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Abstract

Positioning techniques have become an essential part of modern engineering, and

the improvement in computing devices brings great potential for more advanced and

complicated algorithms. This thesis first studies the existing radio signal based posi-

tioning techniques and then presents three developed methods in the sense of dealing

with incomplete data. Firstly, on the basis of received signal strength (RSS) location

fingerprinting techniques, the Kriging interpolation methods are applied to generate

complete fingerprint databases of denser reference locations from sparse or incom-

plete data sets, as a solution of reducing the workload and cost of offline data collec-

tion. Secondly, with incomplete knowledge of shadowing correlation, a new approach

of Bayesian inference on RSS based multiple target localisation is proposed taking

advantage of the inverse Wishart conjugate prior. The MCMC method (Metropolis-

within-Gibbs) and the maximum a posterior (MAP) / maximum likelihood (ML)

method are then considered to produce target location estimates. Thirdly, a new

information fusion approach is developed for the time difference of arrival (TDOF)

and frequency difference of arrival (FDOA) based dual-satellite geolocation system,

as a solution to the unknown time and frequency offsets. All proposed methods

are studied and validated through simulations. Result analyses and future work

directions are discussed.
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Chapter 1

Introduction

1.1 Wireless Localisation

Wireless localisation, or wireless positioning, is the techniques that estimate tar-

get locations through deploying wireless devices, measuring and analysing signals.

With the advances in wireless techniques and the decrease in the cost of electronic

products, wireless devices become prevalent and start playing essential roles in both

our everyday life and industry. In the meantime, with the development of wire-

less localisation methods, location-based services become increasingly popular and

influential.

The precision farming, which has been considered as the next generation of

agriculture, requires positioning techniques as fundamental of farming management

systems including field observing, data analysing and decision making [6]. Modern

logistics depends on position systems in cargo sorting and transportation [7]. For

providing better healthcare, hospitals start to using wireless devices to locate and

monitor the patients [8]. In large shopping malls or tourist attractions, positioning

applications can provide basic navigation.

A well known wireless positioning system is the global positioning system (GPS).

It is a satellite-based radio frequency navigation system launched by the U.S. gov-

ernment in 1978, which provide geolocation and time information to a GPS receiver.

It is now the most widely used positioning technique in outdoor environments, and
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1.2. Aims and Achievements

its accuracy meets the requirement of most outdoor applications. There are simi-

lar projects including the global navigation satellite system (GLONASS) launch by

Russian in 1982, Galileo positioning system launched by the European Union in 2011

and BeiDou navigation satellite system (BDS) launched by China in 2000 [9]. How-

ever, the satellite-based positioning systems perform poorly under non-line-of-sight

conditions, such as in dense forests or high building area, and it is not applicable

for in-building environments [10].

Except for satellite-based systems, different localisation methods have been de-

veloped for wireless communication networks. These techniques are developed upon

the wireless measurements, which are usually related to the relative location of the

base station and target. Common wireless measurements include directional mea-

surement, e.g. the angle of arrival (AOA), ranging-related measurement, e.g. the

time of arrival (TOA) and the received signal strength (RSS) [11]. However, these

measurements suffer from the uncertainty of radio propagation, such as shadow

fading and multipath effect, and finally result in reduced positioning accuracy and

integrity.

By taking advantage of statistics, more accurate models can be built from mea-

surements, which can further improve the target location estimate. However, it

typically demands a large number of measurements to produce reliable models, and

moreover, multi-dimension problems would significantly improve the requirements

of measurements. Therefore, it is worth to enhance the existing positioning tech-

niques in the sense of utilising statistical modelling and dealing with incomplete

measurements.

1.2 Aims and Achievements

1.2.1 Aims

Positioning algorithm based on statically models requires a large number of mea-

surements to compute model parameters and further produces accurate estimates.

2



1.2. Aims and Achievements

However, measurements collection can be time-consuming, and parameter estima-

tion can be computationally complex, or even unavailable under specific circum-

stances.

This thesis aims to improve existing positioning techniques in the sense of tack-

ling incomplete data. On the one hand, through analysing and modelling the cor-

relation between the limited measurements, advanced algorithms are proposed to

improve the efficiency or accuracy via utilising the correlation. On the other hand,

for scenarios where there is a lack of information about the measurement models,

innovative approaches can be developed to reduce the adverse effects on estimation.

1.2.2 Achievements

This thesis presents will three main achievements:

1. Two Kriging interpolation algorithms are proposed to improve the efficiency of

the offline data collection of location fingerprinting techniques.

The fingerprinting method involves an offline data collection phase in order to

build a fingerprint database covering the whole area of interest. However, data collec-

tion at refined grid points leads to massive workload. This thesis proposes a solution

that taking measurements only at sparsely distributed grid points and employing

the Kriging methods to generate fingerprints at denser points. The advantage of the

Kriging method is that it exploits the spatial correlation from data and performs

interpolation based on the correlation model. Simulations and real data experiments

are conducted, and the results validate that the proposed approaches significantly

reduce the offline workload while having acceptable localisation accuracy.

2. On the lack of sufficient received signal strength (RSS) measurements, a new

approaches of Bayesian inference on multi-target location is proposed to improve

localisation through taking advantage of shadowing correlation.

For RSS based localisation, taking account of the shadowing correlation could im-

prove the accuracy. However, to obtain normal correlation values requires sufficient

3



1.3. Organisation of Thesis

RSS measurements especially for multi-target problems. With the aim of coping

with the prior knowledge of shadowing correlation contained in a limited number of

measurements, the inverse Wishart distribution is proposed, and a close-form of the

posterior is derived. Afterwards, the Markov chain Monte Carlo (MCMC) is applied

to generate samples from the posterior and further yield the target location estimate

as the sample mean. The maximum a posterior (MAP) / maximum likelihood (ML)

method is considered as an alternative way to estimate target locations. Simulation

results are studied, and several insights are discussed.

3. In time difference of arrival (TDOA) and frequency difference of arrival (FDOA)

based positioning systems, a new closed-form algorithm is developed for handling

unknown linear nuisance parameters in measurement models.

In dual-satellite geolocation systems where two satellites are imperfectly time-

synchronised and frequency-locked, the TDOA and FDOA measurements subject to

unknown time and frequency offsets. Achieving the maximum likelihood (ML) geolo-

cation performance usually requires jointly estimating the target location and extra

variables (i.e., unknown time and frequency offsets as well as possibly existing satel-

lites errors), which is computationally intensive. In the thesis, a novel closed-form

geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements

in a low-complex way to mitigate the unknown linear time and frequency offsets and

then produce a pair of TDOA and FDOA values for target geolocation. From the

pair of values, the final estimate is later found via standard geolocation algorithm.

Simulation results verify that the developed algorithm attains the Cramér-Rao lower

bound (CRLB) and is faster under Gaussian noises and mild conditions.

1.3 Organisation of Thesis

The remaining parts of the thesis are organised as follows: Section II reviews different

types of wireless measurements and some existing positioning algorithms. Section

III introduces the Kriging methods for RSS fingerprint interpolation. Simulations

4



1.3. Organisation of Thesis

results are analysed. Section IV first presents the new proposed Bayesian inference

on multi-target localisation and later discusses the MCMC and MAP/ML methods

as localisation approaches based on experiments results. Section V initially analy-

ses the CRLB of TDOA and FDOA geolocation problems to reveal some insights.

Based on that, the new closed-form algorithm is developed. Simulation results are

studied afterwards. The final section concludes the thesis, and possible future work

directions are depicted at last.
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Chapter 2

Literature Review

Many wireless localisation algorithms have been developed during the past few

decades. The applications have been ubiquitously adopted from military weapons

to civil engineering [12], [13]. This chapter presents a survey of wireless localisation

techniques and categorises them based on system topologies, positioning algorithm

and corresponding measurement.

2.1 System Topologies

The localisation systems can be divided into four topologies depending on which

part needs to be localised between the transmitters and receivers and where the

algorithm is processed [14]:

1. Remote positioning system: The transmitter is the mobile target and

supposes to be localised. Several receivers with known locations measure the

signal of the transmitter. The measurements are then collected and passed to

a master station to perform the localisation.

2. Self-positioning: Several transmitters are located at known positions. The

receiver is capable of measuring the signals of transmitters and computing its

location on board.

3. Indirect remote positioning system: A mobile receiver measures the signal
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2.2. Positioning Algorithms and Signal Measurements

of several transmitters with known locations. However, the measurements need

to be passed to a master station to perform positioning.

4. Indirect self-positioning system: Signal of a mobile transmitter is mea-

sured by several receivers with known locations. However, the measurements

are collected and transferred to the mobile transmitter to perform positioning.

However, the same type of measurement and positioning algorithm can be adopted

by different system topologies.

2.2 Positioning Algorithms and Signal Measure-

ments

2.2.1 Proximity Positioning

The proximity method estimates a target position by recording when the target

comes into the sensing of a base station. The target is estimated to overlap the

fixed receiver which last recorded it. An example of proximity localisation is the

radio-frequency identification (RFID), where a target attached with an RFID tag is

located when recognised by an RFID scanner [15], [16].

An illustration of proximity localisation is given in 2.1.

The proximity positioning has several advantages. First, it can be used with

nearly all types of existing radio infrastructures. Second, in cases such as the RFID,

because targets only have to emit an identification code, they can be designed to

be very low-cost. However, the proximity technique has some disadvantages. First,

localisation precision is quite limited since every target within the proximity area

of a receiver will be estimated at the same location of the receiver. Second, the

target can only be identified when it approximates a receiver. In order to cover the

whole area and maintain the accuracy of localisation, plenty of receivers need to be

deployed.

8



2.2. Positioning Algorithms and Signal Measurements

Figure 2.1: Proximity localisation.

2.2.2 Triangulation and Directional Measurement

Triangulation is a method of determining the target location utilising directional

measurements, such as the angle of arrival (AOA). AOA is a measure of the arriving

direction of signals. Utilising a set of receivers, e.g. an antenna array, time delays

of the arrival signal between receivers can be converted into the AOA measurement

[17], [18]. Figure 2.2 illustrates the triangulation method. As shown, A and B

are the fixed reference receivers. The dash lines indicate the directions of arrival

signal transmitted by an unknown target. Intuitively, the target is estimated at the

intersection of direction lines [19].

The triangulation technique has several advantages. Firstly, the triangulation

can produce highly accurate estimates if the directional measurements are of high

quality. Secondly, the triangulation method improves the positioning accuracy com-

pared to the proximity method because the target can be estimated in all areas

covered by the receiver. The major drawback of triangulation is that directional

measurements are severely affected by the obstacles and multipath propagation.

9



2.2. Positioning Algorithms and Signal Measurements

Angle 1 Angle 2

Figure 2.2: Triangulation.

2.2.3 Trilateration and Ranging Measurement

Trilateration is a method of determining the location of a target utilising distance

information derived from ranging measurements. As shown in Figure 2.3, the pos-

sible target locations form in two dimensions (2D) a circle of which the centre is

the known receiver and the radius equals to the distance between the target and a

known fixed station. At least three receivers and corresponding measurements are

needed to perform localisation. The target location is estimated at the intersection

area of three circles.

The distance between the target and receiver can be estimated from the rang-

ing measurements, such as the time of arrival (TOA), two-way time of arrival and

received signal strength (RSS).

Time of Arrival is the measure of the propagation time of a radio signal trans-

mitted from a transmitter (beacon node) to a receiver (receiver node). The transmit-

ting timestamp is coded and carried in the signal. A receiver compares the receiving

timestamp with the transmitting timestamp to produce the TOA measurement.

Given the signal propagation speed, the distance between the transmitter and re-

ceiver can be estimated [20], [21].

However, the radio signal propagates in the air at a speed of light. Therefore, to

10



2.2. Positioning Algorithms and Signal Measurements

Range 1

Range 2

Range 3

Figure 2.3: Trilateration

obtain accurate distance information, it demands a high-frequency clock and clock

synchronisation between the transmitter and receiver, which is a strict prerequisite

in general.

Two-way Time of Arrival is an alternative way to measure the radio signal

propagation time. First, the original signal is transmitted by a transmitter. Once

observes the signal, the receiver will send a response signal back to the transmitter.

By comparing the transmitting time of the original signal and receiving time of the

response signal at the transmitter, the distance between the transmitter and receiver

can be estimated.

As an alternative, the two-way TOA does not require clock synchronisation be-

tween the transmitter and receiver, but the processing time elapses before the re-

ceiver returns the responding signal will affect the distance estimation. However, if

the processing time is relatively small compared with the signal propagation time,

it can be ignored [22].

Received Signal Strength is a measure of energy strength of the received signal.

It can apply acoustic signal [23]–[27], and radio signal. In free space, energy decay

11



2.2. Positioning Algorithms and Signal Measurements

of a radio signal is defined by Friis free-space propagation model. Therefore, the

received energy strength at the receiver is given by

Pr =
PtGtGrλ

2

(4π)2d2
, (2.1)

where Pt is the transmitted energy strength, Gt and Gr are the gain factors of the

transmitter and receiver, λ is the signal wavelength and d is the distance between

the transmitter and receiver.

In the literature of wireless signal propagation, the logarithm form of energy

decay model is more widely employed. A generic logarithm RSS model can be

found in [28], which is

z = Pt − L0 − 10α log10 d+ ε, (2.2)

where b is the transmitting power in logarithm, l0 is the reference path loss measured

at 1 meter away from the transmitter, α is the path loss exponent and ε represents

the shadowing attenuation and is Gaussian distributed with zero mean and variance

σ2
ε .

Given the locations of transmitters and receivers, a specific propagation model of

RSS can be established via computing the statistics of RSS measurements. Inversely,

with a known path loss model and the locations of receivers, the distance from the

target to Receivers can be derived.

Compared to decent TOA and two-way TOA measurements, RSS measurements

are more accessible in general. However, RSS measurements are severely affected by

environment phenomena such as reflection, diffraction and scattering, which further

causes errors in distance estimation.

2.2.4 Multilateration

Multilateration is similar to the trilateration method. It determines the location of a

target using measurements such as the time difference of arrival (TDOA). First, the

range differences from the target to two known fixed base stations can be calculated
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from TDOA measurements. Obtained the range differences, possible locations of

the target will form a hyperbola between the two fix base stations, which is shown

as the dashed line in Figure 2.4. In order to perform localisation, at least two

TDOA measurements between three base stations are essential. The target location

is estimated at the intersection area of two hyperbolas [22].

Hyperbola 1 Hyperbola 2

Figure 2.4: Multilateration

2.3 RSS Fingerprinting Localisation

The fingerprinting localisation, as the name suggested, estimates a target position

via features matching. The RSS fingerprinting method utilises the RSS measurement

as the location feature. In the paper [29], the proposed “empirical method” for target

localisation is actually the original form of location fingerprinting, despite that it is

claimed to be triangulation in a broad sense.

The primary advantage of the fingerprinting methods is that it exploits exist-

ing radio infrastructures, such as wireless local area networks (WLAN) or cellular

networks. Thus extra deployment costs can be avoided [30]. Moreover, once given

the fingerprints database, the base station locations are not required to perform

localisation.

13
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2.3.1 Fingerprinting Localisation

There are two stages for location fingerprinting methods: offline data collection

phase and positioning phase. In the offline stage, RSS measurements of several base

stations are collected for all predefined points in the area of interest. Later, the area

can be approximately represented by a set of elements, given as [10]

{pi, zi, θi}, i = 1, . . . ,M (2.3)

where pi = [xp,i, yp,i] represents the coordinates of i-th reference points in 2D, zi rep-

resents the composite vector of RSS measurements, , and θi contains other optional

information such as variance [31] or orientation [29].

In the paper [29], three 2.4GHz wireless LAN base stations are deployed in a

typical office environment. A human hold PC visits all reference points to collect

RSS fingerprints. However, as reported in [32], the orientation would affect the

RSS measuring especially when the device is held by a human. One solution to the

orientation problem is to have RSS measured from a different direction and take the

average. Furthermore, the RSS collection can be controlled remotely to mitigate the

human body effects, for example, using a small robot.

Given the fingerprint database, there are different frameworks for estimating

target location in the positioning stage.

2.3.1.1 Deterministic Framework

The deterministic method mainly refers to the k nearest neighbour method. Given

the target RSS measurement, zs = [zs,1, . . . , zs,n]T, similarity between the target

measurement and known fingerprints is calculated adopting a specific metric, e.g.

Euclidean distance (`2 norm) or Manhattan distance (`1 norm), as given by

Euclidean distance: ‖zs − zi‖`2 =

√√√√ n∑
j=1

(zs,j − zi,j)2 (2.4a)
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Manhattan distance: ‖zs − zi‖`1 =
n∑
j=1

|zs,j − zi,j| (2.4b)

where |·| is the absolute value and n is the number of base stations. Other metrics

such as modified p-norm and infinity-norm are considered in [33], [34].

Once found k most similar fingerprints, the target location s = [xs, ys]
T can be

estimated as a linear combination of the fingerprint locations, which is

ŝ =
k∑
i=1

wi · pi (2.5)

where wi is the weights. The weights can be equal or can be calculated as the inverse

of the norm [35].

2.3.1.2 Probabilistic Framework

Given the target measurement zs, the idea of probabilistic framework is to compute

the posterior probability p(zi | zs) for each known fingerprints. According to Bayes’

rule, the conditional probability is given as

p(zi | zs) ∝ p(zs | zi) · p(zi) (2.6)

where p(zs | zi) is the likelihood, and p(zi) is the prior.

In cases where there is a lack of prior information about known fingerprints, the

prior p(zi) can be assumed following the uniform distribution [36]. Consequently,

the similarities between the target measurement and known fingerprints are mainly

determined by the likelihood p(zs | zi). The likelihood can be either computed based

on the actual histogram of RSS samples measured at referencing location [37], or

using a distribution assumption, such as Gaussian distribution [38].

