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Abstract  

Osteosarcoma is the most prevalent malignant primary bone tumour and mainly 

affects children and adolescents. Since the introduction of chemotherapy the survival 

rate for osteosarcoma patients has not improved, implicating the need for new 

therapeutic targets. Semaphorin 3A (Sema3A), a secreted member of the 

Semaphorin family, is essential for bone metabolism and plays an important role in 

the regulation of tumorigenesis and metastasis, but its function in osteosarcoma 

remains unknown. The aim of this thesis was to study the effects of human 

recombinant Sema3A and Sema3A overexpression on tumour growth, metastasis, 

osteosarcoma-associated bone damage and ectopic bone formation in preclinical 

models of human osteosarcoma. 

Exposure to recombinant Sema3A enhanced alkaline phosphatase activity in a panel 

of osteosarcoma cell lines and inhibited their migration without affecting cell 

viability in vitro. Administration of exogenous Sema3A in mice increased bone 

volume in the healthy and osteosarcoma-bearing legs these effects were 

accompanied with a trend towards more osteoblasts and less osteoclasts. Sema3A 

overexpression reduced viability, migration and invasion of KHOS cells in vitro 

however, both overexpression and administration of recombinant Sema3A had no 

effect on tumour growth. Surprisingly, overexpression of Sema3A reduced ectopic 

bone formation. Continuous exposure of osteoblasts to conditioned medium from 

Sema3A overexpressing cells inhibited mineralization and Wnt/β-catenin signalling 

without affecting osteoblast viability. This effect may be partially explained by the 

upregulated expression of DKK1 in Sema3A overexpressing KHOS cells. 

In conclusion, these studies suggest that Sema3A acts as a tumour inhibitor on 

osteosarcoma in vitro. Administration of recombinant Sema3A partially protected 

the bone from osteosarcoma-associated osteolysis. In contrast, Sema3A 

overexpression reduced osteosarcoma-associated ectopic bone formation in mice. 

Thus, Sema3A is of potential therapeutic efficacy in osteosarcoma-associated bone 

damage. However, inhibition of bone formation associated with continuous exposure 

to Sema3A may limit its long-term use as therapeutic agent in osteolytic bone 

diseases.   
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Graphical abstract 

 

Schematic  representation of the role of Sema3A in osteosarcoma-bone cell interactions. 

Exogenous Sema3A increased osteoblast and osteosarcoma alkaline phosphatase activity, reduced migration in vitro and enhanced bone volume in mice. Osteosarcoma-derived Sema3A 

reduced migration invasion and osteosarcoma cell viability in vitro and reduced ectopic bone formation. For a detailed description see results chapter 3-7. 
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1 Introduction 

1.1 Bone 

Bone is a highly dynamic tissue that together with cartilage and the joints comprises 

the skeleton. Bone has several functions, including providing the support and 

protection of organs (J.Favus, 2006, Lerner, 2006). Furthermore, bone acts as mineral 

storage for calcium and phosphorus thereby serving a metabolic function for the 

maintenance of mineral homeostasis in the serum (Hadjidakis and Androulakis, 2006).  

Bones are categorized in roughly two main categories, depending on their shape and 

mechanism of development. Flat bones such as the skull, mandible and sternum are 

formed by intramembranous ossification.  The long bones such as the femur are 

formed by a combination of intramembranous ossification and endochondral 

ossification. The long bones have a cylindrical shape and are composed of a hollow 

shaft, the diaphysis which contains the bone marrow, the two metaphysis containing 

the growth plate and the two epiphysis which are the rounded ends of the long bone. 

The diaphysis is primarily composed of dense cortical bones whereas the metaphysis 

and epiphysis are mostly composed of an intricate trabecular network  (Clarke, 2008, 

J.Favus, 2006).  

Bone is comprised of two structural components; the cortical and cancellous bone. 

The skeleton consists of 20% cancellous (trabecular bone) and 80% cortical bone. 

Cortical bone is the dense outer layer of bone that functions mainly as protection, 

offers strength to the skeleton and has a low bone turnover rate. Cortical bone is 

organized in osteons (haversian system) that contain a central canal that 

accommodates the blood and nerve vessels surrounded by concentric lamellae Figure 

1.1 (J.Favus, 2006, Clarke, 2008).  The framework of trabecular bone provides 

mechanical strength to the bone. The trabecular component is highly metabolically 

active with a high bone turnover rate acting as a mineral reservoir. Trabecular bone 

structure is similar to cortical bone structure in that trabecular bone also contains 

osteons but the lamellae run parallel to each other instead of in concentric orientation 

(J.Favus, 2006, Hadjidakis and Androulakis, 2006). 
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Figure 1.1. Structure of bone 

The general structure of bone showing the osteons containing the blood and lymphatic vessels 

surrounded by concentric lamellae. Adapted from (Taylor et al., 2007) see appendix section 10.6. 

 

Bone consists of both organic and inorganic components comprising 20-40% and 50-

70% of the bone respectively. Collagen I fibres represent approximately 90% of the 

organic matrix of bone. The remainder of the organic compartment consists of 

proteoglycans and other non-collagenous proteins such as osteopontin, osteocalcin 

and osteonectin. The inorganic component of the bone mainly consists of 

hydroxyapatite [Ca3(PO4)2]3Ca(OH)2 crystals, other inorganic components are 

magnesium, sodium and bicarbonate (J.Favus, 2006, Clarke, 2008). 
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1.2 Bone cells  

The main cellular components of bone are osteoblasts, osteoclasts, lining cells and 

osteocytes. These cells play an important role in bone remodelling. Other cell types 

that are not directly involved in bone remodelling but are essential for the formation 

of the long bones are the chondrocytes. All surfaces of bone tissues are covered with 

a single cell layer of bone lining cells (Lerner, 2006). The osteoblasts are responsible 

for bone formation where osteoclasts are responsible for bone resorption (J.Favus, 

2006).  

1.2.1 Osteoblasts 

Osteoblasts are specialized mononucleated cuboidal cells responsible for bone 

formation. They are located in the bone marrow stroma and at the periosteal surfaces. 

(J.Favus, 2006). Osteoblasts derive from mesenchymal stem cells (MSCs). The 

commitment of MSCs towards the different bone related lineages is controlled by a 

number of growth factors and transcription factors including but not limited to, sex 

determining region Y-related high-mobility group box (Sox), peroxisome 

proliferator-activated receptor-γ (PPARγ) and runt-related transcription factor 2 

(Runx2) (Figure 1.2). Sox9 is important for MSC differentiation towards the 

chondrocyte lineage whereas PPARγ is important for MSC to adipocyte 

differentiation (Katagiri and Takahashi, 2002, Ducy, 2000) (Akiyama et al., 2002).  

Runx2, also known as core-binding factor subunit alpha-1 (CBF-α-1), is the major 

transcription factor responsible for commitment of MSCs towards the osteoblastic 

lineage and is a regulator of bone formation (Ducy, 2000). Bone morphogenic 

proteins (BMP) belong to the transforming growth factor-β (TGF-β) superfamily and 

play a role in osteoblast differentiation through upregulation of Runx2 (Katagiri and 

Takahashi, 2002). Runx2 remains important for the upregulation of osteocalcin 

expression in mature osteoblasts (Ducy, 2000). An additional transcription factor of 

importance in osteoblast differentiation and bone formation is osterix which exerts its 

action by acting downstream of Runx2 (Nakashima et al., 2002).  
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Figure 1.2. Schematic of mesenchymal stem cell differentiation by transcription factors. 

Mesenchymal stem cells differentiate into chondrocytes, osteoblast precursors or adipocytes under the 

influence of several transcription factors such as Sox9, Runx2 and PPARγ. Abbreviations: MSC, 

mesenchymal stem cell, Sox, sex determining region Y-related high-mobility group box, Runx2, runt-

related transcription factor 2, PPARγ, peroxisome proliferator-activated receptor-γ. 

Another pathway that plays an important role in osteoblast differentiation is the 

canonical Wnt pathway. Wnt proteins are secreted proteins that signal through 

receptor complexes consisting of transmembrane G-protein coupled receptors of the 

frizzled family and of the Lrp family (Karner and Long, 2017). When the Wnt 

pathway is inactive, β-catenin is phosphorylated by casein kinase-1 (CKI) and GSK3-β 

leading to its degradation by a destruction complex (Reya and Clevers, 2005). Wnt 

mediated β-catenin signalling inhibits adipogenesis and promotes osteoblast 

differentiation (Cawthorn et al., 2012, Day et al., 2005).  

Mature osteoblasts are characterized by the expression of several bone related 

extracellular matrix proteins such as, but not limited to type I collagen, osteocalcin, 

and osteopontin, osteoblasts also exhibit high enzyme activity of alkaline phosphatase 

(ALP) (Katagiri and Takahashi, 2002, J.Favus, 2006). In addition to osteoid matrix 

proteins, osteoblasts produce a variety of growth factors including, insulin-like 

growth factors (IGF), BMPs and TGF-β (Hadjidakis and Androulakis, 2006). 

Osteoblasts have two main functions. The first is to synthesize and deposit osteoid 

matrix, the unmineralised bone matrix, and mineralization. The second is to support 

osteoclastogenesis, by stimulating osteoclast differentiation and supporting mature 
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osteoclast survival (Katagiri and Takahashi, 2002).
 
Osteoblasts produce regulators of 

osteoclast differentiation, survival, function and activation, namely macrophage 

colony stimulating factor (M-CSF), receptor activator of nuclear factor kappa-B 

ligand (RANKL) and osteoprotegerin (OPG), the soluble decoy receptor for RANKL. 

RANKL is produced in response to a wide arrange of signalling proteins including 

Vitamin D and parathyroid hormone (PTH) (Troen, 2003). Osteoblasts perform a 

unique function in bone, however they are not terminally differentiated. The majority 

of osteoblasts at remodelling sites die by apoptosis. The remaining fraction of 

osteoblasts change into bone lining cells and a small part of osteoblasts become 

entombed in the bone matrix and differentiate into osteocytes (Noble, 2008, 

Manolagas, 2000).  

1.2.2 Osteoclasts 

Osteoclasts are multinucleated cells originating from haematopoietic stem cells and 

are responsible for bone resorption. They form by the fusion of mononuclear 

progenitors derived from the monocyte lineage. The two main essential molecules for 

osteoclast formation, survival and activation are M-CSF and RANKL. (Teitelbaum, 

2000). Secreted M-CSF by osteoblasts binds to the colony-stimulating factor-1 

receptor (c-Fms) receptor on osteoclast precursors and induces the expression of 

receptor activator nuclear factor kappa-B (RANK). M-CSF is essential for the 

survival of mature osteoclasts and their precursors (Ross, 2006).  

RANKL expressed by osteoblasts binds to RANK on mononuclear osteoclast 

precursors and commits the cell to the osteoclast lineage, thereby inducing their 

fusion into multinucleated osteoclasts (Teitelbaum, 2000). OPG is a soluble decoy for 

RANKL and by binding to RANKL inhibits osteoclastogenesis, therefore the rate of 

OPG/RANKL in the bone microenvironment determines the osteoclast formation 

(Troen, 2003).  During osteoclast differentiation, the osteoclast progenitor cells 

express osteoclast markers such as tartrate resistant acid phosphatase (TRAcP), 

calcitonin receptor and RANK (Katagiri and Takahashi, 2002). 

1.2.3 Osteocytes 

Osteocytes are terminally differentiated cells from the osteoblast lineage that form 

when mature osteoblasts become entrapped in the bone matrix (Noble, 2008). 



CHAPTER ONE                                                                                         General Introduction 

 

 

7 

 

Osteocytes are the most abundant cell in bone and are mainly defined by their 

morphology and location in bone. Osteocytes express osteocalcin, osteonectin and 

osteopontin but lack the high alkaline phosphatase activity found in osteoblasts 

(Klein-Nulend et al., 2003). Osteocytes maintain contact with neighbouring cells 

through large network via the dendritic processes that lie in the lacunae and canaliculi 

of the mineralized bone (Noble, 2008).  

The precise roles and functions of osteocytes remain unclear but there are several 

indications that they play an important role in bone remodelling and mechano-sensing 

(Noble, 2008, Uda et al., 2017).  Osteocytes sense mechanical stimuli which are then 

transcribed into biological signals. The main pathways induced by mechanical stimuli 

are calcium, ATP, nitrogen oxide, prostaglandin and wnt pathways, some of these 

pathways affect osteoblasts and osteoclasts (Uda et al., 2017). Osteocytes produce 

Sclerostin, a wnt signalling pathway antagonist that inhibits bone formation. 

Osteocytes have also been shown to produce RANKL and M-CSF further 

strengthening that they play a role in osteoclastogenesis (Noble, 2008).  

1.2.4 Chondrocytes 

Chondrocytes are derived from the mesenchymal stem cell lineage (Figure 1.2). 

Chondrocytes play essential roles during osteogenesis. Furthermore, they are pivotal 

for joint mobility(Karsenty and Wagner, 2002). Chondrogenesis is the first step in the 

formation of the skeleton. MSCs first differentiate in chondrocytes that express 

aggrecan and type II collagen (Karsenty and Wagner, 2002). The main transcription 

factor that is essential for chondrocyte differentiation and endochondral bone 

formation is Sox9. Sox9 expression is also required for two other members of the sox 

family that play an important role in chondrogenesis, Sox5 and Sox6 (Akiyama et al., 

2002). Sox9 and Runx2 are essential transcriptional regulators for articular 

chondrocytes and articular cartilage formation (Goldring, 2012). Once chondroblasts 

have formed the cartilage layer, they further differentiate into hypertrophic 

chondrocytes under the influence of Runx2. Eventually the terminal layer of 

hypertrophic chondrocytes will be invaded by blood vessels and the growth plate will 

gradually be replaced by calcified extracellular matrix and the chondrocytes 

embedded in the bone will die through apoptosis (Karsenty and Wagner, 2002, 

Komori, 2018). 
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1.3 Bone remodelling  

Bone remodelling is a highly dynamic, tightly regulated process that is essential for 

mineral homeostasis, repair of microfractures and maintenance of bone mass. Bone 

undergoes constant remodelling throughout life and about 10% of bone is remodelled 

and renewed every year (Kenkre and Bassett, 2018). The bone remodelling process is 

divided into three distinct phases, bone resorption, reversal phase and bone formation.  

1.3.1 Bone resorption   

Old bone is replaced by newly formed bone to adapt to mechanical loading, micro-

fractures and strain.  In response to mechanical loading and micro-damage, osteoclast 

precursors migrate to the site that requires resorption (Hadjidakis and Androulakis, 

2006). Osteoblasts produce RANKL and M-CSF and induce maturation of the 

osteoclast precursors into multinucleated cells that bind to the surface of bone matrix 

through integrins (Lerner, 2006, Hadjidakis and Androulakis, 2006, Teitelbaum, 

2000). Once attached to bone, osteoclasts polarise their membranes to allow 

formation of the actin ring that tightly isolates a region between the active osteoclast 

and bone surface known as the sealing zone (Teitelbaum, 2000). 

Protons are then released by mature osteoclasts to acidify the site of resorption and 

dissolve the hydroxyapatite crystals [Ca3(PO4)2]3Ca(OH)2, to Ca
2+

, HPO4
2-

 and H2O 

(Bar-Shavit, 2007). This process exposes the organic component of bone which is 

then degraded by proteases, cathepsin K and Matrix metallopeptidase 9 (MMP9). 

Osteoclasts remove the products of bone resorption, both organic and inorganic, by 

endocytosis and secrete them in the extracellular space (Troen, 2003, Teitelbaum, 

2000). In healthy humans, the resorption phase lasts 10 to 14 days (Lerner, 2006, 

Hadjidakis and Androulakis, 2006). 

The phase between bone resorption and bone formation is the reversal phase. This 

phase is characterized by apoptosis of osteoclasts and subsequently, osteoblast 

precursors migrate to the site (Lerner, 2006, Hadjidakis and Androulakis, 2006). 
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1.3.2 Bone formation 

The next phase of the remodelling cycle is the bone formation phase. Bone formation 

starts with the recruitment of osteoblast precursors followed by the formation of new 

bone by osteoblasts. At the resorbed site, osteoblasts precursors proliferate, 

differentiate and mature in preparation of the bone formation phase (Neve et al., 

2011). The migration and activation of osteoblast precursors is thought to be 

mediated by the presence of several growth factors that are released during the bone 

resorption phase including insulin growth factor-I (IGF-I) and transforming growth 

factor-β (TGF-β) (Mundy et al., 1982, Lerner, 2006).  

Mature osteoblasts produce type I collagen, and non-collagen proteins osteocalcin, 

osteonectin, osteopontin, bone sialoprotein and proteoglycans to form osteoid 

(Katagiri and Takahashi, 2002, J.Favus, 2006). The osteoblasts also secrete ALP that 

in turn induces matrix maturation and mineralization. In addition, osteoblasts release 

matrix vesicles within the collagen scaffold containing calcium, phosphate and 

various proteins that induce formation of hydroxyapatite crystals. This process 

converts the osteoid into mineralised bone (Katagiri and Takahashi, 2002, J.Favus, 

2006). 
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1.4 Abnormal bone remodelling 

The balance of bone remodelling is dependent on tight coupling of bone resorption by 

osteoclasts and bone formation by osteoblasts. Imbalances in the bone remodelling 

process are the primary cause of bone diseases such as Paget’s disease of bone, 

osteoporosis and rheumatoid arthritis (Galson and Roodman, 2014, Rodan and Martin, 

2000, Smolen et al., 2018). Furthermore, benign and malignant underlying diseases 

such as primary bone tumours and secondary cancer to bone that also results in 

abnormal bone remodelling. 

Paget’s disease of bone is one of the most common bone disorders. Paget’s is 

characterized by an initial increase in osteoclast number and osteoclast size leading to 

enhanced bone resorption followed by abundant and aberrant bone formation (Galson 

and Roodman, 2014). Due to this rapid turnover the bone is mechanically weak and 

disorganized (Ralston et al., 2008). The disease is most often diagnosed in patients 

over 50 years of age and several genetic abnormalities have been linked to the disease 

(Singer, 2015). Paget’s disease of bone is one of the risk factors for adult onset 

osteosarcoma (Geller and Gorlick, 2010). 

Osteoporosis is a systemic osteolytic bone disease and is characterized by a reduction 

in bone mass and a deteroriation of the microarchitecture of the bone, thereby 

increasing the susceptibility for bone fractures (Rodan and Martin, 2000, Meunier et 

al., 1999). The main causes of osteoporosis are oestrogen deficiency (postmenopausal 

osteoporosis) and as a complication of glucocorticoid therapy (Eastell et al., 1998, 

Meunier et al., 1999).  

Rheumatoid arthritis is a chronic inflammatory autoimmune disease that is 

characterized by destruction of the cartilage and bone in the joints. (Smolen et al., 

2018, Sweeney and Firestein, 2004). Synoviocytes and cellular invasion by immune 

cells into the cartilage are the main processes that lead to the cartilage destruction 

seen in the joints. The bone erosion that accompanies cartilage destruction is due to 

excessive bone resorption caused by osteoclasts. RANKL expressed by synoviocytes 

and T cells attracted to the inflammatory site induces the maturation and activation of 

osteoclasts that lead to the bone erosion (Smolen et al., 2018, Sweeney and Firestein, 

2004, Rodan and Martin, 2000).  
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1.5 Primary bone tumours 

Primary bone tumours are rare, they originate from the different types of bone cells 

and are classified based on the type of matrix production and on the cell type of 

origin. Some benign and malignant bone tumours have childhood and adolescent 

onsets (Fletcher, 2013). The early onset of these tumours may be attributed to the 

higher bone turnover seen in children and adolescents in comparison to adults (Teti, 

2011).    

1.5.1 Benign primary bone tumours 

Benign bone tumours form a variety of different tumours that can develop in any site 

of the skeleton. Like malignant primary bone tumours, benign bone tumours are 

divided into categories based on their cell type of origin. The main categories are 

cartilage forming cells, bone forming cells and connective tissue. In general, there are 

8 different types of benign primary bone tumours. Of these 8 osteochondroma, giant 

cell tumour of bone and osteoblastoma are the most prevalent (Table 1.1). Even 

though benign bone tumours rarely progress to a malignant state, depending on the 

location of the tumour they may compress healthy tissues and compromise their 

function. Furthermore, their presence may still lead to discomfort and pathological 

fractures which necessitates the need for treatment. (Hakim et al., 2015).  

Benign bone tumours are diagnosed with conventional radiology and biopsies. 

Treatments for benign bone tumours depend on several factors including the risk of 

recurrence and local tissue invasion. Benign bone tumours often follow the same 

treatment regime as malignant bone tumour treatments consisting of surgery, drugs 

and radiotherapy (Hakim et al., 2015, Fritzsche et al., 2017). 

1.5.2 Malignant primary bone tumours 

Malignant bone tumours are uncommon but despite their rarity, they are among the 

most frequent groups of cancer in children and adolescents worldwide with an 

incidence of 10 to 26 cases per million each year (Stiller, 2007). The treatment regime 

of malignant bone tumours consists of a combination of surgery, chemotherapy and 

radiotherapy and depends on several factors including, the type of tumour, the stage 

of disease and tumour location  (ESMO, 2014). 



CHAPTER ONE                                                                                         General Introduction 

 

 

12 

 

Malignant bone tumours are divided in distinct categories that are based on the cell of 

origin and the type of matrix produced by the tumour. Approximately 75% of all 

malignant bone tumours are osteosarcoma, Ewing’s sarcoma or chondrosarcoma in 

the United Kingdom with osteosarcoma being the most prevalent of these three 

malignant entities (Whelan et al., 2012) (Table 1.1).   

Table 1.1 Most common benign and malignant bone tumours. 

Matrix/cell 

type 

Benign Incidence 

(%)
1 

Malignant Incidence (%)
1 

Bone Osteoblastoma     

Osteoma               

Osteoid osteoma 

14%                                         

12%                                        

12% 

Osteosarcoma 52% 

Cartilage Osteochondroma           

Chondroma 

30%                                        

2.6% 

Chondrosarcoma 6% 

Connective 

tissue 

Aneurysmal 

bone cyst    

Fibrous 

dysplasia 

~9% 

5-7% 

 Adamantinoma 0.1-0.5% 

Osteoclast 

like 

Giant cell 

tumour of bone 

20% Malignant Giant cell 

tumour of bone 

<5% 

Uncertain 

differentiation 

 -  - Ewing's sarcoma 34% 

1
Incidences are percentages of all benign or all malignant bone tumours (Hakim et al., 2015, Stiller et 

al., 2006, Jain et al., 2008). 

 

The introduction of chemotherapy significantly improved the survival of malignant 

bone cancer patients. During the last decades there have not been any significant 

changes in the survival rates of patients suffering from any of the most common 

malignant bone tumours (Whelan et al., 2012). This stagnation in survival rates 

illustrates the need for new therapeutic targets to treat bone cancer.   
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1.6 Osteosarcoma 

Osteosarcoma is the most prevalent malignant primary bone tumour with a peak 

incidence during adolescence and another peak of incidence between the age of 60-80 

years (Meyers and Gorlick, 1997). The onset of osteosarcoma at the age of 60-80 is 

often attributed to radiotherapy or underlying metabolic bone diseases. Paget’s 

disease of bone is seen in approximately 33-50% of adult osteosarcoma cases, 

therefore adult osteosarcoma is often classified as secondary osteosarcoma (Geller 

and Gorlick, 2010). In the UK, the bone sarcoma crude incidence rate is 0.8 per 

100.000 with osteosarcoma being the most common occurring bone sarcoma 

(CancerresearchUK, 2018). In the US, the incidence rate of osteosarcoma is 0.4 per 

100.000 (Society, 2018).  

Osteosarcoma preferentially arises in actively growing bones and occurs more 

frequently in males with a male: female ratio of approximately 1:1.4 (Bielack et al., 

2009, Alfranca et al., 2015). In females the peak incidence of osteosarcoma lies at an 

earlier age than males, 10-14 and 15-19 years of age respectively, this discrepancy is 

most likely due to the earlier onset of the growth spurt in females (Stiller, 2007).  

1.6.1 Pathophysiology  

Osteosarcoma is characterized by severe chromosomal instability (Alfranca et al., 

2015). The chromosomal instability leads to an extreme variability in tumours 

between patients and is one of the underlying challenges in finding a treatment that 

would benefit the majority of osteosarcoma patients. The oncogenic events leading to 

osteosarcoma development and metastasis are still poorly understood. Currently there 

are two main hypotheses to the cell type of origin. Mesenchymal stem cells (MSCs) 

have been hypothesized to be the cell type of origin for several bone sarcomas, 

including osteosarcoma (Mohseny et al., 2009, Xiao et al., 2013). Deregulation of 

several known pathways implicated in cancer such as p53-, retinoblastoma-, PI3K-

AKT- and MAPK pathways are thought to be involved in the development of bone 

sarcomas (Xiao et al., 2013).  

However, there is also evidence that supports the hypothesis that osteosarcoma arises 

from a more differentiated osteoblastic cell population, MSC derived osteogenic 

precursors (Mutsaers and Walkley, 2014). Mice expressing the c-fos transgene 
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develop spontaneous osteosarcoma which was suggested to be caused by the 

disruption of normal growth control and phenotype of osteoblastic cells by Fos 

(Grigoriadis et al., 1993). Conditional deletion of p53 in a mouse model resulted in 

bone sarcoma development with the most common tumour being osteosarcoma (Lin 

et al., 2009). Inactivation of p53 specifically in osteoblast precursors was shown to be 

sufficient for osteosarcoma formation (Berman et al., 2008).  Altogether, these studies 

suggest that the most plausible cell type of origin of osteosarcoma are either 

undifferentiated MSCs or a more differentiated form of MSC derived osteogenic 

precursors.  

