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Abstract 

 Cardiovascular disease remains the leading cause of mortality in Western 

world. Current treatments for vascular disease include vascular grafting and stenting. 

Owing to the limitations of current treatments, over the past few years a significant 

research effort has been directed towards the development of tissue engineered 

blood vessels (TEBV). However, a TEBV that matches the biological and 

biomechanical functionality of natural blood vessels has yet to be developed. One of 

the strategies employed in the development of TEBVs involves the use of 

decellularised or synthetic scaffolds, which are seeded with the patient’s own cells 

and physically conditioned in bioreactors, with a view to developing blood-vessel-

equivalent functionality prior to implantation. Along this line, the physical conditioning 

in bioreactors needs to replicate the in vivo haemodynamic stimulation, in order to 

guide normal cellular function and appropriate graft remodelling and regeneration. 

However, the in vitro set up, with the cells seeded on to a decellularised or synthetic 

scaffold and subjected to pulsatile flow in a bioreactor, does not represent a 

physiological scenario. Even if the bioreactor is able to simulate physiological 

haemodynamic conditions at the macroscale, the stimulus that would be transferred 

to the microscale and sensed by the cells to regulate their function is likely to be 

different from the micro-stimulus sensed by the cells in vivo in a native blood vessel. 

Therefore, in order to appropriately guide cellular function in vitro it would be 

necessary to assess the level of micro-stimulus sensed by the native cells in the 

native blood vessel in vivo, with a view to simulating this micro-stimulus in artificial 

bioreactor environments for conditioning the cells that are seeded onto scaffolds with 

non-native histoarhitectures. However, this micro-stimulus that vascular cells are 

exposed to in vivo cannot be assessed experimentally. The advances in computing 

and software resources have enabled the use of computational modelling for 

conducting such assessments. The aim of this project was to develop computational 

models for assessing the stress and strain fields on the vascular tissue and cells at 

the macro- and micro-scales, which will assist the bioreactor conditioning towards 

the development of tissue engineered vascular grafts. The 3D macro-scale 

simulations involved fluid-structure interaction (FSI) analysis with main focus on the 

strain on the vascular wall, while the 2D micro-scale simulation involved finite 



 
14 

 

element analysis (FEA), focused on the local strain variation. All simulations were 

based on relatively physiological structures after experimental assessment. The 

simulations were also compared against experimental findings for strain. Macro 

strain resulted in approximately 11% for FSI against 19% for experimental pressure 

test. However, the limitations of the experimental procedure overestimated the 

performed dilation. Moreover, the 2D FEA simulations performed under different 

material properties, as an attempt to approach more physiological conditions, and 

under uniaxial strain only. The variation in material properties indicated 

inhomogeneicity, as expected, and also seemed to replicate the local strain spread 

when compared to experimental findings. However, further investigation is needed, 

which will involve the development of 3D FEA models, more physiological material 

properties and biaxial stretching. Under these circumstances, more information may 

be extracted and eventually applied to the bioreactor conditioning. Nevertheless, the 

novel methodology developed in this project for the study of the strain at the micro-

level allows the further investigation on the tissue micro-environment.               
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Chapter 1. Introduction 

 
In spite of remarkable advances in medical science, the human body is still 

subject to malfunction. Organ or tissue dysfunction due to aging, accident, or 

congenital conditions is the principal cause of death worldwide. In the western 

societies, cardiovascular disease is the leading cause of mortality and one of the 

most prominent in terms of healthcare spending. Vascular disease, such as 

atherosclerosis, aneurysms, diabetes, and high blood pressure, affect the normal 

function of the body by interrupting the delivery of oxygen and other nutrients to the 

rest of organs and tissues, leading to strokes, heart attacks and other organ failure 

[Ratcliffe, 2000]. Additionally, chronic venous dysfunction, as well as lower extremity 

chronic deep venous insufficiency affects an estimated 3% of the general population 

in the Western World, while it remains a major health problem worldwide [Teebken et 

al. 2003, Bergan et al, 2006]. 

Current surgical interventions for the treatment of vascular disease include 

vascular grafting and stenting. Grafting involves the use of the patient’s own 

(autologous) tissue to replace the defected vessels. However, in 10-40% of patients, 

there is no suitable autologous tissue available, mainly due to the frequent 

reoperations in these vascular conditions, as well as due to other trauma or 

underlying disease. Under such circumstances, surgeons employ alternative 

conduits for the replacement of diseased vessels, such as prosthetic (synthetic) 

grafts. Synthetic grafts such as polyethylene terephthalate (Dacron®) and expanded 

polytetrafluoroethylene (ePTFE) perform well in large diameter vessels (>6mm), 

where the flow is high, while in smaller arteries (diameter <6mm) have been proved 

unsuccessful. The failure of small sized grafts has been associated to intimal 

hyperplasia and thrombosis[Pappas et al 1998], as well as to the increased 

turbulence and subsequent damage to the blood constituents and reconstituted 

endothelium on the graft wall, leading to poor patency rates in vivo [Tiwari et al, 

2002].  Moreover, the use of vascular homografts and chemically-treated xenografts, 

as alternatives to autologous conduits for grafting, has resulted to aneurismal 

degeneration, calcification and rupture [Dale&Lewis 1976, Umpleby et al. 1984, 

Dardik et al. 1988, 2002].  
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 Owning to the limitations of the conventional treatments and therapies, 

workers in relative fields have sought alternative solutions, in order to improve and 

extend the lives of patients. One of these alternative approaches is tissue 

engineering (TE). Tissue engineering offers an attractive alternative for tissue 

reconstructions, involving the development of biological or hybrid substitutes for 

implantation into the body with a view to fostering remodelling and regeneration of 

diseased tissue. First generation of vascular tissue-engineered constructs involved 

the use of synthetic or natural-decellularised tissue scaffolds, which would allow the 

migration of the endogenous cells, and subsequently regenerate in the patient. 

However, this approach has been associated with inappropriate implant properties in 

vivo, as well as with variability of the patient response in terms of recellularisation 

and [Serruys et al. 2006, Stone et al. 2009].  

 Second generation tissue-engineered grafts employ scaffolds (decellularised 

tissue or synthetic), which are seeded in vitro with the patient’s own cells and  

physically conditioned in bioreactors, in order to produce functional grafts, prior to 

implantation [Niklason et al. 1999]. The main advantage of this approach is that it 

can improve the localisation of cell delivery and promote graft fixation and survival. 

Therefore, there is a great interest in comprehending the mechanisms under which 

the in vitro recellularisation would generate desirable results in terms of scaffold 

remodelling and graft survival in vivo. To this view, it is necessary to understand the 

process by which the cells transduce mechanical forces into biochemical signals. 

This process is called mechanotransduction and, together with biochemical cues, is 

responsible for the regulation of cell function.  

Previous studies [Chien 2007] have demonstrated that mechanical forces 

applied to endothelial cells (ECs) due to blood flow, play a significant role in the 

interaction of cells with their environment, and they are responsible for several 

cellular pathways that regulate cell and tissue function. Nevertheless, the most 

abundant cells in vascular tissue, and especially in vessels with a diameter <6mm, 

are smooth muscle cells (SMCs). The ECs form the inner layer of the vessel and are 

predominantly exposed to blood-flow-induced cyclic shear stresses, whereas the 

SMCs reside in the middle vascular wall layer and are predominantly subjected to 

cyclic circumferential and axial strain, as a result of the vessel dilation/elongation 

under the pulsatile blood pressure. Previous reports [Kim et al., 1999] have 
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demonstrated that when SMCs were subjected to mechanical loading, the production 

of collagen and elastin increased, compared to the case that no loading was applied, 

demonstrating the direct link between mechanical loading and extracellular matrix 

(ECM) protein synthesis. However, the amount of mechanical loading experienced 

by SMCs in situ is largely unknown. This is also true for the amount of mechanical 

loading that is necessary to be applied to a tissue-engineered vascular construct in 

order to elicit appropriate cell function and physiologically-relevant tissue remodelling 

and regeneration.  

In order for tissue-engineered substitutes to provide effective restoration of 

function, they need to match closely the biological and biomechanical properties of 

the tissue/organ they replace. The development of such substitutes demands a 

multidisciplinary approach, incorporating biology, engineering, materials science and 

medicine, as well as the consideration of a wide range of relevant issues, including 

the specific function of the organ/tissue repaired or replaced and the degree of 

restoration of function required. To date, traditional in vitro or in vivo experimental 

methods do not allow the accurate assessment of the blood stresses and their effect 

on tissues and cells. Therefore, there is a considerable drive to develop alternative 

methods for providing further quantitative and qualitative information on the 

mechanical environment of cells and tissues that can be used to guide cell function 

and tissue regeneration in tissue-engineered vascular conduits.  

Recent advances in high performance computing has made possible the 

development of complex numerical simulations that have the potential to 

revolutionise tissue-engineered construct development by providing relatively 

inexpensive testing platforms able to assess the mechanical environment of tissues 

and cells and predict the development of these constructs in bioreactors. Vascular 

computational modelling covers a wide area of research, from the macro- to the 

micro-scale. At the macro-scale, the progress of the medical imaging has provided 

more realistic geometries as input data for the computational models. Additionally, 

the advances in mathematics and computing have allowed the investigation of the 

interaction between the blood and the tissue using the Fluid-Structure Interaction 

method (FSI). By coupling the fluid (blood) and the elastic structure (vascular wall), 

this method enables the prediction of the wall deformation due to pulse variation, in 

response to change in pressure [Morris et al. 2015]. Such information can then be 
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transferred from the macro- to the micro-scale, to investigate its effect at the cellular 

level.  

The aim of this research project was to develop computational models with a 

view to investigating the effect of the macroscale stress/strain, generated by the 

pulsatile blood flow, to the microscale stress/strain experienced by the cells and the 

ECM in the wall of porcine femoral arteries. The ultimate purpose of the present 

research is to use the results, in order to optimise the conditioning of tissue-

engineered arteries in the specially designed bioreactor to achieve a more 

physiological regeneration. Additionally, the computational models may be further 

used for the study of different scaffolds architecture, which will provide information 

on the strain translation in different scales. This thesis comprises 7 chapters that 

describe the work conducted during this PhD project. Chapter 2 is focused on the 

literature review and the state of the art in the computational modelling and tissue 

engineering of blood vessels. Chapter 2 also describes experimental and 

computational approaches for investigating cellular mechanotransduction. Chapter 3 

describes the experimental work that was carried out, in order to obtain the 

geometrical and the mechanical properties of the femoral arteries that were 

subsequently used to develop the 3D computational FSI models. The development 

of the macroscale FSI computational model is described in Chapter 4, alongside the 

validation of the macroscale FSI computational results against experimental findings 

and mathematical verification. Chapter 5 is focused on the development of the 2D 

microscale computational modelling of the arterial wall. Chapter 6 describes the 

experimental process that was carried out to provide data for validating the 

microscale computational models. Finally, Chapter 7 discusses the findings of the 

study, together with its conclusions and future work.   
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Chapter 2. Literature Review 

2.1 Physiology of the blood vessels  

While the heart’s pumping action is responsible for keeping blood in motion, it 

is the blood vessels that carry the blood around the body. Blood vessels of the 

circulatory system are divided into two main categories: the arteries, which carry the 

blood from the heart to the organs and tissues, and the veins, which carry the 

deoxygenated blood back to the heart (Figure 2.14). This section is focused on the 

structure and mechanical properties of the arteries. 

 

Figure 2.14: Schematic of blood circulation [Cancer
 
research UK, 2008]. Schematic illustrates the 

direction of blood through the vascular system. 

 

2.1.1 Structure of arteries  

As arteries distance from the heart, they branch repeatedly, and these 

branches decrease in size as they approach the tissues (Figure 2.15.2). The 

branched system of arteries, as well as that of the veins, vary in size, mechanical 

properties, biochemical and cellular content, as well as in ultra-structural 

organisation, depending on their location. Large and medium-sized vessel walls are 

formed by three different layers. The inner (tunica interna, or tunica intima ), the 

middle (tunica media) and the outer (tunica externa, or tunica adventitia) (Figure 
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2.16). As the vessels decrease in size, the external layers disappear, leaving the 

smallest, the capillaries, with a single layer, the endothelium. 

 

 

Figure 2.15: Histological structure of the vascular system [Bozkurt, 2008]. The schematic describes 
the meso-structure of the blood vessels. Vessel size is inversely proportional to their distance from 
the heart.  

The tunica interna (endothelium) is the internal layer of any blood vessel. This 

layer contains the endothelial cell lining and an underlying layer of connective tissue 

with abundant elastic fibres (the basal lamina or elastica interna). However, in the 

large elastic arteries, such as the aorta, there is an additional sub-endothelial layer. 

The structure of this layer varies according to the age of the individual, since it 

develops gradually. In young ages it is very thin and composed of connective tissue 

fibres. As the individual grows older, this layer becomes gradually thicker, cellular 

and denser. Several cell types have been identified within the sub-endothelial layer, 
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with SMCs being the dominant type, followed by fibroblasts, macrophages, and a 

small numbers of mesenchymal stem cells (MSCs) [Rhoden 1980]. 

The endothelial lining is a single-cell layer, which is formed by endothelial 

cells (EC) and constitutes the inner lining of the entire vasculature. Endothelial cells 

seem to arrive from a hematopoietic precursor, the haemangioblast [Sumpio et al. 

2002]. They are polygonal, flattened (0.2-0.5 m thick) and elongated parallel to the 

blood vessel axis (along the direction of blood flow) [Rhoden 1980, Levick 2003]. 

Junctional complexes are found between the ECs. These junctions serve for 

communication and transport between the ECs and between the ECs and the other 

vascular layers. Since the endothelial layer acts as a barrier, the ECs’ properties 

allow their interaction with the underlying smooth muscle layer, as well as with the 

blood constituents. The ECs prevent thrombogeneicity at the blood-tissue interface, 

by regulating several processes, such as thrombolysis and vasodilatation. Several 

vasoactive substances and mediators (such as nitric oxide), which are released by 

ECs in response to chemical stimuli from the surrounding environment, are 

responsible for these processes [Sumpio et al. 2002]. The ECs have also been 

reported to play a significant role in angiogenesis and vasculogenesis during 

embryogenesis. It seems that endothelial growth factors and cell-specific receptors 

are necessary during morphogenesis for the differentiation of the capillary network 

[Sumpio et al. 2002, Martini 1989]. Regulation of immune and inflammatory 

responses is also a function of the endothelial cells, owing to their ability to control 

the interactions between monocytes and lymphocytes with the vessel walls. These 

properties of the endothelium assist homeostasis and maintain the normal function of 

the circulatory system. Therefore, any malfunction of the endothelium, caused by 

injury or any other abnormality, may contribute to the development of vascular and 

heart disease, such as hypertension, atherosclerosis, and congestive heart failure. 

Unfortunately, many of the ECs’ pathways remain unknown, and their dysfunction 

cannot always be prevented.  

The middle layer of the vascular wall is the tunica media. This layer comprises 

of bundles of collagenous fibrils, elastic fibrils and sheets, and the only type of cell 

present is smooth muscle cell (SMC) (Figure 2.3). The extracellular matrix (ECM) 

proteins of the tunica media supply the necessary mechanical strength to the 

vessels, which varies according to their position. The spindle-shaped SMCs have a 
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single nucleus, which is located in the thickest part of the cell. The size of SMCs 

varies between 20-50 m, and their thickness between 5-10m [Bader 1963]. The 

SMCs form two types of smooth muscles (SM): the tension muscles and the ring 

muscles. The tension muscles are connected to elastic fibres, and by contracting, 

they raise the tension on the elastic tissue to control the blood pressure. These are 

only found in elastic arteries and in large muscular arteries, in addition to ring 

muscles. There are only ring muscles in all other arteries, which are connected to 

each other. These muscles form helical layers along the axial direction [Levick 2010]. 

The number of the layers formed by the ring muscles ranges between 25-35 in large 

and medium-sized vessels, 3-6 in smaller arteries, and only up to 2 in the arterioles 

[Rhoden 1980]. In large elastic arteries fenestrated elastic laminae are found 

between the SMCs, but they decrease in size, and eventually disappear as they 

approach the smaller arteries. These elastic laminae are concentrically arranged, 

spaced equidistantly, and interconnected by networks of elastic fibrils. The elastic 

components and the SMs of the middle layer are held together by a network of 

collagen fibrils, and are all embedded in a viscous mucopolysaccharide ground 

substance [Rhoden 1980]. 

The tunica adventitia (connective tissue) forms the outer layer of the vascular 

wall. The tunica adventitia comprises of an elastic membrane, the elastica externa, 

and a connective tissue (Figure 3). The elastica externa serves to separate the 

media layer from the connective tissue, while the connective tissue serves to 

connect the vessels to the surrounding tissues [Rhoden 1980]. Sympathetic fibre 

terminals are found in the adventitial layer, which serve to regulate local resistance 

and blood flow by releasing a vasoconstrictor agent, the noradrenalin [Levick 2010]. 

Additionally, tiny vessels (vasa vasorum) are usually present in the adventitia of 

large and medium-sized arteries, which are responsible for the nutrition of the middle 

layer. The cells found in tunica adventitia are predominantly fibroblasts, with 

occasional macrophages and Schwann cells. The thickness and structure of the 

adventitia vary according to the type and position of the vessel. In large arteries, the 

adventitia layer constitutes 10% of the vascular wall, increasing to 50% in muscular 

arteries, while it is indistinct in arterioles and venules. 

In large elastic arteries, the external elastic lamina is not distinct, however, 

there is a fibrous tissue sleeve around the media layer, formed by thick bundles of 
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collagenous fibrils accompanied by a loose network of elastic fibres. Nevertheless, 

as the elastic arteries decrease in size an external elastic lamina appears, which 

becomes clearly distinct in the muscular arteries. The adventitia in muscular arteries 

is composed of longitudinal bundles of collagenous fibrils in the inner part, while in 

the outer part the collagenous fibrils are arranged circumferentially. Longitudinally 

arranged elastic fibres are also found in this layer in muscular arteries. As the 

muscular arteries approach the arterioles, the adventitial layer decreases 

significantly, the external elastic membrane becomes hardly distinct, while the 

bundles of the collagenous fibrils become denser, and are only arranged 

longitudinally.  

As one could conclude, it is the individual arterial components and their 

organisation that give the arterial wall its mechanical properties, which are essential 

for the normal function of the entire cardiovascular system. 

 

Figure 2.16: Schematic of a medium-sized artery [Aging Research 2010]. The schematic illustrates 
the components and the organisation of the arterial wall. 

 

2.1.2 Mechanical properties of the arteries 

The size of the blood vessels is inversely proportional to their distance from 

the heart. In addition, all the vessels are composed of different amounts of collagen, 

elastin, and smooth muscle layers. These components may have different structures 
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and carry different properties. As with most soft tissues, blood vessels can be 

characterized as viscoelastic [Fung, 1993]. An example of a typical viscoelastic 

behaviour of soft tissues is shown in Figure 2.17. For relatively small strains, this 

behaviour remains linear, and thus for small deformations, these materials obey 

Hooke’s law. Additionally, investigations suggest that Poisson’s ratio is 

approximately 0.5 [Nichols and O’Rourke 1998]. 

 
Figure 2.17: Typical stress-strain relationship of collagen and elastin in soft tissues. [Korossis

 
2002].  

 
 

Blood   vessel Internal  (mm) Thickness (mm) E (MPa) Reference 

Aorta 
(anterior wall) 

n/a 2.35 0.824 
Tseders & Purinya, 
1975 Aorta 

(posterior) 
n/a 2.26 1.000 

Descending 
thoracic aorta 

19.30 n/a 0.076 
Pearson et al., 1994 

16.40 n/a 0.068 

Abdominal 
aorta  

   
 

   
11.61 n/a 0.052 Sonesson et al., 1993 
   

 
Carotid    
Common 
carotid 

n/a 1.66 0.765 
Tseders & Purinya, 
1975 Internal 

carotid 
n/a 1.60 0.800 

Femoral n/a 1.90 1.000 Tseders & Purinya, 
1975 Common iliac n/a 1.63 0.950 

Table 2.1: Summary of the Young’s modulus (E) and physical properties of arteries. The significant 
difference in these values derives from the fact that the mechanical properties vary according to the 
histoarchitecture of the arteries, which in turn depend on the position of the artery inside the body. 
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The elastic modulus of different human blood vessels, evaluated 

experimentally and reported in the literature are summarised in Table 2.1. The 

assessment of the blood vessels’ mechanical properties involved the methods of 

echocardiography [Pearson et al. 1994], phase-locked [Sonesson et al. 1993, 

Kawasaki et al. 1987], ultrasound [Lanne et al. 1992], and tensile testing [Tseders & 

Purinya 1975]. The experimental evaluation of elastic modulus of an artery depends 

on several factors, such as tissue preparation and testing conditions, the technique 

used to measure arterial diameter, and the age of the subject. Other parameters 

include the specific histoarchitecture of the particular blood vessel and its content in 

collagen, elastin and cells. 

 

2.1.3 Mechanical properties of vascular cells  

 
The cells’ mechanical properties have a significant effect on the behaviour of 

the tissue they compose. Within the body, the cells experience relatively severe 

forces. Their mechanical properties allow them to withstand such loads and also to 

perform their physiological function at the same time. In an artery, the most abundant 

cells are the ECs and the SMCs. Because of their position in the artery, the ECs are 

exposed to shear stresses due to the blood flowing within the lumen of the vessel 

[Sato et al. 1996], while the SMCs deform due to the vascular dilation [Liao et al. 

2006].  

The main methods that have been used to date to assess the mechanical 

properties of cells include micropipette aspiration [Sato et al. 1996, Liao et al. 2006, 

Lim et al. 2006] and atomic force microscopy (AFM) [Sato et al. 2006]. The 

micropipette aspiration technique has been used to assess the constants of 

homogeneous standard linear solid models that have used to describe the 

viscoelastic behaviour of cells [Lim et al. 2006]. Some of these constants are listed in 

Table 2.2, with k and  representing the spring and dashpot constants of the 

mathematical analogues of the cell behaviour. The values obtained from those 

investigations depend on several factors, including cell species, the technique used 

for cell isolation and the state of the cell [Hochmuth 2000]. Additionally, the cells, as 

living organisms, may change their structure during vital processes, which also 

affects their properties. The mechanical properties of the cells depend on their phase 
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cycle, the cell activity level, the neighbouring cells, as well as the surrounding 

environment [Starodubtseva 2009]. 

 Another important parameter that affects the cellular mechanical properties is 

the exposure of the cells to mechanical loading. Sato et al. (2000), using the AFM 

technique, illustrated that the exposure of the ECs to different amounts of loading 

affected their properties, by increasing their stiffness. Similar conclusions were 

drawn in the study by Kim et al. (1999) after subjecting SMCs to cyclic mechanical 

strain. The variation of the cellular mechanical properties implies variation on the 

mechanical properties of the vascular wall. The structure and position of each artery 

inside the body, also affects the properties of the tissue as a whole. Nevertheless, 

possible defects may have a crucial impact on the structural organisation of the 

arteries, and consequently the physical and mechanical properties of the tissue. 

