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Abstract

Additive Manufacturing (AM) describes a powerful set of techniqgues which have the
potential to become a reliable method for the manufacture of complex and accurate parts.
Laser Sintering (LS) is one of the most promisingM techniques, capable of
manufacturing aimensional (3D) products from polymer powders. However, some key
challenges still limit their widespread applicasomhe most common key challenges,
specifically for the Laser Sintering AM process are limited availability of different
matrials, inconsistent or poor mechanical properties and surface quality, each of which
is currently still restricting the functions of the emske parts.

In some cases, nanoclay reinforcement of polymers has been shown to provide
performance benefitémproving part quality, and offering new applications. However,

the dispersion of those nas@ed materials still remains a critical issue for the
preparation of Laser Sintering nanocomposites. A novel method of using plasma
treatment to tackle these clesiges was developed in this study. Plasma treatment was
used to increase the surface area of nanoclay particles and with the expectation of
simultaneous surface functionalisation aiming for increased homogeneity after dry
mixing of polymer and nanoclay polers. SEM images of treated composite powders
confirmed this expectation as the plasma treatment reduce agglomerations and improved
nanoclay dispersion in the powders.

To consolidate these powders into parts a novel methodology, i.e. Downward Heat
Sinterng (DHS) method was initially used as a powerful replication method for the Laser
Sintering technique. DHS process was employed with a hot press to process small
quantities of PA12 and dry mixed composite powders into tensile test specimens after
optimisaton attempts based on differential scanning calorimetry (DSC) andtdu
microscopy (HSM). SEM images of the heat sintered specimens showed clearly the
plasma treatment prevented the aggregation of the nanoclay resulting in an improved
elastic modulusfdreated composite compared with neat PA12 and untreated composites.
Moreover, the reduction in elongation at break for the treated composite was less

pronounced than untreated composite.

Further work resulted in successfullySlparts with different conmlpx and accurate
shapes. No significant deterioration in LS processibility was observed and complex LS

parts could be produced when including the plasma treated nanoclay. SEM images of the



crosssections of the fabricated parts that the layer by layectstelwere successfully

consolidated and relatively uniform. In addition, the introduction of the plasma treated

nanoclay was found to improve the elastic modulus of the LS composite parts. Most

notably however, a substantially improved surface qualitpiar t 6s appearance
microstructure was found as a result of incorporating plasma treated nanoclay compared

to the nontreated nanoclay.

PA12 exposed to Low Pressure Air Plasma Treatment showed an increase in wettability,
was relatively porous, and posses$sa higher density, which resulted from surface
functionalisation and materials removal during the plasma exposure. However, it showed
poor melt behaviour under heating conditions typical for Laser Sintering. In contrast, brief
Plasma Jet treatments demtrated similar changes in porosity, but crucially, retained
the favourable melt characteristics of PA12 powder.

To summarisgthis is a unique study on the use of plasma treatment and polymer/polymer
nanocomposites in LS applications, demonstrating #fitkt time that plasma treatment
has the potential to provide crucial performance benefits for laser sintered

nanocomposites.
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Chapter 1: Introduction

Section 1.1:Background

Laser Sintering (LS) is a wekinown Additive Manufacturing process, capable of
producing highly complex geometries with little or no cost pendlhe demand for
materials that can be used efficiently in Laser Sintering applications have raised interest
in polymermatrix nanocomposites. LS has emerged as a promising technology in a large
number of applications because it has achieved the production of highest precision and
accuracy on 3D complex produ¢lg, [2]. Polymer matrices have desirable properties, in
these applications, such as light weight, and low ¢8%tbut their mechanical properties

are limited compared to metals. Moreover, limited selection of polymers, component
surface quality and performes consistency may also limit the LS applicatipfi$ [6].

