
Immune-inspired fault diagnosis for
a robotic system

Ran Bi

A thesis for the degree of Doctor of Philosophy

The University of York

Department of Electronics

January 2012

Abstract

To achieve fully autonomous systems, fault tolerance is often employed.

Fault tolerance is the ability to continue operation in the presence of

faults. Fault diagnosis is an essential component of fault tolerance, espe-

cially for autonomous robotics. It is the process of determining as much

information as possible about the fault, especially the origin of the fault.

However, a real time fault diagnosis for resource limited robotic systems

has proposed a new set of challenges, such as its complexity and effi-

ciency, which traditional methods will find difficult to meet. This has led

the work to seek inspiration from the immune system, where an effective

and efficient fault diagnosis solution has been provided for thousands of

years. This thesis presents a novel immune-inspired on-line fault diag-

nosis algorithm for robotic systems and includes the first application of

that Artificial Immune System to robot fault diagnosis.

Contents

1 Introduction 2

1.1 Contribution . 4

1.2 Thesis structure . 5

2 Fault diagnosis 7

2.1 Introduction . 8

2.2 Engineering fault diagnosis 9

2.3 Fault diagnosis methods 11

2.3.1 Artificial Neural network 12

2.3.2 Support Vector Machine 16

2.3.3 K-nearest neighbour 17

2.4 Summary . 18

2.4.1 Challenges . 18

3 Immune system and AIS 20

3.1 Introduction . 20

3.2 Immune fault diagnosis 22

3.3 Artificial Immune System for fault diagnosis 24

3.4 Conceptual Framework 26

3.5 Summary . 28

4 Diagnostic Dendritic Cell Algorithm 29

i

CONTENTS ii

4.1 Introduction . 30

4.2 Biology inspiration . 31

4.2.1 Dendritic cell . 31

4.2.2 Apoptosis and Necrosis 33

4.2.3 T killer and T reg 35

4.3 D-DCA . 36

4.4 Investigating D-DCA . 44

4.4.1 Diversity . 44

4.4.2 Interaction . 44

4.4.3 Scale . 46

4.5 Summary . 46

5 Feasibility analysis 48

5.1 Introduction . 49

5.2 Experiments and results 51

5.3 Discussion . 60

5.4 Summary . 63

6 Parameters sensitivity analysis 65

6.1 Introduction . 66

6.2 Parameters in question 68

6.3 Experiments and results 69

6.4 Discussion . 80

6.5 Summary . 85

7 Comparison analysis 87

7.1 Introduction . 88

7.2 Experiments and results 89

7.2.1 Data sets . 90

7.2.2 ANN results . 92

CONTENTS iii

7.2.3 SVM results . 94

7.2.4 DDCA comparison results 94

7.3 Discussion . 99

7.4 Summary . 103

8 Conclusion 104

8.1 Summary . 104

8.2 Contribution . 105

8.2.1 Challenges . 106

8.2.2 A novel algorithm 107

8.2.3 Analysis . 107

8.2.4 A comparison . 108

8.3 Future work . 109

8.3.1 Towards a truly immune inspired fault diagnosis . 109

8.3.2 Applying to real robots and beyond 110

A Player Stage 112

B Receiver Operation Characteristic curve 114

B.1 Confusion matrix . 114

B.2 ROC . 115

B.3 How to interpret ROC 116

C Latin Hypercube and Sensitivity analysis 118

D Wilcoxon test 126

E Wilcoxon signed-rank test results 128

F Parameter evaluation results 130

G Support vector machine and its kernels 132

CONTENTS iv

H 25 data sets used in comparison 135

I K-nearest neighbour results 137

Glossary 141

Acronyms 142

List of Tables

4.1 Biology terms mapping to D-DCA 38

5.1 A typical input vector 53

5.2 Input value range . 53

5.3 A typical output vector 54

5.4 Parameters for feasibility experiments 54

6.1 Preliminary findings . 69

6.2 Parameter analysis data set 71

6.3 Table of null hypotheses for Wilcoxon tests 71

6.4 Parameter ranges for Wilcoxon test 72

6.5 Base line parameters setting 72

6.6 Wilcoxon Test 1 . 73

6.7 Wilcoxon signed-rank test result 74

6.8 Parameter ranges for Latin Hypercube Test 3 76

6.9 Parameters for E1 . 78

6.10 Performance verification E1 78

6.11 Parameters for E2 . 79

6.12 Performance verification E2 79

6.13 Parameters for E3 . 80

6.14 Performance verification E3 80

6.15 Parameters for E4 . 81

v

LIST OF TABLES vi

6.16 Performance verification E4 81

6.17 Suggested correlation coefficient interpretation[8] 83

7.1 Training data set . 91

7.2 Test data set . 91

7.3 ANN results . 93

7.4 SVMs results . 95

7.5 Parameters for DDCA 96

7.6 DDCA comparison results 96

7.7 Table of null hypotheses for comparison tests 97

7.8 DDCA comparison Wilcoxon results 97

D.1 Table of critical values for the Wilcoxon test[9] 127

E.1 Wilcoxon signed-rank test result individual parameter with

performance test 2 . 129

F.1 Parameters performance standard deviation verification . 131

F.2 Parameters performance standard deviation verification 1:1 131

F.3 Parameters performance standard deviation verification 1:2 131

H.1 25 Test data sets used in comparison 136

List of Figures

2.1 Fault diagnosis methods[59] 12

2.2 Schematic diagram of a processing element[22] 12

2.3 A feed forward ANN with 3 layers[10] 13

3.1 The conceptual framework[76] 26

4.1 DC model activity diagram, modified from [50] 32

4.2 Diagnostic-DCA overview 36

5.1 Fault tolerance . 52

5.2 ROC curve for 8 different scenarios 56

5.2 ROC curve for 8 different scenarios 57

5.2 ROC curve for 8 different scenarios 58

5.2 ROC curve for 8 different scenarios 59

5.3 A typical output from with death approach 60

6.1 Test 1-01 Correlation Coefficient 76

6.2 Test 2-01 Correlation Coefficient 77

6.3 Test 3-01 Correlation Coefficient 77

7.1 TPR result for Wilcoxon 25 samples test 98

7.2 FPR result for Wilcoxon 25 samples test 98

7.3 Distance to (1, 0) . 99

vii

LIST OF FIGURES viii

B.1 Confusion matrix . 114

B.2 A ROC example . 117

C.1 Examples of Latin hypercube and random sampling . . . 120

C.2 Test 1-01 Correlation Coefficient 121

C.3 Test 1-02 Correlation Coefficient 121

C.4 Test 1-03 Correlation Coefficient 122

C.5 Test 2-01 Correlation Coefficient 122

C.6 Test 2-02 Correlation Coefficient 123

C.7 Test 2-03 Correlation Coefficient 123

C.8 Test 3-01 Correlation Coefficient 124

C.9 Test 3-02 Correlation Coefficient 124

C.10 Test 3-03 Correlation Coefficient 125

G.1 The effect of the soft-margin constant for linear SVM . . 133

G.2 The effect of the degree of a polynomial kernel 133

G.3 The effect of the inverse-width parameter of the Gaussian

kernel . 134

Acknowledgements

This thesis is dedicated to my the other half, Miao, for her

tremendous love and support which has enabled me to pursue

my dreams.

I would have never made this far, were it not for the support of

some fantastic people: I would like to start by acknowledging the help

and support I received from the Intelligent Systems Research Group at

University of York. I would like to thank Dr. Martin Trefzer and Dr.

James Walker for their tips on Linux and Python. Thank goes to Dr.

Liu Yang, James Hilder, Omer Qadir, Pitiwut Teerakittikul, Dr. Maizura

Mokhtar and Dr. Tuze Kuyucu for countless informal chats. I would like

to thank all the guys and girl from our office, Luis Rodrguez, Liu Xiaohu,

Piero Conca, Colin Bonney, Antonio Zamorano and Yuan Zhang for a

quiet and pleasant study environment. And I would also like to thank

the SYMBRION project for those project meetings in Europe.

And finally, I would like to thank my supervisors Prof. Andy Tyrrell

and Prof. Jon Timmis for their encouragement, support, direction and

attention over the past four years.

ix

Author’s declaration

I declare that this thesis entitled “Immune inspired fault diagnosis for a

robotic system” is the result of my own research except as cited in the

references. Selected aspects of the research described in this thesis, as

well as some earlier work has been documented and published in [28].

1

Chapter 1

Introduction

Contents

1.1 Contribution 4

1.2 Thesis structure 5

To achieve fully autonomous systems, fault tolerance is often em-

ployed. Fault tolerance is the ability to continue operation in the pres-

ence of faults. Many applications of mobile robots require the robots to

be able to continuously and autonomously function for a period of time,

such as space programmes (e.g.[3][4]), and deep water exploration[5][6].

Autonomous functioning often means that a robot must function on its

own with little or no human involvement. Because of the application re-

quirement, such as space exploration, often the human commands would

be less effective due to unknown environment changes or time delay.

However, experience has shown that even carefully designed and tested

robots may encounter faults [32]. One of the reasons for this is that com-

ponents degrade over time. Therefore, to achieve autonomy, a mobile

robot needs to be able to continue functioning in the presence of faults.

Fault diagnosis is an essential component of fault tolerance, especially

for autonomous robotics. It is the process of determining as much in-

2

CHAPTER 1. INTRODUCTION 3

formation as possible about the fault, especially the origin of the fault.

There have been proposed many methods for fault diagnosis for the past

half a century, such as statistical methods[63][34][78] and model based

methods[69][94]. However, a real time fault diagnosis for resource lim-

ited robotic systems implies a new set of challenges, such as complexity

and efficiency, which traditional methods will find difficult to meet. A

resource limited robot is often small and mobile, which is often equipped

with less computational power to achieve its long term task. It is of-

ten too expensive computationally or impossible to remodel or retrain in

real time. Hence, a real time fault diagnosis for robotic system has to

be lightweight in terms of computational consumption and also delivers

reasonable result. Many robots often work in unknown or partially un-

known environments and therefore some learning in the diagnosis system

would be beneficial. This has led this work to seek inspiration from the

immune system, where an effective and efficient fault diagnosis solution

has been provided for thousands of years.

The analogy between fault tolerance and the immune system was

first expressed in [23]. The notion of diagnosis within the immune sys-

tem was proposed in “danger theory”[64], where the Antigen Presenting

Cell (APC) was emphasised specially dendritic cell plays vital role in

triggering an immune response. APC recognises the signalling molecules

released by the death of a cell. This has led other research[50] to abstract

a dendritic cell model and derive an algorithm for anomaly detection,

named the Dendritic Cell Algorithm (DCA). Based upon DCA, certain

aspects of immunology were added, proved and formed the work of this

thesis.

This thesis presents a novel immune inspired on-line fault diagnosis

algorithm for robotic systems.

CHAPTER 1. INTRODUCTION 4

1.1 Contribution

To better understand the contributions of this thesis, it is perhaps best

to first define a hypothesis by which the contributions can be tested. For

this thesis the hypothesis can be defined as:

“An immune-inspired system can be successfully deployed

in a resource constrained robotic system to diagnose the cause

of faults, in an on-line manner and accurately with reasonable

response time.”

In order to validate this hypothesis, this thesis presents the following

work:

• Challenges: Fault diagnosis is introduced and the unique challenges

for fault diagnosis for robotic systems are outlined.

• A novel algorithm: Immunology is revisited and additional plausi-

ble abstractions are described and argued. A novel immune inspired

fault diagnosis algorithm is then presented.

• Analysis: A detailed qualitative and quantitative analysis of the

new algorithm and its parameters are presented which identifies

that this new algorithm is capable of real time diagnosis for robotic

system.

• A comparison: A quantitative and statistical comparison between

the new algorithm, Artificial Neural Network (ANN) and the Sup-

port Vector Machine (SVM) shows that the new algorithm is an

effective diagnosis system in comparison to existing techniques and

yet provides the benefits of being simpler to use with less compu-

tational requirement.

CHAPTER 1. INTRODUCTION 5

As described above this thesis proposes a novel immune-inspired fault

diagnosis algorithm. This algorithm further extends the abstraction of

dendritic cell model from [50] and is then applied to fault diagnosis. This

thesis includes the first application of an AIS to robot fault diagnosis,

which has since become an active area of research.

1.2 Thesis structure

This thesis is organised as following:

Chapter 2 introduces the field of fault diagnosis. As this is a very

large topic area covering many different techniques, this chapter focuses

only on those methods that are relevant to this thesis. The challenges

for robot fault diagnosis is also presented.

Chapter 3 introduces the immune system fault diagnosis and Arti-

ficial Immune System. The the original Dendritic Cell Algorithm (the

original DCA)[50] and the conceptual framework are also introduced.

Chapter 4 presents a novel fault diagnosis algorithm extended from

the abstracted model in the original DCA[50]. This work includes justi-

fications of the additional features from the original DCA and describes

the implementation of these as a novel fault diagnosis algorithm.

Chapter 5 presents the result of two different approaches to imple-

ment the new algorithm. More importantly, it shows that the modifica-

tions from the the original DCA improves the algorithm’s performance.

Chapter 6 looks in detail into the effects of the parameters of the

new algorithm and suggests how these parameters affect the outcome of

the algorithm.

Chapter 7 compares the performance of ANN, SVM and the new

algorithm in fault diagnosis for robotic system.

CHAPTER 1. INTRODUCTION 6

Chapter 8 provides a summary of the work presented in the thesis

and outlines the conclusions that can be drawn, with ideas for future

work also being presented.

Chapter 2

Fault diagnosis

Contents

2.1 Introduction 8

2.2 Engineering fault diagnosis 9

2.3 Fault diagnosis methods 11

2.3.1 Artificial Neural network 12

2.3.2 Support Vector Machine 16

2.3.3 K-nearest neighbour 17

2.4 Summary . 18

2.4.1 Challenges 18

Figures

2.1 Fault diagnosis methods[59] 12

2.2 Schematic diagram of a processing element[22] . . . 12

2.3 A feed forward ANN with 3 layers[10] 13

7

CHAPTER 2. FAULT DIAGNOSIS 8

2.1 Introduction

The aim of this chapter is to present the challenges faced when devel-

oping fault diagnosis for a robotic system. Fault diagnosis is an essen-

tial component of fault tolerance, especially for autonomous robotics.

Fault tolerance involves error detection, diagnosis and recovery, which

afford the ability of a system to continue operation in the presence of

faults [62]. Comprehensive reviews on fault diagnosis can be found in

[59][90][91][89].While a variety definitions of around the term fault tol-

erance have been suggested, this thesis will use the set of definitions

suggested by [62] and [59] as following:

Fault is an unpermitted deviation of at least one characteristic property

of the system from the acceptable, usual, standard condition.

Fault tolerance allows a system to continue operation in the presence

of faults.

Error detection detects an erroneous state within the system.

Fault diagnosis determines as much information as possible about the

fault, such as the fault origin, magnitude, location and time of

existence.

Recovery allows a system to overcome the fault.

There are many types of faults, in which the most common one would

be stuck-at fault. Stuck-at fault can occur when components degrade

over time or by environment. Some faults are grouped by the frequency

of their existence, such as periodic fault, permanent fault and transient

CHAPTER 2. FAULT DIAGNOSIS 9

fault. A periodic fault occurs periodically, and is normally caused by

rotation, such as wheel spin or gear rotation. A permanent fault is one

off action, which once present will stay permanently. A transient fault is

also one off action, however, only of short duration. Transient faults can

be caused by sudden changes, and because it only lasts a few seconds

or milliseconds usually it is expected a system will not react to it. If

it appears repeatedly, it would be considered as a periodic fault. The

robotic system used in this work is a real time system[96]. A real time

system is that a system where any information processing activity within

it has to respond to externally generated input stimuli within a finite and

specified period. Therefore, the fault diagnostic system discussed here

has to be a real time system.

Having explained engineering problems, in real time faults diagnosis

for a robotic system, this chapter starts with a general description of how

fault diagnosis is achieved and why it is only interested in classification

methods in this study. It is followed by an introduction of fault diagnosis

methods, in which Artificial Neural Network (ANN), Support Vector

Machine (SVM) and K-nearest neighbour methods will be introduced.

At the end, the challenges faced by this work will be summarised.

2.2 Engineering fault diagnosis

Fault diagnosis is an inverse process of fault propagation[59]. A fault

in general influences events (effects), where events can manifest as an

irregular behaviour of a robot due to the fault (cause). Events then

influence error detection to flag the system as faulty. The irregular be-

haviour (event) is often observable or can be calculated from the devia-

tion from the “normal” values. However, the cause of the event (fault)

CHAPTER 2. FAULT DIAGNOSIS 10

is often determined by systems internal physical properties. The under-

lying physical laws, are mostly not known in an analytical form, or are

too complicated for calculations. For example, a robot is running round

in a small circle when there are no obstacles in sight, whereas it should

be walking forward in straight line. This is irregular behaviour and can

be observed and calculated. However, there might be faults causing the

problem, such as a stuck-at fault on one of the front sensors at a low

value, thus, the robot is wrongly sensing an obstacle near by; or, it could

be a wheel broken, in which case the robot can not move properly. The

observed behaviour or the state of the system could be the same, but

the cause or causes would be different. This presents a challenge, as the

fault diagnosis implies the inversion of the causality. One cannot expect

to reconstruct the cause-effect chain solely from measured data, because

the causality is not reversible or the reversibility is ambiguous. [59] If

one can ascertain the causality, fault diagnosis will become trivial. Oth-

erwise, classification methods (in machine learning) are often applied and

will be described in the next section.

Before introducing any learning methods, it is worth mentioning the

term, prior knowledge, as there are many model based fault diagnosis ap-

proaches using prior knowledge widely used in engineering systems. Prior

knowledge[75] refers to all available information about the problem. This

could be user’s experience; the cause-effect relations; or physical laws.

Using prior knowledge, there were many examples of model based faults

diagnosis which were reviewed in [60] and [91]. From a modelling per-

spective, fault diagnosis is achieved by acquiring accurate process models

from prior knowledge. The model can be an equation or a set of equa-

tions representing the system. The approaches [48][46] reviewed in [60]

were sharing a common ground, where a specific fault is targeted and

CHAPTER 2. FAULT DIAGNOSIS 11

the environment localised, although some were presented in a dynamic

environment. The quality of a model and its diagnostic performance de-

pends on prior knowledge. If this is only partial or insufficient, then a

model based approach will not be appropriate. On the other hand, clas-

sification methods do not assume any forms of model and rely only on

historic process data (training data). One could argue training data is a

form of prior knowledge and indeed, the quality of it will also affect the

diagnostic performance.

Partial knowledge of a robotic system used in this work is insufficient

to create a model to achieve fault diagnosis. There are so many pos-

sibilities and the search space is effectively infinite. There are infinite

combinations of the system state, as there are many sensors, actuators

and other information which form the state of the system. It is not

possible to calculate or model a fault, therefore, classification methods

are considered here. They will be introduced in the next section and

compared in Chapter 7.

2.3 Fault diagnosis methods

A survey of diagnosis methods[59] is shown in Figure 2.1. The methods

that will be introduced are Artificial Neural Network (ANN), Support

Vector Machine (SVM) and K-nearest neighbour. They are all classifica-

tion methods and fall into artificial intelligence, approximation and den-

sity based method, respectively. These methods were selected to compare

with the method proposed in this thesis, as they represent the classifica-

tion category for fault diagnosis. All of them are well known and widely

used in machine learning.

CHAPTER 2. FAULT DIAGNOSIS 12

Figure 2.1: Fault diagnosis methods[59]

Figure 2.2: Schematic diagram of a processing element[22]

2.3.1 Artificial Neural network

There are many types of Artificial Neural networks (ANNs). Since the

first neural model by [65] there have been developed hundreds of differ-

ent models considered as ANNs. The differences in them might be the

functions, the accepted values, the topology, the learning algorithms, etc.

Also there are many hybrid models where each neuron has more prop-

erties than the ones are introduced here. This section presents only an

ANN which is a multilayer perceptron network and learns using the back-

propagation algorithm [70] for learning the appropriate weights, since it

is one of the most common models used in ANNs, and many others are

based on it.

The basic element of an ANN is the artificial neuron know as a “Pro-

CHAPTER 2. FAULT DIAGNOSIS 13

Figure 2.3: A feed forward ANN with 3 layers[10]

cessing Element” (PE). The schematic of a PE is shown in Figure 2.2.

The PE output y is given by

y = s[(
∑
i

wi · xi)− b], (2.1)

where xi are the PE inputs and wi are their weight, b is the offset (bias)

and s is the transfer function. There are linear, threshold and sigmoid

transfer functions. The transfer function of a neuron is chosen to have

a number of properties which either enhance or simplify the network

containing the neuron. [11] For instance, any multilayer perceptron using

a linear transfer function has an equivalent single-layer network; a non-

linear function is therefore necessary to gain the advantages of a multi-

layer network. In general, if the output from ANN is required to be

continuous, it is sigmoid:

s(h) = 1/[1 + exp(−h)]. (2.2)

An ANN consists of a set of these PEs interconnected and organised

in layers. The most common setting used is the feed-forward network.

CHAPTER 2. FAULT DIAGNOSIS 14

It is made up of three or more layers, shown in Figure 2.3. Each layer

consists of a number of nodes (PEs) and the interconnections are only

between nodes of adjacent layers. The layer connected to inputs is called

input layer; the layer connected to outputs is called output layer; the rest

is called hidden layer. The number of nodes required for input and output

layers depends on a specific application. The choice of hidden layer and

hidden node number is debatable without an agreed guidance[47].

The ANN is capable of learning. The network is trained to produce

the desired outputs on the basis of the inputs supplied to it. This is car-

ried out through a learning algorithm, where the network’s weights and

offset will be modified towards the desired outputs until some ‘stop’ con-

ditions. A stop condition normally refers to convergence. Once learning

is complete, the network would not only produce the desired output for

known inputs but also reasonably pleasing output for unknown inputs.

This is under the assumption that the data trained is a representation of

the whole data and the learning algorithm would “train” the network[22].

One of the commonly used learning algorithm is back-propagation[56].

It evolves over three phases:

1. Output formation: with an randomised initial weight and offset

distribution (k = 0), the network yi(k) outputs, at the k-th step,

are generated for a given set of inputs.

2. Error calculation:

• For the output layer PE’s:

εi(k) = yi(k) · [1− yi(k)] · [y∗i (k)− yi(k)] (2.3)

with y∗i (k) being the desired network outputs at the k-th step.

CHAPTER 2. FAULT DIAGNOSIS 15

• For the PE’s of other layers:

εi(k) = yi(k) · [1− yi(k)] · [
∑
j

wij(k) · εj(k)] (2.4)

with εj(k) being the errors at the k-th step for PEs of the

immediately adjacent layer.

