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General Summary 

Many cooperative societies are composed of relatives, and kin selection can often 

explain cooperation in such groups. However, prolonged association with relatives 

may also increase inbreeding risk. Here, I investigate kin discrimination in the contexts 

of helping and mate choice in the long-tailed tit Aegithalos caudatus, a facultative 

cooperative breeder in which failed breeders redirect help towards relatives.  

In Chapter 2, I quantify the fine-scale genetic structure within breeding 

populations, generated by the life-history and dispersal patterns associated with this 

unusual helping system. Kin remain clustered after dispersal, but helping patterns do 

not reflect kin structure; help is redirected towards close kin more often than expected 

by indiscriminate helping. This population structure also creates a potential inbreeding 

risk, and heterozygosity-fitness correlations indicate that inbreeding carries fitness 

costs (Chapter 3).  Remarkably, this risk is alleviated by active avoidance of close kin 

as partners. In Chapters 4 & 5, I consider the recognition mechanism that permits kin-

directed helping and active inbreeding avoidance in this species. I devise a 

comprehensive method of measuring acoustic variation within and between 

individuals, and investigate whether vocal similarity may be used to assess relatedness 

and make adaptive helping and pairing decisions. Failed breeders redirect help towards 

the nests of males with similar calls, but call similarity within breeding pairs is higher 

than one would expect from random mating. Possible reasons for this are discussed.  

The variety of kin discrimination across social systems, and the circumstances 

under which certain mechanisms may be adaptive, are discussed. I highlight important 

considerations for assessing kin recognition mechanisms and the role of familiarity in 

kin discrimination.    
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Chapter 1 

General Introduction   

 

Cooperation is widespread in nature.  From an evolutionary perspective, cooperation 

includes any behaviour that generates a fitness benefit to another individual, and is 

selected for because of its beneficial effect on the recipient (West et al. 2007a). In 

many cases, cooperation carries mutual benefits; both actor and recipient gain direct 

fitness from the actor’s behaviour. The evolution of altruistic cooperative behaviour, 

in which the actor increases the recipient’s fitness at a cost to themselves, is more 

difficult to explain, and at one time presented a major problem for the theory of natural 

selection, troubling even Darwin himself (Darwin 1859). In what has become one of 

the most important advances in evolutionary biology, Hamilton (1964) provided a 

solution to this seeming paradox when he developed kin selection theory and the 

concept of inclusive fitness (Hamilton 1963; 1964; Axelrod & Hamilton 1981). In a 

series of seminal papers, Hamilton argued that individuals can increase their genetic 

contribution to the next generation by helping their relatives, with whom they share a 

number of genes that are identical by descent, to survive and reproduce. He used the 

term inclusive fitness to describe the direct fitness an individual can gain from 

independent reproduction, combined with the indirect fitness that can be gained by 

improving the reproductive success of kin (Hamilton 1964). The process by which 

indirect benefits accrue was termed kin selection by Maynard Smith (1964).  

Hamilton’s ideas have been applied to various aspects of evolutionary biology. 

Inclusive fitness theory has helped to explain some of the major evolutionary 

transitions in the history of life on earth; chromosome evolution, unicellularity to 
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multicellularity, and the evolution of eusociality are characterised by an increase in 

complexity and all involve cooperation at some level (Bourke 2011). In the case of 

social evolution, longitudinal studies of cooperative breeders have been particularly 

insightful, and provide an excellent arena in which to investigate kin selection. 

 

1.1  Cooperative breeding 

Cooperative breeding refers to a reproductive system in which more than a pair of 

individuals collectively raise young in a single brood or litter (Koenig & Dickinson 

2016). Although relatively uncommon, this alloparenting has been described in a range 

of taxa, including fish (Taborsky & Limberger 1981), crustaceans (Duffy 2010), insects 

and arachnids (Wilson 1971; Choe & Crespi 2010), birds (Koenig & Dickinson 2004) 

and mammals (Clutton-Brock 2016). Cooperation continues to be a key focus in 

evolutionary biology; although Hamilton has provided the adaptive framework for 

social evolution (Hamilton 1964), why we see so much diversity among cooperative 

breeders, and why this has evolved in some species and not others, is still something of 

a mystery (Rubenstein & Abbott 2017). As an umbrella term that covers a diverse array 

of social mating systems, a common evolutionary theme that applies across cooperative 

breeders has proved challenging to establish.   

In the majority of cooperative breeders, adult offspring delay dispersal and 

remain with their parents on their natal territory, foregoing personal reproduction to help 

raise their siblings. This has been labelled helping at the nest in birds (Brown 1987), but 

is a common format in non-avian systems as well. However, there is enormous variation 

on this general theme. In some species, helpers have the opportunity to breed (Martin-
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Vivaldi et al. 2002), and help is often given by non-kin (Kokko et al. 2002; Riehl 2013) 

or collateral kin (Hatchwell 2016). In most species, cooperative breeding is facultative, 

and breeders can raise young without assistance (e.g. Emlen & Wrege 1988; Russell & 

Hatchwell 2001), although there are a few obligate cooperative breeders, which require 

help to raise their young (e.g. Russell et al. 2010; Wright et al. 2010). In cooperatively 

breeding mammals, dominant breeders are assisted by non-breeding subordinates. 

Although most are singular breeders, there a few plural cooperative breeders, in which 

multiple individuals of both sexes breed in the same social unit (e.g. Cant et al. 2013). 

Cooperative breeding in birds can take various forms of cooperative polygamy, e.g. 

plural or joint-nesting breeders; and coloniality, in which singular breeding females nest 

in extremely close proximity (Cockburn et al. 2004). Cooperative breeding has evolved 

independently across multiple distant lineages and its diversity reflects differences in 

the strength and nature of selection on helping, mating strategy, dispersal and other 

aspects of social living across species (Ligon & Burt 2004).  

For cooperative breeding, in any form, to be evolutionarily stable, there must be 

a fitness benefit to helping. The most widely supported driver of cooperation is the 

indirect fitness one can gain from helping relatives (Emlen 1991), and in most 

cooperative societies, helping is kin-biased (Hatchwell et al. 2009; Riehl 2013). By 

assisting relatives, helpers can increase the productivity of the current breeding attempt, 

or reduce the reproductive effort of the parents. This load lightening increases the 

probability that the breeding relative will survive and breed successfully in the future 

(reviewed in Dickinson & Hatchwell 2004).  

There are fewer empirical examples of helpers gaining direct fitness benefits, 

but these may include: increased social prestige (Zahavi 1995), acquisition of skills that 
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increase future mating success (Komdeur 1996); territory inheritance (Wolfenden 

1975); mutualistic benefits associated with group living (group augmentation), 

including delayed reciprocity (Kokko et al. 2001, Ligon & Ligon 1978); or access to 

mates, through extra-pair copulations (Mulder et. al 1994) or replacement (Curry & 

Grant 1990). In some species, cooperation is enforced by aggression, and subordinates 

may pay to stay in the territory, helping dominants in order to increase the likelihood of 

being tolerated (Kokko et al. 2002; Bergmüller et al. 2005; Bergmüller & Taborsky 

2005).  

However, helpers at the nest usually pay a net fitness cost by helping instead of 

breeding themselves; even helping relatives only partly compensates for failing to 

disperse and breed independently (Ekman et al. 2004). So, the question, ‘why breed 

cooperatively?’ becomes ‘why delay dispersal?’ The widely accepted answer is that 

delayed dispersal has evolved due to ecological constraints on independent breeding 

(Koenig et al. 1992; Emlen 1997). Such constraints include: a shortage of vacant 

breeding territories; a high mortality risk associated with dispersal; or a low probability 

of finding a mate or reproducing successfully (Hatchwell & Komdeur 2000).  The 

ecological constraints hypothesis proposes that cooperative breeding may evolve in any 

species under certain environmental conditions that favour the decision to stay and help, 

rather than disperse and attempt independent reproduction (Emlen 1982). Cooperative 

breeding appears to have evolved most frequently in harsh, unpredictable environments, 

with low or variable rainfall (Jetz and Rubenstein 2011; Lukas & Clutton-Brock 2017), 

which supports the ecological constraints model.  

Alternatively, the benefits of philopatry hypothesis proposes that the decision to 

delay dispersal is driven by the benefits of remaining in the natal area, rather than 
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constraints on leaving (Stacey & Ligon 1987). These may include inheritance of a high-

quality territory and benefits associated with interactions with kin (Covas & Griesser 

2007). These two hypotheses are not mutually exclusive, and are arguably 

complementary, rather than alternative models (Koenig et al. 1992); both assume a cost-

benefit analysis of leaving versus remaining, in which remaining returns the higher 

fitness pay-off (Hatchwell & Komdeur 2000). However, determining the relative 

importance of the extrinsic constraints and intrinsic benefits of delayed dispersal can 

provide a more comprehensive understanding of the evolution of cooperative breeding. 

Recently, the dual benefits framework has been put forward to incorporate the direct 

benefits of group living, such as resource defence, which may also influence dispersal 

decisions (Shen et al. 2017).  

In contrast, the life-history hypothesis focuses on the role of phylogeny and life-

history traits such as longevity, and proposes that cooperative breeding will evolve only 

in lineages with the appropriate attributes (Arnold & Owens 1998). For example, 

phylogenetic reconstructions have revealed that monogamy is often a precursor to the 

evolution of cooperative breeding (Boomsma 2009; Cornwallis et al. 2010; Lukas & 

Clutton-Brock 2012). The effect helpers have on offspring fitness may also need to be 

high for cooperation to evolve. In birds, the evolution of cooperative breeding is 

associated with producing altricial young (Ligon & Burt 2004). In mammals, it has been 

associated with polytocy (Lukas & Clutton-Brock 2017). However, whether ecological 

traits facilitate the evolution of cooperation in certain species that are predisposed to 

cooperation because of their life-history, or vice versa, has remained difficult to 

determine. No hypothesis alone appears adequate in determining a clear evolutionary 

route to cooperative behaviour. Rather, certain aspects of ecology and life-history may 
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need to align in order for cooperative breeding to be an adaptive strategy (Hatchwell & 

Komdeur 2000).  

The term cooperative breeding encompasses an array of reproductive strategies, 

and there is great diversity in mating system, life-history trajectory, dispersal patterns 

and population structure within cooperatively breeding species. These differences drive 

the evolution of specific cooperative behaviours and decision rules. In species where 

indirect fitness benefits appear to be driving cooperation, processes that facilitate the 

differential treatment of conspecifics differing in relatedness are expected to be under 

strong selection.   

 

1.2 Functions of kin recognition  

Integral to kin selection theory is the ability of individuals to discriminate between kin 

and non-kin (Holmes & Sherman 1983). Consequently, kin discrimination has been the 

focus of decades of theoretical and empirical research (Hepper 1986; Holmes 2004; 

Riehl & Stern 2015). Although most researchers agree that kin discrimination is 

advantageous, the nature of this ability is considerably debated. This has been 

exacerbated by semantic arguments (Byers & Bekoff 1986; Barnard 1991; Bekoff 

1992). Some researchers use the term kin recognition simply to describe the differential 

treatment of conspecifics differing in genetic relatedness (Sherman et al. 1997). Others 

prefer to reserve the term kin recognition for specific mechanisms involving an 

assessment of genetic relatedness based on sensory information acquired from a 

conspecifics’ phenotype (Tang-Martinez 2001). In a further step, Grafen (1990) argued 

that only when these mechanisms have demonstrably evolved because of their adaptive 
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function, should they be considered true kin recognition (Grafen 1990). While it is 

important to understand that discriminatory behaviour need not involve complex 

mechanisms, restrictive definitions can actually hinder our understanding of how these 

systems work (Komdeur & Hatchwell 1999). Throughout this thesis, I follow Sherman 

et al. (1997) and use kin recognition to describe any mechanism by which conspecifics 

differing in genetic relatedness are differentially treated (which I refer to as kin 

discrimination). Kin recognition in this sense has been identified in a range of taxa from 

microbes to humans (Sherman et al. 1997; Biedrzycki & Bais, 2010) and is adaptive in 

a wide range of contexts (Hepper 1991).  

1.2.1  Kin-directed cooperation  

According to Hamilton’s rule, cooperation among relatives can provide indirect fitness 

benefits as long as the co-efficient of relatedness multiplied by the benefits of 

cooperation to the recipient exceed the costs to the actor (Hamilton 1964). Therefore, 

an ability to discriminate not only between kin and non-kin, but also between 

conspecifics of varying degrees of kinship can be selectively advantageous. In addition 

to the well-documented inclusive fitness benefits of alloparenting, kin recognition can 

permit kin-biases in reproductive tolerance (Clutton-Brock et al. 2010) and cooperative 

mate attraction (Díaz-Muñoz et al. 2014); maintain social cohesion (Queller et al. 1993); 

and facilitate communal investment in defence (Griesser & Ekman 2005) and other 

public goods (van Dijk et al. 2014). Kin recognition can also allow individuals to direct 

antagonistic or spiteful behaviour towards non-kin (Hamilton 1970; Pfennig et al. 1993).   

1.2.2  Inbreeding avoidance 

The second major function of kin recognition is inbreeding avoidance (Pusey & Wolf 

1996). Breeding among relatives can often carry severe fitness costs, primarily 
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because the offspring of related parents are more homozygous than those of unrelated 

parents. An increase in the proportion of homozygotes in a population can unmask 

deleterious recessive alleles and lead to inbreeding depression (Charlesworth & 

Charlesworth 1999). Inbreeding depression, a severe reduction in the fitness of inbred 

individuals, is well documented in captive animals, but can be exacerbated in the wild 

because of stochastic processes (Keller & Waller 2002). Yet, inbreeding in nature is 

extremely rare (Pusey & Wolf 1996), suggesting strong selection for effective 

avoidance mechanisms. The strength of inbreeding avoidance depends on the relative 

costs of inbreeding depression, inbreeding risk, and the costs of the avoidance 

behaviour. For instance, extensive outbreeding can also reduce fitness through the 

break-up of coadapted gene complexes due to recombination, or the loss or 

suppression of genes for local adaptations (Bateson 1978; 1983). Selection should 

favour mechanisms which optimise the balance between inbreeding and outbreeding 

(Lynch 1991; Bonneaud et al. 2006). As a classic example, Bateson (1978) found that 

male Japanese quails Coturnix japonica prefer to mate with unfamiliar females, but 

that both familiar and unfamiliar individuals are preferred to those with a grossly 

unfamiliar phenotype.  

In many cooperative species, sex-biased dispersal before reproduction alleviates 

inbreeding risk (Pusey 1987; Koenig & Haydock 2004) without the need for effective 

kin recognition during mate choice. Indeed, inbreeding avoidance is regarded as a 

driving force in the evolution of dispersal strategies (Johnson & Gaines 1990). However, 

dispersal rates are usually low in cooperative breeders (Ekman et al. 2004). In such 

species, incest avoidance is probably an important function of kin recognition, and most 

evidence of active inbreeding avoidance comes from animals that cooperate with kin 

(Clutton-Brock et al. 2010). To alleviate incest, some social species engage in extra-pair 



17 

 

copulations from outside the natal group (Varian-Ramos & Webster 2012); 

reproductively suppress and evict kin from the breeding group (Clutton-Brock et al. 

2010); or actively avoid close relatives when choosing mates (Dickinson et al. 2016). 

All of these mechanisms require some form of kin recognition.   

 

1.3 Mechanisms of kin recognition   

Studies into kin recognition mechanisms are not new: since this ability was first 

documented in the late 1970’s, researchers have identified kin recognition mechanisms 

across a range of taxa (Hepper 1991; Sherman et al. 1997), including single-celled 

organisms (Benabentos et al. 2009) and plants (Biedrzycki & Bais, 2010). However, 

much remains unknown. Although kin recognition mechanisms are often categorised 

based on their apparent complexity (Komdeur & Hatchwell 1999), considering them 

along a continuum may be more informative. In all recognition systems, a 

discriminating individual, or actor, acquires cues to kinship from a referent (itself, a 

subset of kin, or the local environment) and uses these cues to form a template (Reeve 

1989). This template is compared with the phenotype of an encountered conspecific, or 

recipient, and an assessment about kinship is made based on the perceived similarity 

between the template and the recipient’s phenotype (Lacey & Sherman 1983). A specific 

action is then taken, based on this assessment.  

1.3.1  The acceptance threshold model 

Reeve (1989) devised a conceptual framework, known as the acceptance threshold 

model, to explain how an assessment of recognition cues is used to make an adaptive 

decision (Fig. 1.1). In his model, Reeve (1989) considered the frequency distributions 
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of the level of dissimilarity between the recipient’s cue and the actor’s template, for two 

categories of recipients. Desirable recipients are those which, following acceptance, 

provide greater fitness pay-offs to the actor than undesirable recipients. The model 

illustrates how an actor may choose to respond depending on an acceptance threshold: 

a degree of template-cue dissimilarity, below which it will accept and above which it 

will reject conspecifics as kin (Reeve 1989).  Although selection should favour effective 

recognition systems, wild populations will always exhibit some amount of error because 

templates are matched against a finite set of cues (Lacy & Sherman 1983), which 

overlap in desirable and undesirable recipients because of individual variation (Sherman 

et al. 1997). Therefore, any recognition system will involve a certain amount of 

acceptance errors, where undesirable recipients are accepted, and rejection errors, 

where desirable recipients are rejected (Reeve 1989).  Conceptually, the position of the 

acceptance threshold determines the risk of the two error types and selection will favour 

a threshold in which they are optimally balanced (Reeve 1989).  

   The acceptance threshold model theorises how an assessment of template–

phenotype dissimilarity allows individuals to recognise kin. But, how do individuals 

acquire reliable cues to advertise themselves and internal templates to assess the cues of 

others? In the literature, kin recognition is considered as a three-component system. The 

mode and development of cues is the production component of kin recognition. The 

referent, template and algorithm for assessing the similarity between the template and 

the recipient’s phenotype is the perception component. The nature and determinants of 

the action taken based on the assessment fall under the action component (Reeve 1989). 

The distinction between simple decision rules and complex cognitive processes merely 

represents differences in the referent and algorithm used in the assessment. Each 

component can evolve independently, and when determining the selective pressure 
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acting on kin recognition mechanisms it is useful to consider the three components of 

the recognition system separately.   

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Frequency distributions of dissimilarity between the actor template and the 

recipient phenotype for desirable and undesirable recipients. Note the position of the 

acceptance threshold and the acceptance and rejection error regions generated by the 

threshold. All recognition systems will generate some amount of error depending on the 

overlap between the recognition cues of desirable and undesirable recipients and the 

position of the acceptance threshold (from Reeve 1989).  

 

 

1.3.2  The production component 

Any phenotypic trait that reliably indicates kinship may be used for kin recognition. 

When relatives are predictably distributed in space, location can correlate reliably with 

genetic relatedness (Komdeur & Hatchwell 1999). More direct phenotypic cues relay 

sensory information via any of the modalities organisms use to communicate, and 

include visual, acoustic and chemical stimuli (Halpin 1991).  
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Recognition cues can be genetic (Holmes 1986, Yamazaki et al. 1976) or 

acquired from the environment (Gamboa et al. 1986, Sharp et al. 2005). Genetic cues 

have been found in house mice Mus musculus domesticus, females of which prefer nest 

partners with their own major urinary protein (MUP) genotype (Green et al. 2015). 

Environmental cues can be acquired through diet and nest material, or from other 

individuals (Hepper 1991). Systems which rely entirely on genetic cues may be 

susceptible to rejection errors because recombination can cause even close kin to be 

genetically dissimilar at some loci (Gamboa et al. 1986). Whereas, systems which rely 

entirely on environmental cues may be more susceptible to acceptance errors if kin and 

non-kin are able to acquire them (Sherman et al. 1997). Recognition cues that are 

imprinted or learnt are reliable provided they have been learnt or imprinted from kin 

(Sharp et al. 2005). It may be more common for recognition cues to develop from a 

combination of genes and the environment. For example, northern paper wasps Polistes 

fuscatus absorb hydrocarbons from nest fibres at eclosion (Gamboa 1996), which 

combine with genetically determined odours to create colony-specific labels (Gamboa 

1986).  

The information these cues provide may be individual-, family- or group-

specific (Radford 2005; Sharp et al. 2006). However, teasing apart these levels of 

specificity can be challenging. Effective recognition cues must have greater inter-

individual than intra-individual variation (Sharp et al. 2006), so that they convey 

information about identity. To this end, they are likely to be made up of several 

components that vary in their combination from individual to individual. This specific 

profile of phenotypic traits is referred to as a signature system (Beecher 1982).   
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1.3.3 The perception component 

The perception component of kin recognition concerns the referent, the forming of the 

template, and the algorithm for assessing the similarity between the template and the 

recipient’s phenotype. The perception component can be categorised into four 

proximate mechanisms: spatial recognition, recognition alleles, associative learning 

and phenotype matching (Komdeur & Hatchwell 1999; Mateo 2004). 

In spatial recognition, individuals encountered in a certain area are treated as 

kin. Some argue that this is not true kin recognition, as individuals are responding to 

location, not phenotype (Halpin 1991; Tang-Martinez 2001). However, in many natural 

populations, non-relatives are rarely encountered in certain areas and simple decision 

rules such as treat anything in my nest as kin, are widely used in birds (Komdeur & 

Hatchwell 1999; Hatchwell et al. 2001b). This is common in parent-offspring 

interactions (Beecher 1991) and is exploited both intra- and interspecifically, by brood 

parasites (Soler et al. 1995) and extra-pair males (Kempenaers & Sheldon 1996). 

Recognition alleles are specific alleles responsible for all three components of 

the recognition system (Mateo 2004). However, two thought experiments explain why 

this type of kin recognition is evolutionarily unstable. First, mutant cheats who carry the 

phenotypic cue, but not the associated behaviour or relatedness may evolve and spread 

through the population (Hamilton 1964). This is known as the green-beard effect, after 

Dawkins (1976) famously used the example of a green beard to illustrate how a gene or 

cluster of genes could recognise copies of itself in other carriers. Alternatively, assuming 

social interactions among kin are beneficial, individuals bearing the recognition alleles 

will gain higher reproductive success and eventually these alleles will become fixated 

(Crozier 1986). This is known as Crozier’s paradox (Rousset & Roze 2007). In both 
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scenarios, over time, the genetic cue or allele would no longer correlate reliably with 

kinship or the associated behaviour, rendering it useless for kin recognition (Gardner & 

West 2007). Empirical evidence of such alleles is scarce (Sherman 1997; Komdeur & 

Hatchwell 1999), although a greenbeard gene may have been identified in the slime 

mould, Dictyostelium discoideum (Queller et al. 2003). Greenbeard effects may be more 

common in micro-organisms, in which all aspects of the recognition system are 

orchestrated at the cellular level. Genetic kin recognition could be stabilised by extrinsic 

processes that maintain allelic diversity, such as an advantage of certain rare alleles 

(Rousset & Roze 2007) or a secondary function in alleles involved in kin recognition 

(Holman et al. 2013).  

  It is more likely that recognition templates are acquired through some degree 

of learning. In the literature, two perceptual processes have been described: associative 

learning and phenotype-matching. Associative learning is a mechanism by which 

recognition occurs through prior association (Sherman et al. 1997; Mateo 2004). 

Recognition cues are learned (Sharp et al. 2005) or imprinted (Bateson 1978) from 

parents, siblings or nest-mates (Hepper 1991) at a sensitive phase during development 

(Komdeur & Hatchwell 1999), and used to form a template with which to compare 

conspecific phenotypes later in life. Importantly, templates must be acquired at a time 

when all individuals present are likely to be kin. Kin recognition via associative learning 

allows individuals to recognise familiar kin only, and could lead to errors if non-kin are 

encountered during the learning phase, or if kin are not encountered until afterwards 

(Hatchwell et al. 2001b). The frequency of errors will depend on the overlap in 

phenotypic similarity between kin and non-kin (Reeve 1989). As long as there is a 

reliable correlation between genetic relatedness and association during the associative-

learning period, this is a reliable and accurate mechanism. 
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In phenotype-matching, recognition cues of familiar kin are also learned to form 

a template (Lacey & Sherman 1983). But, previously learned templates are generalised 

(Greenberg 1979; Holmes & Sherman 1982), so a period of previous association is not 

required for kin to recognise one another (Tang-Martinez 2001). Instead, a positive 

correlation between cue similarity and level of genetic relatedness is required (Mateo 

2004), so the recipients with phenotypes that most closely match the actor’s general 

template are its closest kin. Self-referent phenotype matching (Holmes & Sherman 

1982), or the armpit effect (Dawkins 1982) is an extension of phenotype matching, 

where individuals learn and use their own phenotype to form a template (Lacey & 

Sherman 1983). It is possible that individuals use a combination of their own and their 

familiar kin’s phenotype to form recognition templates (Mateo & Johnston 2000).  

The categorisation of perceptual kin recognition mechanisms has been widely 

criticised (e.g. Hepper 1991; Tang-Martinez 2001). Since the production and perception 

components of kin recognition evolve separately, as long as cues vary with relatedness, 

any of above processes can be used (Mateo 2004) and they are not necessarily mutually 

exclusive. Most research in this field has treated phenotype-matching and prior 

association as alternative processes (Holmes and Sherman 1983), but functionally, in 

terms of Hamilton’s (1964) rule, they provide the same outcome. Furthermore, both 

involve matching phenotypes to templates; the two mechanisms differ only in the 

specificity of the template employed (Reeve 1989). However, this makes teasing apart 

these mechanisms experimentally difficult, and many studies have suggested that both 

associative learning and phenotype-matching could work together to mediate kin 

recognition within a species or population (Greenberg 1979; Holmes & Sherman 1982; 

Komdeur & Hatchwell 1999).   
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1.3.4  The action component   

The degree of template-phenotype similarity required to initiate a particular behaviour 

depends on ecological and social factors, and the costs and benefits of kin discrimination 

(Sherman et al. 1997). The acceptance threshold model (Reeve 1989) demonstrates how 

recognition-mediated decision rules vary with recognition context to maximise inclusive 

fitness. Although evolutionarily stable acceptance thresholds should balance the 

probability of acceptance and rejection errors, selection should also favour the ability 

for thresholds to adjust depending on two recognition contexts: the frequency of 

interactions between actors and recipients, and the fitness consequences of accepting 

and rejecting recipients (Reeve 1989). When there is a limit to how many desirables can 

be accepted, the threshold should be restrictive. When the number of desirables is 

unlimited, the threshold should be permissive. Additionally, as the fitness costs of 

accepting undesirable recipients increase, the threshold should become more restrictive. 

Conversely, the threshold should become more permissive as the costs of rejecting 

desirable recipients increase. These recognition contexts depend on ecology, life-history 

and the behaviour performed (Reeve 1989).  

The first field data to support this model came from honey bees Apis mellifera 

(Downs & Ratnieks 2000). Honey bees often attempt to steal honey from other colonies, 

and guards recognise and exclude non-nest mates using odour cues (Greenberg 1979; 

Gamboa et al. 1986; 1996). Downs & Ratnieks (2000) found that when nectar 

availability was low, guards rejected the majority (75%) of non-nest mates and a 

considerable minority (20%) of nest mates. As nectar availability increased, guards 

became more permissive, until an accept-all strategy was adopted (Downs & Ratnieks 

2000). This shift in acceptance threshold can occur rapidly in response to a sudden 

increase in conspecific intruders (Couvillon et al. 2008).  
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1.4  Kin recognition in cooperatively breeding birds  

The factors driving cooperation have been well-studied in many cooperatively breeding 

birds, yet relatively few studies have explored how individuals in kin-selected systems 

recognise kin. Within studied species, there are gaps in our knowledge (Table 1.1).  

1.4.1 Kin recognition and helping behaviour  

Generally, associative learning has been identified as the most likely mechanism of kin 

recognition (Curry 1988; Hatchwell et al. 2001b; Komdeur 1994). Extended brood care 

at the nest provides an ideal period during which kin associate and reliable recognition 

templates can form. When extra-pair paternity (EPP) and brood parasitism is rare, 

association during the putative period accurately reflects kinship, and a simple rule such 

as feed anyone who was present in my nest, can be selected for (Komdeur & Hatchwell 

1999). Galápagos mockingbirds Nesomimus parvulus discriminate based on prior 

association, rather than kinship (Curry & Grant 1990).  In complex societies, a more 

precise rule, such as feed anyone that fed me as a nestling may be more reliable (Curry 

& Grant 1990; Komdeur 1994). In most cooperatively breeding birds, males are the 

predominant helping sex, but in the Seychelles warbler Acrocephalus sechellensis 

females are more likely to help than males, and choose to help at nests belonging to 

female breeders who fed them as nestlings, even if they are not the closest genetic 

relatives (Komdeur 1994; Richardson et al. 2003). This may be evolutionarily logical 

in species with high levels of EPP, such as Seychelles warblers, because helpers are 

often unrelated to the male that fed them (Richardson et al. 2003). Cross-fostering 

experiments confirm that female subordinates base their helping decisions on 

associative learning and it is unlikely that young can discriminate between their mother 

and any other female helper (Komdeur 2004).  
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Table 1.1.  Cooperatively breeding birds in which kin or group recognition mechanisms have been identified. 

Species Recognition 

Cue 

Origin Signature  Recognition 

Mechanism  

Experimental 

Method/Analysis 

Reference 

Bell Miner 

Manorina melanophrys 

Mew calls  Genetic  Individual-

specific  

Phenotype matching? Call similarity analysis   Wright et al. 2010; 

McDonald & Wright 2011 

Galápagos Mockingbird  

Nesomimus parvulus 

Unknown Unknown Unknown Associative Learning  Observed patterns of 

helping  

Curry 1988 

Chestnut-crowned babbler 

Pomatostomus rifuceps 

Long-distance 

contact calls 

Unknown Individual-

specific 

Unknown Call similarity analysis   Crane et al. 2014 

Green Woodhoopoe 

Phoeniculus purpureus 

Rally calls Unknown Group-specific  Unknown Call similarity analysis   Radford 2005 

Long-tailed tit  

Aegithalos caudatus 

Churr and 

Triple calls 

Learned  Family-specific Associative learning or 

phenotype-matching? 

Call similarity analysis, 

playback experiments, 

cross-fostering.   

Hatchwell et al. 2001b; 

Sharp et al. 2005; Sharp & 

Hatchwell 2005; 2006.  

Mexican jay 

Aphelocoma wollweberi 

Primary call Unknown Group-specific Unknown Playback experiments Hopp et al. 2001 

Seychelles Warbler 

Acrocephalus sechellensis 

Unknown Unknown  Unknown  Associative Learning Cross-fostering  Komdeur 1994; 2004; 

Richardson 2003 

Splendid Fairy-wren  

Malurus splendens 

Unknown Unknown Unknown  Associative Learning  Playback experiments Payne et al. 1988; 

 

Stripe-backed Wren 

Campylorhynchus nuchalis  

WAY calls  Learned Family-specific Unknown Playback experiments Price 1998; 1999 

Superb Starling 

Lamprotornis superbus 

Flight calls Unknown Group-specific  Unknown Call similarity analysis, 

playback experiments   

Keen et al. 2013 

Western Bluebird  

Sialia mexicana 

Pew song 

notes  

Unknown Group-specific Unknown Playback experiments Açkay et al. 2013; 2014  
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Although associative learning is common, it may not be the only mechanism. 

Learned individual recognition may be possible in small groups, but in large, complex 

groups, individuals may not have the cognitive ability to learn individual phenotypes. 

In this context, phenotype matching of generic templates or a combination of both 

mechanisms may be more likely (Komdeur & Hatchwell 1999). Phenotype matching 

using olfactory cues is common in social mammals (Boyse 1991) and acoustic 

phenotype matching has been found in rhesus macaques Macaca mulatta (Pfefferle et 

al. 2013). As yet, there is no conclusive evidence of acoustic phenotype matching in 

birds (Pfefferle et al. 2013).  

Playback experiments have demonstrated vocal kin discrimination in several 

species (Payne et al., 1988; Price, 1998; 1999; Hatchwell et al., 2001), yet very little is 

known about how vocalisations develop. A study by Sharp et al. (2005) demonstrated 

that the churr calls of long-tailed tits Aegithalos caudatus, known to be involved in kin 

recognition, were learned during development (Sharp et al. 2005). In contrast, stripe-

backed wrens Campylorhynchus nuchalis produced and recognised the WAY calls of 

their genetic fathers, even when they were from different groups, suggesting a genetic 

component (Price 1998; 1999).  

Kin recognition in cooperative breeders has generally been thought of as 

threshold-based, where helpers decide whether and whom to help based on perceived 

kinship (Curry 1988; Komdeur 1994; Dickinson et al. 1996). In a few species however, 

helpers have been shown to modify provisioning effort according to degree of 

relatedness to the recipient brood (Nam et al. 2010; Wright et al. 2010). For example, 

Nam et al. (2010) found a strong effect of genetic relatedness on helper provisioning 

rates in long-tailed tits, suggesting a more sophisticated mechanism of kin recognition 
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than associative learning of family-specific cues. If individuals are able to use a call 

similarity gradient to adjust helping behaviour according to relatedness, call similarity 

would be expected to positively correlate with: (i) genetic relatedness, and (ii) 

provisioning effort. So far, this has been investigated in only one species, the bell miner 

Manorina melanophrys (McDonald & Wright 2011). Bell miners show fine-scale 

facultative adjustment of effort according to brood kinship (Wright et al. 2010), 

putatively assessed using individual-specific mew calls (McDonald & Wright 2011). 

However, whether the relationship is correlative or threshold-based is unclear.  

1.4.2 Kin recognition and inbreeding avoidance 

There are very few studies on how kin recognition operates in the context of mate 

choice. However, it is extremely likely that kin recognition is important for inbreeding 

avoidance in cooperative populations that exhibit kin-structure (Bateson 1983). In such 

social systems, where the risk of inbreeding could be particularly high (Koenig & 

Haydock 2004), an already active kin recognition mechanism may be co-opted for 

inbreeding avoidance. A recent study on western bluebirds Sialia mexicana was the first 

to demonstrate active avoidance of kin during mate choice in a cooperatively breeding 

bird (Dickinson et al. 2016). Playback experiments have previously identified 

vocalisations as putative cues to kinship in this species (Akçay et al. 2013), but precisely 

how relatives recognise kin through vocalisations is unclear (Akçay et al. 2014), and 

whether vocal similarity influences mate choice remains to be tested.  

Kin recognition mechanisms for inbreeding avoidance in non-cooperatively 

breeding birds have focused on odour cues (Coffin et al. 2011). Storm petrels 

Hydrobates pelagicus appear to prefer non-kin odours (Bonadonna & Sanz-Aguilar 

2012). Odour has also been suggested as a recognition cue in zebra finches Taenopygia 
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guttata (Caspers et al. 2013), although the evidence is inconclusive (Ihle & Forstmeier 

2013). A recent study found that similarity in preen secretion chemicals in black-legged 

kittiwakes Rissa tridactyla is positively correlated with MHC relatedness (Leclaire et 

al. 2014), but although statistically significant, the relationship is weak. As vocal cues 

appear to be used in cooperative contexts, it is reasonable to assume the same cues may 

be used in mate choice. One study has shown that breeding splendid fairy-wren females 

Malurus splendens respond more intensely to songs of male helpers from other groups 

than to those in their own group (Payne et al. 1988).  

Generally, kin recognition for inbreeding avoidance is thought to involve 

phenotype-matching (Pusey & Wolf 1996). If this relied on associative learning, there 

may be acceptance errors because of a lack of prior association early in life (Sherman et 

al. 1997), so associative learning may not be reliable enough. On the other hand, if 

unfamiliar individuals are consistently sufficiently unrelated then associative learning 

of kin may be a suitable inbreeding avoidance mechanism, and empirical evidence to 

support phenotype-matching as a recognition mechanism in cooperatively breeding 

birds is lacking (Komdeur & Hatchwell 1999).  

1.4.3 Kin recognition and population structure   

Reeve’s (1989) acceptance threshold model predicts that the accuracy of kin recognition 

should depend on the fitness consequences of accepting and rejecting recipients, and the 

frequency with which desirable and undesirable recipients are encountered. Previous 

studies have shown that extent of kin discrimination is positively associated with the 

risk of helping non-kin (Cornwallis et al. 2009) and the benefits of helping, predicted 

by inclusive fitness theory (Griffin & West 2003; Hatchwell et al. 2014). However, there 

have been no equivalent studies in the context of inbreeding depression, even though 
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the rate at which relatives and non-relatives associate is also crucial for predicting the 

strength of kin discrimination. In some species, individuals predominantly interact with 

kin as a by-product of spatial distribution. In others, individuals interact with kin and 

non-kin, and need to seek out or side-step kin based on one or more of the mechanisms 

discussed above. This depends on population genetic structure, governed by life-history 

and dispersal patterns, and varies across cooperatively breeding species.  

 Most populations of cooperative breeders exhibit strong kin structure, because 

helpers are usually retained offspring (Ekman et al. 2004). Cooperation therefore occurs 

most often within discrete family units with predictably high relatedness between 

interacting individuals. In such species, permissive kin recognition thresholds may be 

adequate (Komdeur & Hatchwell 1999). In a small number of cooperatively breeding 

birds, individuals associate with kin of variable relatedness across extended networks 

known as kin neighbourhoods (Dickinson & Hatchwell 2004). In such species, more 

sophisticated kin recognition mechanisms may be advantageous. In a meta-analysis 

across multiple cooperatively breeding species, Cornwallis et al. (2009) showed that kin 

discrimination was indeed greater in species in which group relatedness was low on 

average but highly variable. How this variation in relatedness influences inbreeding risk, 

and the predicted strength of kin discrimination during mate choice, remains relatively 

unstudied.  

Differences in kin discrimination across animal groups can make generalisations 

difficult, but the variation from sophisticated recognition mechanisms through to 

indiscriminate helping is unsurprising, given the diversity of cooperative breeding 

systems. Understanding how demography, life-history and social mating system interact 

to create selection pressure for kin discrimination within species allows predictions to 

be made for the evolution of kin recognition systems across species.  
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1.5 The long-tailed tit, Aegithalos caudatus 

The long-tailed tit is a small (13-16cm, 7-8g) passerine from the family Aegithalidae, 

which includes 12 other species, most of which are found in Eurasia (the exceptions are 

the bushtit of North America Psaltriparus minimus and the pygmy tit Psaltria exilis of 

Java). Long-tailed tits are sexually monomorphic, primarily insectivorous birds with a 

broad distribution stretching from Europe to Japan and from the Middle East to Siberia 

(Hatchwell 2016). Long-tailed tits are common in the United Kingdom, and spend the 

non-breeding season (June-March) roosting and foraging in fluid flocks of around 10-

20 birds, typically comprising males and females of varying ages and kinship 

(McGowan et al. 2007; Napper & Hatchwell 2016). In early spring, flocks start to break 

up in to monogamous pairs, all of which attempt to breed independently within 

overlapping ranges. The male and female build a nest together, usually 2-3m above 

ground in thorny bushes such as gorse Ulex europaeus or bramble Rubus fruticosus. 

Each nest is an elaborate dome of moss and plant fibres bound with spider’s silk, covered 

with lichen flakes and lined with up to 2,500 feathers (Hatchwell 2016). In late March 

or early April, a clutch of 9-11 eggs is laid and incubated by the females for 

approximately 15 days (Hatchwell et al. 1999). Eggs are laid daily, but females start 

incubating only when the clutch is complete, so nestlings hatch synchronously and are 

provisioned by both parents for 16-17 days; fledglings are then fed for a further two or 

three weeks (Cramp & Perrins 1993).  

Nest success rates are low, 72% fail due to corvid or mustelid predation 

(Beckerman et al. 2011). If nest failure occurs early in the breeding season, failed 

breeders attempt to breed again, otherwise individuals abandon breeding and some 

become helpers at the nest of another pair, assisting in the provisioning of nestlings and 
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fledglings. Due to the high nest predation rate, around 50% of successful nests receive 

help, usually by one or two helpers (Hatchwell et al. 2004). Helping is costly, but the 

additional care provided by helpers increases fledgling survival and allows breeders to 

reduce their reproductive costs, improving their probability of breeding in the future 

(Meade et al. 2010; Hatchwell et al. 2014).  Helpers do not gain direct fitness benefits 

(Meade & Hatchwell 2010), but they do accrue indirect fitness by choosing to help at a 

nest belonging to a close relative (Russell & Hatchwell 2001) and these indirect fitness 

benefits outweigh the cost of helping (Hatchwell et al. 2014). Long-tailed tits live in kin 

neighbourhoods (Dickinson & Hatchwell 2004). Dispersal of both sexes is limited, and 

siblings tend to disperse together (Sharp et al. 2008a; 2008b) so kin are often spatially 

clustered when breeding. However, non-kin and kin of varying relatedness breed in 

close proximity and helpers show strong kin discrimination in their cooperative 

behaviour (Russell & Hatchwell 2001), recognising kin using learned vocalisations 

(Sharp et al. 2005).  

Long-tailed tits are an excellent model species to study the kin discrimination 

rules involved in helping and pairing behaviour. Their cooperative breeding system, 

ecology and life-history has been studied extensively (Hatchwell 2016) and kin 

recognition, in particular, is perhaps better studied in long-tailed tits than in any other 

cooperative breeder. Secondly, as long-tailed tits are facultative cooperative breeders, 

individuals make an active choice on whether and who to help (Russell & Hatchwell 

2001), and helpers fine-tune their provisioning effort according to the degree of 

relatedness to the recipient brood (Nam et al. 2010). The natal dispersal distances of 

males and females overlap (Sharp et al. 2008a; b) so they run the risk of mating with 

opposite-sex relatives. It is reasonable to assume that the recognition cues identified for 

helping behaviour may be used in mate choice as well, in order to avoid inbreeding.   
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1.6  Thesis aims and outline 

The main objectives of this study were to: (i) determine the strength of kin 

discrimination in long-tailed tits, both in the context of helping behaviour and 

inbreeding avoidance; and (ii) identity the proximate mechanisms that permit 

sophisticated kin discrimination in both these contexts.   