1.6.2 Clinical presentation 

The most common symptoms that patients present with are swelling and pain in the 

affected bone. The pain is often severe to an extent that the pain interrupts their sleep 

(Bielack et al., 2002, Isakoff et al., 2015). In younger patients, pain is often attributed 

to growing pains thereby delaying the time of diagnosis and possibly prognosis 

(Geller and Gorlick, 2010). At the time of diagnosis, some patients have pathological 

fractures and about 10-20% of patients present with macroscopic metastases mainly 

found in the lungs (Bielack et al., 2002, Luetke et al., 2014). The most common sites 

of osteosarcoma tumours are the femur, the tibia and the humerus. Only about 10% of 

osteosarcoma develops in the axial skeleton which are more prevalent in older 

patients (Luetke et al., 2014).  

Osteosarcoma is diagnosed using conventional radiological imaging methods such as 

X-ray, magnetic resonance imaging (MRI), computed tomography (CT) and positron 

emission tomography (PET) followed up with a biopsy (Geller and Gorlick, 2010). In 

most cases serum markers are of no additional value in the diagnosis of osteosarcoma 

except for alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) which are 

elevated in 40% and 30% of osteosarcoma cases respectively. Osteosarcoma often 

presents as a mixed osteoblastic and osteolytic lesion. Cortical destruction and 

ectopic bone formation in a typical sunburst pattern are common accompanying 

features of osteosarcoma (Geller and Gorlick, 2010). 

Biopsies are essential to determine the type of osteosarcoma. Osteosarcomas are 

defined by the production of osteoid and several histological types of osteosarcoma 

are differentiated depending on their localization, high or low grade and histological 
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manifestation including conventional, telangiectatic and small cell osteosarcoma 

(Luetke et al., 2014, Klein and Siegal, 2006). The conventional type of osteosarcoma 

is a high-grade malignancy and comprises approximately 80-90% of osteosarcomas. 

The conventional type is subdivided based on the predominant features of the cell and 

of the extracellular matrix within the tumour. The most frequent subtypes are 

osteoblastic, chondroblastic and fibroblastic osteosarcoma. This subdivision of 

osteosarcoma has no impact on survival and treatment strategies for the three 

different histological types is comparable (Klein and Siegal, 2006, Bielack et al., 

2009).  

1.6.3 Genetic risk factors 

There are some genetic predispositions that account for a small number of 

osteosarcoma cases. Among these genetic conditions are hereditary retinoblastoma, 

Li Fraumeni syndrome, and several syndromes that are caused by autosomal 

recessive mutations in the genes encoding the RECQ helicases including Werner 

syndrome, Rothmund-Thomson syndrome, Baller-Gerold syndrome, Rapadilino 

syndrome and Bloom syndrome (Wang, 2005, Gianferante et al., 2017).  

Hereditary retinoblastoma, caused by an autosomal dominant germline mutation, 

gives rise to malignant tumours of the retina in early childhood due to mutations in 

the retinoblastoma gene and increases the risk of second primary tumours including 

osteosarcoma (Eng et al., 1993, Lohmann, 2010). In contrast, Li Fraumeni syndrome, 

results from mutations in Tp53 which increases the chance on a wide range of 

primary tumours of which the most common are breast carcinomas, soft tissue 

sarcomas and osteosarcomas (Bougeard et al., 2015). Rothmund-Thomson syndrome, 

Baller-Gerold syndrome and Rapadilino syndrome have mutations in the RECQL4 

gene whereas Werner syndrome and Bloom syndrome arise from mutations in the 

RECQL2 and RECQL3 helicases respectively (Wang et al., 2001, Gianferante et al., 

2017). Each of these syndromes results in a higher than expected incidence of 

osteosarcoma but the risk of osteosarcoma development differs between the different 

syndromes (Gianferante et al., 2017). 
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1.6.4 Treatment 

Treatment of osteosarcoma is based on tumour type, site and presence of metastasis at 

the time of diagnosis (Carrle and Bielack, 2006). In general there are three major 

therapeutic options: surgery, chemotherapy and palliative radiotherapy
 
(Ando et al., 

2013). Since osteosarcomas are relatively radio-resistant, radiotherapy is 

predominantly used in patients with surgically inaccessible osteosarcoma in axial 

sites as palliative treatment. Currently the standard for curative treatment is a 

combination of chemotherapy and limb-salvage surgery with the aim to maximally 

preserve the limb with as much function as possible (Bielack et al., 2009, Luetke et 

al., 2014). 

Bisphosphonates, like zoledronic acid, inhibit bone resorption and have been shown 

to significantly reduce pain in cancer-induced bone disease (Zhu et al., 2013) 

potentially making these agents ideal candidates for osteosarcoma patients. Despite 

several studies reporting positive effects of zoledronic acid on osteosarcoma tumour 

growth, angiogenesis and osteosarcoma associated bone damage (Labrinidis et al., 

2010, Ohba et al., 2014, Heymann et al., 2005) a trial that investigated the effects of 

zoledronic acid in combination with standard chemotherapy was terminated for 

futility. This resulted in a negative recommendation for zoledronic acid for the 

treatment of osteosarcoma (Piperno-Neumann et al., 2016). 

Despite many other clinical trials investigating novel treatments in the form of small 

molecule inhibitors and immunomodulators (Heymann et al., 2016, Brown et al., 

2018), the standard systemic treatment of osteosarcoma remains chemotherapy 

(Bielack et al., 2016). The standard chemotherapy regimens for osteosarcoma include 

combinations of ifosfamide, etoposide doxorubicin, methotrexate and cisplatin with 

the latter three often forming the basis of chemotherapeutic therapy. Combinations of 

these chemotherapeutic agents were found to be the most efficacious in osteosarcoma 

patients in both preoperative and postoperative setting (Luetke et al., 2014, ESMO, 

2014, Botter et al., 2014).  
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1.6.5 Prognosis 

Osteosarcoma may develop in any bone. Osteosarcoma tumours often originate in the 

metaphysis of the long bones, with the distal femur and the proximal tibia being the 

most frequent sites (Bielack et al., 2002). These sites are known to have a relatively 

favorable prognosis. The proximal tibia is associated with a 5-year survival rate of 

77.5% which is slightly more favorable than the distal femur with a 5-year survival 

rate of 66%. In contrast, osteosarcomas with a proximal and axial location, e.g. spinal 

and pelvic osteosarcoma, have a considerably worse prognosis due to their 

inaccessibility for surgical removal (Ozaki et al., 2002, Ozaki et al., 2003, Bielack et 

al., 2002). 

Osteosarcomas are known to have an aggressive clinical course, characterized by 

local bone, muscle and soft tissue destruction. Furthermore, osteosarcoma is 

characterized by a high propensity for distant metastasis to the lungs (Mutsaers and 

Walkley, 2014). About 30-40% of patients will develop a relapse (Kempf-Bielack et 

al., 2005), with the lungs as the main site of relapse (90%); although metastases also 

occur in bone (8-10%) and rarely in other sites (Bacci et al., 2006b). Interestingly, 

patients with metastasis to bone have a considerably worse prognosis in comparison 

to patients with lung metastasis (Bacci et al., 2006a, Aung et al., 2003).  

The 5-year survival of metastatic osteosarcoma patients has not improved since the 

1970s and remains around 25-30%. In contrast, the 5-year survival of primary 

osteosarcoma patients significantly increased with the introduction of chemotherapy 

in the 1970s to about 60%. There has been no further significant improvement in 

survival rates over the last thirty years (Allison et al., 2012), illustrating the need to 

investigate and develop novel therapies. 
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1.7 The Semaphorin class 3  

Semaphorins are a large highly conserved family of secreted and membrane 

associated signalling proteins that are divided in 8 classess. All classess of 

semaphorins contain a class-specific C terminus and a conserved extracellular ~500 

amino-acid semaphorin (sema) domain (Figure 1.3) (1999, Sakurai et al., 2012). The 

semaphorin family was initially identified through their role in axonal growth cone 

guidance and nerve development. (Luo et al., 1993, Kolodkin et al., 1993) Of the 8 

different classess of semaphorins, semaphorin class 3-7 are expressed in vertebrates 

and only the class 3 semaphorins are secreted (Table 1.2) (1999).  

Table 1.2 The Semaphorin family 

Class Members Organism Category 

Sema V A-B Virus Secreted 

Sema 1 a-b Invertebrate Transmembrane 

Sema 2 a Invertebrate Secreted 

Sema 3 A-G Vertebrate Secreted 

Sema 4 A-G Vertebrate Transmembrane 

Sema 5 A-B Vertebrate Transmembrane 

Sema 6 A-C Vertebrate Transmembrane 

Sema 7 A Vertebrate Membrane-anchored 

 

All class 3 semaphorins contain a Sema domain, plexin-semaphorin-integrin (PSI) 

domain, immunoglobulin (Ig) domain and a basic domain as their main structure and 

are involved in various physiological and pathophysiological processes (Yazdani and 

Terman, 2006, Worzfeld and Offermanns, 2014). All class-3 semaphorins are 

synthesized as pro-proteins and contain pro-protein convertase recognition sites, 

cleavage at these sites by Furin-like pro-protein convertases (FFPC) leads to peptide 

products of approximately 60kDA (Adams et al., 1997, Varshavsky et al., 2008).  

Plexins are the primary receptors for semaphorins, they also contain a sema domain 

and are divided in four categories (A-D) (Tamagnone et al., 1999). In addition to 

plexins, class 3 semaphorins require neuropilin-1 (Nrp1) or  neuropilin-2 (Nrp2) as 

co-receptors to initiate plexin signalling
 
(Kruger et al., 2005). Semaphorin 3E is an 

exception to this rule and is able to bind and initiate signalling via plexin-D1 
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independent of neuropilins (Gu et al., 2005). Semaphorin 3A requires Nrp1 to 

transduce its signal via type A plexins (Takahashi et al., 1999). All of the secreted 

semaphorin class 3 proteins play an important role during embryonic development 

(Yazdani and Terman, 2006). Unlike the other class 3 semaphorins only Sema3C 

knockout results in embryonic lethallity due to impaired development of the aortic 

arch that is most likely caused by abnormal migration of the cardiac crest cells in 

Sema3C deficient mice (Feiner et al., 2001).   

Only 3 members of the class 3 semaphorins are implicated in bone, Sema3A, which 

will be discussed later in this thesis, Sema3B and Sema3E. Sema3B is expressed by 

osteoblasts and overexpression of osteoblastic Sema3B in vivo, results in osteopenia 

by increased osteoclastogenesis without affecting osteoblasts (Sutton et al., 2008). 

Sema3E was found to be expressed by both proliferating and mineralizing osteoblasts 

and recombinant Sema3E reduced osteoblast migration and formation of osteoclasts 

in vitro (Hughes et al., 2012). Each semaphorin protein exerts different effects on 

tumour growth and metastatic spread and these effects even differ between different 

tumour types (Maione et al., 2012, Tamagnone, 2012). Unlike the other semaphorin 3 

proteins, research carried out to this date indicates Sema3F to be a tumour suppressor 

across all investigated tumour types (Table 1.3). 
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Table 1.3 The Semaphorin class 3 

Semaphorin 

 

Receptors Embryonic 

development  

Bone Cancer References 

Expression Function 

Sema3A Plexin-A1      

Plexin-A2 

Plexin-A3      

Plexin-A4        

Neuropilin 1 

Neuropilin 2 

Axon branching 

in the cerebellum 

Dorsal muscle 

innervation 

Cardiac nerve 

patterning 

Vascular 

patterning of the 

kidney and 

cerebral 

microvessel 

density 

 

Osteoblast 

Chondrocyte 
↑Osteoblast 

↓Osteoclast 

↑Bone formation 

↓Bone resorption 

Tumour suppressive/promoting 

effects 

- Increased glioblastoma dispersal 

- Increased motility of pancreatic 

cancer 

- Increased progression in liver 

cancer 

- Reduced invasiveness of prostate 

cancer 

- Reduced breast tumour growth 

- Reduced melanoma tumour growth 

- Reduced oral tumour growth 

- Inhibitor of angiogenesis 

 

(Kolodkin et al., 1997, Chen et al., 

1997, Nasarre et al., 2009, 

Takahashi et al., 1999, Rohm et al., 

2000a, Tamagnone et al., 1999, 

Schwarz et al., 2008, Hayashi et al., 

2012, Cioni et al., 2013, Masuda et 

al., 2013, Messersmith et al., 1995, 

Behar et al., 1996, Ieda et al., 2007, 

Reidy et al., 2009, Hou et al., 2015, 

Li et al., 2015a, Lee et al., 2017, 

Muller et al., 2007, Bagci et al., 

2009, Hu et al., 2016, Casazza et 

al., 2011, Mishra et al., 2015b, 

Chakraborty et al., 2012, Huang et 

al., 2017, Xu, 2014) 

Sema3B 

 

Plexin-A2      

Plexin-A4    

Neuropilin 1 

Neuropilin 2 

Positioning of the 

anterior 

commissure in the 

brain 

Osteoblast 

Osteoclast 
↑Osteoclast Tumour suppressive/promoting 

effects 

- Inhibits ovarian tumour growth 

- Reduced expression lead to 

esophageal lymph node metastasis 

- Inhibited breast tumour growth  

- Inhibited lung tumour growth  

- Increased metastasis in breast and 

lung cancer 

(van der Weyden et al., 2005, 

Varshavsky et al., 2008, Sharma et 

al., 2012, Sabag et al., 2014, Falk et 

al., 2005, Sutton et al., 2008, Joseph 

et al., 2010, Castro-Rivera et al., 

2004, Castro-Rivera et al., 2008, 

Tse et al., 2002, Tang et al., 2016, 

Rolny et al., 2008). 
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Sema3C 

 

Plexin-A2      

Neuropilin 1 

Neuropilin 2 

Aortic arch 

development 

-  Tumour promoting effects 

- Reduced expression inhibited 

gastric tumour growth 

- Reduced expression inhibited 

breast cancer cell migration 

- Increased expression lead to 

shorter overall survival in glioma 

 

(Feiner et al., 2001, Chen et al., 

1997, Takahashi et al., 1998, Brown 

et al., 2001, Miyato et al., 2012, 

Zhu et al., 2017, Vaitkiene et al., 

2015)  

Sema3D 

 

Neuropilin 1  Development of 

the heart, 

pulmonary vein 

connections and 

patterning and 

thymus 

 

-  Tumour suppressive/promoting 

effects 

- Reduced glioblastoma tumour 

growth  

- Correlated with improved survival 

in colorectal cancer patients 

- Reduced expression inhibited 

prostate cancer metastasis  

(Feiner et al., 1997, Wolman et al., 

2004, Degenhardt et al., 2013, 

Takahashi et al., 2008, Sabag et al., 

2012, Wang et al., 2017b, Foley et 

al., 2015) 

Sema3E 

 

Plexin-D1 Intersomitic 

vascular 

development, 

striatum synapse 

formation and 

vascular 

patterning 

Osteoblasts ↓Osteoclast                            

↓Osteoblast                           

migration 

 

 

Tumour suppressive/promoting 

effects 

- Correlated with metastasis in 

colorectal and breast cancer 

tumours 

- Correlated with melanoma 

progression 

- Poor overall survival in pancreatic 

patients 

- Expression reduced gastric cancer 

tumour burden 

- Reduced expression inhibited 

gastric cancer growth 

- Reduced expression inhibited 

metastasis in breast cancer 

- Overexpression inhibited tumour 

(Gu et al., 2005, Ding et al., 2011, 

Hughes et al., 2012, Casazza et al., 

2010, Luchino et al., 2013, Casazza 

et al., 2012, Yong et al., 2016, Chen 

et al., 2015, Maejima et al., 2016) 
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growth in colon, melanoma and 

lung cancer  

Sema3F 

 

Plexin-A1 

Plexin-A2 

Plexin-A3 

Plexin-A4 

Neuropilin 1 

Neuropilin 2 

Development of 

cranial nerves and 

limbic system 

tracts 

-  Tumour suppressive effects 

- Inhibited ovarian tumour formation  

- Inhibited tumour angiogenesis 

- Inhibited growth and metastasis in 

colorectal carcinoma  

- Inhibited gastro-intestinal 

neuroendocrine tumours and 

metastasis 

- Anti-lymphangiogencic factor 

 

(Takahashi and Strittmatter, 2001, 

Waimey et al., 2008, Chen et al., 

1997, Renzi et al., 1999, Nasarre et 

al., 2003, Sahay et al., 2003, 

Matsuda et al., 2010, Xiang et al., 

2002, Kessler et al., 2004, Futamura 

et al., 2007, Wu et al., 2011, 

Bollard et al., 2015, Doci et al., 

2015). 

Sema3G 

 

Neuropilin 2 No abnormalities 

or morphological 

defects described 

-  - Inhibited motility of glioblastoma  (Taniguchi et al., 2005, Zhou et al., 

2012). 
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1.7.1 Plexins 

Plexins are large membrane proteins that are organized in four classess (A-D). 

Plexins contain a highly conserved intracellular domain, an extracellular domain that 

shares homology with scatter factor receptors as well as a semaphorin binding 

domain (Tamagnone et al., 1999). The intracellular region of plexins contains two 

segments that are separated by an insertion region, that when these two segments are 

folded together they exhibit an intrinsic GTPase activating protein (GAP) activity 

(Figure 1.3) (Rohm et al., 2000b, Tong et al., 2009, Sakurai et al., 2012). The 

cytoplasmic region of the plexins have been reported to bind to over 20 proteins to 

transduce signalling and depending on the plexin class displays different substrate 

specificity (Pascoe et al., 2015). 

The semaphorin-plexin system is important for a wide variety of adult physiological 

functions predominantly in angiogenesis, the immune system and nervous system 

(Pasterkamp, 2012, Kumanogoh and Kikutani, 2013, Neufeld et al., 2012). Besides 

physiological processes, the semaphorin-plexin system has also been implicated in 

immune disorders and tumour growth and metastasis (Takamatsu and Kumanogoh, 

2012, Tamagnone, 2012). While semaphorin receptor gene mutations in cancer tend 

to be rare (Tamagnone, 2012), overexpression of Plexin-B1 was found in the majority 

of primary prostate cancer samples and more important 89% of prostate cancer bone 

metastases showed mutations in Plexin-B1 (Wong et al., 2007). In contrast, in breast 

cancer, low expression of Plexin-B1 was associated with poor survival (Malik et al., 

2015).  

1.7.2 Neuropilin 

Neuropilins are transmembrane cell surface receptors of approximately 130-140kDa. 

The neuropilin family in vertebrates consists of only 2 members; Nrp1 and Nrp2 that 

share the same overall domain structure of a large extracellular domain, a short 

transmembrane domain and a short intracellular domain (Parker et al., 2012, Geretti 

et al., 2008). The extracellular domains of the neuropilins are divided into three 

domains A-C, each domain containing binding properties for different ligands  

(Figure 1.3) (Geretti et al., 2008, Sakurai et al., 2012).  Neuropilins are receptors for 

the vascular endothelial growth factor (VEGF) family and the class-3 semaphorins 

(Kolodkin et al., 1997, Chen et al., 1997, Soker et al., 1998, Karpanen et al., 2006).  
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Due to their importance in semaphorin class-3 and VEGF signalling, neuropilins are 

involved in a wide variety of physiological and pathological processes. Mice deficient 

in Nrp1 die in utero most likely due to cardiovascular defects and abnormalities seen 

in the projection of spinal and cranial nerves, limb innervation and abnormal 

hindbrain vascular sprouting (Kitsukawa et al., 1997, Gerhardt et al., 2004). 

Furthermore, the vessel formation of the yolk sac was also impaired which may 

contribute to the in utero death of Nrp1 deficient mice (Kawasaki et al., 1999, Jones 

et al., 2008).  As expected, Nrp1 deficient embryos have severe defects in the 

branchial arteries, heart outflow tracts and exhibit disrupted blood flow (Kawasaki et 

al., 1999, Jones et al., 2008). Mice expressing a Nrp1 variant that lacks the 

Semaphorin binding site but express an intact VEGF binding site display 

predominantly nervous system defects without obvious vascular abnormalities. This 

indicates that the vascular defects are probably attributed to impaired Nrp1-VEGF 

signalling (Gu et al., 2003, Piper et al., 2009). This hypothesis is further strengthened 

by the vascular defects seen in mice with specific deletions of Nrp1 in the endothelial 

cells (Gu et al., 2003, Mukouyama et al., 2005). 

In contrast to Nrp1 deficient mice, Nrp2 deficient mice are viable into adulthood even 

though there is an increased mortality rate. However, Nrp2 deficient mice display a 

range of nervous system defects including impaired cranial and spinal nerve 

projection and several brain defects (Giger et al., 2000). Nrp2 deficient mice show 

impaired motor function and object memory that are most likely the result of the 

hippocampal brain defects (Shiflett et al., 2015). Although no large vascular 

abnormalities or collecting lymph duct defects have been associated with Nrp2 

deficiency, mice lacking Nrp2 have a reduced number of lymphatic vessels and in 

some cases absence of small lymphatic vessels (Yuan et al., 2002). 
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Figure 1.3 Structure of semaphorins and semaphorin receptors.  

Semaphorins class 3-7, plexin A-D and Nrp 1 and Nrp2 are expressed in vertebrates. All semaphorins and plexins contain a Sema and PSI domain. The semaphorins contain 

class specific functional domains such as immunoglobulin domains. Neuropilins have intrinsic GAP activity and are required to transducer semaphorin signals via the 

plexins. Image is adapted from (Sakurai et al., 2012) see appendix section 10.6. 
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1.8 Semaphorin 3A 

Semaphorin 3A (Sema3A), a member of the class 3 semaphorins, is synthesized as a 

precursor protein (~125kDa) (Adams et al., 1997). The precursor protein is then 

proteolytically processed into two active proteins of 95kDa and 65kDa that are both 

secreted (Adams et al., 1997, Klostermann et al., 1998, Catalano et al., 2006). The 

65kDa isoform of Sema3A elicits reduced repulsive activity in comparison to the 

95kDa isoform, the proposed mechanism for this difference is the absence of the 

COOH-terminal which is required for association of Sema3A homodimers 

(Klostermann et al., 1998). 

1.8.1 Semaphorin 3A receptors 

Sema3A binds to Nrp1 with high affinity and lower affinity to Nrp2 (Kolodkin et al., 

1997, Chen et al., 1997). Nrp1 is essential for Sema3A signalling as demonstrated by 

absence of chemorepulsive activity in the presence of Nrp1 blocking antibodies 

(Chedotal et al., 1998). While Sema3A was shown to bind to Nrp2 with low affinity, 

one study found that blocking Nrp2 signalling was sufficient to remove the effect of 

Sema3A on a glioma cell line in vitro (Nasarre et al., 2009). This study suggest that 

Sema3A signals via Nrp2 in a cell type specific manner, which may explain the 

limited number of studies reporting functional Sema3A/Nrp2 signalling.  

Sema3A signals via the class A plexins together with Nrp1. Nrp1 forms a receptor 

complex together with plexin-A1 allowing for Sema3A signalling as illustrated by the 

absence of Sema3As chemorepellent activity when a truncated Plexin-A1 was present 

(Takahashi et al., 1999, Rohm et al., 2000a, Tamagnone et al., 1999). A similar lack 

of effect to Sema3A was observed in sensory ganglia when a dominant-negative form 

of plexin-A2 was introduced (Rohm et al., 2000a). While plexin-A1 and plexin-A2 

are important for Sema3A signalling, plexin-A3 and plexin-A4 were also shown to 

transduce Sema3A signals as plexin-A3 or plexin-A4 knockout mice showed aberrant 

facial axon branching (Schwarz et al., 2008).  
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1.8.2 Semaphorin 3A signalling 

1.8.2.1 Axons 

The downstream signalling of Sema3A causes actin reorganization in neurons, how 

this process is regulated remains to be elucidated. FERM, RhoGEF and Pleckstrin 

Domain Protein 2 (FARP2) proved to be essential in Sema3A-mediated axonal 

repulsion. FARP2 binds to plexin-A1 with mediation of Nrp1 and upon Sema3A 

stimulation, FARP2 activates Rac which is required for Sema3A-induced growth 

cone collapse (Toyofuku et al., 2005). Sema3A was found to induce 

dephosphorylation and activation of the actin degrading enzyme cofilin via the 

regulator LIM kinase-1 (LIMK1) (Aizawa et al., 2001). There is evidence to suggest 

that this process is regulated by Sema3A induced Rac-1 activation.  

In neurons, Sema3A also activates other intracellular pathways via tyrosine kinases 

that regulate microtubule dynamics and reorganization of actin. Sema3A induces 

tyrosine and serine phosphorylation of focal adhesion kinase (FAK) which is essential 

for dendritic growth in both newborn and adult neurons and is likely to be dependent 

at least in part on cyclin dependent kinase 5 (Cdk5) (Ng et al., 2013). Cdk5 activation 

by Sema3A also leads to phosphorylation of collapsin response mediating protein 2 

(CRMP2). The phorphorylation of CRMP2 by Cdk5 conveys a structural change 

allowing Sema3A activated GSK3β to phosphorylate CRMP2, dual-phosphorylated 

CRMP2 in turn regulates microtubule organization (Eickholt et al., 2002, Uchida et 

al., 2005, Neufeld and Kessler, 2008).  

Although the exact molecular mechanisms are still unclear, in endothelial and 

neuronal cells, Sema3A has been implicated to induce apoptosis via inhibition of 

downstream signalling of extracellular signal-regulated kinases (ERK) 1 and ERK 2 

and activation of caspase 3 (Neufeld and Kessler, 2008). Sema3A signalling was also 

implicated in apoptosis of chondrocytes in osteoarthritis via inhibition of the 

phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)/ AKT serine/threonine kinase 

(AKT) (Sun et al., 2018). These studies suggest the involvement of PI3K/AKT and 

ERK signalling pathways in the regulation of apoptosis by Sema3A.  
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Vascular endothelial growth factor (VEGF) is essential for blood vessel formation 

and plays an important role in physiological and pathological processes (Yancopoulos 

et al., 2000). The main receptors for VEGF are vascular endothelial growth factor 

receptor (VEGFR)-1, VEGFR-2 and VERGFR-3 and Nrp1 and Nrp2 function as co-

receptors (Yancopoulos et al., 2000, Coultas et al., 2005). 