3. Backward error propagation: the errors thus determined are used

to readjust the values of interconnections weights and the offset of

each node according to

wij(k + 1) = wij(k) + α · εi(k) · yi(k)

bij(k + 1) = bi(k) + α · εi(k)

where the coefficient α represents the learning speed.

Iterating through (1), (2) and (3), new input and output sets are

supplied to the network by each iteration. Once the weight and offset

value distribution reaches with the minimised errors in (2) and (3). In

this condition, the network has learned and can be used on test data.

The ANN has been applied to fault diagnosis. Examples can be found

in [26][98][92][73]. To some extent, the ANN has shown its capability in

a dynamic environment. However, a large problem of the ANN is the

difficult extrapolation1 behaviour, as the data set in diagnostic applica-

tions are not always complete, argued by the author[59]. This creates a

need for a diagnosis system to work outside the trained domain. This

is especially problematic for ANN. A simple experiment of ANN within

the robotic environment will be presented and compared in Chapter 7.

1In mathematics, extrapolation is the process of constructing new data points.[1]

CHAPTER 2. FAULT DIAGNOSIS 16

2.3.2 Support Vector Machine

Support Vector Machine (SVM) is an example of two-class linear classi-

fiers. It has been widely used in machine learning community, due to its

high accuracy and the ability to deal with high-dimensional data. Some

of its use on fault diagnosis can be found in [97][35][95]. Although SVM

was first introduced[29] as linear classifiers, non-linear problems can be

solved by applying different kernels, such as Polynomial and Gaussian.

In this section, a description of linear SVM from [25] will be given and

the effects of different kernels can be found in Appendix Figure G.1, G.2

and G.3.

The key concept required for defining a linear classifier is the dot

product between two vectors, defined as wTx =
∑

iwixi. A linear classi-

fier is based on a linear discriminant function of the form

f(x) = wTx+ b. (2.5)

where w is the weight vector, and b is the bias. Consider the case b = 0

first. The set of points x such that wTx = 0 are all points that are perpen-

dicular to w and go through the origin. That is a line in two dimensions,

a plane in three dimensions and more generally, a hyperplane. The bias

b separates the hyperplane away from the origin. The hyperplane

x : f(x) = wTx+ b = 0 (2.6)

divides the space into two. The boundary between regions classified as

two classes is called the decision boundary.

If a clear distinctive hyperplane can not be drawn, so data cannot

be separated into different classes, the notion of soft margin can be in-

troduced. The soft margin method will choose a hyperplane that splits

CHAPTER 2. FAULT DIAGNOSIS 17

the examples as cleanly as possible, while still maximizing the distance

to the nearest cleanly split data. It allows some data to be misclassified.

A smaller value of soft margin allows for ignoring points close to the

boundary and increases the margin[25], shown in Appendix G.

However, the imbalance data sets present a challenge for learning

algorithms as noted in [33]. SVM is no exception. A good strategy for

this, is to classify data belonging to majority classes. This will be used

in Chapter 7, where significant imbalance can be found in the data sets,

because most of the time the robot was not in contact with any obstacles.

This creates duplicate data entries with all the sensors returning the

maximum values. To improve SVM, the duplicate data entries had to be

removed.

2.3.3 K-nearest neighbour

The k-nearest neighbour algorithm (k-NN)[12] is a method for classifying

objects based on closest training examples in the feature space. It might

be the simplest method in machine learning. The training data entries

are vectors in a multidimensional feature space, each with a class label.

The algorithm is trained by storing the feature vectors and class labels

of the training data. When classifying test data, an unlabelled vector is

assigned a label where k (user defined) training samples are nearest to

it.

K-nearest neighbour is not considered to be suitable for this work, as

data samples are imbalanced and some have one too many class relations.

The basic “majority voting” classification is that in which the more fre-

quent examples tend to dominate the prediction of the new vector, as

they tend to come up in the k nearest neighbours when the neighbours

are computed due to their large number.[36] To illustrate this issue, a

CHAPTER 2. FAULT DIAGNOSIS 18

print out of k-NN with test data is shown in Appendix I.

2.4 Summary

This chapter sets out to introduce the fault diagnosis. A general approach

for fault diagnosis is described as the inverse process of fault propaga-

tion. It is a process of finding the cause (fault) of the effect (irregular

behaviour). Then, the notion of prior knowledge was introduced as the

available information on the causality related to the fault. However, for

a robotic system the prior knowledge is often partial or inadequate to

use model based methods. Hence, classification methods were consid-

ered and introduced. It is apparent that all the above presented a few

challenges and they are summarised as below:

2.4.1 Challenges

Robotic challenges

• The robotics system used for this work is autonomous and real

time, the fault diagnosis process has to be on-line and there is only

limited resource, as in computational power. These have set the

basic requirements for the fault diagnosis system: it has to be real

time system, where it has to produce an output within a time limit;

It has to respond quickly and accurately, otherwise it would not be

of much use and it has to consume as little computational power

as possible, such as memory and cpu time.

• The prior knowledge is partial. This implies the fault diagnosis

system has to be able to cope with unseen faults or data

• The robotics environment is dynamic. This implies the fault diag-

CHAPTER 2. FAULT DIAGNOSIS 19

nosis system has to be adaptable to changes, such as environment

or the robot’s internal changes (objective/ task changes).

Fault diagnosis challenges

• Data size and quality. A typical challenge for classification methods

is the size of available data sets and how well they represent the

whole system. Insufficient data will lead a classification method to

perform undesirably. This will be further explored in Chapter 7,

where a comparison is presented.

• The distinction between different faults. If faults are not distinc-

tive, but somehow independent, it would cause any diagnosis sys-

tem to become confused, illustrated by one example of a robot

running round in circle illustrated previously.

The challenges stated above have suggested that “in a resource con-

strained robotic system to diagnose the cause of the fault, in an on-line

manner and accurately” will not be an easy task. As always, if an engi-

neering problem can not be easily solved, one will seek inspirations from

biology, where there has been a solution for thousands of years, such as

the immune system.

Chapter 3

Immune system and AIS

Contents

3.1 Introduction 20

3.2 Immune fault diagnosis 22

3.3 Artificial Immune System for fault diagnosis 24

3.4 Conceptual Framework 26

3.5 Summary . 28

Figures

3.1 The conceptual framework[76] 26

3.1 Introduction

The immune system is a complex biological system. It protects the body

from infectious agents and the damage they cause, with a variety of in-

teracting cellular and molecular elements. Its complexity and profound

ability to protect is still not fully understood. However, properties emerg-

ing from the immune system have caught the attention of many engineers,

20

CHAPTER 3. IMMUNE SYSTEM AND AIS 21

in relation to topics such as real time capability, efficiency and self reg-

ulating. The immune system is constantly monitoring the states of the

body, recognising any “non-self” invaders and trying to eliminate them.

It is also adaptable to change, is able to remember what it has ‘seen’

and to react more quickly next time to a similar occurrence, for exam-

ple, the use of vaccination. The immune system is efficient as it utilises

the cells and molecules to combat an infection, but only when necessary.

Once the threat is eliminated, the immune system will regulate itself to

prevent any overreaction. The immune system indeed provides a rich

inspirational ground, where many aspects are desirable to an engineering

system.

Artificial Immune System (AIS) is a discipline inspired from the im-

mune system. Many algorithms have been developed with some success,

such as negative selection, clonal algorithm and immune networks. How-

ever, many of them have been said to be “reasoning by metaphor”[76].

They have drifted away from their original inspiration and failed to cap-

ture the richness of the immune system. These include simple models of

clonal selection and immune networks [39][40][82][68], and negative selec-

tion algorithms [31][49][81]. Authors in [76] also states that bio-inspired

computational algorithms usually proceed directly from a (naive) biolog-

ical model to an algorithm, with little analytical framing of the represen-

tations properties. Such reasoning by metaphor is a troubling aspect of

these algorithms. Without the application of suitable analysis techniques

to the simplified representations of biological systems, algorithms derived

from these representations rely only on the (often weak) analogy to the

biological system to support their use. Therefore, to develop a good AIS,

the authors[76] proposed the conceptual framework and promote an in-

terdisciplinary approach, which will be described in Section 3.4. The

CHAPTER 3. IMMUNE SYSTEM AND AIS 22

the original Dendritic Cell Algorithm (the original DCA) is a product of

such an approach. It is also the foundation of the work presented in this

thesis.

This chapter begins with a brief description of the immune system and

illustrates why it suggests an immune inspired method for fault diagnosis.

It is followed by a description of the the original DCA, however, there

will not be much detail as the abstract model of Dendritic Cell (DC)

is adopted by Diagnostic Dendritic Cell Algorithm (D-DCA) and will

be described in Chapter 4. At the end of this chapter, the conceptual

framework will also be introduced.

3.2 Immune fault diagnosis

Immune system is a defence system protecting a host from infections by

foreign microbes or pathogens, such as bacteria, viruses. The immune

system consists of two parts, innate and adaptive . Once the pathogens

breach the skin barrier, the immune system performs four main tasks:

• Recognition

Involve a white blood cells provide immediate response and lym-

phocytes identify the pathogens.

• Effector functions

To contain the infected cells and provide counter-attack response if

possible, such as antibodies, complement system and T killer cells.

• Regulation

Self regulation features of the immune system, which prevent reac-

tion to host cells and tissues.

• Memory

CHAPTER 3. IMMUNE SYSTEM AND AIS 23

Once the host has been exposed to a type of pathogens, the im-

mune system will provide an immediate and stronger response for

reinfection from the exact or similar types. Some of the memory

could be life-long lasting and some are relatively short.

The innate part is considered as the first layer of an immune system.

Once there is an infection, innate immunity eliminates the pathogens

within a short period of time. If the pathogens are not cleared, then

often an inflammation is recruited and the pathogens are taken by antigen

presenting cells for further analysis and ready for activation of adaptive

immune response. Dendritic cells play a very important role between the

innate and adaptive. They ingest debris from dead cells, extract antigens

from them and present antigens to activate T cells. How they process is

proposed in the “Danger Theory”[64].

The “Danger Theory” was proposed by Polly Matzinger, in [64]. It

was based on “self” and “non-self” model, but added another layer of cells

and signals, proposing that Antigen Presenting Cells (APC) are activated

by danger/stress signal from injured cells. The Danger theory argues the

discrimination of “self” and “non-self” within the immune system is not

the only reason for the initiation of an immune response. The trigger

of a response is not the recognition of the “foreignness” of the invader,

but the “danger/stress”. The Danger Theory opens a new viewpoint of

immunology. The “Danger Theory” has blurred the distinction between

the adaptive and innate of immune system. Most importantly, it provides

a sound explanation where “self” and “non-self” model cannot explain,

such as transplant and puberty.

The “Danger Theory” emphasises the APC specially dendritic cell

plays a vital role in triggering an immune response. APC recognises the

signalling molecules released by the death of a cell. This is critical in

CHAPTER 3. IMMUNE SYSTEM AND AIS 24

initiating an immune response. There are programmed cell death called

apoptosis and “danger” death called necrotic.

The dendritic cell is the immune solution for “diagnosis”, where it

exacts the feature from the debris of a dead cell and associates with the

signal. Then it presents the antigen to T cells. The “diagnosis” is done

collectively by cooperation of dendritic cell and T cells. This has inspired

the author to present the work in this thesis.

3.3 Artificial Immune System for fault di-

agnosis

Artificial Immune System

Artificial immune systems as a discipline lies within the jurisdiction of

biologically inspired computing. Unlike other bio-inspired algorithms,

such as genetic algorithms and neural networks, an AIS refers to any

algorithm inspired by the immune system and not to a specific algorithm

or technique. AIS algorithms typically fall into one of four groups: neg-

ative selection[45], clonal selection[41], immune networks[27] and danger

theory[52]. Comprehensive reviews on AIS can be found in [54][85][37].

In [83], the author has argued that AIS has slowly drifted away from

the more biologically appealing models and attention to biological de-

tail, with the focus on a more engineering-oriented approach. Many

algorithms have been said to be “reasoning by metaphor”[76]. These in-

clude simple models of clonal selection, immune networks and negative

selection algorithms mentioned above. The author[83] further explained

that, for example, the CLONALG lacks any notion of interaction of B-

cells with T-cells, MHC or cytokines. In addition, the large number of

CHAPTER 3. IMMUNE SYSTEM AND AIS 25

parameters associated with the algorithm, whilst well understood, make

the algorithm less appealing from a computational perspective. aiNET

does not employ the immune network theory to a great extent. Only

suppression between B-cells is employed, whereas in the immune net-

work theory, there is suppression and stimulation between cells. Neg-

ative selection, the simple random search strategy employed, combined

with using a binary representation, makes algorithm computationally so

expensive that it is almost unusable in a real world setting[77].

However, most recent work from [52] has started to address this im-

balance. For example, the authors[52] investigate novel ideas from im-

munology such as “danger theory” [64], with application to computer

security. Those authors propose to observe the biological system by un-

dertaking new experiments to identify key signals involved in dendritic

cells. This has followed the conceptual framework proposed in [76], al-

though, it was not refer to. In order to well develop an AIS, the authors

[76] suggest the conceptual framework, which will be explained in Section

3.4.

The original Dendritic Cell Algorithm

The purpose of the original Dendritic Cell Algorithm (the original DCA)[50]

is to correlate disparate data-streams in the form of antigen and signals

and to label groups of identical antigen as normal or anomalous. The

the original DCA is formed as part of the new algorithm proposed in

the thesis, namely “Core-DCA” described in Section 4.3. As mentioned

above, the original DCA is a product of collaboration between biologist

and computer scientists. The the original DCA has been applied mainly

to computer security, such as anomaly detection[51][53][52]. There were

also some attempts[52] to use it to classify benchmark data sets, such as

CHAPTER 3. IMMUNE SYSTEM AND AIS 26

Figure 3.1: The conceptual framework[76]

standard Breast Cancer machine learning data-set. However, the author

found that the order of data fed to the original DCA had effects on its

performance. Later on [50], the author stated that the original DCA is

not suitable for a static data set, but suitable for a real time problem.

The author [50] also claimed the “no training” and “prior” knowledge

is required and fail to suggest that how one can obtain the signals and

antigen associations, which have to be supplied to the the original DCA.

This might be the reason why the the original DCA is not currently de-

veloped and studied widely. Nevertheless, the the original DCA’s key

characteristics can be summarised as light weight in terms of computa-

tional consumption, efficiency and accuracy [50]. This suggests that the

the original DCA might be suitable for the robotics system use.

3.4 Conceptual Framework

In the paper[76], the authors propose that bio-inspired algorithms, such

as AIS, are best developed in a more principled way. To clarify this, the

authors suggested that many AIS developed had drifted away from the

immunological inspiration and failed to capture the complexity and rich-

ness that the immune system offers. The authors suggest the conceptual

CHAPTER 3. IMMUNE SYSTEM AND AIS 27

framework, shown in Figure 3.1, for developing bio-inspired algorithm

with bias for its engineering need. This should avoid the reasoning by

metaphor approach often seen in bio-inspired computing. The conceptual

framework promotes an interdisciplinary approach, involving the design

of AIS through a series of observational and modelling stages in order to

identify the key characteristics of immunological process.

The first stage of the conceptual framework is to probe the biology by

observations and experiments, in order to provide a partial view of the

complex biological system. This view is then used to build and validate

abstract models of the biology. These models can be both mathematical

and/or computational, and are open to validation techniques not avail-

able to the actual biological system. The iteration of validation of the

models and probing the biology, would be beneficial to both the biologists

and the computer scientist to construct a sound algorithm.

In the same paper[76], the authors further applied the conceptual

framework at a higher level to the bio-inspired computational domains

using the same structure. The authors examined and compared the sep-

arate conceptual, mathematical and computational frameworks, to de-

velop more integrated and generic frameworks, and to expose essential

differences. In the same way probing the biology, the author asked “meta-

questions” to understand the insight of systems/algorithms. The ques-

tions addressed notions such as openness, diversity, interaction, struc-

ture, and scale. By continuously asking those questions, it will influence

the development of an algorithm. Development of the algorithm, Di-

agnostic Dendritic Cell Algorithm (D-DCA), proposed in this thesis was

applied to the conceptual framework. Although, D-DCA is not a product

of close collaboration with biologists, the the original DCA is. During

development of the D-DCA, the “meta-questions” have been asked to

CHAPTER 3. IMMUNE SYSTEM AND AIS 28

justify any modification. They will be answered in later Chapter 4. By

doing so, it helps to identify the key characteristics of the algorithm.

3.5 Summary

In this chapter, a natural immune “fault diagnosis” solution has been

introduced, which is because of cooperation of the Dendritic Cell (DC)

and T cells; an Artificial Immune algorithm, the the original Dendritic

Cell Algorithm (the original DCA), inspired from the DC has also been

introduced, although briefly; and the conceptual framework has been

introduced to avoid drifting away from the original inspiration in order

to develop a good algorithm. These have been encouraging for one to

develop an algorithm inspired from the immune system to achieve fault

diagnosis, the Diagnostic Dendritic Cell Algorithm (D-DCA), which will

be presented in Chapter 4.

Chapter 4

Diagnostic Dendritic Cell

Algorithm

Contents

4.1 Introduction 30

4.2 Biology inspiration 31

4.2.1 Dendritic cell 31

4.2.2 Apoptosis and Necrosis 33

4.2.3 T killer and T reg 35

4.3 D-DCA . 36

4.4 Investigating D-DCA 44

4.4.1 Diversity . 44

4.4.2 Interaction 44

4.4.3 Scale . 46

4.5 Summary . 46

Tables

4.1 Biology terms mapping to D-DCA 38

29

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 30

Figures

4.1 DC model activity diagram, modified from [50] . . . 32

4.2 Diagnostic-DCA overview 36

4.1 Introduction

So far, the challenges were outlined in Chapter 2 and an immune solution

for fault diagnosis has been introduced, that is the Dendritic Cell (DC)

in Chapter 3. Subsequently, it is apparent one needs to abstract from

the inspiration and develop an algorithm to handle the challenges.

This chapter proposes an immune inspired algorithm for fault diagno-

sis, the Diagnostic Dendritic Cell Algorithm (D-DCA). The development

of D-DCA is base upon the the original Dendritic Cell Algorithm (the

original DCA) [50]. The abstraction of DC functions, including its in-

ternal parameters and signalling is based on the work of [50]. However,

the the original DCA was tightly integrated within the software environ-

ment1, which was not suitable for our robotic environment. Therefore,

there was the need for reimplementation.

During the development of the D-DCA, it was found that the pro-

duction of association between the input signals (“danger”, “safe” and

“PAMP”2) and the “items” (the things that one is trying to classify or

diagnose whether “faulty” or not) was excluded from the the original

DCA. The the original DCA relied on other system to provide such as-

sociation. However, from early experiments using D-DCA, the quality

of the association had direct impact on its performance. The necessity

for including this within the D-DCA will be explained and argued, in

1Libtissue[87]
2Pathogen-associated molecular pattern

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 31

Section 4.3.

During the development of the D-DCA, it was also found that the

certain aspects of apoptosis and necrosis were not taken into account

of the original DCA, which were the foundation of the “Danger” theory

[64] that the the original DCA was inspired from. The apoptosis and

necrosis will be explained and their necessity will be argued in Section

4.2.2. Later in Chapter 5, it will be proved that adding this feature will

robust the D-DCA’s performance.

This chapter begins by describing the inspiration taken from biology

and how it is mapped to D-DCA. The D-DCA will then be presented. At

the end, to identify the key characteristics, the D-DCA will be questioned

in the forms of the “meta-questions” proposed within the conceptual

framework.

4.2 Biology inspiration

In this section, a description of immune cells and processes will be pre-

sented. It will be followed by their abstractions and interpretations in

D-DCA. There will be a few biology terms used, such as CSM, IL10 and

IL12. But their biological meanings are beyond this work.

4.2.1 Dendritic cell

Biological Dendritic cell

Dendritic Cells (DCs) are antigen presenting cells[67], whose purposes

are the cleaning, processing and presenting antigen to T-cells. DCs have

three states, immature, semi-mature and mature. However, an immature

DC can only become one of semi-mature or mature states. Immature DCs

migrate through the bloodstream from bone marrow to enter tissues.

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 32

Figure 4.1: DC model activity diagram, modified from [50]

They continually ingest large amounts of the extracellular fluid. They

then process what they have taken up and if they have ingested enough,

they migrate to a lymph node. Once inside the lymph node, they turn

into one of mature states, depending on what signal they have been

exposed to.[64] If they have been exposed to significant “danger” signals,

they will turn into mature state; If they have been exposed to significant

“safe” signals, they will become semi-mature state. The mature DC

will activate the T killer cells with specific antigen which is presented

to them. The T killer cells then proliferate and migrate to tissues to

kill the pathogens or infected cells with that specific antigen. The semi-

mature DC will activate the T regulatory cells, which have the function

of suppressing the activation and proliferation of specific T killer cells

when a T cell is active or is activated, it means that its number will be

increased.

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 33

Abstraction of Dendritic cell

The abstracted model of DC is adopted from [50], shown in Figure 4.1. It

begins by initializing an immature DC. The immature DC then samples

signals and antigens pair and updates the CSM by one for each sample.

IL10 will be increased by one, if it samples a “danger” signal. IL12 will be

increased by one, if it samples a “safe” signal. If the CSM is less than the

migration threshold, the DC stays as immature and continues to sample.

Otherwise, it undergoes migration. Before maturation, IL10 and IL12

will be compared. If IL10 is greater than IL12, then the DC will become

a mature one. Otherwise, it will become a semi-mature DC. Each DC

contains a list of antigens that it has sampled. Once matured, the mature

DC will activate T killer cells with those antigens. The semi-mature DC

will activate T regulatory cells.

4.2.2 Apoptosis and Necrosis

Biological Apoptosis and Necrosis

Apoptosis is a process of programmed cell death[67]. It derives from a

Greek word meaning the falling of leaves from the trees, and is a general

means of regulating the number of cells in the body. Every day the

bone marrow produces millions of new cells and this production must be

balanced by an equal loss.

When a cell undergoes apoptosis, typically [61], a cell shrinks and

pulls away from its neighbours. Then blebs3 appear on the surface, and

chromatin condenses at the edges of the nucleus. The nucleus, and then

the cell itself, breaks up, packs itself and is contained as cell fragments.

These are ingested by other cells in the vicinity. Apoptosis also releases

3A bleb is an irregular bulge.[13]

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 34

“safe” signal. It happens quietly and cleanly.