For expanding the LS applications or to enhance the existing properties of the LS
materials, researchers have focused on changing the LS paramdtengestigating new
materials, or a combination of these optiod$, [5], [7]1[11]. Whereas surface
modification based on plasma treatment has not beesidered for LS applications.
Plasma treatment can be used efficiently to modify either polymer matrices or filler
materials for LS nanocomposites. For example, polymer surfaces can be modified to alter
their surface propertidsr exampleadhesion, wettality and biocompatibility 12]i [14].
However, plasa treatment to date has been mostly used to modify solid materials and
thin films, whereas powders remain much less explored. Polymer powders can be
modified as well as solids and similar results to that of solids can also be obtained such
as adhesion angettability. However, polymers, particularly powders, are sensitive to
rising temperature (as expected during plasma treatment) and respond quickly to the
plasma action, therefore using the right plasma technique and parameters is essential to

ensure thedesired modification. Therefore, two plasma treatment techniques were



explored in the current study: low pressure plasma treatment and atmospheric pressure
plasma jets. The most suitable plasma treatment source, parameters, conditions, process
gases couldrary the intended application of the LS products. For example, plasma
treatment could produce materials for applications require high porosity, or wettability
properties. It was suggested, as a result, the production of LS components from plasma
treated pwders could be the next generation of materials and applications produced by a

combination of two different technologies: plasma treatment and LS.

Another unexplored application of plasma treatment is the surface modification of the
nanomaterials, and mospecifically nanoclays. Nanoclays are frequently used as a
reinforcement, to enhance the thermechanical properties of polymdi$]. However,

the incompatibility between the organic polymers and mineral clays can restrict the
strength of reinforcement. Hence, organic modifiers are commonly used to render
nanoclay misciblevith polymer[16]. To a certain extent, orgaitiieated nanoclays have
increased the mechanical pesties of polymers in the conventional manufacturing
methods such as melt compoundjfhd]. However, when laser sintering was used, weak
interaction between clays and matrices and the agglomeration of clay has reduced the
strength and the elongation at break especially when mechanical mixing is enip8}yed
Therefore, plasma treatment could have the potential to reduce the nanoclay
agglomeration and enhance its dispersiotyrper matrix. The plasma treatment of
nanoclay has not been widely usgk®], [20]; moreover, studies on using plasma
treatment to prepare polymers nanocomposites are vefRidre2]. Thus, itis a crucial

study to treat nanoclays using plasma treatment to increase the surface area of nanoclay

particles and facilitate the dispersion of nanoatathisLS technique.



Section 1.2:Aims and objectives

The main aim of this studyasto explore new areas of plasma treatment applications to
enhance Laser Sintering polymer nanocomposites. This study, therefore, presents new
methods to improve the dispersion of filler inside the LS polymer powder in one hand
and to treat powders uséadr laser sintering in another hand. These aims are further

explained in the next three points:

() Plasma treatment of nanoclay for replicatadrihe LS process

The first part of section (I) aied to investigate the feasibility of using plasma treated
nanoclay to reinforce LS polymers with an expectation of reducing nanoclay
agglomerations and enhancing properties. The current approach has been started initially
with Cloisite 30B nanoclay as a &l and polyamide 12 as a matrix for this part of study.

In order to save time and cost through using the minimum amount of powder, a new
simple casting method to mirror the idea of LS techniga® suggested for itial trials.

Thus, the second aim of thesctionwasto replicate the laser sintering process; work will

be presented on the development of a Downward Heat Sintering (DHS) process, carried
out in a hot press, to fabricate tensile test specimmensthe composite powders (plasma
treated and urmgated nanoclays).This section is the topic ofChapter 4:
Nanoclay/Polymer Composite Powders for use in Laser Sintering Applications: Effects

of Nanoclay Plasma Treatment

(I1) Plasma treatment of nanoclay for LS applications

Exploring new fields of plasma treatment in polymer nanocomposaetnuesin this
sectionput usinghelLS technique. This part of the thesis ex@tie potential of plasma
treatment to address the poor dispersion of the nanoclay into the LS polymer matrix. This
novel method, therefore, aims to overcome the LS challengeger properties,

performance consistency, and surface quahityichis caused by the limited selection of



LS materials or by the poor interaction betwdba nanoclay andhe polymer. The
composite materials of PA12 and nanoclay (Nanomer 1.34TCN) were prepared for Laser
Sintering method follow the heat sintering process described in previous section. This
section is the topic o€hapter 5:Novel Plasma Treatment for Preparation of Laser