Nrp1 binds to some of the members of the class-3 semaphorins, including Sema3A, 

with the extracellular A and B binding domains and also binds to members of the 

VEGF family with the B domain. The interaction of both ligands with the B domain 

suggests overlapping binding sites that could result in functional competition (Geretti 

et al., 2008). Both Sema3A and VEGF binding to Nrp1 has also been shown to 

induce internalization of the Nrp1 thereby reducing available Nrp1 for further ligand 

binding by either VEGF or a Sema3 protein (Narazaki and Tosato, 2006).  

Sema3A and VEGF have been shown to compete for Nrp1 binding leading to 

competition of effects on endothelial cell motility, chemorepulsive activity on dorsal 

root ganglions and migratory and apoptotic effects in a neuroectodermal progenitor 

cell line (Miao et al., 1999, Bagnard et al., 2001). The Sema3A/VEGF balance is 

essential for correct development of the facial nerves where the relationship between 

these proteins work in corporation, Sema3A is essential for the axon guidance 

whereas VEGF is required for the somata positioning within the neural tube (Schwarz 

et al., 2004)   
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1.8.2.2 Osteoblasts 

The molecular mechanisms of Sema3A are not fully understood. Sema3A deficiency 

resulted in a suppressed wnt3a induced β-catenin accumulation and an inhibited 

wnt3a induced activation of Rac but not RhoA in calvarial cells (Hayashi et al., 2012). 

The canonical Wnt pathway is known to promote osteoblast differentiation and 

inhibit adipocyte differentiation (Krishnan et al., 2006). Sema3A induced Rac 

activation was suggested to be regulated by FARP2 (Toyofuku et al., 2005). In 

support of this, introduction of a dominant negative form of FARP2 inhibited 

osteoblast differentiation of calvarial cells even in the presence of Sema3A, indicating 

that Sema3A stimulates the canonical Wnt pathway through the FARP2 induced Rac 

activation during osteoblast differentiation (Figure 1.4) (Hayashi et al., 2012).  

 

Figure 1.4. Mechanism of Sema3A in promoting osteoblast differentiation. 

Upon binding to Nrp1 and Plexin-A, Sema3A initiates FARP2 induced Rac activation thereby 

stimulating the canonical Wnt induced β-catenin accumulation during osteoblast differentiation. 

Adapted from (Hayashi et al., 2012) see appendix section 10.6. 
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1.8.2.3 Osteoclasts 

Interestingly while Sema3A stimulates the canonical Wnt pathway through FARP2 in 

osteoblasts (Hayashi et al., 2012), FARP2 was found to be essential for osteoclast 

podosome rearrangements and osteoclast resorbtion (Takegahara et al., 2010). 

Takegahara and colleagues showed that FARP2 osteoclast deficiency reduced 

osteoclast formation and resorption pits (Takegahara et al., 2010). Sema3A inhibits 

osteoclastogenesis by sequestering plexin-A1 for the plexinA1-Nrp1-Sema3A 

complex, however; after RANKL stimulation the expression of Nrp1 is 

downregulated, thereby releasing plexin-A1 from the plexinA1-Nrp1-Sema3A 

complex to form the plexinA1-TREM2-DAP12 complex to mediate osteoclast 

differentiation (Figure 1.5) (Hayashi et al., 2012). In osteoclasts plexin-A1 promotes 

osteoclastogenesis by the association of plexin-A1 with TREM2-DAP12 in response 

to ligands such as Sema6D thereby activating the immunoreceptor tyrosine-based 

activation motif (ITAM) signal (Takegahara et al., 2006). However, plexinA1 was 

found to be constitutively associated with Nrp1 (Takahashi and Strittmatter, 2001).  

 

Figure 1.5. Mechanism of inhibition of osteoclastogenesis by Sema3A. 

Sema3A sequesters plexinA1 and Nrp1 thereby preventing the formation of the plexinA1-TREM2-

DAP12 required for osteoclastogenesis. Upon RANKL stimulation, Nrp1 expression is downregulated, 

leading to release of plexinA1.  Adapted from (Hayashi et al., 2012) see appendix section 10.6. 
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1.8.3 Semaphorin 3A in embryonic development 

Initially Sema3A was characterized for its function as a chemorepellent for axons 

during neuronal development, however; Sema3A is also widely expressed in other 

organs such as the heart and bones and shown to be essential for their development 

(Messersmith et al., 1995, Behar et al., 1996). Sema3A knockout mice are viable but 

only a small percentage of mice reach adulthood (Behar et al., 1996). Sema3A 

deficient mice exhibit many developmental abnormalities in the nervous system such 

as reduced terminal axon branching in the cerebellum and impaired dorsal muscle 

innervation (Cioni et al., 2013, Masuda et al., 2013). Furthermore, Sema3A knockout 

mice have abnormal trajectory of spinal and cranial nerves during early development 

that are corrected during further embryonic development (White and Behar, 2000, 

Taniguchi et al., 1997). However Sema3A deficient mice have abnormal adult 

olfactory bulb spatial arrangement of nerves and neonatal mice displayed reduced 

branching of cortical dendrites (Taniguchi et al., 2003, Fenstermaker et al., 2004), 

suggesting that not all nerve abnormalities caused by Sema3A deficiency are 

corrected during late embryonic development.  

Sema3A deficiency leads to hypertrophy of the right atrium and ventricle of the heart 

which might be due to the abnormal cardiac sympathetic nerve patterning (Behar et 

al., 1996, Ieda et al., 2007). Abnormalities were also seen in the vascular patterning 

of the kidney and the cerebral microvessel density and vascular permeability (Reidy 

et al., 2009, Hou et al., 2015). As Sema3A is a competitor for VEGF, the underlying 

mechanism for the vascular abnormalities observed in Sema3A deficient mice could 

be due to an imbalance in VEGF versus Sema3A signalling rather than the absolute 

expression of both proteins.    
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1.8.4 Semaphorin 3A in bone metabolism 

Behar and colleagues reported that Semaphorin III (Sema3A) was vital for normal 

development of nerves and heart using a Sema3A knock out mouse model. In 

addition to abnormal neuron migration and axon guidance, a Sema3A deficit lead to 

abnormalities in bone development (Behar et al., 1996). In the skeleton, Sema3A, 

plexinA1, plexinA2 and Nrp1 were found to be expressed by osteoblasts and 

osteoclasts, however, Sema3A expression was absent in osteoclasts. In addition, 

chondrocytes were also shown to express Sema3A, Nrp1 and both plexin A1 and 

plexin A2 during differentiation. Sema3A and Nrp1 were shown to be coexpressed 

during all stages of endochondral ossification by chondrocytes and osteoblasts 

(Gomez et al., 2005).  

Hayashi and colleagues reported a severe low bone mass phenotype in Sema3A 

deficient mice. A similar phenotype was observed in Nrp1
sema-

 knock-in mice, in 

which the Nrp1 lacks the Semaphorin binding domain. These mice displayed a severe 

low bone mass in both trabecular and cortical bones. Osteoblastic bone formation was 

decreased and accompanied by an increase in osteoclast number and resorption 

(Hayashi et al., 2012). Implicating that the bone abnormalities are in fact caused by 

absent Sema3A signaling rather than an imbalance in VEGF/Sema3A. Interestingly 

like the Nrp1
sema-

 knock-in mice, Nrp2 deficient mice show a low bone mass 

phenotype characterized by reduction in trabecular bone volume and an increase in 

bone resorption accompanied by a reduction in osteoblast numbers (Verlinden et al., 

2013). However, it is unclear whether the effect seen in Nrp2 deficient mice is linked 

to VEGF or Semaphorin signaling.   

Sema3A administration decreased bone loss in ovariectomized mice by inhibition of 

bone resorption and promotion of bone formation. These results indicate a possible 

therapeutic application due to the osteoprotective role of Sema3A by binding to Nrp1 

and as a result, stimulating bone formation and differentiation of osteoblasts and 

suppress bone resorption by inhibition of osteoclastogenesis (Figure 1.6) (Hayashi et 

al., 2012). In further support of this, a more recent study showed that local injection 

of Sema3A promoted fracture healing and callus remodeling in a rat model of 

osteoporosis (Li et al., 2015a).  
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Figure 1.6. Sema3A-mediated regulation of bone remodeling.  

Sema3A is produced by osteoblasts. Sema3A inhibits RANKL induced osteoclast formation and also directs osteoblast lineage cells towards osteoblast differentiation.  
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Fukuda and colleagues confirmed the anti-osteoclast and pro-osteoblast effect of 

Sema3A, however, they suggested that the absence of Sema3A expression in 

osteoblasts is not the sole and primary cause of bone abnormalities in Sema3A 

deficient mice. Mice with osteoblast specific Sema3A deficiency showed normal 

bone formation and bone mass. In contrast, a Sema3A deficiency specifically in 

neurons caused significant reductions in bone mass in both male and female mice 

(Fukuda et al., 2013). Altogether these studies imply an important role of Sema3A in 

osteoblast differentiation and bone formation and may present a novel therapeutic 

agent in skeletal bone remodeling disorders (Xu, 2014). 

1.8.5 Semaphorin 3A and pain 

Sema3A reduces part of nerve growth factor (NGF) induced pain responses, but was 

found to be unable to fully prevent progression of neuropathic pain in a rat model 

(Tang et al., 2004). Tanelian and colleagues observed that expression of Sema3A in 

rabbit corneal epithelial cells caused repulsion of A-delta and C fiber trigeminal 

sensory afferents in normal corneas and inhibited entry of nerve sprouts in the 

wounded cornea (Tanelian et al., 1997).  

Hayashi and colleagues showed that administration of Sema3A intrathecally after 

peripheral nerve injury in rats prevented the development of neuropathic pain-related 

behaviour such as mechanical and heat hypersensitivities (Hayashi et al., 2011). 

However, Sema3A had no effect on sprouting of myelinated nerve terminals 

suggesting that the inhibition of neuropathic pain of Sema3A may be due to a more 

complicated mechanism than just morphological changes of nerve terminals. In 

contrast to these observations, Maeda and colleagues showed that Sema3A 

knockdown in lung cancer cells significantly attenuated the decline in weight bearing 

of the hind leg (Maeda et al., 2016). However, this result might be predominantly due 

to a reduction in tumour burden rather than a direct effect on pain responses.    
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1.8.6 Semaphorin 3A in cancer 

Sema3A has been shown to affect tumour cell behavior in various cancers. 

Expression of Sema3A promoted glioblastoma multiforme spread via Nrp1 in an 

autocrine manner and treatment with Sema3A antibodies inhibited glioblastoma 

growth in a patient derived xenograft model (Lee et al., 2017). Furthermore, Sema3A 

enhanced cancer progression in hepatocellular carcinoma and increased invasiveness 

and scattering of pancreatic tumour cells (Muller et al., 2007, Bagci et al., 2009, Hu et 

al., 2016). Expression of Sema3A in patient samples was also correlated with a poor 

prognosis in pancreatic cancer and liver cancer patients (Muller et al., 2007, Hu et al., 

2016).  

In contrast, decreased Sema3A expression was correlated with poor prognosis in non-

small cell lung cancer patients and overexpression of Sema3A reduced the 

invasiveness of prostate cancer cells (Herman and Meadows, 2007, Zhou et al., 2014). 

Inhibition of Nrp1 expression, a reduced Sema3A expression or a plexin-A1 

dominant negative mutant, enhanced breast cancer cell migration. These results 

indicate an autocrine pathway involving Sema3A, plexin-A1 and Nrp1 that disrupts 

the chemotaxis of breast carcinoma cells (Bachelder et al., 2003). Furthermore, 

overexpression of Sema3A in breast cancer cells significantly reduced breast cancer 

cell motility and suppressed breast tumour growth in vivo (Pan and Bachelder, 2010, 

Mishra et al., 2015b).  

Overexpression of Sema3A in 4T1, 66cl4 mammary carcinoma and MDA-MB-435 

melanoma cells did not affect proliferation or survival in vitro, however; in vivo 

tumour growth was significantly inhibited due to inhibition of tumour angiogenesis 

(Casazza et al., 2011). Reductions in tumour growth were also reported in melanoma 

tumours and oral cancer tumours after Sema3A overexpression (Chakraborty et al., 

2012, Huang et al., 2017). These contrasting observations in different tumour types 

might be explained due to differences in receptor expression and signalling pathways 

involved in different cell types. Bones are a common site of metastasis for both breast 

and prostate cancer. Sema3A expression was shown to be involved in the pro-

osteoblastic activity of C4-2 prostate cancer cells (Liu et al., 2015). A similar effect 

was observed in the MCF-7 breast cancer cells where knock down of Sema3A 

significantly decreased osteoblastic differentiation (Shen et al., 2015).  
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The balance between Sema3A and VEGF expression has also been implicated in 

cancer. A high VEGF/Sema3A ratio was correlated with higher recurrence rate in 

meningioma and Catalano and colleagues have shown that VEGF increased Sema3A 

expression in mesothelial cells but this negative regulatory pathway was absent in 

malignant mesothelial cells (Catalano et al., 2004, Barresi and Tuccari, 2010). 

1.8.7 Neuropilin receptors in osteosarcoma 

The role of Sema3A in osteosarcoma remains unknown. However, there are 

indications of the involvement of neuropilins in osteosarcoma. RANKL, a key 

regulator in bone metabolism, affects RANK positive human osteosarcoma cell line 

Saos-2 by upregulation of genes affected by RANKL, including upregulation of 

Sema3A, and downregulation of genes implicated in protein metabolism, nucleic acid 

metabolism, intracellular transport and cytoskeleton organization (Mori et al., 2006). 

Nrp1 was found to be overexpressed in osteosarcoma tissue when compared to non-

cancerous bone tissues and was reported to be an independent factor for predicting 

prognosis (Zhu et al., 2014).  

Nrp2 was overexpressed in several osteosarcoma cell lines in comparison to normal 

osteoblasts. Furthermore, Nrp2 knockdown inhibited in vivo tumour growth, due to 

inhibited vessel formation
 
(Ji et al., 2015). Nrp2 expressing osteosarcoma tumours 

showed increased vascularity and showed a poorer prognosis (Handa et al., 2000). 

Another study by Boro and colleagues showed that patients with Nrp2 but not Nrp1 

positive osteosarcoma have a significantly shorter overall survival (Boro et al., 2015). 

However, it is unclear whether these observations are predominantly due to Sema3A 

signalling. As discussed previously in section 1.7.2 and section 1.8.2.1, both Nrp1 

and Nrp2 are also involved in vascular endothelial growth factor (VEGF) signalling 

and angiogenesis (Guo and Vander Kooi, 2015). Altogether, the overexpression of 

Nrp1 and Nrp2 could contribute to tumour progression by enhanced vascularity of the 

tumour rather than Sema3A signalling.  
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1.9 Aims of this study 

Sema3A enhances osteoblast differentiation and increases bone formation. Several 

studies have implicated Sema3A in tumour motility and growth. Moreover, the 

Sema3A receptors have been implicated in osteosarcoma but the effects of 

recombinant and tumour-derived Sema3A on osteosarcoma remains unknown.  

We hypothesize that overexpression of Sema3A in osteosarcoma cells and treatment 

with human recombinant (exogenous) Sema3A inhibits osteosarcoma cell growth, 

metastasis and ability to cause osteolysis and ectopic bone formation in mice. 

The specific aims of the work reported in this thesis are: 

 To investigate whether treatment with exogenous Sema3A or overexpression 

of Sema3A (osteosarcoma-derived) in osteosarcoma cells affects: 

o The viability, migration and invasion, alkaline phosphatase activity 

and ability to influence osteoclastogenesis of osteosarcoma cells in a 

panel of osteosarcoma cell lines in vitro.  

o Osteosarcoma tumour growth, metastasis, bone damage and ectopic 

bone formation in vivo. 

o Osteosarcoma-associated osteolysis and osteoclast formation. 

o Osteosarcoma-associated ectopic bone formation and osteoblast 

activity and differentiation. 

 To investigate the effects of Sema3A on cell signalling pathways and cytokine 

production by examining the effects of: 

o Osteosarcoma-derived Sema3A on osteoblast Wnt/β-catenin signalling. 

o Overexpression of Sema3A on osteosarcoma cytokine production.  
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2 Material and methods 

2.1 Cell culture medium 

Mouse MC3T3-E1 clone 4 and RAW 264.7 cell lines (table 2.1) were purchased from 

(ATCC, Manassas, VA, USA). Tissue culture medium (DMEM and alpha-MEM) 

was obtained from Gibco, Thermofisher (Leicestershire, UK). Human osteosarcoma 

cells (section 2.4.1 and table 2.1) were cultured in DMEM Glutamax (Gibco, UK) 

supplemented with 10% fetal calf serum (FCS), 100U/ml penicillin and 100 μg/ml 

streptomycin (standard DMEM). Mouse cell lines MC3T3-E1, RAW 264.7, mouse 

bone-marrow (BM), murine calvarial osteoblasts and murine osteoclasts were 

cultured in αMEM Glutamax supplemented with 10% fetal calf serum (FCS), 

100U/ml penicillin and 100 μg/ml streptomycin (standard αMEM).  

2.1.1 Cell culture conditions 

Cell culture was performed in laminar flow cabinets which were sprayed with 70% 

IMS. All solutions were warmed to 37ºC before use. Pre-sterilized or autoclaved 

plastic ware supplied by various manufacturers was used. Cultures were maintained 

under standard conditions of 5% CO2: 95% air at 37 ºC in a humidified atmosphere, 

unless stated otherwise. Phase-contrast microscopy was used to observe cells 

throughout the culture period. 

Table 2.1 Cell lines utilized in this thesis 

Cell line  Species Cell type 

MC3T3-E1 Mouse Preosteoblast 

RAW 264.7 Mouse Macrophage 

MG-63 Human Osteosarcoma, male origin 

Saos-2 Human Osteosarcoma, female origin 

MNNG/HOS Human Osteosarcoma, female origin 

KHOS Human Osteosarcoma, female origin 
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2.2 Bone marrow and monocyte cultures 

Bone marrow cells were isolated, cultured and TRAcP stained as previously 

described by (Marino et al., 2014). 

2.2.1 Isolation of bone marrow cells 

Bone marrow cells were isolated from the tibia and femur of 8-12 week old C57BL/6 

female mice sacrificed by cervical dislocation according to Schedule 1 of the Animals 

(Scientific Procedures) Act (University of Edinburgh, United Kingdom) as previously 

described by (Marino et al., 2014). Due to previous collaboration of Dr Idris with the 

University of Edinburgh during the first year of my research, pups for osteoblasts and 

osteoclasts were sacrificed in Edinburgh by the animal house staff and calvaria and 

legs were transported to Sheffield for further research each time Dr Silvia Marino or 

Dr Aymen Idris visited the Edinburgh facilities. Sterilized equipment was used and 

bone marrow cell isolation was performed in a laminar flow hood. Freshly isolated 

hind legs were placed in a Petri dish. Soft tissue was removed with a scalpel and the 

ends of the bone were cut in order to expose the bone marrow. The long bones were 

transferred to a petri dish containing standard αMEM and the bone marrow cells were 

extracted using a 5 ml syringe with a 25 gauge (G) needle containing standard αMEM 

to flush the bone marrow. A single cell suspension was obtained by passing the bone 

marrow cells through needles of decreasing size (19G - 25G). The cell suspension 

was collected in a 15 ml tube and centrifuged at 1200rpm for 3 minutes. The pellet 

was resuspended in standard αMEM and plated in 96 well plates supplemented with 

25ng/ml M-CSF and 100ng/ml RANKL. Cultures were kept under standard condition. 

Protocols adapted from (Edinburgh thesis S. Marino).  

2.2.2 RANKL and M-CSF generated osteoclasts in coculture with osteosarcoma 

cells 

The bone marrow cultures that were plated in 96 well plates (see previous section) 

were left to adhere for 24 hours. After 24 hours, 50 µl medium was added with 

consisting of standard αMEM supplemented with 100ng/ml RANKL and 25ng/ml M-

CSF and the cultures were treated with the desired compounds to assess the effect of 

Sema3A on osteoclast formation in the presence of osteosarcoma cells or 

osteosarcoma cell conditioned medium (100 osteosarcoma cells or conditioned 
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medium (20%) in presence of 300 ng/ml Sema3A or vehicle) for 48 hours. After 48 

hours 33% of the medium was removed and replaced by fresh medium supplemented 

100ng/ml RANKL and 25ng/ml M-CSF, in case of cultures treated with Sema3A, 

300 ng/ml Sema3A was added and in case of cultures with conditioned medium, 

conditioned medium (20%) was added. After 6-7 days of culture, cells were rinsed 

with phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde. 

Osteoclasts were identified using TRAcP staining (section 2.2.5) and counted to 

assess the effect of Sema3A on osteoclast formation in the presence of osteosarcoma 

cells or conditioned medium derived from osteosarcoma cells.  

2.2.3 RAW 264.7 differentiation into osteoclasts in the presence of osteosarcoma 

or osteoblast cells   

The RAW264.7 cell line was used in these experiment for its potential to differentiate 

and fuse into osteoclasts. To assess the effect of Sema3A on osteoclast formation in 

the presence of MC3T3-E1 or osteosarcoma MG-63 cells, RAW 264.7 cells were 

plated at 400 cells/well in 96 well plates. After 24 hours in standard DMEM, medium 

was removed and MC3T3-E1 (500cells/well) or MG-63 (500cells/well) were added 

to the wells supplemented with 50 ng/ml RANKL and vehicle (PBS) or Sema3A 300 

ng/ml.  Every 48 hours, 50% of the medium was replaced with standard DMEM 

supplemented with 50 ng/ml RANKL and vehicle (PBS) or Sema3A 300 ng/ml. After 

5 days cells were rinsed with PBS and fixed with 4% paraformaldehyde. Osteoclasts 

were identified using TRAcP staining (section 2.2.5) and counted to assess the effect 

of Sema3A on osteoclast formation in the presence of MC3T3-E1 preosteoblasts or 

MG-63 osteosarcoma cells. 

2.2.4 Culture fixation 

At the time of termination of osteoclast cultures, the culture medium was removed 

and the cells were rinsed with PBS and fixed with 4% (v/v) paraformaldehyde (150µl 

per 96 well). Paraformaldehyde was removed and cells were washed with PBS before 

addition of 200 μl of 70% (v/v) ethanol and stored at 4°C. 

2.2.5 Tartrate-resistant Acid Phosphatase (TRAcP) staining 

Multinucleated osteoclasts were identified using Tartrate-resistant Acid Phosphatase 

(TRAcP) staining as previously described (Marino et al., 2014). The TRAcP staining 

solution was freshly prepared (Appendix 10.5). Briefly, cells were fixed with 4% 
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paraformaldehyde for 10 minutes and washed with PBS before 100 μl of TRAcP 

staining solution was added to each well, plates were then incubated at 37˚C for 30-

60 minutes. TRAcP staining solution was removed and cells were rinsed twice with 

sterile PBS and stored in 200 µl in 70% (v/v) ethanol at 4 °C. TRAcP positive cells 

(TRAcP+) with 3 or more nuclei were considered to be osteoclasts and manually 

counted using 10 x and 20 x lenses on a Leica Light microscope. 

2.3 Osteoblast cultures 

The following paragraphs on osteoblasts, describe osteoblast isolation and 

characterization as previously described by (Logan et al., 2013). 

2.3.1 Isolation of primary osteoblasts 

Primary calvarial osteoblasts were obtained by repeated collagenase digestion from 

the calvarial bones of 2 day-old C57BL/6J mice sacrificed by decapitation according 

to Schedule 1 of the Animals (Scientific Procedures) Act (University of Edinburgh, 

United Kingdom see section 2.2.1) as previously described by (Logan et al., 2013). 

Briefly, calvaria were washed in PBS. Calvaria were then incubated in 3 ml of 

collagenase type 1 (1 mg/ml) in PBS and incubated for 10 minutes at 37 ºC in a 

shaking water bath. After the first digestion, supernatant was discarded and the 

calvaria were incubated in 4 ml collagenase in PBS for 30 minutes in a shaking water 

bath. The supernatant was collected (fraction 1) and the calvaria were washed twice 

with 2 ml PBS which was added to the collected supernatant (fraction 1) and topped 

up with standard αMEM. The remaining tissue was incubated in PBS supplemented 

with 5mM EDTA and incubated for 10 minutes at 37 ºC. The supernatant was 

collected (fraction 2) and tissues were washed twice with 2 ml PBS which was added 

to the collected supernatant (fraction 2) and topped up with standard αMEM. The 

remaining tissues were incubated in 4 ml of collagenase type 1 (1 mg/ml) in PBS for 

30 minutes in order to obtain the fraction 3. The three cell suspensions were pooled 

and centrifuged at 1200 rpm for 3 minutes. The supernatant was removed and the cell 

pellet was resuspended in standard αMEM and cultured in 75cm
2
 flasks under 

standard conditions at a density of 3 calvaria per flask. After 24 hours the medium 

was changed to remove non-adherent cells and the media was changed every 48 hours 

thereafter until confluence was reached. Protocols adapted from (Edinburgh thesis S. 

Marino). 