Apoptosis can be initiated through many pathways, however, the in-

teresting one is called intrinsic apoptosis[14]. One of the reasons for

intrinsic apoptosis is the loss of cell survival factors, or other types of

severe cell stress. It happens naturally and commonly within our body,

and all cells will undergo such process.

On the contrary, necrosis is explosive, messy and releases “danger”

signal. Necrosis can be induced by a number of external sources, includ-

ing injury, infection, and inflammation. Due to the sudden busting of

the cell, it releases harmful chemicals to surrounding tissues.

Abstraction of Apoptosis

Previously, it was mentioned that certain aspects of apoptosis and necro-

sis were not taken into account within the the original DCA. It refers to

intrinsic apoptosis. Every cell undergoes programmed cell death. So do

DCs and T cells. The author [50] used CSM and Migration threshold to

control the life span of a DC. Once a DC becomes semi-mature/mature,

it gets deleted from the population and a new immature DC will be cre-

ated. The author proposes here that each cell should be given a separate

parameter, namely “life”. When a cell is created, it has to be initialised

how long it will live. “Life” will decrease as time goes on. Once “life”

has reached zero, the cell will be destroyed regardless of its type or state.

This will be referred as “with death” approach, in Chapter 5.

In D-DCA, there is a population of DCs continuously sampling the

system’s status. With this “life” feature, it creates a time window for

D-DCA. It allows the D-DCA to keep a record of the past. For a DC, the

longer “life” it has, the further it will be able to look back. This enables

the D-DCA to “learn“ on the fly and adapt to changes in real time.

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 35

It could be argued here that adding another parameter and creating

a time window is no different to having a variable/fixed time window

for sampling. It is known the size of the time window will affect most

system’s performance. It would just be another extra parameter for the

system to tune. The author here argues differently, by adding ”life”, it

is the opposite to having another parameter. Each DC in the population

has a different “life” span. Some have longer and they have sampled fur-

ther back in time. Some have shorter and they have sampled less further

back in time. The overall effect on the whole population would be to pre-

serve a “normal” distributed4 time window of the past. Although, “life”

controls how wide the distribution is 0spread out, in Chapter 6, it will

be proved that the variation of “life” affects the D-DCA’s performance

insignificantly.

4.2.3 T killer and T reg

Biological T killer and T reg

The main function of T killer cells is to initiate the infected cell to undergo

apoptosis. Once a T killer cell is active, it proliferates and migrates to

tissues. Through a series of complicated signalling and binding, it send

the death signal to the infected cells. Then, macrophages (including DC)

take care of the cleaning.

The main function of T regulatory cells is to suppress the activation

of T killer cells. As their name suggests, they regulate the proliferation of

T killer cells. This will help to cool down an immune response (massive

increase of cell proliferation and cell death), when the pathogen is cleared.

Also, it helps to prevent autoimmunity. There are significant numbers of

T reg cells with the signature of the host. So this prevents any T killer

4May not be exactly normal distributed

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 36

Figure 4.2: Diagnostic-DCA overview

cells as having an immune response.

Abstraction of T killer and T reg

The abstraction of T killer and T reg cells is at the analogy level, in

D-DCA. There is no detailed abstract model and signalling. A sensor

diagnosed as “faulty” is because the number of T killer cells is greater

than T reg cells of such a sensor. The activation of a T cell is increasing

its number. However, each T cell will be initialised a “life” and it will be

destroyed when there is no “life” left.

4.3 D-DCA

This section proposes the D-DCA, which is an on-line fault diagnosis

algorithm for robots. D-DCA is a real time version of the the original

DCA, where it is modified be fit a robotic environment with additional

features.

D-DCA is a population base algorithm. There is a pool of DC cells

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 37

within a D-DCA. The memory consumption for D-DCA is the allocated

memory for those cells. There is no complex arithmetic operation in D-

DCA, except addition and subtraction. In this way, it can be modified to

fit any resources limited system. Later in Chapter 7, it will be illustrated

that the number of DC is insignificant to D-DCA’s performance.

As the name suggests, the D-DCA only diagnoses faults, pinpointing

the cause or causes of an erroneous behaviour in a robot. It is assumed

that an error detection system exists that provides reasonable perfor-

mance in the detection of such errors. The output of error detection

is simply an “anomaly”/“normal” flag. The D-DCA consists of three

blocks: Pre-DCA, Core-DCA and Output.

The ability of diagnosis is achieved by a combination of these three.

In Figure 4.2, the Pre-DCA takes raw sensor data and shortlists suspect

components (components vector) associated with the flag provided by the

error detection system. This shortlist may contain noise, and can not be

used for direct diagnosis. These components with their flag, named as

inputs, will then be fed into the population of DC cells (Core-DCA), DC

cells sample an input and store the shortlist, which effectively creates a

memory containing what is happening within the system. The Core-DCA

then creates a noise reduced list of “faulty”/“not faulty” components (T

killer/reg list) based on the semi-mature/mature DC cells. By using

thresholds, the Output identifies the “real faulty” component and makes

a diagnosis decision.

Mapping between biology terms to D-DCA is shown in Table 4.1 and

the key data objects of D-DCA are the following:

Components list = {IR sensor 0, IR sensor 1 ... IR sensor7, leftwheel,

rightwheel, location} The components list is a list of IDs of components

which could become faulty.

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 38

Table 4.1: Biology terms mapping to D-DCA

Biology D-DCA

Antigen Component
“Danger” or “safe” signal Flag
a DC a DC
T killer cell T killer cell
T reg cell T reg cell
Paired antigens and signal
(release by cell undergoing
apoptosis and necrosis)

Input

Flag = {anomaly, normal} Flag contains “anomaly” and “normal”,

which are inherited from the error detection system. In the Pre-DCA

phase, flag is also a part of the Pre-DCA output.

Input = {Possible faulty components list, flag}, where Possible faulty

components ⊆ Components list

A DC cell :

• State ∈ {immature, semi-mature, mature}

• CSM (Co-stimulus molecule) ∈ {0,1,2...} The DC output signals

include a costimulation signal (CSM) which shows that the cell

is prepared for antigen presentation and two context signals, the

mature and semi-mature output signals.

• IL10 ∈ {0,1,2...} semi-mature output signals.

• IL12 ∈ {0,1,2...} mature output signals.

• MT (Migration threshold) ∈ {1,2,3..} The threshold value which

determines whether a DC cell needs to move onto next state. Effec-

tively, it controls how many antigen each DC cell can sample. By

sampling an antigen, internal parameter co-stimulatory molecule

will be increased by 1. If the co-stimulatory molecule of a DC cell

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 39

is greater than the migration threshold, then the DC cell will ma-

ture into one of mature states. Otherwise, the DC cell stays on

immature state and can sample more antigens.

• Antigenlist: A list of Input. Once a DC has sampled an Input, its

contents (components and flag) will be stored in this list.

A T cell :

• Component ∈ Components list

A T killer/reg list : List of Tcells

Pre-DCA

The purpose of Pre-DCA is pre categorising. For the D-DCA to work,

it requires the weak association between “signal” and “item”. In D-DCA,

the “signal” is the output from error detection, which is an “anomaly”/“normal”

flag. The components are the possible faulty components of a robot, such

as IR sensors, wheels and location. The Pre-DCA block is fed by raw

data, such as IR sensors proximity, wheel speed and location coordi-

nates, and returns a list of component IDs with an associated flag, which

is termed as Input.

The method used for Pre-DCA is a rule based system. The rules are,

for example, to associate with an “anomaly”, “Is this IR sensor value

significantly different from nearby IR sensors’?”; “Has this component

value had a large variation?”. To associate with “normal”, “Is this com-

ponent value within standard deviation range for the past period?”; “Is

this IR sensor value close to nearby IR sensors’?”. However, the method

used can be any other technique, as long it can extract the features to

associate with the signals. One would argue that if the Pre-DCA has as-

sociated the “anomaly”/“normal” with the possible faulty components,

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 40

the diagnosis has been done. That is indeed true, if Pre-DCA could pro-

vide the exact match between signals and components. As mentioned

earlier, the pre categorising for DCA would only provide a weak associa-

tion, which would be insufficient to diagnose by itself. That is one of the

reasons for using a rule-based system here. Trying to write rules to fit

a dynamic system is often impossible, due to the dynamics. The output

from Pre-DCA block is often noisy. The suspect faulty components list

often contains non-faulty components.

The following setting has been used: the signals have two categories

“anomaly” and “normal” (“danger” and “safe”). It is because for robot

system there might not be “know bad” which can be categorised as

“PAMP” signal, which was used in the the original DCA.

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 41

Core-DCA

Input: Input componentlist, Signal

Output: List of T cells Tkillerlist

begin

select N DCs from the pool to sample;

for n ∈ N do

DC[n].CSM++;

DC[n].insert (componentlist);

if Flag == “anomaly” then

DC[n].IL10++

end

else

DC[n].IL12++

end

if CSM >= Migration threshed then

if IL10 >= IL12 then

DC[n].state = Mature;

Tkillerlist = Tkillerlist + DC[n].activateTcell()

end

else

Tkillerlist = Tkillerlist - DC[n].activateTcell()

end

end

end

end

Algorithm 1: Core-DCA

The Core-DCA is a population of DC cells. Depending on what input

a DC has sampled, it changes its internal variables and activates corre-

sponding T cells. The pseudo code for Core-DCA is shown in Algorithm

1. For each iteration, a number of DC cells are selected to sample an

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 42

Input, which is a list of components and the flag from the error detec-

tion system. It will return a list of active T killer cells list. For each

selected DC, the internal variable CSM increases by 1 and the list of

components is inserted into the DC’s Antigenlist. Depending on the sig-

nal (“anomaly/normal”), if “anomaly”, IL10 increases by 1. Otherwise,

IL12 increases by 1. After sampling, if a DC has sampled enough inputs

(CSM>=MT), then this DC could activate T cells. This means that all

the components in the AntigenList will be used to create correspond-

ing T cells. If a DC reaches a “mature” state (IL10>=IL12), then the

DC activates T killer cells. Otherwise, the DC activates T reg cells. A

T reg cell suppresses T killer cell activation, which means reducing the

quantity of T killer cells. One T reg reduces one T killer. For example,

if a DC has an “antigenlist” of “[IR sensor 1, IR sensor 3],[IR sensor1,

leftwheel]” and it has reached a “mature” state. Then, two IR sensor 1,

one IR sensor 3 and one leftwheel T killer cells will be created. If there

is another DC cell that has an “antigenlist” of “[IR sensor 1, IR sensor

3],[rightwheel, leftwheel]”, but, it reaches a “semi-mature” state. Then,

the activate T killer cells list would become one (2-1) IR sensor 1, minus

one rightwheel and no T killer cells for other components. A negative

number of T killer cells means that there are more T reg than T killer

cells of its type. The T killer cell list will be passed to the output block

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 43

to make a diagnosis decision.
Input: TkillerList

Output: DecisionV ector

begin

for i ∈ Allcomponents do

if (TkillerList[i] >= quantity threshold) or

(TkillerList[i]/max(TkillerList) >= percentage threshold)

then

DecisionV ector[i] = 1

end

else

DecisionV ector[i] = 0

end

end

return DecisionV ector

end

Algorithm 2: Pseudo code of Diagnosis decision

Output

The output block takes a list of T killer cells and returns a vector of

diagnosis decision. The width of diagnosis decision vector is the num-

ber of the components. The pseudo code for output block is given in

Algorithm 2. The decision on each component is based on how many T

killer cells exist for that component. If there are more T killer cells than

the quantity threshold or the percentage T killer cell of one component

(with respect to the maximum T killer cell of all components) is larger

than the percentage threshold, then this component will be diagnosed

as “faulty”. Otherwise, it will be diagnosed as “non-faulty”, where “1”

indicates faulty and “0” indicates non faulty

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 44

4.4 Investigating D-DCA

Having presented the D-DCA, the key characteristics of it will be dis-

cussed in this section. To identify the characteristics, the conceptual

framwork is applied by asking the “meta-questions”, such as diversity,

interaction and scale.

4.4.1 Diversity

Diversity is present on a number of levels: the presence of multiple types

of immune cell provides a layer of heterogeneity; although from the same

population, each DC acting independently provides another; all DCs have

different life span at any time and are randomly selected to sample. This

means there are no (less chance for) two identical DCs existing at a given

time. These diversities provide two key advantages: it allows the D-DCA

to tolerate noise, such as an one off event or sudden irregular sensor data

in very short time (transient fault). It also allows the D-DCA to process

the diverse signals from a number of sources (sensors) and diagnose with

multiple outputs (multiple faults diagnosis).

4.4.2 Interaction

There are two loops of interaction within D-DCA, T killer and T reg

loop. To illustrate this, one could assume such a robotic system with

sensor A, B and C. There is an error detection which can flag “anomaly”

or not by monitoring the behaviour of the robot. The D-DCA is used for

fault diagnosis and a recovery system is in place. And sensor B is faulty

at present.

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 45

T killer loop

The error detection system indicates that there is a fault present, as the

faulty sensor causes the robot to behave abnormally. Once flagged as

“anomaly”, the DCs interact with the robot by sampling sensor data.

Once sampled enough, the DCs become mature DCs and then activate

the correspond T killer cells (of sensor B). Once active, the number of T

killer cells will be increased. This happens continuously and repeatedly.

The longer the fault presents, the more T killer cells will be produced.

With the faulty sensor identified, the recovery system would somehow

compensate the effect of sensor B. This will change the behaviour of

the robot and lead the error detection to flag as “normal”. In this way,

there will be less DCs becoming mature and less active T killer cells.

Eventually, T killer cells (of sensor B) will die out, due to each cell

having limited life. Then, sensor B will no longer be indicated as “faulty”.

However, purely relying on cell’s death will not be quick enough to stop

the identification of sensor B as “faulty”, as cells death takes time. This

would cause mis-diagnosis and increase false positive. To shut down the

immune response (diagnosis as “faulty”) quickly, there is the T reg loop,

once there is no fault present.

T reg loop

While there is no fault present, the error detection system indicates the

system as “normal”. The DCs are sampling the sensor data. Once sam-

pled enough, the DCs will become semi-mature DCs and then activate

the T reg cells (of all sensors A, B and C). Once active, the number of T

reg cells will be increased. The D-DCA is implemented as the diagnosis

decision made by the number of T killer cells of one sensor and the num-

ber of T reg cells of that sensor. The more T reg cells of a sensor will let

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 46

the D-DCA diagnose such sensor as “non-faulty”. And if there is more

T killer cells, then the D-DCA will diagnose such sensor as “faulty”.

The two loops are happening simultaneously and the cooperation of

these two interactions helps the D-DCA to diagnose quickly and reduce

the false positive. They allow the D-DCA to perform more robustly and

efficiently.

4.4.3 Scale

The question asked here is “how big the DC population has to be in

order to perform well? And at what cost?”. The second question is

easy to answer. It is apparent that the more number of DCs the more

memory it will consume. The more randomly selected DC to sample, the

more operations it will require. And, possibly, one would assume that

the “more” the “better” its performance will be. However, the limits of

the DC population and the number randomly selected to sample for each

iteration are not easily recognised. To answer this, further parameter

analysis will be presented in Chapter 6. It reveals that it is not the

“more” the “better”. The selections of the number of DC population

and the number of selected to sample are actually insignificant to the

D-DCA’s performance. In order to achieve a reasonable performance,

the D-DCA will not require “more” computational power. This certainly

suggests that the D-DCA is suitable for resource limited robotic system.

4.5 Summary

An immune inspired algorithm, the Diagnostic Dendritic Cell Algorithm

(D-DCA), was presented in this chapter. The D-DCA was designed for

a resource limited robotic system to diagnose faults in real time. By

CHAPTER 4. DIAGNOSTIC DENDRITIC CELL ALGORITHM 47

applying the conceptual framework while developing the D-DCA, several

“meta-questions” were asked, addressing diversity, interaction and scale.

A number of key characteristics have been identified, such as tolerance

to noise, multiple faults diagnosis, robustness and efficiency.

To illustrate the feasibility of D-DCA on a robotics system, a se-

ries of tests has been conducted and presented in Chapter 5. A further

study of its parameters is presented in Chapter 6. A comparison of

performance with Artificial Neural Network (ANN) and Support Vector

Machine (SVM) will then be presented in Chapter 7.

Chapter 5

Feasibility analysis

Contents

5.1 Introduction 49

5.2 Experiments and results 51

5.3 Discussion . 60

5.4 Summary . 63

Tables

5.1 A typical input vector 53

5.2 Input value range . 53

5.3 A typical output vector 54

5.4 Parameters for feasibility experiments 54

Figures

5.1 Fault tolerance . 52

5.2 ROC curve for 8 different scenarios 56

(a) Scenario 1 . 56

(b) Scenario 2 . 56

5.2 ROC curve for 8 different scenarios 57

48

CHAPTER 5. FEASIBILITY ANALYSIS 49

(c) Scenario 3 . 57

(d) Scenario 4 . 57

5.2 ROC curve for 8 different scenarios 58

(e) Scenario 5 . 58

(f) Scenario 6 . 58

5.2 ROC curve for 8 different scenarios 59

(g) Scenario 7 . 59

(h) Scenario 8 . 59

5.3 A typical output from with death approach 60

5.1 Introduction

In this chapter, the performance of Diagnostic Dendritic Cell Algorithm

(D-DCA) will be assessed , proposed in Chapter 4. The performance of

the two different D-DCA approaches, “No death” and “with death”, will

be compared. The “No death” approach is developed as a prototype D-

DCA, which is without cells dying feature. Once a cell is created, there

is no fixed life span associate with it. For example, a Dendritic Cell (DC)

will be destroyed after it presents its contents and becomes either semi-

mature or mature; A T cell will not die at all. It is soon discovered its

limitation on certain type of fault, namely permanent fault described in

Section 2.1. The “with death” is implemented with an additional “life”

feature, described in Section 4.2.2.

One of the major problems associated with a classifier’s performance

is the data set that it is tested on. Performance is dependent on data set.

For example, if the data is imbalanced and has significant one to many

related entries, then the performance will not be so good, using simple

CHAPTER 5. FEASIBILITY ANALYSIS 50

geometric classification, i.e. K-nearest neighbour. The imbalanced data

will cause such method to dominate the prediction of the new vector,

as they tend to come up in the k nearest neighbours when the neigh-

bours are computed due to their large number.[36] The data used in the

experiments is generated from a simulated robot environment, namely

Stage described in Appendix A. Since the “No death” approach can only

diagnose permanent fault, the experiments presented in this chapter are

focused on permanent stuck at fault. A detailed description of the data

set is in Section 5.2.

Parameter setting is also a significant factor on performance. Varia-

tion on parameter often affects performance, depending on how sensitive

one parameter is. The parameters in this study for both approaches have

been chosen as initial experiments suggested, as this chapter is focused on

feasibility rather than parameter analysis. The initial experiments were

focused on to implement a light weight and fast response algorithm. A

further study on parameters will be presented in Chapter 6. However, it

is necessary to include what parameters are used in this study, which is

described in Section 5.2.

For each data set, both approaches will be applied to produce a set

of diagnosis decisions. Each experiment will be performed twenty times.

The decisions will be compared against with desire outcome (actual fault)

and computed a confusion matrix. The result will be plotted as a Receiver

Operating Characteristic (ROC) curve, shown in Section 5.2. Then, the

discussion of the results will be in Section 5.3.

CHAPTER 5. FEASIBILITY ANALYSIS 51

5.2 Experiments and results

The goal of this exercise is to test feasibility of D-DCA and to compare

performances of “No death” and “with death”. In this section, how the

experiments were conducted is explained. It begins by describing the

data sets and parameters used in this exercise. Then, the result will be

presented in ROC plots and discussed at the end.

Data sets

To test feasibility, 8 scenarios were designed. All of which were stuck-

at-fault. The stuck-at-fault is one of most common faults found in me-

chanical systems. The 8 scenarios were selected because they cover the

stuck-at-fault range that was interested. The fault was injected to the

simulation environment, namely Stage, where it only affected the “faulty”

sensor and left the rest intact.

In Player and Stage, the simulated robot is equipped with eight IR

sensors, all equally spaced around the robot. IR sensor 2 was picked

randomly for fault injection. The 8 scenarios are as following:

1. IR sensor 2 stuck at value 5% of Max sensing value (0.15 metre is

the maximum.) started at position 1 (original start position)

2. IR sensor 2 stuck at value 5% of Max sensing value started at

position 2 (random selected)

3. IR sensor 2 stuck at value 50% of Max sensing value started at

position 1

4. IR sensor 2 stuck at value 50% of Max sensing value started at

position 2

CHAPTER 5. FEASIBILITY ANALYSIS 52

Figure 5.1: Fault tolerance

5. IR sensor 2 stuck at value 85% of Max sensing value started at

position 1

6. IR sensor 2 stuck at value 85% of Max sensing value started at

position 2

7. IR sensor 2 stuck at value 100% of Max sensing value started at

position 1

8. IR sensor 2 stuck at value 100% of Max sensing value started at

position 2

The data set was then generated from Stage and fed to D-DCA. For

each scenario, data was recorded for 1000 time steps (about 2.8 minutes).

“Fault” was introduced at time step 200 and presented until the end. For

each time step, 8 IR sensor values, left/right wheel speed and location

X/Y were recorded to form an input vector, shown in Table 5.1. Their

value range is shown in Table 5.2.

An illustration of fault tolerance is shown in Figure 5.1. The out-

put from an “Error detection” is a “faulty” or “non-faulty” flag, which

indicates if there is fault within the system or not, respectively. The

D-DCA is only responsible for fault diagnosis. A “faulty” label was also

included in the input vector, where ‘1’ indicated that at the current time

CHAPTER 5. FEASIBILITY ANALYSIS 53

IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Left Right X Y faulty
0.0225 0.0225 1.75 0.70 1

Table 5.1: A typical input vector

IR 0-7 0 ∼ 0.15(m)
Left/Right wheel speed 0 ∼ 0.0225(m/s)
X, Y −3 ∼ 3(m) where (0, 0) is starting position

Table 5.2: Input value range

step, there was a fault within the system. This label was the output

from “Error detection” described in Section 4.3. Since faults were artifi-

cially injected, it was known when and where the faults were. However,

one could not assume there was a perfect “Error detection”, which can

indicate correctly every fault within the system. Therefore, the “Error

detection” mechanism with 80% accuracy was introduced. This means

that if there is a fault, there is 80% chance this “Error detection” will

indicate the system as faulty; if there is not a fault, it will indicate the

system as non-faulty by 80% chance.

An input vector was fed to D-DCA and then an output would be

produced at each time step. An output (shown in Table 5.3) from D-

DCA was a vector of binary decisions on each component, where ‘1’ was

faulty and ‘0’ was not faulty. The components for these experiments were

sensors 0-7, left wheel, right wheel and location. This vector, shown in

Table 5.3, could be interpreted as none of the components were faulty

but IR sensor 2.