Sintered Nanocomposite Parts

(111) Plasma treatment for surface modification of h&ymerpowders

This chaptens part ofa series of works linking plasma treatment and its advantages on
laser sinteringmaterias. However, standard LS polymer powder was modifiedre,
using three diffenat plasma treatment techniquies applications which require high
hydrophilicity. This is a comparable study suggedteesetechniques to ensure the
advantages of plasma treatmarg fully exploited This part of the studgsobenefited

from the advantages dHS as acasting method to mirror the technology of laser
sintering on smaller PA12 powder quantiti€Bis section is the topiChapter 6:Surface
Modification of the Laser Sintering Standard Powder Polyamide 12 by Plasma

Treatments

Section 1.3: Thesisstructure

This is an alternativeformat thesis(approved by the supervisors and Faculty of
Engineering in University of Sheffieldyontains chapters (Chapter 4 and 6) were
published in peefreviewed journals or submitted (Chapter 5) as stated in thesis structure

shown below:

Section 1.3.1: Thesis chapters:

Chapter 1: Introduction

Chapter 3: Literature Review

Chapter 2: Background and Experimental Works

Chapter 4: Published Paper
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Chapter 2: Literature Review

Section 2.1:Background

Three main aspects coveredhis chapter argpolymer nanocomposites, lasertsiing,
and plasma treatments. Thist section focuses mainly oranoclay/polymecomposites
discussing the nanoclay dispersion bengfitsallenges and its infence on polymer
matrix properties. Then, laser sintering is the seguoauth part ofthis chapter, andaill
outline the laser sintering procesgterialsadvantages and challengBeevious studies
made to widen theange of materials for laser sinterjgereviewedin this sectionThe
final part of thichapterdeals withtheplasma treatments of polymers and nanomaterials
particularlyfocusing orlaser sintering material$. summary ofthe previous literatures
givenat the end of this chapter emphasiséhe importanceand noveltyof the current

study.

Section 2.2:Nanocomposites

Nanocomposites are multiphase materials fabricated from two or more materials at least
one material has one or more nanoscale dimensions (less than 10heydre highly
heterogeneousiixture of organic and nonorganic materials; therefore, taeyexhibit
significantly improved properties such asechanical optical, thermal, barrier and
flammability properties[1]i [8]. These studies arenly few examplesof research and
review articles which are continuously published every yean the literature.
Nanocomposites major materials named as matrix, reinforced withsieath materials

at different loadings which vary fro®fo or less to 30% or more. The mégquently
used nanocompositeystems are: MetaMatrix Nanocomposites; CeramiMatrix
Nanocomposites and Polymer Matrix Nanoconiesg9], [10]. Even though ceramic

and metal nanocomposites have been manufactured commercially for different

applications[11]i[13], polymer nanocomposites have also emergedragssenti



material anda substitute material to these expensive matenmlan endless lisbf
applicationg8]. Some examples of the polymer nanocomposites are listEabie 2-1.
For example, sing oflight-weight polymer nanoompositesin automotive applications
have the potential to reduce fuel consumption and emissidss design of polymer
composites is more flexible and ease to produce in diffe@otirsand shapesHere,

we only focus on polymer nanocompositesed for lasesintering applications

Table2-1 Polymer Nanocomposites Applications

Fillers Properties Synthesis anddbrication| Applications References|
Carbon Nanotube | Mechanical o ]
. Infiltration-Curing proces{ Aerospace [1]
sponges properties
o ) ) Solar energy
Carbon Nanotube | Conductivity Spin-coating o [4]
applications
Mechanical o _ )
Nanoclay ) 3D Bio-printing Biomedical [14]
Properties
o Permeability in situ emulsion Coating
Montmorillonite _ o o [15]
properties polymerization Applications
Nanoclay Flame retardancy|Solutionparticipation Flame retardants | [16]
] Suspension and bulk .
) Mechanical o Dental composites
TiO; . polymerization free [17]
Properties i ) and bone cements
radical techniques
] Electrochemical [Chemically synthesized |
Gold nanopatrticles o Biosensor [18]
activity gold polypyrrole

Section 2.2.1: Polymernanocomposites

Polymers as matrices havpreferential properties in industrsuch aslow melting
temperature, light weight, and eagenanufacturing19], and thuspolymess, now,have
an important role in a wide variety of applicasoim transportation, medical and
communications. Howevepolymersalone donot satisfy all the requirements of these

applications because polymer in nature has low thermal and electricity conduatidty

10



low strength and thermal stabilityAn efficient way to improve polymeproperties is by
using nanofillefreinforced polymer composite§20]. Despite the field ofpolymer
nanocomposite progressingn the last few decades, the current preparation methods for
making nanocomposites still neegd be further developed to achieve enhancenrent
nanocomposit@roperties and cost savinghe major challenge to obtain the potential
benefits of the polymer reinforcement is the dispersion of the f{ikegs carbon nanotube

or clay)in apolymer matix [5], [21], [22].

