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Abstract

In order to understand how earthquakes nucleate, propagate and terminate it is es-
sential to understand the properties and stress conditions of the surfaces upon which
earthquakes occur. Fault surfaces control frictional properties and by measuring ex-
humed faults we can better understand earthquake propagation and how this may
be linked to fault structure. In order to forecast areas of a fault likely to be at risk
from future failure it is necessary to accurately model the slip that occurs during each

measured earthquake.

In recent years many lines of evidence suggest that fault surfaces and earthquake
slip show fractal properties. This includes high resolution scans of fault surfaces, ob-
servations of coseismic surface slip and analysis of published slip distributions. In this
thesis I investigate how fault structure may affect the fractal properties of fault surface
roughness, by investigating the along-strike changes in properties of the Campo Felice
fault in the Italian Apennines. I then incorporate observations of fractal properties into
earthquake slip inversions through a new form of regularisation, which I develop using
Bayesian methods. Through this I aim to improve our understanding of the surfaces
upon which earthquakes occur, how this links to fault structure and to improve our

coseismic slip models, that provide the basis of stress models and hazard analysis.

Fault surfaces displaying fractal properties mean that there is a power-law relation-
ship between the topography of a fault and the wavelength of this topography: the
magnitude of height fluctuations depends upon the scale at which they are observed.
Whilst many studies have investigated fault roughness properties, here 1 present the
first study of how fault roughness varies along the strike of a fault. I use terrestrial laser
scans and laser profilometer scans at 14 locations along the length of the Campo Felice
normal fault in the Italian Apennines, as well as a scan encompassing several hundred
meters along the length of the fault. These scans show that the Campo Felice fault dis-
plays fractal properties over at least six orders of magnitude perpendicular to slip and
at least three orders of magnitude parallel to slip. But, contrary to previous findings
on other faults, I find that the Hurst parameter, which controls the fractal nature of
the fault surface, changes considerably and unpredictably along the length of the fault,
even between observations tens of metres apart. I suggest that this variability may be

due to the variation of slip vector along the length of the fault, as is frequently observed

ix



X Abstract

in earthquakes. This variability could, additionally, be linked to fault asperities halting
or impeding rupture, such that some areas of the fault experience more earthquakes, or
experience different stress conditions during the same earthquake. I also find that the
magnitude of topography displayed by Campo Felice fault is low compared to previous

studies, suggesting it may be at risk of larger earthquakes.

Observations of fractal fault surfaces suggest that earthquake slip should be fractal
too. By using geodetic data taken at the surface before and after an earthquake we
can perform slip inversions to give a model of how much slip occurred underground,
on the fault surface. This is routinely performed for large, continental earthquakes.
Due to noise and lack of data these inversions are frequently regularised to produce a
stable solution, but the standard regularisation techniques have little physical basis.
I incorporate fractal properties of earthquake slip into slip inversions by introducing
a new regularisation technique: von Karman regularisation. I use a Bayesian method
to fully explore parameter space and better understand uncertainties on the model
parameters. From synthetic tests I find that this regularisation performs comparably,
if not better, than other frequently used methods upon both fractal and Laplacian
input slip distributions. Using InSAR (Interferometric Synthetic Aperture Radar) and
GPS (Global Positioning System) data from the 2014 M,, 6.0 Napa Valley earthquake,
T invert for slip using a two-segment fault model. I find that the choice of regularisation
changes the location and magnitude of slip, which could have important implications

for stress transfer and our understanding of the so-called shallow slip deficit.

Through its incorporation of fractal properties, von Karman regularisation repre-
sents a more physical regularisation of earthquake slip along a fault plane. However,
some bias can be introduced by incorrectly choosing the length and width of the fault
plane. If a fault plane is too large, the regularisation can cause slip smearing, particu-
larly at depth where the model is poorly constrained by the data, in order to improve
the von Karman probability. To eliminate this bias I modify my Bayesian inversion
scheme to solve for the size of the fault plane during the inversion, along with slip,
rake and a hyperparameter controlling slip variance. This makes the inversion trans-
dimensional, and aims to reduce the bias caused by an incorrect model. I apply it to
the M,, 6.2 Central Tottori earthquake, Japan, using InSAR and GNSS (Global Navi-
gation Satellite System) data. My model shows that the earthquake ruptured most of

the seismogenic zone, in contrast to seismological studies.

My results in this thesis further confirm that fault surface roughness shows frac-
tal properties, and that fault structure may play an important role in the exact re-
lationship between fault topography and the lengthscale of observation. Further in-
vestigation of exhumed fault surfaces can help inform earthquake models, including
earthquake slip inversions, particularly if an earthquake were to occur on a fault upon
which surface roughness measurements had already been taken. By incorporating ob-

served fractal properties into earthquake slip inversions I aim to introduce less bias than
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other, less physical regularisations. With the European Space Agency’s new satellites
Sentinel-1a/b providing regular observations of the Earth’s deforming regions, we are
in a position to model earthquake slip better than ever before. I hope that by incor-
porating more realistic observations and using Bayesian methods to fully understand
uncertainties, we can produce better, more realistic models. These models help our

understanding of earthquakes, and, most importantly, earthquake hazard.
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Chapter 1

Introduction

Earthquakes pose a significant risk to life, and whilst earthquakes affect many coun-
tries in the world, the vulnerability to earthquakes (and all hazards) is significantly
increased in developing countries (Schneiderbauer and Ehrlich, 2004). Wealthier coun-
tries incur significant economic costs from earthquake, but there are disproportionately
more deaths in poorer countries (Figure 1.1, Bilham 2013). How much slip occurs on a
fault, at what depth and whether this slip can continue on nearby or connecting faults,
is fundamental to our understanding of seismic hazard (Elliott et al., 2016). Currently
one of our best methods for forecasting future earthquakes is to measure and model
earthquakes that occur, and use these results to infer properties such as stress transfer,
to identify regions of the fault that have been brought closer to failure ( Walters et al.,
2009). But most current slip modelling methods are riddled with assumptions and
often subjective choices that, if incorrect, will impact the slip solution (Minson et al.,
2013) and consequently any conclusions taken from it.

The amount of slip that occurs during an earthquake is controlled by roughness
of a fault surface (Candela et al., 2011a). Thus understanding a fault surface, its
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Figure 1.1: Countries with low per capita income (above the dotted line) suffer from large
number of fatalities during earthquakes, whereas wealthier countries (below dotted line) incur
greater reconstruction costs, yet relatively few people die. From Bilham (2013)
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topography and behaviour over a large scale, is essential to understanding how faults
slip. If we can parameterise fault surfaces correctly then we can incorporate the correct
prior assumptions into earthquake models. This could help us understand earthquake
friction on a fault surface (Biegel et al., 1992), how earthquakes nucleate ( Harbord et al.,
2017, Tal et al., 2018), how they propagate (Bruhat et al., 2016, Fang and Dunham,
2013, Shi and Day, 2013), how much moment is released (Zielke et al., 2017), how much
slip occurs (Amey et al., 2018) and how they stop (Parsons and Minasian, 2015). These
are all fundamental to seismic hazard assessment.

This thesis will focus on the observations that fault surfaces and earthquake slip,
along with many features of earthquakes, show self-similar properties (Ben-Zion, 2008).
Fractal properties, or self-similarity, means that a feature is similar at all scales, or
mathematically, that a feature can be described by a power law (Mandelbrot, 1967).
This long-scale structure of slip provides properties to help constrain earthquake slip
distribution. It is important to properly characterise fractal fault properties using
observations from fault and earthquakes, to then incorporate these features into models
of earthquakes. In light of this, this thesis is concerned with two aspects of fractal slip.
Chapter 2 focuses on the observed fractal nature of fault surface roughness and how
it varies along-strike of a fault, and Chapters 3 and 4 introduce methodologies to
incorporate this as a prior assumption into earthquake slip inversions.

In this chapter I will provide background on fault surfaces and earthquake slip
showing self-similarity, or self-affinity (Mai and Beroza, 2002, Sagy et al., 2007, Milliner
et al., 2015). I will then provide details on slip inversions and regularisation techniques,
and how self-affinity can be incorporated. Finally I will lay out my aims and objectives

and present a roadmap for this thesis.

1.1 Fractal fault roughness

1.1.1 Observations and context

Exhumed fault surfaces, whilst on first look seem remarkably planar, actually display
topography at all scales. Early work found that this topography showed fractal (self-
similar) properties (Brown and Scholz, 1985, Poon et al., 1992, Power and Tullis, 1995).
This means that root-mean-square height fluctuations are proportional to the profile
length (Fang and Dunham, 2013) and that fault topography cannot be described by
one value: the magnitude of topography depends upon the scale of observation. Math-
ematically a fractal relationship means that a feature can be described by a power
law (Mandelbrot, 1967). This is a common feature of earthquake behaviour, includ-
ing the Gutenberg-Richter frequency magnitude scale (Gutenberg and Richter, 1955,
Kanamori and Anderson, 1975), the Omori decay of aftershocks (Omori, 1894), the

decay of postseismic velocities (Ingleby and Wright, 2017) as well as many others (see
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Ben-Zion 2008).

More recent work, aided by the availability of higher-resolution scanners, has quan-
tified this relationship further and found that the topography of fault surfaces is self-
affine, rather than self-similar (Renard et al., 2006, Sagy et al., 2007, Brodsky et al.,
2011, Candela et al., 2012). Whereas a self-similar feature remains statistically iden-
tical at larger or smaller scales, a self-affine feature requires a different scaling in one
direction. In the context of fault surfaces, if a profile perpendicular to slip, dz, under-
went the transformation dx — ~ydz by the scaling factor «y, then the fault topography,
§z would undergo the transformation 6z — Y6z, where H is the Hurst parameter.
Different values of H are found in the along-slip and perpendicular to slip directions
(Candela et al., 2012).

Whilst a large number of faults have been studied with multiple scans at various
scales, no roughness study has quantified the change in self-affine properties along-
strike of a fault. This is vital to understanding the role of fault structure and asperities
in earthquake propagation and termination. In Chapter 2 of this thesis I present
an investigation of the along-strike properties of fault roughness and investigate its

relationship to fault structure on the Campo Felice fault, Italy.

1.1.2 Methodology of investigating fault roughness

Data in previous studies has been taken by numerous different methods, at different
scales. At the very smallest scale, white light interferometers and laser profilometers
have measured micro-meter topography (e.g. Candela et al. 2012, Brodsky et al. 2016,
Candela and Brodsky 2016). Observations at these scales led to suggestions that the
minimum scale of grooving is linked to the scale at which deformation mechanisms
change (Brodsky et al., 2016, Candela and Brodsky, 2016). At the largest scale, digitised
surface rupture maps give data over hundreds of kilometers (Klinger, 2010, Candela
et al., 2012). In between these, terrestrial laser scanners or LiDAR can provide scans
on meter to hundreds of meter scale (Renard et al., 2006, Sagy et al., 2007, Candela
et al., 2009, 2012). Photogrammetry has also proved a useful tool for scales inbetween
terrestrial laser scanners and laser profilometers (Bistacchi et al., 2011, Corradetti et al.,
2017). A combination of these data allows fractal properties to be constrained over
many orders of magnitude (Figure 2.4).

Processing methods vary depending on exact techniques employed, but an example
is shown in Figure 1.2. Common to all processing steps is the first in which grass, bushes
and highly weathered areas are removed from the raw scans. The point clouds must
then be orientated such that the fault plane lies approximately in the z, y plane, where
one axis is orientated in the slip parallel direction, another in the slip perpendicular
direction and z is topography of the fault. This orientation has been done a variety of
ways, with Principal Component Analysis (PCA) proving a useful tool to fit the plane,

as unlike a linear least-squares plane fitting method, principal component analysis takes
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Figure 1.2: Workflow for investigating fault roughness. Starting from a fault surface (1), the
scan is cleaned and orientated (2), then profiles are taken, detrended and filtered (3), so that
the power spectra can be calculated (4). The power spectra are then stacked to give an average
perpendicular to slip and parallel to slip (5).

into account uncertainties in = and y coordinates, as well as z (Bistacchi et al., 2011).
Orientating in the slip parallel/perpendicular direction relies upon features such as
striations (Renard et al., 2006, Sagy et al., 2007), grooves, corrugations or slickenslides
(Dascher-Cousineau et al., 2018), or using PCA (Bistacchi et al., 2011), or finding the
smallest relative power spectra (Brodsky et al., 2011).