CHAPTER 5. FEASIBILITY ANALYSIS 54

IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 Left Right location
0 0 0 1 0 0 0 0 0 0 0

Table 5.3: A typical output vector

Parameter Value

Migration threshold 20
Number of DC cells 20

Number of random select cells 5
Max life of cells (With death) (time steps) 50

Fault injected at time step 200
Quantity T killer threshold (No Death) -800 to 2000

Quantity T killer threshold (With Death) -100 to 200
Gradient T killer threshold (No Death) 0

Percentage threshold (With Death) 0%

Table 5.4: Parameters for feasibility experiments

Parameters

The parameters for this feasibility test were chosen after a few pre-

liminary experiments. At this stage, there was no reason why one should

use one set rather than the other. Later in Chapter 6, the findings for

which parameters would affect the performance more than the others will

be presented.

In order to produce a ROC curve, described in Appendix B, it is

needed to alter at least one parameter. Quantity T killer threshold was

chosen and its range is shown in Table 5.4. This threshold is one of the

thresholds which controls diagnosis decision directly. If there are more T

killer cells of one component than this threshold value, the component is

considered as “faulty”. The parameter sweeping ranges were chosen to

give a full curve on ROC plot.

CHAPTER 5. FEASIBILITY ANALYSIS 55

Result

To assess performance, ROC curve was chosen. The author[30] recom-

mends ROC in comparison to overall accuracy for single number evalu-

ation of machine learning algorithms. The benefits are: Firstly, it is a

visual representation and can be understand intuitively; Secondly, it plots

True Positive Rate (TPR) (benefit) against False Positive Rate (FPR)

(cost). This allows us to compare performances from both perspectives.

Both “No death” and “with death” were applied to the 8 scenarios

data. Each experiment was performed 20 times for each data. A confu-

sion matrix1 was then computed using the outcome of diagnosis against

the actual fault. From the confusion matrix, TPR and FPR were cal-

culated and plotted on Figure 5.2. Each data point on the figure is the

median value and the error bars are the upper and lower quartile of those

20 times.

Real time performance

The real time aspect of the D-DCA can be found in how long it takes

to correctly diagnose. Figure 5.3 shows a typical output from “with

death” approach with a stuck-at fault on sensor 2 from time step of

200. Figure 5.3 consists of 3 sub-figures, top, bottom left and bottom

right. Top figure shows the net T killer cells for each component over

time (T killer number minus T reg number; the larger number the more

“faulty” the component is.); bottom left shows the diagnosis decision on

each component over time (Y axis indicates different components), where

black indicates the D-DCA diagnose this component as “faulty” and red

indicates the actual fault was injected; bottom right is a histogram on

the diagnosis decision on the bottom left.

1Confusion matrix is described in Appendix B.1.

CHAPTER 5. FEASIBILITY ANALYSIS 56

(a) Scenario 1

(b) Scenario 2

Figure 5.2: ROC curve for 8 different scenarios

CHAPTER 5. FEASIBILITY ANALYSIS 57

(c) Scenario 3

(d) Scenario 4

Figure 5.2: ROC curve for 8 different scenarios

CHAPTER 5. FEASIBILITY ANALYSIS 58

(e) Scenario 5

(f) Scenario 6

Figure 5.2: ROC curve for 8 different scenarios

CHAPTER 5. FEASIBILITY ANALYSIS 59

(g) Scenario 7

(h) Scenario 8

Figure 5.2: ROC curves for 8 different scenarios: Each sub-figure shows
the comparison of performances between “With death” and “No death”
approaches. The performances are plotted as True Positive Rate (TPR)
over False Positive Rate (FPR). The parameters used are shown in Table
5.4. For both curves, the TPR and FPR are calculated between the actual
injected fault data and the diagnosis decision, from time step 200 to 800.
Each data point on the graph is the median of 20 runs of experiments
and the error bars are the upper and lower quartiles. The label near the
points is the threshold used in the experiments.

CHAPTER 5. FEASIBILITY ANALYSIS 60

Figure 5.3: A typical output from with death approach

The bottom left figure in Figure 5.3 suggests that there is a typical

80 time steps (10 seconds) delay for D-DCA to correctly diagnose (dif-

ferences between red and black on sensor 2). This delay is acceptable for

the robotic system used in the experiment. After time step 500, it shows

that the diagnostic decision is more accurate (less false positives).

5.3 Discussion

On a ROC plot, TPR (benefit) and FPR (cost) are plotted. One mea-

surement of “goodness” is to use the area under the cure [44]. However,

the performance which has higher “benefit” and lower “cost” is interest-

ing. The performance is the closer to point (1, 0) the better, described in

Appendix B. In this work, it is used the distance to (1, 0) as the “good-

ness” measurement on a ROC plot. In the context of the robotic system,

it is considered that a performance is above 75% TPR and less than 20%

CHAPTER 5. FEASIBILITY ANALYSIS 61

FPR as a “good” one. With an 80% accurate “Error detection”, the

best of TPR would be 80% and 20% of FPR is acceptable for the robotic

application.

The results of this study indicate that D-DCA is feasible to diagnose

fault for the simulated robot. For scenarios 1, 2, 3, 4 and 5, shown in

Figures 5.2a, 5.2b, 5.2c, 5.2d, and 5.2e, it achieved more than 80% TPR

with less than 20% FPR for scenarios 3,4 and 5. However, one could

argue FPR should be as low as possible, where 20% FPR might be too

high. One should note that when designing the experiment, the 80%

accuracy for “Error detection” was introduced. Therefore, 80% TPR

would be what it was aiming for. Also, at this stage, the algorithm was

not optimised or deeper studied. The result was an illustration that

D-DCA was feasible for fault diagnosis for a simulated robot.

However, D-DCA could not diagnose with a reasonable TPR for sce-

nario 6, shown in Figure 5.2f, as the performance of D-DCA was not

above 75% TPR while the FPR was less than 20%. For scenarios 7 and

8, D-DCA poorly performed similarly as a random classifier. A possible

explanation for this might be the difference between the data sets. Both

scenario 5 and 6 had been stuck at 85% of maximum sensor value. How-

ever, arguably, D-DCA performed better in scenario 5 than 6. The only

difference on data set was the starting position. Having analysed the

simulation in more detail, it was understood that in scenario 6 the robot

walked around in the arena avoiding fewer obstacles than in scenario

5. This means that the IR sensors would have a larger value (close to

maximum) for most of time, in scenario 6. So the larger value on sensor

would be diagnosed as “normal” (not faulty) by D-DCA. This might be

the reason why D-DCA performed worse in scenario 6. It was similar for

scenarios 7 and 8. It might suggest that there is a weakness of D-DCA.

CHAPTER 5. FEASIBILITY ANALYSIS 62

That is if an input feature is considered as “normal” most of time, it

might be miss classified by D-DCA as “non-faulty”, due to the fact that

diagnosis decision is made by a majority voting rule in D-DCA. In this

instance, the large sensor value was such an input feature.

The results of this study indicate that the “With death” outperformed

the “No death” approach. In Figures 5.2a, 5.2b, 5.2c, 5.2d, and 5.2e,

“With death” performed better (closer to (1,0)) with certain parameter

settings. Its performance’s variation of 20 runs was less than “No death”

approach, shown in Figure 5.2 as in error bar.

From the results, they further support the idea that a classifier’s

performance is dependable on data set. With Quantity T killer threshold

set to 80, the “with death” approach performed about (0.82 (TPR), 0.37

(FPR)) in scenario 1; (0.79, 0.1) in scenario 3; (0.65, 0.1) in scenario

5 and only (0.1, 0.05) in scenario 7. This had shown that the same

algorithm, with the same parameter setting, but with different data set,

could perform differently.

From the results, they further support the idea that parameters af-

fects the performance. Although, it was not discussed the parameters

used in this exercise deeply, the performance varied from “not working”

to “good”, within the Quantity T killer threshold range (shown in Ta-

ble 5.4). In fact, the lower this threshold was the higher the FPR. By

lowering the threshold, it would be easier for a component T cell to out-

number it. Thus, D-DCA diagnosed such a component as “faulty”. On

the contrary, a component would not be easily diagnosed as “faulty”, by

increasing the threshold. So there would be less FPR, but at the mean

time, TPR would also be reduced. This effect was shown in Figure 5.2,

where those data points, with high Quantity T killer threshold, appeared

close to (0, 0). For most “good” ones in Figure 5.2, 80 Quantity T killer

CHAPTER 5. FEASIBILITY ANALYSIS 63

threshold would be a balanced choice for the “with death” approach.

However, it is insufficient to conclude this. In fact, it only was the case

of these 8 scenarios with Quantity T killer threshold range shown in Table

5.4. A further study with more focus on parameter analysis is therefore

suggested and is presented later in Chapter 6.

5.4 Summary

This study set out to determine the feasibility of D-DCA and compare

with “No death” and “with death” approaches. It started with describing

the data sets and parameters set used for this exercise. Then, the results

on the feasibility of D-DCA for a simulated robot were presented. It had

been discussed that the D-DCA performance could be affected by data

set and parameters.

The following conclusions can be drawn from this study. The results

have shown D-DCA can be used as fault diagnosis with reasonable suc-

cess. However, it is also suggested that D-DCA can diagnose incorrectly

for certain data sets, where data is labelled as “normal” most of the time.

The results clearly have shown the “with death” is better than the “No

death” approach. Therefore, any D-DCA beyond this point will only

refer to the “with death” approach. This exercise will serve as a base for

future studies and more importantly, it has shown ROC could be useful

to assess performance.

However, with limited data sets (8 scenarios only on permanent stuck-

at fault), caution must be applied, as the findings might not be transfer-

able to other data sets. Thus, a wider variety data sets, such as different

types of faults, and faults on different sensors, has to be considered in

any future study.

CHAPTER 5. FEASIBILITY ANALYSIS 64

One of the more significant findings to emerge from this study, al-

though preliminary, is that the variation of parameter affects the D-

DCA performance. Thus, further experimental investigations are needed

to analyse the parameters and are presented in Chapter 6.

Chapter 6

Parameters sensitivity

analysis

Contents

6.1 Introduction 66

6.2 Parameters in question 68

6.3 Experiments and results 69

6.4 Discussion . 80

6.5 Summary . 85

Tables

6.1 Preliminary findings 69

6.2 Parameter analysis data set 71

6.3 Table of null hypotheses for Wilcoxon tests 71

6.4 Parameter ranges for Wilcoxon test 72

6.5 Base line parameters setting 72

6.6 Wilcoxon Test 1 . 73

6.7 Wilcoxon signed-rank test result 74

65

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 66

6.8 Parameter ranges for Latin Hypercube Test 3 76

6.9 Parameters for E1 78

6.10 Performance verification E1 78

6.11 Parameters for E2 79

6.12 Performance verification E2 79

6.13 Parameters for E3 80

6.14 Performance verification E3 80

6.15 Parameters for E4 81

6.16 Performance verification E4 81

6.17 Suggested correlation coefficient interpretation[8] . . 83

Figures

6.1 Test 1-01 Correlation Coefficient 76

6.2 Test 2-01 Correlation Coefficient 77

6.3 Test 3-01 Correlation Coefficient 77

6.1 Introduction

Parameters sensitivity analysis is an important component in the valida-

tion of an algorithm, and plays a key role in understanding how variation

of parameter affects the algorithm’s performance. It also provides vital

information on optimization of an algorithm. If parameters are hyper-

sensitive then they could be said to be “critical”. In this instance, the

parameters may be so finely tuned to the data that a slight change of

values could instigate chaotic behaviour, thus making it very difficult to

select. On the contrary, the parameters of an algorithm might show re-

silience to change, therefore making the algorithm robust and parameter

selection a simple task. An example of this can be found in AIRS [93].

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 67

However, there has been little discussion about the effect of parame-

ter variation on the behaviour of some immune inspired algorithms. It is

often glossed over or not revealed at all, with authors empirically defining

parameters that work for their particular data set with little discussion

on how such parameters could affect performance. Examples of this can

be found from early work on AIS, such as aiNet [38]. This might poten-

tially discourage one to adopt and further develop it. On the contrary,

some have addressed the parameters sensitivity. The author in [50] pro-

posed the the original Dendritic Cell Algorithm (the original DCA) and

addressed its parameters’ sensitivity. In this, the author had concluded

some of the parameters are sensitive on performance, specially “num-

ber of DC cells in the pool” parameter. Since Diagnostic Dendritic Cell

Algorithm (D-DCA) is a reimplementation with modification of the the

original DCA. D-DCA has inherited some of the original DCA’s parame-

ters. It is necessary to verify the findings in [50] if they apply to D-DCA

and also provide a full parameters sensitivity analysis for D-DCA.

The aim of this study is to evaluate and validate the sensitivity of

parameters. These are: Migration threshold (MT), Number of DC cells

(DC), Number of random select cells (NS), Max life of cells (Life), Quan-

tity T killer threshold (Tk) and Percentage threshold (Per). Within

those, MT, DC and NS are inherited from the original DCA; Life is

unique to D-DCA; Tk and Per are created for making diagnosis decision

and unique to D-DCA.

This chapter begins by describing those parameters under the test.

It then moves on to explain how the experiments have been conducted

and present the results. Then, it explains how the findings are validated

and discussed at the end.

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 68

6.2 Parameters in question

• Migration threshold (MT): The threshold value which determines

whether a DC cell needs to move onto next state. Effectively, it

controls how many antigen each DC cell can sample. By sampling

an antigen, internal parameter co-stimulatory molecule will be in-

creased by 1. If the co-stimulatory molecule of a DC cell is greater

than the migration threshold, then the DC cell will mature into one

of mature states. Otherwise, the DC cell stays on immature state

and can sample more antigens.

• Number of DC cells (DC): The number of DC cell which there are

in the pool when the algorithm is initialised.

• Number of random select cells (NS): How many DC cells which will

be selected to sample an antigen at each iteration.

• Max life of cells (Life): How long a DC cell will live. (Only applies

to “with death” approach.)

• Quantity T killer threshold (Tk): The threshold which determines

the diagnosis decision on a component. If there are more T killer

cells of a component than this threshold value, then this component

will be diagnose as “faulty”. Otherwise, as “non-faulty”.

• Percentage threshold (Per): The threshold which determines the

diagnosis decision on a component. If there are more T killer cells

of a component than this threshold percentage of maximum of all

component’s T cells, then this component will also be diagnose

as “faulty”. Otherwise, as “non-faulty”. For example, if there

are 10 components, Percentage threshold is 90%, component 1 has

100 T killer cells and component 2 has 92 T killer cells, then both

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 69

Table 6.1: Preliminary findings for variation of parameters on perfor-
mance. *↑ means increasing. ↓ means decreasing. Slightly means
less than 20% variation. Significantly means more than 50% varia-
tion..0000000

Parameter Affects

MT Affects are not conclusive, but beyond the
range of [1,500], the results would not be rel-
evant in this study.

DC DC ↑: True Positive Rate (TPR) slightly
↑ and False Positive Rate (FPR) slightly ↑.
Also, memory consumption ↑. Suitable range
is [1,1000].

NS NS ↑:TPR slightly ↑, FPR slightly ↓ and
memory consumption significantly ↑. Suit-
able range is [1,1000].

Life Life ↑: Memory consumption significantly ↑
Suitable range is [1,100].

Tk Tk ↑: TPR slightly ↓ and FPR ↓. Suitable
range is [0,500].

Per Per ↑: TPR slightly ↑ and FPR ↑. Suitable
range is [0,100%]

component 1 and 2 will be diagnose as “faulty” if “Error detection”

indicates there is a fault present.

The preliminary experiments were conducted to get an overview of

the affect on each individual parameter and to determine parameter’s

range of interest. By varying one parameter at a time, the findings are

shown in Table 6.1.

6.3 Experiments and results

To evaluate and validate the sensitivity of parameters, this section be-

gins by describing the data sets used in this study. The three sets of ex-

periments were conducted will be explained, Wilcoxon signed rank test

(described in Appendix D), Latin Hypercube sampling test (described

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 70

in Appendix C) and D-DCA parameter evaluation. Then, the results in

respective order will be presented and the findings will be discussed at

the end.

Data sets

It was mentioned in Section 5.4 that a variety of fault types need to be

included in the data sets, in order to demonstrate the D-DCA perfor-

mance. There were 8 data sets generated from Stage, shown in Table

6.2. All of them are stuck-at fault. Data 1, 2, 3, 4 and 5 are periodic

faults ; Data 6, 7 and 8 are permanent faults. The parameters for data

sets, such as component, stuck value, period and duration were randomly

assigned.

The data set was then generated from Stage and fed to D-DCA. For

each scenario, data was recorded for 4000 time steps (about 6.5 minutes).

For each time step, 8 IR sensor values, left/right wheel speed and location

X/Y were recorded to form an input vector, shown in Table 5.1. And their

value range is shown in Table 5.2. A “faulty” label was also included in

the input vector, where ‘1’ indicated that at the current time step, there

was a fault within the system. An input vector was fed to D-DCA and

then an output would be produced at each time step.

Wilcoxon signed rank test results

The aim of this test is to explore the D-DCA’s performance on individ-

ual parameter variation and to determine the significance of each. The

Wilcoxon signed-rank test is a non-parametric statistical hypothesis test

used when comparing two related samples [15]. The distributions of D-

DCA performances were not normal so non-parametric tests were run.

The null hypotheses are shown in Table 6.3.

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 71

faulty component stuck at value period
(time
steps)

duration
(time
steps)

data-1 IR sensor 0 63% 75 48
data-2 IR sensor 2 27% 778 742
data-3 IR sensor 4 45% 878 481
data-4 IR sensor 6 81% 186 181
data-5 IR sensor 7 38% 841 515

faulty component stuck at value fault starts at (time steps)

data-6 IR sensor 2 51% 1718
data-7 IR sensor 6 34% 3951
data-8 IR sensor 7 32% 2056

Table 6.2: Parameter analysis data set

Table 6.3: Table of null hypotheses for Wilcoxon tests

Null hypothesis Description

H1 Changing the MT will have no observable effect on the
resultant D-DCA’s performance.

H2 Changing the DC will have no observable effect on the
resultant D-DCA’s performance.

H3 Changing the NS will have no observable effect on the
resultant D-DCA’s performance.

H4 Changing the Life will have no observable effect on the
resultant D-DCA’s performance.

H5 Changing the Tk will have no observable effect on the
resultant D-DCA’s performance.

H6 Changing the Per will have no observable effect on the
resultant D-DCA’s performance.

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 72

Table 6.4: Parameter ranges for Wilcoxon and Latin Hypercube Test 1

Parameter Range

MT [1,500]
DC [1,1000]
NS [1,1000]
Life [1,100]
Tk [0,500]
Per [0,100%]

Table 6.5: Base line parameters setting

Parameter Value

MT 20
DC 100
NS 200
Life 100
Tk 120
Per 95%

The parameter ranges is shown in Table 6.4, which was suggested

from previous experiments. 25 samples were selected for each parameter

randomly, but with a continuous uniform 1 distribution. While varying

one parameter, the other parameters were used as shown in Table 6.5.

The D-DCA with a parameters setting was performed on each data 20

times. The TPR and FPR were calculated for each experiment. To rep-

resent the performance of a parameters setting, the median was selected.

The 25 medians of TPR and FPR (the performance) and the parameter

values (the one was varied) were then used to perform Wilcoxon signed

rank test. The results of minimum critical value for individual parameter

are shown in Table 6.6.

To reject a null hypothesis, the minimum critical value has to be less

than 68 for a two-tailed test with 99% confidence interval. This can

1The continuous uniform distribution is a family of probability distributions such
that for each member of the family, all intervals of the same length on the distribution’s
support are equally probable. [16]

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 73

Table 6.6: Wilcoxon signed rank test 1

H0 data-1 data-2 data-3 data-4
MT 0.0 0.0 3.0 0.0
DC 0.0 1.0 3.0 1.0
NS 0.0 0.0 1.0 1.0
Life 0.0 47.0 33.0 96.0
Tk 0.0 0.0 10.0 0.0
Per 1.0 129.5 9.5 30.0

H0 data-5 data-6 data-7 data-8
MT 1.5 5.0 0.0 6.0
DC 2.0 3.0 0.0 5.0
NS 1.0 1.0 0.0 2.0
Life 80.5 30.5 137.5 0.0
Tk 6.0 10.0 0.0 25.0
Per 32.0 11.0 128.0 0.0

be found in Wilcoxon critical values table, shown in Appendix Table

D.1. The highlighted cells in Table 6.6 were those where the hypotheses

stood, where there were no differences between the parameters and the

performances. Additional sets of parameters test were also conducted

and the result can be found in Appendix E.

In addition to individual parameter hypotheses, a set of tests on one

parameter against another were conducted. This was trying to illustrate

the significance one parameter over another. The results are shown in

Table 6.7.

Latin Hypercube sampling results

For sensitivity analysis, a sampling method has to be employed. The

ultimate method is a full sweep through all the parameters, but for most

cases, it is impossible. D-DCA’s parameters are natural numbers. Even

with the range of interest, it is impossible to compute a full sweep. An-

other method is random sampling. However, random sampling is the

preferred technique when sufficiently large samples are possible, in order

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 74

Table 6.7: Wilcoxon signed-rank test result

H0 data-1 data-2 data-3 data-4
DC - Tk 0.0 5.5 8.0 47.5
DC - Per 5.0 0.0 0.0 0.0
DC - MT 74.0 30.0 6.5 45.0
DC - NS 16.5 46.0 48.5 26.0
DC - Life 0.0 0.0 0.0 86.5
Tk - Per 7.0 0.0 0.0 0.0
Tk - MT 0.0 0.0 0.0 18.0
Tk - NS 3.0 3.5 26.0 3.0
Tk - Life 3.5 0.0 7.0 79.0
Per - MT 12.0 0.0 0.0 0.0
Per - NS 5.0 0.0 0.0 0.0
Per - Life 7.0 1.5 0.0 0.0
MT - NS 21.0 12.0 0.0 0.0
MT - Life 5.5 0.0 0.0 41.5
NS - Life 7.0 0.0 1.5 16.5

H0 data-5 data-6 data-7 data-8
DC - Tk 5.0 0.0 29.5 0.0
DC - Per 0.0 0.0 3.0 0.0
DC - MT 4.5 17.5 1.0 31.0
DC - NS 30.5 24.5 53.5 55.0
DC - Life 1.0 5.0 3.0 104.0
Tk - Per 0.0 0.0 23.5 0.0
Tk - MT 0.0 0.0 0.0 0.0
Tk - NS 33.0 6.0 31.5 4.0
Tk - Life 20.5 12.0 10.5 101.5
Per - MT 0.0 0.0 0.0 0.0
Per - NS 0.0 0.0 0.0 0.0
Per - Life 3.0 5.5 84.5 27.5
MT - NS 1.0 0.0 1.0 55.0
MT - Life 0.0 0.0 0.0 55.5
NS - Life 12.0 8.0 0.0 79.5

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 75

to achieve higher accuracy. For this study, neither sampling methods can

be used. To overcome this, Latin Hypercube sampling2 was used. It is

used because large samples are not computationally practicable and the

estimation of very high quantiles (above 0.99) is not required. In capari-

son with random sampling, with the same workload, Latin Hypercube is

proven more desirable. [72]

The experiment procedure is as following. Firstly, Latin Hypercube

for D-DCA’s parameter setting was generated. 1000 samples were gener-

ated for each test. Once the parameter settings were determined, D-DCA

with each setting was applied to the data sets (described at beginning

of this section). Each experiment was performed 20 times and the me-

dian was chosen to represent the performance of that parameter setting.

