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 I 

Abstract 
Environmental regulators stipulate performance and modelling requirements for water 

utilities managing sewer networks to demonstrate regulatory compliance in order to 

limit their impact on the environment. Uncertainty in urban drainage modelling 

presents challenges to decision makers attempting to achieve compliance with regards 

to Combined Sewer Overflow (CSO) and treatment plant discharges. This study 

provides methodologies for making decisions to improve the environmental 

performance of the urban sewer systems while accounting for uncertainty in model 

predictions of their performance. In doing so, an objective uncertainty quantification 

process is first described using a case study in Belgium which enables the water 

utility to evaluate and report the uncertainty in their CSO spill predictions and is 

transparent enough to satisfy their regulator. Second, six practitioners from a water 

utility are interviewed to identify their preferences for uncertainty in the performance 

variable and the risk of non-compliance. Given identical uncertainty levels in model 

predictions, individuals’ preferences are found to have a significant effect on the 

decisions taken. Subsequently, two uncertainty based decision models are presented 

which reflect individuals’ preferences in making decisions accounting for uncertainty 

in model predictions. The first decision model includes the concept of Buffered 

Probability of Exceedance as a risk measure accounting for the magnitude of 

extremes along with the mean and the skewness of the performance distribution. The 

second decision model applies Cumulative Distribution Function (CDF) matching 

which minimises the difference between the CDFs of the performance variable and a 

target function specified by the decision maker. The decision models presented in this 

study enable a better-informed decision making by allowing a comprehensive 

understanding and representation of modelling uncertainty in evaluating decisions 

instead of only using exceedance probabilities or extreme values. The decision 

models provide a significant improvement over existing uncertainty based approaches 

found in literature to manage sewer overflows.  

Keywords: buffered probability of exceedance, combined sewer overflows, decision 

making under modelling uncertainty, emission quality failures, stochastic decision 

modelling 
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1. Introduction 

1.1 Background and motivation 

Among the various downsides of increasing urbanization is its negative impact on the 

water quality of natural surface water bodies such as rivers and lakes. These negative 

impacts include endangering and damaging the aquatic life, the water not being 

suitable for water treatment or bathing and the degradation of aesthetics of these 

natural water bodies. Often, these impacts are caused by the wastewater derived from 

households, commercial and industrial properties, and stormwater from the catchment 

surfaces carrying chemical and biological loads responsible for these aforementioned 

negative impacts. Sewer systems are constructed as the engineered solution to 

mitigate these negative impacts. There are two types of sewer systems: Combined 

sewer systems where the wastewater and the storm water is collected in the same pipe 

and conveyed to treatment; and Separate sewer systems where the wastewater and 

stormwater are collected in separate pipes, with only the wastewater being conveyed 

to treatment. Most of the older sewer systems are combined sewer systems. The 

wastewater is transported to the wastewater treatment plants (WWTP) for treatment 

and then the treated effluent is released into a natural surface water body. Wastewater 

treatment plants are designed to treat the wastewater to an acceptable standard 

depending on the receiving water body and the treated wastewater is then, released to 

the water body (Butler et al., 2018). In the event of high precipitation, the incoming 

drainage load to the WWTP might exceed the maximum limit the WWTP was 

designed for. In such events, the excess drainage load is discharged into the water 

body via a Combined Sewer Overflow (CSO) structure at the WWTP. In order to 

avoid sewer flooding, numerous CSO structures are located throughout any sewer 

network so that if the local flow capacity is being reached then excess dilute 

wastewater can be released to a nearby water body without treatment.  

Water utility companies responsible for the management of urban drainage system are 

often subjected to performance assessment with regard to protecting the population 

from sewer flooding and protecting the receiving water bodies (RWBs) from the 

release of pollutants present in the wastewater (De Toffol, 2006). Environmental 

regulators may impose performance standards for the operation of overflow 

structures; one such example is the Urban Pollution Management Manual in the UK 
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which specifies concentration-duration-frequency based criteria for ammonia 

concentrations and dissolved oxygen (DO) levels to control the negative ecological 

impacts on the RWBs caused by CSO spills (Foundation for Water Research, 2012). 

However, the criterion to evaluate the performance of CSOs is not uniform across 

different countries (De Toffol, 2006; Dirckx et al., 2011). For example, in Belgium, 

Denmark and Netherlands, guidelines based on annual overflow frequency are 

enforced while in Germany the criterion for CSO spills considers the overflow 

volume (Dirckx et al., 2011). Water utilities are required to comply with the 

performance standards applicable to their jurisdiction whatever they are, and failing 

to do so can result in financial penalties and reputational damage, e.g. the water utility 

company Thames Water in the UK was recently fined 20 million pounds for releasing 

untreated sewage water into the Thames river and its tributaries in contravention of its 

discharge consents (Carrington, 2017).  

Therefore, in the context of environmental impact on the RWBs, the management of 

urban drainage systems involves investment and operational decisions which reduce 

the risk of non-compliance with the regulations. Such decision making processes aim 

to identify, test and implement solutions or strategies which minimize the risk of non-

compliance while satisfying constraints such as available budgets, and planning 

constraints. However, the current status of CSO emission quality regulations in the 

UK and Europe suggests an absence of an explicitly defined financial penalty for 

breaching the regulations. As a result, for most of the cases, the calculation of risk as 

the probable loss associated with each decision alternative cannot be calculated in the 

absence of a financial penalty. Therefore, this thesis uses the probability of non-

compliance with the regulatory performance standards as ‘risk’ in the absence of a 

consequence value the event of non-compliance.  

Soncini-Sessa et al. (2003) classify the decision making for water resource systems 

into planning and management actions. Planning decisions involve actions which are 

taken once while management decisions involve sequential actions. In planning, the 

actions are taken without considering their effect on similar actions in future. 

However, management problems require the evaluation of the sequential actions and 

their individual impacts on the linked future actions based on current system 

conditions. This thesis will focus on planning type investment decisions to reduce the 



 3 

risk of water quality failure caused by CSO spills because often these decisions 

involve large capital costs.  

Hydrodynamic network models are often required to assess the performance of the 

proposed solutions (Delelegn et al., 2011). Such models help the decision makers 

understand the physical behaviour of the flow and pollution over the catchment and in 

the sewer pipes. Based on this understanding of the flow behaviour decision makers 

design and implement engineering solutions to mitigate the negative impact of urban 

sewer systems on the water quality and avoid facing penalty by the regulators. 

However, it has been established that there is significant uncertainty present in the 

predictions of such hydrodynamic models (Thorndahl and Willems, 2008). Hence, 

these simulation models should also provide the level of the uncertainties 

accompanied with the model predictions because any unaccounted uncertainty in 

these model predictions may have a significant effect on the outcome of the decision 

making process of water utilities. In addition, investment decisions in urban drainage 

infrastructure are usually a long-term commitment and significant capital is involved 

in the construction and maintenance of such infrastructure.  Hence, the efficacy of 

such investments should be carefully valued using the best information available on 

the model predictions such that they are not only complying with the regulatory 

standards and robust against the uncertainties in the behaviour of the physical system 

but also cost-effective.  

1.2 Aim and objectives 

Although uncertainty in the urban drainage simulations has been studied recently, 

there is a dearth of studies which practically quantify the uncertainty in urban 

drainage modelling and demonstrate how to incorporate this additional information 

on uncertainty to aid the decision making process. Specifically this thesis studies the 

influence of uncertainty in the simulation of CSO emission quantity and quality 

through case study catchments in different countries and applies suitable regulatory 

requirements. As is the case in the UK or Austria, the regulations look at the water 

quality of the receiving water bodies instead of the sewer overflow quality. Hence, 

this thesis acknowledges that the simulation of water quality in the RWBs requires 

consideration of the treatment processes at the WWTP, the WWTP effluent to the 

RWBs, and the sensitivity of the RWB itself towards the incoming pollutants. In 
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addition, there could be a number of innovative measures to improve the CSO 

efficiency utilising the interconnectivity of the CSO and the WWTP (for example, 

Kleidorfer and Rauch (2011)). Consequently, the evaluation of such measures 

requires simulation of WWTP processes. It should be of note that in this thesis, the 

simulation case studies are communicated to demonstrate the proposed uncertainty 

based decision modelling approaches. The author acknowledges that the sources of 

uncertainties and the flow processes represented to simulate CSO emission quantity 

and quality in this thesis are a subset of wider uncertainties and processes e.g. 

simulation of mixing of pollutants in the RWBs.  

This thesis aims to provide methodologies which can be used for decision making in 

urban drainage infrastructure investments using the sound understanding of the 

inherent uncertainty in hydraulic and emission quality model predictions. In order to 

achieve this aim, this thesis sets out following objectives: 

(I) Represent the regulatory compliance requirements in the modelling and 

the evaluation of decision alternatives.  

(II) Quantify uncertainty in the model predictions while following the 

regulatory modelling requirements, thereby making the uncertainty 

predictions acceptable to the regulator. 

(III) Identify individuals’ preferences for uncertainty in the performance 

variable and their risk behaviour in evaluating decision alternatives.  

(IV) Develop decision models which represent the decision makers’ 

preferences to select optimal decision alternatives improving the 

environmental performance of urban sewer systems while complying with 

the regulatory standards.  

1.3 Contributions and thesis structure 

Apart from this introductory chapter and the conclusions in Chapter 7, the thesis is 

organised into five chapters. These five chapters can be summarized as below.  

Chapter 2 includes a literature review on two main subjects: uncertainty 

quantification in urban drainage modelling, and decision-making under probabilistic 

uncertainty. The chapter also includes a review of the decision making methodologies 
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which have been applied in urban drainage systems to study the environmental impact 

of CSOs.   

The contents of section 2.1 are based on  

• Sriwastava, A., and Moreno, A. (2017) "Report on uncertainty frameworks 

and Report on application of uncertainty frameworks, potential 

improvements." Deliverables D.1.1 & D.4.2, Marie Curie ITN Quantifying 

Uncertainty in Integrated Catchment Studies (QUICS). 

 

Chapter 3 addresses a knowledge gap on the role of model uncertainty in 

environmental compliance studies by describing an objective uncertainty 

quantification process which enables the water utilities to evaluate and report the 

uncertainty in their modelling predictions and is transparent enough to satisfy 

regulators. (Objectives I & II) 

The contents of Chapter 3 are based on  

• Sriwastava, A.K., Tait, S., Schellart, A., Kroll, S., Dorpe, M.V., Assel, J.V. 

and Shucksmith, J., 2018. Quantifying Uncertainty in Simulation of Sewer 

Overflow Volume. Journal of Environmental Engineering, 144(7). 

https://doi.org/10.1061/(ASCE)EE.1943-7870.0001392  

Chapter 4 identifies the individuals’ preferences towards the probability distribution 

of the performance variable through interviews with practitioners at a water utility 

company in Belgium. Given identical simulation results and identical risks, different 

decision makers might opt for different solutions regardless of the optimality of 

solution/s. This difference can be attributed to the decision maker’s own perception of 

risk which was assessed through the interviews where the practitioners were asked a 

series of questions based on a local case study. (Objective III)  

Chapter 5 proposes two stochastic optimization based decision models to express the 

risk-averse preferences of a decision maker and to acknowledge the uncertain 

modelled system performance. Both decision models are illustrated using a case study 

site in Luxembourg where compliance for ammonia concentration in CSO spills is 

tested under uncertainty associated with model inputs and model parameters. 

(Objective IV) 



 6 

The contents of Chapters 4 and 5 are going to be submitted for journal publications. 

Chapter 6 presents a detailed discussion of the issues involved with investment 

decisions to improve the environmental performance of the urban sewer systems and 

presents them in light of the findings of Chapters 3, 4 and 5. 



 
 

2. Literature review 
This chapter presents a literature review on the previous research dealing with the 

identification and quantification of uncertainty in the simulation of urban drainage 

processes; followed by a review of studies on decision making using the outputs from 

urban drainage simulation models. 

2.1 Uncertainty in urban drainage simulations 

Uncertainty analysis provides structured information on the limitations of simulation 

methodologies and tools employed to predict physical and other processes. 

Uncertainty analysis of hydrological and hydraulic modelling is considered an 

important component of good scientific practice (e.g. Pappenberger and Beven 

(2006)). Accounting for uncertainty may result in qualitatively and quantitatively 

different outcomes compared to the case which does not consider uncertainty 

(Morgan and Henrion, 1990). 

While uncertainty in the modelling of engineering problems can have many sources, 

the uncertainty in modelling can be classified into two broad categories, aleatory and 

epistemic (Kiureghian and Ditlevsen, 2009). Aleatory uncertainty refers to the 

inherent randomness in any physical process and has also been termed variability, 

stochastic uncertainty, objective uncertainty and Type I uncertainty. Epistemic 

uncertainty arises from a lack of knowledge about the physical process in question. 

The epistemic uncertainty has also been termed as subjective uncertainty and Type II 

uncertainty (Sun, 2010). Kiureghian and Ditlevsen (2009) argue that the 

categorization of the uncertainties in any modelling study depends on the choices a 

modeller makes. Typically, a modeller should categorise uncertainties as aleatory 

uncertainties when they cannot be reduced by improved knowledge through 

additional data collection or better model structure or calibration improvement. In 

contrast to aleatory uncertainty, epistemic uncertainty is associated with the 

assumptions and simplifications made while formulating the mathematical equations 

to represent the physical processes. As a result, epistemic uncertainty can be reduced 

by various measures such as enhanced calibration using better or more measurements 

and improvement of the underlying mathematical relationships.  
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However, this categorization of modelling uncertainties into aleatory and epistemic 

can have important implications on any resulting decisions (Dubois 2010). For 

example, the aleatory uncertainty can be countered with decisions which are designed 

to cope with the impact of such uncertainties, while the decision to collect more 

information can be taken in order to reduce the epistemic uncertainty.  

2.1.1 Sources of uncertainty in urban drainage simulation models 
In urban drainage simulation models, uncertainty can have various sources. Refsgaard 

et al. (2007) presented a classification of the modelling uncertainty in the context of 

integrated water resources management. Refsgaard et al. (2007) classified the sources 

of uncertainty in model predictions into model input data, model parameters and 

model structure uncertainties, whereas Deletic et al. (2012) expressed the uncertainty 

in the calibration of model parameters as a separate source of modelling uncertainty. 

Refsgaard et al. (2007) proposed a more comprehensive framework for accounting 

the uncertainty in the modelling of environmental processes by including the framing 

of problem context, and computer implementation of the model, as additional 

contributors to the uncertainty in the model output. Refsgaard et al. (2007) discussed 

uncertainty analysis not as an additional product to be added to the finished model, 

but rather as a process that should be performed in parallel to the problem 

identification, model design, building and operation. Several approaches for 

accounting the uncertainty in model predictions have been presented and classified 

depending on their relation with the model conceptualization stage and the source and 

type of uncertainty. For instance, Fig. 2.1 displays an uncertainty model for a typical 

simulation model for an engineering system from Benke et al. (2008).  

Deletic et al. (2012) presented a Global Assessment of Modelling Uncertainties 

(GAMU) framework produced by the IWA/IAHR Joint Committee on Urban 

Drainage. This was an effort to provide urban drainage modellers with a unifying 

terminology and understanding on uncertainty analysis. Within the GAMU 

framework, modelling uncertainties were classified into three main sources; I) Model 

input uncertainties, II) Calibration uncertainties and III) Model structure 

uncertainties. The links between the different uncertainty sources are depicted in Fig. 

2.2. The GAMU framework focuses on statistical uncertainties at the calibration and 

prediction phases of the model, thus diverting from the process described by 

Refsgaard et al. (2007).  
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Fig. 2.1. Uncertainty in a complex system (from Benke et al., 2008). 

 

 

 

Fig. 2.2. Key sources of uncertainties in urban drainage models (from Deletic et al., 
2012). 
 

In this thesis calibration uncertainty is treated as a subset of model parameter 

uncertainty following the classification of uncertainty sources proposed by Refsgaard 

et al. (2007). The sources of uncertainty in urban drainage simulation models which 

are frequently encountered are described in the following sections.  
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2.1.1.1 Model input uncertainty  

The uncertainty in model inputs and measured data arises from the inherent variation 

of the quantities over space, time or other factors such as, measurement errors, 

unrecorded growing populations, and increasing urbanisation. It can be classified 

under aleatory uncertainty due to the random or stochastic nature of the model inputs. 

A typical example of this category is rainfall data which is a major input to urban 

drainage simulation models whose uncertainty can have significant effects on the 

overall model uncertainty (Hoppe, 2008). Other inputs to urban drainage models 

include dry weather flow which depends on variation in contributing population 

numbers, human habits, and dry weather flow contributions from non-residential 

sources, and geometric properties of the sewer system comprising e.g. pipes, weirs, 

and storage tanks. Pollutant concentrations in the runoff from catchment surfaces 

depend on precipitation and the local catchment properties, whereas the 

concentrations in the dry weather flow are driven by the human habits and 

commercial inputs. The uncertainty in the geometric properties of the sewer network 

elements are primarily associated with errors in measurement and recording and 

communicating these measurements.  

Rainfall data uncertainties are characterised by spatial and temporal variability and 

the error in data measurement. Freni et al. (2010) studied the impact of rainfall time 

resolution on urban water quality assessments and concluded that rainfall temporal 

resolution had a greater effect on water quality sub-models than the structure of the 

water quantity sub-models, due to the dependency of the wash-off sub-model on the 

rainfall intensity. However, when a lower temporal resolution of rainfall is applied, 

parameter calibration compensates this lack of information in rainfall data by 

adjusting the parameter values to reflect the real world behaviour. The physical 

significance of the parameters might have been lost as a result of this forced 

calibration adjustment of parameter values. The GAMU framework proposed the 

definition of error models for input and measured data, which should be propagated 

together in a total uncertainty analysis. Dotto et al. (2014) evaluated the impact of 

data uncertainty on urban stormwater models and found that random errors could 

easily be filtered by the parameterization. However, the systematic errors in the input 

and calibration data had a significant impact on the model sensitivity represented by 
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parameter distributions. Biases in the measured data led to distinct parameter 

distributions.  

2.1.1.2 Model parameter uncertainty 

When a simulation model is built to represent a physical process, parameters are 

generally required for the definition of relationships between the physical variables. 

Model parameter uncertainty is the uncertainty associated with the estimation of each 

parameter in the model. Depending on the nature of the parameter, parameter 

uncertainty can be aleatory uncertainty or epistemic uncertainty. For example, the 

uncertainty in a parameter representing the impervious area in a catchment can be 

classified as epistemic because of the lack of knowledge about this parameter which 

can be further improved. Alternatively, a parameter representing initial soil moisture 

varies over time indicating an uncertainty of the aleatory nature. 

Often these parameters are estimated using remote monitoring and on-site monitoring 

data; however, if there is no evidence or data available and the parameter value has to 

be determined, this may result in an unknown and possibly higher degree of 

uncertainty. In some cases, the desired parameter is estimated by using relationship 

equations from different sub-models because there is no direct measure for its 

estimation. The uncertainty associated with the parameter of interest consists not only 

of the uncertainties in the values of sub-model parameters but also of how these 

uncertainties propagate between sub-models. For example, roughness in sewer pipes 

can be estimated using the Colebrook-White equation which uses geometrical and 

flow characteristics in the pipe to estimate hydraulic resistance (Swaffield and Bridge, 

1983). The potential uncertainty in these characteristics (flow and geometry) affects 

the estimated values of pipe roughness. 

The steps involved in uncertainty analysis are directly linked to the estimation of the 

values of parameters. Standard statistical methods result in a point estimate and a 

measure of precision around this point estimate, for example, a 95% confidence 

interval. However, within a multivariate framework, an additional measure 

‘covariance’ is also generated which reflects the relationship among parameters. 

Representation of the parameter uncertainty depends on the method applied. 

Uncertainty distribution around the ‘true’ parameter value (expected value) can be 

expressed through either Bayesian or frequentist approach. It is suggested that the 
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assumptions to specify the probability distribution should follow standard statistical 

methods, for example, one may use a beta distribution for binomial data, or a gamma 

or lognormal for the right skewed parameter (Briggs et al., 2012). 

Sometimes there is very little information available about the parameter because 

either there is no data or there are not many studies related to its estimation. In such 

cases, a conservative approach can be followed by relying upon expert opinion and 

the uncertainty can be explained through an appropriate range of possible estimates 

elicited from each expert (Garthwaite et al., 2005). However, Garthwaite et al. (2005) 

further add that the elicitation from experts can contain unconscious biases which can 

affect the elicited probabilities of the uncertain quantity. If formal elicitation is not 

feasible, a wide uniform distribution can be assumed to account for the uncertainty 

around this parameter. There has been a lack of studies where prior parameter 

distribution was estimated from field measurements representing the measured 

behaviour of a parameter. Studies such as Freni et al. (2008), Korving et al. (2002), 

and Vezzaro et al. (2013) proceeded with the prior assumption that the input and 

model parameters followed uniform or normal distributions which may not reflect 

reality. Apart from uniform and normal distributions, triangular distributions have 

also been used by assigning the minimum, the maximum, and the mode values (for 

example, Iooss and Lemaître (2015)). These distributions do not account for 

uncertainty at the extremes or beyond the specified range. In addition, continuous 

distributions which give a reliable estimate of uncertainty around the expected 

parameter value should be preferred. For instance, instead of using a triangular 

distribution while performing three-point estimates, it is recommended to use a PERT 

distribution which is a special case of a Beta distribution (Benke et al., 2008). The 

distribution is specified by assigning maximum, minimum values and the mode which 

is the most likely value. The scale parameter λ for the height of the distribution is 

taken as 4 by default (Vose, 2010). The PERT distribution has a distinct advantage 

over a triangular distribution because it can be changed from a symmetrical 

distribution to a skewed distribution by changing the mode. It can be used instead of a 

normal distribution when the parameters take values within a specified range and the 

extreme values are not important (Benke et al., 2008). 

Following the release of the GAMU framework, Dotto et al. (2012) compared four 

techniques: the Generalized Likelihood Uncertainty Estimation (GLUE); the Shuffled 
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Complex Evolution Metropolis algorithm (SCEM-UA); AMALGAM (a 

multialgorithm, genetically adaptive multi-objective method); and a Bayesian 

approach based on Markov Chain Monte Carlo method, for parametric 

inference/calibration in urban drainage modelling. This work discussed the suitability 

of these techniques to fit parameters to observed data and to evaluate parametric 

correlations. Algorithms were classified according to their ability to identify 

parameters values, correlation, availability and the required user skills. The study 

Dotto et al. (2012) refers to the first step of the GAMU framework which discusses 

how tools for uncertainty analysis should be carefully selected in order to minimise 

biased outcomes. 

Formal Bayesian methods are discussed in the GAMU framework as one of the main 

ways to infer probability density functions of parameter spaces. However, the 

influence of likelihood selection and posterior validation was not discussed. Schoups 

and Vrugt (2010) proposed a generalised likelihood function which relaxes the 

assumption that the residual errors are independent and follow a Gaussian distribution 

and thus improves the parameter and total prediction uncertainty estimates. Del 

Giudice et al. (2013) proposed a statistical description of bias in a likelihood function 

in which autocorrelation of errors are taken into account. 

2.1.1.3 Model structure uncertainty 

Model structure uncertainty corresponds to the inaccuracy in the simulation 

methodology used to represent the real behaviour of the physical process. This 

uncertainty can also arise from inappropriate methods to define the boundary 

conditions and the choice of numerical solution techniques (Deletic et al., 2009). 

Model structural uncertainty can be classified as epistemic uncertainty. Refsgaard et 

al. (2006) brought the focus of uncertainty analysis to the quantification of model 

structure errors. Refsgaard et al. (2006) work discusses the process to assess model 

structural uncertainty in cases where the data is not available. According to the 

GAMU framework, uncertainties due to model structure can be assessed by 

comparing the performance of different model conceptualisations under the same 

conditions (Deletic et al., 2012). For instance, a set of very similar conceptual models 

with same input e.g. rainfall can be compared to identify the model structure 

uncertainty. However, a simple conceptual model and an extended network model are 
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not suitable for this type of comparison because of the difference in the inputs to 

these models.  

2.1.2 Uncertainty propagation in urban drainage simulation models 
Once the probability distributions of model inputs and model parameters have been 

defined, the objective is to compute the probability density functions of the model 

outputs of interest. The choice of methods to represent the uncertainty in input data 

and model parameters in model simulations depends on the computational 

requirements and complexity in implementing such methods (Dotto et al., 2012). 

Monte Carlo simulation is one such method which is non-intrusive, meaning it does 

not require modifications to the model structure. However, Monte Carlo is not easy to 

implement for computationally expensive models, hence this technique is usually 

applied to simplified models. The Monte Carlo method involves repeated simulations 

with samples of the selected input/model parameters drawn from the parameter space. 

This results in a mapping of input/model parameters to the desired model output. To 

cut down the required number of simulations, Latin hypercube sampling (LHS) can 

be used instead of random sampling because the LHS method results in a better 

convergence than random sampling approach for models which require long 

simulation time and it has the ability to generate samples representing the entire 

parameter space (Helton and Davis, 2003). Korving et al. (2002) propagated the 

uncertainty in model parameters to simulate combined sewer overflow volume using 

Monte Carlo simulations where the sewer system was simply represented as a 

reservoir connected to an external weir and a pump. Alternatively, model reduction 

techniques have been used for complex models, for example Schellart et al. (2010) 

used a response database for model reduction before applying Monte Carlo 

simulations for uncertainty propagation in an integrated catchment model which 

comprised a rainfall generator, a simplified hydrological model, a computationally 

expensive sewer hydrodynamic model and a simple river impact model to estimate 

water quality failures in a receiving watercourse over an extended time period. Model 

reduction is an approximation of a complex model and introduces additional 

uncertainty in the realisation of the physical system on top of the uncertainty in the 

complex model. Emulators have also been applied to quantify uncertainty in 

hydrodynamic simulations. An emulator is a statistical approximation of the complex 

simulation model (Uusitalo et al., 2015). Often, the uncertainty analysis process 
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focuses on a dynamic model response i.e. time series of the model output. This 

presents an additional challenge of having a multi-variable process with heavy 

autocorrelation structures (time structure). Some authors have proposed strategies to 

deal with those cases; Carbajal et al. (2017) compared a physically based emulator 

(which merges a simplified physical model and error interpolation) with a fully data-

driven emulator (based on Gaussian process interpolation of a decomposed time-

series) for an urban drainage simulation case. Conti and O’Hagan (2010) presented 

three strategies to deal with the multi-output or dynamic simulators: a multivariate 

Gaussian process; ensemble of single-output emulators; and the use of time as an 

extra input. Conti and O’Hagan (2010) found the multivariate Gaussian process based 

emulator performing better than the other two strategies. Emulation of time-dynamic 

processes can also be proposed by the use of polynomial chaos expansions as in Xiu 

and Karniadakis (2003). This technique can also provide sensitivity analysis results, 

therefore, both the processes, sensitivity analysis and emulation can be done under the 

same model sampling scheme. However, the integration of dynamic input 

uncertainties in emulation based problems is still not readily solved, limiting the 

model to parametric uncertainty propagation. 