CHAPTER TWO                                                                                     Materials and Methods 

 

 

43 

 

2.3.2 Passage of primary osteoblasts 

When confluence was reached, the osteoblasts were rinsed with PBS and detached by 

incubation with 2 ml of trypsin for 3 minutes at 37
o
C. Trypsin was deactivated by 

adding 8 ml of standard αMEM. The cell suspension was centrifuged at 1200 rpm for 

3 minutes. The supernatant was discarded and the pellet was resuspended, used for 

experiments and the left over was cultured in 75cm
2
 flasks. Cultures were kept under 

standard conditions. 

2.3.3 Osteoblast viability  

Primary osteoblasts were plated in 96-well plates at 7 x 10
3
 cells/well in 150 μl of 

standard αMEM. MC3T3-E1 were seeded at 5 x 10
3
 cells/well 100 μl of standard 

αMEM. After 24 hours primary osteoblasts and MC3T3-E1 were treated with 

conditioned medium (20%), vehicle or Sema3A 300 ng/ml and left for 48 and 72 

hours before cell viability was analysed by the Alamar Blue assay.  

2.3.4 Alamar Blue assay 

Alamar Blue assay was used to measure the viability of bone and cancer cells. 

Alamar Blue assay utilises a nontoxic dye containing resazurin that is non-fluorescent 

and blue in colour when in an oxidized state. The dye is taken up by metabolically 

active cells and reduced to resorufin that is fluorescent and red in colour. The degree 

of change in colour/fluorescence is proportional to the number of viable metabolically 

active cells.  Briefly, 10% (v/v) Alamar Blue reagent was added to each well at the 

end of the culture period. The plate was incubated for 3 hours in standard culture 

conditions and fluorescence was measured (excitation, 530 nm, emission 590 nm) 

using a SpectraMax® M5 microplate reader (Logan et al., 2013). AlamarBlue was 

also added to wells containing standard medium without cells or treatments to obtain 

background fluorescence.  

2.3.5 Alkaline phosphatase assay 

Osteoblast differentiation was observed using the Alkaline Phosphatase assay (ALP) 

as previously described by (Logan et al., 2013). The assay is based on the conversion 

of p-nitrophenol phosphate (colourless) (pNpp) into p-nitrophenol (yellow) by the 

alkaline phosphatase enzyme, highly expressed by osteoblasts. 
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Primary osteoblasts were isolated as described in section 2.3.1. Primary calvarial 

osteoblasts and the MC3T3-E1 were seeded into 96-well plates at 7 x 10
3 
cells and 5 

x 10
3
 cells per well respectively in standard αMEM. KHOS, MNNG/HOS, Saos-2 

and MG-63 osteosarcoma cells were seeded into 96-well plates at 4 x 10
3
 cells per 

well in standard DMEM. After 24 hours cells were treated with vehicle (PBS) or 

exogenous Sema3A (300 ng/ml) in serum free medium with the exception of primary 

osteoblasts that were cultured in standard α-MEM. After a 48 hour incubation with 

the treatment the viability of the cells was assessed using Alamar Blue. 

After viability assessment the cell monolayer was washed with PBS and incubated 

with 150 μl of ALP lysis buffer for 20 minutes. Cells were observed under a light 

microscope to ensure they were completely lysed. Test samples (50µl/well) were 

pipetted in a fresh 96 well plate. An equal amount of substrate solution was added 

and the absorbance was measured using the SpectraMax® M5 microplate reader at 

wavelength of 414 nm at 37°C, every 5 minutes for 30 minutes. ALP activity was 

determined from the slope of the linear part of the standard kinetic curve and was 

expressed as fold stimulation over the vehicle control. Alkaline ALP activity was 

normalised to cell viability as determined by the Alamar Blue assay section 2.3.4. 

2.3.6 Mineralization of Saos-2 

Saos-2 cells were plated in 24 well plates at 75 x 10
3
cells/well in standard DMEM. 

Once the cells reached confluence, Saos-2 were treated with conditioned medium    

20% (v/v) in osteogenic medium containing (50µg/ml Ascorbic Acid, 10nM 

Dexamethasone and 2mM β-Glycerophosphate, 1% FCS) every 48 hours for 9 days. 

In the intermittent exposure mineralization experiments, Saos-2 cells were exposed to 

conditioned medium 20% v/v in osteogenic medium as described above for 6 hours 

out of the 48 hour cycle. The other 42 hours cells were cultured in 1% FCS 

osteogenic DMEM. After 9 days, cells were lysed in 500 μl of ALP lysis buffer for 

20 minutes. Or fixed in 1ml 70% ethanol for at least 24 hours before Alizarin Red 

staining.  

2.3.7 Alizarin Red stain 

Alizarin Red S is used to stain calcium deposits in tissue and cell culture. Staining of 

osteoblasts and osteoblast like cells was previously described by (Logan et al., 2013). 
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The 70% ethanol was removed from the well and the cell layer was washed 4 times 

with 3 ml distilled H2O (dH2O). After removal of the dH2O 1ml of 40mM Alizarin 

red at pH 4.2 was added to the well and incubated for 20 minutes at room temperature. 

The Alizarin red solution was removed and the cell layer was washed 4 times with 2 

ml distilled H2O (dH2O) for 5 minutes. Excess water was removed and plates were 

left to dry at room temperature. Area of mineralization was quantified using ImageJ 

analysis after the plates were scanned using Epson perfection 4990 photo scanner. 

Mineralization was also quantified using destaining of the Alizarin red as described in 

the following section.  

2.3.8 Destain of Alizarin red  

After the plates were dried overnight, 1 ml/well of 10% (w/v) cetylpyridinum 

chloride in 10mM sodium phosphate (pH 7.0) was added to the Alizarin red stained 

wells. Plates were incubated on a rocking table at room temperature for 2 hours and 

the absorbance of the extracted stain using a SpectraMax® M5 microplate reader at 

wavelength of 562 nm was measured at 30 minute intervals.  
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2.4 Cancer cells  

2.4.1 Cancer cell lines 

Human KHOS, MNNG/HOS, Saos-2 and MG-63 osteosarcoma cell lines (table 2.1) 

were purchased from (ATCC, Manassas, VA, USA).  KHOS, MNNG/HOS, Saos-2 

and MG-63 osteosarcoma cells were cultured in DMEM + Glutamax (Gibco, UK) 

supplemented with 10% FCS, 100U/ml penicillin and 100 μg/ml streptomycin 

(standard DMEM). Cancer cells were cultured in 25 cm
2 

flasks and passaged every 

48-72 hours at a ratio of 1:5-1:10. Culture medium was removed, the cells washed in 

PBS and detached by treatment with trypsin. Standard medium was added to 

inactivate the trypsin and cells were transferred to a fresh sterile 15 ml and 

centrifuged at 1200 rpm for 3 minutes. The supernatant was discarded and cells were 

resuspended in 1 ml standard medium before a percentage of the suspension was 

placed into a new flask 25 cm
2
 flask containing 5 ml standard medium.  

2.4.2 Conditioned medium preparation 

In case of studies requiring conditioned medium, human KHOS osteosarcoma control 

or KHOS Sema3A overexpressing cells were plated in 6 well plates and cultured in 

standard medium until 80% confluence was reached. Standard medium was removed 

from the cells and replaced with serum free medium. After 16 hours, the conditioned 

medium was removed and filtered through a 0.45 µm filter.  

2.4.3 Cancer cell line drug treatments 

Sema3A treatment was achieved using commercially available human recombinant 

Sema3A protein (R&D) reconstituted in PBS according to manufacterer’s instructions. 

The concentration of Sema3A used was determined based on previous studies on 

osteoclasts and breast cancer cell lines in our laboratory (de Ridder MSc thesis 

unpublished data) and on concentrations of Sema3A previously described by Hayashi 

and colleagues (Hayashi et al., 2012). Human KHOS osteosarcoma cells were seeded 

at density of 1000 cells/well, MNNG/HOS cells were seeded at a density of 2000 

cells/well and Saos-2 and MG-63 were seeded at 3000 cells/well in 96 well plates. 

After 24 hours under standard culture conditions, the media was replaced with serum 

free DMEM with Sema3A (300 ng/ml) or vehicle control. After 24 and 48 hours, cell 

viability was assessed by Alamar Blue assay 2.3.4. 
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2.5 Lentiviral transduction 

2.5.1 Kill curve and antibiotic selection 

Cells were plated at 5000 cells/well in 96 well plate. Puromycin (Gibco) was 

prepared in standard DMEM at concentrations from 0 to 10µg/ml. Hygromycin 

(Invitrogen) was prepared in standard DMEM at concentrations from 0 to 800 µg/ml. 

Blasticidin (Invitrogen) was prepared in standard DMEM at concentrations from 0 to 

20 µg/ml. Growth medium was refreshed with medium containing dilutions of 

puromycin, hygromycin or blasticidin and incubated at 37°C for 48 hours. The 

AlamarBlue assay was used to measure cell viability and percentage of cell survival 

was calculated. The minimum antibiotic concentration that killed 100% of the cells 

was determined to be 1 µg/ml for puromycin, 500 µg/ml for hygromycin and 5 µg/ml 

for blasticidin and were subsequently used to select for successfully transfected cells. 

2.5.2 Lentiviral transduction 

Lentiviral activation particles (Santa Cruz), control (sc-437282) and Sema3A 

lentiviral activation particles (sc-400716-LAC) were used to transduce human KHOS 

osteosarcoma cells according to manufacturer’s protocol. Lentiviral activation 

particles encode a synergistic activation mediator (SAM) complex that is designed to 

activate the transcription to upregegulate endogenous gene expression. The SAM 

complex binds to a site-specific region, guided by a target specific guide RNA, 

upstream of the transcriptional start site and recruits transcription factors for highly 

efficient gene activation. The Lentiviral activation particles contain three activation 

plasmids essential for the gene upregulation. Deactivated Cas9 (dCas9) nuclease 

(D10A and N863A) is fused to the transactivation domain VP64 and blasticidin 

resistance genes this construction allows the complex to bind to the DNA without 

cleaving the DNA. Particle 2 is a MS2-p65-HSF1 fusion protein containing a 

hygromycin resistance gene required for increasing the efficiency of transcription 

activation. The last particle contains a target-specific 20 nt. guide RNA (guide RNA 

for Sema3A) and a Puromycin resistance gene (Figure 2.1). In case of the Sema3A 

lentiviral activation particles, the complex enhances endogenous Sema3A expression 

by activating the transcription. In case of the mock control, the third plasmid contains 

a non-specific guide RNA. 
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Figure 2.1. Schematic representation of the SAM activation system.  

The Lentiviral activation particles contain three activation plasmids as part of the SAM transcription 

activation system essential for the gene upregulation. Particle 1 is a deactivated Cas9 (dCas9) nuclease 

(D10A and N863A) fused to the transactivation domain VP64 and blasticidin resistance genes. Particle 

2 is a MS2-p65-HSF1 fusion protein containing hygromycin resistance genes and is required for 

increasing the efficiency of transcription activation. The last particle contains a target-specific 20 nt, 

and a puromycin resistance. Image provided by Santa Cruz (SantaCruz) . 

Briefly cells were plated in 6 well plates at 0.1x10
6
 per well and left to adhere 

overnight. Medium was replaced with standard medium supplemented with 5 µg/ml 

Polybrene and cells were infected with 40 μl vehicle, control viral particles or 

Sema3A activation particles. After 24 hours of incubation the medium was replaced 

with standard medium for 24 hours. Medium was then replaced by antibiotic selection 

media containing three antibiotics (as described in section 2.5.1). Antibiotic selection 

media was replaced every 48 hours until control non-infected cells were killed. 
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2.6 Western blot 

The following sections are describing the assessment of protein expression by 

western blot as previously described in (Idris, 2012).  

2.6.1 Cell lysates  

Cells were plated in 6-well plates at 1-3 x 10
5
 cells/well in standard medium until 80% 

confluence was reached. Before harvesting the cell lysates, cells were incubated in 

standard or serum free medium for 16 hours. In case of short term protein signalling, 

cells were exposed to the desired condition (vehicle, Sema3A or conditioned medium) 

in serum free medium for 15 minutes before cell lysis. Medium was removed and the 

monolayer was washed with cold PBS and gently scraped in 50-90 μl of RIPA lysis 

buffer (appendix 10.5) with 2% (v/v) protease inhibitor cocktail and 0.4% (v/v) 

phosphatase inhibitor cocktail and left on ice to incubate for 5 minutes. The lysate 

was transferred to an eppendorf tube and centrifuged at 14000g for 10 minutes at 4
o
C. 

The supernatant was collected and stored at -20
o
C. 

2.6.2 Cytoplasmic and nuclear fractionation 

Cells were plated as stated in the previous section. Cells were incubated in serum free 

medium for 16 hours and exposed to vehicle or Sema3A (300 ng/ml) in fresh serum 

free medium for 45 minutes. Cells were washed with cold PBS and lysed with 100 μl 

of cytosolic buffer (appendix 10.5) with 2% (v/v) protease inhibitor cocktail and 0.4% 

(v/v) phosphatase inhibitor cocktail. Cells were incubated 1-5 minutes until cytosolic 

lysis was observed using a Leica light microscope. The cells were gently scraped, 

collected into eppendorf tubes and incubated for 5 minutes on ice. The lysate was 

centrifuged at 8000g for 5 minutes at 4
o
C and the supernatant was collected as the 

cytosolic fraction. To remove residual cytosolic protein, the pellet was resuspended in 

100 μl cytosol buffer centrifuged at 8000g for 5 minutes at 4
o
C, this step was 

performed twice. After removal of the supernatant, the remaining pellet was 

resuspended in RIPA lysis buffer (appendix 10.5) with 2% (v/v) protease inhibitor 

cocktail and 0.4% (v/v) phosphatase inhibitor cocktail, incubated on ice for 15 

minutes and resuspended every 5 minutes. The samples were centrifuged at 16000g 

for 15 minutes at 4
o
C and the supernatant was collected as the nuclear fraction.  
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2.6.3 Conditioned medium for western blot 

Cells were cultured in a T25 until 80% confluent. Once confluence was reached, 

standard medium was replaced with serum free medium. Conditioned medium was 

collected after 16 hours of culture and concentrated using Pierce Protein 

Concentrators, 9K MWCO (Thermofisher) to a volume of 400µl according to 

manufacturers’ instructions. Protein concentration was measured as described in the 

following section.  

2.6.4 Protein concentration 

Protein concentration was measured with the bicinchoninic acid (BCA) Pierce protein 

assay (Pierce, USA). The standard curve was generated with serial dilutions of bovine 

serum albumin (BSA) standards (0-2000 µg/µl). Standard BCA dilution standards (10 

µl) and protein samples (1:5 diluted in dH2O) were plated in duplicate in a 96-well 

plate. 200 µl of BCA solution (copper sulphate diluted in bicinchoninic acid at 1:50) 

was added to each well and incubated for 30 minutes at 37
o
C. Absorbance was 

measured at 562 nm using a SpectraMax® M5 microplate reader and protein 

concentration in each sample was calculated from the BSA standard curve. 

2.6.5 Gel electrophoresis and transfer 

CriterionTM XT BioRad (12% Bis-Tris) pre-cast gels were placed in a vertical Bio-

Rad electrophoresis tank filled with Tris-Glycine (1x) running buffer. Cell lysates 

(70-100 μg) were mixed with 5X sample loading protein buffer (appendix 10.5) and 

heated at 95°C for 5 minutes before loading into the gel wells. Kaleidoscope pre-

stained standard and Magic Marker XP western standard were used to identify 

molecular weights. Gels were run at constant voltage of 150V for ~1.5 hours. The 

Bio-Rad Transblot turbo midi-size polyvinylidene difluoride (PVDF) membrane was 

activated in 100% methanol and equilibrated in transfer buffer for 5 minutes before 

the separated proteins on the CriterionTM XT Bio-Rad (12% Bis-Tris) gel were 

transferred to the PVDF membrane. The gel and PVDF membrane were sandwiched 

between two midi size transfer stacks pre-soaked in transfer buffer and placed in the 

Transblot turbo transfer system (Bio-Rad) for 7 minutes at 2.5A and 25V. 
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2.6.6 Immunostaining and antibody detection 

The PVDF membrane was then incubated in 5% BSA in TBST solution (appendix 

10.5) or 5% milk (w/v in TBST) to block non-specific antibody binding sites at room 

temperature on a rocker for 1 hour. The membrane was then washed in TBST 3 times 

for 10 minutes and incubated overnight at 4°C on a rocker with the desired primary 

antibody (at 1:1000 in 5% BSA in TBST) for a list of the primary antibodies used in 

this thesis see appendix 10.2. The next day the membrane was washed with TBST 3 

times for 10 minutes and incubated with the anti-rabbit HRP-conjugated secondary 

antibody (at 1:10000 in 5% milk in TBST) on a rocker with a low speed for 1 hour at 

room temperature. After incubation with the secondary antibody the membrane was 

washed 6 times with TBST for 10 minutes each wash. Protein bands were visualised 

using Clarity
TM

 western ECL substrate (Bio-Rad) chemiluminescent detection system 

on a Chemidoc imaging system (BioRad). Quantification of the bands was performed 

with the use of Imagelab software from BioRad.  
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2.7 Cytokine array kit 

Secreted cytokines of KHOS mock and KHOS Sema3A overexpressing cells were 

measured in the conditioned medium with the Proteome Profiler Human XL Cytokine 

Array Kit R&D systems. This cytokine array measures the levels of 102 human 

cytokines simultaneously and was used according to manufacturer’s instructions. 

Cells were counted, plated and conditioned medium was prepared. All incubation 

steps were performed on a rocking platform shaker. Briefly, the membrane was 

blocked using the blocking buffer for 1 hour at room temperature before overnight 

incubation with the conditioned medium sample at 4
o
C. The membrane was washed 3 

times 10 minutes with washing buffer and then incubated with detection antibody 

cocktail for an hour. The membrane was then washed 3 times in washing buffer 

before the Streptavidin-HRP conjugate was added to the membrane and incubated for 

30 minutes. The membrane was washed 3 times as described above and the 

membrane was visualised with the chemi reagent mix on a Chemidoc imaging system 

(BioRad). Quantification of the cytokine spots was performed with the Imagelab 

software from BioRad after 20 minutes of visualisation and expression was registered 

when intensity of spots reached a threshold of 50000 (Au). Expression of cytokines 

were indicated as different when expression was higher than 200% or below 75% of 

control expression.  
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2.8 PINP and CTX ELISA 

Serum procollagen type 1 N propeptide (P1NP) and C-terminal telopeptide of type 1 

collagen (CTX) were measured in the systemic Sema3A administration xenograft 

model (section 2.10.1) using the mouse/rat competitive enzyme immunoassay kits 

(IDS, Boldon, UK), according to the manufacturer’s instructions. Briefly, standards, 

control and 1:10 samples were added to the wells of the antibody coated plate. PINP 

or CTX biotin were added and incubated on a microplate shaker at room temperature 

for 1 hour. Plates were then washed 3x with wash buffer and excess wash buffer was 

removed before enzyme conjugate was added to the wells and incubated for 30 

minutes at room temperature. Plates were washed as previously described and TMB 

substrate was added to the wells and incubated for 30 minutes at room temperature. 

Stop solution was added to the wells and absorbance was measured at 450nm using a 

SpectraMax® M5 microplate reader. The above described experiment was performed 

in full by Ryan T. Bishop. 
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2.9 Cell motility 

2.9.1 Wound healing assay 

The wound healing assay was performed as previously described by (Logan et al., 

2013). 2D directional migration of cells was assessed by the wound healing assay. 

Osteosarcoma cells KHOS, MNNG/HOS, MG-63 and Saos-2 were seeded in 24 well 

plates (0.15 x 10
6
) and osteoblast MC3T3-E1-E1 at (0.1 x 10

6
), were seeded in 24 

well plates in standard DMEM and left to adhere overnight. The confluent monolayer 

was wounded using a p10 plastic pipette tip. The cells were washed 5 times with 

serum free medium to remove any cell debris and then treated with 1ml of standard 

medium containing vehicle or Sema3A 300 ng/ml. The plate was placed in a 

microscope humidity chamber maintained at 37°C and supplemented with 5% CO2. 

Migration was monitored for 24 hours with a Leica AF6000 Time Lapse imaging 

system. Sequential images were captured at 15 minute intervals. Percentage of wound 

closure was calculated using T scratch software (Geback et al., 2009). 

2.9.2 Random migration assay 

For random migration assays KHOS cells (1x10
3
) were plated in 24 well plates in 

standard DMEM and left to adhere overnight. The medium was refreshed and the 

plate was placed in a microscope humidity chamber maintained at 37°C and 

supplemented with 5% CO2. Migration was monitored for 8 hours with a Leica 

AF6000 Time Lapse imaging system. Sequential images were captured at 15 minute 

intervals. Accumulated distance (total track length) and velocity were measured using 

the Chemotaxis and Migration tool in ImageJ. Cells that were in division, touched 

neighbouring cells, or left the image field during the experiment were excluded from 

data analysis, 30 cells were tracked per experiment. Cell viability was measured using 

Alamar Blue assay at the end of the migration assays. 
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2.9.3 Transwell invasion assay 

Cancer cell invasion was measured using Corning™ transwell inserts coated with 

matrigel. Matrigel was thawed and diluted with serum free DMEM to 1.5mg/ml. The 

inserts were coated with 20 µl of Matrigel solution and left to set in the incubator at 

37°C for 3 hours. KHOS cell suspensions were prepared (2.5x10
4
 cells/ml) in serum 

free DMEM and 200 µl of cell suspension was pipetted onto the matrigel. Outer 

wells were filled with 500 µl standard DMEM. After 48 hour incubation under 

standard culture conditions, a cotton swab was inserted into the top to remove the 

medium and matrigel. The cells on the mesh were then fixed in 100% ethanol for 5 

minutes followed by staining in eosin for 1 minute, haematoxylin for 5 minutes and 

were then rinsed with tap water and mounted onto glass slides. 
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2.10 Animal work 

All experimental protocols were approved by the French ministry of Agriculture and 

were realized in accordance with the institutional guidelines of the regional ethical 

committee (CREEA Pays de la Loire, France) and under supervision of authorized 

investigators at the University of Nantes, France. The method of osteosarcoma 

induction has previously been described by Jaqcues and colleagues (Jacques et al., 

2018). 

2.10.1  Systemic Sema3A administration xenograft model 

The effects of recombinant Sema3A treatment on osteosarcoma growth, metastasis 

and osteosarcoma associated bone damage were studied by intramuscular para- 

osseous (paratibial) injection. Four week-old female Rj: NMRI nude mice were 

purchased from Janvier Breedings (Le Genest Saint Isle, France) and allowed to 

acclimatize for a week after arrival. Mice were maintained under pathogen free 

conditions throughout the experiment. Mice were anesthetized by inhalation of an 

isoflurane/air mixture (2%, 1 L/min). Primitive osteosarcoma was induced by 

intramuscular paratibial injection of 1.0x10
6
 human KHOS osteosarcoma cells. 

Weight was measured before injection and monitored three times a week throughout 

the experiment. Tumour volume was measured three times weekly 

(length*width*depth*0.5). Mice were treated via intraperitoneal injection 2 days after 

tumour inoculation with vehicle (PBS) or 0.7 mg/kg recombinant Sema3A twice a 

week for the duration of the study. Mice were sacrificed when the tumour volume 

reached 10% of body weight or 2500mm
3
 for ethical reasons. All mice were 

sacrificed 21 days after tumour inoculation. Healthy and tumour bearing legs were 

harvested and fixed in formalin 4% for 72 hours for microCT analysis and 

immunohistochemistry analysis and lungs were collected for immunohistochemistry 

and metastases analysis and serum was collected for serum markers, see Figure 2.2. 

The above described experiment was performed in full by Dr Nathalie Renema in 

France.  
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2.10.2 Tumour-derived Sema3A xenograft model 

The effects of Sema3A overexpression in KHOS osteosarcoma cells on primary 

tumour growth and bone histomorphometry were studied by intramuscular paratibial 

injection. Four week-old female Rj: NMRI nude mice were purchased from Janvier 

Breedings (Le Genest Saint Isle, France) and allowed to acclimatize for a week after 

arrival. Mice were maintained under pathogen free conditions throughout the 

experiment. Mice were anesthetized by inhalation of an isoflurane/air mixture (2%, 1 

L/min). Primitive osteosarcoma was induced by intramuscular paratibial injection of 

1.5x10
6
 human KHOS osteosarcoma cells or human KHOS Sema3A overexpressing 

osteosarcoma cells. During injection the bone was scratched to allow rapid bone 

invasion. Weight was measured before injection and monitored three times a week 

throughout the experiment. Tumour volume was measured three times weekly 

(length*width*depth*0.5).  Mice were sacrificed when the tumour volume reached 10% 

of body weight or 2500 mm
3
 for ethical reasons. All mice were sacrificed 16 days 

after injection. Healthy and tumour bearing legs were harvested for 

immunohistochemistry and microCT analysis and lungs were collected for 

immunohistochemistry and metastases analysis, see Figure 2.2. The above described 

experiment was performed in full by Dr. Nathalie Renema in France. 

 

Figure 2.2. Schematic representation of the mouse models.  

For the systemic treatment model in female Rj: NMRI nude mice (left), osteosarcoma was induced by 

paratibial injection of KHOS osteosarcoma cells and mice were given a biweekly IP injection with 0.7 

mg/kg Sema3A or vehicle until the experiment was terminated, lungs and legs were collected for 

analysis. In the tumour-derived female Rj: NMRI nude mice model osteosarcoma was induced with 

KHOS mock or KHOS Sema3A overexpressing cells (right) and lungs and legs were collected for 

analysis. For a detailed description of the models see text.   
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2.11 Micro-Computed Tomography 

Legs were scanned using a Skyscan 1076 (Brucker, Belgium) set at 48kV and 200mA 

at a resolution of 18µm for the animal experiment comparing the mock versus 

Sema3A overexpressing KHOS osteosarcoma cells and at a resolution of 9µm for the 

experiment investigating the difference between treatment with recombinant Sema3A 

(0.7 mg/kg) and vehicle. After obtaining the xray scans, the Skyscan NRecon 

program was used to reconstruct the images with a thresholding of 0.009 to 0.09 and 

a Beam hardening correction of 20%. Trabecular, cortical and ectopic bone formation 

were then analysed using the Skyscan CTAn program (Brucker, Belgium) (Campbell 

and Sophocleous, 2014). 