Similarly to the deterministic framework, once find the several fingerprints that

have the highest posterior, the target location can be estimated as a linear combi-

nation of the fingerprint locations as given by (2.5), where the weights are typically

given by the normalised posterior [31].
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2.3.2 Fingerprints Interpolation

The localisation accuracy depends highly on the predefined reference points in the

sense of density. More precisely, it is intuitive that having more reference points

distributed in the area of interest will improve the correctness of the most matching

fingerprint.

However, having denser reference points would significantly increase the workload

of the offline collection and possible maintenance in the future. One solution to

reduce the workload is taking measurements only at part of the reference points, and

later to utilise interpolation method to estimate the RSS at unmeasured reference

points. The idea that using interpolation methods can be found in literature.

In [39], RSS fingerprint at unmeasured location is estimated based on a specific

propagation model including a distance-dependent path loss and environmental at-

tenuation. Corresponding parameters are estimated from limited actual measure-

ments. The location related environmental attenuation is partitioned as reflection

and wall attenuation, and these attenuation can be estimated based on the construc-

tion floor plan. However, the estimation is too simply to characterise the complex

and rapid varying attenuation, and therefore leads to noticeable errors. Similar work

has been repeated in [40].

In [41], high-resolution grid-based fingerprint databases are produced from low-

resolution databases via merging the measurements from two adjacent grids. First,

the original RSS fingerprint database is represented as an RGB colour map. To

refine the resolution, a grid splits into two grids of half size. Then, the RSS of a

half-size grid is adjusted based on the RGB value averaging of original colour and

colour of adjacent grid. Though the interpolation is conducted through RGB colour

“fusion”, it is essentially linear interpolation.

A recent paper [35] investigates spatial interpolation and extrapolation methods

for construction of fingerprint databases, including linear interpolation based on De-

launay triangulation, nearest neighbour (NN) interpolation and k-nearest neighbour

(KNN) with the inverse distance weighting (IDW) to name a couple. In the IDW
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method, RSS estimates are given by a weighted sum of unknown surrounding data

points, where the weight as calculated as the normalised inverse of actual distance

(Euclidean distance).

In [42], an adaptive smoothing method is proposed with regard to the discon-

tinuity of RSS as a result of walls. The complete fingerprint database is produced

using IDW interpolation method.

2.4 Shadowing Attenuation

Compared with the free-space propagation, RSS measurements in practice may fluc-

tuate due to the fast fading and the shadowing attenuation. The former is caused by

the multipath propagation effects, while the latter is considered as results from large

obstacles lying in the propagation path. The multipath effect can be eliminated by

averaging RSS measurements over a short period. However, the propagation envi-

ronment merely changes, and thus the shadowing attenuation at a specific location

remain at the same level fading.

The RSS model represented in logarithm form in given in (??), where the shadow-

ing attenuation ε is typically assumed following a zero-mean Gaussian distribution.

2.4.1 Shadowing Correlation

The shadowing attenuation is main caused by the propagation environment, and thus

the shadowing at two closed locations can be considered correlated. In literature,

there are several models of shadowing correlation.

For convenience, the following notations will be adopted. Assuming there are n

targets, and the location of the i-th target is denoted by si = [xs,i, ys,i]
T(i = 1 . . . n).

There are m base stations, and the location of the j-th base station is denoted by

bj = [xb,j, yb,j]
T(j = 1 . . .m). The distance between the i-th target and j-th base

station is given by di,j =
√

(xs,i − xb,j)2 + (ys,i − yb,j)2. The RSS of the j-th base

station measured by the i-th target is denoted by zi,j.
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2.4.1.1 Auto-correlation

For two closely located static targets in a localisation scenario, RSS of the same base

station will suffer similar shadowing attenuation, because the two propagation path

are close to each other and thus might encounter the same obstacles. Consequently,

the shadowing auto-correlation of two closely located targets is determined by the

distance between targets, as given in [43]:

ρ(zi,j, zk,j) = exp

(
− di,k

dc

)
, (2.7)

where zk,j is the RSS measured by the k-th target, di,k =
√

(xs,i − xs,k)2 + (ys,i − ys,k)2

is the distance between the i-th target and k-th target, and dc is the correla-

tion/decorrelation distance which indicates the maximum distance that shadowing

correlations can be observed.

2.4.1.2 Cross-correlation

According to literature [44], [45], the shadowing cross-correlation can be found when

two base stations are transmitting to a common target. Regardless of distance be-

tween the two base stations, RSS measured by the common target will suffer similar

shadowing attenuation if the directions of signal sources are close to each other.

Therefore, the shadowing cross-correlation is determined by the angle difference of

arrival (ADOA).

For outdoor propagation, there are two models for shadowing cross-correlation

[46]:

• Model “0.8/0.4” by Granziano [47]

ρ(zi,j, zi,l) =


0.8− |θi,jl| /150, if |θi,jl| ≤ 60◦

0.4, if |θi,jl| > 60◦
(2.8)

where zi,l is the RSS of the l-th base station, and |θi,jl| is the ADOA.
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• Model “0.8/0.0” by Sørensen [48]

ρ(zi,j, zi,l) =


0.78− 0.0056 |θi,jl| , if |θi,jl| < 15◦

0.48− 0.0056 |θi,jl| , if 15◦ ≤ |θi,jl| < 60◦

0.0, if |θi,jl| > 60◦

(2.9)

For indoor propagation, some measurement campaigns have been conducted [49],

[50] and the conclusion contradicts the aforementioned models. In [49], transmitters

are placed on different floors. On the one hand, if the transmitters are placed in

the similar positions of adjacent floors, the shadowing correlation varies between

0.64 to 0.95. On the other hand, when the transmitters are placed in the opposite

positions of adjacent floors, the correlation is found between −0.65 to −0.34. In

[50], two transmitters are placed closely on a floor, and a third transmitter is placed

at a far point on the same floor. Measurements are collected along the corridor, and

the cross-correlation is investigated as a function of propagation distance and time

window. The results show that cross-correlation varies between 0.8 to −0.1.

There is currently no well-agreed model for predicting the correlation. However,

two key factors shall be considered in practice [44]:

• If the ADOA is small, the two path profiles share many common elements

and are expected to have high correlation. Hence the cross-correlation should

decrease with increasing ADOA.

• The relative values of the two path lengths. If the ADOA is close to zero, the

cross-correlation is expected to be one when the path lengths are equal. As

one of the path lengths is increased, it incorporates elements which are not

common to the shorter path, so the cross-correlation decreases.

2.4.1.3 The Third Type Correlation

For multiple target localisation, if the shadowing auto-correlation and cross-correlation

are both considered, there will arise the third type of correlation. For example, if
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zi,j is auto-correlated to zk,j, and zi,j is cross-correlated to zi,l, there is obvious cor-

relation between zi,l and zk,j though they are measured from different base station

and targets.

One way to model the third type of correlation refers to Graziosi [51], in which

the correlation is a production of auto-correlation and cross-correlation, i.e.

ρ(zi,l, zk,j) = ρ(zi,j, zk,j) · ρ(zi,j, zi,l), (2.10)

where the first component on the right side is the auto-correlation and the second

is the cross-correlation. The third type of correlation ρ(zi,l, zk,j) can be written in

another form, i.e.

ρ(zi,l, zk,j) = ρ(zi,l, zk,l) · ρ(zk,j, zk,l). (2.11)

Because the auto-correlation is determined only by the distance between targets di,k,

the auto-correlation component in the two equation are equal. However, according

to (2.8) and (2.9), the cross-correlation is determined by the ADOA, which might

have significant differences depending on the location of targets and base station.

For localisation scenarios, one way to adopt Graziosi’s model is to generate the

third type of correlation in a consistent manner, e.g., use the cross-correlation com-

ponent of targets with smaller indices. An alternative explanation is that when the

distance between targets are much smaller than propagation distance, the ADOA

for the targets only have a minor difference and thus the cross-correlation can be

seen as equal.

2.5 Summary

This chapter first categorises the localisation systems topologies depending on which

part needs to be localised and where the algorithm is processed. Afterwards, the

chapter reviews several standard positioning algorithms including proximity posi-

tioning, triangulation, trilateration and multilateration as well as the corresponding
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measurements.

Then, RSS fingerprinting localisation is introduced. The fingerprinting method

involves an offline data collection phase and online localisation phase. Deterministic

framework and probabilistic framework for localisation phase are studied. For the

offline phase, a short survey of RSS fingerprint interpolation is presented.

At last, the RSS shadowing attenuation and three types of shadowing correlation

are reviewed.
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Chapter 3

Indoor RSS Fingerprints

Interpolation Using Kriging

Methods

The ranging based localisation method, such as trilateration and multilateration,

would suffer in outdoor dense building area or typical indoor environments. An

alternative solution is the fingerprinting, which locates a target through feature

matching. More precisely, in the offline preparation phase, a type of location feature

(fingerprints), such as RSS, is measured and collected for all predefined points in

the area. Later in the positioning phase, the target measurement is compared with

all existing location features. The final target location is estimated based on the

comparison/matching result.

The localisation accuracy of fingerprinting method depends essentially on the

density of predefined points. In other words, the more data points are exploited

in the offline phase, the better positioning accuracy would be achieved. However,

the feature collection is time-consuming and laborious. Especially where there are

environmental changes, fingerprints over the area might alter significantly. In that

case, an efficient way of maintaining the fingerprint database is beneficial.

In this chapter, an advanced interpolation method, the Kriging method, is pro-
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posed to improve the efficiency of the offline work. Specifically, the workload of

data collection can be obviously reduced because not all but only a few location

features at sparsely distributed grid points are required, and unmeasured features

can be estimated from surrounding data points. Compared with other standard

interpolation methods, such as the k-nearest neighbours (kNN) and inverse distance

weighted (IDW) method, the Kriging method exploits the spatial correlation of data.

The simulation and real data experiments show that the proposed Kriging methods

improve the fingerprints estimation and further yield better localisation accuracy.

The chapter will be organised as follows: first, geostatistics and Kriging methods

are introduced including necessary theoretical details. Then, simulation results are

shown and discussed. The real data experiments are presented after. A summary

of the chapter is given at last.

3.1 Kriging Interpolation

Natural phenomena, such as ore grades, humidity or smog, are the product of many

interacting physical, chemical or biological processes. Because of the incomplete

understanding of the processes and the complexity of their interaction, there are no

good models that characterise these processes available [52]. By employing statistics

tools, geostatistics offers a way to model the spatial correlation of natural phenomena

and provides adaptations of classical regression techniques to take advantage of this

spatial correlation [53].

A central problem of geostatistics is the reconstruction of the phenomenon through

estimating values at unknown locations based on observations at a limited number

of points. Mathematically this problem can be regarded as spatial interpolation

problem [54]. A formal analogy is provided by the prediction problem in time series:

given values of the past, usually at regular time intervals, the task is to predict the

value of the signal at some time in the future. First, the signal is analysed, typi-

cally by computing and modelling the spectrum, and then a predictor is proposed.

Geostatistics follows a similar approach but in the spatial setting.
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The spatial interpolation method is called the Kriging method, which refers to

a group of least-squared based interpolation methods. It is named after Danie G.

Krige, who developed empirically statistical methods to predict ore grades from

spatially correlated sample data in the gold mines of South Africa [52].

The standard routine of Kriging method consists of spatial model analysis and

data interpolation. Following the routine, the Kriging method will be introduced in

details.

3.1.1 Spatial Model Analysis

3.1.1.1 Covariance function and Variogram

Similar to spectrum and covariance analysis in time series, a spatial model is required

to produce estimations. The idea of modelling the natural phenomena as they are

spatially random is initiated by Matheron in [55].

Given an area of interest G ⊂ R2, the value of a spatial phenomenon at a location

p is regarded as a random variable Z(p). Overall, the phenomenon in the area can

be characterised by a random field, which is a collection of spatial random variables

{Z(p) | p ∈ G}.

Typically, to compute statistics and draw inferences of the random field, multi-

ple observations at each location are required. However, referring to some natural

phenomena, such as ore grades, difficulties arise because at each location there is

only one observation. To overcome this problem, further assumptions are required,

i.e. stationarity.

The stationarity implies that the statistics of the random filed {Z(p) | p ∈ G} are

spatially invariant. For example, second order stationarity implies that the expected

value over random field is constant and the covariance of two random variables Z(pi)

and Z(pj) depends only on the separation distance ‖pi − pj‖, that is

E[p] = µ, (3.1a)

Cov(Z(pi), Z(pj)) = E
[(
Z(pi)− µ

)(
Z(pj)− µ

)]
= C(‖pi − pj‖) = C(h), (3.1b)
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where µ is the constant expected value, C(·) is the spatial covariance function, and

h is called lag (following the manner in time series), which represents the separation

distance ‖pi − pj‖. Thus, under the assumption of the second order stationarity,

a random field can be completed characterised by the constant expected value and

covariance function.

Although the second order stationarity is known as weak-sense stationarity in

time series analysis, it is still a strong requirement in spatial analysis. In geostatis-

tics, a weaker assumption is more widely used, namely intrinsic stationarity [56].

By adopting a new random variable, i.e. δ(pi,pj) = Z(pi)−Z(pj), the intrinsic

stationarity implies that: within a local area g ⊂ G (pi,pj ∈ g), the expected value

of δ(pi,pj) is zero and the variance of δ(pi,pj) depends only on the separation

distance ‖pi − pj‖, i.e.

E[δ(pi,pj)] = 0, (3.2a)

Var(δ(pi,pj)) = E[δ(pi,pj)]
2 = 2γ(‖pi − pj‖) = 2γ(h), (3.2b)

where γ(·) is called variogram, which is an alternative form of spatial correlation

model. Thus, under the intrinsic stationarity, a random field can be completed

characterised by the variogram.

Comparing (3.1b) and (3.2b), the covariance function is a measure of the similar-

ity between random variables, while the variogram is a measure of dissimilarity [57].

Under some conditions, the two functions can have certain quantitative relations,

which will be shown later. Moreover, the intrinsic stationarity is “weaker” than the

second order stationarity in the sense of that the property is restricted in “local

area” rather than over the whole area.

3.1.1.2 Obtain the Variogram

Similarly to the time series analysis, the variogram is obtained through regression

analysis. According to (3.2b), the independent variable for the correlation model

is the lag h, which is determined by the separation distance between two data
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points rather than the actual locations. The dependent variable equals to half of

the variance of δ(pi,pj). Therefore, given a data set {z(p1), z(p2), . . .}, the first

objective is to calculate the sample variances of δ(pi,pj) as a function of lag h.

Specifically, differences between all possible pairs of data points, i.e. δ(pi,pj)

(where i, j = 1, 2, . . .), are calculated at first. After setting lag intervals h, the dif-

ferences are “thrown into bins” according to the their separation distances/lags. For

convenience, the total number of difference values in the bin of a certain lag h is de-

noted by N(h), where the i-th difference value is denoted by δi(h) (i = 1, . . . , N(h)).

Then, the so called empirical variogram (or experimental variogram), which are the

half sample variances of δ(pi,pj), are calculated as

γ̂(h) =
1

2
× 1

N(h)

N(h)∑
i=1

(
δi(h)

)2
, (3.3)

An example of variogram is shown in Figure 3.4.

The next step is to fit in a model as the final variogram function using the classic

regression method, e.g. least square regression [56], [58]. The model is usually chosen

from several possible options, as given below [52]

Spherical Model:

γ(h) =



0 for h = 0

C0 + C
{ 3h

2dc
− 1

2

( h
dc

)3}
for 0 < h ≤ dc

C0 + C for h > dc

(3.4)

Exponential Model:

γ(h) =


0 for h = 0

C0 + C
{

1− exp
(
− 3h

dc

)}
for h > 0

(3.5)
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Gaussian Model:

γ(h) =


0 for h = 0

C0 + C
{

1− exp
(
− 3h2

d2c

)}
for h > 0

(3.6)

Power Model:

γ(h) =


0 for h = 0

C0 + C · ha (0 < a < 2) for h > 0

(3.7)

where C0 represents the nugget component, and dc is the decorrelation range. The

value C0 + C is known as the sill.

According to [57], since there is no explicit criterion, the selection of the best

fitted model can be flexible. Moreover, linear combinations of the above models are

considered licit.

3.1.2 Kriging Interpolation

The Kriging interpolation method refers to a group of least square based methods

[59]. Given a dataset {z(p1), z(p2), . . .}, the Kriging estimates the value at an

unmeasured location p0 as a weighted sum of surrounding data points, i.e.

z̄(p0) =
k∑
i=1

λiz(pi), (3.8)

where k is the number of data points in the local neighbourhood of p0, and λi(i =

1 · · · k) are the Kriging weights. The Kriging weights are derived through minimising

the variance of estimator error

min
λi∈R

Var(z̄(p0)− z(p0)), (3.9)
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under the unbiasedness constraint

E[z̄(p0)− z(p0)] = 0, (3.10)

where z(p0) represent the true value at location p0.

There are three commonly used Kriging methods, namely simple Kriging, ordi-

nary Kriging and universal Kriging. The simple Kriging method adopts an assump-

tion that the expected value of z(p) is a known constant over the whole area, which

is too strong for RSS value interpolation. Therefore the simple Kriging method is

not considered. The ordinary Kriging and universal Kriging are introduced here.

In the following derivation, for conciseness, the variables are abbreviated as

z(pi)⇒ zi, (3.11a)

z̄(p0)⇒ z̄0, (3.11b)

γ(‖pi − pj‖)⇒ γi,j. (3.11c)

3.1.2.1 Ordinary Kriging

In case that the expected value of Z(p) over the whole area is not a constant and is

unknown, the ordinary Kriging introduces a weaker assumption that is equivalent to

the intrinsic stationarity: within the local neighbourhood of p0, the expected value

of Z(p) is unknown but is a constant, denoted by µ(p0), i.e.