Numerous profiles are then taken perpendicular and parallel to slip. Fourier analysis
is a suitable tool for analysing fault roughness surfaces, as long as enough profiles are
used and averaged, to eliminate noise (Simonsen et al., 1998). A Fourier transform
decomposes a signal into different frequencies and calculates the strength (power) of
each signal. A Fourier transform requires that a signal does not have a trend and the
ends of the signal taper, in order to prevent artifacts being created. To ensure this, each
profile must be detrended and a taper removed, frequently a 3% or 5% cosine taper
function (e.g. Candela et al. 2012). The Fourier transform gives power of topography
at each lengthscale, in order to investigate if the topography is fractal and exactly what
fractal properties it shows. By stacking and averaging the profiles, average properties
of a fault surface can be determined.

Other power spectral methods include the Welch method ( Welch, 1967) or Thomson
Multitaper method (Thomson, 1982), which have been found to be more stable for
this kind of analysis (Bistacchi et al., 2011). Instead of power spectral methods, RMS

roughness could be calculated directly, or can be calculated from power spectral density
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using Parseval’s Theorem (see Brodsky et al. 2011).

1.1.3 Features of fractal fault roughness

From the power spectra, P(k), two numbers can help quantify the fractal properties of

the fault surface: the Hurst parameter, H and ‘pre-factor’, C, (Sagy et al., 2007) by:

P(k) = Ck—1721 (1.1)

The Hurst parameter is inversely proportional to the gradient of power against
wavenumber, k, in log-log space and is a measure of the long-term memory of a system.
It describes, in this context, whether an observed topography trend along a profile is
likely to continue or not. Hurst parameters in the range 0.5 < H < 1 show persistent
behaviour, in that a trend is likely to continue whereas Hurst parameters in the range
0 < H < 0.5 show antipersistent behaviour, with a trend likely to change, resulting in
an oscillating profile (Simonsen et al., 1998) (Figure 1.3).

Since fault topography is fractal, the magnitude of topography changes depending
on the scale of observation. Thus the pre-factor, C, is a useful parameter as it gives

magnitude at a given lengthscale, enabling comparison between faults and scan sites.

These two parameters help to quantify the smoothness of a fault surface, and con-

sequently how a fault may fail in an earthquake.

1.1.4 Implications for earthquake slip

Measurements of the self-similar nature of fault surfaces can be used to better inform
earthquake models. Fault roughness has been incorporated into many different earth-
quake models and experiments. These include investigations on the effect on nucleation
(Harbord et al., 2017, Tal et al., 2018), dynamic rupture models (Bruhat et al., 2016,
Fang and Dunham, 2013, Parsons and Minasian, 2015, Shi and Day, 2013), ground-
motion simulations (Mai et al., 2017) and stress-drop and strain numerical models
(Zielke and Mai, 2016, Zielke et al., 2017). Tt is suggested that faults smooth with ma-
turity (Sagy et al., 2007, Brodsky et al., 2011), with implications for Gutenberg-Richter
b values (Goebel et al., 2017) and seismic hazard (Zielke et al., 2017).

Surfaces with fractal roughness are predicted to cause fractal stress drops and coseis-
mic slip distributions (Candela et al., 2011b). Fractal distribution of coseismic slip has
been observed in surface slip in the Landers earthquake (Milliner et al., 2015, 2016). In
addition, an investigation into published seismological slip distributions demonstrated
these distributions have fractal properties (Mai and Beroza, 2002).

These observations imply that fractal slip properties should be incorporated into

models of earthquake slip inversions.
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Figure 1.3: Some examples of generated fractal surfaces. The root-mean-square roughness (o)
defines the magnitude of topography and the Hurst parameter, H, defines the long-term trend
of a signal. Profiles with H < 0.5 have high-frequency oscillations (antipersistent behaviour)
compared to profiles where H > 0.5, which show persistent behaviour. The topography of
profiles A and B have been vertically offset from each other for clarity.

1.1.5 Incorporating fractal properties into slip inversions through von
Karman regularisation

The meta-analysis by Mai and Beroza (2002) investigated the autocorrelation (corre-
lation between slip magnitude on patches as a function of distance between them) for
various published slip inversion solutions. They looked mostly at seismological finite-
fault inversions and investigated which of four types of autocorrelation function best
described the slip distributions: Gaussian, exponential, fractal and von Karman. The
von Karman autocorrelation best matched the power spectral density of slip correla-
tion, particularly the gradual roll-off of the power spectral density at small wavenumbers

(large wavelengths).

The von Karman correlation was first used to describe turbulence in fluids (von
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Kdrmdn, 1948). The von Karman correlation, C(r), is given by:

Gu(r/a)
Cr)=——== 1.2
") =4 (12)
Where G (r/a) = (r/a)? Ky (r/a), where K is a modified Bessel function of the
second kind of order H, H is the Hurst parameter and r is the separation distanced,

scaled by a.

The Hurst parameter, as described above, controls the fractal properties and is re-
lated to the fractal dimension, D, by D = (Fuclidian dimension) + 1 — H. Whereas
a fractal correlation only has one term to describe its correlation (fractal dimension,
D) the von Karman correlation has multiple terms, the Hurst parameter H and corre-
lation lengths along strike, a,s and down dip, agq. This allows for different properties
along-strike and down-dip, which is useful for capturing the self-affine earthquake slip

properties: differences in scaling along-strike and down-dip.

The von Karman autocorrelation function is similar to an exponential decay func-
tion (Figure 1.4; for H = 0.5 the von Karman autocorrelation is equal to exponential
decay). It is a way of defining the expected decay of similarity between slip patches as
a function of the distance between them, scaled by the correlation lengths. This can

be incorporated into the slip inversion using a Bayesian approach.
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Figure 1.4: The autocorrelation function (left) and power spectrum (right) of the von Karman
autocorrelation function. The autocorrelation decays as a function of lag, with the exact rela-
tionship defined by the Hurst parameter, H. For H = 0.5, the autocorrelation function is equal
to an exponential decay. The power spectrum of a von Karman function is similar to a fractal
spectrum, but the von Karman power spectrum decays more slowly at small wavenumbers,
whereas a fractal medium is controlled by corner wave number, k., related to the characteristic
source dimension. Adapted from Mai and Beroza 2002.
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1.2 Slip inversions

Modelling the magnitude and direction of slip that occurs during an earthquake has
become a standard procedure during an earthquake investigation (Elliott et al., 2016).
By using observations of ground displacements from geodetic data such as Interferomet-
ric Synthetic Aperture Radar (InSAR) or Global Navigation Satellite System (GNSS),
or seismological data, we can create a model of how much slip occurred underground,
along the fault plane, where we cannot directly measure it. The early seismological slip
inversions used the finite-fault inversion method, which relied on waveform matching
synthetic seismograms for each patch on the fault plane with observed waveform data
(Olson and Apsel, 1982, Hartzell and Heaton, 1983).

Producing a slip solution is achieved using inverse methods; by using observations
we work backwards to solve for parameters of interest, using some assumed knowledge
of the Earth that relates the parameters we can observe to those we cannot. The

standard set-up of inverse methods is:

d = g(m) (13)

Or, for a linear inverse problem:

d =Gm (1.4)

Where d is data, m are the model parameters (values for which you are solving,
such as slip, rake) and G is a mapping function that relates the model parameters to
the data. In this thesis I used geodetic data, and so will focus on it here.

The most popular inversion method is a linear least-squares method (Fukuda and
Johnson, 2008). This is because the slip inversion can be written as a linear problem
for a known fault geometry, and least-squares methods are quick and computationally
cheap. For a distributed slip model, as is used here, the aim is to quantify how slip
varies in magnitude and location along a fault plane. The problem is set up such that a
fault plane is broken down into discrete elements, such as commonly used rectangular
patches (e.g. Wright 2003) or triangular patches (e.g. Barnhart et al. 2011) of the same
size or of different sizes (e.g. Jolivet et al. 2014a). The choice of size of these elements
is driven by data sensitivity. A high concentration of surface observations means that
smaller elements can be used to resolve slip at higher detail, but if too many patches
are used there is the risk of over-fitting noise. In contrast, the use of fewer patches
averages noise contributions, but potentially resolvable slip is unnecessarily averaged,
too. The size of patches is frequently chosen in advance or can be solved for (Barnhart
and Lohman, 2010, Atzori and Antonioli, 2011).

The mapping function, G that relates slip at depth on a fault plane to observable
surface displacements is frequently formulated using Okada (1985). This models the
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fault as a rectangular dislocation in an elastic half space, and with Lamé parameters, A
(Lamé’s first parameter) and p (Lamé’s second parameter, shear modulus), can be used
to predict the surface displacements due to elastic motion at depth. Some approaches
include varying elastic parameters with depth, particularly joint geodetic-seismic meth-
ods (Simons, 2002, Jolivet et al., 2014a). The matrix G must be correctly formulated
using the strike and dip of the fault plane, the locations of the discrete fault patches
and the rake (direction of earthquake slip). By calculating G for unit slip, when G
is multiplied by column vector m, which contains the value of slip, this produces the

predicted observations d for that magnitude of slip.

1.2.1 InSAR and GNSS

InSAR and GNSS are invaluable tools for investigating earthquake surface displace-
ments. GNSS provides high temporal resolution but a sparse spatial distribution, which
can instead be provided by InSAR.

In-depth descriptions of InSAR processing are provided by works such as Hanssen
(2001) and Grandin et al. (2016) and the application to tectonic settings are provided
by reviews such as Wright (2002) and Elliott et al. (2016). Briefly, by interfering two
radar images, taken before and after the earthquake, and correcting for parameters
such as topography, geometry and atmospheric delays, a map of surface displacements
incurred during an earthquake can be obtained. These measurements give wide ground
coverage, provided the area is coherent between InSAR acquisitions. Originally used
for topographic mapping (Gabriel et al., 1989), InNSAR was first applied in a tectonic
setting on the 1992 Landers earthquake (Massonnet et al., 1993). The displacement
measurement is in the ‘line-of-sight’ of the satellite, meaning that the satellite can
only distinguish movement in the look direction of the satellite, and is blind to other
movement. The number of datapoints provided by InSAR is unnecessarily high for
modelling purposes, and if all used would make a calculation very computationally ex-
pensive. Thus InSAR scenes are downsampled, frequently using a quadtree downsample
method (Jonsson et al., 2002, Lohman and Simons, 2005) or by uniform downsampling,
to provide enough detail in areas where displacement magnitudes change quickly, but
without slowing down computation too much.

In contrast, GNSS measurements provide higher temporal resolution and can be
used to determine displacements over a matter of days (e.g. Floyd et al. 2016). By
triangulating between at least four satellites, the exact ground location can be deter-
mined. A site can then be re-occupied (campaign GNSS) or continuously monitored to
give displacements through time. Unlike InSAR, GNSS gives North, East and vertical
displacements.

By using InSAR and GNSS measurements before and after an earthquake, the co-
seismic surface displacements can be calculated to a high degree of accuracy. These

can then be used to calculate slip at depth in slip inversions.
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1.2.2 Regularisation in slip inversions

If a forward model of surface displacements is created from an input slip distribution
using Okada (1985) by d = Gm and then the same surface displacements are inverted

for slip, then the exact solution will be returned.