Finally, those medians were used to calculate the correlation coefficient

[17] of covariance [8]. Covariance indicates the level to which two vari-

ables vary together. The correlation coefficient is a value between -1 and

1 inclusive. The larger the absolute value of correlation coefficient the

closer the two variables are varying together. In this study, the larger

the (absolute of) coefficient means that one parameter is more sensitive

on D-DCA’s performance.

To determine whether a parameter is more sensitive on D-DCA’s

performance than the other, 3 sets of Latin Hypercube sampling were

designed. Test 1 and 2 were two differently generated Latin Hypercubes.

The aim of these two tests was to illustrate the individual parameter sen-

sitivity and to show the consistency of the results. Test 3 was conducted

using DC/NS ratio as one parameter, shown in Table 6.8. To give a more

vivid presentation of the results form this study, a box plot was draw,

for each parameter. Each box plot shows the correlation coefficients, ob-

2A detailed description how Latin Hypercube was generated can be found in Ap-
pendix C.

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 76

Table 6.8: Parameter ranges for Latin Hypercube Test 3

Parameter Range

MT 1,500
DC / NS 1/1000 - 1000/1

Life 1,100
Tk 0,500
Per 0,100%

Figure 6.1: Test 1-01 Correlation Coefficient

tained from the Latin Hypercube test. Test 1, 2 and 3 results are shown

in Figure 6.1, 6.2 and 6.3 respectively. Each test was also run multiple

times to ensure the consistency within each test and more results can be

found in Appendix C.

D-DCA parameters evaluation

To verify the the findings from the sensitivity analysis, a set of tests with

different DC and NS parameters were performed. 3 sets of evaluations

were conducted. E1 was varying NS with the parameters used and are

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 77

Figure 6.2: Test 2-01 Correlation Coefficient

Figure 6.3: Test 3-01 Correlation Coefficient

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 78

Table 6.9: Parameters for E1

Parameter Value

MT 20
DC 100
NS 10,50,100,500,1000
Life 100
Tk 120
Per 95%

NS data-1 data-2 data-3 data-4
10 (0.0,0.11) (0.72,0.14) (0.27,0.05) (0.06,0.13)
50 (0.01,0.12) (0.78,0.18) (0.6,0.06) (0.1,0.19)
100 (0.01,0.12) (0.79,0.18) (0.63,0.07) (0.13,0.21)
500 (0.0,0.12) (0.79,0.19) (0.65,0.07) (0.12,0.19)
1000 (0.0,0.11) (0.71,0.24) (0.64,0.08) (0.04,0.13)

NS data-5 data-6 data-7 data-8
10 (0.34,0.09) (0.79,0.06) (0.0,0.0) (0.53,0.23)
50 (0.63,0.14) (0.92,0.11) (0.0,0.0) (0.86,0.35)
100 (0.67,0.14) (0.92,0.11) (0.07,0.0) (0.89,0.36)
500 (0.69,0.14) (0.93,0.12) (0.04,0.0) (0.89,0.36)
1000 (0.64,0.16) (0.89,0.13) (0.0,0.02) (0.77,0.37)

Table 6.10: Performance verification E1, by varying NS

shown in Table 6.9 and the results are shown in Table 6.10; E2 was

varying DC and NS but keeping their ratio as 1:1, with parameters shown

in Table 6.11 and the results are shown in Table 6.12; E3 was varying

DC and NS but keeping their ratio as 1:2, with parameters shown in

Table 6.13 and the results are shown in Table 6.14. E4 was varying NS

but keeping their ratio from 10:1 to 1:10 , with parameters shown in

Table 6.15 and the results are shown in Table 6.16. All the data in the

result tables are the median value of TPR and FPR, where D-DCA has

performed 20 times one each data set. Further results of variation on

performance are shown in Appendix F.

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 79

Table 6.11: Parameters for E2

Parameter Value

MT 20
DC 10, 50, 100, 500, 1000
NS 10, 50, 100, 500, 1000
Life 100
Tk 120
Per 95%

DC/NS data-1 data-2 data-3 data-4
10/10 (0.0,0.08) (0.68,0.15) (0.57,0.06) (0.04,0.12)
50/50 (0.01,0.12) (0.78,0.18) (0.63,0.07) (0.11,0.19)

100/100 (0.01,0.12) (0.78,0.18) (0.64,0.07) (0.13,0.2)
500/500 (0.01,0.13) (0.79,0.19) (0.64,0.07) (0.15,0.22)

1000/1000 (0.0,0.13) (0.79,0.19) (0.64,0.07) (0.15,0.22)

DC/NS data-5 data-6 data-7 data-8
10/10 (0.58,0.11) (0.81,0.09) (0.0,0.0) (0.64,0.24)
50/50 (0.67,0.14) (0.92,0.11) (0.02,0.0) (0.88,0.35)

100/100 (0.67,0.14) (0.93,0.11) (0.07,0.0) (0.89,0.36)
500/500 (0.68,0.14) (0.93,0.11) (0.09,0.0) (0.89,0.36)

1000/1000 (0.68,0.14) (0.93,0.11) (0.01,0.0) (0.89,0.36)

Table 6.12: Performance verification E2

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 80

Table 6.13: Parameters for E3

Parameter Value

MT 20
DC 10, 50, 100, 500, 1000
NS 20, 100, 200, 1000, 2000
Life 100
Tk 120
Per 95%

DC/NS data-1 data-2 data-3 data-4
10/20 (0.0,0.1) (0.75,0.17) (0.61,0.06) (0.08,0.16)
50/100 (0.01,0.12) (0.79,0.19) (0.65,0.07) (0.12,0.2)
100/200 (0.0,0.12) (0.79,0.19) (0.65,0.07) (0.14,0.21)
500/1000 (0.0,0.12) (0.79,0.19) (0.65,0.07) (0.14,0.22)
1000/2000 (0.0,0.12) (0.79,0.19) (0.65,0.07) (0.15,0.22)

DC/NS data-5 data-6 data-7 data-8
10/20 (0.66,0.13) (0.89,0.11) (0.05,0.0) (0.75,0.31)
50/100 (0.68,0.14) (0.93,0.12) (0.06,0.0) (0.89,0.36)
100/200 (0.69,0.14) (0.93,0.12) (0.11,0.0) (0.89,0.36)
500/1000 (0.69,0.14) (0.93,0.12) (0.06,0.0) (0.89,0.36)
1000/2000 (0.69,0.14) (0.93,0.12) (0.07,0.0) (0.89,0.36)

Table 6.14: Performance verification E3

6.4 Discussion

Wilcoxon signed rank test

To assess the validity of the null hypotheses, paired Wilcoxon signed rank

tests were performed, where the pairs were the individual parameter

values and D-DCA performance (TPR and FPR). The Wilcoxon rank

test performed uses a confidence interval of 0.99. In order to reject a

null hypothesis, the critical value has to be less than 683. The results,

as shown in Table 6.6, indicate that H1, H2, H3 and H5, from Table

6.3, can be rejected for their ranges with all the data sets used. H4 and

H6 are partially rejected as they can not be rejected for some data sets,

3From Wilcoxon critical value table in Appendix E

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 81

Table 6.15: Parameters for E4

Parameter Value

MT 20
DC 100
NS 10, 50, 200, 500, 1000
Life 100
Tk 120
Per 95%

DC/NS data-1 data-2 data-3 data-4
100/10 (0.0,0.11) (0.69,0.14) (0.3,0.05) (0.06,0.13)
100/50 (0.01,0.13) (0.77,0.18) (0.6,0.06) (0.1,0.19)
100/200 (0.01,0.12) (0.79,0.19) (0.65,0.07) (0.14,0.22)
100/500 (0.0,0.12) (0.79,0.19) (0.65,0.07) (0.11,0.19)
100/1000 (0.0,0.11) (0.7,0.24) (0.63,0.07) (0.04,0.13)

DC/NS data-5 data-6 data-7 data-8
100/10 (0.31,0.09) (0.79,0.06) (0.0,0.0) (0.51,0.23)
100/50 (0.63,0.14) (0.92,0.11) (0.0,0.0) (0.87,0.35)
100/200 (0.69,0.14) (0.93,0.12) (0.15,0.0) (0.89,0.36)
100/500 (0.69,0.14) (0.93,0.12) (0.1,0.0) (0.89,0.36)
100/1000 (0.64,0.16) (0.91,0.13) (0.0,0.02) (0.78,0.37)

Table 6.16: Performance verification E4

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 82

highlighted in Table 6.6, which it is not conclusive as rejected. However,

more tests had been conducted which can be found in Appendix E. Here,

it shows H5 can only partially rejected. This might be caused by the

small number of samples (25) which had been used. Nevertheless, it can

be concluded that the following from the results of Wilcoxon tests:

• Changing the MT will effect D-DCA’s performance.

• Changing the DC will effect D-DCA’s performance.

• Changing the NS will effect D-DCA’s performance.

The findings of the this study are consistent with those in [50], where

MT, DC and NS are inherited from. A further test was also conducted

to address how one parameter effect differs from the other. The results,

shown in Table 6.7, indicate that all parameters are different from each

other in most cases. However, this is inefficient to determine if one is

more sensitive than another. To address this, Latin Hypercube sampling

test was conducted.

Latin Hypercube sampling test

To determine if one parameter is more sensitive than another, Latin Hy-

percube sampling test was conducted. The results are shown in Figures

6.1, 6.2 and 6.3. A figure is a set of box plots, which are the correla-

tion coefficient of covariance. The coefficient is ranged between -1 and

1, where the larger absolute value of it the more sensitive the parameter

is. A positive coefficient means that if the two variables under test are

linearly related, then they are proportional[8]. Otherwise, if negative,

they are inverse proportional. This might mean that if there is a lager

positive coefficient of one parameter, then this parameter is more sen-

sitive to the D-DCA’s performance and the lager this parameter is the

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 83

Correlation/Sensitivity Negative Positive

None 0.09 to 0.0 0.0 to 0.09
Small 0.3 to 0.1 0.1 to 0.3

Medium 0.5 to 0.3 0.3 to 0.5
Strong 1.0 to 0.5 0.5 to 1.0

Table 6.17: Suggested correlation coefficient interpretation[8]

better the performance it would affect. In [8], the author has suggested

the ranges for how correlated two variables are, shown in Table 6.17.

Test 1

The results from Figure 6.1 suggest the following:

• Although Per is more widely spread out than the others, the in-

terquartile range still indicates that Per is a little sensitive to D-

DCA’s performance.

• DC and MT are a little sensitive to D-DCA’s performance.

• Tk and Life are not sensitive to D-DCA’s performance.

• NS is slightly more sensitive than the others.

Test 2

The results from Figure 6.1 suggest the following:

• Tk, Per, MT and Life are not sensitive to D-DCA’s performance.

• DC is a little sensitive to D-DCA’s performance.

• NS is significantly more sensitive than the others.

Test 3

The results from Figure 6.1 suggest the following:

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 84

• The ratio of DC/NS is slightly more sensitive than the others, but

still a little.

• Ther rest of parameters are not sensitive.

From Test 1 and 2, surprisingly, only NS was found to be more sen-

sitive than the other parameters with given ranges in Table 6.4. It also

suggested that NS was inverse proportional to D-DCA’s performance.

This finding was unexpected and contradictory to the previous findings,

shown in Table 6.1, which suggested they were proportional to each other.

A possible explanation for this might be that the NS affects performance

dependently with other parameter, although, all parameters are indepen-

dent. It suggested that the ratio of DC/NS as a new parameter could

affect the performance. For this, Test 3 was conducted. The results

suggested that the ratio of DC/NS was slightly more sensitive than the

others and it was inverse proportional to performance. This will be ver-

ified to be the case in the next section.

Evaluation

To evaluate the findings, 4 sets of tests were conducted. E1 was varying

NS parameter. The results from E1, shown in Table 6.10, suggest that

there are significant changes in performances, by varying NS from 10 to

50. But, no significant changes, once above 50 and below 1000. There

is a slight drop in performance, where NS was 1000. This verifies the

findings in the preliminary test, shown in Table 6.1, which is that NS is

proportional to performance. This also disproves the findings in Latin

Hypercube Test 1 and 2, where it suggests that NS is inverse proportional

to performance. Without it, however, Test 3 would not be conducted.

E2 and E3 were designed to verify the findings in Test 3. By comparing

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 85

the results from E2 and E3, in Tables 6.12 and 6.14, they suggest that:

• There is no significant difference on performances, if the ratio of

DC/NS is constant, neglecting when small parameters were used.

• The performances are almost constant, despite that NS was in-

creased.

To further verify the findings in Test 3, E4 was conducted. The results,

shown in Table 6.16, suggest that the performances are almost constant

when varying DC/NS as one parameter. This confirms the findings in

Test 3, shown in Figure C.8, which is that DC/NS is a little sensitive

to the performance. From Table 6.16, it also suggests that DC/NS is

inverse proportional to performance. However, at the largest ratio of

DC/NS, the performance was slightly reducing rather than improving.

Nevertheless, from the results of E2, E3 and E4, it is apparent that the

findings in Test 3 was correct.

6.5 Summary

This study has set out to evaluate and validate the sensitivity of Diag-

nostic Dendritic Cell Algorithm (D-DCA)’s parameters. It started with

presenting the parameters under the test, which were Migration thresh-

old (MT), Number of DC cells (DC), Number of random select cells (NS),

Max life of cells (Life), Quantity T killer threshold (Tk) and Percentage

threshold (Per). The preliminary findings with regards to parameters

and performances were shown in Table 6.1. Then, how 3 sets of experi-

ments were conducted was explained , which were Wilcoxon signed rank

test, Latin Hypercube test and parameters evaluation test. The results

from those tests were presented and discussed.

CHAPTER 6. PARAMETERS SENSITIVITY ANALYSIS 86

The following conclusions can be drawn from this study. The param-

eters of D-DCA, MT, DC, NS, Life, Tk and Per, are not sensitive to the

performance individually. However, the ratio of DC/NS is slightly more

sensitive than the others, but just a little. This is under the assumption

that, all parameters are not in small numbers (below 50). In Table 6.16,

the highlighted parameter is a sensible choice for these data sets and it

will be used for next chapter for comparison with other methods.

Furthermore, DC and NS define the computational power consump-

tion of the D-DCA, however, they are insignificant to the D-DCA’s per-

formance. This has suggested that the D-DCA can perform well without

the increase of the computational cost. Hence, the D-DCA is suitable for

resource limited robotic systems.

With the effects of parameters analysed, a comparison between Artifi-

cial Neural Network (ANN), Support Vector Machine (SVM) and D-DCA

will be presented in Chapter 7. In this, why other method, i.e. K-nearest

neighbour, was not considered will be explained and why D-DCA would

be a better choice for real-time robotic system will be illustrated.

Chapter 7

Comparison analysis

Contents

7.1 Introduction 88

7.2 Experiments and results 89

7.2.1 Data sets . 90

7.2.2 ANN results 92

7.2.3 SVM results 94

7.2.4 DDCA comparison results 94

7.3 Discussion . 99

7.4 Summary . 103

Tables

7.1 Training data set . 91

7.2 Test data set . 91

7.3 ANN results . 93

7.4 SVMs results . 95

7.5 Parameters for DDCA 96

7.6 DDCA comparison results 96

87

CHAPTER 7. COMPARISON ANALYSIS 88

7.7 Table of null hypotheses for comparison tests 97

7.8 DDCA comparison Wilcoxon results 97

Figures

7.1 TPR result for Wilcoxon 25 samples test 98

7.2 FPR result for Wilcoxon 25 samples test 98

7.3 Distance to (1, 0) . 99

7.1 Introduction

Comparison is often desirable when introducing a novel algorithm or

method. However, the comparison is often difficult or impossible to

undertake. This can be attributed to difficulty in finding comparable

methods that can perform the required tasks. When introducing a novel

method, it is often designed to solve a particular problem. Therefore,

the data used might be unique, often all, if this was not the case, it

would probably not be necessary to introduce the method in the first

place. The unique data used will cause difficulty in finding a suitable

method to compare with. Once a suitable method is found, a suitable

quantitative measure is also needed. Once a suitable measure is found,

then tuning parameters will be another challenge. With this in mind, the

investigation of Diagnostic Dendritic Cell Algorithm (D-DCA)’s perfor-

mance in comparison with Artificial Neural Network (ANN) and Support

Vector Machine (SVM), will be presented in this chapter.

The data set used in this work is unique. This does not mean that they

only exist within this work. The uniqueness appears as unbalanced, one-

to-many relations and duplicated entries, as discussed in Section 2.4.1.

This would cause some methods, for example K-nearest neighbours, to

CHAPTER 7. COMPARISON ANALYSIS 89

have difficulty in coping. The basic “majority voting” classification is

that the classes with the more frequent examples tend to dominate the

prediction of the new vector, as they tend to come up in the k near-

est neighbours when the neighbours are computed due to their large

number.[36] The results are shown in Appendix I confirm this. Here, K-

nearest neighbour was able only to classify all data entries into one class,

due to unbalanced data. For that reason, ANN and SVM have been

chosen for the comparison purpose. ANN is one of the most popular

methods in machine learning and has been suggested for fault diagnosis,

in [26] and [88]. SVM has a reputation for non-linear and multi-class

classification problems, where examples are described in [18]. For these

reasons, it has been decided that these are the best methods to adopt

for this investigation. To assess performance, Receiver Operating Char-

acteristic (ROC) is used. It has been proved to be a suitable measuring

tool for our study in the previous chapters.

This chapter begins by explaining how the experiments that have been

conducted and results are presented; then, the findings are discussed and

concluded at the end.

7.2 Experiments and results

The aim of this section is to explain the procedures of experiments con-

ducted, and to present the results. It begins by describing the data sets

used in this study and explains the necessary modification made. The

ANN results, SVM results and the comparison results with D-DCA will

be then presented.

CHAPTER 7. COMPARISON ANALYSIS 90

7.2.1 Data sets

There were 8 training data sets generated from Stage (the same as used

in Chapter 6), shown in Table 7.1. All of them were stuck-at fault. Data

1, 2, 3, 4 and 5 were periodic faults ; Data 6, 7 and 8 were permanent

faults. The parameters for data sets, such as component, stuck value,

period and duration were randomly assigned.

The data set was then generated from Stage. For each scenario, data

was recorded for 4000 time steps (about 6.5 minutes). For each time

step, 8 IR sensor values, left/right wheel speed and location X/Y were

recorded to form an input vector, shown in Table 5.1. Their value range

is shown in Table 5.2. A “faulty” label was also included in the input

vector, where ‘1’ indicated that at the current time step, there was a

fault within the system. An input vector was fed to D-DCA and then an

output would be produced at each time step.

There were 5 test data sets, shown in Table 7.2, in which, test data

1 and 4 were randomly selected from training data sets. The parameters

of 3 other test data sets were randomly generated and the data sets were

recorded the same as described above.

To improve the results of ANN and SVM, when training, the data

was modified by deleting duplicate data entries. This was because the

significant number of duplicate data entries would cause the algorithm

to have difficulty to converge in the training phase.

CHAPTER 7. COMPARISON ANALYSIS 91

faulty component stuck at value period
(time
steps)

duration
(time
steps)

training data-1 IR sensor 0 63% 75 48
training data-2 IR sensor 2 27% 778 742
training data-3 IR sensor 4 45% 878 481
training data-4 IR sensor 6 81% 186 181
training data-5 IR sensor 7 38% 841 515

faulty component stuck at value fault starts at (time steps)

training data-6 IR sensor 2 51% 1718
training data-7 IR sensor 6 34% 3951
training data-8 IR sensor 7 32% 2056

Table 7.1: Training data set

faulty component stuck at value period
(time
steps)

duration
(time
steps)

test data-1 IR sensor 4 45% 878 481
test data-2 IR sensor 7 71% 774 149
test data-3 IR sensor 7 93% 229 153

faulty component stuck at value fault starts at (time steps)

test data-4 IR sensor 2 51% 1718
test data-5 IR sensor 7 2% 1519

Table 7.2: Test data set

CHAPTER 7. COMPARISON ANALYSIS 92

7.2.2 ANN results

The Feed Forward ANN used in this study was implemented using Py-

Brain [74]. There were three ANNs constructed with a different number

of hidden layer neurons. All of the ANNs consisted of 3 layers, an input,

a hidden and an output layer. Each ANN had 12 inputs, and 11 outputs

neurons. All the neurons between adjacent layers were fully connected.

The inputs fed into ANN were their raw data recorded from simulation.

The 11 outputs corresponded to the components which were IR sensor

0-7, left and right wheels and location.

There was no guidelines for how many one should use. The author [47]

has discussed how the number of hidden units affects the bias/variance

trade-off. It might depend on such as, the number of training cases,

the architecture, regularization, etc. and it was also suggested that one

should just try many configurations. During the initial experiments,

the author here has tried various settings of hidden neurons as ranged

between 2 and 100. The findings from those experiments suggest that the

more hidden neurons would not benefit on the training convergence rate

and ANN’s accuracy. In general, it is suggested the number of hidden

neurons would not need to exceed twice of the input neurons. Therefore,

although no comprehensive tests will be performed on ANN’s parameters,

a few settings were chosen to be {5, 18, 24}.

The ANNs were then trained and optimized with the training data

sets, shown in Table 7.1, using back-propagation. Each ANN was trained

until convergence. To avoid trapping in local maxima, if a best was found,

then the ANN would try 5 (this was set) more training epochs1 before

giving up. The ANN was trained using paired input data and actual fault.

The input data was the same as input vector for D-DCA (shown in Table

1An epoch is a training run with all training data.