E[Z(p)] = µ(p0). (3.12)

Therefore, substituting the Kriging estimate in the unbiasedness constraint (3.10)

with (3.8), it can be further derived as

E[z̄0 − z0] = E
[ k∑
i=1

λizi − z0
]

(3.13a)

=
k∑
i=1

λiE[Zi]− E[z0] (3.13b)
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=
k∑
i=1

λiµ− µ = 0. (3.13c)

As an equivalent unbiasedness constraint, the Kriging weights should be subject to

k∑
i=1

λi = 1. (3.14)

The error variance in (3.9) can be derived as

Var(z̄0 − z0) = E[z̄0 − z0]2 (3.15a)

= E
[ k∑
i=1

λizi − z0
]2

(3.15b)

= E
[ k∑
i=1

λizi −
k∑
i=1

λiz0

]2
(3.15c)

= E
[ k∑
i=1

λi
(
zi − z̄0

)]2
(3.15d)

= E
[ k∑
i=1

k∑
j=1

λiλj
(
zi − z̄0

)(
zj − z̄0

)]
(3.15e)

= E
[ k∑
i=1

k∑
j=1

λiλj

{1

2

(
zi − z̄0

)2
+

1

2

(
zj − z̄0

)2 − 1

2

(
zi − zj

)2}]
(3.15f)

=
k∑
i=1

k∑
j=1

λiλj

{1

2
E
[
zi − z̄0

]2
+

1

2
E
[
zj − z̄0

]2 − 1

2
E
[
zi − zj

]2}
(3.15g)

= 2 ·
k∑
i=1

λi

{
1

2
E
[
zi − z̄0

]2}− k∑
i=1

k∑
j=1

λiλj

{
1

2
E
[
zj − z0

]2}
(3.15h)

= 2 ·
k∑
i=1

λiγi,0 −
k∑
i=1

k∑
j=1

λiλjγi,j, (3.15i)

where from (3.15g) to (3.15h), the equivalent components that have different index-

ing variables are merged under (3.14), i.e.

k∑
i=1

k∑
j=1

λiλj

{1

2
E
[
zi − z̄0

]2
+

1

2
E
[
zj − z̄0

]2}
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=
k∑
j=1

λj

( k∑
i=1

λi

{
1

2
E
[
zi − z̄0

]2})
+

k∑
i=1

λi

( k∑
j=1

λj

{
1

2
E
[
zj − z̄0

]2})
(3.16a)

= 2 ·
k∑
i=1

λi

{
1

2
E
[
zi − z̄0

]2}
, (3.16b)

and from (3.15h) to (3.15i), the half expected values are substituted with the vari-

ogram values according to (3.2b) under the unbiasedness condition (3.10), i.e.

γi,j =
1

2
Var(δ(pi − pj)) (3.17a)

=
1

2
Var(zi − zj) (3.17b)

=
1

2
E[zi − zj]2. (3.17c)

To minimise the variance of Kriging estimate error subject to the constraints

(3.14), the Lagrange multiplier optimisation method is adopted. By introducing a

Lagrange multiplier l, the new objective is given by

min
λi∈R

2 ·
k∑
i=1

λiγi,0 −
k∑
i=1

k∑
j=1

λiλjγi,j + 2l ·
( k∑

i=1

λi − 1

)
, (3.18)

Taking the partial differentials of (3.15i) with respect to each Kriging weights and

the Lagrange multiplier, and then making them equal to zero, there results in a set

of equations, i.e. 

k∑
j=1

λjγ1,j + l = γ1,0

...

k∑
j=1

λjγk,j + l = γk,0

k∑
i=1

λi = 1

. (3.19)
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3.1. Kriging Interpolation

Rewrite the equation set into matrix form, that is



γ1,1 · · · γ1,k 1

...
. . .

...
...

γk,1 · · · γk,k 1

1 · · · 1 0





λ1
...

λk

l


=



γ1,0
...

γk,0

1


. (3.20)

Thus, the optimised Kriging weights are given by



λ1
...

λk

l


=



γ1,1 · · · γ1,k 1

...
. . .

...
...

γk,1 · · · γk,k 1

1 · · · 1 0



−1

γ1,0
...

γk,0

1


. (3.21)

Finally, given the data points in the neighbourhood {z1, . . . , zk} and correspond-

ing variogram function γ(h), the value at location p0 is given by

z̄0 =
k∑
i=1

λizi, (3.22)

Multiply λi to the i-th equation in (3.19) and sum up the first k equations, it

gives

k∑
i=1

λi

( k∑
j=1

λiλjγi,j + l

)
=

k∑
i=1

λiγi,0, (3.23a)

⇒
k∑
i=1

k∑
j=1

λiλjγi,j =
k∑
i=1

λiγi,0 − l. (3.23b)

Therefore, the Kriging variance, which is the minimised estimate error variance in

(3.9), can be further derived from (3.15i) as

Var(z̄0 − z0) = 2 ·
k∑
i=1

λiγi,0 −
k∑
i=1

k∑
j=1

λiλjγi,j (3.24a)
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3.1. Kriging Interpolation

=
k∑
i=1

λiγi,0 + l. (3.24b)

3.1.2.2 Universal Kriging

The universal Kriging can be seen as an enhanced version of ordinary Kriging

method, in the sense of that it applies to more general scenarios where the ex-

pected value of Z(p) can have obvious trends. More precisely, the random variable

Z(p) can be decomposed as

Z(p) = µ(p) +R(p), (3.25)

where µ(p) represents the trend, and R(p) represents the residual which is modelled

as a zero expected value random field variable, i.e.

E[R(p)] = 0. (3.26)

The function of trend can be further modelled as a linear combination of known

functions but with unknown coefficients, i.e.

µ(p) = β1ϕ1(p) + β1ϕ2(p) + · · · , (3.27)

where β1, β2, . . . are the unknown linear coefficients, and ϕ1(p), ϕ2(p), . . . are the

known functions. In the following derivation part, a trend consisting of 2 components

will be taken as example, that is

µ(p) = β1ϕ1(p) + β1ϕ2(p) (3.28a)

=
2∑

τ=1

βτϕτ (p). (3.28b)

Different from the simple Kriging and ordinary Kriging method that are based
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3.1. Kriging Interpolation

on the spatial correlation of the entire value Z(p), the universal Kriging relies on

the spatial correlation of the residual component R(p). In such cases, the variogram

that characterises the random field {R(p) | p ∈ G} should be established on the

residual data set {r(p1), r(p2), . . .} so that it is termed as residual variogram. As

preliminaries, obtaining the residual data set could adopt different approaches in

the context of applications. For convenience, the residual variogram will be denoted

as same as γ(h) and γi,j in the previous section.

Similarly, the universal Kriging estimates the value at an unmeasured location

p0 as a weighted sum of surrounding data points, i.e.

z̄0 =
k∑
i=1

λizi (3.29a)

=
k∑
i=1

λi

( 2∑
τ=1

βτϕτ (pi) + ri

)
, (3.29b)

where ri is the short hand for r(pi). Again, the Kriging weights are optimised

through minimising the estimate error variance under the unbiasedness condition,

as described in (3.8) and (3.10).

Substitute the estimate in the unbiasedness constraint (3.10) with the universal

Kriging estimate (3.29b), it can be derived as

E[z̄0 − z0] = E

[
k∑
i=1

λi

( 2∑
τ=1

βτϕτ (pi) + ri

)
−
( 2∑

τ=1

βτϕτ (p0) + r0

)]
(3.30a)

= E

[
k∑
i=1

λi

k∑
τ=1

βτϕτ (pi)−
2∑

τ=1

βτϕτ (p0)

]
+ E

[
k∑
i=1

λiri − r0

]
(3.30b)

=
2∑

τ=1

βτ

{
E
[ k∑
i=1

λiϕτ (pi)− ϕτ (p0)

]}
(3.30c)

= 0, (3.30d)
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which lead to an equivalent equation set, i.e.



k∑
i=1

λiϕ1(pi)− ϕ1(p0) = 0

k∑
i=1

λiϕ2(pi)− ϕ2(p0) = 0

(3.31)

In order to repeat part of the derivation in ordinary section, select the first function

ϕ1(p) always equals to 1, which gives the similar conclusion as (3.14), i.e.

ϕ1(p) = 1 ⇒
k∑
i=1

λi = 1. (3.32)

Taking advantage of derivations in (3.30) and (3.15), the estimate error variance

can be derived as

Var(z̄0 − z0) = E[z̄0 − z0]2 (3.33a)

= E

[
k∑
τ=1

βτ

( k∑
i=1

λiϕτ (pi)− ϕτ (p0)

)
+

( k∑
i=1

λiri − r0
)]2

(3.33b)

= E

[
k∑
i=1

λiri − r0

]2
(3.33c)

= 2 ·
k∑
i=1

λi

{
1

2
E
[
ri − r̄0

]2}− k∑
i=1

k∑
j=1

λiλj

{
1

2
E
[
rj − r0

]2}
(3.33d)

= 2 ·
k∑
i=1

λiγi,0 −
k∑
i=1

k∑
j=1

λiλjγi,j, (3.33e)

where from (3.33b) to (3.33c), the first term in the expected value is eliminated

according to the equation set (3.31).

Again, using the Lagrange multiplier optimisation, the task now is given by

min
λi∈R

2 ·
k∑
i=1

λiγi,0 −
k∑
i=1

k∑
j=1

λiλjγi,j + 2 ·
2∑

τ=1

lτ

( k∑
i=1

λiϕτ (pi)− ϕτ (p0)

)
, (3.34)

where lτ is the introduced Lagrange multiplier. Taking the partial differentials with

respect to each Kriging weights and Lagrange multipliers, and then making them
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3.1. Kriging Interpolation

equals to zero, there results in a set of equations, i.e



k∑
j=1

λjγk,j +
2∑

τ=1

lτϕτ (p1) = γi,0

...

k∑
j=1

λjγk,j +
2∑

τ=1

lτϕτ (pk) = γk,0

k∑
i=1

λiϕ1(pi)− ϕ1(p0) = 0

k∑
i=1

λiϕ2(pi)− ϕ2(p0) = 0

(3.35)

Rewrite (3.35) in matrix form, that is



γ1,1 · · · γ1,k ϕ1(p1) ϕ2(p1)

...
. . .

...
...

...

γk,1 · · · γk,k ϕ1(pk) ϕ2(pk)

ϕ1(p1) · · · ϕ1(pk) 0 0

ϕ2(pk) · · · ϕ2(pk) 0 0





λ1
...

λk

l1

l2


=



γ1,0
...

γk,0

ϕ1(p0)

ϕ2(p0)


(3.36)

Therefore, the optimised Kriging weights can be given by



λ1
...

λk

l1

l2


=



γ1,1 · · · γ1,k ϕ1(p1) ϕ2(p1)

...
. . .

...
...

...

γk,1 · · · γk,k ϕ1(pk) ϕ2(pk)

ϕ1(p1) · · · ϕ1(pk) 0 0

ϕ2(pk) · · · ϕ2(pk) 0 0



−1

γ1,0
...

γk,0

ϕ1(p0)

ϕ2(p0)


(3.37)

Multiply lτ to the τ -th equation in (3.31) and sum together, it gives

2∑
τ=1

lτ

( k∑
i=1

λiϕτ (pi)− ϕτ (p0)

)
= 0 (3.38a)

⇒
2∑

τ=1

lτ

( k∑
i=1

λiϕτ (pi)

)
=

2∑
τ=1

lτϕτ (p0) (3.38b)
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⇒
k∑
i=1

λi

( 2∑
τ=1

lτϕτ (pi)

)
=

2∑
τ=1

lτϕτ (p0) (3.38c)

where from (3.38b) to (3.38c) there is legit swap of the summation order on the left

sides of equations. Further, multiply λi to the i-th equation in (3.35) and sum them

together, it gives

k∑
i=1

λi

( k∑
j=1

λjγi,j +
2∑

τ=1

lτϕτ (pi)

)
=

k∑
i=1

λiγi,0 (3.39a)

⇒
k∑
i=1

k∑
j=1

λiλjγi,j =
k∑
i=1

λiγi,0 −
k∑
i=1

λi

( 2∑
τ1

lτϕτ (pi)

)
(3.39b)

⇒
k∑
i=1

k∑
j=1

λiλjγi,j =
k∑
i=1

λiγi,0 −
2∑

τ=1

lτϕτ (p0) (3.39c)

Therefore, continuing the derivation of (3.33e), the universal Kriging estimate

error variance is given by

Var(z̄0 − z0) = 2 ·
k∑
i=1

λiγi,0 −
k∑
i=1

k∑
j=1

λiλjγi,j (3.40a)

=
k∑
i=1

λiγi,0 +
2∑

τ=1

lτϕτ (p0) (3.40b)

3.1.3 Advantages of Kriging Method

There are some noticeable advantages of the geostatistics tools:

• Comparing to other interpolation methods, e.g. linear interpolation and k-

nearest neighbours, the Kriging methods take advantage of the correlation

between data based on statistical analysis.

• The Kriging estimate is a best linear unbiased estimate.

• As consequences of utilising the spatial correlation, the Kriging method could

compensate for the negative effects of data clustering. More precisely, data

points from a compact cluster will be treated like a single data point because
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the information provided from the cluster is redundant. Mathematically, data

points from a cluster will be assign smaller weights that a signal point.

• The Kriging methods provide a statistic of estimate error, i.e. Kriging variance,

which is helpful in evaluations such as the confidence interval.

3.2 Kriging of RSS Fingerprints

The RSS can be modelled as

z(p) = f(p) + υ(p) (in dB), (3.41)

where f(p) is the true value of RSS and is given by

f(p) = Pt − L− 10α log10 d(p), (3.42)

and Pt is the transmitting power, L is the measured path loss at 1 meter away from

the base station, d(p) is the distance from the target to the base station, and υ(p)

represents the shadowing effect which is assumed a zero-mean Gaussian distributed.

As described in the previous chapter, the shadowing effect is the consequence of

the obstacles lying in the signal propagation path. By fixing the base station, the

shadowing effects can be considered as related to the target location and therefore

has spatial correlations. In such a sense, the interpolation methods can be considered

here to estimate the signal strength at an unmeasured location.

However, the geostatistics tool has some disadvantages when applying to radio

RSS estimation:

• Spatial Model: For the variogram established on the complete form z(p), it

is obvious that the expected value of the difference between two RSS could be

non-zero, i.e.

E[z(pi)− z(pj)] = −10α log10 d(pi) + 10α log10 d(pj) (3.43a)
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6= 0, for d(pi) 6= d(pj) (3.43b)

Furthermore, the variance of the difference between the two RSS depends not

only on the separation distance, i.e.

Var(z(pi)− z(pj)) 6= 2γ(‖pi − pj‖). (3.44)

Therefore, assuming the intrinsic stationarity as described in (3.2) for the RSS

brings noticeable compromise.

For the residual variogram established on the shadowing component υ(p), the

intrinsic stationarity can be adopted when considers the shadowing autocorre-

lation taking the form of Gudmundson’s model [43]. However, the shadowing

components need to be extracted from the complete data, which requires pre-

processing such as model regression and analysis of the data. Consequently,

the quality of the residual variogram would highly depend on the preprocessing

results.

• Kriging Method: For the ordinary Kriging method, the expected value of

RSS has obvious trend, i.e.

E[z(p)] = f(p) = Pt − L− 10α log10 d(p). (3.45)

Thus, assuming the expected value of RSS is invariant in the local neighbour-

hood is another important compromise.

3.2.1 Ordinary Kriging

Given a data set {z(p) | p ∈ G}, the steps of applying ordinary Kriging method to

estimate unmeasured RSS fingerprints are given below:

1. Given a data set {z(p) | p ∈ G}, assign all possible pairs of data points into

bins according to the lag h. The range and intervals of lag can be selected
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depending on the practice. Compute the empirical variogram as given in (3.3).

2. Take all models from (3.4) to (3.7), fit the models using the lease square

regression method. Select the “best fitted” one as the final variogram model.

3. For an unmeasured location p0, select data points in the neighbourhood, i.e.

{zpi
| ‖pi − p0‖ ≤ dc}, where dc is the decorrelation range and is obtained

found from the fitted variogram model.

4. Calculate the Kriging weights according to (3.21).

5. The Kriging estimate is given by (3.8), and the Kriging variance is given by

(3.24b).

Once the variogram has been established, the steps 3, 4 and 5 shall be repeated for

all unmeasured locations.

3.2.2 Universal Kriging

Given a data set {z(p) | p ∈ G}, the preprocessing step and steps of universal

Kriging method to estimate unmeasured RSS fingerprints are given below:

1. Given a data set {z(p) | p ∈ G}, using least squares method to fit the model

given in (3.42).

2. Adopt the fitted model in the previous step to extract the shadowing noise

data set {υ(p) |∈ G}.

3. Assign all possible pairs of data points into bins according to specific range

and intervals of lag lag. Compute the empirical variogram of the shadowing

noise as given in (3.3).

4. Take all models from (3.4) to (3.7), fit the models using the lease square

regression method. Select the “best fitted” one as the final residual variogram

model.
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5. Assuming the trend function as follows

f1(p) = 1, (3.46a)

f2(p) = log10 d(p). (3.46b)

6. For an unmeasured location p0, select shadowing noise of the data points in

the neighbourhood, i.e. {υpi
| ‖pi − p0‖ ≤ dc}, where dc is the decorrelation

range and can be found from the fitted residual variogram model.

7. Calculate the Kriging weights according to (3.37).

8. The Kriging estimate is given by (3.8), and the Kriging variance is given by

(3.40b).

The steps 6, 7 and 8 shall be repeated for all unmeasured locations.