Unfortunately in the real world the InSAR and GNSS measurements of surface dis-
placement are affected by noise, including spatially correlated noise and model errors.
The data coverage depends upon the location of GNSS receivers and by areas of coher-
ence in interferograms. This means that slip inversions do not have a unique solution
(they are ill posed), or that there is a unique solution but the inversion is too close
to singular and the solution will attempt to fit noise, which can cause oscillations in
the solution (the solution is unstable). To attempt to find a unique, stable solution,
frequently some form of regularisation is used. In the geodetic community, Laplacian
smoothing is the commonly adopted approach (Harris and Segall, 1987, Wright, 2003,
Funning et al., 2005). Laplacian smoothing minimises the sum of the second spatial
derivatives, thereby seeking to keep the difference in slip between patches small. The
weight of this smoothing is controlled by a scalar smoothing factor, the value of which
is often chosen by repeating the inversion for different smoothing factors, calculating
the misfit and then generating an ‘L-curve’ of smoothing factor against mistfit (Jonsson
et al., 2002, Wright, 2003, Walters et al., 2009). The smoothing factor is then chosen to
balance the misfit and roughness, generally chosen to be near the bend in the L-curve,
but a limitation of this is that the bend is often not sharp and the position of the
bend changes with the scale of the graph (Fukuda and Johnson, 2008). The smoothing
parameter can be chosen objectively with methods such as ABIC (Akaike’s Bayesian In-
formation Criterion) ( Yabuki and Matsu’ura, 1992) or cross-validation (Johnson et al.,
2001, Hreinsddttir, 2003) but most frequently the trade-off approach is used, and com-
monly little or no justification is given at all. This can result in a range of possible

solutions (Figure 1.5).

Laplacian smoothing is beneficial in that by minimising the difference in slip between
patches it stops unrealistic stress drops in slip solutions, but this does not mean it is
necessarily the best regularisation to use. Indeed there are many other regularisations,
including methods that promote spatially compact solutions (Evans and Meade, 2012)
or those that include no regularization at all if resolution allows (Minson et al., 2013,
Jolivet et al., 2014b).

This thesis is concerned with incorporating a more realistic regularisation into earth-
quake slip inversions. As discussed previously, many avenues of research have shown
that earthquake slip shows self-similar properties. Since this is an observed and mea-
sured feature of earthquake slip this suggests that it is a more realistic prior assumption
to bring into earthquake slip inversions. In this thesis I incorporate fractal slip as a

regularization into slip inversions, after Hooper (2012). This is done using Bayesian
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Figure 1.5: Three different smoothing parameters used in a Laplacian smoothed solution for
the M,, 7.1 Hector Mine Earthquake. Figure from Jonsson et al. (2002).

methods (Section 1.2.3), after Fukuda and Johnson (2008), Hooper and Wright (2009),
Hooper et al. (2013), Minson et al. (2013), through the von Karman function (Section
1.1.5). In Chapter 3 I fully introduce the method. Upon finding some limitations to it
I further refine this method in Chapter 4.

1.2.3 Bayesian methods

In recent years there has been a move towards Bayesian slip inversions in the geo-
physical community (Hooper et al., 2013, Minson et al., 2013). Unlike a least-squares
solution, which presents an answer and a Gaussian distribution through propagation
of errors, a Bayesian approach allows the full exploration of the range of values that
parameters can take that both fit the data and our prior assumptions about them.
It is also a very flexible approach, so constraints can be easily incorporated through
the prior probability density function (PDF) and additionally hyperparameters, such
as smoothing parameters (discussed in section 1.2.2), can be fit within the inversion.
The full solution is a PDF for each model parameter (posterior PDF) that captures the
full range of values suitable for that model parameter, as well as an indication of the
value it is most likely to be. A fundamental assumption in Bayesian inversions is that

our prior knowledge about all the model parameters (the unknowns for which we are
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solving) can be expressed as a probability.

Bayes theorem states:

 p(djm)p(m)
plmld) = oo ) p(m)dm (15)

Where the posterior distribution, p(m|d), is comprised of how well the model fits

the observed data (the likelihood, p(d|m)) and how well a model fits prior assumptions
(the prior, p(m)). The denominator is referred to as the ‘evidence’ and is a normalising
constant, so is frequently ignored. Throughout the inversion our prior knowledge,
p(m), about the model parameters is updated by the data, d, to give the posterior
distribution.

Some Bayesian solutions can be solved analytically, but if this is not possible (e.g. if
solving for hyperparameters) then frequently Bayesian methods are paired with MCMC
(Markov chain Monte Carlo) methods. This is a sampling method so that instead of
attempting to evaluate Equation 1.5 for all possible values of every parameter, which
would quickly become impractical for a problem with a large number of parameters, it
allows an efficient search of parameter space.

A Markov chain is a memoryless chain in which a trial is generated as a perturbation
of the current state. By accepting or rejecting new trials based on the ratio of their
probability to the probability of the current state, the Markov chain preferentially
samples in areas of high probability, thus building the posterior PDF. The flexible
Bayesian framework allows us to incorporate prior assumptions such as fractal slip,
prevent unphysical features such as backslip and solve for hyperparameters within the
inversion.

I implement the Bayesian framework using two steps, as described by Tarantola
(2005). I use the first step to sample the prior: a slip distribution consistent with the
von Karman prior, which is non-trivial to directly generate using a random walk. Whilst
generating a von Karman slip distribution is simple, the MCMC sampling requires a
perturbation from the current distribution, and so we select von Karman trials using
the first sampling step instead of attempting to produce von Karman trials directly.
The second step then samples the posterior, by calculating the likelihoods. There is an
efficiency benefit to performing this in two steps, since the likelihood is computationally
expensive and this calculation need not be performed for trials that would have been
rejected for low prior probability anyway.

Our method for incorporating the von Karman correlation is developed and de-
scribed in Chapter 3.

1.2.4 Trans-dimensional approaches

If the number of unknowns within an inversion is itself unknown, this becomes a trans-

dimensional inversion.
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Geyer and Mpller (1994) and Green (1995) introduced a method of sampling trans-
dimensional posteriors. Green (1995) termed the method ‘reversible-jump MCMC’
methods, in which the chain is able to ‘jump’ between differently-sized parameter spaces
as the number of model parameters changes. Trans-dimensional Bayesian approaches
have been applied to many geophysical problems (Sambridge et al., 2006), including
parameterising the number, thickness and geophysical properties in a layered Earth
model (Malinverno et al., 2002), tomography (Bodin and Sambridge, 2009) and recently
finite-fault inversions (Dettmer et al., 2014).

In Chapter 4 I use trans-dimensional methods to solve for the number of slipping
patches within an inversion, so that the inversion is not biased by initial assumptions

on fault size.

1.3 Faults and earthquakes in this study

1.3.1 Campo Felice fault, Italian Apennines

The Italian Apennines are a northeast-southwest striking mountain belt consisting of
many normal faults that are accommodating the current ~3 mm/yr extension (Malin-
verno and Ryan, 1986, D’Agostino et al., 2014) (Figure 1.6).

The Campo Felice fault in the Italian Apennines offers an excellent opportunity to
conduct an along-strike fault roughness study, as its bedrock fault scarp is well exposed
along its ~5 km length. This provides suitable scanning sites along its length, enabling
the quantification of differences between the fault surface properties over a small (tens
of meters to hundreds of meters) scale. Using this data I will examine any systematic
variation along the fault, and the relationship between fault roughness and rupture
propagation and termination.

A previous study of the limestone fault scarp divided the fault into three different
morphological units up-dip but the roughness measurements did not distinguish any
differences in weathering up the fault scarp, that could have related to seismic events
(Giaccio et al., 2003). A terrestrial laser scanner study identified a prominent bend
that links across a former left-stepping relay zone, with increased throw rates in the
vicinity of the bend ( Wilkinson et al., 2015).

1.3.2 The Napa Valley earthquake

The M,, 6.0 Napa Valley, California earthquake, also called the South Napa earthquake,
happened on the 24th August 2014 (Figure 1.7). This was the first earthquake imaged
by Sentinel-1a, with the image before the earthquake taken on the first day it reached
its operation orbit. It was also the largest earthquake in the San Francisco Bay area for
twenty-five years, so attracted a lot of scientific interest (Hudnut et al., 2014, Parsons
et al., 2014, Grapenthin et al., 2014, Dreger et al., 2015, Elliott et al., 2015, Ji et al.,
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Figure 1.6: Continuous GNSS observations (panel a), strain rates (panel ) and earthquakes
<30 km depth across the Italian Apennines. Figure from D’Agostino et al. (2014)

2015, Guangcai et al., 2015, Barnhart et al., 2015, Zhang et al., 2015, Langbein, 2015,
Taira et al., 2015, Melgar et al., 2015, DeLong et al., 2016, Floyd et al., 2016). It
had right-lateral strike-slip sense of motion and occurred on the West Napa Fault and
the surface ruptures were extensively mapped (Hudnut et al., 2014) which provided

excellent detail to constrain the fault plane.

1.3.3 The Central Tottori earthquake

The Central Tottori earthquake occurred in the Tottori prefecture of the Chugoku
region, Japan, 2016 (Figure 1.8). It had a left-lateral strike-slip sense of motion and
occurred in the Northern Chugoku shear zone, in a region in which there has been
several large magnitude earthquakes including a magnitude 7.2 in 1943 (Kanamorti,
1972), a magnitude 6.2 in 1983 ( Tsukuda, 1988) and magnitude 6.6 in 2000 (Semmane
et al., 2005, Monelli et al., 2009).

At the time of writing, no geodetic investigation of this earthquake had been un-
dertaken, though two seismology investigations had performed slip inversions to which

I could compare my results.

One benefit of this earthquake is that it presented simpler fault geometry than
Napa, for testing our new method. Whereas for Napa the mapped surface rupture
and complicated InSAR pattern suggested multiple faults may be necessary, here the

deformation pattern suggests modelling as one fault may be more reasonable.
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Figure 1.7: Coseismic InSAR and GPS surface displacements for the Napa Valley earthquake.
Pre earthquake seismicity shown in black (Waldhauser, 2009), mapped surface rupture shown
in red (Morelan et al., 2015), GPS vectors in yellow with grey 95% confidence ellipses. Figure
from (Floyd et al., 2016)

1.4 Aims and objectives

In this work I aim to further explore the fractal properties of fault surfaces and fault
slip, to confirm that these properties can be incorporated into earthquake slip inversions
and introduce this new method of regularisation. In doing so I aim to present a viable
new methodology that the scientific community can adopt for slip inversions, or at the
very least cause the community to question its default regularisation choice.

My specific objectives are:

1. Investigate properties of fractal slip and incorporate them into multiple earth-

quake scenarios

2. Explore how the fractal properties of fault surfaces change along-strike of a fault

and the link to fault structure

3. Develop a Bayesian method to efficiently and reliably solve for earthquake slip
from InSAR and GNSS data on a multi-fault model, incorporating fractal prop-

erties

4. Further refine the method of incorporating fractal slip to make the inversion as

unbiased as possible, by solving for the number of slip patches within the inversion
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Figure 1.8: The Central Tottori earthquake occurred in the Chugoku region of Japan (Figure
a). Panel b shows the peak ground acceleration (PGA) during the earthquake as measured by
K-NET and KiK-net. Panel b shows the 2016 earthquake (green star), focal mechanism and
fault plane as well as aftershocks and approximate fault planes from other recent earthquakes
in the region. Figure from (Kubo et al., 2017).
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1.5 Thesis roadmap

In Chapter 2, I investigate how the fractal properties of fault roughness vary along the
Campo Felice fault in the Italian Apennines and relate this to fault structure.

In Chapter 3, I develop a method for incorporating self-affine properties into earth-
quake slip inversions. I do this using a Bayesian inversion, incorporating several mea-
sures for efficiency. I test this on several synthetic tests to show that this regularization
is as good if not better than current methods and then apply this method to the Napa
Valley earthquake.

In Chapter 4, I further refine this method, making it trans-dimensional to remove
the bias caused by choosing fault size in advance.