CHAPTER 7. COMPARISON ANALYSIS 93

Number
of hid-
den
nodes

test data-1 test data-2 test data-3 test data-4 test data-5

(0.43,0.02) (0.54,0.01) (0.0,0.04) (0.87,0.0) (0.0,0.06)

18

(0.42,0.02) (0.59,0.01) (0.0,0.04) (0.87,0.0) (0.0,0.06)
(0.44,0.06) (1.0,0.02) (0.52,0.04) (0.88,0.01) (0.0,0.06)
(0.43,0.06) (1.0,0.02) (0.52,0.04) (0.87,0.01) (0.0,0.06)
(0.43,0.02) (0.55,0.02) (0.0,0.04) (0.87,0.0) (0.0,0.06)

5

(0.42,0.02) (0.53,0.02) (0.0,0.04) (0.85,0.0) (0.0,0.06)
(0.42,0.02) (0.57,0.01) (0.0,0.04) (0.84,0.0) (0.0,0.06)
(0.4,0.06) (1.0,0.01) (0.54,0.04) (0.85,0.02) (0.0,0.06)
(0.43,0.06) (1.0,0.02) (0.54,0.04) (0.86,0.02) (0.0,0.06)
(0.43,0.02) (0.6,0.02) (0.0,0.04) (0.85,0.0) (0.0,0.06)
(0.43,0.02) (0.64,0.02) (0.0,0.04) (0.87,0.0) (0.0,0.06)

24

(0.4,0.02) (0.47,0.01) (0.0,0.03) (0.88,0.0) (0.0,0.06)
(0.46,0.06) (1.0,0.02) (0.52,0.04) (0.9,0.01) (0.0,0.06)
(0.4,0.06) (1.0,0.01) (0.53,0.04) (0.87,0.01) (0.0,0.06)
(0.41,0.02) (0.48,0.01) (0.0,0.03) (0.89,0.0) (0.0,0.06)

Table 7.3: ANN results

5.1) and actual fault was a vector, similar to the output vector of D-DCA

shown in Table 5.3, in which, 11 components corresponded to each output

neuron. The output from ANN was a vector of 11 components, which

were decimal numbers ranged between [0, 1].

Once the ANNs were trained, they were then applied to test data sets

and the results were in the form of True Positive Rate (TPR) and False

Positive Rate (FPR), shown in Table 7.3, in which, the highlighted were

selected as the best performances to compare in a later section. To be

consistent, the test data was not modified. For a data set, there were 4000

data entries. Each data entry was fed to the ANN and the largest output

of those 11 components was considered as “faulty”, if “Error detection”

indicated there was a fault.

CHAPTER 7. COMPARISON ANALYSIS 94

7.2.3 SVM results

The SVMs used in this study were implemented using PyML [24]. The

SVMs were implemented as multi-class classifiers using one against the

rest winner takes all strategy [42], with Linear, Gaussian and Polynomial

kernels. The parameters used were suggested by the initial experiments

and their effects can be found in Appendix G.

Each SVM was trained and optimized with the training data sets,

shown in Table 7.1. Once the SVM was trained, it then applied to the

test data sets, shown in Table 7.2. The results were in the form of TPR

and FPR, shown in Table 7.4. The highlighted were selected as the best

performances to compare in a later section.

7.2.4 DDCA comparison results

The D-DCA was applied to the test data sets using the parameters shown

in Table 7.5. For each setting, experiments were performed 20 times

and the results are shown in Table 7.6 were the medians of 20 runs.

Its performance on the training data sets can be found in Table 6.15

(highlighted). The best performances of ANN’s and SVM’s are included

in Table 7.6, where the highlighted is the best achieved result for each

data set.

To determine significance on differences, a set of Wilcoxon signed

rank tests were performed. In addition to the 5 test data sets, 20 more

test data sets were generated from simulation, all of which were a mix

of permanent fault and periodic fault for IR sensor 0, 2, 4, 6 and 7. The

SVMs and ANNs were applied to 25 data sets once, as their performances

were consistent without much variation for individual data set previously.

CHAPTER 7. COMPARISON ANALYSIS 95

test data-1 test data-2 test data-3 test data-4 test data-5
Gau-0.1-0.01 (0.46,0.06) (0.0,0.08) (0.0,0.1) (0.31,0.07) (0.0,0.1)
Gau-0.1-0.1 (0.62,0.05) (0.09,0.07) (0.0,0.1) (1.0,0.04) (0.0,0.09)
Gau-0.1-1 (0.73,0.03) (0.0,0.05) (0.0,0.07) (1.0,0.03) (0.0,0.08)
Gau-0.1-10 (1.0,0.01) (0.42,0.02) (0.0,0.07) (1.0,0.01) (0.0,0.07)
Gau-100-0.01 (0.95,0.01) (0.42,0.01) (0.0,0.04) (1.0,0.01) (0.89,0.02)
Gau-100-0.1 (0.78,0.03) (0.0,0.05) (0.0,0.09) (0.88,0.04) (0.0,0.1)
Gau-100-1 (0.52,0.07) (0.15,0.09) (0.0,0.1) (0.89,0.05) (0.0,0.1)
Gau-100-10 (0.93,0.01) (0.4,0.04) (0.0,0.06) (1.0,0.01) (0.0,0.08)
Gau-10-0.01 (0.97,0.01) (0.01,0.01) (0.0,0.05) (1.0,0.02) (0.0,0.07)
Gau-10-0.1 (0.84,0.02) (0.15,0.04) (0.0,0.08) (1.0,0.03) (0.0,0.1)
Gau-10-1 (0.82,0.04) (0.17,0.06) (0.0,0.1) (1.0,0.03) (0.0,0.1)
Gau-10-10 (1.0,0.0) (0.45,0.01) (0.0,0.04) (1.0,0.0) (0.0,0.06)
Gau-1-0.01 (0.6,0.04) (0.0,0.07) (0.0,0.1) (0.56,0.05) (0.0,0.1)
Gau-1-0.1 (0.94,0.01) (0.0,0.03) (0.0,0.08) (1.0,0.02) (0.0,0.08)
Gau-1-1 (0.97,0.01) (0.0,0.03) (0.0,0.07) (1.0,0.02) (0.0,0.09)
Gau-1-10 (1.0,0.0) (0.47,0.01) (0.0,0.04) (1.0,0.0) (0.0,0.07)
linear-0.1 (0.97,0.01) (0.25,0.03) (0.0,0.06) (0.49,0.04) (0.0,0.09)
linear-1 (0.95,0.01) (0.22,0.01) (0.0,0.04) (0.83,0.02) (0.91,0.01)
linear-10 (0.9,0.01) (0.51,0.01) (0.0,0.03) (0.74,0.02) (0.9,0.01)
linear-100 (0.92,0.01) (0.63,0.01) (0.0,0.02) (0.75,0.02) (0.91,0.01)
linear-1000 (0.95,0.01) (0.66,0.01) (0.0,0.02) (0.78,0.02) (0.91,0.01)
pol-0.1-deg-2 (0.98,0.0) (0.41,0.01) (0.0,0.04) (0.88,0.02) (0.89,0.02)
pol-0.1-deg-3 (0.99,0.0) (0.24,0.01) (0.0,0.03) (0.79,0.02) (0.0,0.01)
pol-0.1-deg-4 (1.0,0.0) (0.28,0.01) (0.0,0.02) (0.88,0.01) (0.0,0.01)
pol-0.1-deg-6 (1.0,0.0) (0.32,0.0) (0.0,0.01) (1.0,0.0) (0.0,0.06)
pol-100-deg-2 (0.99,0.0) (0.15,0.0) (0.0,0.02) (0.86,0.01) (0.0,0.0)
pol-100-deg-3 (1.0,0.0) (0.11,0.0) (0.0,0.01) (0.97,0.0) (0.0,0.06)
pol-100-deg-4 (1.0,0.0) (0.2,0.0) (0.0,0.01) (1.0,0.0) (0.0,0.06)
pol-100-deg-6 (1.0,0.0) (0.23,0.01) (0.0,0.01) (1.0,0.0) (0.0,0.06)
pol-10-deg-2 (0.98,0.0) (0.36,0.0) (0.0,0.02) (0.8,0.02) (0.0,0.01)
pol-10-deg-3 (1.0,0.0) (0.27,0.0) (0.0,0.02) (0.88,0.01) (0.0,0.0)
pol-10-deg-4 (1.0,0.0) (0.31,0.0) (0.0,0.01) (0.99,0.0) (0.0,0.06)
pol-10-deg-6 (1.0,0.0) (0.35,0.0) (0.0,0.01) (1.0,0.0) (0.0,0.06)
pol-1-deg-2 (0.97,0.0) (0.29,0.01) (0.0,0.02) (0.77,0.02) (0.0,0.01)
pol-1-deg-3 (0.99,0.0) (0.31,0.0) (0.0,0.02) (0.83,0.01) (0.0,0.01)
pol-1-deg-4 (1.0,0.0) (0.24,0.0) (0.0,0.02) (0.89,0.01) (0.25,0.0)
pol-1-deg-6 (1.0,0.0) (0.28,0.0) (0.0,0.01) (1.0,0.0) (0.0,0.06)

Table 7.4: SVMs results

CHAPTER 7. COMPARISON ANALYSIS 96

Table 7.5: Parameters for DDCA

Parameter Value

Migration threshold 20
Number of DC cells 100

Number of random select cells 200
Max life of cells (With death) (time steps) 100

Quantity T killer threshold 120
Percentage threshold 95%

test data-1 test data-2 test data-3 test data-4 test data-5
DDCA (0.65,0.07) (0.41,0.02) (0.07,0.11) (0.93,0.12) (0.96,0.13)

ANN 18 (0.44,0.06) (1.0,0.02) (0.52,0.04) (0.88,0.01) (0.0,0.06)
ANN 5 (0.43,0.06) (1.0,0.02) (0.54,0.04) (0.86,0.02) (0.0,0.06)
ANN 24 (0.46,0.06) (1.0,0.02) (0.52,0.04) (0.9,0.01) (0.0,0.06)

SVMs test data-1 test data-2 test data-3 test data-4 test data-5
Gaun-100-0.01 (0.95,0.01) (0.42,0.01) (0.0,0.04) (1.0,0.01) (0.89,0.02)
lin-1000 (0.95,0.01) (0.66,0.01) (0.0,0.02) (0.78,0.02) (0.91,0.01)
pol-0.1-deg-2 (0.98,0.0) (0.41,0.01) (0.0,0.04) (0.88,0.02) (0.89,0.02)

Table 7.6: DDCA comparison results

The D-DCA was applied to the data sets 20 times and the median were

chosen to represent the result for each data set. The test hypotheses

which were addressed are shown in Table 7.7. They are whether there was

any difference within the performances of each method against D-DCA’s.

The results of critical values are from Wilcoxon tests with paired each

method’s performance (TPR and FPR) and D-DCA’s, shown in Table

7.8. To illustrate the differences, the performances’ TPR of 25 data sets

with each method are shown as box plots in Figure 7.1, FPR in Figure

7.2 and the Euclidean distances between the performance and the perfect

one (1, 0)2 in Figure 7.3. The 25 test data sets details can be found in

Appendix Table H.1.

2(TPR = 1, FPR = 0)
3A description of distance to (1, 0) as a “goodness” measurement can be found in

Appendix B.

CHAPTER 7. COMPARISON ANALYSIS 97

Table 7.7: Table of null hypotheses for comparison tests

Null hypothesis Description

H7 The D-DCA’s performance is no different from the ANN’s
with 5 hidden neurons for given data sets shown in Table 7.2.

H8 The D-DCA’s performance is no different from the ANN’s
with 5 hidden neurons for given data sets shown in Table 7.2.

H9 The D-DCA’s performance is no different from the ANN’s
with 5 hidden neurons for given data sets shown in Table 7.2.

H10 The D-DCA’s performance is no different from the SVM’s
with Gaussian 0.01 kernel and soft margin 100 for given data
sets shown in Table 7.2.

H11 D-DCA’s performance is no different from the SVM’s with
Linear kernel and soft margin 1000 for given data sets shown
in Table 7.2.

H12 D-DCA’s performance is no different from the SVM’s with
Polynomial degree of 2 kernel and soft margin 0.1 for given
data sets shown in Table 7.2.

DDCA against Critical value
TPR FPR Distance to (1, 0)3

ANN 5 120 24 121
ANN 18 121 25 118
ANN 24 118 26 117
SVM Linear-1000 99 29 99
SVM Polynomial 0.1 deg 2 80 52 91
SVM Gaussian 100-0.01 134 29 134

Table 7.8: DDCA comparison Wilcoxon results

CHAPTER 7. COMPARISON ANALYSIS 98

Figure 7.1: TPR result for Wilcoxon 25 samples test

Figure 7.2: FPR result for Wilcoxon 25 samples test

CHAPTER 7. COMPARISON ANALYSIS 99

Figure 7.3: Distance to (1, 0) (TPR, FPR) result for Wilcoxon 25 samples
test

7.3 Discussion

Data sets

The design of the data sets was randomly chosen and equally fair on all

methods. The reason why only 8 training data sets were used, was to

present a real world problem, where there might not be much informa-

tion available. Although the simulation set up was static, there would

be near infinite possibilities of input combinations. The availability of

information was not guaranteed. One might argue that this is not fair

on any learning method. However, this is why on-line diagnosis is rarely

done. The dynamic environment will require a learning method to be re-

trained. This is too expensive for a resource limited robot. In this study,

ANNs and SVMs were trained with the training data sets and applied to

the test data sets. The test data 1 and 4 were selected from the training

data sets to illustrate their performance on training data sets.

CHAPTER 7. COMPARISON ANALYSIS 100

It was decided that it is best to delete the duplicated data entries,

when training ANN and SVM. From earlier experiments, it was found

that the duplicated data entries would cause those methods to have dif-

ficulty converging, resulting in poor performances on training data sets,

especially for ANNs. However, in removing the duplicate data entries,

only gave significantly better performance for SVM, but not for ANN’s.

This will be explained individually in the next sections.

ANN results

The result, shown in Table 7.3, was that the ANN with different number

of hidden neurons applied to the test data sets. It was in the form of

TPR and FPR. There were 5 ANNs trained for each parameter setting.

Poor results can be found for the test data 1, where only slightly above

40% TPR were achieved for all settings. One of reasons might be that

some of the data used was one to many related. That is one input feature

can be associated with different classes. This would cause ANN to be

confused during training, where it was trying to balance the inputs were

fed and the classes association (whether “faulty” or “not faulty”). Thus,

poor performance was found for the test data 1.

The result also shows that for the same data set and parameter set-

ting, but different tests, there were significant variation (more than 50%)

on performances. This can be found in Table 7.3 for data 2 and 3. This

might suggest that the ANNs were trained to a local maxima point which

was in favour to one particular data set. Caution might be taken for any

future use.

Overall, the result shows that the ANN performed poorly on data

set 2, 3 and 5, and better on the data 1 and 4. However, data 1 and 4

were from the training data sets. This might suggest that ANN was not

CHAPTER 7. COMPARISON ANALYSIS 101

suitable for this work. At least, it should not be used with the data sets

used in this work or in this set up.

SVM results

The result, shown in Table 7.4, was that the SVM with different kernels

applied to the test data sets. It shows that the SVMs performed solidly

on data sets 1 and 4, where perfect classification (1, 0) could be found.

This suggests that SVM is a better choice than ANN for this work, if

there are sufficient training data.

However, for the test data 2, 3 and 5, the SVMs did not perform so

well, with exception for linear kernel on the test data 5. This might be

due to the fact that no sufficient data was trained on relevant sensors.

Overall, the result shows that there is no one kernel or parameter

setting which would fit for all 5 test data sets. However, the best overall

performance is selected from each kernel and will be used in next section

for comparison.

Comparison results

The best performance from each ANN and SVM was selected from the

experiments, to compare with the D-DCA’s median performance of 20

runs, shown in Table 7.6. The highlighted were the best for each data set.

As expected, there was no one method which would dominate the perfor-

mance. However, for the test data set 1 and 4, which were selected from

the training data sets, the result indicates that the SVM outperformed

the others. For the test data set 2, the ANN was the best, although

there were no consistencies within each setting, shown in Table 7.3. For

the test data 5, the D-DCA and SVMs had similar performances, where

the ANNs had failed. For the test data 3, none of the methods could

CHAPTER 7. COMPARISON ANALYSIS 102

be considered performed well. Unfortunately, the result was not be able

to show one method was better than the other. To further compare, a

statistical analysis was used, the Wilcoxon signed rank test.

Table 7.7 lists the hypotheses addressed. They are if there was no

difference from the D-DCA’s performance with the others. The results

from Wilcoxon test are shown in Table 7.8. The single most striking

observation to emerge from the comparison data was that no hypotheses

could be rejected, with regards to TPR, expecting there was a difference

on TPR between SVM polynomial soft margin 0.1 at degree of 2 and

D-DCA with confidence interval of 95%4. The result of TPR also indi-

cates that all hypotheses can be rejected with a confidence interval of

99%5. However, if using the distance to the perfect performance (1, 0) to

measure, no significant differences were found between ANN, SVM and

D-DCA.

To illustrate the differences, 5 sets of box plots were produced, TPR

in Figure 7.1, FPR in Figure 7.2 and the distance to perfect in Figure 7.3.

By focusing on the interquartile range from the box plots in Figure 7.1,

it shows that the D-DCA has the least variation in TPR, but SVM linear

and Gaussian have higher median values. Now, by turning to Figure 7.2,

it is apparent that the SVMs have the least FPR. By using the distance

to perfect performance to measure, shown in Figure 7.3, it indicates that

the SVM linear has the least distance and better performance. Although,

the SVM Gaussian has a lower median value, the interquartile range is

spreading slight larger than SVM linear and D-DCA. In all figures, they

indicate that the D-DCA performed better than the ANNs.

In a short conclusion of the Wilcoxon tests, the evidence from this

4The critical value is less than 89 for confidence interval of 95% from Wilcoxon
critical value table for 25 samples, shown in Appendix Table D.1

5The critical value is less than 68 for confidence interval of 99% from Wilcoxon
critical value table for 25 samples, shown in Appendix Table D.1

CHAPTER 7. COMPARISON ANALYSIS 103

study suggests that there is no significant difference between the per-

formances, as there were no consistent results for all the performance

measurements. However, slight difference can be found in box plots,

where they suggest that the SVM linear is better suited for this work

and the D-DCA is slightly behind.

7.4 Summary

This chapter set out to compare the performances between the ANN, the

SVM and the D-DCA. The data sets used in this study were explained

and the set up and procedure of experiments have been described. A

series of experiments have been conducted and their results have been

presented in this chapter.

The results of the experiments presented in this chapter provide a

comparison between the performances of the ANN, the SVM and the D-

DCA. The evidence from the results suggests that there is no statistically

significant difference between the performances. But, the SVM linear

with soft margin 1000 performed better than the others for the given

data sets6. Its performance is followed by the D-DCA with parameters

setting shown in Table 7.5.

However, the evidence also illustrates the limitation of a learning

method, where its performance is dependent on the training data, for

example ANN. On the contrary, D-DCA requires no training and “learns

on the run”. The results also indicate the robustness of D-DCA’s perfor-

mance, where it has the least variation in TPR of all given data sets.

In conclusion, the results suggest that ANN, SVM and D-DCA gave

approximate the same results.

6The 25 data sets used can be found in Appendix Table H.1.

Chapter 8

Conclusion

Contents

8.1 Summary . 104

8.2 Contribution 105

8.2.1 Challenges 106

8.2.2 A novel algorithm 107

8.2.3 Analysis . 107

8.2.4 A comparison 108

8.3 Future work . 109

8.3.1 Towards a truly immune inspired fault diagnosis109

8.3.2 Applying to real robots and beyond 110

8.1 Summary

This thesis began with the research hypothesis:

“An immune-inspired system can be successfully deployed

in a resource constrained robotic system to diagnose the cause

104

CHAPTER 8. CONCLUSION 105

of faults, in an on-line manner and accurately with reasonable

correct response time.”

In order to answer this hypothesis, the challenges for fault diagno-

sis for robotic systems have been outlined and several plausible methods

have been introduced, such as Artificial Neural Network (ANN) and Sup-

port Vector Machine (SVM) in Chapter 2. The immune system has been

revisited and an immune-inspired solution for fault diagnosis has been

introduced, as the cooperation between the dendritic cells and T cells.

The the original Dendritic Cell Algorithm (the original DCA) within

the field of Artificial Immune System has been introduced, in Chapter 3.

This has led to the development of a novel immune inspired fault diagno-

sis algorithm, named Diagnostic Dendritic Cell Algorithm (D-DCA), has

been presented in Chapter 4, which extends and modifies the dendritic

cell model from the the original DCA. Then, a comparison between two

D-DCA approaches and a sensitivity analysis of the D-DCA’s parameters

have been undertaken, in Chapter 5 and 6. And finally, a comparison

of performances between ANN, SVM and D-DCA has been presented in

Chapter 7.

8.2 Contribution

This thesis proposes a novel immune inspired fault diagnosis algorithm.

This algorithm further extends the abstraction dendritic cell model from

[50] and applied to robot fault diagnosis. This thesis includes the first

application of AIS to robot fault diagnosis, which has since become an

active area of research[84][28][86]. This section will review the main

outcomes of the processes, outlined in Section 1.1 and draw conclusions

based on the hypothesis stated.

CHAPTER 8. CONCLUSION 106

8.2.1 Challenges

Robotic challenges

• The robotics system used for this work is autonomous and real

time, the fault diagnosis process has to be on-line and there is only

limited resource, as in computational power. These have set the

basic requirements for the fault diagnosis system: it has to be a

real time system, in that it has to produce an output within a time

limit; it has to respond quickly and accurately, otherwise it would

not be of much use; it has to consume as little computational power

as possible, such as memory and CPU time.

• The prior knowledge is partial. This implies the fault diagnosis

system has to be able to cope with unseen faults or data

• The robotics environment is dynamic. This implies the fault diag-

nosis system has to be adaptable to changes, such as environment

changes or robot’s internal changes (objective/ task changes).

Fault diagnosis challenges

• Data size and quality. A typical challenge for classification methods

is the size of available data sets and how well they represent the

whole system. Insufficient data will lead to a classification method

that performs undesirably. This was further explored in Chapter

7, where a comparison was presented.

• The distinction between different faults. If faults are not distinc-

tive, but somehow independent, it would cause any diagnosis sys-

tem to be confused, for example, a robot running in a circle as

illustrated in Chapter 2.

