The correlation can be written as follows: 

𝜌𝐴𝐵 = 𝑐𝑜𝑟𝑟(�̅�𝐴 − �̅�𝑍, �̅�𝐵 − �̅�𝑍) =   
𝑐𝑜𝑣(�̅�𝐴−�̅�𝑍,�̅�𝐵−�̅�𝑍)

√𝑣𝑎𝑟(�̅�𝐴−�̅�𝑍)𝑣𝑎𝑟(�̅�𝐵−�̅� 𝑍)

. 

Since each of the trial arms are independent from one another: 

𝑐𝑜𝑣(�̅�𝐴 − �̅�𝑍, �̅�𝐵 − �̅�𝑍) = 𝑐𝑜𝑣(�̅�𝐴, �̅�𝐵) − 𝑐𝑜𝑣(�̅�𝐴, �̅�𝑍) −  𝑐𝑜𝑣(�̅�𝐵, �̅�𝑍) + 𝑐𝑜𝑣(�̅�𝑍, �̅�𝑍) 

= 𝑣𝑎𝑟(�̅�𝑍) =
𝜎2

𝑛𝑧
 , 

and  

𝑣𝑎𝑟(𝜇𝐴 − 𝜇𝑍) = 𝑣𝑎𝑟(𝜇𝐴) + 𝑣𝑎𝑟(𝜇𝑍) − 2𝑐𝑜𝑣(𝜇𝐴, 𝜇𝑍) =
𝜎𝐴

2

𝑛𝐴
+

𝜎𝑍
2

𝑛𝑍
 . 
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The correlation can therefore be calculated as follows: 

𝜌𝐴𝐵 =

𝜎2

𝑛𝑧

√(
𝜎2

𝑛𝐴
+

𝜎2

𝑛𝑍
)(

𝜎2

𝑛𝐵
+

𝜎2

𝑛𝑍
)

=  
1

√(
𝑛𝑍
𝑛𝐴

+1)(
𝑛𝑧
𝑛𝐵

+1)
 . 

 

It is less straightforward to derive the correlation algebraically for endpoints with 

different distributions, however since the correlation is between the test statistics, which 

are assumed to follow standard normal distributions for reasonable sample sizes,  it 

should be independent of the distribution of the data used. In order to verify that this is 

the case, error rates were calculated for simulations of three arm trials with survival 

endpoint data, and these were compared to the algebraic results using this assumed 

correlation, as shown in Section 4.3.4 below. It can be seen that the simulated results 

match those calculated algebraically.  

 

If the allocation ratio is 1:1:1, the correlation is 0.5. For an allocation of 2:1:1 in favour 

of control, the correlation is 0.333, and for 1:2:2 the correlation is 0.667.  

 

4.3.2 Calculating the type I error regions assuming a multivariate 

normal distribution, incorporating correlation  

The false positive error regions of potential interest in a multi-arm trial  can be 

calculated based on the assumption of the joint distribution of the test statistics 

following a standard multivariate normal distribution. The R programs in Appendix C 

compute these probabilities in the case of two or three experimental therapies, 

respectively, allowing varying correlation in order to calculate the error density in each 

of the rejection regions that were defined in Section 4.2. Note that in the case of three 

hypotheses, the rejection regions illustrated in Figure 4-1 are instead considered within 

a cube, with each side representing one error, each edge two errors and each corner 3 

errors. The ‘pmvnorm’ command calculates the multivariate normal distribution 

probabilities between limits for given correlation matrices, therefore outputting the 

probabilities of falling within the regions defined by the limits. The type I error regions 

are calculated by summing the errors within the appropriate rejection regions. For 

example, in the bivariate case, the MSFP region in the upper right corner is calculated 

based on the probability density that lies between Z0.975 (i.e. the 97.5th percentile of the 

cumulative distribution function of a standard normal distribution, which is 1.96) and 

infinity for both the x and y axes, given the correlation matrix. 
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The effect of the correlation on the rejection regions in the case of two experimental 

treatments is illustrated in Figure 4-3. As the correlation increases, the proportion of 

error in the lower left and upper right corners, indicating false positive outcomes in the 

same direction for both hypotheses, also increases. That is, if the shared control group 

performs better or worse than expected, there is a greater chance of an error in both of 

the hypotheses in the same direction, as expected.  

Figure 4-3 Illustration of rejection regions with varying amounts of correlation 

 

XA and XB are the standardised test statistics assessing therapies A and B against the control 

group. The contours represent the probability density function of their joint distribution in the 

case of: 

a) two hypotheses, each with individual control data, ρ=0 

b) two hypotheses with shared control data and 2:1:1 randomisation, ρ=0.333 

c) two hypotheses with shared control data and 1:1:1 randomisation, ρ=0.5 

d) two hypotheses with shared control data and 1:2:2 randomisation, ρ=0.667 
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4.3.3 Comparison of type I error regions for multi-arm trials with a 

shared control group compared to independent trials 

The R programs in Appendix C calculate the FWER, FMER and MSFP rates for 

different levels of correlation based on the allocation ratio in three-arm trials with two 

experimental arms and a shared control, and for four-arm trials with three experimental 

arms and a shared control. These probabilities are given in Table 4-1. 

Table 4-1 FWER, FMER and MSFP comparisons for three and four arm trials with 
a shared control group and varying allocation ratios, compared to 
independent 1:1 randomised trials (α = 0.05 for each hypothesis) 

 Independent 
case 

(Separate 
trials) 

Dependent 
case 

2:1:1(:1)  

(2 to control) 

Dependent 
case 

1:1:1(:1)  

 

Dependent 
case 

1:2:2(:2)  

(1 to control) 

Correlation (ρ) 0 0.333 0.5 0.667 

Reject H0 for each 
individual hypothesis  

0.050 0.050 0.050 0.050 

Three-arm trial (hypotheses H0A and H0B) 

FWER: Reject at least 
one H0 

0.0975 0.0946 0.0907 0.0849 

FMER: Reject both 
H0’s (in any direction)  

0.0025 0.0054 0.0093 0.0151 

MSFP: Reject both 
H0’s in favour of 
treatments A and B  

0.00063 0.00267 0.00462 0.00753 

Four-arm trial (hypotheses H0A, H0B and H0C) 

FWER: Reject at least 
one H0 

0.1426 0.1348 0.1254 0.1124 

FMER2: Reject at 
least two H0’s (in any 
direction) 

0.0073 0.0141 0.0213 0.0301 

FMER3: Reject all 
three H0’s (in any 
direction) 

0.0001 0.0011 0.0032 0.0076 

MSFP2: Reject at 
least two H0’s in 
favour of A, B or C  

0.0018 0.0069 0.0107 0.0150 

MSFP3: Reject all 
three H0’s in favour of 
A, B and C  

0.00002 0.00056 0.00160 0.00378 

 

In Section 2.3.5 it was discussed that the optimal allocation to the control group in 

multi-arm trials in order to minimise the total number of patients required is 

approximately the square root of the number of experimental arms. In this case, the 

correlation would be 0.414 and the FWER, FMER and MSFP results would lie between 
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those in the 2:1:1(:1) and 1:1:1(:1) cases. In the case of a three arm trial, the FWER is 

0.0929, the FMER is 0.0071 and the MSFP rate is 0.00352, as expected. 

 

4.3.3.1 Familywise Error Rate (FWER) comparison 

The FWER is lower in all cases with shared control data than the equivalent error when 

assessing two independent trials. The greater the correlation, the lower the FWER. 

That is, the correlation between the test statistics reduces the overall probability of a 

type I error occurring across either of the hypotheses over the case where there is no 

shared control data. This agrees with the findings by Proschan and Follmann (1995)63.  

 

4.3.3.2 Family Multiple Error Rate (FMER) comparison 

In a multi-arm trial with two hypotheses, the chance of multiple errors (FMER) has 

increased from 0.25% for independent trials to 0.93% in the case with even allocation, 

an increase of 3.7 times. The message stays the same as the number of hypotheses 

increases; in the case with three hypotheses and even allocation, the chance of any 

two errors (FMER2) has increased from 0.7% to over 2%, which is not trivial. Similar 

patterns of increases are found with unequal allocation ratios, and the trend across the 

resultant correlations from these changing allocation ratios can be clearly seen. 

 

The increase in the FMER is due to the increased chance of an error occurring within 

the correlated comparisons in the same direction, often caused by a chance deviation 

in the outcome for the control sample from the outcome for the true population. For 

example, in the case of two hypotheses with shared control and equal allocation, the 

FMER has increased from 0.00250 in independent trials to 0.00925. The probability of 

two errors in the same direction has increased from 0.00125 to 0.00924, which 

explains almost all of the error, whilst the probability of two errors in different directions 

is only 0.00001. Recall from Section 4.2.3 that the total error (FWER + FMER) is fixed, 

thus the increased FMER explains the reduction in the FWER.  

 

4.3.3.3 Multiple Superior False Positives (MSFP) comparison 

With two hypotheses, the MSFP rate has increased from 0.06% in independent trials to 

0.46% in the multi-arm case with even allocation, an increase of 7.7 times. With three 

hypotheses, the chance of any two superior false positive outcomes (MSFP2) has 

increased by nearly 6 times to over 1%, and the chance of three MSFPs (MSFP3) is 
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substantially greater than in the independent case, although the probability is very 

small at 0.16%. Again, similar patterns and trends are seen with other allocation ratios. 

Whilst the absolute differences are small, the relative increases are large. The effect on 

the MSFP rate is intuitively obvious since a chance ‘bad’ outcome in the control sample 

compared to the true population would increase the chances of false positives 

favouring the experimental treatment in both hypotheses, but the magnitude of this 

effect is now apparent, and is not trivial.  

 

4.3.4 Validation of results 

The above results are based on the assumption that test statistics follow a standard 

normal distribution, regardless of the distribution of the data. In addition, their joint 

distribution follows a standard bivariate normal with a correlation that is directly linked 

to the allocation ratio, as described in Section 4.3.1. Whilst these assumptions have 

previously been proven in the literature (Follmann et al. (1994)79 and Dunnett (1955)54), 

the findings within this chapter are validated here in order to ensure their accuracy. 

Firstly, the results here are compared to those previously obtained for the case that 

was investigated by Proschan and Follmann, and secondly some results are 

reproduced using simulations.   

 

4.3.4.1 Proschan and Follmann  

Proschan and Follmann (1995)63 used a different method to calculate the probability of 

type I errors where there is a dependent control group. As described in Section 3.5.2, 

they derived the following formula to calculate the probability of type I errors under the 

dependent case with equal allocation for one-sided tests 

Pr(𝑁𝐷 = 𝑥) = (
1

√2𝜋
) ∫ (

𝑚
𝑥

) [𝑝(𝑧)]𝑥 × [1 − 𝑝(𝑧)]𝑚−𝑥 exp (−
𝑧2

2
) 𝑑𝑧

∞

−∞
, 

where 𝑝(𝑧) = 1 − Φ(𝑧 + √2𝑍𝛼), m is the number of comparisons and α is the one-sided 

significance level. The authors calculated that in the case of two one-sided hypotheses, 

the chance of exactly one error is 0.076 and the chance of exactly two errors is 0.012; 

therefore the FWER is 0.088 and the FMER is 0.012. In addition, in the case of three 

hypotheses, the chance of exactly one error is 0.092, the chance of exactly two errors 

is 0.022 and the chance of exactly three errors is 0.005; so the FWER is 0.119, the 

FMER2 is 0.027 and the FMER3 is 0.005. These values were confirmed using 

numerical integration in SAS to solve the above integral.  
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In order to validate our results, the R code to calculate the rejection regions based on 

the multivariate normal, provided in Appendix C, was amended to the one-sided case 

and re-run. For both two and three hypotheses, the probabilities obtained using the R 

code matched those obtained by Proschan and Follmann’s integral exactly (to within 

+/-0.001). 

 

Note that only one-sided tests are considered by Proschan and Follmann for simplicity. 

It isn’t clear how this would extend to calculate the probabilities in the case of two-sided 

tests. The multivariate normal density method presented in this chapter has the 

advantage that it is easily able to calculate the error rates in the case of two-sided tests 

as well as where the allocation ratio may deviate from 1:1:1, and is able to output the 

probabilities of MSFPs. However, Proschan and Follmann’s method readily extends 

beyond three comparisons. 

 

4.3.4.2 Simulations 

Simulations were run to verify the accuracy of the results in Table 4-1, with various 

design assumptions and allocation ratios. Using SAS v9.4 a total of 100,000 

simulations were run for each scenario described below. The simulations were set up 

so that there was no difference between the control and experimental arms, and each 

comparison was analysed to provide a p-value. The proportion of comparisons for 

which the p-values were ≤0.05, and therefore a type I error had occurred, were counted 

and are reported in Table 4-2 below. 

 

The first scenario assumes two independent trials versus a three arm trial with a 

continuous, normally distributed endpoint. The trials were analysed using two-sample t-

tests. With a two-sided significance level of 0.05 and 90% power to assess an effect 

size of 0.5, assuming a control mean of 100, assessing a difference of 5 with a 

common standard deviation of 10, the following sample sizes are required: 

a) Two independent trials both 1:1 allocation, 86 patients per arm  

b) 2:1:1 allocation, 128 patients to control and 64 to each experimental arm  

c) 1:1:1 allocation, 86 patients per arm  

d) 1:2:2 allocation, 64 patients to control and 128 to each experimental arm  

 

The second scenario assumes two independent trials versus a three arm trial with a 

survival endpoint. The trials were analysed using log-rank tests of equal exponential 
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survival in two groups. With a two-sided significance level of 0.05 and 90% power to 

assess a hazard ratio of 0.75, assuming a 4 year recruitment and 3 year follow-up 

period, the following sample sizes are required: 

a) Two independent trials both 1:1 allocation, 408 patients per arm for 516 events 

per hypothesis 

b) 2:1:1 allocation, 654 patients to control and 327 to each experimental arm for 

636 events per hypothesis 

c) 1:1:1 allocation, 408 patients per arm for 516 events per hypothesis 

d) 1:2:2 allocation, 285 patients to control and 570 to each experimental arm for 

526 events per hypothesis 

 

Whilst it would also be of interest to confirm the results for binary endpoint data, it is not 

possible to get an exact type I error because of the discrete nature of the binomial 

distribution, causing the type I error and power to ‘zig-zag’ as the sample size 

increases82. 

Table 4-2 Simulations to verify the type I error rates under different trial 
scenarios 

 Independent 
case 

(Separate 
trials) 

Dependent 
case 

2:1:1  

(2 to control) 

Dependent 
case 

1:1:1  

 

Dependent 
case 

1:2:2  

(1 to control) 

Correlation (ρ) 0 0.333 0.5 0.667 

FWER: Reject at 
least one H0 

    

Exact algebraic 
values 

0.0975 0.0946 0.0908 0.0849 

Simulated using 
continuous, 
normally 
distributed data 

0.0969 0.0940 0.0911 0.0852 

Simulated using 
survival data 

0.0975 0.0951 0.0914 0.0859 

FMER: Reject both 
H0’s (in any 
direction) 

    

Exact algebraic 
values 

0.0025 0.0054 0.0093 0.0151 

Simulated using 
continuous, 
normally 
distributed data 

0.0024 0.0057 0.0094 0.0148 

Simulated using 
survival data 

0.0026 0.0054 0.0098 0.0149 
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The simulated outcomes match the algebraic calculations to +/- 0.001 in all cases, 

suggesting that both are correct. Note that due to the error around the simulated results 

they do not exactly match the algebraic results to four decimal places, but the results 

are similar enough to be supportive. The simulations confirm that the calculated type I 

error rates are independent of the trial design, sample size or type of endpoint, 

because these factors do not affect the binary probability of rejection of the null 

hypothesis for a given significance level. They also confirm that the correlation 

calculated based on the allocation ratio is correct regardless of the type of endpoint 

data. Note that the probabilities of MSFP errors were not calculated for the simulated 

trials as the error rates are so small it would not be feasible to run enough simulations 

to assess this accurately, and it was not felt necessary given that the FWER and FMER 

are correct. 

 

4.3.5 Summary 

This section describes how the correlation between the test statistics caused by the 

shared use of control data affects the different types of error rates in multi-arm trials. 

The concepts here are not new, but the effects of the correlation in terms of the chance 

of at least one error (FWER), the chance of multiple errors in any direction (FMER) and 

the chance of multiple errors in favour of the experimental treatments (MSFP) have 

been explicitly investigated and quantified in the case of three and four arm trials, 

which has not been previously reported in the literature. 

 

Where the experimental treatments are compared against a shared control group, the 

FWER is reduced compared to independent trials with different control groups. 

However, the chance of a type I error occurring in more than one of the hypotheses 

(FMER) is increased, where the greater the correlation, the greater the FMER. Since it 

can be seen from Figure 4-3 that the positive correlation causes the probabilities of 

false positive outcomes in the same direction (benefitting either the control or 

experimental therapies in all cases) to increase, it stands to reason that the probability 

of MSFP errors increases by a greater proportion than the FMER. In order to determine 

how these findings affect the need for multiplicity adjustment, it is necessary to assess 

how well multiplicity adjustment methods control each of these types of error. 

 



- 82 - 

4.4 The effect of multiplicity adjustment methods on the type I 

errors 

4.4.1 Calculating the type I error rates for common multiplicity 

adjustment procedures 

In Section 3.3, some of the most commonly used methods to adjust for multiplicity were 

introduced. These included non-parametric methods that do not account for correlation 

between the comparisons as well as parametric methods that account for the lack of 

independence due to the shared control group. The methods considered were: 

Bonferroni83, a simple, conservative adjustment method; Holm84 and Hochberg85, 

closed testing methods based on a hierarchical strategy of testing the outcomes 

ordered by significance; Dunnett’s t54, a parametric method that adjusts the Bonferroni 

boundaries to control the probability of observing a significant result under H0 at 0.05; 

and Dunnett and Tamhane71, an adjusted Hochberg step-up multiple test procedure in 

which the rejection levels are calculated to account for the correlation so that the final 

FWER is exactly 0.05. In order to investigate how well these adjustment methods 

control the various error rates, the FWER, FMER and MSFP, their effects are 

calculated for multi-arm trials with a shared control group. 

 

4.4.1.1 Bonferroni Adjustment 

The probabilities of type I errors after the Bonferroni correction has been applied can 

be calculated based on the probabilities of falling within the appropriate rejection 

regions, based on the joint probabilities for the multivariate normal distribution, as for 

the case where there is no adjustment described in Section 4.2. Since the Bonferroni 

method simply adjusts the significance level to α/m, for m hypotheses, the error regions 

can be calculated exactly using the R code in Appendix C, after adjusting the 

significance levels appropriately. In the case of two hypotheses, the overall two-sided 

significance level for each hypothesis would be adjusted to 2.5%, so the one-sided 

error region at each edge would become 1.25%. This can be understood by illustration 

of the rejection regions, as described by Fernandez and Stone72 and shown in Figure 

4-4. These would be superimposed on the bivariate normal density plots provided in 

Figure 4-3 to illustrate the probability density in the rejection regions accounting for the 

different levels of correlation.  
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Figure 4-4 Rejection regions for two comparisons when using the Bonferroni 
adjustment method, based on the bivariate normal density plot with the 
standardised test statistic for the null hypothesis H0A being displayed 

horizontally, and H0B displayed vertically  

 

XA and XB are the test statistics assessing therapies A and B against the control group, and Zp 

represents the pth percentile of the cumulative distribution function of a standard normal 

distribution. 

 

4.4.1.2 Holm Adjustment 

The Holm method (Section 3.3.2.2) is a step-down procedure in which the p-values are 

ordered from smallest to largest, and each p-value (with order position j, j=1,…,m) is 

compared to α/(m-j+1) until a null hypothesis cannot be rejected. In the case of two 

experimental treatments being compared to control and a FWER set at 5%, the more 

significant null hypothesis would be rejected if p1 ≤ 0.025, and if that is the case, the 

larger p-value would be assessed and the null hypothesis rejected if p2 ≤ 0.05. 

 

The FWER when using the Holm method is the same as it is with the Bonferroni 

adjustment. This is because the first step is to reject the most significant null 

hypothesis if the p-value is less than α/m, as is the case with the Bonferroni 

adjustment, and so the probability of ‘at least one’ error is equivalent with both the 

methods. The FMER, however, will be larger than with Bonferroni because the next 

steps compare the p-values to α/(m-j+1), which is always larger than α/m for j ≥ 2, and 

therefore allows a greater chance of multiple errors.  
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In the case of two hypotheses, this can be understood by illustration of the rejection 

regions based on the bivariate normal density plots shown in Figure 4-3. The Holm 

rejection regions are illustrated in Figure 4-5. The FWER is any shaded region around 

the outside of the square, which is the same as with the Bonferroni adjustment. 

However, the larger test statistic is now compared to α = 0.05, rather than 0.025 as for 

Bonferroni, so the FMER region is increased to include the striped and checked 

shaded areas. If hypothesis A is more significant and pA ≤ 0.025, the checked areas 

show the extended rejection area for hypothesis B. If hypothesis B is more significant 

and pB ≤ 0.025, the striped areas show the extended rejection area for hypothesis A. 

Therefore the total FMER region is the areas of the L-shaped corners, and the 

probability of MSFP outcomes is illustrated by the top right L-shaped area. The 

probabilities of the different type I errors can therefore be calculated by amending the R 

program in Appendix C to calculate the probability densities in the different regions. 

The increase in the FMER does not affect the FWER since this extended area only 

relates to the least significant p-value, and therefore the total error (the FWER+FMER) 

will be higher than with the Bonferroni adjustment, which is why this method is less 

conservative.  

Figure 4-5 Rejection regions for two comparisons when using the Holm 
adjustment method, based on the bivariate normal density plot with the 
standardised test statistic for the null hypothesis H0A being displayed 

horizontally, and H0B displayed vertically 

 

XA and XB are the test statistics assessing therapies A and B against the control group, and Zp 

represents the pth percentile of the cumulative distribution function of a standard normal 

distribution. 
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4.4.1.3 Hochberg Adjustment 

The Hochberg method (Section 3.3.2.2) is a step-up procedure in which the p-values 

are ordered from largest to smallest, and each p-value (with order j) is compared to α/j 

until a null hypothesis is rejected, at which time all further null hypotheses are 

automatically rejected. In the case of two experimental treatments being compared to 

control, and a FWER set at 5%, all null hypotheses would be rejected if p1 ≤ 0.05, and if 

that is not the case the more significant would be assessed and rejected if p2 ≤ 0.025.  

 

In the case of two hypotheses, this can be understood by illustration of the Hochberg 

rejection regions as described by Fernandez and Stone72 and shown in Figure 4-6. The 

probabilities of the error rates can be calculated by amending the R program in 

Appendix C to calculate the probability densities in the different regions. The FWER is 

the probability density in any of the shaded regions, since at least one error is observed 

if either two-sided p-value is ≤ 0.025 or both are ≤ 0.05. The FMER is the probability 

density in the darker shaded corner regions, which is the probability of both p-values ≤ 

0.05; and the probability of MSFP outcomes is illustrated by the top right darker shaded 

corner region. Note that the FWER region here is larger than that with the Bonferroni or 

Holm adjustment methods, and in the case of two independent hypotheses so with no 

correlation it will equal exactly 0.05 because the area of the double counted corner 

regions has essentially been replaced. 
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Figure 4-6 Rejection regions for two comparisons when using the Hochberg 
adjustment method, based on the bivariate normal density plot with the 
standardised test statistic for the null hypothesis H0A being displayed 

horizontally, and H0B displayed vertically 

 

XA and XB are the test statistics assessing therapies A and B against the control group, and Zp 

represents the pth percentile of the cumulative distribution function of a standard normal 

distribution. 

 

4.4.1.4 Dunnett’s t 

Dunnett’s parametric method (Section 3.3.3.1) calculates the exact t-statistic, td, 

required to control the FWER at exactly the required level after accounting for any 

correlation between the test statistics. These can be read from tables in Dunnett 

(1955)54. With two hypotheses, two-sided tests and equal allocation, and assuming a 

large sample size (d.f. > 120), td is 2.21, which translates to a significance level for 

comparison of 0.0271. The error rates can therefore be calculated in the same way as 

they were for the Bonferroni adjustment, using the R code in Appendix C after adjusting 

the significance levels appropriately. Whereas with the Bonferroni method the one-

sided errors were set at 1.25%, with Dunnett’s method they are slightly more relaxed at 

1.355% so that the rejection regions around the edges are wider than they are in 

Figure 4-4. 

 

4.4.1.5 Dunnett and Tamhane 

The Dunnett and Tamhane procedure (Section 3.3.3.2) is similar to the Hochberg 

adjustment described in Section 4.4.1.3, but calculates adjusted critical values to 

control the FWER exactly after accounting for any correlation. The critical values can 
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be read from tables from Dunnett and Tamhane (1992)71. With two hypotheses, two-

sided tests and equal allocation, and assuming a large sample (greater than 30) per 

comparison, both null hypotheses would be rejected if the larger p-value p1 ≤ 0.05, and 

if that is not the case the smaller p-value would be assessed and the null hypothesis 

rejected if p2 ≤ 0.0262. It can be seen from Figure 4-7 that the areas representing the 

FMER and MSFP are unchanged from the unadjusted Hochberg method, but the 

FWER area is increased because the edges are wider. The probabilities of the different 

type I errors can be calculated by amending the R program in Appendix C to calculate 

the probability densities in the different regions in exactly the same way as for the 

Hochberg adjustment method. 

Figure 4-7 Rejection regions for two comparisons when using the Dunnett and 
Tamhane adjustment method, based on the bivariate normal density plot 

with the standardised test statistic for the null hypothesis H0A being 
displayed horizontally, and H0B displayed vertically 

 

XA and XB are the test statistics assessing therapies A and B against the control group, and Zp 

represents the pth percentile of the cumulative distribution function of a standard normal 

distribution. 

 

4.4.2 The effects of applying adjustment methods to the various 

error rates 

The error rates after applying the various adjustment methods were calculated as 

described in Section 4.4.1 using the software R. In addition, the results (excluding the 

MSFP rate due to the required number of accurate decimal places) were verified based 

on 100,000 simulations of the example trial with a survival endpoint described in 

Section 4.3.4.2 using SAS v9.4. The probabilities matched to +/-0.001 in all cases.  
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Table 4-3 summarises the effects of applying the adjustment methods on the various 

error rates, using the example of a three-arm trial with 1:1:1 allocation in which the two 

experimental arms are compared to a shared control group. The two-sided α is set at 

0.05 for each unadjusted comparison, and the FWER is required to be controlled at 

0.05 when adjustment methods are used.  

Table 4-3 FWER, FMER and MSFP comparisons for three arm trials with two 
hypotheses (α=0.05 for each), a shared control group and even allocation 
ratio, after applying various multiple testing adjustments 

 

Indepen-
dent case 

Dependent case, 1:1:1 allocation 

Un-
adjusted 

Bonf-
erroni 

Holm Hoch-
berg 

Dunnett’s 
t 

Adjusted 
Hoch-
berg 

Reject H0 for 
each 

individual 
hypothesis  

0.0500 0.0500 0.0250 0.0271 0.0286 0.0271 0.0296 

FWER: 
Reject at 

least one H0 
0.0975 0.0908 0.0465 0.0465 0.0480 0.0502* 0.0500 

FMER: 
Reject both 
H0’s (in any 
direction) 

0.0025 0.0093 0.0035 0.0077 0.0093 0.0039 0.0093 

MSFP: 
Reject both 

H0’s in 
favour of 

treatments 
A and B 

0.00063 0.00462 0.00176 0.00385 0.00462 0.00197 0.00462 

 
*Note that FWER with the Dunnett’s t adjustment is 0.0502 rather than exactly 0.0500 due to 

rounding in Dunnett’s table, which provides t-statistics to 2 decimal places. 

 

4.4.2.1 FWER 

All adjustment methods control the FWER at 0.050 or less, as expected, with the range 

being between 0.047 and 0.050. In all cases, the chance of rejecting the null 

hypothesis for each individual comparison has taken a penalty compared to running 

independent trials, with the probabilities ranging from 0.025 to 0.030. The Dunnett’s t 

and Adjusted Hochberg methods account for the effect of the correlation due to the 

shared control data on the FWER and so control the FWER at exactly 0.050. The least 

conservative methods for the individual hypotheses are the Hochberg and Adjusted 

Hochberg methods, with Bonferroni being most conservative.  
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4.4.2.2 FMER 

Although all adjustment methods control the probability of falsely rejecting at least one 

hypothesis (the FWER) as required, no method fully controls the chance of multiple 

errors occurring within the same set of hypotheses to be what it would have been if the 

hypotheses had been assessed in independent trials. The FMER with two independent 

trials is 0.0025, and in the multi-arm case with two hypotheses and no adjustment it 

increases to 0.0093. It can be seen that the FMER after multiple testing adjustment 

ranges from 0.0035 to 0.0093. With the Bonferroni and Dunnett’s t methods, the 

probabilities of multiple errors are reduced towards those in independent trials, but the 

Holm, Hochberg and Adjusted Hochberg methods based on the closed testing principle 

offer very little or no protection of the FMER over no adjustment. The first step of a 

step-up procedure is to reject all null hypotheses if the least significant hypothesis has 

p < 0.05, so it can easily be seen why this is the case. 

 

4.4.2.3 MSFP 

Since the adjustment methods do not control the FMER, they also do not offer full 

protection against the chance of MSFP outcomes. After applying the Bonferroni and 

Dunnett’s t corrections, the chance of two superior false positive errors is still inflated 

by approximately 3 times over that with independent trials (0.0018 and 0.0020 

compared to 0.0006), and following the Hochberg adjustments the probability is 

increased by over 7 times to 0.0046, the same as with no adjustment. 

 

The above results highlight that multiple testing adjustment methods only control the 

probability of the overall FWER to that for a single hypothesis. They do not offer 

effective control over the chance of multiple false positive errors, which is the type of 

error that is increased over that had the hypotheses been assessed in independent 

trials. The impact of these findings on the need for adjustment in multi-arm trials is 

discussed in Section 4.6. 

 

4.5 Adjustment of the significance level to control the MSFP 

In Section 4.3.3 it was shown that in the case where two superior hypotheses may both 

be used to jointly inform a claim of effectiveness, the overall chance of both having a 

false positive outcome in favour of the experimental treatments (MSFP) is inflated in a 

multi-arm trial over that chance occurring in independent trials. In addition, Section 
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4.4.2 confirmed that applying multiple testing correction methods does not reduce the 

chance of MSFP outcomes to the same level as in two independent trials. However, 

there may be cases where it is beneficial to control the MSFP rate. The FDA guidance 

on ‘Providing Clinical Evidence of Effectiveness for Human Drug and Biological 

Products’86 suggests that it is feasible for multiple hypotheses from within a single 

study to be accepted as evidence of effectiveness if the trial is designed appropriately. 

In addition, Fisher80 discusses “one large, well-designed, multicentre study as an 

alternative to the usual FDA paradigm”. In this paper, he considers one large study with 

double the patient numbers in place of two independent studies in order to inform 

regulatory applications. Although this scenario is different from a multi-arm trial, his 

argument that the strength of evidence is the same as for two studies if the “probability 

of two statistically significant positive trials when there is no treatment effect” is set to 

be equivalent to that in two studies (i.e. 0.025 x 0.025 = 0.000625), is also relevant in 

the multi-arm situation. That is, the evidence can be considered as strong as that 

obtained from two separate trials as long as the overall probability of multiple 

conclusions of superiority (MSFP) is not inflated over that for independent studies.  

 

The example of the AMAGINE-1 trial described in Section 4.1.2.2 assesses two doses 

of an experimental treatment against placebo. If these doses were investigated in 

independent trials, both trial outcomes may be used to inform a claim of effectiveness, 

but the penalty for assessing these within a multi-arm trial in terms of inflation of the 

MSFP rate has not been investigated or quantified.  