 

Cell Type k1 (Pa) k2(Pa) (Pa s) Reference 

Porcine ECsa 92±20 190±150 7.2±2.7 x 103 

Lim et al. 2006 
Porcine ECsb 11±3 44±40 1.3±1.1 x 103 
Porcine ECsc 28±5 65±44 2.3±0.6 x 103 

Porcine ECsd 
76±23 210±140 8.3±4 x 103 
~45 ~75 ~3.4 x 103 Sato et al. 1996 

Rat SMCs 19.99±2.86 7.19±1.21 25.36±6.14 Liao et al. 2006 

 Table 2.2: Summary of experimentally-derived viscoelastic constants of the arterial cells. 
a 

mechanically detached cells; 
b 
cytochalasin B treated cells; 

c 
colchicine; 

d 
trypsin-detached cells. 

 

2.1.4 Main pathologies of the arteries 

 Small- and medium-sized vessel pathologies are the primary cause of death 

in Western societies [Yucel 2008]. Usually, such pathologies affect the inner wall of 

the vessels and lead to disturbance of the blood flow. This disturbance will restrain 

the normal distribution of oxygen and nutrients to the rest of the organs and tissues 

and may result in fatal diseases. During the aging process, the physical body 

undergoes dramatic changes. Blood vessels do not remain unaffected, as changes 

due to aging in the structure of the interior vessel wall may lead to a loss of its 

function. These changes involve the gradual loss of elastin and an increase in 

collagen density. This imbalance causes stiffening at the middle and the outer layers 

of the arterial wall, affecting the propagation of velocity and pressure waveforms to 

the distal vessels [Greenwald 2007, O’Rourke and Hashimoto 2007]. Other important 
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pathologies of the vessel wall include hypertension and thrombosis. Hypertension, or 

high blood pressure, is responsible for an increase in smooth muscle mass and 

extracellular matrix [Laurent et al. 2006, Humphrey 2008]. Thrombosis is mainly 

associated with blood clotting [Wooton and Ku 1999]. Both pathologies may lead to 

atherosclerosis or aneurysm. 

 

Figure 2.18: Forms of atherosclerosis. The gradual development of the atherosclerotic plaque, caused 
by the deposition of plasma lipids to the lumen of the artery. (a) coronary artery disease (CAD) [Health 
Plan of New York, 2008]; (b) atherosclerosis in the carotid bifurcation [Coosa Valley Technical College, 
2008]. 

Atherosclerosis is the most common and major arterial disease affecting the 

tunica media and the tunica intima, causing thickening and toughening on the arterial 

wall and leading to dramatic morphological changes in the interior of the vessels. 

Atherosclerosis tends to develop in individuals with high levels of lipids in the blood, 

such as cholesterol and fat. When these lipids are in high concentrations, they are 

likely to attach to the inner vascular wall. The gradual attachment of those lipids will 

develop a plaque; the atherosclerotic plaque. The development of the atherosclerotic 

plaque eventually results to the regional narrowing of the vessel, which causes  

restriction of the blood flow and mass transport to the tissues. In addition, the plaque 

may rupture leading to the release of plaque fragments to the blood stream, which 

could lead to the blockage of narrower vessels such as in the case of myocardial 

infractions in the heart (Figure 2.18a) and strokes in the brain (Figure 2.18b) 

[Humphrey 2002, Zarins et al. 1983]. Blood starvation can ultimately lead to tissue 

necrosis, due to insufficient delivery of nutrients and oxygen. The necrosis of tissues 

(a) (b)
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is life-threatening, especially when this occurs in vital organs, like the heart and the 

brain. 

 

 

Figure 2.19: Forms of aneurysm [MedImaginery, 2008]. 

 

Another pathology that may be possibly caused by atherosclerosis is 

aneurysm formation (Figure 2.19). Overtime, atherosclerosis causes vessel walls to 

become less elastic, and a weak spot may develop. Aneurysms usually develop in 

weak parts of the arterial wall, where the vascular layers become stiff, due to 

atherosclerosis development. Aneurysm is a bulge in the weakened wall of an artery, 

which resembles a bubble in the wall of the vessel that consequently may suffer a 

catastrophic blow out [Martini 1989]. Several forms of aneurysm may develop, such 

as the saccular or the fusiform aneurysm. The ruptured aneurysm will lead to an 

internal bleeding, which is usually fatal. The most dangerous aneurysms are those 

involving arteries of the brain where they cause strokes, and of the aorta, where a 

ruptured aneurysm may cause fatal bleeding in a matter of seconds. The prevention 

and treatment of the arterial pathologies have preoccupied workers in the field and 

need particular attention, since they lack of symptoms and thus, are hard to detect. 

However, these pathologies occur due to the interaction of the arterial wall with the 

blood. It is of high necessity, therefore, to examine the blood composition and its 
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function, in order to obtain a better understanding of the development of the vascular 

pathologies. 

 

 

2.2 The Blood  

 The heart starts beating at the end of the third week following fertilization of 

an egg in the developing embryo. The reason for this is that other organs have 

started their development, and consequently the oxygen and nutrients’ consumption 

is of greater demand. At this point, simple oxygen and nutrient diffusion is not 

enough [Martini 1989]. The circulation of the blood is to serve several purposes not 

only for the development of the individual, but also to maintain balance in the 

organism via its components.  

 

2.2.1 Blood composition and function 

In contrast to other ECMs that contain networks of insoluble fibres,  plasma is 

the blood ECM that contains dissolved proteins. Blood cells and cell fragments are 

the formed elements suspended in the plasma (Figure 2.20). The most abundant 

blood cells are the red blood cells (RBC), also known as erythrocytes, which are 

essential components for oxygen transport. The white blood cells (WBC), or 

leukocytes, are less numerous than the RBCs, however, they are necessary for the 

body’s defence mechanism, since they are associated with the immune system. 

Platelets are small packets of cytoplasm that contain enzymes, and other factors that 

are involved in the process of blood clotting, which in case of an injury, acts as a 

temporary patch for the prevention of further blood loss. These elements, combined 

with plasma, form the blood.  The multi-constituent nature of the blood allows 

different functions, necessary to maintain life. Blood is responsible not only for the 

transportation of dissolved gases, such as oxygen and carbon dioxide, but also for 

the transportation of nutrients, hormones, and metabolic wastes [Martini 1989]. In 

addition, blood regulates the pH and the electrolyte composition of interstitial fluids 

throughout the body, is responsible for the restriction of fluid losses through 

damaged vessels, the defence against toxins and pathogens, and for the 

stabilization of body temperature [Martini 1989]. 
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Figure 2.20: The elements that form the blood [Capillary Circulation 2010]. 

 

2.2.2 Physical properties of blood 

Despite its multi-constituency, when treated as a fluid, blood has been 

modelled as homogeneous and incompressible [Nichols and O’Rourke 1998]. 

Moreover, its Reynold’s number rarely exceeds the value of 2000, therefore, it can 

be treated as laminar [Nichols and O’Rourke 1998]. Blood is a non-Newtonian fluid, 

where its viscosity (~0.00345 kg/ms) is dependent on the haematocrit of the individual 

[Martini 1989].   

2.3 Vascular Tissue Engineering 

Malfunction of the human body has been the cause for the development of 

medical science. Congenital defects, disease processes or even an accident or 

trauma, may affect, damage or destroy an organ or tissue. Current treatments for 

these defects involve the repair of the defective body parts or their replacement with 

either prosthetic devices such as artificial joints and heart valves, autologous tissue 

(from another site of the patient’s body) such as saphenous vein for coronary artery 

bypass and pulmonary valve for aortic valve replacement, or homogeneic tissue 

(donor tissues) such as heart valves, vascular grafts, liver, kidney, heart, and lung. 



 
31 

 

The progress in medical science has saved and improved the quality of life of many 

individuals, however all these approaches are subject to limitation. 

Artificial replacements may cause inflammation and thrombosis, affecting 

more organs and tissues, and patients with prosthetic devices usually have to follow 

life-long anticoagulation therapy. In vascular surgery, autologous veins, and 

sometimes arteries, have been used to replace diseased arteries [Ratcliffe 2000]. 

However, in 10-40% of cases, autologous conduits are not available as a result of 

trauma, disease, or previous surgery, since the chronicity of these disease states 

results in inevitable re-operations [Yow et al. 2006]. Moreover, the need for organ 

and tissue transplantation from another individual vastly outweighs the supply [UK 

Transplant 2008]. In addition, even if a patient manages to receive a transplant, they 

will need to take immunosuppressive drugs for the rest of their life. 

Immunosuppressive drugs leave the patient susceptible to infection, which may raise 

other health issues. Last but not least, the cost of organ transplantation and the 

drugs required to sustain the transplant is very high. 

 Due to these limitations, scientists seek alternative approaches to treatments 

and therapies of defected organs and tissues.  Recently, researchers in the field 

have focused in the relatively new field of tissue engineering or regenerative 

medicine. Tissue engineering can be defined as the development of biological 

substitutes for implantation into the body and/or the fostering of tissue regeneration 

and remodelling, with the purpose being to replace, repair, maintain or enhance 

function. This purpose can be achieved by developing non-immunogenic, functional 

tissue and organ replacements, characterised by physiologically-appropriate 

mechanical and biological properties, off-the-shelf availability, short cultured periods 

in vitro, and predictable clinical efficacy [Bozkurt 2008, Yucel 2008, Edelma et al. 

1999].  

Tissue engineering aims at tissue regeneration using either direct injection of 

appropriate cells to the diseased site, or scaffolds seeded with cells in vitro (with or 

without physical conditioning) prior to implantation to the diseased site [Yucel 2008]. 

The use of cell-scaffold constructs involves the in vitro culture of isolated cells, which 

are then seeded onto a natural or a synthetic scaffold. After appropriate cultivation 

time, the cell-scaffold construct is implanted into the host. The scaffold not only 

provides structural support, but also functions to guide the development of the new 
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tissue [Julie et al. 2001]. Vascular tissue engineering scaffolds are tubular conduits 

or materials capable of being fashioned into blood vessel configurations that are 

neither cytotoxic nor thrombogenic [Yow et al.  2006]. The role of the scaffold is to 

bring the cells (ECs, SMCs, fibroblasts) close to each other in order to facilitate 

intracellular communication, which leads to cell adhesion, migration and 

differentiation. Moreover, the scaffold should meet the physical and mechanical 

properties of the natural ECM, in order to withstand the in vivo forces [Yow et al.  

2006]. However, the challenges to the success of such a scaffold are numerous. The 

physical parameters of a natural blood vessel need to be translated, in terms of 

mechanical, biological and chemical properties and function. Despite the great 

investigation that has been carried out – especially with regards to the physical and 

mechanical properties – our understanding on the interaction between the cells and 

the ECM is still limited. The aim of the following text is to describe the attempts of the 

researchers to construct a tissue engineered blood vessel, and to focus on the 

issues and challenges that were raised during this process.  

Biological scaffolds, non-biodegradable and biodegradable polymer scaffolds 

seeded with cells have been used in vascular tissue engineering [Bozkurt 2008; 

Yucel 2008; Yow et al.  2006]. The different strategies used to develop tissue 

engineering blood vessels (TEBV) are presented in Figure 21.  

 

Figure 21: Schematic of vascular tissue engineering approaches. The schematic illustrates the 
reported methods used in the development of TEBV. These involve the use of (a) synthetic scaffolds 
and (b) biological scaffolds. Scaffolds have either been directly implanted in the human body, or have 
been imposed to cell-seeding prior implantation, with the aid of specially designed bioreactors.  
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2.3.1 Vascular tissue engineering using synthetic scaffolds  

Synthetic scaffolds have the advantages of industrial scale production, and 

biochemical and mechanical qualities determined at the point of manufacture. These 

include degradation products, degradation time, compliance, tensile strength, conduit 

size and configuration [Campbell et al.  1999, Berglund, 2003]. Biodegradable 

polymer ECMs are usually made from polyglycolic acid (PGA), poly-L-lactic acid, 

poly-D, L-lactic-co-glycolic acid and polyurethanes [Kim and Mooney 1998, Tiwari et 

al.  2002, Niklason, 1999 and 2001], while non-biodegradable scaffolds include 

polytetrafluoroethylene (PTFE, ePTFE) [Herring et al.1994, Gosselin et al. 1996] and 

Dacron [Schmidt et al.  1984]. However, such materials do not meet the properties of 

a natural scaffold and usually do not allow cell attachment. Furthermore, synthetic 

scaffold degradation products may cause intimal hyperplasia or inflammation [Yow et 

al. 2006, Tiwari et al.  2002, Tai et al.  2000]. 

Polytetrafluoroethylene (PTFE) and expanded polytetrafluoroethylene 

(ePTFE) implants are made of a carbon and fluorine based synthetic polymer that is 

biologically inert and non-biodegradable in the body, while Dacron is a condensation 

polymer obtained from ethylene glycol and terephthalic acid [Ratcliffe 2000]. The use 

of these materials has proved successful for treatments of pathologies of large 

vessels, however they have been associated with finite durability, thromboembolism, 

and poor intermediate and long-term patency rates, in vessels with a calibre of less 

than 6mm, mainly because of biological reactions at the blood-synthetic material 

interface [Ratcliffe 2000, Yow et al.  2006]. In 1994, Herring et al. (1994) compared 

ePTFE and autologous vein grafts in order to determine whether endothelial seeding 

could improve the patency of ePTFE femoral popliteal bypass grafts and to 

determine whether endothelial seeding could be performed consistently in multiple 

institutions. They concluded that autologous vein graft patency was better than 

ePTFE seeded grafts, and that seeding did not improve patency. Moreover, they 

demonstrated that failure of seeded grafts was associated with anastomotic 

hyperplasia but not with the failure of initial endothelial attachment. 

Gosselin et al. (1996) tested a fibrin glue (FG) containing fibroblast growth 

factor 1 (FGF-1) heparin coating as a surface for endothelial cell seeding in an effort 

to evaluate its impact on cell retention after exposure to pulsatile flow ex vivo. During 

this study, five pairs of ePTFE grafts of 4mm internal diameter were coated with 
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either FG/FGF-1/heparin or fibronectin (FN), which were then seeded with canine 

jugular vein ECs. The results demonstrated that the retention of canine jugular vein 

ECs seeded onto ePTFE grafts coated with FG containing FGF-1 and heparin was 

significantly higher than that of FN-coated grafts after 1 hour perfusion. According to 

the authors, these results seem promising, however they need to be confirmed for 

longer periods of perfusion and most importantly in vivo. Moreover, the functional 

characteristics of ECs seeded on those surfaces need to be systematically studied 

[Gosselin et al. 1996]. 

In 1999, Campbell et al. (1999) attempted to develop an artificial blood vessel 

conduit of any required length and diameter from the cells of the host for potential 

autologous transplantation. Silastic tubes of several lengths and diameters were 

inserted into the peritoneal cavity of rats and rabbits. After a period of 2 weeks, the 

tubes were covered by layers of myofibroblasts, collagen matrix as well as a single 

layer of mesothelium. These self-assembled tissues were removed from the tubing, 

everted, and autologously grafted by end-to-end anastomoses into either the carotid 

arteries or abdominal aortas. Results demonstrated patency for about 4 months, as 

well as the development of structures resembling elastic lamellae. Although the 

study had only a short follow-up, did not report on complications such as aneurysm 

formation or rupture, or attempt any mechanical characterization, it illustrates 

another feature of tissue engineering, namely that it is the cell environment rather 

than cell source that determines eventual function [Campbell et al. 1999,  Berglund 

2003, Yow et al. 2006]. 

During this period, Niklason and colleagues [Niklason et al. 1999] reported on 

efforts for the development of techniques to produce small autologous arteries in 

vitro from vascular cells grown on a biodegradable polymer matrix. After a period of 

culture of SMCs onto a highly porous and degradable poly-glycolic mesh in a tubular 

form, the scaffold was placed in a biomimetic system composed of specially 

designed bioreactors, in which the pulsatile perfusion system mimicked the forces 

that blood vessels are exposed to in vivo. After 8 weeks in culture the bioresordable 

mesh had been replaced by a SMC medial layer. Endothelial cells were then seeded 

onto the luminal surface to provide a representation of the layers of native arteries. 

The graft’s properties included the ability to withstand more than 2000mmHg, as well 

as a collagen content of 50%. When autologous versions of these were implanted 
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into Yucatan pigs, they remained patent for up to 4 weeks. In 2001, the leaders of 

the same research group [Niklason et al. 2001] reported on the examination of the 

effects of culture time and tissue culture scaffold on engineered vessel morphology 

and function, since these parameters greatly influence the function of engineered 

vessels. During this study, engineered vessels were cultured from bovine aortic 

SMCs and ECs in the same way described above, although this time vessels were 

subjected to histologic, ultra-structural, immunocytochemical, and mechanical 

analyses. The results demonstrated improvement in the vessel morphology and 

mechanical characteristics when culture time was extended. SMCs in the engineered 

vessels wall were organised into a highly lamellar structure, with cells separated by 

alternating layers of collagen fibrils. These TEBVs maintained patency for 2 weeks 

after implantation into miniature swine, but gradual deterioration of the constructs 

eventually led to pathological responses and decreased blood flow, probably 

because of the highly acidic localised regions created by the residual PGA 

degradation causing strong inflammatory responses in vivo [Berglund et al. 2003, 

Yow et al. 2006]. 

Later on, the group of Wu et al. [Wu et al. 2012, Allen et al. 2014] introduced 

the cell-free approach and was the first reported group to demonstrate the long-term 

performance of microporous tubes, which were made by utilising elastic polymer, as 

vascular grafts in rat abdominal arteries [Benrashid et al 2016]. These tubes were 

developed by utilising heparin coated polyglycerol sebacate (PGS), reinforced with 

polycaprolactone (PCL) fibres as potential small arterial grafts. Characterisation of 

one year post-implantation revealed the remodelling to neoarteries, with the 

formation of all three layers and similar dynamic compliance to the native arteries. 

The group also reported no significant stenosis, dilation or calcification. This 

innovative cell-free approach, coupled with the use of a fast-degrading material, 

suggests that the remodelling process does not necessarily need to be slow, in order 

to prevent damage to the graft. 

In 2016, another study [Hu et al. 2016] investigated the mechanical properties 

of knitted tubes with different knitting methods (warp and weft) using polyester (PET) 

yarns and spandex fibres. After performing tensile and compliance tests to the 

tubular grafts, the results suggest that the knitting method provide the grafts with 

different mechanical properties. Additionally, the study demonstrated that the use of 



 
36 

 

spandex fibres reinforces the elongation of the wrapped yarns and allows a greater 

compliance, compared to other commercially available grafts, such as PTFE and 

even to the natural blood vessels.     

 

2.3.2 Vascular tissue engineering using biological scaffolds 

Biological scaffolds may be categorised into three groups: prefabricated ECM 

[Weinberg and Bell, 1986, L’heureux et al, 1998], decellularised allogenic or 

xenogenic blood vessels [Teebken et al, 2000, Conklin, 2002], and decellularised 

non-vascular conduits [Badylak et al, 1989, Lantz et al, 1993, Matsuura et al, 2004, 

Darby et al, 2006, Schneider et al, 2016]. Contrary to the synthetic conduits, 

biological scaffolds carry all the physical, mechanical and chemical properties of a 

natural extracellular matrix, which allow cell signalling and eventually cell adhesion, 

migration, proliferation and differentiation. However, the direct clinical applications of 

such conduits [Spark, 2008], have been associated with aneurisms, thrombosis, as 

well as acute and chronic transmural inflammation. 

The first TEBV to be constructed from natural materials was reported by 

Weinberg and Bell (1986). Their approach involved isolated bovine aortic ECs, 

vascular SMCs, and adventitial fibroblasts cultured in vitro on a collagen gel scaffold 

that had been prefabricated by culturing fibroblasts on a mandrel. The construct was 

composed of three layers, corresponding to the intima, media, and adventitia layers 

of natural arteries. Although the endothelial lining of this model functioned similarly to 

normal endothelium in several aspects (von Willbrand factor, permeability barrier for 

large molecules, existence of anti-thrombotic factors), the model did not meet the 

corresponding mechanical  and structural properties of the natural artery [Yucel 

2008, Yow et al. 2006, Edelma 1999].  

L’heureux and colleagues [L’heureux et al. 1998] reported on improvements 

with regards to the mechanical strength of the prefabricated collagen gel scaffold-

based graft by the addition of ascorbic acid to the culture medium. This approach 

resulted in a graft which illustrated fundamental morphological, histological and 

functional characteristics similar to natural blood vessels. Implantation into the 

femoral artery position in a canine model revealed a smooth thrombus-free luminal 

surface, retention of the graft architecture, and no signs of degradation, tearing or 
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dilatation (aneurysm). Another novel aspect of this graft was the presence of elastin 

fibres, which have a crucial role in the ECM. The most important disadvantage of this 

process, however, was the time needed for the production of this TEBV [Yow et al. 

2006, L’heureux et al. 1998]. 

Another approach adopted by workers in the field is the use of decellularised 

xenogenic blood vessel scaffolds. Teebken et al. (2000) have reported on the 

development of a biocompatible and mechanically stable vascular graft combining 

human cells and a xenogenic acellular scaffold. Utilizing enzymatic cell extraction of 

porcine aortas they created decellularised scaffold tubes, which were seeded with 

human endothelial cells and myofibroblasts that had been isolated from saphenous 

veins. The constructs were subsequently conditioned in a pulsatile flow simulation 

system (bioreactor), duplicating physiological shear stress fields. Following 

conditioning in the bioreactor, the seeded endothelial cells generated a normal 

appearing endothelium in the lumen of the constructs. Although this model had many 

characteristics common to natural blood vessels and stable biomechanical properties 

at physiological perfusion pressures, the myofibroblasts failed to penetrate the 

scaffold. Nevertheless, it was postulated that the absence of cellular antigens, 

especially foreign endothelial-cell antigens, from decellularised scaffolds, and 

homology in the remaining ECM proteins (collagen, elastin, proteoglycans, structural 

glycoproteins) between human and swine, may prevent critical inflammatory or 

immune reactions to be induced by these decellularised tissue-based grafts. 

The decellularised-xenograft tissue approach was also adopted by Conklin 

and colleagues (2002) who reported on the development of a novel small-calibre 

vascular xenograft using porcine common carotid arteries. The arteries were 

decellularised by enzymatic and detergent treatments and were linked with heparin 

in order to reduce thrombogeneicity. Histological results revealed complete removal 

of cellular components, and an intact ECM. Following a number of tests, they 

demonstrated the efficiency and anti-thrombogeneicity of the heparin-treated grafts. 

Burst testing revealed that the grafts were able to withstand pressures in excess of 

10 times the systolic blood pressure. Implantation in a canine model as carotid artery 

bypass grafts, showed SMCs populating the wall and ECs lining the lumen by two 

months. According to the authors, this strategy could allow control of graft healing 
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and remodelling in order to achieve optimal clinical performance and avoid graft 

degradation. 