Section 2.2.2: Fillers

Section 2.2.2.1: Introduction tonandillers

Nanofillers are a relatively new class of materials in whicit least onenancsized
dimensionwhich could bringsignificantphysical and chemicalhangedor polymeic
materials Nanofillers of various materials aategorsed based onheir functions,
chemical nature, shape, orientatiand so on. On the basis tifeir functionaliies
nanofiller groups can be divided into, for example, conductive and nonconductive
nanomaterialsln terms of their chemical naturdyanofillerscanalsobe classified ird,
organic and inorganior natural and synthetidhesegeneralclassificationsin some
casesmay not bevery helpfulbecauseseveralclasses of materials may fall intoore
than one of these clasBcations for example, nanocarbon tubes are organic and
conductive For most purposesgientific name(e.g. multiwalled carbon nanotubes) or
commercial name (e.g. Cloisk@0B) of nanofillers are moracceptableA wide range

of nanofillers are used to reinforce polymersdifierentapplicationsbutso far, a limited
selection of reinforcing materialsonly exploredfor LS applicationskor these purposes,
few types ofnorganiclayered silicate@anoclays)23]i [25], organicnanofillers carbon
containing materialgcarbon nanofibe€NF, carbon nanotub€NT andcarbon black

CB) [26], and metal oxidegnancAl20z[27] or nanaesilica [28]) have attracted much

11



interestthan other nandillers. Compared to the layered silicates, other reinforcements
require additional preparation procesdesexample Melt mixing followed by grinding

in a cryogenic millingprocesswere used to prepare CNF compo$8]. Such these
processesause irregulapowdermorpholoy whichis un-preferred for LSapplications
[30], [31]. Otherstudies have showihat CNT and CB compositeSalmoria et aj32]
andAthreya et a[33] respectivelycan be prepad via mechanical mixingrocessput

fails to avoid nanofiller aggregatioA study by Zhang et d27] has shown thaa
polystyrene (PS) coating dfancAl20s by emulsion polymesationfor PScomposites
improved the nanofiller homogeneity, buit sacrificad the polymer binderSimilarly,
nanosilica was coated with PA12 to reinforce PA12 using dissofypi@tipitation

procesg28].

In summary,additional processes and extra materials are requirathtatain the LS
favourable nearspherical powder morphology anéchieve homogeneous nanofiller
dispersion 34]. However,a patented method was develofdliaming Bai et aJ34],
[35] has shown that CNT/PA12 nanocompositean be produced with enhanced
mechanical properties amdthout any changen PA12 powder morphology. High cost
of CNT and its negative impact on health and environneentd be a disincentive for
some oftheir potential use$29], [36], [37] Compared to CNTNanoclays including
montmorillonite, halloysite, kaolin, and bentordtes safe and exhibited no toxic[88],
whilst organomodified nanoclays have higher degree of toxiagyperformed by
Alixandra Wagnef39]. However,a full examiration ofthese materials at all stages of
their life (manufacturing and end of their life stagés)s not completed yet which is
requiredto maintaintheir favourable properties for biomedical applicatif3t§. Notable
results showed that the nanoclay byproducts have exhibited a loss in tagieifyesits

of the degradation of the nanoclay organic modif89]. Therefore,any procesdike

12



plasma treatmerould be useful for the bimanufacturing if itause a reduction in the
organemodifier of the nanoclays/hile maintainng favourable propertiesf nanoclay
reinforcenent propertiesThe preferentialproduction of anoclay compositeis via
mechanical mixingto maintain neaspherical powder morphaly but the nanoclay
particles aggregation is expected to occur whicluldweaken the mechanical properties
of the LS part§23]. Suchasthis processhowever,s more favourable thaany other
processwvhich could change the powder morphology suchhasgrinding of composite
pellets causg irregular powder morphologysenerally, Nanoclays are available, much
cheaper and environmentally friendly materi§d®]i [42]. Uncertain toxic organic
modifiers need further works to understand the physical and chemical properties which
could affect the potential toxicif$9]. Hence wehave exclusivelyocusedonthelayered
silicates nanoclaywhich will be explained and discussed in detaithe next section.
Another health andafety issues witthe combination of nanomaterials (e.g. nanoclays)