 

4.5.1 Significance levels to control the MSFP rate in the case of two 

hypotheses with a concurrent shared control group 

In two independent trials, the chance of two superior false positive outcomes is 

0.000625 (Section 4.2.4). Since the joint distribution can be described using a bivariate 

normal (Section 4.2.1), this can be used to obtain the exact significance level that 

returns a probability of 0.000625. This principle is similar to the work of Follmann et al. 

(1994)79, which relies on the multivariate normal assumption of the test statistics to 

estimate critical values that strongly protect the type I error rate in the case of multi-

armed trials with interim looks. The R code to calculate the significance level required 

to control the probability of two MSFP errors based on a multi-arm trial with 

concurrently recruited arms to that for independent trials is provided in Appendix C.3. 
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In the 1:1:1 case, the significance level required to protect the MSFP rate at 0.000625 

is 0.0118. In the 2:1:1 case it is 0.0195, and in the 1:2:2 case it is 0.0069, as shown in 

Table 4-4. Note that if the correlation is set to 0, the significance level returned is 0.05 

as expected, as it would be in two independent trials. If two hypotheses are assessed 

in a multi-arm trial with a concurrent shared control group, and are to be used to jointly 

inform a claim of effectiveness; in order to control the probability of two superior false 

positive outcomes to the level in independent trials, the p-values for both hypotheses 

are required to be less than these adjusted significance levels. It can be seen that with 

this level of control, the FWER is reduced to much lower than 5%. In the 1:1:1 case, 

when the significance level is reduced to 0.0118 to protect the MSFP rate, the FWER 

decreases to 2.24%. 

 

Table 4-4 Adjusted significance levels to control the chance of a MSFP error in a 
three-arm trial to that for two independent 1:1 randomised trials 

 Independent 
case  

No 
adjustment  

Dependent 
case  

No 
adjustment 

Dependent 
case 2:1:1 

α = 0.0195 

Dependent 
case 1:1:1 

α = 0.0118 

Dependent 
case 1:2:2 

α = 0.0069 

Reject H0 for 
each individual 

comparison  
0.050 0.050 0.0195 0.0118 0.0069 

FWER: Reject 
at least one H0 

0.0975 0.0908 0.0377 0.0224 0.0125 

MSFP: Reject 
both H0’s in 

favour of 
treatments A 

and B 

0.000625 0.00462 0.000623* 0.000624* 0.000628* 

 
*Note that MSFP rates are not exactly 0.000625 due to rounding of the significance levels to 4 

decimal places. 

 
If an arm is added part way through recruitment so there is less overlap of the shared 

control patients, the adjustment required to control the MSFP rate will be less stringent. 

This would need to be calculated on a case by case basis depending on the amount of 

overlap and the resulting level of correlation between the test statistics for the two 

hypotheses. 

 

4.5.2 The effect of MSFP control on the power and sample size 

If a trial is designed to allow two superior outcomes to be used as evidence to inform a 

single claim of effectiveness by controlling the MSFP rate, the power is required to be 
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maintained for each hypothesis as it would for independent trials, requiring an 

increased sample size. As an example, take a confirmatory trial with a survival primary 

endpoint and analysis based on the log-rank test for equality assuming an exponential 

survival distribution. The estimated median survival in the control group is 36 months, 

and a clinically relevant difference would be an improvement to 48 months (HR=0.75). 

In a two-arm trial, with a recruitment period of 48 months and an additional 36 month 

follow-up period, 408 patients are required per arm (1:1) to achieve 516 events for 90% 

power with a two-sided type I error rate of 5%. If there are two experimental arms of 

interest in the population, a three-arm trial may be considered rather than two 

independent trials. In the scenario of running independent trials, the total sample size 

for the two trials assuming 1:1 allocation would be 1632, and in the multi-arm trial this 

is reduced to 1224 with no adjustment. The following results were obtained from the 

software Stata (StataCorp, v13.1) by setting the stpower command. Adjusting the 

significance level to 0.0118 to control the chance of MSFP outcomes reduces the 

power from 90% to 77%, and to account for this loss in power the sample size would 

need to be increased to 1680 (with 708 events required per hypothesis), which makes 

the multi-arm trial slightly larger than running two independent trials. For comparison, 

with a Bonferroni adjustment the power is reduced to 84%, requiring 1443 participants 

(with 610 events required per hypothesis) for 90% power.  

 

The greater the dependence of the control data, the more impact this will have on 

reducing the significance level and therefore increasing the sample size. For a 2:1:1 

randomisation with 90% power and no adjustment, 1308 patients would be required 

(654 to control and 327 per experimental arm). Adjusting the significance level to 

0.0195 to control the MSFP rate requires 1628 participants for 90% power (814 to 

control and 407 per experimental arm), which is fewer patients than would be needed 

for the 1:1:1 case with MSFP adjustment. In the 1:2:2 case with 90% power and no 

adjustment, 1425 patients would be required (285 to control and 570 per experimental 

arm). Adjusting the significance level to 0.0069 to control the MSFP rate requires 2155 

participants for 90% power (431 to control and 862 per experimental arm).  

 

Even though the sample size may be slightly larger in the adjusted multi-arm case 

compared to independent trials following MSFP adjustment (an increase of 3% in this 

example with even allocation), there may still be benefits to running a multi-arm trial in 

terms of reducing the total number of patients receiving the control therapy as well as 

the time and cost of only needing to set-up and run a single trial.  
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4.6 Discussion   

4.6.1 FWER adjustment due to shared control data 

When an experimental treatment is added to an ongoing trial, the stage of the trial after 

the amendment will have multiple primary comparisons based on a shared control 

group. Therefore consideration of a multiple testing adjustment is an essential 

requirement when adding an arm, as described in Chapter 2. In addition, multi-arm 

trials in general are efficient and can therefore be advantageous over running 

independent trials, thus this research has wider implications than solely for trials in 

which treatment arms are added. Currently there are conflicting views in the literature 

on how to appropriately control the probability of a false positive error. A lack of proper 

control of the FWER could lead to an unacceptable chance of an ineffective treatment 

being recommended to be taken forward into practice; but unnecessary control of the 

FWER could affect the efficiency of a trial, requiring increased patient numbers and 

resources. FWER adjustment without increasing the sample size to maintain power 

could lead to a superior treatment being denied. Each of these scenarios raises ethical 

concerns.  

 

One reason that false positive error rates may be affected in multi-arm trials compared 

to independent trials is due to correlation between the test statistics caused by the 

shared use of the control data. It is a common misconception that the FWER is 

increased due to sharing control data compared to that in independent trials. When 

considering the designs illustrated in Figure 3-2 and Figure 3-3, some might assume 

that the overall FWER for the family of hypotheses, H0A and H0B, would be larger in 

Figure 3-3 where there is a common control group. However, it has been confirmed 

here that the FWER is in fact smaller in Figure 3-3 than in Figure 3-2. The common 

control group instead has the effect of increasing the chances of more than one false 

positive outcome within the family of hypotheses; although FWER adjustment methods 

do not specifically control for this. Adjustment methods reduce the probability of 

multiple errors to varying extents, but none to the same levels as in independent trials. 

Closed testing methods, in fact, exploit the FWER being defined by the chance  of ‘at 

least one’ error, by allowing a higher chance of multiple errors in order to reduce their 

conservativeness. In this case, if there is a bad shared control group by chance, these 

methods do very little to prevent a subsequent false positive finding given that a type I 

error has already been made in the case of two hypotheses, yet they are acceptable 

and recommended in the literature on multiple testing. This suggests that FWER 
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adjustment is only required to control the probability of at least one error, and not to 

reduce the inflated probability of multiple errors.  

 

In summary, since the FWER is not inflated, and FWER adjustment methods do not 

aim to offer control over the inflated chance of multiple errors, it is difficult to justify 

FWER adjustment in trials with multiple hypotheses because of the shared use of a 

control group. These findings remain valid in the case of imbalanced randomisations, 

and also where there are more than two experimental therapies, although in the latter 

case the chances of multiple errors become increasingly difficult to consider depending 

on whether the interest would be in controlling the probability of at least two errors or at 

least three errors and so on. This is considered further as part of the discussion in 

Chapter 7.  

 

Note that if the experimental therapies are competing against each other for approval in 

the trial population, the correlation due to the shared control group in a multi-arm trial is 

an advantage. The reasoning is as follows, if in two independent trials one of the 

control samples performs worse than the true population, the associated experimental 

group has an increased chance of being significant and taken forward. However, in the 

equivalent multi-arm case, the lack of comparability due to comparisons to different 

control samples is removed. It is more likely that efficacious experimental therapies 

would be considered against each other by decision makers directly without the 

influence of variations in the control samples.  

 

4.6.2 FWER adjustment due to assessing multiple hypotheses 

The other factor concerning the necessity for FWER adjustment is whether assessing 

multiple hypotheses within a multi-arm trial increases the chance of making a single 

claim of effectiveness. Phillips et al. 201357 describe this as the ‘claim-wise error rate’, 

defined as “the family-wise error rate when the families relate to multiple clinically 

important endpoints that need to be described in the label”, with consensus from the 

PSI expert group that this is “probably the most important attribute to control”. In order 

to determine whether the increased chance of a familywise type I error is relevant, it is 

helpful to also consider whether it makes sense to have a ‘claim-wise’ power for the 

trial, which is the probability of correctly rejecting the null hypothesis in at least one 

comparison across the trial, leading to a claim of effectiveness. This has been 

described in the literature as the ‘minimal’87 or ‘disjunctive’75 power, and is the 

appropriate power to consider alongside FWER adjustment. If it does not make sense 
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to consider the claim-wise power for the trial as a whole because the outcomes for the 

hypotheses do not inform the same claim of effectiveness, for example if the 

experimental arms are assessing different therapies, it also follows that control of the 

FWER is unnecessary. In Chapter 5 it is shown using simulations that with two 

hypotheses and 80% power for each independently, following a Bonferroni adjustment 

the power for each hypothesis drops to 72%, but the power that at least one null 

hypothesis is rejected in the case that both treatments are actually superior is 89.5%. 

Therefore, the penalty caused by applying the Bonferroni adjustment may be 

compensated to some extent by the claim-wise power. Note that in Figure 3-2 and 

Figure 3-3, both designs have an increased chance of an incorrect claim due to testing 

two hypotheses, and so the need for FWER adjustment due to more hypotheses being 

included than would have otherwise been assessed in separate protocols is present in 

both cases.   

 

4.6.3 Multiple superior false positive adjustment  

The increased risk of multiple errors within the family of hypotheses due to the shared 

control group could be important if superiority in more than one of the hypotheses were 

to contribute as separate pieces of evidence towards a claim of effectiveness. In the 

case of two hypotheses, FWER adjustment methods are not stringent enough, and the 

probability of multiple superior false positive (MSFP) outcomes needs to be controlled 

for the evidence to be equivalent to that obtained from two independent trials. In this 

situation, the significance level adjustment proposed in Section 4.5.1 to control the 

chance of MSFP outcomes in a three-arm trial in order for the evidence to be 

equivalent to that obtained from two independent trials can be used. It is possible that 

controlling for MSFPs could lead to a trial that is as large or larger than independent 

trials, and this should be considered during the design stages. The overall probability of 

MSFP outcomes is low even where there is shared control data, and unless the 

outcomes are to be used as multiple pieces of evidence towards the same claim of 

effectiveness, adjustment is unlikely to be necessary. In the case of more than two 

hypotheses, it would need to be considered whether having an inflated chance of two 

or more superior false positives out of the set of hypotheses is important. It is unlikely 

to be necessary to control the chance of all of the hypotheses being falsely superior as 

this will become very small, but it might be beneficial to control the probability of at 

least two superior false-positive errors, if these could inform the same claim of 

effectiveness. Whilst adjusting the FWER might somewhat control this probability, 

since this is not the aim of this adjustment it may not control it appropriately, depending 

on the number of hypotheses and the adjustment method. This would benefit from 
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further consideration and is an interesting area for further work, as discussed in 

Chapter 7. 

 

The concept of controlling the probability of multiple errors was also recently discussed 

by Jaki and Parry (2016)88. They introduce a metric E(V), the expected number of false 

rejections, which is equal to the FWER + FMER in the notation of this thesis. They 

discuss that instead of controlling the FWER, it may be more relevant to control the 

expected number of false claims (EFC) in circumstances where the chance of more 

than one wrong rejection will “result in a consequential decision” to make a claim of 

effectiveness. They note that “no method exists that explicitly considers claims” and go 

on to suggest a method to control the EFC in some situations. They note that using 

closed testing methods to control the FWER gives a “false sense of security” in terms 

of the EFC, agreeing with our findings. The conclusions of this manuscript agree with 

the recommendations in this thesis that multiple testing adjustment should be 

determined based on the requirements for the resulting claim of effectiveness, as 

summarised in Section 4.6.6. 

 

4.6.4 Multiple testing adjustment considerations when adding an 

arm 

In trials where arms are added and only concurrent control data is used, there is likely 

to be a combination of shared and independent control data for the hypotheses. Since 

having shared control data does not inflate the FWER, the need for adjustment to 

control the probability of at least one type I error is no different than it is for trials in 

which all the control data is concurrent. The efficiency of sharing a protocol and the 

ability to test more hypotheses leading to a claim of effectiveness than in independent 

trials is unaffected by the time at which the arm is added. Therefore, the requirement 

for FWER adjustment is the same as for standard multi-arm trials. Parmar et al. 

(2017)22 discuss adjustment with relation to the Stampede trial, and believe that if there 

is relatively little overlap in the control groups, there is less need to adjust the FWER. 

However, this assumes that shared control data inflates the FWER, which is not the 

case. If there is a lower proportion of shared control data, however, the probability of 

MSFP errors will not be inflated to the same extent, and would therefore require a less 

stringent adjustment to the critical value, if necessary. In Chapter 5, FWER adjustment 

alongside analysis methods when an arm is added is considered.  
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4.6.5 Motivational examples 

Returning to the trials introduced in Section 4.1.2; recall the MRC COIN trial78 (Section 

4.1.2.1) in which OxFP is present in all treatment arms. Since one primary hypothesis 

addresses the addition of the experimental therapy cetuximab to OxFP and the other 

addresses a reduction in duration of OxFP therapy, these do not contribute towards the 

same claim of effectiveness. In this case, the chance of a false positive outcome for 

either the addition of cetuximab or the change in the dosing schedule is not increased 

by the presence of the other hypothesis. Similarly, the power to make a claim of 

effectiveness based on either hypothesis is not inflated by the presence of the other. 

Since the correlation between comparisons due to the shared control group does not 

increase the FWER, adjusting to control the FWER in this case is therefore an 

unnecessary penalty.  

 

On the other hand, the AMAGINE-1 trial introduced in Section 4.1.2.2 assesses two 

doses of brodalumab compared to placebo. Since a rejection of the primary null 

hypothesis for either comparison could lead to a claim of effectiveness for brodalumab, 

there are two chances for a false positive result with respect to that claim. In this case, 

there is general agreement in the literature that FWER control is recommended59 since 

the type I error rate can be considered for the claim of effectiveness as a whole, rather 

than for each individual hypothesis. The power for each comparison will be reduced 

from 90% to around 84% following a multiple testing correction without inflation of the 

sample size, but the claim-wise power for superiority of either dose is relevant, and will 

be increased above 90% if both doses are truly superior. If the outcomes from the 

AMAGINE-1 trial were to be used as two separate claims of effectiveness for 

brodalumab, a more stringent adjustment would be required for the evidence to be 

equivalent to that obtained from two independent trials, with the significance level 

reduced to 0.0118. In this case, the sample size to maintain 90% power would need to 

be increased from 660 to 900, which is similar to the 880 patients that would be needed 

in two independent trials. 

 

In the Myeloma XI+ Intensive trial introduced in Section 4.1.2.3, the four-drug regime 

CCRD is compared against the current standard control CTD, as well as the previously 

assessed three-drug regime CRD. Since CCRD will only be recommended for approval 

if it is better than both CTD and CRD, both hypotheses are required to be significant in 

order to recommend CCRD for use in practice. Here there is only one chance for an 
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overall false positive outcome for the trial, so the chance of ‘at least one’ error cannot 

be inflated, and therefore no type I error adjustment is necessary.  

  

4.6.6 Decision diagram 

The implications of running a multi-arm trial with shared control data on various types 

of false positive error rates have been formalised here, considering the effects of 

multiple testing adjustment methods, in order to make informed recommendations on 

the requirement for adjustment. A flow diagram to aid the determination of the 

requirement for a multiple testing adjustment in a multi-arm trial is provided in Figure 

4-8. The decisions on the need for error control with respect to the interpretation of the 

trial results should be agreed and documented in advance in the protocol and statistical 

analysis plan. Care should always be taken in reporting and interpretation if more than 

one hypothesis within a multi-arm trial with shared control group is positive. 

 

Figure 4-8 Decision diagram to determine the requirement for a multiple testing 
adjustment in multi-arm trials 
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Analysis methods when adding an arm to an ongoing 

trial 

5.1 Introduction 

5.1.1 Rationale 

When a new treatment arm is added to an ongoing trial, there is a change to the 

original study design. How to account for this type of adaptation has rarely been 

considered in the literature, and it not clear how to analyse the data appropriately to 

ensure that bias is not introduced, the type I error rate is not inflated, the power is 

maximised and the results are meaningful. 

 

In order to protect trials from bias due to design adaptation, adaptive designs literature 

usually recommends conducting an adjusted analysis to account for interim analyses 

that use internal trial data to inform the amendment. However, the situation considered 

here differs because the amendment to add a new treatment arm is likely to be based 

on emerging evidence that is external to the trial which is being adapted. Similarly to 

adaptive designs based on internal data, the amendment might have consequences for 

the hypotheses of interest within each stage, causing a stage effect. In addition, 

although the evidence to add an arm is assumed to have arisen externally, data 

internal to the trial may inform the decision to make the amendment or its design 

characteristics. Depending on the nature of the experimental therapies, multiplicity 

adjustment may or may not be necessary. In this chapter we aim to investigate various 

analysis methods in order to make recommendations for researchers when planning 

the analysis of a trial they wish to amend by adding a new treatment arm. Firstly the 

sources of potential bias when analysing a trial that is adapted by adding an arm are 

considered alongside current literature on this topic in order to inform the necessary 

research within this chapter. Two adaptive and two non-adaptive analysis methods are 

introduced Section 5.2, and in Section 5.3 literature that has previously considered 

these analysis methods in trials amended by adding an arm is reviewed and limitations 

discussed. A simulation study is undertaken to compare the error rates following 

analysis using the four methods in Section 5.4, and these are considered alongside 
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multiplicity adjustment in Section 5.5. The findings are discussed in Section 5.6 and a 

summary diagram of the recommendations is provided. 

 

5.1.2 Scenario 

This work is motivated by the design of the FLAIR trial in CLL, which is introduced in 

Section 1.3 and discussed in detail in Chapter 6, although the scenario presented here 

is simplified. Consider a randomised, parallel arm clinical trial assessing a null 

hypothesis H0A, comparing Treatment A against Treatment Z, the control. The trial is 

powered to assess progression-free survival (PFS) in 748 participants (374 per arm) to 

observe 379 events in order to assess a superiority hazard ratio of 0.75 with an overall 

5% significance level and 80% power assuming a 4 year recruitment and 4 year follow-

up period and allowing for a 5% dropout rate. During recruitment, Treatment B is 

identified as extremely promising from an early phase trial for the population being 

assessed, and it is desirable to compare this treatment in the same population to the 

same control group. In order to maximise resources, Treatment B is added to the trial, 

so that patients are randomised between the control treatment (Z) and the two 

experimental treatments (A and B). The new primary comparison assessing null 

hypothesis H0B will be between Treatment B and the control Treatment Z, and pairwise 

comparisons between treatments A and B are not planned. This reflects what would 

likely have been the case if Treatment B was assessed in a new trial against the 

current standard Treatment Z. Hypothesis B is powered to assess the same 

improvement in PFS as the Treatment A to Treatment Z comparison, also requiring 748 

participants to be randomised to treatments Z and B concurrently. Randomisation 

allocation will be even during each stage (1:1 for two arms and 1:1:1 for three). It is 

planned to stop recruitment to Treatment A once the required numbers have been 

randomised to that comparison, with the trial then becoming Treatment B vs Z in Stage 

3. Note that this is not in any way related to the efficacy of Treatment A, and no efficacy 

analysis will take place at this time because the survival data will not yet be mature. 

Therefore, the overlap between concurrent recruitment to treatments A and B will be 

comparatively small. The total sample size will be less than the 1496 that would have 

been required in separate trials, depending on when the new arm is added. For 

example, if the new treatment was added halfway through the planned recruitment, the 

total sample size would be 1309, as illustrated in Figure 5-1: 
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Figure 5-1 FLAIR randomisation by treatment arm and trial stage 

Time   0     24                 60       84 

 

It is assumed that the rate of recruitment remains constant and that the two hypotheses 

will be analysed at different times, when there are enough events in the concurrently 

randomised arms. In the case where the new arm is added halfway through 

recruitment, the 4 year recruitment period to assess hypothesis A is increased to 5 

years because of the additional arm. However, the follow-up period to reach the same 

number of events will decrease from 4 to 3.25 years, so the total time to reach the 

primary outcome for hypothesis A will only be increased by 3 months overall, from 8 to 

8.25 years.  

 

The focus of this work is on the analysis of Hypothesis A over stages 1 and 2 due to 

the addition of Treatment B. However, the findings relating to potential stage effects 

and multiple testing adjustment will also be relevant to the analysis of Hypothesis B 

over stages 2 and 3. Whilst the effect of dropping a treatment arm is widely researched 

and published, this type of adaptation is usually following an interim analysis with 

stopping or selection criteria, so the situation of stopping an arm simply because it has 

completed recruitment and without analysis of interim data is an unusual feature of a 

platform (or MAMS) trial.  

 

5.1.3 Considerations for the use of adaptive analysis approaches 

Wassmer and Brannath (2016)36 introduce a common basic principle in flexible designs 

known as the Conditional Invariance Principle. They define this as follows: “Think of a 

trial with two sequential stages, where design characteristics of the second stage are 

chosen at an interim analysis based on data from the first stage as well as external 

information. The design of the first stage is pre-fixed and remains unaltered. Assume 

further that the first and second design stage data are from independent cohorts of 

Trial Stage 1 2 3 

Control Z (N=561) N=187 N=187 N=187 

Trt A (N=374) N=187 N=187  

Trt B (N=374) 
 

N=187 N=187 
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patients. If the trial continues to the second stage, let 𝑇2 be the statistics for 𝐻0 from the 

second cohort recruited after the interim analysis. Due to the data-driven choice of 

design features, the null distribution of 𝑇2 will in general depend on the interim data. 

However, we can often transform 𝑇2 in a way that the conditional null distribution of 𝑇2 

given the interim data and the second stage design equals a fixed pre-specified null 

distribution, and hence is invariant with respect to the interim data and mid-trial 

adaptations.”  Depending on whether the Conditional Invariance Principle is relevant or 

not when adding an arm, it may be necessary to use specific methods of analysis 

which we will refer to as ‘adaptive analysis methods’. In the context of the work of this 

thesis, the approach taken is p-value combination methods, as described in Section 

5.2.3. 

 

The key statements in the above definition in the context of adding a treatment arm 

have been underlined. It is not clear whether adaptive analysis methods are required in 

the case of adding an arm, because there is no adaptation to the existing Hypothesis 

A, only to the protocol and randomisation, and it is assumed that the amendment is 

primarily informed by information that is not obtained from within the trial. Wassmer 

(personal communication) commented “If no (and really no) information from the 

current trial was used for the decision to add a new treatment, an analysis that 

considers the treatment as if it was recruited from the beginning of the trial needs no p-

value combination method. It should be clarified with the agency (if necessary), if this 

point of view is accepted from a regulatory point of view”. This suggests it may 

therefore be appropriate to pool the data over stages if the amendment to add a new 

treatment arm is only informed by evidence that is external to the trial. However, if any 

analysis of interim data internal to the trial has informed the decision to add the new 

hypothesis or its design characteristics, this may need to be accounted for in the final 

analysis using adaptive analysis methods such as p-value combination over the 

stages.  

 

Adaptive analysis methods could also be beneficial to account for any stage effects 

caused by the amendment. If the addition of the new treatment arm changes the 

characteristics of the trial in some way, this could alter the treatment effect in the 

second stage. For example, a change in the eligibility criteria might be necessary, 

shifting the patient population. Even without a formal change to eligibility, if, for 

example, the new arm has perceived increased toxicity, frailer patients might be 

discouraged and therefore the population would shift towards being younger and fitter, 

which could improve the outcomes in the second stage leading to a stage effect. 
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Conversely, very promising phase II results published for the new therapy could 

encourage different patients into the trial. In these cases, simply pooling the data could 

bias the results, but a multivariable analysis adjusting for stage might be appropriate as 

opposed to necessarily requiring p-value combination methods. In addition, if it is 

determined that multiplicity adjustment is required due to assessing multiple 

hypotheses in the same protocol, it is not known which of the analysis methods 

optimise the power alongside adjustment in the case where the hypotheses are not 

concurrent. In this chapter, the various analysis methods will be reviewed and the error 

rates compared, including after incorporating adjustment for multiple testing. 

 

5.1.4 Sources of error rate inflation in adaptive designs 

P-value combination methods alone do not control for other sources of multiplicity such 

as repeated hypothesis testing in the case where there is an interim analysis, or for 

assessing multiple hypotheses within the same trial, but these adjustments can be 

made in conjunction if appropriate for the trial design. Standard adjustment techniques 

can be planned into the design as described by Maurer et al. (2010)89 using the 

following table:   

Table 5-1 Sources and control of type I error rate inflation in adaptive designs 
(adapted from Maurer et al. 2010)  

Sources of potential error rate inflation Techniques for error rate control 

Repeated hypothesis testing with early 
rejection of null hypothesis at an interim 
analysis. 

Classical group sequential designs, e.g., 
designs based on the α-spending approach. 

Adaptation of design and analysis features 
with combination of information across trial 
stages. 

Combination of p-values, e.g., the inverse 
normal method, Fisher’s combination test; 
conditional error function approaches; 
adjustment for known adaptation rule. 

Multiple hypothesis testing, e.g., comparing 
multiple experimental treatments with a 
control. 

Classical multiple testing methods, e.g., the 
closure principle or Bonferroni method. 

 

Rejecting a null hypothesis at an interim analysis is outside the scope of this research 

since we are only investigating the addition of a new therapy based on emerging 

external evidence, and not any formal interim analyses. However, the second and third 

rows are both relevant to consider when adding an arm: the addition of an arm is an 

adaptation of the design by definition; and adding a new hypothesis will always imply 

that multiple hypotheses are being tested within the same trial. In the previous chapter 

it was shown that multiplicity adjustment for multiple hypotheses is necessary in some 

situations but not others, so both scenarios are included in the investigations. Where 



- 104 - 

more than one source of error rate inflation is possible, the adjustment methods to 

control each one need to be applied in combination.  

 

5.1.5 Literature on analysis methods when adding an arm 

Recall from Section 2.2.2 that there are very few papers that discuss analysis 

methodology when adding a treatment arm to an ongoing trial. Hommel (2001)15, 

Posch et al. (2005)18 and Bauer (2008)19 mention adding an arm or hypothesis as 

being possible within a flexible framework. In all cases the arm is assumed to be added 

at an interim analysis, such that it is necessary to account for the Conditional 

Invariance Principle, and p-value combination methods are recommended to achieve 

this. Wason et al. (2012)24 assume the treatment is added at a pre-planned interim 

analysis and focus on strong family-wise error rate control due to having multiple arms, 

adjusting the existing group sequential stopping bounds to account for the additional 

hypothesis rather than considering analysis by trial stage. This methodology would not 

be applicable when adding an arm at an unplanned time based on external data. Elm 

et al. (2012)20 is the only publication found to have considered analysis methods when 

adding an independent treatment based on external considerations, comparing p-value 

combination methods to those where the data are pooled over the stages. Whilst this 

research is very relevant, there are a number of specific assumptions which prevent 

the extrapolation of their results to make recommendations to researchers adding an 

arm more generally. This work is reviewed in detail below in Section 5.3. 

 

Of the eight confirmatory trials that were identified to have added new treatment arms 

for which details were available Section 2.2.3, none analysed the data by stage using 

adaptive methods. Instead, they pooled the data over the stages, with one trial 

accounting for stage within a multivariable analysis but the others not. One trial tested 

for intra-stage correlation within the analysis, although the power for that test would 

have been low, and then pooled the data over the stages without adjustment. None of 

the arms were added based directly on interim trial data; all were identified through 

external evidence. However, some trials had reported looking at interim data before the 

new arm was added, particularly those with multi-arm multi-stage designs that are 

designed specifically with the intention of dropping and adding arms throughout the 

recruitment period based on a series of interim analyses. No interim data were reported 

to have informed the design amendment. 
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In summary, very little literature has considered analysis methods when a trial is 

adapted by adding a new treatment arm, and the appropriate analysis methods to 

ensure statistical validity when adding a treatment arm are currently unclear.   

 

5.2 Analysis methods investigated 

5.2.1 Introduction 

As discussed in Section 5.1.3, it may be necessary to use adaptive analysis 

approaches in order to satisfy the Conditional Invariance Principle. The p-value 

combination approach, where the trial stages are analysed separately and p-values 

subsequently combined, is a convenient and appropriate method to achieve this in the 

situation of adding an arm. This is because it is based on stagewise rather than 

cumulative test statistics, which are not required to be calculated in advance of the final 

analysis and are not based on a decision arising from an interim analysis. The 

approach is simple and flexible to implement, and can be planned at the time of the 

amendment rather than necessarily at the outset of the trial.  

 

If adaptive analysis approaches are not required, the analysis could simply pool the 

data over the stages as if there had been no amendment, or else pool over stages but 

include ‘trial stage’ as a covariate in a multivariable model. Each of these methods will 

be considered when analysing the original hypothesis having added a new treatment 

arm part way through recruitment, and their effect on the type I error and power will be 

investigated under various scenarios. The aim is to aid researchers in understanding 

the impact of each analysis method so they can determine the appropriate method for 

their particular situation. 

 

Once Treatment B is included in the randomisation in Stage 2, there are two 

hypotheses being assessed within the same protocol and using some of the same 

control group, therefore multiple testing adjustment for multiple hypotheses needs to be 

considered. The need for adjustment in this case was discussed in detail in Chapter 4, 

and it was determined that if the hypotheses assess therapies that inform different 

claims of effectiveness, no adjustment is necessary. Therefore it is first assumed that 

this is the case. In Section 5.5.4 this assumption is changed and multiplicity adjustment 

methods are investigated alongside the analysis methods. 
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5.2.2 Pooled, non-adaptive analyses 

The scenario in Section 5.1.2 has a time-to-event primary endpoint assessing the two-

sided null hypothesis H0A that there is no significant difference between Treatment A 

and Control Treatment Z in terms of Progression Free Survival. Treatment B is added 

part way through recruitment, and no interim data are looked at prior to the 

amendment. The change to the randomisation does not directly affect hypothesis A as 

patients are still being randomised 1:1 between treatments Z and A with no 

amendments to the design for those treatment arms, although the rate of recruitment is 

likely to reduce due to the inclusion of the additional arm in the randomisation, and the 

amendment could cause a stage effect if there is an accompanying change to the 

population. 