In addition to vascular conduits, non-vascular tissues have also been 

employed as scaffolds in vascular tissue engineering. Since 1989, Badylak and 

colleagues (1989) have been investigating the potential of small intestinal 

submucosa as a vascular graft.  Implantations in normal dogs revealed that this 

graft, when used as an autograft, allograft, or xenograft, demonstrated 

biocompatibility and high patency rates in the aorta, carotid and femoral arteries, as 

well as in vena cava locations. Following 28-90 days post-implantation, the grafts 

were completely endothelialised and histologically similar to normal arteries and 

veins. In 1993 the same group reported that there was no evidence of infection, 

intimal hyperplasia or aneurismal dilation [Lantz et al. 1993]. The authors suggested 

that this material may serve as a structural framework for the application of tissue 

engineering technologies in the development of a vascular graft. 

Another non-vascular conduit that has been used in experimental vascular 

tissue engineering, as well as in clinical revascularisation surgery, is the 

Synergraft®. This conduit is a non-fixed, decellularised bovine ureteric graft, which 

has been reported to be capable of autologous cell repopulation by the recipient 

[Matsuura et al. 2004, Darby et al. 2006]. Matsuura et al. (2004) implanted 6mm-

diameter bovine ureter Synergraft® conduits in dogs, as arteriovenous grafts. Some 

of these grafts were implanted between the carotid artery and jugular vein and some 

between the femoral artery and femoral vein. The reported 12-month primary 

patency rate was 58.6%, whilst after 10 weeks of implantation, histological and 

immunohistochemical analyses revealed fibroblast cell migration and proliferation, as 

well as no sign of infection. Darby et al. (2006) implanted Synergraft® conduits in 

patients aged 45-73 with a failed fistula or vascular access grafts. Patency was re-

established in 14 out of 18 surgical interventions, and they reported that Synergraft® 

is a stable vascular access conduit, which provides a suitable graft alternative when 

autologous vein is not available. Recently, however, Spark et al. (2008) implanted 

Synergraft® conduits in patients aged 25-70 with a failed fistula or access graft in 

whom native vessels were unsuitable as conduits. They reported that some of the 

grafts developed aneurismal dilatation and some thrombosis. Moreover, histological 

assessment of the explanted bovine ureters revealed acute and chronic transmural 
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inflammation. In their report, they attributed the high failure rate of the bovine ureteric 

grafts to incomplete decellularisation and the presence of residual xenoantigens 

such as -galactose (-gal). 

More recently, Schneider et al. [Schneider et al. 2016] investigated the 

potential of human placental chorionic plate as a vascular graft. In contrast with the 

limited access to other human-derived healthy tissues, the placenta is highly 

available in hospitals. Additionally, since it is already a human tissue, it presents a 

natural scaffold, and also, it neglects the risk of possible transmission of animal 

pathogens, when compared to xenografts. This group initially developed a 

decellularisation method, which involved a perfusion set-up that allowed shorter 

perfusion processes using lower concentrations of detergents.  The outcome of this 

method indicated the effective removal of cellular components with no significant 

structural damage to the ECM. Tensile testing to the decellularised tissue confirmed 

a reduction of stiffness and ultimate tensile strength, but it still remained within the 

range of in vivo situations. Following, recellularisation of the tissue was performed 

using primary endothelial cells, which led to endothelialisation while maintained 

phenotypical characteristics cell specific expression patterns. Additionally, the high 

viability of the cells indicated the limited effect of the chemicals that were used during 

the decellularisation process. However, further research is necessary in order to 

investigate the in vivo performance of the graft and its potential as an off-the-shelf 

available product.  

 

2.3.3 Conclusions 

Despite remarkable advancements in the field of vascular tissue engineering, 

a completely biological vascular graft that meets the challenge of adequately 

replacing a diseased small-diameter (internal lumen <6mm) blood vessel has yet to 

be developed. The relative success of prefabricated ECMs, in duplicating a degree 

of the mechanical properties of natural vessels, provides a motive for further 

investigation. Nevertheless, the time required for such an approach to generate 

implantable grafts seems disadvantageous. Decellularised vascular or non-vascular 

xenografts, with or without in vitro cell seeding, offer a great advantage by closely 

duplicating the histoarchitecture and mechanical properties of normal tissue [Booth 
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et al., 2002, Korossis et al., 2005]. In addition, xenograft availability and the potential 

of producing non-immunogenic grafts, by effective removal of xenograft antigens, is 

a much desirable combination, in terms of availability. Nonetheless, further research 

is needed regarding in vitro cell seeding and maturation, and in vivo performance 

including the graft’s ability to remodel and develop with the patient. 

An important aspect of in vitro vascular tissue engineering is the highlighted 

need for functional simulation systems for the conditioning/culture and the 

mechanical stimulation of the cell-seeded scaffolds. It is important, however, that 

these systems are able to expose the developing conduits to physiologically-relevant 

biomechanical (pulsatile flows and pressures) and biochemical stimuli in order to 

stimulate appropriate cell function and blood vessel-equivalent regeneration 

[Niklason et al., 1999, Teebken, 2000]. The issue that arise at this point involves the 

methods for assessing the type and magnitude of such biomechanical stimuli that is 

experienced by the seeded cells to regulate their function. To this view, it is crucial to 

understand the cellular pathways and how these relate to their microenvironment. 

The text to follow describes the conclusions of the research activity on the interaction 

between the cells, the ECM and the blood flow.   

2.4 Cell-flow and cell-ECM Interaction 

The human body comprises of approximately 200 different types of cells. The 

cells produce the ECM to form the tissues, which in turn form the organs. 

Nevertheless, tissue formation requires an organised structure of cells and ECM to 

provide the appropriate stimuli, signalling, properties and function. The pathways that 

cells undergo towards this organisation have attracted great attention, especially in 

the area of tissue engineering and regenerative medicine. The conclusions drawn up 

to date after studies on this field, suggest that this organisation comes in response to 

ECM surface, chemical signalling and mechanical stimuli [Schwarz & Bischofs 2005, 

Shamloo et al. 2015].  

The surface and the consistency of the ECM contribute significantly to the cell 

binding, migration and proliferation. Related studies have demonstrated that the 

biochemical composition of the ECM and adhesive environment [Zaman et al. 2006], 

the geometry [Peyton et al. 2011] as well as the fibres distribution [Shamloo et al. 

2015] have a significant effect on the cellular pathways and chemical signalling. The 
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chemical signalling is of great importance, not only for the interaction between the 

cells and the ECM, but also for the interaction between the cells themselves. The 

cell-cell interaction affects the collective cellular responses to the surrounding 

microenvironment, which assist in the cellular organisation towards the creation of 

functional tissue [Shamloo et al. 2015]. Additionally, mechanical stimuli, such as 

external loads, are also responsible for the microenvironment conditioning.  

In the case of the blood vessels, the translation of the mechanical stresses to 

chemical signalling (mechanotransduction) is realised via the vascular cells (ECs, 

SMCs). The mechanical stresses are derived from the blood flow within the vessel 

walls. It has been previously demonstrated [Langille & Adamson 1981; Nerem et al. 

1981] that the shape and orientation of the endothelial cells depend on the flow 

behaviour. Additionally, the endothelial cells are subjected to both shear stress and 

cyclic strain in vivo. Furthermore, reported experiments demonstrated that when 

mechanical loading was applied to the SMCs, there was an increase in the presence 

of collagen and elastin within the seeded tissue, compared to the situation when no 

loading was applied [Kim et al. 1999].  

The cellular pathways are complicated and not yet fully understood. However, 

it is assumed that the stresses experienced by the vascular cells activate several 

cellular events. These events lead to the production of factors, which are necessary 

for the regulation of homeostasis, prevention of diseases, cell differentiation and 

wound healing.  

It can be concluded that mechanical stresses are vital for the proper function 

of the vascular cells. The question that remains unanswered is what is the right 

amount of stresses that leads to the normal function of this tissue. The answer to this 

question will be of great importance for the development of the functional simulation 

systems (bioreactors) for the conditioning of functional tissue engineered vascular 

grafts. Since the understanding of cellular mechanotransduction depends on the 

understanding of several factors, which is difficult to achieve using traditional 

experimental methods (such as mechanical stresses), scientists have sought 

alternative methods for determining the extent of mechanical stimuli, under which 

cells function properly. These methods involve computational techniques and in 

silico simulations. The progress of the numerical platforms allows the computational 

modelling of several biological processes at different scales (macro and micro). In 
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the case of the vascular system, where the blood dynamics affect significantly the 

microenvironment, the computational simulations at the macro-scale may expand 

our understanding on the fluid behaviour and may also provide information that can 

be used to construct simulations at the micro-scale.   

2.5 Computational Methods 

 Computational methods involve the mathematical interpretation of physical 

systems with the aid of computers. The recent computational evolution, the great 

progress in technology and the development of sophisticated computational means 

provide the advantage of solving extremely complicated physical problems. The time 

and the equipment needed for such solutions to be obtained are also great 

advantages that this approach offers. In addition, computational simulations are 

easier to construct, especially when compared to experimental methods. To date, 

there is a great availability of user-friendly softwares, which are based on numerical 

analysis and theoretical computer science, and they are used in the broad field of 

physical science. 

However, the numerical methods carry drawbacks. The solutions that are 

obtained when using such means are approximations, and thus, numerical errors are 

involved, which may lead to the wrong interpretation of the results and false 

conclusions. For this reason, experimental or (when possible) analytical validation of 

results is necessary before considering a numerical trial as reliable or as a 

foundation for further applications. Moreover, despite the low cost when compared to 

other approaches, numerical methods still require equipment, such as processors 

and computer memory (CPU), to be sufficient for running the simulations. Such 

equipment may carry great cost, and in many cases does not even exist.  

Nevertheless, the option of the computational simulations is the most 

attractive method to describe complex physical systems and to expand our 

understanding on them. For the purposes of the present investigation, the following 

text is focused on the computational methods, which have been used to describe the 

blood flow. 
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2.5.1 Computational Fluid Dynamics (CFD) 

 About three hundred years have passed since the Swiss scientist Leonhard 

Paul Euler (1705-1783) managed the mathematical interpretation of inviscid fluid 

flows [Li 2004]. Following, Claude-Louis Navier (1785-1836) and Sir George Gabriel 

Stokes (1819-1903) established the mathematical equations that would describe 

flows of fluids with more complicated properties and behaviour [Li 2004]. These 

mathematical advances found applications in numerous areas, such as 

aerodynamics, thermodynamics, hydrodynamics and meteorology, and are still 

employed in solving advanced physical problems where fluid dynamics are involved. 

The broadness of computational fluid dynamics finds applications also in the 

biomedical field, and more specifically to the numerical modelling of vascular fluid 

flow.   

 In the early 1950s, the mathematical approaches in blood flow 

characterisation involved the assumption of a velocity profile which is greater along 

the vessel axis and is decreasing as it reaches the walls [Taylor and Humphrey 

2009]. Under this assumption, equations of velocity and pressure were averaged 

over the cross-section of the vessel, producing a system of nonlinear partial 

differential equations in a single variable of space and time [Hughes 1974]. Based on 

the mathematical description of mass and momentum, further assumptions followed 

for the calculations of the pressure and flow rates throughout the vascular tree, 

including branching points. Womersley (1955, 1957) developed a theory of pulsatile 

flow in elastic vessels under the assumption of linearity, which was employed to 

model wave propagation in the human circulatory system under normal [Avolio 1980] 

and pathological conditions [Balar et al 1989, Hillen et al 1986, Raines et al 1974]. 

The development of 3D computational modelling of blood flow started in early 

1990’s, and its improvement is growing with the progress of technology. This 

approach provided data that was hard to obtain either with 1D or experimental 

methods, such as wall compliance, mass transport, time and geometric variations 

[Perktold et al. 1991a,b, 1993, 1995, 1997, Steinman et al. 1993, 1994, Lei et al. 

1997]. 

 CFD simulation involves the construction and the solution of the model. The 

first step is the definition of the components engaged. In the case of vascular 

modelling, these components are the vascular geometry and the fluid flow. The 
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simulation of the blood vessel can be identified either as a simple straight tube, or, 

for more anatomical detail, it can be segmented and reconstructed by medical 

imaging, such as X-ray angiography [Gibson et al 1993, Tasciyan et al 1993, Leung 

2006], ultrasound [Chandran et al 1996, Krams et al 1997, Ilegbusi 1999, Liu 2001], 

CT [Jin et al, 2004, Nørgaard et al 2014] and MRI [Long et al 1998a,b, 2000a,b, 

Wang et al 1999, Zhao et al 2000, Ladak et al 2000, 2001].  The defined geometry is 

then discretised (meshed) into volumetric elements (spatial discretisation). The mesh 

refinement contributes significantly to the accuracy and the stability of the results, 

along with the temporal discretisation (i.e. the division of the solution into discrete 

time steps).  

 The next step to follow for the construction of the physical model is the 

conditions imposed at the boundaries. The main surfaces in a vascular 

computational model involve the inlet boundary of the flow, the outlet boundary and 

the inner surface boundary of the vessel wall. Usually, a prescribed velocity profile is 

imposed in the inlet,  a combination of velocity, pressure and traction conditions in 

the outlet, and the no-slip (zero-velocity) condition at the inner wall surface [Taylor 

and Humphrey, 2009]. The employment of such conditions has been reported to 

result in good approximations, when compared to experimental data [Scotti et al, 

2005, Leung et al, 2006, Oscuii et al, 2007, Jafari et al, 2008]. Nevertheless, these 

approaches seem sufficient when velocity profiles and shear stresses are under 

investigation. In cases where pressure profiles or wall compliance are of interest, this 

form of boundary conditions seems insufficient and raises new challenges, since one 

needs the consideration of wall mechanics, fluid-structure interaction, as well as 

transport phenomena, such as oxygen and lipid transport. 

 The mechanical properties of the vessel wall have already been examined 

earlier (Section 1.1.3). It was shown that blood vessels exhibit viscoelastic 

characteristics, such as creep, stress relaxation and hysteresis. The most popular 

characterisation, however, seem to be the employment of elastic or hyperelastic 

material [Taylor and Humphrey, 2009; Scotti, 2005; Valencia and Villanueva, 2006; 

Oscuii, 2007]. Even more simplified properties have been reported in very recent 

publications, in which blood flow is examined through inelastic or rigid walls [Politis et 

al., 2007, 2008]. In 2007, Maurits et al. (2007) compared flow waveforms through 

walls with several properties, including elastic and inelastic, and concluded that the 
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results produced could match the ones obtained in vivo by Doppler ultrasound, only 

when wall elasticity and positive peripheral resistance was taken into account. 

Nevertheless, according to Taylor and Humphrey (2009), the numerical models 

should capture the nearly incompressible, nonlinear, anisotropic responses under 

finite deformations.  

 Fluid-structure interaction (FSI) is associated with fluid flowing between 

deformable walls, and such deformation is mathematically given by the arbitrary 

Lagrangian-Eulerian formulation (ALE). This formulation is described in another 

chapter (Ch 3). 

 The computational simulations of the blood require its mechanical properties 

as a fluid, as well as a flow waveform to be imposed as boundary condition. Both 

factors seem to vary between the reported numerical models. This is because the 

flow waveforms are not different only from one individual to another, but also change 

during circulation. The mechanical properties of the blood also vary between 

individuals. Such variations may not affect the outcome of the simulation, however, 

that would depend on the examined parameters. Despite the non-Newtonian nature 

of blood, there is controversy regarding whether blood can be modelled as 

Newtonian. Some works suggest that non-Newtonian properties of blood are related 

to the shear-thinning [Gijsen et al 1999, Chen and Lu 2006, Siauw et al 2000, Tu and 

Deville 1996], while some others insist that the non-Newtonian effects are minimal 

and can be neglected [Perktold et al 1991, Cho and Kensey 1991, Valencia et al 

2006, Lee and Steinman 2007]. When blood is modelled to flow within large arteries, 

it is usually assumed Newtonian, with a viscosity =0.0345 kg/ms [Soulis et al, 

2008]. Johnston et al (2004) compared Newtonian and non-Newtonian blood 

viscosity models in coronary arteries, and concluded that there was little difference 

between wall shear stress distributions, and that the non-Newtonian importance 

factors were only significant during periods where the blood flow was quite slow. 

They also concluded that when flow is to be studied in more detail, rather than study 

wall shear stresses, a Newtonian model would not be sufficient [Johnston et al 

2006]. Similar conclusions have been drawn by Soulis et al (2008), after 

investigation of 7 different non-Newtonian and one Newtonian fluid models for blood 

in coronary bifurcations. This investigation also illustrated that at mid and high strain 

rates, the Newtonian model results in good approximations. Nevertheless, the 
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mechanical properties of blood may vary, since the viscosity is closely related to the 

hematocrit of each individual [O’Callaghan et al 2006]. Moreover, non-Newtonian 

properties may contribute to the complexity of a numerical model, leading to the 

need for advanced computational means. Additionally, for patient-specific models, 

the measurement of each individual’s viscosity is not convenient.  

The non-Newtonian models that have been employed by researchers towards 

the determination of blood rheology involve the Carreau model [Giannoglou et al.  

2002, Valencia and Villanueva 2006], the modified Cross Law model or Carreau-

Yasuda model [Liepsch 2002], the Power Law model [Lee and Steinman 2007, Cho 

and Kensey 1991], the Generalised Power Law model [Ballyk et al 1994], the 

Casson model [Fung 1993], as well as the Walburn-Schneck Law model [Walburn 

and Schneck 1976].    

 Once all the above parameters are defined, the CFD solver will use this 

information to solve the Navier-Stokes and continuity equations until a final solution 

is reached (convergence). Then the solver will provide the available results, where 

the operator can extract during post-processing. The extracted information should 

then be subject to verification and validation [Oberkampf and Trucano, 2002]. 

Verification refers to mathematical issues and to the accuracy of the complex logical 

structures in computer codes. For the verification of the computational simulations, 

the results should be compared to analytical solutions. Of course, analytical solutions 

are not always available in very complex situations, therefore, validation is needed. 

Validation refers to the comparison between computational and experimental results 

(or other physical observations) to assess the accurate representation of the physical 

phenomena. Such a comparison will determine the accuracy and the reliability of the 

numerical simulation. When the simulation is proved accurate enough, the operator 

may extract further information, which is difficult to be determined experimentally, 

such as shear stress.   

The recent advances in computational modelling have contributed significantly 

in our understanding of the blood circulation. These achievements have also 

extended our knowledge on how the blood flow has been related to the development 

of the vascular pathologies, such as atherosclerosis. Nevertheless, the effect of the 

haemodynamics on the vascular wall at a macro-level is not sufficient to identify the 

interaction at the cellular level, both with regards to disease initiation and 
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development, and also to the successful development of TEBV. Therefore, further 

investigation is necessary in order to determine the levels of stimuli imposed by the 

flow to the vascular cells, and how these stimuli regulate cell function. Those 

parameters are of high importance, since they have significant effect on the 

interaction between the cells themselves, and also between the cells and the ECM. 

Further investigation should involve the translation from the macro to the cellular 

level. The following text is focused on the research activity on the field and the 

reported attempts to interpret mechanotransduction pathways with the aid of 

experimental and/or computational means.   

2.6 Simulation of the microenvironment 

 The simulation of the cellular environment is a great challenge. Researchers 

are called to mimic the complicated system of the physical body and to find ways to 

extract significant information about its function. The scale at the cellular level makes 

this process even more challenging for several reasons. Initially, the sensitivity at this 

scale is greater and thus the handling becomes more demanding. Furthermore, the 

equipment for such studies should be more sophisticated. For example, a 

microscope is necessary to enable the visualisation of a single cell, or the 

microstructure of a tissue. Consequently, the greater the resolution of the 

microscope, the more accurate the visualisation that will provide. Despite these 

challenges, several simulations have been reported, which have been carried out 

either experimentally or computationally, with regards to mechanotransduction. 

 The group of Screen et al [Screen et al, 2003, 2004, and 2005] initially 

developed a technique to determine the strains in tendons. With the aid of a specially 

designed rig, they achieved an immediate visualisation of strain effects on tendon 

fascicles. The rig was designed to fit under an inverted confocal microscope, to 

accommodate the secured mounting of the tissue specimen, and, with the aid of a 

stepper motor, to allow the controlled uniaxial stretching of the tissue. A schematic of 

the rig is shown in Figure 2.22. The researchers isolated tendon fascicles from rat 

tails and bovine extensor tendons, which were stained for cell nuclei, prior to the 

analysis. The cell nuclei were then used as markers, in order to determine the strain 

on the tissue fibres locally. Using the stepper motor, the samples were gradually 

stretched up to 4-5% of initial length in the axial direction, by 0.5% increments. 
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Despite the limitations of this procedure (such as the limited clarity of the cell nuclei 

images), this innovative technique was applied to investigate several hypotheses 

[Screen et al 2003, 2004, 2005] and the provided data may contribute to the 

development of more physiologically relevant in vitro simulations, to enable the 

further study of tenocyte mechanotransduction processes.   

 

Figure 2.22: Schematic of the specially designed rig that was developed by Screen et al (2003) and 
was used for the micro-analysis of tendon fascicles. 

 
 

 Another attempt to understand the cellular mechanotransduction was reported 

by Chien [Chien 2007]. This procedure employed flow and stretch chambers, in 

which the cultured endothelial cells were exposed to shear stress and cyclic stretch. 

In the flow chambers, a monolayer of endothelial cells was placed in the bottom and 

was exposed to the flow, generated by a pressure difference between the inlet and 

the outlet of the chamber (Figure 2.23). The employment of an oscillatory pump 

allowed different pressure waveforms to be applied, either steady or pulsatile. A step 

flow chamber was also developed, using silicone gaskets to cause flow disturbance 

in certain regions, in order to study the effects of the disturbed shear (Figure 2.23).   

The cyclic stretch chambers allowed the deformation of the endothelial cells 

uniaxially and biaxially. As demonstrated in (Figure 2.24), a Teflon intender was 

pushed up against a silicone rubber membrane, while the endothelial cells were 

being cultured on it with a displacement L.  

Specimen
PBS

Stepper Motor

Grips Coverslip Objective Lens Heater Pads 
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     The findings of this study included the effects of shear stress on 

mechanosensing, signalling, cell survival, cell proliferation and cell lipid metabolism. 

These findings were then compared to in vivo studies, where it was concluded that in  

 

Figure 2.23: Schematic of (A) flow chamber and (B) step-flow chamber developed by Chien (2007).  
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Figure 2.24: Cyclic stretching apparatus developed by Chien (2007). In A and B is the side view 
schematic of a stretch chamber and the indenter, where the indenter is pushing up the cell seeded 

membrane to result in a displacement of L (A) and then back to its initial position (B). In C and D is 
the top view of the stretch chambers, for unilateral (C) and bilateral (D) stretches [Chien 2007]. 

 

the areas where the flow is steady (usually in straight parts of the blood vessels), 

shear stress is important for cell homeostasis and function, while in the areas that 

the flow is disturbed, there is a higher vulnerability to atherogenesis. Additionally, the 

effects of cyclic stretches on fibre remodelling, suggested that the direction of the 

stretching has a significant implication in cellular function. Again, at the straight areas 

of the blood vessels, where the blood flows uniaxially along the circumferential 

direction, cellular homeostasis is maintained, reducing proliferation and apoptosis, 

while, in branching areas, where the direction of the flow is disturbed, there is a great 

change in the cellular response, suggesting the high risk of pathogeneicity.   