A further approach to quantify the uncertainty of the output for complex models is to 

select only a small subset of dominant model inputs and parameters which can 

approximately explain the model output variance for uncertainty analysis or 

parameter estimation (Wainwright et al., 2014). Key processes to be included in the 

uncertainty analysis are identified by ranking all the parameters using sensitivity 

analyses. This reduces the computational cost by only including the most significant 

parameters in the uncertainty analysis. There are several methods proposed in the 

literature for performing sensitivity analysis which can be broadly classified as 

Global Sensitivity Analysis (GSA) or Local Sensitivity Analysis (Saltelli et al., 2000).  

Local sensitivity analysis is performed to study the effect of small input perturbations 

on the model output and has been performed around a point in the parameter space 

whereas a GSA has been performed over the whole parameter space of model inputs 

considered for study (Borgonovo and Plischke, 2016; Gamerith et al., 2013; Iooss and 

Lemaître, 2015). Global sensitivity analysis is performed using different approaches 

e.g. Standard regression coefficients (SRC) (Saltelli et al., 2008), Extended-FAST 

method (Saltelli et al., 1999), Morris Screening method (Morris, 1991), Sobol’ 

indices (Sobol, 2001). Although Vanrolleghem et al. (2015) preferred Extended-
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FAST over SRC and Morris Screening method for water quality simulation in the 

catchment and sewer network, they concluded that for water quantity simulations all 

three methods Extended-FAST, SRC, and Morris Screening produced similar results. 

Kroll et al. (2016) further demonstrated that Morris Screening performed on par with 

Extended-FAST while ranking the influence of parameters on CSO volume. It can be 

concluded that Morris Screening is an appropriate method for performing GSA for 

water quantity output because it is computationally cheap and it performs at a level 

with other available more computationally expensive methods.  

Willems (2008) and Willems (2012) presented a methodology and application to 

quantify the contribution of different sources of uncertainty in urban drainage models. 

This method is based on a variance decomposition approach, which separates the total 

variance presented by the residuals in different characteristic sources; input, the 

parameter (expert elicited), and model structure uncertainty. Nevertheless, the 

variance decomposition approach described is subjected to several assumptions. First, 

it requires a homogeneous variance of the model-observations residuals. This is 

seldom found in real applications, thus Box-cox transformation was used in order to 

stabilise residual variance (reaching homoscedasticity). Secondly, variance 

decomposition relies strictly on the independence of error terms. This fact was 

pointed out by Freni and Mannina (2010) by comparing the relationship between the 

sum of partial variances and total variance. This difference indicates non-

independency of the error terms. They concluded that the applicability of variance 

decomposition is increasingly reduced when propagating uncertainties downstream of 

the sub-model chain, where correlation amongst parameter uncertainties appears to be 

higher. The variance decomposition method provides a valuable source of knowledge 

by pointing out the relative importance of each contributor when the assumptions are 

met. 

Most of the above-mentioned studies have considered the probabilistic representation 

of uncertainty in different model components. Fu et al. (2011) argued that the type of 

uncertainty in urban drainage modelling is quite broad and cannot be expressed 

adequately by probabilistic measures alone. They proposed a mathematical 

framework which facilitated the inclusion of vagueness in expert knowledge about 

model parameters using fuzzy sets and imprecise rainfall data using probabilities. 

This framework suggests the use of imprecise probabilities for input rainfall data 
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when more than one probability distribution fits the data. Data scarcity is widely cited 

as one of the major problems in characterising the model parameter uncertainty. This 

framework includes a fuzzy set representation for such model parameter uncertainty. 

These two different types of uncertainty representations are combined in a joint 

random set using two methods, discretization and Monte Carlo method where the 

latter was found to be more computationally efficient.  

2.1.3 Concluding remarks 
Uncertainty in the simulation of water quantity or quality in urban drainage has been 

extensively studied. Deletic et al. (2012) serves as a framework to reach a common 

definition of uncertainty terminology in the urban drainage community. It correctly 

discusses the need for model identification, calibration and validation. However, the 

GAMU framework dealt only with the propagation of statistical uncertainties and 

recommends uncertainty analysis as a standalone and separate process than the usual 

modelling workflow. On the other hand, model calibration using observed data is 

nothing but correcting the model in order to generate predictions which are as close as 

possible to the measured observations. However, it does not provide any information 

about the accuracy of the model predictions such as by which amount the model 

predictions would deviate from this ‘corrected’ model prediction and what is the 

likelihood of such deviations. An uncertainty analysis acknowledges the limitation of 

the model predictions by providing an error band with the corresponding likelihood of 

model predictions. This additional information gives more confidence to the 

modellers on their model performance which would further facilitate a better-

informed decision making process. Therefore, it is recommended that uncertainty 

analysis should be treated as a process which runs parallel to the model definition, 

building, calibration, and validation stages. For example, Deletic et al. (2012) 

recommended that parameter uncertainty should be quantified using observed data 

through Bayesian inference which provides posterior distribution for parameters by 

tuning the prior parameter distribution using the observed data. This process 

indirectly addresses the discussion on the validation of quantified uncertainty in 

model predictions against the observations in the real world. Even if there is limited 

data available about parameters, expert elicitation or literature references can be used 

as a prior in the Bayesian inference so that the resulting posterior distribution 

encompasses the expert knowledge as well as the added information from the limited 
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available data. Therefore, instead of a traditional model calibration process giving 

‘corrected’ parameter values, a Bayesian inference should be applied to generate a 

posterior probability distribution of model parameters along with the information 

about the correlation between the model parameters followed by uncertainty 

propagation of these uncertainties. This will ensure the consideration of the real world 

observations into the uncertainty analysis process and will also ensure that local 

catchment and environmental conditions are well reflected into the uncertainty 

predictions.  

In cases where there is vagueness in the available information about the uncertainty in 

model components, the framework proposed by Fu et al. (2011) should be integrated 

into the wider uncertainty analysis framework to characterize the uncertainty in 

different sources using e.g. fuzzy sets, interval based probabilities or imprecise 

probabilities.  

In terms of communicating the uncertainty to the decision makers or practitioners, the 

available literature does not account for regulatory restrictions on modelling 

procedures. The urban drainage group of the Chartered Institution of Water and 

Environmental Management (CIWEM) in the UK has included a new section on the 

‘model confidence’ in their latest code of practice for the hydraulic modelling of 

sewer systems (Titterington et al., 2017). Although the latest CIWEM code of 

practice only outlines the guiding principles to assess and visualise confidence in 

model predictions, it is a welcome step towards promoting the culture of uncertainty 

analyses in practice. Many countries require the practitioners or modellers to follow a 

certain modelling guideline in order to predict the hydraulic or water quality 

performance of the sewer system (e.g. Aquafin (2017)). Therefore, uncertainty 

quantification or propagation methods such as surrogate models which require any 

change in these set modelling guidelines may not be applicable for such practitioners 

rendering the communicated uncertainty information invalid. Hence, there is a need 

for studies which provide a methodology to quantify and propagate uncertainty in 

urban drainage simulations satisfying the local regulatory requirements on modelling 

so that it can be communicated to the decision maker.  
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2.2 Decision making 

Urban drainage models are used to support various investment and operational 

decisions in urban drainage systems such as (Breinholt, 2012):  

• Design of new drainage systems.  

• Evaluation of the performance of drainage systems against statutory 

environmental requirements.  

• Evaluation of system upgrades, or re-design proposals against required 

performance standards.  

• Analyse the risk of sewer flooding against required performance standards 

• For real-time control of pumps, gates, orifices, weirs and waste water 

treatment plants. 

Decision analysis techniques, in general, can be classified into three broad categories 

(Fig. 2.3): Single criterion decision making (SCDM), Multiple criteria decision 

making (MCDM) and Decision support systems (DSS) (Wang and Poh, 2014).  

 

 

Fig. 2.3. Classification of decision analysis techniques (from Wang and Poh, 2014). 

 

The SCDM technique applies to decision problems where the comparison of decision 

alternatives is made on basis of a single criterion whereas the MCDM technique is 

applicable to decision problems which require more than one criterion to evaluate the 

decision alternatives. A Decision Support System (DSS) is a software system to aid 
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decision making which can be based on either SCDM or MCDM. Depending on the 

decision problem, either a Multi-attribute decision making (MADM) or a Multi-

objective decision making (MODM) technique can be employed for a multi-criteria 

decision problem. The MODM technique represents the mathematical programming 

problems where the criteria are formulated mathematically as objective functions. 

The goal of such formulations is to search for solutions to the decision problem which 

minimize or maximize the multiple objectives subject to constraints. For example, Fu 

et al. (2008) applied a MODM formulation to select control strategies for urban 

wastewater systems where water quality indicators in the receiving river and cost of 

the control strategies were used as the objectives. The water quality indicators used in 

Fu et al. (2008) were dissolved oxygen (DO) level and ammonium concentration in 

the river and the NSGA II (Non-dominated Sorting Genetic Algorithm) developed by 

Deb et al. (2002) was used for multi-objective optimization. Another application of 

MODM techniques in urban drainage system is the study by Gillé et al. (2008), who 

proposed an optimization formulation for optimal real-time control of sewer network 

to reduce the combined sewer overflow volume.  

MODM is suitable to decision problems where the number of decision alternatives is 

very large and/or the decision space is continuous while MADM focuses on decision 

problems where the set of decision alternatives has already been selected before the 

analysis and the decision space is discrete and finite (Triantaphyllou and Shu, 1998). 

MADM technique evaluates the decision alternatives using relationships such as 

priority, outranking and distance among different alternatives and criteria. Attributes 

are also termed as ‘goals or ‘decision criteria’. Examples of attributes considered in 

rehabilitation planning of urban sewer network are: pipe material, pipe age, economic 

depreciation of the pipes, hydraulic capacity etc. (Tscheikner-Gratl et al., 2017). The 

MADM technique is semi-quantitative in nature since it can also incorporate 

qualitative criteria or attributes (Ioannou et al., 2017). Table 2.1 summarises the 

major differences between MODM and MADM techniques.  

There are many MADM techniques available in the literature and different authors 

have used different classifications for these techniques. For example, Wang and Poh 

(2014)  divided MADM into four classes as Multiple Attribute Utility Theory 

(MAUT), Analytic hierarchy /network process (AHP/ANP), Outranking methods and 

Other multi-attribute decision making (OMADM) techniques. Hyde (2006) classified 
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MAUT and Multi-attribute Value Theory (MAVT) along with the Weighted Sum 

Method (WSM) and AHP into a single class of techniques which are based on value 

and utility theory.  

Table 2.1. Comparison of MODM and MADM techniques (from Mendoza and Martins, 2006) 

Criteria for comparison MODM MADM 

Criteria defined by Objectives Attributes 

Objectives defined Explicitly Implicitly 

Attributes defined Implicitly Explicitly 

Constraints defined Explicitly Implicitly 

Alternatives defined Implicitly Explicitly 
Number of alternatives Infinite (large) Finite (small) 

Decision maker’s control Significant Limited 

Decision modelling paradigm Process-oriented Outcome-oriented 

Relevant to Design/search Evaluation/choice 

 

Utility or value-based techniques such as MAUT, MAVT or AHP represent the 

decision maker’s preferences using mathematical functions. MAUT or MAVT 

represent the decision maker’s preferences using an overall value or utility for the 

individual decision alternatives which is to be maximised. Consequently, MAUT and 

MAVT require derivation of the decision maker’s utility or value functions. In 

MAVT, the decision maker assigns a ‘value’ to the decision alternatives with respect 

to the individual attributes and these values are combined for each decision 

alternative using the value function. MAVT is appropriate when there is no 

uncertainty in the ‘values’, whereas the MAUT is an extension of MAVT because it 

incorporates risk preferences and uncertainty (Velasquez and Hester, 2013). 

The AHP represents the decision problem as a linear additive model based on a 

system of hierarchies by deriving relative importance of alternatives in terms of each 

criterion. Through a series of questions weights of criteria and scores of alternatives 

are determined using a pairwise comparison between criteria and alternatives 

respectively. ANP is a generalised form of AHP applied to networks. Dodgson et al. 

(2009) noted that the presentation of data in the form of pairwise comparison makes 

AHP a convenient and straightforward technique, however, AHP suffers from rank 

reversal problem. The rank reversal means that there is a possibility that adding a new 

alternative to the predefined set of alternatives could reverse the rankings of two 
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alternatives which are not related to this new alternative in any way. AHP technique 

is easier to implement than the MAUT and MAVT because the elicitation of decision 

maker’s preference is less complex (Ananda and Herath, 2009). Gogate et al. (2017) 

developed a multi-attribute decision making (MADM) framework to evaluate 

sustainable stormwater management alternatives based on various quantitative and 

qualitative criteria broadly defined as technical, economic, environmental and social. 

A combination of AHP with another MADM technique TOPSIS (Technique for 

Order Preference by Similarity to an Ideal Solution) was used to compare the 

alternatives. TOPSIS is goal or reference based technique which seeks to find 

decision alternatives closer to certain desired goals or reference levels set by the 

decision maker. The MADM framework proposed by Gogate et al. (2017) used the 

AHP technique for the elicitation of weights and quantification of qualitative criteria 

based on expert opinion while using the TOPSIS technique to estimate the scores.  

On the other hand, the outranking techniques such as ELECTRE (ELimination Et 

Choix Traduisant la REalité) and PROMETHEE (Preference Ranking Organization 

Method for Enrichment Evaluation) generate the ranking of decision alternatives 

based on pairwise comparison of the alternatives against each criterion using pairwise 

preferences for the criteria. The outranking techniques seek to eliminate the 

alternatives which are outranked or dominated by others. The outranking techniques 

assign weights to individual criteria to express decision makers’ preferences for some 

of the criteria over others. An alternative outranks another if it performs better than 

the other on enough important criteria and does not perform unacceptably worse on 

any criterion. The outranking techniques have the notion of ‘incomparability’ of 

decision alternatives which might occur when there is not sufficient information 

available to characterise a relation between the alternatives. The availability of the 

relation ‘incomparable’ ensures that the decision maker does not need to assign 

‘indifference’ or remove the comparison entirely because no relation could be 

assigned. The major drawback of outranking techniques is that the definitions of the 

thresholds to determine outranking relationships are dependent on the decision maker 

and are arbitrarily defined (Dodgson et al., 2009). Martin et al. (2007) applied the 

ELECTRE III technique which belongs to the ELECTRE family of MADM 

techniques to evaluate Best Management Practices (BMP) for stormwater source 

control using various criteria such as hydraulic efficiency, pollution retention, 

environmental impact, operation and maintenance, economic investment and social 
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and sustainable urban living. ELECTRE III was selected by Martin et al. (2007) 

because it is based on a constructive approach which allows dialogue between the 

stakeholder and uses fuzzy logic to consider uncertainty in the performance values by 

using pseudo-criteria.  

Tscheikner-Gratl et al. (2017) used the terminology multi-criteria decision making to 

refer to MADM techniques and compared the utility/value based techniques with the 

outranking techniques to integrated rehabilitation management scheme for urban 

water infrastructure. Tscheikner-Gratl et al. (2017) compared five MADM 

techniques: ELECTRE, AHP, WSM, PROMETHEE and TOPSIS using a case study. 

This comparative study by Tscheikner-Gratl et al. (2017) found that the definition of 

weights for the decision criteria and scaling of scores to value the criteria had a large 

effect on the outcome of the decision making process. Further, the study found that 

the AHP, which is a simpler technique to apply than the complex techniques such as 

PROMETHEE, provided similar results. For rehabilitation planning, Tscheikner-Gratl 

et al. (2017) suggested the use of simpler MADM techniques such AHP, WSM or 

TOPSIS when there is a scarcity of data and the preference information of the 

decision maker is difficult to be assessed; Outranking techniques proved to be more 

useful when the decision maker was able to define the thresholds to build preference 

relationships between the alternatives and criteria.  

2.2.1 Risk-based Multi-criteria decision making techniques 
Another type of classification of MCDM techniques is based on whether they 

consider risk or not. Under this classification, MAVT is classified as a riskless 

technique while MAUT and ELECTRE are classified as risk-based techniques 

(Ananda and Herath, 2009). Ioannou et al. (2017) conducted a review of risk-based 

methods applied in sustainable energy planning and feasibility studies to aid 

investment decisions and classified these techniques into quantitative techniques and 

semi-quantitative techniques which can also incorporate qualitative criteria required 

in the evaluation of decision alternatives (Fig. 2.4). Quantitative risk-based methods 

use the statistical definition of risk based on probability distributions whereas, semi-

quantitative methods can use both statistical and non-statistical representation of risk. 

The Multi-criteria decision analysis in Fig. 2.4 relates to the Multi-attribute decision 

making (MADM) classification made by Wang and Poh (2014). Jato-Espino et al. 

(2014) proposed a multi-criteria model in the selection of pervious pavements to 
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reduce the run-off from catchments by combining Monte Carlo simulations, AHP and 

Fuzzy Logic. 

 

 

 

Fig. 2.4. Classification of risk-based methods applied in sustainable energy planning and feasibility 
studies (from Ioannou et al., 2017). 

 

The weights of the criteria were determined based on expert opinion while the 

stochasticity in the values of the criteria were represented by Monte Carlo 

simulations. Probability density functions of an overall value index were obtained for 

each pervious pavement alternative, however, the model proposed by Jato-Espino et 

al. (2014) did not provide a methodology to compare these distributions and thus 

make decisions.  

The Mean-variance portfolio theory (MVP) which was developed by Markowitz 

(1952) is one of the most popular methods for risk-based decision making in the field 

of finance. MVP considers the variance of the investment returns as a measure of risk 

in the construction of investment portfolios. MVP determines optimal portfolio by 

seeking to minimise the variance while maximising the expected return (mean) of 

investment portfolios. Real options analysis (ROA) is a technique which enables the 

decision maker to evaluate certain decisions which they would prefer to take at a 

certain time in future due to difficulty in assessing the uncertainty at the time of 

modelling. ROA is a capital budgeting tool which assumes there is an uncertainty in 

the evaluation of decision alternatives and the outcome of this uncertainty will be 

known over time and the decision maker can devise their strategies accordingly 

(Bowman and Moskowitz, 2001). ROA enables the decision maker to defer, expand, 
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stage, contract or abandon the investment decisions once more information is 

available over time and the uncertainty is reduced (Ioannou et al., 2017). 

Radhakrishnan et al. (2014) applied real options to evaluate retrofitting decisions to 

prevent flooding in urban drainage systems. To determine the set of optimal solutions 

Radhakrishnan et al. (2014) used a single objective optimization formulation with the 

goal to minimize the cost of decision alternatives.  

Monte Carlo Simulation (MCS) enables the decision maker to generate probabilistic 

scenarios when the uncertainties in the inputs of the decision models are represented 

as probability distributions. It involves random sampling from the input parameter 

distributions which enables the estimation of probability distributions of the criteria 

and also the sensitivity of the criteria to the changes in the model inputs. MCS can be 

seen as a probabilistic case of scenario analysis which generates numerous scenarios 

using known probability distributions rather than the most probable or extreme 

scenarios. An optimization process refers to the selection of a choice or decision from 

a range of decision alternatives by comparing the alternatives according to the 

objective function values subject to some constraints. In the case of MODM, the 

alternatives are compared using values of two or more objectives. The goal of the 

optimization process is to maximise or minimise such values and find ‘best’ decision 

alternative/s. The stochastic optimization technique enables the introduction of 

stochasticity in one or many input variables which are required to evaluate the 

objective functions or the constraints in the optimization model. In addition, 

stochastic optimization techniques also apply to cases where the set of decision 

alternatives is desired to be obtained through random search as the optimization 

algorithm iterates towards a solution to the decision problem (Spall, 2012). Yu et al. 

(2017) applied stochastic optimization for urban drainage design using conflicting 

objectives of investment cost and acceptable flood damage. The optimization model 

proposed by Yu et al. (2017) is based on a chance constrained programming model 

which can be written as: 

 Min 𝑓(𝐱, 𝛏) (2.1a) 

Subject to: 

 𝑔5(𝐱) ≤ 0, 𝑖 = 1,2, … , 𝑚 (2.1b) 

 Pr@ℎB(𝐱, 𝛏) ≤ 0 C𝛏D ≥  𝛼B,      𝑗 = 1,2, … , 𝑛 (2.1c) 
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Where f = objective function with decision variables x and stochastic variables 𝛏; 𝑔5 

are m number of deterministic constraints and hj are n number of uncertain 

constraints; and α = probability of the corresponding uncertain constraint being 

satisfied. Yu et al. (2017) represented the uncertainty in the hydrological simulation 

using a probability based constraint ensuring that the total surcharge volume at all the 

network junctions are below an acceptable threshold.  

 

 

 

Fig. 2.5. Decision-making on sewer system management regarding hydraulic performance (reproduced 
from Korving, 2004). 

 

Figure 2.5 demonstrates the decision making process to improve the performance of 

sewer system with regards to CSO emissions and flooding (Korving, 2004). Korving 

(2004) concludes that uncertainty in the various aspects of this decision making 

process affects the investments in the sewer system. For example, the uncertainty in 

the decision making components ‘loads’, ‘model calibration’, and ‘data base’ gets 

coupled together as the uncertainty in the ‘model’ which affects ‘the assessment of 

hydraulic performance’. Korving and Clemens (2002) apply a Bayesian decision 

analysis tool to evaluate the benefits of monitoring data while taking decisions on 
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sewer reconstruction to reduce CSO emissions. They concluded that additional 

information gathered from monitoring data reduced the uncertainty in model 

simulations further reducing the risks with investment decisions. In the wider 

hydrogeological applications, Freeze et al. (1990) presented a decision making 

framework for engineering design based on a risk-based philosophy. The decision 

framework (Fig. 2.6) consists of three major components: Simulation model, 

Engineering reliability model and the Decision model.  

 

 

 

Fig. 2.6. Framework for hydrogeological decision analysis (reproduced from Freeze et al., 1990). 

 

The simulation model estimates the hydrogeological performance of the system 

whereas; the reliability model assesses the performance of the engineered component 

of the system. The decision model compares the various decision alternatives or 

proposed design solutions in this case, based on a risk-cost-benefit based economic 

analysis. Fig. 2.7 organises the various components of the decision model for a waste 

management decision problem (Freeze et al.,1990).  
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Fig. 2.7. Components of a hydrogeological decision model (reproduced from Freeze et al., 1990). 
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In such decision problems, the technical objective from an operator’s or owner’s 

perspective is usually to satisfy regulatory requirements whereas the economic 

objective becomes minimising the loss while meeting the technical objective. These 

objectives can be represented mathematically as an objective function which 

calculates the net present value of the expected benefits, costs and the risks over the 

engineering time horizon, discounted at the market interest rate.  

As mentioned in Freeze et al. (1990), the objective function can be written as, 

 
∅B = IJ

1
(1 + 𝑖)L [𝐵B(𝑡) − 𝐶B(𝑡) − 𝑅B(𝑡)]T

U

LVW
 

 

(2.2) 

where ∅B= objective function for decision alternative j [£]; 𝐵B(𝑡) = benefits of 

alternative j in year t [£]; 𝐶B(𝑡) = costs of alternative j in year t [£]; 𝑅B(𝑡) = risks of 

alternative j in year t [£]; T = time horizon [years]; and i = discount rate [decimal 

fraction]. 

The risk term 𝑅(𝑡) in Eq. (2.2) is defined as the expected costs associated with the 

probability of failure, 

 𝑅(𝑡) = 𝑃Y(𝑡)𝐶Y(𝑡) 𝛾(𝐶Y) (2.3) 

where,  𝛾(𝐶Y) = normalized utility function. 

For a decision problem such as the CSO emission reduction, there might not be any 

direct revenue benefit which makes 𝐵B(𝑡) = 0 in Eq. (2.2) making the decision 

analysis as a risk-cost minimization problem. In the field of urban drainage, Hauger et 

al. (2002) and Korving et al. (2009) are examples of risk-based economic 

optimization to make decisions. Fig. 2.8 shows the investment (cost) vs damage (risk) 

trade-off curves to determine the optimal storage volume by minimising total cost. 

The investment cost 𝐼(𝑣]) to enlarge the storage capacity is assumed to be related to 

the storage volume such that (Korving et al., 2009):  

 𝐼(𝑣]) = 𝐼W(𝑣~W.`a) (2.4) 

The cost of environmental damage caused by CSO spills is calculated by first 

estimating the expected cost of a CSO spill. This expected cost is then multiplied by 

the annual CSO spill frequency followed by the calculation of present value for each 

individual year and then summing up these present values over the time horizon. 
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The cost of environmental damage can be written as, 

 𝐷(𝑣]) =
𝐸(𝐷(𝑣], 𝑉))

𝑇fgh
i

𝛼
1 − 𝛼j 

(2.5a) 

 𝛼 =
𝑟

1 − 𝑟 (2.5b) 

where 𝐸(𝐷(𝑣], 𝑉)) is the expected cost of a CSO spill when a storage volume 𝑣] is 

built, and when the actual overflow volume is V, 𝑇fgh is the average return period of 

overflow events and 𝑟 is the annual market discount rate. As a result, the economic 

optimization becomes a problem of minimising the total cost, 𝐼(𝑣]) + 𝐷(𝑣]) in order to 

find the optimal storage volume (Korving et al., 2009). Different cost functions 

𝐷(𝑣], 𝑉) can be used to model environmental damage from CSO overflow events. In 

Fig. 2.8, a Weibull-shaped cost function is used to calculate the damage.  