 

In survival analysis where proportional hazards are assumed, the hazard function, 

which is the risk of progression at time t for a patient i, can be written as  

ℎ𝑖(𝑡) = exp{𝛽1𝑥1𝑖+. . . +𝛽𝑙𝑥𝑙𝑖} ℎ0(𝑡), 

where ℎ𝑖(𝑡) is the hazard function for the ith patient (i = 1,…,n), and ℎ0(𝑡) is the 

baseline hazard function; X is an indicator variable with value x, such that for 

explanatory variable 𝑙, 𝑥𝑙𝑖 = 0 if it is the first level (such as the control treatment) and 

𝑥𝑙𝑖 = 1 if it is the second level (such as the experimental treatment); and exp(𝛽𝑙) is the 

hazard ratio of 𝑥𝑙 = 1 relative to 𝑥𝑙 = 0, adjusted for the other covariates.  

 

In the simple pooled analysis where there are no covariates, the above can be reduced 

to include only the treatment effect (𝑙 = 𝜃) as an explanatory variable 

ℎ𝑖(𝑡) = exp{𝛽𝜃𝑥𝜃𝑖} ℎ0(𝑡). 

 

In the multivariable model adjusting for stage, the hazard function includes trial stage 

(𝑙 = 𝑘) as a covariate 

ℎ𝑖(𝑡) = exp{𝛽𝜃𝑥𝜃𝑖 + 𝛽𝑘𝑥𝑘𝑖} ℎ0(𝑡). 

 

The multivariable model tests the extent that each of the explanatory variables affect 

the hazard function, adjusted for the other covariates, with the hypotheses for each set 

to 𝐻0: 𝛽𝑙 = 0 vs 𝐻1: 𝛽𝑙 ≠ 0. Cox proportional hazards regression model uses the 

likelihood ratio test which calculates the maximised partial log likelihood (𝑙𝑜𝑔�̂�) with 

and without each explanatory variable in turn, and compares the differences in values 
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of the −2𝐿𝑜𝑔�̂� between the two models for each explanatory variable to 𝜒𝑞−1
2 , as they 

have an approximately chi-squared distribution with 𝑞 − 1 degrees of freedom under 

H0, where q is the number of levels for the variable. In this way, the model can output a 

p-value for the treatment effect and treatment effect estimate with confidence intervals 

after adjusting for the trial stage, and vice-versa. 

 

5.2.3 P-value combination, adaptive analyses 

The principle of p-value combination methods are that p-values are calculated 

separately for each stage from the independent cohorts of patients, and then a 

combination function is applied to allow testing across the trial as a whole. This controls 

for the adaptation of the design, according to the Conditional Invariance Principle 

(Section 5.1.3). An advantage of combination methods is that p-values can be 

calculated for each stage using any frequentist analysis method, regardless of the type 

of design or endpoint. A disadvantage is that outputting a treatment effect estimate and 

confidence interval is not straightforward. 

 

Let 𝐻0 be the null hypothesis to be tested over the whole trial. Define 𝑝1 and 𝑝2 to be 

the p-values from the first and second stage respectively, which are assumed to be 

independent and uniformly distributed on [0,1] under 𝐻0 so that they satisfy the p-clud 

criterion (Brannath et al. 200290). The outcome of the final analysis is based on a 

combination function of the p–values from each stage, 𝐶(𝑝1, 𝑝2), which is continuous 

and monotonically increasing. 𝐻0 is rejected if 𝐶(𝑝1, 𝑝2) < 𝑐𝛼, where cα is the 

appropriate critical value, depending on the combination method. The two most 

commonly discussed combination functions in the literature are Fisher’s combined 

probability method52, 91 and the weighted inverse normal combination function92. 

 

Note that when p-values are combined, it is necessary to use the results from one-

sided tests to avoid the possibility of combining p-values for which the treatment effect 

is in the opposite direction. However, it is often appropriate to design trials with a two-

sided null hypothesis to allow for the possibility that the experimental treatment is 

actually worse than control, which is an interesting and relevant finding. As noted by 

Whitehead93, it is possible to combine the one-sided p-values for each tail and use 

those to determine the equivalent two-sided overall p-value by doubling the most 

significant of the one-sided p-values. This method is used when calculating the overall 

p-values throughout this chapter. 
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5.2.3.1 Fisher’s combined probability method 

Based on meta-analysis methodology by Fisher (1932)91, the evidence from the two 

stages can be combined by the product of the independent p-values, 𝑝1𝑝2. Recall the 

p-clud criterion that under H0 the p-values are independent and uniformly distributed, 

so  𝑝𝑘~𝑈(0,1) for stage k (k = 1,2). Fisher derived a proof that the natural logarithm of 

the product of k random variables with uniform distributions form a 𝜒2 distribution with 

2k degrees of freedom, such that  

−2 ln(𝑝1𝑝2) ~𝜒4
2(1 − 𝛼). 

 

That is, 𝐶(𝑝1, 𝑝2) = 𝑝1𝑝2 and 𝑐𝛼 = 𝑒−
1

2
𝜒4

2(1−𝛼)
. With a one-sided α = 0.025, there is 

evidence to reject H0 if 𝑝1𝑝2 ≤ 0.0038. 

 

5.2.3.2 Weighted inverse normal method 

Fisher’s method above includes the p-values from each stage with equal weighting, 

regardless of the amount of contributing information. With the inverse normal method 

proposed by Lehmacher and Wassmer (1999)92, the weights can be varied, as long as 

they are chosen in advance of the trial, and are usually set to mirror the anticipated 

amount of information contributing from within the stages. This is optimal in terms of 

the combined p-value approximating the p-value based on a pooled analysis. 

 

Let 𝑍𝑘 be the normal Z-value for stage k, such that 𝑍𝑘 = Φ−1(1 − 𝑝𝑘), 𝑘 = 1, … , 𝐾. The 

weighted inverse normal test rejects the null hypothesis if ∑ 𝑤𝑘𝑍𝑘
𝐾
𝑘=1 > Φ−1(1 − 𝛼), 

where the weights wk are set so that ∑ 𝑤𝑘
2 = 1𝐾

𝑘=1  and the α is one-sided. For K=2, 

𝐶(𝑝1, 𝑝2) = 1 − Φ[𝑤1Φ−1(1 − 𝑝1) + 𝑤2Φ−1(1 − 𝑝2)], 

where Φ is the CDF of the normal distribution function. There is evidence to reject H0 if 

𝐶(𝑝1, 𝑝2) ≤ 0.025. 

 

The weights are usually set so that they are based on the size of the stages, 

𝑤𝑘 = √
𝑛𝑘

𝑛1 + 𝑛2
⁄ , (𝑘 = 1,2) 

where nk reflects the amount of information from stage k. For continuous or binary 

endpoint data, nk is determined by the sample size. 
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Note that whilst weighted methods are frequently used when combining p-values, 

Becker (1994)94 commented that “Since the p value depends on the sample size for 

which it is calculated, for any given effect size or outcome a larger study will have a 

smaller p than a smaller study. Giving larger studies even more weight would be 

inappropriate and might adversely affect the power of the methods.” Therefore, both 

combination approaches, with and without weighting, will be investigated. 

 

5.2.3.3 Combining p-values from time-to-event outcome data 

Time-to-event outcomes in trials assessing survival add complexity because events 

continue to occur over time and the p-value is therefore dependent on when the 

analysis is carried out. The necessary assumption of the p-values being independent 

for each stage is easily held by defining the stages according to when the patients were 

randomised, so for Hypothesis A patients recruited before the amendment contribute to 

stage 1, and those after contribute to stage 2, regardless of when any events occur. In 

addition, it is assumed that the final analysis will be carried out for a hypothesis when 

the pre-specified number of events have been observed from patients across the 

relevant stages, and the data from the relevant trial arms within all stages will be 

analysed concurrently. The time to analysis may be increased by the addition of the 

new arm if it affects the recruitment rate, but this alone would not affect the power and 

type I error rates as long as the analysis is triggered by the occurrence of the planned 

number of events. Since the p-values for each stage are independent and uniformly 

distributed under their respective null hypotheses so p-clud is satisfied, and are 

calculated at a pre-specified point based on number of events which is unaltered by the 

addition of the new arm, p-value combination methods are appropriate. Note that if 

there is an interim analysis on the time-to-event endpoint, the data will be immature 

compared to that at the final analysis. This needs to be taken into consideration when 

planning the design, but is out of scope here as our assumption is that the amendment 

is not based on interim data. Jenkins et al. (2011)95 have discussed this scenario.  

 

In weighted combination methods, the weighting should be set to be the anticipated 

amount of information gained from each stage. In time-to-event trials, patients recruited 

in the first stage are followed up for longer and have the opportunity to record more 

events, and therefore the weighting should reflect that. Jenkins et al. (2011)95 state 

“Ideally, the weights w1 and w2 would be chosen to be proportional to the square roots 

of the numbers of [survival] events observed during each stage. The combination test 
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would then have the attractive property of yielding, approximately, the usual test 

statistic from a single combined analysis.” In order not to introduce bias, the weights 

need to be pre-determined, and therefore can be estimated based on the expected 

number of events from patients in each stage assuming they follow an exponential 

distribution, the same assumption that is used to power the trial. In this case, the ek in 

the following formula would be determined by the estimated number of events to be 

observed from stage k patients at the time of the planned analysis hence giving 

weights 

𝑤𝑘 = √
𝑒𝑘

𝑒1 + 𝑒2
⁄ , (𝑘 = 1,2). 

These weightings would be used in the final analysis, regardless of the actual number 

of events observed. Deviations in the number of events observed from each stage to 

those expected could affect the test statistic so it would move away from the pooled 

test statistic, which could have an impact on the observed error rates. However as long 

as the misspecification is not unreasonable, this is still likely to be closer to optimal 

than an unweighted combination method.  

 

5.3 Review of existing research on analysis methods when 

adding a treatment arm based on external evidence   

Elm et al. (2012)20 are the only authors identified to have previously investigated 

analysis methods specifically when adapting a trial by adding a treatment arm. They 

share the assumption that the evidence for adding a treatment arm is external to the 

trial being amended and no interim analyses are planned. Their work was motivated by 

the possibility of adding an arm to a phase III trial in Parkinson’s disease with a 

continuous, normally distributed primary endpoint. They assessed bias between the 

four analysis methods reviewed in Sections 5.2.2 and 5.2.3 in terms of type I error and 

power, by applying them to simulated scenarios in which an arm is added at varying 

times and with various degrees of stage effect. Pairwise comparisons were assumed 

between each experimental arm and the placebo arm. The findings were that when 

there is a stage effect, there is a familywise type I error bias and a loss of power for 

both comparisons when the data are simply pooled, but particularly for the new 

comparison. In the reported scenario, the linear model was the most powerful, but the 

adaptive approach was thought appropriate if interim data are involved. 
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As noted previously, whilst their work is highly relevant to this current research, there 

are a number of considerations that limit their conclusions, and may not be realistic to 

many trials in practice. To illustrate this, an example of their randomisation scheme is 

shown in Figure 5-2, where the new arm is added halfway through the original 

recruitment target. The numbers in each stage are determined by when the 

amendment occurs, which is varied in the simulations to 10%, 30% and 50% of the 

planned recruitment for the original trial.  

Figure 5-2 Hypothetical Parkinson’s disease trial randomisation by treatment arm 
and trial stage 

 

The allocation ratio is adjusted so that all three arms complete recruitment at the same 

time to achieve the same patient numbers, and the comparisons for Treatment B are 

against the entire placebo arm recruited over stages 1 and 2. The trial was designed in 

this way for blinding purposes, since the control group are receiving placebos for both 

experimental treatments in the second stage, and to avoid having a third stage with 

different characteristics again. This violates our assumption that control patients should 

be recruited concurrently, and therefore will increase the bias in the case of a stage 

effect for the Treatment B comparison using the pooled methods53. They, in fact, point 

out that Parkinson’s studies have shown that “changes in clinical practice over time 

have a major impact on outcome measures”, therefore recommending that the 

amendment is made as early in the trial as possible. Whilst this strategy reduces the 

overall number of patients allocated to placebo, the potential bias in the event of a 

stage effect seems to negate this benefit and could affect the interpretability of the 

outcomes. The adaptive methods will naturally overcome the bias caused by having 

non-concurrent controls because the p-values are calculated separately from patients 

within each stage. However, since “HB is tested using just the stage 2 data via p2,B 

(since there is no data for treatment B in stage 1)”, there will be reduced power for the 

Treatment B comparison with adaptive methods. Where the new treatment is added 

50% through recruitment, the combined p-value will be based on only 60 control and 

120 experimental patients, rather than the 240 patients needed in total. 

 

Trial Stage 1 2 

Placebo (N=120) N=60 N=60 

Trt A (N=120) N=60 N=60 

Trt B (N=120) 
 

N=120 
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In addition, Elm et al. make the assumption that the familywise error rate needs to be 

controlled due to having multiple experimental arms compared to the same control 

group, and used closed testing methods in combination with adaptive procedures in 

order to adjust within stage. The requirement for and use of multiple testing adjustment 

procedures are addressed in Section 5.5, where this and alternative methods are 

discussed, and it is suggested that this method of adjusting within stage may not be 

appropriate and that adjustment should instead be across the trial as a whole. This is 

firstly because the FWER is not inflated only within specific stages, and secondly 

because Stagewise methods give unexpected results in the case where arms are 

added (Section 5.5.2). Since all of their simulations incorporate this adjustment 

method, the results are muddied between the effect of the analysis method and that of 

the multiplicity adjustment, so that they cannot be extrapolated to cases with different 

multiple testing assumptions. If multiple testing adjustment is not deemed necessary, or 

if adjustment is made across the whole trial rather than within stage, it is not clear from 

their work which analysis method is appropriate. The use of closed testing methods 

requires that both hypotheses are analysed at the same time, and the type I error rates 

concern the hypotheses jointly. For this reason only the familywise error rate is 

presented, but not the type I error rates for the two separate comparisons, which may 

be the appropriate error to consider if the hypotheses are considered individually and 

without requiring adjustment. Using closed testing methods, the effect on the error 

rates of the non-concurrent controls for Hypothesis B also affects the overall 

recommendations for Hypothesis A, inflating the FWER and reducing the power for 

both hypotheses using the pooled analysis method if there is a stage effect. Finally, 

their results are restricted to continuous endpoint data, and we consider time-to-event 

data but confirm that the findings are similar for other types of endpoints.   

 

5.4 Simulation study 

5.4.1 Aims and assumptions  

The aim of the simulation study is to compare the type I error and power for testing 

Hypothesis A based on the four different analysis methods and under various 

assumptions following the addition of Treatment B. It is assumed that the amendment 

is made without reference to internal trial data. The simulations assess the impact of 

stage effects caused by the addition of Treatment B on the error rates, whilst varying 

the time of the amendment and the allocation ratio. The null hypothesis 𝐻0𝐴: 𝜃𝐴 = 0 is 

tested against the two-sided alternative hypothesis 𝐻1𝐴: 𝜃𝐴 ≠ 0, where 𝜃𝐴 is the 

treatment effect for treatment A compared to Z. The focus of the simulations are on the 



- 113 - 

analysis of Hypothesis A because that is the hypothesis affected by the potential stage 

effect caused by the addition of Treatment B (Section 5.1.3). Hypothesis B is not 

affected by the addition of any other new arms, but since the design includes a third 

stage in which Treatment A is dropped because it has completed recruitment, there 

could be another stage effect affecting Hypothesis B that is similarly not caused by an 

interim analysis. The results addressing the impact of a stage effect on the analysis of 

Hypothesis A will also be valid for Hypothesis B, and this is considered in the 

recommendations. 

 

The simulations are based on the FLAIR trial design described in Section 5.1.2. Each 

scenario is assessed by simulating 100,000 trials. It is assumed that the survival 

patterns follow an exponential distribution with scale parameter 𝜆𝑗 =
𝑙𝑜𝑔2

𝑚𝑒𝑑𝑗
, where medj 

is the median survival time in each arm j (j = Z, A) as described in Section 2.1.3.3. In 

order to assess the type I error the median survival times are set to be the same in 

each arm, so they both equal the estimated survival for Control Treatment Z. To assess 

the power they are set to equal the survival estimates used for the sample size 

calculation, so they vary by the clinically relevant difference. It is assumed that the 5% 

participant dropout is spread evenly, so that the uninflated sample size is relevant (354 

participants per arm). Survival times are censored at the median follow-up for each 

stage k (k = 1,2). Whilst this differs to practice, where survival times are instead 

censored at the data last seen prior to the analysis, the results will be equivalent 

because of the memoryless property of the exponential distribution. The censored 

survival times are analysed using the Cox proportional hazards model (Section 5.2.2), 

comparing experimental treatment A to control treatment Z, and outputting a p-value for 

the treatment effect for each of the simulated trials. The error rates are obtained by 

counting the number of trials in which H0A is rejected. 

 

For each scenario, the data are analysed based on the four methods under 

investigation: pooled without adjustment (POOLED); pooled and adjusting for stage 

using a multivariable model (MULTI); adaptive method analysing within stage and then 

combining p-values using Fisher’s combination method (FISHER); adaptive method 

analysing within stage and then combining p-values using the weighted inverse normal 

combination method (INVN) with weights set by the number of events anticipated from 

patients in each stage.  
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Simulations assess the error rates under different assumptions of stage effect in Stage 

2, whilst also varying the time to the addition of the new arm. The stage effect is 

assumed to alter the median survival by the same relative amount in both arms, as 

shown in Table 5-2. The Stage 1 median survival estimates are 4.5 and 6 years for 

treatments Z and A respectively, so a 0.89 stage effect in Stage 2 decreases the Stage 

2 estimates to 4 and 5.33 years, and a 1.11 stage effect increases the Stage 2 

estimates to 5 and 6.67 years. Various Stage 2 estimates are included in the 

simulations to assess the impact on the error rates. It is assumed that the rate of 

recruitment remains constant over the trial, and that Hypothesis A is analysed when 

there are enough events in the concurrently randomised arms. The analysis timepoint 

is event driven, but the simulations are based on a fixed length of follow-up, so it is 

necessary to calculate the follow-up for each scenario to ensure that 379 events would 

be observed across the two arms if the median survivals are equal to those set at the 

design stage. The length of follow-up differs in each scenario because the additional 

arm affects the rate of recruitment into the existing arms, therefore affecting the time to 

reach the primary outcome, and in addition when there is a stage effect it changes the 

rate of occurrence of events. For example, with a 0.89 stage effect in the second stage, 

the overall median follow-up needed to reach the required number of events is reduced 

from 6 years to 5.743 years, calculated by solving the CDF of the hyperexponential 

distribution to find the combined median of the exponential distributions for each stage. 

In the case where the new arm is added halfway through recruitment with 1:1 

allocation, the 4 year recruitment period to assess hypothesis A is increased to 5 years. 

The follow-up period required after recruitment for Hypothesis A (fupA) is therefore 

reduced to 3 years, because 0.5 ∗ (2
2⁄ + 3 + 𝑓𝑢𝑝𝐴) + 0.5 ∗ (3

2⁄ + 𝑓𝑢𝑝𝐴) = 5.743, so 

the median follow-up for stage 1 patients is 83.9 months, and for stage 2 patients it is 

53.9 months.  

 

Whilst the follow-up time is varied for each simulated scenario involving a stage effect 

to maintain the appropriate power, the weighting based on number of events for the 

weighted inverse normal combination method is not varied. This reflects practice, 

because the weightings are determined at the time of the amendment based on the 

initial protocol assumptions and do not change if the number of events observed are 

not as expected. In the example of a 1:1 allocation with the arm being added 50% of 

the way through recruitment, ignoring the stage effect, the number of expected events 

in each stage will be 216 from stage 1 patients compared to 163 from stage 2 patients 

if they follow the exponential model. 
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5.4.2 Assessing error rates with varying stage effects for different 

amendment time points 

Simulations are used to compare the type I error and power for the four analysis 

methods based on different degrees of stage effect, see Table 5-2 below. The time to 

the amendment is varied to 25%, 50% and 75% of the way through recruitment to the 

original trial, with a 1:1 allocation ratio. It is assumed that any stage effect affects both 

arms in the same way in the second stage, so that the hazard ratio remains constant 

across the stages. It is also assumed that no multiplicity adjustment is necessary, 

although this is addressed in Section 5.5. Therefore the median survival for Treatment 

B is not important, only its effect on the median survival for Treatments A and Z. 

Table 5-2 Median survival and follow-up times to assess a Stage 2 stage effect, 
assuming varying times to amendment 

Scenario 

Stage 
Effect 

(HR = 
0.75) 

Stage 2 
Median 
Survival   

Trt Z 

 (and Trt A 
for type I 

error) 

(months) 

Stage 2 
Median 
Survival    

Trt A  

(for power) 

(months) 

Overall 
Median  

follow-up 
(months) 

Median 
follow-up 
Stage 1 

(months) 

Median 
follow-up 
Stage 2 

(months) 

Time to amendment = 25%. No. events from patients in: Stage 1 = 117; Stage 2 = 265. 

No difference 
from Stage 1 

0.000 54 72 72.0 96.8 63.8 

Reasonable 
decrease 

0.889 48 64 67.4 92.2 59.2 

Reasonable 
increase 

1.111 60 80 77.9 105.8 72.8 

Large 
decrease 

0.444 24 32 40.2 65.0 32.0 

Large 
increase 

1.555 84 112 99.2 124.0 91.0 

Time to amendment = 50%. No. events from patients in: Stage 1 = 216; Stage 2 = 163. 

No difference 
from Stage 1 

0.000 54 72 72.0 87.0 57.0 

Reasonable 
decrease 

0.889 48 64 68.9 83.9 53.9 

Reasonable 
increase 

1.111 60 80 75.9 90.9 60.9 

Large 
decrease 

0.444 24 32 48.4 63.4 33.4 

Large 
increase 

1.555 84 112 88.8 103.8 73.8 
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Time to amendment = 75%. No. events from patients in: Stage 1 = 306; Stage 2 = 76. 

No difference 
from Stage 1 

0.000 54 72 72.0 78.8 51.8 

Reasonable 
decrease 

0.889 48 64 70.4 77.5 50.5 

Reasonable 
increase 

1.111 60 80 73.9 80.7 53.7 

Large  
decrease 

0.444 24 32 59.0 65.8 38.8 

Large 
increase 

1.555 84 112 79.7 86.5 59.5 

 

The simulations programs were written in SAS v9.4 based on the above assumptions, 

and each scenario was run 100,000 times. Table 5-3 provides the percentages of trials 

in which the null hypothesis was rejected (two-sided 𝑝 ≤ 0.05) where the medians for 

both arms were set to equal the same value, showing the type I error rates following 

each analysis method.  

 

Table 5-4  provides the percentages of trials in which the null hypothesis was rejected 

where the medians for the arms were set to be different as described in Table 5-2, 

showing the power following each analysis method. 

Table 5-3 Two-sided type I error results for Hypothesis A from 100,000 
simulations per scenario 

Scenario Stage Effect POOLED MULTI FISHER Weighted 
INVN 

Time to amendment = 25% 

No difference 
from Stage 1 

None 5.02 5.02 4.98 4.99 

Reasonable 
decrease 

0.889 5.02 5.05 5.00 5.02 

Reasonable 
increase 

1.111 4.89 4.90 4.85 4.88 

Large 
decrease 

0.444 4.39 4.98 4.88 4.95 

Large 
increase 

1.555 4.68 4.94 4.97 4.90 
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Time to amendment = 50% 

No difference 
from Stage 1 

None 5.01 5.03 4.95 4.99 

Reasonable 
decrease 

0.889 4.92 4.94 4.82 4.89 

Reasonable 
increase 

1.111 4.99 5.02 4.96 4.95 

Large 
decrease 

0.444 4.41 5.13 5.03 5.10 

Large 
increase 

1.555 4.78 5.05 5.04 5.00 

Time to amendment = 75% 

No difference 
from Stage 1 

None 4.92 4.92 4.85 4.90 

Reasonable 
decrease 

0.889 5.06 5.08 4.91 5.03 

Reasonable 
increase 

1.111 4.94 4.98 4.84 4.93 

Large 
decrease 

0.444 4.35 4.89 4.84 4.89 

Large 
increase 

1.555 4.76 4.95 4.78 4.90 

 

The 95% confidence interval on a type I error of 5% for 100,000 simulations is 4.87% to 

5.14%. In one case the error is 5.13% where the time to amendment is 50%, but in the 

equivalent scenarios with time to amendment of 25% and 75% it is less than 5%, so 

this is most likely a chance result rather than a true inflation. Therefore the two-sided 

type I error does not exceed the required 5%, outside the expected margin of error due 

to the accuracy of the simulations, in any of the scenarios. In the pooled analysis 

without adjustment, the type I error drops to around 4.3-4.4% where there is a large 

decrease in survival in the second stage, and to around 4.7-4.8% where there is a 

large increase. This is regardless of when the amendment is made.  
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Table 5-4 Power results for Hypothesis A from 100,000 simulations per scenario 

Scenario Stage Effect POOLED MULTI FISHER Weighted 
INVN 

Time to amendment = 25% 

No difference 
from Stage 1 

None 80.85 80.88 77.87 80.81 

Reasonable 
decrease 

0.889 81.38 81.44 78.38 81.35 

Reasonable 
increase 

1.111 81.97 82.03 79.17 81.93 

Large 
decrease 

0.444 79.05 80.55 76.95 80.34 

Large 
increase 

1.555 80.25 81.04 78.13 80.86 

Time to amendment = 50% 

No difference 
from Stage 1 

None 80.70 80.72 78.20 80.63 

Reasonable 
decrease 

0.889 80.58 80.63 78.06 80.57 

Reasonable 
increase 

1.111 80.67 80.73 78.20 80.68 

Large 
decrease 

0.444 77.76 79.83 77.33 79.38 

Large 
increase 

1.555 79.84 80.54 77.95 80.41 

Time to amendment = 75% 

No difference 
from Stage 1 

None 80.93 80.95 77.11 80.86 

Reasonable 
decrease 

0.889 81.12 81.19 77.57 81.08 

Reasonable 
increase 

1.111 80.97 81.05 77.16 80.92 

Large 
decrease 

0.444 78.85 80.78 77.77 80.20 

Large 
increase 

1.555 80.66 81.08 76.77 80.90 

 

Take for example the scenario in which an arm is added halfway through recruitment 

and the population shifts so there is an unrealistically large decrease in the median 

survival for both treatment arms in the second stage. In Stage 1 the median survivals 

are 54 months for control and 72 months for experimental treatment A, assuming a 

clinically relevant difference,  but in Stage 2 the median survivals decrease to 24 

months and 32 months respectively. The hazard ratio of 0.75 remains unchanged for 

the treatment effect across the stages. Using the MULTI and weighted INVN analysis 

methods, the power to detect the treatment effect remains above 79%, but with the 
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POOLED analysis it decreases to 77.8%, and to 77.3% with the FISHER combination 

method. 

  

The 95% confidence interval on a power of 80% for 100,000 simulations is 77.52% to 

82.48%. Varying the time to amendment has no noticeable impact on the power in any 

of the scenarios. In all cases, the power using Fisher’s combination method is a couple 

of percent lower than with the other methods, and outside of the error margin for the 

simulations. Where there are large stage effects, the power with the pooled analysis 

method with no adjustment is up to 2% lower than with the multivariable analysis 

adjusting for trial stage, although where the stage effect is set to be more realistic, the 

pooled analysis appears to perform as well as the multivariable analysis in terms of 

power. 

 

These simulations suggest that none of the four analysis methods would be unsuitable, 

since none inflate the type I error and the difference in power is relatively small. 

However, a small difference in power can still lead to a large impact on the sample size 

and therefore it is advantageous to use the methods that lead to the highest power in 

all cases. There is no advantage in terms of error rates of using combination 

methodology over the pooled methods if there is a stage effect. If it is felt appropriate to 

pool the data over the stages without using combination methodology, the multivariable 

method adjusting for trial stage is more powerful than the unadjusted method where 

there is a stage effect, so this method would be recommended. If combination 

methodology is determined to be necessary, the weighted inverse normal method is 

more powerful in all cases than Fisher’s combination method. 

 

Simulations shown in Table 5-5 were also conducted investigating the effect of the 

allocation ratio on the error rates. The simulations included 1:2 and 2:1 allocation ratios 

for the original hypothesis, and assumed that the arm was added at 50% of the way 

through recruitment to the original trial, based on the same design as previously and 

with the same allocation ratio to Treatment B as to Treatment A. With no stage effect, 

the error rates for each of the four analysis methods have the same patterns as seen 

above, where the type I error is around 5% in all cases and the power around 80%, 

with Fisher’s combination method leading to a slightly lower power than for the other 

methods. Based on the above results, there is no reason to believe that varying the 

stage effect alongside the allocation ratio would have any different effect on the 

patterns of error results for the different analysis methods. 
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Table 5-5 Two sided Type I Error and Power results for Hypothesis A when 
varying the allocation ratio, based on 100,000 simulations per scenario 

Allocation 
Ratio 

POOLED MULTI FISHER Weighted 
INVN 

Time to amendment = 50%, no stage effect, two-sided Type I Error results 

2:1 4.94 4.96 4.94 4.90 

1:2 5.06 5.07 4.99 5.04 

Time to amendment = 50%, no stage effect, Power results 

2:1 80.28 80.30 77.71 79.82 

1:2 79.66 79.67 77.46 79.58 

 

5.4.3 Validation of the results using scenarios with different 

outcome measures 

In order to validate the findings and recommendations on the appropriate analysis 

method when the addition of an arm causes a stage effect, the simulations were 

reproduced using different scenarios. The first assumes a three arm trial with a 

continuous, normally distributed endpoint, and the second a binary endpoint. The aim 

is to investigate whether the findings are robust using different examples, and to 

investigate any differences when the analysis methods to produce the p-values differ. 

 

5.4.3.1 Normally distributed endpoint data 

The scenario is similar to that in Section 4.3.4.2, and assumes a three arm trial with a 

continuous, normally distributed endpoint, analysed using two-sample t-tests. With a 

two-sided significance level of 0.05 and 80% power to assess an effect size of 0.5, 

assuming a control mean of 100, assessing a difference of 5 with a common standard 

deviation of 10, 64 patients are required per arm with 1:1:1 randomisation. The 

common standard deviation is varied in Stage 2 along with the means so that the effect 

size in each stage remains at 0.5. 
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Table 5-6 Means and standard deviations to assess a Stage 2 stage effect 

Scenario 

Stage Effect 

(effect size = 
0.5) 

Stage 2 mean 
Trt Z 

(and Trt A for 
type I error) 

Stage 2 mean 
Trt A 

(for power) 

Common SD to 
maintain effect 

size 

No difference 
from Stage 1 

None 100 105 10 

Reasonable 
decrease 

0.889 88.9 93.3 8.8 

Reasonable 
increase 

1.111 111.1 116.7 11.2 

Large 
decrease 

0.444 44.4 46.6 4.4 

Large 
increase 

1.555 155.5 163.3 15.6 

 

The simulations were run using SAS v9.4, and each scenario was run 100,000 times. 

Table 5-7 provides the percentage of trials in which the null hypothesis was rejected 

(two-sided 𝑝 ≤ 0.05) where the means for both arms were set to equal the same value, 

showing the type I error rates following each analysis method. Only the case where the 

arm is added halfway through recruitment is shown. Table 5-8 provides the 

percentages of trials in which the null hypothesis was rejected where the means for the 

arms were set to be different as described in Table 5-6, showing the power following 

each analysis method. 