In Chapter 5, I discuss this work in the wider context of understanding earthquake

slip and its importance and use to the tectonics community, as well as future work.
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Chapter 2

Fractal Properties of the Campo
Felice Fault

2.1 Abstract

The roughness of fault surfaces has fractal properties: there is a power-law relation-
ship between the topography of a fault and the wavelength of this topography. This
understanding of the behaviour of fault surfaces over many spatial scales gives vital
information for studying earthquake friction, nucleation, slip behaviour and fault me-
chanics, but no previous study has addressed how fractal properties vary along strike
in an individual fault. Here we present our investigation of how fault roughness varies
along-strike of the Campo Felice fault in the Italian Apennines. Using a combination of
measurements from terrestrial laser scanners and a laser profilometer we have created
3D point clouds of the fault surfaces, with scales ranging from submillimeter up to
over 1 km. We show results from 14 locations along the fault, with multiple samples
taken to investigate in the lab using a laser profilometer at two locations, as well as a
scan covering several hundred meters along the length of the fault. We find that the
Campo Felice fault shows fractal properties over six orders of magnitude in length in
the slip perpendicular direction (along strike), and at least three orders of magnitude
in the slip parallel direction. The Hurst parameter, which constrains self-similarity,
varies considerably along the length of the fault. We speculate this variation is due
to structural complexity, and that the fault surface may be recording variations in slip
direction along the fault, or that the variation is due to different asperities on the fault
experiencing different faulting histories or stress conditions. Our measurements of the
self-similar nature of the faults will enable us to better inform earthquake models, in

particular modelling of coseismic slip.
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2.2 Introduction

Understanding the nature of fault surfaces is vital to understanding how faults and
earthquakes nucleate, propagate and terminate as the slip surfaces record these pro-
cesses as they evolve over time. Fault surfaces have long been known to be rough
and early work showed that this roughness is not random but shows fractal properties
(Brown and Scholz, 1985, Power et al., 1987), meaning that a feature is similar at all
scales, often used interchangeably with ‘self-similarity’. In the context of fault sur-
faces, this means that the geometric pattern of topography is replicated at every length
scale (Bistacchi et al., 2011). In other words, Power and Tullis (1995) say ‘if both
an elephant and an ant were to walk on a self-similar surface, they would observe the
same type of topography relative to their respective body size’. Mathematically fractal
behaviour means that a feature can be described by a power law, i.e. in this case that
the root-mean-square fluctuations of fault topography are proportional to the length
of the profile (Fang and Dunham, 2013). Earthquake surface ruptures have also been
shown to be fractal (Rockwell and Klinger, 2013, Candela et al., 2012) as has coseismic
surface slip (Milliner et al., 2015, 2016).

This study quantifies for the first time how the fault roughness varies along-strike
of a fault. We provide details at multiple scales, with sampling sites spaced within tens
or hundreds of meters along-strike. These measurements can help inform earthquake
models, which frequently parameterise the fault into minimum 1 km elements, without

any consideration for how the fault properties may change at distances less than this.

Roughness affects nucleation (7al et al., 2018) and the minimum scale of grooving
may be linked to the transition in deformation mechanism of the fault (Brodsky et al.,
2016). It has been suggested that faults smooth gradually with maturity (Brodsky
et al., 2016) and that this may affect Gutenberg-Richter b values (Goebel et al., 2017).
Fault roughness has been incorporated into ground-motion simulations (Mai et al.,
2017) as well as into dynamic rupture models (Fang and Dunham, 2013, Shi and Day,
2013, Parsons and Minasian, 2015, Bruhat et al., 2016) and fractal properties have
been incorporated into earthquake slip inversions (Amey et al., 2018). Thus it is vital
to properly quantify fractal nature of fault roughness to better inform these models,
which in turn help estimate magnitude of shaking and stress transfer that can help

inform seismic hazard analysis.

In recent years investigations of fault surfaces have been conducted at a full range
of scales, using white light interferometers and laser profilometers at the shortest scale
to measure pum roughness (Candela et al., 2009, 2012, Candela and Brodsky, 2016)
up to LiIDAR and photogrammetry scans at the longest scale to measure hundreds of
meters (Renard et al., 2006, Sagy et al., 2007, Candela et al., 2009, Bistacchi et al.,
2011, Candela et al., 2012, Corradetti et al., 2017). This enables the quantification of

the fractal properties of a fault over several orders of magnitude.
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One method to determine the roughness of the fault from laser scans is to calculate
the average deviation of the profile from planarity (RMS, root-mean-square, roughness;
Tal et al. 2018), but instead of measuring the roughness directly, we calculate the power
spectrum of the scan to constrain the power of each oscillation for each wavelength.
From the power spectra we can calculate the Hurst parameter (Candela et al., 2012).
The Hurst parameter is related to the fractal dimension and quantifies the power of
a feature as a function of the scale at which the feature is observed (Figure 2.1). It
was first defined by Hurst et al. (1965) who showed that the flow through the River
Nile on a particular year correlated to the rainfall in subsequent years with a long-term
trend. In the context of fault roughness, it gives a measure of the long-term trend of
the topography of the fault (Figure 2.1), and it quantifies the change in power as a
function of lengthscale. Hurst parameters in the range 0.5 < H < 1 have a positive
autocorrelation, meaning that the observed trend is likely to continue (persistent be-
haviour) (Simonsen et al., 1998). In these instances the profile is dominated by long
wavelength signals, and the profile is smoother at small wavelengths, because the to-
pographic trend is continuing instead of oscillating, as in Figure 2.1. In contrast, if
H is in the range 0 < H < 0.5 then an observed trend is likely to reverse (antipersis-
tent behaviour) (Simonsen et al., 1998), resulting in oscillating fault topography that
alternates between high and low values along a profile. The Hurst parameter is only
valid in the range 0 — 1, as the upper limit ensures the fault tends to a flat surface,
and the lower limit ensures topography increases at increasing scale (Simonsen et al.,
1998). Figure 2.1 highlights the difficulty in defining ‘smoothness’ of a fault, as a higher
Hurst parameter with the same RMS roughness is smoother, but lower RMS roughness
represents a lower deviation from a planar surface and therefore is also smoother. In
this paper we use ‘smoother’ to mean lower magnitude of topography, i.e. lower RMS

roughness; lower power topography.

Recent higher-resolution studies of fault topography (e.g. Sagy et al. 2007) find
that faults are self-affine, rather than self-similar. This implies that whereas a self-
similar feature will appear statistically identical on small and large scales, a self-affine
feature requires scaling in one direction (Poon et al., 1992). As the length scale of
observation of a self-similar fault surface increased the magnitude of topography would
increase by the same factor, that is if the length, dx, increased by a factor of v then
the topography dz would increase by v also, by dz — vdz,dz — v 62z (Candela et al.,
2012). These studies also showed a difference in the Hurst parameter parallel to slip
and perpendicular to slip (Sagy et al., 2007), demonstrating a relationship between the
direction of slip and the roughness of a fault. The Hurst parameter is thus a useful
scaling for understanding the variations across many scales of fault roughness. We can
also calculate a ‘pre-factor’ term that gives an estimation of the inherent roughness of
the fault (Sagy et al., 2007), i.e. a measure of the magnitude of the fault topography,
related to RMS,oughness (0 in Figure 2.1).
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Figure 2.1: Generated fractal surfaces and profiles along the surfaces, illustrating the effect
of Hurst parameter, H and RMS roughness, o. The Hurst parameter defines the relative
contribution of long-wavelength and small-wavelength topography features. A surface with
Hurst parameter in the range 0 < H < 0.5 is antipersistent, meaning an observed trend
unlikely to continue, resulting in oscillations (profile A-A’). In contrast, Hurst parameters in
the range 0.5 < H < 1 are persistent, and observed trends are likely to continue (profile B-B’),
meaning the surface has fewer topographic highs and lows, and is instead dominated by the
long wavelength signal. The topographic profiles have been vertically offset for clarity. Note
that these are isotropic surfaces, with the same Hurst parameter in both the x and y directions,
whereas natural fault surfaces are observed to have different Hurst parameters parallel to slip
and perpendicular to slip.
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Here we present an in-depth study along several hundreds meters of the Campo
Felice fault in the Italian Apennines, measured using a terrestrial laser scanner and a
laser profilometer, ranging from millimetre to several hundred meter scale. We present
our findings for the Campo Felice fault and discuss the implications for earthquake
mechanisms, rupture dynamics and seismic hazard. We find the fault shows fractal

properties, and that the exact scaling of this parameter values along-strike.

2.3 Laser scanning data from the Campo Felice fault

2.3.1 Campo Felice fault

The Campo Felice fault is a normal fault within the central Italian Apennines (Figure
2.2). The Apennines are a northwest-southeast striking mountain range that have been
undergoing extension for the past 2-3 Myr and are currently extending at ~3 mm/yr
(Malinverno and Ryan, 1986, D’Agostino et al., 2014). The basins are bounded by
young, segmented, normal faults that accommodate this extension in medium to large
(> My, 6) earthquakes, which have devastated towns and cities in the Apennines (recent
earthquakes shown in Figure 2.2).

The Campo Felice fault is a northwest-southeast striking fault with a nearly con-
tinuous exposed limestone bedrock scarp for much of its ~5km length. The lowest part
of the fault scarp is a clean, largely unbroken surface, which has been suggested to be
almost unweathered apart from a low level of biokarst (Giaccio et al., 2003). The fault
surface was previously investigated using a microroughness-meter on transects along
the fault but did not define any observable roughness variation relating to palaeoseis-
mic events (Giaccio et al., 2003). A detailed study using a terrestrial laser scan of the
fault surface has shown that a bend in the fault (Figure 2.2d) produces local maxima
in Quaternary throw-rates (Wilkinson et al., 2015). We will investigate the effect of
this structural complexity upon the fault roughness.

We sampled the central section of the fault where it is best exposed and preserved,
focusing on two main areas: from hereafter denoted as the northwest and southeast
localities. The northwest locality is close to the center of the fault, and the south-
east locality is just north of prominent change in strike or relay zone (Figure 2.2d)
( Wilkinson et al., 2015).

Details, field photographs and figures of the gridded scans can be found in Appendix
A, Table A.1 and Figures A.1 - A.7.

2.3.2 Terrestrial Laser Scanner

We scanned the fault surface using a range of different scanning equipment, with details
summarised in Table 2.1.

For the largest scales we used terrestrial laser scanners (TLS). The full-length scan
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Figure 2.2: Italian Apennines fault system. This northwest-southeast trending system of nor-
mal faults is accommodating extension across Italy and has been the source of many devastating
earthquakes, with recent ones indicated by their focal mechanisms in panel a. The location of
the Campo Felice fault and its neighbouring faults is shown in panel ¢, with a birds-eye Google
Earth image in panel d showing the fault trace (black arrows), two scanning localities used in
this study (red arrows) and location of a change in strike of the fault (white star). Panel a and
¢ plotted on SRTM topography (Farr et al., 2007)
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of the fault was acquired using a Riegl LMS-2z420i laser scanner, consisting of 6 scan
positions from at a range of ~400 m to cover a 5 km length of the fault ( Wilkinson
et al., 2015). Detailed scans were acquired within a couple of meters of the fault to
capture surface sections of up to 4 m perpendicular to slip by 10 m parallel to slip.
The first five scans were taken in 2014 using a Leica C10 and the next nine scans were
taken in 2017 using a Riegl VZ-1000.

2.3.3 Laser profilometer

We acquired topographical scans of 14 cm slip perpendicular x 10 cm slip parallel
sample blocks using a NextEngine 2020i laser profilometer. Scans were obtained with a
capture density of 40,000 points/cm?, and dimensional accuracy of & 100 um. The laser

profilometer scans were taken parallel to the slip direction at approximately 200 pm

intervals.
Type of instrument Site Name of scanner Precision Accuracy
Terrestrial laser scanner | A,B,C,D.E,F G, J, N | Riegl VZ-1000 8 mm 5 mm
Terrestrial laser scanner | H, I, K, L, M Leica C10 2 mm 6 mm
Terrestrial laser scanner | Whole fault Riegl LMS-z420i 8 mm 10 mm
Laser profilometer D, J NextEngine 20201 100 pm

Table 2.1: Details of the different scanner used in this study. The sites correspond to the
locations on the fault at which scans were performed, see Figure 2.5. Laser profilometer scans
were taken at the same locations as terrestrial laser scans, D and J.

2.4 Method

We broadly follow the methodology of Candela et al. (2012), shown in Figure 2.3.