3.3 Performance Validation and Evaluation

To validate the proposed approaches, both simulation and real-data experiment have

been conducted. In simulations, RSS measurements including shadowing noise are

generated and then compose a grid-based fingerprint database. Afterwards, some

fingerprints are removed. The sampled (retained) fingerprints are used to estimate

the missing entries through the IDW method, ordinary Kriging and universal Krig-

ing methods. Interpolation and localisation results are studied against different

sampling density. In the real-data experiment, the RSS measurements are collected

in the room D10 of Amy Johnson building, University of Sheffield. Following the

similar manner, some RSS fingerprints are removed and then estimated based on

the sampled entries. Only interpolation result analysis is presented

3.3.1 Simulation Results

Figure 3.1 depicts the basic setup for simulation, there are 5 base stations deployed

in a 25m × 25m area. The area is divided into 50 × 50 grids where each grid is of
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Figure 3.1: Aggregated RSS map for all base stations. The blue asterisks represent
the base stations.

size 0.5m × 0.5m. For each grid, the fingerprints consist of 5 RSS measurements

from different base stations.

An RSS measurement consists of a noise-free value generated according to the

model (3.41), and the shadowing noise, where the shadowing effects are considered

only auto-correlated (2.7) and are generated from a zero-mean multivariate Gaussian

distribution. RSS measurements at all grid points is simulated and comprise a RSS

(a) 25 density% (625 reference points).
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(b) 4% density (100 reference points).

Figure 3.2: Maps of fingerprint set with different density of reference points.

fingerprint database, where the i-th entry is given by

{pi, zi}, i = 1, 2, ... (3.47)

where pi = [xp,i, yp,i]
T is the location of grid centre, zi = [zi,1, ..., zi,5]

T is the RSS

measurement including the shadowing noises.

The objective here is to study interpolation and localisation performances with

respect to the density of known data points. Thus, from the complete fingerprint

(a) 25% density.
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t!

(b) 4% density.

Figure 3.3: Ordinary Kriging variogram modelling for base station 1.

database, the “known” referencing set of entries are sampled following a uniform

manner, while the rest are given as the “unknown” comparing set. As shown in

Figure 3.2, four referencing sets with different densities are generated, which includes

625, 289, 169 and 100 reference points respectively.

Given a referencing set, the fingerprints of unknown/unmeasured locations are

estimated/interpolated using the inverse distance weighting, OK and universal Krig-

ing methods.

For the Kriging methods, spatial correlation modelling, which is the variogram

(a) 25% density.
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(b) 4% density.

Figure 3.4: Universal Kriging residual variogram modelling for base station 1.

modelling, is decisive to the interpolation quality. Figure 3.3 illustrates the vari-

ogram analysis for ordinary Kriging and Figure 3.4 demonstrates for the universal

Kriging.

In each figure, the horizontal axis is the lag between two known data points,

each black dot represents the half square of difference between a pair of data points,

1
2
δ2(h); the red diamonds represent the empirical variogram values, which are the

mean values of black dots; the solid blue line is the fitted exponential model (3.5).

Though most of the black dots are concentrated around the corresponding mean

(a) 25% density.
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(b) 4% density.

Figure 3.5: IDW recovered map in simulation.

values (red diamonds), there are still data points that have significant deviations.

The variogram is established on the mean values and characterises the most general

qualities. It would lead to overestimate of the low bound and underestimate the

upper bound when performing interpolations.

As shown in Figure 3.3, both variogram increase along with the lag h and are

very similar to linear models. According to [56], this indicates obvious trends for

the data. Noticing that these variograms are built on the entire value that includes

(a) 25% density.
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(b) 4% density.

Figure 3.6: Ordinary Kriging recovered map in simulation.

both the noise-free components and shadowing noise. The obvious trend is actually

the result of the noise-free components.

As depicted in Figure 3.4, the residual modelling for universal Kriging, which has

eliminated the “trend”, is more meaningful than ordinary Kriging. The empirical

variogram values converge to a certain profile when the lag is short, and begin to

diverge after a certain distance, called decorrelation distance. In other words, the

spatial correlation for residuals follow certain models when the distance between

(a) 25% density.
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(b) 4% density.

Figure 3.7: Universal Kriging recovered RSS map in simulation.

data points are short, and the correlation can be “ignored” if the data points are

widely apart. As a result, only the data points within the decorrelation is selected

to estimate the unknown RSS measurement. For the IDW and ordinary Kriging

methods, the same decorrelation distance is adopted.

Figure 3.5, Figure 3.6 and Figure 3.7 illustrate the recovered RSS map using

different interpolation methods.It is intuitive that the maps recovered from datasets

of 25% density are more “smooth” than the maps recovered from 4% density. It, to

a certain extent, implies the less information contained in datasets of lower density.

Whilst, the IDW recovered maps is more “smooth” than the Kriged maps. This is

due to the poorly weighting system and overly averaging of IDW without benefits

from spatial correlations.

To study the qualities of the recovered database, the averaged root-mean-square

error (RMSE) of an RSS estimate is calculated as follows:

RMSE =

√√√√ 1

K

K∑
i=1

(zi − z̄i)T · (zi − z̄i) (3.48)

where zi is the RSS vector of i-th fingerprint from the original database, z̄ is the

corresponding estimate from the recovered database, and K is the total number of
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fingerprints.

Figure 3.8: Interpolation RMSE.

Figure 3.8 shows the interpolation results analysis. The IDW method gives the

worst interpolation results of which the interpolation RMSE stays around 5.7dB.

However, it is due to the overlarge decorrelation distance adopted, all data points

within the decorrelation distance are averaged to produce the estimate. This results

in that the interpolation RMSE of IDW change merely with respect to the density.

As expected, the interpolation RMSE of ordinary Kriging and universal Kriging

are better than the IDW method. Both RMSE profiles decrease with the increase in

density. Consistently to the variogram modelling result, the universal Kriging gives

better interpolation than the ordinary Kriging. However, the gap is small, which

indicates that both Kriging methods are effective.

The final purpose is to perform fingerprinting localisation. Therefore, all the

recovered databases are tested by a simple fingerprinting algorithm. Specifically,

the fingerprint whose measurement vector has the smallest Euclidean distance to

the target measurement vector is given as the target location estimate. Entries in

the comparing data set are used as the target including a location and corresponding

RSS measurements.

As shown in Figure 3.9, the IDW recovered databases provide the worst local-

isation performance. However, the RMSE profile decreases with the increases in
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Figure 3.9: Localisation RMSE.

density, which is different from the interpolation result. It is because during the

fingerprinting with IDW recovered databases, a target is usually estimated at the

nearest “known” data point rather than a recovered location. Therefore, the denser

the “known” data points are, the better accuracy the localisation would achieve.

Both RMSE profiles of ordinary Kriging and universal Kriging recovered database

decrease with the increase of data points density. Consistently Figure 3.8, the or-

dinary Kriging recovered databases give better localisation performance than IDW,

while the universal Kriging method provides the best. The gap between the ordi-

nary Kriging and universal Kriging profiles decrease and almost coincide when the

density reaches 25%. It implies that both ordinary Kriging and universal Kriging

recovered databases have equivalent quality for localisation when the interpolation

error is lower than a certain level.

3.3.2 Real Data Experiment

The real-data collection is conducted in the room D10 of Amy Johnson building,

University of Sheffield. The RSS measurement of a Cisco wireless access point is

collected using an Android mobile device held by a human. As shown in Figure 3.10,

the room is divided into 1 meter grids. At each grid centre, about 100 RSS readings

are collected in 1 minute, and then the averaged reading are used as grid measure-
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Figure 3.10: Original RSS map.

ments. The blue asterisk denotes the location of access points.

As shown in Figure 3.10, if the RSS is considered as model (3.41), the shadowing

noise is significant and changes rapidly in spatial. Taking the example of two grids

in the left bottom, the RSS difference is about 27dB for the interval of 1 meter.

(a) 20 fingerprints, 28.5% density.

(b) 7 fingerprints, 10% density.

Figure 3.11: Fingerprint maps of reference sets for real data experiments.
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The severe changes result from the human body absorption and device orientation,

which might lead to difficulties in modelling shadowing spatial correlation.

The Figure 3.11 demonstrate the map of remained RSS fingerprints after sam-

pling. The remained data points were manually picked but approximate uniformly

sampling. Following the same manner, the remained fingerprints are used to estimate

the removed/unmeasured RSS through the IDW, ordinary Kriging and universal

Kriging methods. Because the room is of small size compared with the decorrela-

tion distance in simulation and the remained fingerprints could be too sparse for

interpolation, the whole room is regarded as neighbour area for each unknown data

(a) 28.5% density.

(b) 10% density.

Figure 3.12: Ordinary Kriging variogram modelling for real data experiment.
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points, and all RSS in the remained data set will be utilised for interpolation.

The variogram modelling for ordinary Kriging method is shown in the Fig-

ure 3.12. As illustrated, the black dots which represent the half square of the RSS

difference are much fewer than simulation and less concentrated around the red di-

amonds that represent the mean value. Furthermore, the variogram fitting quality

is obviously lower, especially for lower density. This could be the consequence of

significant and rapidly varying shadowing noises.

The effects of significant shadowing noises can be seen more clearly from Fig-

ure 3.13. As shown, the empirical variogram value for residuals after removing the

(a) 28.5% density.

(b) 10% density.

Figure 3.13: Residual variogram modelling for real data experiment.
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trend components are randomly scattered, and the fitted variogram model is almost

flat. This implies that the residuals merely have a spatial correlation.

(a) 28.5% density.

(b) 10% density.

Figure 3.14: IDW recovered fingerprint map for real data experiment.

Figure 3.14, Figure 3.15 and Figure 3.16 show the maps recovered by different

methods.

(a) 28.5% density.
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(b) 10% density.

Figure 3.15: Ordinary Kriging recovered fingerprint map for real data experiment.

(a) UK recovered map. 28.5% density.

(b) UK recovered map. 10% density.

Figure 3.16: Universal Kriging recovered fingerprint map for real data experiment.

Figure 3.17 depicts the interpolation RMSE profiles calculated in the same man-

ner as simulation. As shown, the capabilities of different methods are demonstrated

to a certain extent. More precisely, the IDW method produces the worst interpola-

tion quality in general, but the corresponding RMSE profile decreases as the increase
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Figure 3.17: Interpolation RMSE for real data experiment.

of data points density. The UK method has the best interpolation quality overall,

but the RMSE profile fluctuates with the increase of density rather than generally

decreases. The ordinary Kriging method offers the intermediate interpolation qual-

ity overall but has the worst RMSE at 10% density and the best RMSE at 28.5%

density.

This interpolation result is not as clear and convincing as simulation. It is most

likely affected by the significant and rapidly varying shadowing noises. First, take

the example of Figure 3.13, the residual variograms are almost flat and obviously

could not characterise spatial correlation. Therefore, the Kriging interpolation com-

putation is completely dominated by the trend components, as shown in Figure 3.16a

and Figure 3.16b. Second, due to the rapidly varying noises, picking of reference

data points are important as well. Figure 3.15b is a typical example. where with-

out a good reference adjacent to the access point, the RSS fingerprint estimates

surrounding the access points have significant errors.

3.4 Summary

In this chapter, the Geostatistics tools, Kriging interpolation method, are adopted

to estimated RSS fingerprints at unmeasured locations from reference data set. Both
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ordinary Kriging and universal Kriging methods are first introduced and then val-

idated through simulation and real data experiments. The results show that com-

pared with a standard interpolation method, inverse distance weighted method, the

ordinary Kriging and universal Kriging can provide better interpolation qualities

from reference data points of different densities. The ordinary Kriging and univer-

sal Kriging interpolated fingerprint databases can also offer better location accuracy

with a standard fingerprinting localisation method.
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Chapter 4

A Bayesian Framework of Indoor

Multi-target Localisation

considering Shadowing Correlation

A considerable amount of research has been done to improve the performance of re-

ceived signal strength (RSS) based localisation, e.g. with variational methods [60].

Joint estimation of the path loss exponent (PLE) and the location is discussed in

[61]–[63], the cooperative RSS localization is studied in [64], [65], and the Gaussian

process type of methods for the PLE estimation, related parameters and state esti-

mation is proposed in [66]. Recently Gaussian process methods for localisation are

also presented in [67], [68].

Most of these studies assume that individual links between targets and beacon

base stations are independent. This is an oversimplification since closely located

targets and base stations in a network introduce a correlated shadowing effect in

RSS measurements. It is shown in [69] that if these correlations are taken into

account, it could enhance the localisation performance. This proposition was done

by deriving the Cramér-Rao bound for shadowing correlation between nodes.

In practice, the shadowing correlation can be estimated by calculating the sample

covariance of RSS measurements, which requires a large amount of data. If the num-
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ber of measurements is equal to or smaller than the variable dimension, covariance

estimation will be ill-posed and contain a noticeable error, making it non-invertible.

However, in a network consisting of multiple targets and base stations, the vari-

able dimension can be large while the measurements are insufficient. Therefore,

conventional localisation algorithms cannot readily benefit from the shadowing in-

formation.

In [70], an efficient multi-target localisation approaches for scenarios with a lim-

ited number of measurements is presented. Specifically, the shrinking techniques

is applied to produce a full-ranked shadowing covariance matrix from insufficient

RSS measurements a generalised least squares (GLS) based localisation approach is

enhanced by employing shrinkage techniques in the estimation of the measurement

covariance. It is shown via simulation that covariance estimation using shrink-

age techniques has a smaller error compared to computing the sample covariance

matrix when the number of measurements is limited. Consequently, localisation

performance is improved.

In this chapter, a Bayesian framework of multi-target localisation is proposed.

First, taking advantages of inverse Wishart (IW) conjugate prior, a new closed-form

posterior of multi-target location is presented, in which the shadowing correlation

is exploit given limited number of measurements. Second, an Markov Chain Monte

Carlo (MCMC) sampling method, namely the Metropolis-within-Gibbs sampling

method, is used to get samples from the posterior. The final estimate of target

locations is computed as the mean. Third, an maximum a posterior (MAP) /

maximum likelihood (ML) method is developed as an alternative to obtaining the

target location estimates from the posterior. The proposed approaches are evaluated

via simulation.

The chapter is organised as follows: Section I formulates the multi-target locali-

sation problem and introduces the variable notations for conciseness. A closed-form

posterior of target locations is developed in Section III. Section IV first describes

the MCMC based location estimation, and the corresponding simulation results are
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presented and analysed after. Section V first explained the adopted MAP/ML ap-

proach and then studied the simulation results. The final section summaries the

chapter.

4.1 Problem Formulation

Based on the RSS measurement model (2.2), the problem will be introduced here

in the context of multi-target localisation.

There are m targets, and the location of i-th target is denoted by si = [xs,i, ys,i]
T.

There are n base stations, and the location of j-th base station is denoted by P0,j =

[xb,j, yb,j]
T. The distance between the i-th target and j-th base station is given by

di,j =
√

(xs,i − xb,j)2 + (ys,i − yb,j)2.

The signal strength for the j-th base station received by the i-th target, is denoted

by zi,j and modelled in dB as

zi,j = fi,j + εi,j, (4.1)

where εi,j represents the shadowing attenuation and is Gaussian distributed with

zero mean and variance σ2
ε , and fi,j is given by

fi,j = P0,j − l0 − 10α log10 di,j, (4.2)

in which P0,j is the transmitting power of j-th base station, l0 is the reference path

loss measured at 1 meter away from the base station, and α is the path loss exponent.

For the i-th target, the collected RSS measurement vector is denoted by zi =

[zi,1, ...zi,n]T. For multiple targets, s1 . . . sm, the composed RSS vector is given by

z = [zT
1 , , ..., z

T
m]T. According to (2.2), z is Gaussian distributed

z ∼ N (f ,Σε) (4.3)
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where the composed vector f is given by

f = [fT1 , ..., f
T
m]T, (4.4a)

where fi = [fi,1, ..., fi,n]T, (4.4b)

and Σε is the shadowing covariance matrix that has following form:

Σε = σ2
ε ×



ρ(z1, z1) ρ(z1, z2) · · · ρ(z1, zm)

ρ(z2, z1) ρ(z2, z2) · · · ρ(z2, zm)

...
...

. . .
...

ρ(zm, z1) ρ(zm, z2) · · · ρ(zm, zm)


(4.5)

in which the matrix blocks are further given by

ρ(zi, zi) =


ρ(zi,1, zi,1) · · · ρ(zi,1, zi,n)

...
. . .

...

ρ(zi,n, zi,1) · · · ρ(zi,n, zi,n)

 (4.6a)

ρ(zi, zk) =


ρ(zi,1, zk,1) · · · ρ(zi,1, zk,n)

...
. . .

...

ρ(zi,n, zk,1) · · · ρ(zi,n, zk,n)

 (4.6b)

4.2 Bayesian Inference on Multi-target Locations

Typically, given RSS measurements, the posterior of multiple target locations can

be computed as

p(s1 . . . sm | z) ∝ p(z | s1 . . . sm) · p(s1 . . . sm), (4.7)

where p(z | s1 . . . sm) is the likelihood, p(s1 . . . sm) represents the prior knowledge of

target location.

Taking the shadowing correlation into consideration, the above equation can be
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rewritten as

p(s1 . . . sm,Σε | z) ∝ p(z | s1 . . . sm,Σε) · p(s1 . . . sm,Σε). (4.8)

The individual posterior of target locations can be further given through marginal-

ising the shadowing covariance Σε, that is

p(s1 . . . sm | z) =

∫
p(s1 . . . sm,Σε | z) dΣε (4.9a)

∝
∫
p(z | s1 . . . sm,Σε) · p(s1 . . . sm,Σ) dΣ. (4.9b)

The key point now here is to compute the integral in (4.9).

In practice, since the shadowing attenuation changes very slowly and is hard to

characterise from a limited number of RSS measurements, it is typical to adopt a

certain assumption of shadowing correlation/covariance, such as identity matrix or

diagonal matrix. However, is there a way to exploit the limited information of the

shadowing correlation contained in the target RSS measurements? In this work, the

conjugate prior is utilised to achieve that.