with the LS powdecontained in the LS building chamber

The large quantities of polymer nanocomposite powders contained in the LS building
chamberduring the LS process may raise theltieand safety issueslowever, upto-

date, there is no previous studythis fieldhasconsideredhese issues

Section 2.2.2.2: Layeredsllicate clay

Layeredsilicatesare named forregular stacks o&luminosilicatedayers constructed in

two different arrangement¥aolinites and phyllosilicateKaolin clays (also called
China clay)have layered structure as de&rahedralayerlinked to one Octahedréyer
[1(T):1(O)] with a chemical formula of (ABiOs(OH)s). The Kaol i niteds
tightly held togetheby hydrogen borsgl not expandable, artius polymers are not able

to intercalaé between these minerals she&tisereforethese filling materials are used in

materialsfor whichno intercalation is requirdalit the appearance of the product is more

13



importantsuch as ceramics, rubbeaints,and papef43]. Whilst, phyllosilicatesuch as
smectite and micare built from 2:1 Tetrahedr@ctahedraktructure Micas, similar to
Kaolinite,are not expandable but their interlayer bonding is relatively stiomgntrast,
Smectite is the mostppropriategroup for intercalation process of polymerssulting
from the interlayer weak van der Waals bonding and exchangeablé3jor8nectite
mineral clays are either naturally ocdng such as@lium montmorillonite (NaMMT),
hectroiteandsaponiteor could be synthesesl like laponiteNa" MMT s still the most
popular among the othedsie to itshigh surface area, high aspect ratio amdilability.
Figure 2-1 ill ustrates structural diagram for ideal layered silicate Montmorillonite clay
[44]. Furthermore, it is possible to hydrate interlayer cations in aqueous solution leading
to an increasing in the gallery and facilitate the intercalation prdd&s MMT6 s
particles with a platy structure astuck togetheto form irregularmacro to micron size

powder agglomerations.

A challenge with using NaMMT as filler is the weak dispersion of the hydnd Na+

MMT in a hydrophobic plymer. To make better intercalation between these materials,
the nano NaMMT has been modified organically in order to convert it from hydrophilic
clay to organophilic clay by adding surfactants. SurfactaittsQuaternary Ammonium
Saltsreduce the surface energy of the clay and increase the interlayer space making it
generdly compatible with hydrophobic polymefs]. Clays after modificatiorarecalled

as organomodified (nano) ckwr organoclag, but commerciallythey are produced
undermanuf acturerés brands based on the chemic
For example, Southern Clay Products had produced several engaoclays undeihe

trade nam€loisite™ trade name (C), such & 5A, C20A andC30B. Nanocof (wholly

owned subsidiary oMinerals Technologies Inchas also producedanoclays under

Nanome?P trade name for instance, 1.34TCN, 1.24TL and |.38fudies have showthat
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the organomodified nanoclays (e.g. Cloisites) hexvieancedarrier[6], electrical[45],
thermal [45] and mechanical46] propertieshigher thanthe polymer matricesand
nonmodified MMT/polymer compositesNanoclays (organimnodified) C30B and
I.34TCN are the mject filling materials.| have begun to us€30B to creat
nanocomposite for LS applications pafterwardthe supplier of this nanoclay does not
exist anymore and C30B i longer available. Therefor€30Bwas used for the DHS

method, while thé.34TCN for the LS onlyas will be discussed i@hapter Five

== Exchangeable
cations and water

@ °xygenor
hydroxyl

& silicon
(tetrahedral)

aluminum, iron,
° magnesium
(octahedral)

Figure 2-1 The ideal structural diagram of montimorrilonite
clay ,reproducedwith permissiorfrom [44].