The fault surface scans give raw point clouds of z, y, z data. Starting from the point
clouds, we first remove features such as shrubs, bushes and areas of weathering from the
point cloud based on field photos using the CloudCompare software. We then orientate
the fault such that the x axis is perpendicular to slip, the y axis is parallel to slip and
the z axis is fault topography. This is achieved by performing principal component
analysis on the pointcloud in MatLab to identify the vector normal to the plane and
use this to rotate the pointcloud into the zy plane, with z being topography. The
benefit of principal component analysis is that it accounts for errors in x, ¥ in addition
to accounting for z errors as with linear-least squares (Bistacchi et al., 2011). Once this
is achieved, for the small and medium-scale datasets we manually pick grooves in the
fault surfaces and use this vector to orientate the plane so that y is parallel to the slip
direction as indicated by the grooves. For the scan of the whole fault, the slip parallel
direction is assumed to coincide with the fault dip.

When the pointcloud has been fully orientated we crop it to a rectangle and grid



34 Chapter 2: Fractal Properties of the Campo Felice Fault

Scan fault Clean, orientate, take profiles Detrend and apply cosine filter

Topography
o | o
(=3 S
e} os]

=3
S
—_

0
/ 1 2 3 4
Distance x (m)
Calculate power spectra Stack and average power spectra

10° 5

— P

0 2 10"

10' 10
Wave number (m™)

10 10° 10! 102

Wave number (m™)

Figure 2.3: Methodology employed to estimate power spectra. Panel 1 shows the fault surface,
with notebook for scale. This is then scanned and orientated to give a point cloud as shown in
panel 2. We take profiles parallel and perpendicular to slip to gain profiles which we detrend
and apply a taper function as in panel 3. We calculate the power spectra of the profile (panel
4) and stack the power spectra for all the profiles (panel §) to get an average.

it. For the laser profilometer we choose the gridsize to be twice the average separation
distance between points in the cropped pointcloud. For the terrestrial laser scan of the
whole fault we vertically average up-dip and then grid every 1 m, giving only one profile
along the length of the fault, with 1 m spacing between datapoints. For the meter-scale
terrestrial laser scans we grid the data where either the gridsize is twice the average
separation distance between points in the cropped pointcloud, or 1 mm, whichever is
larger. Due to areas of grass there may be some gaps in the pointcloud between which
we interpolate during gridding, but Candela et al. (2009) found that this analysis is
not biased by randomly distributed absent data.

Fourier spectral analysis can be used to quantify roughness, as long as many pro-
files are available, to stack and allow signal to dominate over noise (Simonsen et al.,
1998). Therefore we compute spectral analysis by taking profiles parallel to slip and
perpendicular to slip from the gridded pointcloud. The Fourier transform requires that
each profile be detrended, and that the profile starts and ends at the same value, to
remove artifacts in the power calculation caused by topography at the edge of the pro-
files. We achieve this by fitting a line through the first and last point in the profile
and then using a 3% cosine taper (Candela et al., 2012). We found that this method
gave fewer topographic artifacts at the end of the profile than either fitting a linear

trend to the data or using principal component analysis. We then compute the Fourier
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transform and calculate the power, P(k) as a function of wavenumber, k, by squaring
the modulus of the Fourier transform. Since we use the fast Fourier transform, which
is a discrete sum, it must be multiplied by the sampling distance, dx to produce the
fourier transform as an integral quantity. Thus power = (FFT x éx)?. The power
is then normalised by dividing by the length of the profile multiplied by the sampling
distance (Ndx). This gives the power spectral density calculated at each wavenumber,
k, with units m?® (Sagy et al., 2007).

To stack the profiles we calculate the mean of all the profiles at wavenumbers in
geometric progression, to which we fit a best-fit line. This reduces noise associated with
each individual profile. From this the ‘pre-factor’, C', and Hurst parameter, H, can be

calculated, as:

P(k) = Ck~'1721 (2.1)

Where the Hurst parameter quantifies the power of a feature as a function of scale
at which the feature is observed and is inversely proportional to the gradient of the line,
in log-log space. The pre-factor is a measure of the magnitude of the fault roughness

at a given wavelength.

2.5 Results

The Campo Felice fault shows fractal properties over six orders of magnitude in the
slip perpendicular direction (along strike), and at least three orders of magnitude in
the slip parallel direction (Figure 2.4). This is demonstrated by the straight line of the
power spectra in log-log space, from the millimeter scale up to 1.5 km along the length
of the entire fault.

The spectra taken at different scales are offset vertically from each other in Figure
2.4. This is likely due to the bias introduced by the necessity of choosing un-cracked
hand samples to measure in the laboratory and choosing smoother, unweathered sec-
tions of fault plane to scan. Whereas the natural fault surfaces are cross-cut by nu-
merous cracks and pits, formed during earthquakes (Dascher-Cousineau et al., 2018),
when choosing samples to cut from the rock it is necessary to choose areas where these
features are not present. The same is true when picking smoother areas of the fault to
scan with the terrestrial laser scanner.

The terrestrial laser scanner measurements at meter to centimeter scale (warm
colours in Figure 2.4) show high variability at low wavenumbers due to fewer profiles
of this length being available in the power spectra, so there are fewer available data
points to remove noise by stacking. We also note that at this scale the power spectra
flatten at the highest wavenumbers. We attribute this to the power spectra intersecting

the noise spectrum, as it occurs at approximately similar wavelengths in the spectra
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Figure 2.4: Power spectra parallel to slip and perpendicular to slip, with photos indicating how
the topography was measured. Green indicates terrestrial laser scan of the entire fault Wilkinson
et al. 2015, panel a), warm colours are meter scale measurements taken by the terrestrial laser
scanner (panel b) and cold colours are measurements from the laser profilometer (panel ¢). The
full-length scan means we have power spectra at much larger wavelengths perpendicular to slip
(along strike) than parallel to slip (up-dip), where there are only a few meters available. Dotted
lines indicate the minimum and maximum pre-factors (y-intercepts) at 1 m wavelength, where
the minimum values are calculated from extrapolating the lower power laser profilometer profile
and the maximum value is calculated from the maximum power terrestrial laser scanner profile.
The Hurst parameters are inversely proportional to the gradient of the line (a steeper negative
slope is a higher Hurst parameter).
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for all the different medium-scale terrestrial laser scans, at ~1-2 c¢cm, and not for the

laser profilometer scans.

We also calculated the pre-factors (y-axis intercept, Figure 2.4) at 1 m wavelength,
to give a measure of roughness magnitude. Since the topography is fractal, the mag-
nitude of the topography depends upon the scale of observation, but calculating the
pre-factor at a given wavelength enables comparison between different faults or sites. In
the slip parallel direction the maximum prefactor is 1.5 x 1076 (from a terrestrial laser
scan) and the minimum prefactor is 1.7 x 10~ (from a laser profilometer scan). In the
slip perpendicular direction the maximum prefactor is 8.8 x 107% (from the terrestrial
laser scan of the entire fault) and the minimum prefactor is 3.5 x 1078 (from a laser

profilometer scan).

Using the power spectra, we calculated the Hurst parameters for each using Equa-
tion 2.1. A steeper slope of the power spectra represents a higher Hurst parameter,
results shown in Figure 2.5. Our scans give mean and standard deviation values of
H, =0.50£0.21 and H| = 0.40 £0.14.

We find that the Campo Felice fault displays a broad range of Hurst parameters.
Figure 2.5 shows that there is not an observable trend of Hurst parameters as a function
of distance along the fault from the centre or the ends. In the slip perpendicular
direction, different measurements taken at the same location (D and J) show similar
Hurst values, with a range of ~0.2, but in the slip parallel direction the variation for

measurements at the same site is much larger, of ~0.3.

We find the highest value of 0.9 for the Hurst parameter perpendicular to slip at
scanning site F. Whereas most exposed fault surfaces we scanned were approximately
planar, this fault surface was extremely curved, with topography of 8 cm across a 2 m
scan. This accounts for the higher Hurst number: its power spectra has a steeper
slope in log-log space, indicating that the signal is dominated by the large wavelength
corrugation and is lacking in low wavelength topography. The power spectra still shows
a fractal relationship: it is a straight line in log-log space down to the noise level, but

the slope is steeper.

Scanning site E displays very low Hurst parameters in both the slip parallel and slip
perpendicular direction. The fault scarp at this site had a large density of pink lichen
covering it, which could not be removed during the data cleaning. This may mean that
the signal from the fault surface is being obscured, leading to a similar topography

power at higher and lower wavelengths.
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Figure 2.5: Hurst parameters plotted as a function of distance along the Campo Felice fault.
Panel a shows a bird-eye Google Earth image of the fault with black arrows showing fault
trace, red arrows showing rough location of the scanning localities and the star (*) showing
the location of a suggested fault bend (Wilkinson et al., 2015). Panel b shows Google Earth
image looking at the uplifted footwall as if standing in the basin, with red arrows indicating
locations that scans have been taken. Panel ¢ and d show the Hurst parameters parallel
to slip and perpendicular to slip respectively, as a function of distance along the fault, with
the measurement sites labelled A to N. Circles indicate readings taken above the ground and
diamonds indicate readings below the ground, where we have dug a trench and then sampled
the fault surface. Blue symbols are measurements taken by terrestrial laser scanner and red
symbols are taken by laser profilometer, where all laser profilometer samples were taken at a
site that we also scanned with the terrestrial laser scanner. The slip perpendicular direction
has the additional scan of the entire fault length, which is on the right of panel d.
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2.6 Discussion on the relationship between roughness and

fault structure

Fault rupture and asperities

Previous work has shown faults of different lithology and tectonic regime to have a
remarkably constant Hurst parameter of ~0.8 in the slip perpendicular direction, and
~0.6 in the slip parallel direction (Bistacchi et al., 2011, Candela et al., 2012), with
the exception of Dascher-Cousineau et al. (2018). Here we find, generally, lower values
of Hurst parameter. In the slip parallel direction only two sites are within the one
sigma range found by Candela et al. (2012). This lower Hurst parameter is consistent
with Campo Felice being a young (‘immature’), short and segmented fault, meaning
that small wavelength topography has not eroded. We also find a higher variability
in the Hurst parameters along the same fault than has been found in previous studies
for datasets consisting of numerous faults (Candela et al., 2012), suggesting that con-
clusions drawn from fault roughness, including its relationship with fault displacement
(Brodsky et al., 2011), must be based on a representative sample of the fault has been
scanned, to ensure apparent differences between faults are not instead due to natural

variations along a fault.

Of the two distinct scan groups, the samples in the northwest group (towards the
center of the fault) display increased variability to those in the southeast group (towards
the fault tip). Considering only the northwest region gives a mean of H; = 0.42+0.17
and H| = 0.40 £ 0.18, where the southeast group gives a mean of H; = 0.46 + 0.10
and H| = 0.40 £+ 0.13. Whilst the means are similar the higher standard deviation
in the northwest is of interest. We also calculated the power and Hurst parameters
separately on the entire northwest fault section and entire southeast fault section down
to 1 m and found H,prihwest = 0.82 and Hgoytheast = 0.93, both perpendicular to slip
direction. It’s worth noting that the scanning sites in the southeast are located closer
together than those in the northwest: spread over 463 m in the north-west compared

to 228 m in the south-east, which may play a part in the decreased variability.

These two areas could have experienced different conditions in a number of ways.
Wilkinson et al. (2015) found that whilst the strike, dip and plunge were constant
between the two fault areas, the throw and strain rate (since 15+3 ka) decreases from
the northwest to the southeast along the fault, with an anomalous decrease between
our two scanning areas. They suggest that a bend in the fault, which is very prominent
in the continuation of the fault to the south-east (not sampled here, shown as a star
in Figure 2.5a), begins in the region of the south-eastern group of fault scans. Fault
bends frequently arrest or stop earthquake rupture (Wesnousky, 1988), so it could
be that these two slip areas have experienced a different number of earthquakes, and

presumably a different amount of slip, because the rupture may have stopped between
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them. Indeed, Campo Felice must have grown from smaller segments and linked to form
the long fault strand currently exposed, so it’s reasonable to assume that as the relay
zone developed, the area in this zone (the southeast locality) would have experienced
fewer earthquakes. Thus even if more recently the southeast and northwest localities
have experienced similar earthquake histories, before linking the southeast would have
experienced a drastically different slip history from the rest of the Campo Felice fault.