All the above studies have contributed significantly in our understanding on 

the cellular mechanotransduction. Additionally, the developed methodologies may 
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also be employed to study further the responses of the specific cells, or the 

responses of other kind of cells, in vitro. Further, such experimental simulations are 

also important, since the experimental findings may be used to compare numerical 

studies. As mentioned earlier, numerical simulations are developed in order to, either 

reduce the cost of an experimental procedure, or to extract information that are hard, 

or even impossible, to study in vitro. However, at least some of the parameters, 

obtained numerically, need to be validated with other findings, in order to reassure 

the accuracy of the numerical platforms.  

 

 

Figure 2,25: Description of the finite element models developed by Guilak & Mow (2000). 

 

Several computational techniques have been developed in order to simulate 

the environment at the cellular scale. These include the simulation of intracellular 

processes [Klipp and Liebermeister, 2006], tissue formation [Johnson et al, 2004], as 

well as cellular microenvironments [Borau et al 2011, Chen et al 2012]. However, for 

the purposes of the present work, only relevant studies will be reviewed in the 

following text, such as the work of Guilak and colleagues [Guilak & Mow 2000, 

Alexopoulos et al. 2005]. This group has extensively studied the interaction between 

chondrocytes and ECM, using computational models. They developed a multiscale 

biphasic 2-dimensional finite element model, to investigate the effect of mechanical 

stimuli on chondrocytes (Figure 2,12). They first developed a macroscale model to 
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simulate the response of the ECM under compression. The results for the fluid 

velocity and the matrix displacement were then applied as boundary conditions for 

the microscale model. The microscale model involved a single chondrocyte 

embedded in the ECM. The cell was modelled as a spherical-shaped continuum 

homogeneous mixture of a solid and fluid. Although the validation of the obtained 

results was only based on analytical methods, the findings indicated that the 

magnitudes of the stresses and strains were much higher at the micro-level when 

compared to the ones found from the ECM simulation. Additionally, the presented 

results suggested that several factors affect the biomechanical influence of the cell, 

including the cell and matrix morphology, and the mechanical properties of both. 

 

2.7 Conclusions 

 Tissue engineering and regenerative medicine have the potential to generate 

attractive alternatives to current approaches for vascular surgery. Despite the efforts 

of the researchers, a tissue engineered blood vessel to comply with the standards of 

the native tissue, has yet to be developed. In order to overcome this and progress 

towards a tissue-engineered blood vessel construct that would be suitable for 

vascular reconstructions, in the past few year studies have focused on investigating 

the microenvironment of native blood vessels, in order to extract information that 

could be potentially translated and applied in the conditioning and maturation of 

tissue-engineered vascular grafts in vitro.   

 Previous studies have shown that blood-flow-induced forces experienced by 

cells play an important role in regulating cellular function, and consequently, the 

maintenance of a healthy tissue. Therefore, there is a necessity in studying the 

effects of blood flow and defining the appropriate amounts of stress and strain under 

which vascular cells perform physiologically. These parameters, and especially the 

stress, are difficult to be obtained in vivo or in vitro without disturbing the blood flow. 

Computational modelling has emerged as the best alternative for this type of studies. 

Recent advances in numerical simulations and computer power, have allowed the 

accurate mathematical interpretation of complex physical phenomena. However, it is 

essential that these numerical simulations are validated against experimental in vivo 

or in vitro results, in order to determine their accuracy. 
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This validation usually involves at least one parameter, and when an 

adequate agreement between the computational and experimental results has been 

obtained, the computational simulation may be further used to extract information 

about additional parameters, which are difficult to be accurately measured 

experimentally. In spite of the paramount importance of the validation of 

computational models, there have only been a limited number of studies comparing 

computational simulation results to experimental ones [Shamloo et al, 2015]. This 

was most probably due to the lack of expertise and/or limited availability of 

equipment. Computational simulations offer several advantages, including easier 

setting up and less resources consuming compared to experimental simulations. 

 In spite of the challenges in studying the microenvironment of tissues in vitro, 

previous studies have reported on several methodologies aimed towards this 

objective. These methodologies have the potential to be further employed to 

investigate different type of tissues at the microscale, and they can also provide 

important information for developing numerical simulations. Previous studies have 

successfully investigated the mechanotransduction of the endothelial cells in vitro 

[Chien 2007]. However, the major cellular component of the vascular wall, especially 

in small-sized vessels, comprises smooth muscle cells. In addition to the 

aforementioned challenges in studying the cellular environment, the study of the 

microenvironment of smooth muscle cells in situ is even more challenging, since 

they are located in the vascular wall. Such investigation requires sophisticated 

equipment that would allow penetration and visualisation at a depth in the vascular 

wall.  

 Given the difficulties associated with the experimental investigation of the 

microenvironment that smooth muscle cells are exposed in situ, the development of 

physiologically-relevant computational simulations would allow the determination of 

the micro-stresses and -strains experienced by smooth muscle cells to regulate their 

function. Along these lines, the work conducted during this project was focused on 

investigating the interaction between macroscale strain, applied on femoral arteries, 

and the microscale strain experienced by smooth muscle cells in the arterial wall, 

with a view to optimising the conditioning of tissue-engineered arteries in a pulsatile 

flow bioreactor in order to achieve physiological vascular tissue remodelling and 

regeneration. 



 
54 

 

 

2.8 Rationale, Aims and Objectives 

This project was based on the hypothesis that it is possible to quantify the 

strain experienced by the ECM at the microscale in response to the strain applied in 

the macroscale using numerical modelling. Towards this, the aim of the project was 

to develop multiscale computational models of small diameter (<6mm) vascular 

grafts, based on experimental data and natural histoarchitecture, in order to quantify 

the amount of strain experienced by the ECM and the vascular cells at the 

microscale under physiologically-relevant physical stimuli. This project was aimed at 

enhancing our understanding in the way that the strain acting on the vascular wall at 

the macroscale is translated to the cellular level, with a view to optimising the 

conditioning of TE vascular grafts in bioreactors and guiding appropriate cell function 

and graft regeneration. 

Initially, a macroscale 3D model of the femoral artery was developed, which 

was based on the realistic geometrical and mechanical properties of fresh porcine 

femoral arteries that were obtained experimentally. Porcine tissue was chosen in this 

study due to its similarity to the human tissue, and its availability in local abattoirs. 

The macroscale computational model simulated the interaction between the pulsatile 

blood flow and the vascular tube (fluid-structure interaction; FSI) in order to 

investigate the effect of the blood flow and pressure on the deformation of the 

vascular wall. This model was validated against experimental data obtained by the 

dilation testing of fresh femoral arteries in vitro. 

Following the development and validation of the macroscale model, a 

microscale 2D model of the porcine femoral artery was developed that was based on 

a realistic histoarchitecture, which was obtained from histological staining of the 

vascular wall. The microscale model used regional strain values that were calculated 

by the macroscale model as boundary conditions, in order to assess its effect on the 

strain experienced by the collagen and elastin fibres of the ECM of the tissue. The 

microscale model was validated experimentally by stretching a sample of cell-nuclei-

stained fresh porcine artery and visualising it under confocal microscopy. 

More specifically, during the course of the project the work focused on the 

delivery of the following specific objectives: 
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1. Development of macroscale FSI models using the LS-DYNA software 

platform to simulate the deformation of porcine femoral arteries under physiological 

pulsatile blood flow:   

- Geometrical and material model: 

Fresh porcine femoral arteries were assessed experimentally for their 

geometrical and biomechanical properties (stress-strain) with a view to capturing 

their macroscale geometry and devising a material model.  

- Computational model: 

The macroscale geometry of the femoral artery was reconstructed 

computationally and prescribed the material model. FSI computational simulations 

were conducted LS-DYNA in order to predict the strain variation in the vascular wall 

under pulsatile flow.    

- Experimental validation 

The strain results of the macroscale model were validated against 

experimentally-derived dilation data of fresh porcine femoral arteries obtained under 

dilation testing. 

2. Development of microscale models to investigate the translation of the 

macroscale strain to the microscale strain experienced by cells: 

- Geometrical and material model: 

Fresh porcine femoral arteries were examined histologically to define the 

histoarchitecture of the collagen and elastin fibres of their ECM. Histological images 

were acquired under bright field microscopy and imported to Simpleware® ScanIP, 

where the individual components of the ECM were segmented.   

- Computational model: 

The segmented ECM histoarchitecture was imported to the ABAQUS finite 

element (FE) software platform and the material models were assigned to the 

different ECM components. Subsequently, FE simulations were conducted using 

regional strain values, calculated by the macroscale model, as boundary conditions. 

- Experimental validation 

The results of the microscale model were validated against experimental data 

obtained by stretching a sample of cell-nuclei-stained fresh porcine artery, using a 

controllable axial stretching rig, and visualising it under confocal microscopy. The 

confocal microscope enabled the visualisation and tracking of the stained cell nuclei 
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during stretching and, subsequently, the calculation of the ECM microstrain by the 

distance between cells before and after stretching.  
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Chapter 3. Investigation of the dilation of the arterial wall, 

using porcine femoral artery: Experimental approach 

3.1 Introduction 

The purpose of this investigation was to determine the strain in the wall 

(dilation) of porcine femoral arteries, as a function of the internal pressure on a 

macroscopic level. Additionally, the geometrical and the mechanical properties of the 

same arteries were assessed experimentally. The properties, including the length of 

the artery, the thickness and the diameter of the vascular wall, along with the 

Young’s modulus of the tissue, were used substantially as input data for the FSI 

computational simulations, which are described in the next chapter. The findings of 

the dilation were used to compare the output results of the computational models. 

This chapter illustrates the experimental process towards this assessment.  

3.2 Working with fresh tissue 

 The purpose of this project is to investigate the strain that the cells experience 

inside the body, under physiological function, where the cells are alive and active. 

The vitality of the cells affects the properties of the tissue and may provide 

inaccurate results during testing. To this view, the femoral arteries that used in this 

study were dissected from animals just a few hours after slaughtering, as will be 

explained later on in this chapter. However, from dissection to testing there was a 

time gap, where the arteries would be exposed to air, causing the dehydration of the 

tissue and cell death that would cause significant changes to its properties. In order 

to avoid this and to keep the number of the live cells as high as possible, a solution 

called transport medium was prepared as follows: 100ml Hank’s Balanced Salt 

Solution (HBSS, Sigma Life Science), 110l Aprotinin Stock (Rordic Pharma), 1.1ml 

Hepes stock (Hepes buffer, Lonza), 1.1ml Penicilin/Streptomycin stock, 110l 

Gentamicin solution (Sigma Life Science).  The salt solution provides the cells with 

water and it contributes to the maintenance of the physiological pH, along with the 

Hepes stock. Aprotinin is used to bind to the enzymes and decrease their function, to  
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Figure 3.1: Cell viability test. The images indicated with A are from the sample that was treated with PBS, and B 

from the one treated with transport medium. Images A-1 and B-1 show the calcein fluorescence in live cells, while 

A-2 and B-2 the dead cells, which were stained with ethidium homodimer. The images A-3 and B-3 are the 

merged from the other two. In the second set of images, the number of the dead cells is much lower than in the 

first one.  

A - 1 A - 2

A - 3 B - 1

B - 2 B - 3
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prevent protein degradation. Gentamicin, Penicilin and Streptomycin are used as 

antibiotics, to prevent bacterial infections and possible contamination. Before further 

use of the transport medium, a cell viability test was performed to reassure its effect. 

One fresh porcine femoral artery was cut in half. One part of the artery was merged 

in a pot with transport medium and the other one in a pot with Phosphate Buffer 

Saline (PBS). The tissue in both pots was stained with calcein acetoxymethyl and 

ethidium homodimer-1 (Life Technologies) (4l/10ml and 2l/10ml respectively). 

Calcein is a cell-membrane permeable dye, which gives a strong green fluorescence 

after enzyme hydrolysis in live cells. On the other hand, ethidium homodimer is a 

non-permeable dye which binds to the DNA and emits red fluorescence. Both dyes 

are used to distinguish the live cells from the dead ones. After staining, the samples 

were washed three times, using the same fluid they were initially merged into, for 10 

minutes each time at 120rpm. Images were then taken with upright confocal 

microscopy (Zeiss LSM510 META Inverted confocal microscope). The results are 

demonstrated in Figure 3.1. The ethidium homodimer has highlighted the dead cells 

that can be seen in Figure 3.1-A2 and B2. The set indicated with A has been treated 

with the PBS, while the set B with transport medium. The A set clearly illustrates a 

higher number of dead cells, while the B set suggests that transport medium assists 

the maintenance of the live cells, and therefore it will be used for the rest of the 

study.  

 

3.3 Obtaining the geometrical properties of fresh porcine femoral 

arteries to use as input data for the computational simulations.  

 
The computational model to follow was based on the physiological 

geometrical and uniaxially obtained mechanical properties (Young’s modulus) of the 

porcine femoral arteries. Three femoral arteries were dissected from porcine legs of 

three different animals on the same day of slaughtering, which were delivered from a 

local abattoir. The arteries were kept in transport medium, as described earlier, until 

testing. Before the tests, the adventitia of each vessel was carefully removed, in 

order to ease the observation of the change in diameter of the artery. The adventitial 

layer of the vessels composes of fatty tissue, which basically protects the vessel 
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from the outer environment, and it doesn’t present any further strength to the arterial 

tissue.  

 

Sample 
t Meas. 1 

(mm) 

t Meas. 2 

(mm) 

t Meas. 3 

(mm) 

Average 

(mm) 

1 0.758 0.755 0.755 0.756 

2 0.751 0.75 0.75 0.75 

3 0.75 0.75 0.751 0.75 

Table 3.6: List of the 3 measurements taken for vascular wall thickness using a thickness gauge, and 
their averaged values. 

 

Sample 
d Meas. 1 

(mm) 

d Meas. 2 

(mm) 

d Meas. 3 

(mm) 

Average 

(mm) 

1 5.8 5.78 5.7 5.75 

2 5.6 5.4 5.8 5.56 

3 5.5 5.5 5.5 5.5 

Table 3.7: List of the 3 measurements taken for vascular diameter using a cone shaped gauge, and 
their averaged values. 

 

Sample 
Length under test 

(mm) 

Internal Diameter 

(mm) 
Thickness (mm) 

1 29 5.75 0.756 

2 30 5.56 0.75 

3 40 5.5 0.75 

Average 33 5.6 0.75 

Table 3.8: List of geometrical properties of the fresh femoral porcine arteries 

First, the geometrical properties were determined in terms of the length, 

thickness, and internal diameter. The length was determined using a simple ruler, 

the thickness using a thickness gauge and the diameter using a cone shaped gauge. 

The values of the thickness and diameter of the tissue were noted after averaging 3 

measurements. The multiple measurements for these parameters were taken due to 

the limitations that the above equipment carries. In the case of the pressure gauge, 

the vessel wall thickness may be pressurised during measurement, and thus provide 

inaccurate results. Therefore, such measurements, apart from the careful handling, 



 
61 

 

also require repeatability for more accurate assessment. Similarly, in the case of the 

cone shape gauge, the tissue may be expanded and increase the vascular diameter. 

The measurements for the vascular wall thickness are listed in Table 3.6 and for the 

vascular diameter in Table 3.7. The averaged values, along with the length 

measurements, where further averaged, in order to be used as geometrical 

parameters for the development of the 3D computational model to follow (Table 3.8). 

3.4 Experimental procedure for the investigation of the strain in the 

vascular wall under static pressure.  

 
The pressure test was carried out next, in order to determine the dilation of 

the vascular wall under controlled pressure. The apparatus for this test is described 

in Figure 3.2. For the pressure test, each artery was mounted on the rig and was 

fixed on both ends (Figure 3.3).  

 

 

Figure3.2: Schematic of the apparatus used for the pressure test. This involved a pressure regulator 

(A) connected to a pressure gauge (B) in order to provide indication of the applied pressure. The 

gauge was then connected to a fluid tank (C) where PBS was flowing to the tester box (D), where the 

artery was mounted.  
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Figure 3.3: Illustration of the artery mounting on the pressure rig. The artery was fixed on both ends, 

using sutures and cable ties on specially designed stainless-steel barbs with a bore of 2mm to allow 

water to pass through. The white block at the left of this image is solid, and since fluid cannot go 

through, it allows the dilation of the artery. 

 
Static pressure was applied to a container filled with PBS to pass through the 

artery, in order to cause its dilation. The pressure was applied using the pressure 

regulator and a pressure gauge, and was statically increased from 0 to 

approximately 120mmHg. Under physiological conditions, the pressure ranges 

between 80-120mmHg, where the properties of the material remain linear elastic. 

Beyond this limit the vascular tissue presents viscoelastic properties, as previously 

demonstrated in Chapter 2 (Figure 2.17). However, the purpose of this research was 

to investigate the strain under physiological conditions, and thus, no further pressure 

was applied. A camera was placed on the top of the rig on a fixed base and images 

were taken approximately every 10mmHg. The time-step for image capture and the 

increase in the pressure was between 1-2 seconds. Since the time-step was so 

small, no time dependent effects were taken in account during testing.  

The images taken using the camera were processed in Photoshop. A 

triangular ruler was used during testing, placed under the artery (Figure 3.3) and was 

used as a length gauge in the image (setting a certain length into pixels). Using 

these features, the dilation was interpreted as the change in diameter of the artery 
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and was measured approximately in the middle, within a premarked space of a few 

millimetres wide. The results were then transferred to an Excel spreadsheet for 

further post-processing. The dilation percentage was then calculated according to 

equation %dilation= [(d1-d0)/d0]*100, where d1=extended diameter and d0=initial 

diameter. The results were plotted and are demonstrated in Figure 3.4.   

 

 

Figure 3.4: The dilation percentage of the three samples, as calculated after pressure test. 

3.5 Description of the uniaxial tensile test 

Following, each artery was dissected along the circumferential direction using a 

cutter with a 3mm width, as illustrated in Figure 3.5. The specimens were then 

mounted on a holder again along circumferential direction according to the protocol, 

with a fixed height of 6mm. The holder was then mounted on Instron (50N) and the 

test was performed in PBS at a rate of 10mm/m to failure. A preloading of 0.02N was 

applied for extra accuracy.    

The recorded load/extension data is shown in Figure 3.6. This data was then 

post-processed in Excel to define the stress/strain relation (Figure 3.7), using the 

equations: =F/A and =L1/(L0+L0.02), where F was the recorded force, A the un-

deformed cross-sectional area of the specimen, L1 the extension of the specimen, L0 

the initial gauge length of the specimen, and L0.02 the extension of the specimen 

required to reach the preloading condition of 0.02 N.  
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Figure 3.5: Schematic of the dissection process for sample extraction and loading test direction. 

 

 

Figure 3.6: Plots for the load/extension curves obtained from uniaxial tensile test and processed 

in Excel. 
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Figure 3.7: Plots for the stress/strain curves as calculated in Excel from the load/extension data. 

 

 

 

Figure 3.8: Typical stress/strain curve of soft tissue specimen subject to uniaxial loading until 

failure (Korossis, 2002). The curve is divided in three phases, the elastin phase, the transition phase 

and the collagen phase. During the elastin phase, the tissue is considered linear elastic, while as it 

enters the transition phase it exhibits non-linear behaviour, which continues within the collagen phase 

until failure.  
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As shown in Figure 3.8, a typical stress/strain graph of a soft tissue may be 

divided in three phases. The first phase is the elastin phase, where the tissue retains 

a linear elastic behaviour. This phase is rarely exceeded under physiological 

pressure (up to 120mmHg). Beyond this pressure, the material enters the transition 

phase, where it presents non-linear properties, ending to the final collagen phase 

and eventually to failure. Therefore, the area of interest for the present research is 

the elastin phase. The Young’s modulus of this phase (elastic Young’s modulus) was 

calculated by Excel, using the trendline option, giving the elastin phase slope. The 

obtained values are shown in Figure 3.9, along with the average value (error bar 

95% CI.).      

 

 

Figure 3.9: The elastin phase slope for the three samples, as calculated after uniaxial tensile test. 

The average of the three was used as input mechanical properties for the computational model. 

 

3.6 Discussion 

Three porcine femoral arteries were dissected from the legs of different 

freshly slaughtered animals. The number of the samples was kept low, in order to 

prevent any further animal killing, since the local abattoir had to slaughter a new 

animal for every fresh tissue order. The arteries were tested in terms of their 

properties (geometrical and mechanical), in order to be used as input parameters for 
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the computational simulations. In terms of the geometrical structure, the findings do 

not seem very different from one animal to the other (Table 3.1-3.3), however, there 

is a variation in their dilation (Figure 3.4). 

The minimum dilation was noticed in sample 2 (~13%), and the highest in 

sample 1 (~25%), giving a difference of nearly 50%. On one hand, there is a 

limitation, concerning the accuracy of the image post-processing, that is the dilation 

results were based on manual measurements, but on the other hand, they do match 

with the uniaxial test results. The moduli determined by this test (Figure 3.9) are 

proportional to the dilation of each specimen. Specimen 1 has the minimum reported 

modulus, and thus, it gives the highest dilation, while specimen 2 with the highest 

modulus gave the smallest dilation. The difference in the moduli between specimen 

1 and 2 (~370KPa and ~650KPa, respectively) is also high, justifying the behaviour 

of the samples under pressure testing.    

Additionally, the samples were dissected from animals from the same abattoir. 

This means that the age and the nutrition of these animals are similar and should not 

be considered as effective parameters to the variation of the tissue properties. 

Therefore, the variation between the present findings is probably related to the 

quantity and/or quality of the tissue components, collagen and elastin.    

Furthermore, it should also be noted that the pressure test carried out in this 

study does not represent a physiological condition, since the arteries under 

examination were fixed at both ends. The blood vessels inside the body apart from 

the dilation, they also expand longitudinally due to the pressure they experience. 

However, the longitudinal expansion of the arteries in the present study was 

restricted. Therefore, the applied load forced the arterial wall to perform a larger 

dilation. Additionally, the pressure was applied gradually and not instantaneously. 

Despite the small time-step (1-2 seconds), it took over 20 seconds for the pressure 

to increase from 0 up to 120mmHg. Thus, the constant applied pressure may have 

led to the increase of the strain (creep). This may also have contributed to an 

overestimation of the performed dilation.   

Unfortunately, and under the best knowledge of the present author, the 

dilation of porcine femoral arteries has not been reported in the literature, and thus, 

the present results cannot be directly compared to similar investigations. However, 

previous studies have reported on similar properties on human femoral arteries. In 
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1972, Mozersky et al investigated the dilation and the elastic Young’s modulus in 

humans of different age groups, all free from atherosclerosis. The dilation and the 

Young’s modulus were calculated according to the recorded change in the external 

diameter, by echo-tracking. The results for the dilation were calculated as 2.6% for 

the young group (<35years), 1.9% for the middle-aged group (35-60years) and 1.7% 

for people over 60. The elastic Young’s modulus was calculated as 260KPa, 388KPa 

and 628KPa for the same groups respectively. These reported values are much 

smaller than the ones obtained in the present study, however there is a number of 

limitations with the method described by Mozersky et al. Initially, the accuracy of the 

echo-tracking system in 1970’s is questionable. Additionally, the measurements 

involved the external diameter of the arteries. The arteries in situ include the outer 

layer, which composes mostly of fatty tissue that serves to protect the arterial wall 

from the external environment. This layer was removed in the present study, in order 

to ease the measurements of the diameter change. In the study of Mozersky et al, 

the adventitial layer may have significantly underestimated the change in the actual 

diameter of the tissue.    