Table 5-7 Type I error results for Hypothesis A with normally distributed 
outcomes from 100,000 simulations per scenario 

Scenario Stage Effect POOLED MULTI FISHER Weighted 
INVN 

Time to amendment = 50% 

No difference 
from Stage 1 

None 5.07 5.07 5.08 5.08 

Reasonable 
decrease 

0.889 2.29 5.02 4.99 5.03 

Reasonable 
increase 

1.111 2.73 5.13 5.13 5.08 

Large 
decrease 

0.444 0 5.00 5.04 5.04 

Large 
increase 

1.555 0 4.91 4.93 4.91 

 

The type I error remains around 5%, within the expected error margin, in all cases 

apart from following the POOLED analysis method. This is discussed below. 
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Table 5-8 Power results for Hypothesis A with normally distributed outcomes 
from 100,000 simulations per scenario 

Scenario Stage Effect POOLED MULTI FISHER Weighted 
INVN 

Time to amendment = 25% 

No difference 
from Stage 1 

None 80.13 80.14 76.48 79.94 

Reasonable 
decrease 

0.889 71.64 80.11 76.51 80.09 

Reasonable 
increase 

1.111 74.25 80.11 76.50 80.08 

Large 
decrease 

0.444 0.00 73.93 76.54 80.04 

Large 
increase 

1.555 12.86 79.05 76.68 80.15 

Time to amendment = 50% 

No difference 
from Stage 1 

None 80.03 80.05 77.37 79.85 

Reasonable 
decrease 

0.889 69.30 79.95 77.49 79.93 

Reasonable 
increase 

1.111 71.82 80.16 77.48 80.14 

Large 
decrease 

0.444 0.00 74.38 77.26 79.81 

Large 
increase 

1.555 2.34 78.29 77.29 79.92 

Time to amendment = 75% 

No difference 
from Stage 1 

None 80.30 80.29 76.53 80.16 

Reasonable 
decrease 

0.889 72.76 80.16 76.48 80.13 

Reasonable 
increase 

1.111 73.38 80.04 76.42 79.90 

Large 
decrease 

0.444 0.09 76.85 76.44 79.98 

Large 
increase 

1.555 3.19 78.58 76.54 80.12 

 

The power is generally slightly lower with Fisher’s combination analysis method than 

the multivariable and weighted inverse normal combination methods, agreeing with the 

findings in the survival case. In addition, the time to amendment does not affect the 

findings. In contrast to the survival case discussed previously, the POOLED results 

show that if there is any stage effect, pooled methods without adjustment are not 

appropriate. This is because the standard deviation after pooling the data across 

stages becomes very large, therefore reducing the effect size. In this case, even with 

only a reasonable stage effect, the power is reduced by a large amount with the 
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POOLED method. Therefore stage should always be accounted for in the analysis, 

either within a multivariable analysis, or using combination methods. Note that these 

results were obtained using a t-test and validated using a regression, and were 

identical. The power is slightly lower using the multivariable analysis in the case of a 

large stage effect, although the power is good if the stage effect is not unrealistic. 

 

5.4.3.2 Binary endpoint data 

It is also of interest to investigate the analysis methods in the example of a binary 

outcome measure. The scenario here assumes a three arm trial with a binary endpoint, 

analysed using logistic regression. With a two-sided significance level of 0.05 and 80% 

power to assess an odds ratio of 1.667, assuming a control proportion of 0.5 

(experimental proportion of 0.625). 246 patients are required per arm with 1:1:1 

randomisation.  

Table 5-9 Binary proportions to assess a Stage 2 stage effect 

Scenario 
Stage Effect 

(OR fixed at 1.667) 

Stage 2 proportion 
Trt Z 

 (and Trt A for type I 
error) 

Stage 2 proportion 
Trt A  

(for power) 

No difference 
from Stage 1 

None 0.5 0.625 

Reasonable 
decrease 

0.889 0.444 0.571 

Reasonable 
increase 

1.111 0.556 0.676 

Large 
decrease 

0.444 0.222 0.323 

Large 
increase 

1.555 0.778 0.854 

 

The simulations were run using SAS v9.4, and each scenario was run 100,000 times. 

Table 5-10 provides the percentage of trials in which the null hypothesis was rejected 

(two-sided 𝑝 ≤ 0.05) where the proportions for both arms were set to equal the same 

value, showing the type I error rates following each analysis method. Table 5-11 

provides the percentages of trials in which the null hypothesis was rejected where the 

proportions for the arms were set to be different as described in Table 5-9, giving the 

power following each analysis method. Only the case where the arm is added halfway 

through recruitment is shown as the results based on different times to amendment 

showed the same pattern. 
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Table 5-10 Type I error results for Hypothesis A with binary outcome measures, 
from 100,000 simulations per scenario 

Scenario Stage Effect POOLED MULTI FISHER Weighted 
INVN 

Time to amendment = 50% 

No difference 
from Stage 1 

None 5.28 5.28 4.99 5.28 

Reasonable 
decrease 

0.889 5.27 5.27 4.97 5.27 

Reasonable 
increase 

1.111 5.18 5.18 4.89 5.18 

Large 
decrease 

0.444 4.05 5.04 4.85 4.97 

Large 
increase 

1.555 4.04 5.00 4.87 4.91 

 

The type I error is slightly inflated above 5%, even in the case with no stage effect. This 

is likely to be due to the discrete nature of the binomial distribution, causing a slight zig 

zag effect in the error rates. 

Table 5-11 Power results for Hypothesis A with binary outcome measures, from 
100,000 simulations per scenario 

Scenario Stage Effect POOLED MULTI FISHER Weighted 
INVN 

Time to amendment = 50% 

No difference 
from Stage 1 

None 80.16 80.16 77.75 80.16 

Reasonable 
decrease 

0.889 80.75 80.75 77.90 80.75 

Reasonable 
increase 

1.111 78.78 78.85 76.86 78.90 

Large 
decrease 

0.444 72.92 76.20 73.38 75.94 

Large 
increase 

1.555 68.05 70.82 67.68 70.07 

 

In the binary case, the power is reduced with all analysis methods if there is a stage 

effect. This is expected because even though the odds ratio is unchanged, the sample 

size needs to be larger the further the estimated proportions are from 0.5. The general 

message is the same as for the survival case in that the power is always lower using 

the FISHER analysis method compared to the weighted INVN method, and that the 

POOLED method performs worse than the MULTI method if there is a large stage 

effect. 
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5.4.4 Assessing the effect of a treatment*stage interaction 

A treatment*stage interaction is possible if the population shifts due to the amendment 

but the outcomes within the treatment arms are affected differently. If this is the case, it 

may not be appropriate to combine data over the stages at all. This is a similar issue to 

that in factorial designs, where if the treatments interact with one another it could have 

a severe impact on the ability to analyse the main effects, or cross-over trials when 

considering a carry-over effect. 

 

Simulations assessed the impact of an extreme case in which there is no difference 

between treatment arms in the first stage but the difference becomes clinically relevant 

in the second stage. The amendment was based on the FLAIR design as above, was 

assumed to be made halfway through recruitment, and the randomisation allocation 

was even between the arms. Firstly, the power to detect an interaction was assessed 

using a multivariable model, described in Section 5.2.2, as follows 

ℎ𝑖(𝑡) = exp{𝛽𝜃𝑥𝜃𝑖 + 𝛽𝑘𝑥𝑘𝑖 + 𝛽𝜃𝑘𝑥𝜃𝑖𝑥𝑘𝑖} ℎ0(𝑡), 

where ℎ𝑖(𝑡) is the hazard function for the ith patient (i = 1,…,n), and ℎ0(𝑡) is the 

baseline hazard function; X is an indicator variable with value x, such that for 

explanatory variable 𝑙, 𝑥𝑙𝑖 = 0 if it is the first level (such as the control treatment) and 

𝑥𝑙𝑖 = 1 if it is the second level (such as the experimental treatment); and exp(𝛽𝑙) is the 

hazard ratio of 𝑥𝑙 = 1 relative to 𝑥𝑙 = 0, adjusted for the other covariates. 𝑙 = 𝜃 

represents the treatment effect, 𝑙 = 𝑘 represents the trial stage, and 𝑙 = 𝜃𝑘 represents 

the treatment*stage interaction.  

 

In this example, based on 100,000 simulations, the power to detect the treatment*stage 

interaction is less than 29%. Therefore a non-significant result cannot be assumed to 

imply that no interaction exists. The strategy implemented in the confirmatory 2NN 

trial16 (Section 2.2.3) when an arm was added was to use a multivariable logistic 

regression model to assess stage and treatment*stage interaction, and then justify a 

pooled analysis based on the lack of significance. With the low power to detect 

treatment*stage interactions, this strategy cannot be recommended.  

 

The role of homogeneity testing in adaptive trials is discussed by Gallo and Chuang-

Stein (2009)96, who feel that formal statistical methods to assess a treatment*stage 

interaction should not be performed, stating “For example, what significance level 

should be used? If we use the familiar 5%, this might be construed as too stringent, 
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since the study was presumably not designed to have high power for detecting 

meaningful levels of interaction. On the other hand, if a higher significance level is 

used, one would run a high risk of obtaining a false-positive signal of interaction. This 

could incorrectly invalidate the trial results, falsely leading to the trial being declared 

inconclusive”. Instead, it should be considered whether the adaptation to the trial is 

clinically likely to introduce a bias, and how this might affect the patient characteristics 

or outcome measures. This can then be assessed as part of the final analysis. 

 

Simulations next assessed the impact of the treatment*stage interaction on the 

probabilities of rejecting the null hypothesis for the treatment effect using the four 

analysis methods. Note that the multivariable model only includes the explanatory 

variables treatment and stage, and not the interaction term. 

Table 5-12 Treatment effect rejection rates based on 100,000 simulations, where 
a treatment*stage interaction exists 

Scenario Stage 1 
median 
survival 

estimates 
(HR=1)  

Stage 2 
median 
survival 

estimates 
(HR=0.75)  

POOLED MULTI FISHER Weighted 
INVN 

No 
difference in 
Stage 1; 
CRD in 
Stage 2 

Trt A: 4.5y 
 

Trt Z: 4.5y 

Trt A: 4.5y 
 

Trt Z: 6.0y 
20.72 20.28 31.10 23.73 

 

It is not obvious how a 20-31% chance of rejection of H0 should be interpreted since 

this is not a meaningful statistic. It illustrates that if there is a large treatment*stage 

interaction, the analysis should not be performed over the trial as a whole using any of 

the methods. Therefore, before an arm is added, it should be considered whether a 

treatment*stage interaction is likely. If it is felt clinically that adding an arm could alter 

the population so that the treatment effect in one group is affected differently from the 

other group, the trial could be compromised by the amendment, and adding an arm is 

not recommended. 

 

5.5 Multiple testing adjustment for multiple hypotheses 

5.5.1 Theory behind the appropriate FWER adjustment 

When an experimental arm is added to an ongoing trial in order to compare it to the 

current control, the trial will by definition include multiple comparisons. We previously 
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discussed (Chapter 4) that the FWER in this situation is not inflated over that in 

independent trials due to comparisons with shared control data, in fact it is reduced, but 

FWER adjustment might be required because the efficiency of sharing a protocol may 

allow more hypotheses to be tested, leading to more opportunities for success. For 

example, if experimental Treatment B is added to a trial just as Treatment A completes 

recruitment there is no shared control data but many advantages of sharing the same 

trial are still present such as: the protocol, approvals and database only require 

amendments, which reduces the set-up time and cost; the trials team exists and 

operating procedures are in place; and the centres are already set-up for recruitment. 

In this case, arguments for multiplicity adjustment around multiple opportunities for 

success within the same protocol, as discussed in Section 4.6 will hold. If Treatment B 

is added prior to Treatment A completing recruitment, the only additional efficiency is 

that fewer patients are required to be randomised to control (Treatment Z) overall, so 

fewer patients are required to address both hypotheses than for independent trials. 

Therefore, since the FWER is not inflated specifically because of the use of shared 

control data, it is proposed that if multiple testing adjustment is deemed necessary, 

adjustment should not only apply in the stages where the experimental therapies 

overlap, but should be considered over the protocol as a whole. 

 

In contrast, the majority of literature regarding multiple testing adjustment for multiple 

hypotheses in adaptive designs includes adjustment within the stages where the 

experimental treatments overlap. For example, when discussing FWER when adding 

arms, Parmar et al.22 sum up the common belief that “the implications for the FWER 

are dependent on the proportion of overlap in control arm patients between the 

research arms. If there was overlap of only one patient in the control groups for two 

different research arms, this would be (almost) like doing two independent trials with 

one common patient. In this instance, there would be no practical change to the type 1 

error for these two comparisons”. They believe that FWER control is not needed when 

they have added arms with little overlap because the correlation between the test 

statistics is low “emphasising the lack of overlap and their relative independence”. 

What they have not acknowledged here is that any overlap has the effect of reducing, 

rather than increasing, the overall FWER for the trial, and therefore this is not the 

appropriate driver for adjustment.  

 

This section reviews and compares multiplicity adjustment methods in adaptive designs 

in order to make recommendations when adding an arm and for multi-arm multi-stage 

designs more generally. 
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5.5.2 Application of the closed test procedure to adaptive designs 

The most common method of adjustment for multiple hypotheses in adaptive designs 

literature is based on the closed testing principle, for example as discussed in key 

publications on adaptive designs such as Bauer and Kieser (1999)97, Bretz et al. (2006 

and 2009)98, 99, Friede et al. (2011)100, Keiser, Bauer and Lechmacher (1999)101, 

Maurer, Branson and Posch (2010)89 and Posch et al. (2005)18. Closed testing 

methods are based on the hierarchical testing theory that if null hypotheses are 

rejected in sequential order there is no inflation to the overall type I error, and were 

introduced in Section 3.3.2.2. It was shown that for each primary comparison, the 

methods first reject the null hypotheses for the intersections containing combinations of 

that comparison before assessing the main effect (see Figure 3-1).  

 

Recall that there are different ways to calculate the intersection hypotheses, with the 

simplest based on the Bonferroni test, in which the overall p-value for testing the 

intersection hypothesis H0(AB) = H0A ∩ H0B is calculated by 𝑝𝐴𝐵 = min(1, 𝑚𝑝𝐴, 𝑚𝑝𝐵), 

where m refers to the number of hypotheses being tested. Other tests are available 

that are marginally less conservative, such as those by Simes or Sidak, but as long as 

the chosen method to calculate the intersections is consistent, the overall conclusions 

are not affected.  

 

In adaptive designs generally, the stagewise intersection hypotheses are first 

calculated and then combined in order to reject the overall intersection null hypothesis. 

That is for each stage k, 𝑝𝑘,𝐴𝐵 = min(1, 𝑚𝑝𝑘,𝐴, 𝑚𝑝𝑘,𝐵), where m is the number of 

hypotheses in that stage. If a stage includes only one hypothesis, say H0A because the 

new hypothesis has not yet been added, 𝑝𝑘,𝐴𝐵 = 𝑝𝑘,𝐴. If the combined stagewise 

intersection p-values suggest rejection of the null hypothesis at level α, the combined 

individual p-values can then be tested at level α, otherwise the individual null 

hypotheses cannot be rejected. This is illustrated in Table 5-13, using a design similar 

to the FLAIR trial, and is labelled the ‘Stagewise’ intersection. 

 

Another way to control for multiplicity in an adaptive design could be to apply standard 

adjustment methods to the p-values that have already been combined over the stages, 

similarly to a non-adaptive trial. If the p-values are first combined for each hypothesis, a 

Bonferroni or closed testing adjustment could be applied to the final single-stage p-
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values. The Bonferroni adjustment simply compares the p-values for each hypothesis, 

𝑝𝐴 and 𝑝𝐵, to 𝛼 𝑚⁄ . The closed testing intersection is illustrated in Table 5-13, and is 

labelled the ‘Overall’ intersection. Note that if a ‘pooled’ analysis method is carried out, 

as described in Section 5.2.2, the Overall method is the only type of adjustment 

possible as intra-stage p-values are not calculated.  

Table 5-13 Illustration of the Stagewise and Overall methods to calculate the 
intersection hypothesis to apply closed testing for multiplicity adjustment 
within a p-value combination analysis 

 
Stage 1 Stage 2 Stage 3 

P-value Combination 
(calculated) 

H0A* p1,A  p2,A  - pA=C(p1,A, p2,A) 

H0B* - p2,B  p3,B  pB=C(p2,B, p3,B) 

Intersection 
H0(AB)  

(calculated) 

p1,AB =  

p1,A  

p2,AB =  

min(1, 2p2,A, 2p2,B) 

p3,AB =  

p3,B 

1. Overall 

 pAB = min(1, 2pA, 2pB) 

2. Stagewise 

 pAB = C(p1,A, p2,AB, p3,B)  

*H0j is rejected at level α if pAB ≤ α and pj ≤ α, j=A,B.  

 

In the ‘Overall’ method of adjustment (1.), pAB is calculated by 

𝑝
𝐴𝐵

= 𝐶(𝑝
1,𝐴

, 𝑝
2,𝐴

)  ∩ 𝐶(𝑝
2,𝐵

, 𝑝
3,𝐵

) = 𝑝
𝐴

∩ 𝑝
𝐵

= 𝑚𝑖𝑛(1, 2𝑝
𝐴

, 2𝑝
𝐵

). 

Note that if a treatment is not present in a stage, the weighting for that stage will equal 

0, so 𝑝
3,𝐴

 and 𝑝
1,𝐵

 are not present in the combination functions. If Fisher’s combined 

probability method is used, the missing p-values are conservatively set to 1 so they 

don’t affect the product term. 

 

In the ‘Stagewise’ method of adjustment (2.), using the weighted inverse normal 

combination function, 

𝑝
𝐴𝐵

= 𝐶(𝑝
1,𝐴𝐵

, 𝑝
2,𝐴𝐵

, 𝑝
3,𝐴𝐵

) = 𝐶(𝑝
1,𝐴

, 𝑝
2,𝐴𝐵

, 𝑝
3,𝐵

) = 

√𝑒1 𝑒1 + 𝑒2 + 𝑒3⁄ ∗ 𝜙−1(1 − 𝑝
1,𝐴

) + √𝑒2 𝑒1 + 𝑒2 + 𝑒3⁄ ∗ 𝜙−1(1 − 𝑝
2,𝐴𝐵

) +

√𝑒3 𝑒1 + 𝑒2 + 𝑒3⁄ ∗ 𝜙−1(1 − 𝑝
3,𝐵

), 

where ek is the number of events expected from patients who were randomised within 

stage k (k=1,2,3), and p2,AB = min(1, 2p2,A, 2p2,B). 

 

Posch et al.18 give an example of applying the Stagewise method, and confirm that in 

the case where there are two stages and both treatments are present in each stage 
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“using the Bonferroni test for the stagewise tests for H12 the corresponding combination 

tests is given by [𝐶(min(1,2𝑝1,1, 2𝑝1,2) , min(1,2𝑝2,1, 2𝑝2,2))] and obviously differs from 

the overall Bonferroni test applied to the pooled data from both stages, even in the 

normal case when using the inverse normal combination function.” However, the 

magnitude of these differences on the error rates are not discussed. The effects of the 

Stagewise and Overall methods for calculating the intersection hypothesis or otherwise 

adjusting for multiplicity are investigated here using simulations.  

 

5.5.3 Comparison of the adjustment methods 

Throughout this chapter so far both the Fisher and the weighted INVN methods for p-

value combination have been compared. As we have shown that the weighted INVN 

method is more powerful, and it is generally accepted as better than Fisher’s, this 

section will only include the weighted INVN combination technique. For comparison 

purposes, the multivariable (MV) method adjusting for stage will also be included as the 

optimal non-adaptive analysis method. 

 

Simulations for both the pooled multivariable analysis adjusting for stage and the 

adaptive weighted INVN analysis are used to compare the error rates in the scenarios 

of: 

 No multiplicity adjustment. 

 Overall Bonferroni adjustment applied to the final p-values. 

 Closed testing adjustment based on the ‘Overall’ method to calculate the  

intersection p-value (pAB = min(1, 2pA, 2pB)). 

 Closed testing adjustment based on the ‘Stagewise’ method to calculate the  

intersection p-value (pAB = C(p1,A, p2,AB, p3,B)), possible for the adaptive method only. 

The simulations are again based on the FLAIR trial design with three stages, as 

illustrated in Section 5.1.2, and each scenario is assessed by simulating 100,000 trials. 

The assumptions are that the new arm is added halfway through recruitment at a 1:1:1 

ratio, recruitment remains at a constant pace, there is no stage effect, there is no 

heterogeneity of treatment effect over the stages (treatment*stage interaction), and 

Treatment A is dropped once its recruitment target has been met (this is not based on 

looking at interim data). It is necessary to assume that each hypothesis is analysed 

when the required number of events are reached, in order not to inflate the power. 

Therefore H0A will be ready to be analysed before H0B. However to apply the closed 

testing method they need to be assessed at the same time, which could be a major 

limitation in some adaptive designs.  
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Due to the nature of closed testing methods, the significance of one hypothesis will 

affect the error rates for the other. The following scenarios are included in the 

simulations: 

1. No difference between any of the treatment effects: 𝜃𝐴 = 𝜃𝐵 = 0.  

2. Treatment A is not different to control but treatment B is: 𝜃𝐵 ≠ 𝜃𝐴 = 0. 

3. Treatment B is not different to control but treatment A is: 𝜃𝐴 ≠ 𝜃𝐵 = 0. 

4. Both experimental treatments are different to control: 𝜃𝐴 and 𝜃𝐵 ≠ 0. 

In each case, if there is no experimental treatment effect, the survival estimate for the 

experimental arm is set to equal that for the control, and if there is an experimental 

treatment effect, the survival estimate is set to the clinically relevant improvement.  

 

The weights for the INVN combination method are determined based on the number of 

events expected for each treatment in each stage. The median follow-up is 87 and 57 

months for the first and second stages respectively for each arm, so the number of 

events from patients in the first of the stages for each hypothesis can be calculated to 

be 216, compared to 163 from the second, assuming they follow an exponential 

distribution. In Stage 2, some of the control group patients overlap for both hypotheses, 

leading to 93 of the events contributing to both hypotheses within that stage. Therefore 

the total events occurring from all patients within each stage are 216, 286 and 163 

respectively. Table 5-14 gives the results from the simulations comparing the 

adjustment methods under various assumptions. 
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Table 5-14 Results of 100,000 simulations to assess the probabilities of rejection 
with the multivariate and inverse normal combination analysis methods, 
comparing different multiplicity adjustment techniques 

 

Percent H0 rejected 

𝜽𝑨 = 𝜽𝑩 = 𝟎 𝜽𝑩 ≠ 𝜽𝑨 = 𝟎 𝜽𝑨 ≠ 𝜽𝑩 = 𝟎 𝜽𝑨 𝐚𝐧𝐝 𝜽𝑩 ≠ 𝟎 

MV INVN MV INVN MV INVN MV INVN 

No multiplicity adjustment 

Reject H0A 5.09 5.03 4.97 4.91 80.50 80.42 80.34 80.27 

Reject H0B  5.09 5.06 80.59 80.52 5.05 5.00 80.37 80.29 

Reject at least one H0 9.74 9.67 81.69 81.59 81.64 81.56 94.38 94.32 

Overall Bonferroni adjustment 

Reject H0A 2.56 2.54 2.48 2.44 71.81 71.68 71.48 71.36 

Reject H0B  2.59 2.56 71.90 71.79 2.50 2.49 71.74 71.64 

Reject at least one H0 5.02 4.97 72.64 72.52 72.57 72.44 89.52 89.41 

Overall closed testing adjustment 

Reject H0A 2.66 2.63 4.21 3.51 71.99 71.73 77.45 77.33 

Reject H0B  2.70 2.65 72.09 71.85 4.27 3.56 77.60 77.49 

Reject at least one H0 5.02 4.97 72.64 72.52 72.57 72.44 89.52 89.41 

Stagewise closed testing adjustment 

Reject H0A  1.96  2.49  57.31  79.10 

Reject H0B   1.81  54.08  2.47  79.27 

Reject at least one H0  3.39  54.34  57.51  92.14 

MV=multivariable analysis method 

INVN=weighted inverse normal combination analysis method 

 

As expected, the multivariable and weighted inverse normal combination analysis 

methods give similar results. With no adjustment the approximate two-sided type I 

errors for individual hypotheses are 5%, the FWER is 9.75%, and the power for each 

individual hypothesis is 80%. The ‘disjunctive power’ to reject at least one of the null 

hypotheses if both contribute to the same claim of effectiveness approximately 81% in 

the case where only one of the treatments is truly superior, to 94% when both 

treatments are superior. With the Overall adjustment methods, the FWER is strongly 

controlled at the 5% level, with the power for individual hypotheses reduced to 

approximately 72%, or 77.5% if both experimental treatments differ from control in the 
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closed testing case, and the ‘disjunctive power’ is 72% in the case where only one of 

the treatments is truly superior, and 90% when both treatments are superior. Note that 

the Bonferroni and Overall closed testing adjustment methods give the same 

probabilities of rejecting at least one hull hypothesis, as expected as illustrated by 

Figure 4-4 and Figure 4-5 and described in Section 4.4.1.2, because both methods 

reject the most significant null hypothesis if the p-value is less than 𝛼/𝑚. The 

difference between the methods relates to how the least significant null hypothesis is 

assessed given that the most significant (and therefore ‘at least one’) has been 

rejected. 

 

The results based on the Stagewise method of adjustment are surprising. The FWER is 

controlled at the 5% level, in fact it is less than 3.5%; and if both experimental 

treatments are different from control the power for each hypothesis is 79%, so hardly 

reduced from that with no adjustment. However, if one experimental treatment is 

different and the other is not, the power to reject the single null hypothesis suffers a 

large penalty. This can be explained using the worked example in Table 5-15, in which 

with no adjustment experimental treatment A is no different to control, but experimental 

treatment B is significantly different. With an Overall adjustment method, H0B can be 

easily rejected. However, using the Stagewise method, the impact of having to include 

the stage 1 results based on treatment A alone in the calculation for the intersection is 

large, causing the intersection null hypothesis to fail to be rejected. Posch et al.18 

acknowledge this when discussing adding new treatments: “Note that if p1 is large, this 

is a serious penalty for the rejection of the new null hypothesis. This is the price to be 

paid for the great flexibility provided by the adaptive design”. This phenomenon is 

exaggerated when adding an arm or with multi-arm multi-stage designs in particular 

over other types of adaptation. If an arm is dropped based on interim data, the second 

stage would only include the better arm from the first stage, therefore the poor 

performance of the dropped arm would not contribute to the intersection p-value for 

either stage. Similarly if the adaptation did not involve adding or dropping arms, the 

poorer arm would not influence any of the intersection p-values. However in designs 

where arms are added, or where arms are stopped because they have completed 

recruitment rather than based on performance, the Stagewise adjustment method 

could lead to a very large disadvantage in the case that the experimental treatments 

perform differently. For example in a dose trial, if less active smaller doses are 

assessed first and more active larger doses are added later, the power to declare 

significance for a larger active dose is heavily penalised.  
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Table 5-15 Worked example of the Stagewise and Overall closed testing 
adjustments within a p-value combination analysis when Hypothesis A is 
not significant but Hypothesis B is significant 

 Stage 1 Stage 2 Stage 3 
P-value 

Combination 
(calculated) 

Number of events 
(for weighting the 
INVN 
combination) 

e1,A = 216 e2,A = 163 

e2,B = 216 

e2,AB = 286 

e3,B = 163 

  

H0A p1,A = 0.823 p2,A = 0.705 - pA = 0.854 

H0B - p2,B = 0.112 p3,B = 0.021 pB = 0.012 

Intersection H0(AB)  

(calculated) 

p1,AB = 0.823 

 

p2,AB = 0.224 

 

p3,AB = 0.021 

 

1. Overall 

 pAB = 0.024 

2. Stagewise 

 pAB = 0.165 

 

The example in Table 5-16 illustrates why the power based on the Stagewise 

adjustment method is not much lower than that when there is no adjustment where 

𝜃𝐴 and 𝜃𝐵 ≠ 0. In this example both of the individual combined p-values are greater 

than 0.04, so the null hypotheses would not be rejected after adjustment by the Overall 

Bonferroni or closed testing methods. However, the Stagewise intersection p-value is 

only 0.032 so the null intersection hypothesis can be rejected, allowing the individual p-

values to be compared to 0.05. Only Stage 2 has taken a penalty for having multiple 

arms, so the effects of the adjustment are diluted. 

Table 5-16 Worked example of the Stagewise and Overall closed testing 
adjustments within a p-value combination analysis when both hypotheses 
are significant with no adjustment  

 Stage 1 Stage 2 Stage 3 
P-value 

Combination 
(calculated) 

Number of events 
(for weighting the 
INVN 
combination) 

e1,A = 216 e2,A = 163 

e2,B = 216 

e2,AB = 286 

e3,B = 163 

  

H0A p1,A = 0.124 p2,A = 0.093 - pA = 0.041 

H0B - p2,B = 0.132 p3,B = 0.107 pB = 0.049 

Intersection H0(AB)  

(calculated) 

p1,AB = 0.124 

 

p2,AB = 0.186 

 

p3,AB = 0.107 

 

1. Overall 

    pAB = 0.082 

2. Stagewise 

    pAB = 0.032 

 

The results from Table 5-14 have been validated by being reproduced using the 

example from Section 5.4.3.1 based on normally distributed outcome data. Table 5-17 
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shows the simulated results based on the example with normally distributed outcome 

data, and it can be seen that the error rates are very similar to those with survival 

outcome data above.  

Table 5-17 Results of 100,000 simulations based on normally distributed 
outcome data to assess the probabilities of rejection with the multivariate 
and inverse normal combination analysis methods, comparing different 
multiplicity adjustment techniques  

 

Percent H0 rejected 

𝜽𝑨 = 𝜽𝑩 = 𝟎 𝜽𝑩 ≠ 𝜽𝑨 = 𝟎 𝜽𝑨 ≠ 𝜽𝑩 = 𝟎 𝜽𝑨 𝐚𝐧𝐝 𝜽𝑩 ≠ 𝟎 

MV INVN MV INVN MV INVN MV INVN 

No multiplicity adjustment 

Reject H0A 5.10 5.09 4.93 4.95 80.15 79.95 80.19 80.05 

Reject H0B  4.99 5.00 80.17 79.95 4.98 4.97 79.98 79.84 

Reject at least one H0 9.65 9.68 81.34 81.14 81.31 81.10 93.99 93.92 

Overall Bonferroni adjustment 

Reject H0A 2.56 2.54 2.47 2.47 71.32 71.13 71.21 71.11 

Reject H0B  2.54 2.54 71.27 71.05 2.47 2.50 70.96 70.84 

Reject at least one H0 4.97 4.96 72.10 71.89 72.12 71.94 88.58 88.54 

Overall closed testing adjustment 

Reject H0A 2.66 2.64 4.18 3.54 71.54 71.18 77.05 76.96 

Reject H0B  2.65 2.65 71.47 71.12 4.21 3.58 76.78 76.64 

Reject at least one H0 4.97 4.96 72.10 71.89 72.12 71.94 88.58 88.54 

Stagewise closed testing adjustment 

Reject H0A  1.94  2.48  54.98  78.85 

Reject H0B   1.90  54.90  2.47  78.58 

Reject at least one H0  3.44  55.10  55.16  91.46 

MV=multivariable analysis method 

INVN=weighted inverse normal combination analysis method 

 

Similarly to Table 5-14, the power for individual hypotheses has suffered from a large 

loss of power using the Stagewise adjustment method in the case that one treatment is 

significantly superior and the other is not. This is of the same magnitude as the 

example based on survival endpoint data. 
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5.5.4 Discussion on multiplicity adjustment when adapting a trial by 

adding new treatment arms 

If multiplicity adjustment is required in an adaptive trial in which different stages include 

different arms, adjustment should be across the trial as a whole and not just the stages 

in which the treatments overlap. This is because the FWER is not inflated due to the 

treatments recruiting concurrently, but only due to the ability to test multiple hypotheses 

leading to an increased probability of multiple false positive outcomes across the 

protocol. This contradicts the majority of methodological literature on adaptive designs, 

which advocates adjustment within stage. Bretz et al.98 compared the power of 

Stagewise and Overall (single-stage) adjustment methods in the cases where an arm 

was and was not dropped at interim, using an adaptive Dunnett adjustment rather than 

closed testing. They concluded that the Stagewise strategy is actually slightly less 

powerful than the Overall strategy when both treatments are present in both stages. In 

the case of selecting one treatment at interim, however, they further note that “the 

single-stage tests pay too high a price for multiplicity and thus perform inferior to the 

adaptive combination tests”. This is expected because adjustment is only in one of the 

stages, so the total level of adjustment will be less, and the selected treatment will be 

present in all stages to contribute to the final combined p-value. However, whilst 

Stagewise adjustment is more powerful, that does not necessarily mean it is 

appropriate, and for each trial design the type of adjustment needs to be fully 

considered with respect to what it is aiming to control. A full comparison of Stagewise 

and Overall adjustment in adaptive designs more generally would be an interesting 

area for further work. 