 

 

Fig. 2.8. Estimation of economically optimal storage volume (from Korving et al., 2009). 

 

Both Hauger et al. (2002) and Korving et al. (2009) noted the difficulty in assigning a 

monetary value on the cost of environmental damage from CSO spills as one of the 

major disadvantages of this approach. Therefore, this uncertainty in the economic 

valuation of the losses from the CSO emission was found to have a considerable 

effect on the decision analysis process. Hauger et al. (2002) acknowledged another 

difficulty in putting monetary values to intangible benefits. Hauger et al. (2002) 

suggested that the workaround for the economic analysis could be the regular multi-

criteria analysis where the normalization and weighting become easier but the results 
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of the analysis become difficult to relate to. Table 2.2 lists strengths and weaknesses 

of the risk-based decision analysis techniques reviewed by Ioannou et al. (2017). 

 

Table 2.2. Strengths and weaknesses of risk-based techniques (From Ioannou et al., 2017) 

Techniques Strengths Weaknesses 

Mean-variance 

portfolio 

theory (MVP) 

(i) Value at Risk (VaR) and 

Conditional Value at Risk (CVaR) 

are widely recognised as 

alternative risk metrics allowing 

for assessing the maximum losses 

of the investment portfolio within a 

specified confidence level 

(Rockafellar and Uryasev, 1997). 

(i) Focuses on monetary risk 

attributes 

(ii) Static approaches can 

understate, if not ignore, 

managerial flexibility 

(iii) Variance as a risk 

measure does not account for 

the asymmetry in the 

probability distributions 

Real options 

analysis 

(ROA) 

(i) Investment timing consideration 

(ii) It can evaluate in-depth risk 

factors likely to occur in the future 

(i) Complicated numerical 

calculations 

(ii) Reliance on quantitative 

data 

Stochastic 

optimization 

(i) More suitable than deterministic 

optimisation approaches for a 

number of decision making 

problems in presence of uncertain 

inputs 

(i) Lack of a standardised way 

to model uncertainties often 

leading to significant lack of 

precision in the results 

Multi-criteria 

decision 

analysis 

(i) Incorporates important non-

statistical risk attributes 

(i) Criteria, weights and 

values are difficult to 

accurately estimate and 

greatly depend on subjective 

judgements 

Scenario 

analysis 

(i) Provides information on the 

impact of potential risks which 

contribute most to the overall risk. 

(i) Cannot account for the 

probability of occurrence of a 

scenario 

Monte Carlo 

simulation 

(i) Allows accounting for 

numerous varying stochastic or 

(i) Requires considerable data 

volume (definition of 
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(MCS) uncertain input parameters 

simultaneously 

(ii) Allows calculating 

probabilities of a parameter being 

below or above a certain target 

value or within a desired 

confidence interval 

(iii) Commercial software 

available to automate the tasks 

involved in the simulation 

probability distribution 

functions) for random input 

variables or uncertain and 

predicted input parameters 

(ii) Difficult to capture 

extremities 

 

2.2.2 Concluding remarks 
The management of urban drainage infrastructure seeks to meet various 

environmental, technical, economic and social objectives. However, with respect to 

the compliance with environmental regulations, the environmental and economic 

objectives become more significant than others due to the risk of paying penalty or 

the reputational damage if compliance is breached. The section 2.2 reviews various 

decision analysis techniques which have been implemented in the literature especially 

in the broader field of environmental management and infrastructure management. In 

the context of reducing the risk of non-compliance while making infrastructure 

decisions under the uncertainty in the hydrodynamic simulation of urban drainage 

systems, only those techniques are found to be suitable for decision making which 

can account for this risk while integrating the uncertainty in the hydrodynamic model. 

Among the risk-based decision analysis techniques, the selection of a technique is 

dependent on the scope of the decision making problem at hand and the available 

information. If the number of decision alternatives is finite and pre-determined the 

decision problem can be modelled as a MADM problem, however, some researchers 

(Ioannou et al., 2017; Tscheikner-Gratl et al., 2017) have mentioned a greater deal of 

responsibility on the decision maker in defining the weights and score values to 

compare decision alternatives. While choosing an MADM technique, the decision 

maker should choose a method which s/he is most comfortable in using. However, in 

decision problems where the set of decision alternatives are not pre-determined and 

the decision maker desires to search for solutions in a decision space, MODM 
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techniques should be used. Similar to MADM techniques, qualitative criteria can also 

be formulated as the objectives of a MODM model after quantifying to appropriate 

scales.  

The risk of non-compliance with the environmental regulations or exceeding the 

threshold of a pollutant concentration in the receiving water body has only been 

modelled as a probability of exceedance, also termed as failure probability. However, 

the probability of exceeding a threshold does not provide any information about the 

shape of the tail of the distribution or the asymmetry of the failure probability 

distribution. Although in the field of finance, it has been established that the decision 

makers exhibit certain preferences for the asymmetry or its absence in the probability 

distributions and should be considered in the decision making process, such 

preferences have not been addressed in the field of urban drainage modelling. Also, 

there is a lack of studies in the modelling of the environmental impact of CSO spills 

where the decision maker’s preference for the shape of the probability distributions of 

emission quality indicators is accounted while making decisions.  
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3. Quantifying uncertainty in the simulation of sewer 
overflow volume 

3.1 Introduction 

Chapter 2 included a review of studies which quantified uncertainty in the simulation 

of water quantity and quality variables in urban drainage systems. The literature 

review has indicated that various techniques have been applied for academic 

uncertainty analyses in urban drainage systems. However, to the best of the author’s 

knowledge, modellers simulating the hydraulic performance of environmental 

protection schemes for water utilities do not commonly use these techniques. The 

applicability of the uncertainty propagation and quantification studies mentioned in 

Section 2.1 is very challenging for water utilities responsible for the management of 

urban drainage systems. Infrastructure investments for instance, for Combined Sewer 

Overflow (CSO) control require adherence to standard modelling procedures set by 

environmental regulators. In various European countries, there is a standard 

modelling procedure specified by the regulators to evaluate CSO performance 

(Dirckx et al., 2011). CSO performance evaluation by any modelling approach other 

than the agreed procedure will not comply with the requirements of the regulator. 

Hence any uncertainty quantification approach which does not conform to the 

standard modelling procedure in a transparent and objective way will not be 

acceptable to a regulator.  

This chapter aims to address the practical and conceptual issues associated with the 

previous uncertainty quantification studies (see Section 2.1) which render them as 

unsuitable for environmental regulators, either because they do not use modelling 

tools that are specified or the proposed uncertainty assessment procedures are not 

transparent and objective enough to be accepted by the regulator. This chapter aims to 

quantify objectively the uncertainty in complex sewer network hydrodynamic models 

to a level that will satisfy environmental regulatory compliance.  

In order to comply with the local regulations in Flanders, a complex hydrodynamic 

model of the sewer system has to be used with a single specified design storm. Hence, 

any uncertainty propagation method, which fails to use a complex hydrodynamic 

model, is not appropriate. Therefore, to estimate the uncertainty in the model output, 

a small subset of dominant input/model parameters which can explain the model 
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output variance was selected (Wainwright et al., 2014). Dominant processes were 

identified by ranking the parameters using Global Sensitivity Analysis (GSA). This 

reduced the computational cost by including only the significant parameters in the 

uncertainty analysis. Monte Carlo technique was selected to propagate the uncertainty 

over other available techniques such as differential analysis using Taylor series 

approximation. The Monte Carlo technique was selected because it does not require 

modification in the model structure and provides a direct estimation of the probability 

distribution of the simulated model outputs (Helton and Davis, 2003). Since it is a 

sampling-based technique, using an efficient sampling method such as the Latin 

hypercube sampling (LHS) can ensure a full coverage of sample space. Helton and 

Davis (2003), and Melching and Bauwens (2001) maintained that LHS provided a 

faster convergence than random sampling applied to Monte Carlo simulations. Hence, 

LHS is applied in this study to generate samples from the parameter space. 

Although the methods applied for sensitivity and uncertainty analyses are not new, 

their application to a modelling study satisfying environmental regulatory guidelines 

of an environmental regulator is. To the best of the author’s knowledge, Global 

Sensitivity Analysis methods such as the Morris Screening method (Morris, 1991) 

and Monte Carlo simulations with Latin Hypercube Sampling (Helton and Davis, 

2003) have not been applied to simulation results obtained from a detailed sewer 

hydrodynamic network model. The methodology to quantify uncertainty in the CSO 

spill volume laid out in this study can be implemented by water utilities for other 

regulatory guidelines with a different rainfall input.  

3.2 Methodology 

This chapter describes a modelling study conducted in three steps. First, the Morris 

Screening approach has been used to identify the input/model parameters, which 

contribute most to the uncertainty of the predicted sewer overflow volume in an urban 

catchment in Flanders, Belgium. Second, the uncertainty in the estimation of the 

shortlisted input/model parameters is quantified. For one of the input/model 

parameters, the process of estimating the prior parameter distribution using available 

field measurements is demonstrated in this chapter. In the third step, the uncertainty 

in the CSO spill volume is quantified by propagating the shortlisted input/model 

parameter uncertainty through Monte Carlo simulations on the output from a detailed 
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hydrodynamic sewer network model. LHS is used to draw realizations of model 

inputs and parameters from their distributions which results in a set of CSO spill 

volume values. This set of model output values can be considered to be random 

samples of its distribution (Uusitalo et al., 2015). Although the GSA provides 

information about the significant parameters for a selected model output, this 

information is also assessed for the contribution of each of the important parameters 

towards the overall model output uncertainty.  

3.2.1 Catchment Model 
The hydrodynamic model used in this study is a subsystem of an InfoWorks CS 

model for the municipality of Herent in Flanders, Belgium. The sewer network serves 

around 2100 inhabitants with a total contributing area of about 87 hectares. The urban 

residential sewer system is gravity driven and has 60% of pipes with slopes ranging 

from 0 to 2% while a small number of pipes (around 3% of the total number of pipes) 

has a slope of 10% or higher. The pipes with a high slope are usually short length 

pipes connecting adjacent manholes. The catchment was selected because of available 

5 and 10 years long flow survey datasets, which has enabled the calculation of 

uncertainty in the pipe hydraulic roughness. The sewer network and catchment model 

is a detailed model built and calibrated using the InfoWorks CS software; this 

software is selected as it is specified in the standard modelling procedure agreed 

between Aquafin (the managing water utility) and the environmental regulators in 

Flanders, Belgium (the Flanders Environment Agency (VMM)).  

Within the InfoWorks CS model, the runoff volume after initial losses are calculated 

by applying a Fixed runoff coefficient and the Double Linear Reservoir (Wallingford) 

model (Sarginson and Nussey, 1982) is used to model runoff routing. Due to a lack of 

measured data required to calibrate a catchment scale runoff routing model, the 

Double Linear Reservoir (Wallingford) model available in InfoWorks CS is selected 

as per the Aquafin’s internal modelling code of practice (Aquafin, 2017). The 

modelling of sewer hydraulics is governed by the equations of de Saint-Venant as 

described by Yen (1973). InfoWorks CS uses Kindsvater and Carter equation 

(Kindsvater and Carter, 1959) to model flow over the weir. 
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3.2.2 Sensitivity Analysis 
Morris Screening as a GSA method can be used to identify inputs and parameters 

affecting the model output variance, which if determined accurately, can greatly 

reduce the uncertainty in the model output. In addition, a GSA allows fixing the 

values of those inputs/parameters which are non-influential and do not affect the 

model output uncertainty if varied across their uncertainty range. The Morris 

Screening method uses multiple one-at-a-time (OAT) perturbations of 

inputs/parameters to derive sensitivity measures. 

3.2.2.1 Data: Global Sensitivity Analysis 

The input and model parameters selected for the GSA are initial loss value, Fixed 

runoff coefficient for impervious surfaces, Colebrook-White (CW) roughness in 

pipes, headloss coefficient in pipes, primary and secondary discharge coefficients of 

the weir, the weir crest level, and weir width in the CSO. After consultation with the 

modelling experts at Aquafin these parameters were selected because they are 

expected to influence the flow quantity from the catchment surfaces, in the pipes and 

the flow over the weir at the CSO structure thus overall affecting the estimation of 

CSO spill volume. The input and model parameters selected for the GSA are expected 

to influence the estimation of CSO spill volume for this case study catchment. 

However, there could be other parameters which can influence the estimation of CSO 

spill volume owing to specific catchment characteristics. Therefore it is suggested 

that the list of selected input and model parameters for the GSA should reflect the 

catchment characteristics and may include additional parameters if necessary. 

A global sensitivity analysis using the Morris Screening method for this catchment 

was first outlined in Sriwastava et al. (2016). The frictional hydraulic losses in the 

pipes are represented by CW roughness (ks). For GSA, the upper bound is set at 6 mm 

(Lind, 2015) but, the roughness values may reach higher values due to sediment 

deposition or isolated major pipe defects (see section 3.2.3.3. on Colebrook-White 

roughness calculation). During the GSA, the CW roughness values of all pipes are 

varied simultaneously. Since measured data on initial losses to runoff in the Herent 

catchment was not available, these values are obtained from studies that modelled 

runoff from residential urban catchments. Thorndahl et al. (2006) reported a range of 

0.4 mm to 1.0 mm for initial loss values whereas Vanrolleghem et al. (2015) 

considered a range of 0.22 mm to 1.5 mm. The more conservative estimate of the 
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uncertainty in initial loss values from Vanrolleghem et al. (2015) is used for the 

Herent catchment. The calibrated model had its Fixed runoff coefficient set at 0.8 for 

impervious surfaces which is found to be in accordance with the runoff coefficient 

values for streets and roofs (BASMAA (Bay Area Stormwater Agencies Association), 

1999; McCuen, 1998). Since the Fixed runoff coefficient represents the effects of a 

natural random process, it is assumed to have a symmetrical variation around the 

value of 0.8, with a physical upper limit of 1.0 which results in having 0.6 as the 

lower bound. In InfoWorks CS, extra headloss due to the angle of approach of a pipe 

to a manhole is represented by a headloss coefficient. The default value of this 

multiplying factor is 1 which means no additional headloss due to the angle of 

approach. Headloss coefficient values could increase up to 6.6 for an angle of 

approach at 90 degrees to the flow direction, which is taken as its upper bound with 

the lower bound set at 1.0. The experimentally determined values for weir discharge 

coefficient from British (BS) and International (ISO) Standards (BS ISO 1438:2008) 

is used to define a range of 0.2 to 3 for the primary discharge coefficient of the weir 

at the CSO structure. InfoWorks CS uses an additional discharge coefficient termed 

as a secondary discharge coefficient and applies orifice/sluice gate equations when 

the water level reaches the roof of the CSO chamber. A symmetrical range of ± 50% 

(0.5 to 1.5) for the secondary discharge coefficient is considered, as it includes the 

discharge coefficient values given in British, European (EN) and International 

Standards (BS EN ISO 5167-2:2003). The weir crest level and width are varied by 

±10 centimetres to account for potential measurement errors after consultation with 

the modelling experts at Aquafin.  

For the GSA, parameter values are sampled from a uniform distribution within their 

respective ranges.  

3.2.2.2 Morris Screening results 

The results of the Morris Screening are presented in Table 3.1 in the form of Morris 

Screening sensitivity measures, absolute mean (μ*) and standard deviation (σ) 

(Campolongo et al., 2007). Higher values of μ* suggests a higher influence of the 

model parameters on the model output and higher values of σ suggests a higher 

degree of non-linear relationship or interactions with other parameters. The ranking of 

parameters was based on their respective μ* values. The Fixed runoff coefficient is 

found to be the single most important parameter, it also has a high standard deviation 
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suggesting a dependence on other parameters. The weir crest level is identified as the 

second most significant parameter, followed by CW roughness (which also has a 

relatively higher standard deviation). The model output is found to be insensitive to 

the remaining parameters. 

Table 3.1. Morris Screening results and ranking of input/model parameters. 

Parameters  Absolute 
mean (μ*) 

Standard 
deviation (σ) 

Rank 

Fixed runoff coefficient  0.974 0.055 1 

Weir crest level  0.196 0.019 2 

CW roughness  0.098 0.048 3 

Headloss coefficient  0.019 0.008 4 

Primary weir discharge 
coefficient 

 0.001 0.002 5 

Weir width  0 0 6 

Initial loss value  0 0 7 

Secondary weir discharge 
coefficient 

 0 0 8 

 

Previous studies (Vanrolleghem et al. 2015) have defined a cutoff threshold of μ* = 

0.1 when selecting important parameters to be included in uncertainty analysis. Based 

on this guidance, the Fixed runoff coefficient, weir crest level and CW roughness are 

selected for inclusion in uncertainty quantification and propagation analysis.    

3.2.3 Characterization of uncertainty in input/model parameters 
This section describes the process of uncertainty quantification for the selected 

significant input/model parameters. 

3.2.3.1 Fixed runoff coefficient (impervious surfaces) 

The calibrated InfoWorks CS model calculates runoff from impervious surfaces using 

a Fixed runoff coefficient of 0.8 to represent the runoff losses. This value is in 

accordance with McCuen (1998) who recommended a value of 0.85 for roofs, 0.80 

for brick pavements and 0.85 for asphalt and concrete pavements. McCuen (1998) 

suggested typical ranges of the runoff coefficient as 0.75 - 0.95 for roof surfaces and 

0.70 - 0.95 for asphalt and concrete pavement. It was stated that these values were 
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applicable for events with 5 to 10-year return periods and that higher values of runoff 

coefficient should be considered for less frequent, higher intensity events.  

In the absence of field measurements, any continuous probability distribution type 

can be assumed to represent the uncertainty in the Fixed runoff coefficient. Since 

runoff from the catchment surfaces is a natural process and there is no available 

information about the mode of the distribution, a symmetrical normal distribution 

with the mean value of 0.8 is selected. The assumed normal distribution is truncated 

at the upper physical limit for the Fixed runoff coefficient i.e. 1. Since the composite 

design storm used in this study has a much lower return period than 5 to 10-years, 

values smaller than 0.70 should be taken into account for the Fixed runoff coefficient. 

A standard deviation of 0.1 is assumed with the mean of the normal distribution set at 

0.8. The normal distribution is truncated with a lower bound 0 and upper bound 1.  

3.2.3.2 Weir crest level 

The absolute weir crest level is set at 35.35 m (at 1.6 m elevation with respect to the 

bottom of the pipe upstream to the weir) in the calibrated model based on survey data. 

The measurement errors in surveying the weir crest level are assumed to have a 

random variability. Hence a symmetrical normal distribution is used to represent the 

uncertainty in the measurement of weir crest level. The standard deviation of the 

normal distribution is selected based on a range of ±10 cm for the potential error in 

estimating weir crest level so that 3σ = 10 cm.  

3.2.3.3 Colebrook-White roughness (ks) 

The uncertainty in the CW roughness is quantified using long-term flow survey data. 

This dataset has been used to estimate probability distributions of the Colebrook-

White hydraulic roughness parameter.  

Colebrook-White Equation 

The Colebrook-White equation for flow in partially filled circular pipes (Swaffield 

and Bridge, 1983) can be written as 

 1
l𝑓

=  −2 logpW q
𝑘s

14.83𝑅 +  
2.52

𝑅𝑒l𝑓
y 

(3.1) 

where 𝑓 = Darcy-Weisbach resistance constant; 𝑘s = CW roughness parameter (m); 𝑅 

= Hydraulic Radius (m); 𝑅𝑒 = Reynolds Number. For partially filled circular pipes, 
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the hydraulic radius 𝑅 can be calculated using the diameter of the pipe 𝐷 and the 

measured flow depth ℎ. If a cross section of the circular pipe was considered with 𝜃 

as the angle made by the intersection of water surface and the circumference of the 

pipe at the centre of the circular cross section, hydraulic radius 𝑅 can be expressed as: 

 𝑅 =  
𝐷(𝜃 − sin 𝜃)

4𝜃  
(3.2) 

(Barr, 1986). The Darcy-Weisbach resistance constant 𝑓 was calculated using the 

Chezy equation given in Swaffield and Bridge (1983) which argued that it can be 

applied for moderately smooth channels. 𝑓 can be expressed as:  

 𝑓 =
8𝑔𝑅𝑆

𝑉}  
(3.3) 

where 𝑉 = mean velocity of flow (m/s); 𝑆 = hydraulic gradient; and 𝑔 = acceleration 

due to gravity (m/s2). The slope of the pipe is taken to be the hydraulic gradient as 

uniform flow conditions are assumed at the measurement locations during dry 

weather period. For wet weather conditions, the rapidly changing nature of the flow 

would result in non-uniform flow. This would also mean that the assumption 

underlying the Colebrook-White equation would be invalid. The Reynolds number 

was calculated as:  

 𝑅𝑒 =  
4𝑉𝑅

𝜈  
(3.4) 

where 𝜈 = kinematic viscosity of water (m2/s). The inclusion of 𝑅 in this equation 

makes the calculation of 𝑅𝑒 suitable for partially filled circular pipes. The year-round 

average temperature of wastewater in Flanders region is taken as 15°C based on in-

sewer temperature observations collected in the study by Abdel-Aal et al. (2015). The 

value of the kinematic viscosity of water (𝑣 = 1.139 x 10-6 m2/s at 15°C) is used for 

the wastewater. 

Data 

Long-term measurements of flow depth (m), velocity (m/s) and derived flow rate 

(m3/s) are available for 9 different locations in the catchment. A summary of the 

dataset is given in Table 3.2.  

In order to be able to apply Eq. 3.1 and Eq. 3.3, the flow data needs to be scrutinised. 

Eq. 3.3 assumes that pipe slope is equal to hydraulic gradient, this means flow data 
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can only be used if there are uniform flow conditions. Based on this criterion, data 

from locations M1 and M6 were found to be unsuitable because the invert levels of 

two connecting pipes were different. M2 and M109 were discarded due to zero or 

near zero pipe slope values, which means there are likely backwater effects, and M4 

was discarded due to the presence of a pipe junction (making non-uniform flow 

likely), and M8 and M9 due to slope and pipe diameter changes close to the 

measurement section. 

Table 3.2. Details of flow survey data 

Location 

name 

Measurement 

start date 

Measurement 

end date 

Pipe 

Shape 

Pipe 

dimensions 

(mm) 

Pipe 

material 

Pipe slope 

(m/m) 

M109 25/08/2015 24/01/2016 Circular 1000 Concrete 0.00011 

M9 09/01/2009 16/09/2015 Circular 800 Concrete 0.00094 

M8 09/01/2009 24/01/2016 Circular 500 Concrete 0.00135 

M6 22/11/2007 09/01/2009 Circular 800 Concrete 0.00074 

M5 10/08/2005 25/01/2016 Circular 600 Concrete 0.00088 

M4 17/08/2005 09/01/2009 Circular 1000 Concrete 0.00250 

M3 14/03/2005 08/01/2009 Circular 1400 Concrete 0.00389 

M2 14/03/2005 10/08/2005 Circular 500 Concrete 0.00000 

M1 14/03/2005 30/05/2005 Circular 970 Concrete 0.00133 

 

This leaves locations M3 and M5, for which the assumption of uniform flow is 

strong.  A data filtering procedure is followed to remove erroneous data and extract 

only dry weather flow measurements. Only dry weather flow measurement data is 

used with an assumption that flow in the pipe will be uniform during dry weather due 

to the slow changing nature of dry weather flow. For wet weather conditions, the 

rapidly changing nature of the flow would result in non-uniform flow. A regular 

survey of these measurement locations in the sewer network indicated little evidence 

of sedimentation. Hence it is anticipated that calculation of CW roughness using dry 

weather flow measurements will not be an overestimation in this particular case. The 

process for data selection is described below:   

Step 1. Ensuring Reliable flow measurements 
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The data is filtered to remove water depths less than 0.02 m (the minimum submerged 

depth of the sensor) and negative velocity readings caused by backflow or probe 

malfunction. 

Step 2. Removing wet weather flow periods      

Dirckx et al. (2009) reported a threshold of 70 percentile to identify the number of 

rain days through a standardised cumulative curve of daily inflow. The rain days were 

described as the days with surface runoff contribution. Since the study by Dirckx et 

al. (2009) was also based in Flanders, Belgium where the catchment from the current 

study is located, a threshold of 70 percentile on the daily average flow depth values is 

assumed to remove the wet weather days. In order to apply the threshold, percentiles 

of the daily average flow depth values are obtained for the whole duration of flow 

survey. 

Step 3: Identifying sensor misreading 

Blockage of the sensor or deposition around it, can result in fluctuations in 

measurements and may result in artificially higher readings. These can be identified 

when there are substantial variations in the daily average flow trend. These variations 

remain stable for some time ranging from a few hours to 1-2 days. These anomalies 

along with the instrumentation errors have been identified using the covariance values 

between flow depth and velocity. These anomalies appeared as outliers when flow 

depth and velocity are plotted together which were identified in the next step. 

Step 4: Outlier detection 

Outliers have been identified and removed using a robust covariance method between 

flow velocity and flow depth values. In uniform flow conditions, water depth and 

flow velocity in the pipes are expected to have a positive correlation. Flow 

measurements displaying any discrepancy to this relation might arise from blockage 

or malfunctioning of the sensors.  

This chapter employs the robustcov( ) function available in Matlab R2016a. The 

robustcov function uses the Fast-MCD (Minimum Covariance Determinant) method 

(Rousseeuw and Driessen, 1999) to generate robust estimates of bivariate location 

and scatter. Nguyen and Welsch (2010) and Peña and Prieto (2001) argue that the 

Fast-MCD method provides a better estimate of multivariate location and scatter than 
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other classical methods such as Maximum Likelihood Estimation based methods 

because such methods rely on the assumption of normality in the data and the 

presence of outliers induce a bias to such estimators. In order to detect outliers, the 

Mahalanobis distance values are calculated using the robust covariance estimates 

which follow chi-square distribution (Filzmoser et al., 2005). In this bivariate case, 

the Mahalanobis distance values has 2 degrees of freedom and the outliers are 

identified by setting a cut-off of 97.5% quantile of Chi-square distribution.  