More recently, in 2004, Kaiser et al investigated several parameters in 

brachial and coronary arteries in humans with vascular erectile dysfunction, but free 

from vascular disease. The results included the compliance of these arteries, which 

was calculated by the change in diameter and change in pressure. The 

measurements for the diameter change were taken by wall-tracking system with an 

ultrasound transducer. To facilitate the comparison between the results of the 

present study and the findings reported by Kaiser et al, the compliance was further 

calculated as 
  

  
 , where A is the cross sectional area of the artery and P is the 

applied pressure. The values for compliance of the present study and compliance of 

brachial artery reported by Kaiser et al are presented in Table 3.9. 

 

Artery Sample 1 Sample 2 Sample 3 
Brachial 

(Kaiser et al 2004) 

Compliance 

(mm2/mmHg) 
0.11 0.05 0.15 0.094 

Table 3.9: Comparison of compliance between present findings and the ones reported by Kaiser et al 

2004 for brachial arteries. 
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The brachial artery was chosen for comparison because it is of a similar size 

as the femoral arteries, and also they distant equally from the heart, therefore the 

pressure range is also similar. The values for compliance obtained for Samples 1, 2 

and 3 give an average of 0.1±0.05 mm2/mmHg. This comes in good agreement with 

the results reported by Kaiser et al.  

Finally, in 2008, Roy et al developed FSI computational models based on 

previously reported parameters on femoral arteries of dogs. The computational 

results for artery compliance were compared to the findings of Megerman et al. 

(1986), which involved measurements in vivo and ex vivo. Unfortunately, this 

publication is no longer available and the methodology they followed is not described 

in detail, however the reported values for arterial compliance are listed in Table 3. 

10. The reported values involved the compliance of the arteries within the pressure 

range 80-120mmHg. Again, in order to ease the comparison between results, the 

calculation for the compliance percentage for the Samples 1, 2 and 3 was given 

by
  

    
, where d is the external diameter and P the applied pressure. The average 

value of the samples presented in this study for compliance % is 0.28%±0.05. This 

also seems to be a good agreement between present and previously reported 

findings.  

 

Artery Sample 1 Sample 2 Sample 3 
Dog femoral 

(Megerman 1986) 

Compliance 

% 
0.3 0.14 0.4 0.24-0.13 

Table 3. 10: Comparison of compliance% between present findings and the ones reported by 

Megerman et al (1986) for femoral arteries of dogs 

 
Concluding, the findings of the present investigation seem to be in a good 

agreement with similar findings that have been previously reported. Additionally, the 

findings from the pressure test seem in a good agreement with the uniaxial tensile 

test results, in terms of stiffness and dilation of the samples. Therefore, the 

geometrical and mechanical parameters obtained from the above experimental 

procedure (length, thickness, diameter, elastin Young’s modulus) were averaged, in 

order to provide one value that will be used as input data in the computational model 
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to follow. The data obtained from the dilation test will also be further used for 

comparison with the computational findings for validation purposes.  

 



 
71 

 

Chapter 4. Investigation of the dilation of the arterial wall, 

using porcine femoral artery: Computational approach 

 

4.1 Introduction 

 The aim of the work described in this chapter was to develop in silico 

platforms, with an ultimate purpose to extract information that cannot be obtained 

experimentally, such as the stress. The information on the stress levels on the 

arterial wall is of high importance, since the cellular proper function depends on 

them, and thus they can brought forward to optimise bioreactor conditioning for the 

development of TE vascular grafts. However, at this point the present investigation 

focuses on the development and the accuracy assessment of the computational 

models and it is beyond the scope of this project to present all the parameters that 

the computational simulations may provide.  

Therefore, the following text describes the process development of the FSI 

computational models, based on the experimental data that were previously obtained 

(as described in Chapter 3). This data involved the geometrical (length, thickness, 

diameter) and the uniaxial mechanical parameters (elastin Young’s modulus) of the 

porcine femoral arteries. The mechanical parameters for the fluid (density and 

viscosity) were taken from the literature. The first model was developed in order to 

simulate the experimental pressure test from Chapter 3. The purpose of this 

simulation was to obtain comparable findings between experimental and 

computational results, in terms of the arterial dilation under static pressure. This 

comparison was used towards the validation of the computational simulation. 

Additionally, verification of the computational simulation involved comparison 

between computational and analytical solutions for axial and circumferential stress.  

This process is necessary, in order to estimate whether the computational model can 

be used for further investigation. Further investigation in the present study involved 

the development of the same models, in terms of geometrical and mechanical 

parameters, however different pressure conditions. The purpose for this was to 
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approach more physiological conditions, by using pulsatile flow effects instead of 

static, as in the first model, within the physiological range (80-120mmHg).       

This chapter describes the FSI computational simulations that were 

developed in order to investigate the dilation of the arterial wall under static and 

pulsatile flow. The simulations were developed and run using the commercial 

software Ls-Dyna.  

4.2 Computational FSI: Mathematical Background 

The commercial software that was chosen for the present investigation (Ls-

Dyna) specialises on the FSI using the fully coupled method, that is the simultaneous 

simulation of both fluid and solid mesh. This method uses one of the parts as the 

master part and the other one as the slave part. In this case, the master part was the 

fluid, while the slave part was the solid. This was chosen because the deformation of 

the elastic solid is realised due to the pulsatile fluid flow, and thus, depending on it.     

The governing equations for an incompressible fluid flow involve the continuity 

equation (Equation 1), as well as the Navier-Stokes (Equation 2): 
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where u

 is the velocity vector,  is the fluid density, p is pressure and  is the 

viscosity. The chosen software allows the FSI simulation between the structure and 

the fluid, by employing the ALE formulation. In fluid dynamics, fluid flow through a 

fixed boundary includes the Eulerian description of the convective term. However, 

when any part of the computational domain is deformable, this description is no 

longer applicable and the Lagrangian description must be employed [Hron and 

Madlik, 2007]. Anywhere else in the fluid domain, the fluid flow can be described in 

an arbitrary coordinate system as long as it meets the coordinate requirements along 

the physical boundaries. This description is called an Arbitrary Lagrangian-Eulerian 

formulation (ALE). For this description, the convective velocity in the Navier-Stokes 

equation (Equation 2), is replaced by its difference with the moving coordinate 

velocity mu


 as in Equation 3: 
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
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


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Moreover, it is obvious that when 0mu


, Equation 3 corresponds to an Eulerian 

description, while when uu


m , it corresponds to the Lagrangian (Figure 4.1). 

 

Figure 4.1: Schematic of mathematical formulation for fixed and moving boundaries. The Eulerian 

description applies to the fixed wall, while the Lagrangian to a moving boundary. When combined 

together, Arbitrary Lagrangian-Eulerian formulation, apply to the movement of the fluid, when this 

follows the moving boundary. 

 4.3 Construction of the computational models 

The computational simulation involved the construction of a 3-dimensional 

model representing the blood flowing within a vessel. The blood was modelled as a 

cylinder, following the averaged geometrical properties as they were previously 

determined (Chapter 3), with a length of 33mm and 5.6mm diameter. All the 

parameters used for fluid and solid are listed in Table 4.1. The actual meshed 

geometries are shown in Figure 4.2 The fluid, it was set as incompressible (density 

=1050kg/m3) and Newtonian (viscosity =0.00345kg/m s). The vessel was 

modelled as a shell, because of its small thickness (0.74mm) and as a linear elastic 

material with a Young’s modulus E=493.6KPa. The linear elastic material that was 

used by the software, obeys Hooke’s law that implies a linear proportion between 

stress and strain. Both ends of the model were set to be fixed, in order to constrain 

movement and also to allow comparison with the experimental pressure test for 

validation purposes. The no-slip condition was also imposed at the inner wall 

surface. 

The simulation was run under the Arbitrary Lagrangian-Eulerian (ALE) 

condition, using different pressure waveforms. The first pressure condition was linear 

starting from 0 up to 120mmHg, which represented the case of the experimental 

fixed wall, Eulerian description moving wall, Lagrangian description

ALE formulation
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pressure test. The second pressure condition was a simplified pulse starting from 

80mmHg and reaching 120mmHg within 0.5 seconds. However because of the 

output results of this model, another simulation was run with the same pulse, this 

time starting from 0mmHg. Nevertheless, in a physiological case, the pressure never 

reaches 0, thus one more simulation was run with a double pulse, which initially 

starts from 0mmHg but then it continues from 80mmHg. The pressure conditions can 

be seen in Figure 4.3. All the models are listed in Table 4.2. 

 

Fluid Value Ref. 

density 1050kg/m3 
[Scotti&Finol 2007] 

viscosity 0.00345kg/m s 

Solid  

length 33mm 
Data obtained from 

experimental work in Chapter 

3 

diameter 5.6mm 

thickness 0.75mm 

Young's modulus 493.6KPa 

Table 4. 2: The geometrical and mechanical properties that were used to develop the 3D FSI 
computational models. 

 
 
 
 

 

Figure 4.2: Demonstration of the mesh created to represent the blood and the arterial wall. 

Fluid 33mm

2.5mm

Vessel

Inlet

Outlet

E=493.6KPa
t=0.74mm

=1050kg/cm3

= 0.00345 kg/ms

5.6mm

=1050kg/m3

t=0.75mm
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 Figure 4.3: Pressure waveforms that were used as input conditions for the numerical simulations. 

Condition 1 represents a static pressure starting from 0mmHg up to 120mmHg. Condition 2 describes 

a physiological pulse starting from 80mmHg up to 120mmHg. Condition 3 describes a physiological 

pulse starting from 0mmHg and gradually develops up to 120mmHg. Condition 4 represents a double 

physiological pulse as it continues from condition 3.  

 

Model 
Pressure Condition 

Inlet Outlet 

1 1 0 

2 2 0 

3 3 0 

4 4 0 

Mesh dependence 1 0 

Table  4.2: Description of the pressure conditions application for each of the models. 

 
The models were meshed with 1,260 solid brick elements for the fluid and 200 

shell brick elements. A mesh sensitivity test was performed using 80,640 solid and 

3,200 shell brick elements.          
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4.4 Results 

4.4.1 Dilation under Static Pressure 

 The post-processing of the computational analysis involved the dilation 

percentage of the represented artery. This was calculated in Excel using the formula 

[(Y(r1)-Y(r0))/ Y(r0)]*100, where Y represents the y-coordination of a node in the 

middle of the vascular wall. Y(r0) and Y(r1) represent the node without (no pressure 

applied) and with (pressure applied) dislocation along the y-axis, respectively (Figure 

4.4).  

 

Figure 4.4: Schematic of the nodal coordinate, which was used to calculate the dilation percentage 

from the computational simulation.  

 
 Images for y-coordination contours are illustrated in Figure 4.5 for model 1 in 

different time intervals, including the last one (at time t=0.5s) where the maximum 

pressure was reached (120mmHg). The results from this model were compared to 

the ones with the finer mesh model, in order to check on the mesh sensitivity. These 

are demonstrated in Figure 4.6. At maximum pressure (p=120mmHg), the dilation 

(strain) percentage is approximately ~11%, while the one from the model with the 

finer mesh ~11.2%. Because of the small difference between the results of these two 

models, in order to reduce the computational cost, the remaining simulations were 

run using the same mesh as in Model 1.     

 The dilation results from Model 1 were further compared to the experimental 

findings that were described in the previous chapter. The overall dilation of the three 

experimental samples and the one given from Model 1 are plotted in Figure 4.7, 

while the maximum values (at pressure p=120mmHg) in Figure 4.8 along with the 

average of the experimental findings (95% C.I.).  

 

y(r1)

y(r0)
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Figure 4.5: Contours of y-coordinate of the arterial wall for Model 1. Static pressure was gradually 

increased from 0mmHg up to 120mmHg, forcing the wall to dilate.  

 

 



 
78 

 

 

Figure 4.6: Mesh sensitivity test. Model 1 was compared with a finer mesh in terms of dilation in order 

to check on the mesh dependence. The small difference between the results allows the further use of 

Model 1.  

 

 

Figure 4.7: Comparison between experimental and computational dilation. Samples 1, 2 and 3 were 

the samples that were tested experimentally under static pressure, as described in Chapter 3. Model 

1 performs a lower dilation compared to the experimental findings.   

 

0

2

4

6

8

10

12

0 20 40 60 80 100 120

D
ila

ti
on

 (
%

)

Pressure (mmHg)

Mesh Sensitivity Test

Mesh Dep

Model 1

0

5

10

15

20

25

30

0 20 40 60 80 100 120

D
ila

ti
o

n
 (

%
)

Pressure (mmHg)

Dilation

Sample 1

Sample 2

Sample 3

Model 1



 
79 

 

The computational model performed a much smaller dilation compared to the 

real arteries, and also, under maximum pressure it does not lie within the confidence 

interval of the average experimental value. The reason for this is probably because 

of the mechanical properties that were used for the computational simulation. The 

Young’s modulus that was obtained from the uniaxial test involved the 

circumferential direction only. The tissue is much stiffer towards this direction, 

because of the collagen and elastin fibres’ orientation.      

 

 

Figure 4.8:  Comparison between experimental and computational dilation at highest pressure 

(120mmHg). The computational solution indicates the smallest dilation compared to the samples 1, 2 

and 3. It does not lie within the confidence interval of the error bar (95%) of the average experimental 

value.  

 

4.4.2 Computational model validation using an analytical solution for axial and 

circumferential stress. 

  An analytical solution for the axial and circumferential stress was calculated. 

The comparison between computational and analytical solutions serves to verify the 

mathematical process of the computational model. The formula for the axial stress is 

given as    
 

 
 , where is the stress, F is the force applied and A the cross-

sectional area of the solid material. This can be analysed as follows: 
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where p is the internal pressure at inlet, d is the internal diameter of the vessel at the 

respective pressure, and t is the thickness of the vessel wall. Substituting the values 

for each parameter in Equation 4 for pressure p=120mmHg:  

 

   

  
 

            

        
                                                        

 

The value of pressure 16KPa (Equation 5) was converted from 120mmHg, in order 

to meet the right units for the formula. Additionally, the circumferential stress 

according to Laplace equation may be estimated as: 

    

      
   

  
                                                                        

 

 The results for the axial and circumferential stress obtained from Model 1 

were plotted in Figure 4.9 and 4.10 respectively, and refer to a middle element of the 

arterial mesh, where dilation was earlier calculated. At pressure p=120mmHg, the 

maximum value for axial stress in Model 1 was noted at t=0.5s as axial=30KPa, while 

for circumferential stress circ=64.6KPa. Circumferential strain for Model 1 at 

p=120mmHg is 0.177 (Figure 4.11). According to the stress/strain results from the 

tensile test, the porcine femoral arteries at the same stress value (circ≈65KPa) 

presented a strain of 0.11, 0.28 and 0.15 for Samples 1, 2 and 3, respectively 

(Figure 4.12). This gives an average of 0.18, which suggests a good agreement 

between computational, analytical and experimental findings.  However, since the 

findings from the experimental uniaxial test were used as input parameters for the 

computational simulations, this comparison may only be considered as verification.  

 

 

 

 



 
81 

 

 

 

 

Figure 4.9:  Axial stress as resulted from Model 1 simulation.  

 

 

 

 

Figure 4.10:  Circumferential stress as resulted from Model 1 simulation 
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Figure 4.11:  Circumferential strain as resulted from Model 1 simulation 

 

 

 

Figure 4.12:  Circumferential strain for Model 1 and for the three samples after the uniaxial tensile test 

at circ≈65KPa. The value for circumferential stress rises from the computational stress results at 

p=120mmHg (where circ=64.6KPa. The Average experimental (CI 95%) results in good agreement 

with the computational result.   

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6

C
ir

cu
m

fe
re

n
ta

il 
st

ra
in

Time (s)

Circumferential Strain for Model 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Computational Sample 1 Sample 2 Sample 3 Average exp

St
ra

in

Strain at circ≈65KPa 



 
83 

 

4.4.3 Dilation under pulsatile pressure 

 As previously described, the models 2, 3 and 4 were run under different 

pulsatile pressure conditions. The results for the dilation were obtained similarly as in 

the static pressure condition and were plotted in Figure 4.13. For Model 2, the 

pressure was starting at p=80mmHg, however this caused significant transient 

effects on the results, probably because of the explicit solver that is used in LS-

Dyna.  The highly non-linear behaviour of the model does not allow any further post-

processing and this is the reason for the creation of the Model 3, where the pulse 

starts at p=0 and then it develops in a proper pulse by one second of the time. The 

dilation results from this model came out as a smooth graph that seems to follow the 

pressure wave with respect to time. For Model 4, the pressure pulse repeated a 

second cycle, allowing the fluid to develop itself with time. Similarly as in Model 3, 

the graph is smooth and was also plotted against the pressure wave in Figure 4.14, 

which indicates that pressure and dilation are in a good agreement. This presented 

linearity between pressure and dilation was expected, since the vascular wall was 

modelled as linear elastic. The peak values of the arterial wall dilation are listed in 

Table 4.3.  

 

 

Figure 4.13: The dilation as resulted for Models 2, 3 and 4. Model 2 presents strong transient effects, while 

Models 3 and 4 look more smooth and reasonable. 

 

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2

D
ila

ti
o

n
 (

%
)

Time (s)

Dilation of computational models

Model 2

Model 3

Model 4



 
84 

 

 

Figure 4.14: Plots of pressure vs. dilation. The dilation performed for Model 4 (red) seems to be in accordance 

with the pressure wave that was applied in the inlet boundary (blue). 

 

Model Max Dilation (%) Time (s) 

2 11.9 1.25E-01 

3 10.7 2.50E-01 

4 11.3 7.00E-01 

Table 4.2: Maximum dilation that was noted for Models 2, 3 and 4. 

   

 

Figure 4.15: Plots of circumferential stress (blue) and strain (red) for Model4. 
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 Model 4 was chosen for further post-processing, because of the two-cycle 

pressure condition, with the second cycle as the interval of interest. Further post-

processing involved the circumferential stress and the circumferential strain (Figure 

4.15), which were given at the same node/element, as in the earlier investigation 

under the static pressure condition. The maximum values for stress and strain were 

given at t=0.7s, where p=120mmHg during the second cycle, as circ=65 KPa and 

circ=0.117. The value of the circumferential strain is slightly lower than the ones 

obtained from Model 1 and experimental uniaxial test.  

 
 

4.3 Discussion 

 The purpose of this work was to develop computational models, which would 

simulate the behaviour of the arterial wall under blood pressure. The investigation 

was focused on the dilation of the arterial wall, with the ultimate purpose to assess 

the strain levels, in order to bring them forward for investigation at the micro-level. 

Towards this, five computational models were constructed, using the same mesh 

under different pressure conditions.  

 The geometry of the mesh was build according to the information obtained 

experimentally, as described in Chapter 3. This information involved the length of the 

artery, the thickness, the diameter and the elastic Young’s modulus of fresh porcine 

femoral arteries. As previously explained in Chapter 3, the elastic Young’s modulus 

refers to the slope of the elastin phase of the arterial tissue that was obtained from 

uniaxial tensile test along the circumferential direction. The tissue properties were 

examined towards this direction, since the main focus of the present investigation 

was the dilation that the tissue performs under physiological blood pressure and the 

longitudinal extension of the tissue was not taken into account. Ideally, the 

mechanical properties of the arterial wall should be determined biaxially, since the 

dilation takes place in three dimensions, however, only a uniaxial test was 

performed, as a matter of availability.  Additionally, the single modulus value was 

used in a linear elastic model, rather than a viscoelastic or any other hyperelastic 

material that is available from Ls-Dyna, because of the assumption that under a 

physiological blood pressure (120-80mmHg) the tissue does not exceed its linear 

phase.  



 
86 

 

 The models were run under different pressure conditions. The first model 

(Model 1) was run under static pressure and it served to simulate the pressure test 

that was performed experimentally, as described in Chapter 3, for validation 

purposes. The comparison between experimental and computational results (Figures 

4.7 and 4.8) suggested that the computational model performed a much lower 

dilation than the real tissue samples. The actual value of the maximum dilation was 

11%, while the respective average from the experimental samples was 

approximately 19±6.7%. However, the analytical solution for the axial and 

circumferential stress came in a good agreement with the ones obtained 

computationally, indicating the computational model is mathematically correct. 

Additionally, the strain values at the calculated stress were also in good agreement 

between computational and experimental findings (Figure 4.12). This suggests that 

the reason that the model performed smaller dilation than the experimental findings 

probably lies on the mechanical properties that were used for the arterial mesh. The 

modulus that was obtained only along the circumferential direction provides a greater 

stiffness to the arterial wall, when compared to a more realistic case that would be 

determined more accurately after biaxial test. Furthermore, as explained in Chapter 

3, the dilation during the experimental pressure test was probably overestimated due 

to creep, and this also provides a reason for the difference between experimental 

and computational findings.    

The rest of the models (Model 2, 3 and 4) were run under pulsatile pressure, 

as an attempt to simulate more physiological cases. Model 2 was run under a single 

pressure wave, starting at p=80mmHg up to 120mmHg. The results obtained from 

his model, though, indicated transient effects (Figure 4.13). The reason for the 

transient effects is probably due to the explicit solver that Ls-Dyna uses for dynamic 

analysis. The explicit method solves the equations directly and not iteratively, as the 

implicit method. This is a good way to solve non-linear problems, however, the 

explicit method does not enforce equilibrium like the implicit, and thus, may lead to 

transient effects. For this reason Model 3 was run under the same pressure wave, 

this time starting at p=0, giving some time for the wave to be developed. The dilation 

curve that was resulted from Model 3 was smooth with no transient effects, however 

Model 4 was also run under a double pressure wave, in order to investigate the 

dilation under a fully developed pulse. The results for peak dilation from Models 3 
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and 4 are quite close (10.7% for Model 3 and 11.3% for Model 4), and also their 

average ~11% is the same as the one from Model 1 (Figure 4.8). The results for 

dilation and circumferential stress and strain for Model 4 suggest that for these 

parameters, static pressure could be used instead of a pressure wave for further 

investigation, in order to ease the simplicity and repeatability of the computational 

simulation and also to reduce the computational expense. However, the pulsatile 

flow models could be subject to further investigation. This could involve more 

physiological conditions for pressure/velocity profiles, more complex geometries and 

of course more realistic mechanical properties for the vascular wall.  

