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Abstract 
Knowledge of the reactions between VOCs and atmospheric radicals and oxidants is fundamental 

to understanding atmospheric chemistry and the formation of air pollution in urban 

environments. This work describes the development of a new experimental technique for the 

simultaneous measurement of gas-phase rate coefficients for reactions between multiple VOCs 

and different atmospheric radicals. The technique is based on the traditional relative rate 

approach and succeeds in markedly increasing the rate of throughput of target reactions; an 

improvement necessary when considering the vast number of organic compounds observed in 

the atmosphere for which experimental oxidation data are not available. New rate coefficients 

are derived using a suite of the available kinetic literature as reference reactions to calibrate the 

results over a range of reactivity, thereby reducing the reliance on any single rate coefficient 

value. 

This new multivariate method was applied to mixtures containing multiple VOCs with a range in 

functionalities and under different experimental conditions. Two different atmospherically 

relevant radicals were tested (OH and Cl) and the technique was adapted to allow for 

temperature controlled measurements. 

Rate coefficients for the reactions of eight VOCs (1,2-, 1,3- and 1,4-diethylbenzene, n-

pentylbenzene, 2-methylheptane, 2-methylnonane, ethylcyclohexane and 2,3-dimethylpent-1-

ene) with OH at room temperature were derived for the first time. Rate coefficients for the 

reactions of 44 other VOCs with OH were also assessed concurrently with the derivation of these 

eight new results. A rate coefficient for the reaction between 2-methylheptane and Cl was 

measured for the first time, alongside the measurement of rate coefficients for the reactions of 

seven other VOCs with Cl. 
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calculated by combining the standard error in peak areas for six lamp-off and six lamp-on 

samples. Error bars on the x-axis were typically large (approximately ± 20-30%). A weighted (to 

the uncertainty in the y-values) linear fit was used to generate the slope, with a value of OHexp = 

0.6 (± 0.06) × 109 molecules cm-3 s and R2 = 0.893. A three-parameter exponential relationship (Eq. 

3.1) was used to generate the curve, with R2 = 0.904. The VOCs can be identified as follows; 1, m-

xylene; 2, 1,2,4-trimethylbenzene; 3, α-pinene; 4, camphene; 5, β-pinene; 6, isoprene; 7, 

limonene; 8, γ-terpinene; 9, β-phellandrene; 10, terpinolene; 11, α-phellandrene; 12, α-terpinene.

 152 
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Figure 3.10 Relative rate plots for monoterpenes mixture 2 with OH reactivities of 73, 170, 265, 

360 and 434 s-1. Two relationships between depletion and literature k value were modelled; a 

weighted linear regression (black) and a three-parameter exponential relationship (red; Eq. 3.1). 

The R2 values for the weighted linear fits were 0.759, 0.858, 0.893, 0.777 and 0.839 respectively. 

The values of OHexp were 0.70 (± 0.12), 0.6 (± 0.07), 0.6 (± 0.06), 0.3 (± 0.05) and 0.4 (± 0.05) × 109 

molecules cm-3 s respectively. The R2 values for the three-parameter exponential relationships 

were 0.933, 0.934, 0.904, 0.779 and 0.926 respectively. Error bars on the x-axis are not shown for 

reasons of clarity. 153 

Figure 3.11 Comparison of two SARs for the estimation of rate coefficients for the reactions 

between alkenes and OH, alongside the experimental results derived in this work (green) and the 

recommended literature values (black). The transparent bars are equivalent to the anticipated 

errors on the SAR derived k values; 15% for Peeters et al. (2007) and 40% for Jenkin et al. (2018).

 157 

Figure 3.12 Typical total ion chromatogram (TIC) sections obtained for the alkenes mixture with 

the lamp turned off (blue) and the lamp turned on (black). Greater differences in peak areas were 

observed for VOCs which have a larger rate coefficient value for their reaction with OH. Evaluated 

literature rate coefficients (in units of 10-12 cm3 molecule-1 s-1) for the VOC + OH reactions are: 1-

hexene, 37 (± 11); 2,3-dimethylpentene, N/A; cyclohexene, 68 (± 17); 1-heptene, 40 (± 12) (see 

Table 3.7). 159 

Figure 3.13 TIC section and extracted ion chromatogram sections (EICs) at m/z 56 (red) and m/z 

67 (blue) demonstrating the versatility of using ToF-MS as a detector in this method. 160 

Figure 3.14 Relative rate plot for the alkenes mixture with an OH reactivity of 30 s-1, at 295 K. 

Compounds with a reference rate coefficient for reaction with OH were plotted using evaluated 

reference values. Error bars on the y-axis, equal to one standard error, were calculated by 

combining the standard error in peak areas for six lamp-off samples and six lamp-on samples. 

Error bars on the x-axis were typically large (approximately ± 20-30%) and accounted for 

deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-axis) linear fit was 

used to generate the slope with a value of OHexp = 1.8 (± 0.1) × 109 molecules cm-3 s and R2 of 0.95. 

Data for 2,3-dimethylpent-1-ene (A), which had no literature k value, was not used in the 

calculation of the fit. The VOCs can be identified as follows: 1, 1-hexene; 2, 1-heptene; 3, 1-

octene; 4, 1-nonene; 5, α-pinene; 6, cyclopentene; 7, cyclohexene; 8, cycloheptene; 9, β-pinene; 

10, isoprene. 1624 
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Figure 3.15 Experimentally derived (data points) and predicted SAR derived (lines) k values for the 

homologous series of cycloalkene + OH reactions. Data from this study are shown in green and 

were in agreement with both previous experimentally measured values and with theoretical 

predictions. Errors are only shown for this work and not for the other experimental literature 

values. 164 

Figure 3.16 Experimentally derived (data points) and predicted SAR derived (lines) k values for the 

homologous series of 1-alkene + OH reactions. Data from this study are shown in green and were 

in good agreement with both previous experimentally measured values and with theoretical 

predictions. 165 

Figure 3.17 Simulated relative rate plot for monoterpenes mixture 1 with an OH reactivity of 50 s-

1. Three different theoretical sections of the reactor were simulated separately, with each section 

containing 1/3 [VOC] and exposed to different [OH] of 1.0 × 109, 5.0 × 109 and 2.5 × 1011 

molecules cm-3. 177 

Figure 3.18 Simulated relative rate plot for monoterpenes mixture 1 with an OH reactivity of 50 s-

1. The final concentrations of the VOCs in each of the simulated sections (Figure 3.17) were 

summed prior to the calculation of the depletion factor. The resulting relationship was clearly 

curved in a similar manner to that observed during experiment (Figure 3.5). The slope was plotted 

up to a depletion factor value of 0.4, to demonstrate that a linear relationship could be assumed 

up to that value for simplification. 177 

Figure 3.19 Simulated relative rate plot for monoterpenes mixture 1 with an OH reactivity of 290 

s-1. The final concentrations of the VOCs in each of the simulated sections were summed prior to 

the calculation of the depletion factor. The resulting relationship wasn’t strictly linear but can be 

assumed to be. 178 

Figure 3.20 Time series showing the simulated changes in concentrations of OH, HO2, isoprene 

and the isoprene oxidation products, total ISOPOO, total ISOPOOH and total IEPOX. 181 

Figure 3.21 Simulated distribution of products resulting from the OH-initiated oxidation of 

isoprene. Please refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) for product structures. 181 

Figure 3.22 Simulated distribution of products resulting from the OH-initiated oxidation of m-

xylene. Please refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) for product structures. 182 
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Figure 3.23 Simulated distribution of products resulting from the OH-initiated oxidation of o-

xylene. Please refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) for product structures. 183 

Figure 3.24 Simulated distribution of products resulting from the OH-initiated oxidation of α-

pinene. Please refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) for product structures. 184 

Figure 3.25 Simulated distribution of products resulting from the OH-initiated oxidation of β-

pinene. Please refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) for product structures. 185 

Figure 3.26 Simulated distribution of products resulting from the OH-initiated oxidation of 

limonene. Please refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) for product structures. 186 

 

Figure 4.1 Typical TIC sections obtained for the small aromatics mixture showing the peaks 

observed with the lamp off (blue) and the lamp on (black). The peaks were identified as: a, 

ethylbenzene; b, m-xylene; c, o-xylene; d, isopropylbenzene; e, n-propylbenzene; f, 3-

ethyltoluene; g, 4-ethyltoluene; h, 2-ethyltoluene. 200 

Figure 4.2 TIC sections for the small aromatics mixture showing the peaks observed for n-

pentylbenzene with the lamp turned off (blue) and the lamp turned on (black). 199 

Figure 4.3 Relative rate plot for the small aromatic VOCs mixture with an OH reactivity of 

approximately 18 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH 

were plotted using evaluated literature values as references. Error bars on the y-axis, equal to one 

standard error, were calculated by combining the standard error in peak areas for six lamp-off 

samples and six lamp-on samples. Error bars on the x-axis were typically large (approximately ± 

20-30%) and accounted for deviations from the trend for most VOCs. A weighted (to the 

uncertainty in the y-axis) linear fit was used to generate the slope with a value of OHexp = 5.5 (± 

0.6) × 109 molecules cm-3 and R2 of 0.899. Data for n-pentylbenzene (A), which had no literature k 

value, was not used in the calculation of the fit. The VOCs can be identified as follows: 1, t-

butylbenzene; 2, toluene; 3, n-propylbenzene; 4, isopropylbenzene; 5, ethylbenzene; 6, 2-

ethyltoluene; 7, 4-ethyltoluene; 8, o-xylene; 9, 3-ethyltoluene; 10, m-xylene. 200 
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Figure 4.4 Relative rate plot for the small aromatic VOCs mixture with an OH reactivity of 

approximately 18 s-1 measured with 20 ppb NO, at 295 K. Compounds with a reference rate 

coefficient for reaction with OH were plotted using evaluated literature values as references. 

Error bars on the y-axis, equal to one standard error, were calculated by combining the standard 

error in peak areas for six lamp-off samples and six lamp-on samples. Error bars on the x-axis 

were typically large (approximately ± 20-30%) and accounted for deviations from the trend for 

most VOCs. A weighted (to the uncertainty in the y-axis) linear fit was used to generate the slope 

with a value of OHexp = 6.9 (± 0.9) × 109 molecules cm-3 and R2 of 0.853. Data for n-pentylbenzene 

(A), which had no literature k value, was not used in the calculation of the fit. The VOCs can be 

identified as follows: 1, t-butylbenzene; 2, toluene; 3, n-propylbenzene; 4, isopropylbenzene; 5, 

ethylbenzene; 6, 2-ethyltoluene; 7, 4-ethyltoluene; 8, o-xylene; 9, 3-ethyltoluene; 10, m-xylene.

 201 

Figure 4.5 Relative rate plot for the small aromatic VOCs mixture with an OH reactivity of 

approximately 18 s-1 measured with 40 ppb NO, at 295 K. Compounds with a reference rate 

coefficient for reaction with OH were plotted using evaluated literature values as references. 

Error bars on the y-axis, equal to one standard error, were calculated by combining the standard 

error in peak areas for six lamp-off samples and six lamp-on samples. Error bars on the x-axis 

were typically large (approximately ± 20-30%) and accounted for deviations from the trend for 

most VOCs. A weighted (to the uncertainty in the y-axis) linear fit was used to generate the slope 

with a value of OHexp = 7.5 (± 0.8) × 109 molecules cm-3 and R2 of 0.909. Data for n-pentylbenzene 

(A), which had no literature k value, was not used in the calculation of the fit. The VOCs can be 

identified as follows: 1, t-butylbenzene; 2, toluene; 3, n-propylbenzene; 4, isopropylbenzene; 5, 

ethylbenzene; 6, 2-ethyltoluene; 7, 4-ethyltoluene; 8, o-xylene; 9, 3-ethyltoluene; 10, m-xylene.

 202 

Figure 4.6 Relative rate plots for the small aromatics mixture with an OH reactivity of 18 s-1, at 

295 K. Different concentrations of NO in the reactor are shown by the different coloured data. 

OHexp, calculated from the weighted linear regressions, increased with increasing [NO]. 203 

Figure 4.7 Comparison of two different SAR methods (Kwok and Atkinson (1995), blue; Jenkin et 

al. (2018), red) for the prediction of rate coefficients for the reactions between aromatic VOCs 

and OH, alongside the experimental results derived in this work (green) and the recommended 

literature values (black). 207 

Figure 4.8 Typical TIC sections obtained for the large aromatics mixture showing the peaks 

observed with the lamp off (blue) and the lamp on (black). The peaks were identified as: a, m-
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xylene; b, o-xylene; c, α-pinene; d, 1,3,5-trimethylbenzene; e, β-pinene; f, 1,2,4-trimethylbenzene; 

g, 1,2,3-trimethylbenzene; h, 1,3-diethylbenzene; I, 1,4-diethylbenzene; j, 1,2-diethylbenzne. 211 

Figure 4.9 Relative rate plot for the large aromatics mixture with an OH reactivity of 

approximately 48 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH 

were plotted using evaluated reference values. Error bars on the y-axis, equal to one standard 

error, were calculated by combining the standard error in peak areas for eight lamp-off and eight 

lamp-on samples. Error bars on the x-axis were typically large (approximately ± 20-30%) and 

accounted for deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-

values) linear fit was used to generate the slope, with a value of OHexp = 1.8 (± 0.1) × 109 

molecules cm-3 s and R2 = 0.980. Data for 1,2-, 1,3- and 1,4-diethylbenzene, which had no 

literature k values for their reaction with OH, were not used in the calculation of the fit. The VOCs 

can be identified as follows: 1, o-xylene; 2, m-xylene; 3, 1,2,4-trimethylbenzene; 4, 1,2,3-

trimethylbenzene; 5, α-pinene; 6, 1,2,4,5-tetramethylbenzene; 7, 1,3,5-trimethylbenzene; 8, 

1,2,3,5-tetramethylbenzene; 9, β-pinene; 10, isoprene. 213 

Figure 4.10 Relative rate plots for the large aromatic VOCs mixture with OH reactivities of 21, 48, 

75, 101 and 123 s-1. The R2 for the weighted linear fits were 0.958, 0.980, 0.907, 0.967 and 0.829 

respectively. The values of OHexp were 2.3 (± 0.1), 1.8 (± 0.1), 1.2 (± 0.2), 1.0 (± 0.1) and 0.7 (± 0.1) 

× 109 molecules cm-3 s respectively. 214 

Figure 4.11 Comparison of two different SAR methods (Kwok and Atkinson (1995), blue; Jenkin et 

al. (2018), red) for the prediction of rate coefficients for the reaction between aromatic VOCs and 

OH, alongside the experimental results derived in this work (green) and the recommended 

literature values (black). 218 

Figure 4.12 Schematic showing the proposed decay of the OH-aromatic adduct back to the 

original aromatic reactant and OH. Other potential OH-aromatic adduct reactions are also shown. 

Schematic adapted from Newland et al., 2017. 219 

Figure 4.13 Simulated relative rate plot for the four aromatic VOCs incorporated in the numerical 

simulations under different modelling scenarios at 300 K. From left to right the points can be 

identified as; benzene, toluene, p-xylene and m-xylene. The adjusted R2 values for the linear fits 

were: Model A, 1.00; Model B, 0.173; Model C, 0.981. 222 

Figure 4.14 Simulated relative rate plot for the four aromatic VOCs incorporated in the kinetic 

simulations under different modelling scenarios at 350 K. From left to right the points can be 



 

xxv 

 

identified as; benzene, toluene, p-xylene and m-xylene. The adjusted R2 values for the linear fits 

were: Model A, 1.00; Model B, 0.187; Model C, 0.771. 223 

Figure 4.15 Comparison of the impact that different concentrations of O2 had on the simulated 

relative rate plots for four aromatic VOCs at 300 K. The R2 values were 0.856, 0.981 and 1.00 for 

[O2] = 1015, 1016 and 1017 molecules cm-3 respectively. 224 

Figure 4.16 Simulated relative rate plot for the four aromatic VOCs at 350 K. Rather than plotting 

depletion factor against k, as in typical relative rate plots, the depletion factor was plotted against 

the ratio of k to kd, to account for the thermal back-decomposition of the aromatic-OH adducts. 

The adjusted R2 value for the linear regression was equal to 1.00 showing that aromatic VOC 

depletions at higher temperatures are proportional to this ratio. 225 

Figure 4.17 Model C simulated depletion factor at 350 K for four aromatic VOCs plotted against a 

different parameter to the normal relative rate plots. Here, simulated depletion factor was 

plotted against the ratio between the forwards rate coefficient for the reaction forming the OH-

aromatic adduct and the rate coefficient for the decay of the OH-aromatic, or k×kO₂/kd. The 

adjusted R2 value for the linear regression was equal to 1.00. 226 

Figure 4.18 Simulated impact of different initial concentrations of NO on the concentration of 

pOH over time. The concentration of pOH decreased more rapidly with an increased 

concentration of NO. 230 

Figure 4.19 Simulated impact of different initial concentrations of NO on the concentration of HO2 

over time. The concentration of HO2 decreased more rapidly with increasing concentration of NO 

and was reduced to a concentration of less than 1000 molecules cm-3 within 3 s with a NO 

concentration of 70 ppb. 231 

Figure 4.20 Simulated impact of different initial concentrations of NO on the concentration of 

secondary OH (sOH) over time. sOH was not produced when NO wasn’t present in the reactor. 

When NO was added to the reactor, sOH was generated rapidly, peaking at approximately 2 × 

1010 molecules cm-3 with 70 ppb NO. The concentration of sOH then decreased with time, due to 

reactions with VOCs, HO2, NO and NO2. 232 

Figure 4.21 Simulated impact of different initial concentrations of NO on the total sOH produced 

over time. sOH was not produced when NO wasn’t present in the reactor. 233 
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Figure 4.22 Simulated impact of different initial concentrations of NO on the NO and NO2 

concentrations over time. 234 

Figure 4.23 Simulated impact of different initial concentrations of NO on the sinks for pOH; 

reaction with HO2, reaction with primary VOCs, reaction with NO, reaction with NO2 and reaction 

with secondary VOCs (sVOCs). 235 

Figure 4.24 Simulated impact of different initial concentrations of NO on the sinks for sOH; 

reaction with HO2, reaction with primary VOCs, reaction with NO, reaction with NO2 and reaction 

with secondary VOCs (sVOCs). 236 

Figure 4.25 Simulated impact of different initial concentrations of NO on the VOC sinks. 237 

 

Figure 5.1 Relative rate plot for the alkane mixture with an OH reactivity of 4.3 s-1, at 295 K. 

Compounds with a reference rate coefficient were plotted using evaluated literature values. Error 

bars on the y-axis, equal to one standard error, were calculated by combining the standard error 

in peak errors for six lamp-off and six lamp-on samples. Error bars on the x-axis were typically 

large (approximately ± 20-30 %) and accounted for deviations from the lines for all VOCs. A 

weighted (to the uncertainty in the y-values) linear fit was used to generate the slope, with a 

value of OHexp = 3.8 (± 0.2) × 109 molecules cm-3 and R2 = 0.971. Data for 2-methylheptane, 2-

metylnonane and ethylcyclohexane, which had no literature k values, were not used in the 

calculation of the fit, The VOCs can be identified as follows; 1, 2,2,3-trimethylbutane; 2, 2-

methylpentane; 3, 3-methylpentane; 4, n-octane; 5, n-nonane; 6, n-decane; 7, n-undecane; 8, 

cycloheptane; 9, cyclooctane. 247 

Figure 5.2 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between 2,2,3-trimethylbutane and OH. Rate coefficients derived as part of this 

work are shown alongside the available literature. Two Arrhenius expressions are also shown; one 

derived in this work (black) and the other as recommended by Atkinson, 2003 (red). 251 

Figure 5.3 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between n-octane and OH. Rate coefficients derived as part of this work are 

shown alongside the available literature. Two Arrhenius expressions are also shown; one derived 

in this work (black) and the other as recommended by Atkinson, 2003 (red). 251 
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Figure 5.4 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between n-nonane and OH. Rate coefficients derived as part of this work are 

shown alongside the available literature. Two Arrhenius expressions are also shown; one derived 

in this work (black) and the other as recommended by Atkinson, 2003 (red). 253 

Figure 5.5 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between n-decane and OH. Rate coefficients derived as part of this work are 

shown alongside the available literature. Two Arrhenius expressions are also shown; one derived 

in this work (black) and the other as recommended by Atkinson, 2003 (red). 253 

Figure 5.6 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between cycloheptane and OH. Rate coefficients derived as part of this work are 

shown alongside the available literature. Two Arrhenius expressions are also shown; one derived 

in this work (black) and the other as recommended by Atkinson, 2003 (red). 256 

Figure 5.7 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between cyclooctane and OH. Rate coefficients derived as part of this work are 

shown alongside the available literature. Two Arrhenius expressions are also shown; one derived 

in this work (black) and the other as recommended by Atkinson, 2003 (red). 256 

Figure 5.8 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between 2-methylpentane and OH. Rate coefficients derived as part of this work 

are shown alongside the available literature. The Arrhenius expression derived in this work is also 

shown. 257 

Figure 5.9 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between 3-methylpentane and OH. Rate coefficients derived as part of this work 

are shown alongside the available literature. The Arrhenius expression derived in this work is also 

shown. 257 

Figure 5.10 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between n-undecane and OH. Rate coefficients derived as part of this work are 

shown alongside the available literature. The Arrhenius expression derived in this work is also 

shown. 259 

Figure 5.11 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between 2-methylheptane and OH. Rate coefficients derived as part of this work 
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are shown alongside the available literature. The Arrhenius expression derived in this work is also 

shown. 259 

Figure 5.12 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between 2-methylnonane and OH. The Arrhenius expression derived in this work 

is also shown. 261 

Figure 5.13 Arrhenius plot showing the observed temperature dependence of the rate coefficient 

for the reaction between ethylcyclohexane and OH. Rate coefficients derived as part of this work 

are shown alongside the available literature. The Arrhenius expression derived in this work is also 

shown. 261 

Figure 5.14 kCl values plotted against kOH value for multiple VOC reactions. Linear and branched 

alkanes are shown in yellow and green respectively. Linear alkenes are shown in red, branched 

and cyclic alkenes are in purple and biogenic compounds (comprising mainly monoterpenes) are 

in blue. Aromatic VOCs are shown in black. 265 

Figure 5.15 TIC observed for a flow of Cl2 (0.3 ppm) in N2 injected into the reactor. The peaks were 

identified as molecular chlorine (Cl2), acetyl chloride (CH3COCl), acetic acid (CH3COOH), carbon 

tetrachloride (CCl4) and chloroacetyl chloride (CH2ClCOCl). 268 

Figure 5.16 TICs for the large aromatics mixture with Cl2 (red; 66 ppm) and without Cl2 (blue) in 

the reactor. See Table 5.5 for a list of peak identities. 269 

Figure 5.17 Typical TIC sections obtained for Cl mixture 1 with the lamp turned off (blue) and the 

lamp turned on (black). Greater differences in peak areas were observed for VOCs which have a 

larger rate coefficient for their reaction with Cl. Literature rate coefficients (in units of 10-12 cm3 

molecule-1 s-1) for these alkane + OH reactions are: n-nonane, 453 (± 28); cyclooctane, 457 (± 15) 

(see Table 5.6). 273 

Figure 5.18 Relative rate plot for Cl mixture 1 with a Cl reactivity of 23 s-1 and Cl2 (60 ppm) 

injected into the reactor, at 295 K. Compounds with a reference rate coefficient for reaction with 

Cl were plotted using literature values as references. Error bars on the y-axis, equal to one 

standard error, were calculated by combining the standard error in peak areas for four lamp-off 

and four lamp-on samples. Error bars on the x-axis were typically large and accounted for 

deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-values) linear fit 

was used to generate the slope, with a value of Clexp = 0.5 (± 0.04) × 109 molecules cm-3 s and R2 = 
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0.96. The VOCs can be identified as follows; 1, 2-methylpentane; 2, n-hexane; 3, n-octane; 4, n-

nonane; 5, cyclooctane. 275 

Figure 5.19 Relative rate plots for Cl mixture 1 with a Cl reactivity of 23 s-1 and estimated [Cl2] of 

30, 33, 67 and 100 ppm. The R2 values for the weighted linear fits were 0.83, 0.69, 0.09 and 0.91 

respectively. The values of Clexp were 1.0 (± 0.2), 0.4 (± 0 2), 0.14 (± 0.12) and 0.6 (± 0.1) × 109 

molecules cm-3 s respectively. Error bars on the x-axis are not shown for reasons of clarity. 276 

Figure 5.20 Relative rate plots for Cl mixture 2 with a Cl reactivity of 27 s-1 and estimated [Cl2] of 

50, 75, 100 and 150 ppm. The R2 values for the weighted linear fits were 0.54, 0.76, 0.93 and 0.21 

respectively. The values of Clexp were 0.3 (± 0.1), 0.5 (± 0 1), 0.7 (± 0.1) and 0.2 (± 0.1) × 109 

molecules cm-3 s respectively. Error bars on the x-axis are not shown for reasons of clarity. 279 

Figure 5.21 Relative rate plot for Cl mixture 2 with a Cl reactivity of 27 s-1 and Cl2 (300 ppm) 

injected into the reactor, at 295 K. Compounds with a reference rate coefficient for reaction with 

Cl were plotted using literature values as references. Error bars on the y-axis, equal to one 

standard error, were calculated by combining the standard error in peak areas for four lamp-off 

and four lamp-on samples. Error bars on the x-axis were typically large and accounted for 

deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-values) linear fit 

was used to generate the slope, with a value of Clexp = 1.1 (± 0.1) × 109 molecules cm-3 s and R2 = 

0.97. The VOCs can be identified as follows; 1, toluene; 2, ethylbenzene; 3, 2-methylpentane; 4, n-

octane; 5, n-nonane; 6, cyclooctane. 280 

Figure 5.22 Experimentally derived (data points) and predicted SAR derived (lines) k values for the 

homologous series of 2-methylalkane + Cl reactions. Data from this study are shown in green and 

were in good agreement with both previous experimentally measured values and theoretical 

predictions. 283 

Figure 5.23 The estimated concentrations of Cl radicals resulting from the photolysis of different 

concentrations of Cl2 injected into the reactor. 285 
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Chapter 1 

Introduction 
 

1.1     Preface 

Earth’s atmosphere can be subdivided into five principle layers; the troposphere, the 

stratosphere, the mesosphere, the thermosphere and the exosphere. Each of these layers differ 

in terms of the physical processes that occur within them, and the interactions that they have 

with other systems. The atmosphere is a vastly complex mixture, one of the most complex known 

to man, which undergoes an incredible amount of physical and chemical processes over a wide 

variety of timescales, from chemical reactions occurring in nanoseconds, to climatic deviations 

occurring over millennia and longer. 

Section 1.2 will cover some of the vast range of different chemical compounds that exist within 

the atmosphere, identifying their sources and also their impacts on air quality, human health and 

climate change. 

Sections 1.3 and 1.4 will introduce the field of gas-phase chemical kinetics, its importance and the 

tools and techniques used to both experimentally measure, and theoretically estimate, the 

chemical processes occurring in the air around us. 
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1.2    Atmospheric composition 

1.2.1   The troposphere 

It is well known that the Earth’s atmosphere comprises mainly nitrogen (78%), oxygen (21%) and 

argon (0.9%), with the remaining 0.1% made up of what are known as trace gases. One tenth of 

one percent of the atmosphere may not sound like much, but it accounts for a staggering amount 

of chemical species, from highly reactive radicals, to complex volatile organic compounds (VOCs), 

to harmful pollutants such as NO and NO2, and even to less-volatile compounds, which can 

partition between the gas-phase and solid- or liquid-phases. This vast array of chemical 

compounds interacts in multiple ways, and it is the research of such interactions that is the 

subject of the field of atmospheric chemistry. 

1.2.2   Organic compounds 

Organic compounds, for the purpose of this work, refers to those molecules which contain 

carbon-hydrogen bonds. Hydrocarbons refer to those organic compounds which consist entirely 

of carbon-hydrogen bonds i.e. there are no heteroatoms such as oxygen or nitrogen. There are 

three general classes of hydrocarbons, as defined by the International Union of Pure and Applied 

Chemistry (IUPAC) in Nomenclature of Organic Chemistry (Favre and Powell, 2013): 

1. Saturated hydrocarbons, which contain only single bonds and are ‘saturated’ with 

hydrogen. Saturated hydrocarbons include alkanes and cycloalkanes. 

2. Unsaturated hydrocarbons, which contain one or more double bonds or triple bonds and 

are referred to as alkenes or alkynes respectively. 

3. Aromatic hydrocarbons, which incorporate at least one aromatic ring within their structure. 

Aromatic compounds contain a conjugated system of delocalised π electrons. 

Organic compounds mainly enter the atmosphere through interactions with the biosphere; the 

processes associated with the growth and decay of organisms emit much of the organic chemical 

matter observed in the atmosphere. Combustion of dead, or living, organic matter also results in 

the emission of organic species. Combustion is primarily viewed as anthropogenic in origin but 

natural combustion, such as that which occurs as a result of forest fires, dominates in some 

regions. 
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The number and scope of organic compounds identified and observed in the atmosphere has 

steadily increased since the 1950s, when research into the causes of air pollution became more 

prolific. Prior to this, methane and formaldehyde were known to be present, as evidenced in 

Compendium of Meteorology (Gleckauf, 1951). Haagen-Smit (1952) observed the presence of at 

least 15 different organic acids in Los Angeles smog samples collected on filters whilst, in the 

same year, Mader et al. (1952) demonstrated that hydrocarbon compounds constitute much of 

the organic matter in the atmosphere and that they are directly involved with aerosol formation 

and air pollution. Gas chromatography, which was developed in the early 1950s, allowed for the 

identification of various C2-C5 hydrocarbons in the exhaust gases emitted by cars (Eggertsen and 

Nelsen, 1958) and by 1978 over 500 hydrocarbon compounds, along with many other organic 

species with different functional groups, were listed in Chemical Compounds in the Atmosphere 

(Graedel, 1978). By the late 2000s, Goldstein and Galbally (2007) postulated that between 104 and 

105 different organic compounds had been observed in the atmosphere, and suggested that that 

value may in fact be only a small fraction of the total number actually present. 

The difficulty in providing an exact number, or even an approximate number, of atmospheric 

organic compounds is multifaceted. For one, the number of possible isomers of a particular 

chemical increases exponentially with the number of carbon atoms. For example, C4H10 (butane) 

has just two structural isomers; n-butane and i-butane. In comparison, C10H22 (decane) has 75 

possible structural combinations. The number of possible structures becomes hopelessly complex 

when accounting for the various functional groups that can also be incorporated into organic 

molecules: alcohols, amines, ethers, halides, thiols, aldehydes, ketones, esters, carboxylic acids, 

amides, to name but a few. Indeed, multifunctional compounds are important for atmospheric 

chemistry as they are often associated with the production of secondary organic aerosols (SOA). 

The second difficulty lies in the fact that many of these compounds exist in the atmosphere as 

trace gases. The 0.1% of the atmosphere that is the subject of this section includes all of these 

species and hence they can be found in concentrations as small as parts per million (ppm), parts 

per billion (ppb), parts per trillion (ppt), and even lower. Whilst visualising one part per hundred 

(one percent) is relatively simple for most, conceptualising parts per trillion and parts per billion, 

and even parts per million, is quite difficult, due to the inherently large numbers involved. One 

part per million is therefore roughly equal to a single word in the entire English version of all 

seven Harry Potter novels, whilst one part per billion is roughly equal to 7.4 people out of the 

total human population of our planet. One part per trillion is even harder to visualise; it is roughly 

equal to just three trees of the estimated 3 trillion trees growing on Earth. And herein lies the 
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difficulty in observing many of the organic compounds that exist in the atmosphere; the 

instruments used for their detection need to be capable of finding, and detecting, those three 

trees in amongst the three trillion trees around them. 

1.2.2.1 Alkanes 

Alkanes are the simplest of hydrocarbon structures, possessing only carbon and hydrogen atoms 

and fully saturated bonds; that is, each carbon atom is bonded to four other atoms. Alkanes can 

be linear, branched or cyclic. Cycloalkanes can also be monocyclic or polycyclic. Methane (CH4) is 

the simplest alkane and is often the subject of news articles relating to atmospheric chemistry 

and climate change. This is due to its role as a greenhouse gas and the fact that its atmospheric 

concentration has been increasing steadily since the 1750s, accompanied by the increasing rate of 

industrialisation worldwide.  

Alkanes were shown to make up approximately 50% of the composition of exhaust emissions in 

the early 1990s, with C6 and C8 alkanes making the greatest contribution to the alkane fraction 

(Hoekman, 1992). This value appears to fluctuate somewhat and is likely dependent on the fuel 

being burnt and the engine loading. More recently alkane contributions to exhaust emissions 

were measured to be approximately 40% from vehicles in China and Hong Kong (Guo et al., 2011; 

Cao et al., 2016) but could be up to approximately 90% when the engine loading is above 30% 

(Pereira et al., 2017). Indeed, the actual fraction of alkanes in evaporation from unburnt fuel 

appears to be much greater than 50%, to the extent that a single alkane, isopentane, is used as a 

marker for fuel evaporation (Zhang et al., 2013; Salameh et al., 2014). Larger, long chain alkanes 

(C12-C18), which are labelled as intermediate volatile organic compounds (IVOCs) to distinguish 

them from VOCs, have also been detected in engine exhaust, using proton-transfer reaction mass 

spectrometry (PTR-MS) (Erickson et al., 2014). 

A study of non-methane hydrocarbon (NMHC) in three cities in Saudi Arabia found that C2-C6 

alkanes made up 10 of the 20 most abundant compounds, with mean 24-hour mixing ratios 

between 1 and 14 ppbv (Barletta et al., 2017). These results were compared with datasets from 

Pakistan and Singapore, with measured 24-hour average mixing ratios generally an order of 

magnitude lower in Singapore but an order of magnitude greater in Lahore, Pakistan. Total alkane 

mixing ratios in Beijing, China were measured to be 9.5 ppbv but this value increased by a factor 

of five from clear days to those days characterised as having ‘heavy haze’ (Liu et al., 2017). There 
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was also a clearly observed diurnal variation in alkane concentration during clear days, but this 

became far less apparent on heavy haze days. 

More long-term studies have found that C2-C3 alkane concentrations (markers of natural gas 

leakage) had not changed appreciably in many French cities over a period of approximately a 

decade (Waked et al., 2016). Significant downward trends, of between 3% and 6% per year, were 

observed for C4-C5 alkane concentrations (markers of evaporative emissions and vehicle 

emissions) across the same set of cities however. 

Alkanes therefore represent an important class of atmospheric compounds. They are ubiquitous 

in urban areas due to their connection to vehicle emissions and natural gas burning. The oxidation 

of alkanes by OH is covered in Section 1.3.2. 

1.2.2.2 Alkenes 

Alkenes also contain primarily carbon and hydrogen atoms but are characterised as containing at 

least one carbon-carbon double bond. As for alkanes, they can be linear, branched or cyclic. The 

position of the double bond can also differ within isomers, which can have an impact on 

molecular properties. 

Many of the alkenes detected in the atmosphere have biogenic sources; they are emitted by 

vegetation undergoing the various chemical processes necessary for life and growth. The flux of 

carbon from the biosphere is dominated by a single compound, 2-methyl-1,3-butadiene (C5H8), 

otherwise known as isoprene. Many of the other alkene VOCs observed in the atmosphere are 

formed of multiple units of isoprene and are known as isoprenoids. The most common of these in 

the atmosphere are the monoterpenes (C10H16) and the sesquiterpenes (C15H24). However, 

isoprenoids also include many common chemicals such as cholesterol, vitamin A and rubber and 

are responsible for many scents and fragrances. Isoprenoid compounds can be highly varied in 

structure, comprising conjugated alkenes (of which isoprene is an example), non-conjugated 

monocyclic alkenes and non-conjugated bicyclic alkenes, amongst others. Figure 1.1, Figure 1.2 

and Figure 1.3 show the structures of some of the alkenes which feature prominently in this work. 
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Figure 1.1 The chemical structures of some conjugated alkenes including isoprene and the monoterpenes; 
β-ocimene, myrcene, α-phellandrene, β-phellandrene and α-terpinene. 

 

Figure 1.2 The chemical structures of some non-conjugated monocyclic alkenes including the 
monoterpenes; γ-terpinene, limonene and terpinolene 

β-ocimene myrcene

isoprene

α-phellandrene β-phellandrene α-terpinene

γ-terpinene limonene terpinolene
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Figure 1.3 The chemical structures of some non-conjugated bicyclic alkenes including the monoterpenes; β-
pinene, α-pinene, 3-carene and camphene. 

The most recent estimates put the total flux of isoprene worldwide at approximately 500 Tg year-1 

(Guenther et al., 2012). This is estimated to be approximately half of the total budget of biogenic 

emissions, and of equal magnitude to the global methane flux. In plants, dimethylallyl 

pyrophosphate is converted into isoprene by an enzyme called isoprene synthase (Silver and Fall, 

1991; Silver and Fall, 1995). A similar mechanism is also responsible for the synthesis of many 

higher order isoprenoids, including the monoterpenes and sesquiterpenes (Fuentes et al., 2000 

and references therein). The synthesis of isoprene is closely linked to photosynthesis but the 

reason behind its production remains unverified. There is increasing evidence that many of the 

isoprenoid compounds are synthesised by plants as a response to stress (Vickers et al., 2009), 

although other possibilities have been presented (Rosenstiel et al., 2004; Sanadze, 2004; Magel et 

al., 2006). Once synthesised, isoprenoids do not accumulate within plants and are emitted to the 

atmosphere via the stomata. 

Despite a total flux similar to that estimated for methane, an important greenhouse gas with 

average atmospheric concentrations of 1800 ppbv (Dlugokencky, 2018), the observed mixing 

ratios of isoprene in the atmosphere are on the order of 0 – 10 ppbv (von Kuhlmann et al., 2004). 

This is due to its extremely high reactivity, relative to that of methane (see Section 1.3.2 and 

Section 1.3.3). 

β-pinene α-pinene

Δ-3-carene camphene
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The emissions of monoterpene species are hard to quantify due to their extremely high reactivity 

towards both OH and O3. Many laboratory studies have attempted to measure the emission 

factors (Es) for many isoprenoids using various open and closed systems (Tholl et al., 2006; Ortega 

and Helmig, 2008). However, these values are subject to significant uncertainties due in part to 

the variability in emission rates with time of day, environmental condition, plant stress and plant 

phenology, but also due to inherent difficulties within many of the sampling and measurement 

methods (Niinemets et al., 2011). 

Measurements of atmospheric monoterpene concentrations have been made however. Three 

campaigns sampling 18 m above a boreal forest in Hyytiälä, Finland measured total monoterpene 

concentrations of between 100 and 300 pptv, of which 60% was accounted for by α-pinene 

(Spanke et al., 2001). Recent measurements in the same location found Δ-3-carene 

concentrations of between 5 pptv and 1.4 ppbv, (-)-α-pinene concentrations between 7 pptv and 

0.5 ppbv, and (+)-α-pinene concentrations of between 9 pptv and 1.5 ppbv (Yassaa et al., 2012). A 

night-time maximum total monoterpene concentration of 2.9 ppbv was observed in a forested 

site in Northern Greece (Harrison et al., 2001). More recent measurements of isoprene and total 

monoterpenes were made in Borneo, in a tropical rainforest, with recorded mean mixing ratios of 

1.3 and 0.18 ppbv respectively (Langford et al., 2010). This is far less than similar measurements 

made for other tropical rainforests, in for example, the Amazon, where isoprene and total 

monoterpene mixing ratios were on the order of approximately 1-10 and 0.1-3 ppbv respectively 

(e.g. Greenberg et al., 2004; Karl et al., 2007). Observable monoterpene concentrations are not 

limited to the terrestrial atmosphere however; recent measurements over oligotrophic waters in 

the Arctic and Atlantic oceans observed between 0.05 and 5 pptv of monoterpenes in the marine 

atmosphere (Hackenberg et al., 2017). 

Alkenes therefore represent another important class of atmospheric compounds. They are 

ubiquitous throughout the world, due to their association with biomass. The oxidation of alkenes 

by OH is covered in Section 1.3.3. 
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1.2.2.3 Aromatics 

Aromatic VOCs refer to those VOCs which contain an aryl group; a functional group in which the 

carbon structure contains delocalised π-electrons. The simplest aromatic VOC is benzene, which is 

a monocyclic structure, or monoaromatic hydrocarbon (MAH). Polycyclic, or polyaromatic 

hydrocarbons (PAH), are also prevalent in the atmosphere. These structures can be substituted by 

various functional groups. Alkyl groups, consisting of alkane-based hydrocarbon chains, are 

common aromatic substituents in the atmosphere. Figure 1.4, Figure 1.5 and Figure 1.6 show the 

chemical structures of some aromatic VOCs that are prominent in this work. 

 

Figure 1.4 The chemical structures of some mono-substituted aromatic VOCs, including; toluene, 
ethylbenzene, n-propylbenzene, i-propylbenzene, n-butylbenzene, t-butylbenzene and n-pentylbenzene. 

toluene ethylbenzene n-propylbenzene n-butylbenzene n-pentylbenzene

i-propylbenzene t-butylbenzene
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Figure 1.5 The chemical structures of some di-substituted aromatic VOCs, including; o- and m-xylene, 2-, 3- 
and 4-ethyltoluene and 1,2-, 1,3- and 1,4-diethylbenzene. 

o-xylene m-xylene

2-ethyltoluene 3-ethyltoluene 4-ethyltoluene

1,2-diethylbenzene 1,3-diethylbenzene 1,4-diethylbenzene
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Figure 1.6 The chemical structures of some tri- and tetra-substituted aromatic VOCs, including; 1,2,3-, 1,2,4- 
and 1,3,5-trimethylbenzene and 1,2,3,5- and 1,2,4,5-tetramethylbenzene. 

Aromatic VOCs can account for a large proportion of the non-methane hydrocarbon (NMHC) mass 

as at least 90 different MAHs and PAHs have been identified in diesel fuel (Hamilton and Lewis, 

2003). Measurements of aromatic VOCs from light-duty gasoline in China, showed that they 

accounted for up to 33% of the mass (Guo et al., 2011; Cao et al., 2016). The total concentration 

of five aromatic compounds at six urban sites in Mumbai was measured to be approximately 27 (± 

8) ppbv (Pandit et al., 2011). Similar concentrations, of up to approximately 30 ppbv for 11 

aromatic compounds, were measured at six sites associated with the petrochemical industry in 

Yokohama City (Tiwari et al., 2010). Diurnal profiles for C4 substituted monoaromatics recorded in 

London, showed a winter-time peak of almost 500 ppbv, associated with traffic pollution 

(Dunmore et al., 2015). Many techniques struggle to quantify heavy monoaromatic VOC loadings; 

toluene-equivalent mixing ratios may therefore provide adequate prediction of the additional 

aromatic content of the atmosphere (Lidster et al., 2014). Toluene-equivalency values account for 

the aromatic species’ concentration relative to toluene and rate of reaction with an atmospheric 

oxidant and are calculated through Eq. 1.1. 

 [EQTol] = [X]
𝑘OH+X

𝑘OH+Tol
        Eq. 1.1 

1,2,3-trimethylbenzene 1,2,4-trimethylbenzene 1,3,5-trimethylbenzene

1,2,3,5-tetramethylbenzene 1,2,4,5-tetramethylbenzene
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Values for the photochemical ozone creation potential (POCP) for different aromatic species have 

been calculated for 18 aromatic species (Jenkin et al., 2003), and are presented in Table 1.1. 

POCPs describe the relative capability for an organic compound to produce ozone over north-

west Europe (Derwent and Jenkin, 1991; Saunders et al., 2003). They are defined relative to 

ethene, which is given a POCP of 100. The values presented here were calculated using MCM v3. 

Monosubstituted aromatic species have lower POCP values than the di- and tri-substituted 

aromatics. Di- and tri-substituted aromatics therefore have POCP values which are comparable to 

those calculated for many alkenes, meaning that they are some of species with the greatest 

potential for forming ozone (Saunders et al., 2003). 

Table 1.1 POCP values for various aromatic VOCs, as calculated using the MCM v3 (Jenkin et al., 2003). The 
precision in the POCP is expected to be ± 2 POCP units. 

Name 
Photochemical ozone 

creation potential 
kOH / 10-12 cm3 

moleculecule-1 s-1 
Reference 

1,2,4-trimethylbenzene 113 33 ± 8 Calvert et al., 2002 

1,2,3-trimethylbenzene 108.2 33 ± 8 Calvert et al., 2002 

1,3,5-trimethylbenzene 106.2 57 ± 11 Calvert et al., 2002 

ethene (reference) 100 7.8 (+
- 73.