In this thesis, I first describe the fine-scale genetic structure within long-tailed 

breeding populations, and investigate how observed patterns of kin-biased helping 

compare to those expected randomly, based on the distribution of relatives. This allows 

me to quantify how effectively long-tailed tits discriminate in favour of kin when 

making helping decisions (Chapter 2). I then investigate whether this population 

structure generates an inbreeding risk, whether inbreeding is costly in long-tailed tits, 

and whether breeders are able to actively avoid kin during mate choice. These findings 

are used to identify a putative discrimination rule for incest avoidance (Chapter 3). In 

Chapter 4, I develop a comprehensive and accurate method of assessing vocal similarity 

among long-tailed tits, using various bioacoustic tools, and investigate which acoustic 

parameters may be particularly important for kin recognition. In Chapter 5, I examine 

whether an assessment of vocal similarity may be used to adjust helper effort according 

to precise relatedness and avoid mating with relatives, by (i) correlating vocal similarity 

with relatedness, and (ii) exploring whether vocal similarity influences helping and 

pairing decisions. Finally, I summarise the results and assess whether the same 

recognition mechanism may be co-opted for both indirect fitness and inbreeding 

avoidance in long-tailed tits, and suggest directions for future work (Chapter 6). 
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Chapter 2 

Fine-scale genetic structure and helping decisions in 

long-tailed tit societies  

This chapter is published as:  

Leedale A. E., Sharp S. P., Simeoni M., Robinson E. J. H & Hatchwell B. J. (2018). 

Fine-scale genetic structure and helping decisions in a cooperatively breeding bird. 

Molecular Ecology, 27, 1714-1726.  

Summary 

In animal societies, characteristic demographic and dispersal patterns may lead to 

genetic structuring of populations, generating the potential for kin selection to operate. 

However, even in genetically structured populations, social interactions may still 

require kin discrimination for cooperative behaviour to be directed towards relatives. 

Here, we use molecular genetics and long-term field data to investigate genetic 

structure in an adult population of long-tailed tits Aegithalos caudatus, a cooperative 

breeder in which helping occurs within extended kin networks, and relate this to 

patterns of helping with respect to kinship. Spatial autocorrelation analyses reveal 

fine-scale genetic structure within our population, such that related adults of either sex 

are spatially clustered following natal dispersal, with relatedness among nearby males 

higher than that among nearby females, as predicted by observations of male-biased 

philopatry. This kin structure creates opportunities for failed breeders to gain indirect 

fitness benefits via redirected helping, but crucially, most close neighbours of failed 

breeders are unrelated and help is directed towards relatives more often than expected 

by indiscriminate helping. These findings are consistent with the effective kin 

discrimination mechanism known to exist in long-tailed tits, and support models 

identifying kin selection as the driver of cooperation. 
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2.1  Introduction 

The genetic structure of populations, that is the frequency and distribution of 

genotypes in space, is a key biological feature that influences diverse behavioural and 

evolutionary phenomena. Genetic structuring occurs when gene flow is limited, 

resulting in an increase in genetic differentiation with geographical distance, or 

isolation-by-distance (Wright 1943). Gene flow can be restricted by physical barriers 

(Frantz et al. 2010) or ecological traits (Edelaar et al. 2012), such as species’ dispersal 

capacity (Watts et al. 2004) and migration patterns (Rolshausen et al. 2013). At large 

spatial scales, genetic structure can lead to local adaptation and speciation (Winker et 

al. 2013), while at finer scales, behavioural traits such as territoriality (Lee et al. 2010) 

or natal philopatry (Woxvold et al. 2006) can lead to the spatial clustering of relatives, 

or kin structure, within populations. This can have important implications for 

inbreeding (Keller & Waller 2002) and the evolution of sociality (Hamilton 1964; 

Bourke 2011).  

The nature of genetic structuring in wild populations can reveal much about a 

species’ ecology and the strength of selection for phenotypic traits. For instance, since 

flight increases dispersal capacity, gene flow in avian populations is generally 

assumed to be high, and genetic structure is expected to be observed at large spatial 

scales (van Treuran et al. 1999; Crochet 2000). However, in cooperatively breeding 

birds, dispersal patterns characteristic of social living can lead to fine-scale genetic 

structure, observed at the level of social groups or across territories (Emlen 1997; van 

Dijk et al. 2015). Studies combining molecular and field data can reveal how 

behavioural and demographic traits shape genetic structure, and predict the 

evolutionary consequences of such spatial-genetic distributions.   
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Animal societies characteristically exhibit a degree of genetic structure that 

can provide substantial fitness benefits to individual group members (Cornwallis et al. 

2009; Hatchwell 2010). In cooperatively breeding animals, limited natal dispersal 

leads to the spatial clustering of relatives (Ekman et al. 2004; Heg et al. 2004; Clutton-

Brock & Lukas 2012; Rubenstein & Abbott 2017). This genetic structure facilitates 

kin selection (Hamilton 1964) because to gain indirect fitness benefits from 

cooperation, relatedness between the donor and recipient of aid must be higher, on 

average, than between randomly selected individuals within the population (Queller 

1994). Essentially, kin-selected helping can evolve only when individuals have the 

opportunity to interact with kin, so population viscosity is regarded as a necessary 

precursor to the evolution of kin-selected cooperative breeding (Dickinson & 

Hatchwell 2004; West et al. 2007b). As well as alloparental care, there are other 

contexts in which long-term kin associations may be beneficial, such as communal 

investment in public goods (van Dijk et al. 2014) or predator defence (Griesser & 

Ekman 2005).  

On the other hand, increased levels of relatedness among neighbouring 

individuals can also incur fitness costs through kin competition for mates or resources 

(Taylor 1992; West et al. 2002), and an increased likelihood of incestuous matings 

(Koenig & Haydock 1994). The risk of inbreeding and subsequent inbreeding 

depression (Keller & Waller 2002) may be alleviated through sex-biased dispersal 

(Pusey & Wolf 1996), and in many cooperative species, philopatry by breeders is 

biased strongly towards one sex (Greenwood 1980; Walters et al. 2004; Double et al. 

2005). However, in the absence of effective spatial separation, recognition 

mechanisms that permit accurate kin discrimination may be necessary to mitigate the 

costs associated with long-term interactions with relatives, as well as to maximise 
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inclusive fitness benefits via cooperation (Komdeur & Hatchwell 1999). The extent of 

kin discrimination expected in cooperative societies depends on the benefits of 

accurate kin recognition, and the costs of recognition errors, which both depend 

heavily on the genetic structure of the breeding population (Griffin & West 2003; 

Cornwallis et al. 2009).  Note that we follow Sherman et al. (1997) in using kin 

discrimination to refer to the differential treatment of conspecifics differing in genetic 

relatedness, and kin recognition to describe any mechanism by which this is effected. 

In most avian cooperative breeders, individuals within a population are 

organised into discrete groups, in which relatedness among members is generally high 

and predictable (Cornwallis et al. 2009). Studies of the fine-scale genetic structure of 

cooperative species has therefore tended to focus on gene flow between such groups, 

rather than on dyadic genetic differentiation at broader spatial scales or across the 

population as a whole. However, for a small number of cooperative breeders, such as 

western bluebirds Sialia mexicana (Dickinson et al. 1996) and riflemen Acanthisitta 

chloris (Preston et al. 2013), cooperative social interactions extend beyond discrete 

nuclear or extended family units to less defined, connected networks of relatives, 

known as kin neighbourhoods (Dickinson & Hatchwell 2004). In such cases, the 

relatedness between socially interacting individuals is much more variable and 

relatively low overall (Cornwallis et al. 2009). The underlying genetic structure 

resulting from this complex social pattern remains largely unexplored, having been 

measured only in the bell miner Manorina melanophrys (Painter et al. 2000) and 

sociable weaver Philetairus socius (Covas et al. 2006).  

Here, we describe the previously undefined population genetic structure 

underlying the social organisation of long-tailed tits Aegithalos caudatus and 
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investigate how this relates to the opportunities and patterns of helping with respect to 

kinship. By quantifying the distribution of genetically similar individuals within 

populations, we can gain a deeper understanding of the opportunity for kin selection 

to operate in this species, and provide insights into the level of kin discrimination 

required for helpers to maximise inclusive fitness.  

Long-tailed tits are facultative cooperative breeders, but unlike most 

cooperative species, adult offspring do not delay natal dispersal or breeding to help 

their parents to raise young (Hatchwell 2016). Instead, all adults disperse during their 

first winter and attempt to breed independently the following spring, and may decide 

to help at a relative’s nest only if their own reproductive attempts fail (Russell & 

Hatchwell 2001). Local recruitment is male-biased, yet natal dispersal distances of 

both sexes are short (Sharp et al. 2008a) and siblings often disperse together (Sharp et 

al. 2008b). Long-tailed tits also exhibit strong kin associations during winter, which 

are reflected in their helping decisions the following spring (Napper & Hatchwell 

2016). Another aspect of the long-tailed tit’s life history that strengthens genetic 

structure is the pattern of offspring mortality that results in a small effective population 

size (Lehmann & Balloux 2007). High nest predation rates cause frequent removal of 

whole broods at the nestling stage, and in the following year result in high recruitment 

rates of close kin from the small proportion of successful nests (Beckerman et al. 

2011). Together, these demographic and life-history patterns permit the characteristic 

flexibility in reproductive strategy from independent breeding to helping within an 

individual’s lifetime. Around 40% of nests are helped, usually by one or two helpers, 

and helpers gain indirect fitness benefits by increasing the productivity of helped 

broods (Hatchwell et al. 2004; MacColl & Hatchwell 2004). In contrast, no significant 

direct fitness benefits of helping have been identified (McGowan et al. 2003; Meade 
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& Hatchwell 2010). Helpers are overwhelmingly male (Sharp et al. 2011) and move 

away from their last failed breeding attempt to redirect care (Hatchwell 2016), often 

skipping the nearest available nest in search of one belonging to a relative (Russell & 

Hatchwell 2001). Furthermore, helpers adjust their effort according to kinship, 

provisioning more closely related broods at higher rates (Nam et al. 2010). These 

patterns suggest that kin-biased helping is not solely a result of kin structure, but 

involves active discrimination among individuals. In the absence of reliable spatial 

cues to kinship, helpers use vocal cues learned during early development to recognise 

and preferentially aid close relatives (Hatchwell et al. 2001b; Sharp et al. 2005). 

However, the precise relationship between dispersal patterns, genetic structure and 

helping decisions remains unclear.  

Using detailed observational and pedigree data, combined with molecular 

genetics, we first define the genetic structure among long-tailed tit breeders and relate 

this to the known patterns of dispersal for this species. We examine spatial genetic 

clustering both within and between sexes to determine whether this reflects female-

biased dispersal and male-biased local recruitment. To assess how population structure 

impacts social behaviour, we also examine the distribution of close, distant and non-

kin through the population to quantify the helping opportunities available to failed 

breeders in relation to distance. Finally, we compare the expected probability of 

helping kin based on population genetic structure with the observed patterns of helping 

to test whether kin-biased helping in long-tailed tits can be explained by this newly 

described genetic structure, or whether it is a result of active kin discrimination. We 

calculate kinship using both genetic data and a social pedigree. The measures differ 

because the population is open, so the social pedigree is inevitably incomplete. 

However, both measures are informative because although the fitness consequences 
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of helping depend on genetic relatedness, social relatedness is the only information 

available to birds when making decisions, by way of socially learned recognition cues 

(Sharp et al. 2005).  

 

2.2  Methods 

2.2.1  Study area and field methods  

A population of 17-72 (mean c.50) pairs of long-tailed tits was studied during the 

breeding season (February-June) between 1994 and 2016 in the Rivelin Valley, 

Sheffield, UK (53º38’N 1º56W). The site is approximately 2.5km2 and comprises a 

variety of suitable breeding habitat; predominantly deciduous woodland (mature oak 

Quercus robur, European beech Fagus sylvatica, sycamore Acer pseudoplatanus, 

silver birch Betula pendula) and scrub (holly Ilex aquifolium, gorse Ulex europaeus, 

bramble Rubus fruticosus and hawthorn Crataegus spp). This is an open population, 

with approximately 40% of breeders hatched in the study site (A. E. Leedale & B. J. 

Hatchwell, unpublished data). The remaining adults are assumed to be first year 

breeders that emigrated from outside the study site, based on the observation that 

individuals have high site fidelity following their first breeding year (McGowan et al. 

2003). Almost all individuals (>95%) were marked with a metal BTO ring and a 

unique combination of two plastic colour rings for field identification. Native birds 

were ringed as 11-day old nestlings and immigrant adults were captured in mist nests 

under BTO licence before or during breeding. When ringed, a sample of 5-30µl of 

blood was taken by brachial venepuncture under Home Office licence. All breeding 

attempts were closely monitored and GPS coordinates were taken for each nest (n = 
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1461); a Cartesian coordinate system (UTM) was used to describe geographic distance 

between nests.  

2.2.2  Molecular analyses 

Molecular markers were used to estimate genetic relatedness between individuals and 

define population genetic structure. Genomic DNA was extracted from blood samples 

and amplified. All sampled individuals were sexed using the P2-P8 sex-typing primers 

(Griffiths et al. 1998). Individuals ringed between 1994 and 2006 were genotyped at 

eight microsatellite loci (Ase18; Ase37; Ase64; Hru2; Hru6; Pca3, PmaD22, Ppi2). 

Thereafter, individuals were genotyped at an additional nine loci (CAM01; CAM03; 

CAM15; CAM23; Tgu_01.040; Tgu_04.012; Tgu_05.053; Tgu_13.017; Pca4). For 

further details on genotyping procedures, see Simeoni et al. (2007) and Adams et al. 

(2015). The population allele frequencies used in all analyses were generated using all 

genotyped individuals (1994-2016, n = 3182) in CERVUS version 3.0.7 (Kalinowski 

et al. 2007), to maximise accuracy in estimating the frequency of rare alleles and to 

ensure non-zero frequencies for all alleles in the dataset. The genetic relatedness 

between pairs of individuals was estimated using Queller and Goodnight’s (1989) rQG 

coefficient of relatedness in SPAGeDi version 1.1.5 (Hardy & Vekemans 2002). This 

relatedness estimate has been found to be reliable when tested against our social 

pedigree (Nam et al. 2010). 

2.2.3  Social pedigree 

The social pedigree was created using 22 years of field observations as described 

above (n = 2815 birds). For further details on pedigree construction see Appendix 1. 

To calculate pairwise social relationships (r), an additive relationship matrix was 

generated from the pedigree in R version 3.3.2 (R Core Team 2016) using the R 
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package nadiv (Wolak 2012). Six breeding birds in our study population (0.2%) were 

from cross-fostered broods in 1996-1998, but given that birds raised together treat 

each other as kin (Hatchwell et al. 2001b; Sharp et al. 2005), we include them in the 

social pedigree. Similarly, while there is a low rate of extra-pair paternity in long-

tailed tits (Hatchwell et al. 2002), we have not corrected for it in the pedigree.  

2.2.4  Spatial analysis of genetic relatedness 

To describe the overall genetic structure of our breeding population (n = 1022), we 

use Weir and Cockerham’s (1984) inbreeding coefficient, FIS, and the microsatellite 

allele size-based genetic differentiation estimate, RIS (Slatkin 1995), as calculated in 

SPAGeDi, following the recommendation by Balloux & Lugon-Moulin (2002). To 

calculate the approximate standard error of genetic relatedness and differentiation 

estimates, multilocus estimates were jack-knifed over loci and alleles permuted among 

individuals 20,000 times. 

To assess fine-scale genetic structure within our population, we performed 

spatial autocorrelation analyses of relatedness (rQG) as a function of geographic 

distance: (i) among all individuals, (ii) among males, (iii) among females, and (iv) 

between males and females. The distance between breeding birds was based on the 

locations of their first nests in a given year. We compared the observed rQG values 

within defined distance bands with the corresponding frequency distributions of rQG 

when random permutations of the data were performed. The median natal dispersal 

distance within our study site was 393m for males and 522m for females, and the 

median distance travelled by established breeders between years was 312m (A. E. 

Leedale & B. J. Hatchwell, unpublished data). We therefore set distance intervals of 

300m as a scale on which to examine population structure, from pairwise comparisons 
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of individuals at the same nest (0m), to those 2100m away; with a final distance band 

(>2100m) containing pairwise comparisons of individuals from the most distant nests 

(mean ± SD distance between birds = 1033m ± 596; maximum distance = 3195m). 

These bands generated enough variation in dyadic genetic relatedness, while 

maintaining a large enough sample size at each distance interval to ensure meaningful 

analyses. Long-tailed tits are relatively short-lived, so the genetic structure of the 

population may fluctuate over time due to demographic processes such as dispersal, 

mortality and recruitment (Balloux & Lugon-Moulin 2002; Hatchwell et al. 2013). 

Therefore, although all genetic and spatial analyses were performed on the long-term 

dataset, these were restricted to within-year comparisons among individuals.  

Spatial autocorrelation among all individuals, among males and among 

females were analysed separately using SPAGeDi. Individual locations were permuted 

20,000 times for tests on each distance band and all tests were two-tailed. SPAGeDi 

cannot be used to perform spatial autocorrelation analyses both within-years and 

between opposite-sex pairs of individuals only, so to analyse male-female genetic 

structure, an equivalent randomisation procedure was conducted using R. Mean 

observed rQG estimates were calculated for each defined distance band. The observed 

rQG values within each band were replaced with an equal-sized sample of rQG values 

selected at random across all distance bands. From these values, the mean null rQG was 

calculated, and permuted 20,000 times to simulate the random frequency distribution. 

In all analyses, the observed rQG in each distance band was considered statistically 

significant if the mean fell outside the 95% confidence interval of the random 

distribution.  
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The genetic structure of males and females was compared using mixed effects 

models (GLMM). The typical natal dispersal distance was <400m for philopatric male 

recruits, and <600m for female recruits (Sharp et al. 2008a; see above), and neither 

sex exhibited significant kin structure beyond 600m (see Results). Therefore, we 

compared relatedness among males with that observed among females within two 

distance bands (0-300m and 300-600m) only. For each distance band, rQG values were 

modelled with sex fitted as a fixed effect and the IDs of both birds fitted as random 

effects.   

2.2.5  Helping decisions 

The range within which failed breeders search for helping opportunities is likely to 

interact with population genetic structure to affect the probability of helping kin. Using 

both genetic data (n = 1022) and the social pedigree (n = 866), we calculated the 

frequency of first order kin (pedigree r ≥ 0.5; relatedness coefficient rQG > 0.25), 

second order kin (0.5 > r ≥ 0.25; 0.25 ≥ rQG ≥ 0.125) and non-kin (r < 0.25; rQG < 0.125) 

in the breeding population (Appendix 2). Only relationships between breeders that 

were present in the same year were considered. Helping distance was calculated as the 

distance between helpers’ last failed breeding attempt in a given year and the nest at 

which they first appeared as a helper the same year. Distance between nests was 

measured in UTM coordinates and was calculated in the R package, raster version 

2.5-8 (Hijmans 2016). 

To assess the impact of kin structure on helping behaviour, we quantified the 

proportion of cases in which help was given to broods belonging to at least one first 

order kin, at least one second order kin, or two unrelated breeders over the three 

distance bands in which helping is likely to occur: 0-300m, 300-600m and 600-900m. 
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We used Pearson’s Chi-squared tests to determine whether the proportion of helpers 

assisting kin was affected by distance, and whether the proportion of helpers assisting 

kin differed between males and females. We also calculated the probability that 

helpers would provide care to broods belonging to kin if they helped a random brood 

within 0-300m, 300-600m and 600-900m. For each helping event, a nest was selected 

at random from the pool of nests the focal helper could have chosen. This pool 

contained all nests present in the year the helping event occurred within the same 

distance band as the chosen nest. The proportion of cases in which help was given to 

nests belonging to at least one first order kin, at least one second order kin or two 

unrelated breeders was calculated based on this random sample. The procedure was 

repeated 10,000 times to generate a distribution of expected proportions for each 

distance band if nests were selected randomly with respect to kinship.  

To determine the effect of distance and helper sex on the probability of helping 

kin, we carried out Pearson’s Chi-squared tests using the mean of the randomly 

generated proportions. Finally, we compared the expected probability of helping at a 

nest belonging to a relative to the observed proportion of birds helping kin. The 

observed proportion of helped nests within each distance band in which the helper was 

a first order, second order or non-relative was considered statistically significant if it 

fell outside the 95% confidence interval of the randomly generated distribution. This 

allowed us to determine whether kin structuring alone could explain observed patterns 

of helping behaviour, and if not, the degree of discrimination required to direct care 

towards kin. All analyses were carried out on all helpers and separately by sex, using 

both genetic data and the social pedigree. 
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2.3  Results 

Breeding adults were genotyped at 8 (n = 525) or 17 (n = 497) polymorphic 

microsatellite loci (multilocus averages used, mean number of alleles per locus = 15, 

effective alleles = 7.09 (Nielsen et al. 2003), allelic richness = 6.88, gene diversity 

corrected for sample size = 0.761 and individual inbreeding coefficient Fi = 0.007). In 

total, 264 alleles were detected (for the distribution of alleles among loci, see 

Appendix 3, Table A3.1). The average genetic variation among breeders was not 

significantly different from random, based on the population inbreeding coefficient 

(FIS = -0.002 ± 0.004, p = 0.67) and microsatellite-specific genetic differentiation 

estimate (RIS = -0.014 ± 0.027, p = 0.36), indicating no significant inbreeding or 

outbreeding in our study population.    

2.3.1  Spatial analysis of genetic relatedness 

Mean ± SE population-level relatedness was 0.011 ± 0.003 among all birds (1719 

observations of 1022 birds, 73069 within-year comparisons), 0.012 ± 0.004 among 

males (909 observation of 529 males, 20279 comparisons), 0.012 ± 0.005 among 

females (810 observation of 493 females, 16041 comparisons) and 0.009 between 

males and females (1719 observations of 1022 birds, 36749 comparisons). The 

standard error of relatedness estimates was not quantifiable for male-female genetic 

structure across years (see Methods), but for within-year estimates of mean relatedness 

between males and females with standard errors from jack-knifing over loci see 

Appendix 4, Table A4.1.  

Spatial analyses revealed fine-scale genetic structure within our breeding 

population, with nearby individuals being the most genetically similar (Fig. 2.1). 

Pairwise relatedness among all individuals was higher than expected (based on 



47 

 

permuted pairwise relatedness) within a radius of 300m and between 300m and 600m 

(both p < 0.001, Fig. 2.1a). Within each sex, relatedness was higher than expected 

within 300m and 300-600m for males (both p < 0.001, Fig. 2.1b) and females (both p 

< 0.001, Fig. 2.1c). Although slightly lower than the within-sex comparisons, dyadic 

relatedness between males and females was also significantly higher than expected by 

chance within a 300m and 300-600m (both p < 0.001, Fig. 2.1d). Within-year 

comparisons between males and females exhibit a similar spatial pattern (Appendix 4, 

Fig. A4.1). The distance at which kin structure breaks down in all comparisons is 

beyond 600m (Fig. 2.1). Within this distance, relatedness among males was 

significantly higher than relatedness among females at 0-300m (GLMM: F = 20.63, 

df = 1,780, p < 0.001), but not 300-600m (GLMM: F = 2.29, df = 1,888, p = 0.13).  

2.3.2  Helping decisions  

The median distance travelled by failed breeders to help another breeding pair was 

263m for males (n = 164) and 346m for females (n = 37), with most helpers travelling 

within the 0-300m and 300-600m distance bands (Fig. 2.2). Using genetic estimates 

of relatedness, rQG, mean ± SD relatedness of all helpers to recipient breeding pairs 

was 0.14 ± 0.16 (95% CI = -0.10-0.36). In the majority of cases (n = 181), helpers 

assisted at least one first or second order relative (r = 0.5, 56.9%; r = 0.25, 13.3%), 

but a substantial minority of helpers were unrelated to the recipients (r = 0, 29.8%). 

Estimated helper-recipient relatedness was lower using the social pedigree, although 

a majority of helped nests were again helped by at least one first or second order 

relative (r = 0.5, 39.4%; r = 0.25, 14.2%; r = 0, 46.5%; n = 150 cases).  
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Figure 2.1. Mean pairwise relatedness (rQG) in a long-tailed tit population over eight 

bands of distance between dyads: (a) among all individuals, (b) among males, (c) 

among females, (d) between males and females. Dashed lines indicate the simulated 

null mean rQG and 95% CI in an unstructured population. Error bars approximate SE 

estimates from jackknifing over loci. Numbers above the x axis represent the number 

of pairwise comparisons. *p < 0.05, **p < 0.01, *** p < 0.001. 
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Figure 2.2. Frequency distribution and median (+IQR) helping ranges of (a) male (n 

= 164) and (b) female (n = 37) long-tailed tit helpers, calculated as the distance 

between an individual’s first helped nest and their last reproductive attempt that year. 
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Overall, we found little effect of the distance travelled by helpers on their 

probability of helping kin. Using genetic estimates of relatedness, helpers were 

marginally less likely to help relatives when travelling between 300-600m (χ2 = 10.24, 

df = 4, p < 0.05, n = 177) compared to the shorter and longer distance bands (Fig. 2.3a, 

Table 2.1). However, this effect was not significant when considering only male 

helpers, (χ2 = 8.92, df = 4, p = 0.06, n = 144); there were too few female helpers falling 

into each category to conduct an equivalent analysis (Table 2.1). Based on the social 

pedigree, there was no effect of distance on the proportion of first order, second order 

or non-kin helped when analysing all helpers (χ2 = 5.88, df = 4, p = 0.22, n = 155 

cases; Fig. 2.3b, Table 2.1), or just male helpers (χ2 = 3.49, df = 4, p = 0.48, n = 129; 

Table 2.1). Note that again there were too few data to analyse female helpers 

separately (Table 2.1).  

Comparing the relatedness of male and female helpers to the recipients of their 

care, overall males tended to help kin more often than females (Table 2.1). This was 

significant using the genetic data (males: r = 0.5, 61.8%; r = 0.25 13.9%; r = 0, 24.3%; 

n = 144 cases; females: r = 0.5, 42.4%; r = 0.25 12.1%; r = 0, 45.5%; n = 33 cases; χ2 

= 6.05, df = 2, p < 0.05), but not with the social pedigree (males: r = 0.5, 42.6%; r = 

0.25, 13.2%; r = 0, 44.2%; n = 129 cases; females: r = 0.5, 23.1%; r = 0.25 19.2%; r 

= 0, 57.7%; n = 26 cases; χ2 = 3.51, df = 2, p = 0.17). This sex difference in the 

probability of helping kin was driven by a relatively small number of unrelated female 

helpers in the 300-600m distance band (Table 2.1).    

The randomisation tests that we conducted to determine the random probability 

of helping a relative showed, not surprisingly given the kin structure of our population,  

that the random probability of helping first-order kin decreased with distance for all 
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helpers (genetic data: χ2 = 13.2, df = 2, p < 0.01; social pedigree: χ2 = 28.5, df = 2, p 

< 0.001; Fig. 2.3, Table 2.1), for male helpers (genetic data: χ2 = 16.1, df = 2, p < 0.01; 

social pedigree: χ2 = 28.1, df = 2 p < 0.001; Table 2.1), and female helpers (genetic 

data: χ2 = 7.4, df = 2, p < 0.001; social pedigree: χ2 = 32.5, df = 2, p < 0.001; Table 

2.1). There was no significant difference in the opportunity to help a relative between 

male and female helpers travelling within 0-300m (genetic data: χ2 = 2.41, df = 2, p = 

0.29; social pedigree: χ2 = 0.88, df = 2, p = 0.69; Table 2.1), 300-600m (genetic data: 

χ2 = 1.7, df = 2, p = 0.45; social pedigree: χ2 = 2.01, df = 2, p = 0.42; Table 2.1) or 

600-900m (genetic data: χ2 = 0.31, df = 2, p = 0.89; social pedigree: χ2 = 1.33, df = 2, 

p = 0.56; Table 2.1) to provide help.  

Crucially, first-order kin were helped significantly more often than expected 

at random irrespective of distance travelled to provide help (Fig. 2.3; Table 2.1). This 

kin-bias in helping was also apparent among male helpers within all distance bands, 

and also among female helpers for all but one comparison (Table 2.1). 
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Figure 2.3. Proportion of help given to nests belonging to at least one 1st order kin 

(black), at least one 2nd order kin (grey), or two non-kin (white) over three bands of 

distance between helpers and recipients (obs). The respective proportions expected if 

help was given randomly within that range is also shown (exp). Relatedness between 

helpers and recipients is estimated using both (a) genetic data and (b) the social 

pedigree. 
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Table 2.1. Proportion of help given to nests belonging to at least one 1st order kin, 

at least one 2nd order kin, or two non-kin over three distance bands between helpers 

and recipients. Within each band, the proportion of kin helped is compared with that 

expected if help was given randomly within that range, based on 10000 permutations 

of potential nests for focal helpers within years (1994-2016). Relatedness between 

helpers and recipients is estimated using both genetic data and the social pedigree. 

Analyses were carried out on all helpers, male helpers and female helpers. The 

observed proportion was considered statistically significant it fell outside the 95% 

(p < 0.05), 99% (p < 0.01) or 99.9% (p < 0.001) confidence interval of the random 

distribution. 

data sex distance 

(m) 

kinship helped   

nests 

observed 

proportion 

potential 

nests 

expected 

proportion 

(mean ± SD) 

p 

genetic both 0-300 0.5 66 0.67 184 0.31 ± 0.03 < 0.001 

   0.25 8 0.08 127 0.21 ± 0.02 < 0.001 

   0 25 0.25 296 0.47 ± 0.03 < 0.001 

  300-600 0.5 24 0.43 182 0.17 ± 0.02 < 0.001 

   0.25 12 0.21 281 0.21 ± 0.03 NS 

   0 20 0.36 831 0.62 ± 0.03 < 0.001 

  600-900 0.5 13 0.59 138 0.12 ± 0.02 < 0.001 

   0.25 4 0.18 325 0.24 ± 0.03 NS 

   0 5 0.23 921 0.65 ± 0.03 < 0.001 

 male 0-300 0.5 58 0.69 162 0.33 ± 0.03 < 0.001 

   0.25 6 0.07 105 0.21 ± 0.03 < 0.001 

   0 20 0.24 244 0.45 ± 0.03 < 0.001 

  300-600 0.5 22 0.49 161 0.18 ± 0.03 < 0.001 

   0.25 11 0.24 245 0.22 ± 0.03 NS 

   0 12 0.27 700 0.60 ± 0.03 < 0.001 

  600-900 0.5 9 0.60 109 0.11 ± 0.02 < 0.001 

   0.25 3 0.20 262 0.24 ± 0.03 NS 

   0 3 0.20 767 0.64 ± 0.03 < 0.001 

 female 0-300 0.5 8 0.53 22 0.24 ± 0.05 < 0.001 

   0.25 2 0.13 22 0.21 ± 0.05 NS 

   0 5 0.33 52 0.55 ± 0.04 < 0.001 

  300-600 0.5 2 0.18 21 0.13 ± 0.04 NS 

   0.25 1 0.09 36 0.18 ± 0.06 NS 

   0 8 0.73 131 0.68 ± 0.06 NS 

  600-900 0.5 4 0.57 29 0.12 ± 0.05 < 0.001 

   0.25 1 0.14 63 0.21 ± 0.06 NS 

   0 2 0.29 154 0.67 ± 0.07 < 0.001 

pedigree both 0-300 0.5 41 0.47 111 0.24 ± 0.03 < 0.001 

   0.25 10 0.11 35 0.09 ± 0.01 NS 

   0 36 0.41 316 0.67 ± 0.03 < 0.001 

  300-600 0.5 13 0.27 65 0.08 ± 0.02 < 0.001 

   0.25 8 0.17 47 0.05 ± 0.01 < 0.001 

   0 27 0.56 827 0.86 ± 0.02 < 0.001 

  600-900 0.5 7 0.35 23 0.03 ± 0.01 < 0.001 
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   0.25 4 0.20 27 0.03 ± 0.03 < 0.001 

   0 9 0.45 960 0.94 ± 0.02 < 0.001 

 male 0-300 0.5 36 0.49 101 0.24 ± 0.03 < 0.001 

   0.25 8 0.11 31 0.08 ± 0.02 < 0.05 

   0 29 0.39 261 0.67 ± 0.03 < 0.001 

  300-600 0.5 13 0.32 60 0.09 ± 0.02 < 0.001 

   0.25 7 0.17 40 0.06 ± 0.02 < 0.001 

   0 21 0.51 717 0.86 ± 0.02 < 0.001 

  600-900 0.5 6 0.40 20 0.03 ± 0.01 < 0.001 

   0.25 2 0.13 16 0.02 ± 0.01 < 0.001 

   0 7 0.47 803 0.95 ± 0.02 < 0.001 

 female 0-300 0.5 5 0.36 10 0.22 ± 0.05 < 0.01 

   0.25 2 0.14 4 0.12 ± 0.03 NS 

   0 7 0.50 55 0.66 ± 0.05 < 0.01 

  300-600 0.5 0 0.00 5 0.04 ± 0.03 NS 

   0.25 1 0.14 7 0.06 ± 0.03 < 0.05 

   0 6 0.85 110 0.90 ± 0.05 NS 

  600-900 0.5 1 0.20 7 0.03 ± 0.03 < 0.001 

   0.25 2 0.40 7 0.05 ± 0.03 < 0.001 

   0 2 0.40 157 0.92 ± 0.05 < 0.001 

 

 

 

2.4  Discussion 

Long-tailed tits breed cooperatively in diffuse family structures, or kin 

neighbourhoods, such that interactions among non-kin and kin of varying relatedness 

are frequent. We used a combination of long-term field observations and population 

genetic analyses to investigate genetic structure and patterns of helping in this atypical 

social system. Our results showed significant, fine-scale genetic structure in long-

tailed tit populations, with positive spatial autocorrelation of dyadic relatedness 

estimates among breeding birds. Crucially, this pattern exists after natal dispersal, and 

was strong among males, among females and between the sexes. These findings 

contrast with most studies of cooperatively breeding birds that have measured spatial-

genetic autocorrelation in breeders of both sexes, and show genetic structure in adult 
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males only due to complete female-biased dispersal (Painter et al. 2000; Double et al. 

2005; Temple et al. 2006; Woxvold et al. 2006), although fine-scale genetic structure 

among both sexes has also been demonstrated in sociable weaver colonies (van Dijk 

et al. 2015). We found that genetic structure was stronger in males than females, but 

both males and females remained spatially associated with same-sex relatives once 

they started breeding. This reflects previously reported patterns of dispersal in this 

species: although females disperse further than males (Sharp et al. 2008a), some adults 

of each sex disperse only short distances from their natal area to become independent 

breeders. This underlying genetic structure is also consistent with known patterns of 

social association during the non-breeding season (Napper & Hatchwell 2016).  

This degree of kin structure post-dispersal creates opportunities for failed 

breeders to gain indirect fitness benefits via redirected helping (Hatchwell et al. 2014). 

Although long-tailed tit societies are not organised into discrete family units of close 

kin, neither are related individuals distributed randomly in space, but organised into 

kin neighbourhoods, allowing kin selection to operate. Pairwise relatedness is highest 

within 300m, and males typically seek helping opportunities within this range. In the 

rarer instance that females become helpers, they tend to travel slightly further, but still 

within the range of kin clustering. The higher than expected relatedness among 

individuals living in close proximity is driven by the tendency of close kin to cluster 

together, but is low overall because non-relatives or distant kin also breed in the 

vicinity. In fact, genetic estimates showed that only 12% of dyadic relationships within 

300m were between first order kin and as the distance between dyads increased, the 

proportion of kinships decreased so that only 3% of dyads over 900m were close kin 

(Appendix 2, Fig. A2.1). Interestingly, using genetic relatedness estimates the 

proportion of second order kin did not decrease with distance.  



56 

 

According to the social pedigree, however, the proportions of first and second 

order kinships both decreased over distance and were substantially lower overall than 

the estimated kinships using genetic data (Appendix 2, Fig. A2.1). Our genetic data 

may detect more kin relationships than our social pedigree for several reasons. First, 

our population is open, with over half the breeding adults dispersing into the study site 

to breed, and their parentage is unknown. Therefore, although we can use genetic data 

to inform the pedigree for a proportion of immigrants (see Appendix 1), some kin 

relationships are likely to go undetected. Second, long-tailed tits are relatively short-

lived and high nest predation rates generate a low effective population size 

(Beckerman et al. 2011). Therefore, even for birds born in the study site, it is rarely 

possible to trace their social pedigree further than one generation without using genetic 

data to fill in the gaps. Third, a small number of individuals may breed just outside the 

study site in their first year, before moving into the site in subsequent years, and so 

kin relationships may exist among some immigrants across years. Kinship estimates 

from the social pedigree may therefore under-estimate the proportion of kin. Finally, 

the number of individuals in each relatedness category obviously depends on how 

those categories are defined using either pedigree or genetic data. 

Overall, where they differ from the social pedigree, genetic relatedness 

estimates may be more reliable. However, pedigree data is essential for understanding 

how accurately individuals are able to recognise kin, particularly when the mechanism 

depends on socially learned cues (Sharp et al. 2005). Kin recognition via associative 

learning is likely to be effective where there is a reliable correlation between genetic 

relatedness and association during a sensitive phase of development, a requirement 

probably satisfied in most species demonstrating parental care (Komdeur & Hatchwell 

1999). Associative learning is therefore considered the most widespread mechanism 
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of kin recognition in cooperatively breeding birds, where extended brood care at the 

nest provides a period of association among relatives, and has been identified in many 

species, including Galápagos mockingbirds Nesomimus parvulus (Curry 1998; Curry 

& Grant 1990), Seychelles warblers Acrocephalus sechellensis (Richardson et al. 

2003; Komdeur et al. 2004) and splendid fairy wrens Malurus splendens (Payne et al. 

1988). On the other hand, in some species, such as stripe-backed wrens 

Campylorhynchus nuchalis (Price 1998; 1999) and green woodhoopoes Phoeniculus 

purpureus (Radford, 2005), kin recognition has been suggested to have a genetic 

component, and studies on bell miners (Wright et al. 2010) and long-tailed tits (Nam 

et al. 2010) found significant effects of genetic relatedness on helper effort, indicating 

a mechanism more sophisticated than associative learning alone. Further studies of 

phenotypic cues in relation to genetic similarity and social information are necessary 

to determine the precise mechanisms of kin recognition in such species.  

The social organisation of long-tailed tits gives helpers a choice of whom to 

aid in a situation where simple decision rules based on spatial cues are insufficient, 

even at close proximity, for effective kin discrimination. Here, we have shown that 

helpers assist far more first order kin than expected if help were given randomly with 

respect to kinship. This is consistent with the finding of Russell and Hatchwell (2001) 

that helpers exhibit a kin preference in their choice of brood to help. Although most 

helpers choose to help kin within the range of kin clustering, improving their chances 

of encountering a relative, 67% helped at a nest belonging to at least one first order 

kin, compared with a 31% probability of encountering a first order relative within 

300m (Table 2.1).  Furthermore, the proportion of helpers that assisted kin did not, in 

general, decrease with distance; the marginally lower probability of helping first order 

kin at 300-600m was driven by a small number of female helpers within this range 
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that helped non-kin. Therefore, even when fewer kin were available, helpers still 

identified a similar proportion of first order kin to help. This degree of kin 

discrimination is unusual in cooperative breeders; helping more often occurs 

indiscriminately within closely related family groups (Cornwallis et al. 2009). This is 

because cooperation typically precedes dispersal, with offspring staying within natal 

territories to help their parents raise young (Ligon & Stacey 1991). Such viscous 

populations exhibit strong kin structure and the probability of helping kin is 

predictably high within the nuclear family unit. In a minority of cooperative breeders, 

helping behaviour occurs post-dispersal and extends beyond the confines of a stable 

group (Ligon & Burt 2004; Hatchwell 2009) within extended social networks such as 

neighbourhoods of western bluebirds (Dickinson et al. 1996) and long-tailed tits 

(Hatchwell 2016), clans of white-fronted bee-eaters Merops bullockoides (Emlen & 

Wrege 1992) or coteries of bell miners (Clarke & Fitz-Gerald 1994). A crucial 

characteristic of such social structures is that the proportion of kin available to helpers 

is relatively low, and relatedness among individuals is too variable to favour 

indiscriminate cooperation (Cornwallis et al. 2009). In such populations, helpers must 

exercise a degree of discrimination to reliably direct help towards kin, so it is no 

coincidence that observational and experimental studies of these species have revealed 

some of the strongest evidence for active kin discrimination in social birds (Emlen & 

Wrege 1988; Hatchwell et al. 2001b; Russell & Hatchwell 2001; Sharp et al. 2005; 

McDonald & Wright 2011; Akçay et al. 2013; Dickinson et al. 2016). 