Section 2.2.3: Nanoclaypolymernanocomposites
Nancclays as filling materials haveeen proved remarkable reinforcement to polymers
[6] which have been widely used commercially in different applications such as in

automobile, air plane, and space parts becautieeoiique properties of the produced
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parts compared to conventional macro and micro composites. Within the last decade
many studie®iave been conducteal the nanocomposite field, btite firstknownwork

was presented by Toyota Research Centre in Japan in the earlj4890s

After that, Emmanuel P. Giannelis worked with his group in this area. Giaj@)is
reviewed and summarised their previous workpalgmer layered silicates composites
They showed thagtolymer chains intercalate into the interlagpaceggalleried which
resulted inan improvedmnechanical and thermploperties of polymer nanocomposites.
They alsofound that the quantiy of the layered silicatedillers is far lesscompared to
other fillers like mineral and glagsased fillerghat isredu@dthe product overall weight
Finally, they reportedcommercial applications have already benefited from the light
weight, enhancegropertiesand low cost of using layered silicates nanocomposites, and

more arestill under development.

Since that themmany researchers have widely studied the field ofrpelynanocomposite
worldwide. The new manufacturing processes, cdenmd techniques, practical
charactesation laboratories have greatly helped researchers and developers to work in
agile and supportivenvironment.Over the past two decades, the dismer of the
nanoclay in polymerhas attracted intense interest from these researahéiis plays an

important role in the development of the polymer nanocomposites.

Section 2.2.3.1: Dispersion ohanoclays

There are wo possible structures for nanoclay dispersion iptdymers matrices:
Immiscible and miscible structuse When the morphology of nanocomposites is
immiscible, the nanoclay layers are stacked togethtr very bad adhesion between
nanocaly and polymers leadingaphaseseparated structur&€he miscibleformation of
nanocomposites has thrgessiblestructures: fully intercalated, fully exfoliated and
partially intercalated partially exfoliated. Intercalated nanoclay has a constant interlayer
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space and the polymer moleesdireinserted intdhe interlaye space, while in exfoliated
from the nanoclayoes not hava constant gallerynsteadthe nanaclay layers are well
dispersed into polymer matrix. Also, partifoliation and partialintercalationcan
occur. The four types of dispersion methods arevehm Figure 2-2. Using clay
monolayers of nnascale dimension as idealisation. Real clay layers, even for

nanoparticles, will have multilayer thickness of 10s or 100s of nm.

Polymer matrix HU Nanoclay layers
EN)y = B @

Uhes F<Npt

= - S —
Micro-aggregated Intercalated Exfoliated structure ~ Partially intercalated-exfoliated
structure structure structure

Figure 2-2 possible foutypes of dispersion diller: Micro-aggregatedghase
separate(l fully intercalated, fully exfoliateednd partially intercalateeexfoliated
structures.Theideal layer thickness and distance between layers a2enth.

Section 2.2.3.2: Preparation methods
Polymer nanocomposites are governed partially by the preparation protiesssfere,

any development attempts start from the method of materials mixing.

Mainly, four preparation methods were aaré stillused intensively to prepapmlymer
nanocomposits including: mixing in solvent, mixing in polymerization, mixing in

melting, and mixing by mechanical means.

Mixing in solvent; in this procesghe polymer is dissolved in a solvent and the layered

silicate clay is dispersed and exfoliated in the resulsolution. The polymer is
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intercalated between layered silicatgshe nanoclay layers were completely separated
when the solvent is evaporated or precipitaldee compatibility between polymer and
clay will control the resultant nanocomposite: intéated or exfoliated19].Water as
solvent canbe used with water soluble polymdd®]. However, potentialtoxicity of

solvensis animportantissue especially if organic solvent is u$édl].

~

Mixing in polymerisation; this methodsoc al | ed Al n si,wasusgotol y mer i z a
prepare polymer nanocompositasToyota Research group. This process, afterwards, is

frequently used but with limitatiorsich as the cosf environmental hazardous organic

solvents.In situ polymerizationthe layered silicates clagmodified or unmodified)s

swollen in monomer solution and polymer intercalated into layer galleries. This process

has been used to prepaitherthermoset polymer®r example Epoxy iothermoplasts

like polyamidewith modified or unmodified claj19].