.
8
9) Atkinson et al., 2006 

m-xylene 85.6 23 ± 3 Calvert et al., 2002 

o-xylene 84.1 13 ± 3 Calvert et al., 2002 

3-ethyltoluene 74 19 ± 7 Calvert et al., 2002 

4-ethyltoluene 73.2 12 ± 4 Calvert et al., 2002 

2-ethyltoluene 69.4 12 ± 4 Calvert et al., 2002 

ethylbenzene 52.5 7.0 ± 2 Calvert et al., 2002 

toluene 51 5.6 (+
- 11.

.
5
2) Atkinson et al., 2006 

n-propylbenzene 42.7 5.8 ± 1.5 Calvert et al., 2002 

i-propylbenzene 35.3 6.3 ± 2 Calvert et al., 2002 

benzene 20.3 1.2 (+
- 00.

.
3
3) Atkinson et al., 2006 
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1.2.3   Atmospheric oxidants 

The chemical transformation of molecules into other molecules in the atmosphere is generally 

initiated by oxidants and/or radical species. Of these, the hydroxyl radical (OH), is the primary 

oxidant with other major oxidants including ozone (O3), the nitrate radical (NO3) and the chlorine 

radical (Cl). NO3 is an important radical for night time oxidation whilst Cl is thought to be the 

major oxidant in the marine boundary layer for certain chemical species. 

O3 is transported from the stratosphere, where there is a high concentration, into the 

troposphere by eddy diffusion (Roelofs and Lelieveld, 1997; Lelieveld and Dentener, 2000; Collins 

et al., 2003). An additional source of O3 results from the interaction of VOCs, in the form of RO2, 

and nitrogen oxides (NOx) in the presence of sunlight (R. 1.1 through to R. 1.4). 

 RO2 + NO  RO + NO2        R. 1.1 

 HO2 + NO  OH + NO2        R. 1.2 

 NO2 + hν  NO + O(3P)  λ ≤ 400 nm     R. 1.3 

 O(3P) + O2 + M  O3 + M (M = air)     R. 1.4 

O3 is destroyed in photochemical cycles via reactions with VOCs. The net balance of production 

and destruction results in approximate mixing ratios at “clean” sites (low NOx) at ground level of 

up to 10-40 ppbv, whereas in regions associated with urban air pollution (high NOx), the mixing 

ratios can often exceed 100 ppbv. 

Tropospheric ozone, no matter the concentration, is extremely important to the chemistry of the 

atmosphere as its photolysis results in the production of OH, via the O(1D) atom (R. 1.5 and R. 

1.7). The excited O(1D) atom may also deactivate to ground state oxygen through interaction with 

a neutral molecule such as N2 or O2 (R. 1.6). 

 O3 + hν  O2 + O(1D)  λ ≤ 350 nm     R. 1.5 

 O(1D) + M  O(3P) + M  (M = N2 or O2)     R. 1.6 

 O(1D) + H2O  2OH        R. 1.7 
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The above mechanism relies on photolysis and therefore is only applicable to day-time hours. The 

photolysis of NO2 (R. 1.3) results in the formation of O3, which is itself photolysed during the 

production of the two OH radicals in R. 1.5, R. 1.6 and R. 1.7. Therefore, two photons (of λ ≤ 400 

nm) are capable of producing two OH, which is essential to the chemistry of the troposphere. 

The reactions between alkenes and O3, which result in the formation of a carbonyl and a “Criegee 

intermediate”, can also yield OH (Kroll et al., 2001; Siese et al., 2001). This route for the formation 

of OH is independent of photolysis and is therefore likely a major night-time source (Paulson and 

Orlando, 1996), as well as being significant in the winter months at higher latitudes (Harrison et 

al., 2006). As the rate of ozonolysis of alkenes increases with increasing temperature (Johnson 

and Marston, 2008), OH production from Criegee intermediates is thought to be more important 

at the equator, where up to 13% of all OH radicals in forest regions may be formed in this way 

(Khan et al., 2018). 

The reaction between NO and O3 leads to the formation of the nitrate radical, NO3, via the 

formation of NO2 (R. 1.8 and R. 1.9). NO3 photolyses rapidly during the day, with an approximate 

lifetime of just 5 s, and is therefore much more important at night. 

 NO + O3  NO2 + O2        R. 1.8 

 NO2 + O3  NO3 + O2        R. 1.9 

NO3 radicals react with NO2 and establish an equilibrium with N2O5 (R. 1.10). In the presence of 

inorganic chloride containing aerosol, such as sea spray, reactive uptake of N2O5 onto the aerosol 

surface can result in the formation of nitryl chloride (ClNO2; R. 1.11; Finlayson-Pitts et al., 1989; 

Behnke et al., 1997; Schweitzer et al., 1998; Stewart et al., 2004; Thornton and Abbatt, 2005; 

Bertram and Thornton, 2009). 

 NO3 + NO2 + M  N2O5 + M       R. 1.10 

 N2O5 (g) + Cl- (aq)  ClNO2 (aq) + NO3
- (aq)      R. 1.11 

ClNO2 is an efficient photolytic precursor for atomic chlorine with an atmospheric lifetime of less 

than a few hours after sunrise (R. 1.12; Furlan et al., 2000; Ghosh et al., 2012; Phillips et al., 2012). 

 ClNO2 + hν  Cl + NO2        R. 1.12 
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1.2.4   The HOx/NOx cycle 

Many of the species present in the atmosphere are involved in chemical cycles which result in the 

chemical production and destruction of ozone. One such way of representing these chemical 

cycles is through the HOx/NOx cycle, shown in Figure 1.7. HOx (which includes OH and HO2) and 

NOx (NO and NO2) are intrinsically involved in the photochemical production and destruction of 

ozone, through the oxidation of VOCs, denoted by RH. Here, the chemical reaction between OH 

and VOCs is simplified, as simple H-atom abstraction resulting in the production of H2O does not 

always occur, especially for unsaturated or aromatic VOCs. The chemical oxidation of different 

VOCs is explored below. 

 

Figure 1.7 Schematic showing the HOx/NOx cycle and some of the species involved in the chemical 
production and destruction of ozone in the troposphere. 
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1.3    VOC oxidation chemistry 

Almost all VOC oxidation is initiated by the hydroxyl radical (OH). O3 as an oxidant is relevant for 

unsaturated compounds and NO3 is the primary night-time oxidant. The chlorine radical has 

gained more widespread attention as an oxidant recently, mainly due to the detection of chlorine 

radical precursors in mid-continental regions, far removed from marine and coastal environments 

which were originally thought to be the predominant locations for chlorine based chemical 

reactions (Osthoff et al., 2008; Thornton et al., 2010; Phillips et al., 2012; Riedel et al., 2012; Tham 

et al., 2014; Baker et al., 2016). 

1.3.1   Chemical kinetics 

Before reviewing the various oxidation schemes for the interaction between different 

functionalised VOCs and OH, it is necessary to have an understanding of chemical kinetics. The 

study of chemical kinetics is fundamental to understanding chemical reactions. Different chemical 

reactions proceed at different rates. The reaction rate is equal to the rate of removal of the 

reactants and the rate of production of the products (Eq. 1.2). Many factors can influence the rate 

of reaction. Therefore, the reaction rate can be averaged over a period of time, or given as an 

instantaneous rate at a particular point in time, or an initial rate for the start of a certain reaction. 

 rate =  −
∆ [reactant]

time
=
∆ [product]

time
      Eq. 1.2  

The rate of a reaction is dependent on the concentration of the reactants. The dependence of the 

reaction rate on concentrations is given by rate laws. In general, the rate is proportional to the 

product of the concentrations of the reactants and some value, referred to as the rate coefficient 

(k), as in Eq. 1.3. The values of x, y and z in Eq. 1.3 relate to the orders of reaction with respect to 

the reactants A, B and C; the values do not necessarily reflect the stoichiometry of the reaction. 

The overall reaction order is equal to the sum of x, y and z. The rate coefficient (k) is often 

referred to as the rate constant but is generally dependent on temperature and, for many 

reactions in the gas-phase, pressure. Hence, the term rate coefficient and not rate constant will 

be used throughout this work. 

 rate =  𝑘[A]x[B]y[C]z        Eq. 1.3 

Consider the reaction R. 1.10, where A is the reactant and k is the rate coefficient. 
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 A 
𝑘
→ products         R. 1.10 

The concentration of A ([A]) can be monitored over time. If the order of the reaction is n, then the 

differential rate law is given by Eq. 1.4. This expression can be integrated to form the integrated 

rate law, which provides a relationship between the concentration of the reactants and time. The 

form of the integrated rate law differs depending on the order of the reaction (n). For a first order 

reaction, the integrated rate law is given by Eq. 1.5, and for a second order reaction, the 

integrated rate law is given by Eq. 1.6. 

 
d[A]

dt
= 𝑘[A]n         Eq. 1.4 

 ln (
[A]t
[A]0
) = −𝑘t         Eq. 1.5 

 
1

[A]
= 𝑘t +

1

[A]0
         Eq. 1.6 

1.3.2   Reactions with alkanes 

Alkanes are an important class of VOCs in that they are ubiquitous in urban areas largely due to 

their making up a large fraction of vehicle exhaust emissions (see Section 1.2.2.1). They react 

predominantly with OH and, to a lesser extent Cl and NO3, but have almost no interaction with O3. 

The reaction between OH and small alkanes is relatively slow when compared with reactions 

between other VOCs and OH. The kinetics of the reactions between OH and many alkanes have 

been measured across many studies. The reactions between OH and alkanes with fewer than four 

carbon atoms (< C4) are included in the evaluations by IUPAC (Atkinson et al., 2006; 

http://iupac.pole-ether.fr/index.html). A much broader review, encompassing over 50 alkanes 

with up to 16 carbon atoms and a diverse range of linear, branched and cyclic structures, is 

provided in Atkinson (2003). As may be expected, the number of studies on the reactions 

between alkanes and OH decreases with increasing number of carbon atoms. Smaller ≤ C5 alkanes 

(methane, ethane, propane, n-butane, 2-methylpropane, n-pentane) benefit from multiple 

studies utilising a range of both absolute and relative rate methods across a large range in 

temperature. The extent of data for ≥ C6 alkanes is far smaller, with studies often limited to room 

temperature and to the relative rate method. 

The estimated lifetimes of some alkanes due to reaction with the OH radical (at T = 298 K) are 

provided in Table 1.2 using rate coefficients provided in Atkinson (2003) and a 24-hour average 

http://iupac.pole-ether.fr/index.html
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[OH] of 1 × 106 molecule cm-3 (Krol et al., 1998). These values range from periods of 

approximately 1 day for n-decane to 10 days for propane. The lifetime due to reaction with O3 is 

negligible for alkanes. The lifetime due to reaction with the NO3 radical is also provided in Table 

1.2, using an approximate average NO3 concentration of 90 pptv as measured at night in Great 

Britain (Alliwell and Jones, 1998). This value for night-time [NO3] is highly variable, however, and 

is entirely dependent on geographic location, with measurements of [NO3] ranging between a few 

pptv in forest and marine environments to maxima of almost 1 ppbv in polluted regions (Brown 

and Stutz, 2012). 

Table 1.2 Estimated lifetimes of various alkanes due to reaction with OH (at 298 K), using k values provided 
in Atkinson (2003) and a 24-hour average [OH] of 1 × 106 molecule cm-3. The lifetimes of various alkanes 
due to reaction with NO3 (at 298 K) are also provided, using k values from Atkinson and Arey (2003) and an 
approximate night-time [NO3] of 90 pptv. k values for reaction with Cl were taken from various sources 
which are noted in the Table footer. The concentration of Cl used was 103 molecules cm-3. 

Name 
Approximate 

τOH / days 
Approximate 

τNO₃ / days 
Approximate 

τCl / days 

methane 1800 5200 100000a 

ethane 47 500 200a 

propane 11 75 83a 

n-butane 4.9 110 56a 

n-pentane 3.1 60 46b 

2,2,3-trimethylbutane 3.0 22 65c 

cyclopentane 2.3   

n-hexane 2.2 48 38b 

n-heptane 1.7 35 34b 

cyclohexane 1.7 37  

n-octane 1.4 28 29c 

n-nonane 1.2 23 27c 

n-decane 1.1 19 24c 

n-undecane 0.9   

cycloheptane 0.9  27d 

cyclooctane 0.9  25d 
a Atkinson et al., 2006     b Atkinson and Aschmann, 1985     c Aschmann and Atkinson, 1995 
d Aschmann and Atkinson, 2013 
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1.3.2.1 Mechanism and products of alkane + OH reactions 

The initial reaction between radical oxidants and alkanes involves H-atom abstraction from the C-

H bonds. This reaction forms an alkyl radical (R•) which reacts rapidly with O2 to form an alkyl 

peroxy radical (RO2
•). At this point, the RO2

• can undergo a number of reactions leading to the 

formation of alkyl peroxynitrates, alkyl nitrates, carbonyls, alcohols and hydroperoxides, as shown 

in Figure 1.8. Larger alkoxy radicals (RO•), produced from larger alkanes, are able to undergo 

isomerisation via a 1,5-hydrogen shift through a six-membered cyclic transition state (Atkinson et 

al., 1995; Eberhard et al., 1995). The reactions which occur depend on the environment and the 

chemical species present and may not always involve homogeneous gas-phase interactions 

(Atkinson et al., 2008). 

For the C7 and higher carbon-number n-alkanes, the major products are 1,4-hydroxynitrates and 

1,4-hydroxycarbonyls (Arey et al., 2001; Riesen et al., 2005). For branched alkanes, the rate of 

decomposition rivals that of isomerisation, leading to primarily carbonyl type products (Atkinson, 

1997). 
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Figure 1.8 Schematic showing the anticipated reaction pathways resulting from the initial reaction between 
an alkane (denoted by RH) and OH, as initiated by H-atom abstraction. Adapted from Atkinson et al. (2008). 

1,4-hydroxycarbonyls themselves can isomerise to form dihydrofurans (Baker et al., 2005; Holt et 

al., 2005). Larger alkanes form alkyl-substituted dihydrofurans, which are highly reactive towards 

OH, NO3 and O3 (Martin et al., 2002). These reactions form carbonylesters, a major precursor to 

secondary organic aerosol (SOA) resulting from alkane oxidation (Lim and Ziemann, 2005). SOA 

yield increases linearly, from a value of 4% for C8 to 90% for C17 n-alkanes, with the majority of the 

SOA resulting from second- and third-generation products (Jordan et al., 2008). 
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Cyclic alkanes are known to yield more SOA than linear alkanes (Lim and Ziemann, 2009; Ziemann, 

2011; Tkacik et al., 2012; Yee et al., 2013). Polycyclic alkanes, containing multiple connected rings, 

were not found to produce higher yields of SOA than monocyclic alkanes, despite being able to 

undergo multiple ring opening reactions (Hunter et al., 2014). Rather, unbranched, cyclic 

structures were found to yield high SOA, due to ring opening preventing fragmentation, followed 

by efficient functionalisation after reaction with O2. 

1.3.2.2 The temperature dependence of alkane + OH reactions 

All bimolecular rate coefficients exhibit some temperature dependency over a sufficiently large 

range. For example, all values must tend towards zero as the temperature approaches absolute 

zero (0 K, -273.15 oC). The Arrhenius expression relates the rate coefficient for a particular 

reaction to temperature (Eq. 1.7).  

 𝑘 = Ae
−Ea
RT          Eq. 1.7 

A is referred to as the pre-exponential factor and is constant for a chemical reaction. In collision 

theory, A is given by the frequency of collisions which have the correct orientation for reaction to 

occur. Ea is the activation energy, or the energy barrier which must be overcome for reaction to 

occur. A reaction which shows positive Arrhenius behaviour (k increases with T) must tend 

towards a collision limit at sufficiently high temperature. However, many reactions exhibit 

complex behaviour; they show both positive and negative temperature dependency across 

different temperature ranges and therefore have turning points on their Arrhenius plots. 

A recent study on the kinetics of the OH radical with large chain > C10 alkanes found that the rate 

coefficients for these reactions increase with temperature above 277 K, but are negatively 

dependent on temperature below 277 K (Phan and Li, 2017). This is in contrast to n-alkanes with 

carbon numbers < C10, for which the negative temperature dependent phenomenon is not 

observed. Phan and Li postulate that complexing of the longer-chain alkanes with water 

molecules causes structural distortions, weakening the C-H bonds in the -CH2- groups and 

allowing for easier hydrogen abstraction at low temperatures. 

Temperature also has a substantial impact on the product yields and overall reactivity of the 

photochemical system initiated by alkane + OH reactions. Yields of alkyl nitrates and ketones 

decrease with increasing temperature, whilst yields of aldehydes increase with increasing 

temperature (Altshuller, 1991). 
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1.3.3   Reactions with alkenes 

The oxidation of alkenes, excluding isoprene, in the atmosphere is generally dominated by 

reaction with O3, although this does vary to some extent with structure, altitude and 

temperature. Despite the predomination of O3, the reactions between alkenes and OH are 

relatively fast when compared with those between alkanes and OH. As for alkanes + OH, the 

reactions between OH and alkenes with fewer than four carbon atoms (< C4) are included in the 

evaluations by IUPAC (Atkinson et al., 2006; http://iupac.pole-ether.fr/index.html). A much 

broader evaluation, encompassing over 60 alkenes with up to 10 carbon atoms and a diverse 

range of linear, branched and cyclic structures, is also provided by Atkinson and Arey (2003). 

The estimated lifetimes of some alkenes due to reaction with the OH radical (at 298 K) are 

provided in Table 1.3 using rate coefficients provided in Atkinson and Arey (2003) and a 24-hour 

average [OH] of 1 × 106 molecule cm-3 (Krol et al., 1998). These values range from periods of 

approximately 1.6 hours for γ-terpinene to 11 hours for propene. Analogous lifetimes due to 

reaction with O3 and NO3 are also provided in Table 1.3. The concentration used for the 

calculation of τO₃ was 30 ppbv; a rough, modern day annual average ozone concentration in 

Northern Hemisphere (Vingarzan, 2004). The concentration used for the calculation of τNO₃ was 

the same as that used in the alkane estimations, of 90 pptv (Alliwell and Jones, 1998). 

  

http://iupac.pole-ether.fr/index.html
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Table 1.3 Estimated lifetimes of various alkenes due to reaction with OH (at 298 K), using k values provided 
in Atkinson and Arey (2003) and a 24-hour average [OH] of 1 × 106 molecule cm-3. The lifetimes of various 
alkenes due to reaction with O3, NO3 and Cl (at 298 K) are also provided. k values for reactions with O3 and 
NO3 were taken from Atkinson and Arey (2003) and the concentrations of O3 and NO3 used were 30 ppbv 
and 90 pptv respectively. k values for reaction with Cl were taken from various sources which are noted in 
the Table footer. The concentration of Cl used was 103 molecules cm-3. 

Name 
Approximate 

τOH / hours 
Approximate  

τO₃ / hours 
Approximate 
τNO₃ / hours 

Approximate 
τCl / hours 

ethene 33 240 600 2800a 

1,2-butadiene 11    

propene 11 37 13 1000a 

1-butene 8.9 39 9.3 800b 

1-pentene 8.9 36 8.4 700b 

1,2-pentadiene 7.8    

1-hexene 7.5 33 7.0 700c 

1-heptene 6.9 31 6.3 600c 

α-pinene 5.3 4.5 0.02 600d 

cyclopentene 4.2 0.7 0.3 800e 

cyclohexene 4.1 4.6 0.3 700e 

cycloheptene 3.8 1.5 0.3 500e 

β-pinene 3.7 25 0.05 500d 

1,3,5-cycloheptatriene 2.9 7.0 0.1  

isoprene 2.8 30 0.2 500d 

limonene 1.7 1.8 0.01 400d 

γ-terpinene 1.6 2.7 0.004  
a Atkinson et al., 2006     b Ezell et al., 2002     c Walavalkar et al., 2013      
d Finlayson-Pitts et al., 1999     e Sharma et al., 2010 
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1.3.3.1 Mechanism and products of alkene + OH reactions 

There are two pathways for the reaction between alkenes and OH. The first, more minor 

pathway, involves H-atom abstraction in the same manner as that which occurs during alkane + 

OH reactions (see Section 1.3.2 and Figure 1.8). The major pathway, however, involves OH 

addition to the unsaturated C=C bond (Figure 1.9). This reaction forms a 1,2-hydroxylalkyl radical 

which then reacts rapidly with O2, forming a 1,2-hydroxyalkyl peroxy radical. This RO2 can react 

with NO to form either a 1,2-hydroxyalkoxy radical or a 1,2-hydroxynitrate. The reactions in Figure 

1.9 generally occur when [NO] > 30 ppt (Calogirou et al., 1999); in an environment with suitably 

low concentrations of NO, the 1,2-dihyroxyalkyl peroxy radical can react with RO2 or HO2 to form 

hydroxyhydroperoxides, hydroxycarbonyls and diols (Rupert and Becker, 2000; Benkelberg et al., 

2000). 

 

Figure 1.9 Schematic showing the anticipated reaction pathways resulting from the initial reaction between 
an alkene (denoted by R2C=CR2) and OH, as initiated by OH addition to the carbon-carbon double bond. 
Adapted from Atkinson and Arey (2003). 
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Whilst small 1,2-hydroxyalkoxy radicals are thought to primarily undergo decomposition, larger 

radicals can isomerise via a six-membered transition state (Eberhard et al., 1995; Kwok et al., 

1996), much like in the case for the alkoxy radicals in Figure 1.8. However, in the case of 

monoterpenes, the cyclic structure may mean that this is not always possible (Calogirou et al., 

1999). 

The reaction of alkenes with OH is in direct competition with the reaction of alkenes with O3. 

Although the rate coefficients for alkene + O3 reactions are generally much smaller than those for 

alkene + OH reactions (e.g. Calogirou et al., 1999; Atkinson and Arey, 2003), the concentration of 

O3 is generally many orders of magnitude greater than that for OH (see Section 1.2.3). Despite 

this, oxidation of isoprene by OH is estimated to account for approximately 85% of the fate of 

tropospheric isoprene during the day (Paulot et al., 2012). 

1.3.4   Reactions with aromatic compounds 

Aromatic VOCs are generally more reactive towards OH than alkanes but less reactive than 

alkenes. The rate at which different aromatic compounds react with OH is largely dependent on 

the substituent groups attached to the ring. Electron donating groups, such as alkyl groups, 

provide a lower barrier for attack onto the delocalised π-electron system, promoting reaction. In 

contrast, electron withdrawing groups, such as halogens, reduce the reactivity of the aromatic 

system, inhibiting reaction with OH. 

Rate coefficients for the reactions between many aromatics and OH are available in the IUPAC 

database (Atkinson et al., 2006; http://iupac.pole-ether.fr/index.html). However, the majority of 

the included reactions involve oxygenated or nitrogenated aromatic species, such as cresol and 

hydroxybenzene. Only two non-oxygenated or non-nitrogenated aromatic species are present; 

benzene, and toluene, the simplest alkyl substituted aromatic structure. As for the alkenes, a 

much broader evaluation of aromatic + OH rate coefficients was provided in Atkinson and Arey 

(2003). 

Table 1.4 provides estimated atmospheric lifetimes for some alkyl-substituted monoaromatic 

hydrocarbons. The values vary from an approximate atmospheric lifetime for benzene of almost 

10 days, to those for more highly substituted aromatics of just a few hours. Reaction with ozone is 

largely unimportant for aromatic compounds but reaction with NO3 may be of importance at 

night-time; τNO₃ values are therefore also provided in Table 1.4 for comparison. 

http://iupac.pole-ether.fr/index.html
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Table 1.4 Estimated lifetimes of various aromatic VOCs due to reaction with OH (at 298 K), using k values 
provided in Atkinson and Arey (2003) and a 24-hour average [OH] of 1 × 106 molecule cm-3. The lifetimes of 
various aromatic VOCs due to reaction with NO3 (at 298 K) are also provided, using k values from Atkinson 
and Arey (2003) and an approximate night-time [NO3] of 90 pptv. Some values for kNO₃ were not provided in 
Atkinson and Arey (2003) and therefore corresponding approximate τNO₃ values are not included here. 

Name 
Approximate τOH  

/ days 
Approximate τNO₃ 

/ days 

benzene 9.5 174 

t-butylbenzene 2.6  

toluene 2.1 75 

n-propylbenzene 2.0  

isopropylbenzene 1.8 8.7 

ethylbenzene 1.7 6.1 

4-ethyltoluene 1.0  

2-ethyltoluene 1.0 13 

o-xylene 0.9 10 

p-xylene 0.8  

3-ethyltoluene 0.6 20 

m-xylene 0.5 2.9 

1,2,4-trimethylbenzene 0.4 2.8 

1,2,3-trimethylbenzene 0.4 5.9 

1,3,5-trimethylbenzene 0.2  

hexamethylbenzene 0.10  

 

1.3.4.1 Mechanism and products of aromatic VOC + OH reactions 

There are three main pathways that occur during the reaction between an aromatic VOC and OH. 

1. Reaction at the aromatic ring through OH addition onto a carbon atom. 

2. Reaction at the substituent group(s) via H-atom abstraction by OH. 

3. Reaction at the substituent group(s) via OH addition onto any carbon-carbon double 

bonds present. 

Figure 1.10 shows the main anticipated reactions resulting from OH addition to the aromatic ring, 

resulting in the formation of an OH-aromatic adduct. 
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Figure 1.10 Schematic showing the anticipated reaction pathways resulting from the initial reaction 
between an aromatic VOC and OH, as initiated by OH addition to the aromatic structure. 

For benzene, and the methyl- and ethyl- substituted aromatics, the pathway involving OH 

addition to the ring is dominant at room temperature, accounting for over 90% of the OH 

reaction. The product of the OH addition to the ring is a hydroxyalkylcyclohexadienyl radical, or 

OH-aromatic adduct, which typically reacts with either O2 or NO2 in the atmosphere. For the OH-

benzene, OH-toluene and OH-xylene adducts, this reaction with O2 has rate coefficients between 

2-8 × 10-16 cm3 molecule-1 s-1 (Bohn and Zetzsch, 1999; Bohn, 2001) and is understood to be 

irreversible. The rate coefficients for the reaction of OH-benzene, OH-toluene and OH-xylene with 

NO2 are on the order of 3 × 10-11 cm3 molecule-1 s-1 (Knispel et al., 1990; Koch et al., 1994). The 

ratio of the O2:NO2 rate coefficients is such that the OH-aromatic adducts will react almost 

exclusively with O2 in the atmosphere, except perhaps in the most extreme of environments. 

The H-atom abstraction process, of minor importance for benzene and the methyl- and ethyl- 

substituted aromatics, leads to the formation of benzyl or alkylbenzyl radicals. These react in a 

similar manner to alkyl radicals (see Sect. 1.3.2), forming benzaldehyde or alkylbenzaldehydes in 

the process. 
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Meta-substituted aromatics, such as m-xylene, are thought to react quicker than ortho- or para-

substituted aromatics due to enhanced electrophilic addition of OH (Ravishankara et al., 1978; 

Nicovich et al., 1981). m-substitution leads to the formation of a resonance stabilised tertiary 

radical addition product (Mehta et al., 2009). 

1.3.4.2 The temperature dependence of aromatic VOC + OH reactions 

Arrhenius plots for the reactions between aromatic VOCs and OH tend to exhibit complex 

behaviour. When plotted over a large range in temperature, two distinct regions are visible. 

Generally, below 350 K, the rate coefficient for these reactions show little change with 

temperature. However, at temperatures of approximately 400 K, the rate coefficients rapidly 

increase with increasing temperature. 

It is thought that the OH-aromatic adduct undergoes thermal decomposition at temperatures 

greater than 325 K. The decomposition rates of some OH-aromatic adducts have been calculated. 

For the OH-benzene adduct, the recommended thermal decomposition rate constant is 

approximately 3.4 s-1 at 298 K (Atkinson, 1989). This means that H-atom abstraction from the 

substituent group becomes the dominant pathway for aromatic VOC + OH reactions at elevated 

temperatures. 

The atmospheric lifetime of the OH-aromatic adduct is predicted to be approximately 0.3 s at 298 

K (Atkinson and Arey, 2003). This rapidly decreases with increasing temperature, to an 

approximate lifetime of just 20 μs at 450 K. 

1.3.5   OH reactivity 

The OH reactivity is a measure of the total OH reactivity sink which may be useful for evaluating 

the contribution of VOCs to atmospheric chemistry. It is equal to the inverse of the lifetime of the 

OH radical and varies greatly depending on total VOC loading, from milliseconds urban areas to 

tens of seconds in clean air (Yang et al., 2016). The total OH reactivity (kOH) can be calculated using 

Eq. 1.8 and is equal to the sum of the concentrations of OH reactants ([X]) multiplied by their rate 

coefficients for reaction with OH (kX). 

 kOH = 𝑘CO[CO] + 𝑘NO[NO] + 𝑘NO2[NO2] + 𝑘SO2[SO2] + 𝑘O3[O3] + ∑ 𝑘VOCi[VOCi]
n
i +⋯ 

           Eq. 1.8 
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OH reactivity can be measured by monitoring the OH decay rate with laser induced fluorescence 

(e.g. Kovacs and Brune, 2001; Hansen et al., 2015) or by using the comparative reactivity method, 

in which a compound is used as a reference substance and measured using proton-transfer 

reaction mass-spectrometry (PTR-MS) or GC methods (e.g. Sinha et al., 2008; Nölscher et al., 

2012). 

Many field campaigns measuring total OH reactivity have identified a significant mismatch 

between measured results and modelled or calculated results (see Yang et al., 2016 and 

references therein). In urban environments, this discrepancy can range from less than 30% to 

greater than 50%, depending on season and geographic location. Calculated OH reactivity for 

forested areas also show extensive underestimations compared to measurements. This is referred 

to as the so-called ‘missing reactivity’. It is generally attributed to organic species, and is thought 

to be caused by unmeasured and unidentified primary emissions and secondary oxidation 

products. Attempts to identify the causes of the missing reactivity have been made (e.g. Kato et 

al., 2011).  



 
Chapter 1  Introduction 
 

64 

 

1.4     Measuring gas-phase rate coefficients 

Almost all experimental VOC + OH kinetic data used for atmospheric science have been measured 

in controlled laboratory conditions. An array of different techniques exists for the measurement 

of gas-phase rate coefficients. These techniques can be broadly categorised as being either 

absolute measurements, in which the rate coefficient values are obtained by monitoring reactant 

concentrations directly, or as relative rate, in which the depletion in one VOC is measured relative 

to that of another with a known rate coefficient. The following sections will describe and contrast 

a selection of the available methods for measuring gas-phase rate coefficients. 

1.4.1   Absolute methods 

There are various techniques for directly monitoring the rates of reaction and deriving rate 

coefficients. Many of these techniques employ expensive and complicated equipment such as 

laser systems and mass spectrometers. Absolute methods generally require the careful 

measurement of at least one reactant concentration ([A] and [B]) as a function of time. 

Monitoring both reactants can enhance the accuracy of the rate coefficients obtained 

(Wollenhaupt et al., 2000; Dillon et al., 2012). The concentrations of these reactants are often 

low, requiring instrumentation with high sensitivity and good signal-to-noise ratios. 

Measurements are often time consuming, involving multiple repeats at various time intervals to 

derive rate coefficient values. For this reason, reaction rates are monitored individually, to avoid 

interferences with the detection of multiple species which can often have similar chemical 

properties. 

1.4.1.1 Discharge and stopped flow 

These techniques employ flow reactors with a movable injector. Continuous flow techniques were 

first developed in the early 1920s to study the binding rate of carbon monoxide to haemoglobin 

(Hartridge and Roughton, 1923a; Hartridge and Roughton, 1923b). Stopped-flow techniques were 

developed somewhat later, finding application again in biological sciences (Chance, 1951; Gibson, 

1954). Improvements of temporal resolution to a few microseconds were made using rapid-

scanning ultraviolet/visible spectroscopy to aid in enzyme mechanism studies (Brzovic and Dunn, 

1995). Stopped-flow techniques were used for the determination of many gas-phase rate 

coefficients, and elucidation of the mechanisms, for example for the reactions between ozone 



 
Chapter 1  Introduction 
 

65 

 

and alkenes (Herron and Huie, 1974; Herron and Huie, 1977) and for the reactions between NO3 

and alkenes (Biggs et al., 1991). 

The time between the initiation of the reaction and the point of detection can be measured if the 

velocity of the gas flow is known. Reactions are generally performed under pseudo-first-order 

conditions (one of the reactants is in excess of the other) and hence the concentrations of the 

reactants decrease exponentially over time. A decay-profile of the reactant concentration at the 

point of detection as a function of the injector position can then be built, with the position of the 

injector proportional to reaction time. 

One of the major limitations of flow techniques resides in the mixing of reactants. These 

techniques assume that all reactants are uniformly mixed immediately upon injection, but, even 

when using gases, mixing is not instantaneous. Uniform mixing will therefore only be achieved at 

some point downstream of the flow reactor, and this may be difficult to quantify and account for. 

This reliance on the mixing time of reactants generally limits these techniques to slow reactions 

(1015 – 10-19 cm3 molecule-1 s-1; Biggs et al., 1991). However, operating the flows under lower 

pressures can alleviate this problem by reducing the mixing time. 

Other potential complications can also arise from heterogenous reactions in which the gas-phase 

molecules interact with the walls of the reactor. These interactions can sometimes catalyse the 

intended reaction, promote secondary reactions or contribute to the loss of reactant species. 

1.4.1.2 Flash photolysis 

Flow systems are inhibited by their inability to instantaneously mix reactants together; this limits 

their applicability to slower chemical reactions. This issue may be overcome by using flash 

photolysis, in which reactant precursors are premixed before the reaction is initiated. The 

development of flash photolysis, which allows for extremely fast chemical reactions to be 

monitored, was awarded the Nobel Prize in Chemistry in 1967 (Porter, 1950). The technique has 

been used to study the gas-phase recombination of radicals (Trainor and von Rosenberg Jr., 1974) 

and to investigate the reactions of radicals with VOCs (e.g. Braun and Lenzi, 1967; Wallington and 

Kurylo, 1987; Dagaut et al., 1990). 

Premixing may be done at any pressure so long as the reactant precursors are non-reactive. The 

reaction is initiated using a pulse of light to generate the reactive species, which are consequently 

monitored over time. The limiting factor for this method is the length of the pulse of light; if this is 
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longer than the reaction time, absolute measurements are impossible. However, using pulsed 

laser photolysis techniques, flash durations of nanoseconds (10-9 s) are routine and it is even 

possible to employ pulse durations on the timescale of femtoseconds (10-15 s; Wulff et al., 1997; 

Kawai and Nagamura, 1998). 

1.4.1.3 Detection techniques 

A number of different methods for the detection of reactants (or products) can be employed. 

Resonance fluorescence (RF) is often used to measure atomic species, which are electronically 

excited using a microwave discharge source. As the electronically excited atoms return to the 

ground state they emit energy in the form of light, in a process known as fluorescence. This light 

can then be detected via a photomultiplier, with the extent of fluorescence proportional to the 

concentration of the atomic species. RF has been used in studies of reactions of H atoms (e.g. 

Clyne and Monkhouse, 1977), Cl atoms (e.g. Bemand and Clyne, 1975), atomic oxygen (O3P; e.g. 

Slanger and Black, 1970) and in early studies of OH radical reactions (e.g. Zellner and Lorenz, 

1984). RF is, however, limited to studying reactions under low pressure and in the absence of O2. 

Laser induced fluorescence (LIF) uses a similar principle to resonance fluorescence but is 

especially applicable to molecular species rather than atomic species. Dye lasers can be used to 

tune the excitation source to match particular transitions for the detected species, hence offering 

greater specificity. LIF only provides a relative measure of concentration, however, not an 

absolute measure, as provided by absorption techniques, and therefore must be calibrated with a 

reference source of OH. LIF is now used for most OH reaction studies (e.g. Dillon et al., 2017) as it 

can be applied to reaction mixtures in air; LIF is also used as part of the fluorescence assay by gas 

expansion (FAGE) technique for the detection and measurement of OH in ambient air in the 

troposphere (e.g. Hard et al., 1984; Commane et al., 2010). LIF has been used in measurements of 

reactions of NO3 (e.g. Ravishankara and Mauldin III, 1985), O(1D) (e.g. Ravishankara et al., 2002; 

Dillon et al., 2007) and BrO and IO (e.g. Ingham et al., 1999; Dillon et al., 2006) 

Absorption spectroscopy can be used to observe fast reactions. Concentration and absorption are 

related via the Beer-Lambert Law. Absorption techniques not only provide a direct measure of 

concentration but they also provide a complete decay trace for each experiment which is handy 

for self-reactions. Absorption spectroscopy has been used for the determination of rate 

coefficients for reactions of O3 (e.g. Hastie et al., 1976), OH (e.g. Nizkorodov et al., 2000), RO2 (e.g. 



 
Chapter 1  Introduction 
 

67 

 

Boyd et al., 2003), NO3 (e.g. Hall et al., 1988) and IO, ClO and BrO (e.g. Bloss et al., 2001; Rowley et 

al., 2001). 

Mass spectrometry (MS) has also been employed to measure the decay of chemical species within 

chemical reactions (e.g. Morris Jr. et al., 1971; Zhang et al., 2001). MS has advantages in that it 

can be used to monitor multiple chemicals simultaneously. The concentrations of radicals which 

are typically used for each of these detection systems does vary; for example, for OH detection 

using absorption the typical concentrations employed are between 1012 and 1014 molecules cm-3 

whereas RF and LIF employ concentrations of between 109 and 1012 molecules cm-3. 

1.4.2   The relative rate method 

The relative rate method is an indirect technique for the monitoring of reaction rates and 

derivation of rate coefficients. Unlike the absolute methods, where the concentration of the 

radical species must be monitored, the relative rate method requires only monitoring of the VOC, 

which is often much simpler. Gas chromatography is often the detection method of choice for 

relative rate methods but Fourier-transform infrared spectroscopy (FTIR) absorption spectroscopy 

is also commonly employed. 

The relative rate method can be illustrated by an example with two reactions. These reactions are 

monitored simultaneously and both involve OH radicals reacting with two different, but similar, 

alkanes (R. 1.11 and R. 1.12). One, a reference compound (RH) has a known rate coefficient for its 

reaction with OH, whilst the other, the target compound (SH) does not. 

 OH + RH  H2O + R        R. 1.11 

 OH + SH  H2O + S        R. 1.12 

The concentration of both the reference and target alkanes are then measured as the reaction 

progresses. As the OH concentration, which does not need to be known, is constant for both 

alkanes, the rate laws for R. 1.11 and R. 1.12 can be combined: 

 
d[RH]

dt
= 𝑘R[OH][RH]        Eq. 1.9 

 ln (
[RH]t
[RH]0

) = 𝑘R[OH]t        Eq. 1.10 

 ln (
[RH]t
[RH]0

) =
𝑘R

𝑘S
ln (

[SH]t
[SH]0

)       Eq. 1.11 
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A plot of ln (
[RH]t
[RH]0

) against ln (
[SH]t
[SH]0

) should then yield a straight line, with the slope equal to the 

ratio of the rate coefficients for the reference and target reactions. This allows for the 

determination of the rate coefficient for the reaction of the target alkane (SH) with OH, often at 

high precision with R2 values approaching 0.99 for the linear regressions. 

An important assumption must be made when using the relative rate method; the compounds 

must be assumed to only react with OH and nothing else. If either of the compounds react 

differently with any other potential oxidants, this would cause interferences in the observed 

relative depletions. These interferences must therefore be accounted for. 

The technique is also somewhat limited to using reference compounds for which rate coefficients 

for reaction are already well measured. Fortunately, the simplicity of calculating new rate 

coefficients using this technique means that adjustments to recommended values for reference 

rate coefficients can be carried forward, long after the original measurements have been made. 

1.4.2.1 OH relative rate methods 

The relative rate method has been used extensively for investigating and determining rate 

coefficients for reactions between OH and many VOCs. 

Both photolytic systems and non-photolytic systems have been employed for the generation of 

OH radicals. Early examples of photolytic OH production include; the photolysis of H2O2 at 253.7 

nm (e.g. Gorse and Volman, 1972), the photolysis of HONO (e.g. Cox, 1975; Niki et al., 1978), and 

the photolysis of NOx-organic-air mixtures (e.g. Doyle et al., 1975; Wu et al., 1976; Darnall et al., 

1978). Photolysis of HONO-NO-air and methyl nitrite-NO-air systems yield higher concentrations 

of OH radicals, of approximately 107 – 108 molecules cm-3 (Atkinson et al., 1981; Cox et al., 1981; 

Atkinson et al., 1982). More recent sources have also utilised the photolysis of CH3ONO at > 300 

nm (Aschmann et al., 2013) or the photolysis of O3 in the presence of excess H2O (Bernard et al., 

2018; Guo et al., 2018) or H2 (Srinivasulu et al., 2018). 

Non-photolytic sources of OH include; the H2O2-NO2 reaction system (Campbell et al., 1976), the 

N2H4 + O3 reaction (Tuazon et al., 1983) and the thermal decomposition of HO2NO2 (Barnes et al., 

1982). 

Relative rate studies have been performed to derive rate coefficients for OH reactions with many 

different functionalities, including; alkanes (e.g. Atkinson et al., 1982; Harris and Kerr, 1988; 
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Wilson et al., 2006), cycloalkanes (e.g. Singh et al., 2013), alkenes (e.g. Darnall et al., 1976; 

Atkinson and Aschmann, 1984; da Silva Barbosa et al., 2015), monoterpenes (e.g., Atkinson et al., 

1986; Kim et al., 2011), sesquiterpenes (e.g. Shu and Atkinson, 1995), aromatic hydrocarbons (e.g. 

Atkinson and Aschmann, 1989; Kramp and Paulson, 1998; Aschmann et al., 2013), polycyclic 

aromatic hydrocarbons (e.g. Brubaker Jr. and Hites, 1998; Phousongphouang and Arey, 2002), 

aldehydes (e.g. Alvarado et al., 1998; Baker et al., 2004), ketones (e.g. Baker et al., 2005), ethers 

(e.g. Coeur-Tourneur et al., 2010; Lauraguais et al., 2015) and chlorinated hydrocarbons (e.g. 

Edney et al., 1986) amongst others. 
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Chapter 2 

The multivariate relative rate 
technique method 
 

2     Overview 

This chapter introduces the multivariate relative rate technique by characterising both the reactor 

design and the instrumentation used for the gas-phase VOC analysis. It describes the methods 

undertaken to measure gas-phase relative rate coefficients using this technique as well as 

outlines the procedures applied to process the data. This chapter also details the modifications 

made to the base technique that allowed for the measurement of rate coefficients for relatively 

slow VOC + OH reactions, for VOC + Cl reactions, and for temperature-dependent reactions. 
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2.1    The basic technique 

The multivariate relative rate technique developed at the Wolfson Atmospheric Chemistry 

Laboratories, York, UK is of a conceptually simple design and is based on traditional relative rate 

experiments and “missing OH reactivity” experiments (Kato et al., 2011). For the measurements 

made in this work, gas-phase reactants were mixed together in a vessel, henceforth referred to as 

the ‘reactor’, and allowed to interact before being transferred to state-of-the-art instrumentation 

for analysis. The primary method of analysis employed throughout much of this work was gas-

chromatography coupled to time-of-flight mass-spectrometry (GC-ToF-MS).  

Figure 2.1 shows a brief schematic outlining the experimental concept. The following sections 

further describe in detail all the aspects of the experimental procedure; from the front end of the 

experiment to the analytical instrumentation used, along with their optimised settings, and the 

methods used to analyse the obtained data. 
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Figure 2.1 Brief flow schematic of the experimental concept. All parts of the schematic will be outlined in 
more detail in the following section.  
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2.1.1   Reactor characterisation 

The reactor comprised a single stainless-steel tube with approximate external dimensions of 470 

× 25 × 25 mm and an internal volume of 250 cm3. A schematic of the reactor, designed at the 

University of Leeds, UK, is shown in Figure 2.2. A quartz window, positioned on the top face of the 

reactor, allowed collimated vacuum ultraviolet (VUV) light from a low-pressure Hg/Ar lamp 

(L.O.T., Pen-Ray®) to enter the reactor. N2 (2000 standard cubic centimetres per minute (sccm)) 

was passed through a bubbler filled with high purity water (Fischer, Optima grade) and supplied 

to the reactor upstream of the quartz window via a mass flow controller (MKS Instruments). Gas-

phase VOC reactants, in a flow of N2 (1000 sccm), were introduced downstream of the quartz 

window via a stainless-steel injection tube with an external diameter of 3.2 mm. The injection 

tube was positioned so as to minimise the potential photolysis of the VOCs by VUV light but also 

maximise the exposure to the short-lived OH radical. This was done by varying the injector 

position and measuring the concentration of formaldehyde formed from methane oxidation (see 

Cryer, 2016). The optimised position for VOC injection was found to be approximately 150 mm 

downstream of the quartz window. The injector design ensured that VOCs were thoroughly mixed 

with the main flow within the reactor by passing the VOCs through an array of four holes which 

were radially distributed about the injection tube. The remainder of the reactor length allowed 

for ample reaction time for the gas-phase reactants at atmospheric pressure. When using a 

typical total flow rate of 3000 sccm through the reactor, the residence time of the organic mixture 

in the reactor was estimated to be approximately 4 s.
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Figure 2.2 Schematic of the flow reactor used for mixing of gas-phase reactants. All measurements are shown in mm. Humidified N2 enters the reactor at the far right of the schematic via 
1/4” tubing. The VOCs are injected into the reactor perpendicular to the gas flow via four radial holes in the central sliding 1/8“ injector. The position of this injector was optimised to 
provide maximum exposure of VOCs to OH radicals with minimum exposure to the VUV light (Cryer, 2016). The typical residence time of VOCs inside the reactor after injection under 
normal flow conditions was approximately 4 s, with the oxidation chemistry expected to occur in under 0.5 s.
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2.1.1.1 Reactor flow conditions 

The flow of a fluid through a pipe can be described as either laminar, in which the fluid flows in 

parallel layers with no disruption, or as turbulent, in which the flow is much more dynamic. 