We found that second order kin were helped much less frequently than first 

order kin, as reported by Nam et al. (2010). It is interesting that the probability of 

helping second order kin did not differ significantly from that expected by random 

helping, except within 300m, where it was lower than expected. We suggest two 
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possible reasons for this. First, a kin recognition mechanism that depends on 

association during early development (Sharp et al. 2005) may result in reliable 

discrimination of first order kin (i.e. siblings and parents), but would offer less 

opportunity to learn more distant kin, apart from any helpers. Alternatively, birds may 

be able to recognise second order kin, but prefer to help first order kin to maximise 

fitness. Previous studies have shown that long-tailed tits modify provisioning effort 

contingent on kinship (Nam et al. 2010), indicative of a capacity to discriminate 

between kin of varying relatedness. However, a minority of helpers also assist non-

kin, and the probability of doing so did not change with distance and did not reflect 

kin availability. We have detected no direct benefits of helping in long-tailed tits 

(Meade & Hatchwell 2010), so such help for non-kin may be due to recognition 

‘errors’ caused by a permissive threshold for acceptance of kin (Downs & Ratnieks 

2000; Hatchwell et al. 2014). In cases where the benefits of helping a relative greatly 

exceed the costs of helping a non-relative, selection should favour a recognition 

mechanism that reflects these relative costs despite the potential for recognition errors 

(Reeve 1989). More studies are required that focus on the precise mechanism of kin 

recognition to investigate this possibility further.  

Within the range that most helpers travelled to help, there was no difference 

between the sexes in the opportunity to help kin. Thus, the fact that females comprise 

only 15% of helpers in this population (Hatchwell et al. 2004) is not because they have 

few opportunities to help. This result is consistent with a previous study of another 

population by Sharp et al. (2011), showing that when males and females exhibited 

similar levels of philopatry, there was still a strong male bias in helping. Therefore, 

the male bias in helping behaviour is not due to male philopatry, and hence helping 

opportunities, per se. Instead, the decision to help by failed breeders is probably 
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related to individual condition; failed breeders that choose to become helpers tend to 

be in better condition than those that do not (Meade & Hatchwell 2010). Since egg-

laying, incubating and brooding are performed exclusively by females (Hatchwell 

2016), the fitness costs associated with parental care may be more pronounced in 

females than in males, reducing their likelihood of becoming helpers when breeding 

attempts fail. We also found an intriguing trend for female helpers to assist fewer close 

kin and more non-kin than male helpers did. However, we treat this result with some 

caution because the sample of female helpers available for comparison is still 

relatively small. 

The spatial clustering of relatives also has important consequences in terms of 

inbreeding risk. The population genetic structure revealed by our study shows that the 

average relatedness between males and females is higher than expected at random 

within approximately 700m. Therefore, in addition to the cooperative benefits, 

prolonged kin-associations between males and females at the reproductive stage may 

carry fitness costs associated with incest and inbreeding depression (Keller & Waller 

2002). Whether these kin associations persist over the range that mate choice occurs 

and whether kin are actively avoided during mate choice, remains to be investigated.  

In conclusion, we have revealed fine-scale genetic structure in our long-tailed 

tit population that is consistent with the kin clustering expected from known 

demographic and dispersal patterns. This provides an opportunity for kin selection to 

operate, and, in the absence of any other known benefits of interacting socially with 

kin (Napper et al. 2013; Napper & Hatchwell 2016), is likely to have emerged as a 

result of selection for kin-directed helping behaviour. However, despite this genetic 

structure, the random probability of helping at the nest of a relative is still relatively 
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low, demonstrating that in the kin-selected cooperative breeding system of long-tailed 

tits, active discrimination of kin from non-kin is required when choosing at which nest 

to help in order to maximise inclusive fitness. The learned vocal cues used by long-

tailed tits to recognise kin provides one such mechanism (Sharp et al. 2005), although 

the degree to which they can discriminate among kin of variable relatedness requires 

further study. Overall, this study demonstrates how population genetic structure, 

generated by dispersal and life-history traits, determines the opportunity for 

interactions among relatives, and the selective pressure these exert on kin 

discrimination rules in social animals.  

 

2.5 Data accessibility  

Microsatellite genotypes, breeding locations and the social pedigree (1994–2016) are 

available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.0dm8mv1.    

https://doi.org/10.5061/dryad.0dm8mv1
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Chapter 3 

Inbreeding in long-tailed tits: costs, risk and 

avoidance   

 

Summary 

Sex-biased dispersal can alleviate inbreeding risk in natural populations when 

inbreeding is costly. But, in social animals, selection for kin associations during 

adulthood can lead to opposite-sexed relatives remaining spatially clustered. Using a 

combination of long-term field data and molecular genetics, I investigate the costs, 

risk and avoidance of inbreeding in the long-tailed tit Aegithalos caudatus, a 

cooperative breeder whose dispersal patterns are non-random with respect to kinship. 

Heterozygosity-fitness correlations reveal a positive association between 

heterozygosity and direct fitness, which indicates that inbreeding is costly. 

Furthermore, opposite-sex kin remain clustered within the range that mate choice 

occurs post-dispersal, generating a substantial inbreeding risk. However, this 

population is not inbred and incest is extremely rare. To determine whether kin are 

actively avoided as partners, I compare relatedness within breeding pairs to that 

expected under multiple mate choice models and offer a decision rule for pairing 

behaviour with regard to relatedness. The relatedness of breeding pairs is much lower 

than that expected if mates were selected randomly with respect to kinship. The results 

show that long-tailed tits effectively avoid first-order, but not second-order kin as 

partners during mate choice.  
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3.1  Introduction 

Inbreeding, defined as reproduction among relatives, is generally considered 

maladaptive in wild populations (Pusey & Wolf 1996). Relatives share alleles that are 

identical by descent, or, ibd (Wright 1949). The probable proportion of ibd alleles 

between two individuals is their coefficient of relatedness, r (Wright 1922), and the 

inbreeding coefficient, f, is the probability that homologous alleles within individuals 

are ibd (Wright 1965). Both r and f are measured relative to a reference population 

(Keller & Waller 2002). Inbreeding commonly refers to mating between first (r = 0.5) 

or second-order (r = 0.25) kin, although any individual with f > 0 may be considered 

inbred (Nichols 2017).  

Inbreeding increases the frequency of homozygotes in a population (Keller & 

Waller 2002), leading to inbreeding depression (Pusey & Wolf 1996). Inbreeding 

unmasks deleterious recessive alleles, which, when expressed, result in traits that 

reduce fitness (Charlesworth & Charlesworth 1999). The loss of heterozygous 

advantage (overdominance) may also reduce the fitness of inbred offspring (Bateson 

1983), although, recessive deleterious alleles seem to be the most important source of 

inbreeding depression (Roff 2002; Charlesworth & Willis 2009). Inbreeding 

depression has multiple proximate causes, including increased parasite load (Coltman 

et al. 1999, Smallbone 2016) and susceptibility to disease (Townsend 2009); reduced 

birth weight (Walling et al. 2011), survival (Kruuk et al. 2002) and reproductive 

success (Slate et al. 2000; Szulkin et al. 2007); depressed immune system (Reid 2007); 

and negative effects on secondary sexual traits, such as song repertoire size in song 

sparrows Melospiza melodia (Reid 2005). Inbreeding depression can also have trans-

generational effects: offspring of inbred mothers may be smaller (Bérénos et al. 2016) 
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or less likely to survive to recruitment (Huisman et al. 2016). Consequently, inbred 

populations are at an increased risk of extinction (Frankham 1995; Saccheri et al. 

1998; Wright et al. 2008). In habitually inbred populations, an increased expression 

of harmful recessives exposes these alleles to selection, allowing them to be purged 

from the genome (Keller & Waller 2002), which may explain why some studies have 

found no evidence of inbreeding depression, despite significant inbreeding (Hoogland 

1992; Duarte et al. 2003). Yet, purging may only be effective in small, closed 

populations (Charlesworth & Charlesworth 1999; Kennedy et al. 2014). Inbreeding 

can also lower the genetic variation among offspring, and the probability that at least 

some will survive in stochastic environments (Bateson 1983). Furthermore, if mating 

with a relative is at the expense of mating with a non-relative, the transmission 

advantage of shared alleles is reduced (Waser 1986).  

Although the adverse effects of inbreeding are well documented, outbreeding 

can carry its own fitness costs, as co-adapted gene complexes required for local 

adaptation may be broken up by recombination (Bateson 1982; 1983). Inbreeding can 

also be adaptive, through increased relatedness to offspring (Parker 2006), and 

increased reproductive success of relatives (Kokko & Ots 2006). Early studies on 

naked mole rats Heterocephalus glaber suggested that inbreeding was a major driving 

force in the evolution of eusociality in this species (Reeve et al. 1990; Lacey & 

Sherman 1991). However, recent work indicates that the low genetic variation 

observed in the populations studied reflects a founder event, rather than a consequence 

of their unusual mating system (Ingram et al. 2015), and inbreeding is avoided when 

possible (Clarke & Faulkes 1999). Current theoretical mate choice models predict a 

preference for distant kin as mates under a range of inbreeding depression strengths, 

suggesting that individuals can maximise inclusive fitness through so called optimal 
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kinbreeding (Puurtinen 2011). The selection pressures on the alternative inbreeding 

strategies of avoidance, preference or tolerance (random mating) depend on the level 

of inbreeding depression, the fitness benefits of inbreeding, and the costs of inbreeding 

avoidance (Lehmann & Perrin 2003; Jamieson et al. 2009; Szulkin et al. 2013; Duthie 

& Reid 2015). Costs to active mate choice, such as reproductive delays due to time 

spent mate searching (Kokko & Ots 2006) and missed mating opportunities (Kokko 

& Ekman 2002) could explain why some species exhibit inbreeding tolerance 

(Jamieson et al. 2009) or even preference (Wang & Lu 2011). Yet, acorn woodpeckers 

Melanerpes formicivorus, for example, exhibit strong inbreeding avoidance despite 

the reproductive cost of lost breeding opportunities (Koenig et al. 1999). So, there is 

some discrepancy between theoretical predictions and the rarity of inbreeding in 

nature (Kokko & Ots 2006), possibly because inbreeding depression is difficult to 

quantify and thus is potentially underestimated in the wild (Duthie & Reid 2016).  

In most cooperative breeders, delayed natal dispersal creates kin structured 

populations (Hatchwell 2009) with a high encounter rate between adult opposite-sex 

kin.  However, the fitness costs associated with inbreeding has selected for various 

inbreeding avoidance mechanisms (reviewed in Pusey & Wolf 1996; Riehl & Stern 

2015), so that incest is extremely rare in animal societies. In most cooperative 

breeders, one sex is philopatric, while the other disperses away from the natal area to 

breed (Koenig & Haydock 2004).  In birds, females tend to disperse, whereas in 

mammals, males typically leave the natal group to breed (Greenwood 1980). 

Phylogenetic analyses show that transitions from female philopatry to female dispersal 

are associated with inbreeding risk caused by long male reproductive tenure in 

mammals (Lukas & Clutton-Brock 2011). That dispersal usually occurs before 

reproduction (Brown 1987) and is influenced by the presence of relatives (Koenig et 
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al. 1998; Cockburn et al. 2003) also suggest that inbreeding avoidance is an important 

driver of dispersal patterns (Greenwood 1980).  

When dispersal is sex-biased, the philopatric sex may still be at risk of 

inbreeding, particularly in social groups with overlapping generations (Lukas & 

Clutton-Brock 2012; Blyton et al. 2015). The timing and distance over which mate 

choice occurs drives selection for alternative inbreeding avoidance mechanisms. For 

example, a risk of inbreeding may arise when a dominant breeder in a social group 

dies, leaving a parent with opposite-sex offspring as potential partners (Emlen 1995; 

Koenig et al. 1998). Similarly, in species with dominance hierarchies, widowed 

dominants often abandon their breeding position if the highest ranking opposite-sex 

subordinate is a relative (Daniels & Walters 2000). However, dispersal may be 

constrained by an absence of breeding vacancies (Cockburn et al. 2003) or if the 

benefits of philopatry outweigh its costs (Stacey & Ligon 1987). In such situations, 

breeders may select closely related social partners, but mate with less closely related 

individuals from outside the family group (Tarvin et al. 2005). The most notable 

example of infidelity as an inbreeding avoidance strategy comes from the fairy-wrens 

(Malurus spp); early studies suggested unprecedented levels of incest (Rowley et al. 

1986) but molecular genetic techniques have since revealed an extraordinarily high 

rate of extra-pair paternity (Brooker et al. 1990). The effectiveness of this strategy 

depends on the difference in relatedness between within-group and extra-group 

partners, and offspring sired by extra-pair males are indeed less inbred than within-

pair offspring in red-backed fairy-wrens M. melanocephalus (Varian-Ramos & 

Webster 2012). Alternatively, when mate choice is restricted, and the only option is to 

mate with close kin, individuals may abstain from breeding altogether. In hierarchical 

cooperative breeders, subordinates may forego reproduction when an opposite-sex 
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parent is present in the breeding group (Walters et al. 1988; Koenig et al. 1998), or 

are reproductively supressed by same-sex dominants (Whittingham et al. 1997; 

Koenig et al. 1999; O’Riain et al. 2000).  

All of these strategies can mitigate inbreeding risk in viscous populations 

without the need for active kin discrimination. However, some cooperative species do 

not live in discrete family groups, but rather, cooperation follows local and/or 

coordinated natal dispersal, resulting in continued association among breeding 

relatives across extended kin neighbourhoods (Dickinson & Hatchwell 2004). Here, 

interactions between opposite-sex adults of varying degrees of relatedness may be 

frequent, particularly if there are small dispersal differences between the sexes (Blyton 

et al. 2015). In such species, if inbreeding is costly, effective kin recognition 

mechanisms may be under strong selection (Cornwallis et al. 2009). Indeed, kin-

neighbourhood cooperative breeders have shown sophisticated kin discrimination in 

their cooperative behaviour (Nam et al. 2010; McDonald & Wright 2011; Akçay et al. 

2013). Although empirical evidence of kin recognition during mate choice is scarce, a 

recent study on Western bluebirds Sialia mexicana demonstrated kin avoidance when 

mates are selected from within the range of kin clustering (Dickinson et al. 2016).   

Familiarity is often an effective mechanism of kin recognition in social 

animals, as kinship tends to co-vary with association (Pusey & Wolf 1996). However, 

in kin neighbourhood species, in which the probability of associating with non-kin, 

and encountering unfamiliar kin is reasonably high, there may be strong selection for 

more sophisticated mechanisms, which could include an assessment of relatedness via 

phenotype matching (Komdeur & Hatchwell 1999). Further, effective recognition of 

unfamiliar kin may be of particular importance during mate choice, assuming that even 
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moderate inbreeding can lead to inbreeding depression. Direct evidence for effective 

kin recognition during mate choice is lacking, often hindered by the difficulty of 

obtaining reliable genetic relatedness estimates or inbreeding coefficients (Pemberton 

2004), coupled with detailed knowledge of paring decisions, null mate choice models 

and a putative mechanism.    

Here, I investigate the fitness costs, risk and avoidance of inbreeding in a well-

studied, natural population of cooperatively breeding long-tailed tits. Identifying the 

risk of incest and quantifying inbreeding depression are essential for understanding 

the selection pressure for alternative inbreeding strategies in wild populations. 

However, empirical studies that aim to address all of these aspects are rare for several 

reasons. Firstly, inbreeding depression is difficult to quantify in wild populations 

because it requires long-term genetic or pedigree data, and enough variation in f to 

detect any relationship between inbreeding and fitness (Slate et al. 2000). Secondly, 

accurate mate choice models can be hard to construct, as the pool of potential partners 

is not often known. Finally, the mechanism of kin discrimination that permits incest 

avoidance remains unidentified. Long-tailed tits are an excellent species in which to 

investigate inbreeding because they live in kin-structured breeding populations with 

prolonged association between opposite-sex relatives (Leedale et al. 2018), so that 

both kin and non-kin are often available as partners. Therefore, strong selection for 

active kin discrimination during mate choice is expected. Furthermore, through long-

term field observations, we can build a relatively accurate null model of mate choice 

that is random with respect to relatedness: long-tailed tits are non-territorial, there is 

an even adult sex ratio and virtually all birds attempt to breed from their first year 

(Hatchwell et al. 2001a). An effective kin recognition mechanism has also previously 

been established (Russell & Hatchwell 2001; Sharp et al. 2005). Finally, previous 
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studies suggest that although long-tailed tits can effectively identify kin, recognition 

errors do occur (Hatchwell 2016). I therefore expect to detect some cases of 

inbreeding, allowing investigation of inbreeding depression.  

Our aims were four-fold. First, I used long-term genetic and field data to 

quantify inbreeding in our long-tailed tit population. Second, I explored the fitness 

costs of inbreeding, by correlating various fitness traits with heterozygosity. Third, I 

determined the risk of inbreeding by comparing the mate choice range of males and 

females to the previously described population genetic structure. Finally, I tested 

whether or not kin are actively avoided as partners using null mate choice models and 

identified the likely relatedness threshold for acceptance of individuals as mates. 

 

3.2  Methods 

3.2.1  Study population and field methods  

A population of 17-72 (mean c.50) pairs of long-tailed tits was studied during the 

breeding season (February-June) between 1994 and 2016 in the Rivelin Valley, 

Sheffield, UK (53º38’N 1º56W). The site is approximately 2.5km2 and comprises 

predominantly deciduous woodland and scrub. The population is open: approximately 

40% of breeders hatched in the study site, and are referred to as native (A. E. Leedale 

& B. J. Hatchwell, unpublished data). The remaining immigrant adults are assumed to 

be first year breeders that have dispersed in to the study site, based on the observation 

that individuals have high site fidelity following their first breeding year (McGowan 

et al. 2003). Each year, almost all individuals (>95%) were marked with a BTO ring 

and a unique combination of two colour rings. Native birds were ringed as 11-day old 
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nestlings and immigrant adults were captured in mist nests under BTO licence before 

or during breeding. When ringed, a sample of 5-30µl of blood was taken by brachial 

venepuncture under Home Office licence. All breeding attempts were closely 

monitored and GPS coordinates were taken for each nest (n = 1461); a Cartesian 

coordinate system (UTM) was used to describe geographic distance between nests. 

3.2.2  Molecular genetics  

Individuals were genotyped at eight (1994-2006) or 17 (2007-2016) microsatellite 

loci. For further details on genotyping, see Simeoni et al. (2007) and Adams et al. 

(2015). The population allele frequencies used in analyses were generated using all 

genotyped individuals (1994-2016, n = 3182) in CERVUS version 3.0.7 (Kalinowski 

et al. 2007), to maximise accuracy in estimating the frequency of rare alleles and to 

ensure non-zero frequencies for all alleles in the dataset (Appendix 3). The genetic 

relatedness of dyads was estimated using Queller and Goodnight’s (1989) rQG 

coefficient of relatedness in SPAGeDi version 1.1.5 (Hardy & Vekemans 2002). This 

estimate is reliable when tested against our social pedigree (Nam et al. 2010).   

3.2.3  Social pedigree 

The social pedigree was created using 22 years of field observations as described 

above (1994-2016, n = 2815 birds). For further details on pedigree construction, see 

Appendix 1. To calculate social relatedness (r) among dyads, an additive relationship 

matrix was generated from the pedigree in R version 3.5.0 (R Core Team 2018) using 

the R package nadiv (Wolak 2012). Six breeding birds in our study population (0.2%) 

were from cross-fostered broods in 1996-1998, but given that birds raised together 

treat each other as kin (Hatchwell et al. 2001b; Sharp et al. 2005), I include them in 

the social pedigree. Similarly, while there is a low rate of extra-pair paternity (<8%) 
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in long-tailed tits (Hatchwell et al. 2002), I have not corrected for it in the social 

pedigree. 

3.2.4  Inbreeding 

The average population inbreeding coefficients (FIS = -0.002 ± 0.004, RIS = -0.014 ± 

0.027) indicate no significant inbreeding or outbreeding in the study population 

(Leedale et al. 2018). However, that does not mean that incest does not occur. I 

calculated the genetic relatedness (rQG) and social relatedness (r) of all breeding pairs 

from 1994-2016 in which both adults were ringed and genotyped. Occasionally, long-

tailed tits swap partners within a breeding season. In these cases, I used the first pairing 

made that year. Individuals often breed in multiple years, either with the same partner 

or a new partner. The dataset used in this study contained 696 observations of 609 

pairs made up of 493 females and 529 males over 22 years.    

I identified cases of inbreeding using the social pedigree. Pairs were considered 

closely inbred if they were formed of first-order (r = 0.5) or second-order (r = 0.25) 

kin. I also identified breeding between third-order kin (r = 0.125) as distantly inbred. 

In open populations, the social pedigree is incomplete, and may underestimate the 

level of inbreeding. Therefore, genetic inbreeding was also quantified by classifying 

close and distant kin using rQG estimates. The distribution of rQG estimates of known 

first-order, second-order and non-kin were used to identify two lower genetic 

similarity thresholds which optimise the inclusion of first or second-order kin and the 

exclusion of more distant kin. These thresholds were used to determine the proportion 

of close and distant genetic inbreeding. 
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3.2.5  Inbreeding costs 

Pedigree-derived inbreeding coefficients are reliable only when parentage can be 

traced back at least two generations. As is inevitable in natural, open populations, our 

pedigree is incomplete, and both sets of grandparents are known for only a small 

proportion (5.3%) of native birds. Associations between heterozygosity at 

microsatellite markers and variation in fitness traits, known as heterozygosity-fitness 

correlations (HFCs), have been widely used as an indirect method of measuring 

inbreeding depression (e.g. Coltman et al. 1999; Slate et al. 2000; Chapman & Sheldon 

2011). However, HFCs only reflect variance in inbreeding if certain assumptions are 

met: (i) genetic diversity at marker loci reflects genetic diversity at loci that affect trait 

variation; and (ii) the marker and fitness loci are in identity disequilibrium (ID) that 

is, the increase in fitness with increasing heterozygosity is due to the non-random 

association of diploid genotypes (Hansson & Westerberg 2002; Chapman et al. 2009). 

Under this general effect hypothesis (David et al. 1995), the strength of the relationship 

between heterozygosity and fitness depends on the population variance in f (Szulkin 

et al. 2010). I therefore used equations from Slate et al. (2004) to calculate the 

predicted correlation between heterozygosity and f in our population. Inbreeding 

coefficients were calculated from the social pedigree using the R package pedigree 

(Coster 2013). It was possible to infer reliable f values from the pedigree for 129 birds 

(native individuals with all grandparents known). I also included f values from an 

additional 9 birds that were probable offspring of immigrant siblings, based on genetic 

sibship reconstruction (Appendix 1). The predicted correlation between 

heterozygosity and f was R = -0.43 (n = 138, mean f = 0.03, variance in f = 0.004, 

number of loci = 17, mean heterozygosity of loci = 0.759), supporting the use of 

heterozygosity as a proxy for inbreeding coefficient in our population.  
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Using the R package, inbreedR (Stoffel et al. 2016), I estimated standardised 

multi-locus heterozygosity (HS) for 3182 genotypes, defined as the proportion of typed 

loci for which an individual was heterozygous divided by the mean heterozygosity of 

those loci at which the individual was typed (Coltman et al. 1999). I tested for an 

association between HS and fitness using four life-history traits: (i) whether or not an 

individual recruited to the breeding population; (ii) hatching success in first-year 

females (number of nestlings on day 11/clutch size); (iii) whether or not a breeder 

produced recruits (among birds that produced fledglings); and (iv) direct fitness 

(among birds that produced recruits). Direct fitness was calculated as lifetime 

reproductive success quantified in terms of genetic offspring equivalents and corrected 

for extra-pair paternity and the offspring gained by having helpers. The fraction of 

recruits in a brood that was attributable to helpers was estimated using a mixed effects 

model of the effect of helper number on recruitment (J. P. Green & B. J. Hatchwell, 

unpublished data). This fraction was subtracted from the total number of recruits 

produced over an individual’s lifetime. The remaining fraction was halved to obtain 

the fitness attributable to a single parent, and halved again to reflect the relatedness 

between parents and offspring.  

3.2.6  Inbreeding risk and avoidance 

In breeding populations of long-tailed tits, significant levels of relatedness have been 

identified between males and females within 600m (Leedale et al. 2018). For this to 

generate a potential risk of incest, mates must be selected from within this range. 

Spatial pairing range was measured as the distance between an individual’s natal nest 

and their first nest as a breeder, and was calculated separately for males (n = 230) and 

females (n = 109). 
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The inbreeding risk (IR) was quantified by calculating the mean rQG of breeders 

from known pairs to all their potential partners, excluding chosen partner, each year, 

under the pairing constraints of multiple mate choice models. The first null model 

assumes random mate choice across the study site, and includes all males and females 

present in the breeding population. However, the limited pairing range of long-tailed 

tits (see Results) means that spatially constricted null models are more appropriate. 

Therefore, a series of additional null models was generated restricting the pool of 

potential partners to opposite-sex birds within concentric rings at 300m, 600m, 900m, 

and further 300m increments up to 2100m. The distance between adults is based on 

the location of their first breeding attempt in a given year. In a small number of 

observations (<0.01%), an individual’s first recorded location in a given year was as 

a helper. This may be because they did not breed independently or they had a failed 

attempt outside the study area. In these cases, I used the location of the helped nest to 

calculate the distance between adults, as failed breeders rarely travel beyond 300m to 

provide help (Leedale et al. 2018).  

The assumption that all opposite-sex birds within a given distance are available 

as partners may also be inappropriate because long-tailed tits pair-bonds can persist 

across years (Hatchwell et al. 2000). I therefore generated a more restrictive set of 

models including only first-year, widowed or divorced opposite-sex breeders as 

potential partners within the defined spatial ranges. Under each model, IR was 

compared with the corresponding rQG observed. A lower level of rQG among observed 

pairs compared to the IR predicted by each model would suggest active kin 

discrimination during mate choice, no difference would indicate random mate choice, 

and an rQG that was higher that IR would suggest inbreeding preference. I also tested 

whether IR predicted pair rQG. Here, a positive relationship between IR and pair rQG 
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with a slope β ≈ 1 would indicate inbreeding tolerance, whereas a weak or no 

relationship (slope β < 1) would indicate inbreeding avoidance. 

To identify a plausible discrimination rule for incest avoidance, I compared 

pair rQG to IR under each model assuming: (i) random choice with respect to kinship 

(as above), (ii) avoidance of close kin (r = 0.5), and (iii) avoidance of close and distant 

kin (r = 0.25 and 0.5), by step-wise removal of close and distant kin from the pool of 

potential partners, for each focal individual. Close and distant kin were categorised 

using the genetic relatedness thresholds (see above).   

3.2.7  Statistical analysis 

Associations between heterozygosity and fitness traits (HFCs) were examined using 

generalised linear mixed effects models (GLMMs) in the R package lme4 (Bates et al. 

2015). Recruitment was modelled as a binary response variable with a binomial error 

distribution and logit link. The fixed effects were: HS, sex, to control for male-biased 

philopatry, fledge date (days since March 1st), because offspring fledging earlier in the 

year have a greater probability of recruitment (MacColl & Hatchwell 2002), and 

number of helpers at natal nest (five factor levels: 0-3+), as helper number has been 

shown to increase recruitment probability (Hatchwell et al. 2014). Hatching success 

was modelled as a continuous response variable with a Gamma error distribution and 

identity link. The fixed effects were: HS, lay date and female mass as a nestling. 

Probability of producing recruits was modelled as a binary response variable with a 

binomial error distribution and logit link. The fixed effects were: HS, sex, and fledgling 

sex ratio (proportion of male fledglings produced), to control for male philopatry. 

Direct fitness was modelled as a continuous response variable with a Gamma error 

distribution and inverse link, and with HS, sex, and fledgling sex ratio fitted as fixed 
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effects. In all HFC models, genetic brood was fitted as a random effect to avoid 

pseudoreplication of HS estimates and control for seasonal differences. In Recruitment 

models, fledge year was also fitted as a random effect, and in hatching success models, 

breeding year was also fitted as a random effect. For each fitness trait, all appropriate 

covariates were initially included in a full model and then dropped sequentially unless 

doing so significantly reduced the fit of the model (best-fit models were selected at the 

ΔAIC < 2 criterion). A Chi-squared test was used to determine whether the model 

incorporating HS plus any other retained covariates explained significantly more 

variance than a null model without HS included as a predictor. All effects were 

considered to be statistically significant if p < 0.05. Sample sizes are reported with the 

model outputs.  

 Analyses of the mating options available to males and females were conducted 

in separate mate choice models. As the same allele frequencies are used to calculate 

rQG across years, the rQG of unique dyads is consistent. However, due to demographic 

factors such as divorce, migration, birth, death, and dispersal, IR to breeders under 

each model will vary across years. I compared individual IR under each model to the 

observed rQG estimates using paired t-tests. When pairs persisted across years, the first 

year a pair was observed was used in the analysis. To test whether IR predicted pair 

rQG, I fitted linear mixed effects models (LMMs) with pair rQG as the response variable 

and IR under the pairing constraints of each model as the fixed effect. Models were 

fitted with Restricted Maximum Likelihood (REML) and both the focal bird ID and 

the ID of the chosen/potential partner were fitted as random effects. This model had 

the lowest Akaike information criterion (AIC) value when tested against other models 

including dyad ID and year as random effects and accounts for replicates of 

individuals and dyads.  
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To identify a putative decision rule for inbreeding avoidance, I fitted LMMs 

with REML to test for differences between pair rQG, and (i) IR under random mate 

choice, (ii) IR after the removal of close kin, and (iii) IR after the removal of close and 

distant kin, in males and females. When pairs persisted across years, the first year a 

pair was observed was used in the analysis. Year nested within focal bird ID were 

fitted as random effects. This model was the model with the lowest AIC value when 

tested against other models including dyad ID and chosen/potential partner ID as 

random effects and accounts for replicates of individuals and dyads.    

 

3.3  Results 

3.3.1  Relatedness estimates and inbreeding  

The rQG estimate of known first-order kin (r = 0.5) was 0.454 ± 0.149 (mean ± SD, n 

= 1211 dyads). For dyads known to be second-order kin (r = 0.25), rQG was 0.198 ± 

0.154 (mean ± SD, n = 515 dyads). The rQG estimate of all other dyads of known 

parentage (r < 0.25) was 0.002 ± 0.131 (mean ± SD, n = 54521 dyads). The distribution 

of rQG estimates among known first-order, second-order and non-kin are shown in Fig. 

3.1. Based on these distributions, I set a lower rQG threshold of 0.375 to approximate 

close kin (mean rQG ± SD = 0.503 ± 0.094, n = 1438) and 0.125 to approximate distant 

kin (mean rQG ± SD = 0.197 ± 0.059, n = 11979). The mean rQG of observed pairs was 

0.002 ± 0.123 (mean ± SD, n = 609). Based on the social pedigree, three out of 609 

pairs (0.5%) consisted of first or second-order relatives, and a further three pairings 

were between third-order kin (Appendix 5, Table A5.1). Genetic relatedness estimates 
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revealed a similar frequency of close inbreeding (2/609, 0.3%), but substantially more 

cases of distant inbreeding (96/609, 15.8%; Appendix 5, Table A5.2).  

 

 

Figure 3.1. The distribution of genetic relatedness estimates (rQG) among known first-

order (kinship = 0.5), second-order (kinship = 0.25) and non-kin ((kinship = 0) from 

the long-tailed tit social pedigree (1994-2016).  
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3.3.2  Inbreeding costs 

Recruitment was greater for males (χ² = 51.141, n = 1903, df = 1, p < 0.001) and 

increased with number of helpers present at the natal nest (χ² = 13.002, n = 1903, df = 

1, p < 0.001), but did not correlate with individual heterozygosity (χ² = 0.093, n = 

1903, df = 1, p = 0.761, Fig. 3.2a). There was also no significant correlation between 

heterozygosity and hatching success among recruits (χ² = 2.578, n = 30, df = 1, p = 

0.108, Fig. 3.2b). Among breeders that produced fledglings, the probability of 

producing recruits increased with number of fledglings (χ² = 5.876, n = 81, df = 1, p < 

0.05), but not heterozygosity (χ² = 3.482, n = 81, df = 1, p = 0.062, Fig. 3.2c). However, 

heterozygosity was positively associated with the direct fitness of individuals that 

produced at least one recruit (χ² = 13.127, n = 38, df = 1, p < 0.001, Fig. 3.2d). 

3.3.3  Inbreeding risk and null mate choice models 

The median pairing range was 523m for females (n = 109) and 393m for males (n = 

230), with a maximum mate searching distance (upper 95% CI)  of 1400m for females 

and 1200m for males (Fig. 3.3). Thus pairing typically occurs within the range of kin 

clustering (Leedale et al. 2018) and could lead to incest if mates are selected at random 

with respect to kinship. There was very little difference in inbreeding risk (IR) to either 

sex under null models including all opposite-sex birds as potential partners, and null 

models including only first-year, widowed and divorced birds (Fig. 3.4). However, 

this second model is more biologically accurate, and I focus on null models of pairing 

behaviour that restrict the pool of potential partners to first-year, widowed and 

divorced birds within 1200m in our analyses.    
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Figure 3.2. Relationship between standardised heterozygosity of microsatellite loci 

and (a) probability of recruitment (n = 1903), (b) hatching success in first-year females 

(n = 30), (c) probability of producing recruits in breeders that produced fledglings (n 

= 81), (d) direct fitness of breeders that produced recruits (n = 38). Solid lines represent 

model predictions, boxplots represent median (+IQR) heterozygosity of factor levels.  
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Figure 3.3. Frequency distribution and median (+IQR) pairing ranges of (a) male (n 

= 230) and (b) female (n = 109) long-tailed tit breeders, calculated as the distance 

between an individual’s natal nest and their first breeding attempt. 
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3.3.4  Inbreeding avoidance 

Combining data across years, mean rQG to a chosen partner was significantly lower 

than the predicted IR when females selected partners from within 300m (paired t-tests: 

t = 5.368, df = 520, p < 0.001), 600m (t = 2.923, df = 565, p < 0.01) and 900m (t = 

2.28, df = 571, p < 0.05); but not 1200m (t = 1.432, df = 573, p = 0.076; Fig. 3.4a). 

From the male perspective, mean rQG to their chosen partner was lower than predicted 

when mates were selected from females within 300m (t = 6.158, df = 506, p < 0.001), 

600m (t = 3.988, df = 563, p < 0.001), 900m (t = 2.888, df = 570, p < 0.01) and 1200m 

(t = 1.875, df = 572, p < 0.05; Fig. 3.4b).  

For females, I found that IR did not predict the observed level of pair rQG when 

assuming partners were selected from available birds within 300m (r = 0.031 ± 0.004, 

df = 545.3, t = 0.778, p = 0.437; Fig. 3.5a) or 600m (r = 0.093 ± 0.068, df = 598.8, t = 

1.358, p = 0.175; Fig. 3.5b). There was a positive relationship between IR and pair rQG 

within 900m (r = 0.229 ± 0.088, df = 597.6, t = 2.603, p < 0.01; Fig. 3.5c) and 1200m 

(r = 0.313 ± 0.096, df = 581.8, t = 3.27, p < 0.01; Fig. 3.5d). For males, IR did not 

predict pair rQG under models assuming mate choice occurs within 300m (r = 0.047 ± 

0.038, df = 537.6, t = 1.3, p = 0.194; Fig. 3.5e), 600m (r = 0.126 ± 0.069, df = 507.62, 

t = 1.825, p = 0.069; Fig. 3.5f) or 900m (r = 0.166 ± 0.095, df = 547.8, t = 1.734, p = 

0.083; Fig. 3.5g), although there was a positive relationship between IR and pair rQG 

within 1200m (r = 0.225 ± 0.011, df = 509.2, t = 2.047, p < 0.05; Fig. 3.5h). It should 

be noted that in those cases where there was a positive relationship between pair rQG 

and IR, the slope β was substantially < 1 (range: 0.031 – 0.313). 

To determine the kin discrimination rule that permits this level of inbreeding 

avoidance,  the observed rQG to a chosen partner was compared with IR after step-wise 
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removal of close (rQG ≥ 0.375) and distant (rQG ≥ 0.125) kin from the pool of potential 

partners at multiple pairing ranges. With the removal of close kin, the rQG of observed 

pairs did not differ from IR to females within all ranges examined (Table 3.1, Fig. 

3.6a). From a male perspective, the removal of close kin resulted in no difference 

between observed pair rQG and IR within 600-1200m, but pair rQG was lower than IR 

within 300m (Table 3.1, Fig. 3.6b). In contrast, when close and distant kin were 

removed, IR was lower than observed pair rQG at all ranges and for both sexes (Table 

3.1, Fig. 3.6). 
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Figure 3.4. Mean genetic relatedness of breeding pairs formed within increasing 

ranges (closed squares), and the expected relatedness if (a) females or (b) males 

selected mates at random (grey triangles), or from a restricted pool of first-year, 

widowed or divorced breeders (open circles) within each range. Expected relatedness 

is calculated as the mean relatedness of focal birds to all opposite-sex breeders 

(excluding chosen partner) available under each mate choice model. Error bars 

represent standard error around the mean. Numbers above the x axis represent the 

number of observed pairings (top = random mate choice, bottom = restricted pool of 

first-year, widowed or divorced breeders).   
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Figure 3.5. Mean genetic relatedness of breeding pairs in response to that predicted 

by null models of pairing behaviour, in which females select partners from within (a) 

300m, (b) 600m, (c) 900m and (d) 1200m; and males select partners from within (e) 

300m, (f) 600m, (g) 900m and (h) 1200m. Solid lines represent model predictions with 

standard error (dashed lines).  
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Table 3.1. Kin discrimination rules for inbreeding avoidance in female and male long-

tailed tits. Genetic relatedness to chosen partner (pair rQG) was compared with 

inbreeding risk (IR) under a series of mate choice models: random with respect to 

kinship; avoidance of close kin (rQG ≥ 0.375); and avoidance of close and distant kin 

(rQG ≥ 0.125) at multiple pairing ranges (m).  

sex mate choice model range  pair rQG IR df t p 

female random 300 0.005 0.046 1479 7.470 < 0.001  

  600 0.005 0.022 1683 4.107 < 0.001  

  900 0.005 0.017 1703 3.201 < 0.01  

  1200 0.005 0.012 1707 2.010 < 0.05  

 avoidance of close kin 300 0.005 0.009 1484 1.037 0.3 

  600 0.005 0.001 1684 -1.169 0.242 

  900 0.005 0.0004 1703 -1.073 0.284 

  1200 0.005 -0.001 1708 -1.400 0.162 

 avoidance of close and 

distant kin 

300 0.005 -0.039 1498 -6.478 < 0.001 

 600 0.005 -0.039 1684 -10.332 < 0.001 

 900 0.005 -0.038 1703 -10.828 < 0.001 

 1200 0.005 -0.038 1708 -11.267 < 0.001 

male random 300 0.008 0.057 1400 8.557 < 0.001 

  600 0.004 0.027 1683 5.401  < 0.001 

  900 0.004 0.02 1705 4.017 < 0.001 

  1200 0.004 0.014 1716 2.615 < 0.01 

 avoidance of close kin 300 0.008 0.02 1405 2.635 < 0.01 

  600 0.004 0.005 1683 0.115 0.909 

  900 0.004 0.004 1705 -0.135 0.893 

  1200 0.004 0.001 1716 -0.805 0.421 

 avoidance of close and 

distant kin 

300 0.008 -0.036 1422 -5.302 < 0.001  

 600 0.004 -0.037 1684 -9.639 < 0.001  

  900 0.004 -0.036 1707 -10.302 < 0.001  

  1200 0.004 -0.037 1716 -10.951 < 0.001  
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Figure 3.6. Mean genetic relatedness of breeding pairs formed within increasing 

ranges (black squares), and the expected relatedness if (a) females or (b) males: (i) 

selected mates at random with respect to kinship (open circles), (ii) avoided kin with 

rQG > 0.375 (grey triangles), and (iii) avoided kin with rQG > 0.125 (grey circles). 

Expected relatedness is calculated as the mean relatedness of focal birds to all 

opposite-sex breeders (excluding chosen partner) available under each mate choice 

model. Error bars represent standard error around the mean. Numbers above the x axis 

represent the number of observed pairings.   
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3.4  Discussion 

This study aimed to investigate the costs, risk and avoidance of inbreeding in 

cooperatively breeding long-tailed tits. My results show that reduced heterozygosity 

is associated with lower direct fitness (Fig. 3.2a), providing evidence of inbreeding 

depression, and a selective pressure for inbreeding avoidance to evolve. I also reveal 

that both males and females typically choose partners from within 600m of their natal 

nest (Fig. 3.3). As earlier studies on this species have demonstrated that opposite-sex 

kin remained clustered within this range during breeding (Leedale et al. 2018), this 

generates a potential inbreeding risk if mate choice is random with respect to kinship. 

However, over the 22 years that this population was monitored, I identified just six 

cases of pedigree inbreeding (f  ≥ 0.125), only one of which was between familiar, 

first-order kin. Moreover, the relatedness of breeding pairs was much lower than that 

expected if mates were selected randomly (Fig. 3.4 & Fig. 3.5). When close kin (rQG 

≥ 0.375) were removed from the pool of potential partners, the observed pair 

relatedness matched that expected under most models of random mate choice (Fig. 

3.6). Previous studies have also shown that long-tailed tits have an effective 

mechanism of kin recognition (Sharp et al. 2005), and my results indicate that long-

tailed tits avoid close kin during mate choice, thereby minimising the fitness costs 

associated with inbreeding.  