2.11.1  Trabecular analysis 

For the proximal tibia and the distal femur, the mineralised cartilage bridge was used 

as a reference point starting trabecular analysis 10 (18µm) and 20 (9µm)  slices down 

from the point of reference for 100 slices total in the 18µm and a total of 200 slices in 

the 9µm resolution scans (equals 1.8 mm for both experiments) as described by (van 

't Hof, 2012). 

2.11.2  Cortex  

Cortical analysis was performed for 100 slices total in the 18µm and a total of 200 

slices in the 9µm resolution scans (equals 1.8 mm for both experiments) the last slice 

of the trabecular analysis was used as the reference slide for cortical analysis (110 

and 220 slices from the mineralised cartilage bridge in 18µm and 9µm resolution 

respectively) (van 't Hof, 2012).    

2.11.3  Ectopic bone 

For ectopic bone analysis in the tibia and the fibula 2 points of reference where used. 

The first point of reference was the mineralised cartilage bridge in the tibia and the 

second point of reference was the merging of the fibula with the tibia. Tumour-

bearing tibia and fibulae were analysed separately and compared to their contralateral 

tibia and fibula see figure 2.2 and figure 2.3 for a visualization of ectopic bone by 

microCT and histology respectively.  
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Figure 2.3. Visualization ectopic bone of the fibula by microCT.  

On the left in panel A. the healthy fibula with the area of bone volume (blue) that was analysed. On the 

right in panel B. the total bone volume comprises of the regular bone (blue) and ectopic bone 

formation(red). that the total bone volume of the osteosarcoma-bearing fibula was divided by the total 

bone volume of the healthy fiblula to calculate percentage of osteosarcoma bone volume. 
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2.12 Histology 

After legs were scanned, they were decalcified and embedded in paraffin. Lungs were 

embedded after the 72 hour fixation period using the following methods. 

2.12.1   Decalcification of legs 

Legs were decalcified prior to embedding. Decalcification was performed using a 

KOS microwave histoSTATION (milestone) in a solution of EDTA solution of 

EDTA 4.13% NaOH 0.2% PFA 4% PBS 1X pH 7.4. Duration of decalcification (1-3 

months) depended on the sample and was assessed by X-ray during the process. 

When decalcification was complete legs were embedded. Decalcification was 

performed in full by Dr. Nathalie Renema in France. 

2.12.2   Embedding of tissues  

Tissue embedding was performed by Dr. Nathalie Renema in France. Lungs and legs 

were paraffin embedded with a tissue processor (microm Microtech). Samples were 

dehydrated with in stages of ethanol dilutions, clearing in buthanol and paraffin 

embedding as shown in Table 2.2.  

Table 2.2 Stages and reagents of the microm microtech processor programme. 

Stage Reagent 

1 80% Ethanol 

2 95% Ethanol 

3 95% Ethanol 

4 95% Ethanol 

5 100% Ethanol 

6 100% Ethanol 

7 100% Ethanol 

8 Buthanol 

9 Buthanol 

10 Buthanol 

11 Paraffin wax 

12 Paraffin wax 
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2.12.3  Cutting of tissues 

Tissues were cut on a Leica microtome (Leica microsystems, Germany) and sections 

of 4µm were mounted on microscope slides (Thermo Fisher, UK). For each 

histological analysis 3 separate depths per tissue sample were analysed. 

2.12.4 Haematoxylin and eosin staining 

Tissue slides were dewaxed, stained and rehydrated before coverslips were applied to 

tissue slides using DPX mounting fluid. Tissues were dehydrated as follows: 

1. Dewax the sections in xylene twice in fresh solutions for 5 minutes each. 

2. Incubate sections in 100% ethanol twice for 5 minutes each to remove xylene. 

3. Incubate sections in 95% ethanol for 5 minutes. 

4. Incubate sections in 70% ethanol for 5 minutes. 

5. Rinse sections in tap water for 1 minute. 

Sections of the tumour-bearing legs were stained with TRAcP and counter stained 

with haematoxylin as discussed in section 2.12.6. Lung tissues were stained with 

haematoxylin and eosin (H&E) after dehydration as follows: 

6. Stain in Gill’s haematoxylin solution for 90 seconds. 

7. Incubate in tap water for 3 minutes. 

8. Stain with 1% eosin in 1% (w/v) calcium carbonate solution for 5 minutes. 

9. Incubate in tap water for 3 minutes 

Tissues were then rehydrated as follows: 

10. Incubate sections in 70% ethanol for 10 seconds. 

11. Incubate sections in 95% ethanol for 10 seconds. 

12. Incubate sections in 100% ethanol twice for 30 seconds each. 

13. Incubate sections in xylene twice for 1 and 3 minutes respectively 

14. Mount coverslips with DPX mounting fluid.  

2.12.5 Lung metastasis analysis 

Tumour nodule area of lung metastasis was analysed with a x4 objective using the 

Osteomeasure system (OsteoMetrics, Inc). Nodules were counted and quantified by 

measuring tumour area on lung sections stained with H&E. Three seperate depths per 



CHAPTER TWO                                                                                     Materials and Methods 

 

 

62 

 

lung were analysed for number of nodules and total tumour area, the average of these 

three depths was used as total lung tumour area for each mouse.  

2.12.6 TRAcP staining of bones 

Sections were dewaxed as described in section 2.12.4. TRAcP solutions (section 10.5) 

were made fresh before every staining. After dewaxing and dehydration sections were 

placed in warmed acetate-tartrate buffer for 5 minutes. Tissue slides were then 

incubated for 30 minutes in TRAcP solution A at 37°C. The solution was removed 

and tissue slides were incubated in solution B for 19 minutes. Tissue slides were then 

washed in tap water and counterstained with Gill’s haematoxylin for 20 seconds, 

washed again in tap water and then dehydrated and mounted with DPX as described 

in the previous section.  

 

Figure 2.4. Visualization of an osteosarcoma-bearing mouse leg with the features indicated.  

This figure depicts an osteosarcoma-bearing mouse leg with a visible tumour and tibia. A. Lower 

magnification image of the osteosarcoma-bearing leg with landmark features (ankle joint, knee joint 

and tibia) and osteosarcoma and ectopic bone formation indicated with arrows. The red square depicts 

the magnified image in B. Magnified image of an osteosarcoma-bearing mouse leg with a focus around 

the knee joint and proximal tibia showing landmark features (knee joint and tibia) and osteosarcoma 

and ectopic bone formation indicated with arrows.   

 

2.12.7  Histomorphometry 

Histomorphometry was performed with a x20 objective using the Osteomeasure 

histomorphometry system (OsteoMetrics, Inc) on TRAcP stained sections with a 

haematoxylin counterstain as described in section 2.12.6. Histomorphometry was 

performed as previously described by (Erben and Glosmann, 2012). Only TRAcP 
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positive multi-nucleated cells that were in contact with the bone were counted as 

osteoclasts and measured for osteoclast surface.  Osteoblasts were identified by their 

morphology, surface was measured and osteoblasts were counted if they were in 

contact with the bone.  

2.13 Statistical analysis 

All statistical analysis was performed using GraphPad Prism version 7.0. Student’s T 

test was performed to determine whether differences between two sets of results were 

significant. For statistical analysis in case of multiple groups, the analysis of variance 

(ANOVA) followed by Bonferroni post-hoc test was used.  In vivo results were 

analysed with the unpaired nonparametric Kruskal-Wallis test p- value of 0.05 or 

below was considered statistically significant. 
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3 CHAPTER THREE 

3.1 Summary 

Osteosarcoma is the most prevalent primary bone tumour mainly affecting children 

and young adults. Semaphorin 3A, a secreted member of the semaphorin family, is 

important for the early development of the skeletal system, bone homeostasis and 

fracture healing. Sema3A is produced by osteoblasts and is an important regulator of 

osteoblast-osteoclast coupling and bone metabolism. Furthermore, Sema3A is 

implicated in cancer and acts as a tumour promoter or tumour inhibitor depending on 

the cancer cell type. The role of Sema3A in osteosarcoma remains unknown. In this 

chapter, I studied the effects of exogenous Sema3A treatment on the viability, 

motility and alkaline phosphatase of osteoblasts and a panel of human osteosarcoma 

cells with a range of different metastatic abilities in vitro. Furthermore, I investigated 

the effect of exogenous Sema3A on tumour growth and lung metastasis in the 

xenograft KHOS mouse model.   

Treatment with exogenous Sema3A significantly reduced the 2D directed migration 

of both the panel of osteosarcoma cell lines tested and osteoblast-like MC3T3-E1 in 

vitro. Sema3A enhanced osteoblast alkaline phosphatase activity in MC3T3-E1 and 

in the low metastatic osteosarcoma cell lines MG-63 and Saos-2 without affecting 

cell viability in vitro. In vivo, exogenous Sema3A had no effect on tumour growth 

and showed a trend towards less metastasis. Overall this chapter established that 

Sema3A increased alkaline phosphatase activity and inhibited migratory and 

osteolytic features of osteosarcoma cells.   
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3.2 Introduction 

Gomez and colleagues reported that both osteoclasts and osteoblasts express the 

receptors for Sema3A (Gomez et al., 2005). Furthermore, osteoblasts but not 

osteoclasts were shown to produce Sema3A. In recent studies, Sema3A produced by 

the osteoblasts was shown to promote osteoblast differentiation leading to a reduction 

in bone resorption and enhanced bone formation (Hayashi et al., 2012, Fukuda et al., 

2013). In cancer, several studies have shown that Sema3A affects the motility of 

various cancer cells, including glioblastoma, breast, prostate and pancreatic cancer. 

Depending on the type of cancer, Sema3A exerts tumour promoting or tumour 

inhibiting effects (Table 1.3)  (Bachelder et al., 2003, Herman and Meadows, 2007, 

Mishra et al., 2015b, Muller et al., 2007, Bagci et al., 2009). Together these studies 

showed that Sema3A affects cancer cell migration and is essential for the 

development of bone and differentiation of osteoblasts, this led us to investigate the 

role of Sema3A in osteosarcoma   

Osteosarcoma is a rare malignant primary bone tumour mainly affecting children and 

young adults (Meyers and Gorlick, 1997). Osteosarcoma derives from mesenchymal 

stem cells or a more differentiated mesenchymal osteoblast precursor lineage (Xiao et 

al., 2013, Mutsaers and Walkley, 2014). Osteosarcoma is an aggressive type of cancer 

characterized by skeletal tumour burden and a high propensity to metastasize to the 

lungs (Geller and Gorlick, 2010, Klein and Siegal, 2006, Mutsaers and Walkley, 

2014). Very few studies have been conducted investigating the role of Sema3A and 

its receptors in osteosarcoma. Osteosarcoma cell lines express the Sema3A receptor 

Nrp1 (Yue et al., 2014). There is conflicting data suggesting that expression of the 

Sema3A receptor Nrp1 is an indicator for a poor prognosis (Zhu et al., 2014, Boro et 

al., 2015). However, the role of exogenous Sema3A in osteosarcoma remains to be 

elucidated.  

This chapter describes the effects of exogenous Sema3A on viability, motility, 

alkaline phosphatase activity and osteosarcoma-associated osteoclast formation in a 

panel of osteosarcoma cell lines with a range of metastatic abilities.  
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3.3 Aim 

The aim of this chapter was to investigate the role of human recombinant (exogenous) 

Sema3A in human osteosarcoma cancer cell behaviour in vitro and in vivo. This aim 

was achieved by (a) treating mouse MC3T3-E1 osteoblast-like cells and a panel of 

human osteosarcoma cells with a range of different metastatic abilities with 

exogenous Sema3A and assess their ability to grow, migrate and to express alkaline 

phosphatase activity and (b) administration of Sema3A in a xenograft mouse model 

of osteosarcoma and assess tumour growth and lung metastasis.  
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3.4 Results 

3.4.1 Exogenous Sema3A reduced osteosarcoma and osteoblast migration in 

vitro 

Several studies have indicated that Sema3A affects cancer cell motility in a range of 

different cell types and depending on cell type Sema3A acts as a simulator or 

inhibitor of cancer cell motility (Bachelder et al., 2003, Herman and Meadows, 2007, 

Muller et al., 2007, Bagci et al., 2009). In addition, studies from our laboratories have 

shown that Sema3A inhibits the motility of breast cancer and osteotropic breast 

cancer cells (de Ridder MSc thesis unpublished data).  

To investigate the effect of exogenous Sema3A on osteosarcoma tumour cell 

migration, a panel of osteosarcoma cells MG-63, Saos-2, MNNG/HOS and KHOS 

ranging from low to highly metastatic were exposed to exogenous Sema3A (300 

ng/ml) or vehicle (PBS) after a scratch was applied to create a wound in the cell 

monolayer and 2D directed migration was monitored overnight and assessed by 

wound closure. As shown in Figure 3.1, Sema3A significantly reduced the migration 

of the low metastatic osteosarcoma cell lines MG-63 (29%, p < 0.01) and Saos-2 

(50%, p < 0.05) after 8 hours. Exogenous Sema3A also significantly reduced directed 

migration of the highly metastatic cell lines MNNG/HOS (18%, p < 0.01) and KHOS 

(18%, p < 0.01) after 6 and 2 hours respectively.  
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Figure 3.1. Exogenous Sema3A reduced osteosarcoma cell migration in vitro. 

The figure describes the effect of Sema3A on osteosarcoma cell 2D directed migration by wound healing assay. Quantification of A. MG-63 B. Saos-2 C. MNNG/HOS D 

KHOS osteosarcoma cell 2D directed migration after exposure to vehicle (PBS) or Sema3A (300 ng/ml). E. Representative photomicrographs of MG-63 cultures exposed to 

vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel A at 8 hours of treatment exposure and migration. F. Representative photomicrographs of Saos-2 

cultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel B at 8 hours. G. Representative photomicrographs of MNNG/HOS cultures 

exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel C at 6 hours. H. Representative photomicrographs of KHOS cultures exposed to vehicle 

(PBS) or Sema3A (300 ng/ml) of experiments described in panel D at 2 hours. Solid thick white lines represent the cell front at the timepoint that was analysed and shown in 

panel A-D, thin white lines represent the cell front at 0 hours. White scalebar at the top corner of the images indicates 250 μm. Values in the graphs are mean ± SD and are 

obtained from 3 independent experiments * p< 0.05, ** p < 0.01. 
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The effect of exogenous Sema3A on osteoblast migration is motility. Therefore, I 

also investigated the effect of exogenous Sema3A on migration of the mouse 

osteoblast-like MC3T3-E1 cells in vitro. MC3T3-E1 cells were exposed to vehicle or 

Sema3A (300 ng/ml) and migration was measured by wound healing assay (section 

2.9.1). As shown in Figure 3.2, Sema3A significantly reduced osteoblast migration by 

21% (p < 0.01) after 8 hours.  

 

 

Figure 3.2. Exogenous Sema3A reduced osteoblast migration in vitro. 

The figure describes the effect of Sema3A on MC3T3-E1 cell 2D directed migration by wound healing 

assay. A. Quantification of wound closure of MC3T3-E1 cells after exposure to vehicle (PBS) or 

Sema3A (300 ng/ml). B. Representative photomicrographs of MC3T3-E1 cultures exposed to vehicle 

(PBS) or Sema3A (300 ng/ml) of experiments described in panel A at 8 hours. Solid thick white lines 

represent the cell front at the timepoint that was analysed and shown in panel A, thin white lines 

represent the cell front at 0 hours. White scalebar at the top corner of the images indicates 250 μm. 

Values in the graphs are mean ± SD and are obtained from 3 independent experiments ** p < 0.01.  
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3.4.2 Exogenous Sema3A enhanced alkaline phosphatase activity of 

osteosarcoma cell lines in vitro 

Osteosarcoma cells are hypothesized to derive from an osteoblastic mesenchymal 

lineage (Xiao et al., 2013, Mutsaers and Walkley, 2014). Here, I investigated whether 

exogenous Sema3A affects alkaline phosphatase activity in the low metastatic and 

more osteoblastic osteosarcoma cell lines MG-63 and Saos-2 and the highly 

metastatic MNNG/HOS and KHOS osteosarcoma cells. As shown in Figure 3.3, 

Sema3A(300 ng/ml) significantly increased alkaline phosphatase activity in MG-63 

and Saos-2 by 79% and 24% respectively (p<0.01 and p<0.05) after 48 hours.  

Interestingly, exogenous Sema3A had no effect on the alkaline phosphatase activity 

of MNNG/HOS cells. Alkaline phosphatase activity was not detected in the KHOS 

osteosarcoma cell line.  

 

Figure 3.3. Exogenous Sema3A enhanced alkaline phosphatase activity in low metastatic 

osteosarcoma cell lines.  
This experiment was performed to assess the effect of exogenous Sema3A on the alkaline phosphatase 

activity of several osteosarcoma cell lines. Quantification of alkaline phosphatase activity of A. MG-63, 

B. Saos-2, C. MNNG/HOS osteosarcoma cells after 48 hour exposure to vehicle (PBS) or Sema3A 

(300 ng/ml). Values in the graph are mean ± SD and are obtained from 3 independent experiments * p 

< 0.05, ** p < 0.01. 
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Hayashi and colleagues reported that Sema3A enhanced the differentiation of 

osteoblasts (Hayashi et al., 2012). To investigate and confirm whether exogenous 

Sema3A affects alkaline phosphatase activity in osteoblasts I measured the alkaline 

phosphatase activity of the mouse osteoblast-like MC3T3-E1 cell line after 48 hours. 

Treatment with exogenous Sema3A(300 ng/ml) significantly enhanced MC3T3-E1 

alkaline phosphatase activity by 33% (Figure 3.4, p < 0.001) 

 

Figure 3.4. Exogenous Sema3A enhanced osteoblast alkaline phosphatase activity. 
This figure describes the effect of exogenous Sema3A (300 ng/ml)  on the osteoblastic alkaline 

phosphatase activity of MC3T3-E1 cells. Quantification of alkaline phosphatase activity of the mouse 

osteoblast precursor MC3T3-E1. Values in the graph are mean ± SD and are obtained from 3 

independent experiments *** p < 0.001. 
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3.4.3 Exogenous Sema3A had no effect on osteosarcoma or osteoblast cell 

viability in vitro 

The effect of exogenous Sema3A on osteosarcoma tumour cell growth was 

investigated in a panel of human osteosarcoma cell lines (MG-63, Saos-2, 

MNNG/HOS and KHOS) with a range of different metastatic abilities. Osteosarcoma 

cells were exposed to vehicle or exogenous Sema3A and cell viability was measured 

by the Alamar blue assay (section 2.3.4). Sema3A(300 ng/ml) had no significant 

effect on osteosarcoma cell viability in any of the tested cell lines at a concentration 

that inhibited cell motility in vitro  (Figure 3.5). 



 

 

 

 

 

CHAPTER THREE Effects of exogenous Sema3A on osteosarcoma metastatic behaviour 

 

 

 

74 

 

 

 

Figure 3.5. Exogenous Sema3A has no effect on osteosarcoma cell viability in vitro. 

Cell viability was measured in response to exogenous Sema3A using the Alamar  blue assay. Quantification of cell viability of A. MG-63 B. Saos-2 C. MNNG/HOS D. 

KHOS osteosarcoma cells after 48 hour exposure to vehicle (PBS) or Sema3A (300 ng/ml). E. Representative photomicrographs of MG-63 cultures exposed to vehicle (PBS) 

or Sema3A (300 ng/ml) of experiments described in panel A. F. Representative photomicrographs of Saos-2 cultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of 

experiments described in panel B. G. Representative photomicrographs of MNNG/HOS cultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described 

in panel C. H. Representative photomicrographs of KHOS cultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel D. Values in the 

graphs are mean ± SD and are obtained from 3 independent experiments.
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Next, I tested the effects of exogenous Sema3A on osteoblast cell viability, using the 

mouse osteoblast precursor cell line MC3T3-E1. MC3T3-E1 viability was not 

affected by treatment with exogenous Sema3A (300 ng/ml) after 48 hours as shown 

in Figure 3.6. 

 

Figure 3.6. Treatment with Sema3A has no effect on osteoblast viability in vitro. 

The effect of exogenous Sema3A on MC3T3-E1 viability was assessed using the Alamar blue assay. A. 

Quantification of MC3T3-E1 cell viability after exposure to vehicle (PBS) or Sema3A (300 ng/ml) for 

48 hours. B. Representative photomicrographs of MC3T3-E1 cultures exposed to vehicle (PBS) or 

Sema3A (300 ng/ml) of experiments described in panel A. Values in the graphs are mean ± SD and are 

obtained from 3 independent experiments. 
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3.4.4 Exogenous Semaphorin 3A had no effect on tumour growth in vivo 

To investigate the effect of administration of exogenous Sema3A on osteosarcoma 

tumour growth, mice were paratibially injected with human KHOS osteosarcoma 

cells and two days after tumour initiation mice received the first injection of vehicle 

or 0.7 mg/kg Sema3A. Sema3A was administered biweekly. Tumour growth was 

monitored throughout the experiment and all mice were sacrificed after three weeks 

(section 2.10.1). As shown in Figure 3.7 exogenous Sema3A had no effect on 

osteosarcoma tumour growth in vivo.  

 

Figure 3.7. Treatment with recombinant Sema3A has no effect on osteosarcoma tumour growth. 

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: 

NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or recombinant 

Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant 

Sema3A on osteosarcoma cell growth. Tumour growth was measured using callipers throughout the 

experiment. N = 7. Values are mean ± SD. 
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3.4.5 Exogenous Semaphorin 3A showed a trend towards less lung metastasis 

Osteosarcoma is characterized by a high propensity to metastasize to the lungs 

(Mutsaers and Walkley, 2014). Here, I investigated the development of micro-

metastases in the lungs of mice that received exogenous Sema3A or vehicle. Lungs 

were paraffin embedded, sectioned and stained with H&E. Metastatic nodules were 

counted and nodule size was analysed at three separate depths. Of the vehicle treated 

mice, 6 out of 7 lungs showed metastatic nodules versus 2 out of 7 of the mice that 

received exogenous Sema3A. Mice administrated with exogenous Semaphorin 3A 

also showed a trend towards fewer and smaller lung micro-metastasis nodules (Figure 

3.8).  

 

Figure 3.8. Sema3A treatment showed a trend towards reducing lung metastasis. 

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: 

NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or recombinant Sema3A 

(0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant Sema3A on lung 

metastasis. The lungs were sectioned and stained with H&E to assess the effect of recombinant Sema3A on 

the size and number of metastatic nodules in the lungs. Metastatic nodules were counted at three different 

depths per mouse and size of metastatic nodules was assessed using the Osteomeasure. A. Quantification of 

the size of micro-metastases in the lungs of mice treated with vehicle or recombinant Sema3A. B. 

Representative microphotographs (10X) of tumour nodules in lungs of mice treated with vehicle or 

recombinant Sema3A. Black arrows indicate nodules. Scalebar in the bottom corner of the images indicates 

200 μm. Values in the graph are mean ± SD N=7.  
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3.5 Discussion 

Sema3A plays a key role in bone development and bone remodelling by 

predominantly acting on osteoblasts (Hayashi et al., 2012, Fukuda et al., 2013, Teng 

et al., 2017). Previous studies have shown that osteosarcoma cells express and 

produce Sema3A in response to RANKL (Mori et al., 2007, Yue et al., 2014). 

However, the effects of Sema3A on osteosarcoma cell growth and metastatic 

behaviour in vitro and in vivo have not been investigated. The aim of this chapter was 

to investigate the effect of exogenous Sema3A on the osteoblastic and metastatic 

features of osteosarcoma cells.   

Several studies have shown that Sema3A affects cell motility in physiological and 

pathophysiological conditions (Neufeld and Kessler, 2008). Sema3A signalling leads 

to neuronal growth cone collapse and was shown to inhibit the migration of neurons 

and endothelial cells (Dontchev and Letourneau, 2002, Neufeld and Kessler, 2008, 

Bagnard et al., 2001, Miao et al., 1999). My results show for the first time that 

Sema3A inhibits migration of osteoblasts. Furthermore, Sema3A inhibited migration 

in both low and highly metastatic osteosarcoma cell lines implying that Sema3A has 

tumour suppressive effects in osteosarcoma in vitro. These results resemble the 

effects of Sema3A seen on the motility of breast and prostate cancer cells in vitro 

(Bachelder et al., 2003, Mishra et al., 2015b, Herman and Meadows, 2007).   