CHAPTER 8. CONCLUSION 107

8.2.2 A novel algorithm

An immune inspired algorithm, named the Diagnostic Dendritic Cell Al-

gorithm (D-DCA), was presented in Chapter 4. The D-DCA was de-

signed for a resource limited robotic system to diagnose faults in real

time. By applying the conceptual framework while developing the D-

DCA, several “meta-questions” were asked, addressing diversity, inter-

action and scale. A number of key characteristics have been identified,

such as tolerance to noise, multiple faults diagnosis, robustness and effi-

ciency.

However, D-DCA is not a classification algorithm. It should never

be used to classify a static data set, although later, classification anal-

ysis method (Receiver Operating Characteristic (ROC)) could be used.

The sequence of data entries will affect the D-DCA result, as D-DCA is

constantly analysing the current states of the system; what is happening

now will have more effect then what has happened in the past. Hence,

the sequence of data entries will affect its result.

8.2.3 Analysis

The following conclusions can be drawn from the feasibility tests. The

results have shown D-DCA can be used as fault diagnosis with reason-

able success. However, it is also suggested that D-DCA can diagnose

incorrectly for certain data sets, where data is labelled as “normal” most

of the time. The results clearly have shown the “with death” is better

than the “No death” approach. This exercise served as a base for future

studies and more importantly, it has shown ROC could be used as a

measuring tool to assess performance.

The following conclusions can be drawn from parameter sensitivity

analysis. The parameters of D-DCA, Migration threshold (MT), Number

CHAPTER 8. CONCLUSION 108

of DC cells (DC), Number of random select cells (NS), Max life of cells

(Life), Quantity T killer threshold (Tk) and Percentage threshold (Per),

are not sensitive to the performance individually. However, the ratio of

DC/NS is slightly more sensitive than the others, but just a little. This

is under the assumption that, all parameters are not in small numbers

(below 50). In Table 6.16, the highlighted parameter is a sensible choice

for these data sets and it was used for a comparison with other methods.

Furthermore, DC and NS define the computational power consump-

tion of the D-DCA, however, they are insignificant to the D-DCA’s per-

formance. This has suggested that the D-DCA can perform well without

the increase of the computational cost. Hence, the D-DCA is suitable for

resource limited robotic systems.

8.2.4 A comparison

The results of the comparison experiments presented in Chapter 7 provide

a comparison between the performances of the ANN, the SVM and the D-

DCA. The evidence from the results suggests that there is no significant

difference between the performances. But, the SVM linear with a soft

margin of 1000 gives better performance than the others for the given

data sets1. Its performance is followed by the D-DCA with parameters

setting shown in Table 7.5.

However, the evidence also illustrates the limitations of an learning

method, where its performance is dependent on the training data, for

example ANN. On the contrary, D-DCA requires no training and “learns”

during operation. The results also indicate the robustness of D-DCA’s

performance, where it has the least variation in TPR of all given data

sets.

1The 25 data sets used can be found in Appendix Table H.1.

CHAPTER 8. CONCLUSION 109

In conclusion, the results suggest that ANN, SVM and D-DCA gave

approximate the same results, but the D-DCA is very efficient in terms

of implementation and requires no training. Hence, it is more suitable

for a real-time system, such as a robotic system.

However, this work is not the ’final word’ for the D-DCA and the

next section outlines future work on both this algorithm, and for its

applications.

8.3 Future work

8.3.1 Towards a truly immune inspired fault diag-

nosis

The D-DCA is currently only inspired by the processes of the dendritic

cells and T cells to achieve diagnosis. Firstly, the diagnosis decision is

metaphorically made by an immune response towards an antigen, where

there are more T killer cells of this antigen. This abstraction is at a very

high level. It excludes the complicated signalling and binding processes,

which ensure the robust functioning of the immune system as a whole.

Secondly, an immune response does not just involve dendritic cells and

T cells. There are many more types of cell, such as antibodies, which

provide a long term immunity, and the activation of B cells that pro-

duce antibodies. The collaboration between different cells ensures the

immune system provides an effective and efficient protection against di-

verse threats to its host. Finally, the design of the Pre-DCA part of

the D-DCA is trying to recreate the apotheosis and necrosis processes.

Again, it has been implemented by using a rule based system. As argued

by [83], the immune system does not work in isolation. Therefore, to

design a truly immune inspired fault diagnosis system, more exploration

CHAPTER 8. CONCLUSION 110

of the natural immune system and abstraction from it to useful artificial

systems has to be taken.

8.3.2 Applying to real robots and beyond

The D-DCA is designed for robotics system. There is one particular

type of robotics systems in mind, named swarm robotics[71], such as the

SYMBRION[19] robots. Here, a swarm consists of hundreds of small

robots, where they have the ability to aggregate into one or many sym-

biotic organisms and collectively interact with the physical world via a

variety of sensors and actuators. One of the grand challenges for SYM-

BRION is “to survive 100 days with 100 robots”, where the robots will

require to charge themselves, adapt to changes in the environment and

tolerate to faults. Such a system proposes many challenges for fault di-

agnosis, such as listed in this thesis. It would be interesting to apply the

D-DCA to such a complex and dynamic system to diagnose fault.

The D-DCA is not just for robotics systems, although it has been

designed for and tested on simulated robotics systems. Its key charac-

teristics, such as low computational consumption and efficiency, might

suggest that it would be suitable for any real time embedded systems[55].

For example, one could design a portable fault diagnosis device, which

can diagnose faults in real time by monitoring a much larger system’s

states, of even to diagnose fault for a part of the system. Such a de-

vice would help engineers to understand the fault, i.e. it could act as an

autonomous diagnosis device. This device could be used, for example,

on a large cruiser ship, where crack on ship body can lead catastrophic

consequences and often difficult to pinpoint the location when the ship is

sailing. The diagnosis devices can be deployed within the ship in various

locations. They act as an early warning system but with low cost. There

CHAPTER 8. CONCLUSION 111

are many possibilities for D-DCA and thus there is a potential for the

D-DCA in a diverse range of applications.

Appendix A

Player Stage

Player/Stage [2] provides Open Source tools that simplify controller de-

velopment, particularly for multiple robot, distributed-robot, and sen-

sor network systems. The Player/Stage project was originated at the

USC(University of Southern California) Robotics Research Lab in 1999

to address an internal need for interfacing and simulation for multi robot

system. It has since been adopted, modified and extended by researchers

around the world. Player/Stage offers a combination of transparency,

flexibility and speed that makes it the most useful robot development en-

vironment available.The Player robot server is probably the most widely

used robot control interface in the world. Its simulation back ends, Stage

and Gazebo, are use.d worldwide.

The project provides the Player robot device server and the Stage

multiple robot simulator, plus supporting tools and libraries. Player pro-

vides a clean and simple interface to the robot’s sensors and actuators.

Control programs (e.g obstacle avoidance) talk to Player, read data from

sensors, and writes commands to actuators. Stage provides a popula-

tion of simulated robots and sensors operating in a two-dimensional bit

mapped environment. The devices are accessed through Player, as if

112

APPENDIX A. PLAYER STAGE 113

they were real hardware. Player and Stage communicate using a stan-

dard network protocol (TCP/IP).

Appendix B

Receiver Operation

Characteristic curve

B.1 Confusion matrix

Confusion matrix is used to measure the performance of a classifier. It

uses the actual result in comparison with the predicted result and works

out the parameters in the confusion matrix, True Positive (TP), False

Positive (FP), False Negative (FN) and True Negative (TN), shown in

Figure B.1.

We begin by considering classification problems using only two classes.

Figure B.1: Confusion matrix[7]

114

APPENDIX B. RECEIVER OPERATION CHARACTERISTIC CURVE115

Formally, each instance is mapped to one element of the set {p′, n′} (posi-

tive and negative classes) as “predicted outcome“. A classification model

(or classifier) is a mapping of instances to one element of the set {p, n}.

Given a classifier and an instance, there are four possible outcomes. If it

maps to “p” and “p′”, then it counts as a TP; if “p” and “n′”, then FN;

if “n” and “p′”, then FP and if “n” and “n′”, then TN. Given a classifier

and a set of instances, a two by two confusion matrix can be constructed

to represent the disposition of the set of instances.[43]

B.2 ROC

A Receiver Operating Characteristic (ROC), or simply ROC curve, is a

graphical plot of statistical measures of performance of a system or binary

classifier. It plots true positive rate (TPR) vs false positive rate (FPR),

where TPR is the fraction of true positives out of the positives and FPR is

the fraction of false positives out of the negatives. For a binary classifier,

ROC analysis provides a tool to visually select possible optimal models,

as its discrimination threshold is varied. It achieves this by plotting

the “benefit (TPR) against the “cost” (FPR). The ROC curve was first

developed by electrical engineers and radar engineers during World War

II for detecting enemy objects in battle fields, also known as the signal

detection theory, and was soon introduced in psychology to account for

perceptual detection of stimuli. ROC analysis since then has been used in

medicine, radiology, and other areas for many decades, and it has been

introduced relatively recently in other areas like machine learning and

data mining.[79] using deterministic

APPENDIX B. RECEIVER OPERATION CHARACTERISTIC CURVE116

B.3 How to interpret ROC

Figure B.2 is an illustration of how a possible optimal model can be se-

lect using ROC cure and how comparison can be made. A ROC space is

defined by FPR and TPR as x and y axes respectively, which depicts rel-

ative trade-offs between true positive (benefits) and false positive (costs).

Each result or one instance of a confusion matrix represents one point in

the ROC space.[79]

The best possible prediction method would yield a point in the upper

left corner or coordinate (0,1) of the ROC space, representing 100% true

positives and no false positives. The (0, 1) point is also called a perfect

classification. A completely random guess would give a point along a

diagonal line (the so-called line of no-discrimination) from the left bottom

to the top right corners. An intuitive example of random guessing is a

decision by flipping coins (head or tail).

The diagonal divides the ROC space. Points above the diagonal rep-

resent good classification results, points below the line poor results. How-

ever, the ROC space is symmetrical along the diagonal line. The output

of a poor predictor could simply be inverted to obtain points above the

line. For example, in Figure B.2, P2 (0.8, 0.2) is at the lower bottom of

the space and it could be considered as the same performance of P1 (02,

08), if its predictive decisions is reversed ({p, n} instead of {n, p}). This

might be a bit confusing, but within this work there is no comparison

between lower and upper ROC space. There is only comparison within

the upper space, such as P1 (0.2, 0.8) and P3 (0.4, 0.6). As P1 has lower

FPR (0.2) and higher TPR (0.8), P1 performs better than P3. In fact,

the distance between point on ROC space and the perfect classification

point (0, 1) measures the performance. The shorter the distance the

better the performance is. In this case, the distance between the perfect

APPENDIX B. RECEIVER OPERATION CHARACTERISTIC CURVE117

Figure B.2: A ROC example, modified from [7]

and P1 is 0.28, whereas distance for P2 is 0.57. Therefore, P1 performs

better than P2. If points are distant to the perfect point as the same,

they performs the same theoretically. However, this might be argued

differently as some would prefer lower FPR vs TPR, and vice versa.

Appendix C

Latin Hypercube and

Sensitivity analysis

The following description of Latin hypercube sampling is cited from [72].

Latin hypercube sampling ensures the full coverage of the range of each

variable is divided into nLHS intervals of equal probability and one value

is selected at random from each interval. The nLHS values thus obtained

for x1 are paired at random and without replacement with the nLHS val-

ues obtained for x2. These nLHSpairs are combined in a random manner

without replacement with the nLHS value of x3 to form nLHS triples.

This process is continued until a set of nLHS nX-tuples is formed. These

nX-tuples are of the form

xk = [xk1, xk2, ..., xknX
], K = 1, ..., nLHS (C.1)

and constitute the Latin hypercube sampling. An illustration is shown

in Figure C.1 between a random and Latin Hypercube sampling.

Desirable features of Latin hypercube sampling[80] include unbiased

estimates for means and distribution functions and dense stratification

across the range of each sampled variable[66]. In particular, uncertainty

118

APPENDIX C. LATIN HYPERCUBE AND SENSITIVITY ANALYSIS119

and sensitivity analysis results obtained with Latin hypercube sampling

have been observed to be quite robust even when relatively small samples

(i.e., 50 - 200) are used[57][58].

APPENDIX C. LATIN HYPERCUBE AND SENSITIVITY ANALYSIS120

Figure C.1: Examples of Latin hypercube and random sampling to gen-
erate a sample of size 10 from variables U and V with U and V uniform
on [0,1][72]

APPENDIX C. LATIN HYPERCUBE AND SENSITIVITY ANALYSIS121

Figure C.2: Test 1-01 Correlation Coefficient

Figure C.3: Test 1-02 Correlation Coefficient

APPENDIX C. LATIN HYPERCUBE AND SENSITIVITY ANALYSIS122

Figure C.4: Test 1-03 Correlation Coefficient

Figure C.5: Test 2-01 Correlation Coefficient

APPENDIX C. LATIN HYPERCUBE AND SENSITIVITY ANALYSIS123

Figure C.6: Test 2-02 Correlation Coefficient

Figure C.7: Test 2-03 Correlation Coefficient

APPENDIX C. LATIN HYPERCUBE AND SENSITIVITY ANALYSIS124

Figure C.8: Test 3-01 Correlation Coefficient

Figure C.9: Test 3-02 Correlation Coefficient

APPENDIX C. LATIN HYPERCUBE AND SENSITIVITY ANALYSIS125

Figure C.10: Test 3-03 Correlation Coefficient

Appendix D

Wilcoxon test

The following description is cited from [20]. The Wilcoxon signed-rank

test is a non-parametric statistical hypothesis test used when comparing

two related samples, matched samples, or repeated measurements on a

single sample to assess whether their population mean ranks differ (i.e.

it’s a paired difference test).

It can be used as an alternative to the paired Student’s t-test when

the population cannot be assumed to be normally distributed or the data

is on the ordinal scale.

The Wilcoxon function was used in this work is implemented using

Python scipy.stats.wilcoxon function [21]. In order to reject a null hy-

pothesis for N samples, the result has to be less than the value shown in

Table D.1. Otherwise, the null hypothesis stands.

126

APPENDIX D. WILCOXON TEST 127

Two Tailed significance levels:
N 0.05 0.02 0.01

6 0 - -
7 2 0 -
8 4 2 0
9 6 3 2
10 8 5 3
11 11 7 5
12 14 10 7
13 17 13 10
14 21 16 13
15 25 20 16
16 30 24 20
17 35 28 23
18 40 33 28
19 46 38 32
20 52 43 38
21 59 49 43
22 66 56 49
23 73 62 55
24 81 69 61
25 89 77 68

Table D.1: Table of critical values for the Wilcoxon test[9]

Appendix E

Wilcoxon signed-rank test

results

128

APPENDIX E. WILCOXON SIGNED-RANK TEST RESULTS 129

Table E.1: Wilcoxon signed-rank test result individual parameter with
performance test 2

H0 data-1 data-2 data-3 data-4
DC 0.0 0.0 0.0 0.0
Tk 0.0 8.0 43.0 18.5
Per 0.0 135.5 29.0 68.5
MT 0.0 1.0 5.0 1.0
NS 0.0 0.0 9.0 1.0
Life 0.0 37.0 60.5 83.0

H0 data-5 data-6 data-7 data-8
DC 0.0 0.0 0.0 0.0
Tk 35.0 43.0 2.0 70.0
Per 64.0 30.5 62.5 0.0
MT 3.0 5.0 0.0 17.0
NS 3.0 9.0 0.0 15.0
Life 117.0 60.0 129.5 1.0

Appendix F

Parameter evaluation results

130

APPENDIX F. PARAMETER EVALUATION RESULTS 131

data-1 data-2 data-3 data-4
10 (0.001,0.0036) (0.0307,0.0034) (0.0215,0.0017) (0.0115,0.0047)
50 (0.0049,0.0034) (0.0048,0.0021) (0.0078,0.0012) (0.014,0.0051)
100 (0.005,0.0017) (0.0051,0.0014) (0.0068,0.0012) (0.0136,0.0058)
500 (0.004,0.0023) (0.0051,0.0018) (0.0034,0.0016) (0.0159,0.0101)
1000 (0.0038,0.0025) (0.0152,0.0053) (0.0079,0.0017) (0.007,0.0051)

data-5 data-6 data-7 data-8
10 (0.0147,0.0037) (0.0352,0.003) (0.0,0.0) (0.028,0.0052)
50 (0.0039,0.001) (0.0038,0.0011) (0.0,0.0001) (0.0107,0.0008)
100 (0.0028,0.001) (0.0026,0.0008) (0.0611,0.0003) (0.0032,0.0003)
500 (0.006,0.0013) (0.001,0.0013) (0.0668,0.0013) (0.0011,0.0013)
1000 (0.0213,0.0029) (0.0221,0.0023) (0.0188,0.003) (0.0557,0.0214)

Table F.1: Parameters performance standard deviation verification

DC/NS data-1 data-2 data-3 data-4
10/10 (0.0043,0.0025) (0.015,0.0036) (0.0215,0.0021) (0.0079,0.0036)
50/50 (0.0046,0.0035) (0.0053,0.0013) (0.0064,0.0012) (0.01,0.0064)

100/100 (0.0052,0.0027) (0.0049,0.0011) (0.0054,0.001) (0.0131,0.008)
500/500 (0.0041,0.0011) (0.0036,0.0013) (0.004,0.0007) (0.007,0.005)

1000/1000 (0.0041,0.0026) (0.0028,0.0008) (0.0032,0.0007) (0.0034,0.0028)

DC/NS data-5 data-6 data-7 data-8
10/10 (0.0202,0.0039) (0.0305,0.0021) (0.0125,0.0001) (0.0493,0.0082)
50/50 (0.0072,0.0011) (0.0027,0.0011) (0.0576,0.0002) (0.0053,0.0009)

100/100 (0.0052,0.0011) (0.0022,0.0008) (0.0559,0.0002) (0.0024,0.0004)
500/500 (0.0035,0.0006) (0.0017,0.0009) (0.0765,0.0003) (0.0011,0.0004)

1000/1000 (0.003,0.0008) (0.0013,0.0008) (0.0982,0.0003) (0.0022,0.0006)

Table F.2: Parameters performance standard deviation verification 1:1

DC/NS data-1 data-2 data-3 data-4
10/20 (0.0039,0.0026) (0.0176,0.0029) (0.0261,0.0017) (0.0149,0.0041)
50/100 (0.0051,0.0026) (0.0033,0.0012) (0.007,0.0011) (0.0179,0.0065)
100/200 (0.0033,0.0024) (0.0038,0.001) (0.0045,0.0013) (0.0117,0.007)
500/1000 (0.0065,0.0023) (0.005,0.0009) (0.0043,0.0011) (0.0078,0.0044)
1000/2000 (0.0047,0.0012) (0.0052,0.0007) (0.0047,0.0007) (0.0088,0.0051)

DC/NS data-5 data-6 data-7 data-8
10/20 (0.0302,0.0039) (0.0126,0.0017) (0.0573,0.0002) (0.0327,0.0093)
50/100 (0.004,0.0013) (0.0012,0.0008) (0.0801,0.0003) (0.0049,0.0009)
100/200 (0.0059,0.0008) (0.0017,0.0008) (0.064,0.0003) (0.0016,0.0006)
500/1000 (0.0034,0.001) (0.0018,0.0007) (0.1391,0.0007) (0.0022,0.0005)
1000/2000 (0.0034,0.0008) (0.0012,0.0007) (0.1049,0.0004) (0.0024,0.0007)

Table F.3: Parameters performance standard deviation verification 1:2

Appendix G

Support vector machine and

its kernels

132

APPENDIX G. SUPPORT VECTORMACHINE AND ITS KERNELS133

Figure G.1: The effect of the soft-margin constant, C, on the decision
boundary. A smaller value of C (right) allows to ignore points close to
the boundary, and increases the margin. The decision boundary between
negative examples (red circles) and positive examples (blue crosses) is
shown as a thick line. The lighter lines are on the margin (discriminant
value equal to -1 or +1). The grayscale level represents the value of
the discriminant function, dark for low values and a light shade for high
values.[25]

Figure G.2: The effect of the degree of a polynomial kernel. Higher
degree polynomial kernels allow a more flexible decision boundary.[25]

APPENDIX G. SUPPORT VECTORMACHINE AND ITS KERNELS134

Figure G.3: The effect of the inverse-width parameter of the Gaussian
kernel for a fixed value of the soft-margin constant. For small values
of inverse-width (upper left) the decision boundary is nearly linear. As
increases the flexibility of the decision boundary increases. Large values
of inverse-width lead to over fitting (bottom).[25]

Appendix H

25 data sets used in

comparison

135

APPENDIX H. 25 DATA SETS USED IN COMPARISON 136

faulty component stuck at value period (time steps) duration (time steps)

IR sensor 0 1% 239 127
IR sensor 0 31% 123 3
IR sensor 0 63% 951 202
IR sensor 0 72% 596 399
IR sensor 2 28% 390 255
IR sensor 2 49% 402 75
IR sensor 2 5% 556 391
IR sensor 2 77% 995 820
IR sensor 4 23% 170 49
IR sensor 4 59% 66 37
IR sensor 4 94% 318 233
IR sensor 4 45% 878 481
IR sensor 6 35% 952 510
IR sensor 6 78% 754 375
IR sensor 6 91% 521 159
IR sensor 6 9% 288 179
IR sensor 7 46% 931 481
IR sensor 7 66% 681 515
IR sensor 7 71% 774 169
IR sensor 7 93% 229 153

faulty component stuck at value fault starts at (time steps)

IR sensor 0 4% 2598
IR sensor 2 51% 1718
IR sensor 4 48% 1130
IR sensor 6 77% 3438
IR sensor 7 2% 1519

Table H.1: 25 Test data sets used in comparison

Appendix I

K-nearest neighbour results

#This i s r e s u l t f o r KNN c l a s s i f y from . . / KNN data / .