If the posterior distribution belongs to the same family as the prior, then the

prior and posterior are called conjugate distribution [71], [72]. Conjugate prior has

the advantage that can lead to elegant solutions to challenging practical problems.

Recently conjugate prior has been used for tracking extended objects (objects that

are not considered as points but instead are considered with their size or volume) [73],

[74]. The type of conjugate distribution used here is the inverse Wishart distribution.

4.2.1 Wishart distribution and Inverse Wishart Distribu-

tion

The Wishart distribution can be seen as a multivariable extension of χ2 distribution

[75]. Let x1, ...,xk be independent and identically distributed samples drawn from

an mn-dimensional multivariate Gaussian distribution N (f ,Σ). The sum-of-square
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matrix Ψ has an mn-dimensional Wishart distribution, which is denoted by

Ψ ∼ Wmn(Σ, k), where Ψ =
v∑
i=1

(xi − f)(xi − f)T. (4.10)

For cases where k ≥ mn, the probability of Ψ is given by

p(Ψ) =
1

2
kmn
2 |Σ|

k
2 Γmn(k

2
)
· |Ψ|

k−mn−1
2 exp

[
− 1

2
tr(ΨΣ−1)

]
. (4.11)

Under the same conditions, the inverse of sum-of-square matrix follows an IW

distribution, that is

Ψ−1 ∼ W−1mn(Σ−1, v), where Ψ =
v∑
i=1

(xi − f)(xi − f)T, (4.12)

where v is the degree of freedom.

From an intuitive point of view, generating samples from an IW distribution can

be interpreted as taking the inverse of covariance matrix as parameter and generating

random inverse of sum-of-square matrices. However, since the scale is the same, it

is helpful to look in an alternative way in practice, where the IW distribution takes

the sum-of-square matrix as parameter and generates random covariance matrices

[75], that is

Σ ∼ W−1mn(Ψ, v), (4.13)

where the sum-of-square matrix Ψ is commonly known as scale matrix. Thus, the

probability distribution of Σ is given by

p(Σ) =
|Ψ|

v
2

2
vmn
2 Γmn(v

2
)
· |Σ|−

v+mn+1
2 · exp

[
− 1

2
tr(ΨΣ−1)

]
. (4.14)

For v > mn+ 1, the expected value of Σ is given by [75]

E[Σ] =
Ψ

v − P0,j − 1
. (4.15)

It is worth to explain again that the degree of freedom v in (4.13) have the same
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physical meaning as k in (4.10), which represent the number of samples drawn from

the multivariate Gaussian distribution and aggregated in the scale matrix Ψ. To

ensure that Ψ is invertible, both v and m can not be smaller than the dimension of

sample u.

4.2.2 A Closed-form Posterior of Multi-target Location

In practice, the IW distribution is applied as the conjugate prior of a multivariate

normal distribution. On the one hand, an advantage of involving conjugate prior in

Bayesian inference is to acquire elegant solutions [73]. On the other hand, since the

shadowing changes very slowly and is hard to characterise from a limited number

of RSS measurement, it is acceptable to adopt extra assumption about shadowing

covariance. Therefore, this chapter proposes the IW distribution as the prior of

shadowing covariances which further would lead to a new closed-form posterior of

multi-target location.

Given the shadowing prior (4.14). the posterior in (4.9) is now written as

p(s1 . . . sm | z) ∝ p(s1 . . . sm) ·
∫
p(z | s1 . . . sm,Σε) · p(Σε) dΣε. (4.16)

Compare the above equation with (4.7), the likelihood term has been substituted

with an marginalised probability, that is

p(z | s1 . . . sm) =

∫
p(z | s1 . . . sm,Σε) · p(Σε) dΣε, (4.17)

where given the target locations and shadowing covariance, the probability of RSS

measurement is given by

p(z | s1 . . . sm,Σε) =
1

(2π)
mn
2 |Σε|

1
2

exp

[
− 1

2
(z− f)TΣ−1ε (z− f)

]
, (4.18)

where it is assumed that the necessary parameters (locations of base stations, trans-

mitting powers, reference path loss and path loss exponents have been obtained
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priorly through field investigation), so that the composed vector f can be computed

based on (4.2) and (4.4).

The probability product p(z | s1 . . . sm,Σε)·p(Σε) in (4.17) can be further derived

as

p(z | s1 . . . sm,Σε) · p(Σε)

=
1

(2π)
mn
2 |Σε|

1
2

exp

[
− 1

2
(z− f)TΣ−1ε (z− f)

]
· |Ψ|

v
2

2
vmn
2 Γmn(v

2
)
· |Σε|−

v+mn+1
2 · exp

[
− 1

2
tr(ΨΣ−1ε )

]
(4.19a)

=
1

(2π)
mn
2

· |Ψ|
v
2

2
vmn
2 Γmn(v

2
)
· |Σε|−

1
2 · |Σε|−

v+mn+1
2

· exp

[
− 1

2
(z− f)TΣ−1ε (z− f)− 1

2
tr(ΨΣ−1ε )

]
(4.19b)

=
1

(2π)
mmn

2

· |Ψ|
v
2

2
vmn
2 Γmn(v

2
)
· |Σε|−

(v+1)+mn+1
2 · exp

[
− 1

2
tr(ΦΣ−1ε )− 1

2
tr(ΨΣ−1ε )

]
(4.19c)

=
1

(2π)
mn
2

· |Ψ|
v
2

2
vmn
2 Γmn(v

2
)
·

2
(v+1)mn

2 Γmn(v+1
2

)

|Φ + Ψ|
v+1
2

· |Φ + Ψ|
v+1
2

2
(v+1)mn

2 Γmn(v+1
2

)
· |Σε|

(v+1)+mn+1
2 · exp

[
− 1

2
tr
(

(Φ + Ψ)Σ−1ε

)]
,

(4.19d)

where from (4.19b) to (4.19c), the first term in the exponent function is first replace

by the trace of it, that is

(z− f)TΣ−1ε (z− f) = tr
(
(z− f)TΣ−1ε (z− f)

)
, (4.20)

and then since the trace function is invariant under cyclic permutation, the produc-

tion order within the trace function has been rotated, that is

tr((z− f)TΣ−1ε (z− f)) = tr
(
(z− f)(z− f)TΣ−1ε

)
= tr(ΦΣ−1ε ), (4.21)
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and

Φ = (z− f)(z− f)T. (4.22)

Substitute the probability product with (4.19d), the posterior can be further

derived as

p(z | s1 . . . sm)

=
1

(2π)
mn
2

· |Ψ|
v
2

2
vmn
2 Γmn(v

2
)
·

2
(v+1)mn

2 Γmn(v+1
2

)

|Φ + Ψ|
v+1
2

·
∫

|Φ + Ψ|
v+1
2

2
(v+1)mn

2 Γmn(v+1
2

)
· |Σε|

(v+1)+mn+1
2 · exp

[
− 1

2
tr
(

(Φ + Ψ)Σ−1ε

)]
dΣε

(4.23a)

=
1

(2π)
mn
2

· |Ψ|
v
2

2
vmn
2 Γmn(v

2
)
·

2
(v+1)mn

2 Γmn(v+1
2

)

|Φ + Ψ|
v+1
2

. (4.23b)

where the expression in the integral in (4.23a) is a new IW distribution with pa-

rameter Ψ
′

= Φ + Ψ and degree of freedom v
′

= v + 1, therefore the integral is

equal to 1 and dismisses in (4.23b).

So far, an analytic expression of likelihood p(z | s1 . . . sm), which utilises the

IW conjugate prior to enclose the shadowing correlation information included in the

RSS measurements, have been derived.

It is assumed that the location of base stations and other parameters in (??) are

known. Once given the prior of target location, Φ can be calculated from (4.22),

and later the posterior distribution can be calculated from (4.23). The next stage is

to design the approach to make inference about target location from the posterior.

In this work, an MCMC method, precisely the Metropolis-within-Gibbs sampling

method, is first applied to obtained samples of target locations from the posterior.

The final estimate of target location is calculated based on the samples. This MCMC

based localisation method have been tested in simulations against different param-

eter configurations.

Secondly, the MAP/ML estimate is studied as an alternative. To evaluate the
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MAP estimate approach, simulation results is investigated and analysed.

4.3 MCMC based Location Estimation

An intuitive way to estimate the target location is first to draw enough samples

from the posterior and then make inferences based on the samples. In this work, the

posterior is multivariable and too complex to directly obtain samples from. Thus,

the MCMC method is applied.

Under certain conditions, the probability distribution of states of a Markov chain

will gradually converge to a steady distribution, which is called stationary (or steady

state) distribution. Therefore, a Markov chain can be designed technically to have

the target distribution as its stationary distribution. The states that have been vis-

ited after the convergence can be seen as samples drawn from the target distribution.

4.3.1 MCMC Sampler

4.3.1.1 Metropolis-Hastings Sampling

The Metropolis-Hastings sampling method is the most commonly used MCMC

method. The target distribution is denoted by p(s). Started from a random/selected

initial state s(0) = [s
(0)
1 . . . s

(0)
m ], a new point will be generated from the previous state

following a proposed distribution, that is

s∗ ∼ q(s∗ | s(t−1)). (4.24)

Then, it is due to an acceptance ratio α whether the point is accepted as the new

state. The acceptance ratio is calculated as

α = min

(
p(s∗) · q(s(t−1) | s∗)

p(s(t−1)) · q(s∗i | s(t−1))
, 1

)
. (4.25)

If the new point is rejected, the previous state will be duplicate as the new one.

In this manner, a series of states are generated and the probability distribution

68



4.3. MCMC based Location Estimation

of state will converge to the target distribution p(s). The convergence process is

called burn-in period. The pseudo-code for Metropolis-Hastings method is given in

Algorithm 1.

Algorithm 1 Metropolis-Hastings Sampler

Initialise s
(0)
1 . . . s

(0)
m .

for t = 1, 2, . . . , do
- draw s∗ ∼ q(s∗i | s(t−1)),
- compute the acceptance ratio α from (4.25),
- uniformly generate a random number between 0 and 1, u ∼ U [0, 1],

ĩf u < α, accept s∗ as the new state,
õtherwise, remain s(t−1) as the new state,

end for.

There is a vital disadvantage of Metropolis-Hastings method: the acceptance

ratio α can be extremely small especially for high-dimensional problems, which

leads to unacceptably long burn-in period.

4.3.1.2 Gibbs Sampler

For high-dimensional sampling, the Gibbs sampler is more efficient compared with

the Metropolis-Hastings algorithm [76]. Given the target distribution p(s), assume

the full conditional distribution for si is available, which is

p(si | s(−i), z), (4.26)

where s(−i) includes all targets except for si. The full conditional distribution (4.26)

can be obtained by marginalising out the other targets, which is

p(si | s(−i), z) =

∫
· · ·
∫
p(s1 . . . sm | z) ds1 . . . dsi−1dsi+1 . . . dsm. (4.27)

From a initial state s(0), the Gibbs sampler draws each component of the new

state according (4.26) in a rotation manner. After getting all components, the

new state is immediately accepted. The pseudo-code for Gibbs sampler is given in

Algorithm 2.
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Algorithm 2 Gibbs sampler

Initialise s
(0)
1 . . . s

(0)
m .

for t = 1, 2, . . . , do
- draw s

(t)
1 ∼ p(s

(t−1)
1 | s(t−1)(−1) , z),

- draw s
(t)
2 ∼ p(s

(t−1)
2 | s(t−1)(−2) , z),

...
- draw s

(t)
m ∼ p(s

(t−1)
m | s(t−1)(−m), z),

end for.

However, in practice, the full conditional probability (4.26) is usually not avail-

able and is hard to derive from the target distribution p(s). Thus, an alternative

solution which combined the Metropolis-Hastings method and Gibbs sampler are

developed.

4.3.2 Metropolis-within-Gibbs Sampler

When performing the Gibbs sampling, in cases where the full conditional distribution

(4.26) is unavailable, it is replaced by a Metropolis step. This approach is known as

Metropolis-within-Gibbs sampler [77].

More precisely, when generating a new point s∗, the i-th component s∗i is drawn

from a proposed distribution q(s∗i | s
(t−1)
i ),

s∗i ∼ q(s∗i | s
(t−1)
i ). (4.28)

In this work, the proposed distribution is Gaussian, given by

s∗i ∼ N (s
(t−1)
i , w2I2×2). (4.29)

This is also known as random-walk mechanism, where the centre of proposed dis-

tribution is the corresponding element of previous state, and w is known as the

step size of random walk which controls the distance “travelled” by the new point.
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Afterwards, the point is accepted based on the acceptance ratio, which is

α = min

(
p(s∗i , s

(t−1)
(−i) | z)× q(s(t−1)i | s∗i )

p(s
(t−1)
i , s

(t−1)
(−i) | z)× q(s∗i | s

(t−1)
i )

, 1

)
(4.30)

The pseudo-code for Metropolis-within-Gibbs sampler is given in Algorithm 3.

Algorithm 3 Metropolis-within-Gibbs sampler

Initialise s
(0)
1 . . . s

(0)
m .

for t = 1, 2 . . . do
for i = 1 . . .m, do

- draw s
(t)
i ∼ q(s∗i | s

(t−1)
i ),

- compute acceptance ration α from (4.30),
- uniformly generate a random number between 0 and 1, u ∼ U [0, 1],

ĩf u < α, accept s∗i as the new state,

õtherwise, remain s
(t−1)
i as the new state,

end for
end for.

In this work, the target location posterior developed in (4.23) is apparently multi-

dimensional and is difficult to derive the marginal probability of a single target.

Thus, in this work, the Metropolis-within-Gibbs sampler is more practical than the

other two MCMC methods.

4.3.3 Target Location Estimation

By applying the Metropolis-within-Gibbs method, a sequence of samples following

the posterior of target location can be obtained after the burn-in period tb. The

estimate of multiple target locations is computed as the mean of the samples, that

is

ŝ =
1

t− tb

t∑
i=tb

s(i), (4.31)

where t is the total number of MCMC samples. The estimate covariance can be

calculated as sample covariance as

Σ =
1

t− tb − 1

t∑
i=tb

(s(i) − ŝ)T(s(i) − ŝ), (4.32)
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where the diagonal of Σ consists of estimate variances of individual target locations.

4.3.4 Simulation and Results Analysis

The proposed closed-form posterior of multi-target location and MCMC based lo-

calisation approach have been tested in two simulation scenarios. As shown in

Figure 4.1, there are 3 base stations and 2 targets, which meets the minimum re-

quirement for multi-targets localisation. The RSS measurements is generated using

the model (4.1), (4.2) and the shadowing correlation simulated adopting the Gud-

mundson’s model (2.7). The model parameters adopt typical value [78] and are

listed in Table 4.1. The target location posterior is computed by the proposed

method given in (4.16) and (4.23). The prior of target location adopts the uniform

distribution as for general scenarios where it is uninformed.

Table 4.1: Table of propagation model parameters

Parameter Name Notation Value
transmitting power P0,j 10

referencing path loss l0 0
path loss exponent α 5

decorrelation distance [m] dc 3

Figure 4.1 depicts MCMC samples generated under difference conditions. Each

sample colour stands a target. The initial point is set at the middle point between

the two targets. For each simulation, there are 1000 MCMC samples generated. The

(a) Ψ = I.
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(b) Ψ = σ2ε I.

(c) Ψ = Σε.

Figure 4.1: MCMC samples drawn from posteriors with difference IW hyperparam-
eters.

degree-of-free parameter is set to the dimension of shadowing covariance, v = mn+2,

which meets requirements of IW distribution and further makes the expected value

of shadowing covariance equal to the scale matrices. For different simulation, the

scale matrices adopts different assumptions, give as 1) identity matrix I, 2) diagonal

matrix σ2
εI, and 3) true shadowing covariance Σε.

4.3.4.1 Mean of Samples

The target location estimates are computed as the mean of MCMC samples obtained

after burn-in period (4.32). By investigating the results given in Figure 4.1, it

is noticeable that the sample means do not always overlap the true location of
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targets. One of the reasons for it is that there exist the local maximums, e.g.,

the small cluster of yellow sample points apart from the larger cluster. This is a

common situation of multi-dimensional problems. Another reason is the shadowing

attenuations are relatively high in quantity compared with the noise-free RSS. So

the effect of shadowing cannot be completely avoided in localisation.

4.3.4.2 Spread of Samples

The other aspect that can be studied from Figure 4.1 is the spread of samples.

On the one hand, with smaller shadowing variance (identity shadowing covariance),

the MCMC samples in Figure 4.1a are more concentrated around the true target

locations than Figure 4.1b (diagonal shadowing covariance).

On the other hand, it is not hard to realise that more information provided

when making inferences, more concentration the sample will be. Taking examples

of Figure 4.1b and Figure 4.1c, the latter adopts the true shadowing covariance

as hyperparameter which carries more information about shadowing correlation in

the off-diagonal elements compared with the only-diagonal matrix for the former.

Consequently, the MCMC samples in Figure 4.1c are more concentrated.

4.3.4.3 Convergence of MCMC

As introduced previously, for a designed MCMC, the probability of states will grad-

ually converge to the target distribution. From the visual point of view, the sample

points propagate from the initial points, and will eventually move to and wander

around the actual target locations.

For localisation, the convergence of MCMC process is important in the aspects of

capability and efficiency. The capability of convergence refers to whether the MCMC

will finally generate samples concentrated around the actual target location rather

than a local maximum or even be non-convergence, while efficiency indicates how fast

the convergence would be and how long the burn-in would take. By investigating the

simulation results, there are two major factors found that have significant influences
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(a) Ψ = I

(b) Ψ = Σε

Figure 4.2: MCMC samples drawn from posteriors with difference IW hyperparam-
eters.

on the MCMC convergence.