Distribution of calculated ks values 

The data validation resulted in approximately 55% removal of data for measurements 

taken at the location M3 and 41.6% removal of data at the location M5. ks values are 

calculated from the filtered data at locations M3 and M5 using Eq. 3.1. Fig. 3.1a and 

3.1b show the histograms of ks values calculated at locations M3 and M5.  

 

 

Fig. 3.1. a and b: Histograms of ks calculated at locations M3 (left) and M5 (right) respectively. 

 

In comparison to the distribution of ks at M5, M3 data results in higher values of ks 

(Fig. 3.1). One of the possible causes could be the significantly large dimension of the 

pipe at M3 compared to the pipe at M5 (1400 mm Vs 600 mm). In pipes with such 

large diameter, the flow depth can often be comparable to the submerged depth of the 

sensor and can cause data misreading by the sensor. In both these cases, it is clear that 

the ks values at these locations follow a heavy-tailed probability distribution. Hence, a 

variety of continuous heavy-tailed distribution types such as gamma, generalized 
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pareto, Loglogistic, Lognormal and Weibull distributions have been tested to identify 

the most appropriate distribution type to describe the CW roughness. Since the flow 

survey duration at the two locations was different, best-fitted probability distributions 

are obtained for each location independently. The R package fitdistrplus is used to fit 

these distributions using maximum likelihood estimation (Delignette-muller and 

Dutang, 2015). The Bayesian Information Criterion (BIC) is used as the goodness of 

fit statistic because BIC avoids overfitting by penalising distributions with greater 

number of parameters and also, the use of maximum likelihood as estimation method 

is consistent with BIC since it is based on log-likelihood (Vose, 2010).  A lower BIC 

value is considered a better fit. The results of distribution fitting for the two locations 

are in Table 3.3 with the rank provided in parentheses. For both M3 and M5, the 

Loglogistic distribution provides the best fit with the lowest value of the goodness of 

fit statistic BIC (Table 3.3). This suggests consistency in the form of the uncertainty 

for the CW roughness parameter. 

Table 3.3. Distribution fitting BIC values for ks 

Probability 

distribution(s) 

Bayesian Information Criterion 

M3 M5 

Gamma 3239694 (5) 5764741 (3) 

Generalized Pareto 3098093 (2) 5792316 (5) 

Loglogistic 3097110 (1) 5705864 (1) 

Lognormal 3110213 (3) 5745767 (2) 

Weibull 3157747 (4) 5787913 (4) 

 

However, in order to propagate this uncertainty in InfoWorks CS simulations, a single 

probability density function for ks is needed. Between the two locations, the 

Loglogistic distribution parameters obtained for the location M5 are assumed to 

represent the uncertainty in CW roughness better due to the considerably longer flow 

survey (10 years) at this location.  

Table 3.4. Parameters of fitted Loglogistic distribution 

Location 𝜶 (mm) 𝜷  

M3 6.035 0.926 

M5 1.490 1.749 
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However, in reality, CW roughness of each pipe may follow a Loglogistic distribution 

with different parameters similar to the M3 and M5 locations. Table 3.4 lists the 

parameters of Loglogistic distribution for CW roughness values calculated at M3 and 

M5. The probability density function of two-parameter Loglogistic distribution can be 

written as: 

 

𝑓(𝑥; 𝛼, 𝛽) =  
J𝛽

𝛼T i𝑥
𝛼j

��p

J1 + i𝑥
𝛼j

�
T

}  ,             𝑥 > 0 (3.5) 

where 𝛼 > 0 is the scale parameter and represents the median of the distribution and 𝛽 

> 0 is the shape parameter. Lind (2015) reported a ks value of 0.5 mm for a new 

concrete pipe and the ks values can reach between 3 mm to 6 mm for small defects. 

The help manual of the InfoWorks CS software suggests a value of 1.5 mm for 

smooth concrete pipes and a value of 15 mm for rough concrete pipes. These 

suggested values do appear to agree with the distributions specified in Table 3.4. 

3.2.4 Uncertainty propagation 
The probability density function of the simulated CSO spill volume can be calculated 

via propagation of the input and model parameter distributions defined in the previous 

sections through Monte Carlo simulations. In Flanders, the design criteria for the 

CSO structure includes a threshold on the annual overflow frequency (Dirckx et al., 

2011). The composite design storm f7 is prescribed as rainfall input in order to reflect 

the design guidelines set by the Flanders Environment Agency (VMM) 

(Coördinatiecommissie Integraal Waterbeleid, 2012). The VMM regulations for CSO 

structures are such that the CSO should not spill for the specific design storm f7.  The 

composite design storm event ‘f7’ has an average frequency of occurrence of 7 times 

per year. The composite storm was developed by Vaes et al. (1996) using a historical 

rainfall series from 1967 to 1993 with a time step of 10 minutes measured at the rain 

gauge at Uccle in Belgium. For a frequency of 7 y-1, all Intensity/Duration 

relationships are included in the single ‘composite’ f7 design storm (Appendix A). 

Monte Carlo simulations with LHS have been performed considering parameter 

distributions of the Fixed runoff coefficient (rc), weir crest level (wc), and CW 

roughness (ks) while keeping other parameters constant as defined in the calibrated 

model. To draw n samples using the LHS method, the uncertain range of each 
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input/model parameter is divided into n intervals of equal probability. This is 

followed by drawing a random sample from each of these n intervals. Assuming that 

the input and model parameters are independent to each other, the n samples for 

individual input/model parameters are combined with each other randomly to 

generate the sample space (Helton and Davis, 2003). For Latin hypercube sampling, 

the function ‘randomLHS’ in the R package ‘lhs’ is used to draw the samples.  

 

 

Fig. 3.2. a and b: variation (expressed in percentage) in the sample mean for Fixed runoff coefficient 
and weir crest level; c: sample scale parameter 𝜶�  (median) for CW roughness; d and e: sample 
standard deviation for Fixed runoff coefficient and weir crest level; f: sample shape parameter 𝜷� for 
CW roughness with increasing sample size respectively. 

 

The sufficiency of the sample size is tested by analysing the convergence of the 

respective sample mean, standard deviation, scale and shape parameter estimates 

(Fig. 3.2). Fig. 3.2a, b, d and e show the convergence in the sample mean and the 

sample standard deviation for the Fixed runoff coefficient and the weir crest level, 

while the sample size is increased from 50 to 2000. Fig. 3.2c and f plot the variation 

in the sample scale and shape parameter respectively for the Loglogistic distribution 

fitted for CW roughness. It is evident that a stable convergence (0.5% of maximum 

variation) has been achieved with a sample size of 1000 for all the three parameters. 
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Hence, a sample size of 1000 using Latin hypercube sampling is considered 

sufficient. 

The uncertainty propagation is performed in two steps. Firstly, uncertainty in the 

three selected parameters is propagated through 1000 simulations resulting in 1000 

values of the model output CSO spill volume for the defined design storm. In the 

second step, the contribution of the individual parameters towards the ‘overall 

uncertainty’ in the CSO spill volume is assessed by propagating the uncertainty in 

only two parameters keeping the third parameter constant. Here, the term ‘overall 

uncertainty’ means the uncertainty in the CSO spill volume caused by the uncertainty 

in all three parameters.  

3.3  Results and Discussion 

3.3.1 Overall Uncertainty  
Fig. 3.3a shows the probability density function (PDF) of the CSO spill volume 

obtained as a result of propagating the uncertainty in Fixed runoff coefficient, weir 

crest level, and CW roughness. The calculated CSO spill volume values are described 

by a normal distribution truncated at zero as the lower bound (Fig. 3.3a) with the 

mean 117.9 m3 and standard deviation 50.8 m3. The exceedance probability (EP) 

curve (Fig. 3.3b) gives information about the probability that the CSO spill volume 

exceeded a certain value with the f7 design storm. The slope of the EP curve can be 

used to find the rate of reduction in risk from spills when additional storage capacity 

is planned upstream of the CSO. The benefit of adding extra storage capacity is less 

for the plot regions where the slope of the EP curve is high.  

From Fig. 3.3b, there is a 50% probability that the CSO spill volume will exceed 

116.9 m3, however, to ensure that the system capacity is exceeded with a probability 

of only 10%, the total required basin storage volume is only 184.4 m3. It is therefore 

thought that the practitioner is likely to reduce the probability of CSO spill from 50% 

to 10% by investing in additional basin storage of as little as 67.5 m3. Therefore, 

incorporating uncertainty in the model based performance evaluation of the CSO, 

would enable the practitioners to achieve greater protection against the risk of CSO 

spills with better informed investment decisions. How practitioners would actually 

react to probabilistic model outputs and exceedance probability density curves, is 

another question that will be studied in chapter 4. 
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Fig. 3.3. (a) Probability density curve of CSO spill volume representing the overall uncertainty. (b) 
Exceedance probability curve for CSO spill volume. 

 

3.3.2 Contribution of Individual parameters  
Additional Monte Carlo simulations are performed to propagate the uncertainty in 

any of the two out of the three selected parameters. The value of the third parameter 

is kept constant at the same value as in the original calibrated model. This results into 

three distinct combination: Fixed runoff coefficient + CW roughness (rc + ks), Fixed 

runoff coefficient + weir crest level (rc + wc), and weir crest level + CW roughness 

(wc + ks). Fig. 3.4 displays the PDFs obtained for CSO spill volume in the three cases 

and the PDF representing the ‘overall uncertainty’ from Fig. 3.3a. Although the PDFs 

from Fig. 3.4 represent an underestimation of the overall true uncertainty in CSO spill 

volume, they provide very useful insights for decision-making. For example, 

comparing the PDFs from 2-parameter uncertainty propagation with the PDF from 3-

parameter uncertainty propagation in Fig. 3.3a gives information on how much each 

parameter affects the ‘overall uncertainty’ in modelled CSO spill volume. 

Similar to the ‘overall uncertainty’ in CSO spill volume (Fig. 3.3a), the uncertain 

pairs rc + ks, and rc + wc result in a normally distributed CSO spill volume with the 

left tail truncated at zero. However, the uncertainty in CSO spill volume caused by 

the pair, wc + ks is found to be best described by a Weibull distribution. The results of 

these three combinations and the overall uncertainty are summarised in Table 3.5 in 

the form of mean and standard deviation obtained for CSO spill volume. The PDF of 



 50 

CSO spill volume with constant weir crest level, rc + ks is almost identical to the 

‘overall uncertainty’ PDF which suggests that the effect of uncertainty in the 

estimation of weir crest level is negligible on the overall uncertainty in CSO spill 

volume. Similarly, when the uncertainty in CW roughness is introduced, its 

contribution to the uncertainty in CSO spill volume is found to be insignificant. 

 

 

Fig. 3.4. Probability density function curves of CSO spill volume representing the uncertainty in the 
combinations of the Fixed runoff coefficient (rc), weir crest level (wc) and CW roughness (ks); Fixed 
runoff coefficient (rc) and CW roughness (ks); Fixed runoff coefficient (rc) and weir crest level (wc); 
and, weir crest level (wc) and CW roughness (ks). 

 

Therefore, it can be deduced that the contribution of CW roughness to the overall 

uncertainty is of the similar magnitude to that of weir crest level. This means that the 

ranking obtained as a result of Morris Screening is not clearly evident in the 

uncertainty quantification results for input and model parameters with low Morris 

sensitivity measures. 

In the GSA, only the absolute mean μ* is used to rank the parameters. The sensitivity 

measure, standard deviation σ of the CW roughness in the GSA analysis is higher 

than that of the weir crest level, which indicates roughness has a non-linear 

relationship with the CSO spill volume and/or, it interacts with other parameters to a 

higher degree than the weir crest level. Therefore, the significance of σ as an indicator 

of the contribution of input/model parameters to the output uncertainty needs to be 
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investigated further, so that the relative importance of input/model parameters with 

low sensitivity measures such as weir crest level and CW roughness can be 

quantified. 

Table 3.5. Summary of uncertainty analysis results 

Parameters 
Probability 

distribution type 
Mean (m3) 

Standard 

Deviation 

(m3) 

Weir crest level + CW roughness  Weibull  117.9 13.4 

Fixed Runoff Coef. + CW roughness  Truncated Normal 117.9 50.3 

Fixed Runoff Coef. + Weir crest level Truncated Normal 119.5 49.6 

Fixed Runoff Coef. + Weir crest level 

+ CW roughness  
Truncated Normal 117.9 50.8 

 

It is evident from Fig. 3.4 and Table 3.5 that the Fixed runoff coefficient is the largest 

contributor to the overall model uncertainty in CSO spill volume. Assuming that the 

true value of Fixed runoff coefficient is known, CSO spill volume follows a Weibull 

distribution with a considerably smaller standard deviation. In this case, there is a 

50% probability that the CSO spill volume would exceed 119.4 m3 which is close to 

the value of 116.9 m3 at similar probability in the case of the overall uncertainty. 

However, to reduce the risk of CSO spills from 50% to 10% additional storage of at 

least 14.3 m3 is required. This required additional storage is significantly smaller than 

the required additional storage of around 67.5 m3 when the overall uncertainty is 

considered for decision-making.  

With this additional available information on the individual contribution of input and 

model parameters, a practitioner might evaluate the trade-offs between investing 

resources in reducing the uncertainty in the estimation of important parameters and 

investing in larger basin storage to cope with the overall uncertainty. For example, the 

uncertainty in the estimation of runoff coefficient could be reduced by gathering more 

information of the runoff surfaces through a field survey campaign. The usefulness of 

such campaign could be assessed by comparing the cost of the survey and the 

potential benefit gained as a result of the smaller basin storage required.   
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3.4 Concluding remarks 

The current chapter demonstrates a methodology to incorporate probabilistic 

uncertainty in a standard modelling procedure used by a water utility to conform to 

regulatory guidelines. Physical characteristics of different sub-processes such as 

rainfall-runoff, in-sewer flow, and weir flow are represented as potential sources of 

model uncertainty. Ranking using Morris Screening identifies the Fixed runoff 

coefficient, the weir crest level and Colebrook-White roughness as the three most 

significant parameters. The cutoff threshold on the absolute mean value μ* to select 

the most significant parameters is derived from Vanrolleghem et al. (2015). However, 

it should be noted that determining the value of the cut-off threshold decides which 

parameters are going to be included in the uncertainty analysis. Hence a careful 

selection of the cutoff threshold is strongly advised. In this study, the absolute mean 

value for the Fixed runoff coefficient is significantly higher compared to the other 

parameters. Similarly, there is a significant relative difference in the absolute mean 

values for the CW roughness and the Headloss coefficient. The threshold of 0.1 

suggested by Vanrolleghem et al. (2015) allows a clear selection of significant 

parameters in this case study but a different threshold could be more appropriate for 

other cases.  

Following Morris Screening, the uncertainty in the three most significant parameters 

is propagated through Monte Carlo simulations using LHS and the uncertainty in the 

CSO spill volume is quantified subsequently for a single design storm specified by 

the local environmental regulator. Both Morris screening and LHS based Monte Carlo 

simulations prove to be reliable methods and easy to implement within the constraints 

of modelling guidelines. Since the InfoWorks CS model and the rainfall input used in 

this study satisfy the regulatory modelling guidelines, any random sample from the 

probability distribution of CSO spill volume obtained as a result of the uncertainty 

propagation can be used to represent performance of a compliant CSO.  

For the CW roughness, this chapter demonstrates a process to quantify the parameter 

uncertainty using extensive flow survey data. CW roughness values are found to have 

a heavy-tailed distribution and a Loglogistic distribution is found to be the best fit. 

This study is the first where the uncertainty in CW roughness for sewer pipes has 

been defined based on in situ field measurements and used for uncertainty 

propagation. It is expected that the probability distributions obtained for CW 
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roughness in this chapter are representative for combined sewer systems with 

concrete pipes in reasonable condition and limited sedimentation, and their 

distribution shape and spread can be used in future studies.   

The resulting uncertainty in the CSO spill volume indicates that the impact of 

uncertainty in the Fixed runoff coefficient is much higher compared to other 

parameters which is in agreement with the results obtained from the global sensitivity 

analysis. It is imperative that the uncertainty in such dominating parameters should be 

carefully defined and quantified as it has been demonstrated in this study that the 

shape of the probability density function for Fixed runoff coefficient largely 

influences the shape of the uncertainty in the model output CSO spill volume.  

After quantifying the uncertainty in CSO spill volume, the results can be processed to 

be used for decision making purposes. For example, the information available from 

the exceedance probability curve for the CSO spill volume can be used to develop a 

trade-off analysis between the provision of additional storage volume and consequent 

reduction in risk of predicted spill volumes, given this additional storage volume, 

whilst considering any budget constraints. In this study, the risk of the predicted spill 

volume exceeding the storage capacity could be reduced from 50% to 10% by 

increasing the provision of additional storage from 116.9 m3 to 184.4 m3.  

However, it should be noted that the uncertainty in the CSO spill volume obtained 

through this study is still an underestimation of the overall modelling uncertainty in 

the CSO spill volume as only a small number of the more significant sources of 

uncertainty could be considered due to the regulatory guidelines. In this chapter, a 

single design rainfall event is used in order to follow the requirements of the local 

environmental regulator, however, to capture the dynamics of rainfall-runoff process, 

spatial and temporal variability of rainfall should also be represented in the 

uncertainty propagation. This would require changes in the current local regulatory 

framework. In addition, the runoff from permeable areas is not taken into account, it 

is assumed that this infiltrates into the soil, however, this may not be the case if there 

have been extensive antecedent wet weather conditions. Therefore, this is another 

source of uncertainty not taken into account in the current modelling approach, as 

stated the chapter aims to quantify uncertainty only in the current approach adopted 

by Aquafin.  
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Another possible future line of investigation could be the use of analytical 

probabilistic urban drainage models (Adams and Papa, 2000) as an alternative to the 

practice of computationally expensive urban drainage models. This would require a 

change in the way water utilities are regulated in Belgium and other European 

countries, where, as the far as the author is aware, the regulatory framework does not 

permit the use of probabilistically based modelling approaches. Therefore, it is 

expected that the water utilities may be able to adopt the methodology demonstrated 

in this chapter to account for model uncertainty whilst complying with the modelling 

requirements of their regulator.  
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4. Decision maker’s preferences for uncertainty   

4.1 Introduction 

A decision making process involves comparison of candidate solutions or decision 

alternatives against a set of performance variables such as emission quality indicators 

or the cost of remedial measures after a failure. In a deterministic modelling study, 

this process often results in a ranking of decision alternatives based on the 

corresponding assessment criteria, for instance the ecological performance of 

different schemes or the monetary cost of implementing such schemes. However, 

decision making under uncertainty involves ranking of decision alternatives based on 

the probability distribution of the assessment criteria. In such cases, the decision 

maker needs to identify their preferences for the shape and scale of the probability 

distribution of the performance variable or variables in order to rank the alternatives.  

In the context of compliance with regulations on the environmental impact of CSO 

events, the decision maker is expected to be risk-averse i.e. making decisions which 

avoid or reduce the risk of non-compliance. However, decisions to improve system 

reliability and robustness of the system performance require investments in solutions 

such as data monitoring campaigns and additional infrastructure. This results in a 

trade-off between increased reliability and robustness against additional investment 

required under budgetary constraints. Therefore, it is imperative to understand a 

decision maker’s preference for risk under the economic constraints so that these 

preferences are reflected in the formulation of the decision model. 

This chapter attempts to explore how a decision maker’s preferences for an uncertain 

performance variable can be identified. This was accomplished through the responses 

of water utility practitioners to a case study problem where compliance of the 

decision alternatives against local environmental regulations was tested. Apart from 

the water utility company, the environmental regulators and the local municipal 

authorities are also the principal stakeholders in such decision making processes. 

However, the scope of this thesis is limited to study the influence of urban drainage 

simulation uncertainty on the investment decisions which are primarily executed by 

the water utility companies. It can be argued that a water utility makes model-based 

investment decisions to ensure compliance with the environmental regulations. Hence 
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it becomes imperative to assess the preferences of decision makers at a water utility 

company. 

The case study site is located in the Flanders region of Belgium and is subject to the 

regulations set by the Flanders Environment Agency (VMM) (Coördinatiecommissie 

Integraal Waterbeleid, 2012). Experienced practitioners from a water utility company 

based in Flanders were presented with the case study problem where they were asked 

to evaluate and rank decision alternatives based on their costs and the uncertainty in 

their performance variables. In this case study the regulatory performance variable 

was the annual CSO spill frequency, and additional infrastructure investments were 

proposed as decision alternatives to limit the CSO spill frequency. The case study 

evaluated the effect of modelling uncertainty on the performance of proposed 

infrastructure solutions in reducing the annual frequency of CSO spills. A series of 

questions were asked to the practitioners to determine which features of the 

probability distribution of the system performance they found important, and what 

their preferences were for these features in terms of evaluating the optimum way to 

achieve regulatory compliance. Section 4.2 lays out a description of the case study 

followed by the practitioners’ responses and evaluation of the decision alternatives 

under model uncertainty in section 4.3.   

4.2 Case Study - Schilde 

In order to identify the risk preferences of the practitioners, a local case study Schilde 

was selected. Simulation results from the case study were used to represent an 

indicative real-world decision problem. The local case study was selected because the 

practitioners were familiar with the case study catchment, and the local environmental 

regulations which apply to this case study catchment. 

4.2.1 Description 
The catchment of Schilde is situated in the north of Flanders, Belgium and to the east 

of Antwerp. It consists of parts of the municipalities of Schoten, Schilde, Ranst and 

Brecht. The treatment plant is located in the south of the catchment, in Schilde. The 

Schilde sewer system is a residential urban system serving 45,730 people equivalents. 

Like most sewer networks in Flanders, the Schilde system is mostly gravity driven 

with a few pumps and it consists of 3965 pipes with a total length of 342 km. The 
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sewer system is mostly flat with 95% of the pipes having a magnitude of slope less 

than 0.013%. The sewer network model was built using the commercial software 

InfoWorks ICM as per Aquafin’s internal modelling code of practice (Aquafin, 

2017). 

In order to improve the operation of the buffer basin at Kattenhoflaan in the area of 

Sint-Job in 't Goor, an infrastructure investment proposal was drawn up to improve 

the performance with respect to Combined Sewer Overflow (CSO) frequency. The 

sewer subsystem of Sint-Job in 't Goor consists of 94 km of pipes.  

Proposed infrastructure 

The additional infrastructure investment proposal was to disconnect the area of Sint-

Job in 't Goor from the catchment of Schilde, making it a separate treatment area 

through the following interventions: 

- Construction of a Wastewater Treatment Plant (WWTP) along the Kattenhoflaan. 

- Placement of a storage basin to limit the overflow frequency. 

Different sizes of the storage basin were considered as decision alternatives to limit 

the overflow frequency. The performance of these decision alternatives with respect 

to overflow frequency was evaluated using an InfoWorks ICM model. The variability 

in rainfall precipitation and uncertainty in the runoff coefficient were used to 

represent the uncertainty in the estimation of overflow frequency for these 

alternatives. The following sections describe the process followed to quantify the 

impact of modelling uncertainty on the performance of the decision alternatives.  

4.2.2 Selection of decision alternatives 
According to the VMM guidelines on the overflow frequency, the composite storm 

‘f7’ (see Section 3.2.4 & Appendix A) should be used to determine the storage 

volume required to limit the overflow frequency to an acceptable value. The required 

storage volume of the basin was modelled as the maximum overflow volume 

predicted for the ‘f7’ storm. However, the uncertainty in the model calculations, 

caused by varying the run-off co-efficient results in a range of predicted storage 

volumes. In terms of the model outputs, any of these storage volumes satisfy the 

guidelines set by VMM and can be treated as a random realization of the volume 

required to comply with the VMM regulation of no CSO spill for the ‘f7’ storm. 
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Hence, decision alternatives to be modelled as a storage basin were selected from the 

probability distribution of the compliant storage volumes. Although there could be 

many potential sources of uncertainty in the prediction of required storage volume, 

according to Chapter 3, the runoff coefficient is considered one of the major sources. 

Hence, as the main aim is to study the practitioners’ decision making under 

uncertainty, and not an extensive uncertainty analysis, only runoff coefficient is used 

as the source of model parameter uncertainty in the prediction of required storage 

volume. A truncated normal distribution with mean 0.8 and standard deviation 0.1 

was used to represent the uncertainty in the runoff coefficient (see Section 3.2.3.1). 

The probability distribution of the required storage volumes was obtained after 

propagating the uncertainty in the runoff coefficient, as described in a similar manner 

as in Chapter 3 through 1000 Monte Carlo simulations.  

Table 4.1. Uncertainty in the maximum overflow volume using f7 design storm 

Mean 
(m3) 

Standard 
Deviation (m3) 

10th  % 
(m3) 

25th  % 
(m3) 

50th  % 
(m3) 

75th % 
(m3) 

90th % 
(m3) 

95th % 
(m3) 

2929.3 620.9 2111.7 2498.3 2941.3 3375.9 3755.3 3948.1 

 

 

Fig. 4.1. Uncertainty in the maximum overflow volume represented as a histogram for the Schilde 
catchment, rainfall time series from 2004 to 2013. 

 

Fig. 4.1 displays the result of 1000 Monte Carlo simulations randomly drawing from 

the truncated normal distribution that represents the uncertainty in the runoff 

coefficient, and then simulated in InfoWorks ICM with the ‘f7’ storm event. The 
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results are presented as a histogram of maximum overflow volume. The results are 

also summarised in Table 4.1.  

Five values 2100 m3, 2500 m3, 2900 m3, 3300 m3 and 3900 m3 were selected from the 

distribution of required storage volumes. These five storage volumes were modelled 

as the proposed storage basin and labelled as decision alternatives a, b, c, d and e 

respectively. These values cover the 10-95% range of the probability distribution 

summarized in Table 4.1. Table 4.2 lists the indicative cost estimates for the five 

decision alternatives which were provided by the water utility company. 