Previous similar FSI computational studies on the dilation of femoral arteries 

have been reported by Kim et al (2008) (human) and Roy et al (2008) (canine). Both 

studies used the Mooney-Rivlin material instead of a linear elastic. The Mooney-

Rivlin material is considered as hyperelastic, with the strain energy density function 

W: 

W = C1 (I1 −3) +C2 (I2 −3)+C3 (I1 −3) 2 +C4 (I1 −3) (I2 −3) +C5(I2 −3) 2 

 

where the constants C1 -C5 are obtained by fitting curves from experimental data [Roy 

et al 2008]. Unfortunately, the different data in mechanical properties that were used 

for those studies do not allow comparison with the ones used in the present 

investigation, therefore there can be no commentary in the difference in stiffness 

determined between studies.  

 In the study of Roy et al (2008), the boundary conditions involved an initial 

pressure pulse (ranged between 75-140mmHg) at the inlet and another at the outlet, 

which included the pressure drop that was determined experimentally. The blood 

flow was modelled as a non-Newtonian, using the Carreau model. The reported 

outcome results for compliance percentage within a pressure range 80-120mmHg 

varied between 0.2%-0.145%. The respective results from the present study were 

between 0.098% for the static pressure model (Model 1) and 0.097% for pulsatile 

pressure (Model 4). It was previously mentioned (Chapter 3) that the findings from 

the study of Roy et al (2008) were compared with the ones obtained by Megerman et 

al (1986). Recalling Table 3. 10 and adding the values from FSI computational 

models listed in Table 4.3. 
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Method Artery Compliance % 

Experimental 

Dog femoral 

(Megerman et al 1986) 
0.24-0.13 

Porcine femoral 

Average (Chapter 3) 
0.28±0.05 

FSI 

Dog femoral 

(Roy et al 2008) 
0.2-0.145 

Model 1 0.098 

Model 4 0.097 

Table 4.3: Comparison of compliance% from experimental and FSI studies between present and previous 

investigations. 

 

 The comparison between studies indicate a slightly lower compliance for the 

FSI models of the present study, still very close. The compliance% for the porcine 

femoral arteries as found from the pressure test is higher compared to the 

experimental (Megerman et al 1986) and FSI (Roy et al 2008). The experimental 

procedure carried out by Megerman et al (1986) is not described in detail, and also 

the material stiffness used to describe the solid mesh in the study of Roy et al (2008) 

is not comparable to the present investigation, however the results are still very 

close. This also indicates that the dilation of the porcine femoral arteries during 

pressure test was overestimated, and also, the linear elastic material that was used 

for Model 1 and Model 4, based only on the circumferential elastic modulus, 

contributed in a smaller dilation. 

The FSI models developed by Kim et al. (2008) were based on realistic 

geometrical data of human femoral bifurcation, which was reconstructed by CT 

images of a 55 year old female volunteer suffering from paraplegia. The data they 

used for the Mooney-Rivlin model were taken from the literature [Prendergast et al 

2003], which were obtained after uniaxial (longitudinally) and biaxial tensile tests in 

human femoral arteries. The boundary conditions involved a pressure pulse in the 

inlet and outlet. The pressure, however, was calculated with the Navier-Stokes 

equations for one dimensional flow in elastic tube, based on the geometry of the 

artery and the velocity flow. The velocity flow was obtained experimentally from 

contrast phase MRI data. This calculation, however, provided a pressure within a 

range of 0-40mmHg, which is considered low for femoral arteries. The results for the 
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dilation at peak systole were reported as 5.7% at the section before bifurcation starts 

and 3.7% at the branching section. The results from the present investigation are 

reported at p=40mmHg, to facilitate comparison to the ones obtained by Kim et al 

(2008), and are listed in Table 4.4. Again, comparison between FSI models indicates 

a low dilation for the results of the present study and a large dilation for experimental 

pressure test.  

 

Method Artery Dilation % 

Experimental 
Porcine femoral 

Average (Chapter 3) 
7.2±2.7 

FSI 

Human femoral 

(Kim et al 2008) 

5.7 (Section 1) 

3.7 (Section 2) 

Model 1 2 

Model 4 1.98 

Table 4.4: Comparison of dilation% from experimental and FSI studies between present and previous 

investigations. The reported data for dilation% were obtained at p=40mmHg, in both experimental and 

computational cases.  

   

In conclusion, a significant improvement of the present simulations should 

involve more realistic mechanical properties of the arterial tissue. This could be 

obtained by performing biaxial tensile testing. Alternatively, a description of another 

type of elastic or rubber material could be used, however, these materials also 

require parameters that should be determined experimentally. The dilation of the 

solid material is important in computational simulation, since it is the wall 

displacement that determines the strains and then calculates the stresses. 

Therefore, a change in this parameter affects the output data, which may be 

misleading in further use.   

Apart from material properties, the results could have been affected by 

imposing a pressure at the outlet. For the simulations of the present study pressure 

was only imposed at the inlet of the vascular tube. At the outlet, the pressure was set 

to 0. A pressure pulse with a pressure drop could have resulted in different findings, 

and therefore further investigation could also include different outlet boundary 

conditions.  
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Nevertheless, the FSI models that were developed for the present study have 

been compared to analytical and experimental findings. Despite the small 

disagreement with the experimentally obtained dilation, there was a good agreement 

for the values of the circumferential stress and strain from the uniaxial test. 

Additionally, the models were mathematically verified, which allows the gradual 

improvement towards more physiological conditions.  

The following investigation of the present study was focused on the effect of 

the macro-scale dilation in the microenvironment of the vascular wall, using 

computational and experimental methods. Because of the variation in the dilation 

between experimental and computational results, the values that were further 

applied were up to the average determined by the experimental data (≈20% 

extension of initial length).   
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Chapter 5. Investigation on the strain variation at the 

microenvironment of the vascular wall: Experimental 

Approach. 

 

5.1 Introduction 

 
 This project was focused on the investigation on the macro-strains and how 

these translate into the microenvironment of a vascular wall. So far, the investigation 

was carried out at the macro-level. The results that were obtained from the macro-

investigation (tissue dilation) were brought to be applied and examined at the micro-

scale of the vascular wall. This investigation involved Finite element analysis and 

experimental procedures. The present chapter focuses on the FE analysis, while the 

experimental methods are described in the next chapter. The purpose of this part of 

research was to study the spread of the strain at the inner vascular wall, the tunica 

media, where the smooth muscle cells are embedded in the ECM of the tissue, 

which composes of collagen and elastin fibres. The focus of interest was to examine 

the strain that the fibres experience and its effect on the cells. The tunica media in 

small arteries comprises the greatest part of the vascular wall, and its study can 

assist on the development of tissue engineered blood vessels.  

The ultimate purpose of the present investigation was to develop FEA models 

that can be employed as plattfroms to predict strains and stresses at the 

microenvironment of the vascular tissue. As mentioned earlier, stresses are of great 

importance for the cellular – and eventually for tissue – normal function. Information 

on these stresses are hard to be obtained experimentally. Therefore, computational 

methods are employed to provide this knowledge, so that it can be used to optimise 

bioreactor conditioning for the development of vascular grafts. Nevertheless, the 

present investigation at this point was not focused on the stresses, but on the strain. 

The reason for this was that the computational models were validated against 

experimenal findings. The strain variation was an ideal parameter to focus on, since 

first of all is closely related to stress, and secondly it could also be examined 

experimentally.  
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 Despite the high importance in studying the microenvironment in the tunica 

media, there have been no other studies reporting on the strain – or the stress – on 

the collagen and elastin fibres of this layer.  

This chapter describes the development of the computational simulation that 

was created, in order to investigate the strain at a micro-level. The model involved 

the simulation of collagen and elastin fibers. A 2-dimensional mesh map of collagen 

and elastin fibres was created in ScanIP software from tissue histology images of 

porcine femoral artery and it was run in Abaqus, as a 2D model, where it was given 

the mechanical properties of the materials and it was assigned the appropriate 

boundary conditions. The model was set as fixed from one side and stretched from 

the other side by 20% of its initial length. The 20% stretching was assessed 

previously from the macro-scale investigation, in Chapters 3 and 4, as the maximum 

performed dilation of the arteries under experimental test. The post-processing 

involved the analysis of the strain between different nodes, in order to investigate the 

strain spread between the collagen and elastin fibres. The obtained results were 

then compared to the ones found experimentally (described in the next chapter). 

 The following text describes the tissue histology process and imaging, the 

segmentation process in ScanIP, the description of the computational simulations in 

Abaqus, and the analysis of the computational results. 

 

5.2 Materials and Methods 

5.2.1 Tissue histology 

The purpose of this process was to produce histology images that reveal the 

inner layer of the arterial wall, in terms of the collagen and the elastin fiber 

orientation. A schematic of this process is illustrated in Figure 5.1.  The obtained 

images were used to create the mesh for the computational simulation, in order to 

investigate the strain effect at a micro-level.  

To this purpose, one porcine leg from a freshly slaugthered animal (same day 

slaugther) was delivered from a local abatoir and the femoral artery was carefully 

removed. The artery was then cut in circumferential rings of about 0.5cm width. Each 

ring was then cut to form flat strips. The strips were then placed in plastic histological 

cassettes, where sponges were also used to keep the tissue samples as straight as  
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Figure 5.1: Schematic of histology process. One artery was initially disected in smaller rings. The rings were 

further cut to form flat sheets. After fixation in the tissue processor, the tissue layers were embedded in wax with 

the lumen facing the outer direction of the wax block. Samples of 5m width were obtained in the microtome, 

where they were dissected along the circumferential direction. The samples that were chosen for the staining 

were within a depth between 50-150m, in order to reveal the middle layer of the vascular wall. Collagen and 

elastin staining was further performed according to the in house protocol. Following, the samples were transfered 

to microscope for analysis and imaging.   

 

possible. The cassettes were then immerged in formaline (BF 10%) overnight and 

then transfered for fixation to the tissue processor (Leica, TP11020). Within the 

tissue processor, the samples were immersed in each of the following solutions for 

an hour, under vacuum: neutral buffered formalin for fixation (10% w/v, Genta 

Medical, BFN250), a series of ethanol in different solutions between 70%-100% (v/v) 

for dehydration (Thermo Fisher Scientific Ltd, E/0555DF/25), xylene for tissue 

clearing (Genta Medical, LS81950/G) and finally in paraffin wax (Thermo Fisher 

Scientific Ltd, PS138/E). The temperature in this vacuum was a room temperature, 

except when the samples were immersed in the wax (~50ºC). Upon completion of 
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the tissue processor program, the specimens were removed from their cassettes and 

placed in metallic moulds (R.A. Lamb, E10.8/4161) in metalic histological cassettes 

with the lumen of the artery facing the bottom of the cassette. This enabled the 

isolation of histological sections from the lumen towards the media of the artery. Τhe 

metallic moulds were then filled with molten wax, inside the wax oven (R.A. Lamb, 

E18/31). The samples were then left aside to cool, in order for the wax to fully 

solidify. The solidified wax was then removed from the metallic mould, and placed in 

a Leica rotary microtome (model RM2125 RTF). The specimens were then dissected 

in sections of 5m width, at an angle of 4º, and placed in a water bath (R. A. Lamb, 

E65-2). The tissue stripes were then collected onto “Superfrost–Plus” microscope 

slides (Scientific Laboratory Supplies, MIC3040), and fixed by heating for 20 minutes 

at 60°C on a drying/hot plate (R. A. Lamb, E18.1). Following, the glass slides were 

placed in a slide holder (R.A. Lamb, E102). 

The sections chosen for analysis were approximately the ones in a depth 

between 50-150m of the tissue strips, in order to reveal the media layer of the 

vascular wall, as this is the main area of interest in the present study. These sections 

were then stained for collagen and elastin according to the established in-house 

protocol. In order for the specimens to clear from wax, the slide holder was 

immersed to dewax solution (Histo-Clear III, National Diagnostics HS-204) for about 

10 minutes (2 washes), followed by washes in several ethanol (Thermo Fisher 

Scientific Ltd E/0555DF/25) concentrations (3x100%, 1x70%) and under running 

water for rehydration. 

The sections were then immersed into 5 % (W/V) potassium permanganate 

(Thermo Fisher Scientific Ltd P/6520/53) for five minutes, an oxidizing agent which 

helps to minimize possible obscurence of the tissue detail. The samples were then 

washed in distilled water and were immersed into 1 % (w/v) oxalic acid (VWR 

International 1017440) for two minutes, for further bleaching, followed by two washes 

using distilled water, for rehydration. After two more baths in different ethanol 

consentration (70% and 95% (v/v) for one minute each), the samples were stained 

with Miller’s solution (Raymond A Lamb LAMB/080-D) for one hour, in order to reveal 

the elastin fibres. In order to clear the excessive stain, the sections were washed 

once more in ethanol (95% and 70% (v/v) this time) and under running water until 

clear. The sections were then stained in picro sirius red (VWR International F3B) for 
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one hour, for collagen detection, followed by washes in distilled water and ethanol in 

70%(v/v) (for five seconds), and 100% (v/v) for five seconds, then two minutes and 

then three minutes. After immersion in histo-clear III twice for ten minutes, the 

staining procedure was completed by applying DPX mountant (Atom Scientific 

RRSP29) on the sections, in order to preserve the staining and the sliced were left 

aside overnight to dry.    

The stained sections were then photographed under Olympus upright: 

Olympus BX51 (Image pro Plus Versions 4.5 & 7.1; Media cybernetics and later 

Zeiss Zen Blue 2014, Camera Olympus CX50 and latterly AxioCam MRc5), which 

are shown in Figure 5.2. From the obtained images, the collagen and the elastin 

fibers should be seen in red and blue respectively. However, the colours are not very 

clearly distinct, especially in the areas where the elastin staining is weak. For this 

reason, the images were taken under different brightness and contrast for all the 

samples, in order to allow the distinction between fibres. For example, collagen 

fibres look thicker and in the areas where they form bundles, elastin is not clearly or 

at all visible. Different contrast facilitates the elastin visibility by reducing the intensity 

of the coloured collagen bundles, as it can be seen in the first image of Figure 5.2. 

Additionally, low brightness gives better visibility in the fibres organisation and 

orientation, as shown in the second image in Figure 5.2.  

The orientation of the fibers is clearly visible. The collagen fibers seem to be 

more abundant and more smoothly organised than the elastin.  Although all the 

fibres seem to head to one direction (from the left to the right, for example), they do 

so in different angles. Further, despite the fact that the stained tissue samples were 

set straight under the microscope, the fibers seem to go diagonally. This can be 

considered as normal, since the fibers come in spirals to form the arterial tissue.  

This process did not involve any cell staining. This was because the images 

obtained from the histology were to be used as a computational mesh, which at this 

stage should be quite simplified, in order to ease the computational simulation and 

reduce the computational cost. Additionally, since it is difficult to determine the strain 

in the cells experimentally, it will be investigated on the fibers, using the cells as 

reference points. For the computational case, the cells are not necessary, since the 

nodes of the mesh can be used as reference points instead. The next step of this 

process was to convert the obtained images into a computational mesh. One image  
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Figure 5.2: Images from arterial tissue histology. The images were taken under different brightness and contrast, 

in order to clearly distinguish the collagen from the elastin fibers. The scale bar indicates a length of 100m. 
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was selected out of one of the samples. The image selection was based on the 

clearest distinction between collagen and elastin fibres. The image conversion was 

realised using the commercial software Simpleware ScanIP, as described in the 

following text.  

 

5.2.2 Image segmentation 

 
 Simpleware ScanIP is a commercial software that allows the conversion of 

image data into computational mesh. This software was created to process images 

from 3D scan data, such as MRI, CT, etc., and thus, the images can only be 

processed in a grey scale. An example of the software interface is shown in Figure 

5.3. In the present case, the second image in Figure 5.2 was used, in order to 

develop the computational model. The image was in a TIFF file format with 

dimensions 2576x1932 pixels. Unfortunately, the grey scale of the image did not 

allow the exact identification of the fibers. The segmentation of the developed model 

was based on the threshold of the software, brightness and contrast, in order to 

identify the empty space between the fibers and the darkest parts, where the elastin 

fibers are dominant. In the areas where black&white view did not allow such a 

distinction, the components identification was based on observations on the other 

images of the same sample that were previously obtained from microscopy. Another 

drawback in the development of the present model was that there were areas in the 

image where collagen and elastin fibers coexist. However, the software can identify 

only one component at each point. In such cases, computer and advanced imaging 

experts could develop a computer code for each pixel of the image to allow the 

identification of two components at the same point. For an image in these 

dimensions, this process would involve around 5 millions codes. Of course this is 

beyond the scope of this study, in terms of time and expertise. An alternative solution 

was the user to decide which of the two materials should be identified, in order to 

assign the appropriate mechanical properties later on, during the FEA analysis. Of 

course, both materials are of great importance, since one provides the strength of 

the extracellular matrix and the other one the elasticity needed, in order to respond 

to the stresses that the tissue experience within the body. Despite the endless 

argument, the overlapped points were identified as elastin, under the assumption 
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that the elasticity is slightly more important in this study, rather than the strength, 

since the samples are stressed whithin physiological levels, and not to failure.  

 

 

Figure 5.3: Illustration of the ScanIP interface. The inserted image from tissue histology appears in black and 

white, making hard to distinguish between collagen and elastin fibers. 

 

 

 

Figure 5.4: Demonstration of the masks created to identify each of the materials (collagen as purple, elastin as 

red and space as turqoise). 
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Three masks were then identified as elastin, collagen and empty space 

(Figure 5.4). In order to identify the mask for the empty space, the threshold was set 

at 180 and 255 for the lower and upper values respectively. Within this range, the 

space between the fibers seemed clearer and easier to be identified. Similarly, the 

range where the elastin fibers appeared more clearly seemed to be the one between 

0 and 53 and for the collagen fibers  0 and 255. The masked image was conversed 

to a 2-dimensional mesh, resulting in 496,507 squared elements and 270,160 

triangular, overall 766,667 elements. This type of mesh was basically an automatic 

suggestion of the ScanIP software. Any attempt to change the element type resulted 

in warning popups and eventually the mesh was recognised by Abaqus as 

incompatible. Despite the effort and advice, this problem remained unresolved and 

thus, the suggested mesh was used for further analysis. The mesh was exported as 

an input file and was imported in Abaqus for Finite element analysis.  

 

5.5.3 Finite Element Analysis 

 
 The mesh created in ScanIP was imported in Abaqus software for further 

analysis (Figure 5.5). Using the same mesh, five (plus one for mesh sensitivity 

check) 2D models were created and run under different conditions. Each mask that 

was created in ScanIP was translated as a single section in Abaqus. Therefore, each 

section was allocated with different mechanical properties, according to the 

representing material. The first model (Model 1) that was created, was set as 

uniform, that is the same mechanical properties were allocated to all materials, using 

a linear elastic model, with a Young’s modulus E=0.03GPa and Poisson’s ration 

=0.45. The values that were used for this model are just random, because the 

purpose of this simulation was to check the effect of the space between the fibres. 

Therefore another model was developed (Model 2), where still the sections of 

collagen and elastin were given the same mechanical properties, while the space 

section was given a much lower value (1Pa). Within an arterial tissue, there is not 

any empty space. Between the fibres of collagen and elastin lie other substances, 

like fluid, nutrients, etc. These do not really affect the properties of the tissue and 

thus, they could be neglected. However, during histology process all these 

substances get destroyed and they leave empty spaces between the fibres, which 



 
100 

 

are clearly visible from the histology images. Using these images in ScanIP to 

construct the mesh for the simulations, these sections should not be treated as 

vacuum, because there is no such thing in a real case. Therefore, a really low 

Young’s modulus was used to describe this section’s material. For models 3, 4 and 

5, space section Young’s modulus was set as E=1Pa, elastin E=1MPa (Lillie and 

Gosline 2007), while different values were used for collagen material.  

  As explained in previous chapters, this study investigates the strain of the 

arterial tissue under physiological situations (or as close as possible). During such 

conditions, the tissue does not exceed its linear behaviour; therefore, the allocated 

mechanical properties of the components should involve the values obtained during 

the linear phase. In the case of the fibres, however, these have not been reported in 

the literature, and the only available information refers to the strength (collagen 

phase modulus) and not the elasticity (elastin phase modulus) of the material, after 

tests to the failure point. The value that was then used in the present simulations, 

was the lowest reported with E=3GPa (Sasaki and Odajima 1996), for Model 5, and 

was reduced by one order of magnitude, (0.3GPa and 0.03GPa) for models 4 and 3, 

under the assumption that the elastic modulus of a material is much lower than the 

collagen phase modulus. A similar argument holds for the modulus that was used for 

the elastin material. However, since this is much lower than the collagen value, it 

was used as reported for all three models. All the mechanical properties that were 

used for each model are listed in Table 5.1. 

Finally, one more model was developed to check on the mesh sensitivity, 

meshed with 1,860,675 tetrahedral elements and was run under the same conditions 

that were used for Model 5. Again, at this number of elements this type of mesh was 

automatically suggested by ScanIp.  

The left side nodes of the mesh were set as fixed for all models, and a 

displacement condition was used to the right side nodes. Each model was run 4 

times, under a different displacement condition, 5% displacement of the initial length, 

10%, 15% and 20%, towards the circumferential direction of the tissue. This 

displacement was chosen using the information provided from the experimental 

pressure test, described in Chapter 3, where the maximum dilation of the arteries 

was ~20%. The gradual increase in the applied displacement was used to 

investigate the local strain spread at different macro-scale strains.  
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Figure 5.5: This figure shows a part of the mesh developed for the computational simulation described. The 

actual size of the image was too big for the Abaqus interface, so that it had to be zoomed in in order to be seen 

into a more detail.   

 

Model Collagen (GPa) Elastin (GPa) Space (GPa) 

1 0,03 0,03 0,03 

2 0,03 0,03 1Ε-9 

3 0,03 0,001 1Ε-9 

4 0,3 0,001 1Ε-9 

5 3 0,001 1Ε-9 

6 

(Mesh dependence) 
0,03 0,001 1Ε-9 

Table 5.1: List of the mechanical properties used for each of the tissue components (collagen, elastin and space) 

for each of the models developed. 

 

5.3 Results 

 
 The present investigation focuses on the strain experienced by the cells that 

lie on the middle layer of the arterial wall, during dilation caused by the blood flowing 

within. Up to this point, only the macroscale displacement has been investigated in 

previous chapters. However, the present simulations were created in order to 
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examine how this strain is translated into a microscale level, at the level of the fibres 

and cells. For simplicity reasons, the simulation did not include any cells, and thus 

some reference points were determined on the mesh, in order to calculate the 

distance between them. The reference nodal points were selected to belong to the 

middle area of the mesh. The reason behind this was that when the mesh would be 

stretched uniaxially, it will present extremes at the edges, in terms of extension and 

shrinkage. Such extremes do not apply in a physiological condition. Therefore, the 

middle area of the mesh is a safer option for the present investigation. 

 

 

Figure 5.6: Schematic on the node identification on the mesh used for further investigation. 

 

  The node identification was realised with the aid of a Python script (Appendix 

I). The script was programmed to identify one node at the middle of the y-axis and 

early x-axis. Using this as a reference point (point 0), ten more nodes were identified, 

five at Y=(Reference point + 1m) and another five at Y=(Reference point - 1m), 

with an x-distance between them of 20m. All the nodes were identified under the 

precondition to belong to a fibre (either collagen or elastin) and not on an empty 

space. The identified nodes can be seen on the schematic in Figure 5.6.   