Since the Metropolis-Hastings method adopts “random walk” searching strategy

which is essential “blind” searching, the step size of random walk is the first vital

factor that affects the convergence. The selection of searching step size is technical

and case-specific. The trick is to balance the convergence efficiency and capability.

More precisely,

• With a large random walk length, the new sample might be spawn far from the

previous one. Consequently, it has a higher probability to jump out of the local

maxima/minima but has a lower probability to be accepted and consequently

reduce the efficiency of convergence, especially for a high-dimensional problem.
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• With a small random walk length, the new sample might be drawn near to

the previous one. Consequently, it has a higher probability to be accepted but

might be stuck in the local maxima/minima.

The Figure 4.2 illustrates alternative simulation tests of the proposed MCMC

based localisation approach. There are m = 6 base stations and n = 4 targets

where consequently the dimension of the problem increases to mn = 24. The RSS

measurements and shadowing covariance are generated under the same models and

the same parameter configurations as the previous test. To compute the target

location posterior, again different values of IW hyperparameter Ψ are adopted,

including the identity matrix and true shadowing covariance.

With the same random walk step size, in Figure 4.1 the identity IW scale ma-

trix hyperparameter produces more concentrated samples than the true shadowing

covariance, while contrarily in Figure 4.2 the MCMC samples could not converge

under identity scale matrix condition and the true shadowing covariance produces

better samples. Therefore, it is clear that the sampling result is influenced by the

specifics of target distribution. More precisely,

• Depending on the practical scenario, a “sharp” target distribution might result

in

– concentration of samples (Figure 4.1a),

– failure of sampling convergence due to “poor guidance” of sample accep-

tance (Figure 4.2a). More precisely, a too “sharp” target distribution

might have too “flat” “off-central area”, which results in high acceptance

ratios. Therefore, “poor quality” samples will be accepted.

• Similarly, depending of the practical scenario, a “flat” target distribution might

results in

– “better guidance” of sample acceptance due to better probability gradient

in ”off-central area”. (Figure 4.2b), or
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– samples spread too much due to the “flatness” of overall target distribu-

tion (Figure 4.1c).

In summary, though the MCMC sampler can be used to generate samples from a

complex multidimensional probability distribution, the samples are significantly and

complicatedly affected by searching mechanism and target distribution. Therefore,

estimating the target locations as the mean of samples has obvious shortcomings.

4.4 Maximum A Posterior/Maximum Likelihood

Estimate

Given the posterior of target location, the aim here is to obtain the estimate accord-

ing to the posterior. Except for producing samples from the posterior and making

estimate based on the sample mean, a more “directive” approach is the MAP esti-

mate. In other words, the MAP estimate believes that the most possible location

for targets will achieve the maximum value of posterior.

The MAP estimate is closely related to the maximum likelihood (ML) estimate.

In this work, if the target locations are considered priorly uninformed and following

a uniform distribution, the estimate that has achieved the maximum of posterior

given in (4.16) will also achieve the maximum of IW marginalised likelihood as given

in (4.23), which is

ŝ = max
s∈R

p(s | z) =

∫
p(z | s,Σε) · p(Σε) dΣε, if p(z) is uniform. (4.33)

Substitute the IW marginalised likelihood with (4.23), the above expression can

be further derived as

ŝ = max
s∈R

1

(2π)
mn
2

· |Ψ|
v
2

2
vn
2 Γn(v

2
)
·

2
(v+1)n

2 Γn(v+1
2

)

|Φ + Ψ|
v+1
2

(4.34a)

= min
s∈R
|Φ + Ψ| , (4.34b)
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where from (4.34a) to (4.34b) all the constant values have been ignored and the

optimisation operator has been changed from “maximisation” to “minimisation”

due to the monotonicity of reciprocal function and power function.

If the scale matrix is identity, the optimisation can be further derived as [79]

ŝ = min
s∈R
|I + Φ| (4.35a)

= min
s∈R

∣∣I + (z− f)(z− f)T
∣∣ (4.35b)

= min
s∈R

1 + (z− f)T(z− f), (4.35c)

Hereby, if the IW adopts identity scale matrix, the MAP/ML estimate coincides

with the least square estimate.

In cases where the IW adopts non-identity matrix as scale matrix, the computa-

tion of the determinant is too complex to have an explicit form, and therefore there

is no clear conclusion.

4.4.1 Simulation Validation and Results Analysis

The proposed MAP/ML location estimation approach have been tested in simu-

lation. The test bed in given in Figure 4.3. There are m = 6 base stations and

n = 4 targets. The RSS measurements including correlated shadowing noises are

generated according to (4.1), (4.2) and (2.7). All necessary parameters are as the

same as listed in Table 4.1 expect for the shadowing standard deviation σε.

As for comparison, a practically standard solution where the likelihood adopts

the multivariate Gaussian distribution with a specific shadowing covariance assump-

tion is considered. Therefore, the likelihood is given by (4.18). Similarly, the shad-

owing covariance could have forms of identity matrix or the true one. Via further

investigation, the MAP/ML estimate for the standard multivariate Gaussian likeli-

hood is equivalent to the weighted least square estimate, that is

ŝ = max
s∈R

p(z | s,Σε) (4.36a)
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= max
s∈R

1

(2π)
mn
2 |Σε|

1
2

exp

[
− 1

2
(z− f)TΣ−1ε (z− f)

]
(4.36b)

= min
s∈R

(z− f)TΣ−1ε (z− f). (4.36c)

Figure 4.3: Grid based searching.

Figure 4.4: The RMSE of grid-based MAP estimate as a function shadowing stan-
dard deviation σε based on 150 Monte Carlo runs.

The proposed MAP/ML localisation approach and the comparison approach have

been tested under two searching strategies. Firstly, in order to avoid the searching

getting stuck in local maximums, a grid-based searching is performed as shown in

Figure 4.3. The square area of 3m by 3m around the target location is divided into
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Figure 4.5: The second test beds for MAP/ML based estimation approaches.

grids of size 0.3m by 0.3m. The posterior/likelihood values are computed for all grid

points, and the one that achieves the maximum posterior/likelihood is given as the

target location estimate.

Figure 4.4 depicts the root mean square error (RMSE) of grid-based MAP/ML

estimate of target locations for different approaches as a function shadowing stan-

dard deviation. The “identity” and “true” stand for the comparison approaches

where the shadowing covariances have identity form and true value respectively.

The “IW: identity”, “IW: true” and “IW: diagonal” stand for the proposed IW

approaches where the scale matrices have the identity, true shadowing covariance

and diagonal matrix respectively. All the RMSE results are calculated based on 150

Monte Carlo runs.

As shown, the likelihoods with the same assumptions provide similar perfor-

mances, while the two likelihoods adopting the true shadowing covariance produce

the same results as well. In conclusion, it verifies that the proposed IW marginalised

likelihood achieves the maximum at the same location as the standard Gaussian like-

lihood with the same shadowing covariance assumption, and furthermore coincides

with the weighted least square estimate with the same assumption. Overall, all the

approaches produce location estimates with acceptable accuracies referring to the

scale of shadowing noises.

The second testing scenario is demonstrated in Figure 4.5. There are m = 3
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(a) σε ∈ [1, 5]

(b) σε ∈ [3, 9]

Figure 4.6: RMSE of MCMC-based MAP/ML estimate as a function of shadowing
standard deviation based on 50 Monte Carlo runs.

base stations and n = 2 targets which meet the basic compositions of multi-target

localisation. Again, RSS measurements that involving correlation shadowing noises

are generated based on (4.1), (4.2) and (2.7), while parameters involved are as same

as listed in 4.1 except for the shadowing standard deviation.

Except for grid-based searching which is extremely time-consuming, the afore-

mentioned Metropolis-within-Gibbs method is applied here to perform guided search-

ing. After obtaining the samples, the one that achieves the maximum posterior is

given as the target location estimate. The comparison approaches are as same as
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employed in the first testing scenario.

Figure 4.6 demonstrates the RMSE MCMC-based MAP/ML location estimate

as a function of shadowing standards deviation. The Figure 4.6a shows results

where the shadowing SD varies from 1dB to 5dB, while the Figure 4.6b shows lager

shadowing SD that varies from 3dB to 9dB.

Unfortunately, although there are differences between approaches, the trend of

the performance are not consistent. There are two possible reason: firstly, referring

the grid-based MAP/ML result, the gaps between different estimation approaches

are too small; secondly, as analysed previously, the performance of MCMC sampler

are controlled by several factors in complex manners. However, all the approaches

produce location estimates with acceptable accuracies referring to the scale of shad-

owing noises.

4.5 Summary

In this chapter, a new approach of Bayesian inference on target location posterior is

proposed. To take advantage of correlated shadowing noises, the IW conjugate prior

is studied, and a new likelihood can be computed by marginalising the shadowing

covariance.

To estimate target locations, the MCMC sampler is considered to generate sam-

ples from the posterior and further produce the estimate as the mean of samples.

The MCMC sampler employed here is the Metropolis-within-Gibbs sampler, which

follows “random walk” manner. Simulations are conducted, and the performances

of MCMC sampler under different assumptions of IW hyperparameters are inves-

tigated. It has been found that the quality of MCMC samples is significantly and

complexly affected by several factors, such as the step size of random walk and the

specifics of the posterior function.

An alternative to estimate target location is the MAP/ML approach. To validate

the proposed method, the grid-based searching strategy is considered to produce the

location estimate under different scales of shadowing noise. It has been found that
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under the same shadowing covariance assumption (identity matrix or true covari-

ance matrix) the MAP/ML estimates produce the similar results as the standard

solution of Gaussian likelihood and the weighted least square method. Moreover,

the aforementioned MCMC method is proposed as another searching tools. After

obtaining enough samples from the target location posterior, the one that achieved

the maximum posterior/likelihood value is given as the target location estimate.

The MCMC-based MAP/ML approaches with different shadowing covariance as-

sumptions are tested against the scale of shadowing noise. Overall, the localisation

results achieve acceptable accuracies.
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Chapter 5

TDOA-FDOA based Localisation

with Linear Nuisance Parameters
1

Source geolocation refers to identifying the spatial position of a source on Earth

using signal measurements such as the received signal strength (RSS), time of arrival

(TOA) and time difference of arrival (TDOA) [80], [81]. When the source is static,

its position can be uniquely determined using a dual-satellite geolocation system

with two satellites that are moving relatively to the source. First, the TDOA and

frequency difference of arrival (FDOA) of the source signal received by the two

satellites are estimated. The obtained TDOA and FDOA measurements are then

exploited together with the source altitude information to achieve source geolocation

using, e.g., the algebraic algorithm in [82], or in reverse, determine the satellite

orbits [83], [84]. Dual-satellite geolocation systems have found civilian and military

applications including locating the ground interference to commercial satellites [85],

[86] and space electronic reconnaissance [87].

The estimation of the source TDOA and FDOA requires joint processing of the

source signals received at the two satellites, e.g., computing the cross ambiguity

function (CAF) [88]–[90]. Therefore, precise time synchronisation and frequency

locking between the two satellites are needed for measuring TDOA and FDOA with

1In statistics, a nuisance parameter is any parameter which is not of immediate interest but
which must be accounted for in the analysis of those parameters which are of interest, Which
indicates the time and frequency offsets in TDOA and FDOA models.
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Figure 5.1: Short-baseline dual-satellite geolocation scenario. Satellite 2 estimates
the source and calibration TDOAs and FDOAs for source geolocation via cross-
correlating the received downlink signal from satellite 1 and its own uplink signal.

high accuracy. However, in practice, time and frequency alignment could be difficult

to attain. Consider the geolocation scenario shown in Figure 5.1 for example, where

satellite 1 transfers its received signal using a bent pipe transponder [91]. The TDOA

and FDOA are estimated via cross-correlating the downlink signal from satellite 1

and the uplink signal from satellite 2. The obtained TDOA and FDOA may be

subject to unknown time and frequency offsets, due to inaccurate knowledge on the

group delay and local frequency of the satellite 1 transponder.

If the time and frequency offsets are small, they can be neglected in source ge-

olocation and this would generally lead to biased source position estimates (see e.g.,

the analysis in [92]). When they have large absolute values, existing TDOA-FDOA

geolocation algorithms such as those developed in [82], [87], [93] generally fail to pro-

duce a reasonable solution. This is because with only a pair of source TDOA and

FDOA, it is not sufficient to geolocate the source while simultaneously estimating

the time and frequency offsets. In other words, in the absence of time synchronisa-

tion and frequency locking, the source position may become unidentifiable.

Precise knowledge on the satellite location information2 is also essential for

2For simplicity, the satellite location is used in this work to represent satellite position and
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achieving satisfactory geolocation performance. It is well known that the presence

of satellite location errors can significantly degrade the TDOA-FDOA geolocation

accuracy [93]–[95]. However, the satellite location errors are almost inevitable be-

cause the satellites are moving and/or they are in orbits distant from Earth, which

makes accurate satellite locations difficult to obtain.

In this work, the use of calibration stations at known positions is investigated to

improve the geolocation performance of the dual-satellite system when the two satel-

lites have imperfect time and frequency alignment as well as erroneous locations. It

is assumed that the source and calibration TDOAs and FDOAs are obtained within

a short interval such that they are subject to the same time and frequency offsets

and the same satellite location errors [96]–[98]. A new closed-form source geoloca-

tion algorithm is proposed for the above problem. In particular, it first fuses the

measurements from the unknown source and calibration stations using a best lin-

ear unbiased estimator (BLUE) [99]. The time and frequency offsets are eliminated

in the fusion process, and the presence of satellite location errors is appropriately

taken into account in the weighting matrix. The measurement fusion step only pro-

duces a single pair of source TDOA and FDOA, which is then utilised by an existing

algebraic technique for source geolocation. The developed algorithm has low compu-

tational complexity, and more importantly, theoretical performance analysis shows

that it can attain the Cramér-Rao lower bound (CRLB) under Gaussian noise and

mild conditions. We illustrate the performance of the proposed algorithm via sim-

ulations based on the dual-satellite geolocation scenario shown in Figure 5.1, which

is challenging due to the short baseline between the two satellites. The obtained

simulation results corroborate the theoretical developments.

This work is different from [100] where precise sensor locations were assumed

and source localisation was achieved using a sequence of source TDOAs and FDOAs

received during a short interval. A maximum likelihood (ML) estimator that jointly

identifies the source position, as well as time and frequency offsets, was used in [100].

velocity.
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It is iterative and computationally intensive. In [92], [101]–[104], several techniques

were proposed to deal with the problem of node localisation in the presence of

unknown clock offset in sensor networks. However, they all involved joint time

synchronisation and node localisation based on iterative convex optimisation [101]

or closed-form methods [92], [102], [103]. Moreover, except for [103], they assumed

accurate sensor locations.

This work is closely related to [105]–[108]. In [105], [106], the clock offset was

removed by forming differential TDOAs for node localisation. They did not consider

sensor position errors, and an iterative ML location estimator was used. The algo-

rithm developed in [107] eliminated the clock bias via the use of asymmetric trip

ranging (ATR). This protocol required the target node to be cooperative, which may

not be fulfilled in the dual-satellite geolocation problem considered in this work. In

[108], the sensors used for TDOA localisation were partitioned into groups. Each

group had a different clock offset, which was cancelled out by taking differences

between the TDOA measurements within each group. In contrast, the algorithm

proposed in this work eliminates the time and frequency offsets in all the measure-

ments and fuses them using a BLUE to generate only a pair of source TDOA and

FDOA for source geolocation.

The rest of the chapter is organised as follows. The geolocation problem is

formulated in Section 5.1. The geolocation CRLB is derived in Section 5.2. The

proposed geolocation algorithm together with its performance analysis is presented

in 5.3. Simulation results are given in Section 5.4. Summary are drawn in Section

5.5.

5.1 Problem Formulation

We consider locating a static source on Earth whose unknown position is denoted

by uo = [uox, u
o
y, u

o
z]
T . Under the oblate spheroidal Earth model specified in World

Geodetic System 1984 (WGS84), uo is related to the source geodetic latitude φ and
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longitude ϕ via [109]

uox = (r + h)cos(φ)cos(ϕ) (5.1a)

uoy = (r + h)cos(φ)sin(ϕ) (5.1b)

uoz = (r(1− e2) + h)sin(φ) (5.1c)

where r = re√
1−e2sin2φ

, re = 6378.137 km is the equatorial radius, e = 0.081819190842

is the eccentricity, and h is the source altitude which is assumed to be known.

The dual-satellite system receives the source signal and computes the TDOA and

FDOA between the two satellites. Let soi = [sox,i, s
o
y,i, s

o
z,i]

T and ṡoi = [ṡox,i, ṡ
o
y,i, ṡ

o
z,i]

T

be the true geocentric position and velocity of satellite i, i = 1, 2. Without time

synchronisation and frequency locking, the estimated source TDOA and FDOA can

be expressed as [100], after being multiplied respectively with the signal propagation

speed and the source signal wavelength,

yu = dou + τ + ∆yu (5.2a)

ẏu = ḋou + δ + ∆ẏu. (5.2b)

τ and δ are the unknown time and frequency offsets between the two satellites. dou

and ḋou are the true source TDOA and FDOA, and they are equal to

dou = ||uo − so1|| − ||uo − so2|| (5.3a)

ḋou =
−(uo − so1)

T ṡo1
||uo − so1||

− −(uo − so2)
T ṡo2

||uo − so2||
(5.3b)

where || · || represents the Euclidean distance. For notation simplicity, we collect

yu and ẏu to form the source measurement vector yu = [yu, ẏu]
T . Moreover, we

introduce

αo = [τ, δ]T (5.4)

to collect the time and frequency offsets. Note that with only yu, the source position
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is unidentifiable, due to the presence of the additional unknown αo.