Laminar flow is characterised as being slow whereas turbulent flow is typically chaotic and 

promotes mixing. 

The Reynolds number (Re) can be used to predict the type of flow through, for example, a 

cylindrical object such as the reactor (see Figure 2.2). A low Reynolds number (Re < 2300) is 

indicative of laminar flow whilst higher numbers (Re > 4000) suggest an increased degree of 

turbulence. The Reynolds number for a particular flow can be calculated using Eq. 2.1, where; ρ is 

the density of the fluid, u is the mean velocity of the fluid, μ is the dynamic viscosity of the fluid, ν 

is the kinematic viscosity of the fluid, Q is the volumetric flow rate, A is the cross-sectional area 

and DH is the hydraulic diameter of the pipe (or reactor). DH can be calculated using Eq. 2.2, where 

A is the cross-sectional area and P is the wetted perimeter. The wetted perimeter is the total area 

of the pipe in contact with the fluid. As the reactor contains gas, it can be assumed that the entire 

perimeter of the pipe is in contact with the fluid and hence DH is equal to the internal area of the 

reactor walls. 

 Re =
ρuDH

μ
=
uDH

ν
=
QDH

νA
       Eq. 2.1 

 DH =
4A

P
         Eq. 2.2 

The entrance length (Le) is another useful parameter used to characterise flows. The flow through 

a pipe usually takes some distance to fully establish itself; the distance that the fluid takes before 

establishing stable laminar, or continued turbulent, flow is termed the entrance length. This is 

calculated differently dependent on the type of flow ultimately established. For laminar flows, the 

entrance length is calculated using the Reynolds number and diameter of the pipe through Eq. 

2.3, whilst for turbulent flows, the entrance length is calculated using Eq. 2.4. 

 Le~0.06 × Re × D        Eq. 2.3 

 Le~4.4 × (Re)
1

6 × D        Eq. 2.4 

The primary flow of humidified N2 (equal to 2000 sccm) was calculated to have Re = 88 with Le = 

0.1 m. The flow after the VOCs were injected (equal to 3000 sccm) was calculated to have Re = 
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132 with Le = 0.2 m. Clearly, for both cases, Re was much smaller than 2300, the threshold at 

which fluids are predicted to begin experiencing turbulence. Therefore, it is expected that laminar 

flow was established within the reactor. However, the calculated values of Le were considerably 

high for the length of the reactor. Referring to Figure 2.2, it can be assumed that laminar flow was 

not fully established until approximately 0.35 m into the reactor, at which point it was likely that 

much of the chemistry had already taken place. 

2.1.2   Lamp and lamp housing 

The Hg/Ar lamp was positioned in either an aluminium or stainless-steel lamp housing on top of 

the reactor. A quartz window allowed for the VUV-light from the lamp to enter the reactor. A 

rubber seal placed between the housing and the reactor prevented the escape of gas around the 

quartz window. VUV light from the lamp entered the reactor through a section of multiple 

cylindrical steel tubes, each with a diameter of approximately 2 mm. This section ensured that the 

VUV light entering the reactor was collimated – that is, that all light that passed into the reactor 

entered in parallel. This served to minimise the light reflecting around the internal surfaces of the 

reactor which could have potentially caused interferences with any VOCs susceptible to photolysis 

further downstream. 

Mercury lamps are a form of gas-discharge lamp that use vaporised mercury as a source of VUV 

emission. Figure 2.3 shows the emission spectrum and typical relative intensities for the Hg/Ar 

lamp in use in the experiment. Figure 2.4 shows the emission spectrum, recorded using diffuse 

reflectance spectroscopy (DRS), of the same lamp, between 190 and 650 nm. The primary UV and 

VUV peaks in the Hg emission line spectrum are at 184.5, 253.7 and 365.4 nm. The primary 

emission at 253.7 nm is of potential concern for the direct photolysis of VOCs. The emission at 

184.5 nm, although not visible in Figure 2.3, can be used to photolyse H2O into OH and H radicals 

(R. 2.1).  

H2O + ℎ𝜈 (184.95 nm) → OH + H  R. 2.1 
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Figure 2.3 Typical relative intensities of the emission lines from the Hg/Ar Pen-Ray lamp source (adapted 
from http://pas.ce.wsu.edu/CE415/PenRay_lamp_spectra.pdf). 

 

 

Figure 2.4 Diffuse reflectance spectroscopy (DRS) recorded spectrum of the emission output from the Hg/Ar 
lamp between 190 and 650 nm. The spectrum is recorded as discrete bands, rather than lines, which match 
relatively closely to the typical intensity spectrum in Figure 2.3. The band at 184.5 nm was not observed as 
this was not recorded under vacuum. 
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2.1.3   Mass flow controllers 

Mass flow controllers (MFCs) were used to regulate the flow of gas-phase reactants into the 

reactor. An MKS Instruments MFC controlled the flow of humidified N2 at a consistent 2 slm (2000 

sccm) at standard temperature and pressure (STP) into the reactor. Two Tylan MFCs controlled 

the flow of gas-phase VOCs and an additional diluting flow of dry N2 into the reactor. The sum 

flow through these two MFCs was kept constant at 1 slm (1000 sccm). The Tylan MFCs were 

controlled automatically using the DAQFactory software package; changing the relative flow 

through each of the MFCs allowed for the concentration of VOCs into the reactor, and thereby the 

OH reactivity of the gas mixture, to be varied. 

2.1.4   Gas sampling 

VOCs were collected using a Unity 2 Thermal Desorption Unit (TDU) fitted with a Tenax TA 

sorbent trap and a Canister Interface Accessory (CIA) 8 Air Server attachment (Markes 

International). The system was pre-purged at a flow rate of 100 sccm for 10 minutes before 

sampling. During sampling, the trap was maintained below -20 °C and a sampling flow rate of 100 

sccm used for one minute to give a total sample volume of 100 cm3. After sampling, the system 

lines and sorbent trap were purged with a carrier gas for three minutes at 100 sccm to eliminate 

oxygen from the system before desorption onto the gas chromatograph (GC) column. During the 

desorption process, the trap was rapidly heated to 250 °C and held for three minutes. All flow 

paths and sample lines were heated to 150 °C. 

2.1.5   Gas chromatography 

Gas chromatography is one of a suite of techniques that comes under the broad principle of 

chromatography. Chromatography is a common method for separating mixtures into their 

constituent components. It relies on the principle that different components within a mixture will 

have differing affinities to each of two phases. One of these phases is stationary, and aptly named 

the stationary phase, whilst the other moves in a defined direction, and is referred to as the 

mobile phase. As a component moves through this system, it will partition between the two 

phases; when interacting with the stationary phase the component is said to be ‘retained’, and 

when interacting with the mobile phase it is said to be unretained. The time a component spends 

retained on the stationary phase determines the time that the component elutes, or exits the 
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system. This time is known as the retention time (tR). Once eluted, the component can then be 

collected, or measured using a suitable detector. 

In gas chromatography, the mobile phase is a gas. The gas is typically helium but nitrogen, argon 

or hydrogen are also commonly used. The stationary phase is film coated to the fused silica on the 

inner wall of a capillary column, through which the carrier gas flows. The choice of stationary 

phase material can have a large impact on the retention of analytes. Inert, or non-polar, columns 

interact with analytes physically, through Van der Waals forces. Hence, larger compounds with 

higher boiling points tend to have longer retention times. Polar columns add additional 

complexity to the interactions between the analyte and the stationary phase, with components 

possibly undergoing hydrogen bonding to the stationary phase, as well as other basic interactions. 

Separation is therefore based on the effects of these mechanisms. The strength of many of these 

interactions is largely dependent on temperature; therefore, GC columns are typically placed 

inside an oven, allowing for accurate temperature control, and hence control over the speed of 

analyte elution. 

2.1.5.1 The equilibrium theory of separation 

As an analyte moves through a column, it is in constant equilibrium between the mobile phase 

(AM) and the stationary phase (AS). The partition coefficient (K) describes the equilibrium of the 

analyte between these two phases, and is equivalent to the ratio of the concentration, or mass, of 

the analyte in each of the two phases (Eq. 2.5 and 2.6). 

AM
K
↔AS           Eq. 2.5 

 K =
CS

CM
          Eq. 2.6 

The capacity factor (k’) is an experimental parameter used to describe the migration rates of 

analytes. It is related to the retention time of an analyte (tR) and the retention time of the mobile 

phase (tM) through Eq. 2.7. 

 k′ =
tR−tM

tM
         Eq. 2.7 

For good separation to occur, each component must have a different capacity factor. The 

selectivity factor (α) is the ratio of the capacity factor for two different analytes. A large value of α 

indicates good separation. For optimal separation, peaks should also be Gaussian in nature. For 
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this to be possible, band broadening, the process by which analyte molecules become spread out, 

must be limited. 

It is possible to measure the efficiency of a column with respect to the separation of analytes. The 

theoretical plate model of chromatography visualises a column as divided into a large number of 

vertical layers, or plates. Analytes move through the column by transferring from one plate to the 

next. The number of plates (N) is related to the efficiency and can be obtained by dividing the 

length of the column (L) by the theoretical plate height (H) (Eq. 2.8). 

 N =
L

H
          Eq. 2.8 

The longer the column and the smaller the plates, the greater their number and the greater the 

efficiency of the column. The efficiency of an actual column can be estimated using the retention 

time of a chromatographic peak and its width at half height using Eq. 2.9. 

 N = 5.5 (
tR

w1 2⁄
)
2

        Eq. 2.9 

The van Deemter equation relates plate height to the linear velocity (μ) of the mobile phase 

through various parameters that control band broadening (Eq. 2.10). The eddy diffusion term (A) 

describes the random paths that an analyte molecule can take through the stationary phase. In 

open tubular columns, A is equal to zero. The longitudinal diffusion (B) describes the longitudinal 

spread of an analyte within the carrier gas. The mass transfer term (C) considers the difficulty for 

an analyte to transfer between phases. The effects of longitudinal diffusion are reduced by 

increasing the velocity of the mobile phase, whilst the impacts of mass transfer are amplified by 

increasing velocity. This usually results in an optimum velocity for the mobile phase through a 

column. 

 H = A +
B

μ
+ Cμ        Eq. 2.10 

Another measure of how well analytes are separated, which considers peak width, is provided by 

the resolution (RS). The resolution between two components, A and B, is given by Eq. 2.11, where 

w is the peak width. For adequate baseline separation, the resolution needs to be greater than 

1.5. 

 RS =
2(tRA−tRB)

wA+wB
         Eq. 2.11 
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2.1.5.2 The GC system 

The GC system used in this work was an Agilent 7890 (Agilent Technologies) fitted with a DB5-MS 

ultra-inert capillary column (60 m × 0.32 mm internal diameter (ID) × 1 μm film; Agilent 

Technologies). The temperature ramping of the GC oven was varied between synthetic gas 

mixtures to achieve optimum separation of the VOCs. The column head pressure was set to 50 psi 

(344 kPa) and operated in constant pressure mode using helium as the carrier gas. The GC 

method, along with the TDU settings, gave sample turn arounds of up to 25 minutes for more 

complicated mixtures, and up to 15 minutes for simpler mixtures. 

2.1.6   Mass spectrometry 

Mass spectrometry (MS) is an analytical technique used to separate and detect chemical species 

based on their mass to charge ratio (m/z). MS requires molecules to be ionised before detection. 

Common methods of ionisation include: electron ionisation (EI), matrix assisted laser desorption 

ionisation (MALDI) and chemical ionisation (CI). Ionisation techniques can be ‘hard’ or ‘soft’; this 

refers to the amount of energy transferred to the molecule during the ionisation process. Hard 

techniques transfer excess energy to the analyte, which can result in the fragmentation of the 

molecular structure. The extent of fragmentation, and the fragmentation ions formed as a result, 

depend on the extent of the excess energy. Fragmentation can provide information on the 

molecular structure of the analyte. 

In electron ionisation, electrons are accelerated between a hot filament and an anode, 

encountering the vapourised analytes in the process. Electrons are typically removed from the 

analyte, as in R. 2.2, although electron capture (R. 2.3) is also possible but more unusual. As EI is a 

‘hard’ ionisation technique, fragmentation occurs via the loss of either a neutral radical or 

charged species. The extent of fragmentation is often large which is both advantageous and 

disadvantageous: a large amount of fragmentation can assist with characterisation and 

identification but often comes at the expense of the loss of the molecular ion (M+) from the 

resulting mass spectrum. 

 M
−e−

→  M+∙         R. 2.2 

 M
+e−

→  M−∙         R. 2.3 
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In chemical ionisation, a reagent gas (such as methane, isobutane or ammonia) is ionised first, 

using a hot filament as in EI. The ionised reagent gas can then collide with the analytes, possibly 

transferring charge (usually in the form of a proton if using methane, CH4, as the reagent gas) in 

the process shown in R. 2.4. 

 CH5
+ +M → CH4 +MH

+       R. 2.4 

In CI, therefore, the molecular weight of the analyte is easily obtained, although it is observed at 

one Dalton unit greater, due to the addition of the proton. However, very little fragmentation 

occurs which can make structural characterisation difficult. 

Once ionised, analytes are separated by a mass analyser before detection. Mass analysers are 

typically operated under vacuum to minimise collisions between molecules. This is important as 

ions can decompose over time; fast transmission is therefore necessary for greater sensitivity. 

After mass separation, analytes are detected using simple detectors such as an electron 

multiplier, which counts the number of ions. Accurate identification of an analyte relies on high 

resolution measurements of an ion’s mass. The resolving power, R, of a mass analyser reflects its 

ability to distinguish between two ions with a small mass difference (Eq. 2.12). 

 R =  
m

δm
          Eq. 2.12 

2.1.6.1 Time-of-flight (ToF) mass spectrometry 

In ToF-MS ionised analytes are accelerated in a flight tube using an electric field and allowed to 

drift to the reactor. Heavier ions move more slowly than lighter ions and hence have a longer 

‘time of flight’. The kinetic energy (Ek) of a mass is given by Eq. 2.13. 

Ek =
1

2
mv2          Eq. 2.13 

Time-of-flight mass spectrometry offers advantages over flame ionisation detection, the more 

traditional detection method used after separation by gas chromatography. Firstly, there is 

considerable base line reduction and reduction in the signal-to-noise ratio. This can help with the 

detection of compounds at trace concentrations. Secondly, the mass spectrum produced during 

the elution of a compound can be compared to databases of mass spectra allowing for ease of 

identification of similar compounds. This is far more difficult when using GC-FID, where standards 

must generally be used to determine the order of elution for compounds with a similar number of 
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carbon atoms. Finally, mass spectrometry allows for co-eluting compounds to be considered and 

analysed separately, based on appropriate mass ion selection. 

2.1.6.3 The MS system 

The mass spectrometer coupled to the Agilent 7890 GC used in this work was a Markes 

International BenchTOF© time-of-flight mass spectrometer. The mass spectrometer was routinely 

calibrated and signal optimised. The air:water ratio within the flight tube was also regularly 

checked to ensure consistent operation. The MS was operated with the filament set to 1.60 V and 

a filament delay of 180 s. The delay was necessary for prolonging the lifetime of the detector. The 

first 3 min of elution through the GC was dominated by the most volatile gases, such as N2 and 

any residual O2. These eluted in large quantities and would have resulted in large signals. The 

filament delay of 3 min was used to remove these signals from the recorded mass spectra whilst 

retaining the signal from the actual mixture components. 

2.1.7   Synthetic gas mixtures 

Ambient air, or “real air”, has previously been used as the gaseous matrix for the multivariate 

relative rate technique (Shaw et al., 2018). However, the use of ambient air resulted in a number 

of problems. These issues generally related to the complexity of the atmosphere; ambient air is a 

dynamic mixture which can vary hugely on both a temporal and spatial scale. This had to be 

considered when sampling the atmosphere for kinetic measurements as even small discrepancies 

in the initial VOC concentrations lead to major variations in the final results. A dual reactor 

system, in which one reactor was kept constantly dark, foregoing OH radical generation, was used 

in an attempt to account for atmospheric fluctuations. The system used for measuring rate 

coefficients using atmospheric sampling is described in Shaw et al. (2018) but is not used in this 

work. 

Even after accounting for the erratic nature of the atmosphere, there are still many other 

problems associated with the use of ambient air as a gas matrix. For example, the number of 

identified VOCs can potentially be very large. This can lead to difficulties in separation using one 

dimensional gas chromatography and can also impact on peak resolution. The concentrations of 

individual VOCs can also be supremely low; even below the limit of detection for GC-ToF-MS. This 

can have a large impact on uncertainties, particularly if a VOC is depleted below the limit of 

detection after exposure to OH. Another problem concerns the potential interferences from 

multiple non-synthetic oxidants; ozone and endemic OH are likely to be present in ambient air, 
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particularly during the day, and these may perturb VOC concentrations in ways that can be 

difficult to account for. 

One way of avoiding the problems associated with “real air” sampling was to prepare synthetic 

gas mixtures containing multiple VOCs. This not only simplified the gas matrix, by removing the 

likelihood of non-synthetic oxidant contaminants, but also allowed for the concentration of 

individual VOCs to be controlled. 

Synthetic mixtures for this work were prepared by injecting a measured amount of undiluted 

liquid VOC into a 500 ml evacuated, double ended, stainless steel sample cylinder (Swagelok). This 

cylinder was then flushed into a pacified gas cylinder (10 L, Experis, Air Products) using N2 (99.998 

% purity). The gas cylinder could be pressurised with up to 100 bar N2 to achieve the desired final 

mixing ratio for each VOC in the cylinder. Further dilutions were sometimes necessary for this, 

and these were accomplished by evacuating the cylinder to atmospheric pressure and then 

refilling with N2 to the desired pressure. 

2.1.8   Experiment design 

Figure 2.5 shows the experimental setup for the measurement of multivariate gas-phase relative 

rate coefficients with OH. Humidified nitrogen was constantly supplied to the reactor throughout 

experiments. Injection of the synthetic gas mixture was triggered automatically when the GC was 

ready to begin collection of a new sample. Samples were alternated between light and dark; the 

Hg/Ar lamp was alternately switched on and off during the course of sampling. The VOC 

concentrations for a ‘lamp off’ sample were representative of the VOC mixing ratios within the 

synthetic mixture, albeit with increased dilution due to mixing with extra flows of N2 upon 

entering the reaction chamber. A VOC measured from a dark sample was therefore said to be at 

its initial concentration ([VOC]0). 

A ‘lamp on’ sample, in which the Hg/Ar lamp was used to photolyse H2O to form OH radicals (R. 

2.1), gave VOC concentrations which were depleted when compared with the lamp-off 

concentration, due to the reaction between the VOCs and the radical oxidant. A VOC, measured 

from a ‘lamp on’ sample, was therefore said to be at its final concentration ([VOC]). 
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Figure 2.5 Schematic of the OH reactor configuration used. Key to abbreviations: CIA8 = air server and canister interface accessory; GC = gas chromatograph; MFC = mass flow controller; 
TOF-MS = time-of-flight mass spectrometer; TDU = thermal desorption unit. The flow rate through MFC 1 was stepped from 200 sccm through to 1000 sccm in 200 sccm intervals. The 
combined flow rate through MFC 1 and MFC 2 was kept constant at 1000 sccm. The flow rate through MFC 3, and hence through the H2O bubbler, was set to 2000 sccm resulting in a 
total flow through the reactor of 3000 sccm. See Figure 2.2 for a more comprehensive schematic of the reactor design. 

Reactor

Pen-ray enclosure

MFC 1

MFC 2

MFC 1MFC 3

Gas standard

N2

VentMarkes
CIA8

air server

In-house
chiller

Markes
Unity
TDU

Sample
pump

Agilent
6890 GC

Markes
TOF-MS

Lamp control

Window

H O bubbler2



 
Chapter 2  The multivariate relative rate technique overview 
 

109 

 

By alternating between light and dark reactor conditions over multiple sample runs, a set of 

observations comprising two populations of data ([VOC]0 and [VOC]) for each VOC, was 

generated. For most reaction mixtures eight samples were collected with the reactor lamp 

switched off, and eight with the reactor lamp switched on. The lamp was alternated off and on 

across sample runs to remove the possibility of bias due to instrumental drift over time. For a 

description of how the GC-MS data for the “lamp-off” and “lamp-on” samples was analysed, 

please refer to Section 2.1.10. 

The depletion in an individual VOC with a literature VOC + OH rate coefficient, k, was then 

evaluated using simple kinetic equations. Equations 2.14 to 2.16 demonstrate these kinetic 

equations using isoprene (C5H8) as an example (R. 2.6). Eq. 2.14 shows the differential rate 

equation for the oxidation of isoprene by OH whilst Eq. 2.15 shows a rearrangement and a further 

integrated form of Eq. 2.14 respectively. These equations are analogous to Eq. 1.4 and Eq. 1.5 in 

Chapter 1 Section 1.3.1. 

 C5H8 + OH
𝑘C5H8
→   (products)        R. 2.6 

d[C5H8]

dt
= −𝑘C5H8[C5H8][OH]         Eq. 2.14 

d[C5H8]

[C5H8]
= −𝑘C5H8[OH]𝑑𝑡        Eq. 2.15 

ln (
[C5H8]0

[C5H8]
) = 𝑘C5H8 ∫[OH]𝑑𝑡        Eq. 2.16 

Equations 2.17 to 2.19 show a more general case for any VOC (R. 2.7). 

VOC + OH
𝑘
→ (products)        R. 2.7 

d[VOC]

dt
= −𝑘[VOC][OH]         Eq. 2.17 

d[VOC]

[VOC]
= −𝑘[OH]𝑑𝑡         Eq. 2.18 

ln (
[VOC]0

[VOC]
) = 𝑘 ∫[OH]𝑑𝑡        Eq. 2.19 

The depletion factor for a VOC due to its reaction with OH is represented by the term ln (
[VOC]0

[VOC]
). 

This is related to the rate coefficient for the reaction between the VOC and OH (k) via Eq. 2.19. 



 
Chapter 2  The multivariate relative rate technique overview 
 

110 

 

The integral of the OH concentration over time (∫[OH]𝑑𝑡) is known as the OH exposure (OHexp). 

This technique assumed that all VOCs in the reactor experienced identical exposure to OH owing 

to rapid homogenous mixing of the oxidant within the reactor. A proportional relationship 

between depletion factor (𝑙𝑛 (
[𝑉𝑂𝐶]0

[𝑉𝑂𝐶]
)) and k should therefore be observed for the range of VOCs, 

with the gradient of the slope equal to OHexp. This derived relationship allowed for the calculation 

of previously unmeasured OH rate coefficients for VOC + OH reactions. All other VOC + OH 

reactions in the synthetic mixture therefore act as ‘reference’ reactions and any new rate 

coefficients are derived relative to each of these reference reactions. The use of multiple 

literature k values as reference values minimised the reliance on any single, possibly erroneous, 

literature value and also calibrated the system across a range of VOC reactivities. 

This entire process was repeated multiple times using a different set of synthetic VOC mixture 

flow conditions to inject a different mixture OH reactivity into the reactor. Due to a constant OH 

reactivity towards the native HO2 in the reactor, the OH exposure of the mixture itself changed as 

the concentrations of the VOCs in the reactor varied. Hence, the analysis of VOC rate coefficients 

was performed individually for each OH reactivity of mixture injected into the reactor. Once VOC 

+ OH rate coefficients had been calculated at each OH reactivity, final VOC + OH rate coefficients 

were derived by averaging across each of the individual values. 

2.1.8.1 Internal standards 

Internal standards are often used in analytical chemistry to correct for the loss of analytes during 

sampling and measurement which often varies across multiple repeats. Internal standards are 

typically chosen to be as similar as possible to the compound(s) of interest to maximise the 

likelihood that they are subjected to similar effects during sampling. In the case of this 

experiment, the diversity in the structural composition of the compounds in the mixtures meant 

that selecting a compound that was similar to all others was difficult. Instead, the internal 

standard used needed to be unaffected by exposure to OH, in order to account for variations in 

sampling conditions from ‘lamp off’ samples to ‘lamp on’ samples. 

Few organic compounds are unreactive towards OH as they typically contain hydrogen atoms, 

which undergo H-atom abstraction by the oxidant. Organic compounds containing no hydrogen 

atoms do exist however; carbon tetrachloride (CCl4) is an example of such a compound. CCl4 is 

approximately a million times less reactive towards OH than most VOCs, with a recommended 

rate coefficient for reaction with OH of k < 1 × 10-19 cm3 molecule-1 s-1 (Atkinson et al., 2006). 
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However, CCl4 is classed as a chlorofluorocarbon (CFC) and is therefore subject to significant 

regulations on its use. Many compounds which react relatively slowly with OH are also CFCs or 

hydrochlorofluorocarbons (HCFCs) and hence unsuitable for use as an internal standard. 

Dichloromethane (CH2Cl2) is a common solvent used in organic chemistry which is not classed as 

either a CFC or HCFC. Its recommended rate coefficient for reaction with OH is k = 1.0 × 10-13 cm3 

molecule-1 s-1, at least an order of magnitude smaller than even the slowest reacting of aromatic 

VOCs. Dichloromethane (DCM) was therefore also included in VOC mixtures, with the intention of 

using it as an internal standard. It’s small rate coefficient for reaction with OH meant that its 

depletion upon exposure to OH was negligible and therefore insignificant within the context of 

the experiments (simulated depletions of less than 1% for all mixtures). For this reason, its 

concentration for both ‘lamp off’ and ‘lamp on’ samples should be constant, providing consistent 

sampling conditions. Deviations in its concentration were therefore indicative of changes in the 

sampling conditions and not due to the presence of OH. These deviations were then corrected for 

with respect to the other VOCs. 

The applicability of using DCM as an internal calibrant was examined by referring to the 

correlation in the peak areas between other VOCs and itself. For a compound to be used as a valid 

internal calibrant for another analyte, the peak areas should show good correlation i.e. samples 

with greater observed peak areas for the internal standard should show a similarly larger peak 

area for the other analyte. If a poor correlation were to be observed between the internal 

standard and another analyte, then it was unlikely to act as a useful internal calibrant for that 

species. Compounds that presented large R2 values for their correlation with DCM were therefore 

adjusted by normalising to the spread in the DCM peak areas. For the most part, this was limited 

to compounds which eluted within a few minutes of DCM.  
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2.1.9   Literature k values 

Some of the more common, or atmospherically relevant, VOCs benefit from having multiple 

measurements of their rate coefficient for reaction with OH available in the literature. Important 

reactions, such as that between isoprene and OH, have been measured using many different 

techniques and in many different laboratories and as such it can be difficult to choose a single 

value to use as the ‘reference’: the choice of different reference values can lead to slight 

variations in the results obtained at the end of an experiment, through minor adjustments to the 

calculated OHexp. Fortunately, the International Union of Pure and Applied Chemistry (IUPAC) Task 

Group on Atmospheric Chemical Kinetic Data has put considerable effort into producing a set of 

evaluated rate coefficients for many important atmospheric reactions. The IUPAC database, which 

can be accessed online, provides recommended values for the reaction between OH and many 

short chain hydrocarbons, along with some of the more common monoterpenes and aromatic 

VOCs (Atkinson et al., 2006; http://iupac.pole-ether.fr/). These values are evaluated using a 

balance of literature data and are updated regularly. Hence, when selecting single values to use as 

references, this data was used as a matter of priority. 

The IUPAC database is limited in scope, leaving the vast majority of larger, or less common 

atmospheric VOCs, without an evaluated k value. However, many VOC + OH reactions that do not 

appear in the IUPAC database have been reviewed and evaluated in Atkinson and Arey (2003). 

The database in their review paper is much more extensive than the IUPAC equivalent, but does 

not provide uncertainties, nor is it continually updated and hence does not account for 

measurements made since its publication. Much of the data in Atkinson and Arey (2003) was 

collated from the extensive evaluations of atmospheric oxidation of alkenes and aromatic 

hydrocarbons in Calvert et al. (2000, 2002). Roger Atkinson has also been personally involved with 

the measurements of many rate coefficients and is widely regarded as an expert in the field. 

Hence, it can be assumed that the majority of rate coefficients derived by his laboratory are 

internally consistent. Some k values in Atkinson and Arey (2003) were taken from a single 

measurement made using the traditional relative rate method. Some of the recommended k 

values for the reference VOC + OH reactions used in those experiments have changed since 

publication. In the case that a recommended k value in Atkinson and Arey (2003) was based on 

only a single experiment, this value was adjusted to account for changes to the recommended 

reference compound values made after publication. 

http://iupac.pole-ether.fr/
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In the few instances that a rate coefficient for a reaction between a certain VOC and OH neither 

appeared in the Atkinson and Arey (2003) database, nor had an Atkinson derived coefficient in 

the literature, any other experimental literature value was taken as a reference. In the case that 

there were multiple measurements of the same rate coefficient, an average of those values, 

weighted to the uncertainties, was used. Theoretical values for reaction rate coefficients were 

never used as reference values. 

Figure 2.6 shows a flowchart illustrating this process. 

 

Figure 2.6 The process undertaken to find literature reference k values for VOC + OH reactions. 
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2.1.9.1 A note on errors 

The errors and uncertainties provided alongside many of the referenced literature rate 

coefficients in this work differ considerably. The errors in measured values often vary from 

symmetrical uncertainties of a few percent to much more substantial errors. For example, the 

relative rate measured rate coefficient for the 1-nonene + OH reaction, of 43.2 × 10-12 cm3 

molecule-1 s-1, provided by Aschmann and Atkinson (2008) has a very small uncertainty of 0.5 × 10-

12 cm3 molecule-1 s-1. On the other hand, the rate coefficient for the β-pinene + OH reaction, of 

93.5 (± 27.9) × 10-12 cm3 molecule-1 s-1, provided by Dash and Rajakumar (2013) has a much larger 

relative error, despite using a similar relative rate technique. 

The uncertainties provided on the evaluated and recommended rate coefficients, taken from the 

Calvert et al. (2000, 2002) and Atkinson and Arey (2003) reviews, tend to reflect the greater 

uncertainties. This is often because the recommended values are the result of weighted averages 

of multiple individual measured values, and hence, somewhat arbitrarily large errors of ± 20% or 

greater are placed upon them. 

Whilst the IUPAC recommended values also tend to be given large uncertainties, of more than 

10%, the errors on their values are asymmetric. For example, the reliability in the recommended 

value for the isoprene + OH reaction, is given as a change in log k (Δlog k) = ± 0.06 at 298 K. This 

therefore converts to an asymmetrical error when calculated for the units used in this work.  
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2.1.10   Data analysis and error propagation 

GC-MS data was analysed using automatic peak integration software (Agilent Technologies) using 

appropriate mass ion selection for each individual VOC. Mass ion selection allowed for the total 

separation of peaks in the case that two VOCs had co-eluted and had unique mass fragmentation 

ions. 

There was considerable variation in the measured peak areas for some VOCs when sampling 

some OH reactivities, even after minor fluctuations in the volume sampled by the TDU were 

considered. Potentially anomalous peak areas were therefore removed using the MADe method 

(Burke, 2001) before an average ‘lamp off’ value ([VOC]0) and ‘lamp on’ value ([VOC]) was 

calculated, along with an associated standard error for each (σ[VOC]₀ and σ[VOC]). This calculation 

was performed at each individual OH reactivity for a mixture. The depletion factor (ln (
[VOC]0
[VOC]

)) 

was then calculated for each VOC, with the uncertainty in the depletion factor given byEq. 2.20 

and Eq. 2.21. 

 

σ[VOC]0
[VOC]

[VOC]0
[VOC]

= √(
σ[VOC]0
[VOC]0

)
2
+ (

σ[VOC]

[VOC]
)
2

      Eq. 2.20 

 σ
ln(

[VOC]0
[VOC]

)
= |

d ln(
[VOC]0
[VOC]

)

d(
[VOC]0
[VOC]

)
| σ[VOC]0

[VOC]

= |
1

[VOC]0
[VOC]

| σ[VOC]0
[VOC]

    Eq. 2.21 

Once this process had been repeated for each of the VOCs, a relative rate plot at each OH 

reactivity was produced using all the depletion factors and the reference k values. Linear 

regression, weighted to the uncertainties in ln (
[VOC]0
[VOC]

), but not to the uncertainties in the 

evaluated reference k values, was performed to find the OHexp using Eq. 2.19. Weights for the 

linear fit were calculated the uncertainties in the depletion factors as given by Eq. 2.22. 

wi =
1

σi
2          Eq. 2.22 
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The OHexp, along with the depletion factors, was then used to estimate new rate coefficients for 

each of the VOCs at each OH reactivity using Eq. 2.23, with the uncertainty in k given as σk by Eq. 

2.24. 

 𝑘 =
ln
[VOC]0
[VOC]

 − c

OHexp
         Eq. 2.23 

 σ𝑘 =

σ
ln
[VOC]0
[VOC]

+σc

ln
[VOC]0
[VOC]

+c
+
σOHexp

OHexp
       Eq. 2.24 

Finally, a single measured k value for each VOC + OH reaction was calculated by averaging the 

individual k values at each of the OH reactivities used, weighted to their respective uncertainties, 

σk. The errors quoted on every final k value in this work are equal to one standard deviation. 

These final values were then compared against both the reference evaluated values and other k 

values found in the wider literature. This allowed for an assessment of the reliability of the 

technique for reproducing existing reaction rate coefficients, and by extension, an assessment of 

the capability for estimating new rate coefficients. 
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2.2     Modifications to the basic technique 

The experimental set up and techniques outlined above were applied to the majority of OH + VOC 

rate coefficient measurements. However, to fully realise the potential of this method for the 

measurement of gas-phase rate coefficients, it was deemed necessary to make some minor 

modifications and developments. The following section outlines the changes and developments 

initiated in order to allow for these measurements to be made. 

2.2.1   The HO2 problem and the NO solution 

The generation of OH via the photolysis of H2O also results in the production of atomic hydrogen 

radicals (R. 2.8). It is expected that HO2 is rapidly formed by the reaction between H-atoms and 

endemic O2 which cannot be totally excluded from the reactor (R. 2.9). It can be assumed that H 

radicals react almost exclusively in this way, thereby producing HO2 in similar concentrations to 

OH. 

H2O + hν
𝑘1
→OH+ H        R. 2.8 

 H + O2
𝑘2
→HO2         R. 2.9 

HO2 is much less reactive towards VOCs than OH. Thus, it can be assumed that the observed 

depletions in the VOCs are almost entirely due to reaction with OH. However, OH and HO2 may 

react together at a considerable rate (R. 2.10); HO2 may therefore represent a significant OH sink 

within the reactor. In an ideal situation, OH would only react with the VOCs. 

OH + HO2
𝑘3
→H2O+ O2        R. 2.10  
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R. 2.10 has a recommended rate coefficient of k3 = 1.1 × 10-10 cm3 molecule-1 s-1 (Atkinson et al., 

2006). Thus, this reaction may proceed at a rate fast enough to compete with the VOCs for OH. 

For the synthetic mixtures containing mainly monoterpenes and alkenes, described in Chapter 3, 

numerical simulations showed that this does not seem to be a problem. The reactions between 

these VOCs and OH have sufficiently large rate coefficients to compete with HO2 for OH. However, 

the rate coefficients for many aromatic species are between 1 and 2 orders of magnitude smaller 

than those for the unsaturated hydrocarbons. For mixtures containing mainly aromatic species, 

such as those described in Chapter 4, the HO2 reaction may largely outcompete the VOCs for OH, 

leading to negligible observable depletions in the measured peak areas for the VOCs. 

This is illustrated in Figure 2.7 which shows the estimated OH reactivity towards HO2 and the 

VOCs in each of four different mixtures. As the concentration of HO2 is constant between 

mixtures, the OH reactivity towards it remains at approximately 22 s-1. For the first monoterpenes 

mixture, the OH reactivity towards HO2 is only a fraction of the total OH reactivity. However, for 

mixtures comprising much slower reacting VOCs, this reactivity towards HO2 is much more 

dominant. For example, HO2 accounts for just 16 % of the OH reactivity for Monoterpenes 1 but 

68 % for the alkanes mixture. 
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Figure 2.7 The estimated OH reactivity towards HO2 and VOCs for four different VOC mixtures measured as 
part of this work. Values are provided in units of s-1. The total OH reactivity for each of the four mixtures 
was approximately 140, 72, 36 and 32 s-1, for the monoterpenes, aromatics 2, aromatics 1 and alkanes 
mixtures respectively. All values were calculated using the evaluated reference literature k values for the 
VOCs (please refer to the following chapters). 
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Fortunately, the impacts of HO2 may be mitigated via the addition of NO (R. 2.11). NO reacts with 

HO2 with a recommend rate coefficient of k4 = 8.5 × 10-12 cm3 molecule-1 s-1 (Atkinson et al., 2006). 

Although this rate coefficient is quite small, by adding excess amounts of NO to the reactor it may 

be possible to significantly reduce the amount of OH reacting with HO2. 

NO + HO2
𝑘4
→OH+ NO2        R. 2.11 

R. 2.11 also has an additional advantages in that it provides another source of OH, ultimately 

improving the efficiency of the original H2O photolysis in terms of the OH yield. 

2.2.1.1 Equipment set up 

Figure 2.8 shows how a cylinder containing 5 ppm NO was incorporated into the experimental set 

up. The NO inlet was added to the gas line containing humidified N2 prior to it entering the 

reactor. An extra mass flow controller (MFC 4) was used so that the flow of NO could be varied 

between 0 and 200 sccm. 

 

Figure 2.8 Schematic showing the equipment set up for experiments on aromatic VOCs. Key to 
abbreviations: CIA8 = air server and canister interface accessory, GC = gas chromatograph, MFC = mass flow 
controller, TDU = thermal desorption unit, TOF-MS = time-of-flight mass-spectrometer. See Figure 2.2 for a 
more comprehensive schematic of the reactor design. 
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2.2.2   Kinetic studies of VOC + Cl reactions 

Figure 2.9 shows the experimental set up for measuring VOC + Cl reaction rate coefficients. The 

main difference between the setup used for OH and that used for Cl was in the generation of the 

radical oxidant. The water bubbler, used as the precursor for OH radicals, was removed and 

replaced with a gas canister containing Cl2 (see Section 2.2.2.1 for more information). The 

inclusion of a toxic gas (Cl2) meant that the system wasn’t vented directly into the laboratory. 

Instead, a diaphragm pump was attached to the end of the reactor to remove any excess Cl2 not 

photolysed by the lamp, or possibly formed by the recombination of Cl atoms. In order to prevent 

the pump from reducing the pressure within the reactor, it was attached in such a way as to act 

mainly on laboratory air. 

 

Figure 2.9 Experiment set up for the measurement of relative rate coefficients between VOCs and Cl 
radicals. Key to abbreviations: CIA8 = air server and canister interface accessory, GC = gas chromatograph, 
MFC = mass flow controller, TDU = thermal desorption unit, TOF-MS = time-of-flight mass-spectrometer. 
See Figure 2.2 for a more comprehensive schematic of the reactor design. 

The experiment design remained the same as that used for OH reaction measurements; samples 

were alternated between light (lamp on) and dark (lamp off) with a constant flow of Cl2 through 

the reactor. The depletion in an individual VOC with a literature Cl + VOC rate coefficient, k, was 

evaluated by kinetic equations (Eqs. 2.25 to 2.27), using n-butane (C4H10) as an example (R. 2.12).  
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C4H10 + Cl
𝑘C4H10
→    (products)        R. 2.12 

d[C4H10]

dt
= −𝑘C4H10[C4H10][Cl]        Eq. 2.25 

d[C4H10]

[C4H10]
= −𝑘C4H10[Cl]𝑑𝑡        Eq. 2.26 

ln (
[C4H10]0

[C4H10]
) = 𝑘C4H10 ∫[Cl]𝑑𝑡        Eq. 2.27 

A more general case, for any VOC, is shown in Eqs. 2.28 to 2.30. 

VOC + Cl
𝑘
→ (products)        R. 2.13 

d[VOC]

dt
= −𝑘[VOC][Cl]          Eq. 2.28 

d[VOC]

[VOC]
= −𝑘[Cl]𝑑𝑡         Eq. 2.29 

ln (
[VOC]0

[VOC]
) = 𝑘 ∫[Cl]𝑑𝑡         Eq. 2.30 

The depletion in a VOC due to its reaction with Cl is represented by the depletion factor 

(ln (
[VOC]0

[VOC]
)). Equation 2.30 relates the depletion factor in a particular VOC to the rate coefficient, 

k, for its reaction with Cl. The integral of the Cl concentration over time (∫[Cl]𝑑𝑡) is known as the 

Cl exposure (Clexp) and is analogous to the OHexp discussed in Sect. 2.1.8. Assuming rapid mixing 

within the reactor, all VOC experienced consistent Clexp, which yielded a proportional relationship 

between VOC depletion factor and k value. As for the OH rate coefficient measurement 

experiments, this allowed for the estimation of new rate coefficients for those VOC without 

established k values. 

2.2.2.1 Generation of Cl 

Several precursor compounds were considered for use as photolytic sources of atomic chlorine. 

Most had high toxicity or produced other reactive intermediates as well as Cl. Oxalyl chloride 

((COCl)2) was recently identified as a potential clean source for chlorine atoms for kinetic studies 

due to its unreactive by-products, large UV absorption cross-section and low reactivity towards 

other radicals (Baklanov and Krasnoperov, 2001). However, it is extremely toxic and corrosive, 

having a short-term exposure limit (STEL) of 0.1 ppm. Phosgene (COCl2) was another potential 
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precursor considered, with a similar chemical composition to oxalyl chloride and similarly low 

reactivity towards radicals but much easier to handle. Its use as a chemical weapon during World 

War I, however, meant that it was a highly-regulated compound; phosgene is even more toxic 

than oxalyl chloride, with a STEL of just 0.06 ppm. Both (COCl)2 and COCl2 are suitably photolysed 

at 254 nm, a key spectral band in the Hg/Ar lamp emission spectra (see Figure 2.4). 

Molecular chlorine (Cl2) is a somewhat less toxic alternative. Its photodissociation, shown in R. 

2.14, only produces atomic chlorine so there are no unwanted by-products and, whilst still toxic, it 

has a higher STEL of 0.5 ppm. Cl2 is not suitably photolysed at 254 nm but is at 330 nm. 

 Cl2 + ℎ𝜈 (330 nm) → 2Cl       R. 2.14 

A phosphor-coated Hg discharge lamp (Jelight) was used to photolyse Cl2 at 330 nm. The DRS 

measured emission spectrum from the phosphor-coated Hg lamp is shown in Figure 2.10, 

alongside the DRS measured emission spectrum for the original Hg/Ar lamp for comparison. The 

large bands centred at 254 nm in the non-coated lamp emission spectrum were not present in 

that for the phosphor-coated lamp. However, a large peak centred around 330 nm appears in the 

phosphor-coated emission spectrum, which was not present in the emission from the non-coated 

lamp.

 

Figure 2.10 Diffuse reflectance spectroscopy (DRS) recorded spectra of the emission output from the 
phosphor-coated Hg lamp (red) and the Hg/Ar lamp (black) between 190 and 650 nm. The Hg-Ar emission 
bands centred around 254 nm and 300 nm were not present in the phosphor-coated spectrum, and were 
instead replaced by a large band centred around approximately 330 nm. 
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Cl2 (1-5 % in N2) was supplied to the reactor from a Silco Canister (Restek) via a MFC. The 

concentration of Cl2 in the reactor, after dilution with further N2, was approximately 0.3-2 % 

depending on the initial Cl2 concentration within the Silco Canister. Using a canister coupled to an 

MFC for the Cl precursor offered a significant advantage over using a water bubbler for the OH 

precursor. The major advantage resided in the ability to control the amount of Cl2 entering the 

reactor, and thereby potentially control the amount of Cl generated via photolysis. The use of a 

water bubbler in the OH experiments removed this element of control, making it necessary to 

change the flows of the VOC mixtures into the reactor in order to alter the reactor conditions. For 

the Cl experiments, this wasn’t necessary: the conditions could be altered by either changing the 

flow of Cl2 into the reactor, or by changing the flow of VOC mixture into the reactor. 