Table 4.2. Indicative cost of the decision alternatives 

Decision 

Alternatives 

Storage basin 

capacity (m3) 

Cost 

(in Euros) 

a 2100 2,168,021 

b 2500 2,536,264 

c 2900 2,905,111 

d 3300 3,274,399 

e 3900 3,828,935 
 

4.2.3 Uncertainty quantification 

4.2.3.1 Rainfall variability 

The latest 10 years of available historical rainfall precipitation data from 2004 to 

2013 with a time step of 10 minutes measured at the rain gauge at Uccle in Belgium 

was used as model input, in order to represent the variability in the rainfall at the 

catchment. The Uccle rain gauge is at a distance of approximately 55 km from the 

Schilde catchment. This distance between the rain gauge and the catchment 

introduces additional error in the rainfall input to the model. The suitability of the 

Uccle rain gauge data for the Schilde catchment is debatable but this was the closest 

rain gauge data available for the Schilde catchment. This limitation can be addressed 

by using spatially distributed rainfall measurements such as radar rainfall data 

(Thorndahl et al., 2017). Goormans and Willems (2012) compared the performance of 

a local area weather radar rainfall data with rain gauge measurements when used as a 

rainfall input to a sewer modelling case study in Belgium. The case study simulations 

using rain gauge measurements were found to outperform those with the local area 

weather radar rainfall input. In order to obtain spatially distributed rainfall 
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measurements with high temporal and spatial resolution, radar data can be used in 

combination with the rain gauge measurements (Einfalt et al., 2004; Thorndahl et al., 

2017). 

4.2.3.2 Uncertainty in the runoff coefficient 

Given the available computational resources, the simulations of the Schilde 

catchment model in InfoWorks ICM were found to be computationally expensive 

when a 10-year long rainfall timer series with a resolution of 10 minutes was used as 

an input. Since this chapter uses the simulation results as a representative case study 

for the practitioners, performing an extensive uncertainty analysis was not mandatory. 

Only 3 samples of the runoff coefficient were used to represent the uncertainty in the 

runoff coefficient. In order to represent the most populous region of the probability 

distribution, the 25th, 50th and 75th percentile values of the distribution were selected. 

This also ensured that outliers or extreme values of runoff coefficient were not 

included. Hence, for each of the five decision alternatives, three model simulations 

were performed by considering the following values of the runoff coefficient: 0.731 

(25th percentile), 0.797 (50th percentile), 0.862 (75th percentile). These values of the 

runoff coefficient were derived from a truncated normal distribution with mean 0.8 

and standard deviation 0.1.  

4.2.3.3 Uncertainty in the overflow frequency 

For five decision alternatives (different storage volumes), the flow at the CSO 

structure was calculated by modifying the runoff coefficient resulting in 5 x 3 = 15 

simulations. A single simulation resulted in a 10-year long flow time series from 

which the overflow frequency in each of the ten years was calculated. Therefore, for 

each year and each decision alternative, the three values of overflow frequency 

obtained by changing the runoff coefficient values represented the uncertainty in the 

overflow frequency. These three values of overflow frequency were used to fit a 2nd 

order polynomial curve which would describe the relation between overflow 

frequency and runoff coefficient for a particular decision alternative in a given year. 

Random samples were drawn from the truncated normal distribution of the runoff 

coefficient, providing a set of overflow frequencies by reading off the fitted 

polynomial curve, and this was done for each of the five decision alternatives for each 

year. The average values of these samples of overflow frequency were calculated 
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over the ten years to obtain the random samples of average annual overflow 

frequency nCSO for each decision alternative. This resulted in a probability distribution 

of average annual overflow frequency nCSO for each decision alternative.  

4.2.4 Results 

4.2.4.1 Uncertainty in the performance of the decision alternatives 

The InfoWorks ICM model was then used to calculate overflow frequency for each 

decision alternative and each of the 10 years. The full set of results is provided in 

Appendix B, and Table 4.3 shows the annual overflow frequency averaged over 10 

years for each decision alternative.  

Table 4.3. Average annual overflow frequency 

calculated using the InfoWorks ICM model 

Decision 

Alternatives 

Runoff coefficient 

0.731 0.797 0.862 

a 11.9 14.9 18.6 

b 10.5 12.7 15.7 

c 9.2 11.4 13.3 

d 7.9 10.3 12.2 

e 6.9 8.9 11 

 

 

Fig. 4.2. Probability density function estimate of nCSO for each decision alternative. 
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After fitting the overflow frequency values for each year to a 2nd order polynomial 

curve, random realizations of overflow frequency were obtained for each year for 

individual decision alternatives. Fig. 4.2 and Fig. 4.3 display the estimate of 

probability density function (PDF) and cumulative distribution function (CDF) of the 

average annual overflow frequency nCSO for each decision alternative respectively.  

 

Fig. 4.3. Cumulative distribution function estimate of nCSO for each decision alternative. 

 

It is evident from both the Fig. 4.2 and 4.3 that increasing the size of the storage basin 

improves the performance with respect to the average annual CSO overflow 

frequency as the distributions shift towards the origin. Fig. 4.3 provides a clearer 

indication of the stochastic dominance of decision alternatives over each other. 

Specifically, a decision alternative x stochastically dominates another decision 

alternative y if  

∀ 𝑛fgh  ∈ 𝑁, 𝐹�(𝑛fgh) >  𝐹�(𝑛fgh) (4.1) 

or alternatively  

∀ ℎ ∈ [0,1], 𝐹��p(ℎ) <  𝐹��p(ℎ) (4.2) 
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where F and F-1 are the CDF and the inverse CDF of nCSO respectively, and N is the 

set of feasible values of nCSO and h is the probability value. The inverse CDF F-1 

exists because the CDF is non-decreasing in its domain. 

For a pair of decision alternatives, the alternative whose CDF curve is to the left of 

the other dominates (Fig. 4.3). For the alternatives a and b, alternative b stochastically 

dominates a for most of the uncertain range except for values in the left tail of the 

distributions where a dominates b (Fig. 4.3). However, the alternative c stochastically 

dominates a and b completely whereas d and e dominate c completely. Apart from 

stochastic dominance, Fig. 4.3 also provides information on the level of improvement 

in performance across the alternatives. However, this improvement in performance 

with the increase in storage capacity of the basin is not proportionate across the 

alternatives. For example, the level of improvement in performance appears to be 

quite significant between alternatives ‘a to b’ and ‘b to c’ compared to ‘c to d’ and ‘d 

to e’. This can also be construed as the benefit of investment in extra storage is lower 

for larger storage basins. 

4.3 Practitioners’ response on uncertainty 

The practitioners from a water utility company based in Flanders, Belgium were 

selected to provide insights on the evaluation of the decision alternatives from Section 

4.2 when the performance variable is uncertain and represented by a probability 

distribution. In total 6 practitioners were approached for this exercise because of their 

extensive experience in modelling and designing urban drainage systems to improve 

the performance of Combined Sewer Overflows and the understanding of the 

applicable local regulatory requirements. Three of the practitioners had more than 20 

years of working experience with urban drainage systems. The working experience of 

the other three practitioners ranged from 10 to 20 years.  

4.3.1 Structure of the interviews 
Each of the 6 practitioners was presented with the case study and the results from 

Section 4.2 and were asked a series of questions which led to the ranking of the 

decision alternatives based on their uncertain performance (Fig. 4.2 and 4.3) and the 

corresponding cost estimates (Table 4.2). An introduction on interpreting the 

probability distributions were provided to the practitioners before discussing the 
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results. The practitioners were labelled as PR1, PR2, PR3, PR4, PR5 and PR6. Each 

interactive session with the practitioners took approximately 75 minutes.  

The questions can be categorised into two broad categories: (1) Preference for a 

probability distribution of average annual CSO spill frequency; and (2) Trade-off 

between cost and performance of the decision alternatives.  

Preference for the probability distributions 

Given a probability distribution of the average annual CSO spill frequency, the 

practitioners were asked which features of the distribution they would consider 

important while making decisions. A probability distribution can be evaluated using 

its statistical moments such as the Mean (1st order moment), the Variance (2nd order 

moment), the Skewness (3rd order moment) or the probability of exceedance of a 

specified threshold (POE). While mean gives the estimate of expected value, variance 

provides a measure of how the data is distributed about the mean value. Skewness 

tells whether there is a symmetry in the distribution or not. The practitioners were 

asked whether they would consider the mean, variance, skewness and POE important 

when comparing probability distributions of a performance variable. If the answer 

were yes for any of these factors, they were asked their preferences for these factors 

and their relative importance to each other.  

 

Fig. 4.4. Hypothetical probability distributions with different skewness 
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In order to determine their preferences for skewness, the practitioners were presented 

with Fig. 4.4 which displayed three hypothetical probability distributions of the 

emission quality indicator with equal mean and variance but different values of 

skewness. They were asked about whether they consider symmetry an important 

factor in comparing probability distributions. If the answer were yes, what would be 

their preference for symmetry? If a decision alternative results in a positively skewed 

distribution, it would have a longer right tail compared to a symmetrical distribution 

or a negatively skewed distribution, however, the mode of the distribution (most 

likely value of the average annual CSO spill frequency) would be lower. This means 

a positively skewed distribution will have a lower environmental impact on the 

receiving water bodies for most of the times while there will be a small probability 

that it could result in higher extreme values compared to other two distributions. 

Although a negatively skewed distribution does not have a longer right tail, it would 

result in a higher number of CSO spill events most of the times. Therefore, on a 

frequent basis, a negatively skewed distribution would be expected to have a worse 

environmental impact compared to a symmetrical and a positively skewed 

distribution but it also has less likelihood of very high number of CSO spill events 

which can be lethally degrading for the water quality. This is only valid under the 

assumption that when the number of CSO spill events is higher, the environmental 

impact on the receiving water body will become worse. However this assumption 

might not be true in all situations, because overflow frequency does not contain 

information about e.g. the pollutant concentrations in the individual spill events or, 

the dilution capacity of the receiving water at the time of a spill.  

Trade-off between cost and performance of the decision alternatives 

The cost was introduced as another performance criterion while comparing and 

ranking the decision alternatives because as much as the environmental performance 

is important, a measure of the ability of an organisation to implement solutions is also 

important. Fig. 4.3 shows that better performance can be achieved by investing in 

more expensive decision alternatives. A decision alternative can be found to provide a 

robust and reliable performance ensuring compliance with the regulations but if it 

violates the budgetary constraints of the water utility company, it will be difficult to 

implement and put in practice. Hence, a trade-off between cost and performance of 

the decision alternatives becomes very important.  
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The practitioners were asked to rank the decision alternatives based on the 

corresponding cost and performance with respect to their ability in reducing the 

average annual CSO spill frequency. The rationale behind this question was to find 

out how much importance the practitioners give to the environmental performance of 

a decision alternative with respect to the required investment to achieve this 

performance. In other words, the ranking provided by each individual indicated the 

risk behaviour of the individual indirectly. Although there is no financial penalty for 

worse environmental performance, it is assumed that there exists a non-monetary 

negative consequence if a decision alternative results in a high number of CSO spills. 

Therefore, the decision alternative a in Fig. 4.3 can be identified as riskier than the 

alternative b because the alternative a is more likely to result in high number of CSO 

spills compared to the alternative b. 

4.3.2 Outcome of the interview sessions 
The responses of the practitioners are summarised below according to the category of 

questions defined in Section 4.3.1.  

Preference for the probability distributions 

All the practitioners acknowledged the importance of mean and variance as 

representative features of a probability distribution. All of them agreed that while 

making decisions they would prefer a decision alternative with the lowest mean. 

Similarly, they would also select a decision alternative with a low variance. All the 

practitioners considered the probability of exceeding the threshold on nCSO an 

important factor in comparing the alternatives. However, in the case of skewness 

which reflects the type of symmetry in a distribution, the practitioners had different 

perspectives. PR1 preferred a positively skewed distribution followed by the 

symmetrical distribution with the least preference given to a negatively skewed 

distribution. A similar preference was registered by PR6. Both the practitioners 

argued that CSO spills are frequent events rather than an extreme event with low 

probability and they considered the most likely value of the distribution more 

important than the right tail values. A positively skewed distribution has the lowest 

mode compared to the other two skewness types (Fig. 4.4), which means it will have 

a smaller number of CSO spills in a year for most of the time. Both PR1 and PR6 

were prepared to accept the small chance in case the results predict a large number of 

CSO spills. PR2 and PR4 registered a similar preference for skewness as expressed 
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by PR1 and PR6 but with certain conditions. While PR2 agreed that skewness is an 

important feature in comparing different distributions, it only mattered when the 

threshold on nCSO is never exceeded or does not apply. However, if there is a chance 

that this threshold will be exceeded, a probability of exceedance should be treated as 

an important factor in the decision making process. In this case, PR2 did not consider 

the type of symmetry important. PR4 preferred a positively skewed distribution over 

symmetrical and negatively skewed distributions but only when there is less than 0.5 

probability of exceeding the threshold. In this case, PR4 preferred the type of 

symmetry which ensured that the mode is farthest from the threshold. If a decision 

alternative results in a probability of exceedance greater than 0.5, PR4 would discard 

such decision alternative. When the threshold on nCSO is never exceeded, PR4 

preferred a negatively skewed distribution over the symmetrical distribution while 

giving the least preference to a positively skewed distribution. PR4 favoured the 

negatively skewed distribution because it did not have a longer right tail. PR4 argued 

that the simulation results can underestimate the physical behaviour of the system, 

therefore, even though the threshold is never exceeded as per the model predictions, 

in reality, it is possible that this threshold could be exceeded and this risk would be 

greater with a positively skewed distribution due to its longer right tail. PR4 further 

argued that the thresholds are defined as such to capture the environmental impact 

and favoured a negatively skewed distribution as long as the threshold was not 

breached, even though it had a higher mode compared to the other two types of 

symmetry. PR3 was found to be indifferent to the skewness. According to PR3, the 

symmetry of the distributions was not important enough to be included in the decision 

making process. PR5 could not express any preference for skewness.  

 

Trade-off between cost and performance of the decision alternatives 

According to the VMM guidelines, a CSO should not spill more than 7 times in a 

year on an average. In order to comply with this regulation, the required storage 

volume should be calculated by using the ‘f7’ design storm with a runoff coefficient 

of 0.8 for impervious surfaces. Therefore, as per the design guidelines, the capacity of 

the storage basin should be 2958.1 m3. A deterministic simulation based on design 

guidelines would indicate that decision alternative c should be selected. However, 

Fig. 4.2 and 4.3 show that all the alternatives fail the criterion of 7 average annual 
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spills. All the practitioners attributed this to the variability in the rainfall input since 

the design storm ‘f7’ is based on historical rainfall data from the year 1970 to 2007 

whereas the case study ran simulations with historical rainfall from 2004 to 2013. 

Nevertheless, the decision alternatives d and e which had considerably bigger storage 

volume than 2958.1 m3 were also found to be failing with more than 0.5 probability.   

All the six practitioners ranked decision alternatives a and b the lowest amongst 

others due to longer right tail with extreme values. However, for c, d and e the 

ranking differed. Table 4.4 lists the ranking assigned by the practitioners to the 

decision alternatives.  

Table 4.4. Ranking of the decision alternatives (lower value is better) 

Decision 

alternatives 

Practitioners 

PR1 PR2 PR3 PR4 PR5 PR6 

a 5 5 - - 5 5 

b 4 4 - - 4 4 

c 3 1 1 - 1 1 

d 1 2 - - 2 2 

e 2 3 - - 3 3 

 

PR1 gave the decision alternative d the highest rank followed by e and c. PR1 argued 

that alternative d completely dominates c with an additional investment of 369,288 

Euros whereas the difference in the performance of d and e is not significant given 

the substantial investment (554,536 Euros) required to upgrade from d to e. PR2 

ranked the alternative c the highest followed by d and e as the 2nd and 3rd ranked 

alternatives respectively. PR2 remarked that on an average there is an improvement 

of around 1 CSO spill annually when upgrading from c to d and 1.5 CSO spills when 

upgrading from d to e. On the contrary, PR2 found a significant improvement in 

performance by upgrading from alternative b to c. PR2 further remarked that if the 

environmental impact of reducing 1 CSO spill annually is not known, decision 

alternative c appears to be the best candidate given the investment required in 

upgrading c to d or e. PR3 did not rank the alternatives because PR3 believed that 

CSO spill frequency is not a sufficient measure to capture the environmental impact 

of individual CSO spill events. However, given the local regulations use the CSO 

spill frequency as the criterion to control CSO structures, PR3 decided to choose an 

alternative with a small storage capacity i.e. alternative c with a phased investment 
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plan which would include future interventions based on CSO monitoring. PR4 did not 

consider any of the alternatives suitable enough to limit the overflow frequency. PR4 

decided to invest in a decision alternative with larger storage capacity than alternative 

e which would result in a probability of exceeding 7 CSO spills annually less than 

0.5. Both PR5 and PR6 ranked the alternative c highest with d and e ranked 2nd and 

3rd respectively. They both argued that the improvement in performance was not 

significant compared to the investment required if they were to choose alternative d 

or e instead of c. They provided a similar argument for ranking d higher than e. 

4.4 Concluding remarks 

Comparing decision alternatives on the basis of uncertain performance variable 

requires identification of decision maker’s preferences towards the probability 

distribution of the performance variable. A case study site in Flanders, Belgium was 

used to model the impact of rainfall variability and uncertainty in runoff coefficient 

on the predictions of average annual CSO spill frequency. It was found that rainfall 

variability introduced through historical rainfall data from recent years (2004-2013) 

resulted in all the alternatives failing the regulatory requirement of 7 CSO spills 

annually on average. This could be partly due to the fact that the design guidelines 

use the ‘f7’ design storm which is based on rainfall data from the year 1970 to 2007 

while in this case study only 10 years of rainfall data from 2004 to 2013 was used. 

This could have resulted in a higher number of CSO spills annually even for the 

alternatives with substantially bigger storage capacity than the designed storage 

volume. For the period of 2004 to 2013, it can be concluded that the design criteria 

underestimated the storage volume required to comply with the regulation of 

maximum 7 spills in a year on average. Based on these findings, it can be argued that 

the use of historical rainfall data would reflect the local catchment characteristics 

better than the ‘f7’ storm. This would result in a more transparent performance 

assessment of proposed solutions. It is further suggested that the modelled 

performance should be validated against the monitored data on CSO spills to identify 

the error in model predictions. 

Experienced practitioners working at a Belgian water utility company were asked to 

compare and evaluate decision alternatives based on uncertainty in their performances 

with respect to average annual CSO spill frequency and the corresponding investment 
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costs. The practitioners were asked to indicate important features of a probability 

distribution of the performance variables and register their preferences for such 

features. Finally, the practitioners were asked to rank the alternatives through a trade-

off between the uncertain performance variable and the cost of implementing the 

alternatives.  

There was a consensus among the practitioners about the preference for mean and 

variance of the probability distribution of average annual CSO spill frequency. The 

practitioners preferred lower values of mean and variance in comparing distributions. 

All the practitioners found the probability of exceeding the threshold an important 

feature of the probability distribution in case the threshold were to be exceeded. 

While there was a general consensus on the positively skewed distribution as the 

preferred symmetry type over symmetrical and negatively skewed distribution, the 

preference for positive skewness was found to be dependent on the threshold being 

exceeded or satisfied. One practitioner was found to be indifferent to the type of 

symmetry of distributions, another preferred a negatively skewed distribution if the 

threshold on average annual CSO spill frequency were never to be exceeded. Overall, 

the majority of the practitioners treated the CSO spill events as a frequent 

phenomenon and considered a positively skewed distribution to have the lowest 

environmental impact most of the time if the overflow frequency were to be the sole 

criterion to assess the environmental impact.  

While ranking the alternatives based on a trade-off between cost and the CDF curve 

of the performance variable, four out of six practitioners adopted a balanced approach 

between the two criteria. Their evaluation was based on whether the improvement in 

environmental performance was justified with additional investment or not. Even 

though alternatives d and e were found to be stochastically dominating to the 

alternative c with respect to CSO spill frequency, the four practitioners could not 

justify this improvement against the additional investment required to achieve such 

improvement in performance. One practitioner was found to be more risk-averse than 

others. Since all the proposed alternatives were found to be failing with respect to the 

regulatory requirement on CSO spills, this practitioner chose to select a more 

expensive solution than the alternative e which would ensure that the probability of 

exceeding the threshold of 7 is less than 0.5. The ranking of decision alternatives by 

the practitioners indicates that (i) the practitioners in general did not select the most 
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stochastically dominant alternative for the environmental performance, (ii) the 

respective weights assigned to the two criteria, the environmental performance and 

the cost were found to be not uniform across different practitioners. Therefore, such 

decision problems which involve multiple criteria should be formulated as multi-

objective decision models which reflect the trade-off between such criteria. 

Additionally, selection of the best or optimal decision alternative should only be done 

a posteriori unless the weights of the individual criteria can be determined and 

formulated in the multi-objective model accurately. From a water utility’s 

perspective, failing to determine and/or formulate the criteria weights accurately 

which do not reflect the company’s policy can lead to the selection of sub-optimal 

decision alternatives.  

Overall, the practitioners were willing to accept some level of risk based on whether 

the additional investment on storage basin was justified and concurred that other 

forms of cost-effective solutions were needed to be evaluated to further reduce the 

risk of CSO spills exceeding 7 times in a year.  
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5. Stochastic decision models to manage sewer 
overflow quality failure 

5.1 Introduction 

Few studies which account for modelling uncertainty in making decisions to reduce 

the negative environmental impact of CSO spills have been reported. Reda and Beck 

(1997) modelled stormwater management strategies under uncertainty and used the 

extreme values i.e. maximum rates of mass flow of ammonium-N and Biological 

Oxygen Demand (BOD) and minimum DO concentration to rank the strategies. 

Portielje et al. (2000) performed a risk analysis using stochastic reliability methods 

and defined risk as the probability of exceeding extreme concentrations of dissolved 

oxygen levels in a stream. A risk-based economic optimization of in-sewer storage 

was implemented in Korving et al. (2009). This optimization accounted for the 

variability in rainfall and uncertainty in the sewer system dimensions, and uncertainty 

in the cost of damage from CSO spills. Impact of rainfall variability and uncertainty 

in the sewer system dimensions on the decision making was reflected through the 

probability of exceeding a threshold on CSO volume which was termed as failure 

probability. Recently, Meng et al. (2016) proposed a decision analysis framework to 

find optimal operation strategy to minimize the environmental impact of urban 

wastewater systems. The uncertainty in the performance of the system was evaluated 

by using an input data set from a different location as a worse scenario, however, the 

modelling uncertainty was not considered in this study. The decision framework 

(Meng et al., 2016) included the standard deviation of total ammonia concentration 

(NH3-N) in wastewater treatment plant effluent and environmental risk based on the 

probability of exceeding a threshold of NH3-N concentration in the river.  

Although the aforementioned studies have incorporated uncertainty in the assessment 

of urban drainage processes in some form, they have not fully captured the 

uncertainty in the model prediction of the system performance. For example, Reda 

and Beck (1997) only considered extreme values and Korving et al. (2009) used the 

probability of exceeding a threshold. Meng et al. (2016) did consider standard 

deviation of total ammonia concentration in the wastewater treatment plant effluent to 

reflect the stability of the treatment process but only to reflect the variation in total 

ammonia concentration within a time series for different operational scenarios. The 
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probability of exceeding a threshold only gives an indication of chance that this 

threshold will be exceeded however it does not provide any information about the 

magnitude of exceedance beyond the threshold. Similarly, these studies do not 

capture the difference in asymmetry of the probability distributions and the decision 

maker’s preference with regard to such distributions. Therefore, this chapter aims to 

develop a decision model that includes all the information about uncertain system 

performance which is relevant to the decision maker.  

Considering the previously stated limitations, this chapter presents two decision 

models to inform investment to manage emission quality failure accounting for 

modelling input and parameter uncertainty. The first decision model is a multi-

objective formulation to reflect decision maker’s objectives and risk-averse 

preferences regarding the uncertainty in the modelling of system performance and the 

cost of any proposed solutions. The second decision model identifies optimal 

solutions by comparing the CDFs of the corresponding emission quality performance 

variable of the decision alternatives to a target function encompassing the preferences 

of the decision maker. The proposed decision models are demonstrated using a case 

study located in Luxembourg. 

5.2 Background and Methodology 

5.2.1 Risk-averse decision making 
The objective of a risk-averse decision making process is to find optimal solutions 

which reduce the predicted risk of emission quality failure caused by CSO spills 

while complying with the constraints imposed by the environmental regulations and 

minimising the costs of implementation. For example, a water utility might be 

required to meet a certain threshold T on the number of CSO spill events causing 

emission quality failures. However, uncertainty in the simulation of the frequency of 

such events results in an uncertainty in the predicted performance of any proposed 

solution to reduce this frequency. 

One of the most popular approaches for risk-averse decision making has been the 

mean-variance approach developed by Markowitz (1952) in the field of finance. The 

basic assumption of this approach is that variance can be used as a measure of risk 

and the decision maker should search for a solution with minimum variance for a 

given expected return on investment. In the context of emission quality failure, the 
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decision criterion can be translated as minimum variance for a given expected number 

of CSO spill events causing emission quality failures. Alternatively, a bi-objective 

decision problem can be formulated to search for solutions which result in minimum 

mean and minimum variance of the number of failure events. However, the mean-

variance approach has certain limitations as it assumes that statistical distributions are 

Gaussian. The other limitation is that minimising variance penalizes distributions at 

both tails. For the number of CSO spill events that cause emission quality failures n, 

the decision maker would desire to limit the spread only on the right side of the 

probability distribution function (PDF) of failures, i.e. to limit high values of n 

because values of n greater than the threshold T would result in a breach of the 

environmental regulation. 

 

 

Fig. 5.1. (a) Difference in skewness for distributions with identical mean and variance. (b) Illustration 
of Probability of Exceedance and Buffered Probability of Exceedance for a threshold T on the number 
of failures. 