Exogenous Sema3A increased the alkaline phosphatase activity in the osteosarcoma 

cell lines with a lower metastatic ability and the osteoblast-like MC3T3-E1 cells 

without affecting cell viability. This chapter demonstrates that Sema3A, in agreement 

with previous data (Fukuda et al., 2013, Hayashi et al., 2012) enhances osteoblast 

differentiation as evidenced by an increase in alkaline phosphatase activity without 

affecting cell viability. Altogether, these observations suggest that the effect of 

Sema3A on osteosarcoma cell viability and alkaline phosphatase activity in low 

metastatic osteosarcoma cell lines is comparable with the effects of Sema3A on 

calvarial osteoblasts as reported by (Hayashi et al., 2012).  
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Several studies studied the effects of cancer-derived Sema3A by overexpression or 

knockdown of Sema3A in several types of cancer cell lines including breast, oral and 

melanoma cancer cell lines (Casazza et al., 2011, Chakraborty et al., 2012, Huang et 

al., 2017). To date there is one study that examined effects of systemic Semaphorin 

3A treatment on cancer. Cassaza and colleagues reported that systemic delivery of 

Sema3A, by administration of a lentiviral vector to express Sema3A, reduced tumour 

growth in vivo (Casazza et al., 2011). The effect of exogenous Sema3A on 

osteosarcoma has not been investigated. Our aim was to investigate the effects of 

exogenous Sema3A on the metastatic behaviour of osteosarcoma in vivo. The aim 

was achieved by using administration of exogenous Sema3A in a xenograft 

osteosarcoma mouse model. Administration of exogenous Sema3A had no effect on 

osteosarcoma tumour growth. This was consistent with the lack of effect of 

exogenous Sema3A on osteosarcoma cell viability. In contrast, exogenous Sema3A 

showed a trend towards a reduction of size and number of metastatic nodules in the 

lungs. These observations are in agreement with the inhibition of osteosarcoma 

migration by exogenous Sema3A in vitro. One of the limitations of this model is the 

rapid spread and tumour growth which might explain the lack of effect of exogenous 

Sema3A on tumour growth and lung metastasis. 

In summary, the results in this chapter demonstrate that exogenous Sema3A treatment 

significantly reduced osteoblast and osteosarcoma cell migration without affecting 

cell viability. Moreover, exogenous Sema3A significantly enhanced alkaline 

phosphatase activity in osteoblasts and in the lower metastatic osteosarcoma cell lines 

In vivo, exogenous Sema3A showed a trend towards fewer and smaller metastatic 

nodules in the lungs (see Figure 3.9).  
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Figure 3.9. Schematic representation of the effects of treatment with exogenous Sema3A.  

Sema3A treatment had no effect on osteoblast or osteosarcoma viability but enhanced alkaline 

phosphatase activity and reduced migration in vitro and showed a trend towards less lungs metastasis 

without affecting tumour growth in vivo. 
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4 CHAPTER FOUR 

4.1 Summary 

Recent studies have shown that administration of exogenous Sema3A reduces 

ovariectomy induced bone loss by stimulating osteoblast differentiation and inhibition 

of osteoclast formation. Sema3A administration also enhanced bone and enhanced 

fracture healing in rodents. While there are studies investigating the effect of Sema3A 

overexpression on cancer, to date the effect of Sema3A treatment on cancer-induced 

osteoclast activity and osteolysis is unknown. In this chapter, I investigated the 

effects of administration of exogenous Sema3A on bone damage in a xenograft 

mouse model of osteosarcoma.  

In confirmation with previous studies, administration of exogenous Sema3A 

enhanced bone volume in the non-inoculated tibia and femur and enhanced femoral 

cortical bone volume. Treatment with exogenous Sema3A enhanced bone volume in 

the osteosarcoma-bearing leg, suggesting a reduction of osteosarcoma-induced 

osteolysis. This bone protective effect was accompanied by a trend towards reduced 

osteoclasts and increased osteoblast numbers. Interestingly, administration of 

Sema3A had no effect on osteosarcoma-associated ectopic bone formation. 

Altogether the results presented in this chapter confirmed that administration of 

Sema3A enhances bone volume in the absence of cancer and showed for the first time 

that Sema3A protects against osteosarcoma-induced osteolysis.  
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4.2 Introduction 

In 1996, the importance of Sema3A in bone development was implicated for the first 

time (Behar et al., 1996). Later work by Gomez and colleagues showed that 

osteoblasts produce Sema3A and express the receptors for Sema3A (Gomez et al., 

2005). Recently a deficiency in Sema3A or presence of an Nrp1 unable to bind 

Sema3A have been shown to lead to a severe low bone mass phenotype (Hayashi et 

al., 2012). Furthermore, administration of exogenous Sema3A has been shown to 

reduce ovariectomy induced bone loss in mice by inhibition of osteoclast formation 

while concurrently stimulating the differentiation of osteoblasts and regulating both 

bone formation and resorption (Hayashi et al., 2012). In support of these observations, 

administration of exogenous Sema3A also stimulated fracture healing in osteoporotic 

rats (Li et al., 2015a). These studies have shown that Sema3A plays an important role 

in bone remodelling.  

Osteolytic bone damage and ectopic bone formation are common features in 

osteosarcoma  (Geller and Gorlick, 2010). The role of Sema3A in these processes is 

unknown, but there are indications of the involvement of the semaphorin class-3 

coreceptor. Zhu and colleagues showed that overexpression of the Sema3A receptor 

Nrp1, in osteosarcoma was shown to be a predicting factor of patient prognosis (Zhu 

et al., 2014). In contrast, another study reported that patients with Nrp2 positive 

osteosarcoma but not Nrp1 positivity have a significantly shorter overall survival 

(Boro et al., 2015). Altogether these findings indicate that the neuropilin Sema3A 

coreceptors play a role in osteosarcoma cell behaviour but whether Sema3A plays a 

role in osteosarcoma remains unknown.   

I showed in chapter 3, Sema3A enhances osteoblast and osteosarcoma alkaline 

phosphatase activity but the effects of Sema3A on the ability to influence osteoclasts 

has not been investigated. These findings encouraged us to study the effect of 

administration of exogenous Sema3A on osteoclastogenesis, osteosarcoma-associated 

bone damage and ectopic bone formation.   
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4.3 Aim 

The aim of this chapter was to investigate the effects of exogenous Sema3A on 

osteosarcoma-associated bone disease in vivo. The aim was achieved by investigating 

the effect of exogenous Sema3A on osteosarcoma-associated osteolysis and ectopic 

bone formation in a xenograft mouse model of osteosarcoma.  
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4.4 Results 

4.4.1 Exogenous Semaphorin 3A enhanced bone volume in the absence of cancer  

Previous studies have shown that Sema3A treatment enhanced bone volume in 

osteoporotic mice and enhanced fracture healing in rats (Hayashi et al., 2012, Li et al., 

2015a). In view of these observations, I investigated the effects of exogenous 

Sema3A on bone in the absence and presence of osteosarcoma by microCT (section 

2.10.1). Administration of exogenous Semaphorin 3A (0.7 mg/kg) significantly 

enhanced trabecular bone volume in the tibia as illustrated by enhanced bone 

volume/total volume (BV/TV, 38% p<0.01) and trabecular number (Tb.N, 38% 

p<0.01), reduced trabecular separation (Tb.Sp, 22% p<0.05) and enhanced 

connectivity assessed  by trabecular pattern factor (Tb.Pf,  22% p<0.01)  while there 

was no change in trabecular thickness (Tb,Th) as observed in  Figure 4.1. 

In accordance with the bone anabolic effect in the tibia, administration of exogenous 

Semaphorin 3A (0.7 mg/kg) significantly enhanced bone volume in the femur as 

illustrated by enhanced BV/TV (70%, p<0.01), Tb.Th (9%, p<0.05) and Tb.N (58%, 

p<0.01) and reduced Tb.Sp (27%, p<0.05), and connectivity assessed by Tb.Pf  (32%, 

p<0.01)  as observed in  Figure 4.2. 
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Figure 4.1. Sema3A treatment enhanced bone volume in the healthy tibia. 
Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: NMRI nude mice. Mice were treated with IP injections biweekly of 

vehicle (PBS) or recombinant Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant Sema3A on bone health. The 

contralateral legs without osteosarcoma inoculation (healthy leg) were analysed using microCT to assess the effects of recombinant Sema3A on the trabecular compartment 

of the healthy tibia (Panel A-F). A. Quantification of Trabecular bone volume (BV/TV), B. Trabecular thickness (Tb.Th), C. Trabecular number (Tb.N), D. Trabecular 

separation (Tb.Sp) and E. Trabecular pattern factor (Tb.Pf) of the  tibia in mice treated with vehicle(PBS) or recombinant Sema3A (0.7 mg/kg/2-weekly). F. 3D 

reconstruction images of tibia from the experiment described in panel A-E. Values in the graph are mean ± SD N=7. * p < 0.05, ** p < 0.01 
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Figure 4.2. Treatment with Sema3A enhanced bone volume in the healthy femur. 
Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: NMRI nude mice. Mice were treated with IP injections biweekly of 

vehicle (PBS) or recombinant Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant Sema3A on bone health. The 

contralateral legs without osteosarcoma inoculation (healthy leg) were analysed using microCT to assess the effects of recombinant Sema3A on the trabecular compartment 

of the healthy femur (Panel A-F).. A. Quantification of Trabecular bone volume (BV/TV), B. Trabecular thickness (Tb.Th), C. Trabecular number (Tb.N), D. Trabecular 

separation (Tb.Sp) and E. Trabecular pattern factor (Tb.Pf) of the femur in mice treated with vehicle (PBS) or recombinant Sema3A (0.7 mg/kg/2-weekly). F. Representative 

3D reconstruction images of tibia from the experiment described in panel A-E. Values in the graph are mean ± SD N=7. * p < 0.05, ** p < 0.01 
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Furthermore, exogenous Semaphorin 3A (0.7 mg/kg) significantly enhanced cortical 

bone volume (BV) in the femur by 10% (p<0.05) but had no effect on the cortical 

bone volume of the tibia (Figure 4.3).  

 

Figure 4.3. Sema3A treatment enhanced femoral cortical bone volume in the healthy leg. 
Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: 

NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or recombinant 

Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant 

Sema3A on bone health. The contralateral legs without osteosarcoma inoculation (healthy leg) were 

analysed using microCT to assess the effects of recombinant Sema3A on the trabecular compartment 

of the healthy femur. The cortex of the femur and tibia from the healthy leg of mice treated with 

vehicle or Sema3A were analysed using microCT to assess the effect of recombinant Sema3A on 

cortical bone volume. Quantification of cortical bone volume in the A. tibia and B. femur in mice 

treated with vehicle (PBS) or human recombinant Sema3A (0.7 mg/kg/2-weekly). C. 3D 

reconstruction images of tibia and D. femur from the experiment described in panel A-B. Values in the 

graph are mean ± SD N=7. * p < 0.05 
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4.4.2 Exogenous Semaphorin 3A enhanced osteoblasts and reduced osteoclasts  

Mice treated with exogenous Sema3A exhibited enhanced bone volume with a 

corresponding reduction of osteoclast number and increased osteoblast surface 

(Hayashi et al., 2012). To study the effects of Sema3A on osteoblast and osteoclast 

number in vivo, I utilized the non-inoculated leg to assess the osteoblast and 

osteoclast parameters. Osteoblast and osteoclast histomorphometric analysis was 

performed on TRAcP stained slides of the tibia (section 2.12.7). As shown in Figure 

4.4, exogenous Sema3A (0.7 mg/kg) significantly enhanced osteoblast number (50%, 

p<0.01) and osteoblast surface (51%, p<0.01) and reduced osteoclast number (51, 

p<0.01) and osteoclast surface (47%, p<0.01).  
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Figure 4.4. Sema3A enhanced osteoblasts and reduced osteoclast numbers in the tibia. 

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: NMRI nude mice. Mice were treated with IP injections biweekly of vehicle 

(PBS) or recombinant Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant Sema3A on bone health. Healthy tibia of mice treated with 

vehicle or recombinant Sema3A were cut and TRAcP stained to assess the cellular parameters in the trabeculae to assess the effect of recombinant Sema3A on osteoclast number and 

osteoclast surface and osteoblast number and osteoblast surface. Histomorphometric analysis of A. osteoclast number (Oc.N), B. osteoclast surface (OC.S), C. osteoblast number 

(Ob.N) D. osteoblast surface (Ob.S) of the tibia in mice treated with vehicle (PBS) or human recombinant Sema3A (0.7 mg/kg/2-weekly). E. Representative photomicrographs of 

TRAcP positive osteoclasts indicated with solid arrows and osteoblasts indicated with dotted arrows from the experiment described in panel A-E. Scalebar in the top left of the 

images indicates 50 μm.  Values in the graph are mean ± SD N=5.  
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4.4.3 Exogenous Semaphorin 3A enhanced bone volume in the presence of 

osteosarcoma 

Next, I analysed the skeletal parameters of the tumour-bearing legs and investigated 

the effect of exogenous Sema3A on osteosarcoma-associated bone damage in the 

trabecular and cortical compartment. Sema3A (0.7 mg/kg) enhanced trabecular bone 

volume 96% (p<0.05) of the tibia in the presence of osteosarcoma but had no 

significant effects on trabecular thickness, trabecular number, trabecular separation 

and trabecular pattern factor Figure 4.5.  

Administration of exogenous Sema3A (0.7 mg/kg) had no effect on bone volume, 

trabecular thickness, trabecular number, trabecular separation and trabecular pattern 

factor in the tumour-bearing femur as shown Figure 4.6. 
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Figure 4.5. Treatment with exogenous Sema3A enhanced bone volume in the presence of osteosarcoma in the tibia. 
Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: NMRI nude mice. Mice were treated with IP injections 

biweekly of vehicle (PBS) or recombinant Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant Sema3A on bone 

health. The osteosarcoma-bearing legs were analysed using microCT to assess the effects of recombinant Sema3A on the trabecular compartment of the 

osteosarcoma bearing tibia (Panel A-F). A. Quantification of Trabecular bone volume, B. Trabecular thickness, C. Trabecular number, D. Trabecular separation and 

E. Trabecular pattern factor of the tumour bearing tibia in mice treated with vehicle (PBS) or human recombinant Sema3A (0.7 mg/kg/2-weekly). F. 3D 

reconstruction images of tibia from the experiment described in panel A-E. Values in the graph are mean ± SD N=7. * p < 0.05 
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Figure 4.6. Sema3A treatment had no effect on bone volume of the tumour-bearing femur.  

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: NMRI nude mice. Mice were treated with IP injections 

biweekly of vehicle (PBS) or recombinant Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant Sema3A on bone 

health. The osteosarcoma-bearing legs were analysed using microCT to assess the effects of recombinant Sema3A on the trabecular compartment of the 

osteosarcoma-bearing femur (Panel A-F). A. Quantification of Trabecular bone volume, B. Trabecular thickness, C. Trabecular number, D. Trabecular separation 

and E. Trabecular pattern factor of the tumour bearing femur in mice treated with vehicle (PBS) or human recombinant Sema3A (0.7 mg/kg/2-weekly). F. 3D 

reconstruction images of femur from the experiment described in panel A-E. Values in the graph are mean ± SD N=7. * p < 0.05 

  



CHAPTER FOUR             Effects of exogenous Sema3A on osteosarcoma induced osteolysis 

 

 

 

94 

 

Next, I analysed the cortical bone volume of the tumour-bearing tibia and femur. As 

shown in Figure 4.7, administration of exogenous Semaphorin3A had no effect on the 

cortical bone volume of the tumour-bearing tibia and femur. 

 

Figure 4.7. Sema3A treatment had no effect on cortical bone volume in the tumour-bearing leg. 

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: 

NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or recombinant 

Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant 

Sema3A on bone health. The cortex of the osteosarcoma-bearing femur and tibia were analysed using 

microCT to assess the effect of recombinant Sema3A on cortical bone volume in the presence of 

osteosarcoma (Panel A-D). Quantification of cortical bone volume in the tumour bearing A. tibia and 

B. femur in mice treated with vehicle (PBS) or human recombinant Sema3A (0.7 mg/kg/2-weekly). C. 

3D reconstruction images of tibia and D. femur from the experiment described in panel A-B. Values in 

the graph are mean ± SD N=7.  
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4.4.4 Exogenous Sema3A showed a trend towards enhanced PINP and reduced 

CTX serum levels. 

Previous studies have suggested that serum markers of bone formation and bone 

resorption may have value in identifying osteosarcoma-associated changes in bone  

metabolism (Hu et al., 2015, Ambroszkiewicz et al., 2010). To investigate the 

systemic markers indicative of bone formation (PINP) and bone resorption (CTX), 

P1NP and CTX were measured in the serum of mice inoculated with osteosarcoma 

cells and treated with Sema3A or vehicle using ELISA kits. As shown in Figure 4.8, 

administration of Sema3A showed a trend towards a reduced serum level of CTX and 

an enhanced level of the bone formation marker PINP. 

 

Figure 4.8. Exogenous Sema3A showed a trend towards reduced CTX and increased PINP. 

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: 

NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or recombinant 

Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant 

Sema3A on bone health. Serum levels of bone turnover markers were assessed in osteosarcoma-

bearing mice treated with vehicle or recombinant Sema3A. Serum levels of A. bone resorption marker 

C-terminal telopeptide crosslinks (CTX) and B. bone formation marker N-terminal propeptide of type 

1 procollagen (P1NP) of mice inoculated with osteosarcoma tumours and treated with exogenous 

Sema3A or vehicle. Values are mean ± SD N=3. 
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4.4.5 Semaphorin 3A showed a trend towards higher osteoblast number in 

osteosarcoma 

Mice administrated with exogenous Sema3A show enhanced bone volume with a 

corresponding reduction of osteoclast number and increased osteoblast surface 

(Hayashi et al., 2012). To assess the effects of Sema3A on osteoblast parameters in 

the tumour-bearing tibia, osteoblast histomorphometric analysis was performed on 

TRAcP stained slides of the osteosarcoma-bearing tibia (section 2.12.7).  As shown in 

Figure 4.9, administration of exogenous Semaphorin3A (0.7 mg/kg) showed a trend 

towards higher osteoblast number and osteoblast surface in comparison to the vehicle 

treated osteosarcoma-bearing tibia. 

 

Figure 4.9. Sema3A showed a trend towards increased osteoblast number in the tumour-bearing 

tibia. 

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: 

NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or recombinant 

Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant 

Sema3A on bone health. Osteosarcoma-bearing tibia of mice were sectioned and TRAcP stained to 

assess the cellular parameters in the trabeculae to investigate the effect of recombinant Sema3A on 

osteoblast number and osteoblast surface. Histomorphometric analysis of A osteoblast number (Ob.N) 

B. osteoblast surface (Ob.S) of the tumour bearing tibia in mice treated with vehicle (PBS) or human 

recombinant Sema3A (0.7 mg/kg/2-weekly). C. Representative photomicrographs of osteoblasts 

indicated with dotted arrows from the experiment described in panel A-B.  Scalebar in the bottom left 

of the images indicates 50 μm.  Values in the graph are mean ± SD N=5.  

 



CHAPTER FOUR             Effects of exogenous Sema3A on osteosarcoma induced osteolysis 

 

 

 

97 

 

4.4.6 Semaphorin 3A showed a trend towards fewer osteoclasts in osteosarcoma 

Mice administrated with exogenous Sema3A show enhanced bone volume with a 

corresponding reduction of osteoclast number and increased osteoblast surface 

(Hayashi et al., 2012). To assess the effects of Sema3A on osteoclast parameters in 

the osteosarcoma-bearing tibia, osteoclast histomorphometric analysis was performed 

on TRAcP stained slides of the osteosarcoma-bearing tibia (section 2.12.7). As shown 

in Figure 4.10, administration of exogenous Semaphorin3A (0.7 mg/kg) showed a 

trend towards reduced osteoclast number and osteoclast surface in comparison to the 

vehicle treated osteosarcoma-bearing tibia (Figure 4.10).  

 

Figure 4.10 Sema3A showed a trend towards fewer osteoclasts in the tumour-bearing tibia. 

Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma cells in female Rj: 

NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or recombinant 

Sema3A (0.7 mg/kg) for the duration of the experiment (21 days) to assess the effect of recombinant 

Sema3A on bone health. Osteosarcoma-bearing tibia of mice were sectioned and TRAcP stained to 

assess the cellular parameters in the trabeculae to investigate the effect of recombinant Sema3A on 

osteoclast number and osteoclast surface. Histomorphometric analysis of A osteoclast number (Oc.N) 

B. osteoclast surface (Oc.S) of the tumour bearing tibia in mice treated with vehicle (PBS) or human 

recombinant Sema3A (0.7 mg/kg/2-weekly). C. Representative photomicrographs of TRAcP positive 

osteoclasts indicated with solid arrows from the experiment described in panel A-B.  Scalebar in the 

top left of the images indicates 50 μm Values in the graph are mean ± SD N=5.  
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4.4.7 Exogenous Sema3A reduced osteoclastogenesis in osteosarcoma-osteoclast 

cocultures in vitro 

Previous studies have reported that Sema3A inhibits osteoclast formation and 

osteoclast activity (Hayashi et al., 2012, Fukuda et al., 2013, Teng et al., 2017). As 

observed in the previous section, Sema3A showed a trend towards fewer osteoclasts 

in the presence of osteosarcoma in vivo. To further investigate the effect of 

exogenous Sema3A on osteosarcoma-osteoclast interactions, I cultured a panel of 

osteosarcoma cell lines with osteoclast precursors in vitro. Briefly, RAW 264.7 or 

mouse bone marrow cultures were cultured 24 hours prior addition of low number of 

osteosarcoma cells and treatment with vehicle or Sema3A (300 ng/ml) as described in 

more detail in section 2.2.  

Exogenous Sema3A significantly reduced osteoclastogenesis of RAW 264.7 - MG-63 

cocultures by 19% (p<0.01). In mouse bone marrow- osteosarcoma cocultures, 

exogenous Sema3A significantly reduced osteoclastogenesis in the presence of Saos-

2 (48% p<0.001), MNNG/HOS (51% p<0.01) and KHOS (48% p<0.01) 

osteosarcoma cells (Figure 4.11). 
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Figure 4.11. Exogenous Sema3A reduced osteoclastogenesis in mouse osteoclast-osteosarcoma cocultures. 

The effect of exogenous Sema3A on osteoclast formation was assessed using cocultures of osteosarcoma cells with bone-marrow or RAW264.7 cells. The method of cocultures was 

chosen to investigate the effect of exogenous Sema3A in the presence of osteosarcoma to more closely mimic the tumour microenvironment in vivo. Cultures were treated for 7 days, 

after the culture period cultures were fixed and TRAcP stained for osteoclast quantification. Osteoclasts were counted when they were stained with TRAcP and contained >3 nuclei. 

A. Quantification of osteoclast number in RAW 264.7 coculture with MG-63 treated with vehicle (PBS) or exogenous Sema3A (300 ng/ml). Quantification of osteoclast number in 

M-CSF and RANKL stimulated mouse bone marrow cocultures with B. Saos-2 C. MNNG/HOS and D. KHOS osteosarcoma cells treated with vehicle (PBS) or exogenous Sema3A 

(300 ng/ml). E. Representative photomicrographs (10X)  of MG-63-RAW 264.7 cocultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel A. F. 

Representative photomicrographs (10X) of Saos-2- mouse bone marrow cocultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel B. G. 

Representative photomicrographs (10X) of MNNG/HOS- mouse bone marrow cocultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel C. H. 

Representative photomicrographs of  (10X) KHOS- mouse bone marrow cocultures exposed to vehicle (PBS) or Sema3A (300 ng/ml) of experiments described in panel D. Values in 

the graph are mean ± SD and are obtained from 3 independent experiments ** p < 0.01, *** p < 0.001 
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Next, I investigated whether osteoclast formation was affected by exogenous Sema3A 

(300 ng/ml) in MC3T3-E1-RAW 264.7 cocultures cells. RAW264.7 cells were 

cultured 24 hours prior to addition of the MC3T3-E1 cells (section 2.2.3). As seen in 

Figure 4.12 exogenous Sema3A significantly reduced osteoclastogenesis in the 

presence of MC3T3-E1 cells (23%, p<0.01).   

 

Figure 4.12. Exogenous Sema3A reduced osteoclast formation in MC3T3-E1-RAW264.7 

cocultures. 

Cultures were treated for 7 days, after the culture period cultures were fixed and TRAcP stained for 

osteoclast quantification. Osteoclasts were counted when they were stained with TRAcP and 

contained >3 nuclei. RAW264.7 cells were cocultured with MC3T3-E1 and treated with vehicle (PBS) 

or exogenous Sema3A (300 ng/ml). to assess the effect of Sema3A on osteoclast formation. A. 

Quantification of osteoclast number in RANKL (50 ng/ml) stimulated MC3T3-E1-RAW 264.7 co-

cultures. B. Representative photomicrographs (10X) of cultures described in panel A. Values in the 

graph are mean ± SD and are obtained from 3 independent experiments ** p < 0.01. 
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4.5 Discussion 

Previous studies have shown that Sema3A plays an important role in bone 

development, bone remodelling and cancer (Hayashi et al., 2012, Li et al., 2015a, 

Herman and Meadows, 2007, Zhou et al., 2014, Pan and Bachelder, 2010, Mishra et 

al., 2015b, Casazza et al., 2011, Chakraborty et al., 2012, Huang et al., 2017). To date 

little is known about the role of Sema3A in osteosarcoma-associated osteolysis. The 

neuropilins, the Sema3A coreceptors have been implicated in the prognosis and 

survival of osteosarcoma (Zhu et al., 2014, Boro et al., 2015). However, the 

observations in these studies may not be solely attributed to semaphorin class-3 

signalling alone. Sema3A and VEGF are competitors for Nrp1 and Nrp2 binding and 

signaling (Guo and Vander Kooi, 2015, Miao et al., 1999, Bagnard et al., 2001). For 

that reason, involvement of VEGF signalling leading to a poorer prognosis in patients 

overexpressing the neuropilin receptors cannot be excluded. Altogether these findings 

suggest that the neuropilin coreceptor plays a role in osteosarcoma but the effects of 

Sema3A on osteosarcoma-associated bone disease is still unknown. The aim of this 

chapter was to investigate the effect of Sema3A administration on osteosarcoma-

associated bone disease in mice. 

The aim was achieved by administration of exogenous Sema3A in a xenograft 

osteosarcoma mouse model. Osteosarcoma was induced with a paratibial injection of 

the KHOS osteosarcoma cells and mice were given biweekly injections of vehicle or 

exogenous Sema3A until the experiment was terminated. As Sema3A is important in 

bone development, bone remodelling and osteoblast-osteoclast coupling (Hayashi et 

al., 2012), I first investigated the effects of exogenous Sema3A administration on 

bone parameters of non-inoculated tibia and femur of mice. Administration of 

exogenous Sema3A significantly increased trabecular bone volume, trabecular 

number, trabecular connectivity and reduced trabecular separation in the tibia. I 

observed similar effects of exogenous Sema3A in the femur where, in addition to the 

other bone parameters, the trabecular thickness was also significantly increased. 