3.4.1  Inbreeding costs 

I found a significant correlation between heterozygosity and direct fitness, 

demonstrating a fitness cost to inbreeding in long-tailed tits. Heterozygosity did not 

correlate significantly with any other trait measured. This suggests that inbreeding in 

long-tailed tits has long-term fitness consequences. Inbreeding depression may be 
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masked in the short-term because external factors such as weather and the stage in the 

breeding season that reproductive events occur (e.g. onset of egg-laying) have 

disproportionately large impacts on offspring fitness in the early stages of life-history. 

As the influence of these external factors lessens later in life, individual quality 

becomes the most important determinant of fitness. This may explain why inbreeding 

depression in long-tailed tits appears delayed.  

Inbreeding depression can be masked in natural populations because a large 

proportion of offspring often die before being sampled, particularly if they are inbred 

(Taylor et al. 2010). The effects of heterozygosity on hatching success could be 

obscured by using the number of nestlings present in the nest on day 11 as a proxy for 

number of eggs hatched. Although nestling mortality is infrequent (Hatchwell et al. 

2004) some may have died before 11 days old, which could lead to minor 

discrepancies. Inbreeding depression is also likely to have an environmental 

component. For example, maternal care has been shown to buffer inbreeding 

depression in burying beetles Nicrophorus vespilloides (Pilakouta et al. 2015). 

Sociality and associated cooperative behaviours, such as the effects of helpers in long-

tailed tits, can increase offspring fitness and may mitigate some of the fitness 

consequences of inbreeding depression.  

Measuring inbreeding depression directly is challenging in populations with 

low levels of incest, but is often inferred using HFCs. HFCs are an effective proxy for 

inbreeding depression when the marker and fitness loci are in identity disequilibrium, 

(David et al. 1995), but two other processes can lead to non-random associations of 

alleles, that are not associated with inbreeding: linkage disequilibrium, and functional 

overdominance, whereby markers directly affect fitness when expressed (Chapman et 
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al. 2009). It is therefore crucial to assess the relationship between heterozygosity at 

microsatellite loci and inbreeding coefficients across the population before 

implementing HFCs as a measure of inbreeding depression. Here, the relationship 

between marker heterozygosity and f was -0.43. This confirms marker heterozygosity 

as a suitable proxy for inbreeding coefficient, and evidence of inbreeding depression 

has been detected in studies with similar correlations (Slate et al. 2004).  

3.4.2  Inbreeding risk 

Long-tailed tits do not exhibit delayed dispersal, but breed within kin neighbourhoods 

in which philopatric offspring are reproductive (Hatchwell et al. 2000). Despite the 

fitness costs associated with inbreeding, mates are selected from within a range that 

incurs an inbreeding risk. This suggests that there are compensating benefits of 

breeding close to relatives. Nest failure rate in long-tailed tits is high, yet failed 

breeders can acquire indirect fitness by increasing production of non-descendant kin 

(Hatchwell et al. 2014), so there are inclusive fitness benefits as well as costs from 

limited dispersal. Outside of the breeding season, failed breeders join nonbreeding 

flocks containing relatives, and although some flock switching occurs, dispersers often 

move with opposite-sex kin (Napper & Hatchwell 2016). Previous studies have 

suggested that although localised, sex-biased dispersal does not reduce the encounter 

rate between opposite-sexed kin enough to eliminate incest, this may facilitate the 

evolution of kin discrimination during mate choice, by ensuring that some non-kin are 

available as potential partners (Blyton et al. 2015). 

3.4.3  Inbreeding avoidance 

This study demonstrates very effective avoidance of inbreeding in long-tailed tits, 

despite the substantial risk. Although relatives tend to be clustered, the mean 
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relatedness between male and female breeders within 300m is just rQG = 0.038 ± 0.003 

(mean ± SE, n = 3947 dyads). This means that even if mates were selected randomly, 

the probability of incest would be fairly low. Yet, I found strong evidence of kin 

discrimination during mate choice, consistent with my finding that inbreeding carries 

fitness costs. But, the magnitude of inbreeding depression required to drive this 

mechanism also depends on the costs of inbreeding avoidance. Active mate choice is 

considered costly because the time taken searching for a suitable partner delays 

reproduction (Kokko & Ots 2006). This is important in species with temporal 

constraints on mate choice and/or a reliance on ephemeral resources. In long-tailed 

tits, breeding phenology is synchronised with caterpillar abundance, and offspring that 

fledge earlier in the season are more likely to survive (MacColl & Hatchwell 2002). 

Therefore, the length of the breeding season is strictly constrained (Hatchwell et al. 

2013). However, long-tailed tits spend the non-breeding season in winter flocks 

containing kin and non-kin (Hatchwell et al. 2001a) and immigrants continually move 

into these flocks throughout the non-breeding season (Napper & Hatchwell 2016), so 

the opportunity to find partners is less constrained and avoiding kin as mates need not 

delay reproduction. 

The second hypothesised cost of kin discrimination during mate choice is the 

evolution of a suitable mechanism. In the absence of spatial cues, kin recognition 

requires learning phenotypic cues to kinship by association, or an assessment of 

genetic similarity based on matching external phenotypic cues to an internal template 

(Reeve 1989; Sherman et al. 1997). Long-tailed tits have an effective means of kin 

recognition in cooperative contexts, permitting kin-biased helping when spatial cues 

are unreliable (Russell & Hatchwell 2001; Sharp et al. 2005). The same mechanism 

may be co-opted to enable inbreeding avoidance. Together, these behavioural traits 
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could drive the evolution of kin recognition during mate choice even when the risk of 

incest is relatively low.  

Our analyses show that the avoidance of close kin is sufficient to minimise 

inbreeding in long-tailed tits. This is consistent with previous studies demonstrating 

recognition of first-order kin (Leedale et al. 2018; Russell & Hatchwell 2001; Sharp 

et al. 2005), based on associative learning (Komdeur & Hatchwell 1999; Sharp & 

Hatchwell 2006). However, other studies suggest long-tailed tits can discriminate 

between kin of varying relatedness (Nam et al. 2010), which would require phenotype 

matching. Although phenotype matching is an attractive potential mechanism of 

inbreeding avoidance, because it allows individuals to recognise unfamiliar kin, 

association is the most likely mechanism of kin recognition in cooperatively breeding 

birds (Curry 1988; Hatchwell et al. 2001b; Komdeur 2004) and support for phenotype 

matching remains inconclusive, having been shown only in bell miners Manorina 

melanophrys (McDonald & Wright 2011). In our mate choice models, removing 

second-order kin as potential partners reduces the expected level of pair relatedness 

below that observed, suggesting long-tailed tits do not avoid second-order kin as 

mates. This is supported by previous work that shows that the proportion of help given 

to second-order kin is no different to the random expectation (Leedale et al. 2018).   

On the other hand, just two cases of breeding between second-order kin were 

identified from the social pedigree. However, identifying kin with r < 0.5 from social 

pedigrees can be problematic because there are a variety of relationships that can 

generate this level of kinship and detecting all possibilities requires more detailed and 

extensive family histories than are available for most individuals. In contrast, I 

identified 96 breeding pairs with relatedness estimates with rQG values ranging from 
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0.125-0.375, suggesting that pairing with distant kin does occur regularly. In 

cooperative species, the fitness costs associated with low rates of moderate inbreeding 

may be outweighed by the benefits of associating with kin post-dispersal (Jamieson et 

al. 2009; Puurtinen 2011).  

The observed relatedness of breeding pairs closely matches the pattern 

expected by females avoiding first-order kin, while males travelling within 300m to 

find a partner appear to do slightly better than expected in terms of inbreeding 

avoidance. Philopatry is male-biased, and males are more likely to encounter opposite-

sex kin than females travelling the same distance to find a mate. As their risk is slightly 

greater, and because males are much more likely to become helpers than females are 

(Hatchwell et al. 2004), it is possible that selection for kin recognition is stronger in 

males, particularly if this mechanism initially evolved for the kin-selected benefits of 

helping. However, observed relatedness is only slightly lower than that expected by 

avoidance of first-order kin and not low enough to suggest they are able to recognise 

more distant kin (Fig. 3.5a). In most animals, females invest more in a single 

reproductive event than males (Trivers 1972). Even in species with egalitarian parental 

care, females still invest more in egg production and incubation or gestation. 

Consequently, females are more selective than males when choosing partners 

(Bateman 1948). This may explain why the observed pattern of inbreeding closely 

matches female-focused mate choice models, and the apparent superior kin avoidance 

by males may in fact be female-driven. Indeed, theory predicts that females should 

avoid inbreeding more than males because of unequal reproductive investment (Parker 

1979; 2006). A study on red junglefowl Gallus gallus (Pizzari et al. 2004) found that 

females retained fewer sperm after mating with siblings, whereas males invested more 
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sperm in incestuous copulations when unrelated females were unavailable, supporting 

sex-specific inbreeding strategies that reflect asymmetry in parental investment. 

3.4.4  Summary 

In summary, dispersal patterns, demography and life-history traits interact to influence 

inbreeding strategy in natural populations. This study demonstrates that in long-tailed 

tits, inbreeding has deleterious fitness consequences and is alleviated by the avoidance 

of close kin as partners. Active mechanisms of kin discrimination that arise through 

kin-selection may be co-opted to effectively avoid inbreeding in systems where kin 

associations persist after dispersal. Further research on the mechanisms of kin 

recognition is required, but the pattern of avoidance indicates one similar to that 

identified previously (Sharp et al. 2005) and is likely to involve associative learning 

based on vocal cues.  
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Chapter 4 

Bioacoustic analysis of call variation in long-tailed 

tits 

 

Summary  

Vocalisations have been identified as the most common recognition cues in 

cooperatively breeding birds. In order for vocal recognition cues to be reliable, they 

must have greater inter-individual than intra-individual variation. In this chapter, 

bioacoustic techniques are used to investigate acoustic variation in the contact calls of 

long-tailed tits Aegithalos caudatus, a cooperative breeder known to use contact calls 

to recognise kin. I devise and implement suitable bioacoustic methods to accurately 

measure call similarity at the population level, in order to further investigate the role 

of call similarity in kin recognition. I assess two methods commonly used to measure 

acoustic similarity; spectrographic cross-correlation (SPCC) and dynamic time-

warping (DTW). DTW and SPCC showed similar effectiveness in describing acoustic 

variation within and between individuals. However, DTW is better able to cope with 

background noise and is computationally faster than SPCC. Repeatability tests based 

on specific acoustic parameters identified frequency characteristics as the most 

important source of individuality in long-tailed tit calls. These bioacoustic analyses 

create a baseline with which to investigate how call similarity correlates with 

relatedness, and facilitate the selection of meaningful sound parameters to further 

investigate kin recognition mechanisms in this species.  
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4.1  Introduction 

In most social animals, cooperation occurs before natal dispersal when the relatedness 

between cooperating individuals is predictably high (Hamilton 1964). In a small 

number of cooperative species, cooperation occurs post-dispersal, across extended 

networks of conspecifics varying in their relatedness (Dickinson & Hatchwell 2004). 

In such groups, the ability to recognise close relatives is crucial for maximising fitness 

(Komdeur & Hatchwell 1999; Griffin & West 2003; Cornwallis et al. 2009). 

Prolonged associations between opposite-sex relatives during adulthood can also 

increase inbreeding risk (Koenig & Haydock 2004), necessitating active kin 

discrimination during mate choice. Effective recognition mechanisms that allow 

individuals to assess the relatedness of conspecifics are therefore likely to be under 

strong selection in such species. 

Recognition mechanisms involve the production of external cues, the 

perception and comparison of these cues to an internal template, and the performance 

of discriminative behaviour depending on the perceived similarity between the cue 

and the template (Reeve 1989; Gamboa et al. 1991; Sherman et al. 1997). 

Vocalisations are the most common recognition cues in cooperatively breeding birds 

(Sharp & Hatchwell 2005; 2006; Açkay et al. 2013). Auditory signals can penetrate 

through or around obstacles and can be broadcast over long-distances (Catchpole & 

Slater 2008). Vocalisations are also metabolically relatively cheap to produce (Franz 

& Goller 2003; Ward et al. 2004) and large amounts of information can be transferred 

very quickly. These properties make vocalisations a highly efficient mechanism of 

communication in most bird species.  
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Bird vocalisations are traditionally grouped into songs and calls. Songs are 

generally long, complex sounds, which are, at least in part, sexually-selected traits 

involved in mate attraction and territory defence (Collins 2004). Calls tend to be 

shorter and simpler, and may serve a various functions, including maintaining group 

cohesion (Radford 2005), or alerting conspecifics to the presence of specific predators 

(Evans et al. 1993).  There is evidence of both songs and calls also being used as 

recognition cues (Payne et al. 1988; Price 1999; Sharp et al. 2005). Although there is 

huge variation in complexity, all vocalisations can be defined as a series of acoustic 

units occurring together in a specific pattern.  The structure is hierarchical, with the 

smallest units, elements, joining to form syllables, which themselves join to form 

phrases. Although vocalisations are species-specific (Marler 2004), most birds have 

more than one version of the same song or call. The number of different versions, or 

types, an individual can produce is called a repertoire. The hearing capabilities of most 

birds is between 1-5kHz and they are most sensitive at 2-3kHz (Catchpole & Slater 

2008). Although the frequency range of sound production varies greatly, it is predicted 

to closely match the audibility range (Catchpole & Slater 2008).  

Bioacoustics is the field of biology dedicated to analysing animal sounds. 

Analogue sound waves are digitised by an A/D converter, which converts a continuous 

signal into a numeric sequence by taking measurements at discrete time intervals. 

These continuous measurements are then converted to discrete integers (quantization). 

The rate at which these measurements are taken is called the sampling frequency 

(Clements 1998). The number of different integers that can be assigned to each 

continuous measurement is called the sample size (Clements 1998), and is measured 

in binary digits (bits). Therefore, the precision with which the original acoustic signal 

is digitally represented is determined by the sampling frequency and the sample size 
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(Bradbury & Vehrencamp 1998). Digitised sounds are graphically represented in a 

spectrogram; a plot of frequency against time with the darkness of the plot representing 

the amplitude (Catchpole & Slater 2008). Spectrograms are produced using fast 

Fourier transformation (FFT); the resolution of the image depends on the length of the 

FFT window. Thus, FFT length also affects the precision with which the signal is 

represented. Spectrograms are the standard way to illustrate animal sounds and an 

understanding of these principal techniques is important in all bioacoustic analyses.  

In this chapter, bioacoustic techniques will be used to investigate how 

vocalisations may be used as kin recognition cues in cooperatively breeding long-

tailed tits Aegithalos caudatus. Bird vocalisations have been studied in a variety of 

recognition contexts, including parent-offspring interactions (Beecher 1991), species 

recognition (Wolfenden et al. 2015), mate recognition (Berg et al. 2011), territorial 

contests (Fisher 1954) and kin or group-member recognition (Radford 2005; 

McDonald & Wright 2011). In long-tailed tits, vocalisations play a major role in in the 

coordination of cooperative behaviour (Hatchwell et al. 2001b; Sharp et al. 2005). In 

order to understand how vocalisations may be used as kin recognition cues, it is 

important to understand how calls vary within and between individuals. Effective 

recognition cues must have greater inter-individual than intra-individual variation 

(Sharp et al. 2006). That is, they must be highly stereotyped within individuals and 

variable between individuals, so that they convey information about identity. To 

achieve this, they are likely to be made up of several different trait components that 

vary in their pattern or combination profile from individual to individual. This specific 

complex of phenotypic traits is referred to as a signature system (Beecher 1982).  

Long-tailed tits have a small vocal repertoire of five main call types, but no territorial 

song (Cramp & Perrins 1993). Of these calls, previous studies have demonstrated 
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individuality in two long-tailed tit contact calls: the churr and the triple. Furthermore, 

Sharp et al. (2005) demonstrated that individuals can recognise kin using the churr 

alone, and that these calls are learned during development. To investigate call 

similarity as a cue to kinship, this project will involve comparisons of the churr and 

the triple across individuals of varying relatedness. It is therefore important to first 

determine the consistency of these calls within individuals over time. These 

bioacoustic analyses will create a baseline of variation in long-tailed tit contact calls 

with which to investigate how call similarity correlates with relatedness.  

I aim to devise and implement suitable bioacoustic methods to investigate call 

variation in long-tailed tits, focusing on churr and triple calls. The churr call is a short 

range contact call, often used by breeding adults and helpers at the nest. The triple call 

is a longer range contact call, and is used more often during group foraging, and by 

females during incubation to alert males that she has left, or is returning to the nest. 

Both calls are single-phrased; the churr call is made up of an initial syllable of one or 

two unique elements, followed by a second syllable comprising a single element that 

may be repeated several times. The triple call is a monosyllabic, comprising a single 

element that may be repeated several times. This distinction between elements and 

syllables is somewhat arbitrary and is used here purely to capture any differences in 

variation in the two distinct sections of the churr call specifically. Temporal variation 

relative to the rest of the call is often a good indicator of whether to split call units into 

elements or syllables (Catchpole & Slater 2008). Therefore, the separate syllables in 

the churr call can be viewed spectrographically as separated by a larger gap than the 

gap separating the two elements in the first syllable (Fig. 4.1).  
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Figure 4.1. Spectrogram of the long-tailed tit (a) churr call and (b) triple call. The churr call 

presented here is made up of two syllables, each comprising two elements. The triple call 

presented here is monosyllabic, comprised of three elements. The colour of the signal 

represents the relative amplitude, or energy across the call. 
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Initially, I assess two methods which describe how the overall acoustic 

structure of calls vary within and between individuals, by comparing the pairwise 

similarity coefficients between calls made by the same individual, and calls made by 

different individuals. After selecting the best method to compare call structure, I then 

quantify the amount of variation in churr and triple structure within and between adult 

long-tailed tits using a larger dataset. I also aim to determine which sound parameters 

explain this variation, by analysing the individual repeatability of calls based on 

multiple acoustic measurements. Certain call characteristics may differ in the extent 

to which they are individually repeatable and characteristics with particularly high 

repeatability may be particularly important for recognition. This bioacoustic analysis 

facilitates the selection of meaningful sound parameters for subsequent analysis of call 

similarity among relatives, in order to further investigate kin recognition mechanisms.   

 

4.2  Methods 

4.2.1 Study site and field methods 

Fieldwork was carried out on a population of 31-46 breeding pairs of long-tailed tits 

in a section of the Rivelin Valley, Sheffield, UK (53º38’N 1º56W) from 2015-2017. 

The site is approximately 2.5km2 and comprises a variety of suitable breeding habitat; 

predominantly deciduous woodland and scrub. The site also encompasses areas of 

open pasture, gardens and a golf course. The Rivelin Valley long-tailed tit population 

has been studied extensively, with an approximate breeding population of 25-72 pairs 

since data collection began in 1994. Almost all individuals (>95%) are marked with a 

metal BTO ring and a unique combination of two colour rings for field identification. 
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During each breeding season, which runs from March-June, all nests were 

located and breeding pairs were monitored closely. Any unringed adults immigrating 

into the study site were caught using mist nets and ringed. At this time, individuals 

were weighed and morphometric measurements were recorded. A sample of 5-30µl of 

blood was taken by brachial venepuncture under Home Office licence. Blood samples 

were genotyped at 17 polymorphic microsatellite loci to determine relatedness, as well 

as two sex markers. All nesting attempts were monitored every two days until fledging 

or nest failure. The onset of egg-laying, incubation period, hatching date and fledging 

or failure date were recorded. In the case of nest failure, the cause of failure and 

predation agent was recorded, and the study site was searched intensively for re-

nesting attempts. The majority of long-tailed tit nests are built 1-2m above ground in 

gorse, bramble or similar shrubs, but a small proportion of nests (~10%) are built high 

in deciduous and coniferous trees and were inaccessible.  For accessible nests, clutch 

size and the timing of breeding events were recorded directly by checking nests. For 

inaccessible nests, data was collected indirectly by behavioural observation of 

breeding activity. Nestlings were removed from accessible nests at 11 days old, ringed 

and processed in the same way as unringed adults before being replaced. All nests 

were watched for at least one hour every two days during the nestling period to record 

the identity of parents and helpers. For all visible nests, provisioning rates were also 

recorded.  Nest locations were recorded using GPS with an accuracy of 8m.  

4.2.2  Sound recordings 

Adult vocalisations were recorded using a Sennheiser ME67/K6 shotgun microphone 

fitted with a Rycote standard windjammer. Recordings were made onto a Roland R-

05 version 1.03 WAV/MP3 recorder with a 6GB SanDisk memory card, set to a 
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sample rate of 48kHz with WAV-16bit accuracy. The input settings were kept as thus: 

mono, required when using one external microphone; limiter off, to ensure high 

volume sounds were not cut out; high mic gain with an input level of 60db, to optimise 

the sensitivity of the microphone; and a low-cut frequency of 400Hz, to cut out 

extreme low frequency noise. Each year, sound recording began once the majority of 

first-attempt nests had been located. All recordings were made in approximately 

similar conditions between 06:00 and 18:00 BST. Birds were recorded at a distance of 

approximately 3-15m, to minimise the effects of sound degradation and reverberation. 

Birds were recorded at the nest and identified by their unique colour ring 

combinations. If more than one bird was present, vocalisations could be assigned to 

individuals by observing movements of the bill and throat feathers. All recordings 

were made during the breeding season because outside the breeding season, long-

tailed tits form large, noisy flocks, making it difficult to identify the caller with 

certainty. At the start of each recording, date, time, nest number and recording number 

were spoken into the microphone. Bird ID was dictated after each call. Bird ID is a 

three or four letter acronym based on the colour ring combination and orientation. For 

example, an individual with a white ring above a pink ring on the left tarsus has the 

ID: WPL. Only when the calling individual could be identified with absolute certainty 

was a recording of a call used. Most churr recordings were made during the nest-

building and provisioning stages of breeding, when breeding adults are the most vocal. 

Triple calls are more often made by females during incubation.  In total, 213 

recordings were made, containing 1116 churr calls from 98 individuals (mean ± SD = 

11.39 ± 10.24 per bird; range 1 – 42) and 400 triple calls from 57 individuals (mean ± 

SD = 7.02 ± 5.99 per bird; range 1 – 23). 
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4.2.3  Bioacoustic analysis 

All recordings were digitized with 16-bit accuracy at a sampling rate of 48kHz, 

matching the recorder settings. Spectrograms were produced in Avisoft SAS-Lab Pro 

version 4.52 (Avisoft Bioacoustics, Raimund Specht, Berlin, Germany) using a 256-

point FFT length with a Hamming window, 100% frame size and 50% window 

overlap. This gave a frequency resolution of 188Hz and a time resolution of 2.7ms. 

The sampling frequency was converted to 22.05 KHz to make the recordings more 

manageable and the calls easier to visualise spectrographically. If the sampling 

frequency is too low, distortion of frequency components, or aliasing, can occur. The 

highest frequency that can be digitised without aliasing is called the Nyquist 

frequency, and is equal to half the sampling frequency (Bradbury & Vehrencamp 

1998). Therefore, although higher sampling frequencies can provide more 

information, the optimum sampling frequency is usually considered to be twice that 

of the maximum frequency of the signal. As long-tailed tit calls range from 2-9kHz, 

re-sampling the recordings to 22.05kHz does not affect the signal. All recordings were 

analysed spectrographically to assess call quality. Only calls which were followed 

immediately by bird ID were considered. Some background noise was removed by 

setting a high-pass filter of 1.5 kHz.  Recordings with high levels of background noise 

or calls masked by other vocalisations were excluded from the analysis.  

In order to maximise the amount of useable data whilst still ensuring robust 

results, a subset of these data were tested for individual repeatability. If long-tailed tit 

calls are repeatable, all calls can be used in subsequent analysis. To determine the 

minimum number of calls required to capture individual variation, the cumulative 

repertoire size (number of distinct calls, based on number of syllables) was plotted 

against the number of calls considered to that point, for 100 churr calls, 10 from each 
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of 10 birds recorded on at least two days in 2015. The resulting plots generally levelled 

off before the number of calls reached six (mean ± SD calls needed to reach asymptote 

= 5.5 ± 2.89, range 2-10). Therefore, repeatability tests were carried out on all calls 

from individuals with recordings of at least six calls from at least two days between 

2015-2017: 943 churr calls from 54 individuals (mean ± SD = 17.46 ± 10.02 per bird; 

range 6 – 42) and 263 triple calls from 22 individuals (mean ± SD = 11.95 ± 5.38 per 

bird; range 6 – 23).  Within-individual repeatability was tested using two approaches. 

The first approach compared within and between-individual variation in overall call 

structure using spectrographic cross-correlation (SPCC) and dynamic time-warping 

(DTW). The second tested the repeatability of specific vocal characteristics, to 

determine which are responsible for call variation. Those with the highest repeatability 

value may be used for recognition and will be considered in future analyses.  

4.2.4  Variation in acoustic structure 

Spectrographic cross-correlation (SPCC) was devised by Clark et al. (1987) as an 

objective method to quantitatively measure the degree of similarity between 

spectrograms. Rather than assessing sounds based on acoustic parameters selected a 

priori, SPCC compares the overall sound structure, by integrating all parameters and 

weighing them equally (Janik 1999). SPCC cross correlates spectrograms frame-by-

frame, calculating a correlation coefficient at each point of overlap. The peak 

coefficient for every pairwise comparison of spectrograms is stored in a matrix. The 

peak value of a spectrogram correlation provides a measure of one type of similarity 

between two signals, with a higher peak correlation equivalent to greater similarity. 

Single calls were converted from WAV files in to ASCII coded text files using Avisoft 

SAS-Lab Pro and cross-correlations were carried out using Avisoft Correlator version 

3.1 (Avisoft Bioacoustics, Raimund Specht, Berlin, Germany). 
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Dynamic time warping (DTW) is a distance-based programming technique 

used to search for an optimal alignment of two time-series, or signals. The algorithm 

calculates a distance score between two signals based on certain acoustic features 

(Lachlan 2007), with greater distance meaning lower similarity. This has been 

implemented for use in bioacoustics in the program Luscinia version 2.16.10.29.01 

(Robert Lachlan, Queen Mary University of London, UK). All calls were uploaded in 

to a library in Luscinia in WAV format and the signal of interest was highlighted from 

the sonogram and multiple acoustic measurements taken (Fig. 4.2). The acoustic 

features used to calculate DTW distance score were selected and weighted as follows: 

Time = 1, fundamental frequency = 2, change in fundamental frequency = 1, change 

in peak frequency = 1 (Fig. 4.2, Table 4.1). These settings generated a DTW algorithm 

which correctly matched visually similar calls, assessed in Luscinia using a 

dendrogram and multidimensional scaling plot. 

 

Figure 4.2. Acoustic parameters of the long-tailed tit churr call, measured using Luscinia 

(Lachlan, 2007). The churr call comprises two syllables (red bars) of multiple elements (green 

signal). Signals are traced from the sonogram semi-automatically and parameters such as: 

fundamental frequency (brown), peak frequency (blue), Weiner entropy (purple) and 

bandwidth (dark green), are measured automatically and saved into the database for analysis.  
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Table 4.1. Definitions of the acoustic parameters used to analyse long-tailed tit calls. 

Frequency parameters are the mean of multiple measurements taken at five time points 

across the signal.  

 

Call Acoustic Parameter Definition 

Churr Total call duration (s) Time between start and end of the signal. 

 Element gap/length Ratio of between-element gap to total length 

of elements in the signal. 

 Fundamental frequency (Hz) Frequency of pure-tone signals and common 

denominator frequency of harmonic signals. 

 Peak frequency (Hz) Frequency of maximum intensity. 

 Max. fundamental frequency (Hz) Maximum fundamental frequency across the 

signal. 

 Max. peak frequency (Hz) Maximum peak frequency across the signal. 

 Change in peak frequency (Hz) The change in peak frequency across the 

signal.  

 Change in fundamental frequency (Hz) The change in fundamental frequency across 

the signal. 

 Weiner Entropy (pure number) Uniformity of the signal (noisiness). 

 Bandwidth (Hz) Frequency difference between the first and 

final maximum intensity of the signal. 

 S1 duration (s) Time between start and end of syllable 1. 

 S1 fundamental frequency (Hz) Fundamental frequency of syllable 1. 

 S1 peak frequency (Hz) Peak frequency of syllable 1. 

 S1 max. fundamental frequency (Hz) Maximum fundamental frequency across 

syllable 1. 

 S1 max. peak frequency (Hz) Maximum peak frequency across syllable 1. 

 S2 duration (s) Time between start and end of syllable 2. 

 S2 fundamental frequency (Hz) Fundamental frequency of syllable 2. 

 S2 peak frequency (Hz) Peak frequency of syllable 2. 

 S2 max. fundamental frequency (Hz) Maximum fundamental frequency across 

syllable 2. 

 S2 max. peak frequency (Hz) Maximum peak frequency across syllable 2. 

 S2 repeats Number of element repetitions in syllable 2. 

 S2/S1 duration (s) Ratio of syllable 2 length to syllable 1 length. 

Triple Total call duration (s) Time between start and end of signal. 

 Element gap/length Ratio of between-element gap to total length 

of elements. 

 Element repeats Number of elements in signal  

 Fundamental frequency (Hz) Frequency of pure-tone signals and common 

denominator frequency of harmonic signals. 

 Peak frequency (Hz) Frequency of maximum intensity. 

 Max. fundamental frequency (Hz) Maximum fundamental frequency across 

signal. 

 Max. peak frequency (Hz) Maximum peak frequency across signal. 

 Weiner Entropy (pure number) Uniformity of the power spectrum (noisiness). 

 Bandwidth (Hz) Frequency difference between the first and 

final maximum intensity of the signal. 

 Change in peak frequency (Hz) The change in peak frequency across the 

signal.  

 Change in fundamental frequency (Hz) The change in fundamental frequency across 

the signal. 
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SPCC and DTW analyses were first carried out on a subset of calls from 2015; 

churr: n = 13 birds, 143 calls (mean ± SD = 11 ± 2.48 per bird; range 6 – 15), triple: n 

= 3 birds, 34 calls (mean ± SD = 11.33 ± 5.13 per bird; range 7 – 17). Pairwise 

comparisons of individual calls generated a matrix of correlation coefficients and a 

matrix of distance scores for each pair of calls in the subset. To compare call similarity 

within and between individuals, the matrices were converted into a pairwise 

comparison table and each row was assigned a value according to whether the 

comparison was made within individuals (0) or between individuals (1). The 

correlation coefficients and distance scores were aggregated and mean call similarity 

within and between individuals was compared. The most suitable method was then 

used to determine the degree of call variation within and between individuals, with a 

larger subset of data from 2015-2017 (churr: n = 54 birds, 907 calls, triple: n = 23 

birds, 246 calls). As this analysis contains calls from across years, the measures of call 

similarity were also compared within and between years. 

4.2.5  Repeatability of call parameters 

In order to assess which sound parameters explain variation in call structure, further 

analysis compared the subset of data from 2015-2017 (churr: n = 907 calls from 54 

birds, triple: n = 246 calls from 23 birds) based on multiple acoustic measurements. 

For every call, a range of acoustic parameters were measured in Luscinia (Fig. 4.2, 

Table 4.1). Amplitude parameters were excluded from the analysis, as amplitude is 

strongly influenced by external factors such as background noise, elevation and 

distance (Klump 1996). As well as being difficult to control for in the field, the 

influence of external factors on amplitude may also make call amplitude unreliable for 

recognition (Catchpole & Slater 2008).  Each call was measured hierarchically: by 
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element, by syllable and by call. Not all levels of resolution may be appropriate for 

analysing call similarity in the context of recognition; it is unlikely that long-tailed tits 

assess calls element by element. However, for the churr call, it is possible that one 

syllable is more individually distinctive, and another more context dependent. 

Therefore, certain characteristics were tested for repeatability within churr call 

syllables (Table 4.1).   

4.2.6  Statistical analysis   

Statistical analysis was carried out using R version 3.5.0 (R Core Team 2018). Overall 

similarity in call structure within and between individuals was compared using 

generalised linear mixed models (GLMM), with either the SPCC correlation 

coefficient or the DTW distance score as the dependent variable, comparison types 

(within or between individuals and within or between years) as fixed effects, bird ID 

1 and bird ID 2 as nested random effects, and year 1 and year 2 as nested random 

effects. Having ID as a random effect controls for pseudoreplication in interrelated 

data, where values are derived from comparing all possible pairs of a set of individuals. 

The effect of year can also be quantified. GLMMs allow for large differences in 

sample size. This is necessary in such analyses where there are many more between 

individual than within individual comparisons. Correlation coefficients and distance 

scores were analysed using GLMMs fitted by maximum likelihood (Laplace 

approximation) and the Gamma error family with a log link function in the R  package, 

lme4 (Bates et al. 2008). Repeatability tests were carried out to test for individual 

consistency and to identify specific call characteristics with particularly high 

repeatability. Individual repeatability based on call parameters was carried out using 

multiple GLMMs in the R package, rptR (Nakagawa & Shielzeth 2010; Shielzeth et 
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al. 2011). The repeatability models were built with each sound parameter as the 

dependent variable, sex as a fixed effect and bird ID and year as random effects. Year 

and ID were set as grouping variables, allowing for effects of year and ID to be tested. 

Gaussian models were used to test the repeatability of continuous variables and 

Poisson models were used to test the repeatability of count variables. To test for sex 

differences in call characteristics, GLMMs were built with each sound parameter as 

the dependent variable, sex as a fixed effect and bird ID and year as random effects, 

with the lmerTest function (Kuznetsova et al. 2017) to report the significance of 

variation attributed to fixed effects.  

 

4.3  Results 

4.3.1  Variation in acoustic structure  

To determine the best method to analyse within-individual repeatability of long-tailed 

tits calls, SPCC and DTW were carried out on a subset of calls from individuals with 

recordings of at least 6 calls from at least two days in 2015 (churr: n = 13 birds, 143 

calls; triple: n = 3 birds, 34 calls). Visual inspection of spectrograms suggested that 

churr and triple calls from the same individual were more similar in acoustic structure 

than those of different individuals (Fig. 4.3). The mean correlation coefficient from 

SPCC for within-individual comparisons was significantly higher than that for 

between-individual comparisons of churr calls (GLMM, estimate = 0.27 ± 0.04, 

residual df = 10148, t = 6.3, p < 0.001, Fig. 4.4a) and triple calls (GLMM, estimate = 

0.4 ± 0.19, residual df = 556, t = 2.12, p < 0.05, Fig. 4.4b). The mean distance score 

from DTW for within-individual comparisons was lower than that for between-

individual comparisons of both churr calls (GLMM, estimate = -0.33 ± 0.08, residual 
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df = 10726, t = -3.98, p < 0.001, Fig. 4.5a,) and triple calls (GLMM, estimate = -0.68 

± 0.28, residual df = 556, t = -2.46, p < 0.05, Fig. 4.5b). 

The DTW and SPCC analyses showed similar effectiveness for describing 

variation in the acoustic structure of churr and triple calls. However, DTW may be 

more suitable than SPCC for measuring call similarity for several reasons. Firstly, as 

the DTW analysis is carried out on signals selected from the sonogram, rather than 

ASC11 codes converted from raw WAV files, background noise is not incorporated 

into the analysis. Secondly, the sonogram library, signal measurements and DTW are 

stored and computed within the Luscinia program, providing an organised method of 

bioacoustic analysis which can be visualised and updated easily. Furthermore, DTW 

is computationally fast. To analyse a very large number of calls using SPCC may take 

several weeks, but may take less than an hour using DTW. Finally, the DTW is 

flexible, allowing the user to modify the DTW algorithm by manual selection and 

weighting of certain acoustic parameters based on previous assumptions or exploration 

of the data using dendrograms and multi-dimensional scaling plots.  

Dynamic time warping was therefore selected as the most appropriate method 

for measuring variation in the acoustic structure of churr and triple calls within and 

between individual long-tailed tits. Within-individual repeatability of calls was 

analysed further using a larger subset of calls from individuals with recordings of at 

least 6 calls from at least two days in 2015-2017 (churr: n = 54 birds, 907 calls; triple: 

n = 23 birds, 246 calls). The mean distance score for within-individual comparisons 

was lower than that for between-individual comparisons of both churr calls (GLMM, 

estimate = -0.4 ± 0.04, residual df = 411770, t = -9.76, p < 0.001; Fig. 4.6a,) and triple 

calls (GLMM, estimate = -0.55 ± 0.09, residual df = 30620, t = -5.65, p < 0.001; Fig. 
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4.6b). Although an interaction between the years in which the calls being compared 

were recorded accounted for a small amount of the variation among calls (variance ± 

standard deviation = churr: 0.002 ± 0.05; triple: 0.015 ± 0.01), whether comparisons 

were made between calls recorded in the same or different years did not affect DTW 

distance score (churr: GLMM, estimate = -0.069 ± 0.05, df = 411770, t = -1.21, p = 

0.23; triple: GLMM, estimate = -0.33 ± 0.2, df = 30620, t = -1.67, p = 0.1).  

 

 

                                        

 

Figure 4.3. Spectrograms of two churr calls from each of two adult long-tailed tits: (a) RwdL 

and (b) NGR; and two triple calls from each of two adult long-tailed tits: (c) DDL and (d) 

YGR. 

 

  

(a) (b) 

(c) (d) 



113 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Similarity of (a) the churr call (n = 143 calls from 34 birds) and (b) the triple call 

(n = 34 calls from 3 birds) within and between individual long-tailed tits, measured in 

correlation coefficients generated by SPCC. 
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Figure 4.5. Dissimilarity of (a) the churr call (n = 143 calls from 34 birds) and (b) the triple 

call (n = 34 calls from 3 birds) within and between individual long-tailed tits, measured in 

distance score generated by DTW. 
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Figure 4.6. Dissimilarity of (a) the churr call (n = 907 calls from 54 birds) and (b) the triple 

call (n = 246 calls from 23 birds) within and between individual long-tailed tits, measured in 

distance score generated by DTW. 
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4.3.2  Repeatability of call parameters 

Repeatability tests were carried out in order to quantify the amount of variation in 

churr and triple call parameters that could be attributed to the identity of the caller. 

This analysis used the subset of calls from 2015-2017 (churr: n = 54 birds, 907 calls, 

triple: n = 23 birds, 246 calls). Both the churr call and the triple call were repeatable 

within individuals based on all except one of the parameters tested, with frequency 

based parameters showing higher individual repeatability than temporal parameters 

(Table 4.2). Based on the frequency parameters, the first syllable of the churr call 

showed higher individual repeatability than the second syllable, with the frequency 

parameters of the triple call showing the highest individual repeatability overall. In 

both the churr and the triple, there was no effect of recording year (Table 4.3) or sex 

(Table 4.4) on any of the parameters. 
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Table 4.2. Repeatability of long-tailed tit call parameters based on caller identity (churr calls: 

n = 907 calls from 54 birds; triple calls: n = 246 calls from 23 birds).  

Call Parameter R ± SE CI p 

Churr Total call duration (s) 0.33 ± 0.05 0.22, 0.42 < 0.001 

 Syllable gap/length 0.25 ± 0.05  0.16, 0.34 < 0.001 

 Syllable 1 duration (s) 0.39 ± 0.06 0.27, 0.48 < 0.001 

 Syllable 2 duration (s) 0.36 ± 0.05 0.24, 0.46 < 0.001 

 Syllable 2/syllable 1 duration (s)  0.32 ± 0.05 0.21, 0.41 < 0.001 

 Syllable 2 repeats 0.07 ± 0.02 0.02, 0.09 < 0.001 

 Fundamental frequency (Hz)  0.29 ± 0.05 0.19, 0.38 < 0.001 

 Peak frequency (Hz) 0.27 ± 0.05 0.17, 0.35 < 0.001 

 Max. fundamental frequency (Hz) 0.5 ± 0.07 0.35, 0.61 < 0.001 

 Max. peak frequency (Hz) 0.5 ± 0.07 0.35, 0.61 < 0.001 

 Bandwidth (Hz) 0.21 ± 0.05 0.13, 0.3 < 0.001 

 Weiner Entropy 0.19 ± 0.04 0.11, 0.27 < 0.001 

 Syllable 1 fundamental frequency (Hz) 0.45 ± 0.06 0.33, 0.55 < 0.001 

 Syllable 1 peak frequency (Hz) 0.45 ± 0.06 0.31, 0.55 < 0.001 

 Syllable 1 max. fundamental frequency (Hz) 0.49 ± 0.07  0.35, 0.6 < 0.001 

 Syllable 1 max. peak frequency (Hz) 0.49 ± 0.07  0.35, 0.6 < 0.001 

 Syllable 2 fundamental frequency (Hz) 0.31 ± 0.05 0.2, 0.41 < 0.001 

 Syllable 2 peak frequency (Hz) 0.27 ± 0.05 0.18, 0.36 < 0.001 

 Syllable 2 max. fundamental frequency (Hz) 0.45 ± 0.07 0.31, 0.58 < 0.001 

 Syllable 2 max. peak frequency (Hz) 0.43 ± 0.08 0.28, 0.57 < 0.001 

Triple Total call duration (s) 0.31 ± 0.09 0.12, 0.47 < 0.001 

 Syllable gap/length 0.2 ± 0.07 0.05, 0.35 < 0.001 

 Element repeats 0 ± 0.01 0, 0.02 1 

 Fundamental frequency (Hz)  0.69 ± 0.07 0.52, 0.78 < 0.001 

 Peak frequency (Hz) 0.70 ± 0.09 0.48, 0.81 < 0.001 

 Maximum fundamental frequency (Hz) 0.74 ± 0.08 0.56, 0.85 < 0.001 

 Maximum peak frequency (Hz) 0.71 ± 0.08 0.51, 0.82 < 0.001 

 Bandwidth (Hz) 0.2 ± 0.08 0.06, 0.35 < 0.001 

 Weiner Entropy 0.22 ± 0.08 0.06, 0.37 < 0.001 
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Table 4.3. Within-year repeatability, or effect of year calls were recorded, on variation in 

long-tailed tit call parameters (n = 907 churr calls and 246 triple calls over 3 years).  