Mixing in melting ; the layered silicate clay and polymer are mixed together through a
molten state without any solvent. Thermoplastic polymer is preferred to be used in this
method to produce intercalated or exfoliated nanocomposites thrgagtian moulding

[50] or extruderg51]. To produce a welllispersed exfoliated nanocomposaddng a

compabilizeris required50], [51].

Ligquid mixing by mechanical means;in this process the polymer and filler are mixing
in liquid state. High speed magnetic stir 9are used to create the vortex effect and
leading to weHdispersedcomposites as demonstrated by S. Zainu@aid coworkers
[52]. However, in this process air bubbles may be created araideackease the micro

voids inside the resultant composithich should be avoided in LS applications.

Dry mixing by mechanical means high speed dry mixer or stirrer followed by

soncation is used to prepat& nanocomposite materialsfter the mechanical mixing,
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powder morphology is not changed which raise the benefits of this prabess,
homogeneityf the nanoclay in polymer matrasing injection malding [53] or LS[23]

processess a key issue

Although, there is not perfechethod to prepare nanocomposite, the last method, dry
mixing, is much easier and not needing solset additives and noextra lengthy
processes. In addition, some solvents are notfremadly such as diethyl ether and
petroleum ethef54]; therefore environental issues should beonsideredfor those
solventsFurthermore, the mechanical properties of the LS polymer composites prepared

by solution method was lower than the unfilled polyf®éi.

Section 2.2.3.3: Mechanicalproperties

Enhancing the Mechanical properties of polymers is still a major challenge, although
considerable research is being carried out every year since the firsivstsidpnducted

by Toyota group in the early 1990s. Tensile test, flexural test, and hardness test have been
used successfully to evaluate the improvement in mechanical properties, the tensile test
is the most popular technique which has been used to ev@heastrength and stiffness

of polymers nanocomposites. Polymer stiffness and strength are relatively low; therefore,
adding nanofillers, most importanhanoclaysis a common option to improve these
properties. However, the incorporation of nanoclays pitymers does not always
increase the properties afie polymer matrix The difference in polarity between
polymers and nanoclays, preparation methodsreambclay loading play an important

role in improving the tensile test properti€®r example ByungWang Ju et a[46]

proved that the mechanical and thermal properties of nanocomposites would be improved
if the nanoclay was well dispersed into polymer matrix. They foundth®atse of
organomodified Cloisite 30B and 25A in polymer nanocomposites exhibited better

exfoliation than Nd& MMT. The results showed Young Modulus of NMMT
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nanocomposites was not increased compared to the pure polymer due to the poor
dispersion of nanocjain polymer matrix. Also, using more than 5% Cloisite 30B or 25A
nanoclay led to the decrease the performance of nanocomposites because a lower degree
of exfoliated clay was presented. Similar studies in literature have showed the
reinforcement is discomuous with higher loading percentage of fillers for instance

nanoclay/epoxy nanocomposj&2] and carbon nanotube/epoxy hanocompo$iéps

Section 2.2.3.4: Theoreticalmodelling

Theoretical studiesising analytical modelsoupled with experimental methods could
make a qualitative descriptiomo predict the overall stiffness of the polymer
nanocompositesAnalytical models: MoriTanakaand HalpinTsaiare the most widely
usedmicromechanicainethods The difference between those models is geometrical and
physical [57]. The physical difference between those models is: Mbanaka is

i ndependent of t he P-bshit sndependers aspeatratigp7]. and i n H
Based on geometry, Mefianaka assumed the fiber and disc particles as ellipsoidal
shape, while HalpiTsai assumed the disc as a rectangular and the fiber as fpiiber

Also, in literature, the disc could be assumed as a circular $§68perhus, geometric

and dispersion of filler are essential in these models. Due to the complexity of geometric,
some assumptions are made in such studies. Some of these studissuaredathe
distribution of fillers is weHexfoliation[57] or partially exfoliated and intercalati¢8].