2.2.2.2 Literature Cl rate coefficients 

Fewer k values were available in the literature for VOC + Cl reactions when compared with VOC + 

OH reactions. Whilst the IUPAC database does include reactions involving Cl, the number and 

scope of these is limited when compared with OH; there are approximately 70 reactions for Cl 

(mainly with oxygenated-VOCs) compared to 260 reactions for OH. The number of VOC + Cl 

reactions that could be measured using this set up (i.e. four or more carbon atoms) and that also 

appeared in the IUPAC database was also minimal; currently the IUPAC database only includes 

data for reactions between Cl and VOCs with up to four carbon atoms. 

Additionally, unlike for OH + VOC reactions, for which extensive reviews exist (e.g. Calvert et al., 

2000, 2002, 2011; Atkinson and Arey, 2003), very few reviews were available for Cl chemistry and 

few of those focused on rate coefficient evaluations (e.g. Faxon and Allen, 2013). In the absence 

of these reviews, Cl + VOC rate coefficients were evaluated individually prior to their use as 

reference values. This was generally trivial due to the limited number of replicate measurements. 

In the case that two or more measurements for a single VOC + Cl reaction were found, a literature 

reference value was chosen based on its likelihood of agreement with the rest of the dataset. 
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2.2.3   Temperature-dependent measurements 

The rate coefficients for all gas-phase reactions are dependent on temperature. The rate 

coefficient for a particular reaction may increase or decrease with increasing temperature. It is 

therefore desirable to make temperature-dependent measurements of the rate coefficients for 

many VOC + OH reactions in order to better describe atmospheric oxidation processes. 

An in-house built heating system with proportional-integral-derivative (PID) controller was 

installed onto the reactor to allow for careful and controlled heating of the reactor walls, and 

thereby the gas-phase reactants. It was deemed satisfactory to only heat the first 11 cm section 

after the point of injection due to the majority of the VOC + OH reactions taking place within the 

first second after mixing. Figure 2.11 shows a schematic of the reactor configuration with the 

heating block attached. 

 

Figure 2.11 The flow reactor, with heating block, used for mixing of gas-phase reactants and measurement 
of temperature-dependent rate coefficients. All measurements are shown in mm. Humidified N2 entered 
the reactor at the far right of the schematic via 1/4” tubing. The VOCs were injected into the reactor 
perpendicular to the gas flow via the central sliding 1/8“ injector. The position of this injector was optimised 
to provide maximum exposure of VOCs to OH radicals with minimum exposure to the VUV light (Cryer, 
2016). The heating block was controlled, and the temperature of the reactor maintained, by a PID 
controller. 
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Two thermocouples were used to control and monitor the temperature of the reactor. The first 

(T1) was inserted between the heating block and the reactor walls and provided feedback to the 

PID controller which maintained the temperature setting. The second (T2) was a Type K mineral 

insulated thermocouple which was inserted into the reactor to measure the temperature of the 

gas. T2 was located approximately 20 mm downstream of the point of injection. The positions of 

both T1 and T2 are shown in Figure 2.12. 

 

Figure 2.12 The flow reactor, with heating block, used for mixing of gas-phase reactants and measurement 
of temperature-dependent rate coefficients. All measurements are shown in mm. The heating block was 
controlled, and the temperature of the reactor maintained, by a PID controller. The positions of two 
thermocouples, T1 and T2, used for the control of temperature and measurement of gas temperature are 
also shown. 

2.2.3.1 Temperature measurements 

By varying the position of T2 in the reactor, the temperature of the gas inside the reactor at 

different positions was measured. An optimal zone of stabilised temperature was found when the 

VOC injection position was moved 20 mm further into the reactor. This minor adjustment to the 

point of injection appeared to have minimal impact on OH exposure and provided only a small 

range in measured temperature over the length of the reactor in which the oxidation chemistry 

was thought to occur. 
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Figure 2.13 illustrates the measured temperature at different points within the reactor at three 

different PID temperature settings; 65, 95 and 130 oC. At each setting, the temperature increased 

rapidly from approximately 25 mm upstream of the point of injection to reach the desired 

temperature at the point of VOC injection. The measured temperature was then stable for at least 

the extent of the heating block (approximately 110 mm) downstream of the point. 

 

Figure 2.13 Temperature of the reactor gas, at different PID settings and different positions within the 
reactor (relative to the point of VOC injection) as measured by the Type K mineral insulated thermocouple. 
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Chapter 3 

Kinetic studies of alkene + OH 
reactions 
 

3     Overview 

This chapter describes the work undertaken to measure rate coefficients for the reactions 

between OH and various VOCs containing one or more carbon-carbon double bonds (please refer 

to Chapter 1 Sections 1.2.2.2 and 1.3.3 for more information on alkenes as VOCs). Three distinct 

synthetic mixtures, containing 24 different VOCs, were tested with the experimental setup 

described in Chapter 2. The results for these reactions were compared with the available 

literature to assess the applicability of this technique for the measurement of multiple relative 

rate coefficients simultaneously. Numerical simulations were also performed to broaden the 

understanding of the chemistry occurring within the reactor, and to validate the technique and 

the assumptions underpinning the analysis. 

A new room temperature rate coefficient for the reaction between OH and 2,3-dimethylpent-1-

ene is provided in Table 3.8. 
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3.1    Results and discussion 

The following section outlines the results from multiple mixtures containing monoalkenes and 

dialkenes, many of which were monoterpenes with the chemical formula C10H16. Results from 

three different synthetic mixtures, measured at room temperature (approximately 295 K) are 

presented. 

3.1.1   Monoterpene mixture 1 

This mixture contained 11 VOCs, of which all had at least one k measurement, for their reaction 

with OH, available in the literature. Eight of the VOCs were monoterpenes (C10H16), including; 3-

carene, α-pinene, β-ocimene, β-pinene, camphene, γ-terpinene, limonene, and myrcene (see 

Chapter 1 Section 1.2.2.2 for the structures of these compounds and others). The other three 

VOCs were isoprene and m- and o-xylene, which all benefited from having multiple k 

measurements in the literature and were therefore very suitable for use as reference compounds. 

The two xylenes are aromatic in nature and are not considered to be unsaturated VOCs. They 

were included as part of this mixture to broaden the range in rate coefficients measured and 

provide a calibration at a lower limit. Both m- and o-xylene also benefited from many literature 

measurements, so their reference k values had smaller relative uncertainties, unlike some of the 

other components of this mixture. 

Table 3.1 gives a full list of the 11 VOCs in this mixture, along with the reference rate coefficient 

used for their reaction with OH and the number of measurements which could be found in the 

literature at the time of writing. 

There was only a small range in k values across the VOCs for this mixture. The estimated total OH 

reactivity of this mixture at standard temperature and pressure (STP) was 900 s-1. This mixture 

was diluted with N2 in differing amounts to inject gaseous samples into the reactor with a range 

of OH reactivities approximately between 50 and 300 s-1. 
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Table 3.1 List of VOCs, in descending order of evaluated literature k value, in monoterpenes mixture 1 along 
with their evaluated literature k value, reference and number of measurements found in the literature at 
the time of writing. 

Name 
Evaluated literature 
k (298 K) / 10-12 cm3 

molecule-1 s-1 
Reference used 

Number of 
literature 

measurements 

β-ocimene 245 ± 49 Atkinson and Arey, 2003 4 

γ-terpinene 170 (+
- 434

5) Atkinson et al., 2006 1 

myrcene 209 ± 42 Atkinson and Arey, 2003 4 

limonene 170 ± 51 Atkinson and Arey, 2003 5 

isoprene 100 (+
- 115

3) Atkinson et al., 2006 25+ 

3-carene 85 ± 17 Atkinson and Arey, 2003 2 

β-pinene 79 ± 20 Atkinson and Arey, 2003 10 

α-pinene 53 (+
- 212

5) Atkinson et al., 2006 9 

camphene 53 ± 11 Atkinson and Arey, 2003 2 

m-xylene 23 ± 4 Calvert et al., 2002 15 

o-xylene 13 ± 3 Calvert et al., 2002 10 
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3.1.1.1 Typical chromatogram data 

Figure 3.1 shows sections of typical total ion chromatograms (TIC) obtained for this mixture with 

the reactor lamp turned off (blue) and the reactor lamp turned on (black). There was a clear 

reduction in the observed concentrations of all the VOCs detected when the lamp was turned on 

(black), reflected in the reduction in the peak areas relative to the sample with the lamp turned 

off (blue). Using a TOF-MS provided clear advantages over FID, in that the background 

interference was reduced and the peaks were easily identified. 

The peak assigned to camphene had a much smaller measured area than those for the other 

VOCs in this mixture. The size of the peak was indicative of a less-than-ideal concentration of 

camphene within the synthetic gas mixture. For this reason, the depletion factor results for 

camphene for this mixture were ignored. 

 

Figure 3.1 Typical total ion chromatogram (TIC) sections obtained for monoterpenes mixture 1 with the 
lamp turned off (blue) and the lamp turned on (black). Greater differences in peak areas were observed for 
VOCs which have a larger rate coefficient value for their reaction with OH. Evaluated literature rate 
coefficients (in units of 10-12 cm3 molecule-1 s-1) for these VOC + OH reactions were: o-xylene, 13 (± 3); m-
xylene, 23 (± 4); α-pinene, 53 (+

- 212
5); β-pinene, 79 (± 20); camphene, 53 (± 11); myrcene, 209 (± 42) (see Table 

3.1). 

  

7.5 8.0 8.5 9.0 9.5

Retention time / minutes

R
es

p
o

n
se

 /
 a

rb

m-xylene

o-xylene

α-pinene

β-pinene

myrcene

TIC lamp off

TIC lamp on

camphene



 
Chapter 3  Kinetic studies of alkene + OH reactions 
 

135 

 

3.1.1.2 Typical peak area data 

Figure 3.2 shows a typical peak area plot for isoprene. The five different OH reactivities, relating 

to the different VOC flow regimes injected into the reactor, are shown in different colours. The 

alternating pattern between lamp-off and lamp-on samples is easily distinguished in the 

zigzagging nature of the data. 

 

Figure 3.2 Peak area data for isoprene in monoterpenes mixture 1. The five different estimated OH 
reactivities (of 50, 110, 180, 240 and 290 s-1) are shown in different colours. Only eight samples (four ‘lamp 
on’, four ‘lamp off’) were taken at an OH reactivity of 50 s-1 whilst 12 samples (six ‘lamp on’, six ‘lamp off’) 
were taken at all other OH reactivities. 
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3.1.1.3 Relative rate plots 

The depletion factor for each VOC (ln (
[VOC]0
[VOC]

)) was plotted against the evaluated literature values 

using Eq. 2.19. Linear regression, weighted to the uncertainties in the depletion factors, was then 

used to find the OHexp as per Chapter 2 Section 2.1.8. 

Figure 3.3 shows the relative rate plot for monoterpenes mixture 1 with an OH reactivity of 240 s-

1. There was a clear linear correlation between depletion factor and rate coefficient. Despite Eq. 

2.19 suggesting that a rate coefficient of zero should result in a depletion of zero, effectively 

forcing the intercept through the origin, a non-zero intercept as determined by the linear fit was 

found to be a more appropriate approximation of the trend. The OHexp obtained using weighted 

linear regression had a value of (1.06 ± 0.07) × 109 molecules cm-3 s. The R2 value for the fit was 

equal to 0.965. The uncertainties in the literature k reference values were substantially large 

enough to account for the deviations of every data point from the linear trend.
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Figure 3.3 Relative rate plot for monoterpenes mixture 1 with an OH reactivity of 240 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH were plotted using 
evaluated literature values as references. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for six lamp-off and six 
lamp-on samples. Error bars on the x-axis were typically large (approximately ± 20-30%) and accounted for deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-
values) linear fit was used to generate the slope, with a value of OHexp = 1.06 (± 0.07) × 109 molecules cm-3 s and R2 = 0.965. The VOCs can be identified as follows; 1, o-xylene; 2, m-xylene; 
3, α-pinene; 4, β-pinene; 5, 3-carene; 6, isoprene; 7, limonene; 8, γ-terpinene; 9, myrcene; 10, β-ocimene.
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A similar trend was observed for monoterpene mixture 1 with OH reactivities of 110, 180 and 290 

s-1 as shown in Figure 3.4. The OH exposures for these mixtures were 1.44 (± 0.09), 1.25 (± 0.10) 

and 1.27 (± 0.10) × 109 molecules cm-3 s respectively. The R2 values for the linear regressions were 

0.964, 0.941 and 0.949 respectively. OHexp generally decreased with increasing OH reactivity. This 

correlates well with studies by Li et al. (2015) and Peng et al. (2015) who modelled a decrease in 

OHexp with increasing OH reactivity. 

 

Figure 3.4 Relative rate plots for monoterpenes mixture 1 with OH reactivities of 110, 180, 240 and 290 s-1. 
The R2 values for the weighted linear fits were 0.964, 0.941, 0.965 and 0.949 respectively. The values of 
OHexp were 1.44 (± 0.09), 1.25 (± 0.10), 1.06 (± 0.07) and 1.27 (± 0.10) × 109 molecules cm-3 s respectively. 
Error bars on the x-axis are not shown for reasons of clarity. 
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For this mixture with an OH reactivity of 50 s-1, the experiment with the lowest concentration of 

VOCs injected into the reactor, the data displayed a different, non-linear relationship (Figure 3.5). 

It isn’t immediately clear why this data is inconsistent with Eq. 2.19 but the non-linearity indicated 

that the OH exposure was not uniform across the range of VOCs. This was likely due to 

incomplete mixing within the flow reactor. Fortunately, the fact that the relationship between 

depletion and rate coefficient wasn’t linear did not necessarily detract from the relative rate 

nature of the experiment: it was still possible to extract relative rate information if a reliable and 

consistent function was plotted through the observed data. The curved line in Figure 3.5 was 

plotted using a three-parameter exponential function (Eq. 3.1) and gave a relatively good fit 

through all the data with an R2 of 0.99. For more information regarding understanding the curved 

nature of the relationship observed for this plot, and other relative plots, please refer to Section 

3.2.2. 

 y = ea+
b

x+c         Eq. 3.1
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Figure 3.5 Relative rate plot for monoterpenes mixture 1 with an OH reactivity of 50 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH were plotted using 
literature values. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for four lamp-off and four lamp-on samples. Error 
bars on the x-axis are not displayed for reasons of clarity but were typically large (approximately ± 20-30%) and accounted for deviations from the line. The black dashed line shows the 
relationship observed when the OH reactivity of the mixture was low, modelled by a three-parameter exponential curve (see Section 3.2.2). The VOCs can be identified as follows; 1, o-
xylene; 2, m-xylene; 3, α-pinene; 4, β-pinene; 5, 3-carene; 6, isoprene; 7, limonene; 8, γ-terpinene; 9, myrcene; 10, β-ocimene. 
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3.1.1.4 Calculation of rate coefficients 

It was possible to estimate rate coefficients for each VOC + OH reaction relative to all other VOC + 

OH reactions in the mixture using Eq. 2.19 and the OH exposures approximated using weighted 

linear regression. This was performed at each of the individual OH reactivities injected into the 

reactor. The value estimated from the lowest OH reactivity (Figure 3.5) was ignored, due to the 

non-linear relationship, resulting in four k values for each reaction, each with an associated 1σ 

uncertainty. An average, weighted to the uncertainties, of these four values was then taken to 

yield a final, single rate coefficient for the reaction between each VOC and OH relative to each 

other (Table 3.2). 

Table 3.2 List of VOCs, in descending order of evaluated literature k value, in monoterpenes mixture 1 along 
with their range of depletions due to reaction with OH, measured k value and evaluated literature k value. 

Name 
Range of 

depletion / % 
Measured k (295 K) / 

10-12 cm3 molecule-1 s-1 
Evaluated literature k / 10-12 

cm3 molecule-1 s-1 

β-ocimene 27 - 70 223 ± 10 245 ± 49 

γ-terpinene 24 - 63 207 ± 6 170 (+
- 434

5) 

myrcene 24 - 62 204 ± 8 209 ± 42 

limonene 18 - 57 152 ± 4 170 ± 51 

isoprene 12 - 41 104 ± 6 100 (+
- 115

3) 

3-carene 11 - 40 97 ± 4 85 ± 17 

β-pinene 9 - 34 78 ± 11 79 ± 20 

α-pinene 7 - 24 56 ± 6 53 (+
- 212

5) 

m-xylene 3 - 13 22 ± 6 23 ± 4 

o-xylene 2 - 7 5 ± 7 13 ± 3 

All of the measurements made using the multivariate relative rate technique were in good 

agreement with the evaluated literature values, within errors. 

3.1.1.5 Comparisons to the literature 

Whilst the final, measured rate coefficients for the 11 VOC + OH reactions were in good 

agreement with the reference literature k data set used (see Table 3.2), the wider literature 

contains many more examples of rate coefficient data for many of the compounds. 

The measured result for the α-pinene + OH reaction, of 56 (± 6) × 10-12 cm3 molecule-1 s-1, was in 

excellent agreement with two recent measurements by Montenegro et al. (2012) and Dash et al. 

(2014), of 53.3 (± 9.4) and 53.3 (± 7.9) × 10-12 cm3 molecule-1 s-1 respectively. There are instances 
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in the older literature of measurements greater than 60 × 10-12 cm3 molecule-1 s-1, but these are 

not significantly different to that presented here due to the uncertainty given on the value 

measured in this work (Kleindienst et al., 1982; Chuong et al., 2002; Davis and Stevens, 2005).  

Similarly, for the β-pinene + OH reaction, the measured value presented in this work, of 78 (± 11) 

× 10-12 cm3 molecule-1 s-1, was in good agreement with much of the literature on the same 

reaction. Recent measurements by Montenegro et al. (2012) and Dash and Rajakumar (2013) 

were somewhat higher, at 81.2 (± 14.1) and 93.5 (± 28) × 10-12 cm3 molecule-1 s-1 respectively but 

their large uncertainties meant that they were not significantly different to the value presented 

here. 

The measurements for some of the other monoterpene + OH reactions were also in good 

agreement with recent literature results. Braure et al. (2014) provided a recently measured k 

value for the limonene + OH reaction of 165 (± 25) × 10-12 cm3 molecule-1 s-1 whilst Gaona-Colmán 

et al. (2016) gave a value for the β-ocimene + OH reaction of 236 (± 54) × 10-12 cm3 molecule-1 s-1. 

Both were in good agreement with their equivalents in this work. 

The most recent measurements of the myrcene + OH reaction, by Hites and Turner (2009) and 

Kim et al. (2011), were much larger than that presented here but do not differ significantly due to 

the very large uncertainties placed upon them. Their experimentally derived k values, of 335 (+
- 114

0
4
1) 

and 334 (+
- 212

3
0
2) × 10-12 cm3 molecule-1 s-1 for Hites and Turner (2009) and Kim et al. (2011) 

respectively, were over 50% larger than that measured using the multivariate relative rate 

technique in this work. 

Isoprene is the most extensively studied VOC in the mixture, with over 25 measurements cited in 

the IUPAC evaluation. Our measured value, of 104 (± 6) × 10-12 cm3 molecule-1 s-1, was not only in 

good agreement with recent relative rate measurements, of 107 (± 3) × 10-12 cm3 molecule-1 s-1, 

but was also in good agreement with recent absolute measurements, of 102 (± 9) and 93 (± 4) × 

10-12 cm3 molecule-1 s-1, (Poppe et al., 2007; Singh and Li, 2007; Dillon et al., 2017).  

Measurements of two aromatic VOCs were also made as part of this study. The first, and faster 

reacting of the two, m-xylene, was estimated to have a k value of 22 (± 6) × 10-12 cm3 molecule-1 s-

1. This value was in good agreement with the more recent measurement of 22.0 (± 2.7) × 10-12 cm3 

molecule-1 s-1 by Kramp and Paulson (1998), in which the OH + m-xylene reaction was measured 

using the relative rate method with 10 separate reference compounds. 
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The second aromatic VOC, o-xylene, was estimated to have an OH reaction rate coefficient of 5 (± 

7) × 10-12 cm3 molecule-1 s-1. This was over 50% smaller than the evaluated reference value, of 13 

(± 3) × 10-12 cm3 molecule-1 s-1. Our measurement for the o-xylene + OH reaction had a large 

uncertainty placed upon it, likely owing to it being the slowest reaction in this mixture. However, 

the large uncertainty does mean it was in fair agreement with much of the literature, in particular 

with measurements by Atkinson and Aschmann (1989), of 12.2 (± 1.9) × 10-12 cm3 molecule-1 s-1. 

3.1.1.6 Comparisons to structure-activity relationships (SARs) 

SARs are often used to estimate rate coefficients (and other parameters) for those compounds 

which do not have experimentally determined values. SARs relate experimentally derived 

datasets to the structural properties of chemical species to provide a method of estimation which 

does not directly rely on experimentation. However, they require accurate and reliable kinetic 

information from a wide range of reactions to provide sensible predictions for the various rate 

coefficients and substituent factors needed (Calvert et al., 2002). 

One such SAR, for the reaction between OH and alkenes, was provided by Peeters et al. (1999) 

and was subsequently updated in Peeters et al. (2007). These SARs rely on two hypotheses: firstly, 

that the overall rate coefficient for OH addition is the total of the rate coefficients for OH addition 

at each site, and secondly that the rate coefficient for OH addition at each site is determined by 

the substituent groups adjacent to that site. The SAR is based on experimentally derived k values 

for the reactions of nine alkenes and conjugated dienes with OH. Unlike other SARs for alkene + 

OH reactions, Peeters et al. (1999, 2007) excluded contributions from H-atom abstraction. This 

was largely due to it being generally insignificant when compared with OH addition to the carbon-

carbon double bond. 

A more recent SAR, by Jenkin et al. (2018), built upon the SAR provided by Peeters et al. (2007) 

but accounted for more recent reports of the increasing rate of addition with increasing alkene 

size for homologous series (Aschmann and Atkinson, 2008; Nishino et al., 2009). The SAR in Jenkin 

et al. (2018) also explicitly considered H-atom abstraction and therefore many values for 

calculating site specific OH addition parameters differed, albeit only marginally. 

Figure 3.6 shows a comparison between the rate coefficients predicted using the SARs in Peeters 

et al. (1999, 2007) and Jenkin et al. (2018) and the alkenes measured experimentally as part of 

this mixture, alongside the literature evaluated rate coefficients (Table 3.3). The measured results 

were closer to the literature than the SARs for six of the eight alkenes and monoterpenes. 
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The large underprediction in the Peeters et al. (2007) SAR derived β-pinene + OH k value was 

understood to be due to the exclusion of H-atom abstraction contributions. α-pinene had the 

largest deviation from its experimental k value; this was tentatively explained based on steric 

hindrance; the bridging group across the ring blocks OH addition to the double bond in the ring 

structure. This is less important for β-pinene, as the double bond is outside the ring. Despite some 

pitfalls in the predictions for some alkenes, the Peeters et al. (2007) SAR gave a better estimation 

than the multivariate relative rate technique for both 3-carene and γ-terpinene. However, the 

SAR also performed somewhat more poorly in predictions for the reactions of OH with the 

conjugated dienes, myrcene and β-ocimene. 

The Jenkin et al. (2018) SAR performed considerably better than the Peeters et al. (2007) SAR for 

estimating the rate coefficient for the β-pinene + OH reaction. It did, however, overpredict that 

for the α-pinene + OH reaction by a similar magnitude. The SAR derived rate coefficient for the 3-

carene + OH reaction was in good agreement with the experimental result provided here, but 

both were somewhat greater than two previous literature measurements. The Jenkin et al. (2018) 

SAR performed much better when estimating rate coefficients for the conjugated diene + OH 

reactions, as illustrated by that for the β-ocimene + OH reaction. 

Evidently, experimentally derived values are preferred to those which have been estimated 

through parameterisation. However, it appears that in the absence of a measured k value for an 

OH oxidation reaction involving an alkene, the SAR in Jenkin et al. (2018) provides a reasonably 

accurate estimate for many compounds. The limited scope of this work, in terms of the range and 

variability in olefinic structures used, makes it difficult to verify the SAR for more than just 

monoterpenes and simple alkenes.  
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Table 3.3 List of VOCs, in descending order of evaluated literature k value, in monoterpenes mixture 1 along 
with their SAR derived k values, experimentally measured k value and evaluated literature k value. 

Name 

Rate coefficient for reaction with OH / 10-12 cm3 molecule-1 s-1 

This work Peeters et al. (2007) 
SAR 

Jenkin et al. (2018) 
SAR 

Evaluated 
literature 

β-ocimene 223 ± 10 213 ± 32 253 ± 101 245 ± 49 

γ-terpinene 207 ± 6 170 ± 26 225 ± 90 170 (+
- 434

5) 

myrcene 204 ± 8 181 ± 27 188 ± 75 209 ± 42 

limonene 152 ± 4 144 ± 22 152 ± 61 170 ± 51 

isoprene 104± 6 95.5 ± 14 99.7 ± 40 100 (+
- 115

3) 

3-carene 97 ± 4 85.1 ± 13 99.2 ± 40 85± 17 

β-pinene 76 ± 11 59.5 ± 9 71.9 ± 29 79 ± 20 

α-pinene 56 ± 6 85.1 ± 13 107 ± 43 53 (+
- 212

5) 

 

 

Figure 3.6 Comparison of two SARs for the estimation of rate coefficients for the reactions between alkenes 
and OH, alongside the experimental results derived in this work (green) and the recommended literature 
values (black). The transparent bars are equivalent to the anticipated errors on the SAR derived k values; 
15% for Peeters et al. (2007) and 40% for Jenkin et al. (2018). 
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3.1.1.7 Control experiments 

To ensure that any observed depletions in VOC concentration were due to reaction with OH, 

rather than by photochemistry initiated by the VUV lamp, dry (rather than humidified) nitrogen 

was used to inhibit the formation of OH radicals. The data was processed in exactly the same way 

as above. Figure 3.7 shows the result of this experiment with no anticipated OH radical 

production. The measured depletion factors were significantly smaller than those observed when 

OH was produced (see Figure 3.3) and many were considered to be approximately 0, within 

errors. The only exceptions to this were 3-carene and γ-terpinene; their depletion factors were 

both greater than 0 and their errors did not coincide with 0. This could suggest that they 

underwent some appreciable photochemistry within the reactor, especially γ-terpinene. There 

was also a linear trend observed between depletion factor and rate coefficient for reaction with 

OH. This may indicate that H2O was not entirely excluded from the reactor and that OH 

production still occurred, or that there was some other mechanism for OH production within the 

reactor. It may also be evidence that some photolysis did indeed occur, with the resultant radical 

products responsible for the increased chemistry and depletion factors. 

 

Figure 3.7 Relative rate plot for monoterpenes mixture 1 with no OH production, at 295 K. Compounds with 
a reference rate coefficient for reaction with OH were plotted using literature values. Error bars on the y-
axis, equal to one standard error, were calculated by combining the standard error in peak areas for six 
lamp-off and six lamp-on samples. Error bars on the x-axis are not displayed for reasons of clarity but were 
typically large. The VOCs can be identified as follows; 1, o-xylene; 2, m-xylene; 3, α-pinene; 4, β-pinene; 5, 
3-carene; 6, isoprene; 7, limonene; 8, γ-terpinene; 9, myrcene; 10, β-ocimene. 
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3.1.1.8 Products of the VOC + OH reactions 

The depletions in the concentrations of the VOCs when the lamp was on compared with when the 

lamp was off can easily be distinguished on the TICs in Figure 3.1. It would therefore be expected 

that any products of the VOC + OH reactions would be just as easy to identify in the same 

chromatograms. The losses in VOCs, assuming full transfer of VOCs from liquid injection during 

the preparation stage to analysis, were between approximately 1 and 10 ppb, depending on the 

OH reactivity of the gas mixture. Hence, it would stand to reason that between 1 and 10 ppb of 

products would have been generated. Unfortunately, product peaks were not easily identified in 

the gas chromatography data. Two small, potential product peaks did exist and are shown in 

Figure 3.8. These peaks were identified as methacrolein and methyl vinyl ketone (MVK), both of 

which are isomers of C4H6O. Their presence in the lamp-on chromatogram but not the lamp-off 

chromatogram suggests that they were the products of the VOC + OH reactions. 

 

Figure 3.8 Typical total ion chromatograms (TICs) sections obtained for monoterpenes mixture 1 with the 
lamp turned off (blue) and the lamp turned on (black). Two peaks were identified here (methacrolein and 
methyl vinyl ketone) which were not present when the lamp was off but were when the lamp is on, leading 
to the conclusion that they are products of VOC + OH reactions. 
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The Master Chemical Mechanism (MCM; Jenkin et al., 1997; Saunders et al., 2003; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) can be used to identify the potential 

precursors that lead to the products identified in Figure 3.8. MVK can be produced directly by the 

reaction of isoprene and O3, with a rate coefficient of approximately k = 1.3 × 10-17 cm3 molecule-1 

s-1 and branching ratio for its formation of 0.2. It seems unlikely that this was the major reaction 

that produced the MVK observed in Figure 3.8, owing to both the low anticipated concentration 

of O3 in the reactor, and the exceptionally small rate coefficient for the reaction. However, there 

were other routes that produce MVK from the OH-initiated oxidation of isoprene in the MCM. 

One such route involved reaction with NO and is shown in Schematic 3.1. 

Methacrolein can also be produced directly from the oxidation of isoprene by O3, albeit with a 

branching ratio slightly greater than that forming MVK, of 0.3. Once again, a route involving a 

primary reaction with OH and then further reaction with O2 and NO was also available for the 

production of methacrolein from isoprene (Schematic 3.1). 

 

Schematic 3.1 Potential routes for the formation of methyl vinyl ketone (MVK) and methacrolein beginning 
with the oxidation of isoprene by OH. Compound names and reaction schemes were taken directly from the 
Master Chemical Mechanism (MCM; Jenkin et al., 1997; Saunders et al., 2003; 
http://mcm.leeds.ac.uk/MCM/; accessed 14/02/2018). 
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The MCM also contains detailed oxidation schemes for three of the monoterpenes that appeared 

in this mixture; α-pinene, β-pinene and limonene. Neither MVK nor methacrolein were found in 

the oxidation schemes for either of α- and β-pinene, although similar structures based on the 

MVK unit could be found. There were several routes for the formation of methacrolein from 

limonene, although it was difficult to identify the exact reactants required due to the complexity 

and size of the entire chemical scheme. 

It is therefore likely that both MVK and methacrolein were products of the VOC + OH reactions for 

this mixture. However, analysis of the MCM suggests that other reactants were required for their 

eventual formation, such as O3 and NO. Whilst it isn’t impossible that these reactants existed 

within the reactor, the potential for their presence would have minor consequences for the initial 

oxidation of the primary VOCs. The concentration of O3 at the end of the reactor had been 

previously measured to be on the order of 5 ppb (Shaw et al., 2018). This was far too low to have 

any consequences for the OH oxidation chemistry.  Even if potentially large, but unlikely, 

concentrations of O3 were present in the reactor, of greater than 100 ppm, reactions with OH 

would still dominate for most of the VOCs.  
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3.1.2   Monoterpene mixture 2 

This mixture contained 13 VOCs, of which all had at least one k measurement available in the 

literature. Nine of the VOCs were monoterpenes, including; α- and β-phellandrene, α- and β-

pinene, α-terpinene, γ-terpinene, camphene, limonene, and terpinolene. A sesquiterpene, α-

cedrene, was also included, along with isoprene, m-xylene and 1,2,4-trimethylbenzene. 

Table 3.4 gives a full list of the 13 VOCs in this mixture, along with the reference rate coefficient 

used for their reaction with OH and the number of measurements which could be found in the 

literature at the time of writing. Although α-cedrene was included as part of this mixture, it was 

not identified in the TIC recorded and hence its rate coefficient could not be evaluated. 

There was a similar range in k values across the VOCs in this mixture, when compared with the 

range for the first monoterpenes mixture. The estimated total OH reactivity of this mixture at 

standard temperature and pressure (STP) was 1300 s-1. This mixture was diluted with N2 in 

differing amounts to inject gaseous samples into the reactor with a range of OH reactivities 

approximately between 70 and 400 s-1. 

Table 3.4 List of VOCs, in descending order of evaluated literature k value, in monoterpenes mixture 2 along 
with their evaluated literature k value, reference and number of measurements found in the literature at 
the time of writing. 

Name 
Evaluated literature k 

(298 K) / 10-12 cm3 
molecule-1 s-1 

Reference used 
Number of 
literature 

measurements 

α-terpinene 350 (+
- 751

9) Atkinson et al., 2006 2 

α-phellandrene 320 (+
- 655

4) Atkinson et al., 2006 2 

Terpinolene 220 (+
- 961

4) Atkinson et al., 2006 1 

β-phellandrene 170 (+
- 750

0) Atkinson et al., 2006 1 

γ-terpinene 170 (+
- 434

5) Atkinson et al., 2006 1 

Limonene 170 ± 51 Atkinson and Arey, 2003 5 

Isoprene 100 (+
- 115

3) Atkinson et al., 2006 25+ 

β-pinene 79 ± 20 Atkinson and Arey, 2003 10 

α-cedrene 67 (+
- 117

4) Atkinson et al., 2006 1 

α-pinene 53 (+
- 212

5) Atkinson et al., 2006 9 

Camphene 53 ± 11 Atkinson and Arey, 2003 2 

1,2,4-trimethylbenzene 33 ± 8 Atkinson and Arey, 2003 5 

m-xylene 23 ± 4 Atkinson and Arey, 2003 15 
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3.1.2.1 Relative rate plots 

The relative rate plots for this mixture, obtained by plotting ln (
[VOC]0
[VOC]

) against evaluated 

literature k values, did not all show a linear trend. Rather, the depletion factors for the two lowest 

OH reactivities showed a more pronounced curved trend, much like that for the lowest OH 

reactivity for monoterpenes mixture 1 (see Figure 3.5). 

Figure 3.9 shows a relative rate plot for this mixture with an OH reactivity of 265 s-1. There was a 

clear increase in depletion factor with increasing evaluated literature rate coefficient. Whilst the 

relationship at this OH reactivity was well modelled with a linear regression (R2 = 0.893), the same 

was not true for all the OH reactivities tested. Figure 3.10 shows the five relative rate plots for this 

mixture, with OH reactivities of 73, 170, 265, 360 and 434 s-1. Each individual plot is shown with 

both the linear relationship, as given by weighted linear regression (black), and the curved 

relationship, as modelled using the three-parameter exponential relationship given by Eq. 3.1. 

It is quite clear that, for this mixture with the two lowest OH reactivities, the exponential 

relationship provided a much better estimation of the trend observed between depletion factor 

and k value. However, for this mixture with OH reactivities greater than 170 s-1, the curved 

relationship was much less pronounced and closely matched that given by the weighted linear 

regression. For more information regarding understanding the curved nature of this, and other 

relative plots, please refer to Section 3.2.2. 
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Figure 3.9 Relative rate plot for monoterpenes mixture 2 with an OH reactivity of 265 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH were plotted using 
evaluated literature values as references. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for six lamp-off and six 
lamp-on samples. Error bars on the x-axis were typically large (approximately ± 20-30%). A weighted (to the uncertainty in the y-values) linear fit was used to generate the slope, with a 
value of OHexp = 0.6 (± 0.06) × 109 molecules cm-3 s and R2 = 0.893. A three-parameter exponential relationship (Eq. 3.1) was used to generate the curve, with R2 = 0.904. The VOCs can be 
identified as follows; 1, m-xylene; 2, 1,2,4-trimethylbenzene; 3, α-pinene; 4, camphene; 5, β-pinene; 6, isoprene; 7, limonene; 8, γ-terpinene; 9, β-phellandrene; 10, terpinolene; 11, α-
phellandrene; 12, α-terpinene. 
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Figure 3.10 Relative rate plots for monoterpenes mixture 2 with OH reactivities of 73, 170, 265, 360 and 
434 s-1. Two relationships between depletion and literature k value were modelled; a weighted linear 
regression (black) and a three-parameter exponential relationship (red; Eq. 3.1). The R2 values for the 
weighted linear fits were 0.759, 0.858, 0.893, 0.777 and 0.839 respectively. The values of OHexp were 0.70 (± 
0.12), 0.6 (± 0.07), 0.6 (± 0.06), 0.3 (± 0.05) and 0.4 (± 0.05) × 109 molecules cm-3 s respectively. The R2 
values for the three-parameter exponential relationships were 0.933, 0.934, 0.904, 0.779 and 0.926 
respectively. Error bars on the x-axis are not shown for reasons of clarity. 

 

3.1.2.2 Calculation of rate coefficients 

Using Eq. 2.19, and the relationships determined via either weighted linear regression or the 

three-parameter exponential, it was possible to estimate a rate coefficient for each of the VOC + 

OH reactions for this mixture relative to all the others at each OH reactivity. These five values, for 

each of the two different modelled relationships, were then averaged, weighted to the errors, to 

yield a single relative rate coefficient for each of the VOCs. These final values are given in Table 

3.5. 
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Table 3.5 List of VOCs, in descending order of evaluated literature k value, in monoterpenes mixture 2 along 
with their range of depletions due to reaction with OH, measured k value for both linear regression and 
three-parameter exponential analysis, and evaluated literature k value. 

Name 
Range of 
depletion 

/ % 

Linear regression 
measured k / 10-12 
cm3 molecule-1 s-1 

Curve measured 
k / 10-12 cm3 

molecule-1 s-1 

Evaluated literature 
k / 10-12 cm3 

molecule-1 s-1 

α-terpinene 14 - 27 327 ± 4 348 ± 22 350 (+
- 751

9) 

α-phellandrene 13 - 22 273 ± 18 269 ± 21 320 (+
- 655

4) 

Terpinolene 12 - 21 223 ± 16 198 ± 23 220 (+
- 961

4) 

β-phellandrene 13 - 22 260 ± 20 270 ± 30 170 (+
- 750

0) 

γ-terpinene 12 - 22 236 ± 14 221 ± 19 170 (+
- 434

5) 

Limonene 10 - 19 206 ± 16 176 ± 19 170 ± 51 

Isoprene 9 - 21 138 ± 56 119 ± 36 100 (+
- 115

3) 

β-pinene 5 - 11 49 ± 21 59 ± 9 79 ± 20 

α-pinene 4 - 10 32 ± 4 50 ± 3 53 (+
- 212

5) 

Camphene 5 - 10 61 ± 11 61 ± 5 53 ± 11 

1,2,4-trimethylbenzene 4 - 5 16 ± 27 39 ± 6 33 ± 8 

m-xylene 1 - 4 -21 ± 27 23 ± 4 23 ± 4 

The two aromatic VOCs incorporated as part of this mixture were also the two VOCs with the 

smallest rate coefficients for reaction with OH. The result for m-xylene, which was also present in 

the first monoterpenes mixture, using linear regression was negative, due largely to the curved 

relationship between depletion factor and k value for the mixture at low OH reactivity. In a similar 

manner, many of the VOCs at the slower end of the reactivity scale (1,2,4-trimethylbenzene and 

α- and β-pinene) show measured k values that were much smaller than the literature evaluated 

equivalents when using the weighted linear regression analysis. Using the three-parameter 

exponential analysis provided much better results for many of these compounds; the values for 

m-xylene, 1,2,4-trimethylbenzene and α-pinene were all in excellent agreement with their 

evaluated literature values. 

The results for the reaction between β-pinene and OH using both linear regression and the three-

parameter exponential were substantially smaller than the evaluated literature coefficient and 

that measured in the first monoterpenes mixture, of 78 (± 11) × 10-12 cm3 molecule-1 s-1. In 

contrast, those measured for the isoprene + OH reaction, were both much greater than the 

evaluated literature value and that measured in the first monoterpenes mixture, of 104 (± 6) × 10-

12 cm3 molecule-1 s-1. For both reactions, the curve measured values were in agreement with the 

evaluated literature value, within errors. 
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The rate coefficient for the limonene + OH reaction, measured using the three-parameter 

exponential was in excellent agreement with both the evaluated literature coefficient and that 

measured in the first monoterpenes mixture, of 152 (± 4) × 10-12 cm3 molecule-1 s-1. The same was 

true for γ-terpinene, with a measurement of 207 (± 6) × 10-12 cm3 molecule-1 s-1 from the first 

monoterpenes mixture. On the other hand, the results for these two compounds using the linear 

regression analysis were much greater than the evaluated literature coefficient and those 

measured in monoterpenes mixture 1, demonstrating that the three-parameter exponential 

relationship was much more applicable for these compounds. 

The four VOCs with the largest rate coefficients for reaction with OH were not included as part of 

monoterpenes mixture 1. For the reaction between β-phellandrene and OH, both the linear 

regression and the three-parameter exponential measured results were in excellent agreement 

with each other, but are approximately 50% larger than the evaluated literature rate coefficient. 

The opposite was true for α-phellandrene, where the results from both linear regression and the 

exponential analysis were in good agreement but were much smaller than the literature value, by 

roughly 20%. 

The result for the terpinolene + OH reaction using linear regression was in good agreement with 

the evaluated literature coefficient but the three-parameter exponential result was approximately 

10% smaller. The results for the α-terpinolene + OH reaction showed the opposite trend, with the 

three-parameter exponential measure rate coefficient in excellent agreement with the evaluated 

literature value whilst the linear regression measured rate coefficient was approximately 10% 

smaller. 

To summarise, most of the results from this mixture were improved by using the three-parameter 

exponential model in Eq. 2.19. The improvement was most drastic for those VOCs at the lower 

end of the reactivity scale in this mixture; m-xylene, 1,2,4-trimethylbenzene and α-pinene all 

showed significant improvement relative to the linear regression measured values for example. 
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3.1.2.3 Comparisons to structure-activity relationships 

In the absence of multiple experimental rate coefficient measurements for the reactions of α- and 

β-phellandrene, α-terpinene and terpinolene with OH, SARs provide a necessary comparison for 

the experimental results in this work. As explained in Section 3.1.1.6, there are two SARs in the 

literature which provide estimates for the reactions between alkenes and dialkenes with OH. The 

SAR in Peeters et al. (2007) was shown to work relatively well, despite excluding contributions 

from H-atom abstraction by OH, but performed poorly with conjugated dienes. The more recent 

SAR, by Jenkin et al. (2018), generally provided slightly better estimations of alkene + OH rate 

coefficients, particularly for the conjugated dienes. This may be attributed to the explicit 

treatment of site specific H-atom abstraction rates. 

Table 3.6 and Figure 3.11 provide the SAR estimated values alongside the measured values in this 

work, and the evaluated literature values, for the reactions of these four monoterpenes with OH. 

The Jenkin et al. (2018) SAR performed particularly well when estimating the rate coefficient for 

the reaction between terpinolene and OH. The Peeters et al. (2007) SAR also provided a good 

estimation for the same reaction, within errors. The measured value in this work was in excellent 

agreement with the Peeters et al. (2007) SAR. 

The other three monoterpenes, α- and β-phellandrene and α-terpinene, are conjugated dienes. 

Both SARs predicted rate coefficients which were in excellent agreement with the evaluated 

literature value for the β-phellandrene + OH reaction. The measured value in this work for the 

same reaction was therefore in poor agreement with both the evaluated literature value and the 

SARs. However, the two SARs performed poorly when predicting the rate coefficients for the 

reactions of α-phellandrene and α-terpinene with OH. Unlike for β-phellandrene, the measured 

values in this work were much closer to the evaluated literature values than the SARs for the 

reactions of α-phellandrene and α-terpinene with OH. 
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Table 3.6 List of VOCs, in descending order of evaluated literature k value, in monoterpenes mixture 2 along 
with their SAR derived k values, experimentally measured k value and evaluated literature k value. 

Name 

Rate coefficient for reaction with OH / 10-12 cm3 molecule-1 s-1 

This work 
Peeters et al. (2007) 

SAR 
Jenkin et al. (2018) 

SAR 
Evaluated 
literature 

α-terpinene 348 ± 22 210 ± 32 220 ± 88 350 (+
- 751

9) 

α-phellandrene 269 ± 21 180 ± 27 193 ± 77 320 (+
- 655

4) 

terpinolene 198 ± 23 195 ± 29 226 ± 90 220 (+
- 961

4) 

β-phellandrene 270 ± 30 148 ± 22 156 ± 63 170 (+
- 750

0) 

 

 

 

Figure 3.11 Comparison of two SARs for the estimation of rate coefficients for the reactions between 
alkenes and OH, alongside the experimental results derived in this work (green) and the recommended 
literature values (black). The transparent bars are equivalent to the anticipated errors on the SAR derived k 
values; 15% for Peeters et al. (2007) and 40% for Jenkin et al. (2018). 
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3.1.3   Alkenes mixture 

This mixture contained 11 VOCs, 10 of which had at least one k measurement available in the 

literature. 2,3-dimethylpent-1-ene, a branched 1-alkene, had no available literature rate 

coefficient for its reaction with OH at the time of writing. Four of the 11 VOCs were linear 1-

alkenes and three were cyclic alkenes. The remaining three VOCs were isoprene and α- and β-

pinene, all of which contain unsaturated carbon-carbon double bonds. Table 3.7 gives a full list of 

the 11 VOCs, along with the reference rate coefficient used for their reaction with OH, their 

references and the number of available measurements in the literature at the time of writing. 