#∗∗∗∗∗∗∗∗∗ f type−2−sen−6−val−81−per−186−dur−181−SVMdata

#Confusion Matrix :

Given l a b e l s :

IRsensor6 non−f a u l t y

IRsensor6 3894 106

non−f a u l t y 0 0

#s u c c e s s r a t e : 0 .973500

#balanced s u c c e s s r a t e : 0 .500000

#area under ROC curve : 0 .506490

#area under ROC 50 curve : 0 .080000

0 .9735

#∗∗∗∗∗∗∗∗∗ f type−2−sen−2−val−27−per−778−dur−742−SVMdata

#Confusion Matrix :

Given l a b e l s :

IRsensor2 non−f a u l t y

IRsensor2 3819 181

non−f a u l t y 0 0

137

APPENDIX I. K-NEAREST NEIGHBOUR RESULTS 138

#s u c c e s s r a t e : 0 .954750

#balanced s u c c e s s r a t e : 0 .500000

#area under ROC curve : 0 .804202

#area under ROC 50 curve : 0 .868649

0.95475

#∗∗∗∗∗∗∗∗∗ f type−1−sen−2−val−51−at−1718−SVMdata

#Confusion Matrix :

Given l a b e l s :

IRsensor2 non−f a u l t y

IRsensor2 2281 1617

non−f a u l t y 0 102

#s u c c e s s r a t e : 0 .595750

#balanced s u c c e s s r a t e : 0 .529668

#area under ROC curve : 0 .808134

#area under ROC 50 curve : 0 .930080

0.59575

#∗∗∗∗∗∗∗∗∗ f type−2−sen−0−val−63−per−75−dur−48−SVMdata

#Confusion Matrix :

Given l a b e l s :

IRsensor0 non−f a u l t y

IRsensor0 1995 974

non−f a u l t y 553 458

#s u c c e s s r a t e : 0 .616332

#balanced s u c c e s s r a t e : 0 .551400

#area under ROC curve : 0 .449801

#area under ROC 50 curve : 0 .980000

0.616331658291

#∗∗∗∗∗∗∗∗∗ f type−2−sen−7−val−38−per−841−dur−515−SVMdata

APPENDIX I. K-NEAREST NEIGHBOUR RESULTS 139

#Confusion Matrix :

Given l a b e l s :

IRsensor7 non−f a u l t y

IRsensor7 2053 825

non−f a u l t y 522 600

#s u c c e s s r a t e : 0 .663250

#balanced s u c c e s s r a t e : 0 .609167

#area under ROC curve : 0 .802827

#area under ROC 50 curve : 0 .964215

0.66325

#∗∗∗∗∗∗∗∗∗ f type−2−sen−4−val−45−per−878−dur−481−SVMdata

#Confusion Matrix :

Given l a b e l s :

IRsensor4 non−f a u l t y

IRsensor4 410 227

non−f a u l t y 1995 1368

#s u c c e s s r a t e : 0 .444500

#balanced s u c c e s s r a t e : 0 .514079

#area under ROC curve : 0 .643768

#area under ROC 50 curve : 0 .804387

0 .4445

#∗∗∗∗∗∗∗∗∗ f type−1−sen−6−val−34−at−3951−SVMdata

#Confusion Matrix :

Given l a b e l s :

IRsensor6 non−f a u l t y

IRsensor6 0 0

non−f a u l t y 48 3952

#s u c c e s s r a t e : 0 .988000

APPENDIX I. K-NEAREST NEIGHBOUR RESULTS 140

#balanced s u c c e s s r a t e : 0 .500000

#area under ROC curve : 0 .999789

#area under ROC 50 curve : 0 .999789

0 .988

Glossary

Player Player[2] provides a network interface to a variety of robot and

sensor hardware. Player’s client/server model allows robot control

programs to be written in any programming language and to run

on any computer with a network connection to the robot. Player

supports multiple concurrent client connections to devices, creat-

ing new possibilities for distributed and collaborative sensing and

control.. 51

Stage Stage[2] simulates a population of mobile robots moving in and

sensing a two-dimensional bitmapped environment. Various sensor

models are provided, including sonar, scanning laser rangefinder,

pan-tilt-zoom camera with color blob detection and odometry.. 50–

52, 70, 90

141

Acronyms

ANN Artificial Neural Network. 4, 5, 9, 11–15, 47, 86, 88–90, 92–94,

97, 99–103, 105, 108, 109

D-DCA Diagnostic Dendritic Cell Algorithm. 22, 27, 28, 30, 31, 34–39,

44–47, 49, 51–53, 55, 60–64, 67, 70–73, 75, 76, 78, 80, 82–86, 88–90,

92–94, 96, 97, 101–103, 105, 107–111

DC Dendritic Cell. 22, 28, 30–35, 37–39, 42, 44–46, 49

DC Number of DC cells. 67–69, 71, 72, 75, 76, 78–86, 107, 108

FPR False Positive Rate. 55, 60–62, 69, 72, 78, 80, 93, 94, 96, 100, 102

Life Max life of cells. 67–69, 71, 72, 76, 78–81, 83, 85, 86, 108

MT Migration threshold. 67–69, 71, 72, 76, 78–83, 85, 86, 107

NS Number of random select cells. 67–69, 71, 72, 75, 76, 78–86, 108

Per Percentage threshold. 67–69, 71, 72, 76, 78–81, 83, 85, 86, 108

ROC Receiver Operating Characteristic. 50, 51, 54, 55, 60, 63, 89, 107

SVM Support Vector Machine. 4, 5, 9, 11, 16, 17, 47, 86, 88–90, 94, 97,

99–103, 105, 108, 109

142

Acronyms 143

the original DCA the original Dendritic Cell Algorithm. 5, 22, 25–28,

30, 31, 34, 36, 40, 67, 105

Tk Quantity T killer threshold. 67–69, 71, 72, 76, 78–81, 83, 85, 86, 108

TPR True Positive Rate. 55, 60–62, 69, 72, 78, 80, 93, 94, 96, 100, 102

Bibliography

[1] http://en.wikipedia.org/wiki/Extrapolation, jan 2010.

[2] http://playerstage.sourceforge.net/, jan 2010.

[3] http://www.nasa.gov/mission_pages/mars-pathfinder/, july

2011.

[4] http://en.wikipedia.org/wiki/Huygens_(spacecraft), july

2011.

[5] http://oceanexplorer.noaa.gov/technology/subs/abe/abe.

html, july 2011.

[6] http://www.whoi.edu/page.do?pid=38095, july 2011.

[7] http://en.wikipedia.org/wiki/File:ROC_space-2.png, july

2011.

[8] http://en.wikipedia.org/wiki/Pearson_coefficient#

Interpretation, jan 2012.

[9] http://www.sussex.ac.uk/Users/grahamh/RM1web/

WilcoxonTable2005.pdf, jan 2012.

[10] http://en.wikipedia.org/wiki/Artificial_neural_network,

jan 2012.

[11] http://en.wikipedia.org/wiki/Artificial_neuron, jan 2012.

144

http://en.wikipedia.org/wiki/Extrapolation
http://playerstage.sourceforge.net/
http://www.nasa.gov/mission_pages/mars-pathfinder/
http://en.wikipedia.org/wiki/Huygens_(spacecraft)
http://oceanexplorer.noaa.gov/technology/subs/abe/abe.html
http://oceanexplorer.noaa.gov/technology/subs/abe/abe.html
http://www.whoi.edu/page.do?pid=38095
http://en.wikipedia.org/wiki/File:ROC_space-2.png
http://en.wikipedia.org/wiki/Pearson_coefficient#Interpretation
http://en.wikipedia.org/wiki/Pearson_coefficient#Interpretation
http://www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf
http://www.sussex.ac.uk/Users/grahamh/RM1web/WilcoxonTable2005.pdf
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neuron

BIBLIOGRAPHY 145

[12] http://en.wikipedia.org/wiki/K-nearest_neighbor_

algorithm, jan 2012.

[13] http://en.wikipedia.org/wiki/Bleb_(cell_biology), jan

2012.

[14] http://www.biooncology.com/research-education/

apoptosis/pathways/intrinsic/, jan 2012.

[15] http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test,

jan 2012.

[16] http://en.wikipedia.org/wiki/Uniform_distribution_

(continuous), jan 2012.

[17] http://docs.scipy.org/doc/numpy/reference/generated/

numpy.corrcoef.html#numpy.corrcoef, jan 2012.

[18] http://en.wikipedia.org/wiki/Support_vector_machine, jan

2012.

[19] http://symbrion.org/, jan 2012.

[20] http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test,

jan 2012.

[21] http://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.wilcoxon.html#scipy.stats.wilcoxon, jan 2012.

[22] J.A. Anderson and E. Rosenfeld. Neurocomputing, volume 1. The

MIT Press, 1993.

[23] A. Avizienis. Toward systematic design of fault-tolerant systems.

Computer, 30(4):51–58, 1997.

[24] A. Ben-Hur. Pyml: machine learning in python, 2010.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Bleb_(cell_biology)
http://www.biooncology.com/research-education/apoptosis/pathways/intrinsic/
http://www.biooncology.com/research-education/apoptosis/pathways/intrinsic/
http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef
http://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef
http://en.wikipedia.org/wiki/Support_vector_machine
http://symbrion.org/
http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html#scipy.stats.wilcoxon
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html#scipy.stats.wilcoxon

BIBLIOGRAPHY 146

[25] A. Ben-Hur and J. Weston. A user’s guide to support vector ma-

chines. Methods in Molecular Biology, 609:223–239, 2010.

[26] A. Bernieri, M. D’apuzzo, L. Sansone, and M. Savastano. A neural

network approach for identification and fault diagnosis on dynamic

systems. Instrumentation and Measurement, IEEE Transactions on,

43(6):867–873, 1994.

[27] H. Bersini. Immune network and adaptive control. Varela and

Bourgine, 2332:217–226, 1994.

[28] R. Bi, J. Timmis, and A. Tyrrell. The diagnostic dendritic cell

algorithm for robotic systems. In Evolutionary Computation (CEC),

2010 IEEE Congress on, pages 1–8. IEEE.

[29] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the fifth annual

workshop on Computational learning theory, pages 144–152. ACM,

1992.

[30] A.P. Bradley. The use of the area under the roc curve in the

evaluation of machine learning algorithms. Pattern Recognition,

30(7):1145–1159, 1997.

[31] D.W. Bradley and A.M. Tyrrell. Immunotronics-novel finite-state-

machine architectures with built-in self-test using self-nonself dif-

ferentiation. Evolutionary Computation, IEEE Transactions on,

6(3):227–238, 2002.

[32] J. Carlson and R.R. Murphy. Reliability analysis of mobile robots.

In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE In-

ternational Conference on, volume 1, pages 274–281. Ieee, 2003.

BIBLIOGRAPHY 147

[33] N.V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue

on learning from imbalanced data sets. ACM SIGKDD Explorations

Newsletter, 6(1):1–6, 2004.

[34] M. Chen, A.X. Zheng, J. Lloyd, M.I. Jordan, and E. Brewer. Fail-

ure diagnosis using decision trees. In Autonomic Computing, 2004.

Proceedings. International Conference on, pages 36–43. IEEE, 2004.

[35] L.H. Chiang, M.E. Kotanchek, and A.K. Kordon. Fault diagnosis

based on fisher discriminant analysis and support vector machines.

Computers & chemical engineering, 28(8):1389–1401, 2004.

[36] D. Coomans and DL Massart. Alternative k-nearest neighbour rules

in supervised pattern recognition:: Part 1. k-nearest neighbour clas-

sification by using alternative voting rules. Analytica Chimica Acta,

136:15–27, 1982.

[37] D. Dasgupta, Z. Ji, and F. Gonzalez. Artificial immune system (ais)

research in the last five years. In Evolutionary Computation, 2003.

CEC’03. The 2003 Congress on, volume 1, pages 123–130. IEEE,

2003.

[38] L.N. De Castro and J. Timmis. Artificial immune systems: a new

computational intelligence approach. Springer Verlag, 2002.

[39] L.N. De Castro and F.J. Von Zuben. The clonal selection algorithm

with engineering applications. In Proceedings of GECCO, volume

2000, pages 36–39, 2000.

[40] L.N. de Castro and F.J. Von Zuben. ainet: an artificial immune

network for data analysis. Data Mining: a heuristic approach, 1:231–

259, 2001.

BIBLIOGRAPHY 148

[41] L.N. De Castro and F.J. Von Zuben. Learning and optimization us-

ing the clonal selection principle. Evolutionary Computation, IEEE

Transactions on, 6(3):239–251, 2002.

[42] K.B. Duan and S. Keerthi. Which is the best multiclass svm

method? an empirical study. Multiple Classifier Systems, pages

732–760, 2005.

[43] T. Fawcett. An introduction to roc analysis. Pattern recognition

letters, 27(8):861–874, 2006.

[44] J. Fogarty, R.S. Baker, and S.E. Hudson. Case studies in the use

of roc curve analysis for sensor-based estimates in human computer

interaction. In Proceedings of Graphics Interface 2005, pages 129–

136. Canadian Human-Computer Communications Society, 2005.

[45] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. Self-nonself

discrimination in a computer. In Research in Security and Privacy,

1994. Proceedings., 1994 IEEE Computer Society Symposium on,

pages 202–212. IEEE, 1994.

[46] P.M. Frank. Fault diagnosis in dynamic systems using analytical

and knowledge-based redundancy:: A survey and some new results.

Automatica, 26(3):459–474, 1990.

[47] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and

the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

[48] J. Gertler. Analytical redundancy methods in fault detection and

isolation. In IFAC Symposium Safeprocess, volume 1, pages 9–21,

1991.

BIBLIOGRAPHY 149

[49] F.A. González and D. Dasgupta. Anomaly detection using real-

valued negative selection. Genetic Programming and Evolvable Ma-

chines, 4(4):383–403, 2003.

[50] J. Greensmith. The dendritic cell algorithm. University of Notting-

ham, 2007.

[51] J. Greensmith and U. Aickelin. Dendritic cells for syn scan detec-

tion. In Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 49–56. ACM, 2007.

[52] J. Greensmith, U. Aickelin, and S. Cayzer. Introducing dendritic

cells as a novel immune-inspired algorithm for anomaly detection.

Artificial Immune Systems, pages 153–167, 2005.

[53] J. Greensmith, U. Aickelin, and G. Tedesco. Information fusion for

anomaly detection with the dendritic cell algorithm. Information

Fusion, 11(1):21–34, 2010.

[54] E. Hart and J. Timmis. Application areas of ais: The past, the

present and the future. Applied Soft Computing Journal, 8(1):191–

201, 2008.

[55] S. Heath. Embedded systems design. Newnes, 2003.

[56] R. Hecht-Nielsen. Theory of the backpropagation neural network.

In Neural Networks, 1989. IJCNN., International Joint Conference

on, pages 593–605. IEEE, 1989.

[57] R.L. Iman and J.C. Helton. Comparison of uncertainty and sensi-

tivity analysis techniques for computer models. Technical report,

Sandia National Labs., Albuquerque, NM (USA), 1985.

BIBLIOGRAPHY 150

[58] R.L. Iman and J.C. Helton. The repeatability of uncertainty and

sensitivity analyses for complex probabilistic risk assessments. Risk

Analysis, 11(4):591–606, 1991.

[59] R. Isermann. Fault-diagnosis systems: an introduction from fault

detection to fault tolerance. Springer, 2006.

[60] R. Isermann and P. Balle. Trends in the application of model-based

fault detection and diagnosis of technical processes. Control Engi-

neering Practice, 5(5):709–719, 1997.

[61] JFR Kerr, AH Wyllie, and AR Currie. Apoptosis (cell suicide). Br.

J. cancer, 26:239–257, 1972.

[62] P.K. Lala. Fault tolerant and fault testable hardware design.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1985.

[63] U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault detec-

tion and diagnosis in dynamic systems. In Proceedings of the Na-

tional Conference on Artificial Intelligence, pages 531–537. Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,

2000.

[64] P. Matzinger. The danger model: a renewed sense of self. Science,

296(5566):301, 2002.

[65] W.S. McCulloch and W. Pitts. A logical calculus of the ideas imma-

nent in nervous activity. Bulletin of mathematical biology, 5(4):115–

133, 1943.

[66] M.D. McKay, R.J. Beckman, and WJ Conover. A comparison of

three methods for selecting values of input variables in the analysis

BIBLIOGRAPHY 151

of output from a computer code. Technometrics, pages 239–245,

1979.

[67] K. Murphy, P. Travers, and M. Walport. Janeway’s immunobiology,

volume 7. Garland Science, 2008.

[68] M. Neal. Meta-stable memory in an artificial immune network. Ar-

tificial Immune Systems, pages 168–180, 2003.

[69] R.J. Patton. Robustness in model-based fault diagnosis: the 1995

situation. Annual reviews in control, 21:103–123, 1997.

[70] D.E. Rumelhart, J.L. McClelland, and PDP Rese Diego) Univer-

sity of California (San. Parallel distributed processing. MIT Pr.,

1988.

[71] E. Şahin. Swarm robotics: From sources of inspiration to domains

of application. Swarm Robotics, pages 10–20, 2005.

[72] A. Saltelli, K. Chan, E.M. Scott, et al. Sensitivity analysis, volume

134. Wiley New York, 2000.

[73] B. Samanta and KR Al-Balushi. Artificial neural network based fault

diagnostics of rolling element bearings using time-domain features.

Mechanical Systems and Signal Processing, 17(2):317–328, 2003.

[74] Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder,

Frank Sehnke, Thomas Rückstieß, and Jürgen Schmidhuber. Py-

Brain. Journal of Machine Learning Research, 2010.

[75] A.J. Smola and B. Schölkopf. Learning with kernels. Citeseer, 1998.

[76] S. Stepney, R.E. Smith, J. Timmis, A.M. Tyrrell, M.J. Neal, and

A.N.W. Hone. Conceptual frameworks for artificial immune systems.

International Journal of Unconventional Computing, 1(3):315, 2005.

BIBLIOGRAPHY 152

[77] T. Stibor, J. Timmis, and C. Eckert. A comparative study of real-

valued negative selection to statistical anomaly detection techniques.

Artificial Immune Systems, pages 262–275, 2005.

[78] W. Sun, J. Chen, and J. Li. Decision tree and pca-based fault

diagnosis of rotating machinery. Mechanical Systems and Signal

Processing, 21(3):1300–1317, 2007.

[79] J.A. Swets. Signal detection theory and ROC analysis in psychology

and diagnostics: Collected papers. Lawrence Erlbaum Associates,

Inc, 1996.

[80] B. Tang. Orthogonal array-based latin hypercubes. Journal of the

American Statistical Association, pages 1392–1397, 1993.

[81] D. Taylor and D. Corne. An investigation of the negative selec-

tion algorithm for fault detection in refrigeration systems. Artificial

Immune Systems, pages 34–45, 2003.

[82] J. Timmis. Artificial immune systems: a novel data analysis tech-

nique inspired by the immune network theory. 2000.

[83] J. Timmis. Artificial immune systemstoday and tomorrow. Natural

Computing, 6(1):1–18, 2007.

[84] J. Timmis, P. Andrews, and E. Hart. On artificial immune systems

and swarm intelligence. Swarm Intelligence, pages 1–27, 2010.

[85] J. Timmis, A. Hone, T. Stibor, and E. Clark. Theoretical advances in

artificial immune systems. Theoretical Computer Science, 403(1):11–

32, 2008.

[86] J. Timmis and A. Tyrrell. On homeostasis in collective robotic

systems. Artificial Immune Systems, pages 307–309, 2010.

BIBLIOGRAPHY 153

[87] J. Twycross and U. Aickelin. Libtissue-implementing innate im-

munity. In Evolutionary Computation, 2006. CEC 2006. IEEE

Congress on, pages 499–506. IEEE, 2006.

[88] A.T. Vemuri and M.M. Polycarpou. Neural-network-based robust

fault diagnosis in robotic systems. Neural Networks, IEEE Trans-

actions on, 8(6):1410–1420, 1997.

[89] V. Venkatasubramanian, R. Rengaswamy, and S.N. Kavuri. A re-

view of process fault detection and diagnosis:: Part ii: Qualitative

models and search strategies. Computers & Chemical Engineering,

27(3):313–326, 2003.

[90] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, and K. Yin.

A review of process fault detection and diagnosis:: Part iii: Pro-

cess history based methods. Computers & Chemical Engineering,

27(3):327–346, 2003.

[91] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S.N. Kavuri.

A review of process fault detection and diagnosis:: Part i: Quanti-

tative model-based methods. Computers & Chemical Engineering,

27(3):293–311, 2003.

[92] Z. Wang, Y. Liu, and P.J. Griffin. A combined ann and expert

system tool for transformer fault diagnosis. Power Delivery, IEEE

Transactions on, 13(4):1224–1229, 1998.

[93] A. Watkins, J. Timmis, and L. Boggess. Artificial immune recog-

nition system (airs): An immune-inspired supervised learning algo-

rithm. Genetic Programming and Evolvable Machines, 5(3):291–317,

2004.

BIBLIOGRAPHY 154

[94] M. Witczak. Advances in model-based fault diagnosis with evolu-

tionary algorithms and neural networks. International Journal of

Applied Mathematics and Computer Science, 16(1):85, 2006.

[95] Y. Yang, D. Yu, and J. Cheng. A fault diagnosis approach for roller

bearing based on imf envelope spectrum and svm. Measurement,

40(9-10):943–950, 2007.

[96] S.J. Young. Real time languages: design and development, vol-

ume 21. Ellis Horwood, 1982.

[97] S.F. Yuan and F.L. Chu. Support vector machines-based fault di-

agnosis for turbo-pump rotor. Mechanical Systems and Signal Pro-

cessing, 20(4):939–952, 2006.

[98] Y. Zhang, X. Ding, Y. Liu, and PJ Griffin. An artificial neural

network approach to transformer fault diagnosis. Power Delivery,

IEEE Transactions on, 11(4):1836–1841, 1996.

	Introduction
	Contribution
	Thesis structure

	Fault diagnosis
	Introduction
	Engineering fault diagnosis
	Fault diagnosis methods
	Artificial Neural network
	Support Vector Machine
	K-nearest neighbour

	Summary
	Challenges

	Immune system and AIS
	Introduction
	Immune fault diagnosis
	Artificial Immune System for fault diagnosis
	Conceptual Framework
	Summary

	Diagnostic Dendritic Cell Algorithm
	Introduction
	Biology inspiration
	Dendritic cell
	Apoptosis and Necrosis
	T killer and T reg

	D-DCA
	Investigating D-DCA
	Diversity
	Interaction
	Scale

	Summary

	Feasibility analysis
	Introduction
	Experiments and results
	Discussion
	Summary

	Parameters sensitivity analysis
	Introduction
	Parameters in question
	Experiments and results
	Discussion
	Summary

	Comparison analysis
	Introduction
	Experiments and results
	Data sets
	ANN results
	SVM results
	DDCA comparison results

	Discussion
	Summary

	Conclusion
	Summary
	Contribution
	Challenges
	A novel algorithm
	Analysis
	A comparison

	Future work
	Towards a truly immune inspired fault diagnosis
	Applying to real robots and beyond

	Player Stage
	Receiver Operation Characteristic curve
	Confusion matrix
	ROC
	How to interpret ROC

	Latin Hypercube and Sensitivity analysis
	Wilcoxon test
	Wilcoxon signed-rank test results
	Parameter evaluation results
	Support vector machine and its kernels
	25 data sets used in comparison
	K-nearest neighbour results
	Glossary
	Acronyms