Call Parameter R ± SE CI p 

Churr Total call duration (s) 0 ± 0.07 0, 0.06 1 

 Syllable gap/length 0 ± 0.01  0, 0.04 1 

 Syllable 1 duration (s) 0 ± 0.02 0, 0.07 1 

 Syllable 2 duration (s) 0 ± 0.02 0, 0.06 1 

 Syllable 2/syllable 1 duration (s)  0 ± 0.003 0, 0.01 1 

 Syllable 2 repeats 0.02 ± 0.04 0, 0.12 0.37 

 Fundamental frequency (Hz)  0.04 ± 0.05 0, 0.16 0.39 

 Peak frequency (Hz) 0.03 ± 0.04 0, 0.14 0.35 

 Max. fundamental frequency (Hz) 0.01 ± 0.7 0, 0.22 0.4 

 Max. peak frequency (Hz) 0.07 ± 0.08 0, 0.27 0.4 

 Bandwidth (Hz) 0.05 ± 0.05 0, 0.18 0.17 

 Weiner Entropy 0 ± 0.01 0, 0.04 1 

 Syllable 1 fundamental frequency (Hz) 0.01 ± 0.03 0, 0.11 0.45 

 Syllable 1 peak frequency (Hz) 0.02 ± 0.04 0, 0.13 0.43 

 Syllable 1 max. fundamental frequency (Hz) 0.06 ± 0.07 0, 0.25 0.38 

 Syllable 1 max. peak frequency (Hz) 0.07 ± 0.08 0, 0.26 0.4 

 Syllable 2 fundamental frequency (Hz) 0.01 ± 0.03 0, 0.1 0.49 

 Syllable 2 peak frequency (Hz) 0.01 ± 0.02 0, 0.07 0.54 

 Syllable 2 max. fundamental frequency (Hz) 0.1 ± 0.1 0, 0.32 0.37 

 Syllable 2 max. peak frequency (Hz) 0.12 ± 0.11 0, 0.36 0.37 

Triple Total call duration (s) 0.04 ± 0.05 0, 0.16 0.18 

 Syllable gap/length 0.06 ± 0.07 0, 0.25 0.08 

 Element repeats 0 ± 0.01 0, 0.02 1 

 Fundamental frequency (Hz)  0.01 ± 0.03 0, 0.09 0.25 

 Peak frequency (Hz) 0.01 ± 0.03 0, 0.11 0.23 

 Maximum fundamental frequency (Hz) 0.02 ± 0.03 0, 0.11 0.14 

 Maximum peak frequency (Hz) 0.02 ± 0.04 0, 0.14 0.13 

 Bandwidth (Hz) 0.11 ± 0.1 0, 0.35 0.06 

 Weiner Entropy 0.08 ± 0.09 0, 0.31 0.09 
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Table 4.4. Sex differences in churr (n = 907 calls from 54 birds) and triple (n = 246 calls from 

23 birds) call parameters, tested using Gaussian (continuous data) or Poisson (count data) 

GLMMs. 

Call Parameter Est.  df t / z   p 

Churr Log Total call duration (s)  -0.03  48.91 -0.92 0.36 

 Syllable gap/length -0.03  50.96 -1.64 0.11 

 Log Syllable 1 duration (s)  -0.01  49.59 -0.5 0.62 

 Syllable 2 duration (s)  0.04  50.46 1.24 0.22 

 Syllable 2/syllable 1 duration (s)  0.04  51.6 1.43 0.16 

 Syllable 2 repeats -0.05  - -0.99 0.32 

 Fundamental frequency (Hz)  -2.89  49.81 -0.04 0.97 

 Peak frequency (Hz) -3.782  49.55 -0.06 0.95 

 Max. fundamental frequency (Hz) -36.26 51.10 -0.47 0.64 

 Max. peak frequency (Hz) -31.93 51.15 -0.43 0.67 

 Bandwidth (Hz) -64.28  50.95 -1.65 0.11 

 Weiner Entropy (log) 0.01  50.03 1.89 0.06 

 Syllable 1 fundamental frequency (Hz) -22.21  52.64 -0.29 0.78 

 Syllable 1 peak frequency (Hz) -27.26  52.64 -0.35 0.73 

 Syllable 1 max. fundamental frequency (Hz) -38.35 51.09 -0.49 0.62 

 Syllable 1 max. peak frequency (Hz) -30.81 51.13 -0.41 0.68 

 Syllable 2 fundamental frequency (Hz) -24.46 51.06 -0.33 0.74 

 Syllable 2 peak frequency (Hz) -33.32 50.93 -0.49 0.62 

 Syllable 2 max. fundamental frequency (Hz) -35.22 51.45 -0.45 0.66 

 Syllable 2 max. peak frequency (Hz) -55.37 51.42 -0.73 0.47 

Triple Total call duration (s) -41.06 19.06 1.36 0.19 

 Syllable gap/length -0.01 18.56 -0.33 0.75 

 Element repeats 0.01 - 0.05 0.96 

 Fundamental frequency (Hz)  48.71 19.48 0.62 0.54 

 Peak frequency (Hz) 49.63 19.52 0.64 0.53 

 Maximum fundamental frequency (Hz) 32.61 19.8 0.3 0.77 

 Maximum peak frequency (Hz) 26.82 19.77 0.26 0.8 

 Bandwidth (Hz) 1.59 17.85 0.1 0.92 

 Weiner Entropy 0.17 19.59 0.67 0.51 
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4.4  Discussion  

4.4.1  Individuality of long-tailed tit calls  

The results of the SPCC analysis showed that churr calls made by the same individual 

are more similar in acoustic structure than those made by different individuals, 

consistent with previous findings (Sharp & Hatchwell 2005). SPCC is a powerful tool 

for comparing the overall similarity of sounds as it incorporates all parameters of the 

spectrogram into the analysis, providing a comprehensive overview of acoustic 

structure. However, there are limitations. The correlation values are sensitive to the 

fast Fourier transformation (FFT) length used to generate the spectrograms (Giret et 

al. 2011) and small differences in duration and modulation rate (Meliza et al. 2013). 

Increased background noise may also decrease correlation values (Janik 1999). A 

number of calls used in this analysis contain some level of background noise, which 

may explain why in this population, SPCC correlation values of within individual 

comparisons have a mean of just 0.54. However, even with this seemingly low 

similarity value, within individual comparisons had significantly higher correlation 

values than between individual comparisons. SPCC did not detect a significant 

difference in similarity among triple calls made by the same individual compared with 

calls made by different individuals, even though the difference in mean correlation 

coefficients was greater than in the churr call, but this was probably due the small 

sample size.  

SPCC, in conjunction with multivariate analyses such as multi-dimensional 

scaling or more recently, principal coordinates analysis (Cortopassi & Bradbury 2000; 

Berg et al. 2011) is a commonly used method in studies of this kind, but DTW may 

offer a more sophisticated solution. DTW analysis showed that both churr and triple 
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calls made by the same individual are more similar in acoustic structure than those 

made by different individuals. This approach may be more suitable than SPCC for the 

reasons already discussed, and will be used in all subsequenct comparisons of overall 

call structure. The resolution of comparative analyses can also be defined in Luscinia, 

without the need to re-measure or aggregate call similarity data manually. That is, 

DTW allows the user to select whether comparisons should be made at the level of the 

syllable, call, individual or group, providing a fast and simple way to compare call 

similarity between individuals and groups of individuals, which can then be compared 

to a hypothesis matrix of the same dimensions (e.g. kin or non-kin), or a matrix 

comprising correlation coefficients, such as genetic relatedness estimates.   

However, in contrast to SPCC, mean DTW score is fairly low both within and 

between individual birds, indicative of churr and triple calls being very similar across 

the population. These values were similar under various combinations of parameter 

weightings tested. Therefore, although long-tailed tit calls are individually distinct, 

differences between individuals are likely to be small and subtle. An overall measure 

of similarity may not be sensitive enough to capture and quantify these differences at 

the fine scale required to correlate with genetic relatedness or kinship. Therefore, 

analyses of overall call similarity were followed by an analysis of specific call 

parameters, to determine which sound characteristics shape similarity patterns. 

Although selecting a finite number of pre-determined parameters could cause 

potentially important sound features to be missed and may be subject to researcher 

bias, used in conjunction with visual inspection of sonograms and more objective 

analyses such as DTW, this method provides a comprehensive bioacoustic analysis 

with which to compare call similarity and has been implemented in numerous 

comparable studies (e.g. Yasukawa et al. 2008; Keen et al. 2013, Dowling et al. 2016). 
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Parameter analyses indicated that both churr calls and triple calls made by the same 

individual were highly repeatable over time. These findings are again consistent with 

earlier studies on a different population of long-tailed tits using alternative methods 

(Sharp & Hatchwell 2005). Together, these results confirm that long-tailed tit calls are 

individually distinct and highly repeatable.  

4.4.2  Call characteristics for kin recognition  

Parameter analyses on the larger dataset from 2015-2017 indicated that long-tailed tit 

churr calls were significantly repeatable based on all sound characteristics measured, 

and that the triple calls were also significantly repeatable based on all except one of 

the sound characteristics measured, supporting the results of the DTW analysis. 

Although this makes excluding any sound characteristics for kin recognition difficult, 

this is perhaps unsurprising. One explanation for this uniformly high repeatability is 

that some of the sound parameters are correlated and measure similar aspects of the 

call. For example, call duration was separated into the three temporal parameters to 

identify which aspects of the call influence its duration, i.e. element length, the number 

of elements or the pauses between elements. The two measurements of frequency, 

peak frequency and fundamental frequency, are also very similar, particularly in 

syllables without multiple harmonics (such as these). Most studies of bird 

vocalisations identify fundamental frequency as one of the most informative 

characteristics of a sound (Riede et al. 2006), and this quantifies what is perceived as 

pitch. Peak frequency calculates the frequency of highest relative amplitude, 

indicating where most of the acoustic energy is concentrated across the call. One way 

to statistically identify highly correlated parameters would be to compare individual 

variation in one parameter with variation in another. A strong relationship may 
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indicate collinearity and highlight any redundant measurements. However, individual 

recognition may not be based on one or two sound parameters, but many subtle 

characteristics may instead make up an individual’s signature (Beecher 1982), perhaps 

necessitating high repeatability of a large number of acoustic parameters.  

Nevertheless, certain parameters had particularly high repeatability. Both 

frequency measurements had higher repeatability than any of the temporal 

measurements (fundamental frequency was slightly higher than peak frequency). 

Maximum fundamental and peak frequency showed higher repeatability than the mean 

of these values across the call or syllable. Other studies have identified frequency 

measurements as important indicators of caller identity (Wanker & Fischer 2001; 

Sharp & Hatchwell 2005; Thomsen et al. 2013), and these characteristics may be 

involved in recognition. Although discrimination is likely to be based on the most 

reliable cues (Sherman et al. 1997), it is possible that the call characteristics used in 

kin recognition are not entirely the same as those used in individual recognition, and 

to discard any acoustic measurements at this stage may be premature. Yet, several 

parameters had fairly low repeatability and appeared to be context dependent, such as 

the number of element repeats, both in the triple call and the second syllable of the 

churr call. Both Weiner entropy and bandwidth also had fairly low repeatability. These 

parameters refer to the noisiness of the signal, and although background noise was not 

measured, these aspects of the call were the most likely to be affected by recording 

quality and appear not to provide any additional information of biological relevance 

over that which can be taken from both the duration and frequency parameters. 

Separating the churr call into two syllables tended to reveal higher repeatability in the 

first syllable than the second. Previous studies have found that vocalisations can be 

partitioned into different components, each serving a separate function (Payne et al. 
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1988; Leedale et al. 2015) and the churr call may be both context-dependent and used 

to signal caller identity. Overall, the results suggest that the triple call is more 

individually distinct than the churr call. This is again consistent with previous findings 

(Sharp & Hatchwell 2005) and is perhaps unsurprising, as the triple call is a long-

range contact call, often used in winter foraging flocks outside the breeding season 

and before nests sites are chosen and pairs are selected. Long-tailed tits may use cues 

in the triple call to recognise kin at this stage, possibly influencing their decision of 

who to pair with and where to build their nest. However, the churr call also has high 

repeatability and has previously been shown to be involved in kin recognition (Sharp 

et al. 2005) and both calls may potentially carry important information about identity 

and kinship. 

These bioacoustic analyses have demonstrated individuality in the churr call 

of long-tailed tits, completing an important initial stage in investigating vocal kin 

recognition in this species.  This work has demonstrated that churr calls have high 

intra-individual repeatability, which means that individuals for whom I have only a 

small number of calls can be included in further analyses. These calls were repeatable 

based on almost all acoustic parameters tested, but certain characteristics 

demonstrated particularly high repeatability and may be more reliable indicators of 

caller identity. These individuality patterns can be compared with call patterns 

observed among relatives when investigating how call similarity correlates with 

kinship.  
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Chapter 5   

Mechanisms of kin recognition in long-tailed tits   

 

Summary 

In most cooperative breeders, individuals are organised in to family groups. In 

a minority, breeding populations comprise of extended networks of opposite sex adults 

of varying relatedness. Selection for effective kin recognition may be expected for 

individuals in such groups to gain indirect fitness and avoid inbreeding. Here, I 

examine how call similarity correlates with kinship and affects helping and pairing 

decisions in the long-tailed tit Aegithalos caudatus, a cooperative breeder in which 

help is redirected. I detect a positive correlation between call similarity and kinship. 

Native breeders are also more acoustically similar to other natives than to breeders 

that dispersed into the study site as adults. As predicted, failed breeders choose to help 

males with more similar calls, but do not adjust their provisioning rates according to 

vocal similarity, suggesting call similarity alone is not responsible for fine-tuning in 

helping effort. Contrary to our predictions, breeders prefer partners with similar calls 

to themselves, although this could be confounded by micro-geographic call variation. 

This result also suggests that vocal similarity per se is not used to avoid inbreeding. 

The results suggest that although vocalisations make up an important part of the 

recognition system of long-tailed tits, this is likely to be based on prior association, 

rather than phenotype-matching, and may involve a combination of learned cues.  
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5.1  Introduction 

Kin selection is often invoked to explain the evolution of cooperation in kin-structured 

communities, and the ability to discriminate kin from non-kin is a crucial aspect of kin 

selection theory (Hamilton 1964). Kin recognition refers to the differential treatment 

of conspecifics differing in genetic similarity (Sherman et al. 1997). The adaptive 

functions of kin recognition for cooperative species are well established: inbreeding 

avoidance (Pusey & Wolf 1996, Koenig & Haydock 2004) and increased indirect 

fitness from helping relatives (Wilson 1975; Bourke 2011). The proximate 

mechanisms are often less clear; any cue that reliably co-varies with relatedness may 

be used to discriminate kin from non-kin (Komdeur & Hatchwell 1999), but any 

recognition system is prone to error (Sherman et al. 1997). Thus, kin recognition is 

likely to involve a certain rate of acceptance errors, where non-kin are perceived as 

kin, and rejection errors, where kin are perceived as non-kin (Reeve 1989). The 

accuracy of kin recognition, and hence the frequency of such errors, depends on the 

relative costs of each kind of error; these in turn will be determined by the probability 

of encountering a relative and the fitness consequences of the associated behaviour 

(Agrawal 2001).  

This theoretical framework is supported empirically by intraspecific studies 

showing shifts in acceptance thresholds as the costs of error change (Downs & 

Ratnieks 2000), and by comparative analyses that demonstrate stronger kin 

discrimination in cooperatively breeding vertebrates where the benefits of helping are 

greater (Griffin & West 2003), and when the average relatedness within a group is 

lower and more variable (Cornwallis et al. 2009).  This relationship between kin 

recognition accuracy, probability of encountering relatives, and fitness outcomes 
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remains to be studied in the context of mate choice, but a similar pattern may be 

expected if kin-selected recognition mechanisms have been co-opted for inbreeding 

avoidance within species. However, it is likely that kin recognition thresholds may 

differ in the contexts of helping and mate choice if the relative fitness costs and 

benefits associated with acceptance and rejection errors vary.  

Most animal societies exhibit strong kin structure, whereby individuals are 

organised in to discrete family units of parents and their retained offspring (Ligon & 

Burt 2004). Because the probability of encountering a relative is high, individuals can 

maximise indirect fitness by indiscriminately cooperating within the group and avoid 

inbreeding by selecting partners from outside the group. In more complex societies, 

such spatial cues to kinship may be unreliable. For example, in a small number of 

cooperatively breeding birds, cooperation occurs after natal dispersal, across extended 

networks known as kin neighbourhoods (Dickinson & Hatchwell 2004). Here, the 

relatedness among spatially clustered individuals is less predictable, so kin recognition 

is likely to be based on phenotypic cues instead (Gamboa et al. 1991).  

Vocalisations are the most widespread recognition cues among birds (Sharp et 

al. 2005; McDonald & Wright 2011; Açkay et al. 2013), although olfactory kin 

recognition has been described in a few species (Coffin et al. 2011; Krause et al. 2012; 

Bonadonna & Sanz-Aguilar 2012). Avian vocalisations are learned (Sharp et al. 2005) 

or imprinted (Bateson 1978) during the nestling period, a sensitive stage in 

development when all individuals present are likely to be kin (Komdeur & Hatchwell 

1999). Once recognition cues are fixed, individuals are potentially able to recognise 

familiar kin outside of the association context. Phenotype matching is an alternative 

mechanism of kin recognition that involves an assessment of relatedness, rather than 
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associative learning. Here, an individual’s own phenotypic cues, or those of a subset 

of familiar kin, are generalised to form an internal template (Lacey & Sherman 1983) 

against which the phenotypes of other individuals are compared (Greenberg 1979; 

Holmes & Sherman 1983). Phenotype matching does not require a period of previous 

association (Tang-Martinez 2001). Instead, it relies on a positive correlation between 

template-phenotype similarity and degree of genetic relatedness (Mateo 2004).   

Whether kin are recognised through prior association or phenotype matching 

can be difficult to determine. Both require active recognition based on phenotypic cues 

that co-vary with relatedness, and both mechanisms result in discrimination patterns 

that reflect phenotypic similarity between individuals. Functionally, both recognition 

mechanisms provide a similar outcome, and many studies have suggested that both 

associative learning and phenotype matching could work together to mediate kin 

recognition within a single species or population (Greenberg 1979; Holmes & 

Sherman 1983; Komdeur & Hatchwell 1999). But, crucially, mechanisms involving 

phenotype matching would permit individuals to recognise unfamiliar kin, and 

distinguish between kin of varying relatedness.  

In general, kin recognition based on familiarity may be sufficient for 

individuals to maximise inclusive fitness by directing help towards relatives, and 

associative learning is indeed the most commonly identified mechanism of kin 

recognition in cooperatively breeding birds (Curry 1988; Hatchwell et al. 2001b; 

Komdeur 2004). However, studies on long-tailed tits Aegithalos caudatus (Nam et al. 

2010) and bell miners Manorina melanophrys (Wright et al. 2010), suggest that 

helpers may be able to modify provisioning effort according to their degree of 

relatedness to recipient broods. In both species, help is extended beyond discrete, 
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nuclear family groups, so the risk of caring for non-kin is high. Thus, kin recognition 

mechanisms with low error rates are likely to be under strong selection. Moreover, 

finely tuned adjustment of provisioning behaviour in relation to kinship could indicate 

a relatively sophisticated mechanism of kin recognition, which may involve phenotype 

matching. McDonald & Wright (2011) subsequently identified a relationship between 

genetic relatedness and vocal similarity in bell miners, but whether this relationship 

exists in other species remains to be tested.   

As with helping behaviour, relatively simple decision rules can alleviate 

inbreeding in viscous populations with complete, sex-biased dispersal (Koenig & 

Haydock 1994). However, incest avoidance mechanisms that rely solely on associative 

learning may be prone to acceptance errors if opposite-sex kin are not sufficiently 

segregated. Yet, inbreeding is extremely rare in natural populations (Pusey & Wolf 

1996), leading some researchers to propose phenotype matching as a likely avoidance 

mechanism (Bateson 1983; Bonadonna & Sanz-Aguilar 2012). For example, a recent 

study on the decorated cricket Gryllodes sigillatus found that manipulating a female’s 

own phenotype affects their choice of partner (Capodeanu-Nägler et al. 2014). Among 

social birds, kin avoidance during mate choice has been identified in western bluebirds 

Sialia mexicana (Dickinson et al. 2016), but the mechanisms remain undetermined 

and there is no conclusive evidence for phenotype matching.  

This study aimed to identify a recognition mechanism that permits active 

inbreeding avoidance and flexible helper investment in long-tailed tits, a kin-

neighbourhood cooperative breeder shown to exhibit effective kin recognition in the 

absence of spatial cues (Russell & Hatchwell 2001; Leedale et al. 2018). Helpers are 

failed breeders that redirect their care following unsuccessful attempts at independent 
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breeding. Around 40% of nests receive help (Hatchwell et al. 2004), typically from 

one or two helpers, but not all failed breeders choose to become helpers (Hatchwell et 

al. 2013). Although kin remain clustered during breeding, most neighbours are non-

kin and help is directed towards close kin more often than expected by indiscriminate 

helping (Leedale et al. 2018). Furthermore, helpers provision more closely related 

broods at higher rates (Nam et al. 2010). Helpers are overwhelmingly male, and gain 

indirect fitness benefits by increasing the productivity of broods (MacColl & 

Hatchwell 2004; Hatchwell et al. 2014). In contrast, no direct fitness benefits of 

helping have been identified (McGowan et al. 2003; Meade & Hatchwell 2010). Long-

tailed tits also demonstrate effective avoidance of kin as partners, despite the 

inbreeding risk generated by fine-scale population genetic structure (Chapter 3). Long-

tailed tits have two individually distinct contact calls: the churr and the triple (Sharp 

& Hatchwell 2005). Both are learned in the nest, and playback experiments have 

shown that birds can discriminate between the churr calls of kin and non-kin (Sharp et 

al. 2005). However, if calls provide cues to kinship, the fine-tuning of helper care in 

relation to kinship (Nam et al. 2010) suggests a positive correlation between vocal 

similarity and relatedness. Furthermore, whether these vocalisations are actually used 

to assess relatedness when making helping and pairing decisions remains untested. 

I investigated the use of churr and triple calls for kin recognition in two ways. 

First, the association between vocal similarity and relatedness was assessed by 

comparing churr and triple call similarity among breeders of varying relatedness. As 

these calls are learned in the nest, a positive correlation between call similarity and 

relatedness was predicted. Vocal similarity was correlated against two measures of 

relatedness: genetic relatedness estimates, and kinship coefficients from a social 

pedigree. Although genetic relatedness closely matches kinship in this species, there 
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may be some discrepancies due to the variation in genetic similarity among kin and 

non-kin (Chapter 3, Fig. 3.1). Moreover, as social pedigrees are incomplete in open 

populations, some kinships may go undetected. There is also a small proportion (<8%) 

of extra-pair offspring (Hatchwell et al. 2002). If differences occur, I expect vocal 

similarity to correlate more strongly with kinship than genetic relatedness, because 

these vocalisations are learned during development (Sharp et al. 2005). Specific vocal 

characteristics that correlate particularly strongly with relatedness were also identified. 

I also compared the similarity of churr calls of native breeders (birds hatched in the 

study site) and immigrant breeders (birds that dispersed into the study site as adults). 

Vocalisations were expected to be more similar among natives than between natives 

and immigrants, due to natal philopatry. Second, I examined whether the degree of 

similarity in churr and triple calls influenced helping and pairing decisions by 

analysing: (i) the vocal similarity of helpers to the breeders they helped and the nearby 

breeders they did not help, and (ii) the vocal similarity within breeding pairs and 

among potential, unpaired partners. Finally, I investigated whether long-tailed tits 

helpers adjust their provisioning effort according to how similar their churr calls are 

to the helped breeders.   

 

5.2  Methods 

5.2.1  Study site and population monitoring  

Fieldwork was carried out on a population of 31-46 breeding pairs of long-tailed tits 

in a section of the Rivelin Valley, Sheffield, UK (53º38’N 1º56W) from 2015-2017. 

The site is approximately 2.5km2 and comprises a variety of suitable breeding habitat. 

This population of 17-72 (mean c.50) pairs has been studied extensively during the 
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breeding season (February-June) since 1994. Almost all individuals (>95%) were 

marked with a BTO ring and a unique combination of two colour rings for field 

identification. Native birds were ringed as 11-day old nestlings and immigrants were 

captured in mist nests under BTO licence before or during breeding. When ringed, 

individuals were weighed, and wing and tarsus length measured. A sample of 5-30µl 

of blood was taken by brachial venepuncture under Home Office licence. All nesting 

attempts were closely monitored to record breeding events and life-history traits such 

as incubation period and clutch size, and the identity of parents and helpers. Nest 

locations were recorded using GPS receivers to an accuracy of 8m. For most visible 

nests, provisioning behaviour was observed every two days from day two to fledging 

or until nest failure. Most observation periods lasted 1h, during which the identities 

and visit rate of all carers were recorded. For further details of provisioning 

observations, see MacColl & Hatchwell (2003) and Nam et al. (2010).  

5.2.3  Genetic and social relatedness  

Individuals were genotyped at 17 microsatellite loci (Appendix 3). Genetic relatedness 

was estimated using Queller and Goodnight’s (1989) rQG coefficient of relatedness in 

SPAGeDi version 1.1.5 (Hardy & Vekemans 2002). This relatedness estimate is 

reliable when tested against our social pedigree (Nam et al. 2010).  For further details 

on genotyping, see Simeoni et al. (2007) and Adams et al. (2015). The population 

allele frequencies used in analyses were generated using all genotyped individuals 

(1994-2017, n = 3304) in CERVUS version 3.0.7 (Kalinowski et al. 2007) to ensure 

non-zero frequencies for all alleles. To calculate social relatedness among dyads, an 

additive relationship matrix was generated from the social pedigree (1994-2017, n = 

3068) in R version 3.5.0 (R Core Team 2018), using the R package, nadiv (Wolak 

2012). For further details on pedigree construction see Appendix 1. Hereafter, genetic 
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relatedness refers to the rQG coefficients calculated from the microsatellite markers, 

whereas kinship refers to social relationships derived from the pedigree.  

5.2.4  Field recordings 

Adult vocalisations of two contact calls, the churr and the triple, were recorded using 

a Sennheiser ME67/K6 shotgun microphone fitted with a Rycote windjammer. 

Recordings were made onto a Roland R-05 version 1.03 WAV/MP3 recorder with a 

6GB SanDisk memory card, set to a sample rate of 48kHz with WAV-16bit accuracy. 

The microphone input level was set to 60db, to optimise sensitivity, with a low-cut 

frequency of 400Hz, to cut out extreme low frequency noise. All recordings were made 

in approximately similar conditions between 06:00 and 18:00 BST. Birds were 

recorded at a distance of approximately 3-15m, to minimise sound degradation and 

reverberation. Birds were recorded at the nest and identified by their unique colour 

ring combinations. If more than one bird was present, vocalisations were assigned to 

individuals by observing movements of the bill and throat feathers. At the start of each 

recording, date, time, nest number and recording number were dictated into the 

microphone. When caller ID could be identified with certainty, this was dictated into 

the microphone after each call. In total, 213 recordings were made, containing 1116 

churr calls from 98 birds (mean ± SD = 11.39 ± 10.24 per bird; range 1 – 42) and 400 

triple calls from 55 birds (mean ± SD = 7.02 ± 5.99 per bird; range 1 – 23). 

5.2.5  Bioacoustic analysis 

The sampling frequency was converted to 22.05 KHz and recordings were visualised 

spectrographically to assess call quality, with a frequency resolution of 188Hz and a 

time resolution of 2.7ms in Avisoft SAS-Lab Pro version 4.52 (Avisoft Bioacoustics). 

Recordings with extreme background noise were excluded. All useable calls were 
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isolated, stored and measured in Luscinia version 2.16.10.29.01 (Robert Lachlan, 

Queen Mary University of London, UK). Vocal similarity was assessed by: (i) 

dynamic time-warping analysis (DTW) implemented in Luscinia (Lachlan 2007), and 

(ii) the difference in a range of repeatable acoustic parameters (Table 5.1), measured 

as Euclidean distances using the R package, spaa (Zhang 2016). Parameters were 

selected that have individual repeatability estimates >0.2 (Chapter 4). DTW analysis 

generates a score representing the amount of warping required to match one signal to 

another. Therefore, the lower the DTW score, the greater the vocal similarity between 

individuals. The acoustic features used in the DTW analysis were weighted as: time = 

1, fundamental frequency = 2, change in fundamental frequency = 1, change in peak 

frequency = 1. These settings generated a DTW algorithm which correctly matched 

visually similar vocalisations. For further details on bioacoustics, see Chapter 4.   

5.2.6  Call similarity and relatedness 

To investigate how vocal similarity varied with relatedness, I tested for a relationship 

between vocal similarity and: (i) genetic relatedness, (ii) kinship. For the latter, three 

degrees of kinship were considered: first-order (r = 0.5), second-order (r = 0.25), or 

non-kin (r < 0.25); non-kin relationships included only those birds for which the 

parentage of both birds in the dyad was known. This analysis was carried out among 

all breeders, and separately among males and females. To determine how vocal 

similarity varied in relation to the dispersal status of breeders in our long-tailed tit 

population, I compared the vocal similarity (based on churr DTW score) of three 

categories of dyads: (i) among native breeders (including all parent-offspring 

relationships), (ii) among immigrant breeders, and (iii) between native and immigrant 

breeders. Kinship among immigrants was based on sibship reconstructions using 

genetic relatedness estimates (Appendix 1).   
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Table 5.1. List and definitions of the selected acoustic parameters used to assess vocal 

similarity in two contact calls of breeding long-tailed tits; the churr and the triple.   

 

  

Call Acoustic Parameter Definition 

Churr Bandwidth (Hz) Difference between the first and final frequency of 

maximum intensity. 

 DTW score Similarity in overall acoustic structure based on 

dynamic-time warping analysis (Lachlan 2007).  

 Duration (ms) Time between start and end of entire call. 

 Frequency (Hz) Mean fundamental frequency. This is the frequency 

of pure-tone signals and common denominator 

frequency of harmonic signals. 

 Max. frequency (Hz) Maximum fundamental frequency across call. 

 S1 duration (s) Time between start and end of syllable 1. 

 S1 frequency (Hz) Fundamental frequency of syllable 1. 

 S1 max. frequency (Hz) Maximum fundamental frequency across syllable 1. 

 S2 duration (s) Time between start and end of syllable 2. 

 S2 frequency (Hz) Fundamental frequency of syllable 2. 

 S2 max. frequency (Hz) Maximum fundamental frequency across syllable 2. 

 S2/S1 duration (ms) Ratio of syllable 2 length to syllable 1 length. 

Triple Bandwidth (Hz) Difference between the first and final frequency of 

maximum intensity. 

 DTW score Similarity in overall acoustic structure based on 

dynamic-time warping analysis. (Lachlan 2007)  

 Duration (ms) Time between start and end of entire call. 

 Frequency (Hz) Mean fundamental frequency. This is the frequency 

of pure-tone signals and common denominator 

frequency of harmonic signals. 

 Max. frequency (Hz) Maximum fundamental frequency across call. 
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5.2.7  Call similarity and helping decisions 

Of the nests for which I had churr call recordings of the helper and the breeding male 

(n = 19), 26% of helpers were known first order relatives of the male, 16% were second 

order relatives of the male, and 55% were apparently unrelated to the male. In the 

remaining 5% of nests, kinship could not be determined from the social pedigree. 

However, genetic relatedness of helpers to male breeders was r = 0.17 ± 0.2 (mean ± 

SD, n = 17), suggesting that kinship may be underestimated in our pedigree, as is often 

the case in open populations.  Among nests for which I had churr call recordings of 

the helper and the breeding female (n = 15), there were no cases of help given to known 

female kin, and the genetic relatedness of helpers to females was r = -0.04 ± 0.12 

(mean ± SD, n = 13). The number of helped nests for which I had triple call recordings 

of the helper and the breeding male was smaller (n = 5). In two of these cases, the 

helper was a first or second order relative of the male. Again, there were no cases of 

help given to known female kin (n = 7). Therefore, analyses focused on the helper’s 

vocal similarity to the breeding male. 

If individuals use vocal similarity as a cue to relatedness, in order to direct 

helping effort towards close kin, I expected helpers to be more vocally similar to the 

breeders they helped than the breeders they did not help. For each helper, vocal 

similarity to male breeders at their first chosen nest in a given year was compared with 

their mean vocal similarity to a sample of potential males (excluding those helped) 

nesting within 750m that year, the range in which the majority of failed breeders travel 

to provide aid (mean ± SD = 337.4m ± 253.4, 95% CI = 744.1m, n = 220). Helping 

distance was calculated as the distance between a helper’s last failed breeding attempt 

and the nest at which they first appeared as a helper in the same year.  
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To investigate whether helpers use vocal similarity to modify their 

provisioning effort, I tested for a relationship between the provisioning rates of helpers 

and their vocal similarity to the helped males. Because I predicted that vocal similarity 

is used as a cue to relatedness, I also tested for a relationship between provisioning 

rate and relatedness, using genetic relatedness estimates and kinship from the social 

pedigree. Although the fitness consequences of helping depend on the genetic 

relatedness, pedigree data is essential for understanding how accurately individuals 

are able to recognise kin, particularly when the mechanism depends on socially learned 

cues (Sharp et al. 2005). Provisioning rate was therefore expected to correlate most 

strongly with kinship.   

5.2.8  Call similarity and pairing decisions 

Among the breeding pairs for which I had churr (n = 51) or triple (n = 14) call 

recordings of both breeders, there were no cases of pairing among first order or second 

order kin. Mean genetic relatedness among recorded breeding pairs was r = 0.06 ± 

0.15 (n = 49). If individuals use vocal similarity to assess relatedness during mate 

choice to avoid inbreeding, vocal similarity within breeding pairs should be lower than 

that expected under random mate choice. For each focal individual, vocal similarity to 

the chosen partner was compared with their mean vocal similarity to a sample of 

potential partners (excluding chosen partner) within 900m that year, the range in 

which the majority of pairs are formed (Chapter 3). Potential partners were first-year, 

widowed or divorced breeders of the opposite-sex present in the breeding population 

in the same year as the focal individual.  The distance between adults was based on 

the location of an individual’s first breeding attempt in a given year. Analyses were 

carried out from the perspective of male and female breeders separately.  
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5.2.9  Statistical analysis 

All statistical analyses were carried out in R version 3.5.0 (R Core Team 2018). The 

relationships between vocal similarity and relatedness among adult breeders were 

analysed using Mantel tests (Schnell et al. 1985) based on Spearman correlations of 

ranked distances with 10000 permutations using the R package, ecodist (Goslee & 

Urban 2007). In the context of both helping and pairing decisions, observed vocal 

similarity within chosen dyads was compared to mean vocal similarity within potential 

dyads for each focal individual using Wilcoxon signed-rank tests. All reported 

significance values are based on two-tailed tests and the sample sizes for each test are 

reported with the results. 

I investigated whether helper provisioning rates varied with respect to their 

vocal similarity to male breeders using linear mixed effects models fitted by restricted 

maximum likelihood (REML) in the R package, lme4 (Bates et al. 2008). As genetic 

relatedness, kinship and vocal similarity are expected to be closely correlated, their 

effect on provisioning rate was analysed in separate models. In each model, the 

provisioning rate of helpers (number of visits/hour) was the response variable. In the 

first model, the explanatory variables were: nestling age, brood size, group size and 

genetic relatedness, all of which influence the provisioning rates of helpers (Nam et 

al. 2010). In the second model, the explanatory variables were: nestling age, brood 

size, group size and kinship. In the final model, the explanatory variables were: 

nestling age, brood size, group size and vocal similarity. Genetic relatedness was the 

rQG estimate between helpers and male breeders, measured as a continuous variable. 

Kinship was the relationship between helpers and male breeders according to the social 

pedigree (three factor levels: r = 0, r = 0.25 and r = 0.5). Vocal similarity was the 

DTW score of churr calls between helpers and male breeders. Nestling age was 
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measured in days from hatching (day 0; long-tailed tit broods hatch synchronously). 

Brood size was the number of chicks in the nest on day 11, a good indicator of brood 

size from hatching because nestling starvation is rare (Hatchwell et al. 2004). Group 

size was the number of adults at the nest (parents and helpers). Bird identity and nest 

identity were included as random effects, to control for non-independence of repeated 

observations of feeding rates by the same birds, and repeated observations of feeding 

rates at the same nest. All explanatory covariates were initially included in full models 

and then dropped sequentially unless doing so significantly reduced the amount of 

variance explained, generating three minimum adequate models (MAMs) from full 

models containing either genetic relatedness, social relatedness or vocal similarity as 

explanatory variables.  

 

5.3  Results 

5.3.1  Call similarity and relatedness 

There was substantial variation in vocal similarity among breeders in all pedigree 

categories. This was evident among males, among females and among all birds for 

churr (Fig. 5.1) and triple calls (Fig. 5.2). As predicted, kinship correlated with churr 

similarity in several acoustic parameters: DTW score (Mantel test: R = -0.07, n = 80, 

p < 0.01), difference in fundamental frequency (Mantel test: R = -0.04, n = 80, p < 

0.05) and difference in frequency bandwidth (Mantel test: R = -0.04, n = 80, p < 0.05; 

Fig. 5.3a). Relationships between call similarity and kinship were also evident when 

tested separately among males and females, although the parameters that correlated 

with kinship differed between the sexes. Among males, kinship was correlated with 

churr similarity based on the difference in call duration (Mantel test: R = -0.06, n = 
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46, p < 0.05), duration of the 1st syllable (Mantel test: R = -0.07, n = 46, p < 0.05) and 

frequency bandwidth (Mantel test: R = -0.09, n = 46, p < 0.01; Fig. 5.3a). Among 

females, kinship correlated with churr similarity based on DTW score (Mantel test: R 

= -0.1, n = 34, p < 0.05) and the difference in frequency (Mantel test: R -0.11, n = 34, 

p < 0.05; Fig. 5.3a). In contrast, churr call similarity did not correlate with genetic 

relatedness, regardless of breeder sex (Fig. 5.3b). Moreover, triple call similarity did 

not correlate with kinship (Fig. 5.4a) or genetic relatedness in either sex (Fig. 5.4b).  

The similarity of churr calls also varied with patterns of philopatry. Churr calls 

were most similar among native breeders (mean pairwise DTW score ± SD = 0.24 ± 

0.08, n = 300 dyads), slightly less similar among immigrant breeders (0.25 ± 0.08, n 

= 1377), and least similar between native and immigrant breeders (0.29 ± 0.11, n = 

3076 dyads; Mantel test: R = -0.18, n = 98, p < 0.001; Figure 5.5).   

  



141 

 

Figure 5.1. Distributions of similarity in long-tailed tit churr calls among (a) both 

sexes (n = 80), (b) males (n = 46), and (c) females (n = 34) of three levels of kinship: 

first-order kin (purple bars, n = 71 dyads), second-order kin (orange bars, n = 32 dyads) 

and non-kin (green bars, n = 3057 dyads), measured using dynamic-time warping 

analysis (DTW).   

 

 

Figure 5.2. Distributions of similarity in long-tailed tit triple calls among (a) both 

sexes (n = 44), (b) males (n = 24), and (c) females (n = 20) of three levels of kinship: 

first-order kin (purple bars, n = 19 dyads), second-order kin (orange bars, n = 12 dyads) 

and non-kin (green bars, n = 915 dyads), measured using dynamic-time warping 

analysis (DTW).   
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Figure 5.3. The relationship between churr call similarity and relatedness in long-

tailed tits based on dynamic time-warping analysis (DTW score) and the difference 

(∆) in a range of acoustic characteristics. Mantel R correlations are shown for dyadic 

comparisons among breeders of both sex (circles), among males (squares) and among 

females (triangles), based on (a) degree of kinship calculated from the social pedigree 

(all breeders: n = 80, males: n = 46, females: n = 34), and (b) genetic relatedness 

estimates  (all birds: n = 88, males: n = 45, females: n = 43).  
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Figure 5.4. The relationship between triple call similarity and relatedness in long-

tailed tits based on dynamic time-warping analysis (DTW score) and the difference 

(∆) in a range of acoustic characteristics. Mantel R values are shown for dyadic 

comparisons among breeders of both sex (circles), among males (squares) and among 

females (triangles), based on (a) degree of kinship calculated from the social pedigree 

(all birds: n = 44, males: n = 24, females: n = 20), and (b) genetic relatedness estimates  

(all birds: n = 50, males: n = 26, females: n = 24).  
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Figure 5.5. Vocal similarity of long-tailed tit breeders in relation to patterns of 

philopatry: median (± IQR) churr call similarity (based on DTW score) among native 

breeders (n = 300 dyads); among immigrant breeders (n = 1377 dyads) and between 

native and immigrant breeders (n = 3076). 
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5.3.2  Call similarity and helping decisions 

The genetic relatedness of helpers to breeding males within 750m that were not helped 

was r = 0.07 ± 0.18 (mean ± SD, n = 230; 10.6% of relationships in which kinship was 

known (n = 226) were first order kinships, 4.4% were second order kinships, 84.9% 

dyads were unrelated). As predicted, failed breeders chose to help males with more 

similar churr calls, based on DTW score (Wilcoxon signed-rank test: v = 15, n = 19, 

p < 0.001) and the difference in maximum frequency (Wilcoxon signed-rank test: v = 

44, n = 19, p < 0.05; Table 5.2). However, there was no difference in helpers’ triple 

call similarity to the male breeders they chose to help and those they chose not to help 

(Table 5.3), although the sample size for this comparison was small.   