Alternatively, even if most recently these two localities failed in the same earth-
quakes as a result of fault bend complexity, they could have experienced different stress
conditions due to their location on an asperity. If one locality was positioned where rup-
ture is frequently stopped or slowed-down, due to the fault bend, and the other locality
were frequently in the center of an asperity that rupture goes through, then different
stress drops may lead to different imprints onto the fault surface. We speculate that
potentially, the variability in Hurst parameters could be used to determine the size of
asperities. If areas of the fault within an asperity experience similar conditions within
an earthquake, then they may have more similar Hurst parameters than an area of a
fault not within the asperity, or on its edge. Alternatively, by assessing the changes in
Hurst parameters along strike, potentially different asperities or long-standing asperi-
ties could be identified and investigated.

Whatever its cause, the variability in the fault surface over a scale of a few hundreds
meters could have important implications for modeling. The roughness of a fault surface
affects ground-motion (Mai et al., 2017) and stress drop (Zielke et al., 2017) in an
earthquake, yet many static or dynamic slip models parameterise fault planes into
patches much larger than the scale over which we observe variability. This will be
averaged over the fault patch, thus losing some of the intrinsic complexity of earthquake
processes (e.g. Zielke and Mai 2016).

Permissible earthquake mechanisms

We find that half (9 out of the 18) Hurst parameters were larger in the slip perpendic-
ular direction than the slip parallel direction, whereas previous results have reported
consistently larger values in the slip perpendicular directions (Candela et al., 2012).
Larger Hurst parameters in the slip perpendicular direction suggest that long wave-
length signals (grooves, corrugations) dominate over short wavelength signals. Sites
where the fault visibly curved did show higher values in the slip perpendicular direc-
tion, but many surfaces and hand samples that we scanned were remarkably flat and
lacking in prominent grooves or striations to distinguish the slip perpendicular and
slip parallel directions. As well as having implications for earthquake size, this lack of
difference between the slip parallel and slip perpendicular directions could mean that
a larger range of focal mechanisms is possible for the Campo Felice fault. Whereas a
highly corrugated fault plane with grooves on the order of typical slip would strongly

arrest rupture perpendicular to the axis of these grooves, the smoothness (small power
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deviation from a planar surface) of the Campo Felice fault surface may mean that a
wide range of slip vector is possible without being stopped by the friction associated
with corrugations. This is consistent with the significant variation (up to 10 degrees)
of slip plunge between measurement sites that are up to only 100 m apart ( Wilkinson
et al., 2015). This may be the consequence of multiple ruptures producing different
generations of slickenslides at individual locations, or may be capturing the variation
in the direction of slip during one event, or the imprint of segment linkage that’s not

been masked.

2.6.1 Implications for seismic hazard

We consider the pre-factor (y-intercept) at 1 m, using the minimum values from the
laser profilometer and maximum values from the laser scan of the whole fault, as shown
in Figure 2.4, to compare with measurements in Candela et al. (2012). We find that
in the slip parallel direction the maximum pre-factor we measured (1.5 x107%) is one
or two orders of magnitude lower (at 1 m) than the five faults Candela et al. (2012)
measured, including the Magnola fault, which is another limestone normal fault in the
Italian Apennines, ~12 km south of Campo Felice (see Figure 2.2). The minimum
pre-factor we measured slip parallel (1.7x1078) is on the same order, or an order of
magnitude lower than their measurements. In the slip perpendicular direction, our
minimum prefactor of (3.5x107%) is up to three orders of magnitude lower than the
faults measured by Candela et al. (2012), and the maximum prefactor of (8.8x1079)
two orders of magnitude lower, though we note our measurement of the entire fault
is not directly comparable to a meter scale scan. This shows that Campo Felice has
lower power topography deviations from a planar surface than the faults in the study
by Candela et al. (2012) (Figure 2.1 lower panel compared to the top panel). This
has implications for seismic hazard, as the seismic moment release in an earthquake
is modelled to be strongly affected by fault roughness: smoother faults, with a lower
deviation from a planar surface, are capable of generating larger earthquakes than

rougher faults, in the same loading conditions (Zielke et al., 2017).

2.6.2 Limitations and caveats
Availability of well-preserved fault plane

All roughness studies are biased by the necessity of scanning well preserved fault plane.
This means that, whilst we have a large number of scanned sites, it is hard to get a rep-
resentative survey along the entire Campo Felice fault. In particular, it is unfortunate
that the exposed fault scarp in the continuation of the fault to the southeast, across
the suggested relay zone (Wilkinson et al., 2015), is largely poorly preserved with a
high degree of vegetation, and lacking in large areas of exposed fault that would make

this area suitable for analysis.
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Scanner noise

Noise must be considered as a factor in leading to low Hurst parameters. Increased
noise in the data would mean increased power at small wavelengths, artificially inflating
the power and thus decreasing the difference between the power at low wavelengths and
high wavelengths, which decreases the Hurst parameter. However we do not believe
this to be the case, as the generally lower Hurst parameters are measured using four
different instruments (three different laser scanners and the laser profilometer). We also
find that the minimum and maximum pre-factor at k& = 1 is lower than other scanned
faults, whilst we expect noise in a scanner to artificially increase the minimum pre-
factor. We do find however that estimates of Hurst parameter from the Riegl VZ-1000
laser scanner show larger scatter in Hurst parameters than the other laser scanner or
the laser profilometer (Figure 2.6), as well as having the largest scanner errors (Table
2.1). This scanner was used measuring all the northwestern scanning sites (pentagons
in Figure 2.6), as well as two south-eastern scanning locations (squares in Figure 2.6).
It is therefore difficult to say for sure if the sites measured by this scanner are recording
true differences between the localities. But we note that all scanners revealed a range
in Hurst parameter of at least 0.2, suggesting there is a lot of variability in the Campo

Felice fault, compared to others that have been scanned (Candela et al., 2012).

Depth

The depth at which the fault surface features gains its fractal topography affects its
relevance to faulting processes. Previous studies have suggested fault surfaces such as
the one we measured may have been exhumed from depths of 5 km (Sagy et al., 2007),
whilst others have focussed on outcrops exhumed from deeper, up to 10 km depths
(Bistacchi et al., 2011).

The surfaces that we are measuring are unlikely to preserve any of the features from
depths any greater than a few kilometers, and so could only preserve nucleation infor-
mation for earthquakes that nucleated at very shallow depths. But we speculate that
in the brittle crust similar fracturing processes occur and may leave a similar rough-
ness signature, so roughness observed at the surface could potentially be a reasonable

estimate of roughness at depth.

2.7 Conclusion

In this study we find that the roughness of the Campo Felice fault surface displays self-
similar properties over six orders of magnitude in the slip perpendicular direction and
at least three orders of magnitude in the slip parallel direction, as is shown by the power
spectra of the topography of the fault surface. The Hurst parameter, which records this

self-similarity is variable along the length of the fault, with increased variability in the
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northwestern scans compared to the southeastern scans. We hypothesise that the vari-
ability could be attributed to 1) the variability of slip vector along a fault plane in one
earthquake or 2) a fault bend arresting rupture, meaning the two localities experienced
a different number of earthquakes, and consequently different slip histories or 3) the
fault bend creating long-standing asperities, with one locality experiencing the center
of the asperity through which rupture always propagates and the other experiencing
the edge of the asperity, where rupture is frequently stalled or stopped. The small scale
(few hundred meters) over which variability occurs also has important implications for
fault modelling, where regularly earthquake slip models are parameterised into >1 km
fault patches. Finally, the low pre-factors displayed by the fault surface suggest that
the Campo Felice fault is particularly smooth (low magnitude deviations from a planar
surface) which implies that it may be at risk from larger earthquakes than faults that

are rougher.
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Chapter 3

Incorporating Fractal Properties

into GGeodetic Slip Inversions

An edited version of Chapter 3 was published by AGU, Copyright (2018) American
Geophysical Union:

Amey, R.M.J., A.J. Hooper, and R. Walters (2018), A Bayesian Method for Incorpo-
rating Self-Similarity into Farthquake Slip Inversions, Journal of Geophysical Research
Solid Earth, 123, doi:10.1029/2017JB015316

3.1 Abstract

Distributions of coseismic slip help illuminate many properties of earthquakes, includ-
ing fault geometry, stress changes, frictional properties and potential future hazard.
Slip inversions take observations and calculate slip at depth, but there are a number
of commonly-adopted assumptions such as minimizing the second spatial derivative of
slip (the Laplacian), that have little physical basis and potentially bias the result. In
light of growing evidence that fault slip shows fractal properties, we suggest that this
information should be incorporated into slip inversions as a form of regularization, in-
stead of Laplacian smoothing. We have developed a Bayesian approach to efficiently
solve for slip incorporating von Karman regularization. In synthetic tests, our approach
retrieves fractal slip better than Laplacian regularization, as expected, but even per-
forms comparably, or better, when the input slip is not fractal. We apply this to the
2014 M,, 6.0 Napa Valley earthquake on a two-segment fault using InSAR and GPS
data. We find the von Karman and Laplacian inversions give similar slip magnitude
but in different locations and the von Karman solution has much tighter confidence
bounds on slip than the Laplacian solution. Differences in earthquake slip due to the
regularization technique could have important implications for the interpretation and
modeling of stress changes on the causative and neighbouring faults. We therefore rec-

ommend that choice of regularization method should be routinely made explicit and
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justified and that von Karman regularization is a better default than Laplacian.

3.2 Introduction

Determining the magnitude and distribution of slip along a fault plane is an essential
component of earthquake investigations. Coseismic slip can help elucidate the geometry,
strength and frictional properties of active faults (Milliner et al., 2015, Perrin et al.,
2016) and can be used to estimate where stress has been partially released and where
it remains or has increased, which may indicate areas of the fault or neighbouring
faults that have been brought closer to or further from failure (Walters et al., 2009,
Lorito et al., 2011, Avouac et al., 2015). The same inversion methods can also be
used to monitor postseismic and interseismic slip (e.g. Floyd et al. 2016) and to help
deduce the distribution and proportion of off-fault deformation, giving insight into the
earthquake cycle (Wang et al., 2015, Lindsey and Fialko, 2016). Values of slip are also
used extensively in palaeoseismic studies to estimate the magnitude of pre-instrumental
earthquakes (Campbell et al., 2015).

By combining satellite acquisitions before and after an earthquake, InSAR (Inter-
ferometric Synthetic Aperture Radar) provides spatially dense measurements of surface
displacement which along with GPS measurements can be used to invert for the mag-
nitude, location and direction of earthquake slip along a fault plane (Wright, 2003).
With the new European Space Agency (ESA) satellites Sentinel-1A and B providing
unprecedented ground repeat times, the scientific community is now in a position to
routinely investigate all large continental earthquakes using InSAR (Elliott et al., 2015),
and inverting for slip is a crucial part of that procedure. However, in order for slip in-
versions to be useful we need to ensure that the inversion processes give results that
adequately represent the true slip distribution.

Slip inversions are usually ill-posed and unstable, meaning that the solution is non-
unique and small amounts of data noise lead to slip oscillations in least-squares so-
lutions. Because of this inversions are usually regularized, with Laplacian smoothing
being the most common approach (Harris and Segall, 1987, Wright, 2003, Funning
et al., 2005). This regularization approach minimizes the second derivative of slip with
the importance of this constraint relative to minimizing data misfit controlled by a
scalar smoothing factor. The choice of smoothing factor is often subjective and often
not stated at all in the literature but can result in major differences between solutions
derived from the same data. There is no specific justification for the use of Laplacian
smoothing in slip inversions, other than that a rough or oscillating slip distribution
would produce unrealistically large stress-drops. Whilst Laplacian smoothing can pre-
vent such large stress-drops this does not mean it is the best function to describe the
nature of slip; it is just a mathematical constraint rather than being based on any

observed fundamental feature of slip distributions.
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Other regularization techniques promote sparse solutions (Fvans and Meade, 2012)
or impose little regularization (Minson et al., 2013, Jolivet et al., 2014), and these
approaches, together with smoothness-promoting methods produce a huge range in
solutions for the same earthquake. We argue that whichever regularization method
is used, it should have a physical justification based on some observed behaviour of
earthquakes and faulting.