 

Where trials are amended by adding arms, or dropping arms for a reason other than 

their performance, Stagewise methods lead to very low power in the case where the 

experimental treatments perform differently from one another. This is because the 

combination p-value for the intersection includes results from stages that do not contain 

the experimental treatment of interest. The smaller the overlap for the concurrent 

recruitment, the greater the impact of the other stages and the larger the potential 

penalty. In these types of design, Stagewise adjustment seems to be clearly 

inappropriate and is not recommended.  

 

When trials are adapted by adding and dropping arms in different stages, such as in 

the FLAIR trial (illustrated in Figure 5-1), it might be the case that the hypotheses reach 



- 137 - 

their final analysis triggers at different times. This differs from the majority of adaptive 

designs, where the primary analyses are at the end of the trial regardless of the 

adaptations made along the way. It isn’t adequate to only adjust for multiplicity based 

on the information up to the time when the analysis takes place, the adjustment should 

be over all hypotheses that contribute to the same claim of effectiveness across the 

trial as a whole. In order to apply most adjustment methods, such as closed testing 

methods, it is required that the final analyses for all hypotheses take place at the same 

time. This would make adding arms much less attractive and likely unethical if it delays 

the final analysis for the earlier hypotheses. However, for the crude Overall Bonferroni 

or Sidak adjustment methods, the only requirement is that the number of hypotheses is 

known. Therefore, although the methods are slightly more conservative, a Bonferroni or 

Sidak adjustment is likely to be the best option in multi-arm multi-stage type trials 

where multiplicity adjustment is deemed necessary. 

 

5.6 Discussion and Summary 

5.6.1 Discussion 

Methods of analysis after the addition of a new treatment arm to an ongoing trial have 

been considered in this chapter. Adaptive p-value combination methods to analyse 

trials of this type were considered for three reasons. Firstly, key methodological 

literature which discusses the addition of a new treatment arm to an ongoing trial 

describes the analysis based on this methodology (Section 5.1.5). Secondly, this type 

of amendment could cause a stage effect due to a shift in the population, and it isn’t 

clear how best to conduct the analysis to account for this. Finally, where multiplicity 

adjustment is necessary in multi-stage designs, closed testing methods are often 

applied alongside p-value combination methods in order to adjust within stage, and this 

is assumed to be advantageous over adjusting the final, overall p-values where the 

stages include different hypotheses98.  

 

In flexible designs literature generally, adaptive analysis methods are required, such as 

p-value combination over the stages, to satisfy the Conditional Invariance Principle 

(Section 5.1.3). Adapting a trial to add a new hypothesis, however, is very different to 

adapting an existing hypothesis based on interim data, and in this case it has not been 

considered whether adaptive analysis methods are necessary. It is assumed that the 

existing hypothesis (H0A) is not being amended at all, only the protocol and 

randomisation are affected. In a simple case, the amendment to add the new arm 
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might be informed entirely by data external to the trial and with no internal analysis 

having taken place. The Conditional Invariance Principle is therefore not relevant 

because the test statistics in the second stage for either hypotheses have not been 

informed by data from the first stage, and therefore it seems appropriate to conduct a 

pooled final analysis. If there is an interim analysis for H0A this could affect the decision 

to add H0B or its design characteristics, for example if outcomes for a low dose suggest 

that investigation of a higher dose would be beneficial, or if the interim treatment effect 

informs the new power calculation. However, this does not affect any design aspects of 

H0A itself in Stage 2. Therefore, for H0A, the second stage test statistics remain 

independent of the first-stage data. The second stage test statistics for H0B could have 

been informed by the interim data for H0A, but these data do not contribute to the H0B 

analysis since only concurrent controls are used. Therefore, it seems reasonable that 

adaptive analysis methods are not required for H0A due to amending the protocol to add 

a new treatment arm. Similarly, if Treatment A is stopped at the end of Stage 2 

because it has completed its planned recruitment, adaptive analysis methods are 

unlikely to be necessary for H0B over Stages 2 and 3. Adaptive analysis methods would 

be required if some amendments to the design of the existing hypothesis based on 

interim data were also made during the protocol amendment to add Treatment B, or if 

the randomisation allocation between Treatments Z and A was changed alongside the 

amendment53.  

 

Simulations showed that where there is a stage effect, a multivariable analysis 

adjusting for trial stage performs as well as the adaptive weighted inverse normal p-

value combination method. The multivariable analysis has the advantage that statistics 

other than the p-value, such as the effect size and confidence intervals, are more 

readily available. In addition, the stage effect is also assessed within the model, which 

can help interpretation of results. Whilst p-value combination methods are necessary to 

avoid bias in the case when the adaptation was informed by interim data, they only 

output a p-value and it is difficult to clinically interpret the results by assessing the 

treatment effect estimate and confidence interval. Therefore where it is appropriate to 

use a multivariable analysis, this is likely to be the preferred method. 

 

In all simulations, simply pooling the data without adjusting for trial stage performs 

somewhat worse than the adjusted multivariable analysis if there is a large stage effect. 

In the case of normally distributed outcome data, pooling the data without adjustment 

performs much worse, even with only a reasonable stage effect. It is therefore 
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recommended that where a pooled analysis method is used, a stage covariate is 

incorporated in a multivariable model. 

  

In trials in which arms are added and multiplicity adjustment is deemed necessary, it is 

not appropriate to use a ‘Stagewise’ adjustment method which adjusts the within stage 

p-values before combining across the stages. This is because, firstly, the FWER is not 

inflated within stages due to the shared control data, but is inflated over the trial as a 

whole due to the ability to test multiple hypotheses, so adjustment should be across the 

whole protocol. Secondly, ‘Stagewise’ adjustment methods do not perform as expected 

in trials in which arms are added, or dropped for a reason other than futility, therefore 

leaving some stages with only the poorer performing experimental treatment. An 

‘Overall’ adjustment method is therefore recommended to be applied to the final p-

values for each hypothesis.  

 

In summary, since adaptive analysis methods are not required for the original 

hypothesis due to amending the protocol by adding a new treatment arm, p-value 

combination methods do not perform better than an overall multivariable analysis 

adjusting for Stage if there is a stage effect, and because multiplicity adjustment is 

recommended over the protocol as a whole rather than within Stage, there is no benefit 

to using p-value combination methods in this case. It is appropriate to conduct a pooled 

final analysis, and a multivariable analysis adjusting for trial stage before and after the 

arm is added is recommended. This recommendation also holds for H0B in the case 

where Treatment A completes recruitment, therefore creating Stages 2 and 3.  

 

If there is an interim analysis for H0A that informs the decision to add the new arm, 

whether it is planned or unplanned, there might be perceived investigator bias in the 

situation of trying to ‘save’ a failing trial. This will have the effect of inflating the FWER 

across the protocol, in which case multiplicity adjustment could be necessary due to 

multiple chances of success. However, if the trial design for the original hypothesis H0A 

is not amended in any way, it is difficult to understand why adaptive analysis methods 

for this hypothesis would be necessary or beneficial. This is in contrast to Wassmer’s 

recommendations (Section 5.1.3) that p-value combination methods are likely to be 

required if the decision to add the current treatment was made based on information 

from the current trial. This point is perhaps a conceptual one, rather than necessarily 

statistical in terms of being able to calculate the effect of this knowledge on the error 
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rates, and would benefit from discussion with experts in the field and regulators to 

obtain a consensus of opinion. 

  

In a long trial, or a trial with many hypotheses, in which arms are dropped and added 

on a rolling basis, multiplicity adjustment over the whole protocol could be a limitation 

that causes the design to be unfeasible. If different therapies are being assessed or the 

hypotheses contribute to different claims of effectiveness, it may be justifiable that 

adjustment is not required. However if, for example, a number of doses of the same 

treatment are added and dropped throughout the trial and adjustment is necessary, 

researchers would need to carefully consider the effect of adjustment on the power for 

the existing and new hypotheses, as well as the overall power to make a claim of 

effectiveness, when considering the feasibility of the amendment.  

 

The recommendations here for applying multiplicity adjustment over the whole trial, 

rather than within stage, are limited to designs that are adapted by adding and stopping 

arms on a rolling basis. They cannot readily be extrapolated to other types of adaptive 

design; the Overall and Stagewise methods would need to be considered and 

compared to assess the FWER and power in these cases. The phenomenon in rolling 

designs in which Stagewise methods lead to low power in the case of one experimental 

treatment being effective and the other not is not seen in most other types of adaptive 

design, because there is no possibility for a stage to include only the poorer performing 

therapy, for example if a treatment is dropped for futility or selected for efficacy. The 

only other example of this phenomenon is if an arm is stopped at an interim analysis for 

efficacy, but other therapies continue, in which case an Overall adjustment method is 

also recommended. In designs where an adaptation is made at an interim analysis but 

all stages include all treatments, both methods do adjust over the whole protocol, and 

both strongly control the FWER although they work differently, so further consideration 

is needed.  

 

If there is a planned interim analysis for either hypothesis, the consequences of this 

with relation to adding an arm need to be considered. Should the interim analysis for 

the original hypothesis be planned after the amendment, part of the design stage for 

the amendment should include consideration of whether any information arising from 

the interim is likely to affect the continuation of the new hypothesis. For example if 

there was a large efficacy benefit for the original experimental arm this could change 

practice, therefore altering the control therapy for the new hypothesis, and it should be 
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considered how this would be handled or whether any provisions need to be put in 

place to plan for this possibility. The inclusion of interim analyses introduce additional 

complexity when adding an arm, and the timing along with the intention of any analyses 

and their potential effect on the other hypotheses need to be considered on a trial by 

trial basis. 

 

The recommendations in this section are primarily based on an example with time to 

event outcome data, but it has also been shown that there is no difference in 

recommendations for the general analysis methods assessed regardless of the 

outcome type. Multivariable analyses can adjust for stage using regression or logistic 

regression models as appropriate for continuous or binary outcomes; and p-value 

combination methods are unaffected by how the p-values are calculated, so the results 

here easily extrapolate. Time to event outcomes are the most complex of these 

because the weightings in the weighted combination methods need to be based on 

estimated numbers of events rather than actual numbers of patients.  

 

If there is a possibility of a treatment*stage interaction due to adding an arm, the final 

results could be uninterpretable. If it is considered possible that the change to the 

design could affect the outcomes differently within each trial arm, adding an arm is not 

advised. Note that this is also the case when an arm is dropped, as both situations 

could cause treatment*stage interactions. There is likely to be very low power to 

assess this statistically, so strong clinical justification of no interaction is needed at the 

design stage for the amendment.  

 

In the survival case, if the assumption of an exponential survival pattern does not hold, 

adaptive analysis methods may not be appropriate. This is the case for all types of 

adaptive designs, and should be considered when deciding whether it is appropriate to 

adapt a trial. For example, in breast cancer ER+ and ER- patients have different 

relapse profiles, and so later stages with shorter follow-up would be weighted towards 

ER- patients, potentially biasing the combined results similarly to if there is a 

treatment*stage interaction. This would need further investigation on a trial by trial 

basis, with consideration of a biomarker stratified design.  
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5.6.2 Summary  

Figure 5-3 below summarises the overall findings from this chapter. 

Figure 5-3 Summary diagram of the methods of analysis and multiplicity 
requirements when a new treatment arm is added to an ongoing trial  

 

 

Adding an arm to an ongoing trial does not always need to make the analysis of the 

trial complicated, and it could be extremely advantageous, with few statistical penalties. 

In particular, if the only change to the trial is that the arm is added to the protocol and 

randomisation, without adapting the design for the existing hypotheses, there is 

minimal impact on the analysis. If the new treatment arm is added at an interim 

analysis in which the design for the existing hypotheses is also adapted, p-value 

combination methods are required to satisfy the Conditional Invariance Principle for the 

existing hypotheses. In this case, if multiplicity adjustment is necessary, it should be 

performed on the final p-values calculated across the trial as a whole, rather than within 

the stages prior to their combination. The trial results could be compromised if there is 

an interaction between the treatment effects for different therapies over the trial stages, 

so care must be taken that this assumption is addressed and justified. In general, 

adding a new hypothesis to an ongoing trial could be relatively straightforward and 

widely applicable in practice to greatly improve the efficiency of clinical trials. The next 

chapter describes details of the FLAIR trial that has been amended to add a new 
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experimental therapy, including the advantages and efficiencies, statistical 

considerations and steps to prevent bias, and trial management considerations.  
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Adding a new experimental research arm to an ongoing 

trial in practice: The FLAIR amendment in Chronic 

Lymphocytic Leukaemia 

6.1 Background 

6.1.1 Aims  

FLAIR (Front-Line therapy in CLL: Assessment of Ibrutinib-containing Regimes) is a 

randomised, controlled phase III trial in patients with previously untreated Chronic 

Lymphocytic Leukaemia (CLL) sponsored and managed by the University of Leeds. 

The primary aim of the trial when it was originally designed was to assess current 

standard therapy with fludarabine, cyclophosphamide and rituximab (FCR) against 

ibrutinib with rituximab (IR) in terms of progression-free survival (PFS). At the outset of 

the trial, 754 patients were planned to be randomised in 4 years, with primary 

outcomes being available after a further 4 years of follow-up. The protocol describing 

the trial as originally designed has been published, for reference102. The trial opened to 

recruitment in September 2014, with 70 UK centres planned, and has recruited 

consistently ahead of target. During recruitment, early evidence emerged of another 

very promising treatment combination in this population, ibrutinib with venetoclax (I+V). 

In order to be able to assess I+V in a phase III trial in the same population in the United 

Kingdom in a timely manner, it was added into the existing FLAIR trial framework after 

2 years 10 months of the planned recruitment period.  

 

The aim of this chapter is to summarise the methodological and practical issues 

involved in successfully amending the FLAIR trial to include this promising 

experimental therapy so that its assessment could be expedited into a phase III setting. 

A summary is given of how the strategy used can improve the efficiency and relevance 

of phase III trials, reducing the time taken to answer new and important clinical 

questions without compromising the original design and with statistical validity. In this 

way, this type of amendment is not only acceptable to, but actively benefits patients, 

researchers, funders, regulators and the wider research community. 
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6.1.2 Introduction to Chronic Lymphocytic Leukaemia and its 

treatment at the time of designing FLAIR 

Section 6.1.2 is amended from the FLAIR protocol102, and was primarily written by the 

Chief Investigator, Professor Peter Hillmen. CLL is the most common adult leukaemia, 

affecting 6.6 per 100,000 population103. The incidence of CLL increases with age and 

almost twice as many men are affected as women. CLL results from the clonal 

proliferation of B-cells and is diagnosed by the pattern of expression of various cell 

surface antigens on the CLL cells. Patients most commonly present with lymphocytosis, 

lymphadenopathy, splenomegaly and systemic symptoms, such as fatigue, weight loss 

and malaise. The clinical course of CLL is highly variable with a median survival from 

diagnosis in the region of 7 years. 

 

Combination chemotherapy with fludarabine, cyclophosphamide and rituximab (FCR) is 

the standard therapy in patients who are fit and young enough to tolerate it, although 

even in those patients only 75% tolerate a full 6 cycles. However FCR is associated with 

significant short and long term toxicity, such as myelodysplasia (MDS) and acute myeloid 

leukaemia (AML), with virtually all patients relapsing and eventually becoming refractory 

to therapy before dying either as a complication of the disease or its therapy, usually due 

to infection. Hence more effective, targeted therapies that improve remission rates and 

reduce relapses with fewer side effects are required.  

 

CLL cell proliferation is dependent on stimulation through the B-cell receptor (BCR) and 

since this pathway is specific for B-cells, including CLL cells, then this is a target in CLL. 

At the time of designing FLAIR there were several treatments targeting molecules on the 

BCR pathway including Syk, PI3K delta and Bruton’s Tyrosine Kinase (Btk), and all 

demonstrated activity. Of these agents it appeared that ibrutinib was the most potent 

agent with relatively minor side effects in early Phase II trials. In addition, ibrutinib is not 

genotoxic and therefore would not be expected to lead to the late effects, such as MDS 

and AML, which are seen with FCR. One of the features of ibrutinib and other BCR 

pathway antagonists is that they have a characteristic pattern of response with an 

immediate improvement in symptoms and bulky lymphadenopathy but with a transient 

increase in circulating CLL cells which can take many months to resolve. The addition of 

rituximab to ibrutinib was hypothesised to prevent, or at least attenuate, this 

lymphocytosis so the combination of ibrutinib and rituximab (IR) was selected as the 

experimental therapy to be compared to FCR. 
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6.1.3 The original FLAIR trial design 

The original design of FLAIR was a phase III, multicentre, randomised, controlled, 

open, parallel group trial comparing IR against the current standard FCR in patients 

with previously untreated CLL. Eligible patients have previously untreated CLL 

requiring therapy, with no more than 20% 17p deletion. A total of 754 participants were 

to be randomised on a 1:1 basis to receive therapy with FCR or IR. Participants 

randomised to FCR receive a maximum of 6 cycles with each cycle being repeated 

every 28 days. Participants randomised to receive IR receive 6 cycles of rituximab with 

each cycle being repeated every 28 days. Ibrutinib is taken daily for 6 years, until 

minimal residual disease (MRD) negativity stopping rules (Section 6.1.4) are reached 

or until disease progression.  

 

The trial aims were to provide evidence for the future first-line treatment of CLL patients 

by assessing whether IR is superior to FCR in terms of PFS and whether IR toxicity 

rates are favourable. Other key endpoints to be assessed included: overall survival; 

attainment of undetectable MRD; response to therapy; health related quality of life and 

cost-effectiveness; as well as an evaluation of discontinuation and re-continuation of 

ibrutinib therapy if indicated based on levels of residual disease. Randomisation used 

minimisation with a random element to ensure treatment arms were well-balanced for 

the following participant characteristics: Binet stage (A progressive or B, C), age group 

(≤65 years, >65 years), gender (male, female) and centre (all participating centres). 

Figure 6-1 illustrates the original participant pathway. 
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Figure 6-1 Participant pathway into FLAIR prior to the amendment 

 

The experimental arm is shown in green, and the control arm in purple.  

The primary objective is to assess IR vs FCR in terms of PFS. 

 

The sample size was based on testing the null hypothesis of no difference in PFS 

between the treatment arms. Based on results from the German CLL8 trial104, the 

median survival in the FCR arm was assumed to be 4.5 years. To test a superiority 

hazard ratio of 0.75, which equates to an increase in median PFS to 6 years in the IR 

arm, with an overall two-sided 5% significance level and 80% power, assuming 4 years 

recruitment and 4 years follow-up, allowing for 5% drop-out, and inflating for a planned 

interim analysis, 754 participants were required to observe 379 events. A formal interim 

analysis on PFS was planned when half the numbers of events (191 progressions 

and/or deaths) were observed, in order to allow large differences between the 

treatment arms to be reported early to the Data Monitoring and Ethics Committee 

(DMEC). The O’Brien and Fleming alpha-spending function was used to account for 

testing at multiple time-points to conserve the overall type I error.  
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6.1.4 Minimal Residual Disease (MRD) negativity 

MRD negativity is defined as the presence of <0.01% CLL cells in the peripheral blood 

or bone marrow. The detection of MRD above this level after therapy is an independent 

predictor of outcome105, where detectable disease is prognostic of progression. It is 

hypothesised that once a patient’s disease falls below a certain level it may reach a 

point at which the CLL cells cannot grow back to being detectable or progressing to a 

level which requires therapy. In these patients, continuing treatment may be 

unnecessary. The FLAIR trial therefore includes an MRD negativity stopping rule, in 

which participants receiving ibrutinib who become MRD negative stop therapy after a 

certain period of time, determined by the time it took to reach MRD negativity. If 

participants stop treatment due to MRD negativity and then relapse at the MRD level 

before the end of the trial treatment period, ibrutinib treatment is restarted to assess 

whether MRD eradication is re-achieved and to protect the primary endpoint of PFS. 

This is not considered a progression event. 

 

6.1.5 Funding and approvals 

FLAIR is partially funded by Cancer Research UK following review and approval by 

their Clinical Trials Advisory and Award Committee (CTAAC) in November 2012. 

Janssen Pharmaceuticals provide ibrutinib free of charge for use in the trial and provide 

funding via an educational grant. The trial received ethical approval from the NRES 

Committee Yorkshire and The Humber and regulatory approval from the Medicines and 

Healthcare Products Regulatory Authority (MHRA) in June 2014. The trial was 

registered on the ISRCTN registry (ISRCTN01844152) ahead of the first participant 

being recruited. An independent DMEC and Trial Steering Committee (TSC) were 

established during trial set-up and approved the original protocol and trial design. The 

DMEC and TSC both meet at least annually and the DMEC review safety reports on a 

3-monthly basis. 

  

6.1.6 Accrual 

As with all clinical trials, recruitment is monitored closely by the Trial Management 

Group (TMG). The TMG decided that it would only be appropriate to add arms during 

recruitment if the trial recruited at least as well as anticipated and the addition of arms 

would not significantly delay the reporting timelines of the original design. By the end of 

2015 it was clear that recruitment was going to continue at a rate that was 15-20% 
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ahead of target and the TMG agreed that this was sufficient for an amendment to add 

new arms. 

 

6.2 Incorporating emerging evidence into FLAIR 

6.2.1 Designing the original FLAIR trial to enable amendments 

Due to treatment advances, PFS times are increasing, and whilst clearly beneficial to 

patients, this presents challenges for research in ensuring that trials are feasible and 

the outcomes remain relevant in the face of a long term endpoint. In addition, the drug 

development environment in CLL is rapidly changing. At the time of designing the 

original FLAIR trial, there was a series of phase II trials planned as part of the 

Bloodwise Trials Acceleration Programme (TAP)106 run through the University of 

Birmingham assessing new treatment combinations with targeted therapies, some of 

which included ibrutinib. The new combinations were hypothesised to give deeper 

responses than IR, but there was very little evidence of activity or safety in patients with 

CLL. Our options at the time were to either: wait for the phase II outcomes in case they 

were positive, delaying the phase III assessment of IR; start the trial as planned, which 

would saturate the UK population for the coming years and deny the investigation of a 

new promising combination in a phase III trial; or start the trial but plan to be able to 

amend it to include new treatment arms if appropriate once early phase data were 

available. It was clear that in order to speed up the investigation of promising new 

therapies and improve the efficiency of the phase III trials process in CLL to mirror that 

in phase II, the latter option was necessary. For this reason, the FLAIR trial had a 

simple design so it could be more easily amended. 

 

This thesis confirms that new treatment arms have rarely been added to ongoing 

confirmatory trials in practice, although phase III trials are the longest and most 

expensive part of the drug development process and doing so would greatly improve 

efficiency. The work here identifying the methodological considerations and 

subsequent recommendations has been applied to the FLAIR trial in order to 

incorporate a new experimental research arm during recruitment. The methodological 

and practical issues are presented, describing how they were addressed to ensure the 

FLAIR amendment was a success. 
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6.2.2 The emerging combination: Ibrutinib + Venetoclax 

By the end of 2015, early stage data showed impressive response rates for venetoclax 

(V) (ABT-199) in combination with rituximab (V+R) in patients with relapsed/refractory 

CLL, and eradication of detectable MRD in 53% of patients, which had not previously 

been seen with any other targeted treatments107. Based on pre-clinical data it was 

anticipated that the combination of V plus ibrutinib (I+V) would be highly synergistic 

given the complimentary modes of action of the two agents, as the ibrutinib arrests CLL 

cell proliferation and venetoclax is pro-apoptotic leading to early cell death108, 109. As 

FLAIR incorporates MRD negativity stopping rules designed to reduce long-term 

toxicities and treatment costs it was important to identify a treatment combination with 

the greatest chance of inducing MRD negativity. It was hypothesised that the addition 

of venetoclax to ibrutinib would reduce MRD levels faster and more effectively than 

those expected with I alone or IR, and therefore allow the duration of therapy based on 

level of disease to be reduced, leading to a reduction in long-term resistance and 

toxicities and an overall cost saving. I+V was therefore chosen to be assessed in the 

phase II TAP trial ‘CLARITY’ (ISRCTN: 13751862) designed to assess I+V in 50 

patients with relapsed CLL in a non-randomised setting.   

 

Preliminary results from CLARITY were expected to be available during the first half of 

2017, by which time FLAIR would have recruited approximately two-thirds of the 

planned sample size. The TMG agreed that these timelines were feasible to allow I+V 

to be added to FLAIR as a new arm but only if work began on designing the 

amendment and applying for approvals prior to the availability of the phase II safety or 

preliminary efficacy results from CLARITY. The approval applications were made with 

the caveat that they would be withdrawn if emerging data indicated. This strategy is 

discussed further in Section 6.6.1.2.  

 

6.3 Design of the FLAIR amendment 

6.3.1 Inclusion of an ibrutinib monotherapy control arm 

It was decided that I+V would be added into the FLAIR trial as a new experimental arm, 

but in order to protect the trial from changes in practice in future, an ibrutinib 

monotherapy arm was also added as an additional control therapy.  
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At the time of designing the amendment to add I+V, FCR was still the standard of care 

in front line CLL, and thus was the required comparator for all experimental therapies. 

However, in 2016 the ibrutinib licence was extended to include use as a single agent 

for patients with previously untreated CLL. The TMG therefore felt that an ibrutinib 

containing therapy could become standard of care in the FLAIR population before the 

trial was fully reported. As IR was hypothesised to reach deeper responses than I 

alone, and was being assessed in clinical trials other than FLAIR, it was unclear 

whether IR or I alone was more likely to become the standard of care long-term in the 

UK. It was therefore proposed to include an I alone comparator arm at the time of the 

amendment alongside adding I+V. 

 

In order to ensure the timely reporting of trial outcomes it was not feasible to include 

both the IR and I alone arms, which would have led to three comparator arms for I+V. It 

was originally proposed that IR would be closed at the end of the planned recruitment 

period to the IR vs FCR comparison however following feedback from CRUK it was 

agreed that a decision would be taken at that time to drop either IR or I alone. The 

decision on which arm to choose would primarily be made based on anticipated 

emerging MRD data from other trials that were due to report ahead of the decision 

point. In this way, the trial was protected in case FCR was superseded as standard of 

care by either I alone or IR. This mitigated the risk that  the outcomes of the trial would 

be hugely devalued if it were to show that I+V was better than FCR, but FCR was no 

longer the standard of care. With the proposed design the amended FLAIR trial was 

future-proofed so that if FCR was no longer the standard when the trial reported, other 

comparator arms were also included and powered to be able to show a clinically 

relevant improvement. 

 

The amendment therefore included the addition of two new arms, one experimental 

and one control. In addition, there were two new primary hypotheses, one comparing 

I+V to FCR, and the other comparing I+V to I or IR. The additional statistical 

implications of adding a control as well as an experimental arm are discussed in 

Section 6.4. 

 

6.3.2 Amended Trial Design  

The amended FLAIR design was a phase III, multi-centre, multi-arm, randomised, 

controlled, open, parallel group trial in patients with previously untreated CLL. 

Participants were randomised to receive FCR, IR, I monotherapy or I+V on a 1:1:1:1 
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basis. The eligibility criteria were unchanged from the original design. The treatment 

schedules for FCR and IR were unchanged. Participants randomised to I+V receive 

ibrutinib for 8 weeks before venetoclax is added over a four week dose escalation 

phase. In the I monotherapy, IR and I+V arms, ibrutinib and venetoclax (as relevant) 

are administered for 6 years, until the MRD negative stopping rules are triggered or 

until disease progression. If treatment is stopped and restarted due to MRD levels, as 

described in Section 6.1.4, participants randomised to I monotherapy or IR receive 

further I monotherapy, and participants randomised to I+V receive further I+V.  

 

The amended trial aims are to provide evidence for the future first-line treatment of CLL 

patients by assessing whether IR is superior to FCR in terms of PFS, whether I+V is 

superior to FCR in terms of PFS, whether I+V is superior to I or IR (as appropriate) in 

terms of MRD negativity, and whether IR and I+V toxicity rates are favourable. The 

other key endpoints to be assessed remain unchanged from the previous design, but 

now also compare I+V with FCR and I+V with I or IR. Figure 6-2 illustrates the 

amended participant pathway. 
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Figure 6-2 Participant pathway into the amended FLAIR trial 

 

The experimental arms are shown in green, and the control arms in purple.  

The primary objectives are: 

 To assess IR vs FCR in terms of PFS 

 To assess I+V vs FCR in terms of PFS 

 To assess I+V vs I in terms of MRD negativity rate 

 

6.3.3 Sample Size 

The sample size for I+V vs FCR was based on testing the primary null hypothesis of no 

difference in PFS between the treatment arms. However, the assumptions for the 

clinically relevant effect size differed from those for IR vs FCR due to evidence 

published in 2015 comparing I with chlorambucil110, demonstrating that ibrutinib 

monotherapy leads to a better PFS in this population than thought at the time of the 

original design. To assess a superiority hazard ratio of 0.69 (for a median PFS increase 

of 4.5 to 6.5 years) with an overall 5% significance and 80% power, assuming a 2.5 

year recruitment period and 3.5 years of follow-up, and allowing for a 5% dropout rate, 

274 participants were required to be concurrently randomised to each of FCR and I+V 
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in order to observe 232 events. A total of 822 participants were therefore required to be 

concurrently randomised to FCR, I or IR and I+V. A formal interim analysis on PFS was 

planned when half the numbers of events (116 progressions and/or deaths) were 

observed in FCR and I+V, in order to allow large differences between the treatment 

arms to be reported early to the DMEC. The O’Brien and Fleming alpha-spending 

function was used to account for testing at multiple time-points to conserve the overall 

type I error.  

 

In order to protect the primary outcome in the event that FCR was superseded as the 

standard treatment during the life of the trial, it was ensured that there was power to 

compare I+V against I or IR. The rationale for the addition of venetoclax was to reduce 

the treatment duration needed based on the MRD stopping rule, and therefore the 

appropriate endpoint for this comparison is the MRD negativity rate. PFS is also included 

as a key secondary endpoint, but it is confounded by the MRD stopping rule potentially 

affecting the duration of therapy differently in each arm. The analysis of MRD negativity 

will be carried out 2 years after the close of recruitment. At the time of designing the 

amendment the MRD negativity rates in the ibrutinib containing arms were not known so 

a range of power calculations were carried out. With 260 evaluable patients in each of 

the arms and a 5% two-sided significance level, there is 90% power to detect an 

improvement from, say, 10% to 20%. If there are a larger proportion that become MRD 

negative with IR, say 20%, there is 90% power to detect an improvement to 32.5%, and 

since a large increase in MRD negativity would be required in order to justify the addition 

of V, the planned number of patients is more than adequate.  