After identification, the script was set to report the exact position of each 

node, before and after stretching.  
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The script was also programmed to report the distance of each point from the 

reference point 0, in x-direction, in y-direction and the overall distance as well. The 

results reported here were based on the distance between the points. The distances 

calculated involved the ones between points 3-5, 5-7, 3-7, and 4-8. These points 

were chosen because of their position in the middle area of the sample and were 

used to examine the strain at smaller (p3-5 and p5-7) and larger (p3-7 and p4-8) 

initial distances. Using the values given by the script as initial distance and post-

simulation distance, the strain percentage was calculated in Excel as %strain= [(L1-

L0)/L0]*100, where L1=post-distance and L0=initial distance between the nodes. The 

results were plotted in graphs, which are demonstrated in Figures 5.7, 5.8, 5.9 and 

5.10, for each displacement condition, 5%, 10%, 15% and 20%. Each graph 

indicated the strain percentage as calculated between the respective points and for 

each of the models, along with the average values. All the error bars are within the 

confidence interval of 95%. For inhomogeneous materials, the average value of 

micro-strains should be expected to match the macro-applied strain (displacement 

imposed as boundary condition), and thus, to indicate the reasoning of the 

computational simulations.    

 

 

Figure 5.7: The micro-strain results obtained at 5% tissue displacement for four pair of nodes and their average 

for all five models. The error bar indicated a confidence interval of 95%. 
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Figure 5.8: The micro-strain results obtained at 10% tissue displacement for four pair of nodes and their average 

for all five models. The error bar indicated a confidence interval of 95%. 

 

 

 

Figure 5.9: The micro-strain results obtained at 15% tissue displacement for four pair of nodes and their average 

for all five models. The error bar indicated a confidence interval of 95%. 
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Figure 5.10: The micro-strain results obtained at 20% tissue displacement for four pair of nodes and their 

average for all five models. The error bar indicated a confidence interval of 95%. 

 

 

 

Figure 5.11: The results obtained from mesh sensitivity test. Model 3 was used at 15% displacement against a 

finer mesh model under the same conditions. The result indicate that the finer mesh model results in a smaller 

variation, as the error bar (95% CI) is smaller . 
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The results from the mesh sensitivity test are shown in Figure 5.11, where the 

distance average of the selected points is plotted for the finer mesh against the one 

of Model 3. The difference of the actual values (19% for the finer model and 19.5% 

for model 3) can be considered as negligible, however the difference of the error bar 

indicate more accuracy for the finer mesh model.  

 

5.4 Discussion 

 
 The purpose of the work presented in this chapter was to investigate the 

strain at the micro-level of the arterial tissue using FEA. This was achieved by 

developing a 2D computational model, which was based on the histoarchitecture of 

the media layer of the arterial wall that was obtained from histological images that 

revealed the orientation of the collagen and elastin fibres. The images were 

segmented in Simpleware ScanIP, in terms of the main constituent ECM proteins of 

the arterial wall (collagen and elastin) and, subsequently, meshed as a shell using 

shell elements. This process carried several limitations. Firstly, the ScanIP interface 

utilised a grey scale that made it difficult to accurately distinguish between the elastin 

and the collagen fibres. Moreover, the regions where the elastin and collagen 

overlapped were identified as one material (either elastin or collagen). This decision 

could have affected the orientation of the fibres and, thus, the properties of the 

mesh, making it either stiffer or more elastic. In order to improve the mesh in terms 

of accuracy, more advanced imaging techniques, such as multiphoton laser 

microscopy and second harmonic generation, would have been necessary in order 

to distinguish between the collagen and elastin networks. However this was beyond 

the scope of the present project. Nevertheless, the developed mesh resulted in an 

adequate approximation, when compared to the histology images, in terms of the 

fibres orientation and consistency of the components.    

 Once developed, the meshed histoarchitecture was imported in Abaqus, 

where it was assigned the mechanical properties for each material, as well as the 

boundary conditions. The left-side nodes at the boundary of the geometry were fully 

constrained, while nodes at the right-side boundary of the geometry were subjected 

to either 5%, 10%, 15% or 20% strain along the x-direction (Figure 5.6), which 

corresponded to the circumferential direction of the arterial wall (Figure 5.1). Several 
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nodes were identified in the middle area of the mesh, with the aid of a Python script, 

which were used as reference points in the analysis. The coordinates of each of 

these nodes were recorded during the simulation and used in the calculation of the 

strain experienced by the collagen and elastin fibres. 

Five models were run, using the same conditions but with different 

mechanical properties assigned to the ECM constituents and taken from the 

literature. The results obtained from this investigation indicated that there was a 

variation of strain between the points, which depended on the difference in the 

mechanical properties of the tissue components. The results for Model 1 appeared to 

be uniform, since the properties of the different ECM constituents were set to be the 

same, basically modelling a homogeneous material. In Model 2, however, the 

reduction of the modulus of the space regions to 1E-9 GPa, while keeping the 

modulus of the elastin and collagen to 0.03 GPa, produced a differentiation in the 

strain variation between the node intervals 3-5 and 5-7. On the other hand, the 

average strain between the node intervals 3-5 and 5-7 was roughly equal to the 

strain calculated for the node interval 3-7 (Figure 5.7). The variation in the strain 

between the node intervals 3-5 and 5-7 was manifested by an increase in the strain 

experienced by the node interval 5-7, compared to Model 1. This increase, which 

was a result of the reduction of the modulus of the space regions (ground substance) 

in Model 2, indicated that the ratio of the space regions to the combined amount of 

elastin and collagen was higher in the vicinity between nodes 5 and 7. 

In models 3, 4 and 5, the modulus of the collagen fibres was set to 0.03 GPa, 

0.3 GPa, 3 GPa, respectively, whereas in all 3 models the modulus of the space 

regions and elastin fibres was kept the same at 1E-9 GPa and 0.001 GPa, 

respectively. In Model 3, the reduction of the modulus of the elastin caused an 

increase in the strain calculated for the node interval 3-5 compared to Model 2, 

indicating the prevalence of elastin in the vicinity between nodes 3 and 5. As a result 

of this, the strain spread was equally balanced between the node intervals 3-5 and 5-

7 in Model 3, with their average strain roughly equalling the strain calculated for the 

node interval 3-7 (Figure 5.7). Further increase of the modulus of collagen in Models 

4 and 5, while keeping the modulus of the elastin and the space regions the same as 

in Model 3, generated a higher resistance to deformation in node interval 5-7, which 

was manifested by the lower strain calculated for this interval by Models 4 and 5, 
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compared to Model 3. This, in turn, resulted in node interval 3-5 to undertake the 

majority of the deformation. Similarly to the previous models, the average strain 

between intervals 3-5 and 5-7 was roughly equal to the strain calculated for node 

interval 3-7 by Models 4 and 5. In all models, the variation in the local strain variation  

did not seem to change significantly for the different global strain conditions (5%, 

10%, 15% and 20%) simulated. This was expected, since all the components of the 

model were defined as linear elastic. Moreover, and in all global strain conditions 

applied, the average of the local strains (node intervals 3-5, 5-7, 3-7, 4-8) for Models 

1, 2, 3 and 4 was approximately equal to the respective global strain applied. This 

was not the case for Model 5, in which the average of the local strains exceeded 

substantially the global strain in all strain conditions simulated (Figure 5.7, 5.8, 5.9, 

5.10). In light of this, and due to the fact that the local strains in Models 1 and 3 were 

predicted to be too homogeneous for an inhomogeneous material and that the 

elastin and collagen modulus in Models 1 and 2 were set to be the same, Model 4 

seemed to be the most reasonable, in terms of both inhomogeneicity and averaged 

strain.  

These computational modelling results demonstrated that the local strain 

sampling was adequate to detect and take into account the inhomogeneity of the 

modelled tissue and that the applied global strain was translated differently at the 

local microenvironment. Due to the application of the global strain condition, the 

inhomogeneous mesh had to attain the applied strain, unless it got ruptured, which 

was not the case. The nodes under investigation were selected on the precondition 

to belong to a fibre, either collagen or elastin, but not necessarily to the same type. 

Moreover, the node intervals investigated might have includes any of the three ECM 

components modelled in the mesh. Since the collagen was modelled as the stiffer 

material, it generated a higher resistance to deformation, whereas the less stiff 

components of the tissue, such as the elastin, strained more in order to attain the 

applied global strain. As a result of the above, the node intervals that were 

investigated achieved different levels of local microstrain. In addition, the fibres in the 

mesh were not perfectly aligned along the direction of the applied global strain, due 

to the spiral alignment of the fibres in the arterial wall. This might have also affected 

the predicted local strains that were calculated along the x-direction (along the 

direction of the applied strain). 
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The observation that the applied global strain was translated differently at the 

local microenvironment was also reported by Screen et al. (2004) in an experimental 

study that investigated the translation of macroscale strain to the microscale in rat 

tail tendon fascicles, using the resident tenocytes as markers. That study indicated 

that the local strain values at the fibre-level were much smaller than the uniaxially 

applied macroscale strain, and concluded that this observation was due to the 

tendon histoarchitecture. Specifically, under unstrained conditions the collagen fibres 

of the tendon demonstrated an uncrimped configuration, whereas when strain was 

applied, they started to align along the direction of the applied strain and, eventually, 

started to stretch. A schematic of this process is demonstrated in Figure 5.12. Since 

the tenocytes (used as markers) were attached to the collagen fibres, the distance 

between them started to increase only after the collagen fibres uncrimped, aligned 

with the direction of the applied strain and then started to stretch. This process 

generated a lower strain in the collagen fibres (as calculated by the displacement of 

the tenocytes) than the applied global strain.  

 

 

 

Figure 5.12: Schematic of the tendon fibres stretching process when loading is applied. Modified from Screen et 

al. 2004. 

 

 

 In the present study, the different values used for the modulus of the collagen 

and the elastin were not obtained from experimental measurements, since the 

literature only reports on experimentally-derived values for the high modulus phase 

of the collagen and elastin. The collagen modulus that was obtained from previous 

studies was used only for Model 5 (3GPa) and reduced by one order of magnitude 

Strain free

Applied strain

Applied strain

Fibres align

Fibers extend -
distance between cells start increasing



 
110 

 

for each of Models 4 and 3, to 0,3 GPa and 0,03 GPa respectively, in an attempt to 

approximate the low modulus of collagen. However, since these moduli are difficult 

to be determined experimentally, the actual values might not be as significant as the 

orders of magnitude of the difference between the moduli of the ECM components. 

This later assumption was supported by the simulations, since the results indicated 

that it was required to increase the difference between the moduli of the collagen 

and elastin by at least 1 order of magnitude, in order to observe a significant effect in 

the local strain apportionment between the different node intervals studied.    

 Another limitation of the present study refers to the lack of the crimp effect in 

the computational simulations, since crimp has not been taken into account, and 

consequently has affected the outcome results.  

 Finally, it should also be mentioned that the mesh used in the models 

described in this chapter was limited to a shell and it was not a 3D structure, 

whereas the applied strain was applied uniaxially, as indicated in Figure 5.6. 

Physiologically, arterial tissue is a multi-laminar structure with multiple layers of 

collagen and elastin fibres, whereas it undergoes multiaxial deformation under the 

pulsatile flow of the blood. A more physiological model would involve a 3D mesh, 

based on a stack of sequential histology images that would more accurately describe 

the 3D structure of the arterial wall, as well as the application of biaxial strain as 

boundary condition and more realistic mechanical properties for ECM components.   
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Chapter 6. Investigation on the strain variation at the 

microenvironment of the vascular wall: Experimental 

approach.  

 

6.1  Introduction 

 
The aim of the present work was to develop experimental methods which 

would allow the visualisation of the local strain variation in the arterial wall, during 

stretching. The rationale behind this was to obtain comparable findings to the 

computational simulation, which was earlier developed for validation purposes. The 

developed method was inspired by Screen et al. (2003, 2004), where tendon 

fascicles were examined under the confocal microscope during stretching, with the 

aid of a specially designed rig. The embedded cells were stained and used as 

markers, and the distance between them was employed to assess the local strain 

spread. Similarly, for the present study, fresh arterial tissue was dissected and 

stained for cell nuclei. Following, the stained tissue strips were mounted on a 

uniaxial tensile rig, which was designed to fit under the confocal microscope. The 

tissue strips were uniaxially stretched up to 20% of their initial length, incrementally. 

This strain value derives from the earlier findings reported in Chapters 3 and 4, 

which were also used for the computational simulations.  

Confocal microscopy carries the advantage of penetration, and thus allows 

the visualisation of the inner tissue layers. Several set of images of the stretched 

tissue were then obtained at each increment, illustrating the global strain effect in the 

microenvironment within the middle layer of the vascular wall. From the obtained set 

of images, identical pairs of cells were identified for each increment, and the distance 

between them was calculated to give information on the local strain variation. The 

findings were then compared to the ones obtained from the computational 

simulations, as described in Chapter 5. 
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6.2  Methods and Materials 

 
 Five femoral arteries were dissected from fresh porcine legs (same day of 

slaughtering), which were obtained from a local abattoir. The arteries were emerged 

into transport medium (prepared according to the in-house protocol as previously 

described in Chapter 3) straight after dissection and kept until staining, in order to 

remain alive. The excess fat around the tissue was carefully removed to prevent 

damage to the artery. The tissue was then stained with Hoechst (Invitrogen H3570, 

10μg/ml), a blue fluorescent dye that stains the DNA and thus reveals the cell nuclei, 

even in live cells, without causing any damage. Hoechst was diluted in transport 

medium (1.8l into 50ml) and the tissue was stained for 1 hour. The tissue was then 

washed three times, still with transport medium on the shaker for ten minutes.  

 

 

Figure 6.1: Schematic of the dissection process towards the sample collection for investigation. 
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Figure 6.2: Schematic of the tissue mounting on the tensile rig 

 

 

 

 

Figure 6.3: The uniaxial tensile ring was specially designed to fit under the confocal microscope. The left jaw of 

the rig may be fixed to the convenience of the user, while the right jaw may move at uniaxial direction (back and 

forth). The right jaw is connected to a console through which the user controls the system and it functions with 

electric power.  
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The arteries were then divided into smaller rings of length 0.5cm long. The 

rings were then cut to form flat strips. A schematic of the dissection process is shown 

in Figure 6.1. The top and the bottom edges of the tissue strips were carefully super-

glued on cotton fabric strips, which were used to assist tissue mounting on the 

tensile rig. The tissue sample was positioned to be stretched along circumferential 

direction with the endothelium to face down (Figure 6.2).  

 The specimens were then mounted on a small tensile rig (Figure 6.3), which 

was specially designed to fit under the confocal microscope (Zeiss LSM510 META 

Inverted confocal microscope). The left jaw of the rig was fixed, while the right one 

allows movement along the axial direction, electrically. The movement of the right 

jaw was controlled with a console towards the desired direction (back or forth) to the 

desired distance (between 0.04-1.28mm). Before placing the rig under the 

microscope, the length of the tissue was measured from the one end of the fabric 

strip to the other, using an electronic calliper. According to this length (L0), the 20% 

of displacement was calculated as (L0*20)/100.  

 The experiment took place under the confocal microscope, because of its 

convenient penetration within the tissue wall (up to 100m). The area of interest was 

in a depth between 30-50m, depending on the focus clarity. Within the vascular 

tissue wall, this distant is sufficient to view the middle layer of the artery. 

 After focusing the desired plane, an image was taken to identify the zero-

applied strain position of the tissue. The zero-applied strain, however, does not 

necessarily means zero-strain on the tissue. During mounting process the tissue 

unavoidably have been subject to stretching, therefore, at the zero-applied-strain the 

tissue may already have either a negative or a positive strain. For the imaging, the 

tiling option was selected, which allows the viewing of the broader area of the actual 

focus. For the present case, the tiling option was set 5x1, which tiles 5 images in the 

x-direction and a single image in the y-direction. This distance was enough to follow 

the same cells during stretching from 0 up to 20% strain of the tissue testing length.  

 Following the first image capture, the rig was set to move 0.2mm and then to 

stop. A distance of 0.2mm seemed ideal for the present experiment for several 

reasons: first, a larger distance would stretch the tissue further and it would be hard 

to refocus and follow the same cells, while a smaller distance would slow the step-

by-step stretching process down, so that the tissue would dry out before it would 
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reach the certain strain percentage. At this point, the initial plane was refocused and 

another image was taken. This process continued until a 20% macro strain was 

reached.   

 Seven samples were used for this investigation, which were obtained out of 

five arteries. The capital letter at each sample represents the artery (A, D, E), while 

the number represents the samples from same artery (B1 and B2, C1 and C2). 

 

6.3 Results 

6.3.1 Confocal Microscopy 

 The sets of the images obtained for each of the samples were used to 

calculate the distance between certain cells, which were distinguishable in every 

image. The micro strain percentage was calculated at approximately 5%, 10% and 

15% of macro strain, according to the formula (Li-L0/L0)*100, where L0 is the initial 

distance between the cells before any stretch is applied, and Li is the distance where 

i=5%, 10%, 15% and 20% macro strain. An example of the set of images and the 

cells chosen is illustrated in Figure 6.4, where they can be seen in inverted colours. 

The results obtained for each of the samples were plotted for each of the strain 

percentages (Figures 6.5, 6.6, 6.7 and 6.8), as well as their average. The average 

value for 5% macro strain was 4.23±2.9%micro strain, for 10% was 10.1±4.2%, for 

15% was 14.93±7.7% and for 20% was 20.1±6%. The error bars indicate a 

confidence interval of 95%. The initial distance between the cells for each of the 

samples is demonstrated in Table 6.1. For the samples B and C there were two 

measurements on each slide, that is the distance between two pairs of cells in the 

same tissue sample (1 and 2), while only one pair was followed for the samples A, D 

and E.  

 

Sample A B1 B2 C1 C2 D E 

Cell 

distance 

(m) 

107 176.75 24.5 20.25 35.5 63.185 113.7 

Table 6.1: List of the initial distance between the cells for each sample. 
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Figure 6.4: Illustration of the image post-processing for the calculation of the distance between certain cells at 

0%, 5%, 10%, 15% and 20% of tissue macro strain. One pair of cells was initially identified and was followed in 

each stretching step. The chosen pairs of cells had to be clearly visible in order to proceed to the next step until a 

20% of displacement was reached. The scale bar indicates a length of 200m. The illustrated images were 

processed in Microsoft Paint, in order to invert the colours and to enable clear visualisation.  
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Figure 6.5: The results obtained indicate the strain percentage between the cells at 5% strain of the tissue. 

 

 

 

 

Figure 6.6: The results obtained indicate the strain percentage between the cells at 10% strain of the tissue. 
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Figure 6.7: The results obtained indicate the strain percentage between the cells at 15% strain of the tissue. 

 

 

 

 

 

Figure 6.8: The results obtained indicate the strain percentage between the cells at 20% strain of the tissue. 
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6.3.2 Comparison between experimental and computational results 

 
 The experimental findings were then compared to the results obtained from 

the computational simulations that were previously described in Chapter 5. The 

averages for each run (Models 3, 4, and 5 and experimental) are demonstrated in 

Figure 6.9, while the actual values are listed in Table 6.2. As it can be seen from the 

graph, with just a few exceptions as in Model 5 at 20% of global strain, all the 

averages from the computational models lie within the error bar of the average 

obtained experimentally.  

 

 

Figure 6.9: The results obtained indicate the strain percentage between the cells at 20% strain of the tissue 

 

 

Macrostrain 5% 10% 15% 20% 

Model 3 5.14 10.29 15.43 20.57 

Model 4 5.56 11.09 16.69 22.22 

Model 5 6.86 13.74 20.83 27.48 

Experimental 4.23±2.9 10.17±4.2 14.9±7.7 20.1±6 

Table 6.2: List of the actual averaged values obtained from computational models and experimental procedure. 
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6.4 Discussion 

 
 Five fresh femoral porcine arteries were stained for cell nuclei and strips of 

each tissue were stretched up to 20% of their initial length along circumferential 

direction, under the confocal microscope. The change in the distance between 

different pairs of cells was calculated during tissue stretching at different macro-

strains (5%, 10%, 15% and 20%). The average value of the micro strain seems in a 

good agreement with the macro strain applied on the whole tissue, for all four cases. 

However, there seems to be a great variation between cell displacements along the 

tissue. The cells are supposed to be attached to a fibre, either elastin or collagen. 

Nevertheless, since elastin and collagen are two materials of different mechanical 

properties, they are expected to stretch differently. Additionally, the abundance, the 

orientation and the direction of the fibres play a significant role at this level of 

examination, and thus, the way they move apart from each other may vary, even 

within the same sample, as in the cases of B1 and B2, and C1 and C2. These 

findings prove the high inhomogeneicity of the vascular ECM.   

 Another factor that should be taken into account is the cell viability. All the 

tissue samples used were dissected from freshly slaughtered animals and during 

staining there were immerged in transport medium. Experiments for cell viability after 

similar process indicated a great viability percentage of the cells, however there well 

still a few dead ones. And since a dead cell may no longer be attached to any of the 

fibres and is free to float, it may move at a greater or a smaller distance than the 

remaining alive ones during macro stretching.       

 Additionally, this process carries another limitation in terms of the strain 

application. The tissue sample was inevitably subject to some stretching during 

mounting, which means that there was no truly zero-strain state at the beginning of 

the experiment. Moreover, the jaw of the rig was moving electrically. Despite the fact 

that it was proved accurate by performance tests, it could still carry a small error.  

 Furthermore, in some cases, despite the stretching, the distance between the 

cells gets smaller instead of larger (as in cases of A in Figure 6.7 and B2 in Figure 

6.8). This is probably due to the complexity of the tissue mounting, and/or due to 

crimp effects.  
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 Nevertheless, all the distances between randomly selected cells – which were 

chosen mostly according to their clear visibility in every stage of stretching – resulted 

in an average which was really close to the global strain. This is of great interest, 

because the samples were not derived from the same artery. On one hand, this may 

be a coincidence. However, the structure of the arterial wall is not very different to 

each other, since all the samples come from the same arteries of the same species. 

Theoretically, since it is difficult to study the strain distribution for an inhomogeneous 

material, the standard procedure is to divide it into smaller intervals and treat each 

one as homogeneous. Then their average should approach the globally applied 

strain. In the present study, the average in every strain condition (5%, 10%, 15% and 

20%) was in a very good agreement with the global strain. This suggests that the 

sample size is good.  

 The great variation of micro-strain within the vascular wall is of great interest, 

but further investigation is needed for an extended discussion, which will include the 

staining of each component within the ECM. This is hard to be achieved, especially 

when dealing with fresh tissue, since fresh tissue means live cells, while the toxicity 

of the staining will probably kill the cells. Moreover, even if the cells survive the 

staining, it will probably be really difficult – if at all possible – to distinguish between 

the levels of the microscope focus. All this is beyond the scope of the present study, 

since this experimental procedure was carried out in order to examine whether the 

computational simulations can replicate the strain spread that was observed 

experimentally.  