Provisioning data were available for 14/19 cases of helping, with 41 

observation periods of 14 helpers at 11 nests over 3 years (mean duration of 

observation ± SD = 180.06 min ± 145.3 per nest, range = 1–8h, mean feeding rate 

(visits per hour) ± SD = 5.05 ± 2.56 per helper, range = 1–10.36). When genetic 

relatedness was included as a response variable in the full model, the minimum 

adequate model (MAM) for helper provisioning rate included genetic relatedness, 

group size and nestling age as explanatory variables (Table 5.4). Similarly, when 

kinship was included as a response variable in the full model instead, the MAM 

included kinship and nestling age as explanatory variables (Table 5.4). In contrast, 

when vocal similarity was included as a proxy for both relatedness estimates in the 

full model, only nestling age was retained an explanatory variable in the MAM (Table 

5.4).  
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Table 5.2. Similarity of churr calls between helpers and helped male breeders 

compared with the mean churr similarity of those helpers to the potential males they 

did not help. Potential males were those breeding within 750m of the helpers last failed 

nest in the same year. Churr similarity was measured using dynamic time warping 

analysis (DTW), and the difference in (∆) multiple acoustic parameters.   

 Helped males 

(n = 19 dyads) 

Potential males 

(n = 252 dyads)  

Wilcoxon’s 

signed rank  

Similarity measure mean ± SD mean ± SD v p 

DTW score 0.17 ± 0.05 0.22 ± 0.05 15 < 0.001 

∆ Duration (ms) 25.9 ± 16.66 30.18 ± 11.57 66 0.26 

∆ Mean frequency (Hz) 267.98 ± 211.95 313.8 ± 122.26 63 0.21 

∆ Maximum frequency (Hz) 243.64 ± 179.51 340.68 ± 118.56 44 < 0.05 

∆ Bandwidth (Hz) 150.06 ± 138.18 200.94 ± 101.64 57 0.13 

 

Table 5.3. Similarity of triple calls between helpers and helped male breeders 

compared with the mean triple similarity of those helpers to the potential males they 

did not help. Potential males were those breeding within 750m of the helpers last failed 

nest in the same year. Triple similarity was measured using dynamic time warping 

analysis (DTW), and the difference in (∆) multiple acoustic parameters. 

 Helped males 

(n = 5 dyads) 

Potential males  

(n = dyads)  

Wilcoxon’s 

signed rank  

Similarity measure mean ± SD mean ± SD v p 

DTW score 0.52 ± 0.37 0.32 ± 0.1 10 0.63 

∆ Duration (ms) 84.47 ± 52.77 73.93 ± 47.19 10 0.63 

∆ Mean frequency (Hz) 309.51 ± 262.75 184.74 ± 100.57 10 0.63 

∆ Maximum frequency (Hz) 268.67 ± 262.75 206.84 ± 262.75 10 0.63 

∆ Bandwidth (Hz) 58.19 ± 21.25  53.39 ± 32.86  8 1 

  

Table 5.4. The relationship between: (i) vocal similarity, (ii) genetic relatedness and 

(iii) kinship between helpers and breeding males, and the provisioning rate of helpers 

(n = 41 observation periods, 14 helpers, 11 nests). Test statistics and significance terms 

are reported after backward step-wise removal of predictor variables. Degrees of 

freedom from the minimum adequate model are reported. All biologically meaningful 

two-way interaction terms were also tested, and none were significant (p > 0.05).  

Model Predictor variable   Sum sq df F p 

Vocal similarity Vocal similarity  0.11 1, 39 0.02 0.90 

 Brood size 6.72 1, 39  1.04 0.33 

 Group size 22.79 1, 39 3.52 0.07 

 Nestling age 30.17 1, 39 4.85 < 0.05 

Genetic relatedness Genetic relatedness 43.53 3, 37 5.83 < 0.05 

 Brood size 6.89 3, 37 0.92 0.34 

 Group size 65.87 3, 37 8.82 < 0.01 

 Nestling age 67.09 3, 37  8.99 < 0.01 

Kinship Kinship  93.6 3, 37 6.43 < 0.01 

 Brood size 0.51 3, 37 0.07 0.79 

 Group size 5.87 3, 37  0.83 0.36 

 Nestling age 60.62 3, 37 8.33 < 0.01 
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5.3.3  Call similarity and pairing decisions 

The genetic relatedness of recorded, unpaired dyads within pairing range was r = 0.007 

± 0.14 (mean ± SD, n = 1049; 1.7% of these dyads in which kinship was known (n = 

702) were first order kinships, 1.0% were second order kinships, and 97.3% dyads 

were unrelated). Contrary to predictions, the similarity of females’ churr calls to their 

chosen partner was greater than the mean similarity to their potential partners, based 

on the difference in frequency (Wilcoxon signed-rank test: v = 410, n = 50, p < 0.05), 

maximum frequency (Wilcoxon signed-rank test: v = 312, n = 50, p < 0.001) and 

duration (Wilcoxon signed-rank test: v = 409, n = 50, p < 0.05, Table 5.5). From the 

male perspective, churr call similarity to chosen partner was also higher than the mean 

similarity to potential partners, although this was the case for maximum frequency 

only (Wilcoxon signed-rank test: v = 445, n = 51, p < 0.05, Table 5.5). In contrast, 

there was no difference in triple call similarity between selected and potential partners 

from either the female or male perspective (Table 5.6).  
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Table 5.5. Similarity in churr calls of focal breeders to their chosen partner compared 

with their mean similarity to potential partners. Potential partners are opposite-sex 

birds breeding within 900m of the focal breeders first nesting attempt, and is the range 

in which pairs are usually formed. Call similarity was measured using dynamic time 

warping analysis (DTW), and the difference in (∆) set acoustic parameters.   

Sex of 

focal 

breeder 

 Chosen partner 

(n = 51 pairs) 

Potential partner  

(n = 690)  

Wilcoxon’s 

signed rank  

Similarity measure mean ± SD mean ± SD v p 

Female DTW score 0.241 ± 0.12 0.26 ± 0.09 440 0.06 

 ∆ Duration (ms) 32.1 ± 32 36.17 ± 15.91 409 < 0.05 

 ∆ Mean frequency (Hz) 316.65 ± 309.52 366.46 ± 184 410 < 0.05 

 ∆ Maximum frequency (Hz) 273.3 ± 269.48 376.52 ± 151.76 312 < 0.01 

 ∆ Bandwidth (Hz) 218.13 ± 207.58 224.36 ± 148.73 557 0.44 

Male DTW score 0.244 ± 0.12 0.25 ± 0.05 456 0.05 

 ∆ Duration (ms) 33.41 ± 33.02 39.67 ± 21.19 457 0.05 

 ∆ Mean frequency (Hz) 326.25 ± 313.98 355.75 ± 183.37 467 0.07 

 ∆ Maximum frequency (Hz) 282.57 ± 274.86 349.1 ± 111.96 445 < 0.05 

 ∆ Bandwidth (Hz) 226.3 ± 213.62 215.32 ± 122.77 607 0.6 

 

 

 

Table 5.6. Similarity in triple calls of focal breeders to their chosen partner compared 

with their mean similarity to potential partners. Call similarity was measured using 

dynamic time warping analysis (DTW), and the difference in (∆) set acoustic 

parameters.  

Sex of 

focal 

breeder 

 Chosen partner 

(n = 14 pairs) 

Potential partner  

(n = 229)  

Wilcoxon’s 

signed rank  

Similarity measure mean ± SD mean ± SD v p 

Female DTW score 0.39 ± 0.25 0.37 ± 0.08 43 0.583 

 ∆ Duration (ms) 83.75 ± 43.68 116.08 ± 70.69 28 0.135 

 ∆ Mean frequency (Hz) 165.54 ± 148.59 186.65 ± 85.11 34 0.267 

 ∆ Maximum frequency (Hz) 201.27 ± 150.5 253.01 ± 108.2 27 0.118 

 ∆ Bandwidth (Hz) 41.73 ± 25.33 56.25 ± 19.86 30 0.172 

Male DTW score 0.39 ± 0.25 0.42 ± 0.24 27 0.118 

 ∆ Duration (ms) 83.75 ± 43.68 94.78 ± 35.94 35 0.295 

 ∆ Mean frequency (Hz) 165.54 ± 148.59 195.63 ± 143.71 36 0.325 

 ∆ Maximum frequency (Hz) 201.27 ± 150.5 227.9 ± 138.97 41 0.501 

 ∆ Bandwidth (Hz) 41.73 ± 25.33 59.72 ± 18.58 21 0.5 
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5.4  Discussion 

5.4.1  Call similarity and relatedness 

Of the two long-tailed tit calls studied, the churr and the triple, a positive association 

between churr call similarity and kinship was identified. This is in line with Sharp & 

Hatchwell’s (2006) finding that the vocalisations of siblings are more similar than 

those of non-siblings in this species. This study shows that churr call similarity 

correlated with relatedness when including an intermediate level of kinship. However, 

no significant relationship between kinship and similarity in triple calls was detected, 

although the proportion of kin in this sample was small (Fig. 5.2). Interestingly, churr 

call similarity correlated with degree of kinship according to the social pedigree, but 

not genetic relatedness estimates from microsatellite markers. Genetic relatedness 

estimates have been shown to be reliable when tested against our social pedigree (Nam 

et al. 2010), and extra-pair paternity and brood parasitism are rare in this species 

(Hatchwell et al. 2002). However, genetic relatedness estimates among first-order, 

second-order and non-kin vary and there is a lot of overlap (Chapter 3, Fig 3.1). As 

these calls develop in the nest (Sharp et al. 2005), it is unsurprising that vocal 

similarity correlates more strongly with degree of kinship than estimated genetic 

relatedness. Although a genetic influence cannot be ruled out completely, this supports 

earlier suggestions that family-specific churr calls in long-tailed tits are unlikely to 

have a strong heritable component (Sharp et al. 2005; Sharp & Hatchwell 2006).  

Although call similarity among second-order kin is an intermediate level 

between first order kin and non-kin (mean pairwise DTW score ± SD = 0.217 ± 0.07), 

it is very close to the value for first-order kin (0.216 ± 0.06). Therefore, while there is 

a correlation with kinship, whether this is a threshold or continuous relationship 



150 

 

remains unclear. Nestlings may learn calls from any adult present at the nest during 

development. Half-siblings may sound similar because they share a parent, from 

whom they learn their calls. But nestlings could also learn their calls from helpers, 

who are often second-order relatives. This may explain why the calls of first and 

second-order kin are relatively similar, compared with the calls of non-kin.  

As well as DTW score, churr call similarity correlated with kinship based on 

mean fundamental frequency and frequency bandwidth. However, frequency alone 

didn’t correlate more strongly with kinship than DTW score, and although frequency 

parameters are the most repeatable characteristics (Chapter 4), their relatively greater 

influence on vocal signature is accounted for in the DTW weightings (see Methods). 

Moreover, when considering males and females separately, temporal parameters 

correlated with relatedness in males, whereas frequency parameters correlated with 

relatedness in females. Yet, there are no overall sex differences in churr calls (Chapter 

4) and kinship does not correlate more strongly with call similarity in one sex. So, 

although frequency is clearly important, a single measure of overall similarity (e.g. 

DTW score) is still the most suitable way to assess vocal kin recognition in this 

species.    

As expected, vocal similarity among native breeders was more similar than 

that between native and immigrant breeders, reflecting an increase in churr call 

variation at larger spatial scales. Geographic variation in bird song has been well-

studied; the rate of song sharing declines sharply with distance in many species (e.g. 

great tits Parus major, McGregor & Krebs 1982; chaffinches Fringilla coelebs, Lynch 

et al. 1989). Playback experiments suggest birds are able to detect these differences, 

often showing a preference for local songs or dialects (Searcy 1997). Regional 
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differences in contact calls have also been described in parrots (Wright 1996; 

Bradbury et al. 2001). Although there are functional differences between songs and 

calls, any vocalisations that are learned rather than innate are expected to show micro-

geographic variation. In species such as long-tailed tits, that don’t have a territorial 

song (Sharp & Hatchwell 2005), this variation may play an important role in mate 

choice, beyond the context of inbreeding avoidance. That local differences in churr 

call similarity have been detected based on DTW score, further establishes this as a 

reliable and informative measure of vocal similarity in long-tailed tits.   

5.4.2  Call similarity and helping decisions 

Crucially, helpers chose to help male breeders with more similar churr calls.  This 

supports vocal similarity as a mechanism of kin recognition that permits kin-directed 

helping in long-tailed tits. The similarity of churr calls, but not triple calls, drives these 

decisions. This is not surprising, as there was no relationship between triple call 

similarity and relatedness. This does not rule out the use of triple calls for kin 

recognition, but suggests similarity in the churr alone is enough to discriminate kin 

when making helping decisions. As well as overall call similarity (DTW score), 

difference in maximum frequency also appeared to influence the decision to help.  As 

with relatedness, the relationship between helping and DTW score was stronger than 

maximum frequency alone, yet in these analyses, and elsewhere (Sharp et al. 2005), 

frequency has been consistently revealed as the most distinguishing feature of long-

tailed tit churr calls.  

Kin-biased cooperation among social animals is often an all-or-nothing 

investment strategy in which perceived kin are helped at a certain rate (Russell & 

Hatchwell 2001; Komdeur 1994; Dickinson et al. 1996). However, recent studies on 
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long-tailed tits (Nam et al. 2010) and bell miners (Wright et al. 2010) have shown that 

helpers can adjust their provisioning rate contingent on kinship. In bell miners, mew 

call similarity was identified as the cue to relatedness that allows helpers to make fine-

scale facultative adjustments in their provisioning effort (McDonald & Wright 2011). 

Contrary to our predictions, although relatedness to male breeders explained a 

considerable amount of the variation in the provisioning rates of individual helpers, 

churr call similarity did not. However, there are important differences in the social 

organisation of bell miners and long-tailed tits, which may have important 

consequences for the evolution of their recognition systems.  Bell miners live in 

complex societies in which membership of a coterie does not guarantee kinship and 

there is no evidence of a period of call learning, leading to the suggestion that mew 

calls are innate (McDonald & Wright 2011). Such genetically acquired cues would 

permit bell miners to recognise relatives in a population where familiarity does not 

signal kinship. The social structure of long-tailed tits on the other hand, is relatively 

simple. Although the close proximity of non-kin and kin of variable relatedness within 

breeding populations necessitates an active kin recognition mechanism, individuals 

can maximise fitness by directing their help towards close kin. Indeed, long-tailed tits 

are very good at discriminating first-order kin, but not second-order kin (Leedale et 

al. 2018), and a period for associative learning from close kin has already been 

identified (Sharp et al. 2005; Komdeur & Hatchwell 2009).  

Therefore, my results suggest that while call similarity alone may permit 

individuals to recognise unfamiliar kin via phenotype-matching in bell miners, in long-

tailed tits, vocal similarity is part of a combination of cues allowing individuals to 

recognise familiar individuals. This mechanism still appears to be error prone because 

non-relatives are sometimes helped. However, when the costs of helping are relatively 
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low, and the potential benefits of helping kin are relatively high, a low threshold for 

acceptance of another individual as kin may be selected for (Hatchwell et al. 2014). 

The positive relationship between provisioning effort and relatedness to the brood may 

reflect a decision to help known kin at a higher rate than unknown individuals that 

could be more distant kin. A recognition mechanism based on prior association or 

familiarity would permit this adjustment.  

5.4.3  Call similarity and pairing decisions 

It was predicted that long-tailed tits use vocal similarity as a recognition cue in 

mate choice, allowing breeders to avoid mating with kin. Thus, vocal similarity was 

expected to be lower among breeding pairs than among unpaired opposite-sex dyads. 

Contrary to this prediction, long-tailed tit breeders of both sex paired with opposite-

sex birds with more similar calls.  Given that long-tailed tits avoid mating with close 

kin very effectively (Chapter 3), this result suggests that a combination of cues allows 

breeders to discriminate familiar kin, as appears to be the mechanism in the context of 

helping, rather than vocal similarity alone.  

There are three related, biological explanations for finding greater call 

similarity between members of breeding pairs than expected by random mating. First, 

vocal similarity may be used to select unfamiliar, distant kin as partners, in order to 

maximise inclusive fitness, as predicted by models of optimal outbreeding (Bateson 

1983) or so-called kinbreeding (Puurtinen 2011). Our results also show that native 

breeders that remained in their natal area sounded more similar to one another than to 

immigrant breeders. Hence, a second possibility is that long-tailed tits use vocal 

similarity to select unrelated partners that are from the local area. These breeders are 

more likely to have neighbours that are close relatives, and therefore an increased 
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probability of attracting helpers. Third, during the non-breeding season, native birds 

remain in the natal area in large flocks with pair formation potentially occurring long 

before the breeding season starts. Immigrants, on the other hand, often disperse into 

the area at the start, or even during the breeding season, by which time many native 

breeders have already paired. This difference in timing could result in a tendency for 

locally hatched, similar sounding individuals to form pairs without any assessment of 

call similarity. This third explanation is perhaps the most parsimonious one, for both 

the greater call similarity and closer relatedness among breeding pairs reported here.  

An alternative explanation for the greater call similarity between members of 

breeding pairs concerns to sampling. Interestingly, within this particular subset of 

pairs, for which there is vocal data, genetic relatedness is higher within pairs (r = 0.06 

± 0.15, n = 49) than between unpaired dyads (r = 0.007 ± 0.14, n = 1049). This was 

surprising, because this is higher than the within-pair relatedness observed when 

analysing the whole dataset, with which we have shown that relatedness among pairs 

is much lower than expected by random mating (Chapter 3). In two of the three years 

during which acoustic data was collected (2014-2015), the breeding population was 

much smaller than the annual average, and the effect this may have had on mating 

decisions is unknown. Indeed, fine-scale genetic structure does fluctuate between 

years (Appendix 4). Nevertheless, these findings do support earlier results that 

demonstrate a positive relationship between call similarity and relatedness. 

4.3.4  Kin recognition mechanism for helping and pairing 

Previous studies have shown that long-tailed tits recognise and direct help 

towards first-order kin (Russell & Hatchwell 2001, Sharp et al. 2005). The proportion 

of help given to second-order kin is low, and no different from that expected by chance 



155 

 

(Leedale et al. 2018). Similarly, mate choice models suggest long-tailed tits effectively 

avoid incest, but do not appear to distinguish second order or more distant kin during 

mate choice (Chapter 3). Nevertheless, call similarity among second-order kin is 

higher than among non-kin, suggesting that kin recognition is not based on call 

similarity alone. Instead, a combination of cues may be used to recognise familiar 

individuals. These may include auditory, visual, olfactory or behavioural cues. Indeed, 

long-tailed tits usually help at the nest of close relatives of whom they have had prior 

experience (Sharp et al. 2005; Napper & Hatchwell 2016). A kin recognition 

mechanism that relies on learned association is much less error-prone than phenotype 

matching, as long as there is a period of association. This requirement is satisfied in 

long-tailed tits, along with most cooperatively breeding birds (Komdeur & Hatchwell 

1999). In contrast, phenotype-matching mechanisms may be open to cheats that have 

the phenotypic cues but not the associated kinship, and may be short-lived if the 

phenotypic cues are related to fitness, because directional selection will reduce 

phenotypic variation among conspecifics (Gardner & West 2007).   

It is possible that long-tailed tits use different recognition mechanisms in the 

context of helping and pairing. Alternatively, the same mechanism may be used in 

both contexts, but with different outcomes depending on the position of the acceptance 

threshold, which may shift if the relative fitness costs and benefits associated with 

acceptance and rejection errors vary (Reeve 1989). The benefits of helping have been 

well-documented in this species (Hatchwell et al. 2014), and inbreeding has 

substantial fitness costs (Chapter 3). Furthermore, whereas non-kin are sometimes 

helped, breeding among close kin is extremely rare.  So, although the same recognition 

mechanism is probably used in both contexts, this disparity in recognition errors may 



156 

 

reflect a permissive recognition threshold in the context of helping, and a more 

restrictive recognition threshold in the context of mate choice.  

In conclusion, I have demonstrated a relationship between relatedness and call 

similarity, and a preference for helpers to help breeders with more similar churr calls. 

This suggests that call similarity acts as a recognition cue to facilitate adjustments in 

helping behaviour with respect to relatedness. However, provisioning effort does not 

correlate with call similarity per se, and breeders do not appear to select partners with 

less similar calls. This suggests that vocal similarity is only part of a more complex 

mechanism of kin recognition in long-tailed tits.    
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Chapter 6 

General Discussion 

 

6.1 Introduction 

The importance of kin selection in the evolution of cooperation has been debated 

because of the numerous examples of cooperation among non-kin (Clutton-Brock 

2002; Riehl et al. 2013). In some cooperative species, direct fitness benefits explain 

the presence of unrelated helpers (Reyer 1984; Magrath & Whittingham 1997). 

However, even in systems that are thought to be entirely kin-selected, cooperation may 

occur among non-kin (Meade & Hatchwell 2010; Wright et al. 2010).  The acceptance 

threshold model illustrates a trade-off between acceptance errors and rejection errors 

which shows that having a permissive threshold that allows individuals to always 

accept desirable recipients, means that some non-desirable recipients may also be 

accepted. If the costs of the acceptance errors do not outweigh the costs of the rejection 

errors, this would be an adaptive mechanism.  Other situations may warrant a more 

restrictive threshold. For example, if the risk of costly inbreeding is high, strong kin 

discrimination during mate choice with low rates of acceptance error would be 

predicted. This strategy would come at the expense of a relatively high rate of rejection 

errors, in which compatible non-kin may be rejected as partners. These putative 

thresholds would depend not only on the cost/benefit ratio of the behaviour, and the 

relatedness of interacting individuals, but also on the distribution of kin and the 

variance in relatedness within populations (Agrawal 2001). 

The redirected helping system of long-tailed tits creates breeding populations 

within which adults must actively choose who to help and who to mate with from a 
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pool of potential social partners of varying degrees of kinship. The aims of this study 

were to determine the fine-scale genetic structure underlying breeding populations, 

and subsequently the strength of kin discrimination required for individuals to 

maximise fitness in this unusual, deceptively simple, cooperative breeding system.  I 

also aimed to identity the recognition mechanisms used to direct cooperation towards 

close relatives and to avoid inbreeding; and whether the same cues and discrimination 

rules are used in both contexts. In this final chapter, the results are summarised and 

the implications with regard to the evolution of kin recognition mechanisms in long-

tailed tits and other social species are discussed.  

 

6.2 Summary of results  

In Chapter 2, I used genetic, pedigree and behavioural data from a long-term dataset 

(1994-2016) to determine the fine-scale genetic structure of long-tailed tit breeding 

populations. Spatial autocorrelation analyses revealed fine-scale genetic structure, 

such that related adults were spatially clustered during breeding. Relatedness among 

neighbouring males was higher than that among neighbouring females, and genetic 

structure was also observed among opposite-sex breeders. I then compared the 

proportion of close, distant and non-kin helped, to those proportions expected by 

indiscriminate helping, based on this newly quantified genetic structure. Importantly, 

most close neighbours were unrelated and help was redirected towards first-order 

relatives much more often than one would expect if help was given randomly, or based 

on spatial distribution. However, failed breeders helped second-order kin at a similar 

rate to that expected by chance. This suggests that long-tailed tits are able to recognise 

first-order kin, but perhaps not second-order kin. However, over 40% nests were 
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helped by second-order or non-kin, suggesting a permissive recognition threshold for 

helping behaviour.     

Besides the indirect fitness benefits of helping, kin recognition may also be 

used to avoid inbreeding, particularly in species where opposite-sex kin interact as 

reproductive adults, as shown in Chapter 2. In Chapter 3, I investigated the fitness 

costs, risk and avoidance of inbreeding in long-tailed tits using the same long-term 

data as in Chapter 2. Examination of the typical pairing ranges of males and females 

revealed that mates are selected from within the range that kin remain clustered after 

dispersal, generating a substantial inbreeding risk. Importantly, this population was 

not inbred, and incest was extremely rare; only 0.5% pairings were between first or 

second-order kin. Despite its rarity, I was able to quantify the fitness costs of 

inbreeding in this population by examining the association between fitness and 

standardised multi-locus heterozygosity (Hs), an effective proxy for inbreeding 

depression in this population. I detected a weak, but positive correlation between Hs 

and direct fitness calculated from lifetime reproductive success data. Together, these 

results indicate strong selection for inbreeding avoidance in long-tailed tits.  

To determine whether kin were actively avoided during mate choice, I 

compared the relatedness of chosen partners to that expected under null mate choice 

models, in which available birds of the opposite sex were selected randomly from 

within expanding spatial ranges. I found that relatedness to a chosen partner was 

significantly lower than expected under random mate choice within the range that most 

partners are selected, for both males and females. To determine the strength of kin 

discrimination that would permit this effective inbreeding avoidance, the relatedness 

within pairs was compared to that expected under mate choice models in which: (i) 

close, or (ii) close and distant kin were avoided as partners. The results were striking: 
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within-pair relatedness closely matched a mate choice model in which close kin, but 

not distant kin were avoided as partners. That this level of kin discrimination is enough 

to alleviate inbreeding was somewhat unexpected, but biologically sensible: because 

of the way kin are distributed, the probability of encountering second-order kin within 

pairing range is fairly low (Leedale et al. 2018).  

The remainder of the thesis was dedicated to investigating the proximate 

mechanism(s) that permit the observed level of kin discrimination observed in long-

tailed tits when making helping and pairing decisions. Vocalisations have already been 

shown to have an important function in kin recognition in long-tailed tits, and in 

Chapter 4, I developed a comprehensive method of measuring vocal similarity within 

and between individuals, in order to investigate how vocal cues are used to recognise 

relatives. Dynamic time warping (DTW) was selected as the most appropriate method 

to quantify overall similarity in churr and triple calls within and between individuals. 

DTW scores were used alongside specific call parameters to determine which sound 

characteristics shape similarity patterns. These analyses showed that both churr and 

triple calls were individually repeatable over time, and sexually monomorphic. 

Frequency measures, particularly the maximum frequency of calls, were the most 

repeatable call parameters. As these characteristics are particularly consistent within 

individuals, they may be particularly important for kin recognition.  

In Chapter 5, I aimed to identify the recognition mechanism that permits kin-

directed helping and active inbreeding avoidance in long-tailed tits. In particular, I 

asked whether vocal similarity may be used to assess degree of relatedness, and 

whether vocal similarity influences helping and pairing decisions. I found substantial 

variation in vocal similarity among breeders and churr call similarity did indeed 
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correlate with kinship: the churr calls of first-order kin were more similar than the 

churr calls of second-order kin, and second-order kin were more similar than non-kin.  

Although I found a similar pattern when using genetic relatedness estimates, 

this relationship was weaker and not statistically significant. Churr call similarity 

varied with philopatry: native breeders were more acoustically similar than those that 

dispersed into the study site as adults. As predicted, failed breeders chose to help males 

with more similar churr calls, but they did not adjust their provisioning rates according 

to vocal similarity, suggesting churr call similarity alone is not responsible for fine-

tuning in helping effort. Finally, contrary to our predictions, breeders preferred 

partners with similar churr calls to themselves, although this could be confounded by 

micro-geographic variation in churr calls. This result also suggests that vocal 

similarity per se is not used by long-tailed tits to recognise kin in the context of mate 

choice.   

 

6.3 Kin recognition in long-tailed tits 

6.3.1 Vocal similarity and relatedness 

Vocalisations are clearly an essential part of the kin-selected cooperative breeding 

system of long-tailed tits and I have shown, along with previous studies, that these 

calls are family- and individual-specific (Sharp & Hatchwell 2005; 2006). The novelty 

here is the detection of a positive correlation between churr call similarity and degree 

of kinship. This association provides a potential cue by which individuals could 

discriminate not only kin from non-kin but also kin or varying relatedness, an ability 

that has been indicated by the flexible provisioning effort of helpers contingent on 

genetic relatedness to the brood (Nam et al. 2010).  
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I did not find a strong relationship between vocal similarity and genetic 

relatedness estimated from microsatellite data. This does not exclude a genetic 

influence on vocal variation in long-tailed tits; indeed, high individual repeatability 

suggests some innate individual differences. However, the relatively stronger 

correlation between call similarity and kinship is in line with studies confirming 

through cross-fostering experiments that calls are learned (Sharp et al. 2005). A 

correlation between call similarity and degree of relatedness can still be acquired 

environmentally if calls are learned from both parents: logically, half-siblings that 

share one parent may be half as similar as full siblings that share both parents. 

However, the relationship between call similarity and relatedness is not linear: the 

difference in vocal similarity among first- and second-order kin is smaller than the 

difference in vocal similarity among second-order and non-kin. Which adults nestlings 

choose to imitate, and whether they can distinguish between helpers and parents during 

vocal learning, is still unknown. Further investigation into vocal learning would 

increase our understanding of this relationship and is a worthwhile avenue for further 

study.  

Churr call similarity among native breeders was also greater than that between 

natives and immigrants, alluding to micro-geographic acoustic variation in long-tailed 

tits. It would be interesting to investigate the nature of this variation by examining 

how call similarity varies with distance and fine-scale genetic structure. Finally, 

although churr calls were individually repeatable and correlated with kinship, there 

was also a lot of acoustic variation, both within individuals and within different 

categories of kinship. This variation may make a recognition mechanism that relies 

entirely on vocal similarity unreliable. It is possible that a combination of cues could 
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be used to assess kinship that alone would be ineffective. These may include: acoustic, 

visual, chemical, behavioural, or even spatial-temporal information.  

6.3.2 Phenotype matching or associative learning? 

Long-tailed tit nestlings learn their recognition templates from familiar kin during an 

associative learning period, when the cues themselves develop (Sharp et al. 2005). I 

wanted to determine the specificity of these templates; that is, whether they permit 

discrimination between close and distant kin, as well as kin and non-kin.  

Nam et al. (2010) found that long-tailed tit helpers modified their effort 

according to their genetic relatedness to the helped brood, suggesting phenotype-

matching may be used in a continuous assessment of kinship. This is in contrast to the 

binary decision rule based on prior association that was previously thought to be the 

putative mechanism of kin recognition in this species (Hatchwell et al. 2001b; Sharp 

et al. 2005). I found a similar effect of relatedness on helper provisioning effort 

(Chapter 5), corroborating Nam et al.’s (2010) study. Yet, although helpers directed 

their care towards nests belonging to acoustically similar males, we found no evidence 

that call similarity influenced the rate at which helpers provisioned nests. Neither did 

we find that breeders chose partners with less similar calls. Furthermore, we found 

strong evidence for very effective discrimination of first-order kin, but not second-

order kin, both in the context of helping behaviour and mate choice.  

In this population, it is very likely that first-order kin (parents, offspring and 

full-siblings) associate during the crucial period in which recognition templates are 

acquired. There are two instances in which this is not the case, both of which are 

relatively rare: extra-pair paternity produces half-siblings raised together (Hatchwell 

et al. 2002), and pair-bonds lasting more than one year may produce full-siblings that 
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have not been raised together (Hatchwell et al. 2000). In contrast, it is less likely that 

second-order kin associate during this period (half-siblings, grand-parent/offspring 

and aunt-uncle/niece-nephew relations). Consequently, it seems highly probable that 

kin recognition is based on associative learning, rather than phenotype-matching. The 

important, and relatively frequent exception to this predictable relationship between 

familiarity and kinship is of course helper-offspring relationships: offspring 

presumably acquire recognition templates from those second-order kin or non-kin that 

helped them as a nestling. This may also explain the apparent existence of acceptance 

errors, in which non-kin help without gaining any known benefit (Meade & Hatchwell 

2010). This argument is also supported by the observation that failed breeders 

sometimes help non-kin that provisioned them as a nestling (A. E. Leedale & B. J. 

Hatchwell, unpublished data). To tease apart these mechanisms, playback experiments 

of both familiar and unfamiliar kin of variable relatedness would be worthwhile, 

although gathering enough acoustic data for each of these categories would be 

extremely challenging.  

Another important aspect of long-tailed tits social lives is their associations 

outside the breeding season. Previous studies have shown that winter flocks are made 

up of both kin and non-kin (Hatchwell et al. 2001a; McGowan et al. 2007; Napper et 

al. 2013). While template formation appears to occur before fledgling dispersal, 

whether or not these templates can be updated during these long periods of association 

is unknown. Association during winter is known to influence helping decisions the 

following spring (Napper & Hatchwell 2016), and this could have important 

consequences in terms of kin recognition. 
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6.3.3 Acceptance thresholds and kin discrimination rules  

Previous studies on long-tailed tits have shown kin-biased helping and an ability to 

discriminate kin based on learned vocal cues (Hatchwell et al. 2001b; Russell & 

Hatchwell 2001; Sharp et al. 2005; Nam et al. 2010; Hatchwell et al. 2014). Whether, 

and how, long-tailed tits discriminate kin during mate choice was untested. That 

helpers provision more closely related broods at higher rates led to the prediction that 

adults can distinguish between kin of varying relatedness. The effective inbreeding 

avoidance demonstrated in Chapter 3 led to the suggestion that sophisticated kin 

discrimination may also be apparent during mate choice. However, throughout this 

thesis, the results suggest that long-tailed tits recognise close kin, with which they are 

likely to be familiar, but not more distant kin, with which they are more likely to be 

unfamiliar. Importantly, I have shown that this level of kin discrimination allows 

individuals to avoid incest and matches the observed patterns of helping.   

In terms of acceptance thresholds, this level of kin discrimination does lead to 

a certain amount of error. Failed breeders may prefer to help close kin, but because 

kin cluster within the range that most helping occurs, there might still be a reasonable 

chance of gaining some indirect fitness by helping an unfamiliar individual because 

they could be distantly related. In this scenario, a permissive threshold would be 

adaptive. But, when non- and distant kin are helped, they are provisioned at a lower 

rate than close kin. These results fit a decision rule in which known, close kin are 

helped at a higher rate than less familiar or unfamiliar individuals who may be more 

distant kin. It would be interesting to investigate this further by seeing whether the 

helpers that choose to help non-kin did so because there were no close kin available to 

help.  
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Although this discrimination rule leads to acceptance errors in the context of 

helping, it actually creates a restrictive threshold for inbreeding avoidance. Because 

of the population structure, the probability of encountering a first-order relative when 

selecting a partner by chance is fairly low. The probability of encountering a first-

order relative with which you are unfamiliar is even lower. However, there is good 

evidence of strong selection to avoid even this reasonably low chance. But, as the 

results show, this does not require recognition of distant kin. A more detailed 

understanding of exactly which birds are available to pair with would be useful, but 

this may not be possible without tracking individuals throughout their lives.  

Overall, the results suggest that the same discrimination rule is used in both 

helping and pairing decisions.  The exact cues are less clear because call similarity did 

not seem to be the only factor driving helping and pairing decisions. Importantly, fine-

scale genetic structure is an important component when considering kin recognition 

evolution in this species. In this thesis, I have explored some of the fitness costs 

associated with inbreeding. Hamilton’s rule has previously been tested, and supported, 

in the context of helping (Hatchwell et al. 2014), but applying Hamilton’s rule to mate 

choice as well, would allow one to predict precisely how strong kin discrimination 

needs to be in each context for individuals to maximise fitness. A similar approach 

could be used to predict the strength of kin discrimination required across species, and, 

along with more empirical studies, could provide a deeper understanding of how 

recognition mechanisms have evolved across social animals.  
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6.4 Future directions in kin recognition research 

In the previous section, I have discussed how my results fit into our current 

understanding of the long-tailed tit cooperative breeding system in particular. In the 

following section, I discuss my findings in relation to the implications for the wider 

field of kin recognition evolution, focusing on two emergent themes: (i) whether kin 

recognition involves a threshold or continuous assessment of relatedness, and (ii) the 

role of familiarity in kin recognition.  

6.4.1 Threshold or continuous kin recognition? 

The extent to which recognition cues permit kinship to be perceived on a continuous 

or binary scale is an important aspect of the kin recognition mechanism. How the 

information provided by such cues is utilised is still somewhat of a black box, but in 

most cooperative breeders, kin discrimination is considered binary: conspecifics are 

categorised as either kin or non-kin, based on a template-phenotype similarity 

threshold. But, kin discrimination could also be continuous, whereby individuals are 

able to assess their degree of relatedness to conspecifics, based on the extent of 

template-phenotype similarity.  

When spatial location or group membership is used to recognise relatives, such 

as in Arabian babblers Turdoides squamiceps (Wright 1998), kin discrimination is 

binary. When recognition is based on phenotype, e.g. white-fronted bee eaters Merops 

bullockoides (Emlen and Wrege 1988), it may be binary or continuous, depending on 

the algorithm used to assess kinship. In order to tease apart these mechanisms, some 

studies have focused on whether the assumed recognition cues could be considered 

discrete or continuous traits. For example, green woodhoopoes (Radford 2005), 

Mexican jays Aphelocoma wollweberi (Hopp et al. 2001), stripe-backed wrens (Price 
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1998; 1999), superb starlings Lamprotornis superbus (Keen et al. 2013) and western 

bluebirds have family- or group-specific vocalisations (Açkay et al. 2013; 2014). 

Although their use in kin recognition remains undetermined, this suggests that they 

may be used in a threshold-based assessment of kinship. And yet, many cooperative 

bird species, such as the chestnut-crowned babbler Pomatostomus rifuceps (Crane et 

al. 2014), have individually distinct vocalisations, even though there are still no 

conclusive examples of individual recognition. Indeed, continuous traits are not 

necessarily perceived as such (Caves et al. 2018). 

Binary or threshold kin discrimination is effective in most cooperative breeders 

because they often live in stable territories that, at least with regard to the helping sex, 

are mostly made up of first-order relatives. In the Seychelles warbler (Komdeur et al. 

2004), splendid fairy-wren (Payne et al. 1988) and Galápagos mockingbird (Curry 

1988), the presence of helpers is based on a decision rule related to prior association. 

Although the cues that permit recognition of familiar individuals have yet to be 

identified, there is no evidence to suggest that individuals perceive kinship as a 

continuous measure. As discussed above, this thesis supports the view that kin 

discrimination in long-tailed tits is also binary (although see Nam et al. 2010). Within 

cooperative breeders, a recognition cue that permits individuals to discriminate kin 

varying in relatedness has been identified only in the bell miner (Wright et al. 2010). 

Bell miners form large colonies often comprising hundreds of individuals. Within 

colonies, individuals are organised into coteries of numerous breeding pairs assisted 

by non-breeding helpers of varying relatedness that provision multiple nests within 

their coterie. From an early age, young interact with both related and unrelated group 

members, making spatial or association-based recognition unreliable. Instead, the 

provisioning effort of helpers correlates with their vocal similarity to the breeding 
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male; an innate signal that also correlates with genetic relatedness (McDonald & 

Wright 2011).  

In the context of mate choice, disentangling whether recognition is continuous 

or binary may be more challenging, as the decision to mate or not is a binary one. 

However, this can be assessed by quantifying the frequency of matings among 

individuals of varying degrees of kinship (Bateson 1983), or by comparing mating 

decisions to models in which kin of differing relatedness are avoided (Chapter 3). As 

discussed, this thesis supports binary kin recognition in long-tailed tits during mate 

choice; but other studies, such as those on the Japanese Quail, suggest continuous 

recognition (Bateson 1983).   

 The ability to assess the relatedness of conspecifics continuously may 

have been overlooked in some cases because of the way in which cooperative 

behaviour is measured. For example, some studies focus on the probability of helping, 

(Curry 1988; Creel et al. 1991; Dickinson et al. 1996), whereas others measure the 

amount of help given (Wright et al. 1999; Dunn et al. 1995; Clutton-Brock et al. 2001), 

and both have been measured in just a few (Emlen & Wrege 1988; Komdeur 1994; 

Russell & Hatchwell 2001; Nam et al. 2010). Similarly, some inbreeding avoidance 

studies measure incest rates, rather than the genetic relatedness of paired individuals 

(Dikcinson et al. 2016). In order to assess whether kin discrimination is a binary or 

continuous, the associated behaviour must be measured as a continuous response. 

More sophisticated observations and experiments are required to determine how 

relatedness is perceived. Understanding the sophistication of the recognition system is 

not only important in the context of cooperative breeding and mate choice, but for any 

situation that requires some form of recognition.   
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6.4.2 Familiarity  

Determining the role of familiarity has proved to be a persistent problem in kin 

recognition studies. Commonly, this results from an inability to experimentally 

exclude the possibility that conspecifics have had a prior association. For example, in 

cross-fostering experiments, there is still some period of association before parents 

and offspring are separated, and without knowing precisely when kin recognition 

templates begin to form, it is impossible to rule out familiarity in these cases. Kin 

recognition may even begin during gestation (Hepper 1987) or incubation (Dowling 

et al. 2016). Furthermore, kin associations often persist into adulthood (Covas et al. 

2006; Drobniak et al. 2015; Dickinson et al. 2016). How these associations may affect 

recognition cues is not fully understood, but adult associations can have a positive 

effect on cooperative behaviour (Carter & Wilkinson 2013; Napper & Hatchwell 

2016).  