Moreover, there was a modest but significant increase in the femoral cortical bone 

volume without any difference in the cortical bone volume of the tibia. Consistent 

with these effects, exogenous Sema3A enhanced osteoblast number and surface and 

reduced osteoclast number and osteoclast surface. These findings are in agreement 
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with the bone anabolic effect of Sema3A treatment as previously reported in wild-

type and osteoporotic rodents (Hayashi et al., 2012, Li et al., 2015a). 

The presence of osteosarcoma caused significant bone damage in both the tibia and 

the femur. Despite the severity of the osteosarcoma related trabecular bone loss in 

these mice, I demonstrated for the first time that administration of exogenous 

Sema3A enhanced the trabecular bone volume in the tibia, indicative of protection 

against osteosarcoma-associated osteolysis and bone destruction. While osteolysis 

was observed in the femur as evidenced by a reduced BV/TV in comparison to the 

non-inoculated control, there were no changes detected in the femoral trabecular bone 

volume. Consistent with the increase in trabecular bone volume of the tibia by 

Sema3A in the presence and absence of osteosarcoma I observed a trend towards 

reduced serum level of the bone resorption marker CTX and enhanced level of the 

bone formation marker PINP. Furthermore, exogenous Sema3A showed a trend 

towards less osteoclasts and more osteoblasts in the tumour-bearing tibia which is in 

agreement with the inhibitory effect of Sema3A on osteoclasts and enhanced 

osteoblast differentiation as reported in Chapter 3 and previous studies (Hayashi et 

al., 2012).  

Osteosarcoma tumours often present as a mixture of osteoblastic and osteolytic 

lesions (Geller and Gorlick, 2010). Benign multinucleated giant cells that resemble 

osteoclasts are present in 25% of osteosarcoma cases (Klein and Siegal, 2006). To 

further investigate the observed trend towards fewer osteoclasts in vivo, I investigated 

whether Sema3A is able to inhibit osteoclast formation in the presence of 

osteosarcoma cells using osteoclast-osteosarcoma cocultures. In this chapter I showed 

that regardless of the presence of osteoblasts or osteosarcoma cells in osteoclast 

precursor cultures, Sema3A was effective in inhibiting osteoclast formation in vitro. 

As described in previous chapters Sema3A had no effect on osteosarcoma cell 

viability and previous work in our lab showed that Sema3A inhibited RANKL-

induced osteoclast formation. These results imply that Sema3A has a direct effect on 

the osteoclasts rather than an indirect effect via the osteosarcoma cells present in the 

cultures. This is consistent with previous studies (Hayashi et al., 2012, Fukuda et al., 

2013). 
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Several studies have shown that genetic modulation of Sema3A inhibits tumour 

growth in vivo suggesting that exogenous Sema3A may be of therapeutic value in the 

treatment of cancer (Casazza et al., 2011, Chakraborty et al., 2012, Huang et al., 

2017). Cassaza and colleagues also showed that lentiviral activation of Sema3A 

injected systemically reduced tumour growth. In contrast, I observed no effect of 

exogenous Sema3A on tumour growth in the KHOS model of human osteosarcoma.  

In summary, administration of exogenous Sema3A significantly enhanced bone 

volume in the absence and presence of osteosarcoma and showed a trend towards 

fewer osteoclasts and more osteoblasts in the osteosarcoma-bearing tibia. (Figure 

4.13).  

 

Figure 4.13. Schematic representation of the effects of exogenous Sema3A on bone in vivo. 

Recombinant Sema3A treatment in mice enhanced trabecular and cortical bone volume of the femur 

and enhanced trabecular bone volume of the healthy tibia. In the osteosarcoma-bearing leg Sema3A 

enhanced bone volume in the tibia but had not effect on trabecular bone volume of the femur.  
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5 CHAPTER FIVE 

5.1 Summary 

Sema3A expression has been correlated with patient survival in several types of 

cancers and overexpression of Sema3A in breast cancer, melanoma and oral cancer 

cells significantly reduced tumour growth. However, the role of tumour-derived 

Sema3A in osteosarcoma is unknown. Exogenous Sema3A enhanced alkaline 

phosphatase activity and reduced migration in a panel of osteosarcoma cells as 

described in chapter 3. Based on these previous studies, I overexpressed Sema3A in 

the KHOS osteosarcoma cell line and investigated the effect of Sema3A 

overexpression on metastatic characteristics of the KHOS osteosarcoma cells in vitro 

and in vivo.   

The KHOS osteosarcoma cells successfully and stably overexpressed and secreted 

Sema3A with the use of lentiviral activation particles. Overexpression of Sema3A in 

the KHOS osteosarcoma cells decreased cell viability in vitro. Sema3A 

overexpression also reduced directed migration, random single cell migration and 

invasion in vitro indicative of anti-metastatic effects. However, Sema3A 

overexpression had no effect on tumour growth or lung metastasis in vivo. Overall 

this chapter showed that overexpression of Sema3A was effective in reducing 

osteosarcoma cell viability and motility in vitro but showed a lack of effect on tumour 

growth and lung metastases in vivo.  
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5.2 Introduction 

Sema3A has been shown to modulate tumour cell behaviour in a variety of cell types 

(Table 1.3). A decreased Sema3A expression was correlated with a poor survival rate 

in gastric carcinoma and non-small cell lung cancer patients (Zhou et al., 2014, Tang 

et al., 2014). Overexpression of Sema3A was shown to inhibit breast cancer cell 

motility and prostate cancer cell invasion and tumour-specific Sema3A expression in 

several breast cancer cell lines, different melanoma cell lines and oral cancer 

significantly reduced tumour growth in vivo (Pan and Bachelder, 2010, Mishra et al., 

2015b, Herman and Meadows, 2007, Casazza et al., 2011, Chakraborty et al., 2012, 

Huang et al., 2017). In osteosarcoma, overexpression of the Sema3A receptor Nrp1 

was shown to be a predicting factor of patient prognosis (Zhu et al., 2014). Another 

study reported that patients with Nrp2 but not Nrp1 positive osteosarcoma have a 

significantly shorter overall survival (Boro et al., 2015). However, the role of tumour-

derived Sema3A on osteosarcoma growth and lung metastases is unknown.  

As described in the previous chapter, exogenous Sema3A enhanced alkaline 

phosphatase activity, inhibited osteoclast formation and reduced migration in a panel 

of osteosarcoma cells. Furthermore, exogenous Sema3A enhanced bone volume in 

the absence and presence of osteosarcoma and showed a trend towards fewer and 

smaller lung metastases in comparison to the control without affecting tumour growth 

in vivo.  

Based on the aforementioned studies and the effects of exogenous Sema3A reported 

in chapter 3 and 4, I hypothesized that overexpression of Sema3A in the human 

KHOS osteosarcoma cell line inhibits osteosarcoma viability and motility in vitro and 

inhibits osteosarcoma tumour growth and lung metastases in vivo.  
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5.3 Aim 

The aim of this chapter was to investigate the role of Sema3A overexpression in 

human osteosarcoma cancer cell behaviour in vitro and in vivo. The aim was achieved 

by overexpressing Sema3A in the highly metastatic human osteosarcoma cell line 

KHOS. Next I investigated the effect of osteosarcoma-derived Sema3A on 

osteosarcoma viability, migration and invasion in vitro and tumour growth and lung 

metastasis in vivo.  
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5.4 Results 

5.4.1 Successful overexpression of Sema3A in KHOS osteosarcoma cells 

To investigate the role of tumour-derived Sema3A, I overexpressed it in the highly 

metastatic human KHOS osteosarcoma cells with the use of Sema3A lentiviral 

activation particles (section 2.5). Western blot was used to assess protein expression 

of Sema3A in the cell lysates and the production of secreted Sema3A was detected in 

the cell medium. Sema3A in the conditioned medium was quantified using a standard 

of recombinant Sema3A ran in the same western blot. Semaphorin 3A was 

successfully overexpressed in the cells by 2.5 fold (p<0.05) as assessed by Sema3A 

95kDa expression. Sema3A was also secreted 6.5 fold more by Sema3A 

overexpressing KHOS cells than the mock control (p<0.05) as assessed by amount of 

Sema3A 95kDa detected in the conditioned medium in comparison to mock control 

as shown in Figure 5.1. 

 
Figure 5.1. Sema3A was successfully overexpressed in the human KHOS osteosarcoma cells. 

To confirm the Sema3A overexpression by lentiviral activation particles the protein levels of Sema3A were 

measured in the cell lysates and conditioned medium by western blot. A. Quantification of Sema3A 

expression in the cell lysate of KHOS mock and Sema3A overexpressing KHOS (Sema3A
OE

) cells. B. 

Quantification of Sema3A in the cell medium of mock and Sema3A overexpressing KHOS cells. 

Quantification of Sema3a protein expression in the conditioned medium was achieved using a standard of 

recombinant Sema3A (2 μg) in the western blot. C. Representative photomicrograph of the western blot 

experiment described in panel A. D. Representative photomicrograph of a western blot experiment 
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described in panel B. Values in the graph are mean ± SD and are obtained from 3 independent experiments. 

* p < 0.05 

5.4.2 Sema3A overexpression reduced osteosarcoma cell viability in vitro 

After successful generation of stable Sema3A overexpression in human KHOS 

osteosarcoma cells, I performed functional assays to assess the effect of tumour-

specific Sema3A overexpression on osteosarcoma cell viability, migration and 

invasion. First, I investigated the effect of tumour-specific Sema3A overexpression 

on the viability of KHOS osteosarcoma cells in vitro. As shown in Figure 5.2, 

Sema3A overexpression significantly reduced cell growth by 40% (p<0.01) after 48 

hours. 

 

Figure 5.2. Sema3A overexpression reduced KHOS osteosarcoma cell viability in the absence of 

FCS. 

KHOS cell viability was measured using the AlamarBlue assay to investigate the effects of Sema3A 

overexpression on cell viability. A. Quantification of KHOS osteosarcoma mock or Sema3A 

overexpressing cells (Sema3A
OE

) after 48 hours in Serum free medium. B. Representative 

photomicrographs of KHOS osteosarcoma mock or Sema3A overexpressing cells of the experiment 

described in panel A. Values in the graphs are mean ± SD and are obtained from 3 independent 

experiments. ** p<0.01 
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5.4.3 Sema3A overexpression reduced osteosarcoma cell motility in vitro 

Overexpression of Sema3A has been shown to affect tumour cell migration and 

invasion in a variety of different cancer cell types (Muller et al., 2007, Bagci et al., 

2009, Bachelder et al., 2003). To assess the role of tumour-derived Sema3A on 

migration, I assessed wound closure and tracked distance and velocity of single cells 

(section 2.9.1 and section 2.9.2). Overexpression of Sema3A significantly reduced 2D 

directed migration (24%, p<0.001). Furthermore, KHOS osteosarcoma cells 

overexpressing Sema3A travelled a shorter distance at a slower pace as assessed by 

single cell velocity and distance over a period of 8 hours (50%, p<0.05) (Figure 5.3).  

 
Figure 5.3. Sema3A overexpression reduced KHOS osteosarcoma cell 2D and random migration. 

The effect of Sema3A overexpression on KHOS cell migration was assessed using the wound healing 

assay and the random single cell migration. A. Quantification of KHOS osteosarcoma mock or 

Sema3A overexpressing cell (Sema3A
OE

) 2D directed migration at 4 hours. B. Quantification of 

random migration velocity and distance of KHOS osteosarcoma mock or Sema3A overexpressing 

single cells over a period of 8 hours. C. Representative photomicrographs of 2D directed migration of 

KHOS osteosarcoma mock or Sema3A overexpressing cells of the experiment described in panel A. 

Solid thick white lines represent the cell front at the timepoint that was analysed, thin white lines 

represent the cell front at 0 hours. D. Representative plots of single cell random migration experiments 

described in panel B. Each plot represents a cell’s travelled path. Black lines represent cells travelling 

in a northward direction while red lines represent cells travelled southward on the 2D plane. Scalebar 

in the bottom left of the migration images indicates 250 μm Values in the graphs are mean ± SD and 

are obtained from 3 independent experiments * p< 0.05, *** p < 0.001.  
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5.4.4  Overexpression of Sema3A reduced KHOS cell invasion in vitro 

Next the effect of tumour-specific Sema3A overexpression on cell invasion was 

assessed by the Matrigel transwell insert assay. In short, cells were pipetted onto the 

Matrigel insert in serum free medium and an FCS gradient was created by using 

standard DMEM containing 10% FCS in the well underneath the insert (section 2.9.3).  

As shown in Figure 5.4, Sema3A overexpression significantly reduced KHOS 

osteosarcoma cell invasion 77% (p<0.001). 

 

Figure 5.4. Sema3A overexpression reduced KHOS osteosarcoma cell invasion. 

This figure describes the effect of Sema3A overexpression on KHOS cell invasion using the Matrigel 

assay with an FCS gradient. A. Quantification of KHOS osteosarcoma mock or Sema3A 

overexpressing cells (Sema3A
OE

) invasion after 72 hours. B. Representative photomicrographs of 

KHOS osteosarcoma mock or Sema3A overexpressing cells of the experiment described in panel A. 

Scalebar in the bottom left of the images indicates 200 μm Values in the graphs are mean ± SD and are 

obtained from 3 independent experiments. *** p<0.001 
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5.4.5 Sema3A overexpression had no effect on osteosarcoma tumour growth in 

vivo 

Previous studies in different types of cancer have shown that Sema3A overexpression 

reduced tumour growth in vivo (Mishra et al., 2015b, Casazza et al., 2011). Based on 

these studies and encouraged by the results of Sema3A overexpression in 

osteosarcoma in vitro, I tested the effects of Sema3A overexpression on tumour 

growth in vivo. Briefly, mice were paratibially injected with KHOS mock or KHOS 

Sema3A overexpressing cells and tumour growth was monitored throughout the 

experiment until the mice were sacrificed at day 16. As shown in Figure 5.5, mice 

inoculated with mock control and Sema3A overexpressing KHOS cells developed 

tumours. There was no difference in tumour growth in mice inoculated with KHOS 

mock or Sema3A overexpressing cells. The above described experiment was 

performed in full by Dr Nathalie Renema in France. 

 

Figure 5.5. Sema3A overexpression had no effect on osteosarcoma tumour growth in vivo. 

Osteosarcoma tumours were induced by paratibial injection of KHOS mock or Sema3A 

overexpressing osteosarcoma cells in female Rj: NMRI nude mice and the osteosarcoma tumours were 

allowed to grow until mice were sacrificed at day 16. This figure describes the effect of Sema3A 

overexpression on the growth of osteosarcoma tumours in vivo in mice inoculated with osteosarcoma 

mock or Sema3A overexpressing cells. Tumour growth was monitored throughout the experiment 

using callipers. Tumour growth throughout the duration of the experiment in which mice were 

inoculated with KHOS mock and Sema3A overexpressing osteosarcoma cells (Sema3A
OE

). N = 10. 

Values are mean ± SD. 
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5.4.6 Sema3A overexpression has no effect on lung metastasis in vivo 

Lung metastasis are a common feature of osteosarcoma (Mutsaers and Walkley, 2014, 

Bielack et al., 2009). Lungs of mice inoculated with KHOS mock or KHOS Sema3A 

overexpressing cells were embedded in paraffin, sectioned and stained with H&E. 

Metastatic nodules were counted and the total tumour area for metastatic nodules was 

measured using the Osteomeasure system at each depth at three separate depths per 

sample (section 2.12.5). Of the 10 mice in each group, 4/10 mock inoculated mice 

and 2/10 mice inoculated with KHOS Sema3A overexpressing cells showed evidence 

of microscopic lung metastasis. There was no difference in the size of metastatic 

nodules of the lungs between the mice inoculated with KHOS mock or KHOS 

Sema3A overexpressing cells.  

 
Figure 5.6. Sema3A Overexpression had no effect on lung metastasis in vivo 

Osteosarcoma tumours were induced by paratibial injection of KHOS mock or Sema3A overexpressing 

osteosarcoma cells in female Rj: NMRI nude mice and the osteosarcoma tumours were allowed to grow 

until mice were sacrificed at day 16. The lungs were sectioned and stained with H&E to assess the effect of 

tumour-specific Sema3A overexpression on the size and number of metastatic nodules in the lungs. 

Metastatic nodules were counted at three different depths per mouse and size of metastatic nodules was 

assessed using the Osteomeasure. A.  Quantification of the size of metastatic nodules in the lungs of mice 

inoculated with KHOS mock or KHOS Sema3A overexpressing cells. B. Representative microphotographs 

(10X) of tumour nodules in lungs of mice from the experiment described in panel A. Black arrows indicate 

nodules. Scalebar in the bottom corner of the images indicates 200 μm. Values in the graph are mean ± SD 

N=10.  
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5.5 Discussion 

Sema3A has been implicated to play a role in tumour growth and progression in a 

variety of different cell types (Tamagnone, 2012). There is conflicting data that 

reported the Sema3A receptor Nrp1 as an indicator for patient prognosis (Boro et al., 

2015, Zhu et al., 2014). Previous studies have shown that osteosarcoma cells express 

Nrp1 and produce Sema3A after a RANKL stimulus (Mori et al., 2007, Yue et al., 

2014). However, the role of tumour-derived Sema3A in osteosarcoma growth and 

motility is still unknown. The aim of this chapter was to investigate the role of 

tumour-derived Sema3A on osteosarcoma cell viability, migration and invasion in 

vitro and tumour growth and lung metastasis in vivo.  

To achieve this aim, first I overexpressed Sema3A in the human KHOS osteosarcoma 

cells by a lentiviral expression vector. As a result, Sema3A protein levels in the cell 

lysates and in the conditioned medium were significantly increased in comparison to 

the mock control. Overexpression of Sema3A reduced the viability of the tumour 

cells. This is in contrast to the lack of effect of exogenous Sema3A on osteosarcoma 

cell viability as described in chapter 3. Additionally, the reduction in cell viability by 

overexpression of Sema3A is in contrast to previous studies that have indicated that 

tumour-specific Sema3A expression had no effect on breast cancer and melanoma 

cell growth in vitro (Casazza et al., 2011). The discrepancy between exogenous 

Sema3A and Sema3A overexpression may be due to off target effects by the lentiviral 

vector. Additionally, Sema3A overexpression results into a continuous exposure of 

the osteosarcoma cells to Sema3A which might explain why exogenous Sema3A does 

not have an effect on viability in contrast to Sema3A overexpression. Next I 

investigated the effects of Sema3A overexpression on the migration and invasion of 

the KHOS osteosarcoma cells. Sema3A overexpression significantly reduced KHOS 

osteosarcoma cell directed and random migration. Overexpression of Sema3A also 

reduced invasion of these osteosarcoma cells. This is in confirmation with previous 

studies that reported that tumour-specific Sema3A expression affects cancer cell 

migration and invasion depending on the investigated cell type (Muller et al., 2007, 

Bagci et al., 2009, Pan and Bachelder, 2010, Herman and Meadows, 2007, Mishra et 

al., 2015b). These results imply that in osteosarcoma, tumour-specific Sema3A 

expression has osteosarcoma suppressive effects in vitro.  
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The next step was to investigate whether Sema3A overexpression conveys anti-

tumorigenic properties in vivo. Several studies have shown that although Sema3A 

overexpression had no effect on tumour cell growth in vitro, Sema3A overexpression 

reduced tumour growth in vivo in melanoma, breast and oral cancer (Chakraborty et 

al., 2012, Mishra et al., 2015a, Casazza et al., 2011). To investigate whether Sema3A 

overexpression had an effect on osteosarcoma tumour growth, mice were given 

paratibial injections of KHOS mock or KHOS Sema3A overexpressing cells to 

induce tumours. To our surprise and in contrast to the effect on viability in vitro, 

Sema3A overexpression had no effect on osteosarcoma tumour growth in vivo. As 

previously mentioned in Chapter 4, one of the drawbacks of this xenograft model is 

its aggressive nature and rapid tumour growth which may explain the lack of effect 

on tumour growth in vivo. There was no significant reduction in lung metastasis 

between the mock and Sema3A overexpression group. In this particular osteosarcoma 

mouse model, metastasis tend to develop in the 3
rd

 week after inoculation, the 

endpoint of day 16 may have been premature to provide a definitive conclusion on 

the effect of tumour-specific overexpression of Sema3A on lung metastasis.  

To summarise, overexpression of Sema3A in the KHOS osteosarcoma cells 

significantly inhibited osteosarcoma viability in vitro. Furthermore, overexpression of 

Sema3A significantly inhibited directed and random migration and inhibited 

osteosarcoma cell invasion in vitro. Despite the effects observed in vitro, there was no 

effect of Sema3A overexpression on tumour growth or lung metastasis in vivo (Figure 

5.7).  
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Figure 5.7. Schematic representation of the effects of overexpression of Sema3A on the KHOS 

osteosarcoma cells in vitro and in vivo. Overexpression of Sema3A reduced KHOS cell viability, 

migration and invasion in vitro but had no effect on tumour growth or lung metastasis in vivo. 
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6 CHAPTER SIX 

6.1 Summary 

One of the common features of osteosarcoma is osteolysis. In 25% of osteosarcoma 

cases, multinucleated giant cells that resemble osteoclasts are present in close 

proximity to the tumour. Osteoclasts are known to express the semaphorin 3A 

receptors and Sema3A is known to inhibit osteoclast formation and osteoclast activity. 

However, the effect of tumour-derived Sema3A on osteoclast formation and 

osteolysis is unknown. This chapter reports the effects of osteosarcoma-derived 

Sema3A on osteolysis and bone damage of osteosarcoma-bearing tibia and femurs.   

In vitro, conditioned medium from KHOS Sema3A overexpressing cells inhibited 

osteoclast formation in vitro in comparison to conditioned medium from the mock 

control. To investigate whether osteosarcoma-derived Sema3A also affects osteoclast 

formation in vivo, histomorphometric analysis was performed on TRAcP stained 

slides of the osteosarcoma-bearing tibia. Osteosarcoma-derived Sema3A significantly 

reduced osteoclast number and osteoclast surface in vivo. In contrast, osteosarcoma-

derived Sema3A only showed a trend towards protection against osteosarcoma-

associated trabecular osteolysis of the tibia.  This chapter showed that osteosarcoma-

derived Sema3A inhibited osteoclast formation in vitro and in vivo but these effects 

were insufficient to protect the bone from osteosarcoma-associated osteolysis.   
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6.2 Introduction 

One of the common features of osteosarcoma is osteolytic bone damage (Geller and 

Gorlick, 2010). Osteoclasts have been shown to express the Sema3A receptors 

plexin-A1, plexin-A2 and Nrp1 but have no Sema3A expression (Gomez et al., 2005). 

Plexin-A1 is constitutively associated with Nrp1, when Nrp1 is downregulated, 

plexin-A1 is released to associate with the TREM2-DAP12 complex to stimulate 

osteoclastogenesis (Takahashi and Strittmatter, 2001, Takegahara et al., 2006). 

Hayashi and colleagues showed that, upon RANKL stimulation, osteoclast precursors 

downregulate Nrp1 thereby releasing the plexin-A1 from the Nrp1-plexin-A1 

complex. Therefore, osteoblast derived Sema3A only inhibits osteoclast formation in 

the absence of a previous RANKL stimulus (Hayashi et al., 2012). This is in 

confirmation with previous studies that confirmed that treatment of osteoclast 

precursors with Sema3A inhibits osteoclastogenesis (Fukuda et al., 2013, Teng et al., 

2017) and unpublished work from our laboratories (de Ridder MSc thesis 

unpublished data, 2014). Sema3A deficient mice exhibit increased bone resorption 

that is accompanied by an increase in osteoclast numbers (Hayashi et al., 2012). A 

similar phenotype is observed in Nrp
sema-

 knock-in mice. These mice have a 

functional neuropilin receptor that is unable to bind Sema3A due to deletion of the 

semaphorin binding domain and therefore only lacks semaphorin signalling whereas 

the other pathways such as VEGF signalling are not impaired. Furthermore, Sema3A 

was also found to inhibit osteoclast activity in vitro (Teng et al., 2017).  

Previous unpublished work from our laboratories showed that knockdown of Sema3A 

in breast cancer cells significantly enhanced breast cancer induced osteoclastogenesis 

in vitro (de Ridder MSc thesis unpublished data, 2014). There is to date no published 

research on the effect of tumour-specific Sema3A expression on tumour cell-

osteoclast interactions. This chapter investigated the effects of osteosarcoma-derived 

Sema3A on osteosarcoma-associated osteolysis and osteoclast formation. 
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6.3 Aim 

The aim of this chapter was to investigate the role of tumour-derived Sema3A in 

human osteosarcoma cell-osteoclast crosstalk in vitro and in vivo. The aim was 

achieved by exposure of osteoclasts to conditioned medium from Sema3A 

overexpressing KHOS osteosarcoma cells and assess osteoclast formation in vitro and 

in vivo and osteolysis in Sema3A overexpressing tumours in mice.  
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6.4 Results 

6.4.1  Osteosarcoma-derived Sema3A reduced osteoclast formation in vitro.  

As reported in Chapter 3 and in confirmation with several studies, Sema3A inhibits 

osteoclast formation (Hayashi et al., 2012, Fukuda et al., 2013, Teng et al., 2017).  To 

investigate whether osteosarcoma-derived Sema3A has similar effects on osteoclast 

formation, mouse bone marrow cultures were exposed to conditioned medium 20% 

(v/v) from KHOS mock or KHOS Sema3A overexpressing cells. Cultures treated 

with conditioned medium of KHOS Sema3A overexpressing cells showed a 

significantly reduced osteoclast formation as compared to cultures exposed to 

conditioned medium from KHOS mock cells (37%, p<0.001)(Figure 6.1). 