 

6.3.4 Dropping I or IR  

Recall that at the end of the recruitment period to the original FLAIR randomisation 

(FCR vs IR), it was planned to select the most appropriate comparator for I+V to be 

either I or IR, in addition to FCR, and to drop the other. The decision was discussed 

with the DMEC and TSC during February 2018, in order to make the amendment in 

July 2018, once 754 participants had been randomised to FCR and IR. The emerging 

evidence from external trials suggested that IR was no better than I in terms of PFS111, 

and also that IR did not lead to good enough rates of MRD negativity. In addition, MRD 

negativity results from IR participants in Stage 1 of FLAIR were summarised for the 

DMEC, and these strengthened the external evidence. It was therefore agreed that the 

IR arm would be dropped, and the trial would continue to randomise on a 1:1:1 basis to 
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FCR, I monotherapy and I+V. There were no changes to the existing treatment 

schedules or eligibility criteria.  

 

6.3.5 Overview of the trial stages 

In total, 1516 participants will be randomised to the trial. A total of 754 participants are 

required to be randomised concurrently to FCR and IR (stages 1 and 2), and 822 

participants to FCR, I and I+V (stages 2 and 3). In addition 61 FCR patients in stage 2 

are included in both randomisations, and therefore the total sample size is less than it 

would have been in independent trials. Figure 6-3 outlines the treatment arms that are 

included over each stage in the trial. A dotted line indicates that the participants 

recruited to those arms will be used for more than one comparison.  

Figure 6-3 Overview of trial stages 

Note that the original FLAIR trial was planned to recruit in 4 years. Even with the 

addition of the extra arms, recruitment completed a couple of months ahead of 

schedule. The amendment included additional funding to open more centres, so over 

100 were opened rather than the 70 originally planned. In this way, the delivery of the 

original trial was not compromised by the amendment. The statistical considerations to 

ensure that the outcomes for either the original or new hypotheses were not biased by 

the design amendment are discussed below. 

 

Trial Stage 1 2 3 

Dates 
Sept 2014 –  

June 2017 

July 2017 –  

June 2018 

 July 2018 –  

Q1 2020 (estimated) 

Randomisation 
allocation 

1:1 1:1:1:1 1:1:1 

Arms to assess IR vs. FCR endpoints (N=754) 

FCR (N=377) N=316 N=61 
 

IR (N=377) N=317 N=61 
 

Arms to assess I+V vs. FCR and I endpoints (N=822) 

FCR (N=274) 
 

N=61 N=213 

I (N=274) 
 

N=61 N=213 

I+V (N=274) 
 

N=61 N=213 
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6.4 Statistical considerations 

6.4.1 Concurrent comparisons 

For the analysis of the trial, all primary and secondary endpoint comparisons will only 

include patients randomised contemporaneously. That is because if there is a shift in 

the patient population due to the design change or changes in practice over time, it 

may shift the median survival and could bias the results53. Sixty-one FCR patients who 

were included in the original FLAIR design can also be used as comparators for the 

I+V arm, therefore reducing the numbers needed compared to a new trial. It will be 

possible to use data from non-concurrent patients across the whole protocol to carry 

out exploratory investigations. There will be more similarities between these patients 

than those from separate trials, and having such a wealth of data on this population 

could allow subgroups of patients, for example those with certain genetic markers, to 

be investigated to generate hypotheses that could inform future research. This trial was 

not designed to report comparisons between the non-concurrent trial arms I 

monotherapy and IR, or IR and I+V. This is discussed further in Section 6.6.1.3. 

 

6.4.2 Type I error control 

As discussed in Section 5.1.4 (Table 5-1), there are a number of ways the type I error 

could be inflated or bias introduced in a multi-arm adaptive trial design. These are 

separated out and addressed individually in the context of the FLAIR trial, as follows: 

 

6.4.2.1 Multiple primary outcomes for I+V 

The I+V arm is being assessed in two primary outcomes: against FCR for PFS; and 

against I for MRD negativity. In order for I+V to be acceptable and to be deemed a 

‘success’, it needs to be significantly better than both of its control groups. As 

discussed in Section 4.6 (Figure 4-8), where both hypotheses are required to be 

superior there is no inflation of the type I error rate and therefore no adjustment is 

required. The type I error would only be inflated if either one of the hypotheses being 

positive could lead to I+V being taken forward. 

 

6.4.2.2 Multiple hypothesis testing in the same protocol 

This protocol allows the opportunity for both IR and I+V to be declared superior to the 

current standard within a primary analysis, therefore increasing the chance of a type I 

error for an ibrutinib containing combination. Whilst both give the opportunity for a 
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therapy containing ibrutinib to be declared superior, the aim of giving the additional 

treatments in combination (rituximab and venetoclax) is to be able to stop ibrutinib 

earlier. In fact, I+V is being compared directly against I monotherapy in terms of its 

ability to reduce the duration of treatment. Therefore, as discussed in Section 4.6, since 

a type I error for these comparisons does not directly benefit the same claim of 

effectiveness for an experimental therapy, FWER control is not necessary for this 

reason. If the two primary hypotheses had been assessed in separate protocols no 

adjustment would be required, and in this case it is feasible to assume that the 

questions would have otherwise been assessed in different trials. Since there is an 

overlap in recruitment, some of the control data is shared between the IR and I+V vs 

FCR hypotheses. In Section 4.3 it is also shown that the resulting correlation between 

the hypotheses reduces the overall type-I error over that if they had been assessed 

independently, and therefore FWER adjustment is also not necessary due to sharing 

control data. In summary, adjusting for multiple testing due to assessing multiple 

experimental arms would be an “unnecessary penalty for efficiency”49 in this case, so is 

not planned. 

 

6.4.2.3 Multiple analysis time-points  

In order to account for the formal interim analyses allowing for early rejection of the null 

hypothesis for IR or I+V based on early evidence of efficacy, the O’Brien and Fleming 

alpha-spending function112 adjusts for multiple testing in order to conserve the overall 

type I error. The method recommends that the interim results are compared to a p-

value of 0.005, and the final results are then compared to a p-value of 0.048. This is 

applied to each of the hypotheses separately. 

 

6.4.2.4 Analysis methods following adaptation of design features with 

combination of information across trial stages 

It can be seen from Figure 6-3 that the trial consists of three stages, each with different 

randomisation options. At the end of stage 1, the design was amended to add two new 

treatment arms, and at the end of stage 2 the design was amended again to stop 

recruitment to the arm that had completed. The decision to add the new arms was 

made without reference to any internal trial data. At the end of stage 2, after the IR vs 

FCR randomisation had reached its target recruitment, IR was dropped from the trial. 

As discussed in Section 6.3.4, the decision to drop IR rather than I was made primarily 

based on data external to the trial, but also on a summary of MRD results from 

participants randomised to IR in stage 1 only. This has no implications for the analysis 
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of the IR vs FCR comparison across stages 1 and 2 because the planned recruitment 

had completed at the time that the amendment to drop IR was made. It also has no 

implications for the analysis of the I+V vs I comparison across stages 2 and 3 because 

the data summarised was for the IR arm from stage 1 participants only, and these are 

external to the concurrent randomisation across stages 2 and 3. In addition, 

summarising a subset of MRD results for IR patients for the DMEC does not affect the 

type I error for the final analysis of PFS for IR vs FCR because no randomised 

comparison was carried out.  

 

In Section 5.6 (Figure 5-3), it was recommended that since the decision to add (and 

drop) arms was not informed by any analysis of data internal to the existing hypotheses 

at the time of the amendment, each hypothesis is analysed by pooling the data over 

the relevant stages, rather than needing to use adaptive analysis methods. A 

multivariable cox regression is therefore planned to analyse the PFS primary 

endpoints, and a multivariable logistic regression is planned for the binary primary 

endpoint of achievement of MRD negativity. These models will account for the trial 

stage as well as the stratification factors: disease stage, age group and gender. 

 

Whilst the key eligibility criteria did not vary across the stages, it is possible that the 

different treatment options attracted slightly different patients into the trial. In the first 

stage, there was a 50% chance of receiving ibrutinib (IR), in the second stage this 

increased to a 75% chance (IR, I or I+V), and in the third stage 67% (I or I+V). In 

addition, the number of centres increased leading up to the second stage. In case of 

any stage effects caused by the changing treatment options or centres, the planned 

multivariable regressions for all analyses of primacy include Trial Stage as a covariate. 

However, measures were also put in place to try to prevent changes to the population 

across the stages due to the likelihood of receiving FCR or an ibrutinib containing 

therapy. Participants must be eligible and willing to receive any of the treatments, and 

randomising clinicians were required to ensure that this was the case before 

randomisation. Early withdrawals were closely monitored, and centres in which patients 

withdrew for reasons relating to not wanting their randomised treatment, particularly 

where they were randomised to FCR, were contacted for justification and to ensure 

their consent processes were appropriate. Therefore, the required assumption of no 

interaction between treatment effect and trial stage (Section 5.4.3) was felt to be 

realistic. 
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6.4.3 Other statistical details 

In Section 2.3 the statistical considerations when adding an arm to an ongoing trial are 

summarised. In addition to the key points detailed above, the following were also 

considered to ensure the ability of the trial to answer all the primary hypotheses was 

protected. 

 

6.4.3.1 Power  

The new hypotheses comparing I+V concurrently against FCR and I were both formally 

powered, as described in Section 6.3.3. The design for the original hypothesis was 

unchanged by the addition of the new arms, so the power calculation remained 

appropriate, therefore ensuring that there was adequate power to assess each primary 

hypothesis in the protocol. Since FWER control was not determined to be necessary, 

no inflation was required to account for this.  

 

6.4.3.2 Randomisation and allocation 

Randomisation was by minimisation with stratification and a random element, and the 

stratification factors were unaltered for the duration of the trial. At each stage, the 

minimisation algorithm was reset. This was felt appropriate because there were enough 

patients in each stage that the arms were generally well balanced. Continuing the 

minimisation algorithm would not be appropriate when adding an arm as all totals 

would be zero for the new arm at first, distorting the algorithm. There is no reason why 

resetting the minimisation algorithm would add any bias. 

 

It was decided to maintain an even allocation ratio to all arms in all stages, regardless 

of the number of experimental treatments. There are views in the literature6 (Section 

2.3.5) that randomising a higher proportion to control might be more efficient in terms of 

total patient numbers needed when there is more than one experimental arm, or that all 

arms should complete recruitment at the same time to avoid a third stage. However, in 

a trial with different treatments in different stages, varying the allocation ratio is not 

straightforward and having a different ratio in different stages for a single hypothesis 

would complicate the power calculation and affect the analysis53. Analysis methods to 

minimise bias where different stages include different treatment arms were researched 

as described in Chapter 5, so there was no need to avoid having a third stage.  
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6.4.3.3 Challenges due to staggered hypotheses 

By the time there was sufficient early evidence of activity and safety for I+V and the 

amendment had been implemented with the stage 2 randomisation open to 

recruitment, 633 of the planned 754 participants (84%) had already been randomised 

into the trial. This reduced some of the advantages of sharing control data in terms of 

the total patient numbers needed, although there are still many other advantages of 

this strategy as discussed in Section 6.6.2. Having only a small overlap, however, 

extends the overall trial and recruitment length, and increases the time between 

analyses for the hypotheses, which could cause problems. The interim analysis for IR 

vs FCR was planned based on number of events, and this is expected to occur around 

mid-2019, which is whilst recruitment to Stage 3 is still ongoing. This interim analysis is 

initially only reported to the DMEC, but if the results are very positive it might be agreed 

to release these results more widely. This would have implications for the ongoing trial, 

which would be discussed in detail with the DMEC and TSC. Some of the FCR patients 

in this analysis are also in the FCR vs I+V analysis, and it would be considered how to 

minimise bias by releasing these results so that the integrity of the ongoing trial is not 

compromised. It may be that it is no longer ethical to recruit to FCR, and therefore that 

this arm should be dropped, with I+V vs I remaining as the sole primary comparison. In 

this case releasing the results is unlikely to affect this comparison as the patients are 

independent, but a fourth trial stage would be created, and in this case a stage effect is 

likely which will be accounted for in the analysis. Including the I monotherapy arm as a 

second control was a measure to protect the trial in this eventuality.  

 

After the interim analysis for the IR comparison, the next planned analysis is likely to be 

the interim analysis for I+V vs FCR which will be reported to the DMEC in 2021, 

followed by the analysis of MRD for I+V vs I and the final analysis for IR vs FCR in 

2022, and lastly the final analysis for I+V vs FCR in 2023. When each of these 

analyses take place, recruitment to the trial and FCR therapy will have completed, 

although some patients will still be receiving Ibrutinib or I+V therapy. At the time of 

each analysis, it will be considered how the results affect the patients still receiving trial 

treatment, and whether their treatment is still in their best interest. It will also be 

considered how to interpret and manage the results alongside the previous and future 

planned analyses. This will be determined by the Trial Management Group in 

discussion with the DMEC, TSC and NCRI CLL Subgroup once the results are 

available. The analyses for each experimental treatment can be reported as soon as 

possible, without affecting the other. In this way the trial is not impeded by its design 

over if it had been two independent trials. 
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6.5 Implementation / Trial Management 

6.5.1 Approvals and funding 

6.5.1.1 Oversight committees 

The concept of adding new arms to FLAIR was initially discussed with the DMEC in 

November 2015 and with the TSC in October 2015. Both groups gave their approval for 

the necessary funding applications to proceed and agreed that they would approve the 

new design once funding was in place. The TSC includes a Patient and Public 

Involvement (PPI) representative who was actively involved in the discussions and the 

decision to approve the amendment, and felt that the efficiency of the design would be 

beneficial to patients. The final amended trial design was reviewed and approved by 

the DMEC in January 2017 and the TSC in February 2017.  

 

The amendment was designed collaboratively with the NCRI CLL Subgroup 

Committee, which a number of FLAIR Principal Investigators and two PPI 

representatives are members of, and was agreed in November 2015. The amendment 

was also presented to, and approved by, the NCRI Haemato-oncology Clinical Studies 

Group. Both groups were supportive of the amended design and recognised the 

efficiencies associated with adding new arms to an existing trial rather than designing a 

separate trial to start after FLAIR had finished recruiting. 

 

6.5.1.2 Cancer Research UK 

A no-cost amendment application was submitted to the CRUK Clinical Research 

Committee in November 2015 for review by the committee in May 2016. This process 

included an international peer review by four reviewers. One of the peer reviewers 

identified I+V as a  combination with “game-changing potential” and another that “with 

the amended design of adding ibrutinib and ibrutinib + venetoclax arms, this trial has 

the potential to help define the standard for frontline CLL treatment worldwide”. Some 

of the reviewers supported the design methodology of adding new arms with one 

saying “As the availability for novel agents increases across all types of cancer, studies 

such as this can be looked at as a model for efficiently answering key questions in a 

field.” and another that “The planned amendment is essential for this trial to ensure that 

the conclusions remain relevant when it is due to report”. However others were 

concerned about the complexity of the amended trial design and if this would impact 
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deliverability, whether it was reasonable not to adjust for multiple testing given the 

shared control patients, whether the design would be supported by the relevant 

pharmaceutical companies, and whether changes in practice could affect the trial long 

term. All of these points were addressed to the satisfaction of the committee, and 

approval was granted.  

 

6.5.1.3 Pharmaceutical companies 

Due to the relatively short timelines between I+V emerging as an important treatment 

combination and the original FLAIR design meeting the recruitment target, discussions 

with pharmaceutical companies had to happen in parallel with the amendment 

application to CRUK. The amended design included the use of the new Investigational 

Medicinal Product (IMP), venetoclax, manufactured by Abbvie and a considerably 

higher number of patients receiving ibrutinib. In advance of the design being discussed 

with the DMEC, TSC and NCRI committees, initial discussions had been held with 

Abbvie to establish provisional support for the design. A formal funding application was 

submitted to them in November 2015 and in February 2016 Abbvie agreed to provide 

free venetoclax and an educational grant for the additional running costs associated 

with the new arms, subject to successful contract negotiation. In June 2016 Janssen, 

the manufacturer of ibrutinib, agreed to provide free ibrutinib for the additional 

participants in the new arms and associated IMP distribution costs. 

 

To finalise this additional support a contract amendment was required with Janssen 

and a new contract was required for Abbvie. These contracts were both signed in May 

2017. Contract negotiation is a common factor impacting trial set-up times and delaying 

trials opening to recruitment. These negotiations are made more complex by having 

multiple pharmaceutical funders and negotiating contracts that comply with charitable 

funders terms and conditions. It was arguably simpler adding an additional 

pharmaceutical partner after the trial had opened as the principles around data sharing 

and intellectual property had already been agreed with one company so there was an 

understanding that those terms would be equivalent for new funders.  

 

6.5.1.4 Ethical and regulatory 

Protocol development, including associated documentation such as the Participant 

Information Sheet, was finalised in February 2017 following a number of reviews both 

by the TMG and by pharmaceutical companies. The Participant Information Sheet was 

also reviewed by the PPI representatives on the NCRI CLL Subgroup Committee. 
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Substantial amendments were submitted to the MHRA and ethics committee in March 

2017 and April 2017 respectively. Ethics approval was received promptly within two 

weeks of the submission but MHRA approval wasn’t received until May 2017. This was 

delayed as the MHRA requested additional information about the safety of the I+V 

combination. 

 

6.5.2 Data management considerations 

The trial CRFs were updated in line with the trial protocol and were finalised in April 

2017. It was decided to amend the existing trial database rather than having a separate 

database for the new comparisons. This added some limitations in terms of how data 

for the new arms were collected as it needed to work within the existing database 

structure, but did not compromise the quality of the data that was collected for the 

analyses. A new randomisation system was implemented for the four-arm design which 

meant all centres had to be re-activated on the system and the minimisation algorithm 

was re-set.   

 

6.5.3 Implementation at centres 

A key consideration when the amendment was designed was that the addition of new 

arms should not significantly delay the reporting of the FCR vs IR comparison beyond 

the original planned timelines. As the trial was recruiting ahead of target, and the 

number of recruiting centres was planned to be increased from 70 to 110, the impact 

on the original analysis timelines was likely to be minimal. Set-up of the additional 

centres started ahead of the amendment opening to further increase the recruitment 

rate. Five existing centres decided not to participate in the amended trial, four due to 

lack of capacity and one because they were unable to cover the cost of MRD testing 

which was allocated as a treatment cost. 

 

The new randomisation system went live at the beginning of July 2017. Thirty-nine 

centres opened to the new design within the first week. It was agreed that the old 

randomisation system would be switched off at the end of August 2017 with all centres 

needing to have approvals for the amendment in place before then or they would have 

been suspended to recruitment. Sixty eight centres opened before the original 

randomisation system was closed, rising to over 100 centres in the following months.  
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6.6 Discussion 

In summary, the strategy of incorporating a new experimental treatment into the FLAIR 

framework was successful and hugely advantageous, without compromising either the 

original or new research goals. In this way, we were able to incorporate emerging 

evidence to test two experimental therapies instead of one, keeping the trial outputs 

timely and relevant, and minimising resources. There are many advantages to this 

strategy, and although there were also challenges, these were not unsurmountable. 

 

6.6.1 Challenges  

6.6.1.1 Perceived risk 

Adapting a trial in any way introduces complexities, both real and perceived. A 

comment from a CRUK peer reviewer was “Trial design is now more complex, so 

additional risk that not all components will be completed as planned”. This general 

feeling that the more complex the design, the more risk is involved was echoed in 

discussions with clinical and patient representative members of the NCRI CLL 

Subgroup. Whilst a larger and longer trial with more components will naturally carry 

more risk, the trials team were careful to consider any potential sources of bias or 

disadvantages and address them, as discussed throughout this chapter. The original 

trial question of IR vs FCR is largely unaffected by the addition of the new arms. The 

number of planned centres were increased from 70 to 110 to ensure that recruitment to 

the original arms was not negatively impacted by the addition of the new arms, and in 

fact this comparison recruited ahead of target even with the amendment. The analysis 

is planned when the data in these arms are mature and without reference to the new 

arms, so the trial outcomes are not delayed by the amendment. The analysis includes 

trial stage as a covariate to account for any potential changes to the population caused 

by adding the arms and centres, although this effect is similar to dropping arms, which 

is now a commonly accepted strategy. The design for the original hypothesis was not 

affected by the addition of the new arms, which minimises the complexity as the trial is 

not truly adaptive. Each primary hypothesis is fully powered; is assessed based on 

concurrently recruited patients only, which protects against changes in the trial 

population over time; and statistical aspects relating to error rates due to sharing a 

protocol and control data have also been considered in detail. Therefore, although the 

trial is more complex, potential risks have been identified, managed and minimised. 
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6.6.1.2 Timelines of implementation prior to safety and activity data 

In order to make the confirmatory assessment of the emerging therapy as seamless as 

possible following the phase II Bloodwise TAP CLARITY Trial, the amendment was 

planned and funding applications submitted prior to the availability of the CLARITY trial 

outcomes. At the time there was evidence of activity and safety of I+V in mantle cell 

lymphoma, but the combination had not yet been assessed in CLL. Due to the length of 

time it takes to obtain funding and approvals, the process was set in motion with the 

caveat that the applications would be withdrawn and the amendment dropped if the 

phase II data was not acceptable. Any changes to treatment schedule or safety 

monitoring that were required for CLARITY would have also been implemented into the 

FLAIR amendment. Had the emerging results been unacceptable and the amendment 

dropped, there would have been an amount of work done that had taken place 

unnecessarily, but this is similar to the risks associated with any grant application. 

Work on protocol development and other amendment processes was started before 

contracts with the pharmaceutical funders were signed which also presented a financial 

risk, however this was felt to be acceptable based on the preliminary approvals from 

both companies.  

 

6.6.1.3 Protection against changes in practice 

One of the concerns with long trials, particularly those with different hypotheses being 

assessed at different times such as in platform designs, is that practice will change and 

the outcomes become less relevant or the standard control therapy will be superseded. 

In order to pre-empt and protect against this, an ibrutinib monotherapy control arm was 

added concurrently to the I+V arm, so two different control groups were included, as 

discussed in Section 6.3.1. It is unusual for a confirmatory trial to include two control 

groups, and clearly the numbers of patients needed is increased compared to a 

standard randomised controlled trial. However, there was good evidence that the 

standard therapy could change over the life of the trial so this measure was felt to be 

necessary. Since the original FLAIR trial was designed, the advantage of ibrutinib 

monotherapy had been demonstrated in relapsed CLL with the Resonate Trial113 

leading to the marketing approval. In addition results were emerging showing ibrutinib 

monotherapy to be superior to conventional therapy in previously untreated elderly 

patients who are unfit for fludarabine-based therapy110. A NICE appraisal for ibrutinib 

use, which covers relapsed CLL and previously untreated CLL for patients with 17p 

deletion or P53 mutation who are unfit for fludarabine-based chemotherapy, was about 

to commence114, making it very likely that ibrutinib monotherapy would become the 

standard in the UK and beyond for both of these patient populations. An application 
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had been submitted to extend the ibrutinib license to previously untreated elderly 

patients, and so a further NICE appraisal to extend front-line use seemed likely. 

However, as this had not yet happened, FCR was the current standard therapy and 

thus the necessary control therapy. The strategy of having two controls allowed I+V to 

be assessed against the most relevant therapies without delaying the research. During 

the course of the trial, if FCR was superseded it could be dropped from the 

randomisation without compromising the trial outcomes.  

 

The other concern around changes in practice is that the trial population and therefore  

patient outcomes could shift over time. For this reason, as previously discussed, this 

trial is not able to report confirmatory comparisons between the non-concurrent arms: I 

monotherapy and IR; or IR and I+V. This was a key point raised within reviewers’ 

comments. At the time of the amendment, the hypothesis of IR vs I was being 

assessed by the US Intergroup Alliance 041202 Trial (NCT01886872), which had 

randomised 350 newly diagnosed elderly patients to I and IR, and therefore this direct 

comparison was not novel. Until the results from the IR comparisons were known, it 

would not have be appropriate to include IR as a control against other experimental 

therapies, and this would not have been required in a new trial. Whilst early evidence 

suggested that IR is not better than I, if further evidence emerges that shows 

otherwise, it is possible to directly compare endpoint data between the 122 

contemporaneous patients for each comparison as an exploratory investigation to 

inform future trial designs. In addition we would have data on MRD negativity, 

treatment duration and safety rates as well as health economic evaluations for I 

monotherapy, IR and I+V from within the FLAIR trial to input into this assessment. The 

outcomes from non-contemporaneous trial arms will be treated as they would had they 

arisen from different trials. 

 

6.6.2 Conclusions 

In this chapter it has been described how the FLAIR trial was able to successfully 

provide a platform for an emerging new therapy to be assessed within an existing 

confirmatory trial framework. It is demonstrated that despite challenges and some initial 

resistance, this type of adaptation is feasible and acceptable. The statistical 

considerations were addressed to the satisfaction of a number of reviewers, who were 

convinced that the trial outcomes will be appropriately powered, unbiased and 

statistically valid for both experimental therapies. In addition, any logistical challenges 

were not insurmountable. This strategy offered substantial gains in efficiency for 



- 167 - 

assessing the emerging therapy. For the original trial it took over 2.5 years from 

submission of the outline funding application to the first centre opening, and 3.5 years 

for all centres to be open, which is usual for a confirmatory trial. By amending FLAIR 

rather than planning a new trial the new hypotheses were incorporated almost 

seamlessly following on from the external phase II assessment, completely eliminating 

the time period between confirmatory trials. Due to opening additional centres even 

before the amendment was implemented, the original hypothesis is not delayed in 

recruitment or reporting. The primary assessment for the new hypothesis is planned 

just one year later than for the original, which is a saving of many years over planning 

and running a new trial. In addition, these hypotheses are able to be assessed in the 

same population at the same time without competing with one another. 

 

The ability to amend FLAIR by adding new treatment arms has greatly benefitted 

patients because they have access to the latest therapies sooner. This was discussed 

in a recent article in the BBC news115 which describes the extremely promising results 

from the I+V investigation in the phase II CLARITY trial, and how the use of an 

adaptive trial design enabled this treatment to be quickly incorporated into a 

randomised confirmatory trial. In addition, fewer patients overall are required to receive 

the control therapy because of the overlap in Stage 2, and since the trial has been 

amended patients have a higher chance of being randomised to a targeted therapy. 

 

The FLAIR amendment has demonstrated that adapting a trial by adding experimental 

arms is feasible in practice without compromising the statistical validity or logistical 

integrity of the trial. This has opened up the potential for further therapies to be added 

within this framework following similar methodology should they emerge prior to the 

close of recruitment. In addition, a similar confirmatory platform including poorer risk 

and relapsed CLL patients as part of a master protocol would greatly benefit that 

population and is under discussion. There is no reason why the methodology in this 

thesis does not readily extend to more complex scenarios, and this is an area for future 

development.  
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Discussion and Guidance 

7.1 Summary of the research 

Recent initiatives in clinical trials are aimed at speeding up research by making better 

use of scarce resources. For example, the FDA’s Critical Path Initiative “to drive 

innovation in the scientific processes through which medical products are developed, 

evaluated, and manufactured” included the production of guidance on adaptive designs 

to increase the efficiency of studies. In the UK, the National Institute for Health 

Research Health Technology Assessment (NIHR HTA) programme released a themed 

call for ‘Efficient Study Designs’, with a focus on research that “will demonstrate 

particular design features to allow either more rapid conduct, or lower costs”. It is 

becoming increasingly important to improve the efficiency of clinical trials in order to 

speed up the overall process of getting the best therapies to patients whilst minimising 

resources. If a promising treatment emerges whilst a trial in a similar population is 

ongoing, there would be many advantages to modifying the existing trial by adding the 

new arm, as long as the statistical considerations are addressed appropriately. 

Although there is a wealth of literature on adaptive and flexible designs, adding a new 

therapy into an ongoing trial is rarely discussed, and only a small number of trials were 

identified to have made this type of adaptation in practice. In this research the 

considerations necessary to ensure robust statistical validity were identified and 

addressed, in order to provide guidance so that researchers feel confident in amending 

ongoing trials to incorporate a new treatment arm.    

 

This research topic is strongly supported by patient advocates and clinicians. It was 

discussed from the outset at the NCRI CLL Subgroup, in which a patient representative 

from the NCRI Consumer Liaison Group (CLG) was present, along with research active 

clinicians. They fully support the research concept as they feel it is in the best interests 

of patients by enabling promising emerging treatments to reach patients in trials faster 

than would otherwise be the case. The research was also discussed with Eric Low, 

Chief Executive of Myeloma UK, a group that informs and supports people affected by 

myeloma <http://www.myeloma.org.uk/>. Eric is very positive about the research, 

stating “I believe that these new statistical approaches that allow emerging novel 
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treatments to be incorporated into existing trials are vital to speed up the evaluation of 

available treatments, with the aim of enabling patients to receive the best treatments as 

soon as possible.” 

 

7.1.1 Framing the research 

The aim of Chapter 2 was to frame the research by assessing the extent of current 

literature on adding new treatment arms, investigating how well this amendment has 

been made in practice; and identifying gaps where further research and guidance is 

needed. This review led to the generation of eight key statistical areas that researchers 

need to consider when implementing this type of amendment. In some cases it was 

clear from existing literature how to achieve statistical validity. Other areas concerned 

the efficiency of the trial design rather than necessarily statistical validity, and whilst 

these are important to consider, they should be addressed by the trial team at the time 

of the design of the amendment. In two areas, however, the literature was contradictory 

or scarce, and these formed the basis for the remainder of this research. Even though 

full recommendations were not available immediately after this review, a summary of 

the literature and statistical considerations identified was published as a review article 

in the Trials journal6. It has been cited four times to date in peer reviewed journal 

articles, and has been quoted in the draft CONSORT Statement extension to multi-arm 

parallel randomised clinical trials. Following the completion of this research, updated 

guidance comprehensively detailing the necessary considerations and methodology is 

now able to be provided, and is summarised in Section 7.2. 

 

7.1.2 Multiple testing adjustment for multiple hypotheses 

The first area identified to require further research was that of multiple testing 

adjustment due to multiple hypotheses being assessed within the same protocol and 

sharing some control data. In Chapter 3, it is confirmed that there is no consensus in 

the literature on whether FWER adjustment is necessary for multiple hypotheses. In 

order to be able to consider the impact of multiple hypotheses on the type I error rate, 

the need for adjustment was broken down into: the correlation between the test 

statistics due to shared control data; and the efficiency of sharing a protocol. In Chapter 

4, the effect of the correlation on type I error rates was calculated exactly in the case of 

two and three hypotheses, and it was confirmed that the FWER is lower where the 

hypotheses share a control group than when they are independent. Whilst this is not a 

new finding, it is widely misunderstood. A referee’s comment on the publication of this 

work8 was that this is “an issue that I agree with the authors that, somewhat 
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surprisingly, has received little attention in the literature”. By illustrating the type I error 

regions for two test statistics based on the bivariate normal distribution with correlation, 

and using this to quantify the probabilities in each of the error regions, the distribution 

of the various type I error rates defined in Section 4.2 was able to be visualised. The 

reason the FWER is reduced where there is shared control data is because the 

probability of observing more than one error across the hypotheses (FMER) is 

increased. However, this has rarely been addressed in the literature when considering 

the need for multiple testing adjustment. It is not clear why this is the case, perhaps 

because adjusting to control for the inflated probability that multiple experimental 

treatments will be falsely declared to be superior requires too stringent an adjustment. 

Multiple errors are a particular concern if more than one superiority claim from within 

the same protocol could be used to jointly inform a claim of effectiveness, as discussed 

in Section 4.5, but perhaps this is felt to be unlikely to be adequate to regulators, so 

protection of the MSFP rate would be unnecessary. 