The estimated total OH reactivity of this mixture at STP was 480 s-1. After further dilution with N2, 

the injected samples had a range in OH reactivity of approximately 25 to 160 s-1. 

Table 3.7 List of VOCs, in descending order of evaluated literature k value, in the alkenes mixture along with 
their evaluated literature k value, reference and number of measurements found in the literature at the 
time of writing. 

Name 
Evaluated literature 
k (298 K) / 10-12 cm3 

molecule-1 s-1 
Reference used 

Number of 
literature 

measurements 

isoprene 100 (+
- 115

3) Atkinson et al., 2006 25+ 

β-pinene 79 ± 20 Atkinson and Arey, 2003 10 

cycloheptene 74 ± 10 Atkinson and Arey, 2003 1 

cyclohexene 68 ± 17 Atkinson and Arey, 2003 9 

cyclopentene 67 ± 23 Atkinson and Arey, 2003 3 

α-pinene 53 (+
- 212

5) Atkinson et al., 2006 9 

1-nonene 43.2 ± 0.5 Aschmann and Atkinson, 2008 2 

1-octene 41.4 ± 0.8 Aschmann and Atkinson, 2008 2 

1-heptene 40 ± 12 Atkinson and Arey, 2003 2 

1-hexene 37 ± 11 Atkinson and Arey, 2003 2 

2,3-dimethylpent-1-ene     0 
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3.1.3.1 Typical chromatogram data 

A typical TIC for this mixture is shown in Figure 3.12. The blue line represents mixtures with the 

lamp turned off and the black line represents samples with the reactor lamp switched on. There 

was an observable difference in the peak areas of the detected VOCs with the lamp turned on. 

 

Figure 3.12 Typical total ion chromatogram (TIC) sections obtained for the alkenes mixture with the lamp 
turned off (blue) and the lamp turned on (black). Greater differences in peak areas were observed for VOCs 
which have a larger rate coefficient value for their reaction with OH. Evaluated literature rate coefficients 
(in units of 10-12 cm3 molecule-1 s-1) for the VOC + OH reactions are: 1-hexene, 37 (± 11); 2,3-
dimethylpentene, N/A; cyclohexene, 68 (± 17); 1-heptene, 40 (± 12) (see Table 3.7). 
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Figure 3.13 nicely demonstrates one of the advantages of using a ToF-MS as a detector over FID. 

Two VOCs (cyclohexene and 1-heptene) displayed similar retention times and were therefore 

poorly resolved. Despite this, they were analysed separately using an m/z of 56 for 1-heptene and 

an m/z of 67 for cyclohexene. This would not have been possible if using a different method of 

detection, such as FID. 

 

Figure 3.13 TIC section and extracted ion chromatogram sections (EICs) at m/z 56 (red) and m/z 67 (blue) 
demonstrating the versatility of using ToF-MS as a detector in this method. 
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3.1.3.2 Relative rate plots 

Figure 3.14 shows an example of a relative rate plot for this mixture with an OH reactivity of 30 s-

1. There was an obvious linear relationship between k value and depletion factor due to OH. The 

OH exposure for this sample was approximately 1.8 (± 0.1) × 109 molecules cm-3 s with R2 = 0.95. A 

similar linear trend was observed for all the VOCs at each of the OH reactivities tested for this 

mixture. The measured OHexp values were 1.3 (± 0.3), 1.2 (± 0.2), 1.0 (± 0.2) and 0.7 (± 0.2) × 109 

molecules cm-3 s for this mixture with OH reactivities of 60, 100, 130 and 160 s-1 respectively. The 

linear fits were generally good, with a possible slight decrease in R2 value with increasing OH 

reactivity (R2 values: 0.95, 0.69, 0.73, 0.84 and 0.69). 

3.1.3.3 Calculation of rate coefficients 

As demonstrated for the above mixtures, it was possible to estimate a k value for each of the 

components in this mixture, by averaging the results at each OH reactivity. These values are 

provided in Table 3.8 along with the literature reference k values. All measured values were in 

excellent agreement with the evaluated literature reference for the same reaction. 

Table 3.8 List of VOCs, in descending order of evaluated literature k value, in the alkenes mixture along with 
their range of depletions due to reaction with OH, measured k value and evaluated literature k value. 

Name 
Range of 

depletion / % 

Measured k (295 K) 
/ 10-12 cm3 

molecule-1 s-1 

Evaluated literature 
k / 10-12 cm3 

molecule-1 s-1 

isoprene 8 - 26 103 ± 5 100 (+
- 115

3) 

β-pinene 5 - 21 75 ± 12 79 ± 20 

cycloheptene 6 - 20 74 ± 10 74 ± 10 

cyclohexene 6 - 20 71 ± 4 68 ± 17 

cyclopentene 7 - 19 69 ± 9 67 ± 23 

α-pinene 4 - 17 53 ± 4 53 (+
- 212

5) 

1-nonene 4 - 15 41 ± 3 43.2 ± 0.5 

1-octene 4 - 15 44 ± 5 41.4 ± 0.8 

1-heptene 3 - 13 36 ± 4 40 ± 12 

1-hexene 2 - 15 46 ± 12 37 ± 11 

2,3-dimethylpent-1-ene 5 - 17 57 ± 3  
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Figure 3.14 Relative rate plot for the alkenes mixture with an OH reactivity of 30 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH were plotted using 
evaluated reference values. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for six lamp-off samples and six lamp-on 
samples. Error bars on the x-axis were typically large (approximately ± 20-30%) and accounted for deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-axis) 
linear fit was used to generate the slope with a value of OHexp = 1.8 (± 0.1) × 109 molecules cm-3 s and R2 of 0.95. Data for 2,3-dimethylpent-1-ene (A), which had no literature k value, was 
not used in the calculation of the fit. The VOCs can be identified as follows: 1, 1-hexene; 2, 1-heptene; 3, 1-octene; 4, 1-nonene; 5, α-pinene; 6, cyclopentene; 7, cyclohexene; 8, 
cycloheptene; 9, β-pinene; 10, isoprene.
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3.1.3.4 Comparisons to the literature 

The measured value, of 103 (± 5) × 10-12 cm3 molecule-1 s-1, for the isoprene + OH reaction was in 

good agreement with the recent literature. It was also in excellent agreement with that measured 

in monoterpenes mixture 1 for the same reaction, but in poor agreement with that from the 

second monoterpenes mixture. Similarly, the measurements of the α- and β-pinene reactions 

with OH were in good agreement with the wider literature and with other measurements in this 

work (see Section 3.1.1.5 for more analysis). 

There were very few experimental measurements for cyclic alkene + OH reactions in the 

literature; most of the ones that did exist were for the cyclohexene + OH reaction. Figure 3.15 

shows the literature measurements for the three cyclic alkenes; cyclopentene, cyclohexene and 

cycloheptene. There were nine measurements for cyclohexene but only three for cyclopentene 

and one for cycloheptene. The measured values in this work were generally greater than those in 

the literature, although the values were not adjusted to account for updates to the reference 

compound rate coefficient for relative rate studies. The majority of cyclohexene + OH k values 

were around 63 × 10-12 cm3 molecule-1 s-1 but there was a single value larger than that, of 73.4 (± 

14.7) × 10-12 cm3 molecule-1 s-1, albeit with a large uncertainty (Darnall et al., 1976). 
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Figure 3.15 also presents the trend in cyclic alkene + OH rate coefficients as predicted by three 

SARs (Kwok and Atkinson, 1995; Peeters et al., 1999, 2007; Jenkin et al., 2018). The SAR in Peeters 

et al., (1999, 2007) predicted no increase in rate coefficient with increasing size of ring whereas 

those by Kwok and Atkinson and Jenkin et al. predicted a marginal increase. This was largely due 

to the difference in method used for estimation. Peeters et al. (2007) did not include H-atom 

abstraction in their SAR; the rate coefficient was approximated using just the rate of addition to 

the double bond(s) and the impact of the substituent groups around it. They suggested that 

including an additional H abstraction term in their SAR would account for many residual errors 

between their predictions and experimental values but were hesitant to include one as the 

contemporary understanding of H-atom abstraction was ‘too rudimentary’. Whilst the SAR in 

Kwok and Atkinson (1995) did include H-atom abstraction, it also tended to under-predict the rate 

coefficient for the reaction between cycloalkenes and OH. The SAR in Jenkin et al. (2018) 

performed much better; its estimations were in excellent agreement with both the literature 

values and the measurements made as part of this work. 

 

Figure 3.15 Experimentally derived (data points) and predicted SAR derived (lines) k values for the 
homologous series of cycloalkene + OH reactions. Data from this study are shown in green and were in 
agreement with both previous experimentally measured values and with theoretical predictions. Errors are 
only shown for this work and not for the other experimental literature values. 
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There were also very few experimental measurements for the 1-alkene + OH reactions in the 

literature. Figure 3.16 shows the measurements made using the multivariate relative rate 

technique alongside both literature experimental measurements and theoretical predictions of 

the rate coefficients using SARs. Figure 3.16 clearly demonstrates the predicted trend in 1-alkene 

+ OH rate coefficients, as estimated by different SARs from Kwok and Atkinson (1995), Peeters et 

al. (1999, 2007) and Nishino et al. (2009). Each of these predicted a slight increase in the 1-alkene 

+ OH reaction rate coefficient with increasing number of carbon atoms. The more recent SAR, 

developed by Jenkin et al. (2018), is not shown for the sake of clarity as it closely follows the trend 

estimated by the SAR in Peeters et al. (2007). The relationship provided by Nishino et al. (2009) 

gave the best agreement with the available experimental results. This was likely due to their SAR 

being limited to estimating rate coefficients for the 1-alkene and 2-methyl-1-alkene + OH 

reactions; in contrast, the other SARs were developed for multiple VOC functionalities. The 

experimental results in this work were in good agreement with the SAR estimations and were 

generally between the highest and lowest estimations. The experimental results for 1-octene and 

1-nonene were also in excellent agreement with recent experimental measurements made by 

McGillen et al. (2007) of 36.2 (± 6.8) and 42.0 (± 4.1) × 10-12 cm3 molecule-1 s-1 respectively. 

 

Figure 3.16 Experimentally derived (data points) and predicted SAR derived (lines) k values for the 
homologous series of 1-alkene + OH reactions. Data from this study are shown in green and were in good 
agreement with both previous experimentally measured values and with theoretical predictions. 
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3.1.3.4 Determination of a new rate coefficient for the 2,3-dimethylpent-1-ene + OH 

reaction 

This mixture contained the compound 2,3-dimethylpent-1-ene, for which no literature rate 

measurements for its reaction with OH could be found at the time of writing. The structure of 2,3-

dimethylpent-1-ene is shown in Schematic 3.2. This compound had been detected in the 

emissions from certain tomato variants cultivated in Portugal but was unlikely to contribute 

significantly to OH reactivity in the region (Figueira et al., 2014). The measured room temperature 

rate coefficient for the reaction of this compound with OH was k = 57 (± 3) × 10-12 cm3 molecule-1 

s-1. Again, SARs were used to estimate a k value for this compound. Using the four different SARs 

found in Kwok and Atkinson (1995), Peeters et al. (1999, 2007), Nishino et al. (2009) and Jenkin et 

al. (2018), the rate coefficient for OH + 2,3-dimethylpent-1-ene was estimated as k = 55.0, 63.1, 

59.3 and 62.4 × 10-12 cm3 molecule-1 s-1 respectively. The experimental result for this compound 

was therefore in excellent agreement with two of these SAR predictions, and in relatively good 

agreement with the remaining two. The SAR by Peeters et al. (1999, 2007) did predict a slightly 

higher k value but this method also overpredicted the rate coefficients for similar branched non-

conjugated alkenes, such as 3,3-dimethylbut-1-ene and 2,3-dimethylpent-2-ene. Due to the close 

proximity of the SAR predictions and the measured value, it is probable that this value is a very 

good approximation of the 2,3-dimethylpent-1-ene + OH rate coefficient. 

 

Schematic 3.2 Structure of 2,3-dimethylpent-1-ene. 
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3.1.3.5 Products of the VOC + OH reactions 

Two small peaks were observed in the lamp-on gas chromatographs but not in the lamp-off 

chromatographs, suggesting that they were potentially the products of the VOC + OH reactions. 

As for the first monoterpenes mixture, the peaks were much smaller than the peaks for the 

primary VOCs. The peaks were identified as 2-methylfuran and 3-methylpentan-2-one. 

Neither of these compounds were included in the MCM v3.3.1 (Jenkin et al., 1997; Saunders et al., 

2003; http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018) but compounds similar to 3-

methylpentan-2-one were present, including; 2-pentanone (MPRK), 3-methylbutan-2-one (MIPK) 

and 4-methylpentan-2-one (MIBK). However, none of these compounds appeared in the detailed 

oxidation schemes for the monoalkenes that were represented in the MCM (1-pentene, 2-

methylbut-1-ene, 1-hexene, 2-hexene, 2,3-dimethylbut-2-ene). Analysis of the MCM database 

suggests that aldehydes, not ketones, are a more likely product of both 1- and 2-alkene oxidation. 

Interestingly, the ketones mentioned above were produced as a result of alkane oxidation in the 

MCM. 

Although 2-methylfuran did not appear in the MCM, it was identified in the emissions from 

biomass burning in the Mediterranean (Ciccioli et al., 2001). Not only was it positively identified, 

but it was also present in the highest concentration relative to the other non-oxygenated furan 

compounds identified in the same work. 
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3.2    Numerical simulations 

Numerical simulations were used to complement the experimental studies and to further aid in 

the comprehension of the experimental results. Most of the simulations were performed using 

Kintecus V5.20 (Ianni, 2017; http://kintecus.com/). 

3.2.1   Estimating OH concentration 

An estimation of the concentration of OH in the reactor, whilst not necessary for deriving 

experimental k values, is of importance for simulating the reactions occurring within the reactor. 

Without the use of direct OH monitoring techniques such as laser induced fluorescence (LIF), it is 

impossible to experimentally measure the concentration of OH in the reactor. Instead, the OH 

concentration must be calculated, or derived from other parameters. 

The OH concentration could have been estimated by calculating the photoproduction of OH from 

H2O under the VUV light from the Hg lamp (R. 3.1 and Eq. 3.2). However, in the absence of a 

measured H2O concentration (humidity) and lamp output (F, the actinic flux density), this was 

difficult. 

 H2O + hν → OH + H        R. 3.1 

 
d[OH]

dt
= −J[H2O] = ∫σH2O(λ)ϕH2O(λ)F(λ)dλ × [A]    Eq. 3.2 

Instead, the concentration of OH in the reactor was estimated by totalling the losses in each VOC. 

Four assumptions were necessary in order for this estimation to apply. Many of these 

assumptions also applied to the experimental procedure. 

1. It was assumed that the OH within the reactor reacted entirely with the VOCs. This was 

unlikely to be entirely true, as the OH almost certainly reacted with itself, with HO2 (a by-

product of OH production) and with any products of the VOC + OH reactions. It was also 

likely that the OH interacted with the walls. 

2. It was assumed that the VOCs within the reactor reacted entirely with OH i.e. that any 

observed losses in the VOCs were due to reaction with OH, and not due to reaction with 

O3, other oxidants, or due to photolysis. 

3. It was assumed that the concentration of each VOC in the reactor was equal to that 

calculated from the injection of its liquid sample i.e. all the liquid compound entered the 

http://kintecus.com/
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gas cylinder during the creation of the gaseous mixture (see Chapter 2 Section 2.1.7). In 

most cases, the concentration of each compound was calculated to be 30 ppbv in the gas 

cylinder. This was unlikely to be entirely true, as some of the liquid compound injected 

into the cylinder was likely lost during transfer. However, without the use of external 

calibration, it was impossible to derive actual concentrations of each VOC from the 

measured peak areas. As outlined earlier, the GC data was used to derive relative 

concentrations of each species from lamp off to lamp on, not absolute concentrations. 

4. The measured peak area for each VOC with the lamp off ([VOC]0) was assumed to be 

equal to the concentration of VOC anticipated to be in the reactor i.e. no losses occurred 

between the reactor and the analytical equipment. This is somewhat similar to the 

assumptions made for the actual experiment. However, for the experiment it was only 

assumed that any losses after the VOC + OH reactions occurred were consistent between 

lamp-off and lamp-on runs. In this case, the same assumption remained true but it was 

also assumed that no losses at all took place, in order that the measured peak area for 

lamp-off be equated to the estimated [VOC]. 

For monoterpenes mixture 1, summing the losses in the VOC concentrations resulted in an 

average [OH] = 1.6 (± 0.5) × 1011 molecules cm-3 over the different OH reactivities tested. For the 

alkenes mixture, the average [OH] = 0.9 (± 0.2) × 1011 molecules cm-3. These values were in 

agreement with each other, within errors. 

3.2.1.1 Simulating OH concentration 

The estimated OH concentration was further developed by attempting to account for OH losses to 

both HO2 and to OH itself. Kinetic simulations for both monoterpenes mixtures 1 and the alkenes 

mixture were performed in order to attempt to account for the other sinks of OH that were likely 

to occur within the reactor. The kinetic models for monoterpenes mixture 1 and the alkenes 

mixture included the reactions outlined in Table 3.9 and Table 3.10 respectively. In all cases, the 

VOC + OH reactions formed a non-reactive product, given the name VOC-A, and H2O. H2O was 

assumed to be unreactive towards OH. The rate coefficient values used for the modesl were the 

same as the evaluated literature rate coefficients, rather than the measured k values, described in 

Section 3.1.1.4 and Section 3.1.3.3. The initial [OH] differed for different iterations of the 

simulations, as did the initial [HO2], which was set to be equal to the initial [OH], with the 

assumption that they would be produced in roughly equal amounts by the photolysis of H2O. 
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The simulation for each mixture was first performed with the OH concentration estimated in 

Section 3.2.1 of 1.6 (± 0.5) and 0.9 (± 0.2) × 1011 molecules cm-3 for monoterpenes mixture 1 and 

the alkenes mixture respectively. The modelled depletion for each VOC was then compared with 

the corresponding experimental depletion, and the initial [OH] adjusted accordingly; if the 

observed depletions were greater in the experiment than in the simulation, [OH] was increased 

and if the observed depletions were greater in the simulation than in the experiments, [OH] was 

decreased. This was repeated until the average ratio of modelled to measured depletion across 

the different VOCs was equal to 1.00 (to at least two significant figures). 

This study resulted in an estimated initial [OH] of 3.1 (± 1.0) and 1.3 (± 0.2) × 1011 molecules cm-3 

for monoterpenes mixture 1 and the alkenes mixture respectively. Simulating the other OH sinks 

therefore resulted in a 94% increase in estimated [OH] for monoterpenes mixture 1 and a 44% 

increase for the alkenes mixture. 

Table 3.9 List of reactions in kinetic simulations for modelling the OH concentration for monoterpenes 
mixture 1. 

Reaction 
k / 10-12 cm3 

molecule-1 s-1 

OH + OH  H2O + O 1.48 

OH + OH  H2O2 6.20 

OH + HO2  H2O + O2 110 

HO2 + HO2  H2O2 + O2 1.60 

  

isoprene + OH  isopreneA + H2O 100 

mxylene + OH  mxyleneA + H2O 23 

oxylene + OH  oxyleneA + H2O 13 

αpinene + OH  αpineneA + H2O 53 

myrcene + OH  myrceneA + H2O 209 

βpinene + OH  βpineneA + H2O 79 

carene + OH  careneA + H2O 85 

ocimene + OH  ocimeneA + H2O 245 

limonene + OH  limoneneA + H2O 170 

γterpinene + OH  γterpineneA + H2O 170 
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Table 3.10 List of reactions in kinetic simulations for modelling the OH concentration for the 

alkenes mixture. 

Reaction 
k / 10-12 cm3 

molecule-1 s-1 

OH + OH  H2O + O 1.48 

OH + OH  H2O2 6.20 

OH + HO2  H2O + O2 110 

HO2 + HO2  H2O2 + O2 1.60 

  

isoprene + OH  isopreneA + H2O 100 

cyclopentene + OH  cyclopentaneA + H2O 67 

hexene + OH  hexeneA + H2O 37 

dimethylpentene + OH  dimethylpenteneA + H2O 56 

cyclohexene + OH  cyclohexeneA + H2O 68 

heptene + OH  hepteneA + H2O 39 

octene + OH  octeneA + H2O 39 

cycloheptene + OH  cyclohepteneA + H2O 74 

nonene + OH  noneneA + H2O 43 

αpinene + OH  αpineneA + H2O 53 

βpinene + OH  βpineneA + H2O 74 

 

3.2.1.2 Comparisons to similar systems 

The values estimated in this work were of a similar order of magnitude to those measured for a 

similar system (Cryer, 2016). The reaction of OH with methanol and subsequent detection of 

formaldehyde was used to measure the [OH] produced in a reactor with similar properties to that 

described here. The [OH] was measured to be approximately 2.6 (± 1.5) × 1010 molecules cm-3, 

almost an order of magnitude lower than that estimated for the reactor system in this work. 
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3.2.2   Understanding the observed curved relationship 

It was generally expected that the relationship between depletion factor and rate coefficient 

would be linear, as derived in Equations 3.3 through to 3.5. The OHexp is given by the gradient of 

the slope when plotting depletion factor against literature k value, and is equivalent to the 

integral of the OH concentration over time. 

d[VOC]

dt
= −𝑘[VOC][OH]         Eq. 3.3 

d[VOC]

[VOC]
= −𝑘[OH]𝑑𝑡         Eq. 3.4 

ln (
[VOC]0

[VOC]
) = 𝑘 ∫[OH]𝑑𝑡        Eq. 3.5 

However, in some cases, a curved relationship between depletion factor and k value was 

observed. This deviation from linearity appeared to occur at low OH reactivity, as was the case for 

monoterpenes mixture 1 and 2, or when the VOC mixture contained compounds with very large 

rate coefficients for reaction with OH. For monoterpenes mixture 1, β-ocimene had the largest 

rate coefficient for reaction with OH (245 (± 49) × 10-12 cm3 molecule-1 s-1) and curvature was only 

evident at OH reactivities smaller than 110 s-1. The exact threshold at which significant curvature 

began for this mixture is unknown; curvature was observed at an OH reactivity of 50 s-1 but not 

above 110 s-1. For monoterpenes mixture 2, the largest VOC + OH rate coefficient was for α-

terpinene + OH (350 (+
- 751

9) × 10-12 cm3 molecule-1 s-1). Curvature was potentially observed for this 

mixture at all OH reactivities (70 to 400 s-1) but was much more obvious at the lower OH 

reactivities than at OH reactivities greater than 265 s-1. In contrast, no curvature was observed for 

the alkenes mixture with OH reactivities between 25 and 150 s-1. This information is summarised 

in Table 3.11. 

Table 3.11 Summary of the conditions resulting in observed curvature in the depletion factor vs rate 
coefficient relationship during multivariate relative rate experiments. 

Mixture 
Range in OH 

reactivity / s-1 
Largest rate coefficient / 
10-12 cm3 molecule-1 s-1 

Curvature 
observed? 

Monoterpenes mixture 1 50 - 300 245 (± 49) (β-ocimene) Only at 50 s-1 

Monoterpenes mixture 2 70 - 400 350 (+
- 751

9) (α-terpinene) Yes 

Alkenes 25 - 150 100 (+
- 115

3) (isoprene) No 
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Clearly, a number of factors affected whether the observed relationship between depletion factor 

and rate coefficient was linear or not. Numerical simulations were undertaken to try and gain a 

greater understanding of what these factors may have been, and why they resulted in a non-

linear relationship. 

A non-linear relationship between depletion factor and rate coefficient suggests that the OHexp 

was not uniform for all the VOCs in the mixture. Rather, the observed curved relationships 

suggest that OHexp was greater for VOCs with smaller values of k than for those VOCs with larger 

values of k. As OHexp is equivalent to the integral of the OH concentration over time, this means 

that either: 

a) Different VOCs were exposed to different concentrations of OH. For this to be the case, it 

must be assumed that OH within the reactor was poorly mixed. 

b) Different VOCs are exposed to the same concentration of OH, but for different lengths of 

time. For this to be the case, it must be assumed that the VOCs within the reactor were 

poorly mixed. 

c) Some combination of the above two cases. 

3.2.2.1 Mathematical proof 

A simple mathematical model was used to prove that a curved relationship for the multivariate 

relative rate technique was possible. In this mathematical model, the results from a two-

component mixture, VOC A and VOC B (R. 3.2 and R. 3.3) are used. VOC A had a rate coefficient 

for reaction with OH equal to k whilst VOC B had a rate coefficient for reaction with OH equal to 

2k. 

A + OH
𝑘
→ products        R. 3.2 

B + OH
2𝑘
→ products        R. 3.3 

In the normal scenario, assuming that both VOCs were exposed to an equivalent concentration of 

OH, the results of the experiment are given by Equations 3.6 and 3.7 for VOC A and B respectively. 

ln (
[A]0
[A]
) = 𝑘 ∫ [OH]tdt

t

0
        Eq. 3.6 

ln (
[B]0
[B]
) = 2𝑘 ∫ [OH]tdt

t

0
       Eq. 3.7 
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As, in this case, the OHexp term is equal, we can substitute Eq. 3.6 into 3.7, generating Eq. 3.8. 

Hence, the depletion factor for VOC A, with rate coefficient equal to k, is equal to half the 

depletion factor of VOC B, which has a rate coefficient of 2k. This shows that the relationship 

between depletion factor and k is linear, provided that the OHexp term is the same for both VOCs. 

ln (
[B]0
[B]
) = 2 ln (

[A]0
[A]
)        Eq. 3.8 

However, if we assume that VOCs A and B were exposed to two different OH concentrations, z1 

and z2, the relationship changes. We can assume that z2 was twice as large as z1 (Eq. 3.9) and can 

also divide each VOC’s initial concentration ([A] and [B]) equally into two parts, using Eq. 3.10 as 

an example for VOC A. 

z2 = 2z1         Eq. 3.9 

[A]0

2
= [A]u         Eq. 3.10 

Now, one half of VOC A ([A]u) was depleted to some amount of A, given by a constant (α) by z1 

(Eq. 3.11). The other half of VOC A ([A]u) was depleted to some other amount of A, given by a 

different constant (β) by z2 (Eq. 3.12). 

ln (
[A]u

α[A]
) = 𝑘 ∫ z dt        Eq. 3.11 

ln (
[A]u

β[A]
) = 𝑘 ∫2z dt = 2𝑘 ∫ z dt      Eq. 3.12 

Taking an exponent of both Eq. 3.11 and Eq. 3.12, and then summing them together, to simulate 

the mixing of the two halves of [A], results in Eq. 3.13. 

[A]u

α[A]
+
[A]u

β[A]
=

[A]0
[A](α+β)

= e𝑘z + e2𝑘z      Eq. 3.13 

This can be simplified using Eq. 3.14 and Eq. 3.15, resulting in Eq. 3.16. 

r = e𝑘z          Eq. 3.14 

e𝑘z + e2𝑘z = r + r2        Eq. 3.15 

ln (
[A]0

[A](α+β)
) = ln(r + r2)       Eq. 3.16 
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The same method can be applied to VOC B, which reacts with OH with a rate coefficient of 2k. 

This yields the following set of equations: 

[B]u

δ[B]
= e2𝑘z         Eq. 3.17 

[B]u

ε[B]
= e4𝑘z         Eq. 3.18 

ln (
[B]0

[B](δ+ε)
) = ln(r2 + r4)       Eq. 3.19 

It is clear from Eq. 3.16 and Eq. 3.19 that the depletion factors for VOCs A and B are no longer 

related by a factor of 2, despite that being the relationship between their rate coefficients and the 

relationship that is observed when the OHexp for the two VOCs is equivalent (as in Eq. 3.8). Instead 

the relationship between the depletion factors for VOCs A and B is rather more complicated, as 

demonstrated by the following set of equations. 

[A]0
[A](α+β)

= r + r2        Eq. 3.20 

[B]0
[B](δ+ε)

= r2 + r4        Eq. 3.21 

r + r2 = p         Eq. 3.22 

[A]0
[A](α+β)

= p         Eq. 3.23 

[B]0
[B](δ+ε)

= p2 − 2r3        Eq. 3.24 

[B]0
[B](δ+ε)

= (
[A]0

[A](α+β)
)
2
− 2r3       Eq. 3.25 

ln (
[B]0

[B](δ+ε)
) = ln

(
[A]0

[A](α+β)
)
2

2r3
= ln

(
[A]0

[A](α+β)
)
2

2e3𝑘z
     Eq. 3.26 

In conclusion, it was demonstrated mathematically that both linear and curved relationships 

between depletion factor and rate coefficient were possible. For a linear relationship to occur, 

VOCs must experience equivalent OHexp, as would be the case if OH were well mixed. For a curved 

relationship to occur, VOCs must experience exposures to differing OH concentrations, as would 

be the case if OH were poorly mixed in the reactor. These mathematical equations also likely only 

apply for idealised scenarios where the initial VOC concentrations are similar. 
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3.2.2.2 Kinetic modelling 

Simple kinetic simulations were conducted using Kintecus. The model incorporated the VOC + OH 

reaction for each VOC in monoterpenes mixture 1 and simple HOx chemistry (Table 3.9). The OH + 

VOC reactions produced non-reactive products, termed VOC-A, and H2O, which was also assumed 

to be non-reactive towards OH. 

In order to simulate different mixing conditions, the reactor was split into three different 

theoretical sections in which: 

1. One third of the [VOC] was exposed to a “low” [OH], of 1.0 × 109 molecules cm-3. 

2. One third of the [VOC] was exposed to a “high” [OH], of 2.5 × 1011 molecules cm-3. 

3. One third of the [VOC] was exposed to an [OH] somewhere between the above two 

values, of 5.0 × 1010 molecules cm-3. 

The average of these three values of [OH] was roughly 1 × 1011 molecules cm-3, similar to the best 

estimate of [OH] within the reactor (see Chapter 2 Section 2.3.1). 

The depletion factors for each of these simulated sections were plotted separately, as in Figure 

3.17. In each, case the relationship between depletion factor and rate coefficient was linear (R2 = 

1.0), albeit with different values of OHexp (slope). This was expected, as the model could not 

simulate deviations from the line and all VOCs were depleted exactly in proportion to their rate 

coefficients. 

However, if the concentration of each VOC in each section was totalled before the depletion 

factor was calculated, the resulting plot against rate coefficient was curved, as shown in Figure 

3.18. This plot is more representative of what would happen during the experiment; the three 

theoretical reactor sections would likely mix prior to sampling into the GC-MS, resulting in an 

observed depletion factor that was a result of the different depletions from each section. The 

modelled relationship in Figure 3.18 was roughly similar to the experimentally observed 

relationship shown in Figure 3.5. The slope in Figure 3.18 was plotted up to a depletion factor 

value of 0.4, to highlight that a linear relationship could be used with a good deal of agreement up 

to that point. 
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Figure 3.17 Simulated relative rate plot for monoterpenes mixture 1 with an OH reactivity of 50 s-1. Three 
different theoretical sections of the reactor were simulated separately, with each section containing 1/3 
[VOC] and exposed to different [OH] of 1.0 × 109, 5.0 × 109 and 2.5 × 1011 molecules cm-3. 

 

Figure 3.18 Simulated relative rate plot for monoterpenes mixture 1 with an OH reactivity of 50 s-1. The final 
concentrations of the VOCs in each of the simulated sections (Figure 3.17) were summed prior to the 
calculation of the depletion factor. The resulting relationship was clearly curved in a similar manner to that 
observed during experiment (Figure 3.5). The slope was plotted up to a depletion factor value of 0.4, to 
demonstrate that a linear relationship could be assumed up to that value for simplification. 
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Whilst curvature was observed experimentally at lower [VOC] (lower OH reactivity), it was less 

evident at higher [VOC] (greater OH reactivity). The same was also true in the simulations; Figure 

3.19 shows the same simulation as that for above but for a mixture with an OH reactivity of 290 s-

1. As in Figure 3.18, the final concentrations of the VOCs from each section were totalled before 

calculation of the depletion factor. The resulting relationship was not exactly linear and would 

certainly not be noticeably curved within the experimental noise. It is worth noting that the 

depletion factor did not extend above 0.4, as was the case for OH reactivity = 50 s-1 for both 

experiment and for simulation. 

Presumably, there is a continuum between a highly curved relationship at low OH reactivity, and a 

less highly curved relationship at higher OH reactivity. It therefore becomes increasingly more 

appropriate to model the relationship between depletion factor and k value with a linear 

weighted regression analysis with increasing OH reactivity. However, this does not apply to all the 

mixtures; the alkenes mixture was measured at lower OH reactivity than the monoterpenes 

mixtures but still had a linear relationship. The second monoterpenes mixture was also analysed 

at a higher OH reactivity than the first monoterpenes mixture and still had a curved relationship. 

 

Figure 3.19 Simulated relative rate plot for monoterpenes mixture 1 with an OH reactivity of 290 s-1. The 
final concentrations of the VOCs in each of the simulated sections were summed prior to the calculation of 
the depletion factor. The resulting relationship wasn’t strictly linear but can be assumed to be. 
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3.2.3   Simulating product formation 

Despite large observed depletions in many of the VOC reactants, complementary increases in 

oxidation products were not observed experimentally. Sections 3.1.1.8 and 3.1.3.5 described the 

few species that were potentially observed as products of the VOC + OH reactions due to their 

detection during ‘lamp-on’ samples. These compounds included methyl vinyl ketone and 

methacrolein for monoterpenes mixture 1 and 2-methylfuran and 3-methylpentan-2-one for the 

alkenes mixture. The peak areas for those compounds were typically orders of magnitudes 

smaller than the measured peak areas for the reactant peaks, suggesting that a large amount of 

product formation was not accounted for by these observations. 

Kinetic simulations, which included the reactions in Table 3.9 but with more comprehensive 

chemical oxidation schemes for the VOCs, were performed to predict the types of products that 

may be observed during experiments. The MCM (http://mcm.leeds.ac.uk/MCM) was used as a 

basis for these simulations, providing both the chemical schemes and the rate coefficients and 

branching ratios for the relevant reactions. Due to the size of the MCM and difficulties in 

extracting and importing the chemical schemes directly into Kintecus, the oxidation reactions 

added to the simulations for each VOC were limited. Reactions involving O3 or NO3 were not 

included and reactions involving OH or HO2 with a branching ratio of less than 0.1 were ignored 

for brevity. Despite limiting the number of reactions added to the simulation, the monoterpenes 

mixture 1 model still numbered approximately 100 different reactions for the oxidation of m-

xylene, o-xylene, isoprene, limonene and α- and β-pinene. The other VOCs that made up the first 

monoterpenes mixture are not listed in the MCM and hence their oxidation schemes were not 

included. 

The simulations were conducted with initial OH and HO2 concentrations equal to 3.1 × 1011 

molecules cm-3. O3 and NOx concentrations were assumed to be zero and the impact of photolysis 

on the VOC oxidation was also assumed to be irrelevant. Simulations were performed at 298 K for 

3 s, at which point the OH concentration was simulated to be negligible. 

The following sections discuss the results of these simulations for the oxidation of each of the 

VOCs. Only products with a yield greater than 0.5% are included in the following discussion. 

  

http://mcm.leeds.ac.uk/MCM
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3.3.3.2 Isoprene 

 Figure 3.20 provides a time series for the simulated changes in the concentrations of OH, HO2 and 

isoprene. The OH concentration decreased rapidly, falling from the initial concentration of 3.1 × 

1011 molecules cm-3 to zero in approximately 0.3 s. The complementary depletion in isoprene was 

also rapid but finished once the OH concentration was too low. The initial decrease in the HO2 

concentration was also fast, due presumable to the radical-radical reaction with OH. However, 

once the OH was depleted, the decrease in the HO2 concentration slowed. 

The simulation contained oxidation schemes for OH reaction at different carbon sites within the 

isoprene structure. The reactions therefore generated different isomers of ISOPOO in different 

proportions based on the branching ratios extracted from the MCM. However, for clarity, the 

total of the different ISOPOO concentrations are shown in  Figure 3.20, alongside the sum of the 

different ISOPOOH and IEPOX concentrations. 

The ISOPOO concentration initially increased rapidly, due to the reaction between OH and 

isoprene. The ISOPOOH concentration was also simulated to increase once oxidation began, but 

at a much slower rate. Once OH was consumed, the production of ISOPOO stopped and its 

concentration began to decrease as it reacted with HO2. This reaction continued, until ISOPOOH 

was the dominant reaction product at approximately 0.3 s. Whilst IEPOX was also produced in the 

reactor, its concentration was simulated to be several orders of magnitude lower than those for 

ISOPOO and ISOPOOH. 

The simulated distribution of all the products from the OH initiated oxidation of isoprene is 

illustrated by Figure 3.21. The major products, in terms of percentage yield, were ISOPBOOH and 

ISOPAOOH with yields of 29.6% and 29.4% respectively. These products, along with both 

ISOPCOOH and ISOPDOOH, resulted from OH addition to a double bond, followed by reaction 

with O2 and then HO2 to form C5O3H10. 
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Figure 3.20 Time series showing the simulated changes in concentrations of OH, HO2, isoprene and the 
isoprene oxidation products, total ISOPOO, total ISOPOOH and total IEPOX. 

 

 

Figure 3.21 Simulated distribution of products resulting from the OH-initiated oxidation of isoprene. Please 
refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; http://mcm.leeds.ac.uk/MCM; accessed 
14/02/2018) for product structures. 
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3.2.3.1 Xylenes 

The simulated distributions of products from the oxidation of m-xylene is shown in Figure 3.22. 

The major product was predicted to be MXYBPEROOH, with a yield of 55.9%. This product 

resulted from OH addition to the carbon atom in the aromatic ring between the two methyl 

substituents, followed by reaction with O2 and HO2 to form C8O5H12. The next major product was 

MXYEPOXMUC, with a yield of 33.6%. This product does not retain the aromatic ring structure, 

with ring cleavage occurring to form C8O3H10. Six other minor products were also simulated, four 

of which are shown in Figure 3.22, with two excluded as they were produced with yields of less 

than 0.02%. 

 

Figure 3.22 Simulated distribution of products resulting from the OH-initiated oxidation of m-xylene. Please 
refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; http://mcm.leeds.ac.uk/MCM; accessed 
14/02/2018) for product structures.  

55.9

33.6

2.8
0.5

6.9

0.4

m-xylene  
 

 
 

MXYBPEROOH

MXYEPOXMUC
MXYMUCOOH
MXYOBPEROH
MXYBIPERO2
MXYMUCO2

http://mcm.leeds.ac.uk/MCM


 
Chapter 3  Kinetic studies of alkene + OH reactions 
 

183 

 

Figure 3.23 shows that the reaction between o-xylene and OH was simulated to have a very 

similar distribution of products to the oxidation of m-xylene, with the major products 

OXYBPEROOH (yield = 62.0%) and OXYEPOXMUC (yield = 27.8%). Seven minor products were 

produced, with the three not shown in Figure 3.23 possessing yields of 0.4%, 0.2% and 0.1%. 

 

Figure 3.23 Simulated distribution of products resulting from the OH-initiated oxidation of o-xylene. Please 
refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; http://mcm.leeds.ac.uk/MCM; accessed 
14/02/2018) for product structures. 
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3.3.3.3 Monoterpenes 

The simulated distributions of products from the oxidation of the three monoterpenes, α- and β-

pinene and limonene, are illustrated by Figure 3.24, Figure 3.25 and Figure 3.26 respectively. The 

oxidation of α-pinene was simulated to result in four products, two of which accounted for over 

90% of the product concentrations. These two products, APINAOOH and APINBOOH, resulted 

from OH addition to the double bond, followed by reaction with O2 and HO2 to form C10O3H18. The 

two minor products, APINAO2 and APINBO2, resulted from the lack of availability of HO2. The 

reaction scheme for β-pinene had only two simulated products due to a much larger branching 

ratio forming predominantly BPINAO2 and BPINAOOH. Again, the major product was formed by 

OH addition to the double bond followed by reaction with O2 and HO2 whilst the minor product 

was simulated to exist due to the lack of availability of HO2. 

 

Figure 3.24 Simulated distribution of products resulting from the OH-initiated oxidation of α-pinene. Please 
refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; http://mcm.leeds.ac.uk/MCM; accessed 
14/02/2018) for product structures. 
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Figure 3.25 Simulated distribution of products resulting from the OH-initiated oxidation of β-pinene. Please 
refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; http://mcm.leeds.ac.uk/MCM; accessed 
14/02/2018) for product structures. 

The oxidation of limonene resulted in six simulated products, as shown in Figure 3.26. Much like 

for the other monoterpenes, the products were separated into two categories; those that 

underwent extra oxidation via reaction with O2 and HO2, and those that didn’t. The products that 

underwent reaction with O2 and HO2 were the major products, as for the oxidation of α- and β-

pinene. 
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Figure 3.26 Simulated distribution of products resulting from the OH-initiated oxidation of limonene. Please 
refer to the MCM (Jenkin et al., 1997; Saunders et al., 2003; http://mcm.leeds.ac.uk/MCM; accessed 
14/02/2018) for product structures. 

 

3.3.3.4 Summary 

The major products simulated to result from the OH-initiated oxidation of the VOCs were 

generally highly oxidised species containing multiple oxygen atoms, of the form ROOH. These 

species were not detected via GC-MS. The only identified potential products all contained a single 

oxygen atom; methyl vinyl ketone and methacrolein (C4H6O), 2-methylfuran (C5H6O)and 3-

methylpentan-2-one (C6H12O; see Sections 3.1.1.8 and 3.1.3.5). 

The simulations indicated that some RO2 species were still present within the reactor after 3 s. 

This was presumably due to a lack of time to react with the remaining HO2. It may also be due to a 

lack of NOx within the simulation, with which RO2 would be expected to react under normal 

atmospheric conditions. RO2 + RO2 reactions were also not included within the simulation. These 

reactions therefore represent other possible routes for product formation which were not 

assessed. 

  

3.8
2.1

3.5

37.0

19.9

33.5

limonene

 
 
 

 
 

LIMAO2
LIMBO2
LIMCO2

LIMAOOH
LIMBOOH
LIMCOOH

http://mcm.leeds.ac.uk/MCM


 
Chapter 3  Kinetic studies of alkene + OH reactions 
 

187 

 

Conclusions 

In conclusion, the multivariate relative rate technique was successfully applied to measure the 

rate coefficients for the reactions between 24 VOCs and OH in three different synthetic gas 

mixtures. Many of the results represent only the second or third measurements of their kind. The 

rate coefficient for the reaction between 2,3-dimethylpent-1-ene and OH, of 57 (± 3) × 10-12 cm3 

molecule-1 s-1, was measured for the first time. The correlation between depletion factor due to 

reaction with OH and rate coefficient was shown to be linear in most cases, although significant 

deviation from linearity did occur in some situations. A curved relationship was shown to be more 

prominent for mixtures exhibiting low OH reactivity resulting from low concentrations of VOCs. 

Kinetic simulations assisted in assessing the reliability of the curved data, and, whilst the observed 

curvature made the calculation of rate coefficients more difficult, it was shown to only limit the 

conditions in which ideal experimental results could be obtained. Kinetic simulations also aided in 

understanding the product distribution of the VOC + OH reactions, with the major products 

expected to be highly oxidised ROOH, containing multiple oxygen atoms, which were unlikely to 

be observed considering the chromatographic mode of separation used. The few products 

observed experimentally were only accounted for by assuming that NOx, and possibly O3, were 

present in the reactor. 
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Chapter 4 

Kinetic studies of aromatic VOC 
+ OH reactions 
 

4     Overview 

This chapter describes the work undertaken to measure the rate coefficients for the reactions 

between OH and various aromatic VOCs (please refer to Chapter 1 Sections 1.2.2.3 and 1.3.4 for 

more information on the nature of, and importance of, aromatic VOCs). Two distinct synthetic 

mixtures, containing 22 different VOCs, were tested with the modified experimental setup 

described in Chapter 2 Section 2.2.1. The results for these reactions were compared with the 

available literature to determine the applicability of this technique for the simultaneous 

measurement of multiple rate coefficients for aromatic VOC + OH reactions. Numerical 

simulations were also performed to expand on the experimental results. 

A new room temperature rate coefficient for the reaction between OH and n-pentylbenzene is 

provided in Table 4.2. New recommended room temperature rate coefficients for the reactions of 

OH with the three diethylbenzene isomers can be found in Table 4.6. 
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4.1     Results and discussion 

The following section outlines the results from multiple mixtures containing aromatic VOCs. 