Many features of earthquakes and faults show self-similar (fractal) properties, mean-
ing that a feature is similar at all scales, or mathematically that a behaviour can be
described by a power law (Mandelbrot, 1983). Features that show this relationship in-
clude the Gutenberg-Richter frequency magnitude scale (Gutenberg and Richter, 1955,
Kanamori and Anderson, 1975), the Omori aftershock frequency law (Omori, 1894),
seismicity distribution across faults (Powers and Jordan, 2010), spatial structure of
faults (Awviles et al., 1987, Okubo and Aki, 1987), spatial distribution of earthquake
hypocentres (Robertson et al., 1995), fault gouge texture (Rice and Cocco, 2007, Muto
et al., 2015), fracture energy (Passelégue et al., 2016) and many others (see Ben-Zion
2008).

Fault surfaces are naturally rough and early work found this roughness is self-
similar (Brown and Scholz, 1985, Power et al., 1988, Poon et al., 1992), meaning that
the root-mean-square height fluctuations are proportional to the profile length (Fang
and Dunham, 2013). Recent higher-resolution studies of exhumed faults (Renard et al.,
2006, Sagy et al., 2007, Brodsky et al., 2011, Candela et al., 2012) support these initial
observations but find that roughness is self-affine rather than self-similar. Self-affine
systems require different scaling in the x and z direction to maintain their similarity,
where self-similar systems have the same scaling. In the context of fault roughness,
a profile of fault topography is self-affine if it remains statistically invariant if the x
(along-strike) and z (topography) coordinates are subject to the scaling transformation
dx — oz, 6z — Y15z, where H is the Hurst parameter (Candela et al., 2012). For
a self-similar system, the scaling is instead 7 in both directions. Different values of
H are found along-strike and down-dip directions, giving rise to different properties
perpendicular and parallel to the slip vector.

Modeling of slip on a surface with fractal roughness predicts that both the distribu-
tion of stress drop and coseismic slip should also have a fractal distribution (Candela
et al.,2011). Milliner et al. (2015, 2016) observed this in their field investigations of sur-
face slip of the Landers earthquake rupture, where a power-law describes the relation-
ship between slip amplitude and wavelength. Models that produce power-law frequency
magnitude statistics of earthquake occurrence, in keeping with the Gutenberg-Richter
law, also produce fractal slip distributions (Fisher et al., 1997).

Additionally, Mai and Beroza (2002) found that seismological slip solutions show
fractal properties, a feature that was robust irrespective of the regularization imposed

upon the inversions. They tested various autocorrelation functions to assess how the
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magnitude of slip varied as a function of distance and found that the von Karman
autocorrelation function best describes slip distributions. This function has a similar
power law relationship as a fractal distribution at high spatial frequencies, but the

power decays more slowly for small wavenumbers (large wavelength).

These studies imply that a better and more realistic alternative to regularization
by Laplacian smoothing is regularization by constraining the slip distribution to be
self-affine. By using a regularization technique that does not capture the fractal nature
of slip we may be biasing slip solutions, and therefore also any conclusions drawn
from them. Fractal fault roughness is now incorporated into many numerical models of
dynamic rupture (Fang and Dunham, 2013, Shi and Day, 2013, Parsons and Minasian,
2015, Bruhat et al., 2016) and ground-motion simulations (Mai et al., 2017) and in this
paper we incorporate the von Karman autocorrelation function into a geodetic slip

inversion as a prior assumption, using Bayesian methods.

The von Karman correlation was first introduced in fluid dynamics to describe
turbulence (von Kdrmdn, 1948). Unlike a fractal correlation, that has only a single
term to describe its power (the fractal dimension, D), the von Karman distribution
also has correlation lengths, which define the cut off lengths of fractal behaviour (Dolan
et al., 1998) and allow for different scalings down-dip and along-strike, which is useful

for capturing the nature of slip.

Here we use the von Karman distribution to describe the expected similarity of
magnitude of slip between all patches of the fault. This correlation function, C(r) is
given by:

Gu(r/a)

C(r) = m (3.1)

Where Gy (r/a) = (r/a)! Ky (r/a) where Ky is a modified Bessel function of the
second kind, of order H, r is the distance between slip patches, a is the correlation
length used to scale this distance and H is the Hurst parameter (Mai and Beroza,
2002). The Hurst parameter describes the fractal properties of the correlation and
controls the decay of this correlation (Figure 3.1). For self-affine profiles the Hurst
parameter is linked to the fractal dimension, D, by D = (Euclidian dimension + 1 -
H) and is a measure of the long-term memory of a system.

In form, the von Karman correlation decays as a function of lag (scaled distance),
and for H = 0.5 the von Karman function is identical to an exponential decay function.
The von Karman correlation decays quicker for either decreased Hurst parameter or
decreased correlation lengths. Thus the correlation between the magnitude of slip on
two patches decays as a function of the distance between them, and the nature of this

decay is controlled by the Hurst parameter and correlation lengths.

The von Karman correlation can be added as a prior assumption into a slip inversion,
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Figure 3.1: Left = The von Karman autoccorelation function, C(r). The autocorrelation
(similarity) between two functions decays with lag (scaled distance) between them. The exact
shape of the drop-off is controlled by the Hurst parameter, H, where H = 0.5 is equivalent
to an exponential decay function. Right = von Karman power spectrum, P(k), using a, = 5,
a, =15 and H = 0.8 at k, = 0. Also plotted at k, = 0 is the fractal power spectrum, again
using H = 0.8, giving a fractal dimension D = F' 4+ 1 — H = 2.2. For high wavenumbers both
are a straight line on the log-log graph, displaying characteristic self-similar properties. The
fractal power spectrum decays beyond a corner wave number, k. = 0.3, which is related to the
characteristic source dimension (Mai and Beroza, 2002) whereas the von Karman shows a more
gradual roll-off, the start of which is related to the correlation lengths, a, and a,. Here a,
and a, were chosen to align the two functions at small wavenumbers. Adapted from (Mai and
Beroza, 2002).

so that a slip solution has a joint probability based upon how well a slip distribution
fits the observed data and how well the slip distribution fits the von Karman autocor-
relation function. The parameters describing the von Karman distribution (H, a) could
themselves be solved for as hyperparameters, with their prior probability distributions
determined by the seismic study meta-analysis from Mai and Beroza (2002). These pa-
rameters differ depending on fault type (normal, reverse or strike-slip) and also differ
in the along-strike and down-dip directions.

In this study we present a method to invert for slip incorporating von Karman reg-
ularization, using a Bayesian approach and implemented using a Markov chain Monte
Carlo (MCMC) algorithm. A Bayesian approach allows us to fully explore the range of
parameters that fit the data, incorporate constraints (e.g. on rake to avoid unphysical
features such as back-slip), and solve for a hyperparameter which represents the vari-
ance of the slip (discussed more in Section 3.3.3). This means that instead of having
to assume in advance the variance of slip we are able to search the range of slip mag-
nitudes and rakes for a range of permitted variances. This flexible approach, whilst
computationally expensive, allows us to be more objective and explore the full range

of possible solutions in more detail.

We test this method on synthetic data, and then apply it to the M,, 6.0 Napa Valley,
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California, 2014 earthquake. For comparison we also invert for slip with Laplacian

smoothing implemented using the same Bayesian approach.

3.3 Method and Data

3.3.1 Bayesian inversion

In Bayesian inversions each parameter to be solved for (e.g. slip, rake) is treated as
a random variable with a prior PDF (probability density function) that is updated
by the inversion process. The result is the full joint posterior PDF for every model
parameter, giving an ensemble of all possible models that fit the data reasonably, as
well as providing a good understanding of the uncertainties on parameters and the
covariance between them. This approach also allows us to solve for hyperparameters
within the inversion.

Following Fukuda and Johnson (2008) and Hooper et al. (2013)’s incorporation of
Laplacian smoothing into slip inversions using a non-linear Bayesian approach, here we
present our method for incorporating a von Karman prior assumption, after (Hooper,
2012).

The posterior probability is built from the prior and likelihood function using Bayes’
theorem. The prior probability describes how well the model parameters fit a prior
assumption. The likelihood function describes how well the forward model calculated
using these model parameters fits the observed data.

Bayes’ theorem states:

J(mld) — —_Pm)p(m) 652

/2 p(dim)p(m)dm

Meaning that the posterior probability, p(m|d), of a model, m, given a set of data,
d, is the product of the prior probability of the model, p(m) and the fit to data p(d|jm),
where the denominator is a normalizing constant.

We use an MCMC method incorporating the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953, Hastings, 1970) to generate samples of the prior probability density and
also to sample the parameter space and thus approximate the posterior PDF. The al-
gorithm samples parameter space in such a way that more models are drawn in areas
of high probability. We adapt the approach of Fukuda and Johnson (2008) to include
multiple Metropolis steps and sensitivity tests.

An MCMC chain is a memoryless system in which parameter space is sampled
using random walks, with each random step depending only upon the previous step (in
contrast to methods such as the neighbourhood algorithm (Sambridge et al., 1999)).
The MCMC chain samples parameter space to provide an estimation of the posterior
PDF (Tarantola (2005), Chapter 2, Pg 50).
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3.3.2 Our MCMC approach

In an MCMC chain each parameter is perturbed at the start of each iteration, meaning
a random number is added to each model parameter giving a new ‘trial’ value. The new
trial is drawn from the prior distribution, then the likelihood is calculated. The trial
is then accepted or rejecting using the ‘Metropolis rule’. This acceptance rule states
that if the trial likelihood is greater than that of the current model it is accepted. If
the trial likelihood is lower, then the probability of acceptance is calculated: the ratio
of the two likelihoods. This ratio is compared to a randomly drawn number between 0
and 1. If the probability of acceptance is greater than this random number, the trial is
accepted. Otherwise it is rejected. This means that sometimes trials that have lower
likelihood are accepted, which allows the chain to not get stuck in local minima. If a
trial is accepted it is saved; the next random step is taken from those model parameters.

At the end of the inversion the first B iterations which constitute the ‘burn-in’
are removed. These are the early steps which do not properly sample the posterior as
they may be influenced by starting state (Fukuda and Johnson, 2008). The rest of the
saved trials represent the posterior, giving the full range of models which adequately fit
the data and prior assumptions. This posterior can be represented by some statistical
representation of the distribution, which is discussed further in Section 3.5.3.

Here we implement the MCMC chain in two separate steps for efficiency, as de-
scribed by (Tarantola (2005), Chapter 2, Pg 52). The first step generates samples of
the prior probability density: a von Karman trial. We draw random slip trials for each
patch from their prior distribution (Section 3.3.4) and use the Metropolis-Hastings al-
gorithm to accept/reject these trials based on their von Karman probability. The slip
trials are generated by adding a random number from a boxcar distribution between
+ each parameters’ ‘step size’. The second step is to sample the posterior probabil-
ity distribution, which is achieved by comparing the likelihoods of the current trial to
the previous trial (Tarantola (2005) Chapter 2, Pg 52). This implementation reduces
the number of times the particularly computationally-expensive likelihood calculation
is made, since it avoids making the calculation for most models that already have a
low posterior probability due to their slip distribution having very low von Karman
probability. Also for efficiency we periodically perform a sensitivity test to adapt the
step sizes being taken, which is discussed in detail in Section 3.3.6. In Section 3.3.4 we
describe how we sample the prior and in Section 3.3.5 we describe how we sample the
posterior, using the likelihood; these two steps together comprise one iteration of our

algorithm.

3.3.3 Model parameterisation

We divide the fault into M slip patches and solve for magnitude of slip and rake

(the direction of slip) separately for each patch, as well as a hyperparameter a? for
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each separate fault. The physical meaning of the hyperparameter o is the variance
of the slip. The correlation matrix calculated using Equation 3.2 defines the desired
von Karman correlation between slipping patches and the hyperparameter o acts on
this to dictate the magnitude of the slip, in effect converting correlation to variance-
covariance. It is necessary to solve for a? in order to explore the full plethora of slip
and rake solutions that fit a range of permitted variances. If a model contains multiple
faults that are assumed to be uncorrelated in terms of their slip, then we would calculate
separate von Karman prior probabilities for each fault and consequently we assign one
a? parameter per fault. Slip and o? are the only parameters used in the von Karman

prior probability calculation.