The orientation of particles is also important for Mbanaka modeltherefore,this

model is divided into three approaches depending on the orientation of particles, i.e.
oriented particles, 2D and 3D randomly distributed partif3$. Parameters such as
particle volume ratio, aspect ratio, and particle/polymer elastic modules are also recorded

as important parameters for those approaches.
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The useof Finite Element Methods with these models is limited especially for high aspect
ratio platelike particleg59]. Another limitation of using these models is the accuracy of

elastic modulus (E) is necessary and this is difficult to achig&8]it

Section 2.3:Manufacturing processes

Polymerand polymemnanocomposites could be produced either by conventional er non
conventional fabrication techniques. Conventional manufacturing technolodes
extrusion andhjection maulding are widely used in plastic industrismanufacture high
volume productdy injection into a mould oby extrusion pressuréilthough these
traditional processes are frequently used and gained industrial accepliam=esional
accuracyof products does not meeaill the manufacturing needs fdigh precision
productg60]. Parts madé&om thermoplastic polymers such as nylon, polypropylene and
polystyrene are the most commonly produced using this technology. Temperature and
pressure are required in the fabrication process; therefore a thermal degradation is
expectedin produced materia. On the othehand,additive manufacturing process

have attractedincreasingattentiondue totheir promising potentiafor the directpart
production offinal 3D high-accuracyproductsusing maild-less and pressutess
manufacturing procesBifferent types of additive manufacturiagecurrently available

in the manufacturing market, but here we only focus on laased additive
manufacturing techniques. This manufacturing technicggs high power laser to sinter
polymeric powder in Lase®intering (LS) machine or fuse (melt) metallic powder in a
different machine named as Laser Melting (LJ@}]. Thus, the maifiocusof this thesis

is LaserSinteringandits applicationsn polymers and polynménanocomposites.

Section 2.3.1: Laser Sintering(LS)
Laser Sinteringl(S), also known as a rapid prototypimgalayerby-layer manufacturing

technique designed to produce high precise and more cor8ptimensional (3D)
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products A computer aided design (CAD) model a computer connected the LS
machine is usetb simulate three dimensional shapes and then fabricate the designed
objectsfrom powdered materials using laser powre possibility to produce parts in a
high geometric complexitig the main advantage using LS techniquis?2]. LS producs

final or neaffinal objectswithout the need for post machining could reduce processing
time and costHowever, a limited selection of matddgaand inconsistent mechanical
properties are still challenges restricting the overall potential R [65]. Porosity

and surface quality could also affect the functions of theusedpart§66], [67]. Pore
formation is highly affected by the melt flow and thermal stability and is also influenced
by the powder particle spa, distribution and processing parameters (laser power and

scan speedp4], [68], [69]

Section 2.3.2: Polymersnanocomposites by LS technique

Matrix polymers; Polyamides especiallgolyamide 12(PA12)is the mostfrequently
usedpolymerin LS. Benefits offer by PA12 angrocessability (easy to sinteayailability
(relatively inexpensive)and successfully producdthrge sintering window)31]. It is
important to include an exampéémy DSGHSM results Figure 2-3) here in this section

to give general idea about the thermal properties of PA12 and further discussion are found
in Chapter46. DSC results coupled with hot stage microscopy imagdsgare 2-3,

shows the melting, crystallization temperature and processing window of B832%

°C, 145.7°C and39.8°C respectivelyThus,PA12 in LS has been insightful research

rather than other materials.

Attempts to use other polymers in LS aeportedfor example polyethylene (PE)70],
poly (EtherEtherKeton) (PEEK)63] and poly (EtheiKeton) (PEK) [71]. Despite this

potential, the produced parts stilb not meet the requirements in many applications.
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Challengesch as porosity, surface qualitgconsistent mechanical properties and part

shrinkage are still restricting the overall potential of[&6], [67], [70], [71]}

However, plymeric materials are capable to be reinforced by adding reinforcement

materials suclas nanoclayo improve their materials properties.

Figure 2-3 DSC and HSM results of PA12 heating from 50 C to 250 C at rate
10 C/min. shows melting, crystallization and processing window temperature:

Nanofillers

Nanoclays, ardrequently used nanofillers in polymer nanocomposite applications,
nanomaterials, offer significantly improved matrix polymer properties, such as strength,
thermal and electrical conductivitidowever, the dispersion of nanoclay still remains a
challenge for the overgtlerformance of laser sintering nanocomposites. Poor interaction
between organic polymenatricesand inorganic nanoclays leads to a miaggregation

phenomenon and is a problem for the mechanical propgsiies
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