Genetic relatedness has been shown to play more of an important role than 

familiarity for inbreeding avoidance in mammals (e.g. Green et al. 2015), and seabirds 

(Bonadonna & Sanz-Aguilar 2012). Although, in cooperatively breeding western 

bluebirds, incest avoidance is achieved by recognition of familiar individuals 

(Dickinson et al. 2016). There is also good evidence of humans avoiding familiar 

individuals as sexual partners (Shepher 1971). Future studies that examine the effect 

familiarity on mate choice, rather than controlling for it, could be rewarding.  

The underlying issue is that familiarity is difficult to define and quantify. In 

the kin recognition literature, familiarity generally refers to some previous social 

interaction among individuals, particularly during early life stages (Hepper 1986; 

Komdeur & Hatchwell 1999). But, the nature of this interaction is often vague. 

Precisely when the interactions took place, how many interactions there were, their 
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duration, and the specific behaviour and information transfer that took place during 

these interactions may influence how individuals are recognised and treated later in 

life. Social network analysis has been used to quantify the degree of familiarity 

between individuals and can give a broader view of how individuals associate during 

adulthood (Kurvers et al. 2013), particularly in kin-structured societies (Napper & 

Hatchwell 2016; McDonald et al. 2016). Some of these studies have shown that social 

interactions do not necessarily reflect genetic relatedness (Godfrey et al. 2014). 

Importantly, this can depend on the nature of the behaviour used to build the social 

network (Madden et al. 2012). More studies are required which implement social 

network analysis to quantify familiarity and assess the relative importance of both 

familiarity and kinship. 

Another challenge when determining the role of familiarity in kin recognition 

is that how individuals actually recognise familiar individuals is often unknown. 

Future work should aim to correlate phenotypic cues with genetic relatedness, kinship 

and degree of familiarity quantified using social network analysis. Even then, it may 

be difficult to determine cause and effect: frequent interactions may lead to an increase 

in phenotypic similarity among interacting individuals in a positive feedback loop. 

Vocal convergence can be adaptive for coordinated foraging (Bradbury & Balsby 

2016), particularly when birds forage in annual winter flocks that are disbanded each 

spring.  For example, black-capped chickadees Parus atricapillus, exhibit vocal 

plasticity throughout adulthood and vocal convergence can occur within a week of 

winter flock formation (Nowicki 1989). However, such species do not breed 

cooperatively and individuals do not gain indirect fitness benefits from associating 

with kin. In kin-selected systems, it may be unlikely for kin recognition cues to be 

updated during adulthood, particularly if interactions among kin and non-kin were 
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frequent, although there are some examples (Keen et al. 2013; Radford 2005). In long-

tailed tits, vocalisations do not differ significantly over an individual’s lifetime once 

learned, but how individuals recognise familiar kin is still unknown. More studies that 

investigate the plasticity of putative recognition cues are needed. It is also essential to 

control for familiarity or kinship when considering how these cues develop.  

6.5 Conclusion 

In conclusion, this is the first investigation in to a recognition mechanism that may be 

used for both kin-selected cooperation and inbreeding avoidance in a wild vertebrate 

population. These results demonstrate how population structure, shaped by life-

history, dispersal and mating system, creates selection for recognition mechanisms of 

varying sophistication. The strength of discrimination required to maximise fitness 

may vary according to context, and this can be quantified through empirical 

observations of natural populations. The unusual cooperative system of the long-tailed 

tit has made this species an excellent system in which to study kin recognition and to 

consider the social and ecological drivers of variation in kin discrimination complexity 

across cooperative species.   
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Appendices 

Appendix 1. Reconstruction of the long-tailed tit social 

pedigree 

 1.1  Parentage analysis 

The long-tailed tit social pedigree was constructed using detailed field observations of 

marked birds in the Rivelin Valley population from 1994-2016 (n = 3486). A small 

proportion (<2%) of recruits first ringed as adults were philopatric birds that were not 

ringed as chicks because they fledged from inaccessible nests. To assign parentage to 

these birds, I used the likelihood approach implemented in CERVUS version 3.0.7 

(Kalinowski et al. 2007) to perform a parentage analysis on all genotyped putative 

immigrants that appeared in the population from 1997-2017; analysis was done on a 

year by year basis, with all adults present in the population in the recruit’s birth-year 

considered as potential parents, based on the assumption that long-tailed tits disperse 

from their natal area during their first winter (McGowan et al. 2003; Sharp et al. 

2008a). Due to incomplete sampling early in the project, 1994-1996 were excluded. 

For each year, simulations were run with 100,000 offspring, assuming: 80% of 

candidate parents were sampled (proportion of recruits genotyped), 98.3% of loci were 

typed (calculated from the allele frequency data) and a mistyping rate of 0.01, with 10 

as the minimum number of typed loci. Previous analyses have shown that the true error 

rate is less than 1% (M. Simeoni, S. P. Sharp & B. J. Hatchwell, unpublished data). I 

then carried out parent pair analyses with reference to critical delta scores for 99% 

confidence derived from the simulations. Having identified parent-offspring 

relationships, I also compared this to the rQG estimates (Queller & Goodnight 1989) 

calculated for each pair. Parent-offspring relationships were considered to be genuine 
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only if the parents were known to have paired together and fledged unringed chicks in 

the recruit’s birth-year.  

1.2  Sibship reconstruction 

As this is an open population, our social pedigree is incomplete. However, long-tailed 

tits are known to disperse in sibling coalitions during their first year (McGowan et al. 

2003; Sharp et al. 2008b). I tested for the presence of full siblings among each yearly 

cohort of genotyped immigrants, using the Descending Ratio sibship reconstruction 

algorithm implemented in KINGROUP version 2 (Konovalov et al. 2004). A primary 

hypothesis of full siblings was tested against a null hypothesis of unrelated pairs; 

separate analyses were carried out for each year from 1995 to 2016. Having identified 

sibships, I performed likelihood ratio tests based on pairwise rQG estimates using the 

same hypotheses and carried out 10,000 simulations. The results from the sibship 

reconstruction were considered to match those from likelihood ratio tests if individuals 

in a dyad with a significant likelihood ratio (p < 0.05) were placed in the same sibling 

group (or if those in a dyad with a non-significant likelihood ratio were placed in 

different groups). Sibling relationships were added to the social pedigree only if all 

siblings in a given group matched and had high pairwise rQG estimates. Birds were 

included in our reconstructed social pedigree only if their parentage was known, or if 

they had been assigned a sibling group (n = 3068).  
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Appendix 2. Distribution of kinships among breeding long-

tailed tits 

Using both genetic data from microsatellites (n = 1022) and the social pedigree (n = 

866), I calculated the frequency of first order kin (rA ≥ 0.5; rQG ≥ 0.25), second order 

kin (0.5 > rA ≥ 0.25; 0.25 ≥ rQG ≥ 0.125) and non-kin (rA < 0.25; rQG < 0.125) available 

to helpers in the breeding population. The frequency of these relationships was 

measured over four defined distance bands, based on the nest at which birds first 

appeared as an adult: 0-300m, 300-600m, 600-900m, >900m. The relationship 

between distance and the frequency of kin relationships was analysed using a 

Pearson’s Chi-squared test. Within distance bands, the distribution of male and female 

kin was compared using a series of Pearson’s Chi-squared tests. 

Based on genotypes, on average the long-tailed tit breeding population was 

made up of 5.1% first order relationships (n = 3702), 13.3% second order relationships 

(n = 9715) and 81.6% non-kin relationships (n = 59652). Based on the social pedigree, 

the population contained just 1.8% first order (n = 1038) and 1.2% second order kin 

relationships (n = 677), with the remaining 97% relationships between non-kin (n = 

55546). Among males, relationships measured using genetic data (6.1% first order, n 

= 1219; 12.7% second order, n = 2584; 81.2% non-kin, n = 16476) were again higher 

than those estimated from the social pedigree (2.2% first order, n = 358; 1.6% second 

order, n = 271; 96.2% non-kin, n = 16300). Among females, the same pattern emerged, 

with genetic data (4.6% first order, n = 732; 13.5% second order, n = 2174; 81.9% 

non-kin, n = 13135) resulting in higher estimates of kinship than the social pedigree 

(1.8% first order, n = 206; 0.8% second order, n = 90; 97.4% non-kin, n = 11389). 

These rather low observed frequencies of kin relationships are consistent with the low 

mean rQG estimates observed across the population as a whole.  
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As the distance between dyads of birds increased, the proportion of kin 

decreased (genetic data: χ2 = 1101.3, df = 6, p < 0.001, Fig. A2.1a; social pedigree: χ2 

= 2144.3, df = 6, p < 0.001, Fig. A2.1b). This strong distance effect was apparent 

among males (genetic data: χ2 = 696.7, df = 6, p < 0.001, Fig. A2.1c; social pedigree: 

χ2 = 1476.9, df = 6, p < 0.001, Fig. A2.1d) and among females (genetic data: χ2 = 

160.91, df = 6, p < 0.001, Fig. A2.1e; social pedigree: χ2 = 279.92, df = 6, p < 0.001, 

Fig. A2.1f). The proportion of kinships was greater among males than among females 

within 300m (genetic data: χ2 = 51.17, df = 2, p < 0.001; social pedigree: χ2 = 67.42, 

df = 2, p < 0.001), at 300-600m (genetic data: χ2 = 10.19, df = 2, p < 0.01; social 

pedigree: χ2 = 10.65, df = 2, p < 0.01), at 600-900m for the social pedigree (χ2 = 14.64, 

df = 2, p < 0.001) but not for genetic data (χ2 = 0.51, df = 2, p = 0.78), and over 900m 

(genetic data: χ2 = 6.43, df = 2, p < 0.05; social pedigree: χ2 = 10.80, df = 2, p < 0.01). 
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Fig. A2.1. Proportion of 1st order (black), 2nd order (grey) and non-kin (white) in the 

breeding population over four bands of distance between dyads. (a) genotype data for 

all birds, (b) social pedigree for all birds, (c) genotype data for males, (d) social 

pedigree for males, (e) genotype data for females, (f) social pedigree for females. The 

number of pairwise relationships in each distance band is displayed (top to bottom: 

non-, 2nd order and 1st order kin). 
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Appendix 3. Allele distributions across microsatellite 

markers  

Table A3.1. Distribution of alleles among 17 microsatellite loci used to estimate 

genetic relatedness in long-tailed tits. 
Locus Number of alleles 

CAM01 26 

CAM23 5 

Tgu_01.040 7 

Tgu_04.012 5 

Tgu_05.053 9 

Tgu_13.017 5 

Ase.37 18 

CAM03 14 

CAM15 8 

Pca.4 13 

Ase18 17 

Ase64 6 

Hru2 6 

Hru6 53 

Pca3 7 

PmaD22 43 

Ppi2 22 

Total 264 
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Appendix 4. Annual male-female genetic structure  

Table A4.1. Temporal variation in mean pairwise relatedness, rQG, between male and female 

long-tailed tits. Approximate SE were calculated by jackknifing over loci.  
Year rQG SE n (birds) n (comparisons) 

1994 0.2459 0.0501 10 24 

1995 0.0195 0.0213 28 196 

1996 0.0214 0.0109 48 551 

1997 0.0221 0.0115 57 806 

1998 0.0079 0.0112 55 756 

1999 0.0062 0.0156 68 1152 

2000 0.0017 0.0128 93 2160 

2001 0 0.019 39 374 

2002 0.0079 0.0101 75 1386 

2003 -0.0027 0.0071 87 1862 

2004 0.0082 0.0064 126 3944 

2005 0.0026 0.0087 91 2070 

2006 -0.0001 0.0081 98 2385 

2007 0.0033 0.0084 89 1968 

2008 0.0168 0.0061 119 3498 

2009 0.0189 0.0088 75 1404 

2010 0.0185 0.011 106 2808 

2011 0.0139 0.0081 104 2703 

2012 0.007 0.0091 111 3068 

2013 0.0153 0.0096 55 756 

2014 0.0019 0.0118 56 783 

2015 0.0146 0.013 58 841 

2016 0.0207 0.0142 71 1254 
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Fig. A4.1. Mean pairwise relatedness (rQG) in a long-tailed tit population over eight 

bands of distance between males and females from 1995-2016. Data from 1994 is 

excluded due to low sample size.  Error bars approximate SE of relatedness estimates 

from jackknifing over loci. 
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Appendix 5. Cases of inbreeding in long-tailed tits  

Table A5.1. Cases of inbreeding in the Rivelin valley long-tailed tit population (1994-

2016) according to the social pedigree (r > 0.125). Genetic relatedness estimates (rQG) 

and social relationships are also reported.  

Year/Pair Male Female rQG r Relationship 

2007/21 1945 1943 0.253 0.5 Full siblings (reared together) 

2000/04 797 1080 0.219 0.25 Maternal ½ siblings; male was cross-fostered 

2011/15 2339 2408 0.212 0.25 Paternal uncle/niece 

1996/19 698 633 0.273 0.125 Maternal ½ aunt/nephew 

2004/50 1516 1611 -0.151 0.125 Paternal cousins 

2007/12 1761 2052 0.267 0.125 Paternal cousins 

 

 

Table A5.2. Cases of inbreeding in the Rivelin valley long-tailed tit population (1994-

2016) according to genetic relatedness estimates (rQG > 0.125). Pedigree relatedness 

(r) and social relationships are also reported. 

Year/Pair Male Female rQG r Relationship (if known) 

2012/28 2283 468 0.571 0  

2003/27 265 266 0.452 0  

2008/28 435 458 0.372 0  

2004/06 290 264 0.351 0  

2015/21 3079 3185 0.347 0  

2005/01 290 356 0.332 0  

2014/05 3042 2947 0.327 0  

2004/04 307 306 0.322 0  

2007/71 446 2090 0.301 0  

2011/05 1978 520 0.297 0  

2015/11 3171 3170 0.283 0  

2004/37 294 242 0.282 0  

1996/19 698 633 0.273 0.125 Maternal ½ aunt/nephew  

2016/19 3286 3285 0.269 0  

2015/08 2909 3182 0.267 0  

2007/12 1761 2052 0.267 0.125 Paternal cousins 

2015/18 3179 2756 0.263 0  

2007/07 354 368 0.262 0  

2007/21 1945 1943 0.254 0.5 Full-sibs (reared together) 

2007/69 448 390 0.25 0  

2012/51 2592 2762 0.244 0  

2006/32 1756 313 0.241 0  

2000/42 181 1098 0.229 0  

2016/17 3132 3074 0.226 0 Unrelated 

2015/06 3092 3059 0.226 0  

2007/60 443 442 0.224 0  

2012/55 2712 2758 0.221 0  

1998/16 108 123 0.22 0  

2004/65 327 352 0.219 0  

2000/04 797 1080 0.219 0.25 Maternal ½ siblings; male was cross-fostered 

2013/12 2779 2782 0.219 0  

2002/04 195 1192 0.217 0  

2003/09 1475 256 0.215 0  
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2009/02 465 2124 0.215 0  

2011/04 2688 2687 0.213 0  

2011/15 2339 2408 0.212 0.25 Paternal uncle/niece 

2014/08 2967 2782 0.213 0  

2002/30 1339 249 0.209 0  

2004/27 301 285 0.201 0  

2005/38 1589 368 0.198 0  

2009/17 2097 520 0.197 0  

2008/68 2137 496 0.195 0  

1998/11 848 819 0.195 0 unrelated 

2015/05 2975 3055 0.193 0  

2005/35 1601 281 0.192 0  

2004/18 299 1591 0.191 0  

2013/29 2877 2916 0.184 0  

2007/55 2068 441 0.183 0  

2008/30 431 485 0.182 0  

1999/21 149 148 0.18 0  

2008/62 367 469 0.178 0  

2002/19 1367 207 0.176 0  

1999/26 166 140 0.174 0  

1998/22 136 46 0.174 0  

2011/07 3162 2693 0.172 0   

2016/04 3165 3274 0.172 0  

2007/14 404 324 0.169 0  

2007/39 505 504 0.168 0  

2011/41 2700 2701 0.167 0  

2012/13 2738 2739 0.166 0  

2012/62 2229 520 0.165 0  

2003/29 1347 242 0.163 0  

2002/12 229 228 0.161 0  

2001/25 214 1042 0.160 0  

2008/16 453 2060 0.159 0  

2005/31 1602 363 0.157 0  

2008/21 2050 463 0.157 0  

2005/08 1689 323 0.157 0  

2016/05 3206 3276 0.155 0  

2006/22 354 270 0.155 0  

2008/13 381 1941 0.153 0  

2013/15 2723 2722 0.153 0  

2008/20 1930 1402 0.151 0 unrelated 

2009/01 367 2090 0.151 0  

2003/24 1349 217 0.149 0  

2004/16 303 302 0.147 0  

2009/27 2159 483 0.147 0  

2012/12 2740 2695 0.146 0  

2004/54 308 320 0.146 0  

2005/47 1739 377 0.146 0  

2010/09 2381 2380 0.145 0  

2016/26 3087 3061 0.145 0  

2011/25 2717 2718 0.143 0  

2000/29 1071 169 0.141 0  

2010/43 429 520 0.141 0  

2012/01 2714 2705 0.14 0  

2014/03 3007 3056 0.138 0  

2006/48 1512 350 0.137 0  
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2008/50 476 270 0.133 0  

1999/30 965 863 0.133 0 unrelated 

1997/13 108 107 0.132 0  

2014/37 2907 3009 0.132 0  

2006/10 386 356 0.132 0  

2004/39 1641 332 0.131 0  

2006/59 409 1402 0.127 0  

2007/42 429 430 0.126 0  

1997/31 671 103 0.126 0  

2001/01 201 200 0.125 0  

 

  



184 

 

References  

Adams M. J., Robinson M. R., Mannarelli M-E. & Hatchwell B. J. (2015). Social 

genetic and social environment effects on parental and helper care in a cooperatively 

breeding bird. Proceedings of the Royal Society B: Biological Sciences, 282, 

20150689. 

Agrawal A. (2001). Kin recognition and the evolution of altruism. Proceedings of the 

Royal Society B: Biological Sciences, 268, 1099-1104.   

Akçay Ç., Hambury K. L., Arnold J. A., Nevins A. M. & Dickinson J. L. (2014). Song 

sharing with neighbours and relatives in a cooperatively breeding songbird. Animal 

Behaviour, 92, 55-62. 

Akçay Ç., Swift R. J., Reed V. A. & Dickinson J. L. (2013). Vocal kin recognition in 

kin neighborhoods of western bluebirds. Behavioral Ecology, 24, 898-905.  

Arnold K. E. & Owens I. P. (1998). Cooperative breeding in birds: a comparative test 

of the life history hypothesis. Proceedings of the Royal Society B: Biological Sciences, 

265, 739-745. 

Axelrod R. & Hamilton W. D. (1981). The evolution of cooperation. Science, 211, 

1390-1396. 

Balloux F. & Lugon-Moulin N. (2002). The estimation of population differentiation 

with microsatellite markers. Molecular Ecology, 11, 155-165. 

Barnard C. J. (1991). Kinship and social behaviour: The trouble with relatives. Trends 

in Ecology & Evolution, 6, 310–312. 

Barnard C. J., Hurst J. L. & Aldhous P. (1991). Of mice and kin: the functional 

significance of kin bias in social behaviour. Biological Reviews, 66, 379-430. 

Bateman A. J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349-368. 

Bates D., Maechler M., Bolker B. & Walker S. (2015). Fitting Linear Mixed-Effects 

Models Using lme4. Journal of Statistical Software, 67, 1-48. 

Bateson P. (1978). Sexual imprinting and optimal outbreeding. Nature, 273, 659-660.  

Bateson P. (1982). Preferences for cousins in Japanese quail. Nature, 295, 236–237. 



185 

 

Bateson P. (1983). Optimal outbreeding. In: Mate Choice (ed. P. Bateson), pp. 257-

277. Cambridge, UK: Cambridge University Press.  

Beckerman A. P., Sharp S. P. & Hatchwell B. J. (2011). Predation and kin-structured 

populations: an empirical perspective on the evolution of cooperation. Behavioral 

Ecology, 22, 1294-1303.  

Beecher M. D. (1982). Signature systems and kin recognition. American Zoologist, 

22, 477-490.  

Beecher M. D. (1991). Successes and failures of parent-offspring recognition. In: Kin 

Recognition (ed. P. G. Hepper), pp. 94-124. Cambridge, UK: Cambridge University 

Press.   

Bekoff M. (1992). Kin recognition and kin discrimination. Trends in Ecology & 

Evolution, 7, 100. 

Benabentos R., Hirose S., Sucgang R., Curk T., Katoh M., Ostrowski E. A., 

Strassmann J. E., Queller D. C., Zupan B., Shaulsky G. & Kuspa A. (2009). 

Polymorphic Members of the lag Gene Family Mediate Kin Discrimination in 

Dictyostelium. Current Biology, 19, 567–572.  

Bérénos C., Ellis P. A., Pilkington J. G. & Pemberton J. M. (2016). Genomic analysis 

reveals depression due to both individual and maternal inbreeding in a free-living 

mammal population. Molecular Ecology, 25, 3152–3168. 

Berg K. S., Delgado S., Okawa R., Beissinger S. R. & Bradbury J. W. (2011). Contact 

calls are used for individual mate recognition in free-ranging green-rumped parrotlets, 

Forpus passerinus. Animal Behaviour, 81, 241-248. 

Bergmüller R. & Taborsky M. (2005). Experimental manipulation of helping in a 

cooperative breeder: helpers “pay to stay” by pre-emptive appeasement. Animal 

Behaviour, 69, 19–28. 

Bergmüller R., Heg D. & Taborsky M. (2005). Helpers in a cooperatively breeding 

cichlid stay and pay or disperse and breed, depending on ecological constraints. 

Proceedings of the Royal Society B: Biological Sciences, 272, 325-331. 

Biedrzycki M. L & Bais H. P. (2010). Kin recognition in plants: a mysterious 

behaviour unsolved. Journal of Experimental Botany, 61, 4123-4128.  



186 

 

Blyton M. D. J., Banks S. C. & Peakall R. (2015). The effect of sex-biased dispersal 

on opposite-sexed spatial genetic structure and inbreeding risk. Molecular Ecology, 

24, 1681–1695. 

Bonadonna F. & Sanz-Aguilar A. (2012). Kin recognition and inbreeding avoidance 

in wild birds: the first evidence for individual kin-related odour recognition. Animal 

Behaviour, 84, 509-513.  

Bonneaud C., Chastel. O., Fedeici P., Westerdahl. H & Sorci G. (2006). Complex 

Mhc-based mate choice in a wild passerine. Proceedings of the Royal Society B: 

Biological Sciences, 273, 1111-1116.  

Boomsma J. J. (2009). Lifetime monogamy and the evolution of eusociality. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3191–

3207. 

Bourke A. F. G. (2011). Principles of Social Evolution. Oxford Series in Ecology and 

Evolution (eds. P. H. Harvey, R. M. May, C. H. Godfray & J. A. Dunne). Oxford: 

Oxford University Press.  

Boyse E. A., Beauchamp G. K., Yamazaki K. & Bard J. (1991). Genetic components 

of kin recognition in mammals. In: Kin Recognition (ed. P. G. Hepper), pp.148-161. 

Cambridge, UK: Cambridge University Press.   

Bradbury J. W. & Balsby T. J. S. (2016). The functions of vocal learning in parrots. 

Behavioral Ecology and Sociobiology, 70, 293–312.  

Bradbury J. W., Cortopassi K. A. & Clemmons J. R. (2001). Geographical Variation 

in the Contact Calls of Orange-Fronted Parakeets. The Auk, 118, 958–972. 

Brooker M. G., Rowley I., Adams M. & Baverstock P. R. (1990). Promiscuity: An 

inbreeding avoidance mechanism in a socially monogamous species? Behavioral 

Ecology and Sociobiology, 26, 191-199. 

Brown J. L. (1987). Helping and communal breeding in birds. Princeton, NJ: 

Princeton University Press.  

Byers J. A. & Bekoff M. (1986). What does “kin recognition” mean? Ethology, 72, 

342-345.  



187 

 

Cant M. A., Vitikainen E. & Nichols H. J. (2013). Demography and Social Evolution 

of Banded Mongooses. Advances in the Study of Behavior, 45, 407–445. 

Capodeanu-Nägler A., Rapkin J., Sakaluk S. K., Hunt J. & Steiger S. (2014). Self-

recognition in crickets via on-line processing. Current Biology, 24, R1117-R1118.  

Caspers B. A., Hoffman J. I., Kohlmeier P., Krüger O. & Krause E. T. (2013). 

Olfactory imprinting as a mechanism for nest odour recognition in zebra finches. 

Animal Behaviour, 86, 85-90.  

Catchpole C. K. & Slater P. J. B. (2008). Bird Song: Biological Themes and 

Variations. 2nd Edition. Cambridge, UK: Cambridge University Press. 

Caves E. M., Green P. A., Zipple M. N., Peters S., Johnsen S. & Nowicki S. (2018). 

Categorical perception of colour signals in a songbird. Nature, 560, 365–367. 

Chapman J. R. & Sheldon B. C. (2011). Heterozygosity is unrelated to adult fitness 

measures in a large, noninbred population of great tits (Parus major). Journal of 

Evolutionary Biology, 24, 1715-1726.  

Chapman J. R., Nakagawa S., Coltman D. W., Slate J. & Sheldon B. C. (2009). A 

quantitative review of heterozygosity-fitness correlations in animal populations. 

Molecular Ecology, 18, 2746–2765.  

Charlesworth B. & Charlesworth D. (1999). The genetic basis of inbreeding 

depression. Genetical Research, 74, 329-340. 

Charlesworth D. & Charlesworth A. (1987). Inbreeding Depression and its 

Evolutionary Consequences. Annual Review of Ecology and Systematics, 18, 237-268.  

Charlesworth D. & Willis J. H. (2009). The genetics of inbreeding depression. Nature 

Reviews Genetics, 10, 783–796.  

Choe J. C. & Crespi B. J. (1997). The evolution of mating systems in insects and 

arachnids. Cambridge: Cambridge, UK: Cambridge University Press. 

Clark C. W., Marler P. & Beeman K. (1987). Quantitative-analysis of animal vocal 

phonology - an application to swamp sparrow song. Ethology, 76, 101-115. 



188 

 

Clarke F. M. & Faulkes C. G. (1999). Kin discrimation and female mate choice in the 

naked mole-rat Heterocephalus glaber. Proceedings of the Royal Society B: 

Biological Sciences, 266, 1995–2002.  

Clarke M. F., Fitz-Gerald G. F. (1994). Spatial organisation of the cooperatively 

breeding bell miner Manorina melanophrys. Emu, 94, 96–105. 

Clutton‐Brock T. H., Brotherton P. N. M., Russell A. F., O’Riain M. J., Gaynor D., 

Kansky R., Griffin A., Manser M., Sharpe L., McIlrath G. M., Small T., Moss A. & 

Monfort S. (2001). Cooperation, control, and concession in meerkat groups. Science, 

291, 478–481. 

Clutton-Brock T. H. & Lukas D. (2012). The evolution of social philopatry and 

dispersal in female mammals. Molecular Ecology, 21, 472–492.  

Clutton-Brock T. H. (2016). Mammal Societies. Chichester, West Sussex, UK: John 

Wiley & Sons.  

Clutton-Brock T. H., Hodge S. J., Flower T., Spong G. F. & Young A. J. (2010). 

Adaptive suppression of subordinate reproduction in cooperative mammals. The 

American Naturalist, 176, 664–673. 

Cockburn A. (2004). Mating systems and sexual conflict. In: Ecology and Evolution 

of Cooperative Breeding in Birds (eds. W.D. Koenig & J. L. Dickinson), pp 81-101. 

Cambridge, UK: Cambridge University Press. 

Cockburn A., Osmond H. L., Mulder R. A., Green D. J. & Double M. C. (2003). 

Divorce, dispersal and incest avoidance in the cooperatively breeding superb fairy-

wren Malurus cyaneus. Journal of Animal Ecology, 72, 189–202.  

Coffin H. R., Watters J. V. & Mateo J. M. (2011). Odour-Based Recognition of 

Familiar and Related Conspecifics: A First Test Conducted on Captive Humboldt 

Penguins (Spheniscus humboldti). Plos One, 6, 1-4.   

Collins S. A. (2004). Vocal fighting and flirting: the functions of birdsong. In: 

Nature’s Music: The Science of Birdsong (eds. P. Marler & H. Slabbekoorn), pp. 39-

79. London, UK: Elsevier Academic Press. 



189 

 

Coltman D. W., Pilkington J. G., Smith J. A. & Pemberton J. M. (1999). Parasite‐

mediated selection against inbred Soay sheep in a free‐living island population. 

Evolution, 53, 1259-1267. 

Cornwallis C. K., West S. A. & Griffin A. S. (2009). Routes to indirect fitness in 

cooperatively breeding vertebrates: kin discrimination and limited dispersal. Journal 

of Evolutionary Biology, 22, 2445-2457. 

Cornwallis C. K., West S. A., Davis K. E. & Griffin A. S. (2010). Promiscuity and the 

evolutionary transition to complex societies. Nature, 466, 969. 

Cortopassi K. A. & Bradbury J. W. (2000). The comparison of harmonically rich 

sounds using spectrographic cross-correlation and principal coordinates analysis. 

Bioacoustics, 11, 89-127.  

Coster A. (2013). Pedigree: pedigree functions. R package version 1.4. Available at: 

http://CRAN.R-project.org/.    

Couvillon M. J., Robinson E. J. H., Atkinson B., Child L., Dent K. R. and Ratnieks F. 

(2008). En garde: rapid shifts in honeybee, Apis mellifera guarding behaviour are 

triggered by onslaught of conspecific intruders. Animal Behaviour, 76, 1653-1658. 

Covas R. & Griesser M. (2007). Life History and the Evolution of Family Living in 

Birds. Proceedings of the Royal Society B: Biological Sciences, 274, 1349-1357. 

Covas R., Dalecky A., Caizergues A., Doutrelant C. (2006). Kin associations and 

direct vs indirect fitness benefits in colonial cooperatively breeding sociable weavers 

Philetairus socius. Behavioral Ecology and Sociobiology, 60, 323–331. 

Cramp S. & Perrins C. M. (1993). Birds of the Western Palearctic, Vol. 7. Oxford, 

UK: Oxford University Press.  

Crane J. M. S., Pick J. L., Tribe A. J., Vincze E., Hatchwell B. J. & Russell A. F. 

(2015). Chestnut-crowned babblers show affinity for calls of removed group 

members: a dual playback without expectancy violation. Animal Behaviour, 104, 51–

57. 

Creel S. R., Monfort S. L., Wildt D. E. & Waser P. M. (1991). Spontaneous lactation 

is an adaptive result of pseudopregnancy. Nature, 351, 660–662. 

http://cran.r-project.org/


190 

 

Crochet P. A. (2000). Genetic structure of avian populations - allozymes revisited. 

Molecular Ecology, 9, 1463–1469. 

Crozier R. H. (1986). Genetic clonal recognition abilities in marine invertebrates must 

be maintained by selection for something else. Evolution, 40, 1100-1101.  

Curry R. L. & Grant P. R. (1990). Galápagos Mockingbirds. In: Cooperative breeding 

in birds: Long-term studies of ecology and behavior (eds. P. B Stacey & W. D. 

Koenig), pp.291-331. Cambridge, UK: Cambridge University Press.  

Curry R. L. (1988). Influence of kinship on helping behaviour of Galápagos 

Mockingbirds. Behavioral Ecology and Sociobiology, 22, 141-152.  

Daniels S. & Walters J. (2000). Inbreeding Depression and Its Effects on Natal 

Dispersal in Red-Cockaded Woodpeckers. The Condor, 102, 482-491. 

Darwin C. (1859). On the Origin of Species by Means of Natural Selection. London, 

UK: Murray. 

David P., Delay B., Berthou P. & Jarne P. (1995). Alternative models for allozyme-

associated heterosis in the marine bivalve Spisula ovalis. Genetics, 139, 1719-1726.  

Dawkins R. (1976). The Selfish Gene. Oxford, UK: Oxford University Press. 

Dawkins R. (1982). The Extended Phenotype: The long reach of the gene. Oxford, 

UK: Oxford University Press.  

Díaz-Muñoz S. L., DuVal E. H., Krakauer A. H. & Lacey E. A. (2014). Cooperating 

to compete: altruism, sexual selection and causes of male reproductive cooperation. 

Animal Behaviour, 88, 67-78. 

Dickinson J. L. & Hatchwell B. J. (2004). Fitness consequences of helping. In: 

Ecology and Evolution of Cooperative Breeding in Birds (eds. W. D. Koenig & J. L. 

Dickinson), pp 48-66. Cambridge, UK: Cambridge University Press. 

Dickinson J. L., Akçay C., Ferree E. D. & Stern C. A. (2016). A hierarchical analysis 

of incest avoidance in a cooperative breeder. Behavioral Ecology, 27, 1132-1140. 

Dickinson J. L., Koenig W. D. & Pitelka F. A. (1996). Fitness consequences of helping 

behaviour in the western bluebird. Behavioral Ecology, 7, 168-177.  



191 

 

Double M. C., Peakall R., Beck N. R. & Cockburn A. (2005). Dispersal, philopatry 

and infidelity: dissecting local genetic structure in superb fairy-wrens Malurus 

cyaneus. Evolution, 59, 625-635. 

Dowling J. L., Colombelli-Négrel D. & Webster M. S. (2016). Kin Signatures Learned 

in the Egg? Red-Backed Fairy-Wren Songs Are Similar to Their Mother’s In-Nest 

Calls and Songs. Frontiers in Ecology and Evolution, 4, 48. 

Downs S. G. & Ratnieks F. L. W. (2000). Adaptive shifts in honey bee (Apis mellifera 

L.) guarding behavior support predictions of the acceptance threshold model. 

Behavioral Ecology, 11, 326-333. 

Drobniak S. M., Wagner G., Mourocq E. & Griesser M. (2015). Family living: an 

overlooked but pivotal social system to understand the evolution of cooperative 

breeding. Behavioral Ecology, 26, 805–811. 

Duarte L. C., Bouteiller C., Fontanillas P., Petit E. & Perrin N. (2003). Inbreeding in 

the greater white‐toothed shrew, Crocidura russula. Evolution, 57, 638-645. 

Duffy J. E. & Macdonald K. S. (2009). Kin structure, ecology and the evolution of 

social organization in shrimp: a comparative analysis. Proceedings of the Royal 

Society B: Biological Sciences, 277, 575–584.  

Dunn P. O., Cockburn A. & Mulder R. A. (1995). Fairy‐wren helpers often care for 

young to which they are unrelated. Proceedings of the Royal Society B: Biological 

Sciences, 259, 339–343.  

Duthie A. B. & Reid J. M. (2015). What happens after inbreeding avoidance? 

Inbreeding by rejected relatives and the inclusive fitness benefit of inbreeding 

avoidance. PLoS ONE, 10, e0125140. 

Duthie A. B. & Reid J. M. (2016). Evolution  of  inbreeding  avoidance  and  

inbreeding preferences  through  mate  choice  among  interacting  relatives. The 

American Naturalist, 188, 651-667. 

Edelaar P., Alonso D., Lagerveld S., Senar J. C., Bjorklund M. (2012). Population 

differentiation and restricted gene flow in Spanish crossbills: not isolation-by-distance 

but isolation-by-ecology. Journal of Evolutionary Biology, 25, 417-430. 



192 

 

Ekman J., Dickinson J. L., Hatchwell B. J. & Griesser M. (2004). Delayed dispersal. 

In: Ecology and Evolution of Cooperative breeding in birds (eds. W. D. Koenig & J. 

L. Dickinson), pp. 35–47. Cambridge, UK: Cambridge University Press. 

Emlen S. T. & Wrege P. H. (1988). The role of kinship in helping decisions among 

white-fronted bee-eaters. Behavioral Ecology and Sociobiology, 23, 305-315.  

Emlen S. T. & Wrege P. H. (1991). Breeding biology of white-fronted bee-eaters at 

Nakuru - the influence of helpers on breeder fitness. Journal of Animal Ecology, 60, 

309-326. 

Emlen S. T. & Wrege P. H. (1992). Parent–offspring conflict and the recruitment of 

helpers among bee-eaters. Nature, 356, 331–333.  

Emlen S. T. (1982). The evolution of helping. I. An ecological constraints model. The 

American Naturalist, 119, 29-39.  

Emlen S. T. (1991). Evolution of cooperative breeding in birds and mammals. In: 

Behavioural ecology: An evolutionary approach (eds. J. R. Krebs & N. B. Davies), 

pp. 301-337. Oxford: Blackwell Science. 

Emlen S. T. (1995). An evolutionary theory of the family. Proceedings of the National 

Academy of Science, 92, 8092-8099. 

Emlen S. T. (1997). Predicting family dynamics in social vertebrates. In: Behavioural 

Ecology: An Evolutionary Approach (eds. J. R Krebs & N. B. Davies), pp.228-253. 

Cambridge, UK: Blackwell Science Ltd.  

Evans C. S., Evans L. & Marler, P. (1993). On the meaning of alarm calls: functional 

reference in an avian vocal system. Animal Behaviour, 46, 23–38. 

Fisher R. A. (1954). Evolution and bird sociality. In: Evolution as a Process (eds. J. 

Huxley, A. Hardy & E. Ford), pp. 71-83. London, UK: Allen & Unwin.  

Frankham R. (1995). Inbreeding and extinction: a threshold effect. Conservation 

Biology, 9, 792-799. 

Frantz A. C., Pope L. C., Etherington T. R., Wilson G. J. & Burke T. (2010). Using 

isolation-by-distance-based approaches to assess the barrier effect of linear landscape 

elements on badger (Meles meles) dispersal. Molecular Ecology, 19, 1663-1674.  



193 

 

Franz M. & Goller F. (2003). Respiratory patterns and oxygen consumption in singing 

zebra finches. Journal of Experimental Biology, 206, 967–978. 

Gamboa G. J., Grudzien T. A., Espelie K. E. & Bura E. A. (1996). Kin recognition 

pheromones in social wasps: Combining chemical and behavioural evidence. Animal 

Behaviour, 51, 625-629. 

Gamboa G. J., Reeve H. K. & Holmes W. G. (1991). Conceptual issues and 

methodology in kin-recognition research - a critical discussion. Ethology, 88, 109-127.  

Gamboa G. J., Reeve H. K., Ferguson I. D. & Wacker T. L. (1986). Nestmate 

recognition in social wasps - the origin and acquisition of recognition odours. Animal 

Behaviour, 34, 685-695.  

Gardner A. & West S. A. (2007). Social Evolution: The Decline and Fall of Genetic 

Kin Recognition. Current Biology, 17, R810–R812. 

Giret N., Roy P., Albert A., Pachet F., Kreutzer M. & Bovet D. (2011). Finding good 

acoustic features for parrot vocalizations: The feature generation approach. The 

Journal of the Acoustical Society of America, 129, 1089-1099. 

Godfrey S. S., Ansari T. H., Gardner M. G., Farine D. R. & Bull C. M. (2014). A 

contact-based social network of lizards is defined by low genetic relatedness among 

strongly connected individuals. Animal Behaviour, 97, 35–43. 

Goslee S. & Urban D. (2007). The ECODIST package for dissimilarity-based analysis 

of ecological data. Journal of Statistical Software, 22, 1-19. 10.18637/jss.v022.i07.  

Grafen A. (1990). Do animals really recognize kin? Animal Behaviour, 39, 42-54. 

Green J. P., Holmes A. M., Davidson A. J., Paterson S., Stockley P., Beynon R. J., & 

Hurst J. L. (2015). The genetic basis of kin recognition in a cooperatively breeding 

mammal. Current Biology, 25, 2631-2641.  

Greenberg. L. (1979). Genetic component of bee odour in kin recognition. Science, 

206, 1095-1097.  

Greenwood P. J. (1980). Mating systems, philopatry and dispersal in birds and 

mammals. Animal Behaviour, 28, 1140–62. 



194 

 

Griesser M. & Ekman J. (2005). Nepotistic mobbing behaviour in the Siberian jay, 

Perisoreus infaustus. Animal Behaviour, 69, 345-352.  

Griffin A. S. & West S. A. (2003). Kin discrimination and the benefit of helping in 

cooperatively breeding vertebrates. Science, 302, 634-636. 

Griffiths R., Double M. C., Orr K. & Dawson R. J. G (1998). A DNA test to sex most 

birds. Molecular Ecology, 7, 1071-1075.  

Halpin Z. T. (1991). Kin recognition cues of vertebrates. In: Kin Recognition. (ed. P. 

G. Hepper), pp.220-258. Cambridge, UK: Cambridge University Press.   

Hamilton W. D. (1963). The evolution of altruistic behavior. The American Naturalist, 

97, 354-356. 

Hamilton W. D. (1964). The genetical evolution of social behaviour (I and II). Journal 

of Theoretical Biology, 7, 1-52.  

Hamilton W. D. (1970). Selfish and spiteful behaviour in an evolutionary model. 

Nature, 228, 1218. 

Hansson B. & Westerberg L. (2002). On the correlation between heterozygosity and 

fitness in natural populations. Molecular Ecology, 11, 2467–2474. 

Hardy O. J. & Vekemans X. (2002). SPAGeDi: a versatile computer program to 

analyse spatial genetic structure at the individual or population levels. Molecular 

Ecology Notes, 2, 618–620. 

Hatchwell B. J. & Komdeur J. (2000). Ecological constraints, life history traits and the 

evolution of cooperative breeding. Animal Behaviour, 59, 1079-1086. 