Results from two different synthetic mixtures, measured at room temperature (approximately 

295 K) are presented. 

4.1.1   Small aromatic VOCs mixture 

This mixture contained 11 VOCs. The aromatic VOCs were small, comprising a single benzene ring 

and up to two alkyl substituents. Six of the VOCs had a single alkyl substituent, ranging in size 

from one methyl group to a five-carbon chain. The other five aromatic VOCs had two alkyl 

substituents, with a maximum chain length of just two carbon atoms each. 10 of the 11 aromatic 

VOCs in this mixture had rate coefficients available in the literature; data for the reaction 

between OH and n-pentylbenzene was not currently available at the time of writing.  

Table 4.1 gives a full list of the 11 VOCs included in this mixture, along with the reference rate 

coefficient used for their reaction with OH and the number of measurements which could be 

found in the literature at the time of writing. 

There was only a small range in OH rate coefficients for this mixture. The slowest reacting VOC 

was t-butylbenzene, which had a recommended rate coefficient for reaction with OH of 4.5 (± 2) × 

10-12 cm3 molecule-1 s-1. The fastest reacting VOC was m-xylene, which had a recommended rate 

coefficient for reaction with OH of 23 (± 3) × 10-12 cm3 molecule-1 s-1. The estimated total OH 

reactivity of this mixture at STP was 106 s-1  (this value excludes the unknown contribution from n-

pentylbenzene). This mixture was diluted with N2 in differing amounts to inject gaseous samples 

into the reactor with a range of OH reactivities of between approximately 9 and 27 s-1.  
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Table 4.1 List of VOCs, in descending order of evaluated literature k value, in the small aromatic VOCs 
mixture along with their evaluated literature k value, reference and the number of measurements found in 
the literature at the time of writing. 

Name 
Evaluated literature 
k (298 K) / 10-12 cm3 

molecule-1 s-1 
Reference used 

Number of literature 
measurements 

m-xylene 23 ± 3 Calvert et al., 2002 15 

3-ethyltoluene 19 ± 7 Calvert et al., 2002 2 

o-xylene 13 ± 3 Calvert et al., 2002 10 

4-ethyltoluene 12 ± 4 Calvert et al., 2002 2 

2-ethyltoluene 12 ± 4 Calvert et al., 2002 2 

ethylbenzene 7.0 ± 2 Calvert et al., 2002 3 

isopropylbenzene 6.3 ± 2 Calvert et al., 2002 3 

n-propylbenzene 5.8 ± 1.5 Calvert et al., 2002 3 

toluene 5.6 (+
- 11.

.
5
2) Atkinson et al., 2006 18 

t-butylbenzene 4.5 ± 2 Calvert et al., 2002 2 

n-pentylbenzene    0 

 

4.1.1.1 Typical chromatogram data 

Figure 4.1 shows sections of typical total ion chromatograms (TIC) obtained for this mixture with 

the reactor lamp turned off (blue) and the reactor lamp turned on (black). There was a reduction 

in the peak area for all the compounds shown when the lamp was turned on.  

Figure 4.2 shows the same TICs but for the peak identified to be due to the elution of n-

pentylbenzene. The y-axis on this plot has been magnified by up to five times relative to the same 

axis on Figure 4.1. Whilst all the VOCs in Figure 4.1 showed appreciable depletions in their peak 

areas when the lamp was switched on, an observable depletion in the n-pentylbenzene peak area 

was not easily distinguished. The two peaks, for lamp off and lamp on, were almost identical. This 

led to larger errors in the calculated depletion factor for n-pentylbenzene, relative to the other 

VOCs. 

 



 

 

 

1
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8
 

 

Figure 4.1 Typical TIC sections obtained for the small aromatics mixture showing the peaks observed with the lamp off (blue) and the lamp on (black). The peaks were identified as: a, 
ethylbenzene; b, m-xylene; c, o-xylene; d, isopropylbenzene; e, n-propylbenzene; f, 3-ethyltoluene; g, 4-ethyltoluene; h, 2-ethyltoluene. 
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Figure 4.2 TIC sections for the small aromatics mixture showing the peaks observed for n-pentylbenzene 
with the lamp turned off (blue) and the lamp turned on (black). 

4.1.1.2 Relative rate plots 

The depletion factor for each VOC was plotted against their evaluated literature rate coefficients 

for reaction with OH as discussed in Chapter 2 Section 2.1.8. Linear regression, weighted to the 

uncertainty in the depletion factors, was then used to obtain the OHexp as per Eq. 2.19. 

Figure 4.3 shows the relative rate plot for this mixture with an OH reactivity in the reactor of 

approximately 18 s-1 and in the absence of any NO. A linear relationship between depletion factor 

and k was clearly observed. However, the scale of the depletion factor for the compounds was 

relatively low when compared with the depletion factors observed when using more reactive 

mixtures, which were typically greater than 0.1 for all VOCs (see Chapter 3 Sections 3.1.1.3, 

3.1.2.1 and 3.1.3.2). The depletion factors measured for most of the VOCs in this mixture were 

equivalent to percentage depletions of less than a few percent. For example, under these 

conditions, t-butyl- and n-pentylbenzene recorded depletions of just 0.3% and 0.2% respectively.
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Figure 4.3 Relative rate plot for the small aromatic VOCs mixture with an OH reactivity of approximately 18 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH 
were plotted using evaluated literature values as references. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for six 
lamp-off samples and six lamp-on samples. Error bars on the x-axis were typically large (approximately ± 20-30%) and accounted for deviations from the trend for most VOCs. A weighted 
(to the uncertainty in the y-axis) linear fit was used to generate the slope with a value of OHexp = 5.5 (± 0.6) × 109 molecules cm-3 and R2 of 0.899. Data for n-pentylbenzene (A), which had 
no literature k value, was not used in the calculation of the fit. The VOCs can be identified as follows: 1, t-butylbenzene; 2, toluene; 3, n-propylbenzene; 4, isopropylbenzene; 5, 
ethylbenzene; 6, 2-ethyltoluene; 7, 4-ethyltoluene; 8, o-xylene; 9, 3-ethyltoluene; 10, m-xylene.
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Two different flows of NO (20 sccm and 40 sccm) were used to augment the observed depletion 

factors for the VOCs (see Chapter 2 Section 2.2.1). These flows of NO were equivalent to initial 

reactor concentrations of approximately 30 ppb for the smaller flow and 70 ppb for the greater 

flow. Figure 4.4 and Figure 4.5 show the relative rate plots for this mixture with 30 ppb and 70 

ppb of NO respectively. 

 

Figure 4.4 Relative rate plot for the small aromatic VOCs mixture with an OH reactivity of approximately 18 
s-1 measured with 20 ppb NO, at 295 K. Compounds with a reference rate coefficient for reaction with OH 
were plotted using evaluated literature values as references. Error bars on the y-axis, equal to one standard 
error, were calculated by combining the standard error in peak areas for six lamp-off samples and six lamp-
on samples. Error bars on the x-axis were typically large (approximately ± 20-30%) and accounted for 
deviations from the trend for most VOCs. A weighted (to the uncertainty in the y-axis) linear fit was used to 
generate the slope with a value of OHexp = 6.9 (± 0.9) × 109 molecules cm-3 and R2 of 0.853. Data for n-
pentylbenzene (A), which had no literature k value, was not used in the calculation of the fit. The VOCs can 
be identified as follows: 1, t-butylbenzene; 2, toluene; 3, n-propylbenzene; 4, isopropylbenzene; 5, 
ethylbenzene; 6, 2-ethyltoluene; 7, 4-ethyltoluene; 8, o-xylene; 9, 3-ethyltoluene; 10, m-xylene. 

 

 

 

 

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Literature  / 10  cm  molecule  sk
-12 3 -1 -1

ln
 (

[V
O

C
]

 /
 [

V
O

C
])

0

VOCs
Weighted linear regression

1 2

3

4 5

6 7

8

9

10

A

n-pentylbenzene



 
Chapter 4  Kinetic studies of aromatic VOCs + OH reactions 
 

202 

 

There was an observed increase in average depletion factor for the aromatic VOCs with increasing 

concentration of NO in the reactor. This was to be expected if NO was converting HO2 to OH and 

limiting the extent of reactions between OH and HO2. The actual depletions in the VOCs increased 

from a maximum of 10% for m-xylene to 13%. The depletions in t-butyl- and n-pentylbenzene 

increased from 0.3% and 0.2% to 2.3% and 3.0% respectively. 

 

Figure 4.5 Relative rate plot for the small aromatic VOCs mixture with an OH reactivity of approximately 18 
s-1 measured with 40 ppb NO, at 295 K. Compounds with a reference rate coefficient for reaction with OH 
were plotted using evaluated literature values as references. Error bars on the y-axis, equal to one standard 
error, were calculated by combining the standard error in peak areas for six lamp-off samples and six lamp-
on samples. Error bars on the x-axis were typically large (approximately ± 20-30%) and accounted for 
deviations from the trend for most VOCs. A weighted (to the uncertainty in the y-axis) linear fit was used to 
generate the slope with a value of OHexp = 7.5 (± 0.8) × 109 molecules cm-3 and R2 of 0.909. Data for n-
pentylbenzene (A), which had no literature k value, was not used in the calculation of the fit. The VOCs can 
be identified as follows: 1, t-butylbenzene; 2, toluene; 3, n-propylbenzene; 4, isopropylbenzene; 5, 
ethylbenzene; 6, 2-ethyltoluene; 7, 4-ethyltoluene; 8, o-xylene; 9, 3-ethyltoluene; 10, m-xylene. 
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Figure 4.6 shows an overlay of Figure 4.3, Figure 4.4 and Figure 4.5 which demonstrates the 

increased OH exposure observed with increasing concentration of NO. OHexp increased from 5.5 (± 

0.6) × 109 molecules cm-3 s without NO, to 7.4 (± 0.8) × 109 molecules cm-3 s with 70 ppb NO. This 

corresponded to an increase in OH exposure of approximately 35%.  

 

Figure 4.6 Relative rate plots for the small aromatics mixture with an OH reactivity of 18 s-1, at 295 K. 

Different concentrations of NO in the reactor are shown by the different coloured data. OHexp, calculated 
from the weighted linear regressions, increased with increasing [NO]. 

4.1.1.3 Calculation of rate coefficients 

k values for all the VOC + OH reactions in the mixture were calculated by combining the observed 

OH exposure with the depletion factor for each VOC (see Eq. 2.19). This was performed at each of 

the individual OH reactivities tested in the reactor, and a weighted average taken to yield the final 

result. Table 4.2 displays the measured values for each of the VOC + OH reactions at each of the 

different concentrations of NO in the reactor. 

It was difficult to quantify exactly which concentration of NO gave the more reliable results 

overall. Whilst the measured depletion factors and observed depletions for the VOCs did increase 

with added NO, this did not transfer to a tangibly improved correlation with reference literature 

values. This was clearly evidenced by the R2 values, which did not significantly increase with 

increasing [NO]. In fact, the R2 values for this mixture with an OH reactivity of 9 s-1 actually 
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decreased with increasing [NO] (from 0.946 to 0.867). This resulted in little-to-no significant 

differences in the errors quoted on the measured values at different concentrations of NO. 

On an individual reaction basis, different concentrations of NO did perform slightly better. For 

example, the measured value for the toluene + OH reaction with [NO] = 30 ppb was negative; the 

value in best agreement with the literature was measured when using [NO] = 0 ppb. However, for 

isopropylbenzene, the result at [NO] = 30 ppb was in best agreement with the literature, albeit 

not by any significant margin. 

Table 4.2 List of VOCs, in descending order of evaluated literature k value, in the small aromatics mixture 
along with their measured k value at each concentration of NO, average (weighted to the errors) measured 
k value and evaluated literature k value. 

Name 
Measured k (295 K) / 10-12 cm3 molecule-1 s-1 Evaluated 

literature k / 10-12 
cm3 molecule-1 s-1  [NO] = 0 ppb [NO] = 30 ppb [NO] = 70 ppb 

Weighted 

average 

m-xylene 20.6 ± 0.7 19.6 ± 0.4 19.8 ± 1.3 19.9 ± 0.5 23 ± 3 

3-ethyltoluene 19.7 ± 0.9 21.7 ± 0.4 19.4 ± 1.0 21.1 ± 1.2 19 ± 7 

o-xylene 12.3 ± 1.3 12.4 ± 0.4 12.3 ± 0.6 12.4 ± 0.1 13 ± 3 

4-ethyltoluene 14 ± 2 14.8 ± 0.5 14.1 ± 1.2 14.6 ± 0.3 12 ± 4 

2-ethyltoluene 13.4 ± 1.0 15.0 ± 1.1 12.65 ± 0.06 12.7 ± 0.2 12 ± 4 

ethylbenzene 4.9 ± 1.6 6.0 ± 0.3 6.7 ± 0.5 6.1 ± 0.4 7.0 ± 2 

isopropylbenzene 6.5 ± 0.5 6.4 ± 0.4 6.5 ± 0.6 6.45 ± 0.02 6.3 ± 2 

n-propylbenzene 8.9 ± 0.7 8.7 ± 0.6 7.4 ± 1.5 8.7 ± 0.5 5.8 ± 1.5 

toluene 5 ± 2 0 ± 2 7 ± 2 4 ± 4 5.6 (+
- 11.

.
5
2) 

t-butylbenzene 3.5 ± 1.1 3.4 ± 0.5 3.1 ± 0.7 3.31 ± 0.13 4.5 ± 2 

n-pentylbenzene 3 ± 5 5.4 ± 0.4 1 ± 4 5.3 ± 0.7  

The measured values for the reaction between OH and m-xylene were in good agreement with 

those measured earlier in this work, in monoterpenes mixtures 1 and 2, of 22 (± 6) and 23.4 (± 

1.4) × 10-12 cm3 molecule-1 s-1 respectively (see Chapter 3 Sections 3.1.1.4 and 3.1.2.2). The same 

was not true for the measurements of the o-xylene + OH reaction, which were in much better 

agreement with the literature than the result in Chapter 3 Section 3.1.1.4. o-xylene was the 

slowest reacting compound in the first monoterpenes mixture and was measured to have a rate 

coefficient for its reaction with OH of k = 5 (± 7) × 10-12 cm3 molecule-1 s-1. It was proposed that its 

low reactivity relative to everything else in that mixture led to the large uncertainties in its 

measured value. The low reactivity of o-xylene wasn’t a problem in the small aromatics mixture 
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and the measured value can be seen to be in much better agreement with the literature because 

of this. 

4.1.1.4 Determination of a new rate coefficient for the n-pentylbenzene + OH reaction 

A reference literature rate coefficient for the reaction between OH and n-pentylbenzene could 

not be found at the time of writing. However, it is emitted from a variety of sources with National 

Atmospheric Emissions Inventory (NAEI) values of 0.013% from decorative paint, 0.016% from 

white spirits and between 0.19% and 0.23% from commercial, general and military aircraft 

landing and take-off procedures (Passant, 2002). These values were roughly similar to those for n-

heptane and C13 alkanes and approximately a third of those for naphthalene. The POCP value for 

n-pentylbenzene was 67.3 which was roughly equivalent to those for the ethyltoluenes and 

greater than that for ethylbenzene (see Chapter 1 Section 1.2.2.3). 

Three measurements of the rate coefficient for the n-pentylbenzene + OH reaction were 

presented in this work; each used the same method but with different concentrations of NO. The 

three measurements were k = 3.3 (± 5), 5.4 (± 0.4) and 1.2 (± 0.4) × 10-12 cm3 molecule-1 s-1 when 

using [NO] = 0, 30 and 70 ppb respectively. These three values were all quite different from one 

another. The results at [NO] = 0 and 70 ppb had large uncertainties placed upon them and the 

result at [NO] = 70 ppb was very small, even when compared with the other aromatic species. The 

derivation of a rate coefficient for the n-pentylbenzene + OH reaction was made more difficult by 

the apparent low reactivity of n-pentylbenzene relative to everything else in the mixture. Ideally, 

when deriving a new rate coefficient, the rate coefficient for the targeted reaction should lie in 

the middle of the calibrated reactivity spectrum for the mixture. Hence, a mixture where 

compounds with rate coefficients of approximately 5.0 × 10-12 cm3 molecule-1 s-1 were in the 

middle would be more appropriate for the derivation of a rate coefficient for n-pentylbenzene + 

OH. 

As discussed in Section 4.1.2.3, it was difficult to quantify which concentration of NO provided the 

best overall results, in terms of agreement with reference literature values. Rather, individual 

VOCs performed differently at different [NO]. A mean of the three recorded measurements was 

deemed most appropriate in the absence of a clear preferential value. The average value, 

weighted using the errors at each [NO], for the rate coefficient for the reaction between n-

pentylbenzene and OH was k = 5.3 (± 0.7) × 10-12 cm3 molecule-1 s-1 at 295 K.  
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4.1.1.5 Comparison to SARs 

Structure activity relationships (SARs) were used to estimate the rate coefficients for reactions 

between the aromatic VOCs in this mixture and OH. The SARs used were outlined in Kwok and 

Atkinson (1995) and Jenkin et al. (2018). The method described by Kwok and Atkinson (1995) used 

estimated H-atom abstraction and OH-addition rate coefficients. Generally, the contribution from 

H-atom abstraction from the substituent group(s) was minimal. The rate coefficients for OH-

addition to the aromatic ring were estimated using the sum of the electrophilic substituent 

constants (Σσ+). Σσ+ has been shown to have a good correlation with OH-radical addition to 

aromatic rings, with the relationship given by Eq. 4.1 (Zetzsch, 1982). Values for Σσ+ differ 

depending on the substituent positions on the aromatic ring (Brown and Okamoto, 1958; 

Ziemann and Atkinson, 2012). 

 log10 𝑘add = −11.71 − 1.34 ∑σ
+      Eq. 4.1 

The SAR described by Jenkin et al. (2018) differed from that in Kwok and Atkinson (1995) in that 

parameters for OH-addition were determined directly from experimental rate coefficient 

measurements, rather than indirectly through correlation with electrophilic substituent 

constants. The results of the SAR estimated rate coefficients are given in Table 4.3. 

Table 4.3 List of VOCs, in descending order of evaluated literature k value, in the small aromatics mixture 
along with their SAR derived k values, average experimentally measured k value and evaluated literature k 
value. 

Name 

Rate coefficient for reaction with OH / 10-12 cm3 molecule-1 s-1 

This work 
Kwok and Atkinson 

(1995) SAR 
Jenkin et al. 
(2018) SAR  

Evaluated 
literature 

m-xylene 19.9 ± 0.5 13 ± 7 23 ± 9 23 ± 3 

3-ethyltoluene 21.1 ± 1.2 14 ± 7 24 ± 10 19 ± 7 

o-xylene 12.4 ± 0.1 6.2 ± 3.1 14 ± 6 13 ± 3 

4-ethyltoluene 14.6 ± 0.3 7.3 ± 3.7 14 ± 6 12 ± 4 

2-ethyltoluene 12.7 ± 0.2 7.3 ± 3.7 14 ± 6 12 ± 4 

ethylbenzene 6.1 ± 0.4 5.9 ± 3.0 6.2 ± 2.5 7.0 ± 2 

isopropylbenzene 6.45 ± 0.02 5.9 ± 3.0 7.1 ± 2.8 6.3 ± 2 

n-propylbenzene 8.7 ± 0.5 6.9 ± 3.5 7.2 ± 2.9 5.8 ± 1.5 

toluene 4 ± 4 5.1 ± 2.6 5.6 ± 2.2 5.6 (+
- 11.

.
5
2) 

t-butylbenzene 3.31 ± 0.13 8.7 ± 4.4 5.7 ± 2.3 4.5 ± 2 

n-pentylbenzene 5.3 ± 0.7 8.7 ± 4.4 9.3 ± 3.7  
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The same information is shown graphically in Figure 4.7, alongside recommended literature 

values and the experimental values derived in this work. For the monosubstituted aromatics, 

especially those with three or fewer carbons in the alkyl chain, the SARs did a relatively good job 

of emulating the evaluated literature rate coefficients. The experimental data derived in this work 

for both ethylbenzene and n-propylbenzene correlated well with both the literature and the SARs. 

The experimental data for toluene differed considerably depending on the concentration of NO 

used in the reactor but appeared to be more in line with both the literature and the SARs when 

using 0 ppb of NO, and to a lesser extent, 70 ppb of NO. 

 

Figure 4.7 Comparison of two different SAR methods (Kwok and Atkinson (1995), blue; Jenkin et al. (2018), 
red) for the prediction of rate coefficients for the reactions between aromatic VOCs and OH, alongside the 
experimental results derived in this work (green) and the recommended literature values (black). 

The Kwok and Atkinson (1995) SAR overestimated the rate coefficient for the reaction between t-

butylbenzene and OH, although the recommended literature rate coefficient was based off just 

two experimental studies. The Jenkin et al. (2018) SAR did a much better job of estimating the k 

value for this reaction. 

The two SARs correlated well for the prediction of the rate coefficient for reaction between n-

pentylbenzene and OH, with values of 8.7 and 9.3 × 10-12 cm3 molecule-1 s-1 for the Kwok and 
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Atkinson (1995) and Jenkin et al. (2018) relationships respectively. The experimental values 

derived in this work were smaller than these, indicating that either the SARs were unable to 

replicate experimental data for monosubstituted aromatics with C5 substituents, or that the 

experimental data in this work for that reaction was poor. The large spread in experimentally 

measured values for the rate coefficient, suggest that the latter is more likely although the SARs 

did appear to increasingly deviate from the literature with an increasing number of alkyl carbon 

atoms. 

Whilst the two SARs did a relatively good job of matching the literature rate coefficients for 

reactions of OH with monosubstituted aromatics, they both performed quite poorly for the 

polysubstituted aromatics. The SAR in Jenkin et al. (2018) reproduced the literature very well for 

the o- and m-xylene reactions but gave rate coefficients approximately 20% greater than the 

literature for the reactions of the three ethyltoluene isomers with OH. The SAR in Kwok and 

Atkinson underestimated all the rate coefficients for the polysubstituted aromatics + OH reactions 

by an average of 40%. The measurements provided in this work for the rate coefficients for the 

ethyltoluene + OH reactions were somewhere between the evaluated literature values and the 

SAR by Jenkin et al. (2018). 
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4.1.2   Large aromatic VOCs mixture 

This mixture contained 13 VOCs. Ten of these had aromatic structures (see Chapter 1 Sections 

1.2.2.3 and 1.3.4). The aromatic VOCs were generally larger than those in the mixture described in 

Section 4.1.2 and therefore generally reacted faster with OH. They comprised a single polyalkyl-

substituted aromatic ring with up to four substituents. Two of the VOCs, o- and m-xylene, were 

also present in the mixture in Section 4.1.2. Three VOCs were tri-substituted and two VOCs were 

tetra-substituted aromatics, with just single carbon methyl substituents. The remaining three 

aromatic structures were the isomers of diethylbenzene, none of which had literature 

measurements for their rate coefficients for reaction with OH at the time of writing. The 

remaining three VOCs in the mixture were the alkenes, isoprene and α- and β-pinene. These were 

included as they benefitted from multiple literature measurements for reaction with OH and 

therefore provided reliable reference rate coefficients, whereas many of the aromatic VOCs with 

rate coefficients greater than 30 × 10-12 cm3 molecule-1 s-1 had fewer than 5 available literature 

measurements. Table 4.4 gives a full list of the 13 VOCs included in this mixture, along with the 

reference rate coefficients for their reaction with OH. 

There was only a small range in OH rate coefficients in this mixture. The slowest reacting VOC, 

was o-xylene, which had a recommended rate coefficient for reaction with OH of 13 (± 3) × 10-12 

cm3 molecule-1 s-1. The fastest reacting VOC was isoprene, which had a recommended rate 

coefficient for reaction with OH of 100 (+
- 115

3) × 10-12 cm3 molecule-1 s-1. The estimated OH reactivity 

of this mixture, excluding those with no literature measurements, was 380 s-1. 
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Table 4.4 List of VOCs, in descending order of evaluated literature k value, in the large aromatic mixture, 
along with their evaluated literature rate coefficient, reference and the number of measurements found in 
the literature at the time of writing. 

Name 
Evaluated literature k 

(298 K) / 10-12 cm3 
molecule-1 s-1 

Reference used 
Number of literature 

measurements 

Isoprene 100 (+
- 115

3) Atkinson et al., 2006 25+ 

β-pinene 79 ± 20 Atkinson and Arey, 2003 10 

1,2,3,5-tetramethylbenzene 62.4 ± 0.8 Alarcón et al., 2015 1 

1,3,5-trimethylbenzene 57 ± 11 Calvert et al., 2002 5 

1,2,4,5-tetramethylbenzene 55.5 ± 3.4 Aschmann et al., 2013 2 

α-pinene 53 (+
- 212

5) Atkinson et al., 2006 9 

1,2,4-trimethylbenzene 33 ± 8 Calvert et al., 2002 5 

1,2,3-trimethylbenzene 33 ± 8 Calvert et al., 2002 5 

m-xylene 23 ± 3 Calvert et al., 2002 15 

o-xylene 13 ± 3 Calvert et al., 2002 10 

1,2-diethylbenzene   0 

1,3-diethylbenzene   0 

1,4-diethylbenzene   0 
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4.1.2.1 Typical chromatogram data 

Figure 4.8 shows sections of typical TICs obtained for this mixture with the reactor lamp turned 

off (blue) and the reactor lamp turned on (black). There was a reduction in the measured peak 

area for all of the compounds shown when the lamp was turned on. 

 

Figure 4.8 Typical TIC sections obtained for the large aromatics mixture showing the peaks observed with 
the lamp off (blue) and the lamp on (black). The peaks were identified as: a, m-xylene; b, o-xylene; c, α-
pinene; d, 1,3,5-trimethylbenzene; e, β-pinene; f, 1,2,4-trimethylbenzene; g, 1,2,3-trimethylbenzene; h, 1,3-
diethylbenzene; I, 1,4-diethylbenzene; j, 1,2-diethylbenzne. 
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4.1.2.2 Relative rate plots 

Figure 4.9 shows the relative rate plot for this mixture with an OH reactivity of 48 s-1 and no NO in 

the reactor. A clear linear relationship between depletion factor and literature k value was 

observed. The depletion factors were all fairly large when compared with the small aromatic VOCs 

mixture and were equivalent to percentage depletions of between 3.1% and 17%. The adjusted R2 

for the linear regression in this plot was 0.980 and the value of the OHexp, given by the linear 

regression was 1.8 (± 0.1) × 109 molecules cm-3 s. 

Figure 4.10 shows the relative rate plots for this mixture with OH reactivities of 21, 48, 75, 101 

and 123 s-1. They were all linear with adjusted R2 values of 0.958, 0.980, 0.907, 0.967 and 0.829 

respectively. The OHexp values for these plots were 2.3 (± 0.1), 1.8 (± 0.1), 1.2 (± 0.2), 1.0 (± 0.1) 

and 0.7 (± 0.1) × 109 molecules cm-3 s for OH reactivities of 21, 48, 75, 101 and 123 s-1 

respectively.



 

 

2
1

3
 

 

Figure 4.9 Relative rate plot for the large aromatics mixture with an OH reactivity of approximately 48 s-1, at 295 K. Compounds with a reference rate coefficient for reaction with OH 
were plotted using evaluated reference values. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for eight lamp-off and 
eight lamp-on samples. Error bars on the x-axis were typically large (approximately ± 20-30%) and accounted for deviations from the trend for all VOCs. A weighted (to the uncertainty in 
the y-values) linear fit was used to generate the slope, with a value of OHexp = 1.8 (± 0.1) × 109 molecules cm-3 s and R2 = 0.980. Data for 1,2-, 1,3- and 1,4-diethylbenzene, which had no 
literature k values for their reaction with OH, were not used in the calculation of the fit. The VOCs can be identified as follows: 1, o-xylene; 2, m-xylene; 3, 1,2,4-trimethylbenzene; 4, 
1,2,3-trimethylbenzene; 5, α-pinene; 6, 1,2,4,5-tetramethylbenzene; 7, 1,3,5-trimethylbenzene; 8, 1,2,3,5-tetramethylbenzene; 9, β-pinene; 10, isoprene. 
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Figure 4.10 Relative rate plots for the large aromatic VOCs mixture with OH reactivities of 21, 48, 75, 101 
and 123 s-1. The R2 for the weighted linear fits were 0.958, 0.980, 0.907, 0.967 and 0.829 respectively. The 
values of OHexp were 2.3 (± 0.1), 1.8 (± 0.1), 1.2 (± 0.2), 1.0 (± 0.1) and 0.7 (± 0.1) × 109 molecules cm-3 s 
respectively. 
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4.1.2.3 Calculation of rate coefficients 

Table 4.5 gives the final measured rate coefficient values for the reactions between OH and the 

VOCs included as part of this mixture. All of the measured values were in excellent correlation 

with the evaluated literature rate coefficients, with only minor discrepancies between the two 

values for each of the VOCs. The measured values in this work were well within the margins of 

error placed upon the recommended literature values. 

Table 4.5 List of VOCs, in descending order of evaluated literature k value, in the large aromatics mixture 
along with their range of depletion due to reaction with OH, measured k value and evaluated literature k 
value. 

Name 
Range of 

depletion / % 

Measured k (295 K) 
/ 10-12 cm3 

molecule-1 s-1 

Evaluated literature 
k / 10-12 cm3 

molecule-1 s-1 

Isoprene 10 - 23 102 ± 4 100 (+
- 115

3) 

β-pinene 7 - 18 74 ± 8 79 ± 20 

1,2,3,5-tetramethylbenzene 5 - 16 62 ± 9 62.4 ± 0.8 

1,3,5-trimethylbenzene 7 - 15 60 ± 5 57 ± 11 

1,2,4,5-tetramethylbenzene 6 - 16 59 ± 12 55.5 ± 3.4 

α-pinene 7 - 13 53 ± 8 53 (+
- 212

5) 

1,2,4-trimethylbenzene 4 - 10 34 ± 3 33 ± 8 

1,2,3-trimethylbenzene 5 - 10 38 ± 4 33 ± 8 

m-xylene 3 - 6 21 ± 3 23 ± 3 

o-xylene 2 - 5 10 ± 4 13 ± 3 

1,2-diethylbenzene 0.3 - 3 -9 ± 20  

1,3-diethylbenzene 2 - 5 5 ± 30  

1,4-diethylbenzene 1 - 7 7 ± 30  

The rate coefficient for the OH + isoprene reaction measured here was in excellent agreement 

with the others presented in this work, of 104 (± 6) and 103 (± 5) × 10-12 cm3 molecule-1 s-1 for 

monoterpenes mixture 1 and the alkenes mixture respectively (see Chapter 3). The same was also 

true of the α- and β-pinene + OH measurements, with results of 56 (± 6) and 78 (± 11), and 53 (± 

4) and 75 (± 12) × 10-12 cm3 molecule-1 s-1 for monoterpenes mixture 1 and the alkenes mixture 

respectively. The results presented here for the two xylene isomers were also in good agreement 

with others in this work, both in this Chapter in the small aromatic VOCs mixture, and in Chapter 

3. 
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4.1.2.4 Calculation of new rate coefficients 

The three diethylbenzene isomers included as part of this mixture had no available measurements 

of their rate coefficients for reaction with OH in the literature at the time of writing. The values 

reported in this work therefore represent the first measurements.  

Unfortunately, the measured rate coefficients for the reactions of OH with all three 

diethylbenzene isomers were unreliable. The values were all low and appeared to be inconsistent 

with other rate coefficients for reactions between similarly sized aromatic compounds and OH. 

The values all had large uncertainties placed upon them, owing mostly to the observed depletions 

in their concentrations after reaction with OH being highly inconsistent and varying to a large 

extent with the OH reactivity of the tested mixture. In some cases, their observed depletions were 

much less than a couple of percent and their calculated depletion factors were the lowest for all 

the compounds within the mixture. This resulted in the calculation of some negative k values 

when the y-intercept of the linear regression was greater than the observed depletion factors. 

Removing the values with k less than zero before averaging gave a more sensible final rate 

coefficient for the reactions of 1,2-diethylbenzene, 1,3-diethylbenzene and 1,4-diethylbenzene 

with OH, of 6.2 (± 4), 16 (± 8) and 22 (± 5) × 10-12 cm3 molecule-1 s-1 respectively. Whilst the 

uncertainties were significantly reduced by removing the negative k values, there was no valid 

reason for doing so. 

In the absence of any literature experimental results for comparison, it was difficult to come to a 

meaningful conclusion on the certainty of the data presented here for the diethylbenzene 

isomers. It may therefore be more appropriate to recommend rate coefficients for their reactions 

with OH that are smaller than the extent of the errors in their measured values; this yields 

estimates of less than 30 × 10-12 cm3 molecule-1 s-1. 

Table 4.6 Recommended k values for the reactions between OH and the diethylbenzene stereoisomers, 
given the uncertainty in their measured values. 

Name 
Measured k (295 K) / 

10-12 cm3 molecule-1 s-1 

1,2-diethylbenzene < 30 

1,3-diethylbenzene < 30 

1,4-diethylbenzene < 30 
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4.1.2.5 Comparison to SARs 

Rate coefficients estimated using SARs by Kwok and Atkinson (1995) and Jenkin et al. (2018) were 

used as comparisons for the measured rate coefficients for the reactions of compounds in the 

small aromatics mixture with OH in Section 4.1.2.5. The same two SARs were applied to estimate 

the rate coefficients for the reactions of the larger aromatics with OH, the results of which are 

given in Table 4.7. 

Table 4.7 List of VOCs, in descending order of evaluated literature k value, in the large aromatics mixture 
along with their SAR derived k values, average experimentally measured k value and evaluated literature k 
value. 

Name 

Rate coefficient for reaction with OH / 10-12 cm3 molecule-1 s-1 

This work 
Kwok and Atkinson 

(1995) SAR 
Jenkin et al.  
(2018) SAR 

Evaluated 
literature 

1,2,3,5-tetramethylbenzene 62 ± 9 43 ± 22 60 ± 24 62.4 ± 0.8 

1,3,5-trimethylbenzene 60 ± 5 35 ± 18 60 ± 25 57 ± 11 

1,2,4,5-tetramethylbenzene 59 ± 12 20 ± 10 57 ± 23 55.5 ± 3.4 

1,2,4-trimethylbenzene 34 ± 3 16 ± 8 31 ± 12 33 ± 8 

1,2,3-trimethylbenzene 38 ± 4 16 ± 8 31 ± 12 33 ± 8 

m-xylene 21 ± 3 13 ± 7 23 ± 9 23 ± 3 

o-xylene 10 ± 4 6.2 ± 3 14 ± 6 13 ± 3 

1,2-diethylbenzene -9 ± 20 8.1 ± 4 15 ± 6  

1,3-diethylbenzene 5 ± 30 14 ± 7 25 ± 10  

1,4-diethylbenzene 7 ± 30 8.1 ± 4 15 ± 6  

Figure 4.11 shows a comparison between the two SARs, the experimentally derived values in this 

work and the literature reference rate coefficients. It was quite clear that the SAR by Jenkin et al. 

(2018), the experimental measurements and the literature reference values were in excellent 

agreement for all but the diethylbenzene isomers. The SAR method in Kwok and Atkinson (1995) 

consistently underpredicted the rate coefficients for reaction between OH and all the aromatic 

VOCs, with the discrepancy increasing with the increasing size and number of substituent groups. 

The results for the diethylbenzene stereoisomers were in poor agreement. Not only did the SAR 

estimated values by Jenkin et al. (2018) disagree strongly with the experimentally derived results 

(unless accounting for the disproportionately large uncertainties), but the experimental results 

were also smaller than those estimated by the SAR in Kwok and Atkinson (1995). 
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Figure 4.11 Comparison of two different SAR methods (Kwok and Atkinson (1995), blue; Jenkin et al. (2018), 
red) for the prediction of rate coefficients for the reaction between aromatic VOCs and OH, alongside the 
experimental results derived in this work (green) and the recommended literature values (black). 
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4.2     Numerical simulations 

4.2.1   Understanding the fate of the OH-aromatic adduct 

It is currently thought that the OH-aromatic adduct, produced by OH addition onto an aromatic 

ring, is thermally unstable and can undergo back-decomposition to the original aromatic species 

(see Chapter 1 Section 1.3.4). The reversibility of the OH + aromatic reactions, shown in Figure 

4.12, may result in complications in the relative rate studies of these species, particularly at 

elevated temperatures where the decay is faster. The measured final concentration of each VOC 

may be perturbed if the original aromatic species is regenerated. This would mean that the final 

VOC concentrations, as measured by the GC-MS, were no longer proportional to their rate 

coefficients for reaction with OH. Rather, they would be proportional to some ratio of the 

forwards (k) and backwards (kd) rate coefficients for reaction with OH. 

 

Figure 4.12 Schematic showing the proposed decay of the OH-aromatic adduct back to the original aromatic 
reactant and OH. Other potential OH-aromatic adduct reactions are also shown. Schematic adapted from 
Newland et al., 2017. 
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Wahner and Zetsch (1983) measured the decay rate coefficient for the OH-benzene adduct as kd = 

1.95 (± 0.2) s-1 at 298 K, and 11.5 (± 1) s-1 at 312 K. Knispel et al. (1990) measured thermal 

decomposition rate coefficients at different temperatures for the OH-benzene and OH-toluene 

adducts. They were able to derive Arrhenius expressions of kd = 9.0 × 1012 e-8570/T
 and 1.5 × 1012 e-

7880/T s-1 for OH-benzene and OH-toluene decomposition respectively. The expression for OH-

benzene decay was in good agreement with that recommended by Atkinson (1989) of kd = 9.4 × 

1012 e-8540/T s-1. Perry et al. (1977) reported rate parameters for the thermal decomposition of 

several OH-aromatic adducts allowing for the derivation of Arrhenius expressions for the decays 

of OH-aromatic adducts of benzene, toluene, o-, m- and p-xylene and 1,2,3-, 1,2,4- and 1,3,5-

trimethylbenzene (Calvert et al., 2002). 

The thermal decay of the OH-aromatic adduct is in direct competition with reaction with O2 and 

NO2. Reaction with NO2 is unlikely, both in the atmosphere and in the experimental reactive 

system. However, it is possible that some amount of O2 was present in the reactor, owing to 

impurities in the N2 bath gas. If the N2 (zero-grade, BOC) was assumed to be 99.998% pure, the 

concentration of O2 in the reactor could have been as much as 1016 molecules cm-3. 

Knispel et al. (1990) measured the reactivity of the OH-benzene adduct towards O2 as 2 × 10-16 

cm3 s-1, and that for the OH-toluene adduct as 5 × 10-16 cm3 s-1. More recently, Koch et al. (2007) 

measured the rate coefficients for the O2 addition reactions to the OH-aromatic adducts of 

benzene, toluene, and m- and p-xylene across the temperature range 298-354 K (benzene, 3.5 × 

10-14 e-1600/T; toluene, 5.9 × 10-16 e-20/T; m-xylene, 2.7 × 10-16 e580/T; p-xylene, 3.8 × 10-16 e250/T). 
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4.2.1.1 Simulating the decomposition of the OH-aromatic adducts 

A simple kinetic simulation was built in Kintecus (Ianni, 2017; http://kintecus.com/) to model the 

impact that the back-decomposition of the OH-aromatic adduct might have had on the relative 

rate experiments under the conditions reported in this work. The model included Arrhenius 

expressions for the reactions between OH and benzene, toluene and m- and p-xylene. The 

products of these reactions were assumed to be exclusively OH-aromatic adducts due to the 

relatively minor importance of the H-abstraction reaction pathway (e.g. as little as 7% for the 

toluene + OH reaction). The OH-aromatic adducts could then react in two ways; decay back into 

the original aromatic species, or react with O2. Arrhenius expressions for both of these reactions 

for each of the four aromatic species were incorporated into the model. The decay of the OH-

aromatic adducts and the reaction between O2 and the OH-aromatic adducts could be turned off. 

Table 4.8 displays the different scenarios investigated and the reactions simulated under different 

modelling conditions. For all simulations, the initial OH concentration was kept at 2 × 1011 

molecules cm-3 and for Model C, the initial O2 concentration was set to 1 × 1016 molecules cm-3. 

Table 4.8 Different simulation scenarios. 

Model name OH + aromatic 
OH-aromatic 
adduct decay 

OH-aromatic 
adduct + O2 

Model A Yes No No 

Model B Yes Yes No 

Model C Yes Yes Yes 

 

  

http://kintecus.com/
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Figure 4.13 shows the simulated relationships at 300 K. Model A resulted in the correct 

relationship between depletion factor and literature k value, with an R2 value of 1.0. However, 

Models B and C did not yield the correct relationship, although Model C gave a OHexp result similar 

to that given by Model A. Model B, in which the OH-aromatic adducts could decay back to the 

original aromatic species, yielded a particularly bad result, with an adjusted R2 value of just 0.173. 

Whilst Model C did not simulate an R2 equal to 1, the adjusted R2 value of 0.981 was high enough 

that it could be assumed to. In this case, at 300 K, the O2 + OH-aromatic reaction proceeded at a 

rate fast enough to prevent significant amounts of the OH-aromatic adducts undergoing back-

decomposition to the original aromatic species. 

 

Figure 4.13 Simulated relative rate plot for the four aromatic VOCs incorporated in the numerical 
simulations under different modelling scenarios at 300 K. From left to right the points can be identified as; 
benzene, toluene, p-xylene and m-xylene. The adjusted R2 values for the linear fits were: Model A, 1.00; 
Model B, 0.173; Model C, 0.981. 
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Figure 4.14 shows the same simulation but at 350 K. Again, the correct relationship was simulated 

when using Model A, with an R2 equal to 1.00. However, when using Model B, not only was the R2 

value exceptionally low (0.187) but the simulated depletion factors for the four species were also 

very small. This is consistent with the proposed theory; the decay of the OH-aromatic adduct is 

highly temperature dependent and proceeds rapidly at temperatures exceeding 325 K. The 

temperature dependence of the back-decomposition at 350 K was to the extent that the 

equilibrium between the aromatic species and the OH-aromatic adducts moved towards the 

aromatic species. Hence, the aromatic VOCs showed little-to-no depletion after exposure to OH. 

Even with the inclusion of 1016 molecules cm-3 O2 in Model C, the relationship between depletion 

factor and literature k remained inconsistent with an adjusted R2 value of 0.771. 

 

Figure 4.14 Simulated relative rate plot for the four aromatic VOCs incorporated in the kinetic simulations 
under different modelling scenarios at 350 K. From left to right the points can be identified as; benzene, 
toluene, p-xylene and m-xylene. The adjusted R2 values for the linear fits were: Model A, 1.00; Model B, 
0.187; Model C, 0.771. 
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The concentration of O2 in the reactor had not been measured; the [O2] used for the simulations 

above was estimated using the purity of the N2 carrier gas, but is potentially misleading. For this 

reason, simulations using Model C were performed with different concentrations of O2. Figure 

4.15 shows the impact of higher and lower concentrations of O2, of 1015 and 1017 molecules cm-3 

respectively, at 300 K. As expected, the relationship between depletion factor and literature k 

improved when using a greater simulated [O2] but reduced when using a lower [O2]. The adjusted 

R2 values for the linear relationships are 0.856, 0.981 and 1.00 (0.9995 to 4 sf) for the simulations 

with 1015, 1016 and 1017 molecules cm-3 of O2 respectively. Therefore, if the estimated reactor [O2] 

(of 1016 molecules cm-3) was an underestimation of the concentration in the real system, then the 

assumption that the OH-aromatic adducts did not undergo back decomposition is only improved. 

However, if the estimate of [O2] in the reactor was an overestimation, then it was likely that the 

OH-aromatic adducts underwent some back-decomposition and the measured relationship 

between depletion factor and literature k is therefore less reliable. 

 

Figure 4.15 Comparison of the impact that different concentrations of O2 had on the simulated relative rate 
plots for four aromatic VOCs at 300 K. The R2 values were 0.856, 0.981 and 1.00 for [O2] = 1015, 1016 and 
1017 molecules cm-3 respectively. 

O2 is not the only species that may prevent the OH-aromatic adducts undergoing back 

decomposition. Other chemicals, such as NO, NO2, HO2 and RO2, may perform a similar role but it 

is unlikely that they were present in the reactor in any significant concentration.  
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For Model B, as the temperature increased it becomes less appropriate to plot depletion factor 

against literature rate coefficient for the reaction with OH. The depletion in the VOCs instead 

became proportional to the ratio of the forwards and backwards rate coefficient for reaction with 

OH, as in Eq. 4.2. 

ln (
[VOC]0
[VOC]

) ∝
𝑘OH+aromatic

𝑘d
        Eq. 4.2 

This relationship is supported by Figure 4.16, where plotting depletion factor against literature 

k/kd resulted in an adjusted R2 for the linear regression of 1.00. Hence, at higher temperatures (T 

> 325 K) and very low [O2], it may be more appropriate to use this type of plot to yield an estimate 

of the ratio between k and kd for aromatic VOC + OH reactions. 