 

The issue of non-normal distributions can be dealt with by considering the skewness 

of the distribution as one of the decision criteria such as the Mean-Variance-

Skewness approach (Konno and Suzuki, 1995). Konno and Suzuki (1995) argued that 

the skewness of the distributions had a significant influence on the optimal selection 

of decision alternatives and proposed that the decision maker would prefer to 

maximise the skewness for the rate of return on investments. However, unlike the rate 

of return on financial investments, the decision maker’s preference for the skewness 

may not clearly be defined for CSO spill events causing emission quality failure. A 

positive value of skewness means that the distribution of failed events will have a 

longer right tail compared to the left tail of the distribution. The presence of a longer 
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right tail means a possibility of higher values of n compared to a symmetrical 

distribution with identical mean and variance (Fig. 5.1a). As a result, the mean of a 

positively skewed distribution will be higher than the mode (most likely value) of the 

distribution. Similarly, a negative value of skewness implies the distribution has a 

longer left tail compared to its right tail causing the mean to be lower than the mode 

of the distribution. It can be argued that both types of asymmetry have distinct 

advantages and disadvantages in the context of managing the possibility of emission 

quality failure caused by CSO spills. A positively skewed distribution will have a 

lower mode compared to the negatively skewed distribution which means most likely 

realizations of n will be less than that of the negatively skewed distribution. 

Therefore, a decision maker who is more concerned about the most frequent number 

of failure events and is prepared to absorb the small chance of a higher number of 

failures would prefer a positively skewed distribution. On the contrary, a decision 

maker who seeks to limit the possibility of high values of n would prefer a negatively 

skewed distribution.  

Variance as a measure of risk in the Mean-Variance-Skewness approach does not 

address the risk of exceeding a threshold T imposed by the environmental regulations. 

The probability of failing this set criterion can be calculated as the Probability of 

Exceedance (POE). If n is a random variable representing the number of CSO spill 

events causing emission quality failures and T is the threshold set by the local 

environmental regulator for such failure events, POE for threshold T can be defined 

as 

𝑝U(𝑛) = 𝑃(𝑛 > 𝑇) (5.1) 

However, the POE and the threshold T do not give a clear picture of heavy-tailed 

distributions e.g. they do not give any information on the magnitude of the tail 

beyond the threshold T. Uryasev (2014) proposed a probability measure Buffered 

Probability of Exceedance (bPOE) to account for the tail probability and the 

magnitude of the tail beyond the threshold T. The Probability of Exceedance gives the 

likelihood that the threshold T will be exceeded, whereas the Buffered Probability of 

Exceedance gives the likelihood that the average of the distribution’s upper tail will 

be equal to the threshold T (Davis and Uryasev, 2016). Consider a quantity W in the 

uncertain range of n such that 𝑇 = 𝐸[𝑛|𝑛 > 𝑊], where 𝐸[𝑛|𝑛 > 𝑊] is the 

conditional expectation of the number of emission quality failure events n exceeding 
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W (Fig. 5.1b). From Mafusalov and Uryasev (2014) and, Davis and Uryasev (2016), 

the Buffered Probability of Exceedance (bPOE) for threshold T can be defined as:  

𝑝U&&&(𝑛) = 𝑝�(𝑛) = 𝑃[𝑛 > 𝑊] (5.2) 

Since, T ≥ W, there exists an inequality between 𝑝U&&&(𝑛) and 𝑝U(𝑛) which can be 

expressed as: 

𝑝U(𝑛) ≤ 𝑝U&&&(𝑛) (5.3) 

The inequality in (5.3) implies that the bPOE is a conservative estimate of the POE 

because it accounts for the magnitude of the tail in addition to the probability (Fig. 

5.1b). Hence, it proves to be a better measure than the POE if the decision maker is 

risk-averse and is interested in comparing the tail performance of proposed solutions 

to limit the occurrence of emission quality failures.  

Building on the arguments stated above, a model is proposed for risk-averse decision 

making to identify solutions where the decision maker is seeking to minimize the risk 

of non-compliance with the environmental regulations while minimizing the cost of 

such solutions. The decision model consists of four objectives: (i) Minimizing the 

expected number of emission quality failures due to CSO spills E[n]; (ii) Minimizing 

the bPOE for a defined threshold on the number of emission quality failures; (iii) 

Maximizing or Minimizing the skewness of the distribution of n; and (iv) Minimizing 

the cost of the proposed solution.  

Since the preference for the shape of the distribution is specific to the application and 

the individual’s risk behaviour, two versions of the multi-objective decision model 

are proposed to reflect the differing preferences for the skewness. 

5.2.2 Formulation of the multi-objective decision model 
This section presents the mathematical formulation of the proposed risk-averse 

decision model to manage emission quality failure under modelling uncertainty. 

Consider a quantity n = f (s, u) which represents the response of an urban drainage 

system model with decision variables s ∈ S where S is the decision space, and 

uncertain variables u ∈ U. Let us assume that uncertain variables u represent the 

uncertainty in the modelling of the urban drainage system response n defined on the 

uncertainty space U. For a given s ∈ S, uncertain variables u will result in random 

realizations of the quantity of interest n which can be represented by ns = fs (s, u). 



 77 

The two risk-averse decision models D1 and D2, are posed as multi-objective 

problems: 

D1 : 

⎩
⎪
⎨

⎪
⎧ mins∈g𝐸[𝑓s(𝑠, 𝑢)]

  mins∈g   𝑝U&&&�𝑓s(𝑠, 𝑢)�
maxs∈gskewness�𝑓s(𝑠, 𝑢)�

mins∈gcost(𝑠)

 (5.4) 

D2 : 

⎩
⎪
⎨

⎪
⎧ mins∈g𝐸[𝑓s(𝑠, 𝑢)]

  mins∈g   𝑝U&&&�𝑓s(𝑠, 𝑢)�
mins∈gskewness�𝑓s(𝑠, 𝑢)�

mins∈gcost(𝑠)

 (5.5) 

                                     subject to           u ∈ U  

The optimal solutions can be found by considering either D1 or D2 as an objective 

function in a Multi-Objective optimization search algorithm. Due to a lack of 

information about the decision maker’s relative preference for the individual 

objectives, the objectives in the decision model are treated as equally preferable to 

each other.  

5.2.3 Pareto non-dominance 
The multi-objective formulation of D1 or D2 will not necessarily lead to a single 

optimal solution due to the conflicting nature of the objectives, such as minimizing 

the cost against minimizing the bPOE or the mean of ns. Hence, the objective is to 

search for non-dominated solutions in the decision space S. The dominance of one 

solution to the other is established by determining the Pareto optimality of the 

decision variables in the decision space S against the individual objectives. A Pareto 

optimal solution can be defined as the solution for which improvement of one 

objective is not possible without worsening at least one of the other objectives. 

According to De Weck (2004) the dominance of one solution to the other can be 

defined as follows: 

For two solutions s1 and s2 ∈ S, s1 dominates s2 if and only if  

𝑠5
p ≥ 𝑠5

}  ∀ 𝑖 

                                           and  𝑠5
p > 𝑠5

} for at least one objective in 𝑖 
(5.6) 

where 𝑖 is the set of objectives. 



 78 

Therefore, a solution s* is Pareto optimal such that there exists no s ∈ S which 

satisfies the following equalities (Hu et al., 2013):  

𝑠5
∗ ≥ 𝑠5  ∀ 𝑖 

                                           and  𝑠5
∗ > 𝑠5 for at least one objective in 𝑖  

(5.7) 

Solving the multi-objective decision problem D1 or D2 by searching for non-

dominated solutions as per Eq. 5.6 and 5.7 will result in a set of Pareto optimal 

solutions s*. 

5.3 Case Study: The Haute-Sûre Catchment in Luxembourg 

In this section, a case study is presented to demonstrate the risk-averse decision 

making approach proposed in Section 5.2 to reduce the risk of regulatory emission 

quality failures caused by CSO spills. The case study catchment is the Goesdorf sub-

catchment which is part of the Haute-Sûre catchment in the north-west of 

Luxembourg. The sub-catchment has a sewer system which is combined and has a 

CSO structure composed of a storage tank and a weir to divert the sewage towards the 

receiving water body, a tributary of the Sûre river. It is known that overflow spills 

occur due to both intense and long storm events. The catchment of the Haute-Sûre 

sewer system is important from the point of view of water quality because it includes 

the Haute-Sûre lake, a man-made reservoir established as the main source of raw 

water serving 70% of the Luxembourg population (Gillé et al., 2008). 

5.3.1 Compliance with the environmental regulations 
This chapter studies the uncertainty in the estimation of the ammonium concentration 

in the combined sewer overflow and applies the risk-averse decision model to find 

solutions which reduce the risk of emission quality failure caused by ammonium in 

the sewer overflows. The concentration-duration-frequency based criterion for 

allowable ammonia in a receiving water body due to CSO spills specified by the 

Austrian water wastewater association (ÖWAV) is applied in this case study as an 

indicative emission quality standard (Fenz and Kroiss, 2004; ÖWAV-Regelblatt 19, 

2007). This criterion for acute ammonia toxicity comprises separate thresholds for 

cyprinid and salmonid aquatic species in the receiving water body. The concentration 

of ammonia in the receiving water body due to the combined sewer overflow should 

not be more than 5 mg/l for one hour for cyprinid and 2.5 mg/l for salmonid species 
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(Fenz and Kroiss, 2004; ÖWAV-Regelblatt 19, 2007). According to the ÖWAV 

guidelines, the maximum allowable number of CSO spill events failing this criterion 

for acute ammonia toxicity is 1 per year. For the purpose of demonstrating the 

methodology, this case study applies the criterion for salmonid species on the 

ammonia concentration in the combined sewer overflow to identify overflow events 

considered to fail this criterion since the dilution of ammonia in the receiving water 

body is not simulated. The simulated concentration of ammonia in the overflow will 

be higher than the concentration of ammonia in the receiving water body due to 

dilution and this is a limitation of the current case study.  

Therefore, compliance with the environmental regulation in this chapter means that a 

solution is required which ensures that the number of CSO spill events with ammonia 

concentration more than 2.5 mg/l for one hour does not exceed 1 in a year. The scope 

of this case study is to find optimal solutions which reduce the risk of non-compliance 

with the environmental regulation while minimising the cost. The performance of the 

proposed solutions under modelling uncertainty is evaluated using an open source 

CSO emission quality simulator EmiStatR developed by the Luxembourg Institute of 

Science and Technology (LIST). 

5.3.2 The EmiStatR model 
EmiStatR is the simulator used for propagating input and model parameter 

uncertainties in the simulation of NH4-N concentration in the CSO spills (Torres-

Matallana et al., 2016; Torres-Matallana et al., 2015). EmiStatR (Emissions and 

Statistics in R for Wastewater and Pollutants in Combined Sewer Systems), is a 

simplified urban drainage model to simulate CSO spill volume and load and 

concentration of ammonium (NH4-N) in combined sewer systems. The EmiStatR 

simulator is divided into six main components to simulate CSO spill quantity and 

quality: (i) Computation of dry weather flow; (ii) Definition of water quality 

characteristics of the dry weather flow; (iii) Computation of rain weather flow in the 

sewer network with contributions from urban and rural run-off; (iv) Definition of 

water quality characteristics of rain weather flow from urban and rural wash-off; (v) 

Computation of combined sewage flow and characteristics of water quality variables 

in the combined sewage flow; and (vi) Computation of CSO spill volume and NH4-N 

concentration. 
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A comprehensive description of the EmiStatR model and the Goesdorf sub-catchment 

can be found in Torres-Matallana et al. (2016). The model was hydraulically 

calibrated with measured data available for the case study catchment. For the 

validation data set which included measured rainfall time series from 3 June 2011 to 7 

July 2011, the model displayed a good agreement (Nash–Sutcliffe Efficiency, NSE = 

0.843) between the simulation results and the water quantity observations. 

In the absence of water quality observations, the EmiStatR was validated using a 

detailed full hydrodynamic sewer network model of the catchment built using the 

software InfoWorks ICM 7.5. The comparison of EmiStatR and InfoWorks ICM 

simulations were done using 1 year-long rainfall measurements with 10-minute 

resolution. A good agreement (NSE = 0.904) was found between the EmiStatR and 

the InfoWorks ICM model for calculating the ammonium load.  

5.3.2.1 Decision variables 

To limit the number of CSO spill events failing the regulatory criterion defined in 

section 5.3.1, the storage capacity of the tank at the CSO and a reduction in the 

impervious area by the use of permeable paving are considered as the two potentially 

practical decision variables. The permeable paving is assumed to convert the 

impervious area into the pervious area. Consequently, the runoff calculations apply 

pervious runoff coefficients as model parameters for such paved area.  

Combinations of different capacities of the storage tank and different values of the 

reduced impervious area are modelled and evaluated against the regulatory criterion 

and their respective costs. A range of 100 m3 to 700 m3 with 50 m3 increment is 

considered for storage tank capacity and the impervious area is reduced from 25 ha to 

20 ha with an increment of 0.5 ha. Therefore, the decision space S becomes a discrete 

space of 143 grid points with the decision variable s representing a grid point of the 

decision space S.  

5.3.2.2 Cost of the decision variable s 

Since the information about the investment cost of storage tanks and the cost of 

permeable paving is not available for Luxembourg, estimates from the UK are used in 

this study for demonstration purposes. The construction of concrete storage tanks can 

cost in the range of £1400 - £2000/m3 for areas outside London whereas the 
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implementation of permeable paving can cost approximately from £250 - £350/m2  

(Digman, 2018). These estimates can vary depending on the construction company 

and where the catchment is located. The average values of these ranges i.e. £1700/m3 

for the storage tank and £300/m2 for the permeable paving, have been used in this 

study to calculate the cost of the decision variable s. However, it should be noted that 

the actual costs are expected to be different for Luxembourg from the estimates used 

in this chapter.  

Cost of the decision variable 

The cost of each decision variable s ∈ S is calculated by adding the cost of the 

corresponding storage tank proposed in the solution and the cost in reducing the 

impervious area from 25 ha to the impervious area proposed in the solution.  

5.3.2.3 Definition of uncertain variables 

Table 5.1 presents the list of the uncertain variables along with the decision variables 

for the Goesdorf sewer system. To quantify the uncertainty in the simulation of 

ammonium concentration in the CSO spill, uncertainty in the rainfall precipitation, 

ammonium concentration in the dry weather flow, and the pervious and impervious 

runoff coefficients are represented. Measured data to characterise the temporal 

variability of the ammonium concentration in the surface runoff is not available. 

Hence, uncertainty in this variable cannot be accounted for. A constant value of 1 

mg/l (Welker, 2007) is chosen to represent the ammonium concentration in the 

surface runoff. Before the uncertainty propagation is done, probability distribution 

functions of the selected inputs are characterised to define the input uncertainty 

(Heuvelink et al., 2007). For the concentration of ammonium in the dry weather flow 

CNH4,s as a variable for uncertainty propagation, it is possible to simulate CNH4,s by an 

autoregressive order one AR(1) model (Box & Jenkins, 2008): 

𝑦L = 𝜇p + 𝜑p(𝑦L�p − 𝜇p) + 𝑤L,   𝜑p ≠ 0     (5.8) 

where y = Univariate variable CNH4,s; t = Time; 𝜇p= Mean of the simulated variable;  

𝜑p= Constant coefficient of autocorrelation; wt = Gaussian white noise time series 

with mean zero and variance σw2.  
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Since the rainfall precipitation time series is highly skewed due to many zero values, 

it is required to apply a different approach for characterising uncertainty in the 

rainfall precipitation time series. 

Table 5.1. List of uncertain and decision variables 

Variable Assumed to be 
uncertain? 

(yes/no) 

Definition of 
uncertainty 

Uncertain Variables   
Wastewater   
  Pollution NH4-N, CNH4,s [ g/(PE·d)] yes Autoregressive 

modela calibrated 
on measured data 

   
Rainwater   
  Precipitation time series, P [mm/Δt] yes Multivariate 

Autoregressive 
modelb calibrated 
on measured data 

   
Catchment data   
  Run-off coefficient for impervious area, Cimp [-] yes N(0.8, 0.052) 

truncated at 1c 

  Run-off coefficient for pervious area, Cper [-] yes N(0.3, 0.052) 
truncated at 0c 

   
Decision Variables   
Catchment data   
  Impervious area, Aimp [ha] no - 
   
CSO structure data   
  Volume, V  [m3] no - 
 

aBox et al. (2008), bTorres-Matallana, et al. (2017), cMcCuen (1998). 

A multivariate autoregressive modelling and conditional simulation of precipitation 

time series from Torres-Matallana et al. (2017) is used to simulate precipitation time 

series in the Goesdorf catchment given known precipitation time series in two nearby 

locations outside the catchment while accounting for the uncertainty that is 

introduced due to spatial variation in precipitation.  

McCuen (1998) reported a range of 0.25-0.40 for the runoff coefficient of pervious 

surfaces and a range of 0.70-0.95 for impervious surfaces. Since the runoff process 

from the catchment surfaces is a natural process, a symmetrical normal distribution is 

assumed to represent the uncertainty in the runoff coefficients. A normal distribution 

with mean 0.30 and standard deviation of 0.05 is used for the runoff coefficient of 

pervious surfaces so that about 95% of the runoff coefficient values lie in the range 

0.20-0.40. Similarly, the runoff coefficient for impervious surfaces is assumed to 
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follow a normal distribution with mean 0.8 and standard deviation of 0.05 where 

about 95% of values lie in the range 0.70-0.90.  

5.3.3 Solving the Risk-averse decision model 
The decision models D1 or D2 presented in Section 5.2.2 can be solved using popular 

continuous optimization algorithms such as the non-dominated sorting genetic 

algorithm (NSGA-II) developed by  Deb et al. (2002) which has been successfully 

applied to urban wastewater systems (Fu et al., 2008). However, the decision space S 

in this case study is discrete and finite and comprises 143 grid points making it 

possible to search the entire decision space. In this case, a direct grid search approach 

(Powell, 1998) ensures a complete coverage of the discrete decision space with a 

finite number of evaluation points compared to an evolutionary search algorithm such 

as NSGA-II. It can be argued that a decision maker who is planning to increase the 

size of the storage tank will be indifferent to an increment of less than 50 m3. A 

minimum reduction of 0.5 ha of impervious area is selected based on the similar 

argument. These choices for the decision space are specific to this case study.  

The decision models D1 and D2 from Eq. (5.4) and (5.5) are solved by calculating the 

individual objectives for each decision variable s ∈ S through direct grid search. To 

calculate the objectives in Eq. (5.4) or (5.5), for each of the 143 grid points in the 

decision space S, ns = fs (s, u) is calculated where ns is the variable for number of CSO 

spill events with ammonium concentration more than 2.5 mg/l for one hour, s is the 

grid point representing decision variable and u is the uncertainty defined in section 

5.3.2.3. 

For each s ∈ S the uncertainty u in the inputs and model parameters listed in Table 5.1 

are propagated through 500 Monte Carlo simulation runs. The number of total 

simulation runs is selected based on a convergence test for ammonium load and 

concentration in the CSO spill. These Monte Carlo simulations result in 500 random 

samples of year-long time series of NH4-N concentration in the CSO spill. The 

regulatory criterion of NH4-N concentration > 2.5 mg/l for one hour is applied to 

calculate the number of CSO spill events for every random time series. This results in 

500 random samples of the number of CSO spill events ns for each s ∈ S.  

Individual objective functions of the decision models are calculated using the random 

samples of ns ∀ s ∈ S. The decision variables s i.e. the 143 grid points in the decision 
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space S are compared to each other for Pareto non-dominance by using inequality Eq. 

(5.6). All the grid points which satisfy the inequality Eq. (5.7) are selected as Pareto 

optimal solutions which represent the optimal trade-off between the individual 

objectives set by the decision maker. The steps involved in identifying the Pareto 

optimal solutions for the decision models D1 and D2 are outlined in Fig. 5.2. 

 

Fig. 5.2. Steps followed to identify Pareto optimal solutions for D1 and D2. 

 

5.4 Results and Discussion 

The decision models D1 and D2 are solved for the case study presented in Section 5.3 

with decision variables s defined in Section 5.3.2.1 and uncertain variables u defined 

in Section 5.3.2.3. Computation of objectives for one grid point took approximately 

150 minutes using a computer equipped with Intel Xeon 3.50 GHz processor, 32 GB 

of RAM and 7 cores.  

Define the emission quality indicator: 
Number of CSO spills with NH4-N concentration > 2.5 mg/l for one hour, n s

Define objective functions for the decision models D1 and D2                                   
(Eq. 5.4 and 5.5)

Compute the value of objective functions in D1 and D2 ∀ s∈S

Determine Pareto non-dominance relationship for D1 and D2 ∀ s∈S                                   
(Eq. 5.7)

Identify Pareto optimal solutions for the decision models D1 and D2                
(Section 5.4.1 and 5.4.2)

Define the simulation output: NH4-N concentration in the CSO spills

Define the decision variables s∈S  (Section 5.3.2.1)

Define the cost of decision variables s∈S  (Section 5.3.2.2)

Define the uncertain variables u  (Section 5.3.2.3)

Propagate the uncertainty in u  to simulate                                                                     
NH4-N concentration in the CSO spills ∀ s  ∈ S

Estimate n s  = f s  (s , u ) ∀ s  ∈ S  by identifying spill events with                                
NH4-N concentration > 2.5mg/l for one hour



 85 

Fig. 5.3 shows the difference in POE and bPOE for ∀ s ∈ S. It is evident how the 

magnitude of the tail values in the distribution of ns affects the value of bPOE. For 

POE values greater than 0.28, the bPOE is 1 which indicates the difference in the 

magnitude of extreme values.  

 

 

Fig. 5.3. Mean of ns vs Probability of Exceedance (POE) and Buffered Probability of Exceedance 
(bPOE)  for ∀ s ∈ S 

 

The results for Pareto optimal solutions are presented separately for the decision 

models D1 and D2 which reflect the different preferences for skewness of the 

distribution of ns. 

5.4.1 Decision model D1: Preference for positively skewed 
distributions of ns 

For decision model D1, 18 solutions were found to be Pareto optimal out of total 143 

solutions (Fig. 5.4). Fig. 5.4a and 5.4b show the variation in the calculated mean of ns 

and bPOE respectively for all s ∈ S where the decision variable s comprises 

combinations of storage tank volume and the impervious area.  
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Figure 5.4. (a) D1: Mean of ns in the discrete decision space S; (b) D1: bPOE in the discrete decision 
space S 

As expected, the mean of ns decreases with an increase in storage tank volume and/or 

a decrease in impervious area. The Pareto optimal solutions representing the optimal 

trade-off between the four objectives: Minimising the mean of ns; Maximising the 

skewness of ns; Minimising the bPOE and Minimising the cost of s, are displayed as 

data points in a solid black circle in Fig. 5.4. It can be observed that the Pareto 

optimal points tend to favour storage tanks with large capacity than a substantial 

reduction in the impervious area. This is due to the comparatively higher cost of 

reducing the impervious area. Also, the decrease in the mean of ns is steeper for an 

increase in storage tank capacity. For example, at the storage tank capacity of 100 m3, 

the mean ns reduces from 17.5 to 11.8 when the impervious area is reduced from 25 

ha to 20 ha. On the contrary, at the impervious area of 25 ha, the mean of ns reduces 

from 17.5 to 0.1 when the storage tank capacity is increased from 100 m3 to 700 m3. 

Since the cost of reducing the impervious area is much higher than the cost of 

increasing the storage tank capacity, the improvement in environmental performance 

per unit value of cost is found to be higher for the storage tank. A similar trend can be 

observed for bPOE values (Fig. 5.4b). Fig. 5.5 shows the variation in the mean of ns, 

the skewness of ns, the bPOE and the cost for the Pareto optimal solutions. Since the 

decision model D1 specified a preference for minimizing the mean while maximizing 

the skewness, the Pareto optimal solutions tend to lie in the lower region of the plot as 

expected. Similarly, Pareto optimal solutions tend to lie towards low cost and low 

bPOE values, however, there are few Pareto solutions which have either very high 
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cost and low bPOE or high value of bPOE and low cost. This can be attributed to an 

equal preference for all the objectives which means that these solutions must have 

performed well for other objectives compared to the non-optimal solutions with 

similar cost or similar bPOE e.g. the Pareto optimal solution with very high cost has a 

very low value of bPOE. A decision maker whose preferences are specified by the 

decision model D1 would select a solution from the lower region of Fig. 5.5 with a 

dark blue coloured marker. A parallel coordinate plot is provided in Appendix C 

which maps the Pareto optimal solutions to their corresponding objective function 

values (Fig. C.1).  

 

Fig. 5.5. D1: Objective function values of Pareto optimal solutions 

 

5.4.2 Decision model D2: Preference for negatively skewed 
distributions of ns 

For decision model D2, 88 solutions were found to be Pareto optimal out of total 143 

solutions (Fig. 5.6). This substantial increase in the number of Pareto optimal 

solutions compared to the decision model D1 is because solutions with higher mean 

have low skewness values (Fig. 5.5).  
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Fig. 5.6. (a) D2: Mean of ns in the discrete decision space S; (b) D2: bPOE in the discrete decision 
space S 

 

Therefore, solutions which have relatively high mean are also Pareto optimal solution 

because they satisfy the objective of minimizing the skewness (Fig. 5.7). Because of 

the decision maker’s objective to minimize skewness, the Pareto non-dominance 

results in a diverse range of Pareto optimal solutions as far as cost and bPOE are 

concerned (Fig. 5.7).  

Compared to Fig. 5.5, a higher number of Pareto optimal solutions have very high 

cost and (or) high bPOE values and this is due to the equal preference for all the four 

objectives. In such situations, preference for individual objectives needs to be updated 

in order to reflect the scope of the decision making. For example, in this case study, 

the primary goal of the decision maker could be compliance with the environmental 

regulations while minimising the cost. Therefore, the Pareto optimal solutions which 

lie in the lower left region of Fig. 5.7 should represent the decision maker’s updated 

preference for the decision model D2. The preferences for individual objectives can 

be expressed by weight multipliers or exponents and combining all the objectives into 

a single objective problem. 