 

In the case of confirmatory trials, there is general agreement in the literature that where 

the hypotheses do not share control data, so are independent, no multiplicity 

adjustment is required. Recent discussions by representatives from the MHRA116 and 

EMA117 on master protocols portray the Biostatistics Working Party working hypothesis 

that “No multiplicity adjustment is required if the sub-trials are essentially independent 

trials, each testing a different, independent hypothesis”. However, a violation of 

independence includes that there is an overlap of treatment, for example a common 

control arm. They say that this is an area of ongoing discussion, but the general 

consensus is that adjustment is more likely to be necessary in this case. It seems to be 

a contradiction that FWER control is required because of the shared control data and 

associated lack of independence, when the shared control data reduces the FWER 

over what it would have been in independent hypotheses. In discussion on this topic 

with Michael Proschan (personal communication), his response was that: 

“If you do not adjust for multiplicity, you are likely to have at least one false 

significant finding (if there are many comparisons). At that point, someone will 

point out that we cannot trust the other findings because there could be a bad 

control arm that caused the problem. I agree with you that the same thing could 

happen whether or not you adjusted for multiplicity, but if you did adjust for 

multiplicity, you are unlikely to discover any false positives, given that the 

FWER is controlled at level 0.05. On the other hand, if you didn’t adjust for 

multiplicity, you ARE likely to discover at least one false positive. It only takes 

one false positive (not 2 or more, as the FMER considers) to create a problem 
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of lost confidence. If there is any false positive, people will lose confidence in 

the findings. For that reason, it is important to prevent even one false 

positive. The way to do that is to control the FWER at a low rate such as 0.05. 

Therefore, I would not feel comfortable, in the setting of a single control arm, 

with doing comparisons each at level 0.05.” 

This is a very interesting argument, and illustrates that a concern over the FWER 

where there is shared control data is in fact related to the inflated chance of multiple 

errors. These points can still be addressed in terms of the FWER and FMER. If there is 

a concern over ‘even one false positive’, FWER adjustment is required regardless of 

whether there is shared control data or not. If the concern is over the conditional 

probability of a type I error given that another type I error has occurred in the case of a 

‘bad’ control group, as Proschan suggests, this is directly related to the FMER (Section 

4.2.3). The argument given is that FWER control is necessary to reduce the probability 

of multiple errors in the case of a bad control group. Referring back to Table 4-3 in 

which the error rates after multiplicity adjustment were assessed in the case of two 

hypotheses, it can be seen that FWER adjustment can reduce the probabilities of 

multiple errors to some extent. Therefore, adjustment may help to reduce the inflated 

FMER. However, even with adjustment, this probability is not reduced to that for 

independent trials, because the error being controlled is not the error that is inflated. In 

addition, some of the common adjustment methods are less conservative because they 

allow a higher probability of multiple errors in order to reduce the overall level of 

adjustment whilst maintaining control over the chance of at least one error. That is, 

they use the fact that the correlation increases the FMER, and therefore decreases the 

FWER, to reduce the amount of FWER adjustment. This is counterintuitive. If FWER 

adjustment is recommended where there is shared control data in an attempt to 

somewhat control the FMER, to then reduce the level of adjustment to allow more 

multiple errors is the opposite of what adjustment is trying to achieve. 

 

In the case of two hypotheses this is easy to understand. If there is a ‘bad’ control 

group, there will clearly be an increased probability of an error in both hypotheses. If 

only one of the p-values is less than 5%, FWER control will reduce the probability of 

success for that hypothesis. However, in two independent trials there are two chances 

for one of the control groups to be bad, so the overall chance of at least one false-

positive finding is higher, and adjustment is not required for this. In the case that both 

p-values are less than 5%, however, closed-testing adjustment methods have little or 

no effect on controlling the probability of a false-positive error given the other falsely 

significant finding. The only rationale for FWER control specifically due to the shared 
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control data is to somewhat reduce the inflated chance of two errors. For this reason, if 

FWER adjustment is required, closed testing methods should not be used. The more 

conservative Bonferroni adjustment performs best out of the available methods for this 

purpose. 

 

In the case of three or more hypotheses, this becomes more difficult to understand. 

Table 7-1 summarises the effects of applying the Bonferroni, Hochberg and Dunnett’s t 

adjustment methods on the various error rates, using the example of a four-arm trial 

with 1:1:1:1 allocation in which the three experimental arms are compared to a shared 

control group. The two-sided alpha is set at 0.05 for each unadjusted comparison, and 

therefore the FWER is required to be controlled at 0.05 when adjustment methods are 

used.  

Table 7-1 FWER, FMER and MSFP comparisons for four-arm trials with three 
hypotheses (α=0.05 for each), a shared control group and even allocation 
ratio, after applying various multiple testing adjustments 

 
Independent 

case 

Dependent case, 1:1:1:1 allocation 

Un-adjusted Bonferroni Hochberg Dunnett’s t 

Reject H0 for each 
individual 

comparison  
0.05 0.05 0.0166 0.0193 0.0188 

FWER: Reject at 
least one H0 

0.1426 0.1254 0.0443 0.0453 0.0499 

FMER2: Reject at 
least two H0’s (in any 

direction) 
0.0073 0.0213 0.0049 0.0093 0.0058 

FMER3: Reject all 
three H0’s (in any 

direction) 
0.0001 0.0032 0.0005 0.0032 0.0007 

MSFP2: Reject at 
least two H0’s in 

favour of A, B or C  
0.0018 0.0107 0.0025 0.0047 0.0029 

MSFP3: Reject all 
three H0’s in favour 

of A, B and C  
0.00002 0.00160 0.00027 0.00160 0.00033 

 

It can be seen that in the case of three hypotheses, the FWER is controlled at 0.05 

using all methods, as required. The chance of at least two of the three hypotheses 

falsely reporting a superior false positive outcome (MSFP2) is 0.18% in the 

independent case and rises to 1.07% without adjustment. After Bonferroni and 

Dunnett’s t adjustment the MSFP2 is reduced to 0.25% and 0.29% respectively, which 

are closer to the independent case. With the Hochberg adjustment the MSFP2 is 

somewhat reduced to 0.47%. The chance of three superior false positives is 0.16% in 

the unadjusted case and with the Hochberg adjustment, but 0.03% with the other 
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adjustment methods. Whilst this is higher than in the independent case, in which it is 

0.002%, it is still very small. If the concern is that there are at least two superior false-

positives out of the set of three that could inform a single claim of effectiveness, FWER 

adjustment using Bonferroni or Dunnett’s t methods are reasonably effective, although 

it would be preferred to control this probability exactly if required. As the number of 

hypotheses increases, FWER adjustment becomes more stringent, and it is likely that 

the probabilities of at least two MSFPs from the set will be controlled, in fact they will 

probably become smaller than in the independent case. The probabilities of higher 

numbers of MSFPs will not be well controlled, but these probabilities will become 

extremely small. In trials with many comparisons, FWER adjustment does reduce the 

inflated chance of some multiple errors, although it does not do so in a considered way. 

It may be advantageous to investigate adjustment for the inflated probability of at least 

two errors declaring the experimental treatments superior (MSFP2), rather than at least 

one error (FWER) as is done currently, and apply this exactly. This is likely to become 

less stringent than FWER adjustment where there are more hypotheses. In summary, 

in the case of three or more hypotheses, FWER adjustment is a simple method to 

reduce the inflated probabilities of multiple errors to some extent, and therefore could 

be applied for this purpose, although it is recommended that closed testing methods 

are avoided.  

 

Multiplicity adjustment for multiple hypotheses is a widely debated topic, but this way of 

breaking down the various probabilities of errors due to sharing control data has not 

been previously considered. The findings and associated recommendations challenge 

current literature and guidance documents that recommend FWER adjustment solely 

due to shared control data. Discussions are ongoing with the group at the EMA who 

are working on guidance on the necessity to control the FWER in the case of umbrella 

trials with shared controls, and with the team drafting a CONSORT Statement 

extension for multi-arm trials, with the aim to input into the discussions informing these 

important documents. 

 

7.1.3 Analysis methods when adding an arm 

The other area identified to require further research was the methods of analysis 

following amending an ongoing trial by adding a new treatment arm. In Chapter 5, 

analysis using adaptive p-value combination methodology was considered and 

compared to methods where the data are pooled over the stages before and after the 

amendment. It was determined that unless there is an interim analysis that also informs 
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a change in the design for the existing hypothesis in the second stage, adaptive 

analysis methods are not required. Instead, a multivariable analysis including Trial 

Stage as a covariate is recommended.  

 

The concept of amending a trial by adding an arm with relation to the need for p-value 

combination methods was discussed with Michael Proschan, because of his co-

authorship on a paper that informs the verification of the Conditional Invariance 

Principle118. He agrees with our view (personal communication) that if no adaptations 

are made other than adding an arm, “even if the decision to add B was based on 

interim data from A, the comparison of arm A to control restricted to stage 2 data is 

independent of the comparison of arm A to control in stage 1”. In that case, he believes 

that p-value combination methods would control the type I error rate, and using a 

multivariable model with stage as a covariate “should be asymptotically equivalent to 

the simpler combination of z-scores”. There was a question in the case of continuous 

endpoint data whether a change in variance in the second stage would not be 

accounted for in the multivariable model, whilst it would with p-value combination 

methods. However, he summarises “my opinion is that under reasonable assumptions, 

you should get essentially the same answer whether you combine independent z-

scores or use a model that does the same thing. Including additional covariates to the 

model also seems asymptotically valid. Therefore, I believe that what you are 

suggesting will control the type I error rate pretty closely, and is quite reasonable”. 

Investigating the analysis methods where there is unequal variances across the trial 

stages is an area identified for further research. 

 

This research has focused on the impact of a stage effect on the p-values and the 

probabilities of type I and II errors. Also of importance, in accordance with the ICH 

guideline E9 on statistical principles for clinical trials51, is the ability to report the 

treatment effect estimate and associated confidence intervals. If a multivariable 

analysis is appropriate, these statistics are readily available, and are adjusted for stage 

and other covariates. However, if it is necessary to use adaptive analysis methods, 

estimates and confidence intervals must not ignore the adaptive nature of the trial. 

Methods have been proposed to derive appropriate point estimates and confidence 

bounds for p-value combination tests (see for example Wassmer and Brannath 

(2016)36), but these methods are not straightforward to apply. An important area for 

further consideration would be a comparison of the treatment effect estimate and 

confidence limits using the different analysis methods in the presence of a stage effect 

to further inform the recommendations. If there is a stage effect, although the 



- 175 - 

multivariable analysis accounts for this when calculating the p-value to assess the 

treatment effect, the treatment effect estimate and confidence interval should be 

interpreted with care. It would be advantageous to assess baseline characteristics of 

patients by stage, and if there are any apparent differences or if the stage effect is 

approaching significance within the model, subgroup or sensitivity analyses by stage 

could also be considered. 

 

An interesting and novel finding from this work is that the order of applying multiplicity 

adjustment alongside p-value combination methods may be important. The majority of 

literature on adaptive designs applies multiplicity adjustment within stage prior to 

combining the p-values, which makes practical sense if there is an interim analysis and 

adjustment is required at each analysis point. However, in situations where treatment 

arms are added and stopped, such as platform or multi-arm multi-stage trials, this can 

have an undesirable effect on the power in the case that the experimental treatments 

perform differently to one another. Recommendations in these cases are therefore 

contrary to literature, in that if multiplicity adjustment is necessary for any sets of 

hypotheses, it should be made at the end of the trial on the final p-values rather than 

the stagewise p-values. 

 

7.1.4 Practical application 

In Chapter 6, the FLAIR trial in Chronic Lymphocytic Leukaemia was described in 

which a new experimental arm has been successfully added to the existing 

randomisation, showing that this type of amendment is feasible in practice both 

statistically and operationally. At the time of designing FLAIR, there was a promising 

treatment being investigated in a phase II trial, as described in Figure 1.1 in the 

Introduction, and this was part of the motivation for this research. However, the 

experimental treatment that was added to FLAIR was not the treatment that was 

originally planned because the phase II results were not as good as anticipated, and 

meanwhile venetoclax emerged from development with extremely promising early 

evidence of efficacy. An advantage of this type of flexible design is that since the 

amendment does not need to be specified from the outset of the trial, it can be planned 

as relevant at the time. The amendment is hugely beneficial in terms of resource 

savings, and allowed the new experimental therapy to be included in a large 

confirmatory trial in the UK years earlier than would have otherwise been possible. The 

FLAIR trial has now reached the recruitment target for the original hypothesis, and the 

IR experimental arm has been dropped from the randomisation. Recruitment remains 
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ahead of target, and the trial results for both the original and new hypotheses are 

eagerly awaited with the real potential to influence practice. This trial is an exemplar of 

how a new experimental arm can be added without compromising the validity of the 

research for either hypothesis. 

  

7.2 Guidance and recommendations on adding an arm 

In Chapter 2, the key statistical considerations when adding a treatment arm to an 

ongoing trial were identified. Throughout this research, uncertainties have been 

addressed so that it is now possible to provide guidance to researchers to help to 

ensure statistical validity and efficiency. A summary of the key considerations along 

with recommendations are provided in Table 7-2. 
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Table 7-2 Summary of recommendations on the key statistical considerations 
when amending an ongoing trial by adding a new treatment arm 

Statistical 

Consideration 
Recommendations 

FWER control 

for multiple 

primary 

hypotheses 

 Requirements for FWER adjustment are the same where an arm is 

added as they are for a standard multi-arm trial. 

 The FWER is not inflated due to the shared control group, so 

adjustment is not required for this purpose. 

 If the hypotheses contribute to the same claim of effectiveness, FWER 

adjustment is likely to be required due to the efficiency of asking more 

questions in the same protocol and having multiple chances for 

success.  

 The probability of multiple type I errors is inflated due to the shared 

control group, but FWER adjustment does not aim to control this. If 

more than one superior finding is a concern, for example where the 

hypotheses contribute to the same claim of effectiveness, the MSFP 

rate needs to be considered. In the case of two hypotheses, a more 

stringent p-value is necessary and has been proposed assuming 

concurrent randomisation. In the case of three or more hypotheses, 

FWER adjustment does reduce the inflated probability of some 

superior false-positive errors to some extent. However, if multiple 

errors are a concern, closed testing adjusting methods perform worse 

and should not be used. Bonferroni or Dunnett’s t methods are 

recommended. 

Methods of 

analysis over 

trial stages 

before and 

after the design 

amendment  

 A multivariable analysis with Trial Stage as a covariate is 

recommended, to account for a potential stage effect caused by a shift 

in the population due to the amendment. 

 There must be a strong assumption of no interaction between the 

treatment effect and trial stage, which could be caused by a potential 

population shift. 

 P-value combination methods are only necessary if there is an interim 

analysis to adapt the design for existing hypotheses alongside adding 

the new arm. 

 If multiple testing adjustment is required, it should be made on the final 

p-values for each hypotheses, regardless of how much of the control 

data is overlapping. Adjustment within stage prior to combining p-

values is not recommended.  
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Concurrent use 

of control data 

 Control data for participants who were not randomised concurrently 

must not be used in primary analyses.  

 The power to test for heterogeneity across the trial stages is likely to 

be low, and therefore a finding of no significant heterogeneity is not 

meaningful. 

Power for 

primary 

hypotheses 

 Every primary hypothesis in the trial must be adequately powered. 

Patients randomised to the new arm must be in addition to the sample 

size for the original trial arms. Adding a new hypothesis will therefore 

increase the total size and associated resources of the trial.  

Allocation ratio 

 As for any randomised trial, the allocation ratio should be chosen to 

maximise efficiency whilst considering patient acceptability and other 

relevant trial aims as appropriate.  

 The allocation ratio does not need to be the same for all hypotheses, 

as long as each hypothesis has adequate power when compared to 

concurrent controls.  

 It is permissible to change the allocation ratio for an existing 

hypothesis at the time of the amendment, as long as the power 

remains adequate. This needs to be accounted for in the analysis53. 

End of 

recruitment for 

existing and 

new arms 

 Depending on the allocation ratio and design assumptions, it is likely 

that the new hypothesis will need to recruit for longer than the existing 

hypotheses in order to have appropriate power.  

 When the original randomisation is complete, the experimental arms 

can be dropped. This would lead to another trial stage requiring a 

randomisation amendment, and should be planned for at the design of 

the amendment. The new trial stage will also need to be accounted for 

in the analysis, as described previously. 

Change to the 

control group  

 If the standard of care therapy is superseded during the length of the 

trial, the control therapy may become inferior to standard practice and 

unethical. At the design stage for the trial amendment, it should be 

considered whether this is likely, and if so this should be pre-empted 

as far as possible. For example, if an existing experimental trial 

therapy has the potential to become the standard of care, especially if 

the hypothesis is due to report before the end of recruitment to the 

amendment, the new treatment could be powered to be concurrently 

compared to both the existing and potential new control arms, if 

feasible. 

 If the new treatment is required to be superior to both the existing and 

new control therapies to be deemed a success, this does not raise 

multiplicity concerns for the FWER. 
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Amendment 

clearly 

mentioned in 

results 

publications 

 Publications must transparently include the full trial design, detailing all 

treatments, comparisons and adaptations to the design, even if they 

are not the focus of that manuscript. 

 
 

7.3 Limitations and extensions 

This research primarily focused on multiplicity adjustment and analysis methods when 

adapting an ongoing trial by adding a new experimental arm, since it is essential that 

these are appropriate in order to ensure statistical validity. Other statistical 

considerations such as use of non-concurrent control data and optimal allocation ratios 

were touched upon, although were not investigated in detail. It may be possible that 

data from the control group collected prior to the addition of the new arm could be used 

appropriately to improve the power of the trial. The use of historical control data is of 

relevance more widely than just to the case of adding arms, and has previously been 

discussed with relation to frequentist confirmatory trials in the methodological literature. 

Whilst it could offer potentially large savings to a trial, there is also the risk of 

substantial bias119, and it is less likely to be acceptable to regulators in a confirmatory 

setting. The allocation ratio could be calculated exactly to minimise patient numbers to 

the trial overall, but it has been shown that the savings are likely to be small120, and the 

additional complexity of adjusting allocation ratios in the case of adding and dropping 

trial arms is unlikely to be worthwhile. Therefore it was decided not to focus on these 

issues.  

 

It was determined from the outset that this research would only consider frequentist 

methodology, however Bayesian methodology could be advantageous in this setting. It 

may enable the incorporation of prior control data, and there is a different approach to 

decision rules that are not based on type I or II error rates. Bayesian inference in 

adaptive designs has been mainly limited to early-phase trials and may not be 

acceptable to regulators in a confirmatory trial121, however it would be interesting to 

investigate in the case of adding an arm mid-trial.  

 

As discussed in Chapter 5, in rolling designs where the hypotheses do not follow the 

same timelines, planned analyses for one hypothesis may impact on another. If an 

analysis for an original hypothesis is planned prior to the close of recruitment to the 
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new hypothesis, the potential implications of this need to be carefully considered. As 

well as potentially affecting the control treatment going forward, some data from the 

control arms for the new hypothesis could be reported. The implications of this have 

not been fully considered, and this is an area that would benefit from further 

investigation and discussion with experts. 

 

In this thesis, the investigation into analysis methods has been based on simulations of 

an example where a new treatment arm is added to a trial with an existing control and 

experimental arm, in which both hypotheses assess superiority in terms of a survival 

endpoint. There is no reason to believe the findings would not extrapolate to trials with 

more hypotheses, in which more than one new arm is added either at the same time or 

at different times, and where there are different endpoints and objectives. However, in 

order to confirm the robustness and generalisability of the findings, it is planned to 

assess the analysis methods using simulations based on different scenarios. It is also 

planned to further investigate multiplicity adjustment alongside p-value combination in 

adaptive designs more generally following the interesting finding that the order in which 

they are applied is important. 

 

Rather than assessing superiority of an new treatment, clinical trials can also assess 

non-inferiority, to test whether the experimental therapy is not unacceptably less 

efficacious than the current standard. This might be because it is thought that the 

treatment is as good in terms of efficacy, but has other benefits such as reduced 

toxicity. In this case, non-inferiority is not assessed using a p-value, but by comparing 

the lower limit of the confidence interval (CI) to a pre-determined non-inferiority margin. 

If the CI contains the non-inferiority margin, there is an unacceptable chance that the 

experimental treatment is inferior, and non-inferiority cannot be declared. If the entire 

CI lies above the non-inferiority margin, non-inferiority can be declared. In the case of 

multiple testing adjustment for multiple hypotheses, the width of the confidence interval 

can be adjusted in line with the chosen alpha adjustment method. For example, using a 

Bonferroni adjustment with two hypotheses and an overall significance level of 5%, the 

type I error rate is split so that significance level for each hypothesis is adjusted to 

2.5%, and equivalent 97.5% CIs are calculated. This will widen the CIs, reducing the 

probability of falsely declaring non-inferiority. The principles that relate to the sharing of 

control data will apply to non-inferiority trials in the same way that they apply to 

superiority trials, but due to the differences in hypothesis testing methodology, this 

would benefit from further exploration. In terms of the methods of analysis over trial 

stages due to the amendment, the general recommendations from Figure 5-3 still hold 
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in the non-inferiority case. If the existing hypothesis is not adapted, a pooled 

multivariable analysis is appropriate, and CIs are easy to calculate. If adaptive analysis 

methods are necessary, however, it needs to be determined how to appropriately 

design and analyse an adaptive non-inferiority trial at the design stages for the 

amendment. 

 

In order to influence practice, the recommendations from this research need to be 

discussed with regulators and the wider statistical community. The chapters on the 

review of statistical considerations when adding an arm and on multiplicity adjustment 

have been published in peer reviewed journals and presented at national and 

international conferences, seminars and workshops. In addition, the manuscript on 

multiplicity adjustment has been shared with the group updating the CONSORT 

Statement, the Biostatistics Working Party discussing guidance on multiplicity issues 

for master protocols, and the consultation on the EMA draft guideline on multiplicity 

issues in clinical trials. Initial feedback suggests that the research has been well 

received and is interesting and useful, and it is hoped that further discussions will be 

held leading to an impact on practice. The later work on analysis methods has yet to be 

shared, but it is planned to publish this work as part of an overall guidance document 

for researchers, funders or regulators with an interest in amending an ongoing trial by 

adding new experimental arms, as well as to submit abstracts to conferences and 

workshops. 

 

7.4 Reflection 

In this thesis, it has been described how an amendment to add an experimental arm 

into an ongoing trial can be made without compromising the statistical validity or 

integrity of the trial. The necessary statistical considerations have been identified, and 

the most contentious areas of multiple testing adjustment due to multiple hypotheses 

and analysis methods have been investigated. Some of the findings have been 

surprising, in particular the effect of multiplicity adjustment for multiple hypotheses with 

shared control data on the probabilities of type I errors; and the application of 

multiplicity adjustment alongside p-value combination analysis methods. Both of these 

areas are of relevance more widely than just to the case of adding arms, and this 

research has progressed and contradicted some of the existing guidance on these 

topics. 
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The recommendations to ensure statistical validity when adding an arm, particularly 

concerning multiplicity adjustment and analysis methods, are straightforward to 

implement, meaning that this type of amendment is relatively simple compared to 

adaptive deigns based on internal analyses. A new treatment arm can be added at any 

stage of the trial with efficiencies gained even if recruitment is close to completion, and 

it has been shown using a real exemplar that this can be hugely advantageous without 

compromising the ability to test the existing or new hypotheses. There is no reason 

why new therapies cannot be added to ongoing trials on a rolling basis using the same 

guidance and considerations. It is hoped that the findings from this research will 

encourage experimental arms to be added to confirmatory trials more regularly in order 

to improve the efficiency of the evaluation of promising emerging therapies. 

 

 

  



- 183 - 
 

List of References 

1. Parmar MKB, Carpenter J and Sydes MR. More multiarm randomised trials of 

superiority are needed. The Lancet. 2014; 384: 283-4. 

2. Quaresma M, Coleman MP and Rachet B. 40-year trends in an index of survival 

for all cancers combined and survival adjusted for age and sex for each cancer in 

England and Wales, 1971–2011: a population-based study. The Lancet. 2015; 385: 

1206-18. 

3. Cancer Research UK. Cancer Statistics for the UK. 

http://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk: 

CRUK, 2014. 

4. Gallo P, Chuang-Stein C, Dragalin V, Gaydos B, Krams M and Pinheiro J. 

Adaptive Designs in Clinical Drug Development - An Executive Summary of the 

PhRMA Working Group. Journal of Biopharmaceutical Statistics. 2006; 16: 275-83. 

5. Bauer P, Bretz F, Dragalin V, König F and Wassmer G. Twenty‐five years of 

confirmatory adaptive designs: opportunities and pitfalls. Statistics in Medicine. 2016; 

35: 325-47. 

6. Cohen DR, Todd S, Gregory WM and Brown JM. Adding a treatment arm to an 

ongoing clinical trial: a review of methodology and practice. Trials. 2015; 16: 179. 

7. Connor JT, DeMichele A and Wittes J. University of Pennsylvania ninth annual 

conference on statistical issues in clinical trials: Where are we with adaptive clinical trial 

designs? (afternoon panel discussion). Clinical Trials. 2017; 14: 470-82. 

8. Howard DR, Brown JM, Todd S and Gregory WM. Recommendations on 

multiple testing adjustment in multi-arm trials with a shared control group. Statistical 

Methods in Medical Research. 2018; 27: 1513-30. 

9. Cook JA, Julious SA, Sones W, et al. DELTA2 guidance on choosing the target 

difference and undertaking and reporting the sample size calculation for a randomised 

controlled trial. BMJ. 2018; 363. 

10. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical 

Society Series B (Methodological). 1972; 34: 187-220. 

11. Freedman LS. Tables of the number of patients required in clinical trials using 

the logrank test. Statistics in Medicine. 1982; 1: 121-9. 

12. Woodcock J and LaVange LM. Master Protocols to Study Multiple Therapies, 

Multiple Diseases, or Both. New England Journal of Medicine. 2017; 377: 62-70. 

13. Saville BR and Berry SM. Efficiencies of platform clinical trials: A vision of the 

future. Clinical Trials. 2016; 13: 358-66. 

http://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk:


- 184 - 

14. Phillips AJ and Keene ON. Adaptive designs for pivotal trials: discussion points 

from the PSI Adaptive Design Expert Group. Pharmaceutical Statistics. 2006; 5: 61-6. 

15. Hommel G. Adaptive Modifications of Hypotheses After an Interim Analysis. 

Biometrical Journal. 2001; 43: 581-9. 

16. van Leth F, Phanuphak P, Ruxrungtham K, et al. Comparison of first-line 

antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus 

stavudine and lamivudine: a randomised open-label trial, the 2NN Study. Lancet. 2004; 

363: 1253-63. 

17. Gatsonis C, Kass RE, Carlin B and Carriquiry A. Case studies in Bayesian 

statistics. New York: Springer-Verlag, 2001. 

18. Posch M, Koenig F, Branson M, Brannath W, Dunger-Baldauf C and Bauer P. 

Testing and estimation in flexible group sequential designs with adaptive treatment 

selection. Statistics in Medicine. 2005; 24: 3697-714. 

19. Bauer P. Adaptive designs: Looking for a needle in the haystack - A new 

challenge in medical research. Statistics in Medicine. 2008; 27: 1565-80. 

20. Elm JJ, Palesch YY, Koch GG, Hinson V, Ravina B and Zhao W. Flexible 

analytical methods for adding a treatment arm mid-study to an ongoing clinical trial. 

Journal of Biopharmaceutical Statistics. 2012; 22: 758-72. 

21. Sydes MR, Parmar MKB, Mason MD, et al. Flexible trial design in practice - 

stopping arms for lack-of-benefit and adding research arms mid-trial in STAMPEDE: a 

multi-arm multi-stage randomized controlled trial. Trials. 2012; 13: 168. 

22. Parmar MK, Sydes MR, Cafferty FH, et al. Testing many treatments within a 

single protocol over 10 years at MRC Clinical Trials Unit at UCL: Multi-arm, multi-stage 

platform, umbrella and basket protocols. Clinical Trials. 2017; 14: 451-61. 

23. James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, zoledronic acid, 

or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): 

survival results from an adaptive, multiarm, multistage, platform randomised controlled 

trial. The Lancet. 2016; 387: 1163-77. 

24. Wason J, Magirr D, Law M and Jaki T. Some recommendations for multi-arm 

multi-stage trials. Statistical Methods in Medical Research. 2012. 

25. Pong A and Chow S-C. Handbook of Adaptive Designs in Pharmaceutical and 

Clinical Development. New York: Chapman and Hall/CRC Press, Taylor & Francis 

Group, 2010. 

26. Posch M, Bauer P and Brannath W. Flexible Designs. Wiley Encyclopedia of 

Clinical Trials. New York: John Wiley & Sons, Inc., 2007. 

27. Hills RK and Burnett AK. Applicability of a “Pick a Winner” trial design to acute 

myeloid leukemia. Blood. 2011; 118: 2389-94. 



- 185 - 

28. Gaunt P, Mehanna H and Yap C. The design of a multi-arm multi-stage 

(MAMS) phase III randomised controlled trial comparing alternative regimens for 

escalating (COMPARE) treatment of intermediate and high-risk oropharyngeal cancer 

with reflections on the complications of introducing a new experimental ARM. Trials. 

2015; 16: O16. 

29. Burnett AK, Hills RK, Hunter AE, et al. The addition of gemtuzumab ozogamicin 

to low-dose Ara-C improves remission rate but does not significantly prolong survival in 

older patients with acute myeloid leukaemia: results from the LRF AML14 and NCRI 

AML16 pick-a-winner comparison. Leukemia. 2012; 27: 75. 

30. Lieberman JA, Stroup TS, McEvoy JP, et al. Effectiveness of Antipsychotic 

Drugs in Patients with Chronic Schizophrenia. New England Journal of Medicine. 2005; 

353: 1209-23. 

31. Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of 

effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate 

for treatment of partial epilepsy: an unblinded randomised controlled trial. The Lancet. 

2007; 369: 1000-15. 

32. Goldberg RM, Sargent DJ, Morton RF, et al. A Randomized Controlled Trial of 

Fluorouracil Plus Leucovorin, Irinotecan, and Oxaliplatin Combinations in Patients With 

Previously Untreated Metastatic Colorectal Cancer. Journal of Clinical Oncology. 2004; 

22: 23-30. 

33. Goldberg RM, Sargent DJ, Morton RF, et al. NCCTG Study N9741: Leveraging 

Learning from an NCI Cooperative Group Phase III Trial. The Oncologist. 2009; 14: 

970-8. 

34. Alberts SR, Sargent DJ, Nair S, et al. Effect of Oxaliplatin, Fluorouracil, and 

Leucovorin With or Without Cetuximab on Survival Among Patients With Resected 

Stage III Colon Cancer: A Randomized Trial. JAMA : the journal of the American 

Medical Association. 2012; 307: 1383-93. 

35. Jawahar MS, Banurekha VV, Paramasivan CN, et al. Randomized Clinical Trial 

of Thrice-Weekly 4-Month Moxifloxacin or Gatifloxacin Containing Regimens in the 

Treatment of New Sputum Positive Pulmonary Tuberculosis Patients. PLOS ONE. 

2013; 8: e67030. 

36. Wassmer G and Brannath W. Group sequential and confirmatory adaptive 

designs in clinical trials. Switzerland: Springer, 2016. 

37. FDA. Draft Guidance on Adaptive Design Clinical Trials for Drugs and Biologics. 

Rockville, MD2010. 

38. FDA. Adaptive Designs for Medical Device Clinical Studies. 

https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidance

documents/ucm446729.pdf: FDA, 2016. 

https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm446729.pdf:
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm446729.pdf:


- 186 - 

39. CHMP (Committee for Medicinal Products for Human Use). Reflection Paper on 

Methodological Issues in Confirmatory Clinical trials with Flexible Design and Analysis 

Plan. London: EMEA (European Medicines Agency), 2006. 

40. CHMP (Committee for Medicinal Products for Human Use). Reflection Paper on 

Methodological Issues in Confirmatory Clinical Trials Planned with an Adaptive Design. 

London: EMEA (European Medicines Agency), 2007. 