Hatchwell B. J. (2009). The evolution of cooperative breeding in birds: kinship, 

dispersal and life history. Philosophical Transactions of the Royal Society B: 

Biological Sciences, 364, 3217–3227. 

Hatchwell B. J. (2010). Cryptic kin selection: Kin structure in vertebrate populations 

and opportunities for kin-directed cooperation. Ethology, 116, 203–216. 

Hatchwell B. J. (2016). Long-tailed tits: ecological causes and fitness consequences 

of redirected helping. In: Ecology and Evolution of Cooperative Breeding in Birds 



195 

 

(eds. W. D. Koenig & J. L. Dickinson), pp. 39-57 Cambridge, UK: Cambridge 

University Press. 

Hatchwell B. J., Anderson C., Ross D. J., Fowlie M. K. & Blackwell P. G. (2001a). 

Social organization of cooperatively breeding long-tailed tits: kinship and spatial 

dynamics. Journal of Animal Ecology, 70, 820-830. 

Hatchwell B. J., Gullett P. R. & Adams M. J. (2014). Helping in cooperatively 

breeding long-tailed tits: a test of Hamilton’s rule. Philosophical Transactions of the 

Royal Society B: Biological Sciences, 369, 20130565. 

Hatchwell B. J., Ross D. J., Chaline N., Fowlie M. K., Burke T. (2002). Parentage in 

the cooperative breeding system of long-tailed tits, Aegithalos caudatus. Animal 

Behaviour, 64, 55-63.  

Hatchwell B. J., Ross D. J., Fowlie M. K. & McGowan A. (2001b). Kin discrimination 

in cooperatively breeding long-tailed tits. Proceedings of the Royal Society B: 

Biological Sciences, 268, 885-890.   

Hatchwell B. J., Russell A. F., Fowlie M. K. & Ross D. J. (1999). Reproductive 

success and nest-site selection in a cooperative breeder: effect of experience and a 

direct benefit of helping. The Auk, 116, 355-363.  

Hatchwell B. J., Russell A. F., MacColl A. D. C., Ross D. J., Fowlie M. K. & 

McGowan A. (2004). Helpers increase long-term but not short-term productivity in 

cooperatively breeding long-tailed tits. Behavioral Ecology, 15, 1–10. 

Hatchwell B. J., Russell A. F., Ross D. J. & Fowlie M. K. (2000). Divorce in 

cooperatively breeding long-tailed tits: a consequence of inbreeding avoidance? 

Proceedings of the Royal Society B: Biological Sciences, 267, 813-819.  

Hatchwell B. J., Sharp S. P., Beckerman A. P. & Meade J. (2013). Ecological and 

demographic correlates of helping behaviour in a cooperatively breeding bird. Journal 

of Animal Ecology, 82, 486-494.  

Hauber M. E. & Sherman P. W. (2001). Self-referent phenotype matching: theoretical 

considerations and empirical evidence. Trends in Neurosciences, 24, 609-616.  



196 

 

Heg D., Bachar Z., Brouwer L. & Taborsky M. (2004). Predation risk is an ecological 

constraint for helper dispersal in a cooperatively breeding cichlid. Proceedings of the 

Royal Society B: Biological Sciences, 271, 2367–2374.  

Hepper P. G. (1986). Kin recognition: functions and mechanisms a review. Biological 

Reviews, 61, 63-93. 

Hepper P. G. (1987). The amniotic fluid: an important priming role in kin recognition. 

Animal Behaviour, 35, 1343–1346. 

Hepper P. G. (1991). Kin Recognition. Cambridge, UK: Cambridge University Press.  

Hijmans R. J. (2016). Raster: Geographic Data Analysis and Modeling. R package 

version 2.5-8. https://CRAN.R-project.org/package=raster.   

Holman L., Van Zweden J. S., Linksvayer T. A. & d’Ettorre P. (2013). Crozier’s 

paradox revisited: maintenance of genetic recognition systems by disassortative 

mating. BMC Evolutionary Biology, 13, 211.  

Holmes W. G. & Sherman P. W. (1982). The ontogeny of kin recognition in two 

species of ground squirrels. American Zoologist, 22, 491-517.  

Holmes W. G. & Sherman P. W. (1983). Kin recognition in animals. American 

Scientist, 71, 46-55. 

Holmes W. G. (1986). Identification of paternal half-siblings by captive Belding 

ground-squirrels. Animal Behaviour, 34, 321-327.  

Holmes W. G. (2004). The early history of Hamiltonian-based research on kin 

recognition. Annales Zoologici Fennici, 41, 691-711.  

Hoogland J. L. (1992). Levels of Inbreeding Among Prairie Dogs. The American 

Naturalist, 139, 591-602.  

Hopp S. L., Jablonski P. & Brown J. L. (2001). Recognition of group membership by 

voice in Mexican jays, Aphelocoma ultramarina. Animal Behaviour, 62, 297–303.  

Huisman J., Kruuk L. E. B., Ellis P. A., Clutton-Brock T. & Pemberton J. M. (2016). 

Inbreeding depression across the lifespan in a wild mammal population. Proceedings 

of the National Academy of Science, 113, 3585–3590. 

https://cran.r-project.org/package=raster


197 

 

Ihle M. & Forstmeier W. (2013). Revisiting the evidence for inbreeding avoidance in 

zebra finches. Behavioral Ecology, 24, 1356-1362.  

Ingram C. M., Troendle N. J., Gill C. A., Braude S. & Honeycutt R. L. (2015). 

Challenging the inbreeding hypothesis in a eusocial mammal: population genetics of 

the naked mole-rat, Heterocephalus glaber. Molecular Ecology, 24, 4848–486. 

Jamieson I. G., Taylor S. S., Tracy L. N., Kokko H. & Armstrong D. P. (2009). Why 

some species of birds do not avoid inbreeding: insights from New Zealand robins and 

saddlebacks. Behavioral Ecology, 20, 575–584. 

Janik V. M. (1999). Pitfalls in the categorization of behaviour: A comparison of 

dolphin whistle classification methods. Animal Behaviour, 57, 133-143.  

Jetz W. & Rubenstein D. R. (2011). Environmental uncertainty and the global 

biogeography of cooperative breeding in birds. Current Biology, 21, 72-78. 

Johnson M. L. & Gaines M. S. (1990). Evolution of Dispersal: Theoretical Models 

and Empirical Tests Using Birds and Mammals. Annual Review of Ecology and 

Systematics, 21, 449–480. 

Kalinowski S. T., Taper M. L. & Marshall T. C. (2007). Revising how the computer 

program CERVUS accommodates genotyping error increases success in paternity 

assignment. Molecular Ecology, 16, 1099-1106.  

Keen S. C., Meliza C. D. & Rubenstein D. R. (2013). Flight calls signal group and 

individual identity but not kinship in a cooperatively breeding bird. Behavioral 

Ecology, 24, 1279–1285. 

Keller L. & Ross K. G. (1998). Selfish genes: a green beard in the red fire ant. Nature, 

394, 573-575. 

Keller L. F. & Waller D. M. (2002). Inbreeding effects in wild populations. Trends in 

Ecology & Evolution, 17, 230-241.  

Kempenaers B. & Sheldon B. C. (1996). Why do male birds not discriminate between 

their own and extra-pair offspring? Animal Behaviour, 51, 1165-1173. 



198 

 

Kennedy E. S., Grueber C. E., Duncan R. P. & Jamieson I. G. (2014). Severe 

inbreeding depression and no evidence of purging in an extremely inbred wild species-

the Chatham island black robin. Evolution, 68, 987–995. 

Klump G. M. (1996). Bird communication in the noisy world. In: Ecology and 

evolution of acoustic communication in birds (eds. D. E. Kroodsma & E. H. Miller), 

pp. 321-338. Ithaca: Cornell University Press.  

Koenig W. D. & Dickinson J. L. (2004). Ecology and Evolution of Cooperative 

Breeding in Birds. Cambridge, UK: Cambridge University Press. 

Koenig W. D. & Dickinson J. L. (2016). Cooperative Breeding in Vertebrates. 

Cambridge, UK: Cambridge University Press. 

Koenig W. D. & Haydock J. L. (2004). Incest and incest avoidance. In: Ecology and 

Evolution of Cooperative Breeding in Birds (eds. W. D. Koenig & J. L. Dickinson), 

pp. 142-156. Cambridge, UK: Cambridge University Press. 

Koenig W. D., Haydock, J. & Stanback M. T. (1998). Reproductive Roles in the 

Cooperatively Breeding Acorn Woodpecker: Incest Avoidance versus Reproductive 

Competition. The American Naturalist, 151, 243-255.  

Koenig W. D., Pitelka F. A., Carmen W. J., Mumme R. L. & Stanback M. T. (1992). 

The evolution of delayed dispersal in cooperative breeders. Quarterly Review of 

Biology, 67, 111–150. 

Koenig W. D., Stanback M. T. & Haydock J. (1999). Demographic consequences of 

incest avoidance in the cooperatively breeding acorn woodpecker, Animal Behaviour, 

57, 1287-1293. 

Kokko H. & Ekman J. (2002). Delayed Dispersal as a Route to Breeding: Territorial 

Inheritance, Safe Havens, and Ecological Constraints. The American Naturalist, 160, 

468–484. 

Kokko H. & Ots I. (2006). When Not To Avoid Inbreeding. Evolution, 60, 467-475.  

Kokko H., Johnstone R. A. & Clutton-Brock T. H. (2001). The evolution of 

cooperative breeding through group augmentation. Proceedings of the Royal Society 

B: Biological Sciences, 268, 187–196. 



199 

 

Kokko H., Johnstone R. A. & Wright J. (2002). The evolution of parental and 

alloparental effort in cooperatively breeding groups: when should helpers pay to stay? 

Behavioral Ecology, 13, 291–300.  

Komdeur J. & Hatchwell B. J. (1999). Kin recognition: function and mechanism in 

avian societies. Trends in Ecology & Evolution, 14, 237-241.  

Komdeur J. (1994). The effect of kinship on helping in the cooperative breeding 

Seychelles warbler (Acrocephalus-sechellensis). Proceedings of the Royal Society B: 

Biological Sciences, 256, 47-52.  

Komdeur J., Richardson D. S. & Burke T. (2004). Experimental evidence that kin 

discrimination in the Seychelles warbler is based on association and not on genetic 

relatedness. Proceedings of the Royal Society B: Biological Sciences, 271, 963-969. 

Konovalov D. A., Manning C. & Henshaw M. T. (2004). KINGROUP: a program for 

pedigree relationship reconstruction and kin group assignments using genetic markers. 

Molecular Ecology, 4, 779-782. 

Krause E. T., Kruger O., Kohlmeier P. & Caspers B. A. (2012). Olfactory kin 

recognition in a songbird. Biology Letters, 8, 327-329.  

Krebs J. R. & Davies N. B. (1997). The evolution of behavioural ecology. In: 

Behavioural ecology: An evolutionary approach (eds. J. R. Krebs & N. B. Davies), 

pp. 3-12. Oxford: Blackwell Science. 

Kruuk L. E. B., Sheldon B. C. & Merila J. (2002). Severe inbreeding depression in 

collared flycatchers (Ficedula albicollis). Proceedings of the Royal Society B: 

Biological Sciences, 269, 1581-1589.  

Kurvers R. H. J. M., Adamczyk V. M. A. P., Kraus R. H. S., Hoffman J. I., van Wieren 

S. E., van der Jeugd, H. P., Amos W., Prins H. H. T., Herbert H. T. & Jonker R. M. 

(2013). Contrasting context dependence of familiarity and kinship in animal social 

networks. Animal Behaviour, 86, 993–1001. 

Kuznetsova A., Brockhoff P B. & Christensen R. H. B. (2017). lmerTest Package: 

Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82, 1–26. 

Lacey E. A. & Sherman P. W. (1991). Social organization of naked mole-rat colonies: 

evidence for divisions of labor. In: The Biology of the Naked Mole-Rat (eds. P. W. 



200 

 

Sherman P. W., J. U. M. Jarvis & R. D. Alexander), pp. 275–336. New Jersey, USA: 

Princeton University Press. 

Lachlan R. F. (2007). Luscinia: a bioacoustics analysis computer program 

(v2.16.10.29.01). Retrieved from http://luscinia.sourceforge.net/.   

Lacy R. C. & Sherman P. W. (1983). Kin recognition by phenotypic matching. The 

American Naturalist, 121, 489-512. 

Leclaire S., Van Dongen W. F., Voccia S., Merkling T., Ducamp C., Hatch S. A., 

Blanchard P., Danchin E. & Wagner R. H. (2014). Preen secretions encode 

information on MHC similarity in certain sex-dyads in a monogamous seabird. 

Scientific reports, 4, 6920.  

Lee J-W., Simeoni M., Burke T. & Hatchwell B. J. (2010). The consequences of winter 

flock demography for genetic structure and inbreeding risk in vinous-throated 

parrotbills, Paradoxornis webbianus. Heredity, 104, 472-481. 

Leedale A. E., Sharp S. P., Simeoni M., Robinson E. J. H. & Hatchwell B. J. (2018). 

Fine-scale genetic structure and helping decisions in a cooperatively breeding bird. 

Molecular Ecology, 27, 1714–1726. 

Lehmann L. & Perrin N. (2003). Inbreeding Avoidance through Kin Recognition: 

Choosy Females Boost Male Dispersal. The American Naturalist, 162, 638–652.  

Lehmann L. & Balloux F. (2007). Natural selection on fecundity variance in 

subdivided populations: Kin selection meets bet hedging. Genetics, 176, 361-377. 

Ligon J. D. & Burt D. B. (2004). Evolutionary origins. In: Ecology and Evolution of 

Cooperative Breeding in Birds (eds. W. D. Koenig & J. L. Dickinson), pp 5-34. 

Cambridge, UK: Cambridge University Press. 

Ligon J. D. & Ligon S. H. (1978). Communal breeding in green woodhoopoes as a 

case for reciprocity. Nature, 276, 496-498.  

Ligon J. D. & Stacey P. B. (1991) The origin and maintenance of helping in birds. The 

American Naturalist, 138, 254–258.  

Lukas D. & Clutton-Brock T. H. (2017). Climate and the distribution of cooperative 

breeding in mammals. Royal Society Open Science, 4, 160897. 

http://luscinia.sourceforge.net/


201 

 

Lukas D. & Clutton‐Brock T. H. (2011). Group structure, kinship, inbreeding risk and 

habitual female dispersal in plural‐breeding mammals. Journal of Evolutionary 

Biology, 24, 2624-2630. 

Lukas D. & Clutton-Brock T. H. (2012). Life histories and the evolution of cooperative 

breeding in mammals. Proceedings of the Royal Society B: Biological Sciences, 279, 

4065-4070. 

Lynch A., Plunkett G. M., Baker A. J. & Jenkins P. F. (1989). A model of cultural 

evolution of chaffinch song derived with the meme concept. The American Naturalist, 

133, 634-653. 

Lynch M. (1991). The genetic interpretation of inbreeding depression and outbreeding 

depression. Evolution, 45, 622-629.  

MacColl A. D. C. & Hatchwell B. J. (2004). Determinants of lifetime fitness in a 

cooperative breeder, the long-tailed tit Aegithalos caudatus. Journal of Animal 

Ecology, 73, 1137–1148. 

Madden J. R., Nielsen J. F. & Clutton-Brock T. H. (2012). Do networks of social 

interactions reflect patterns of kinship? Current Zoology, 58, 319–328. 

Marler P. (2004). Science and birdsong: the good old days. In: Nature’s Music: The 

Science of Birdsong (eds. P. Marler & H. Slabbekoorn), pp.1-38. London, UK: 

Elsevier Academic Press.  

Martín-Vivaldi M., Martínez J. J., Palomino J. & Soler M. (2002). Extrapair paternity 

in the Hoopoe Upupa epops: An exploration of the influence of interactions between 

breeding pairs, non-pair males and strophe length. Ibis, 144, 236 - 247. 

Mateo J. M. & Johnston R. E. (2000). Kin Recognition and the 'Armpit Effect': 

Evidence of Self-Referent Phenotype Matching. Proceedings of the Royal Society B: 

Biological Sciences, 267, 695-700.   

Mateo J. M. (2004). Recognition systems and biological organization: The perception 

component of social recognition. Annales Zoologici Fennici, 41, 729-745.  

Maynard Smith J. (1964). Group selection and kin selection. Nature, 201, 1145-7. 



202 

 

McDonald P. G., Rollins L. A., & Godfrey S. (2015). The relative importance of 

spatial proximity, kin selection and potential “greenbeard” signals on provisioning 

behaviour among helpers in a cooperative bird. Behavioral Ecology and Sociobiology, 

70, 133–143. 

McDonald P. G. & Wright J. (2011). Bell miner provisioning calls are more similar 

among relatives and are used by helpers at the nest to bias their effort towards kin. 

Proceedings of the Royal Society B: Biological Sciences, 278, 3403-3411.  

McGowan A., Fowlie M. K., Ross D. J. & Hatchwell B. J. (2007). Social organization 

of co‐operatively breeding Long‐tailed Tits Aegithalos caudatus: flock composition 

and kinship. Ibis, 149, 170-174.  

McGowan A., Hatchwell B. J. & Woodburn R. J. W. (2003). The effect of helping 

behaviour on the survival of juvenile and adult long-tailed tits Aegithalos caudatus. 

Journal of Animal Ecology, 72, 491-499.  

Magrath R. D., & Whittingham L. A. (1997). Subordinate males are more likely to 

help if unrelated to the breeding female in cooperatively breeding white-browed 

scrubwrens. Behavioral Ecology and Sociobiology, 41, 185–192. 

Mcgregor P. K. & Krebs J. R. (1982). Song Types in a Population of Great Tits (Parus 

Major): Their Distribution, Abundance and Acquisition By Individuals. Behaviour, 

79, 126–152. 

Meade J. & Hatchwell B. J. (2010). No direct fitness benefits of helping in a 

cooperative breeder despite higher survival of helpers. Behavioral Ecology, 21, 1186-

1194.  

Meade J., Nam K.-B., Beckerman A. P. & Hatchwell B. J. (2010). Consequences of 

‘load-lightening’ for future indirect fitness gains by helpers in a cooperatively 

breeding bird. Journal of Animal Ecology, 79, 529-537.  

Meliza C. D., Keen S. C., & Rubenstein D. R. (2013). Pitch-and spectral-based 

dynamic time warping methods for comparing field recordings of harmonic avian 

vocalizations. The Journal of the Acoustical Society of America, 134, 1407-1415. 

Mulder R. A., Dunn P. O., Cockburn A., Lazenby-Cohen K. A. & Howell M. J. (1994). 

Helpers liberate female fairy-wrens from constraints on extra-pair mate choice. 



203 

 

Proceedings of the Royal Society of London Series B: Biological Sciences, 255, 223-

229. 

Nakagawa S. & Schielzeth H. (2010). Repeatability for Gaussian and non‐Gaussian 

data: a practical guide for biologists. Biological Reviews, 85, 935-956. 

Nam K.-B., Simeoni M., Sharp S. P. & Hatchwell B. J. (2010). Kinship affects 

investment by helpers in a cooperatively breeding bird. Proceedings of the Royal 

Society B: Biological Sciences, 277, 3299-3306.  

Napper C. J. & Hatchwell B. J. (2016). Social dynamics in nonbreeding flocks of a 

cooperatively breeding bird: causes and consequences of kin associations. Animal 

Behaviour, 122, 23-35.  

Napper C. J., Sharp S. P., McGowan A., Simeoni S. & Hatchwell B. J. (2013). 

Dominance, not kinship, determines individual position within the communal roosts 

of a cooperatively breeding bird. Behavioral Ecology and Sociobiology, 67, 2029-

2039. 

Nichols H. J. (2017). The causes and consequences of inbreeding avoidance and 

tolerance in cooperatively breeding vertebrates. Journal of Zoology, 303, 1–14. 

Nielsen R., Tarpy D. R. & Reeve H. K. (2003). Estimating effective paternity number 

in social insects and the effective number of alleles in a population. Molecular 

Ecology, 12, 3157-3164. 

Nowicki S. (1989). Vocal plasticity in captive black-capped chickadees: the acoustic 

basis and rate of call convergence. Animal Behaviour, 37, 64–73. 

O’Riain M. J., Bennett N. C., Brotherton P. N. M., McIlrath G. & Clutton-Brock T. 

H. (2000). Reproductive suppression and inbreeding avoidance in wild populations of 

cooperatively breeding meerkats (Suricata suricatta). Behavioral Ecology and 

Sociobiology, 48, 471–477. 

Painter J. N., Crozier R. H., Poiani A., Robertson R. J. & Clarke M. F. (2000). 

Complex social organization reflects genetic structure and relatedness in the 

cooperatively breeding bell miner, Manorina melanophrys. Molecular Ecology, 9, 

1339-1347. 



204 

 

Parker G. A. (1979). Sexual selection and sexual conflict. In: Sexual selection and 

reproductive competition in insects (eds. M.S. Blum & N. A. Blum), pp. 123-166. 

New York: Academic Press.  

Parker G. A. (2006). Sexual conflict over mating and fertilization: an overview. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 235-259. 

Payne R. B., Payne L. L. & Rowley I. (1988). Kin and social relationships in splendid 

fairy-wrens - recognition by song in a cooperative bird. Animal Behaviour, 36, 1341-

1351.  

Pemberton J. (2004). Measuring inbreeding depression in the wild: the old ways are 

the best. Trends in Ecology & Evolution, 19, 613–615. 

Perrin N. & Mazalov V. (2000). Local competition, inbreeding, and the evolution of 

sex-biased dispersal. The American Naturalist, 155, 116-127. 

Pfefferl D., Ruiz-Lambides A. V. & Widdig A. (2013). Female rhesus macaques 

discriminate unfamiliar paternal sisters in playback experiments: support for acoustic 

phenotype matching. Proceedings of the Royal Society B: Biological Sciences, 281, 

20131628.  

Pfennig D. W., Reeve H. K. & Sherman P. W. (1993). Kin recognition and 

cannibalism in spadefoot toad tadpoles. Animal Behaviour, 46, 87-94. 

Pizzari T., Lo H. & Cornwallis C. K. (2004). Sex-specific, counteracting responses to 

inbreeding in a bird. Proceedings of the Royal Society B: Biological Sciences, 271, 

2115–2121. 

Preston S. A. J., Briskie J. V. & Hatchwell B. J. (2013). Adult helpers increase the 

recruitment of closely related offspring in the cooperatively breeding rifleman. 

Behavioral Ecology, 27, 1617–1626.  

Price J. J. (1998). Family- and sex-specific vocal traditions in a cooperatively breeding 

songbird. Proceedings of the Royal Society B: Biological Sciences, 265, 497-502.  

Price J. J. (1999). Recognition of family-specific calls in stripe-backed wrens. Animal 

Behaviour, 57, 483-492.  



205 

 

Pusey A. E. & Wolf M. (1996). Inbreeding avoidance in animals. Trends in Ecology 

& Evolution, 11, 201-206.  

Pusey A. E. (1987). Sex-biased dispersal and inbreeding avoidance in birds and 

mammals. Trends in Ecology & Evolution, 2, 295-299.  

Puurtinen M. (2011). Mate choice for optimal (k)inbreeding. Evolution, 65, 1501–

1505. 

Queller D. C. (1994). Genetic relatedness in viscous populations. Evolutionary 

Ecology, 8, 70-73. 

Queller D. C. & Goodnight K. F. (1989). Estimating relatedness using genetic 

markers. Evolution, 43, 258-275.  

Queller D. C., Ponte E., Bozzaro S. & Strassmann J. E. (2003). Single-Gene 

Greenbeard Effects in the Social Amoeba Dictyostelium discoideum. Science, 299, 

105-106.  

Queller D. C., Strassmann J. E., Solís C. R., Hughes C. R. & DeLoach D. M. (1993). 

A selfish strategy of social insect workers that promotes social cohesion. Nature, 365, 

639–641. 

R Core Team (2015). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/.      

R Core Team (2018). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/.   

Radford A. N. (2005). Group-specific vocal signatures and neighbour-stranger 

discrimination in the cooperatively breeding green woodhoopoe. Animal Behaviour, 

70, 1227-1234. 

Reeve H. K. (1989). The evolution of conspecific acceptance thresholds. The 

American Naturalist, 133, 407-435. 

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/


206 

 

Reeve H. K., Westneat D. F., Noon W. A., Sherman P. W. & Aquadro C. F. (1990). 

DNA “fingerprinting” reveals high levels of inbreeding in colonies of the eusocial 

naked mole-rat. Proceedings of the National Academy of Sciences, 87, 2496–2500. 

Reid J. M., Arcese P., Cassidy A. L. E. V, Hiebert S. M., Smith J. N. M., Stoddard P. 

K., Marr A. B & Keller L. F. (2005). Fitness correlates of song repertoire size in free-

living song sparrows (Melospiza melodia). The American Naturalist, 165, 299–310.  

Reyer H. U. (1984). Investment and relatedness: A cost/benefit analysis of breeding 

and helping in the pied kingfisher. Animal Behaviour, 32, 1163-1178.  

Reid J. M., Arcese P., Keller L. F., Elliott K. H., Sampson L. & Hasselquist D. 

(2007). Inbreeding effects on immune response in free-living song sparrows 

(Melospiza melodia). Proceedings of the Royal Society B: Biological Sciences, 274, 

697–706.  

Richardson D. S., Burke T. & Komdeur J. (2003). Sex-specific associative learning 

cues and inclusive fitness benefits in the Seychelles warbler. Journal of Evolutionary 

Biology, 16, 854-861.  

Riede T., Suthers R. A., Fletcher N. H. & Blevins W. E. (2006). Songbirds tune their 

vocal tract to the fundamental frequency of their song. Proceedings of the National 

Academy of Sciences, 103, 5543-5548.  

Riehl C. (2013). Evolutionary routes to non-kin cooperative breeding in birds. 

Proceedings of the Royal Society B: Biological Sciences, 280, 20132245–20132245.  

Riehl C. & Stern C. A. (2015). How cooperatively breeding birds identify relatives 

and avoid incest: New insights into dispersal and kin recognition. BioEssays, 37, 

1303–1308. 

Roff D. A. (2002). Inbreeding depression: tests of the overdominance and partial 

dominance hypotheses. Evolution, 56, 768-775.  

Rolshausen G., Segelbacher G., Hermes C., Hobson K. A. & Schaefer H. M. (2013). 

Individual differences in migratory behavior shape population genetic structure and 

microhabitat choice in sympatric blackcaps (Sylvia atricapilla). Ecology and 

Evolution, 3, 4278-4289.  



207 

 

Rousset F. & Roze D. (2007). Constraints on the origin and maintenance of genetic 

kin recognition. Evolution. International Journal of Organic Evolution, 61, 2320-

2330.  

Rowley I., Russell E. & Brooker M. (1986). Inbreeding: Benefits may outweigh costs. 

Animal Behaviour, 34, 939–941.  

Rubenstein D. R. & Abbot P. (2017). Comparative Social Evolution. Cambridge, UK: 

Cambridge University Press.  

Russell A. F. & Hatchwell B. J. (2001). Experimental evidence for kin-biased helping 

in a cooperatively breeding vertebrate. Proceedings of the Royal Society B: Biological 

Sciences, 268, 2169-2174.  

Russell A. F., Portelli D. J., Russell D. J. F. & Barclay H. (2010). Breeding ecology 

of the Chestnut-crowned Babbler: a cooperative breeder in the desert. Emu, 110, 324–

331. 

Saccheri I., Kuussaari M., Kankare M., Vikman P., Fortelius W. & Hanski I. (1998). 

Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494. 

Schielzeth H., Nakagawa S. & Stoffel M. (2011). rptR: Repeatability for Gaussian 

and non-Gaussian data. R package version 0.6.405.  

Schnell G. D., Watt D. J. & Douglas M. E. (1985). Statistical comparison of proximity 

matrices: applications in animal behaviour. Animal Behaviour, 33, 239–253. 

Searcy W. A., Nowicki S. & Hughes M. (1997). The Response of Male and Female 

Song Sparrows to Geographic Variation in Song. The Condor, 99, 651–657. 

Sharp S. P. & Hatchwell B. J. (2005). Individuality in the contact calls of cooperatively 

breeding long-tailed tits (Aegithalos caudatus). Behaviour, 142, 1559-1575.   

Sharp S. P. & Hatchwell B. J. (2006). Development of family specific contact calls in 

the long-tailed tit Aegithalos caudatus. Ibis, 148, 649-656. 

Sharp S. P., Baker M. B., Hadfield J. D., Simeoni M. & Hatchwell B. J. (2008a). Natal 

dispersal and recruitment in a cooperatively breeding bird. Oikos, 117, 1371-1379.  

Sharp S. P., McGowan A., Wood M. J. & Hatchwell B. J. (2005). Learned kin 

recognition cues in a social bird. Nature, 434, 1127-1130.  



208 

 

Sharp S. P., Simeoni M. & Hatchwell B. J. (2008b). Dispersal of sibling coalitions 

promotes helping among immigrants in a cooperatively breeding bird. Proceedings of 

the Royal Society B: Biological Sciences, 275, 2125-2130.  

Sharp S. P., Simeoni M., McGowan A., Nam K.-B & Hatchwell B. J. (2011). Patterns 

of recruitment, relatedness and cooperative breeding in two populations of long-tailed 

tits. Animal Behaviour, 81, 843-849. 

Shen S.-F., Emlen S. T., Koenig W. D. & Rubenstein D. R. (2017). The ecology of 

cooperative breeding behaviour. Ecology Letters, 20, 708–720. 

Shepher J. (1971). Mate selection among second generation kibbutz adolescents and 

adults: Incest avoidance and negative imprinting. Archives of Sexual Behavior, 1, 293–

307. 

Sherman P. W., Reeve H. K. & Pfennig D. W. (1997). Recognition Systems. In: 

Behavioral Ecology: An Evolutionary Approach (eds. J. R Krebs & N. B. Davies), pp. 

69-96. Cambridge, UK: Blackwell Science Ltd.  

Simeoni M., Dawson D. A., Ross D. J., Châline N., Burke T. & Hatchwell B. J. (2007) 

Characterization of 20 microsatellite loci in the long-tailed tit Aegithalos caudatus 

(Aegithalidae, AVES). Molecular Ecology Notes, 7, 1319-1322.  

Slate J., David P., Dodds K. G., Veenvliet B. A., Glass B. C., Broad T. E. & McEwan 

J. C. (2004). Understanding the relationship between the inbreeding coefficient and 

multilocus heterozygosity: theoretical expectations and empirical data. Heredity, 93, 

255-265.  

Slate J., Kruuk L. E. B., Marshall T. C., Pemberton J. M. & Clutton-Brock T. H. 

(2000). Inbreeding depression influences lifetime breeding success in a wild 

population of red deer (Cervus elaphus). Proceedings of the Royal Society B: 

Biological Sciences, 267, 1657–1662. 

Slatkin M. (1995). A measure of population subdivision based on microsatellite allele 

frequencies. Genetics, 139, 457-462.  

Smallbone W., van Oosterhout C. & Cable J. (2016). The effects of inbreeding on 

disease susceptibility: Gyrodactylus turnbulli infection of guppies, Poecilia reticulata. 

Experimental Parasitology, 167, 32–37. 



209 

 

Soler M., Soler J. J., Martinez J. G. & Møller A. P. (1995). Chick Recognition and 

Acceptance: A Weakness in Magpies Exploited by the Parasitic Great Spotted 

Cuckoo. Behavioral Ecology and Sociobiology, 37, 243-248.  

Stacey P. & Ligon J. (1987). Territory Quality and Dispersal Options in the Acorn 

Woodpecker, and a Challenge to the Habitat-Saturation Model of Cooperative 

Breeding. The American Naturalist, 130, 654-676. 

Stoffel M. A., Esser M., Kardos M., Humble E., Nichols H., David P. & Hoffman J. I. 

(2016). inbreedR: An R package for the analysis of inbreeding based on genetic 

markers. Methods in Ecology and Evolution, 7, 1331–1339. 

Suzuki T. N. (2013). Communication about predator type by a bird using discrete, 

graded and combinatorial variation in alarm calls. Animal Behaviour, 87, 59–65. 

Szulkin M., Bierne N. & David P. (2010). Heterozygosity‐fitness correlations: a time 

for reappraisal. Evolution, 64, 1202-1217. 

Szulkin M., Garant D., McCleery R. H. & Sheldon, B. C. (2007). Inbreeding 

depression along a life-history continuum in the great tit. Journal of Evolutionary 

Biology, 20, 1531–1543.  

Szulkin M., Stopher K. V. Pemberton J. M. & Reid J. M. (2013). Inbreeding 

avoidance, tolerance, or preference in animals? Trends in Ecology and Evolution, 28, 

205–211. 

Taborsky M. & Limberger D. (1981). Helpers in fish. Behavioral Ecology and 

Sociobiology, 8, 143-145. 

Tang-Martinez Z. (2001). The mechanisms of kin discrimination and the evolution of 

kin recognition in vertebrates: a critical re-evaluation. Behavioural Processes, 53, 21-

40.  

Tarvin K., Webster M., Tuttle E. & Pruett-Jones S. (2005). Genetic similarity predicts 

the level of extra-pair paternity in splendid fairy-wrens. Animal Behaviour, 70, 945-

955. 

Taylor P. D. (1992). Altruism in viscous populations: an inclusive fitness model. 

Evolutionary Ecology, 6, 352-356. 



210 

 

Temple H. J., Hoffman J. I. & Amos, W. (2006) Dispersal, philopatry and intergroup 

relatedness: fine-scale genetic structure in the white-breasted thrasher Ramphocinclus 

rachyurus. Molecular Ecology, 15, 3449-3458. 

Thomsen H. M., Balsby T. J. & Dabelsteen T. (2013). Individual variation in the 

contact calls of the monomorphic Peach-fronted Conure, Aratinga aurea, and its 

potential role in communication. Bioacoustics, 22, 215-227. 

Townsend A. K., Clark A. B., McGowan K. J., Buckles E. L., Miller A. D. & Lovette 

I. J. (2009). Disease-mediated inbreeding depression in a large, open population of 

cooperative crows. Proceedings of the Royal Society B: Biological Sciences, 276, 

2057–2064. 

Trivers R. (1972). Parental investment and sexual selection. In: Sexual Selection and 

the Descent of Man 1871–1971 (ed. B. Campbell), pp. 139–179. Aldine Press, 

Chicago. 

van Dijk R. E., Covas R., Doutrelant C., Spottiswoode C. N. & Hatchwell B. J. (2015). 

Fine‐scale genetic structure reflects sex‐specific dispersal strategies in a population of 

sociable weavers (Philetairus socius). Molecular Ecology, 24, 4296-4311. 

van Dijk R. E., Kaden J. C., Argüelles-Ticó A, Dawson, D. A., Burke, T. & Hatchwell, 

B. J. (2014). Cooperative investment in public goods is kin directed in communal nests 

of social birds. Ecology Letters, 17, 1141-1148. 

van Treuren R., Bijlsma R., Tinbergen J. M., Heg D. & van de Zande L. (1999). 

Genetic analysis of the population structure of socially organized oystercatchers 

(Haematopus ostralegus) using microsatellites. Molecular Ecology, 8, 181–187. 

Varian-Ramos C. W. & Webster M. S. (2012). Extrapair copulations reduce 

inbreeding for female red-backed fairy-wrens, Malurus melanocephalus. Animal 

Behaviour, 83, 857-864. 

Walling C. A., Nussey D. H., Morris A., Clutton-Brock T. H, Kruuk L. E. B. & 

Pemberton J. M. (2011). Inbreeding depression in red deer calves. BMC Evolutionary 

Biology, 11, 318.  

Walters J. R., Cooper C. B., Daniels S. J., Pasinelli G. & Schiegg K. (2004). 

Conservation biology. In: Ecology and Evolution of Cooperative Breeding in Birds 



211 

 

(eds. W. D. Koenig & J. L. Dickinson), pp. 197–209. Cambridge, UK: Cambridge 

University Press. 

Walters J. R., Doerr P. D. & Carter J. H. (2010). The Cooperative Breeding System of 

the Red-cockaded Woodpecker. Ethology, 78, 275–305. 

Wang C. & Lu X. I. N. (2011). Female ground tits prefer relatives as extra‐pair 

partners: driven by kin‐selection? Molecular Ecology, 20, 2851-2863. 

Wanker R. & Fischer J. (2001). Intra-and interindividual variation in the contact calls 

of spectacled parrotlets (Forpus conspicillatus). Behaviour, 138, 709-726. 

Ward S., Lampe H. M. & Slater P. J. B. (2004). Singing is not energetically demanding 

for pied flycatchers, Ficedula hypoleuca. Behavioral Ecology, 15, 477–484. 

Waser P., Austad S. & Keane B. (1986). When Should Animals Tolerate Inbreeding? 

The American Naturalist, 128, 529-537.  

Watts P. C., Rouquette J. R., Saccheri I. J., Kemp S. J. & Thompson D. J. (2004). 

Molecular and ecological evidence for small-scale isolation by distance in an 

endangered damselfly, Coenagrion mercuriale. Molecular Ecology, 13, 2931-2945. 

Weir B. S. and Cockerham C. C. (1984) Estimating F-statistics for the analysis of 

population structure. Evolution, 38, 1358-1370. 

West S. A., Griffin A. S. & Gardner A. (2007a). Social semantics: altruism, 

cooperation, mutualism, strong reciprocity and group selection. Journal of 

Evolutionary Biology, 20, 415–432. 

West S. A., Griffin A. S. & Gardner A. (2007b). Evolutionary explanations for 

cooperation. Current Biology, 17, R661-R672. 

West S. A., Pen I. & Griffin A. S. (2002). Cooperation and competition between 

relatives. Science, 296, 72-75. 

Whittingham L. A., Dunn P. O. & Magrath R. D. (1997). Relatedness, polyandry and 

extra-group paternity in the cooperatively-breeding white-browed scrubwren 

(Sericornis frontalis). Behavioral Ecology and Sociobiology, 40, 261-270. 

Wilson E.O. (1975). Sociobiology: The new synthesis. Massachusetts, USA: Harvard 

University Press.  



212 

 

Wilson E.O. (1971). The Insect Societies. Cambridge, USA: Harvard University Press.  

Winker K., McCracken K. G., Gibson D. D. & Peters J. L. (2013). Heteropatric 

speciation in a duck, Anas crecca. Molecular Ecology, 22, 5922-5935. 

Wolak M. E. (2012). nadiv: an R package to create relatedness matrices for estimating 

non-additive genetic variances in animal models. Methods in Ecology and Evolution, 

3, 792-796. 

Wolfenden A., Jones C. G., Tatayah V., Züel N.  & de Kort S. R.  (2015). Endangered 

pink pigeons treat calls of the ubiquitous Madagascan turtle dove as conspecific. 

Animal Behaviour, 99, 83-88. 

Wolfenden G. E. (1975). Florida scrub jay helpers at the nest. Auk, 92, 1-15. 

Woxvold I. A., Adcock G. J. & Mulder R. A. (2006). Fine-scale genetic structure and 

dispersal in cooperatively breeding apostlebirds. Molecular Ecology, 15, 3139-3146. 

Wright J., McDonald P. G., te Marvelde L., Kazem A. J. N. & Bishop C. M. (2010). 

Helping effort increases with relatedness in bell miners, but ‘unrelated’ helpers of both 

sexes still provide substantial care. Proceedings of the Royal Society B: Biological 

Sciences, 227, 437-445.  

Wright J. (1998). Helping‐at‐the‐nest and group size in the Arabian Babbler Turdoides 

squamiceps. Journal of Avian Biology, 29, 105–112. 

Wright J., Parker P. G. & Lundy K. J. (1999). Relatedness and chick‐feeding effort in 

the cooperatively breeding Arabian babbler. Animal Behaviour, 58, 779–785. 

Wright L. I., Tregenza T. & Hosken D. J. (2008). Inbreeding, inbreeding depression 

and extinction. Conservation Genetics, 9, 833-843.  

Wright S. (1922). The Effects of Inbreeding and Crossbreeding on Guinea Pigs: I. 

Decline in Vigor: II. Differentiation Among Inbred Families. USDA Bull, 1121, 1-60.  

Wright S. (1943). Isolation by distance. Genetics, 28, 114-138.  

Wright S. (1949). Genetical structure of populations. Nature, 166, 247–249. 

Wright S. (1965). The Interpretation of Population Structure by F-Statistics with 

Special Regard to Systems of Mating. Evolution, 19, 395–420.  



213 

 

Wright T. F. (1996). Regional Dialects in the Contact Call of a Parrot. Proceedings of 

the Royal Society B: Biological Sciences, 263, 867–872. 

Yamazaki K., Boyse E.A., Mike V., Thaler H.T., Mathieson B.J., Abbott J., Boyse J. 

& Zayas Z.A. (1976). Control of mating preferences in mice by genes in the major 

histocompatibility complex. Journal of Experimental Medicine, 144, 1324-1335.  

Yasukawa K., Urish J., Her A. & Light E. (2008). Similarity in the begging calls of 

nestling Red-winged Blackbirds. Journal of Field Ornithology, 79, 254–262. 

Zahavi A. (1995). Altruism as a handicap - the limitations of kin selection and 

reciprocity. Journal of Avian Biology, 26, 1-3. 

Zhang J. (2016). spaa: SPecies Association Analysis. R package version 0.2.1, URL 

https://CRAN.R-project.org/package=spaa. 

https://cran.r-project.org/package=spaa