Although this formulation enables explicit representation of decision maker’s 

preference for individual objectives, determination of weights or exponents for the 
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objectives becomes challenging especially when the units and scales of these 

objectives are different. 

 

 

Fig. 5.7. D2: Objective function values of Pareto optimal solutions 

 

Also, a single objective formulation would result in a single optimal solution and it 

can be difficult to visualize the level of improvement achieved for individual 

objectives when compared to sub-optimal solutions. The formulation of D1 and D2 

enables decision makers to compare the Pareto optimal solutions and select one 

solution which satisfies their individual preferences for different objectives.  

The proposed decision models D1 and D2 focus primarily on the uncertainty in 

modelled system performance and do not include any uncertainty in the cost 

estimation of solutions. However, the decision models D1 and D2 do provide the 

flexibility of representing the cost as a function of uncertain model inputs and model 

parameters. Similarly, if the decision making process requires consideration of other 

criteria in addition to the modelled emission quality performance and the investment 

cost, the decision model can be scaled up to include such criteria as objectives or 

constraints. The direct grid search method is employed to this case study because it 

enabled a complete coverage of the finite discrete space. However, when the number 
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of decision variables is more than 2, the number of grid points increases significantly 

and it may not be computationally efficient to evaluate the objectives using this 

method. Therefore, in cases where the decision space is continuous and/or the number 

of decision variables is more than 2, it is recommended that efficient continuous 

search algorithms are employed to find Pareto optimal solutions.  

Finally, integrating uncertainty propagation analysis of hydrodynamic models with 

optimization can be computationally expensive and for that, the readers are directed 

towards the use of surrogate models for hydrodynamic simulation which are faster to 

compute and so permit the practical use of this approach (Carbajal et al., 2017).  

5.4.3 Comparison with a deterministic decision making approach 
When the simulator predictions are assumed to be certain i.e. there is no uncertainty 

in the estimation of ns ∀s ∈ S and it is no longer a random variable, the decision 

problem becomes searching for solutions s ∈ S which minimise ns and the cost of s. 

Such a decision model can be expressed as a deterministic decision problem: 

Ddet : ¦
mins∈g𝑛s

mins∈gcost(𝑠) (5.9) 

Since the two objectives in the deterministic decision problem Ddet are conflicting in 

nature, optimal solutions can be determined using Pareto non-dominance similar to 

the multi-objective decision problems D1 and D2.  Fig. 5.8a displays the number of 

failures for every solution s ∈ S. Similar to the uncertain decision models, increasing 

the storage volume has a greater effect on lowering the number of failures than 

reducing the impervious area. In addition, the worst performing solution for the 

number of failures (Storage 100 m3 + 25 ha of Impervious area) results in 6 failures. 

When the uncertainty is accounted in the model predictions, the worst expected 

number of failures is 17.5 which indicates a substantially large impact of uncertainty. 

Fig. 5.8b plots the cost of the 143 solutions against the number of failures ns.  

For decision model Ddet, 5 solutions were found to be Pareto optimal out of 143 

solutions. The Pareto optimal solutions are marked by solid black circles and 

appeared to form a Pareto front in Fig. 5.8b. All the solutions to the right of the Pareto 

optimal solutions are sub-optimal. For a decision maker trying to achieve compliance 

with the regulations i.e. maximum 1 failure event, 2 Pareto optimal solutions satisfy 

the constraint of ns ≤ 1. Since the decision maker also prefers less expensive 
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solutions, only one solution (Storage volume 250 m3 + Impervious area 25 ha) comes 

across as the preferred Pareto solution which is marked by the blue circle in Fig. 5.8b. 

 

 

Fig. 5.8. (a) Ddet: ns in the discrete decision space S; (b) D: Cost of ns vs ns 

 

However, when uncertainty in the model predictions is introduced, the bPOE for this 

solution is 1 with a POE value of 0.99. This means that if the decision maker had 

selected the preferred Pareto solution using a deterministic decision making approach 

which did not consider uncertainty in the model predictions, there would be a 99% 

chance that their decision would breach the compliance with the environmental 

regulations. 

5.5 CDF matching approach for decision making under 
uncertainty 

The decision model presented in Section 5.2 includes statistical moments and the 

buffered probability of exceedance as criteria to account for the shape of the 

probability distributions and the magnitude of the extreme values. The multi-

objective formulation from Section 5.2 enables the decision maker to explicitly 

represent their preferences for the mean, the skewness and the bPOE; the decision 

maker searches for alternatives which minimise or maximise such criteria. However, 

an alternative and a complete representation of the decision maker’s preference for 

the uncertainty in the emission quality performance variable would be if the decision 

maker specifies a target function which would encompass all the information about 
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mean, skewness, bPOE etc. In other words, the decision maker is searching for 

optimal decision alternatives by optimizing the entire distribution instead of 

optimizing statistical moments or probability of exceedance values. Seshadri et al. 

(2016) developed a density matching approach where the optimal solution is obtained 

by minimising a distance metric calculated between the PDF of an engineering design 

and a target PDF specified by the designer. However, for evaluating the decision 

alternatives, it becomes difficult to identify which alternatives stochastically dominate 

other alternatives using the PDFs. For instance, by comparing the PDFs of the 

decision alternatives in Fig. 4.2 it becomes difficult to establish a stochastic 

dominance relationship among the alternatives. However, while comparing the CDFs 

in Fig. 4.3 gives a clear indication of stochastic dominance relationship. For example, 

it is clear that alternative c stochastically dominates alternatives a and b. Cook and 

Jarrett (2017) proposed the Horsetail matching for performing optimization under 

uncertainty. The horsetail matching approach minimises the difference between the 

CDFs of decision alternatives and a target function specified by the decision maker. 

In doing so, the horsetail matching approach avoids stochastically dominated 

solutions. Fig. 5.9 illustrates the horsetail matching concept where the optimization 

search is targeted towards minimising the difference between the CDF of a decision 

alternative and the target function.  

This section implements the horsetail matching approach proposed by Cook and 

Jarrett (2017) to the risk-averse decision making to improve the environmental 

performance of the urban sewer systems with regards to CSO discharges. Cook and 

Jarrett (2017) use the term ‘horsetail matching’ as a generic term which is a CDF 

matching approach when the probabilistic representation of uncertainty is used. 

Hence, this thesis uses the term ‘CDF matching’ from here on to refer to the horsetail 

matching approach.  

Consider the quantity of interest n = f (s, u) from Section 5.2.2 where n represents the 

response of an urban drainage system model with decision variables s ∈ S where S is 

the decision space, and uncertain variables u ∈ U. Again, for a given s ∈ S, uncertain 

variables u will result into random realizations of the quantity of interest n which can 

be represented by ns = fs (s, u). Let Fs (n) and Fs-1 (h), be the CDF and inverse CDF of 

ns respectively where h ∈ [0, 1] represents the value of the CDF. Consider that the 

decision maker specifies the target function as t (h).  
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Fig. 5.9. The horsetail matching concept (CDF matching under probabilistic uncertainty) (From Cook 
and Jarrett, 2017). 

 

The CDF matching proposes the L2 norm as the measure of difference between the 

decision alternative’s CDF and the target function which is represented as follows:  

 𝑑#$ (𝑠, 𝑡) =  §¨ (𝐹s�p(ℎ) − 𝑡(ℎ))}
p

W
𝑑ℎ©

p }ª
 (5.10) 

Therefore, the optimization problem seeks to find the decision alternative s* for 

which  𝑑#$ becomes minimum. However similar to the decision model presented in 

5.2.2, the decision makers identify the optimal solutions through a trade-off between 

the environmental performance and the investment costs. Hence, the decision model 

based on CDF matching can be posed as:  

Ddm : ¦ mins∈g  𝑑#$ (𝑠, 𝑡)
mins∈gcost(𝑠)  (5.11) 

Similar to the decision models D1, D2, and Ddet, the two objectives in the decision 

model Ddm are conflicting in nature, hence the optimal solutions can be determined 

using Pareto non-dominance specified in Section 5.2.3.  

5.5.1 Calculation of  𝒅𝒅𝒎 
To calculate the value of 𝑑#$, it is necessary to evaluate the integral in Eq. 5.10. In 

the horsetail matching approach (Cook and Jarrett, 2017), numerical quadrature of the 

integral in Eq. 5.10 is performed using the trapezium rule to find an approximation 𝐷 

of the integral. Subsequently, 𝑑#$ can be calculated as 𝐷 p/}. 𝐷  can be expressed as: 
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𝐷 =  I 𝑤5 (𝐹�p(ℎ5) − 𝑡(ℎ5))} =  I 𝑤5 (𝑛5 − 𝑡(𝐹s(𝑛5)))} 
¯

5Vp
 

¯

5Vp
 (5.12) 

where N is the number of quadrature points and 𝑤5 are the corresponding weights for 

these quadrature points.  

For each s ∈ S, N random values of ni are obtained after propagating the uncertainty 

u. Empirical CDF values are estimated corresponding to the ni to obtain ℎ5 values as 

an approximation of Fs (n). These N values of ℎ5 are used to calculate 𝑡5 = 𝑡(ℎ5) =

𝑡 (𝐹(𝑛5)) which results in N pairs of (𝑛5,ℎ5) and (𝑡5,ℎ5) which are in turn used to 

calculate 𝑑°$ = 𝐷 p/} using Eq. 5.12. The weights 𝑤5 in Eq. 5.12 are calculated 

using following equation: 

𝑤5 =  0.5 (ℎ±²³(5´p,¯) −  ℎ±µ¶(p,5�p)) (5.13) 

 

5.5.2 Applying the decision model Ddm to the Haute-Sûre case study 
The Haute-Sûre catchment described in Section 5.3 is used to demonstrate the 

decision model based on CDF matching. Random values of ns = fs (s, u) calculated for 

the decision variables s specified in Section 5.3.2.1 by propagating the uncertainty u 

defined in Section 5.3.2.3 are used here as well for demonstration purposes. The 

quantity of interest ns is the variable for the number of CSO spill events with 

ammonium concentration more than 2.5 mg/l for one hour. 500 Monte Carlo 

simulations performed in Section 5.3.3 resulted into 500 random values of ni for each 

s ∈ S. The corresponding hi values are obtained by estimating the empirical CDF 

value of each ni using the ecdf function available in the stats package of the statistical 

software R.  

5.5.2.1 Defining the target functions 

Three target functions are used to demonstrate the CDF matching based decision 

model Ddm. Since the regulatory threshold on ns is 1, one target function is defined as 

such to reflect the risk-averse behaviour of the decision maker. Due to its shape, the 

risk-averse target penalises the extreme values of n to a greater degree because of the 

extreme values of n for a decision alternative with high CDF values being farther 

from the risk-averse target. A standard target for which n = 0 is used to identify 
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solutions which provide an environmental performance as good as possible. A 

specific distribution is used as the third target to demonstrate the flexibility of the 

CDF matching approach. The specific distribution is the CDF of Beta PERT 

distribution which is defined by assigning a minimum value, a mode and a maximum 

value with a scale parameter λ (Vose, 2010). This means that the corresponding PDF 

of the specific distribution is positively skewed with maximum value set at 1. Fig. 

5.10 displays the shape of these target functions and the details of the three target 

functions are provided in Table 5.2.  

 

 

Fig. 5.10. Hypothetical target functions depicting different preferences. 

 

Table 5.2. Target functions used in the case study 

Target type Target function 

Standard 𝑡(ℎ) = 0 

Risk-averse 𝑡(ℎ) = 1 − ℎ· 

Specific distribution CDF of Beta PERT (minimum = 0, mode = 0.3, maximum = 1) 

 

5.5.2.2 Results and discussion 

The two objectives in the CDF matching based decision model Ddm are evaluated for 

the 143 decision variables and the Pareto optimal solutions are identified by applying 

the Pareto non-dominance for the three target functions. Amongst the 143 decision 
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alternatives, 16 are found to be Pareto optimal for both standard and risk-averse 

targets. For the specific distribution, 17 decision alternatives are found to be Pareto 

optimal. Fig. 5.11 plots the values of two objectives i.e. the CDF matching metric and 

the investment cost for the standard target.  

 

Fig. 5.11. CDF matching metric vs Cost of ns for the standard target. 

 

The Pareto optimal solutions are marked with solid triangles. It is clear from the Fig. 

5.11 that these Pareto optimal solutions appear to form a Pareto front which envelops 

the sub-optimal solutions. Fig. 5.12 shows the Pareto optimal solutions obtained by 

solving the decision model Ddm for the three targets. As expected the CDF matching 

metric is highest for the standard target which would be farthest from the CDFs of the 

decision alternatives. Similarly the value of  𝑑#$ is lowest for the risk-averse target in 

comparison with the other two targets. 

However, despite having different shapes, there seems to be no significant effect on 

the Pareto optimal solutions except the specific distribution target results in an 

additional alternative as the Pareto optimal solution. This is due to the fact that these 

targets have a small difference in terms of the range of n compared to the uncertain 

range of n for the decision alternatives. Both risk-averse and specific distribution 

target have n ranging from 0 to 1 therefore, the effect of different shapes is not very 

significant in the calculation of the CDF matching metric. However, these targets are 
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defined as such to identify solutions with an environmental performance as good as 

possible. 

 

Fig. 5.12. Pareto optimal solutions for different target functions. 

 

5.6 Concluding remarks 

This chapter presents two decision making approaches which incorporate the model 

input and model parameter uncertainty in the hydrodynamic and emission quality 

simulations. Both the decision making approaches integrate hydrodynamic and 

emission quality simulation, uncertainty analysis and multi-objective optimization. 

The first decision making approach consists of a trade-off between three objectives 

representing uncertainty in the system performance (mean, skewness, and the bPOE) 

and the cost of the proposed solutions as the fourth objective. The second approach 

consists of a trade-off between minimising a CDF matching metric and minimising 

the cost of the proposed solutions. The CDF matching metric measures how close the 

uncertain environmental performance of the decision alternatives are to a target 

function specified by the decision maker.  

Uncertainties in the simulation of urban wastewater system pose challenges to 

decision makers in managing the environmental impact on receiving water bodies. 

Using low-order statistical moments (mean or variance) or using the probability of 

exceedance as a failure probability does not provide any information about the shape 
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of the non-normal probability distributions of the emission quality performance 

variable or the magnitude of the extreme values. This becomes very important if the 

system performance is distributed with a heavy tail. In the case of CSO spills, the 

environmental impact not only depends on the number of failed CSO spill events but 

also on the sensitivity of the receiving water body. A large number of CSO spills with 

ammonium concentration exceeding the threshold (values on the right tail of the 

distribution) can be very damaging to the ecology of a receiving water body which is 

very sensitive to additional pollutants but may not be as damaging for a less sensitive 

body such as a river with a greater capacity for assimilating pollutants than sensitive 

rivers or streams. The type of symmetry and the tail of the distribution provide useful 

information in this regard. 

In the first decision making approach, in addition to the expected value of the system 

performance, skewness is used as one of the objectives through which the decision 

makers can specify their preference of symmetry in the distribution. The concept of 

Buffered Probability of Exceedance (bPOE) is used as an objective which is a 

conservative estimate of the traditional probability of exceedance. bPOE provides a 

probability measure which is not only based on the threshold but also on the 

magnitude of the tail of the distribution.  

The second decision making approach allows the decision maker with the flexibility 

to include their preferences about the entire distribution of the emission quality 

performance variable. While defining the target function, the decision maker can 

include information about the statistical moments and the probability of the 

exceedance along with the magnitude of the extreme values. However, it should be 

noted that the CDF matching metric only provides information about how close the 

environmental performance of the decision alternatives is with respect to the specified 

target function. Hence, this approach requires the decision maker to be familiar with 

the elicitation of the target function and its implication on the outcome of the decision 

making process. Also, a minimum value of the CDF matching metric does not ensure 

compliance with the regulatory threshold if the target function is not appropriately 

defined. Such limitation with the compliance requirements can be addressed by 

including the buffered probability of exceedance as a constraint in the decision model 

Ddm. 
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Compared to previous studies, the proposed decision models (D1, D2 and Ddm) 

provide decision makers with the flexibility to express their preferences for the 

uncertainty in the system performance variables when they are expressed as 

probability distributions. Decision makers can find solutions satisfying their 

preference for the shape of the distribution and the level of risk acceptance under 

budget constraints.  

This chapter does not take into account future changes affecting urban wastewater 

system such as population growth, the effect of climate change on rainfall 

precipitations, changes in environmental regulations. In addition, decision making 

processes may involve different stakeholders for whom different criteria such as 

adaptability and public acceptance of the proposed solutions, environmental 

aesthetics, land acquisition for proposed infrastructure investments, might be 

important. 
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6. Discussion  
The objective of this thesis is to develop and provide methodologies for making 

investment decisions and so improving the environmental performance of urban 

sewer systems while accounting for uncertainty in model predictions. To achieve this 

objective, this thesis tries to address three important aspects which affect the decision 

making process in urban sewer systems: (i) the influence of the form of the 

regulations used to ensure compliance of sewer systems with environmental 

regulations, (ii) accounting for the impact of the uncertainty in model predictions 

when used to demonstrate compliance with the environmental regulations while 

conforming to standard modelling guidelines or codes of practice, (iii) the role of 

individuals’ preferences in decision making when informed by predictions obtained 

with model uncertainty, and developing decision models representing such 

preferences. 

6.1 Influence of regulatory compliance requirements on 
modelling decisions 

Specifically, this thesis focuses on investment decisions which seek infrastructural 

improvements of urban sewer systems such that the sewer systems comply with 

environmental regulations on the overflow discharges to the receiving water bodies. 

Decision makers are required to make investment decisions which improve the sewer 

system’s performance with respect to the overflow discharges and to take actions to 

reduce the risk of non-compliance with such regulations. The environmental 

performance of the sewer system with respect to the overflow discharges is evaluated 

through emission quality indicators defined by the regulatory guidelines (e.g. the 

concentration-duration based emission quality indicator from Austrian guidelines 

applied in Chapter 5). However, some regulations use overflow quantity or overflow 

frequency as an indirect measure of the ecological impact on the water quality in the 

receiving water bodies. For example, the Flanders Environment Agency (VMM) in 

Belgium uses the overflow frequency as an emission quality indicator to evaluate the 

performance of CSOs (Chapter 3). Here, the emission quality indicator is the number 

of CSO spills which does not constitute any information about the concentration of 

pollutants in the CSO spills and how they might affect the water quality status of the 

receiving water body. Compliance with the environmental regulations on CSO 
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discharges often means meeting a threshold on the emission quality indicator. In 

Flanders, Belgium an upper threshold of 7 is defined for the number of CSO spills in 

a year. The Austrian guidelines define thresholds for different pollutants which are 

applied to the CSO spill events satisfying specific concentration-duration criteria. For 

instance, acute ammonia toxicity for salmonid species in the receiving water body 

caused by CSO spills is regulated by identifying CSO spills where the concentration 

of ammonia is more than 2.5 mg/L for one hour and allowing maximum one such 

CSO spill in a year (Chapter 5). In this case, the emission quality indicator is the 

number of CSO spills failing the concentration-duration criterion defined in the 

guidelines and a threshold of 1 is applied to the number of failures in a year.  

Although the emission quality indicators applied in Chapters 3 and 5 are different, 

regulations in both the countries apply a threshold on the number of failures. 

Therefore, despite using different definitions of the emission quality indicator, the 

requirements for regulatory compliance have a similar form. However, the scope of 

simulation is expected to differ in both the cases. In the Belgian context, simulation of 

the urban sewer system is required in order to predict the number of CSO spills. On 

the other hand, the Austrian regulations require simulation of water quality of the 

receiving water body. This would require simulation of not only the urban sewer 

system but also the wastewater treatment plant processes, river flow, and the mixing 

of pollutants in the river in an integrated modelling approach. The Belgian context 

disregards the receiving water quality directly, it might be possible that the CSO 

structure is spilling frequently than what is allowed but the receiving water has a very 

low sensitivity to the incoming pollutants. In this case, even if the aquatic quality of 

the RWB is not negatively affected the decision maker is required to make 

investments. Therefore, the form of the regulatory requirements plays a significant 

role in determining which processes are going to be modelled and how effective they 

are in enforcing the decision makers to improve the quality of RWBs. 

Considering model uncertainty in this context, the decision making process seeking 

compliance with the regulations becomes a risk-based decision making process where 

the risk of breaching the threshold needs to be quantified and the decision makers’ 

risk behaviour needs to be assessed. The risk-based decision models proposed in 

Chapter 5 are applicable to all those regulations which use a threshold-emission 

quality indicator based compliance requirements. 
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6.2 Accounting for modelling uncertainty in demonstrating 
compliance 

The infrastructural investment decisions are supported by evidence obtained in the 

predictions from urban drainage models and the emission quality indicator values are 

estimated subsequently. The decision maker evaluates the environmental performance 

of various decision alternatives on the basis of the corresponding values of emission 

quality indicators. As it has been observed in Chapter 3, the local environmental 

regulatory authorities may require the operators of urban sewer systems to use urban 

drainage models which are developed or calibrated following a certain code of 

modelling practice. In Chapter 3, the case study catchment is located in the Flanders 

region of Belgium where the regulatory authority is VMM. The water utility 

companies operating within the purview of VMM, use only those urban drainage 

models to evaluate the performance of sewer systems which are developed following 

standard modelling procedures in agreement with the regulator, such as the internal 

modelling procedure adopted by Aquafin (Aquafin, 2017). This means that the 

performance evaluation of the sewer system, with regard to the stated regulatory 

requirement using any other modelling procedure, is not acceptable for decision 

making purposes. This poses restrictions on the application of a variety of uncertainty 

analysis techniques proposed in recent academic studies. For instance, many 

academic studies on uncertainty analysis of urban drainage model predictions have 

used parsimonious conceptual models. Similarly, surrogate models have been 

reported in academic studies to facilitate uncertainty analyses for computationally 

extensive urban drainage models because uncertainty analyses require multiple 

simulation runs. However, similar to the regulator’s modelling requirements in 

Flanders, the results of uncertainty analyses using conceptual models or surrogate 

models will not be applicable because these models are not developed using the 

standard modelling procedure accepted by the regulator. Hence, only those 

uncertainty analysis techniques which do not change the structure of the model 

developed using the standard modelling procedure can be used. Sampling-based 

uncertainty propagation using Monte Carlo simulations ensures that the model 

structure is preserved while propagating the uncertainty in various model 

components. However, the Monte Carlo type technique requires a large number of 

simulation runs which could prove to be impractical for a computationally extensive 

model. Chapter 3 addresses the issue of computational burden by performing a 
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sensitivity analysis and using Latin Hypercube Sampling method to generate samples 

from inputs and model parameter sample space. A sensitivity analysis identifies 

inputs and model parameters which affect the model output in consideration and 

contribute to its variance. This means that the rest of the inputs and model parameters 

which are found to be not important for this model output can be fixed and need not 

be varied over their uncertain sample space. As a result, the decision maker can use 

their resources practically to quantify or reduce the uncertainty in a smaller number of 

inputs and model parameters which contribute to the uncertainty in the model output. 

Although the use of conceptual models or surrogate models would have reduced the 

computational burden to a greater extent as it has been reported in the literature (e.g. 

Freni et al., (2008); Schellart et al., (2010); Vezzaro et al., (2013)), the uncertainty 

quantification process proposed in Chapter 3 follows the standard modelling 

procedure used by Aquafin, making the results suitable for taking investment 

decisions to improve the performance of sewer system with respect to CSO 

discharges.  

Apart from the standard modelling procedures or codes of modelling practice such as 

the one used by Aquafin in Flanders, Belgium, the regulators may impose some 

additional modelling criteria to demonstrate compliance. For instance, in Flanders, if 

a decision maker wants to invest in additional storage so that a particular CSO does 

not spill more than 7 times in a year, the required storage volume needs to be 

estimated using a composite design storm ‘f7’. This means that an urban drainage 

model which has been developed following the standard modelling procedure will be 

used to estimate the CSO volume using the design storm ‘f7’ as the rainfall input. In 

this case, if the decision maker is interested in evaluating the uncertainty in the model 

prediction of the required CSO volume, the uncertainty in the rainfall cannot be 

accounted for hence underestimating the uncertainty in CSO volume. Rainfall being 

one of the most important inputs to the sewer system, this underestimation can have a 

significant effect on the investment decisions. In fact, this is reported in Chapter 4, 

where the required storage volume calculated using the design storm ‘f7’ is found to 

be insufficient in limiting the number of spills below or equal to the threshold of 7 in 

a year when historical rainfall is used to predict the number of CSO spills. Chapter 4 

suggests a larger storage volume is required to limit the number of CSO spills up to 7 

times in a year than what is predicted using the ‘f7’ storm. A holistic uncertainty 
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analysis of model predictions is only feasible if the regulatory guidelines for 

compliance allow such approaches. 

6.3 Individuals’ preferences for uncertainty and risk-averse 
decision making 

In this thesis, the infrastructure investment solutions are evaluated against two major 

criteria: environmental performance and the cost of investment. The scope of decision 

making in this thesis involves only infrastructure investment decisions which are 

required to be taken ‘now’ i.e. at time t = 0. Consequently, any uncertainty associated 

with future changes in the urban sewer systems is not considered while modelling 

uncertainty and decisions in this thesis. Hence, this thesis assumes that once the 

investment decision alternatives are defined, for instance, volume of a proposed 

storage tank, the corresponding investment costs can be accurately estimated by the 

water utility at the time of decision making.  