41. Miller E, Gallo P, He W, et al. DIA’s Adaptive Design Scientific Working Group 

(ADSWG):Best Practices Case Studies for “Less Well-understood” Adaptive Designs. 

Therapeutic Innovation & Regulatory Science. 2017; 51: 77-88. 

42. Coffey CS, Levin B, Clark C, et al. Overview, hurdles, and future work in 

adaptive designs: perspectives from a National Institutes of Health-funded workshop. 

Clinical Trials. 2012; 9: 671-80. 

43. Vandemeulebroecke M. Group sequential and adaptive designs - a review of 

basic concepts and points of discussion. Biometrical Journal. 2008; 50: 541-57. 

44. Bauer P and Brannath W. The advantages and disadvantages of adaptive 

designs for clinical trials. Drug Discovery Today. 2004; 9: 351-7. 

45. Chow SC and Chang M. Adaptive design methods in clinical trials - a review. 

Orphanet Journal Of Rare Diseases. 2008; 3: 11. 

46. Wang S-J. Perspectives on the Use of Adaptive Designs in Clinical Trials. Part 

I. Statistical Considerations and Issues. Journal of Biopharmaceutical Statistics. 2010; 

20: 1090-7. 

47. Benda N, Brannath W, Bretz F, et al. Perspectives on the Use of Adaptive 

Designs in Clinical Trials. Part II. Panel Discussion. Journal of Biopharmaceutical 

Statistics. 2010; 20: 1098-112. 

48. Pallmann P, Bedding AW, Choodari-Oskooei B, et al. Adaptive designs in 

clinical trials: why use them, and how to run and report them. BMC Medicine. 2018; 16: 

29. 

49. Freidlin B, Korn EL, Gray R and Martin A. Multi-Arm Clinical Trials of New 

Agents: Some Design Considerations. Clinical Cancer Research. 2008; 14: 4368-71. 

50. CPMP (Committee for Proprietary Medicinal Products). Point to Consider on 

multiplicity issues in clinical trials. EMEA (European Medicines Agency), 2002. 

51. ICH (International Conference on Harmonisation). Statistical Principals for 

Clinical Trials E9. 1998. 

52. Bauer P and Kohne K. Evaluation of Experiments with Adaptive Interim 

Analyses. Biometrics. 1994; 50: 1029-41. 

53. Altman DG. Avoiding bias in trials in which allocation ratio is varied. Journal of 

the Royal Society of Medicine. 2018; 111: 143-4. 



- 187 - 

54. Dunnett CW. A Multiple Comparison Procedure for Comparing Several 

Treatments with a Control. Journal of the American Statistical Association. 1955; 50: 

1096-121. 

55. Schulz KF, Altman DG and Moher D. CONSORT 2010 Statement: updated 

guidelines for reporting parallel group randomised trials. BMJ. 2010; 340. 

56. EMA (European Medicines Agency). Guideline on multiplicity issues in clinical 

trials. 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/03/

WC500224998.pdf: European Medicines Agency, 2017. 

57. Phillips A, Fletcher C, Atkinson G, et al. Multiplicity: discussion points from the 

Statisticians in the Pharmaceutical Industry multiplicity expert group. Pharmaceutical 

Statistics. 2013; 12: 255-9. 

58. Dmitrienko A, Tamhane AC and Bretz F. Multiple Testing Problems in 

Pharmaceutical Statistics. CRC Press, 2009. 

59. Wason JM, Stecher L and Mander A. Correcting for multiple-testing in multi-arm 

trials: is it necessary and is it done? Trials. 2014; 15: 364. 

60. Proschan MA, Follmann DA and Geller NL. Monitoring multi-armed trials. 

Statistics in Medicine. 1994; 13: 1441-52. 

61. Proschan MA. A multiple comparison procedure for three- and four-armed 

controlled clinical trials. Statistics in Medicine. 1999; 18: 787-98. 

62. Proschan MA and Waclawiw MA. Practical Guidelines for Multiplicity 

Adjustment in Clinical Trials. Controlled Clinical Trials. 2000; 21: 527-39. 

63. Proschan M and Follmann D. Multiple comparisons with control in a single 

experiment ver. The American Statistician. 1995; 49: 144. 

64. Bender R and Lange S. Adjusting for multiple testing—when and how? Journal 

of Clinical Epidemiology. 2001; 54: 343-9. 

65. Westfall P and Bretz F. Multiplicity in Clinical Trials. Encyclopedia of 

Biopharmaceutical Statistics, Third Edition. Taylor & Francis, 2010, p. 889-96. 

66. Cook RJ and Farewell VT. Multiplicity Considerations in the Design and 

Analysis of Clinical Trials. Journal of the Royal Statistical Society Series A (Statistics in 

Society). 1996; 159: 93-110. 

67. Rothman KJ. No Adjustments Are Needed for Multiple Comparisons. 

Epidemiology. 1990; 1: 43-6. 

68. O'Brien PC. The Appropriateness of Analysis of Variance and Multiple-

Comparison Procedures. Biometrics. 1983; 39: 787-8. 

69. Hung HMJ and Wang S-J. Challenges to multiple testing in clinical trials. 

Biometrical Journal. 2010; 52: 747-56. 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/03/WC500224998.pdf:
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/03/WC500224998.pdf:


- 188 - 

70. Marcus R, Peritz E and Gabriel KR. On Closed Testing Procedures with Special 

Reference to Ordered Analysis of Variance. Biometrika. 1976; 63: 655-60. 

71. Dunnett CW and Tamhane AC. A Step-Up Multiple Test Procedure. Journal of 

the American Statistical Association. 1992; 87: 162-70. 

72. Fernandes N and Stone A. Multiplicity adjustments in trials with two correlated 

comparisons of interest. Statistical Methods in Medical Research. 2011; 20: 579-94. 

73. Kaplan R, Maughan T, Crook A, et al. Evaluating Many Treatments and 

Biomarkers in Oncology: A New Design. Journal of Clinical Oncology. 2013; 31: 4562-

8. 

74. Herbst RS, Gandara DR, Hirsch FR, et al. Lung Master Protocol (Lung-MAP)—

A Biomarker-Driven Protocol for Accelerating Development of Therapies for Squamous 

Cell Lung Cancer: SWOG S1400. American Association for Cancer Research. 2015; 

21: 1514-24. 

75. Senn S and Bretz F. Power and sample size when multiple endpoints are 

considered. Pharmaceutical Statistics. 2007; 6: 161-70. 

76. Senn SS. Statistical issues in drug development. John Wiley & Sons, 1997. 

77. Piccart-Gebhart M, Holmes E, Baselga J, et al. Adjuvant Lapatinib and 

Trastuzumab for Early Human Epidermal Growth Factor Receptor 2–Positive Breast 

Cancer: Results From the Randomized Phase III Adjuvant Lapatinib and/or 

Trastuzumab Treatment Optimization Trial. Journal of Clinical Oncology. 2016; 34: 

1034-42. 

78. Maughan TS, Adams RA, Smith CG, et al. Addition of cetuximab to oxaliplatin-

based first-line combination chemotherapy for treatment of advanced colorectal cancer: 

results of the randomised phase 3 MRC COIN trial. The Lancet. 377: 2103-14. 

79. Follmann DA, Proschan MA and Geller NL. Monitoring Pairwise Comparisons in 

Multi-Armed Clinical Trials. Biometrics. 1994; 50: 325-36. 

80. Fisher LD. One Large, Well-Designed, Multicenter Study as an Alternative to 

the Usual FDA Paradigm. Drug Information Journal. 1999; 33: 265-71. 

81. Shun Z, Chi E, Durrleman S and Fisher L. Statistical consideration of the 

strategy for demonstrating clinical evidence of effectiveness—one larger vs two smaller 

pivotal studies Statistics in Medicine 2005; 24:1619–1637. Statistics in Medicine. 2005; 

24: 1652-6. 

82. Julious SA and Campbell MJ. Tutorial in biostatistics: sample sizes for parallel 

group clinical trials with binary data. Statistics in Medicine. 2012; 31: 2904-36. 

83. Abdi H. Bonferroni and Sidak corrections for multiple comparisons. In: Salkind 

NJ, (ed.). Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage, 

2007, p. 103-7. 



- 189 - 

84. Holm S. A simple sequentially rejective multiple test procedure. Scandinavian 

journal of statistics. 1979: 65-70. 

85. Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. 

Biometrika. 1988; 75: 800-2. 

86. FDA. Providing Clinical Evidence of Effectiveness for Human Drug and 

Biological Products. Rockville, MD1998. 

87. Westfall P, Tobias R, Rom D, Wolfinger R and Hochberg Y. Multiple 

comparisons and multiple tests using the SAS system. Cary, NC: SAS Institute Inc., 

1999. 

88. Jaki T and Parry A. Why are two mistakes not worse than one? A proposal for 

controlling the expected number of false claims. Pharmaceutical Statistics. 2016. 

89. Maurer W, Branson M and Posch M. Adaptive Designs and Confirmatory 

Hypothesis Testing. In: Dmitrienko A, Tamhane AC and Bretz F, (eds.). Multiple 

Testing Problems in Pharmaceutical Statistics. Boca Raton: CRC Press, 2010, p. 193 - 

237. 

90. Brannath W, Posch M and Bauer P. Recursive Combination Tests. Journal of 

the American Statistical Association. 2002; 97: 236-44. 

91. Fisher RA. Statistical methods for research workers. Oliver and Boyd, 1932. 

92. Lehmacher W and Wassmer G. Adaptive Sample Size Calculations in Group 

Sequential Trials. Biometrics. 1999; 55: 1286-90. 

93. Whitehead A. Dealing with Non-Standard Data Sets. Meta-Analysis Of 

Controlled Clinical Trials. John Wiley & Sons, Ltd, 2003, p. 215-40. 

94. Becker BJ. Combining Significance Levels. In: Cooper H and Hedges LV, 

(eds.). The Handbook of Research Synthesis New York: Russell Sage Foundation, 

1994. 

95. Jenkins M, Stone A and Jennison C. An adaptive seamless phase II/III design 

for oncology trials with subpopulation selection using correlated survival endpoints†. 

Pharmaceutical Statistics. 2011; 10: 347-56. 

96. Gallo P and Chuang-Stein C. What should be the role of homogeneity testing in 

adaptive trials? Pharmaceutical Statistics. 2009; 8: 1-4. 

97. Bauer P and Kieser M. Combining different phases in the development of 

medical treatments within a single trial. Stat Med. 1999; 18: 1833-48. 

98. Bretz F, Schmidli H, König F, Racine A and Maurer W. Confirmatory Seamless 

Phase II/III Clinical Trials with Hypotheses Selection at Interim: General Concepts. 

Biometrical Journal. 2006; 48: 623-34. 

99. Bretz F, Koenig F, Brannath W, Glimm E and Posch M. Adaptive designs for 

confirmatory clinical trials. Statistics in Medicine. 2009; 28: 1181-217. 



- 190 - 

100. Friede T, Parsons N, Stallard N, et al. Designing a seamless phase II/III clinical 

trial using early outcomes for treatment selection: An application in multiple sclerosis. 

Statistics in Medicine. 2011; 30: 1528-40. 

101. Kieser M, Bauer P and Lehmacher W. Inference on Multiple Endpoints in 

Clinical Trials with Adaptive Interim Analyses. Biometrical Journal. 1999; 41: 261-77. 

102. Collett L, Howard DR, Munir T, et al. Assessment of ibrutinib plus rituximab in 

front-line CLL (FLAIR trial): study protocol for a phase III randomised controlled trial. 

Trials. 2017; 18: 387. 

103. Haematological Malignancy Research Network (HMRN). Incidence and survival 

for haematological malignancies. https://www.hmrn.org/statistics: HMRN, 2018. 

104. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to 

fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a 

randomised, open-label, phase 3 trial. The Lancet. 2010; 376: 1164-74. 

105. Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of 

multiparameter flow cytometry and high-throughput sequencing for minimal residual 

disease detection in chronic lymphocytic leukemia: an European Research Initiative on 

CLL study. Leukemia. 2015; 30: 929. 

106. Bloodwise. Trials Acceleration Programme (TAP). 

https://bloodwise.org.uk/research/clinical-trials/tap: Bloodwise, 2018. 

107. Ma S, Brander DM, Seymour JF, et al. Deep and Durable Responses Following 

Venetoclax (ABT-199 / GDC-0199) Combined with Rituximab in Patients with 

Relapsed/Refractory Chronic Lymphocytic Leukemia: Results from a Phase 1b Study. 

Blood. 2015; 126: 830. 

108. Portell CA, Axelrod M, Brett LK, et al. Synergistic Cytotoxicity of Ibrutinib and 

the BCL2 Antagonist, ABT-199(GDC-0199) in Mantle Cell Lymphoma (MCL) and 

Chronic Lymphocytic Leukemia (CLL): Molecular Analysis Reveals Mechanisms of 

Target Interactions. Blood. 2014; 124: 509. 

109. Deng J, Isik E, Fernandes SM, Brown JR, Letai A and Davids MS. Ibrutinib 

Therapy Increases BCL-2 Dependence and Enhances Sensitivity to Venetoclax in CLL. 

Blood. 2015; 126: 490. 

110. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients 

with Chronic Lymphocytic Leukemia. New England Journal of Medicine. 2015; 373: 

2425-37. 

111. Burger JA, Sivina M, Ferrajoli A, et al. Randomized Trial of Ibrutinib Versus 

Ibrutinib Plus Rituximab (Ib+R) in Patients with Chronic Lymphocytic Leukemia (CLL). 

Blood. 2017; 130: 427. 

112. O'Brien PC and Fleming TR. A multiple testing procedure for clinical trials. 

Biometrics. 1979; 35: 549-56. 

https://www.hmrn.org/statistics:
https://bloodwise.org.uk/research/clinical-trials/tap:


- 191 - 

113. Byrd JC, Brown JR, O'Brien S, et al. Ibrutinib versus Ofatumumab in Previously 

Treated Chronic Lymphoid Leukemia. New England Journal of Medicine. 2014; 371: 

213-23. 

114. NICE (National Institute for Health and Care Excellence). Ibrutinib for previously 

treated chronic lymphocytic leukaemia and untreated chronic lymphocytic leukaemia 

with 17p deletion or TP53 mutation. https://www.nice.org.uk/guidance/TA429: NICE, 

2017. 

115. BBC News. Have they found a cure for our cancer? 

http://www.bbc.co.uk/news/stories-42920045: BBC, 2018. 

116. Saperia J. Basket, umbrella and platform trials: a regulatory perspective. PSI 

Webinar: Basket, Umbrella and Platform Trials - Experiences and Practical 

Considerations. https://www.psiweb.org/docs/default-source/default-document-

library/julia-saperia-presentation-slides.pdf?sfvrsn=11a9dedb_0, 2018. 

117. Tanniou J. Regulatory Hot Topics. PSI Conference 2018. Amsterdam, 

https://www.psiweb.org/docs/default-source/default-document-library/presentation-

slides92e0bbff3ad665b3a176ff00001f6b97.pdf?sfvrsn=4936dedb_0, 2018. 

118. Liu Q, Proschan MA and Pledger GW. A Unified Theory of Two-Stage Adaptive 

Designs. Journal of the American Statistical Association. 2002; 97: 1034-41. 

119. Cuffe RL. The inclusion of historical control data may reduce the power of a 

confirmatory study. Statistics in Medicine. 2011; 30: 1329-38. 

120. Wassmer G. On Sample Size Determination in Multi-Armed Confirmatory 

Adaptive Designs. Journal of Biopharmaceutical Statistics. 2011; 21: 802-17. 

121. Chow S-C. Adaptive Clinical Trial Design. Annual Review of Medicine. 2014; 

65: 405-15. 

https://www.nice.org.uk/guidance/TA429:
http://www.bbc.co.uk/news/stories-42920045:
https://www.psiweb.org/docs/default-source/default-document-library/julia-saperia-presentation-slides.pdf?sfvrsn=11a9dedb_0
https://www.psiweb.org/docs/default-source/default-document-library/julia-saperia-presentation-slides.pdf?sfvrsn=11a9dedb_0
https://www.psiweb.org/docs/default-source/default-document-library/presentation-slides92e0bbff3ad665b3a176ff00001f6b97.pdf?sfvrsn=4936dedb_0
https://www.psiweb.org/docs/default-source/default-document-library/presentation-slides92e0bbff3ad665b3a176ff00001f6b97.pdf?sfvrsn=4936dedb_0


- 192 - 

Appendices 

  

Search strategy for the addition of a new treatment 

The following search terms were used to identify relevant literature. The search 

strategy was piloted and agreed using Medline, and adapted as necessary for the other 

databases. 

 

A.1 MEDLINE 

1. Research Design/ 

2. exp Clinical Trials as Topic/ 

3. 1 or 2 

4. ((adaptive adj3 design*) or (adaptive adj3 method*) or (adaptive adj3 trial*)).mp. 

5. ((flexible adj3 design*) or (flexible adj3 method*) or (flexible adj3 trial*)).mp. 

6. ((multi?stage adj3 design) or (multi?stage adj3 method*) or (multi?stage adj3 

trial*)).mp. 

7. ((platform adj3 design*) or (platform adj3 method*) or (platform adj3 trial*)).mp. 

8. 4 or 5 or 6 or 7 

9. ((adding or additional or incorporat* or extra) adj4 (arm* or treatment* or group* or 

therap* or randomi* or hypothes*)).mp. 

10. 3 and 8 and 9 

 

Key:  

/ = subject heading (MeSH term)  

exp = explode MeSH term topic to include sub-branches 

.mp = (title, abstract, subject heading, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer name) 

* = truncation 
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? = single character or no character 

Adjn = within n words either side 

 

A.2 EMBASE 

Includes conference proceedings as well as journals. Note that the MESH term 

‘research design’ is mapped to ‘methodology’ on the EMBASE database. On MEDLINE 

‘methods’ includes both ‘observation’ and ‘research design’. 

 

1. Methodology/ 

2. exp "Clinical Trial (Topic)"/ 

3. 1 or 2 

4. ((adaptive adj3 design*) or (adaptive adj3 method*) or (adaptive adj3 trial*)).mp. 

5. ((flexible adj3 design*) or (flexible adj3 method*) or (flexible adj3 trial*)).mp. 

6. ((multi?stage adj3 design*) or (multi?stage adj3 method*) or (multi?stage adj3 

trial*)).mp. 

7     ((platform adj3 design*) or (platform adj3 method*) or (platform adj3 trial*)).mp. 

8     4 or 5 or 6 or 7 

9     ((adding or additional or incorporat* or extra) adj4 (arm* or treatment* or group* or 

therap* or randomi* or hypothes*)).mp. 

10     3 and 8 and 9 

 

Key:  

/ = MeSH term  

exp = explode MeSH term topic to include sub-branches 

.mp = (title, abstract, subject heading, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer name) 

* = truncation 

? = single character or no character 

Adjn = within n words either side 
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A.3 Science Citation Index (Web of Science) 

No MESH terms available. Search restricted to the ‘statistics probability’ category, with 

an investigation carried out as to whether other relevant literature was likely to have 

been missed.  

 

Topic=(adaptive near/3 design* or adaptive near/3 method* or adaptive near/3 trial* or 

flexible near/3 design* or flexible near/3 method* or flexible near/3 trial* or multi$stage 

near/3 design* or multi$stage near/3 method* or multi$stage near/3 trial* or platform 

near/3 design* or platform near/3 method* or platform near/3 trial*)  

AND  

Topic=((adding or additional or incorporat* or extra) near/4 (arm* or treatment* or 

group* or therap* or randomi* or hypothes*)) 

 

Key:  

* = truncation 

$ = single character or no character 

Near/n = within n words either side 

 

A.4 Cochrane Library 

1. MeSH descriptor: [Research Design] explode all trees  

2. MeSH descriptor: [Clinical Trials as Topic] explode all trees 

3. #1 or #2 

4. (adaptive near/3 design* or adaptive near/3 method* or adaptive near/3 trial* or 

flexible near/3 design* or flexible near/3 method* or flexible near/3 trial* or multi?stage 

near/3 design* or multi?stage near/3 method* or multi?stage near/3 trial*):ti,ab,kw  

AND 

(adding or additional or incorporat* or extra) near/4 (arm* or treatment* or group* or 

therap* or randomi* or hypothes*):ti,ab,kw (Word variations have been searched) 

5. #3 and #4 

 

Key:  



- 195 - 

* = 1 or more characters 

? = single character  

near /= within n words either side 

 

A.5 ProQuest 

Search in Books, Conference Papers & Proceedings, Dissertations & Theses and 

Scholarly Journals.  

 

su("research methodology" OR "statistical methods" OR "clinical trials") 

AND  

noft(adaptive NEAR/3 design* OR adaptive NEAR/3 method* OR adaptive NEAR/3 

trial* OR flexible NEAR/3 design* OR flexible NEAR/3 method* OR flexible NEAR/3 

trial* OR multi*stage NEAR/3 design* OR multi*stage NEAR/3 method* OR multi*stage 

NEAR/3 trial* OR platform NEAR/3 design* OR platform NEAR/3 method* OR platform 

NEAR/3 trial*)  

AND  

noft((adding OR additional OR incorporat* OR extra) NEAR/4 (arm* OR treatment* OR 

group* OR therap* OR randomi* OR hypothes*))  

 

Key:  

su = subject headings 

noft = ALL fields, no full text 

* = any number of characters or no character 

near /= within n words either side 
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Search Criteria for Guidance and Summary Documents 

on Adaptive or Flexible Designs 

B.1 MEDLINE  

1. Research Design/ 

2. exp Clinical Trials as Topic/ 

3. 1 or 2 

4. ((adaptive adj3 design*) or (adaptive adj3 method*) or (adaptive adj3 trial*)).mp. 

5. ((flexible adj3 design*) or (flexible adj3 method*) or (flexible adj3 trial*)).mp. 

6. ((platform adj3 design*) or (platform adj3 method*) or (platform adj3 trial*)).mp. 

7. 4 or 5 or 6 

8. (guidance or discussion or reflect* or summary or (work* adj1 group)).mp.  

9. 3 and 7 and 8 

  



- 197 - 

  

R code to calculate type I error rates and critical values 

assuming a multivariate normal distribution 

C.1 R code to calculate the probabilities for the rejection 

regions based on two correlated test statistics, assuming 

a bivariate normal distribution. 

#Install library first use 

setInternet2(TRUE) 

install.packages("mvtnorm") 

library(mvtnorm) 

 

#Bivariate normal case (2 experimental arms) 

 

#set correlation 

corr <- 0.5 

 

#correlation matrix 

corrmat <- matrix(c(1,corr,corr,1),ncol=2,byrow=TRUE) 

 

#critical value  

cval <- qnorm(0.975) 

 

#Exactly 1 error (calculate probabilities for the edges  

#excluding the corners of the square) 

 

# Left hand side 

leftside <- pmvnorm(lower=c(-Inf,-cval), upper=c(-cval,cval), 

corr = corrmat ) 

 

# Right hand side 

rightside <- pmvnorm(lower=c(cval,-cval), upper=c(Inf,cval), 

corr = corrmat ) 

 

# Top edge 

topside <- pmvnorm(lower=c(-cval,cval), upper=c(cval,Inf), corr 

= corrmat ) 

 

# Bottom edge 

bottomside <- pmvnorm(lower=c(-cval,-Inf), upper=c(cval,-cval), 

corr = corrmat ) 
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# Total chance of exactly 1 error 

oneonly=leftside+rightside+topside+bottomside 

 

#Exactly 2 errors (calculate probabilities in each of the 4 

corners of the square) 

 

# Lower left corner 

lowleft <- pmvnorm(lower=c(-Inf,-Inf), upper=c(-cval,-cval), 

corr = corrmat ) 

 

# Lower right corner 

lowright <- pmvnorm(lower=c(cval,-Inf), upper=c(Inf,-cval), corr 

= corrmat ) 

 

# Upper Left corner 

upleft <- pmvnorm(lower=c(-Inf,cval), upper=c(-cval,Inf), corr = 

corrmat ) 

 

# Upper Right corner 

upright <- pmvnorm(lower=c(cval,cval), upper=c(Inf,Inf), corr = 

corrmat ) 

 

# Total chance of exactly 2 errors 

twoonly <- lowleft+lowright+upleft+upright 

 

# FWER 

FWER <- oneonly+twoonly  

 

# Probability of any two errors (FMER) 

FMER <- twoonly  

 

# MSFP probability of two superior false positives 

MSFP <- upright 

 

#Output results 

corrmat 

FWER  

FMER  

MSFP  
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C.2 R code to calculate the probabilities for the rejection 

regions based on three correlated test statistics, 

assuming a trivariate normal distribution. 

# Install library first use 

setInternet2(TRUE) 

install.packages("mvtnorm") 

library(mvtnorm) 

 

# Trivariate normal case (3 experimental arms) 

 

#set correlation 

corr <- 0.5 

 

#correlation matrix  

corrmat <- 

matrix(c(1,corr,corr,corr,1,corr,corr,corr,1),ncol=3,byrow=TRUE) 

 

#critical value  

cval <- qnorm(0.975) 

 

#Exactly 1 error (illustrated by the 6 side face of a cube minus 

the upper and lower 5% around the edges) 

 

Oneonly1 <- pmvnorm(lower=c(-cval,-cval,-Inf), 

upper=c(cval,cval,-cval), corr = corrmat ) 

Oneonly2 <- pmvnorm(lower=c(-cval,-cval,cval), 

upper=c(cval,cval,Inf), corr = corrmat ) 

Oneonly3 <- pmvnorm(lower=c(-Inf,-cval,-cval),            

upper=c(-cval,cval, cval), corr = corrmat ) 

Oneonly4 <- pmvnorm(lower=c(cval,-cval,-cval), 

upper=c(Inf,cval,cval), corr = corrmat ) 

Oneonly5 <- pmvnorm(lower=c(-cval,-Inf,-cval),  

upper=c(cval,-cval, cval), corr = corrmat ) 

Oneonly6 <- pmvnorm(lower=c(-cval,cval,-cval), 

upper=c(cval,Inf,cval), corr = corrmat ) 

 

# Total chance of exactly 1 error 

Oneonly=Oneonly1+Oneonly2+Oneonly3+Oneonly4+Oneonly5+Oneonly6 

 

#Exactly 2 errors (illustrated by the 12 edges of a cube minus 

the #upper and lower 5% in the corners) 

 

# the 3 edges that corner the triple rejection in favour of 

control #(lower left front) 

onlyllx <- pmvnorm(lower=c(-cval,-Inf,-Inf), upper=c(cval,-cval, 

-cval), corr = corrmat ) 

onlylly <- pmvnorm(lower=c(-Inf,-cval,-Inf), upper=c(-cval,cval, 
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-cval), corr = corrmat ) 

onlyllz <- pmvnorm(lower=c(-Inf,-Inf,-cval), upper=c(-cval, 

-cval,cval), corr = corrmat ) 

 

# the 3 edges that corner the triple rejection in favour of the 

#experimental arms (upper right back) 

onlyurx <- pmvnorm(lower=c(-cval,cval,cval), 

upper=c(cval,Inf,Inf), corr = corrmat ) 

onlyury <- pmvnorm(lower=c(cval,-cval,cval), 

upper=c(Inf,cval,Inf), corr = corrmat ) 

onlyurz <- pmvnorm(lower=c(cval,cval,-cval), 

upper=c(Inf,Inf,cval), corr = corrmat ) 

 

#Off edges (l=lower u=upper f=front b=back l=left r=right): 

onlylrz <- pmvnorm(lower=c(cval,-Inf,-cval),         

upper=c(Inf,-cval,cval), corr = corrmat ) 

onlyfry <- pmvnorm(lower=c(cval,-cval,-Inf),    

upper=c(Inf,cval,-cval), corr = corrmat ) 

onlylbx <- pmvnorm(lower=c(-cval,-Inf,cval),        

upper=c(cval,-cval,Inf), corr = corrmat ) 

onlyufx <- pmvnorm(lower=c(-cval,cval,-Inf),    

upper=c(cval,Inf,-cval), corr = corrmat ) 

onlyulz <- pmvnorm(lower=c(-Inf,cval,-cval),            

upper=c(-cval,Inf,cval), corr = corrmat ) 

onlybly <- pmvnorm(lower=c(-Inf,-cval,cval),            

upper=c(-cval,cval,Inf), corr = corrmat ) 

 

# Total chance of exactly 2 errors 

Twoonly <- 

onlyllx+onlylly+onlyllz+onlyurx+onlyury+onlyurz+onlylrz+onlyfry+

onlylbx+onlyufx+onlyulz+onlybly  

 

# Exactly 3 errors (Calculate probabilities in each of the 8 

corners of a cube) 

x1y1z1 <- pmvnorm(lower=c(-Inf,-Inf,-Inf),               

upper=c(-cval,-cval,-cval), corr = corrmat ) 

 

x2y1z1 <- pmvnorm(lower=c(cval,-Inf,-Inf),             

upper=c(Inf,-cval,-cval), corr = corrmat ) 

x1y2z1 <- pmvnorm(lower=c(-Inf,cval,-Inf),              

upper=c(-cval,Inf,-cval), corr = corrmat ) 

x1y1z2 <- pmvnorm(lower=c(-Inf,-Inf,cval),              

upper=c(-cval,-cval,Inf), corr = corrmat ) 

 

x2y2z1 <- pmvnorm(lower=c(cval,cval,-Inf),          

upper=c(Inf,Inf,-cval), corr = corrmat ) 

x2y1z2 <- pmvnorm(lower=c(cval,-Inf,cval),             

upper=c(Inf,-cval,Inf), corr = corrmat ) 

x1y2z2 <- pmvnorm(lower=c(-Inf,cval,cval),              

upper=c(-cval,Inf,Inf), corr = corrmat ) 
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x2y2z2 <- pmvnorm(lower=c(cval,cval,cval),      

upper=c(Inf,Inf,Inf), corr = corrmat ) 

 

# Total chance of exactly 3 errors 

Threeonly <- 

x1y1z1+x2y1z1+x1y2z1+x1y1z2+x2y2z1+x2y1z2+x1y2z2+x2y2z2 

 

 

#FWER – the overall error region of the sides, edges and corners 

FWER=Oneonly+Twoonly+Threeonly  

 

# Probability of at least any two errors  

twoerr <- Twoonly+Threeonly 

 

# Probability of three errors - sum of the corner regions 

threeerr <- Threeonly  

 

# Two MSFP - probability of at least two superior false 

positives 

# Sum of the 3 edges meeting the upper right back  

#(i.e. two false positives along the plane of the third 

distribution) # and the upper right corner 

 

TwoMSFP <- onlyurx+onlyury+onlyurz+x2y2z2 

 

# Three MSFP - probability of three superior false positives 

ThreeMSFP <- x2y2z2 

 

#Output results 

corrmat 

FWER  

twoerr  

threeerr 

TwoMSFP  

ThreeMSFP 
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C.3 R code to calculate the critical value required to control 

the probability of two MSFP errors based on correlated 

test statistics to that for independent trials, assuming a 

bivariate normal distribution. 

 

setInternet2(TRUE) 

install.packages("mvtnorm") 

library(mvtnorm) 

 

#The MSFP is the upper right corner of the rejection regions  

#based on the standard bivariate normal.  

#The MSFP needs to be controlled at 0.000625 (0.025**2) 

 

#set correlation 

corr <- 0.5 

 

#correlation matrix 

corrmat <- matrix(c(1,corr,corr,1),ncol=2,byrow=TRUE) 

 

#Solve the critical value for the upper right corner  

#equalling 0.000625 

upperx <- qmvnorm(p=0.000625,tail=c("upper.tail"),corr=corrmat) 

uppertail <- upperx$quantile 

adjcval <- 2*(1-pnorm(uppertail)) 

adjcval 

 

 

 

 