 

Figure 4.16 Simulated relative rate plot for the four aromatic VOCs at 350 K. Rather than plotting depletion 
factor against k, as in typical relative rate plots, the depletion factor was plotted against the ratio of k to kd, 
to account for the thermal back-decomposition of the aromatic-OH adducts. The adjusted R2 value for the 
linear regression was equal to 1.00 showing that aromatic VOC depletions at higher temperatures are 
proportional to this ratio. 
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For Model C, the simulated relative rate relationship was most appropriate when also 

incorporating the rate coefficient for the reaction between the OH-aromatic adduct and O2, as in 

Eq. 4.3 and demonstrated in Figure 4.17. 

ln (
[VOC]0
[VOC]

) ∝
𝑘OH+aromatic×𝑘adduct+O2

𝑘d
       Eq. 4.3 

Hence, at high temperatures (T > 325 K) and high [O2], the depletion in aromatic VOCs is no longer 

proportional to just the rate coefficient for the forwards reaction with OH, but a balance of the 

rate coefficients for the various reactions involved in the photochemical oxidation scheme for the 

aromatic VOC. 

 

Figure 4.17 Model C simulated depletion factor at 350 K for four aromatic VOCs plotted against a different 
parameter to the normal relative rate plots. Here, simulated depletion factor was plotted against the ratio 
between the forwards rate coefficient for the reaction forming the OH-aromatic adduct and the rate 
coefficient for the decay of the OH-aromatic, or k×kO₂/kd. The adjusted R2 value for the linear regression was 
equal to 1.00. 
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4.2.1.2 Summary 

The thermal instability of the primary product of the OH initiated oxidation of aromatic species 

may complicate the relative rate nature of experiments conducted at T > 300 K. The potential 

decay of the OH-aromatic adducts formed via these reactions back into the original aromatic 

compound and the OH radical, meant that the experimentally measured concentrations of each 

aromatic species may not have been totally consistent with their relative rates of reaction. 

At temperatures below 300 K, and with O2 concentrations of greater than 1016 molecules cm-3, the 

decomposition reaction was shown to not significantly affect the results during simulations. At T < 

300 K, the decay of the OH-aromatic adduct is relatively slow, with the reaction between the 

adduct and O2 proceeding at a much quicker rate. The OH-aromatic adduct + O2 reaction 

dominated to the point that the decay could be ignored. Therefore, at these temperatures, the 

measured depletions of the aromatic species should be relative to their rate coefficients with OH. 

As the reactions in this work were conducted at temperatures below 300 K, and with a large 

enough estimated [O2] concentration, it was assumed that the back-decomposition did not affect 

the experimental results. 

However, the back-decomposition of the OH-aromatic is highly dependent on temperature. At 

elevated temperatures, where T > 300 K, the relationship between simulated depletion factor and 

literature k value was shown to become increasingly inappropriate. The concentration of O2 

estimated to be present in the reactor was not significant enough to prevent decay of the OH-

aromatic adducts back into the original species. For this reason, the simulated depletions for the 

aromatic species were not relative to their rate coefficients for reaction with OH. Instead, the 

relationship between depletion factors was better modelled by plotting against kOH+aromatic × kOH-

aromatic+O₂ / kd. However, values of kOH-aromatic+O₂ and kd for many OH-aromatic adducts were not 

available in the literature at the time of writing. 
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4.2.2   Simulating the impact of NO 

A numerical simulation was built using the Kintecus package to assess the impact of NO on the 

oxidation of aromatic VOCs. The simulation contained oxidation schemes for nine small aromatic 

compounds (toluene, ethylbenzene, n-propylbenzene, isopropylbenzene, m- and o-xylene and 2-, 

3- and 4-ethyltoluene) which were adapted from the MCM (Jenkin et al., 2003; Bloss et al., 2005; 

http://mcm.leeds.ac.uk/MCM; accessed 14/02/2018). The oxidation schemes input into the 

numerical simulation did not include any reactions involving O3 or NO3, which should not be 

present in the reactor in any significant quantities and did not include reactions involving RO2 as a 

reactant. 

The model comprised a total of 160 reactions between 88 different species and incorporated 

some basic HOx/NOx chemistry, the reactions of which are outlined in Table 4.9. Reaction 4.2 

involved the formation of secondary OH, which was indicated by sOH in the simulation. OH 

present at the start of the simulation was indicated by pOH. Reaction products which were 

preceded by either an α or β were modelled separately, so that the impact of primary and 

secondary OH could be assessed individually. 

 HO2 + NO  sOH + NO2        R. 4.2 

Table 4.9 List of HOx/NOx reactions included in the numerical simulation testing the impact of NO on the 
oxidation of aromatic VOCs. 

Reaction k / 10-12 cm3 molecule-1 s-1 Reference 

pOH + HO2  αH2O + O2 110 Atkinson et al. (2006) 

sOH + HO2  βH2O + O2 110 Atkinson et al. (2006) 

HO2 + NO  sOH + NO2 8.8 Atkinson et al. (2006) 

pOH + NO  αHONO 9.7 Atkinson et al. (2006) 

sOH + NO  βHONO 9.7 Atkinson et al. (2006) 

pOH + NO2  αHNO3 65 Atkinson et al. (2006) 

sOH + NO2  βHNO3 65 Atkinson et al. (2006) 

Nine different scenarios were simulated, with varying concentrations of both individual VOCs and 

initial NO. The different scenarios are shown in Table 4.10. The small changes in the 

concentrations of the individual VOCs across the three different [NO] scenarios arose due to the 

inclusion of the extra diluting flow of NO, which increased the total flow rate through the reactor. 

In all nine scenarios, initial [pOH] and [HO2] was set to 2.0 × 1011 molecules cm-3, as a rough 

estimate of the initial pOH and HO2 concentrations, as determined in Chapter 3, Section 3.2.1. 

http://mcm.leeds.ac.uk/MCM
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Table 4.10 List of the nine different [VOC] and [NO] scenarios simulated. 

Simulation No. 
[VOC] / 1011 

molecules cm-3 
OH reactivity 

/ s-1 
[NO] / 1011 

molecules cm-3 
[NO] / 

ppb 

1 0.82 8.50 0 0 

2 1.64 17.0 0 0 

3 2.46 25.5 0 0 

4 0.81 8.45 7.38 30 

5 1.63 16.9 7.38 30 

6 2.44 25.3 7.38 30 

7 0.81 8.39 17.2 70 

8 1.62 16.8 17.2 70 

9 2.43 25.2 17.2 70 

The following sections compare the simulated impacts of increasing the amount of NO on the 

concentrations of other species with respect to simulation numbers 2, 5 and 8. 
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4.2.2.1 Impact on [pOH] 

Figure 4.18 shows the simulated impact that different [NO] had on the concentration of pOH in 

the reactor. As expected, adding NO to the reactor in increasingly greater concentrations 

increased the rate at which pOH was removed from the reactor. This was due to the reactions 

between NO and pOH and NO2 and pOH acting as extra sinks for pOH, in addition to the sinks 

already present due to the VOCs and HO2. At 70 ppb of NO, pOH was removed almost entirely 

from the reactor within 0.94 s. This was 1.02 s quicker than when 0 ppb of NO was simulated in 

the reactor. 

 

Figure 4.18 Simulated impact of different initial concentrations of NO on the concentration of pOH over 
time. The concentration of pOH decreased more rapidly with an increased concentration of NO. 
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4.2.2.2 Impact on [HO2] 

The impact of NO on the concentration of HO2 over time is illustrated by Figure 4.19. The rate of 

depletion of HO2 increased with increasing concentrations of NO, as expected, due to the reaction 

between NO and HO2. In the scenario where no NO was present, the HO2 concentration initially 

reduced rapidly, due to the relatively quick reaction with pOH, but then stabilised at 

approximately 4 × 1010 molecules cm-3. With NO present in the reactor, the initial rapid decrease 

in [HO2] was still observed, but the [HO2] continued to decrease beyond this due to the relatively 

slow reaction with NO. When simulating conditions with 70 ppb of NO, the concentration of HO2 

was reduced to less than 1000 molecules cm-3 after 3 s. 

 

Figure 4.19 Simulated impact of different initial concentrations of NO on the concentration of HO2 over 
time. The concentration of HO2 decreased more rapidly with increasing concentration of NO and was 
reduced to a concentration of less than 1000 molecules cm-3 within 3 s with a NO concentration of 70 ppb. 
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4.2.2.3 Impact on [sOH] 

Secondary OH was produced by the reaction between NO and HO2 (R. 4.2). Figure 4.20 shows the 

simulated impact that different [NO] had on the concentration of sOH. Clearly, in the simulation 

without NO, the formation of sOH didn’t occur. However, with NO in the reactor, the 

concentration of sOH immediately rapidly increased, up to a value of approximately 2 × 1010 

molecules cm-3 (roughly equivalent to 1 ppb). This concentration was equal to approximately 10% 

of the initial primary OH concentration thought to be generated via the VUV photolysis of H2O. 

After the initial rapid increase in concentration, [sOH] began to decrease rapidly. The initial 

decrease was much quicker with 70 ppb than with 30 ppb of NO. This was likely due to the 

increased sink for both pOH and sOH with respect to NO. The concentration of sOH settled after 

approximately 3 s in both scenarios, as it presumably reached some form of equilibrium between 

formation (via R. 4.1) and destruction (via reactions with VOCs, HO2, NO and NO2). 

 

Figure 4.20 Simulated impact of different initial concentrations of NO on the concentration of secondary 
OH (sOH) over time. sOH was not produced when NO wasn’t present in the reactor. When NO was added to 
the reactor, sOH was generated rapidly, peaking at approximately 2 × 1010 molecules cm-3 with 70 ppb NO. 
The concentration of sOH then decreased with time, due to reactions with VOCs, HO2, NO and NO2. 
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Evidence for the continued production of sOH is shown by Figure 4.21. The production of sOH 

continued past the peak in concentration shown in Figure 4.20 at approximately 0.1 s. sOH was 

continually produced up until approximately 1.5 s for an NO concentration of 30 ppb, and 

approximately 0.7 s for an NO concentration of 70 ppb, where the rate of production of sOH 

became less appreciable. The total sOH produced was approximately 1.81 and 1.96 × 1011 

molecules cm-3 for NO concentrations of 30 and 70 ppb respectively, showing that many of the 

2.0 × 1011 molecules cm-3 of initial HO2 were converted to secondary OH via reaction with NO. 

 

Figure 4.21 Simulated impact of different initial concentrations of NO on the total sOH produced over time. 
sOH was not produced when NO wasn’t present in the reactor. 
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4.2.2.4 Impact on [NO] and [NO2] 

Figure 4.22 illustrates the simulated impact of different initial NO concentrations on the NO and 

NO2 concentrations as a function of time. Clearly, the initial concentration of NO had an impact on 

the total amount of NO reacted. For an initial [NO] of 30 ppb, approximately half the initial 

amount of NO reacted, leaving around 15 ppb of NO in the reactor after 3 s. For an initial [NO] of 

70 ppb, only approximately 26% of the initial NO was used up during reactions, although this was 

equivalent to 18 ppb of NO, somewhat more than in the case with less initial NO. The depletion in 

NO can be seen to be roughly similar to the depletion in HO2; once the HO2 was used up (Figure 

4.19) the [NO] stabilised, showing that HO2 was the major sink for NO in the reactor. 

NO2 was the by-product of the OH producing reaction between HO2 + NO (R. 4.2). As such, it 

displayed a similar temporal profile to sOH. For initial NO concentrations of 30 and 70 ppb, the 

[NO2] at 3 s was simulated to be 2.09 and 2.16 × 1011 molecules cm-3 (approximately 8.5 and 8.7 

ppb) respectively. 

 

Figure 4.22 Simulated impact of different initial concentrations of NO on the NO and NO2 concentrations 
over time. 
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4.2.2.5 Impact on pOH sinks 

Figure 4.23 illustrates the impact that changing the concentration of NO had on the simulated 

sinks for pOH. The sinks for pOH included in the model were: reaction with HO2, reaction with 

primary aromatic VOCs and secondary VOCs (sVOCs) and reaction with NO and NO2. sVOCs refer 

to the products of initial radical + VOC reactions. 

In the absence of NO, less than half of the available pOH reacted with the aromatic VOCs - the 

intended target. Over half (52.3%) of the pOH was simulated to react with HO2. This simulation 

suggested that the HO2 sink was responsible for the small observed depletions in VOC 

concentrations during the experimental work. 

However, upon addition of NO, the fraction of pOH reacting with VOCs actually decreased, to 30.8 

and 22.2% for [NO] = 30 and 70 ppb respectively. The proportion of the pOH simulated to react 

with HO2 showed a similar reduction, to 36.3% and 25.6% for [NO] = 30 and 70 ppb respectively. 

The additional sink to NO accounted for much of this reduction in the sinks towards reaction with 

VOCs and HO2, with NO2 and secondary VOCs also having a minor contribution. 

 

Figure 4.23 Simulated impact of different initial concentrations of NO on the sinks for pOH; reaction with 
HO2, reaction with primary VOCs, reaction with NO, reaction with NO2 and reaction with secondary VOCs 
(sVOCs). 
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4.2.2.6 Impact on sOH sinks 

The simulated impacts of different NO concentrations on the sinks for secondary OH are shown in 

Figure 4.24. Clearly, no sOH existed when NO was absent from the reactor, as sOH was not 

produced. When the concentration of NO in the reactor was 30 ppb, the primary aromatic VOCs 

were simulated to be the largest sink, accounting for 32.4% of the reacted sOH. NO and HO2 

represented the next largest sinks, accounting for 22.7% and 15.7% of the reacted sOH 

respectively. 

When the concentration of NO in the reactor was increased to 70 ppb, the proportion of sOH 

reacting with VOCs decreased and NO became the dominant sink. This suggests that there may be 

some optimum reactor concentration of NO above which the amount of NO reacting with sOH 

actually decreases the amount of sOH available for reaction with the VOCs. 

The sinks to NO2 and sVOCs were much larger for sOH than the equivalent sinks for the primary 

OH. This was likely due to the delay in the formation of these species; by the time they were 

present in an appreciable quantity much of the primary OH had already reacted away. 

 

Figure 4.24 Simulated impact of different initial concentrations of NO on the sinks for sOH; reaction with 
HO2, reaction with primary VOCs, reaction with NO, reaction with NO2 and reaction with secondary VOCs 
(sVOCs). 
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4.2.2.7 Impact on VOCs 

NO was added to the reactor to increase the depletion in the VOCs’ concentrations. This appeared 

to work during experimental studies, with larger depletion factors observed for the majority of 

VOCs with increasing concentrations of NO. Figure 4.25 shows the simulated impacts of different 

concentrations of NO on the VOC depletions. 

In the absence of NO, the total amount of VOCs simulated to react with OH was just 6.1%; the 

remaining 93.9% of the VOCs were left unreacted. Adding NO with a concentration of 30 ppb 

increased the simulated amount of reacted VOC, to a total of approximately 8.2%. 4.0% of this 

was due to reaction with the secondary OH, and 4.2% due to reaction with the primary OH. The 

proportion of VOCs reacting with primary OH was therefore reduced, compared with the case 

without NO. This was, however, mitigated by a similar proportion of VOCs reacting with the sOH, 

produced as a result of the added NO. The percentage of VOCs left unreacted was simulated to be 

approximately 91.8%, a reduction of just over 2%. This provides further evidence that the addition 

of NO increased the overall depletion in the VOC concentrations. 

Increasing the [NO] to 70 ppb reduced both the amount of VOC reacting with OH and the amount 

of VOC reacting with sOH. Whilst the unreacted VOC was still less than in the case without NO in 

the simulation (93.8% with 70 ppb NO and 93.9% without NO), this did not represent a significant 

change in the simulated depletions in the VOCs. This result was not reproduced experimentally, 

where the depletion factors continued to increase with increasing [NO], but does suggest that 

there may be an upper limit to the amount of NO that can be added into the reactor without 

negating the positive impact. As observed in Figure 4.23 and Figure 4.24 the sinks of pOH and sOH 

to NO and NO2 were much larger when the initial concentration of NO was 70 ppb. 

 

Figure 4.25 Simulated impact of different initial concentrations of NO on the VOC sinks. 
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Conclusions 

Aromatic VOCs are prevalent in the atmosphere due primarily to vehicle fuel emissions. Their 

oxidation within the atmosphere represents a significant source of tropospheric ozone and is 

therefore important for air quality control. Unfortunately, measurements of the rate coefficients 

for reactions between aromatic VOCs and OH are sparse, especially for aromatics with multiple, 

or large, alkyl chain substituents. The multivariate relative rate technique was therefore 

successfully applied to two mixtures containing a suite of different aromatic VOCs, resulting in the 

measurement of 19 rate coefficients for reactions between aromatic VOCs and OH. Four of the 

measured results represent the first measurements of those reactions at the time of writing. 

Unfortunately, the measurement of rate coefficients for aromatic VOC + OH reactions proved 

difficult and required additional chemistry to achieve the desired results. The procedure for 

generating OH radicals within the reactive system resulted in the production of significant 

concentrations of HO2. The HO2 was found to act as a large sink for OH, meaning that, for low 

reactivity VOC mixtures, the observed depletions in the VOC concentrations were small and 

potentially within the noise of the experiment. Adding NO in different concentrations to the 

reactive system was shown to increase the depletion in the VOCs through the production of 

secondary OH via the NO + HO2 reaction. This was demonstrated both experimentally and 

through numerical simulations. 

Three of the four novel rate coefficients measured in this work were poorly defined, likely due to 

their minimal observed depletions. Rate coefficients for the reactions of the three diethylbenzene 

isomers with OH were therefore not specified; an upper limit, of k < 3 × 10-11 cm3 molecule-1 s-1 

was provided instead. This estimate was found to be in relatively good agreement with recent 

SAR estimations by Jenkin et al. (2018). 

Work studying aromatic VOC + OH reactions is recommended to continue. The three 

diethylbenzene isomers should be measured in a less reactive mixture, perhaps with the addition 

of NO, to improve the extent of their depletion measurements. Many other alkyl-substituted 

aromatic structures also exist, some of which are likely to be present in the atmosphere in trace 

concentrations. Furthermore, the multivariate relative rate technique could potentially be 

expanded to study other functionalities, such as aromatic aldehydes and polyaromatic 

hydrocarbons, which are also commonly observed in the atmosphere.  
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Chapter 5 

Kinetic studies of alkane 
oxidation reactions 
 

5     Overview 

This chapter describes the work undertaken to investigate the atmospheric oxidation of an 

important class of VOCs; the alkanes (please refer to Chapter 1 Sections 1.2.2.1 and 1.3.2 for 

more information on alkanes as VOCs). Alkanes react slowly with OH relative to many of the VOCs 

studied as part of the mixtures discussed in previous chapters. Two modifications to the basic 

ensemble relative rate technique were made for the measurements of the reactions of these 

VOCs. The first involved heating the reactor to determine rate coefficients for the alkane + OH 

reactions at different temperatures, allowing for the estimation of Arrhenius parameters. The 

second involved the substitution of the radical oxidant for Cl, with which alkanes react much 

quicker than with OH. The following chapter will discuss the results obtained from these 

experiments. 

New room temperature rate coefficients for the reactions of OH with 2-methylheptane, 2-

methylnonane and ethylcyclohexane can be found in Table 5.2. A new room temperature rate 

coefficient for the reaction between Cl and 2-methylheptane is provided in Table 5.9.  
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5.1    Temperature-dependent alkane + OH reactions 

The rate coefficient for the gas-phase reactions between VOCs and OH are dependent on 

temperature. The temperature of the atmosphere can vary substantially depending on the time of 

day, season, geographic location and height above the surface. Many gas-phase reactions also 

occur in high temperature environments such as those found in fires or in combustion engines. 

The rate coefficient for the reaction between methane (CH4) and OH varies by approximately 25 

times, across a temperature range of 200 – 323 K, a conservative estimate of the range of 

temperatures observed throughout the Earth’s atmosphere. This value increases to around 400 

times when accounting for the range of temperatures than can occur inside a combustion engine 

(which can be up to 2000 K in diesel engines). Clearly, rate coefficient measurements made at, or 

close to, room temperature may not be entirely adequate for describing the kinetics of such 

reactions in the many varied environments present in the Earth system. 

The Arrhenius equation, shown in Eq. 5.1, provides a useful expression for k(T). The pre-

exponential factor (A) is defined, by collision theory, as the frequency of collisions; Ea is the 

activation energy and R is the universal gas constant. 

 𝑘 = Ae− 
Ea
RT          Eq. 5.1 

By making a range of rate coefficient measurements at different temperatures it was possible to 

derive values for both A and Ea for a suite of reactions simultaneously. This was done using 

Arrhenius plots, in which ln k for a particular reaction was plotted against the reciprocal of 

temperature, yielding ln A as the intercept and -Ea/R as the slope of the plot, via Eq. 5.2. 

 ln 𝑘 = lnA −
Ea

R

1

T
        Eq. 5.2 

5.1.1   Alkane mixture 

The alkanes mixture used in the temperature-dependency experiments contained 12 VOCs. Four 

of the VOCs were the linear alkanes n-octane, n-nonane, n-decane and n-undecane. Five of the 

VOCs were branched alkanes; 2- and 3-methylpentane, 2-methylheptane, 2-methylnonane and 

2,2,3-trimethylbutane. The remaining three VOCs were cyclic in nature; cycloheptane, 

cyclooctane and the branched cyclic alkane, ethylcyclohexane. The reaction of 11 of these VOCs 



 
Chapter 5  Kinetic studies of alkane oxidation reactions 
 

245 

 

with OH had been the subject of previous kinetic studies. 10 of these had been extensively 

reviewed in Atkinson (2003), in which recommended literature rate coefficients (at 298 K) were 

provided for all, and recommended Arrhenius expressions, across varying temperature ranges, 

were provided for just six. 2-methylheptane and ethylcyclohexane had just one rate coefficient 

measurement for their reactions with OH, at 323 K (Shaw et al., 2018) and 2-methylnonane was 

notable in that it had no available literature rate coefficient for its reaction with OH at any 

temperature, at the time of writing. Table 5.1 gives a full list of the 12 VOCs, along with the 298 K 

literature rate coefficient used for their reaction with OH, their recommended Arrhenius 

expressions, where available, and the number of available k value measurements in the literature 

at the time of writing. 

There was a small range in the k values across the VOCs in this mixture.  The estimated total OH 

reactivity of this mixture, at standard temperature and pressure (STP), was 110 s-1, not counting 

the alkane without a literature room temperature rate coefficient for its reaction with OH. At all 

temperatures, this mixture was injected into the reactor with an approximate OH reactivity of 4.3 

s-1. As in Chapter 4, for the measurement of aromatic VOC + OH reactions with rate coefficients 

less than 20 × 10-12 cm3 molecule-1 s-1, NO (approximately 50 ppb) was also injected into the 

reactor to augment the observed OH depletions. 

5.1.2   Room temperature measurements 

Figure 5.1 shows the relative rate plot for this mixture recorded at room temperature (297 K). The 

relationship between depletion factor and k value was linear, with an adjusted R2 = 0.971 and 

OHexp = 3.8 (± 0.2) × 109 molecules cm-3 s. The resulting room temperature rate coefficients are 

provided in Table 5.2, along with their evaluated room temperature literature equivalents. 

All the rate coefficient measurements for the alkane + OH reactions were in excellent agreement 

with the evaluated literature equivalents, within errors. The rate coefficients for the reaction 

between three alkanes and OH were measured for the first time at room temperature: 2-

methylheptane + OH, k = 9.1 (± 0.3) × 10-12 cm3 molecule-1 s-1; 2-methylnonane + OH, k = 11 (± 0.3) 

× 10-12 cm3 molecule-1 s-1; ethylcyclohexane + OH, k = 14.4 (± 0.3) × 10-12 cm3 molecule-1 s-1. 

 

 



 

 

2
4

6
 

Table 5.1 List of VOCs, in descending order of evaluated literature k (298 K) value, in the alkane mixture along with their evaluated literature k (298 K) value, recommended Arrhenius 
expression (where available), reference and the number of experimental studies found in the literature at the time of writing. 

Name 
Evaluated literature k 

(298 K) / 10-12 cm3 
molecule-1 s-1 

Recommended Arrhenius 
expression / cm3 molecule-1 s-1 

Temperature 
range / K 

Reference used 
Number of 

studies 

Cyclooctane 13 ± 7 𝑘 = 5.91 × 1017T2e(276±143)/T 290 - 390 Atkinson, 2003 2 

n-undecane 12 ± 2   Atkinson, 2003 2 

Cycloheptane 12 ± 3 𝑘 = 3.99 × 1017T2e(373±119)/T 290 - 390 Atkinson, 2003 3 

n-decane 11 ± 2 𝑘 = 3.17 × 1017T2e(406±56)/T 290 - 1100 Atkinson, 2003 6 

n-nonane 10 ± 2 𝑘 = 2.53 × 1017T2e(436±54)/T 290 - 1100 Atkinson, 2003 9 

n-octane 8 ± 2 𝑘 = 2.72 × 1017T2e361/T 290 - 1080 Atkinson, 2003 6 

2-methylpentane 5.2 ± 1.3   Atkinson, 2003 4 

3-methylpentane 5.2 ± 1.3   Atkinson, 2003 3 

2,2,3-trimethylbutane 3.8 ± 1.0 𝑘 = 9.20 × 1018T2e459/T 290 - 760 Atkinson, 2003 6 

2-methylheptane     1* 

2-methylnonane     0 

Ethylcyclohexane     1* 

* Shaw et al. (2018) did not include any measurements at room temperature for these compounds hence no literature k can be provided at 298 K. 

  



 

 

2
4

7
 

 

Figure 5.1 Relative rate plot for the alkane mixture with an OH reactivity of 4.3 s-1, at 295 K. Compounds with a reference rate coefficient were plotted using evaluated literature values. 
Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for six lamp-off and six lamp-on samples. Error bars on the x-axis 
were typically large (approximately ± 20-30 %) and accounted for deviations from the lines for all VOCs. A weighted (to the uncertainty in the y-values) linear fit was used to generate the 
slope, with a value of OHexp = 3.8 (± 0.2) × 109 molecules cm-3 and R2 = 0.971. Data for 2-methylheptane, 2-metylnonane and ethylcyclohexane, which had no literature k (298 K) values, 
were not used in the calculation of the fit, The VOCs can be identified as follows; 1, 2,2,3-trimethylbutane; 2, 2-methylpentane; 3, 3-methylpentane; 4, n-octane; 5, n-nonane; 6, n-
decane; 7, n-undecane; 8, cycloheptane; 9, cyclooctane. 
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Table 5.2 List of VOCs, in descending order of evaluated literature k (298 K) value, in the alkanes mixture 
along with their measured k (297 K) value and evaluated literature k (298 K) value. 

Name 
Measured k (297 K) / 

10-12 cm3 molecule-1 s-1 
Evaluated literature k (298 K) 

/ 10-12 cm3 molecule-1 s-1 

cyclooctane 13.7 ± 0.3 13 ± 7 

n-undecane 12.3 ± 0.3 12 ± 2 

cycloheptane 11.4 ± 0.3 12 ± 3 

n-decane 10.3 ± 0.3 11 ± 2 

n-nonane 11.0 ± 0.3 10 ± 2 

n-octane 8.8 ± 0.3 8 ± 2 

2-methylpentane 4.6 ± 0.3 5.2 ± 1.3 

3-methylpentane 5.3 ± 0.3 5.2 ± 1.3 

2,2,3-trimethylbutane 3.9 ± 0.3 3.8 ± 1.0 

2-methylheptane 9.1 ± 0.3  

2-methylnonane 11.0 ± 0.3  

ethylcyclohexane 14.4 ± 0.3  

 

5.1.3   Elevated temperature measurements 

A suite of relative rate experiments was conducted with the temperature of the reactor set to 

greater than room temperature using the equipment set up described in Chapter 2 Section 2.2.3. 

The literature rate coefficients used as reference values for the experiments were calculated 

using the recommended Arrhenius expressions provided by Atkinson (2003; see Table 5.1). These 

Arrhenius expressions were limited to specific temperature ranges, and as such, the number of 

reference compounds available decreased with increasing temperature. At temperatures greater 

than 390 K (117 oC), only four VOCs were used as reference compounds, somewhat limiting the 

fitting of the OHexp linear regression and thereby leading to increased uncertainty. 

Regardless, measurements of the depletions in concentration due to the reactions of the VOCs in 

the alkanes mixture with OH were made at a number of temperatures up to 466 K (193 oC). The 

depletion factors were plotted against the available literature rate coefficients at each 

temperature, using the methods outlined in earlier chapters, and final measured relative rate 

coefficients estimated at each temperature for each species. Table 5.3 provides the OHexp and R2 

values derived from the weighted linear regressions made at each temperature. 
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Table 5.3 List of temperatures at which relative rate experiments were conducted on the alkanes mixture. 
The estimated OHexp, as derived from the weighted linear regressions for the relative rate plots, are 
provided, along with the R2 value and the number of reference compounds used at each temperature. 

T / K 
OHexp / 109 

molecules cm-3 
R2 

Number of reference 
compounds 

297 ± 1.4 3.8 ± 0.2 0.971 9 

323 ± 5 3.8 ± 0.5 0.914 6 

326 ± 5 2.1 ± 0.6 0.710 6 

326 ± 5 2.9 ± 0.5 0.858 6 

329 ± 5 1.5 ± 1.0 0.204 6 

351 ± 6 3.7 ± 0.8 0.790 6 

373 ± 6 2.8 ± 1.0 0.573 6 

373 ± 6 3.0 ± 0.6 0.803 6 

390 ± 6 4.3 ± 0.5 0.924 6 

397 ± 6 5.9 ± 0.8 0.952 4 

419 ± 7 5.2 ± 0.5 0.976 4 

422 ± 7 5.4 ± 0.5 0.972 4 

441 ± 7 5.0 ± 0.7 0.945 4 

466 ± 7 6.1 ± 0.6 0.945 4 

 

The following sections describe the Arrhenius plots for each of the VOCs in this mixture, along 

with the estimated Arrhenius expression calculated using the data from this work. The 

corresponding literature for each of the VOC + OH reactions in the mixture is also provided. 
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5.1.4   Arrhenius expressions 

5.1.4.1 OH + 2,2,3-trimethylbutane 

2,2,3-trimethylbutane was one of the few alkanes in the mixture with a recommended Arrhenius 

expression for reaction with OH which continued outside of the experimental range for this work. 

However, the recommended expression for the rate coefficient at temperatures greater than 500 

K was based on a single data point (Baldwin et al., 1981). Figure 5.2 shows the Arrhenius plot for 

this compound, along with the available literature and both the recommended Arrhenius trend 

and the Arrhenius trend that was estimated using the results derived in this work. 

The vast majority of the rate coefficient measurements for the 2,2,3-trimethylbutane + OH 

reaction were in good agreement with the recommended Arrhenius expression provided in 

Atkinson (2003). This was to be expected, as the Arrhenius expression provided the data which 

was used to calculate the relative rate values. Several data points were anomalous and sat away 

from the line, particularly those measured at lower temperatures where more evaluated rate 

coefficients were available for the derivation of the OHexp constant. In previous chapters, the 

VOCs at the extreme ends (both lower and upper) of the OH reactivity scale within a mixture have 

been shown to be subject to greater uncertainties. Therefore, the discrepancy of much of the 

data at the lower temperatures was attributed to this. 

The following Arrhenius expression for the temperature dependence of the rate coefficient for 

the reaction between 2,2,3-trimethylbutane and OH was derived from this work (Eq. 5.3). 

 𝑘2,2,3−trimethylbutane+OH(290 − 470 K) = (0.60 ± 0.10) × 10
−12𝑒(100±100)/T  

           Eq. 5.3 
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Figure 5.2 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between 2,2,3-trimethylbutane and OH. Rate coefficients derived as part of this work are shown 
alongside the available literature. Two Arrhenius expressions are also shown; one derived in this work 
(black) and the other as recommended by Atkinson, 2003 (red). 

 

Figure 5.3 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between n-octane and OH. Rate coefficients derived as part of this work are shown alongside the 
available literature. Two Arrhenius expressions are also shown; one derived in this work (black) and the 
other as recommended by Atkinson, 2003 (red). 
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5.1.4.2 OH + n-octane, OH + n-nonane and OH + n-decane 

These three linear alkanes also benefited from having recommended Arrhenius expressions which 

continued outside of the experimental range of this work. As for 2,2,3-trimethylbutane, the 

Arrhenius expressions for each of these compounds above approximately 500 K was based on a 

single data point (Koffend and Cohen, 1996). 

Figure 5.3 shows that the vast majority of the data for the reaction between n-octane and OH was 

in excellent agreement with the literature, and with the recommended Arrhenius expression. A 

single point, measured at around 327 K, was approximately 75 % smaller than the other data at 

that temperature but that can be assumed to be an anomaly. The Arrhenius expression derived 

from the results in this work was therefore almost identical to the recommended Arrhenius 

expression across the temperature range 290 – 470 K (Eq. 5.4). 

 𝑘𝑛−octane+OH(290 − 470 K) = (2.40 ± 0.03) × 10
−12𝑒(310±130)/T  Eq. 5.4 

Similar observations were made for the temperature dependence of the n-nonane + OH (Figure 

5.4) and n-decane + OH (Figure 5.5) reactions, with the vast majority of the data in excellent 

agreement with both the literature and with the recommended Arrhenius expressions. The 

Arrhenius expressions for these reactions derived in this work were also both in excellent 

agreement with the recommended Arrhenius expressions across the temperature range 290 – 

470 K (Eq. 5.5 and 5.6). 

 𝑘𝑛−nonane+OH(290 − 470 K) = (1.81 ± 0.02) × 10
−12𝑒(130±80)/T  Eq. 5.5 

 𝑘𝑛−decane+OH(290 − 470 K) = (3.37 ± 0.05) × 10
−12𝑒(320±140)/T  Eq. 5.6 
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Figure 5.4 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between n-nonane and OH. Rate coefficients derived as part of this work are shown alongside the 
available literature. Two Arrhenius expressions are also shown; one derived in this work (black) and the 
other as recommended by Atkinson, 2003 (red). 

 

Figure 5.5 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between n-decane and OH. Rate coefficients derived as part of this work are shown alongside the 
available literature. Two Arrhenius expressions are also shown; one derived in this work (black) and the 
other as recommended by Atkinson, 2003 (red). 
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5.1.4.3 OH + cycloheptane and OH + cyclooctane 

These two cyclic alkanes also had recommended Arrhenius expressions for reaction with OH 

provided in Atkinson (2003), albeit as the result of a single temperature dependent study by 

Donahue et al. (1998). The range for the recommended Arrhenius expressions was limited to 

between 290 and 390 K. 

The measurements made in this work, whilst in good agreement with the literature, suggested 

that the rate coefficients for the reactions of OH with cycloheptane (Figure 5.6) and cyclooctane 

(Figure 5.7) were largely independent of temperature, across the range 290 – 470 K. 

The Arrhenius expressions derived from the data in this work are given by Eq. 5.7 and Eq. 5.8. 

 𝑘cycloheptane+OH(290 − 470 K) = (1.24 ± 0.03) × 10
−12𝑒(40±200)/T  Eq. 5.7 

 𝑘cyclooctane+OH(290 − 470 K) = (2.36 ± 0.02) × 10
−12𝑒(150±70)/T  Eq. 5.8 

5.1.4.4 OH + 2-methylpentane and OH + 3-methylpentane 

Literature measurements of the rate coefficients for the reactions of 2- and 3-methylpentane with 

OH were limited mainly to room temperature measurements, with only one study performed at 

an elevated temperature (Shaw et al., 2018). The rate coefficient measurements for these 

reactions between 290 and 470 K therefore represent the first extensive studies of their kind. 

Whilst the data for the reaction between 2-methylpentane and OH at the lower temperatures 

was in good agreement with the available literature, the data at the higher temperatures were 

somewhat scattered (Figure 5.8). It was unknown as to why this occurred but interferences with 

other C6 hydrocarbons, such as n-hexane (a common laboratory solvent), had been observed 

previously. The four measurements at approximately 325 K were in exceptionally poor agreement 

with each other, spanning a whole order of magnitude, with values between 1.5 and 14 × 10-12 

cm3 molecule-1 s-1. The derived Arrhenius expression, which shows little to no temperature 

dependence, was therefore subject to a large amount of uncertainty (Eq. 5.9). 

𝑘2−methylpentane+OH(290 − 470 K) = (3.2 ± 0.2) × 10
−12𝑒(470±430)/T  Eq. 5.9 
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The results for the reaction between 3-methylpentane and OH were also in good agreement with 

the available literature at the lower temperatures. The data at the higher temperatures were less 

scattered than those for the 2-methylpentane + OH reaction but were still in poor agreement. The 

estimated rate coefficient at 467 K also had an abnormally large uncertainty placed upon it. The 

Arrhenius expression derived from this data, for the temperature dependence of the rate 

coefficient for the reaction between 3-methylpentane and OH, is given by Eq. 5.10. 

𝑘3−methylpentane+OH(290 − 470 K) = (9.9 ± 0.5) × 10
−12𝑒(820±450)/T  Eq. 5.10 
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Figure 5.6 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between cycloheptane and OH. Rate coefficients derived as part of this work are shown alongside 
the available literature. Two Arrhenius expressions are also shown; one derived in this work (black) and the 
other as recommended by Atkinson, 2003 (red). 

 

Figure 5.7 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between cyclooctane and OH. Rate coefficients derived as part of this work are shown alongside 
the available literature. Two Arrhenius expressions are also shown; one derived in this work (black) and the 
other as recommended by Atkinson, 2003 (red). 
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Figure 5.8 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between 2-methylpentane and OH. Rate coefficients derived as part of this work are shown 
alongside the available literature. The Arrhenius expression derived in this work is also shown. 

 

Figure 5.9 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between 3-methylpentane and OH. Rate coefficients derived as part of this work are shown 
alongside the available literature. The Arrhenius expression derived in this work is also shown. 
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5.1.4.5 OH + n-undecane 

There were only two literature measurements for the reaction between the C11 linear alkane n-

undecane and OH at the time of writing (Behnke et al. 1988; Nolting et al., 1988). Both of these 

were made at close to room temperature. The temperature dependent measurements of the rate 

coefficient for the reaction between n-undecane and OH made in this work therefore represent 

the first of their kind. 

Figure 5.10 shows the measurements of the relative rate coefficient for the n-undecane + OH 

reaction made at different temperatures. There was some scatter in the data but the trend 

showed an overall independence of the rate coefficient with temperature. However, the lower 

temperature measurements, below 320 K, were poorly represented by the estimated Arrhenius 

expression (Eq. 5.11) despite the fact that they were in considerable agreement with each other. 

𝑘𝑛−undecane+OH(290 − 470 K) = (1.65 ± 0.04) × 10
−12𝑒(−30±200)/T  Eq. 5.11 

 

5.1.4.6 OH + 2-methylheptane 

There was only a single measurement, at 323 K, for the reaction between 2-methylheptane and 

OH at the time of writing (Shaw et al., 2018). Some of the data from this work at approximately 

323 K was in good agreement with that study, as shown by Figure 5.11. The Arrhenius expression 

derived from this work is given by Eq. 5.12.  

𝑘2−methylheptane+OH(290 − 470 K) = (1.25 ± 0.02) × 10
−12𝑒(90±100)/T Eq. 5.12 
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Figure 5.10 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between n-undecane and OH. Rate coefficients derived as part of this work are shown alongside 
the available literature. The Arrhenius expression derived in this work is also shown. 

 

Figure 5.11 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between 2-methylheptane and OH. Rate coefficients derived as part of this work are shown 
alongside the available literature. The Arrhenius expression derived in this work is also shown. 
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5.1.4.7 OH + 2-methylnonane 

This work represents the first study of the rate coefficient for the reaction between 2-

methylnonane and OH, at any temperature. In the absence of any literature to compare it to, it 

was difficult to assess the validity of the data. Whilst some of the data points appeared to be 

outliers from the general trend (at 326 and 440 K), the majority of the data was in good 

agreement with the estimated Arrhenius expression (Eq. 5.13). 

𝑘2−methylnonane+OH(290 − 470 K) = (2.09 ± 0.03) × 10
−12𝑒(150±140)/T Eq. 5.13 

 

5.1.4.8 OH + ethylcyclohexane 

The results for the ethylcyclohexane + OH reaction measured at around 323 K were in poor 

agreement with the value provided in Shaw et al. (2018) despite being in excellent agreement 

with each other. The average measurement in this work at 326 (± 5) K, of 11.2 (± 0.6) × 10-12 cm3 

molecule-1 s-1, was approximately 25 % smaller than the value provided in Shaw et al. (2018), of 15 

(± 1) × 10-12 cm3 molecule-1 s-1, at 323 K. 

Regardless, the measurement in Shaw et al. (2018) was the only available measurement of the 

rate coefficient for the ethylcyclohexane + OH reaction, at the time of writing. The derived 

Arrhenius expression from this work is given by Eq. 5.14. 

𝑘ethylcyclohexane+OH(290 − 470 K) = (1.50 ± 0.02) × 10
−12𝑒(−50±90)/T Eq. 5.14 
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Figure 5.12 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between 2-methylnonane and OH. The Arrhenius expression derived in this work is also shown. 

 

Figure 5.13 Arrhenius plot showing the observed temperature dependence of the rate coefficient for the 
reaction between ethylcyclohexane and OH. Rate coefficients derived as part of this work are shown 
alongside the available literature. The Arrhenius expression derived in this work is also shown. 
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5.1.4.9 Summary 

Table 5.4 provides a summary of the Arrhenius parameters derived from the temperature 

dependent relative rate measurements in this work. The recommended literature Arrhenius 

expressions, provided in Atkinson (2003), are also given as a means of comparison. 

Table 5.4 Summary of Arrhenius parameters derived from this work alongside those recommended in 
Atkinson (2003). 

Name 

This work* Atkinson (2003) 

A / 10-12 cm3 
molecule-1 s-1 Ea/R / K 

A / 10-17 cm3 
molecule-1 s-1 

Ea/R / K n Trange / K 

cyclooctane 2.36 ± 0.02 150 ± 67 5.91 276 ± 143 2 290 - 390 

undecane 1.65 ± 0.04 -30 ± 200     

cycloheptane 1.24 ± 0.03 40 ± 200 3.99 373 ± 119 2 290 - 390 

decane 3.37 ± 0.05 320 ± 140 3.17 406 ± 56 2 290 - 1100 

n-nonane 1.81 ± 0.02 130 ± 82 2.53 436 ± 34 2 290 - 1100 

n-octane 2.40 ± 0.03 310 ± 130 2.72 361 2 290 - 1080 

2-methylpentane 3.2 ± 0.2 470 ± 430     

3-methylpentane 9.9 ± 0.5 820 ± 450     

2,2,3-trimethylbutane 0.60 ± 0.10 100 ± 100 0.92 459 2 290 - 760 

2-methylheptane 1.25 ± 0.02 90 ± 100     

2-methylnonane 2.09 ± 0.03 150 ± 140     

ethylcyclohexane 1.50 ± 0.02 -50 ± 90         

* The Arrhenius parameters derived in this work were measured for the temperature range 290 – 470 K. 

In summary, the ensemble relative rate technique developed in this work was successfully 

modified to accommodate temperature dependent measurements of relative rate coefficients for 

the reactions of VOCs with OH. Multivariate relative rate measurements were performed on a 

mixture of 12 alkanes at temperatures varying between 297 K (considered to be room 

temperature) and 466 K. Recommended Arrhenius expressions from Atkinson (2003) were used 

to place these measurements on an absolute basis to derive Arrhenius expressions for a number 

of alkane + OH reactions. 

The Arrhenius expressions derived for six of the compounds were in good agreement with the 

available literature across the temperature range 290 to 470 K. The expressions derived for the 

remaining six compounds represent the first of their kind, thereby showing that this method can 

be used to rapidly generate k vs T relationships for multiple compounds simultaneously, albeit 
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with large uncertainty, especially when fewer reactions are available for use as reference 

reactions. The multivariate relative rate technique may therefore be better suited for assessing 

existing Arrhenius parameters for suites of reactions, rather than for the derivation of novel 

parameters where no previous measurements exist for comparison.  
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5.2    Alkanes + Cl reaction rate coefficient measurements 

The hydroxyl radical (OH) is widely acknowledged to be the most important atmospheric oxidant, 

particularly during the daytime. However, the relative importance of Cl radical chemistry in the 

oxidation of VOCs has gained more attention in recent years. Recent observations of Cl-precursor 

compounds in mid-continental locations, far removed from the sea (historically thought to be the 

primary source of Cl radicals) has led to renewed interest (e.g. Thornton et al., 2010). Despite this, 

measurements of Cl + VOC rate coefficients remain relatively sparse compared with OH. 

Several methods have been used to monitor the reactions between VOCs and chlorine radicals 

(see Chapter 1 Section 1.4 for an overview of methods for measuring gas-phase rate coefficients). 