The true satellite location information is not available. The geolocation algo-

rithm only has access to noisy observations of soi and ṡoi , which are denoted as

si = soi + ∆si (5.5a)

ṡi = ṡoi + ∆ṡi. (5.5b)

Collecting the known satellite locations yields β = [sT1 , ṡ
T
1 , s

T
2 , ṡ

T
2 ]T . Its true value

is βo = [soT1 , ṡoT1 , soT2 , ṡoT2 ]T . The satellite location error vector is denoted by ∆β =

β − βo = [∆sT1 ,∆ṡT1 ,∆sT2 ,∆ṡT2 ]T , which is assumed to be zero-mean Gaussian dis-

tributed with covariance matrix Qβ [93], [96]–[98], [103], [108].

There are N ground calibration stations at known positions cn = [cx,n, cy,n, cz,n]T ,

n = 1, 2, ..., N , deployed to improve the geolocation accuracy in the absence of time

and frequency alignment between satellites and precise satellite locations. When the

measurements from the unknown source and calibration stations are obtained during

a short interval, they would be subject to the same time and frequency offsets. As

a result, the calibration TDOAs and FDOAs can be modelled similarly to (5.2) as

yc,n = doc,n + τ + ∆yc,n (5.6a)

ẏc,n = ḋoc,n + δ + ∆ẏc,n. (5.6b)

where doc,n and ḋoc,n are the true TDOA and FDOA from the n-th calibration station

and are equal to

doc,n = ||cn − so1|| − ||cn − so2|| (5.7a)

ḋoc,n =
−(cn − so1)

T ṡo1
||cn − so1||

− −(cn − so2)
T ṡo2

||cn − so2||
. (5.7b)

It can be seen from (5.6) that with calibration stations, the source position becomes

identifiable because there are (N+1) ≥ 2 pairs of measurements, which are sufficient

to determine the source position and time and frequency offsets.
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Collecting yc,n and ẏc,n, and stacking the results over n yield the calibration

measurement vector yc = [yTc,1,y
T
c,2, ...,y

T
c,N ]T , where yc,n = [yc,n, ẏc,n]T . Combining

the source measurement vector yu with yc yields the composed measurement vector

y = [yTu ,y
T
c ]T . According to (5.2) and (5.6), the true value of y can be expressed as

yo = [doTu ,d
oT
c,1,d

oT
c,2, ...,d

oT
c,N ]T + Gαo. (5.8)

The coefficient matrix G is equal to

G = 1(N+1)×1 ⊗ I2×2 (5.9)

where ⊗ denotes the Kronecker product, 1(N+1)×1 denotes a (N + 1) × 1 column

vector of ones and I2×2 represents a 2× 2 identity matrix. The vectors dou and doc,n

are defined as

dou = [dou, ḋ
o
u]
T (5.10a)

doc,n = [doc,n, ḋ
o
c,n]T . (5.10b)

The measurement noise in y can be shown to be

∆y = y − yo = [∆yu,∆ẏu,∆yc,1,∆ẏc,1, ...,∆yc,N ,∆ẏc,N ]T . (5.11)

As in [96]–[98], it is assumed that ∆y is a zero-mean Gaussian random vector with

covariance matrix Qy and ∆y is also independent of the satellite location error ∆β.

We are interested in estimating at a low computational cost the source position

uo using the source and calibration TDOAs and FDOAs in y as well as the noisy

satellite locations in β.
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5.2 CRLB Analysis and Insights

This section derives the CRLB of uo, denoted by CRLB(uo). For this purpose, note

that according to the previous section, besides the source position uo, the time and

frequency offsets in αo and true satellite location vector βo are also unknown. As

the source altitude h is known, the CRLB of [uoT ,αoT ,βoT ]T would be an equality-

constrained one [110]. To simplify the derivation, we follow the re-parametrisation

approach [111] and establish CRLB(uo) via relating it to the CRLB of θo = [φ, ϕ]T ,

where φ and ϕ are the source geodetic latitude and longitude (5.1). Specifically, we

have [99]

CRLB(uo) =

(
∂uo

∂θo

)
· CRLB(θo) ·

(
∂uo

∂θo

)T
. (5.12)

To find CRLB(θo), we need to derive the CRLB of the composed unknown vector

ηo = [θoT ,αoT ,βo]T first. Express ηo as ηo = [γoT ,βo]T , where γo = [θoT ,αoT ]T

contains the source position as well as time and frequency offsets.

Note from Section 5.1 that the composed TDOA and FDOA measurement vector

y and the known satellite locations β are jointly Gaussian distributed. Taking log-

arithm of this joint distribution, differentiating it twice with respect to ηo, negating

the sign and taking expectation yields the Fisher information matrix (FIM) of ηo

[99]. The partitioned matrix form of FIM(ηo) is

FIM(ηo) =

 X Y

YT Z

 . (5.13)

The matrix partitions are defined as

X =

(
∂yo

∂γo

)T
Q−1y

(
∂yo

∂γo

)
(5.14a)

Y =

(
∂yo

∂γo

)T
Q−1y

(
∂yo

∂βo

)
(5.14b)

Z = Q−1β +

(
∂yo

∂βo

)T
Q−1y

(
∂yo

∂βo

)
. (5.14c)
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X is the FIM of γo when the satellite location errors are absent. Inversing FIM(ηo)

gives CRLB(ηo), and its upper-left 2× 2 block is the desired CRLB(θo).

We shall derive a detailed expression for CRLB(θo) to gain insights. First, taking

the inverse of FIM(ηo) and retaining only the upper-left 4×4 block yield the CRLB

of γo, which is given by

CRLB(γo) =
(
X−YZ−1YT

)−1
. (5.15)

Putting the definitions of X, Y and Z and applying the matrix inversion Lemma

[99], we arrive at

CRLB(γo) =

((
∂yo

∂γo

)T
Q̃−1y

(
∂yo

∂γo

))−1
(5.16)

where

Q̃y = Qy +

(
∂yo

∂βo

)
Qβ

(
∂yo

∂βo

)T
. (5.17)

It is easy to show that Q̃y − Qy is positive semi-definite. Moreover, Q̃y is gen-

erally not block diagonal, even if the TDOA and FDOA measurements from the

source and calibration stations are independent to one another and Qy has a block

diagonal structure. As a result, by taking the inverse of CRLB(γo) in (5.16) and

comparing the result with (5.14a), we have that FIM(γo) = CRLB(γo)−1 can be

considered as the FIM of γo when accurate satellite locations are known but the

measurements have an increased covariance matrix Q̃y. In other words, satellite

location errors affect the estimation of the source position and time and frequency

offsets via degrading and introducing extra correlation into the source and calibra-

tion measurements.

According to the definition γo = [θoT ,αoT ]T , CRLB(θo) is given by the upper-

left 2 × 2 block of CRLB(γo). To evaluate (5.16), we put (5.8) and express the
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partial derivative (∂y
o

∂γo ) as

(
∂yo

∂γo

)
=

[
H

(
∂dou
∂θo

)
,G

]
(5.18)

where G is defined in (5.9), the matrix H is defined as

H =

 I2×2

ON×2

 (5.19)

and N is the number of calibration stations. Substituting (5.18) into (5.16) and

applying the partitioned matrix inversion formula [99] yield

CRLB(θo) =

((
∂dou
∂θo

)T (
HTPyH

)(∂dou
∂θo

))−1
. (5.20)

which is the desired form for CRLB(θo). The matrix Py is equal to

Py = Q̃−1y − Q̃−1y G
(
GT Q̃−1y G

)−1
GT Q̃−1y . (5.21)

Py is in fact a singular matrix, which can be verified as follows. Applying the

Cholesky decomposition Q̃y = L̃yL̃
T
y to (5.21), we obtain Py = L̃−Ty PL̃−1y , where

P = I(N+1)×2 − L̃−1y G
(
GT L̃−Ty L̃−1y G

)−1
GT L̃−Ty . (5.22)

P is clearly a projection matrix, which is singular and renders Py non-invertible.

Note that the three terms on the right-hand side of (5.20) are all 2× 2 matrices.

For CRLB(θo) to be existent, they must be non-singular. Hence, substituting (5.20)

back to (5.12) gives

CRLB(uo)

=

(
∂uo

∂θo

)(
∂dou
∂θo

)−1 (
HTPyH

)−1(∂dou
∂θo

)−T (
∂uo

∂θo

)T
.

(5.23)
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This is the CRLB of the source position uo under the considered dual-satellite ge-

olocation scenario where unknown time and frequency offsets between satellites and

satellite location errors are present. It lower-bounds the error covariance matrix of

any unbiased estimator of uo. The required partial derivatives,
(
∂uo

∂θo

)
,
(
∂do

u

∂θo

)
and(

∂yo

∂βo

)
, are given in the Appendix B.

Carefully examining (5.23) reveals that the source position CRLB does not de-

pend on the actual values of the time and frequency offsets. More importantly, it has

the same functional form as the geolocation CRLB with precise time-frequency align-

ment between satellites, accurate satellite locations and a source TDOA-FDOA co-

variance matrix (HTPyH)−1 (see e.g., [82]). The measurements from calibration sta-

tions affect the source geolocation performance only through the term (HTPyH)−1.

These observations are essential for the low-complexity geolocation algorithm devel-

opment in the following section.

5.3 A Two-step TDOA-FDOA Geolocation Method

The geolocation algorithm development begins with noting from (5.6) and (5.7) that

the TDOA and FDOA measurements from calibration stations are not dependent

on the source position uo. According to the CRLB analysis in Section 5.2, they con-

tribute to the source geolocation accuracy indirectly through providing information

on the time and frequency offsets αo and true satellite locations.

In this section, we shall develop a novel two-step algorithm that avoids the

estimation of any extra variables (i.e., the true satellite locations βo as well as the

time and frequency offsets αo). Step-1 of the proposed algorithm fuses the TDOA

and FDOA measurements from the unknown source and calibration stations using

a BLUE. It eliminates αo and takes into account the presence of satellite location

errors in the weighting matrix. The output of Step-1, which is an estimate of the

source TDOA and FDOA dou and ḋou (5.3), is utilised in Step-2 of the proposed

algorithm for geolocating the source.
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5.3.1 A Two-step TDOA-FDOA Geolocation Methods

Step-1 : We start with considering the composed measurement vector y = yo + ∆y

that contains the TDOAs and FDOAs from the source and calibration stations.

Note from (5.3) and (5.7) that the true value of y, yo, depends on the true satellite

locations βo, which is unknown. We therefore approximate yo, after applying the

first-order Taylor-Series expansion around the known satellite locations β, as

yo ≈ ŷo −D∆β (5.24)

where

ŷo =
[
d̂oTu , d̂

T
c,1, ..., d̂

T
c,N

]T
+ Gαo. (5.25)

d̂ou = [d̂ou,
ˆ̇dou]

T and d̂c,n = [d̂c,n.
ˆ̇dc,n]T have the same functional forms as dou in (5.3)

and doc,n in (5.7) except that the true satellite locations βo are replaced with their

known but noisy version β. Mathematically, we have

d̂ou = ||uo − s1|| − ||uo − s2|| (5.26a)

ˆ̇dou =
−(uo − s1)

T ṡ1
||uo − s1||

− −(uo − s2)
T ṡ2

||uo − s2||
(5.26b)

d̂c,n = ||cn − s1|| − ||cn − s2|| (5.26c)

ˆ̇dc.n =
−(cn − s1)

T ṡ1
||cn − s1||

− −(cn − s2)
T ṡ2

||cn − s2||
(5.26d)

where n = 1, 2, ..., N . The coefficient matrix D for the satellite location error ∆β

can be shown to be

D =

(
∂ŷo

∂β

)
. (5.27)

Putting (5.25) and (5.26) into (5.27) and comparing the result with B.4 indicate that

D is equal to the partial derivative
(
∂yo

∂βo

)
evaluated at the noisy satellite locations

β.

Note from (5.26) that d̂c,n is indeed a known quantity because the calibration

station positions cn and satellite locations β are both available. Exploring the above
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fact and putting (5.25) transform the composed measurement vector y into

ŷ ≈ Hd̂ou + Gαo + (∆y −D∆β) (5.28)

where G and H are defined in (5.9) and (5.19). Besides,

ŷ = y − [0T , d̂Tc,1, ..., d̂
T
c,N ]T . (5.29)

We shall estimate the source TDOA and FDOA d̂ou from ŷ to accomplish the

desired measurement fusion. For this purpose, note that in (5.28), the noise term

(∆y −D∆β) is zero-mean Gaussian distributed with covariance matrix

Q̂y = Qy + DQβD
T (5.30)

because ∆y and ∆β are independent zero-mean Gaussian random vectors with co-

variance matrices Qy and Qβ (see Section 5.1). We eliminate the time and frequency

offsets αo in (5.28) by first pre-whitening the noise in ŷ using L̂−1y and then multi-

plying both sides of (5.28) by the projection matrix

P̂ = I(N+1)×2 − L̂−1y G
(
GT L̂−Ty L̂−1y G

)−1
GT L̂−Ty . (5.31)

Here, Q̂y = L̂yL̂
T
y is the Cholesky decomposition of Q̂y. After these manipulations,

(5.28) becomes

P̂L̂−1y ŷ = P̂L̂−1y Hd̂ou + P̂L̂−1y (∆y −D∆β) (5.32)

where P̂G = 0 has been applied. The BLUE of d̂ou is [99], [112]

d̂u = [d̂u,
ˆ̇du]

T =
(
HT P̂yH

)−1
HT P̂yŷ (5.33)

where the fact that Q̂−1y = L̂−Ty L̂−1y and P̂ is idempotent (i.e., P̂2 = P̂) has been
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applied, and

P̂y = Q̂−1y − Q̂−1y G
(
GT Q̂−1y G

)−1
GT Q̂−1y . (5.34)

This completes the Step-1 processing of the proposed algorithm that fuses the source

and calibration measurements.

It is worthwhile to point out that the approach used to cancel αo in (5.28) is

referred to as orthogonal subspace projection (OSP) in some literature [112]–[114].

A recent study [112] showed that results identical to the fusion output in (5.33) can

be obtained via jointly estimating d̂ou and αo, or “differential signal processing”,

where measurement differencing is used to eliminate αo. In this work, we adopt the

OSP approach to facilitate the performance analysis of the proposed algorithm.

Step-2 : With the source TDOA and FDOA estimates in (5.33), the source po-

sition uo can be estimated using e.g., the algebraic TDOA-FDOA geolocation tech-

nique developed in [82]3 that jointly utilises d̂u,
ˆ̇du, the source altitude h and known

satellite locations β. The obtained source position estimate, denoted by u, is the

algorithm output.

Realising the proposed algorithm requires the evaluation of Q̂y defined in (5.30).

However, it depends on the unknown source position uo through the matrix D define

in (5.27). To address this difficulty, we set Q̂y = Qy to obtain an initial estimate

of uo and then plug the result back to (5.27) and (5.30) so that improved estimates

of Q̂y and uo can be obtained. In the algorithm implementation, we do not iterate

the above process and simulations show that this approximation does not lead to

observable performance degradation.

5.3.2 Performance Analysis

We derive the covariance matrix of the source position estimate u, denoted by

cov(u), and compare it with CRLB(uo). Note that the proposed algorithm finds

u from d̂u in (5.33), which is the estimate of the source TDOA and FDOA d̂ou =

[d̂ou,
ˆ̇dou]

T (5.26). Following the same approach adopted in [82], we can show that

3This algorithm was indeed used to generate the simulation results presented in Section 5.4.
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cov(u) is approximately equal to

cov(u) ≈
(
∂uo

∂θo

)(
∂d̂ou
∂θo

)−1
cov(d̂u)

(
∂d̂ou
∂θo

)−T (
∂uo

∂θo

)T
(5.35)

where cov(d̂u) is the covariance matrix of d̂u. It can be derived by putting (5.28)

into (5.33) and subtracting d̂ou from both sides to obtain the estimation error in

d̂u. Post-multiplying the estimation error with its transpose and taking expectation

yield

cov(d̂u) =
(
HT P̂yH

)−1
. (5.36)

Putting (5.36) and comparing (5.35) with (5.23) indicate that

cov(u) ≈ CRLB(uo) (5.37)

if
(
∂d̂o

u

∂θo

)
≈
(
∂do

u

∂θo

)
and Py ≈ P̂y (i.e., Q̃y ≈ Q̂y or equivalently D ≈

(
∂yo

∂β

)
).

It can be verified that the above approximations are valid under the conditions

∆si/||uo − soi || ≈ 0 and ∆ṡi/||uo − soi || ≈ 0 for i = 1, 2. In other words, when the

satellite location errors are negligible with respect to the source-satellite range, the

proposed algorithm can attain the CRLB accuracy under Gaussian noise model.

The above analysis implicitly assumes that the matrix D is evaluated using the

true source position. Similar assumption was also utilised in [96]–[98], [103], [108].

However, as pointed out in the previous subsection, the algorithm implementation

uses the estimated source position instead to produce D. The amount of error

introduced is dependent on the TDOA and FDOA noise as well as satellite location

errors. As a result, the estimation performance of the proposed technique would

eventually deviate from CRLB when the noise level becomes sufficiently large and

the thresholding effect [99] occurs.
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5.4 Performance Validation and Evaluation

We study the performance of the proposed two-step source geolocation algorithm

via simulations. The performance metrics used are the geolocation root mean

square error (RMSE), RMSE(u) =
√

1
K

∑K
k=1‖uk − uo‖2, and the estimation bias,

Bias(u) = || 1
K

∑K
k=1 uk − uo||. Here, K = 20000 is the number of Monte Carlo runs

and uk denotes the geolocation result in the k-th ensemble run.