   Comparison between computational and experimental findings indicated that 

the FEA results lie within the error bar of the average derived experimentally. 

However, the case of Model 3 seems very ideal, in terms that there is no such 

variation between the node distances. On the other hand, Model 5 provides much 

greater variation, not only compared to the other models, but also compared to the 

experimental findings. This is also the reason for the large error bars in all global 

strain scenarios (5%, 10%, 15% and 20%). There seems to be a good agreement 

though between the experimental and the Model 4 results. Despite the difference 

between their averages, there is a similar pattern in the variation between the point-

distance, resulting in a similar error, since the error bars in the present case 

demonstrate the variation in the local strain. This suggests that Model 4 is the 
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closest approach to the in vitro study so far. Nevertheless, further investigation is 

needed, which this comparison was between a 2D computational model against a 

3D tissue sample.  

 Furthermore, another point of interest between the computational and 

experimental findings lies on the initial distance between the points. The findings 

from the experimental procedure indicated that the variation between the results 

does not seem to be dependent on the initial distance between the cells. For 

example, the initial distance for B2 and C1 were similar (24.5m and 20.25m 

respectively), however the micro strain correspondence is very different in all four 

cases. Similarly for the distances between pairs A (107m) and E (113.7m). 

Additionally, the variation in micro-strain is also different even within the same tissue 

sample. The pattern in the distance for B1 and B2, as well as C1 and C2 also vary, 

despite that they belong to the same sample. For computational simulations, the 

strain variation between the points under examination was dependant on their initial 

distance. The greatest variation was seeing in the distance between point 3-5 and 5-

7, whose initial distant was smaller. In contrast, the strain between the points 3-7 and 

4-8, whose initial distance was greater, was closer to the average in all the models. 

This probably suggests that in FE analysis, smaller intervals should be examined, in 

order to obtain a better understanding on the strain variation, and eventually the 

stress.  

Moreover, it should be noted that this investigation was based on uniaxial 

stretching of the tissue, while a biaxial case would be more realistic in order to 

estimate the way the macro strain is translated into the micro level within the arterial 

wall. In a biaxial case, theoretically, the micro-strain will be reduced. This reduction 

cannot be predicted at this stage, since the mechanical properties of the tissue are 

different along the axial and circumferential direction. However, as the overall 

loading will result not only to the dilation but also to the extension of the tissue, 

theoretically should decrease the strain in the circumferential direction. Additionally, 

as mentioned in Chapter 3, the restriction of the extension of the arteries during 

pressure test may have overestimated the tissue dilation, compared to the in situ 

condition. Similarly, the uniaxial stretching performed in this investigation has 

overestimated the local strains. That applies to the computational procedure as well 

as to the experimental one and will be included in some further investigation.  
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Therefore, a 3D model should be developed that will involve the correct 

mechanical properties of the tissue components and a 3D displacement, as in a 

realistic case. After validation of these computational simulations with a respective 

experimental procedure, the values of stress could be determined computationally 

and further used, in order to optimise the conditions in the vascular bioreactor.  
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Chapter 7. General Discussion and Conclusions 

In spite of the great advances in the medical field, vascular pathologies 

remains the primary cause of fatality in western societies. Conventional treatments 

for such pathologies involve the replacement of the defected vascular tissue with 

either artificial conduits or natural vascular grafts of autologous, homologous and 

xenogenic origin. Such treatments carry several limitations, which are associated 

with the need for anticoagulation with and the low patency rate (for small sizes) of 

artificial grafts, the need for immunosuppression with and the limited supply of 

homologous tissue, the limited durability and lack of regeneration of the chemically-

treated xenogenic tissue, and the sacrifice of a healthy conduit with the autologous 

tissue .  

Tissue engineering of vascular conduits using natural scaffolds offers an 

attractive alternative for vascular reconstructions since they have the potential to 

repair, remodel and grow with the patient. However, an ideal tissue-engineered 

blood vessel has yet to be developed. In the case of in vitro tissue engineering, 

whereby a scaffold is seeded with cells in vitro and physically conditioned in a 

bioreactor designed to simulate the natural environment of the body, several 

parameters need to be determined and optimised in order to provide to the seeded 

cell an ideal environment for effectively migrating, proliferating, repopulating and, 

subsequently, regenerating the scaffold. One of these parameters includes the 

dynamic physical stimulus that the cells need to be exposed to in the bioreactor in 

order to regenerate the vascular tissue in a physiological manner. 

Although researchers in the field agree on the type of macroscale physical 

stimulation (pulsatile flow and pressure) that needs to be simulated for vascular 

regeneration, the level of this physical stimulus still remains speculative, with 

suggestions ranging from foetal conditions, to normotensive adult conditions, to even 

pathological conditions. In addition, little is still know with regards to how the 

macroscale physical stimulus is translated to the microscale environment of the cells, 

especially when scaffolds with different histoarchitectures are employed. The main 

difficulty in dealing with these issues is that they are hard, and usually quite 

expensive, to be determined by experimental means, especially when scaffolds with 
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natural histoarchitectures are employed. An alternative method for such 

investigations is the computational approach. 

The purpose of the present study was to develop computational models that 

simulated the natural histoarchitecture of the arterial wall with a view to investigating 

the behaviour of the native artery when exposed to physiological blood pressure. 

The main focus was to quantify the macroscale strain imposed to the vascular wall 

and to replicate its effect at the microscale environment of the extracellular matrix 

(ECM) protein fibres and cells. The reason that the present investigation was 

focused on the strain was due to the fact that only strain could be validated 

experimentally. Experimental validation, as well as mathematical verification, is 

crucial for computational simulations, since it is the only way to determine the 

accuracy of the numerical solutions. When a computational model has proved 

accurate enough, it can provide more parameters that are not always possible to be 

determined experimentally. 

Although the current study was focused only on the natural arterial tissue and 

normal blood pressure conditions, with a view to quantifying the level of strain 

experienced by the cells under normotensive conditions, the developed 

computational models can also be employed to investigate macroscale-microscale 

strain translation under different blood pressure conditions (hypotensive, 

hypertensive). Such utilisation of the models can elucidate the effect of different 

pathological conditions on the strain experienced by the cells, and how this strain 

regulates cell function. In the field of tissue engineering, the developed models can 

be employed to study the effect of different scaffold architectures on the strain 

translation from the macroscale to the microscale, in order to optimise bioreactor 

operation (input conditions of pressure and flow) and, subsequently, in vitro cell 

mechanotransduction and tissue regeneration. 

 

7.1 Investigation of the strain at the arterial wall at macro-level 

In the context of the present study, Chapters 3 and 4 described the materials 

and methods used for the experimental and computational process, in order to 

determine the macroscale strain experienced by the arterial tissue. During the 

experimental process, fresh porcine femoral arteries were used and tested within 8 
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hours from in order to achieve an as-physiological-as-possible simulation of the 

natural tissue behaviour. The arteries were subject to dilation testing, during which 

the arteries were stepwise pressurised up to a static pressure of 120 mmHg and 

their dilation was measured at each pressure step. The results resorted were used to 

validate the numerical simulations of vascular dilation. The first limitation that this 

method carried was the small sample size. Additionally, during pressure test, the 

arteries were likely subject to creep, due to the time increments, and this may have 

resulted in an overestimated dilation. Moreover, the measurements for the initial and 

extended lengths were carried out manually from the images, and this process may 

also have resulted in an undetermined error.   

 The arteries were further assessed in terms of their geometrical (length, 

thickness and diameter) and mechanical (elastic Young’s modulus) properties. The 

mechanical properties were determined after uniaxial tensile loading to failure. The 

uniaxial test is not considered as ideal, first because the arteries carry different 

mechanical properties at each direction, and also because their movement in situ 

does not take place in one direction. The recorded stress-strain behaviour of the 

arteries was used to determine their modulus during their elastin phase. The 

rationale for using the elastin phase modulus was the fact that under normal 

conditions tissues are loaded up to their transition phase, following a stress-strain 

behaviour close to their elastin phase stress-strain behaviour. Subsequently, the 

geometrical and mechanical properties of the arteries were used to construct the 

arterial mesh for the computational simulations.  

Five models were run under different pressure conditions; one under static 

pressure and 3 under different pulsatile pressure waveforms. The models were 

validated for their accuracy both analytically and experimentally. The analytical 

solution for the axial and circumferential stress suggested reasonable accuracy of 

the numerical results. However, there was not a good agreement between the 

experimental and computational dilation. The reason for this was probably due to the 

mechanical properties that were used to describe the tissue material 

computationally. Physiologically, the artery dilates in three dimensions. However, the 

modulus that was used in the models was the one determined under uniaxial tensile 

testing along the circumferential direction. A more realistic simulation of the tissue 

should involve mechanical properties determined in a biaxial testing setting, in order 
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to take into account the axial direction as well. The utilisation of the circumferential 

direction modulus of the artery in the computational model increased the stiffness of 

the arterial model, which predicted smaller dilations compared to the experimental 

results.  

Comparison with previous similar studies also indicated a large dilation for the 

experimental test and a lower for the computational simulations. This also justifies 

the overestimation in the arterial dilation from the pressure test, and also that further 

investigation is needed for the computational models. Further improvement on the 

computational models may involve more realistic mechanical properties and also 

different pressure conditions. Nevertheless, the models that were developed were 

simple, repeatable and mathematically verified, which allows further improvement.    

 

7.2 Investigation of local strain at the arterial wall  

 

 The information on the dilation of the vascular wall obtained from the 

previous investigation was subsequently used in the microscale models of the 

arterial tissue. Chapter 5 described the procedure followed for the histological 

staining of the collagen and elastin fibres in the arterial wall. The micrographs 

obtained were used to develop the computational mesh that was employed for the 

FE analysis at the microscale level. A significant limitation of this process was that 

the tissue was stained in colour, while the software interface (Simpleware ScanIP) 

used provided a grey scale resolution of the images. Owing to this, it was hard to 

distinguish between the elastin and the collagen fibres. Additionally, there were 

several points where the collagen and elastin fibres overlapped and the user was 

called to decide which material will describe these points. Obviously any decision 

would affect the properties and eventually the whole behaviour of the mesh. This 

issue is not easy to overcome, and requires computing and advanced imaging 

expertise. Despite these limitations, a 2D mesh of the arterial wall along 

circumferential direction was created based on the tissue stained images and was 

imported into Abaqus for numerical analysis.  

The FE mesh model of the arterial wall predicted a displacement of up to 20% 

of its initial length along the x-direction, which was representing the circumferential 
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direction. The modulus of the collagen and elastin used in the models were taken 

from literature sources. Ideally, the moduli that should be used in such as model for 

the collagen and elastin should be the ones corresponding to their initial linear 

region. However, this information is not yet available, and thus, the maximum 

modulus was used to define the materials in the initial models. More models were 

subsequently developed, with the modulus for the collagen reduced by one order of 

magnitude each time (from 3GPa, to 0.3GPa and 0.03GPa), as an attempt to 

approach more realistic conditions.  

In order to assess the accuracy of the numerical models, an experimental 

procedure was followed, where fresh arterial tissue was stained for cell nuclei and 

was stretched under a confocal microscope with the aid of a specially designed rig. 

Strips of fresh porcine femoral arteries were mounted on the rig and were gradually 

stretched up to 20% of their initial length. Several pairs of cells were identified and 

followed until the end of stretching in a depth of 30-50m, and images were captured 

at each strain step. The distance between the chosen cells was then calculated from 

the recorded images, providing information on how the fibres were stretching as a 

result of the strain applied at the macroscale. The results obtained from this process 

indicated great variation between the samples. However, their average was in good 

agreement with the applied macroscale strain of 5%, 10%, 15% and 20%. This also 

indicates that the variation between the local measurements could be found 

throughout a single sample and not only between different samples, since there was 

a single or couple of measurements for each one.  

The experimental results were compared to the ones obtained from the FE 

analysis, and found to be in good agreement with the computational results of Model 

4, where the collagen modulus was set at 0.3 GPa and the elastin modulus at 0.01 

GPa. This did not necessarily mean that these were the correct values for the 

collagen and elastin modulus, but it was probably an indication that they differ by one 

order of magnitude. Nevertheless, even the correct values of the material properties 

were found and used, the results between experimental and computational methods 

could still be different, since the comparison is between a 2D computational model 

and a 3D tissue sample. Further studies need to be focused on investigating the 

strain in a 3D computational mesh, which could be achieved in ScanIP using a stack 

of tissue stained images.  
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In addition, and in order to improve the accuracy of the developed 

computational models, the mechanical properties of the arterial tissue obtained by 

biaxial tensile testing need to be used. This would simulate a more realistic situation 

of vascular dilation, in both experimental and computational procedures. 

Theoretically, in the case of biaxial macro-strain, the local variation will also take 

place in two directions, and thus, smaller cell displacement should be expected.  

Further, the investigation should finally focus on the strain effect of the cells, 

in order to provide information on the stress that the cells experience, as well. 

However, the diameter of a smooth muscle cell varies between 2-10m, while its 

length ranges from 50-400m. The fibres bundles may vary between 10-100mm 

wide and can be tens of centimetres long. The difference in size between the fibres 

and the cells is probably a great challenge for their computational simulation and 

should be considered for further work.      

Because of the novelty of the present investigation, there can be no 

comparison with previously reported studies. Even in the case of Screen et al. (2003) 

only tendon fascicles were examined, which comprise mostly of collagen fibres and 

thus, the strain variation cannot be similar to the arterial tissue, which carries highly 

inhomogeneous histoarchitecture. Additionally, no similar FEA studies have reported 

a realistic histoarchitecture of the arterial wall at this scale.  

An improvement on the computational mesh and the mechanical properties of 

the ECM components, will also allow the study of strain variation in a more detail. 

That is by clearly distinguishing the fibres, the strain spread for each component can 

be determined computationally. This process is much more expensive – if at all 

possible – to be carried out experimentally.  

   

7.3 Conclusions 

 

 Hypothesis justified as it is possible to simulate the local strain variation in the 

arterial tissue as a response to the macro-strain, using computational 

simulations. 
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 The FSI models developed in this study are simple, repeatable and 

mathematically verified, which allows further improvement in terms of the 

tissue mechanical properties and more realistic boundary conditions. 

 The FSI models were comparable with experimental findings and previously 

reported similar studies. 

 The linear elastic material that was used for the arterial wall in FSI models 

resulted in similar findings for the cases of static and pulsatile pressure 

conditions. This means that static pressure can be used instead, which will 

save computational time.  

 Further investigation on the FSI models should include biaxially determined 

mechanical properties of the arterial wall and more physiological pressure 

conditions.  

 A novel approach for the investigation of the local strain variation in the middle 

layer of the arterial wall was delivered in the present study, both 

computationally and experimentally.  

 The FEA models were subject to comparison against experimental findings. 

There is only a limited number of studies reporting on such comparisons on 

investigation at this level. 

  Further investigation is needed on the improvement of the computational 

mesh, which requires computing and advanced images expertise.  

 Further investigation on FEA models is also necessary. This should include 

the development of 3D models, appropriate mechanical properties for the 

ECM components, as well as biaxial strain conditions.  

 

7.4 Future Work 

The ultimate goal of the present investigation is to develop in silico platforms 

in order to extract information on the stress that the smooth muscle cells experience, 

with a view to optimise bioreactor conditioning for the development of tissue 

engineered blood vessels. Therefore, the presented work needs to be followed by a 

number of actions. As mentioned earlier, biaxial testing is necessary, in order to 

provide more realistic findings for both experimental and computational simulations. 

Additionally, the area of interest on the stress/strain should also be transferred to the 
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cells and not only the fibres of the extracellular matrix. This requires further 

development of experimental procedures and computational simulations, which 

remain a great challenge due to the size and location of the particular cells.    
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Appendices 

Appendix I.  

Python script used to identify the nodes on the microscale model. 
 
import odbAccess 
from abaqusConstants import INTEGRATION_POINT 
from abaqusConstants import NODAL 
 
 
odbPath = ‘ 
instanceName = ' 
sectionCategoryNames = ['shell general < SM_COLLAGEN > < elset = 
ASSEMBLY_PART-1-1_SH_COLLAGEN_WITH_ZMIN >', 'shell general < 
SM_ELASTIN > < elset = ASSEMBLY_PART-1-1_SH_ELASTIN_WITH_ZMIN >'] 
stepName = 'Step-1' 
 
# Define points of interest (POI) origin and specimen dimensions... 
 
# The values of specimenX and specimenY set the X and Y dimensions of your 
model. 
specimenX = 646.0 
specimenY = 484.0 
 
# The values of originX and originY are the X and Y coordinates of the point from 
which the code will take measurements. 
originX = 40.0 
originY = 242.0 
 
# The value of xAxisSpacing sets the distance between each POI in the X direction. 
xAxisSpacing = 5.6 
yAxisSpacing = 83.8 
 
 
# -------------------------------------------------------------------------------------------------------- 
# No user seviceable parts inside! 
 
 
 
print 'Opening odb file...' 
myOdb = session.openOdb(odbPath)  
session.viewports['Viewport: 1'].setValues(displayedObject=session.odbs[odbPath]) 
nodes = myOdb.rootAssembly.instances[instanceName].nodes 
elements = myOdb.rootAssembly.instances[instanceName].elements 
 
poiList = [] 
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# Build list of POI X and Y coordinates... 
 
print 'Building a list of point of interest (POI) X and Y coordinates...' 
poiList.append((originX, originY)) 
 
for a in range(1, 6): 
    poiX = originX + ((specimenX / xAxisSpacing) * a) 
    poiY1 = originY + (specimenY / yAxisSpacing) 
    poiY2 = originY - (specimenY / yAxisSpacing) 
    poiList.append((poiX, poiY1)) 
    poiList.append((poiX, poiY2)) 
 
# Find nodes (in stipulated material) nearest to POI and build node label list... 
 
print 'Calculating nodal distances to POIs (for nodes within the chosen material)...' 
distances = [] 
 
for currentElement in elements: 
    for currentSecCatName in sectionCategoryNames: 
        if currentElement.sectionCategory.name == currentSecCatName: 
            for currentConnectivity in currentElement.connectivity: 
                nodeCoords = nodes[currentConnectivity - 1].coordinates 
                tempTable = [] 
                tempTable.append(currentConnectivity) 
                for i in poiList: 
                    tempXDist = abs(nodeCoords[0] - i[0]) 
                    tempYDist = abs(nodeCoords[1] - i[1]) 
                    tempResultantDist = ((tempXDist**2)+(tempYDist**2))**0.5 
                    tempTable.append(tempResultantDist) 
                distances.append(tempTable) 
 
# Get node label for POIs... 
# First, find minimum values from each set of distances... 
print 'Identifying nodes that lie closest to POIs...' 
 
poi0Min = min(b for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi1Min = min(c for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi2Min = min(d for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi3Min = min(e for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi4Min = min(f for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi5Min = min(g for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi6Min = min(h for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi7Min = min(i for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi8Min = min(j for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi9Min = min(k for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
poi10Min = min(l for (a,b,c,d,e,f,g,h,i,j,k,l) in distances) 
 
poiLabels = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
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# Then, find the node labels that correspond to these minima... 
 
for j, q in enumerate(distances): 
     if q[1] == poi0Min: 
        poiLabels[0] = q[0] 
     if q[2] == poi1Min: 
        poiLabels[1] = q[0] 
     if q[3] == poi2Min: 
        poiLabels[2] = q[0] 
     if q[4] == poi3Min: 
        poiLabels[3] = q[0] 
     if q[5] == poi4Min: 
        poiLabels[4] = q[0] 
     if q[6] == poi5Min: 
        poiLabels[5] = q[0] 
     if q[7] == poi6Min: 
        poiLabels[6] = q[0] 
     if q[8] == poi7Min: 
        poiLabels[7] = q[0] 
     if q[9] == poi8Min: 
        poiLabels[8] = q[0] 
     if q[10] == poi9Min: 
        poiLabels[9] = q[0] 
     if q[11] == poi10Min: 
        poiLabels[10] = q[0] 
 
print 'Highlighting nodal POIs in the viewport...' 
for a in poiLabels: 
    highlight(nodes[a-1]) 
 
 
# Now, get start coordinates for each POI... 
 
print 'Finding starting coordinates for each POI...' 
initialXCoords = [] 
initialYCoords = [] 
 
for currentPOI in poiLabels: 
    initialXCoords.append(nodes[currentPOI-1].coordinates[0]) 
    initialYCoords.append(nodes[currentPOI-1].coordinates[1]) 
 
# Get the nodal displacements at the end of the simulation... 
 
allDispEnd = myOdb.steps[stepName].frames[-1].fieldOutputs['U'] 
 
# Now, get the coordinates of each POI at the end of the simulation... 
print 'Finding coordinates of each POI at the end of the simulation...' 
endXCoords = [] 
endYCoords = [] 
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for i, currentPOI in enumerate(poiLabels): 
    tempEndXCoord = initialXCoords[i] + allDispEnd.values[currentPOI-1].data[0] 
    tempEndYCoord = initialYCoords[i] + allDispEnd.values[currentPOI-1].data[1] 
    endXCoords.append(tempEndXCoord) 
    endYCoords.append(tempEndYCoord) 
 
# Calculate distances between the origin and each POI at the start and end of the 
simulation... 
print 'Calculating distances between the origin and each POI at the start and end of 
the simulation...' 
distancesStart = [] 
distancesStartX = [] 
distancesStartY = [] 
distancesEnd = [] 
distancesEndX = [] 
distancesEndY = [] 
 
for j, currentPOI in enumerate(poiLabels): 
    tempXStartDistance = abs(initialXCoords[j] - originX) 
    tempYStartDistance = abs(initialYCoords[j] - originY) 
    tempStartDistance = ((tempXStartDistance**2)+(tempYStartDistance**2))**0.5 
    distancesStart.append(tempStartDistance) 
    distancesStartX.append(tempXStartDistance) 
    distancesStartY.append(tempYStartDistance) 
    tempXEndDistance = abs(endXCoords[j] - endXCoords[0]) 
    tempYEndDistance = abs(endYCoords[j] - endYCoords[0]) 
    tempEndDistance = ((tempXEndDistance**2)+(tempYEndDistance**2))**0.5 
    distancesEnd.append(tempEndDistance) 
    distancesEndX.append(tempXEndDistance) 
    distancesEndY.append(tempYEndDistance) 
 
print ' ' 
print '---------------------------------------------------------------------------------------------------------
------------' 
print 'At the start, the distances between the origin and points...' 
print '0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10' 
print '...are:' 
print distancesStartX 
print '...in the X direction and:' 
print distancesStartY 
print '...in the Y direction. The resultant distances are:' 
print distancesStart 
print ' ' 
print 'At the end, the distances between the origin and points...' 
print '0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10' 
print '...are:' 
print distancesEndX 
print '...in the X direction and:' 
print distancesEndY 
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print '...in the Y direction. The resultant distances are:' 
print distancesEnd 
print ' ' 
print 'Where point 0 is the origin in both cases.' 
print '---------------------------------------------------------------------------------------------------------
------------ 
 