Some of the first measurements of the rates of reactions between Cl and VOCs were published in 

Pritchard et al. (1955). Cl was generated via the photolysis of Cl2 using a tungsten filament lamp. 

Rates for the reaction of Cl with methane and some short chain, branched and cyclic alkanes were 

measured relative to the rate of reaction between Cl and H2. Manning and Kurylo (1977) used 

flash photolysis to investigate the temperature dependencies of the reactions between Cl and 

some halogenated hydrocarbons. Cl was generated via the photolysis of CCl4, yielding initial Cl 

atom concentrations of approximately 1011 cm-3. A discharge flow technique was used by Lin et al. 

(1978) to measure the rate of reaction between Cl and methane. The decay of methane due to 

reaction with Cl was monitored using mass spectrometry. The relative rate method was employed 

by Atkinson and Aschmann (1985) to measure the rates of reaction between Cl and some alkenes 

and aromatic VOCs for the first time. A series of reactions between Cl and aldehydes were studied 

for the first time using the relative rate method by Rodríguez et al. (2005) whilst biogenic 

monoterpenes have been studied by Canosa-Mas et al. (1999), Finlayson-Pitts et al. (1999) and 

Timerghazin and Ariya (2001). The sources referenced here represent some of the first studies of 

their kind but are by no means a comprehensive review of Cl + VOC reaction rate measurements. 

Figure 5.14 shows rate coefficient values for VOC + Cl reactions (kCl) plotted against rate 

coefficient values for VOC + OH reactions (kOH). There is evidently a wide range in kCl:kOH ratios. 

Biogenic compounds (blue), which include isoprene and various monoterpenes, have Cl rate 

coefficients which are approximately five times greater than their OH counterparts. kCl values for 

the linear alkenes (red) are approximately 10 times greater than the same values for reactions 

with OH. The branched and cyclic alkenes (purple) have an average ratio somewhere between 

that for the linear alkenes and biogenics. The ratio for many of the smaller aromatics (benzene, 
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toluene, ethylbenzene and o- and p-xylene) is around an order of magnitude whilst the ratio for 

larger aromatics (m-xylene, styrene, 1,3,5-trimethylbenzene) is somewhat smaller, at 

approximately half that. The alkanes, both linear (yellow) and branched (green), react with Cl 

around 50 times faster than they do with OH; a significant difference. There are also some 

compounds, notably oxygenated VOCs such as acids, which react quicker with OH than Cl, but 

they are not shown here. 

 

Figure 5.14 kCl values plotted against kOH value for multiple VOC reactions. Linear and branched alkanes are 
shown in yellow and green respectively. Linear alkenes are shown in red, branched and cyclic alkenes are in 
purple and biogenic compounds (comprising mainly monoterpenes) are in blue. Aromatic VOCs are shown 
in black. 

Whilst Figure 5.14 demonstrates the stark contrast in the reactivity of OH and Cl radicals, 

particularly with respect towards alkanes, it does little to illustrate the relative importance of 

each radical. Cl is thought to be present in the troposphere in a much lower concentration than 

OH. OH is generally considered to have a daytime concentration of approximately 106 cm-3 (Krol et 

al., 1998). This concentration is a global average but, due to the nature of its formation OH is 

considered to be fairly ubiquitous throughout the troposphere. The sources of Cl radicals are not 

fully understood and hence the concentration of Cl in the troposphere is debated. The global 

average concentration in the marine boundary layer is estimated to be about 103 cm-3, three 

orders of magnitude lower than that for OH. However, reports of Cl concentrations near Texas, 

USA approaching 106 cm-3 have been made through measurements of ClNO2 concentrations 
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(Osthoff et al., 2008) and estimated concentrations of 0.6 to 4.7 × 104 cm-3 have been made on 

the island of Crete using NMHC ratios (Arsene et al., 2007). 

5.2.1   Control experiments 

Minor modifications were made to the equipment to allow for the measurement of VOC + Cl rate 

coefficients (see Chapter 2 Section 2.2.2). To ensure that these modifications had no impact on 

the experimental results, it was deemed necessary to run several control experiments in the 

absence of Cl2, the Cl atom precursor. These experiments were conducted using the large 

aromatics mixture described in Chapter 4 Section 4.1.2. 

The first of these experiments attempted to quantify the impact of extracting the excess Cl2 using 

the chemiresistant diaphragm pump. The large aromatics mixture was injected into the reactor at 

a constant flow of 400 sccm. Six samples were collected without the pump running and six 

samples were collected with the pump running. All other conditions were kept constant i.e. the 

lamp was kept off for all samples. Small depletions in the average peak areas, of up to 5%, were 

observed for 12 of the 13 VOCs when the pump was switched on, presumably due to a small drop 

in the pressure in the reactor. The peak areas for a single compound (1,2,3,5-

tetramethylbenzene) were the only ones to increase with the pump switched on. It is unknown 

why this might have occurred. The average depletion in each VOC with the pump on was 2.0% (± 

3%) when including 1,2,3,5-tetramethylbenzene, or 2.9% (± 1%) when excluding 1,2,3,5-

tetramethylbenzene. Fortunately, the depletions in the observed peak areas due to the inclusion 

of the pump should not affect the results of the relative rate experiment so long as all VOCs 

experience a consistent depletion from lamp-off to lamp-on samples. 

A second experiment was conducted to determine the effects of the 330 nm UV light on the VOCs 

in the large aromatics mixture. Four samples were collected with the lamp off and four with the 

lamp on. All other conditions were kept constant. Five compounds exhibited small increases in 

average peak area with the lamp on, whereas eight compounds experienced small decreases with 

the lamp on. The largest depletion in peak area, of 1.9%, was observed for m-xylene. The largest 

increase in peak area, of 2.4%, was observed for 1,2,3,5-tetramethylbenzene. The average change 

in peak area for a VOC was -0.1% (± 1%). This change was insignificant and was therefore unlikely 

to be a result of the photolytic effects of the lamp. Deviations of this amount were more likely to 

be due to small, random fluctuations that occurred during the sampling and subsequent analysis. 
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For this reason, the impact of 330 nm UV light on the concentrations of VOCs was assumed to be 

negligible. 

5.2.1.1 Cl2 chromatogram 

Figure 5.15 shows the TIC obtained when a flow of Cl2 (0.3 ppm) was injected into the reactor 

with the lamp off and in the absence of any VOCs. The large peak observed at approximately 3.5 

minutes was identified as Cl2. The smaller peaks for compounds that eluted after Cl2 were 

identified as; acetyl chloride (CH3COCl; 4.1 mins), acetic acid (CH3COOH; 4.7 mins), carbon 

tetrachloride (CCl4; 6.4 mins) and chloroacetyl chloride (CH2ClCOCl; 7.0 mins). These compounds 

may represent significant interferences for Cl atom exposure, if their rate coefficient for reaction 

with Cl are sufficiently high. 

The rate coefficient for reaction between Cl and acetic acid has been measured twice. IUPAC 

recommends a k value of 2.65 (+
- 11.

.
6
0) × 10-14 cm3 molecule-1 s-1 at 298 K for their reaction (Atkinson 

et al., 2006). Rate coefficients for the reaction between Cl and acetyl chloride, carbon 

tetrachloride (CCl4) and chloroacetyl chloride did not exist in the literature at the time of writing. 

However, the rates coefficients for the reactions between these compounds and OH had been 

measured. The rate coefficient for the OH + acetyl chloride reaction was recommended to be 1.7 

(+
- 

2
1) × 10-14 cm3 molecule-1 s-1 and that for the CCl4 + OH to be < 1 × 10-19 cm3 molecule-1 s-1 

(Atkinson et al., 2006). These values are many orders of magnitude smaller than the rate 

coefficients for the reaction between most VOCs and OH so it is unlikely that they will have a 

significant impact on the relative rate kinetics occurring within the reactor for Cl reactions. 
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Figure 5.15 TIC observed for a flow of Cl2 (0.3 ppm) in N2 injected into the reactor. The peaks were 
identified as molecular chlorine (Cl2), acetyl chloride (CH3COCl), acetic acid (CH3COOH), carbon tetrachloride 
(CCl4) and chloroacetyl chloride (CH2ClCOCl). 

5.2.1.2 Potential losses of VOCs due to Cl2 

Molecular chlorine (Cl2) was used as the precursor for the generation of Cl radicals. Cl2 was 

expected to be unreactive towards most VOCs (alkanes and aromatics) in the gas phase. The rate 

coefficient for the reaction between Cl2 and OH is several orders of magnitude less than those for 

reactions between OH and VOCs; k = 6.5 (+
- 11.

.
3
1) × 10-14 cm3 molecule-1 s-1 (Atkinson et al., 2006). In 

the atmosphere, photolysis, rather than chemical reaction, represents the major loss process for 

Cl2. 

Figure 5.16 shows the TICs obtained for the large aromatics mixture with Cl2 (red; 66 ppm) and 

without Cl2 (blue) in the reactor. In both cases, the lamp was kept off to prevent the generation of 

any radicals via photolysis. In the absence of atomic Cl radicals, and with the assumed non-

reactivity of gas-phase Cl2 towards VOCs, both chromatograms were expected to be essentially 

identical. This was clearly not the case. 
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Figure 5.16 TICs for the large aromatics mixture with Cl2 (red; 66 ppm) and without Cl2 (blue) in the reactor. See Table 5.5 for a list of peak identities. 
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In the case without Cl2 (blue), the peaks appearing earlier in the chromatograms were due to the 

VOCs included in the mixture. The peak at 9.7 mins was identified as benzoyl chloride; this was 

likely left over from the previous GC sample, shown by the red chromatogram. 

In the case with Cl2 (red), many of the peaks due to the large aromatic VOCs disappeared entirely, 

or were significantly reduced. The amount of reduction, or suppression, varied from compound to 

compound. The two xylenes showed the least amount of suppression, with o-xylene remaining 

largely unchanged upon addition of Cl2. α- and β-pinene were reduced almost entirely, so that 

their peaks were unidentifiable in the red chromatograph. Suppression occurred to a large extent 

for n-propylbenzene and the three trimethylbenzene isomers but less so for the three 

diethylbenzene isomers. The peak areas for the two tetramethylbenzene isomers were also 

significantly suppressed. 

New peaks were also present in the TIC obtained with Cl2 in the reactor. These peaks were 

identified as; 2-chloro-1,3-m-xylene ((CH3)2C6H3Cl; 9.4 mins), benzoyl chloride (C6H5COCl; 9.7 

mins), 5-chloro-m-xylene ((CH3)2C6H3Cl; 9.9 mins), benzoic acid ((C6H5COOH; 10.4 mins), 2-chloro-

1,3,5-trimethylbenzene, or isomers of C9H11Cl (11.2, 11.7, 11.8 and 12.5 mins) and 2-chloro-p-

cymene, or isomers of C10H13Cl (12.2, 12.3, 12.5 and 12.9 mins). Many of these compounds are 

aromatic in nature but also incorporate one, or more, chlorine atoms. This suggests that they 

were the products of some aromatic VOC + Cl reactions which were presumably also responsible 

for the observed suppression in the primary aromatic VOC’s peaks. 

As mentioned previously, Cl2 was expected to be generally unreactive towards the VOCs in the gas 

phase. It is therefore unlikely that gas phase VOC + Cl2 reactions were responsible for the 

formation of these products. In the absence of a photolytic source for Cl, the potential presence 

of these reactions therefore suggests an alternative mechanism may be resulting in the formation 

of Cl radicals within the reactor. 
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Table 5.5 List of compounds identified in the TICs obtained with and without Cl2 in the presence of the large 
aromatics mixture (see Figure 5.16). Compounds which are underlined were present in the synthetic large 
aromatics mixture standard (see Chapter 4 Section 4.1.2). 

Compound Retention time / mins Without Cl2 With Cl2 

m-xylene 6.9 Yes Yes 

o-xylene 7.2 Yes Yes 

octamethylcyclotetrasiloxane 7.5 Yes Yes 

α-pinene 7.7 Yes No 

propylbenzene 7.8 Yes Yes 

3-ethyltoluene 7.9 Yes Yes 

1,2,3-trimethylbenzene 8.0 Yes No 

β-pinene 8.3 Yes No 

1,2,4-trimethylbenzene 8.4 Yes Yes 

1,3,5-trimethylbenzene 8.8 Yes Yes 

1,3-diethylbenzene 9.0 Yes Yes 

1,4-diethylbenzene 9.2 Yes Yes 

1,2-diethylbenzene 9.3 Yes Yes 

2-chloro-m-xylene 9.4 No Yes 

benzoyl chloride 9.7 Yes Yes 

5-chloro-m-xylene 9.9 No Yes 

1,2,3,4-tetramethylbenzene 10.2 Yes No 

1,2,3,5-tetramethylbenzene 10.3 Yes No 

benzoic acid 10.4 No Yes 

n-pentylbenzene 10.8 Yes Yes 

C9H11Cl 11.2, 11.7, 11.8, 12.5 No Yes 

C10H13Cl 12.2, 12.3, 12.5, 12.9 No Yes 
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5.2.2   Cl mixture 1 

This mixture contained five VOCs, of which all had at least one k measurement available in the 

literature at the time of writing. All five VOCs were alkanes with between six and nine carbon 

atoms. The alkanes were; 2-methylpentane, n-hexane, n-octane, cyclooctane and n-nonane. Table 

5.6 gives a full list of the five alkanes in this mixture, along with the reference rate coefficient 

used. 

There was only a small range in Cl rate coefficients in this mixture. The estimated total Cl 

reactivity of this mixture at STP was 1400 s-1. The OH reactivity of the mixture was also estimated 

as 31 s-1, at STP. This large discrepancy in reactivity clearly highlights the disparity between alkane 

+ Cl and alkane + OH reactivity. This mixture was diluted with N2 in a ratio of approximately 1:60, 

to yield an estimated Cl reactivity in the reactor of 23 s-1 (OH reactivity of 0.5 s-1). Different flows 

of Cl2 were injected into the reactor to vary the number of radicals available for reaction with the 

VOCs; these flows resulted in estimated Cl2 concentrations in the reactor of between 30 and 100 

ppm. 

Table 5.6 List of VOCs, in descending order of evaluated literature k value, in Cl mixture 1 along with their 
literature k value used as a reference and the total number of measurements found in the literature at the 
time of writing. 

Name 
Reference literature 
k (298 K) / 10-12 cm3 

molecule-1 s-1 
Reference used 

Number of 
literature 

measurements 

Cyclooctane 457 ± 15 Aschmann and Atkinson, 2012 2 

n-nonane 453 ± 28 Aschmann and Atkinson, 1995 1 

n-octane 428 ± 26 Aschmann and Atkinson, 1995 3 

n-hexane 316 ± 10 Aschmann and Atkinson, 1995 3 

2-methylpentane 264 ± 11 Aschmann and Atkinson, 1995 2 
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5.2.2.1 Typical chromatogram data 

Figure 5.17 shows sections of typical TICs obtained for this mixture with the reactor lamp turned 

off (blue) and the reactor lamp turned on (black). There is a clear reduction in the peak area for 

the two compounds shown (n-nonane and cyclooctane) when the lamp is switched on. 

 

Figure 5.17 Typical TIC sections obtained for Cl mixture 1 with the lamp turned off (blue) and the lamp 
turned on (black). Greater differences in peak areas were observed for VOCs which have a larger rate 
coefficient for their reaction with Cl. Literature rate coefficients (in units of 10-12 cm3 molecule-1 s-1) for 
these alkane + OH reactions are: n-nonane, 453 (± 28); cyclooctane, 457 (± 15) (see Table 5.6). 
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5.2.2.2 Relative rate plots 

Figure 5.18 shows the relative rate plot for this mixture with an estimated Cl2 concentration in the 

reactor of 60 ppm. There was a clear linear correlation between the extent of depletion and the 

literature k value for each VOC. VOCs with a larger rate coefficient were observed to deplete 

more than VOCs with a smaller rate coefficient for reaction with Cl. The Clexp obtained using 

weighted linear regression had a value of 0.5 (± 0.04) × 109 molecules cm-3 s. The R2 value for the 

fit was 0.96. 

Figure 5.19 illustrates that similar trends were observed for this mixture when using different Cl2 

concentrations. For estimated Cl2 concentrations of 30, 33 and 100 ppm, the Clexp values were 1.0 

(± 0.2), 0.4 (± 0.2) and 0.6 (± 0.1) × 109 molecules cm-3 s respectively. The R2 values of the linear 

fits were 0.83, 0.69 and 0.91 respectively. 

Figure 5.19 also shows the relative rate plot for this mixture with a Cl2 concentration in the 

reactor of 67 ppm. There was only a small increase in depletion factor with increasing k value 

observed at this Cl2 concentration. The weighted linear regression at this Cl2 concentration was 

therefore almost flat, with a calculated slope of 0.14 (± 0.12) × 109 molecules cm-3 s. It was still 

possible to extract relative rate data from this plot but the uncertainties in the estimated relative 

rate k values were much larger. 

Whilst many of the measurements for this mixture gave results with a reasonably well-defined 

relationship between depletion factors and k values across the range of Cl reactivities tested, the 

limited range in VOC + Cl reactions meant that the relationship across a broader range of 

reactivities was not evaluated. Results earlier in this work have shown that the relationship 

between depletion factor and k value may not always be linear, especially over large reactivity 

ranges and when involving relatively fast reactions. In the absence of measurements for VOC + Cl 

reactions with k < 200 × 10-12 cm3 molecule-1 s-1, it was impossible to determine if the broader 

relationship was linear or curved.
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Figure 5.18 Relative rate plot for Cl mixture 1 with a Cl reactivity of 23 s-1 and Cl2 (60 ppm) injected into the reactor, at 295 K. Compounds with a reference rate coefficient for reaction 
with Cl were plotted using literature values as references. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for four 
lamp-off and four lamp-on samples. Error bars on the x-axis were typically large and accounted for deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-values) 
linear fit was used to generate the slope, with a value of Clexp = 0.5 (± 0.04) × 109 molecules cm-3 s and R2 = 0.96. The VOCs can be identified as follows; 1, 2-methylpentane; 2, n-hexane; 
3, n-octane; 4, n-nonane; 5, cyclooctane.  
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Figure 5.19 Relative rate plots for Cl mixture 1 with a Cl reactivity of 23 s-1 and estimated [Cl2] of 30, 33, 67 

and 100 ppm. The R2 values for the weighted linear fits were 0.83, 0.69, 0.09 and 0.91 respectively. The 
values of Clexp were 1.0 (± 0.2), 0.4 (± 0 2), 0.14 (± 0.12) and 0.6 (± 0.1) × 109 molecules cm-3 s respectively. 
Error bars on the x-axis are not shown for reasons of clarity. 
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5.2.2.3 Calculation of rate coefficients 

Rate coefficients for reaction with Cl for each of the VOCs in the mixture, relative to each of the 

other VOC + Cl reactions, were calculated using Eq. 2.30 and the Clexp values approximated using 

linear regression. This was performed atr each of the different Cl2 concentrations injected into the 

reactor. An average value, weighted to the uncertainties, was then calculated, resulting in a single 

rate coefficient for each VOC + Cl reaction, relative to all the others. The final results are given 

inTable 5.7, along with the literature reference k values used. 

Table 5.7 List of VOCs, in descending order of literature k value, in Cl mixture 1 along with their range of 
depletion due to reaction with Cl, measured k value and literature k value used as a reference. 

Name 
Range of 

depletion / % 
Measured k (295 K) / 

10-12 cm3 molecule-1 s-1 
Literature k / 10-12 cm3 

molecule-1 s-1 

cyclooctane 23 - 42 496 ± 41 457 ± 15 

n-nonane 23 - 40 443 ± 21 453 ± 28 

n-octane 19 - 38 430 ± 34 428 ± 26 

n-hexane 13 - 34 316 ± 29 316 ± 10 

2-methylpentane 8 - 34 262 ± 39 264 ± 11 

The measured k values for all the VOC + Cl reactions were in good agreement with the literature 

reference values used. 

5.2.2.4 Comparisons to the literature 

In terms of other literature results, the measurement for the 2-methylpentane + Cl reaction in this 

work was in excellent agreement with the measurement by Hooshiyar and Niki (1995), of 258 (± 

8) × 10-12 cm3 molecule-1 s-1. The measurement for the n-hexane + Cl reaction also agreed well 

with previous measurements by Atkinson and Arey (1985) and Hooshiyar and Niki (1995). 

However, the measurement for the cyclooctane + Cl reaction was in poor agreement with that by 

Aranda et al. (2007), who reported a k value for that reaction of 263 (± 54) × 10-12 cm3 molecule-1 

s-1. The measurement for n-octane + Cl was also in somewhat poor agreement with another 

recent measurement by Li and Piresteh (2006), of 322 (± 36) × 10-12 cm3 molecule-1 s-1 but agreed 

well with the measurement in Hooshiyar and Niki (1995), of 409 (± 12) × 10-12 cm3 molecule-1 s-1. 
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5.2.3   Cl mixture 2 

This mixture contained seven VOCs, of which all but one had at least one k measurement 

available in the literature at the time of writing. Five of the VOCs were alkanes with between six 

and nine carbon atoms; 2-methylpentane, n-octane, cyclooctane, 2-methylheptane and n-

nonane. Two of the VOCs were simple alkyl substituted aromatic compounds (toluene and 

ethylbenzene). Table 5.8gives a full list of the VOCs in this mixture, along with the reference rate 

coefficients used. 

There was a larger range in Cl rate coefficient in this mixture, when compared with the pure 

alkanes mixture in Section 5.2.2. The addition of two aromatic compounds to the mixture, with k 

values for reaction with Cl of less than 150 × 10-12 cm3 molecule-1 s-1, allowed for a broader 

evaluation of the relationship between depletion factor and rate coefficient. The estimated total 

Cl reactivity of this mixture, excluding the compound with an unknown k value, was 

approximately 1600 s-1 at STP. The OH reactivity of the mixture was also estimated to be 61 s-1 at 

STP. This mixture was diluted with N2 in a ratio of approximately 1:60, to yield an estimated Cl 

reactivity of 27 s-1 (OH reactivity of 1.0 s-1) in the reactor. Different flows of Cl2 were injected into 

the reactor to vary the number of radicals available for reaction with the VOCs; these flows 

resulted in estimated Cl2 concentrations in the reactor of between 50 and 300 ppm. 

Table 5.8 List of VOCs, in descending order of literature k value, in Cl mixture 2 along with their literature k 
value used as a reference and the total number of measurements found in the literature at the time of 
writing. 

Name 
Reference literature 
k (298 K) / 10-12 cm3 

molecule-1 s-1 
Reference used 

Number of 
literature 

measurements 

Cyclooctane 457 ± 15 Aschmann and Atkinson, 2012 2 

n-nonane 453 ± 28 Aschmann and Atkinson, 1995 1 

n-octane 428 ± 26 Aschmann and Atkinson, 1995 3 

2-methylpentane 264 ± 11 Aschmann and Atkinson, 1995 2 

Ethylbenzene 115 ± 4 Anderson et al., 2007 1 

Toluene 61 ± 1.1 Atkinson and Aschmann, 1985 4 

2-methylheptane   0 
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5.2.3.1 Relative rate plots 

Figure 5.21 shows a relative rate plot for this mixture when using 300 ppm Cl2. The figure shows 

that there was a linear correlation between the depletion factors for each compound due to 

reaction with Cl and the reference rate coefficients used. Unlike the first Cl mixture, where there 

were no data below 200 × 10-12 cm3 molecule-1 s-1, this mixture contained two aromatic 

compounds with reference k values of 61 (± 1.1) and 115 (± 4) × 10-12 cm3 molecule-1 s-1. The 

depletion factors in both aromatic VOCs were related linearly to the depletions in the faster 

reacting alkanes, confirming that a linear relationship between depletion factor and k was 

observed across the reactivity spectrum, as opposed to a potential curved relationship. The Clexp 

of the mixture, using 300 ppm of Cl2, was 1.1 (± 0.1) × 109 molecules cm-3 s. The R2 value was 0.97. 

Similar trends were observed when using Cl2 with concentrations of 50, 75, 100 and 150 ppm. 

Relative rate plots for these Cl2 concentrations are shown in Figure 5.20. The Clexp at these 

concentrations were 0.3 (± 0.1), 0.5 (± 0.1), 0.7 (± 0.1) and 0.2 (± 0.1), with R2 values of 0.54, 0.76, 

0.93 and 0.21 respectively. 

 

Figure 5.20 Relative rate plots for Cl mixture 2 with a Cl reactivity of 27 s-1 and estimated [Cl2] of 50, 75, 100 

and 150 ppm. The R2 values for the weighted linear fits were 0.54, 0.76, 0.93 and 0.21 respectively. The 
values of Clexp were 0.3 (± 0.1), 0.5 (± 0 1), 0.7 (± 0.1) and 0.2 (± 0.1) × 109 molecules cm-3 s respectively. 
Error bars on the x-axis are not shown for reasons of clarity.
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Figure 5.21 Relative rate plot for Cl mixture 2 with a Cl reactivity of 27 s-1 and Cl2 (300 ppm) injected into the reactor, at 295 K. Compounds with a reference rate coefficient for reaction 
with Cl were plotted using literature values as references. Error bars on the y-axis, equal to one standard error, were calculated by combining the standard error in peak areas for four 
lamp-off and four lamp-on samples. Error bars on the x-axis were typically large and accounted for deviations from the trend for all VOCs. A weighted (to the uncertainty in the y-values) 
linear fit was used to generate the slope, with a value of Clexp = 1.1 (± 0.1) × 109 molecules cm-3 s and R2 = 0.97. The VOCs can be identified as follows; 1, toluene; 2, ethylbenzene; 3, 2-
methylpentane; 4, n-octane; 5, n-nonane; 6, cyclooctane. 
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5.2.3.2 Calculation of rate coefficients 

It was possible to calculate measured k values for the compounds in this mixture using their 

depletion factors and the measured Clexp, derived from the weighted linear fits. This calculation 

was performed for each Cl2 concentration before a weighted average of the five derived rate 

coefficients was used to result in a final experimental value for each VOC + Cl reaction. These 

values are shown in Table 5.9. 

Table 5.9 List of VOCs, in descending order of literature k value, in Cl mixture 2 along with their range of 
depletion due to reaction with Cl, measured k value and literature k value used as a reference. 

Name 
Range of 

depletion / % 
Measured k (295 K) / 10-12 

cm3 molecule-1 s-1 
Literature k / 10-12 
cm3 molecule-1 s-1 

cyclooctane 16 - 44 410 ± 51 457 ± 15 

n-nonane 18 - 45 442 ± 27 453 ± 28 

n-octane 9 - 46 455 ± 76 428 ± 26 

2-methylpentane 13 - 39 339 ± 42 264 ± 11 

ethylbenzene 6 - 22 96 ± 96 115 ± 4.0 

toluene 0 - 22 49 ± 24 61 ± 1.12 

2-methylheptane 9 - 45 426 ± 77  

The results for five of the six VOC + Cl reactions were in agreement with the literature, within 

errors. 

5.2.3.4 Comparisons to the literature 

The measured k value for toluene was in excellent agreement with the literature, although it did 

have a much larger uncertainty placed upon it. Other k values for the toluene + Cl reaction have 

been measured to be 59 (± 5), 56 and 55.7 (± 1.5) × 10-12 cm3 molecule-1 s-1 (Shi and Bernhard, 

1997; Fantechi et al., 1998; Ryzhkov et al., 2008). These are all in good agreement with that 

measured in this work. 

The measured value for the Cl + ethylbenzene was also in good agreement with its reference 

literature counterpart. However, the measured value in this work had a large uncertainty placed 

upon it. The literature measurement, provided by Anderson et al. (2007), was the only previous 

measurement of the rate coefficient for this reaction at the time of writing. 
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Measured values for the reactions of the four alkanes (2-methylpentane, cyclooctane, n-octane 

and n-nonane) with Cl, were compared with the literature previously. However, the values 

derived using this mixture differed for some compounds to those derived earlier. All results were 

in agreement within errors but the k value for the 2-methylpentane + Cl reaction was 

approximately 30 % larger than that derived in the previous mixture and was therefore in poor 

agreement with the reference literature value. The value for the cyclooctane + Cl reaction was 

also almost 25 % smaller than the value measured previously (of 496 (± 41) × 10-12 cm3 molecule-1 

s-1). The results for the linear n-alkanes in the two mixtures were in excellent agreement however. 

5.2.3.3 Determination of a new rate coefficient for the 2-methylheptane + Cl reaction 

2-methylheptane had no recorded rate coefficient for its reaction with Cl in the literature at the 

time of writing. The measurement provided in this work, of 426 (± 77) × 10-12 cm3 molecule-1 s-1 

therefore represents the first experimental measurement of its kind. 

Several structure activity relationships (SARs) for estimating the rate coefficient for reaction 

between alkanes and Cl exist in the literature. Estimated k values for the 2-methylheptane + Cl 

reaction are 410, 416, 398 and 407 × 10-12 cm3 molecule-1 s-1 for the SARs provided by Aschmann 

and Atkinson (1995, 2012), Hooshiyar and Niki (1995), Tyndall et al. (1997) and Qian et al. (2002). 

The SAR provided in Aschmann and Atkinson (2012) was an update to that published in Aschmann 

and Atkinson (1995) in which the rate coefficients were updated relative to kn-butane+Cl = 2.05 × 10-10 

cm3 molecule-1 s-1. The same update of reference values was applied to the rate coefficients used 

to derive the SARs provided in the other works, in order to make a fair comparison. 

In all cases, the SARs estimated a slightly smaller rate coefficient than that measured 

experimentally for the Cl + 2-methylheptane reaction. However, the uncertainty placed upon the 

measured value meant that it did not differ significantly from the SAR estimated values. Figure 

5.22 shows experimentally derived k values, alongside theoretical SAR derived k values, for a 

homologous series of 2-methylalkanes with between four and eight total carbon atoms. All four 

SARs were able to reproduce the measured values across the series exceptionally well. The only 

experimental k value that did not fit the anticipated trend was that observed for the 2-

methylpentane + Cl reaction as part of this mixture. The result obtained for 2-methylpentane + Cl 

in the previous mixture was in excellent agreement with all other data, however. 
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Figure 5.22 Experimentally derived (data points) and predicted SAR derived (lines) k values for the 
homologous series of 2-methylalkane + Cl reactions. Data from this study are shown in green and were in 
good agreement with both previous experimentally measured values and theoretical predictions. 

  

4 5 6 7 8

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Carbon number

k 
/ 

1
0

 c
m

 m
o

le
c
u

le
 s

-1
2

3
-1

-1 Aschmann and Atkinson, 1995

Hooshiyar and Niki, 1995

Lewis et al., 2009 

This work

Hooshiyar and Niki, 1995

Tyndall et al., 1997
Qian et al., 2002
Aschmann and Atkinson, 2012



 
Chapter 5  Kinetic studies of alkane oxidation reactions 
 

284 

 

5.2.4   Numerical simulations 

Numerical simulations were used to complement the experimental studies and to further aid in 

the comprehension of the experimental results. Most of the simulations were performed using 

Kintecus V5.20 (Ianni, 2017; http://kintecus.com/). 

5.2.4.1 Estimated Cl concentration and Cl2 to Cl conversion 

The concentration of Cl in the reactor was approximated by summing the losses in all the VOCs in 

the mixture. As previously, when estimating [OH] in the reactor (see Chapter 3 Section 3.2.1 for 

more information), a few assumptions were made for this method to generate an estimate of the 

[Cl] available for reaction. First, it was assumed that all the Cl atoms reacted only with VOCs i.e. 

no other reactions took place. This was unlikely to be true however, as the Cl + Cl recombination 

reaction (R. 5.1) was likely to occur, with an approximate second-order rate coefficient at room 

temperature and close-to-atmospheric pressure, of k = 1.7 (± 0.2) × 10-13 cm3 molecule-1 s-1 

(Donohoue et al., 2005). The measured peak area of each VOC with the lamp off was also 

assumed to be representative of its anticipated concentration in the reactor. This assumption 

should be correct if the estimated concentration of the VOCs in the cylinder, and therefore the 

reactor, were accurate. 

 Cl + Cl + M  Cl2 + M        R. 5.1 

Figure 5.23 shows the relationship between the estimated [Cl] and approximate [Cl2] in the 

reactor for the two mixtures tested. There was a distinct linear relationship for each mixture; as 

the amount of Cl2 in the reactor increased, the estimated concentration of Cl radicals also 

increased. However, there did appear to be a discrepancy between the two mixtures; there was 

an apparently greater yield in Cl for Cl mixture 1 relative to Cl mixture 2 when using the same 

concentrations of Cl2. It’s possible that the difference in the Cl reactivity of the mixtures was the 

cause of this; a mixture with a higher reactivity towards Cl will typically reduce the amount of Cl-

Cl recombination reactions taking place. 

http://kintecus.com/
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Figure 5.23 The estimated concentrations of Cl radicals resulting from the photolysis of different 
concentrations of Cl2 injected into the reactor. 

The concentration of Cl in the reactor ranged from approximately 1.0 × 1010 molecules cm-3, when 

[Cl2] = 30 ppm, to approximately 3.2 × 1010 molecules cm-3, when [Cl2] = 300 ppm. This radical 

concentration was somewhat lower than the estimated concentration of OH, which was 

approximated to be on the order of 1011 molecules cm-3 depending on the OH reactivity of the 

mixture used (see Chapter 3 Section 3.2.1). The average yield of Cl, in units of Cl atoms per million 

Cl2 molecules, was 12 (± 0.7) and 6.6 (± 0.4) for the mixture 1 and 2 respectively. 
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Conclusions 

The multivariate relative rate technique was successfully adapted to allow for the measurement 

of rate coefficients for VOC + OH reactions at carefully controlled temperatures. A mixture 

containing a series of alkanes was used to test the new apparatus. Results for this mixture at 

room temperature were in exceptional agreement with the available evaluated literature rate 

coefficients used as references for 9 alkane + OH reactions. The room temperature measurements 

of the reactions of 2-methylheptane, 2-methylnonane and ethylcyclohexane with OH represented 

the first measurements of their kind at the time of writing. 

Relative rate measurements of the rate coefficients at elevated temperatures were less 

convincing. Whilst Arrhenius parameters were derived for the reaction of all 12 compounds with 

OH across the range of temperatures explored (290 – 470 K), much of the data were subject to 

significant scatter. However, for alkane + OH reactions with more comprehensive temperature 

dependent studies, the Arrhenius parameters derived in this work were in good agreement with 

those derived elsewhere. It is therefore suggested that the multivariate relative rate technique is 

better suited for the assessment of existing Arrhenius parameters, rather than for the derivation 

of new Arrhenius parameters, for which a more precise technique may be more applicable. 

The multivariate relative rate technique was also successfully adapted to accommodate Cl radical 

reaction rate coefficient measurements. Two mixtures, comprising mainly alkanes alongside some 

aromatic VOCs, were tested with the Cl experimental method at room temperature. Most of the 

results for VOC + Cl reactions were in good agreement with the literature, although the extent of 

literature available to use as references was limited. A new rate coefficient for the 2-

methylheptane + Cl reaction, of 426 (± 77) × 10-12 cm3 molecule-1 s-1, was derived for the first time. 

Experiments involving Cl were potentially complicated by the observed interaction of the Cl 

radical precursor, Cl2, with the VOCs. The mechanism by which Cl2 interacted with VOCs was not 

explored but was identified as a potential source of interference if it could not be accounted for. 
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Concluding remarks 
The multivariate relative rate technique has been used to assess existing, and determine novel, 

rate coefficients for multiple gas-phase reactions between atmospheric VOCs and radicals. 

Throughout this body of work, various synthetic mixtures containing a large array of different 

VOCs and different organic functionalities were evaluated using this method. In most cases, the 

derived results were in excellent agreement with the evaluated literature rate coefficients used as 

references. Novel rate coefficients for the reactions of eight VOCs with OH, and for the reaction of 

a single compound with Cl, were derived using a suite of the kinetic literature as a reference. 

Table 6.1 provides a summary of the measured results for all VOC + OH reactions explored in this 

work, allowing for an inter-comparison of values for the same reactions that were tested across 

different synthetic gas mixtures. 

The technique was used across a wide variety of conditions. Deviations from the expected linear 

relationship between depletion factor and k value were observed for low reactivity mixtures 

containing fast reacting compounds. This experimental artefact was examined and accounted for 

using both mathematical theory and numerical simulations. Low reactivity mixtures containing 

compounds which react relatively slowly with OH were also observed to yield small depletions in 

VOC concentrations due to a competitive OH sink to HO2. The HO2 problem was alleviated via the 

addition of NO, which was shown to improve the observed depletion factors for low reactivity 

samples containing these slow reacting compounds. The multivariate technique was also tested 

across a range of temperatures, and, whilst the results weren’t always ideal, the temperature 

dependence of several alkane + OH reactions was measured for the first time. The large 



 
  Concluding remarks 
 

294 

 

uncertainty placed upon many of the newly derived Arrhenius parameters suggested that the 

multivariate technique is not suitable for the measurement of temperature dependent rate 

coefficients, particularly when many compounds do not have suitable reference values at 

elevated temperatures. 

The technique described and evaluated in this work holds a huge potential for future 

measurements of gas-phase rate coefficients. This technique succeeds where the traditional 

relative rate technique fails; in the throughput of target reactions. The rate at which new rate 

coefficient results can be obtained and evaluated using this technique is its major advantage, 

especially when faced with the vast number of reactive species that have been observed to exist 

in the atmosphere. Whilst structure-activity relationships provide useful estimations of rate 

coefficient values, this technique is capable of rapidly generating experimental results for 

homologous series of compounds. This would be incredibly useful for SAR validation, 

development and improvement. 

Future work using this technique could take a number of directions. Perhaps, most simply, it could 

be used to examine the kinetics of mixtures containing similar species to those measured here; 

for example, more diverse and branched alkanes and alkenes, different monoterpenes, or larger 

and more complicated alkyl substituted aromatic compounds. However, atmospheric VOCs are 

not limited to this range of compounds; a vast array of different functionalities have been 

detected in the atmosphere. This technique could therefore also be applied to the measurements 

of rate coefficients for reactions of oxygenated VOCs, of which there are many types, both 

aliphatic and aromatic. Measuring compounds with yet more functionalities may also be possible, 

for example, compounds that contain nitrogen or chlorine or bromine. The technique is also 

unlikely to be limited to using GC-MS as the method of detection. Using a different method of 

detection, such as PTR-MS or SIFT-MS, could be particularly useful for those compounds which 

are poorly resolved using traditional GC-MS techniques. 

Beyond this, the multivariate relative rate technique could be used for reactions with other 

radicals and atmospheric oxidants. This work has already shown that it can be applied to reactions 

involving Cl, although those experiments were limited in scope. Utilising the NO3 radical is also a 

big possibility. Kinetics for both Cl and NO3 have been less extensively measured than those for 

OH. This is both advantageous, in that many results would be novel, but problematic, in that a 

smaller suite of suitable reference reactions exist. 
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Table 6.1 Summary of all measured rate coefficients for VOC + OH reactions from all mixtures. 

Name 

Measured k (297 (± 2) K) / 10-12 cm3 molecule-1 s-1 

Monoterpenes 
mixture 1 

Monoterpenes 
mixture 2 

Alkenes 
mixture 

Aromatics 
mixture 1 

Aromatics 
mixture 2 

Alkanes 
mixture 

Evaluated 
literature 

α-terpinene   348 ± 22      350 (+
- 751

9) 

α-phellandrene   269 ± 21      320 (+
- 655

4) 

β-ocimene 223 ± 10       245 ± 49 

terpinolene   198 ± 23      220 (+
- 961

4) 

myrcene 204 ± 8       209 ± 42 

β-phellandrene   270 ± 30      170 (+
- 750

0) 

γ-terpinene 207 ± 6 221 ± 19      170 (+
- 434

5) 

limonene 152 ± 4 176 ± 19      170 ± 51 

isoprene 104 ± 6 119 ± 36 103 ± 5  102 ± 4   100 (+
- 115

3) 

3-carene 97 ± 4       85 ± 17 

β-pinene 78 ± 11 59 ± 9 75 ± 12  74 ± 8   79 ± 20 

cycloheptene    74 ± 10     74 ± 10 

cyclohexene    71 ± 4     68 ± 17 

cyclopentene    69 ± 9     67 ± 23 

1,2,3,5-tetramethylbenzene      
62 ± 9   62.4 ± 0.8 

1,3,5-trimethylbenzene      
60 ± 5   57 ± 11 
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Name 

Measured k (297 (± 2) K) / 10-12 cm3 molecule-1 s-1 

Monoterpenes 
mixture 1 

Monoterpenes 
mixture 2 

Alkenes 
mixture 

Aromatics 
mixture 1 

Aromatics 
mixture 2 

Alkanes 
mixture 

Evaluated 
literature 

1,2,4,5-tetramethylbenzene     59 ± 12  55.5 ± 3.4 

α-pinene 56 ± 6 50 ± 3 53 ± 4  53 ± 8  53 (+
- 212

5) 

camphene  61 ± 5     53 ± 11 

1-nonene   41 ± 3    43.2 ± 0.5 

1-octene   44 ± 5    41.4 ± 0.8 

1-heptene   36 ± 4    40 ± 12 

1-hexene   46 ± 12    37 ± 11 

1,2,3-trimethylbenzene     38 ± 4  33 ± 8 

1,2,4-trimethylbenzene  39 ± 6   34 ± 3  33 ± 8 

m-xylene 22 ± 6 23 ± 4  20 ± 1.3 21 ± 3  23 ± 4 

3-ethyltoluene    19 ± 1.0   19 ± 7 

cyclooctane      13.7 ± 0.3 13 ± 7 

o-xylene 5 ± 7   12 ± 0.6 10 ± 4  13 ± 3 

2-ethyltoluene    13 ± 0.06   12 ± 4 

4-ethyltoluene    14 ± 1.2   12 ± 4 

cycloheptane      11.4 ± 0.3 12 ± 3 

n-undecane      12.3 ± 0.3 12 ± 2 

n-decane      10.3 ± 0.3 11 ± 2 

n-nonane      11.0 ± 0.3 10 ± 2 
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Name 

Measured k (297 (± 2) K) / 10-12 cm3 molecule-1 s-1 

Monoterpenes 
mixture 1 

Monoterpenes 
mixture 2 

Alkenes 
mixture 

Aromatics 
mixture 1 

Aromatics 
mixture 2 

Alkanes 
mixture 

Evaluated 
literature 

n-octane      8.8 ± 0.3 8 ± 2 

ethylbenzene    6.7 ± 0.5   7.0 ± 2 

isopropylbenzene    6.5 ± 0.6   6.3 ± 2 

n-propylbenzene    7.4 ± 1.5   5.8 ± 1.5 

toluene    7.3 ± 2   5.6 (+
- 11.

.
5
2) 

2-methylpentane      4.6 ± 0.3 5.2 ± 1.3 

3-methylpentane      5.3 ± 0.3 5.2 ± 1.3 

t-butylbenzene    3.1 ± 0.7   4.5 ± 2 

2,2,3-trimethylbutane      3.9 ± 0.3 3.8 ± 1.0 

1,2-diethylbenzene     < 30   

1,3-diethylbenzene     < 30   

1,4-diethylbenzene     < 30   

2-methylheptane      9.1 ± 0.3  

2-methynonane      11.0 ± 0.3  

2,3-dimethylpent-1-ene   57 ± 3     

ethylcyclohexane      14.4 ± 0.3  

n-pentylbenzene    1.2 ± 4    
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Abbreviations 
CI Chemical ionisation 

CIA Canister interface accessory 

CFC Chlorofluorocarbon 

DCM Dichloromethane 

DRS Diffuse reflectance spectroscopy 

EI Electron ionisation 

EIC Extracted ion chromatogram 

FID Flame ionisation detector 

FTIR Fourier-transform infrared (spectroscopy) 

GC Gas chromatography 

HCFC Hydrochlorofluorocarbon 

ID Internal diameter 

IUPAC International Union of Pure and Applied Chemistry 

IVOC Intermediate volatility organic compound(s) 

LIF Laser-induced fluorescence 

MALDI Matrix assisted laser desorption ionisation 

MCM Master chemical mechanism 

MFC Mass flow controller 

MS Mass spectrometry 

MVK Methyl vinyl ketone 

NMHC Non-methane hydrocarbon 

OH Hydroxyl radical 

OHexp OH exposure 

PID Proportional-integral-derivative 

PM Particulate matter 

POCP Photochemical ozone creation potential 

PTR-MS Proton-transfer reaction mass spectrometry 

SAR Structure-activity relationship 

sccm Standard cubic centimetre(s) per minute (cm3 min-1) 
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SIFT-MS Selected ion flow tube mass spectrometry 

slm Standard litre(s) per minute 

SOA Secondary organic aerosol 

STEL Short-term exposure limit 

STP Standard temperature and pressure 

TIC Total ion chromatogram 

ToF-MS Time-of-flight mass spectrometry 

TDU Thermal desorption unit 

VOC Volatile organic compound 

VUV Vacuum ultraviolet 

 