3.3.4 First MCMUC step - sampling the prior

The prior probability describes how well a slip distribution fits the prior assumptions.
Here the prior is the product of prior distributions of slip magnitude and rake for
individual patches, o for each separate fault, the von Karman probability of slip and

a moment regularization (if this option is used).

Model parameter priors

We solve for slip magnitude and rake using boxcar priors and we solve for o? using
a logarithmic prior. This means that for slip and rake the new trials are generated
with uniform probability between a given range i.e. slip is given uniform probability
between 0 meters and x meters, and the probability is zero outside of this range. For
a? we implement a logarithmic prior. This means that we solve for a model parameter,
g, and then calculate o® by o? = 109, thus transforming a uniform prior for ¢ into a

logarithmic prior for a?.

Von Karman prior

Once each model parameter has been drawn from its prior, we apply the von Karman
prior using the Metropolis-Hastings algorithm, since it is difficult to directly generate
von Karman distributions directly with a random walk.

The von Karman autocorrelation is given by:

—1 _
p(S) _ (27Ta2)—M/2|ES‘—1/262&—25T25 g (33)
Where:
p(s) = probability of this slip distribution
a? = a hyperparameter controlling the slip variance

M = number of slip patches in a fault strand
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|Xs| = the determinant of the slip patch autocorrelation matrix
s = vector of slip magnitudes

We calculate the probability for each separate fault using a corresponding o term
for that strand. The product of the prior probabilities for all the faults gives the
the joint probability of the overall distribution of slip conforming to the von Karman
correlation function.

The autocorrelation, Xg is calculated for a particular fault strand from the von
Karman correlation function given in Equation 3.2. In MATLAB, Gy (0) gives an
infinite value, so we investigated the lim,_o of Gy (r) = (r)? Ky (r). We found any
values smaller than r = 10™% changed the value of G (r) significantly less than 1% so
we therefore used a value of r = 10719 to approximate r = 0.

We calculate the scaled distance, r/a, by calculating the along-strike and down-dip
separation distance between each fault patch, then dividing this by the along-strike,
Qqs, or down-dip, aqq, correlation value respectively. We then used these scaled along-
strike and down-dip separation distances to calculate the scaled separation distance
between each patch. We used the correlation values from Mai and Beroza (2002) for

strike-slip faults:

aqs = 1860 4 0.34 X (fault length) (meters) (3.4)
agq = —390 + 0.44 x (fault width) (meters) (3.5)

We also used Hurst parameter values, H, from Mai and Beroza (2002) for along-
strike, H,s = 0.71, and down-dip, Hyy = 0.77 and scaled them appropriately for angles
between purely along-strike and down-dip. These values are calculated in the meta-
analysis performed by Mai and Beroza (2002) and have uncertainties associated with
them, which we have not accounted for here. These correlation lengths and Hurst
parameters could be solved for as hyperparameters as part of the inversion in future

studies, using the distribution from Mai and Beroza (2002).

Moment regularization prior

Geodetic slip inversions have poor depth resolution since all the data are acquired
at the surface. Consequently deep slip makes very little difference to the likelihood;
it is almost in the null space. To attempt to limit the amount of slip being put in
the null space we optionally include moment regularization in the inversion such that
slip trials with a moment very different to that of the seismological moment are more
likely to be rejected. We use a Gaussian prior for moment: it is calculated with the
standard equation for calculating the probability from a Gaussian distribution given a
mean (moment from the USGS page) and standard deviation (standard deviation of

the different moment calculations on the USGS page). The prior probability is then
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the von Karman prior multiplied by the moment regularization prior.

However, we prefer to avoid this regularization where possible, since many geodetic
measurements also include surface displacements from postseismic slip or aftershocks,
and there are often systematic differences between geodetically and seismologically-
derived seismic moments ( Weston et al., 2011). It is not clear whether this is pre-
dominantly due to real differences from aseismic slip, errors in the seismic estimate or
errors in the geodetic estimate, or some combination of these. In this study moment

regularization is not applied unless specifically mentioned.

Prior acceptance rule

We use the Metropolis rule to decide if a temporary trial is accepted, as discussed in
Section 3.3.2. If it is accepted then it is a representative draw from the von Karman

distribution and the other prior distributions; therefore we move onto the second step.

3.3.5 Second MCMUC step - sampling the posterior

Once we have drawn a sample from the prior using the first MCMC step, we sample
the posterior by calculating the likelihood.

A forward model of surface displacements is calculated from the trial model param-
eters, using the formulation for rectangular dislocations in an elastic half-space (Okada,
1985). This is calculated by multiplying the current slip model, s, by a kernel G, which
gives predicted surface displacements, a, at each of the locations of our InNSAR and

GPS data for unit slip on each fault patch and the appropriate rake:

d=Gs (3.6)

Because we solve for slip magnitude and rake, the kernel G needs to be updated for
the current rake value during each iteration. For a linear case in which fault geometry
is held fixed (i.e. not changing dip), G matrices for purely left-lateral strike-slip, Ggs,
and purely thrust dip-slip, Ggs, movement can be calculated before commencing the
inversion. Then the G matrix for the current iteration is calculated using the current

values of rake by:

G = Ggs X cos(rake) + Ggs X sin(rake) (3.7)

Where cos(rake) and sin(rake) are diagonal matrices.
The likelihood is calculated using the weighted misfit of a forward model to the
observed data. The misfit is weighted by the inverse of the variance-covariance matrix,

3.4, which represents data uncertainty. The likelihood is given by:

p(dls) = (2m) ~N/2|Bg| 726 (-G BaTHA-Ge) (3.8)
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Where:
p(d|s) = the probability of the observation, given the slip and rake distribution
N = total number of data points
3.4 = variance-covariance of the data
d = data (e.g. InSAR, GPS, vertical displacement of coral atolls)
s = magnitude of slip
G = kernel, calculated for the appropriate rake and dip values

We then once again use the Metropolis rule on the ratio of the trial likelihood to
current model likelihood. If the trial passes this test, then it is saved as the current
model and future trials will be drawn as a step from this trial, until another more likely
trial is drawn. If the trial is rejected, the previous model is saved and next trial is
initiated from this trial.

The inversion results in a joint probability from which we can calculate a histogram
of the posterior for each model parameter. We can also calculate the 2D PDFs, which

show the joint PDF of each pair of parameters.

3.3.6 Efficiency

Bayesian inversions are computationally expensive and so methods are employed to
improve the efficiency of the parameter search, such as the use of multiple MCMC
chains e.g. (Minson et al., 2013). Here we improve efficiency by using two steps within
one MCMC chain as discussed in Section 3.3.2 and by modifying the step size for each
parameter within the MCMC chain, in a manner similar to that used by Hooper et al.
(2013) and also Minson et al. (2013) between chains.

We modify the step size for each parameter to achieve an optimal acceptance rate
of 0.234 (Roberts et al., 1997). Acceptance rates that are higher or lower than this give
an inefficient search of parameter space. For the sensitivity tests we use a ‘rejection’ to
mean either a rejection at the prior or likelihood stage.

In order to ensure we achieve this ideal rejection ratio whilst properly exploring
parameter space, we perform sensitivity tests at regular intervals throughout the inver-
sion, with the first sensitivity test, j = 1, starting at ¢ = 100 where i is the iteration,
then at ¢ = 500 and every 1000 iterations up until 10,000 and then every 10,000 it-
erations for higher values of . We use a ‘probability target’ parameter to adjust the
step sizes, so that perturbation of each model parameter results in the same amount
of change to the posterior probability. This probability target is the expected ratio
of the posterior probability after perturbing a single model parameter, to the current
posterior probability. Changing step sizes to match this probability target ensures no
parameter is having too great or too little an effect on the posterior probability. Adapt-
ing the probability target with the rejection rate forces step sizes to increase or decrease
to optimise efficiency. At the start of a sensitivity test we first adjust the probability

target at the current sensitivity test, j, using the probability target from the previous
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sensitivity test, 7 — 1, by:

Ptarget; = Ptargetj_i x Ti;f;al (3.9)

This means if too many trials are being rejected (i.e. the rejection ratio since last
sensitivity test, r;, is larger than the ideal rejection ratio, 74eq;) then the previous
probability target, Ptarget;_1, will be decreased. We then adjust step sizes of each
model parameter using this new probability target. This is done during a sensitiv-
ity test by calculating the posterior probability, perturbing each parameter by half a
step size in turn and recalculating the posterior probability. The ratio of posterior-
before-perturbation to posterior-after-perturbation is calculated and subtracted from
the probability target to give the difference, D. If the perturbation is such that model
parameter’s contribution to the posterior probability is more than the probability tar-
get (D < 0) then the step size is having too large an effect, which means the step size

must be decreased. We decrease or increase step sizes using the empirical formula:

)

stepsize; = stepsizej_q x e7r9t* for D > 0 (step sizes too small) (3.10)
b

stepsize; = stepsize;j_q x e~ Ptaroet)xC2 for D < 0 (step sizes too big) (3.11)

Where the constants, C1 and C2, are arbitrarily chosen to control how quickly
step sizes increase or decrease in size; increasing 'y decreases the amount by which
step size increases, increasing (9 increases the amount by which a step size decreases.
These values were chosen after experimentation as they resulted in gradual changes in
rejection rates in synthetic tests. Different values may work better in different situa-
tions, depending on the number of model parameters. For a von Karman regularized
inversion we use C7 = 16 and Cs = 2, although we find higher values of C; work better
for Laplacian and moment regularized inversions. If we are re-running an inversion we
optionally use the idealised step sizes from a previous run. A simple test demonstrates
that an inversion scheme with changing step sizes correctly samples the posterior (Ap-
pendix B, Figure B.1); a mathematical proof of this is beyond the scope of the current

paper would be a valuable avenue of future work.

3.4 Synthetic tests

3.4.1 Synthetic test set up

We first tested our slip inversion code on three synthetic cases. Each consists of a strike-
slip fault modeled as two connected strands, and the simulated surface displacements
are created using our forward model described by Equation 3.6, shown in Figure 3.2.

The three synthetic slip distributions created are:
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Figure 3.2: Setup of synthetic tests. a) Fault plane, with two joining strands, with example
slip distribution indicated by colour. Thick black line shows top of fault, at the surface. b) Plan
view of location of surface displacements caused by this right-lateral fault, indicated by a black
line ¢) Zoomed in on box shown in b), showing the surface displacements around the fault.

1. Uniform, pure strike-slip motion that ruptures the surface down to ~6km depth.

2. Laplacian smoothed slip.

3. Slip displaying von Karman autocorrelation.

The Laplacian smoothed slip is created using a matrix of discretised Laplacians
appropriate for this fault geometry, the inverse of which is multiplied by normally-
distributed random numbers.

The von Karman consistent synthetic test is created by transforming a random slip
distribution into a correlated distribution using the appropriate correlation matrix (e.g.
Lohman and Simons 2005), for a fault of given dimensions.

To investigate the differences caused by regularization alone we conducted the syn-
thetic tests on noise-free synthetic data. We used a high density of 3D surface displace-
ments, spaced every 400 m within 5 km of the fault and every 2 km up to a distance
of 20 km from the center of the fault.

We then inverted for slip for these three separate synthetic tests using three modes
of the Bayesian inversion: with no regularization, Laplacian regularization and von
Karman regularization.

Each was performed with the correct fault geometry, with a prior rake within +30
degrees of the true value, adding no further regularization than that specified above. For

Laplacian regularization we solved for the hyperparameter that controls the strength
of the smoothing within the inversion.
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3.4.2 Synthetic test results

The results are shown in Figures 3.3 and 3.4, Appendix B Figures B.2 - B.3 and the fit
to the data for each model shown in Appendix B Figures B.4 - B.12.

It is not simple to display the results from a Bayesian inversion since the inversion
produces a multidimensional joint PDF for all model parameters. All saved models
formulate the solution, which would best be displayed as a video. However to present
the results in a 2D image, in Figure 3.3 we have plotted the ‘mode’ solution for each
slip patch. This slip distribution<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>