The geolocation performance of the proposed algorithm is compared with the

CRLB and that of two benchmark methods, namely an iterative ML estimator and a

differential calibration (DC)-based estimator [94], [96]. The ML algorithm estimates

the source latitude and longitude θo together with the time and frequency offsets αo

and true satellite locations βo. The estimate of the geocentric position of the source

is then found by plugging the result into (5.1). We initialise the ML algorithm via

adding to the true values zero-mean Gaussian noise with covariance matrix equal

to 4·FIM(ηo)−1, where FIM(ηo) is given in (5.13). The DC-based method cancels

αo by subtracting from the calibration measurements the source TDOA and FDOA

and performing source geolocation using the transformed calibration measurements.

Note that the satellite location errors are not explicitly taken into account in the

DC-based method.

The simulated dual-satellite geolocation scenario is depicted in Figure 5.1. The

source is located at [124oE, 25oN] with known altitude h = 100m. There are three

ground calibration stations and they are located at [116.3oE, 39.9oN], [119oE, 39oN]

and [121oE, 31.5oN]. Two satellites are located at [86.71oE, 0.029oS] and [86.78oE,

0.042oS] with altitudes 35792km and 35742km. They are moving with velocities ṡo1 =

[3.76,−0.67, 126.5]Tm/s and ṡo2 = [1.27, 0.15, 133.7]Tm/s. This simulation scenario

is challenging mainly because the baseline (i.e., the distance between two satellites)

is around 72km, which is much smaller than the source-satellite distance of more

than 37778km. Hence, is a short-baseline geolocation geometry.

The source carrier frequency is fc = 14.5GHz. To simplify the simulation, the
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carrier frequencies of the calibration stations are all set to be fc as well, although in

practice, they could be different from but close to fc. The transponder at satellite

1 is assumed to have a group delay of 0.06µs and a local oscillator of 2.5GHz,

both of which are unknown. We set that the covariance matrix for the source

and calibration measurements Qy is a diagonal matrix. Unless stated otherwise,

the standard deviations of the TDOA and FDOA noises are σt = 0.1µs and σf =

10mHz, while the standard deviations of the satellite position and velocity errors

are σs = 1000m and σṡ = 0.01m/s.

For the ML algorithm, each of the parameters is initialised by randomly drawing a

sample from a normal distribution, of which the mean is the corresponding practical

value and the variance equals to twice of the corresponding CRLB entry.

Figure 5.2: Geolocation RMSE as a function of the TDOA noise standard deviation
σt.

Figure 5.2 plots as a function of the TDOA noise standard deviation σt the

geolocation RMSE of the proposed two-step algorithm. It can be seen that the

two-step method can provide geolocation accuracy very close to the CRLB when

σt ≤ 0.25µs, which is consistent with the performance analysis in subsection 5.3.2.

The ML estimator is also able to attain the CRLB accuracy. However, since

time and frequency offsets are unknown, there is no ready explicit formulation to

calculate the ML estimate. Instead, the ML estimates are obtained via iterative
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numerical approximation, while the extra parameters are assessed in a joint manner.

It is intuitive that the ML estimation is more computationally complex and time-

consuming. According to simulation results, the proposed algorithm is at least 2

times faster than the ML method in terms of running time on our desktop with Intel

Core i5-4590 3.30GHz CPU and 12GB RAM.

The DC-based technique, on the other hand, is unable to offer the CRLB per-

formance under small TDOA noise, because it does not take into consideration the

statistical information on the satellite location errors when performing measurement

differencing. Note that as σt increases over 0.2µs, the performance of the DC-based

approaches the CRLB. This is possibly because the TDOA noise now dominates the

equivalent error covariance matrix Q̂y (5.30) and the effect of the satellite location

errors is less influential Notice that the estimation bias of the proposed algorithm is

always less than 3km, which is negligible compared with the geolocation RMSE. It

indicates that the proposed algorithm is approximately unbiased in this simulation.

Figure 5.3: Geolocation RMSE as a function of the FDOA noise standard deviation
σf .

Figure 5.3 shows the results as a function of the FDOA noise standard deviation

σf . The obtained observations are similar to those from Figure 5.2. Again, as

expected, the proposed two-step algorithm attains the CRLB accuracy.

Figure 5.4 compares the geolocation performance as a function of the satellite po-
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Figure 5.4: Geolocation RMSE as a function of the satellite position error standard
deviation σs.

sition error standard deviation σs. When σs is smaller than 2500m, the geolocation

RMSEs of both the proposed two-step method and ML estimator remain very close

to the CRLB. However, the performance of the proposed algorithm starts to deviate

from the CRLB and become inferior to that of the ML estimator, as the satellite

position error further increases. This is because the proposed algorithm does not

refine the noisy satellite locations, in contrast to the ML estimator that estimates all

the unknowns simultaneously.This is also the reason why the bias of the proposed

algorithm increases apparently when σs is larger than 2500m. The geolocation per-

formance of the DC-based method is very sensitive to the satellite position error and

it degrades significantly as σs has larger values. We also investigated the geolocation

performance as a function of the satellite velocity error standard deviation σṡ. The

observations are very similar and hence, the obtained results are omitted here.

Figure 5.5 demonstrates location CRLB and RMSE under different satellite ve-

locity noise configuration. Similarly to Figure 5.4, both RMSEs of the proposed

algorithm and the ML attain the CRLB when the satellite velocity standard devia-

tion is less than 0.4m/s (σṡ < 0.4m/s). As larger satellite velocity error introduced,

the proposed algorithm gives less location accuracy than the ML estimator. Notic-

ing that the CRLB merely changes with variation of the velocity standard deviation.
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5.4. Performance Validation and Evaluation

Figure 5.5: Geolocation RMSE as a function of the z-axis velocity of satellite 2.

It is because of that the effect of the velocity error on the source location CRLB is

scaled by the partial derivative matrix ∂y0

∂βo as shown in (16). Through investigating

practical value of ∂y0

∂βo , we found that the submatrix corresponding to the satellite

velocity error is of relatively small value.

Inspired by [115], Figure 5.5 illustrates the impact of different satellite velocity

configurations on the geolocation performance of the three algorithms simulated. In

particular, the velocity of satellite 2 is artificially varied using ṡo2 + k · [0, 0, 5]T . It

can be seen that the geolocation performance changes greatly under different satel-

lite velocity configurations, mainly because they affect the amount of information

provided by the FDOA measurements on the source position (5.3).

Figure 5.6 shows the geolocation performance as a function of the assumed source

altitude. Specifically, the true source altitude is unknown (which is 100m) and

practically some certain values of h are adopted in geolocation instead. As shown,

the proposed algorithm and ML algorithm remain very close to the CRLB, while

the DC-based produces obviously larger location errors. In a whole, the proposed

algorithm, as well as the other two approaches, is insensitive to the error in the

source altitude.
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5.5. Summary

Figure 5.6: Geolocation RMSE as a function of the assumed source altitude.

5.5 Summary

We investigated the problem of dual-satellite source geolocation when time and

frequency offsets between satellites and satellite location errors are present. The

source position CRLB was derived. The insights from the CRLB analysis motivated

the development of a closed-form two-step geolocation algorithm. In its Step-1

processing, the new method fuses using a BLUE the TDOAs and FDOAs from the

source and calibration stations to produce as the output a single pair of source TDOA

and FDOA. The time and frequency offsets are eliminated and the satellite location

errors are taken into account in the weighting matrix of the BLUE. The second

step of the proposed algorithm geolocates the source using the Step-1 output and

the noisy satellite locations using an existing algebraic solution. Simulations using a

short-baseline dual-satellite geolocation scenario verified the theoretical performance

analysis result that the proposed algorithm can attain the CRLB performance under

Gaussian noise and mild conditions.

In the future work, there is a plan to extend the proposed geolocation framework

to the more general case with multiple satellites and satellite location refinement for

further performance enhancement.

105





Chapter 6

Conclusion and Future Work

This thesis firstly investigated the existing wireless measurement types and corre-

sponding positioning techniques. Then, three different scenarios where the localisa-

tion methods need to be applied with incomplete data have been studies. For each

scenario, the thesis first analyses the shortcomings of current localisation methods

and later proposes improved approaches. The proposed positioning methods are

tested in simulations. The results are presented and evaluated.

• The first work investigates the RSS location fingerprinting techniques. Build-

ing a received signal strength (RSS) fingerprint database requires massive of-

fline workload. Therefore, given a database of sparsely collected data points,

spatial interpolation approaches, namely ordinary Kriging and universal Krig-

ing , are applied to estimate RSS at unmeasured locations. A spatial model,

namely variogram or residual variogram, is first developed to characterised

measurement spatial correlations. Then, the RSS at a nearby unknown loca-

tion can be estimated as a weighted sum of the RSS of known grid points,

where the weights are calculated from the spatial model.

The proposed approaches are validated by simulation and real-data exper-

iments. Through analysing the results, it concludes that 1) the variogram

models established on the sparsely collected data can effectively characterise

the spatial correlation within the decorrelation range, 2) compared with the
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inverse distance weighted interpolation, both ordinary Kriging and univer-

sal Kriging can produce RSS fingerprints of good quality, and the interpola-

tion/estimate error decrease with the increase of density of known data points,

4) the recovered/interpolated fingerprint database can provide acceptable lo-

calisation qualities, and localisation accuracy increased with the density of

known data points.

In the future work, firstly the proposed approaches can be tested with more real

data. Secondly, there are literature considering the Kriging method belonging

to Gaussian process. It is worth to investigate the similarities and differences

between the Kriging method and Gaussian process method in the context of

RSS based localisation.

• The second work investigated multi-target localisation in the Bayesian frame-

work. For closely located targets, the radio signals propagate through similar

paths that would result in correlations of shadowing effect. Taking advantage

of shadowing correlation could improve the localisation performances. How-

ever, the shadowing effect changes very slowly, and for a short period there

are usually not enough measurements to sufficiently characterise the shadow-

ing correlation. To solve the problem, a Bayesian framework is proposed to

calculate the posterior distribution of target location. To cope with the prior

knowledge of shadowing correlation contained in a limited number of measure-

ments, the inverse Wishart (IW) distribution is proposed and a close-form of

the posterior is derived. To investigate how the IW scale matrix affects the

posterior, different cases for scale matrix, including identity matrix, diagonal

matrix and the true shadowing covariance, are tested in simulation.

After obtaining the posterior, the first approach to estimate target locations is

to utilise MCMC method (Metropolis-within-Gibbs sampler) to generate sam-

ples from the posterior and further yield the sample mean as location estimate.

By analysing the simulation result, conclusions can be made: 1) the perfor-

mance of MCMC sampler are influenced by several parameters in a complex
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way and therefore are case-dependent, 2) the MCMC sampler clearly suffers

from the local maximum of posterior especially for high-dimensional problems.

As a result, the sample mean based location estimate is not generally liable.

As an alternative solution, the maximum a posterior (MAP) / maximum like-

lihood (ML) method is applied to produce location estimates. To validate

this, a grid-based searching strategy and an MCMC based searching strategy

are both tested in simulation. By studying the result, it concludes that: 1)

the MAP/ML estimate can coincide with the weighted least square estimate

which adopts the equivalent assumptions, 2) the MCMC based searching is

sufficient to achieve the maximum of posterior/likelihood, the location esti-

mates are of acceptable accuracy, 3) the consequence of different IW scale

matrix assumption is not distinguishable for MAP/ML estimate.

In the future work, other guided searching strategies, such as gradient as-

sisted searching, can be considered to find the global maximum of poste-

rior/likelihood.

• The third work investigates the dual-satellite geolocation system. Given the

location and velocity of the satellites, the time difference of arrival (TDOA)

and frequency difference of arrival (FDOA) measurement are utilised to ge-

olocate a ground target. There are unknown components, i.e. unknown time

delay and frequency shift. To solve the problem, a new closed-form source

geolocation algorithm is proposed using calibration stations at known posi-

tions. In particular, it first fuses the measurements from the unknown source

and calibration stations using a best linear unbiased estimator (BLUE) [99].

The time and frequency offsets are eliminated in the fusion process and the

presence of satellite location errors is appropriately taken into account in the

weighting matrix. The measurement fusion step only produces a single pair

of source TDOA and FDOA, which is then utilised by an existing algebraic

technique for source geolocation. The developed algorithm has low compu-

tational complexity, and more importantly, theoretical performance analysis
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shows that it can attain the Cramér-Rao lower bound (CRLB) under Gaussian

noise and mild conditions.

Simulations using a short-baseline dual-satellite geolocation scenario verified

the theoretical performance analysis result that the proposed algorithm can

attain the CRLB performance under Gaussian noise and mild conditions.

In the future work, there is a plan to extend the proposed geolocation frame-

work to the more general case with multiple satellites and satellite location

refinement for further performance enhancement.
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Appendix A

Gradient Assisted Searching for

MAP/ML Estimate

This section gives the derivatives of both the multivariate Gaussian likelihood and

the inverse Wishart integrated likelihood w.r.t. the target location. Further algo-

rithm based on the derivative, e.g., gradient based sampling method, can be devel-

oped.

A.1 Derivative of Multivariate Gaussian Likeli-

hood

The multivariate Gaussian likelihood is given in (4.18). The derivative w.r.t. the

target location, s, can be derived as

∂p(s | z)

∂s
=

1√
(2π)mn |Σε|

exp

[
−1

2

(
z−f

)T
Σ−1ε

(
z−f

)]
·
(
−1

2

)
·
(
∂

∂s

(
z−f

)T
Σ−1ε

(
z−f

))
(A.1)

in which the derivative part is further given by

∂

∂s

(
z− f

)T
Σ−1ε

(
z− f

)
= −

(
z− f

)T(
Σ−1ε + Σ−Tε

)∂f

∂s
(A.2)
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A.2. Derivative of Inverse Wishart Integrated Likelihood

The derivative of shadowing-free RSS w.r.t. the target location is given by

∂f

∂s
=
∂[fT1 . . . f

T
m]T

∂[sT1 . . . s
T
m]T

=


∂f1
∂s1

. . .

∂fm
∂sm

 (A.3)

where

∂fi
∂si

=

[
∂fi
∂xs,i

∂fi
∂ys,i

]
=


∂fi,1
∂xs,i

∂fi,1
∂ys,i

...
...

∂fi,n
∂xs,i

∂fi,n
∂ys,i

 (A.4)

and

∂fi,j
∂xs,i

=
10α

ln 10
· xs,i − xb,j

d2i,j
(A.5a)

∂fi,j
∂ys,i

=
10α

ln 10
· ys,i − yb,j

d2i,j
(A.5b)

A.2 Derivative of Inverse Wishart Integrated Like-

lihood

The inverse Wishart integrated likelihood is given in (4.23). The derivative w.r.t.

the target location can be derived as

∂p(s | z)

∂s
=

1

(2π)
mn
2

· |Ψ|
v
2

2
v·mn

2 Γmn(v
2
)
· 2

(1+v)mn
2 Γmn(

1 + v

2
) ·
(
∂

∂s
|Φ + Ψ|−

1+v
2

)
(A.6)

Noticing that the derivative of a matrix w.r.t. a vector should be considered specifi-

cally in the aspect of layout. The original derivative is taken of a scalar (determinant

of a matrix) over a column vector, therefore the result should be a row vector, that

is

∂

∂s
|Φ + Ψ|−

1+v
2 =

[
∂

∂s1
|Φ + Ψ|−

1+v
2 · · · ∂

∂s2
|Φ + Ψ|−

1+v
2

]
(A.7)
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A.2. Derivative of Inverse Wishart Integrated Likelihood

in which each element should be a 1× 2 row vector consist of scalars, i.e.

∂

∂si
|Φ + Ψ|−

1+v
2 =

[
∂

∂xs,i
|Φ + Ψ|−

1+v
2

∂

∂ys,i
|Φ + Ψ|−

1+v
2

]
(A.8)

The derivative of square-error matrix w.r.t. xs,i is further given by

∂

∂xs,i
|Φ + Ψ|−

1+v
2 = −1 + v

2
· |Φ + Ψ|−

1+v
2 · tr

(
(Φ + Ψ)−1

∂Φ

∂xs,i

)
(A.9)

where

∂Φ

∂xs,i
=

∂

∂xs,i

(
z− f

)(
z− f

)T
(A.10a)

=
∂
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and

∂

∂xs,i

(
zk−fk

)(
zl−fl

)T
=
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, if k = i and l 6= i
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−
(
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)T

− (zi − fi) ·
∂fi
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, if k = i and l = i

(A.11)

where the derivative of shadowing-free RSS w.r.t. the xs,i can be summarised from

(A.4) and (A.5). The derivative of square-error matrix w.r.t. ys,i is similar to (A.9),

(A.10b) and (A.11).
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Appendix B

Complementary Derivative for

Dual-Satellite TDOA-FDOA

Geolocation

Expressions for the partial derivatives
(
∂uo

∂θo

)
,
(
∂do

u

∂θo

)
and

(
∂yo

∂βo

)
are provided here to

complete the derivation of the source geolocation CRLB in (5.23).

From the definition θo = [φ, ϕ]T , the partial derivative
(
∂uo

∂θo

)
can be easily shown

to be equal to (
∂uo

∂θo

)
=

[(
∂uo

∂φ

)
,

(
∂uo

∂ϕ

)]
. (B.1)

The detailed expression can be easily found using (5.1) and will be omitted here.

In the following derivation, we need the following definitions. Specifically, ρa,b =

(a−b)
||a−b|| denotes a unit vector from b to a and ga,b = − ḃ

||a−b|| + (a−b)T ḃ
||a−b||2 ρa,b.

By Chain Rule,
(
∂do

u

∂θo

)
can be expressed as

(
∂dou
∂θo

)
=

(
∂dou
∂uo

)(
∂uo

∂θo

)
(B.2)

117



where
(
∂uo

∂θo

)
is given in (B.1) and

(
∂do

u

∂uo

)
is equal to, from (5.3),

(
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)
=

ρTuo,so1
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 . (B.3)

Using (5.8), we have that
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From (5.3) and (5.7), it can be shown that
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T
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where n = 1, 2, ..., N . This completes the derivation of the partial derivatives re-

quired in the CRLB result in Section III.
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