Once the infrastructure investment solutions as decision alternatives are modelled and 

the corresponding uncertainty in the emission quality indicator is quantified, each 

decision alternative results in a probability distribution of the emission quality 

indicator defined by the regulator. To compare the environmental performance of 

decision alternatives, the decision makers are faced with the challenge of comparing 

the probability distributions of the emission quality indicator. Studies on risk-based 

decision making in urban sewer systems (e.g. Korving et al., 2009; Meng et al., 2016; 

Portielje et al., 2000; Reda and Beck, 1997) have either used a probability of 

exceeding a threshold or extreme values to represent the uncertainty in the emission 

quality indicator. Reda and Beck (1997) used extreme values of the emission quality 

indicator with the preference of minimising these extreme values. Similarly, Portielje 

et al. (2000) preferred solutions which minimise the probability of exceeding the 

defined threshold for the emission quality indicator. Korving et al. (2009) used the 

probability of exceedance to estimate the cost of environmental damage due to CSOs 

and preferred solutions which minimise the total cost which combined the damage 

cost and the cost of investment. However, due to the non-linear behaviour of the 

sewer system, the predicted probabilistic uncertainty in the emission quality 

indicators are often non-normal (e.g. Schellart et al., 2010)). The first two statistical 

moments of a probability distribution, mean and variance do not provide any 
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information about the shape of the distribution that where the distribution is skewed 

or not, and if it is, then to what degree. The third statistical moment skewness of the 

distribution of the emission quality indicator provides information about the 

symmetry of the distribution. Literature from other fields of study such as Konno and 

Suzuki (1995) acknowledged the importance of skewness and included it as a 

criterion while comparing the decision alternatives. However, to the best of the 

author’s knowledge, the preference for skewness i.e. whether the optimal decision 

alternatives should result in a positively skewed or a negatively skewed or a 

symmetrical distribution of the emission quality indicator is not recorded so far.  

Six practitioners from a water utility in Flanders were interviewed to record their 

preferences for the uncertain emission quality indicator. All the practitioners were 

found to be risk-averse and they preferred lower values of the emission quality 

indicator which was number of CSO spills in a year (Chapter 4). All the practitioners 

agreed that they would prefer a decision alternative which results in a lower value of 

mean and variance of the emission quality indicator. They further agreed that they 

consider the probability of exceeding the threshold as an important criterion while 

evaluating decision alternatives and prefer lower values of probability of exceedance. 

This preference is in agreement with a risk-averse behaviour reported in earlier 

studies. However, when they were asked about their preference for the skewness of 

the distributions, the majority of these practitioners preferred a positively skewed 

distribution over a symmetrical or negatively skewed distribution with comparable 

mean and variance values. Although a positively skewed distribution tends to pose a 

risk of breaching the threshold, these practitioners were found to be willing to accept 

a small chance of breaching the threshold in favour of a larger probability of smaller 

values of the emission quality indicator. The practitioners argued that the CSO spills 

are frequent events and the values of the emission quality indicator would be lower on 

a frequent basis if the emission quality indicator follows a positively skewed 

distribution. One practitioner was indifferent to the type of symmetry of the 

probability distribution while another preferred a negatively skewed distribution if the 

threshold is never breached. Although the number of such individuals whose 

preferences deviated from the majority is very low i.e. 1 out 6, if such individuals 

were to be the only decision maker, the change in the criteria or their preferences 

would affect the outcome of the decision making process. Therefore it is imperative 

for a water utility to carefully define all the criteria to compare the alternatives and 
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the corresponding preferences for such criteria which reflect its policy and risk 

preferences.  

While the practitioners preferred a decision alternative which would result in the 

lower values of emission quality indicator, the majority of the practitioners appeared 

to compromise on the environmental performance in favour of cost-effective decision 

alternatives. This indicated a trade-off between the environmental performance and 

the investment cost. Only one practitioner was found to be extremely risk-averse and 

this practitioner assigned little importance to the cost. The other practitioners 

appeared to rank the decision alternatives on their cost-effectiveness in improving the 

sewer system’s performance with respect to the emission quality indicator. These 

practitioners assigned the highest rank to a decision alternative despite the fact that 

this alternative was found to be stochastically dominated by other alternatives. This 

suggests that the practitioners did not favour the stochastically non-dominated 

alternative albeit considered both the criteria i.e. the environmental performance and 

the investment cost important while ranking the alternatives. Therefore, it can be 

concluded that merely searching for decision alternatives which display stochastic 

non-dominance with respect to the emission quality indicator does not represent the 

decision makers’ preferences in this context. All the practitioners were found to rank 

the decision alternatives essentially through a trade-off between the environmental 

performance and the investment cost, however, the assigned relative weights or 

importance values were different among these practitioners. Even amongst a very 

small number of practitioners, a difference in preferences for the criteria and their 

relative importance was noticed due to individuals’ risk behaviour. It is expected that 

in general, the decision makers would evaluate the decision alternatives through a 

trade-off between the defined criteria but the assigned weights could be varying 

depending on the scope of the decision making. For example, if the receiving water 

body is classified as highly sensitive to the incoming pollutants from the CSO spills 

and the regulation allows little or no CSO spill at all, the decision maker could assign 

very high importance to the environmental performance. In such cases, the decision 

maker would choose an alternative which ensures compliance even at a high 

investment cost. Therefore, such decision making problems need to be formulated as 

multi-objective problems where the individual criteria and their preferences are 

represented as objective functions. Also, a multi-objective formulation enables 
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searching for optimal decision alternatives by comparing a large number of candidate 

solutions through optimization. 

Chapter 5 presents two decision models which represent the risk-averse behaviour of 

the decision makers as observed through the interviews described in Chapter 4. The 

first decision model considers the mean, the Buffered Probability of Exceedance 

(which is a probability of exceedance measure), the skewness and the investment 

cost. In Chapter 4, all the interviewed practitioners unanimously preferred decision 

alternatives with lower mean, lower probability of exceedance and lower cost but had 

different preferences about the skewness; two decision models are proposed with 

reverse preferences for skewness. A probability measure Buffered Probability of 

Exceedance is used instead of the probability of exceedance to account for the 

magnitude of extreme values greater than the threshold. Two distributions may have 

identical probabilities of exceeding the threshold but it is possible that their extreme 

values may have different magnitudes. The Buffered Probability of Exceedance 

captures this difference which otherwise would be ignored. In the second decision 

model Ddm, the decision maker can specify their preferences for the uncertain 

emission quality indicator by defining a target function and identify decision 

alternatives which are predicted to perform as well as the specified target function. 

The decision model Ddm is based on a CDF matching approach which minimises the 

difference between the CDFs of the emission quality indicator for the decision 

alternatives and the specified target function. Using the CDF matching metric ddm as 

the sole objective would result in the decision alternatives whose CDF is closest to 

the target function. Three different types of target functions are used to demonstrate 

the CDF matching approach to find cost-effective investment decisions improving the 

environmental performance of the sewer system. While the CDF matching metric 

offers more flexibility by considering the entire distribution of the emission quality 

indicator, the decision models D1 and D2 provides transparent information about the 

risk of non-compliance associated with the Pareto optimal solutions. However, if 

required the bPOE can be included as another objective in the CDF matching based 

decision model to explicitly evaluate the risk of non-compliance with the regulatory 

requirements.  

Since the relative importance of the criteria to the decision makers is not quantified, 

the multi-objective formulations assign equal weights or importance to the individual 

criteria or objectives and seek to search for Pareto optimal solutions by testing the 
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Pareto non-dominance of the decision alternatives for the specified objectives. It is 

expected that the decision makers would select an optimal decision alternative from 

the set of Pareto optimal solutions by assigning the relative importance or weights to 

the individual criteria a posteriori.  

The decision models presented in Chapter 5 are scalable which means that any 

additional criteria can be included as objectives and these additional criteria can be 

represented as certain or uncertain. For instance, additional target functions can be 

defined for criteria other than the environmental performance e.g. the uncertain flood 

levels and a corresponding CDF matching metric can be included in the decision 

model Ddm.  

Also, it is recommended that multi-criteria decision problems such as the one posed 

in Chapter 5, should be formulated as multi-objective functions instead of converting 

the decision problem into a single objective decision model through linear 

scalarization of individual objectives. This is due to the fact that linear scalarization 

requires identification of weights of the criteria a priori and it can be difficult to 

analyse the trade-off between individual objectives post optimization.  

In Chapter 5, a comparison between the uncertainty based decision making process 

and the deterministic process revealed that if a decision were to be made without 

considering the modelling uncertainty, the selected decision would have a 99% 

chance of breaching the threshold set by the regulations on the emission quality 

indicator. This outcome establishes the importance of incorporating uncertainty in 

model predictions while making investment decisions. However, the impact of 

modelling uncertainty on the outcome of the decision making cannot be generalised 

and is expected to depend on the decision problem at hand. 
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7. Conclusions and Outlook 

7.1 Conclusions 

This PhD thesis reports on studies into the use of uncertainty based methodologies to 

aid decisions on improving the performance of urban sewer systems so as to comply 

with environmental regulatory performance standards. While doing so this thesis sets 

out to achieve the following objectives: 

(I) Investigate the influence of different regulatory compliance requirements 

in the modelling and the evaluation of decision alternatives.  

Chapter 3 and 5 analyse the influence of regulatory compliance 

requirements on the modelling process of decision alternatives. Regulatory 

performance standards on CSO discharges in two European countries, 

Belgium and Austria are studied. While the Belgian regulatory standards 

use CSO spill frequency as a emission quality indicator, the Austrian 

standards use concentration-duration-frequency type emission quality 

indicators. The catchment in Chapter 3 is based in Belgium; hence only 

uncertainty in the water quantity simulation of CSO spills is studied 

because the regulatory performance standard does not require emission 

quality assessment. On the other hand, Chapter 5 uses the Austrian 

regulations to assess water quality failure, which does require simulation 

of water quality parameters in the sewer overflow. Therefore, the type of 

emission quality indicator specified in the regulatory compliance 

requirements defines which physical processes of the urban sewer system 

needs to be modelled. Also, both the regulations specify a threshold on the 

emission quality indicator to demonstrate compliance, thereby making the 

risk of breaching the threshold as the primary criterion in the evaluation of 

decision alternatives.  

However, it should be noted that both these local regulations are intended 

to ensure the requirement of the attainment of at least a good ecological 

status of surface water bodies defined in the European Water Framework 

Directive (WFD). Since the WFD uses only a normative definition of good 

ecological status, member European Union countries use their own 

individual regulations to achieve this target. The WFD focuses on a 
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combined approach requiring performance standards on emission limits 

and environmental quality. The performance standard in Flanders, 

Belgium only includes a limit on emission, it does not give any indication 

of the impact on environmental quality. Hence, any investment decision 

evaluated on the basis of this emission limit only – based standard may not 

achieve the target of the good ecological status of the surface water bodies 

because the decision alternatives are not modelled and evaluated against 

their environmental quality performance. While the Austrian standard 

does account for emissions and environmental quality and sets different 

thresholds for different aquatic species, it does not differentiate overflow 

events which results into very high concentrations of pollutants from those 

events with concentrations moderately exceeding the thresholds. 

Therefore, the WFD should entail a quantitative definition of the good 

ecological status which is not only based on concentration duration 

frequency but also on the sensitivity of the receiving water body so that 

there is no discrepancy in the implementation of WFD across member 

countries. Following a letter from Richard Benyon MP, the Minister for 

Natural Environment and Fisheries in the UK, there has been a drive to 

improve the CSO monitoring. The letter was addressed to the Chief 

Executives of the water and sewerage companies in the UK asking to put 

CSO monitoring for the vast majority of their CSOs by the year 2020 

(DEFRA, 2013). As a result, the CIWEM published a guide for Event 

Duration Monitoring at the CSOs (CIWEM, 2016). Although this CSO 

monitoring only considers the CSO spill frequency but not the flow or the 

quality, monitoring of the vast majority of CSOs is a significant step 

forward in understanding how the CSOs are performing. 

 

(II) Quantify uncertainty in the model predictions while following the 

regulatory modelling requirements, thereby making the uncertainty 

predictions acceptable to the regulator.  

Chapter 3 presents a practical, transparent and objective uncertainty 

quantification process which conforms to the modelling requirements 

specified by the regulator, VMM. In Flanders, Belgium, the regulator 

requires the water utilities evaluate the performance of CSO structures 
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following specific modelling guidelines. These guidelines include the use 

of a specific design storm to estimate the storage volume required to limit 

the frequency of CSO spill events below the specified threshold. The 

sewer network is modelled in InfoWorks CS, and the model is calibrated 

and validated according to a defined procedure to test the spill frequency 

performance of CSOs. Uncertainty in the model and input parameters is 

propagated using Monte Carlo simulations with Latin hypercube 

sampling. However, it should be noted that these modelling requirements 

in Flanders are not defined to accommodate the uncertainty in model 

predictions and hence, limiting a full-scale uncertainty analysis. For 

instance, due to the requirement of using the specific design storm, 

uncertainty in the rainfall measurements and its spatial and temporal 

variability could not be accounted for. This means that the uncertainty 

levels predicted in Chapter 3 are expected to be an underestimation of 

overall uncertainty in the prediction of CSO spill volume. Since the 

predicted uncertainty levels conform to the current regulatory modelling 

requirements, they can be used by the water utility to support investment 

decisions in improving sewer system’s performance. Chapter 3 reported 

significant levels of uncertainty in the model predictions despite the 

uncertainty levels being an underestimation. Since the investment 

decisions are made based on such model predictions, not accounting for 

modelling uncertainty these can lead to investments which may not able to 

limit the CSO spill frequency below the threshold.   

The uncertainty quantification methodology demonstrated in Chapter 3 

focuses on current regulatory modelling requirements for a better-

informed decision making. However, the regulatory requirements 

themselves should provide the practitioners with the flexibility to consider 

all the important sources of uncertainty in the model predictions so that the 

practitioners have more confidence in the model predictions. This would 

result in a better assessment of the decision alternatives and help the 

practitioners in making investment decisions which are reliable against the 

regulatory performance standards.  
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(III) Identify individuals’ preferences for uncertainty in the performance 

variable and their risk behaviour in evaluating decision alternatives. 

In Chapter 4, six experienced practitioners from a water utility in Belgium 

were interviewed in order to assess the influence of individuals’ 

preferences on the outcome of the decision making process given identical 

model predictions. Uncertainty in the performance of the decision 

alternatives was modelled for a local case study catchment. The 

practitioners are asked a series of questions so as to identify their 

preferences for uncertainty in the emission quality indicator and their risk 

behaviour. While it is found that all the practitioners displayed a risk-

averse behaviour, the majority of these practitioners evaluate the decision 

alternatives based on their cost-effectiveness hence consider the 

investment cost also important. All these practitioners compare the 

decision alternatives through a trade-off between the performance and the 

investment cost. However, they appear to assign different weights or 

importance to these two criteria which indirectly indicated different levels 

of risk-averseness among the practitioners. Even for a sample as small as 6 

individuals, the level of risk averseness varies resulting in different 

rankings of the decision alternatives. This means that given the identical 

model predictions, these individuals make decisions with varying 

investment costs and predicted environmental performance. For instance, 

one practitioner prefers to invest in a much larger storage volume than 

those of the selected decision alternatives while another practitioner 

prefers a phased investment plan. These two choices result in two different 

investment strategies and the environmental performance assessment for 

the water utility. Therefore it is advised that a water utility should derive 

and define a standard risk-behaviour which reflects its policy towards 

achieving the regulatory compliance subject to its own budget constraints. 

This would ensure that given identical model predictions, the practitioners 

make decisions which reflect the company’s risk behaviour, not the 

individuals’.  

 

(IV) Develop decision models which represent the decision makers’ 

preferences to select optimal decision alternatives improving the 
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environmental performance of urban sewer systems while complying with 

the regulatory standards. 

Section 5.2 presents a stochastic optimization based decision model which 

provides the decision makers with the flexibility of representing their 

individual preferences for the criteria they find important. To evaluate the 

risk of non-compliance, the concept of Buffered Probability of 

Exceedance (bPOE) is introduced which accounts for the magnitude of 

extremes in the distribution of predicted system performance. This risk 

measure is a better indicator than the probability of exceedance to evaluate 

the decision alternatives, because the probability of exceedance does not 

provide any information about the magnitude of extreme values which 

could have a significant negative impact on the ambient water quality. 

Hence, the reliability of model-based decisions against the regulatory 

threshold should be tested against their Buffered Probability of 

Exceedance values. The bPOE is a conservative probability measure of 

exceeding the specified threshold. Its value depends on the magnitude of 

the extreme values and their corresponding probabilities. Therefore, it is 

possible that two decision alternatives result in identical probabilities of 

exceedance but different values of bPOE owing to the different shapes of 

the distribution tails. Besides the risk measure and the expected value 

(mean) of the distribution, the third statistical moment skewness is also 

used to account for asymmetry of these distributions. The optimal 

solutions are identified by comparing the decision alternatives using 

Pareto non-dominance criteria.  

Section 5.5 presents a decision model which uses a CDF matching metric 

to evaluate how close the CDFs of the decision alternatives are from a 

target function specified by the decision maker. This CDF matching 

metric calculates the distance between the CDFs of the emission quality 

indicator of the decision alternatives and the target function. The decision 

model seeks to find optimal decisions through a trade-off between 

minimising the distance metric and minimising the investment cost. The 

target function provides the decision maker with a great amount of 

flexibility where they can include all their preferences for the statistical 

moments and the Buffered Probability of Exceedance. Using only the 
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CDF matching metric ensures that the decision alternative with the 

minimum value of the metric stochastically dominates all the other 

alternatives. Since it is observed in Chapter 4 that the practitioners do 

consider investment cost an important criterion along with the 

environmental performance, the decision model includes the investment 

cost as well. The possible downside of this approach is that it puts a great 

amount of responsibility on the decision maker in defining the target 

function. The optimal solutions are identified based on their closeness to 

the target function hence the definition of this target function can control 

which solutions are going to be determined optimal. Again, different 

individuals might define different target functions owing to the difference 

in their risk preferences. Also, the target function might depend on the 

sensitivity of the receiving water body. For instance, a very strict target 

function might be required for a highly sensitive river which would be 

equivalent to the worst-case optimization seeking to identify a decision 

alternative with 100% predicted reliability against the threshold. Therefore 

the water utilities should have a standard procedure to define such target 

functions. Target functions can also be defined for uncertain criteria other 

than the emission quality indicator such as flood levels, uncertain 

investment costs. If the decision maker is unable to define a target 

function the multi-objective decision model from section 5.2 should be 

applied in such cases because the outcome of the decision making process 

is highly dependent on the choice of the target function.  

A deterministic decision making process for a case study in Luxembourg 

reveals that the deterministic solution would have breached the regulatory 

performance standard with a probability of 0.99. This means that the 

uncertainty levels in the model predictions are so significant that the 

decision alternative which is found optimal using the deterministic 

approach proves not reliable under the modelling uncertainty. This again 

demonstrates that accounting for modelling uncertainty provides the 

decision maker with a method to justify the confidence in their decisions. 

However, it should be noted that the reported performance of the 

deterministic solution is valid for the specific case study only. For this 
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case study, post the uncertainty quantification the decision maker is better-

informed about their selected decision and its modelled performance.  

7.2 Outlook 

The literature review in Chapter 2 reports that uncertainty based decision making in 

urban sewer systems has been limited to the use of probability of exceedance values. 

These literature sources do not consider other important information contained in the 

probability distributions such as the shape of the distribution characterised by its 

statistical moments and the magnitude of extreme values which can significantly 

influence the performance of the decision alternatives. While the focus of this thesis 

has been incorporating uncertainty in the model predictions to the decision making 

process influenced by regulatory compliance requirements, the methodologies 

proposed in the thesis use only a probabilistic representation of uncertainty in the 

model predictions. However, uncertainty in the model components might be 

described qualitatively or using an interval rather than a probability distribution due 

to a lack of data or information needed to characterise the probability distribution. In 

this regard, future research can be built upon this thesis so as to accommodate a 

variety of uncertainty representations. Again, such representations need to be 

approved by the regulators in order to use the resulting model predictions for making 

investment decisions.  

As reported in Chapter 3, the uncertainty quantification process itself can be 

computationally expensive for complex hydrodynamic network models. The 

proposed decision model in Chapter 5 is demonstrated using a simple conceptual 

water quality simulator. However, searching for solutions using optimization 

algorithms coupled with uncertainty propagation can be computationally demanding. 

This thesis does not address such practical limitations but in the literature, there is 

evidence of using surrogate models which enable a large number of optimization 

searches. Currently, the use of such models is dependent on their qualification to the 

regulatory modelling requirements hence the regulatory requirements should provide 

practitioners with the flexibility to use surrogate models to support optimization 

under uncertainty. Since surrogate models are an approximation of the complex 

simulation models, there exists a compromise between the computational ease and the 

accuracy of model predictions. Analyses using surrogate models pose a risk of 
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misleading outcomes and therefore, a benchmark modelling procedure should be 

defined to assess the performance of surrogate models (Razavi et al., 2012). However, 

statistical emulators which are a statistical approximation of the simulation models 

also provide a probability distribution of model outcomes which represents the 

uncertainty associated with the emulation process (Uusitalo et al., 2015).  

The interviews in Chapter 4 identify that the practitioners assign different weights to 

the environmental performance and the investment costs, however, these weights are 

not quantified. Also, the decision model proposed in Chapter 5 does not allow 

assignment of weights or importance to the individual criteria. The decision model 

proposed in this thesis allows a decision maker to select the best solution from a set of 

Pareto optimal solutions a posteriori. Future research should focus on developing 

methodologies which identify and represent the importance of individual criteria 

relative to each other mathematically and incorporate this representation into a multi-

objective decision model a priori. In this regard, a possible line of investigation could 

be an integration of MADM techniques to the decision models presented in Chapter 

5. MADM techniques such as AHP, PROMETHEE and ELECTRE build upon 

identifying decision makers’ preferences to compare different alternatives. The 

mechanism of identifying and representing the decision makers’ preferences from 

these techniques can be investigated so as to test their suitability to the multi-

objective decision model formulations presented in this thesis.  

With respect to the type of decisions modelled in this thesis, another line of 

investigation can be to devise uncertainty based decision making methodologies 

which aid sequential decision making process incorporating management type 

decisions where a sequence of decisions is required to be modelled over a time 

horizon. The management type decisions often involve a series of actions to be taken 

over a time horizon where the action taken at t = 0 affects the future actions and so 

on. Such a decision is observed in the interview response of one practitioner in 

Chapter 4 where the practitioner prefers a phased investment plan starting with a 

small storage basin and increase the basin storage volume in future depending on the 

measured performance of the current investment. A decision time horizon may also 

affect the uncertainty quantification process. For instance, climate change might 

affect the meteorological conditions in future affecting the estimation of uncertainty 

in rainfall measurements. Also, description of uncertainty in the model inputs and 
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parameters may change with time. For example, the probability distribution of pipe 

roughness can also change as the sewer pipes age over time. Therefore, an 

appropriate uncertainty quantification process and the modelling of such decisions 

need to be investigated.  
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Appendix A 
The Composite Design Storm ‘f7’ 

Fig. A.1 displays the rainfall profile of the composite storm ‘f7’ which was developed 

by Vaes et al. (1996). The ‘f7’ includes all the Intensity/Duration relationships for the 

annual rainfall frequency of 7 at Uccle, Belgium. These relationships are based on 

rainfall measurements taken at Uccle with 10-minute resolution. The main 

meteorological station of Belgium is situated in Uccle.  

 

Fig.A.1. Composite design storm ‘f7’ with an annual frequency of 7. 
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Appendix B 
Overflow frequency for decision alternatives 

Decision alternative a: Storage basin volume 2100 m3 

Year 

Runoff coefficient 

0.731 0.797 0.862 

2004 17 19 20 

2005 10 13 17 

2006 14 17 21 

2007 8 12 22 

2008 13 16 18 

2009 10 12 14 

2010 11 13 21 

2011 10 13 15 

2012 15 20 22 

2013 11 14 16 
 

 

Decision alternative b: Storage basin volume 2500 m3 

Year 

Runoff coefficient 

0.731 0.797 0.862 

2004 15 19 19 

2005 10 11 14 

2006 11 15 19 

2007 8 8 15 

2008 13 14 16 

2009 6 10 12 

2010 10 12 14 

2011 9 11 14 

2012 14 16 20 

2013 9 11 14 
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Decision alternative c: Storage basin volume 2900 m3 

Year 

Runoff coefficient 

0.731 0.797 0.862 

2004 14 16 19 

2005 7 10 12 

2006 9 13 16 

2007 7 8 9 

2008 13 13 14 

2009 6 8 10 

2010 9 11 13 

2011 8 10 11 

2012 13 15 18 

2013 6 10 11 

 

 

Decision alternative d: Storage basin volume 3300 m3 

Year 

Runoff coefficient 

0.731 0.797 0.862 

2004 13 15 19 

2005 7 9 10 

2006 5 11 14 

2007 5 7 8 

2008 11 13 13 

2009 5 6 9 

2010 9 10 12 

2011 7 9 11 

2012 12 15 15 

2013 5 8 11 
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Decision alternative e: Storage basin volume 3900 m3 

Year 

Runoff coefficient 

0.731 0.797 0.862 

2004 12 14 17 

2005 6 7 10 

2006 4 7 12 

2007 4 6 7 

2008 10 13 13 

2009 4 6 7 

2010 8 9 10 

2011 6 8 10 

2012 11 13 15 

2013 4 6 9 
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Appendix C 
Parallel Coordinate plot to visualise solutions to a multi-objective decision model 

Fig. C.1 displays the Pareto optimal solutions obtained in Section 5.4.1 for the 

decision model D1. The parallel coordinate plot maps the 4 objectives in D1 (mean, 

skewness, bPOE and cost) to the 2 decision variables (storage volume and impervious 

area). The mapping is displayed using straight lines connecting the decision variables 

to the corresponding values of the objective functions. 

 

Fig.C.1. Parallel coordinates mapping the Pareto optimal solutions for D1 to the objective functions. 

 

The mapping of Pareto optimal solutions to the corresponding objective function 

values is displayed as grey coloured lines. The blue coloured line displays an example 

of the preferred Pareto optimal solution for specific constraints on the values of the 

objective functions. In this case, the decision maker specifies a mean value ≤ 1, a 

skewness value ≥ 3, a value of bPOE ≤ 0.1 and a total cost of ≤ £3 million. The 
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constraints are displayed as pink coloured range specified on the coordinates of the 4 

objectives. The only Pareto optimal solution which satisfies the specified constraints 

is a combination of Storage tank with a volume of 700 m3 and an Impervious area of 

24.5 ha.  