 

Figure 6.1. Osteosarcoma-derived Sema3A reduced osteosarcoma associated osteoclast 

formation. 

To assess the effect of tumour-derived Sema3A on osteoclast formation, bone-marrow cultures were 

exposed to conditioned medium from KHOS Mock or Sema3A overexpressing cells. Cultures were 

exposed for 7 days, fixed and then stained with TRAcP. Osteoclasts were counted when they were 

stained with TRAcP and contained >3 nuclei. A. Quantification of osteoclast number in mouse bone 

marrow cultures treated with 20% conditioned medium (v/v) of KHOS mock or KHOS Sema3A 

overexpressing cells (Sema3A
OE

). B. Representative photomicrographs (10X) of cultures described in 

panel A. Values in the graph are mean ± SD and are obtained from 3 independent experiments *** 

p<0.001. 
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6.4.2 Osteosarcoma-derived Sema3A showed a trend towards reduction of 

osteolysis  

Sema3A treatment was shown to increase bone volume and increased bone fracture 

healing (Hayashi et al., 2012, Li et al., 2015a). In order to investigate the effect of 

osteosarcoma-derived Sema3A on bone metabolism in vivo, legs of mice were 

paratibially injected with KHOS mock or KHOS Sema3A overexpressing cells to 

induce osteosarcoma. The bone parameters of the tumour-bearing tibia and femur 

were then analysed using microCT (section 02.11). As shown in Figure 6.2, 

osteosarcoma-derived Sema3A showed a trend towards an osteoprotective effect in 

the tumour-bearing tibia but had no significant effect on bone volume, trabecular 

thickness, trabecular number, trabecular separation and trabecular pattern factor. 

Further microCT analysis of the femur showed that osteosarcoma-derived Sema3A 

had no effect on bone volume, trabecular thickness, trabecular number, trabecular 

separation and trabecular pattern factor in the tumour-bearing femur (Figure 6.3). 
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Figure 6.2. Osteosarcoma-derived Sema3A showed a trend towards more bone volume in the tibia. 

Osteosarcoma tumours were induced by paratibial injection of KHOS mock or Sema3A overexpressing osteosarcoma cells in female Rj: NMRI nude mice and the 

osteosarcoma tumours were allowed to grow until mice were sacrificed and legs organs were collected for analysis at day 16. This figure describes the effect of tumour-

specific Sema3A overexpression on the trabecular compartment of the osteosarcoma-bearing tibia analysed by microCT. A. Quantification of Trabecular bone volume, B. 

Trabecular thickness, C. Trabecular number, D. Trabecular separation and E. Trabecular pattern factor of the tumour-bearing tibia of mice inoculated with KHOS mock or 

KHOS Sema3A overexpressing cells (Sema3A
OE

). F. 3D reconstruction images of the tibia from the experiment described in panel A-E. Values in the graph are mean ± SD 

N=10.  
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Figure 6.3. Osteosarcoma-derived Sema3A had no effect on femoral bone parameters. 

Osteosarcoma tumours were induced by paratibial injection of KHOS mock or Sema3A overexpressing osteosarcoma cells in female Rj: NMRI nude mice and the 

osteosarcoma tumours were allowed to grow until mice were sacrificed and legs and organs were collected for analysis at day 16.  This figure describes the effect of tumour-

specific Sema3A overexpression on the trabecular compartment of the osteosarcoma-bearing femur analysed by microCT. A. Quantification of Trabecular bone volume, B. 

Trabecular thickness, C. Trabecular number, D. Trabecular separation and E. Trabecular pattern factor of the tumour bearing femur in mice inoculated with KHOS mock or 

KHOS Sema3A overexpressing cells (Sema3A
OE

). F. 3D reconstruction images of femur from the experiment described in panel A-E. Values in the graph are mean ± SD 

N=10.  
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Consistent with the results described above, osteosarcoma-derived Sema3A had no 

effect on cortical bone volume of the tumour-bearing tibia or femur as shown in  

Figure 6.4.  

 

Figure 6.4. Osteosarcoma-derived Sema3A had no effect on cortical bone volume in the tumour-

bearing leg. 

Osteosarcoma tumours were induced by paratibial injection of KHOS mock or Sema3A 

overexpressing osteosarcoma cells in female Rj: NMRI nude mice and the osteosarcoma tumours were 

allowed to grow until mice were sacrificed and legs and organs were collected for analysis at day 16.  

This figure describes the effect of tumour-specific Sema3A overexpression on the cortical bone 

volume of the osteosarcoma-bearing tibia and femur analysed by microCT. Quantification of cortical 

bone volume in the tumour-bearing A. tibia and B. femur in mice inoculated with KHOS mock or 

KHOS Sema3A overexpressing cells (Sema3A
OE

). C. 3D reconstruction images of tibia and D. femur 

from the experiment described in panel A-B. Values in the graph are mean ± SD N=10.  
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6.4.3 Osteosarcoma-derived Sema3A reduced osteoclast formation in vivo. 

Sema3A deficient mice have an increased osteoclast number and resorption whereas 

treatment with Sema3A inhibited bone resorption in mice with ovariectomy induced 

osteoporosis (Hayashi et al., 2012). To investigate whether osteosarcoma-derived 

Sema3A has any effects on osteoclast formation in vivo, I performed bone 

histomorphometry on the tibia of the tumour-bearing legs of the mice inoculated with 

KHOS mock or KHOS Sema3A overexpressing cells. As shown in Figure 6.5 mice 

injected with KHOS cells overexpressing Sema3A showed a significantly reduced 

osteoclast number 42% (p<0.05) and osteoclast surface 52% (p<0.05)  in the tumour-

bearing tibia in vivo.  

 

Figure 6.5. Osteosarcoma-derived Sema3A reduced osteoclast formation in vivo.  

Osteosarcoma tumours were induced by paratibial injection of KHOS mock or Sema3A 

overexpressing osteosarcoma cells in female Rj: NMRI nude mice and the osteosarcoma tumours were 

allowed to grow until mice were sacrificed and legs and organs were collected for analysis at day 16.  

Osteosarcoma-bearing tibia were sectioned and TRAcP stained to assess the cellular parameters in the 

trabeculae to assess the effect of tumour-specific overexpression of Sema3A on osteoclast number and 

osteoclast surface.  A. Quantification of osteoclast number in the tibia inoculated with KHOS mock or 

KHOS Sema3A overexpressing cells (Sema3A
OE

). B. Quantification of osteoclast surface in the tibia 

inoculated with KHOS mock or KHOS Sema3A overexpressing cells. C. Representative 

photomicrographs of TRAcP stained tibia from experiments described in panel A and B. Arrows 

indicate TRAcP positive osteoclasts. Scalebar in the bottom right indicates 50μm. Values in the graph 

are mean ± SD, N=5 * p<0.05. 
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6.4.4 Osteosarcoma-derived Sema3A showed a trend towards more osteoblasts 

in vivo 

Mice administrated with exogenous Sema3A show enhanced bone volume with a 

corresponding increase in osteoblasts and osteoblast surface (Hayashi et al., 2012). 

To investigate whether osteosarcoma-derived Sema3A had an effect on osteoblasts in 

vivo, osteoblast number and osteoblast surface in the tumour-bearing tibia of mice 

inoculated with KHOS mock or KHOS Sema3A overexpressing cells was analysed 

using histomorphometry. As shown in Figure 6.6, osteosarcoma-derived Sema3A 

showed a trend towards increased osteoblast number and osteoblast surface but these 

changes were not significant.  

 

Figure 6.6. Osteosarcoma-derived Sema3A showed a trend towards more osteoblasts. 

Osteosarcoma tumours were induced by paratibial injection of KHOS mock or Sema3A 

overexpressing osteosarcoma cells in female Rj: NMRI nude mice and the osteosarcoma tumours were 

allowed to grow until mice were sacrificed and legs and organs were collected for analysis at day 16.  

Osteosarcoma-bearing tibia were sectioned and TRAcP stained to assess the cellular parameters in the 

trabeculae to assess the effect of tumour-specific overexpression of Sema3A on osteoblast number and 

osteoblast surface A. Quantification of osteoblast number (Ob.N) in the tibia inoculated with KHOS 

mock or KHOS Sema3A overexpressing cells (Sema3A
OE

). B. Quantification of osteoblast surface 

(Ob.S) in the tibia inoculated with KHOS mock or KHOS Sema3A overexpressing cells. C. 

Representative photomicrographs of TRAcP stained tibia of experiments described in panel A and B. 

Arrows indicate osteoblasts.Scalebar in the bottom right of the images indicates 50μm.  Values in the 

graph are mean ± SD, N=5. 
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6.5 Discussion 

A number of studies have shown that Sema3A enhanced bone volume, protected 

against ovariectomy induced bone loss, enhanced osteoblast differentiation as well as 

inhibited osteoclast formation and osteoclast activity (Hayashi et al., 2012, Fukuda et 

al., 2013, Teng et al., 2017). These findings suggest that osteosarcoma-derived 

Sema3A may play a role in osteoclast formation and osteosarcoma-associated 

osteolysis. In this chapter we hypothesized that osteosarcoma-derived Sema3A 

reduces osteosarcoma-induced osteoclastogenesis and osteolysis. 

To investigate this hypothesis, I first tested whether osteosarcoma-derived Sema3A 

had any effect on osteoclast formation in vitro. Similar to the inhibitory effect of 

exogenous Sema3A on osteoclast formation as described in Chapter 3 and reported 

by previous studies (Hayashi et al., 2012, Fukuda et al., 2013, Teng et al., 2017), 

osteosarcoma-derived Sema3A significantly reduced RANKL-induced osteoclast 

formation in vitro. A reduction of osteoclast number and osteoclast surface was also 

found in the tumour-bearing tibia of mice inoculated with KHOS Sema3A 

overexpressing cells in comparison to the mock control. The trabecular bone of 

Sema3A overexpressing tumours showed a trend towards more osteoblasts. These 

observations are similar to exogenous Sema3A that enhanced osteoblast number and 

osteoblast surface in the absence of cancer and showed a trend towards more 

osteoblasts in the tumour bearing leg as described in chapter 4, suggesting that 

tumour-specific Sema3A expression exhibits the same effects on osteoclast formation 

as would treatment with exogenous Sema3A (Hayashi 2012).  

To our surprise, despite a significant reduction in osteoclast formation in vivo, 

osteosarcoma-derived Sema3A only showed a trend towards enhanced bone volume. 

There were no significant effects of osteosarcoma-derived Sema3A on trabecular 

bone volume, trabecular number, trabecular separation or trabecular connectivity in 

the tumour-bearing tibia or the tumour-bearing femur. In addition, there was no effect 

of osteosarcoma-derived Sema3A on the cortex of the tibia or the femur in the 

tumour-bearing leg.  
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There are several elements that may have contributed to the lack of effect of 

osteosarcoma-derived Sema3A on the osteosarcoma-associated osteolysis in this 

model. As described in Chapter 5, there was no effect on tumour growth by Sema3A 

overexpression this is in contrast to other studies that found that Sema3A 

overexpression reduced tumour growth (Chakraborty et al., 2012, Mishra et al., 

2015b, Casazza et al., 2011). The lack of effect of osteosarcoma-derived Sema3A on 

tumour growth may explain why there is no significant protection against bone loss in 

the Sema3A overexpressing tumours. In addition, the other factors secreted by the 

tumour may play a role in the bone microenvironment and a continuous stimulation 

of the bone environment with Sema3A differs from the intermittent exposure that is 

achieved with administration of exogenous Sema3A. The difference in exposure time 

may contribute to the differences on the trabecular compartment between exogenous 

and osteosarcoma-derived Sema3A. 

In summary, osteosarcoma-derived Sema3A significantly inhibited osteoclast 

formation in vitro and reduced osteoclast number and osteoclast surface in vivo. In 

addition, there was a trend towards more osteoblast surface and number of osteoblasts 

but osteosarcoma-derived Sema3A had no significant effect on the bone volume of 

the tumour-bearing tibia or femur. 

 

Figure 6.7. Schematic representation of the effects of osteosarcoma-derived Sema3A on 

osteoclasts in vitro and osteoclasts, osteoblasts and osteolysis in vivo. Tumour-specific 

overexpression of Sema3A reduced osteoclast formation in vitro and in vivo but had no effect on the 

trabecular bone of the osteosarcoma-bearing tibia or femur. 
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7 CHAPTER SEVEN  

7.1 Summary 

Ectopic bone is a common feature in osteosarcoma. Recent studies reported that 

osteoblasts express the Sema3A receptors and produce and secrete Sema3A. Sema3A 

was shown to enhance osteoblast differentiation via activation of the canonical 

Wnt/β-catenin pathway. This chapter describes the role of tumour-derived Sema3A in 

human osteosarcoma cancer cell-osteoblast crosstalk in vitro and in vivo. 

Osteosarcoma tumours overexpressing Sema3A showed a reduction in ectopic bone 

formation. In contrast, there was no effect on ectopic bone formation in mice 

administrated with exogenous Sema3A. To investigate the effect on ectopic bone 

formation further, Saos-2 cells were exposed to conditioned medium from KHOS 

mock or KHOS Sema3A overexpressing cells for a continuous and intermittent 

period. Continuous exposure to osteosarcoma-derived Sema3A reduced 

mineralization without affecting alkaline phosphatase activity, whereas intermittent 

exposure enhanced alkaline phosphatase activity without affecting mineralization. 

Osteoblast viability was not affected by exposure to osteosarcoma-derived Sema3A 

but enhanced osteoblast alkaline phosphatase activity. The Wnt/β-catenin signalling 

pathway in MC3T3-E1 osteoblasts was inhibited when treated with conditioned 

medium from KHOS overexpressing Sema3A. This effect may be attributed to the 

enhanced expression of DKK1 by the Sema3A overexpressing cells.  

Altogether these results indicate that osteosarcoma-derived Sema3A affects 

osteoblast viability and alkaline phosphatase activity in similar ways as recombinant 

Sema3A. Conditioned medium from KHOS Sema3A overexpressing cells inhibited 

Wnt/β-catenin signalling which may be attributed to differential expression of other 

cytokines such as DKK1. This mechanism may have contributed to the reduction of 

ectopic bone formation by osteosarcoma-derived Sema3A.  
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7.2 Introduction 

Osteosarcomas are known to have an aggressive clinical course, characterized by 

local bone, muscle and soft tissue destruction. Furthermore, osteosarcoma is 

characterized by a high propensity for distant metastasis to the lungs (Mutsaers and 

Walkley, 2014). One of the common features of osteosarcoma besides osteolytic bone 

damage is the formation of ectopic bone in a typical sunburst pattern (Geller and 

Gorlick, 2010).  

Recently, Sema3A was shown to signal at least in part via the Wnt/β-catenin pathway 

in osteoblasts. Sema3A enhanced osteoblast differentiation via stimulation of the 

Wnt/β-catenin pathway through FARP2 induced Rac activation thereby enhancing 

osteoblast differentiation and inhibition of adipocyte differentiation (Hayashi et al., 

2012). Moreover, Sema3A deficiency resulted in a suppressed wnt3a induced β-

catenin accumulation and an inhibited wnt3a induced activation of Rac but not Rhoa 

in calvarial cells (Hayashi et al., 2012). The detailed molecular mechanisms of 

Sema3A signalling in osteoblasts remains to be elucidated. 

Together these previous studies suggest that Sema3A enhances osteoblast 

differentiation at least in part via the Wnt/β-catenin pathway. The effects of tumour-

specific Sema3A expression on the Wnt/β-catenin pathway in osteoblasts is still 

unknown. This chapter describes the effects of osteosarcoma-derived Sema3A on 

osteoblasts and osteosarcoma-associated ectopic bone formation. Additionally, this 

chapter describes a potential mechanism of action for osteosarcoma-derived Sema3A 

on osteoblast differentiation and activity.  
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7.3 Aim 

The aim of this chapter was to investigate the role of tumour-derived Sema3A in 

human osteosarcoma cancer cell-osteoblast crosstalk in vitro and in vivo. The aim 

was achieved by (a) investigating the effects of osteosarcoma-derived Sema3A on 

ectopic bone formation in vivo, osteoblast viability, activity and Wnt/β-catenin 

signalling in vitro and (b) investigate the effects of overexpression of Sema3A on 

Wnt/β-catenin signalling in the KHOS osteosarcoma cells.   
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7.4 Results 

7.4.1 Osteosarcoma-derived Sema3A reduced ectopic bone formation in vivo 

Ectopic bone is a common feature in osteosarcoma and has been reported previously 

in mouse models of osteosarcoma (Geller and Gorlick, 2010, Lamoureux et al., 2014). 

Ectopic bone formation was analysed by total bone volume of the tibia and fibula 

normalised against the corresponding bone in the contralateral leg (section 2.11.3). As 

shown in Figure 7.1, osteosarcoma-derived Sema3A significantly reduced ectopic 

bone formation of the tibia by 15% (p<0.05) and fibula by 67% (p<0.01).  

 
Figure 7.1. Osteosarcoma-derived Sema3A reduced osteosarcoma-associated ectopic bone formation.  

This figure describes the effect of tumour-specific overexpression of Sema3A on the formation of ectopic 

bone volume by the osteosarcoma tumours. Osteosarcoma tumours were induced by paratibial injection of 

KHOS mock or Sema3A overexpressing osteosarcoma cells in female Rj: NMRI nude mice and the 

osteosarcoma tumours were allowed to grow until mice were sacrificed and legs organs were collected for 

analysis at day 16. Ectopic bone volume was calculated by measuring the total bone volume in the tumour 

bearing tibia or fibula and normalizing that to the total bone volume of the contralateral tibia and fibula.  A. 

Quantification of bone volume of the tumour-bearing tibia in mice inoculated with KHOS mock or KHOS 

Sema3A overexpressing cells (Sema3A
OE

). B. 2D reconstructed images of the experiment described in panel 

A. C.  Quantification of bone volume of the tumour-bearing in mice inoculated with KHOS mock or KHOS 

Sema3A overexpressing cells. D. 3D reconstructed images of tumour-bearing fibula of the experiment 

described in panel C. Values in the graph are mean ± SD N=10. * p < 0.05, **p < 0.01 
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7.4.2 Exogenous Semaphorin 3A had no effect on ectopic bone formation 

To analyse the effects of exogenous Sema3A on ectopic bone formation, the total 

bone volume of the tibia and the fibula was normalised with the total bone volume of 

the corresponding bone in the contralateral leg (section 2.11.3). Administration of 

exogenous Semaphorin3A (0.7 mg/kg) had no effect on the ectopic bone formation in 

the tibia or the fibula of the tumour-bearing leg (Figure 7.2).  

 
Figure 7.2. Sema3A treatment had no effect on osteosarcoma-associated ectopic bone formation. 

This figure describes the effect of recombinant Sema3A on the formation of ectopic bone volume by the 

osteosarcoma tumours. Osteosarcoma tumours were induced by paratibial injection of KHOS osteosarcoma 

cells in female Rj: NMRI nude mice. Mice were treated with IP injections biweekly of vehicle (PBS) or 

recombinant Sema3A (0.7 mg/kg) for the duration of the experiment (21 days). Ectopic bone volume was 

calculated by measuring the total bone volume in the tumour bearing tibia or fibula and normalizing that to 

the total bone volume of the contralateral tibia and fibula.  A. Quantification of bone volume of the tumour 

bearing tibia by normalization of the tibia in mice treated with vehicle (PBS) or human recombinant 

Sema3A (0.7 mg/kg/2-weekly). B. 2D reconstructed images of the experiment described in panel A. C.  

Quantification of bone volume of the tumour bearing fibula by normalization of the fibula in mice treated 

with vehicle (PBS) or human recombinant Sema3A (0.7 mg/kg/2-weekly). D. 3D reconstructed images of 

tumour bearing fibula of the experiment described in panel C. Values in the graph are mean ± SD N=7.  
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7.4.3 Osteosarcoma-derived Sema3A had no effect on osteoblast viability 

First, I investigated the effect of osteosarcoma-derived Sema3A on the viability of a 

panel of osteoblasts like cells, mouse primary osteoblasts, mouse osteoblast-like 

MC3T3-E1 cells and human osteoblast-like Saos-2 osteosarcoma cells. Cells were 

exposed to 20% conditioned medium (v/v) for a short period (48 hours) after which 

viability was measured using the AlamarBlue assay, (section 2.3.4). As shown in 

Figure 7.3, exposure to osteosarcoma-derived Sema3A had no effect on the viability 

of mouse primary osteoblasts, mouse MC3T3-E1 osteoblast-like cells or human 

osteoblast-like osteosarcoma cells Saos-2.  

 

Figure 7.3. Osteoblast viability was not affected after short term exposure to osteosarcoma-

derived Sema3A. 

This experiment was performed to assess the effect of short term exposure on osteoblast viability to 

osteosarcoma-derived Sema3A using the AlamarBlue assay. Cultures were exposed to conditioned 

medium 24 hours after plating. A. Quantification of viability of mouse primary osteoblasts after 

exposure to 20% conditioned medium (v/v) of KHOS mock or KHOS Sema3A overexpressing cells 

(Sema3A
OE

) for 48 hours B. Quantification of viability of mouse MC3T3-E1 osteoblasts after exposure 

to 20% conditioned medium (v/v) of KHOS mock or KHOS (Sema3A
OE

) for 48 hours C. 

Quantification of viability of human Saos-2 osteoblast-like osteosarcoma cell after exposure to 20% 

conditioned medium (v/v) of KHOS mock or KHOS (Sema3A
OE

) for 48 hours. Values in the graph are 

mean ± SD and are obtained from 3 independent experiments.  
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To assess the effects of long term exposure to osteosarcoma-derived Sema3A, mouse 

primary osteoblasts, mouse MC3T3-E1 cells and human Saos-2 cells were treated 

with 20% conditioned medium (v/v) for a prolonged period (up to 28 days) and 

viability was assessed. As shown in Figure 7.4, prolonged exposure of mouse primary 

osteoblasts, mouse MC3T3-E1 cells and human Saos-2 cells to osteosarcoma-derived 

Sema3A had no effect on the osteoblast viability. 

 

Figure 7.4. Osteoblast viability was not affected after long term exposure to osteosarcoma-

derived Sema3A. 

This experiment was performed to assess the effect of long term exposure on osteoblast viability to 

osteosarcoma-derived Sema3A using the AlamarBlue assay. Cultures were exposed to conditioned 

medium 24 hours after plating.  A. Quantification of viability of mouse primary osteoblasts after 

exposure to 20% conditioned medium (v/v) of KHOS mock or KHOS Sema3A overexpressing cells 

(Sema3A
OE

) for 28 days. B. Quantification of viability of mouse MC3T3-E1 osteoblasts after exposure 

to 20% conditioned medium (v/v) of KHOS mock or KHOS (Sema3A
OE

) for 25 days C. Quantification 

of viability of human Saos-2 osteoblast-like osteosarcoma cell after exposure to 20% conditioned 

medium (v/v) of KHOS mock or KHOS (Sema3A
OE

) for 9 days. Values in the graph are mean ± SD 

and are obtained from 3 independent experiments.  
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7.4.4 Osteosarcoma-derived Sema3A enhanced alkaline phosphatase activity of 

osteoblasts 

Sema3A has previously been reported to enhance alkaline phosphatase activity of 

osteoblasts (Hayashi et al., 2012). Alkaline phosphatase activity was measured after 

short term exposure of mouse primary osteoblasts, mouse MC3T3-E1 cells and 

human Saos-2 cells to conditioned medium from KHOS mock or KHOS Sema3A 

overexpressing cells. Short term exposure of mouse primary osteoblast and mouse 

MC3T3-E1 osteoblasts significantly increased alkaline phosphatase activity (31%, 

p<0.01 and 26%, p<0.05 respectively), while alkaline phosphatase activity of Saos-2 

cells was not significantly enhanced in response to osteosarcoma-derived Sema3A 

(Figure 7.5). 

 

Figure 7.5. Osteosarcoma-derived Sema3A increased osteoblast alkaline phosphatase activity 

after short term exposure. 

This experiment was performed to assess the effect of short term exposure of osteoblast cells to 

osteosarcoma-derived Sema3A on the alkaline phosphatase activity using the alkaline phosphatase 

activity assay. Cultures were exposed to conditioned medium 24 hours after plating.  A. Quantification 

of alkaline phosphatase activity of mouse primary osteoblasts after exposure to 20% conditioned 

medium (v/v) of KHOS mock or KHOS Sema3A overexpressing cells (Sema3A
OE

) for 48 hours. B. 

Quantification of alkaline phosphatase activity of mouse MC3T3-E1 osteoblasts after exposure to 20% 

conditioned medium (v/v) of KHOS mock or KHOS (Sema3A
OE

) for 48 hours. C. Quantification of 

alkaline phosphatase activity of human Saos-2 osteoblast-like osteosarcoma cells after exposure to 20% 

conditioned medium (v/v) of KHOS mock or KHOS (Sema3A
OE

) for 48 hours. Values in the graph are 

mean ± SD and are obtained from 3 independent experiments. * p<0.05, ** p<0.01 
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7.4.5 Osteosarcoma-derived Sema3A reduced bone nodule formation after long 

term continuous exposure 

As shown earlier in this chapter, osteosarcoma-derived Sema3A reduced ectopic bone 

formation. To investigate the mineralization and alkaline phosphatase activity of 

osteoblast-like osteosarcoma Saos-2 cells in response to continuous and intermittent 

exposure of 20% (v/v) conditioned medium from KHOS mock and KHOS Sema3A 

overexpressing cells, Saos-2 cells were plated and exposed to conditioned medium 

for different time periods. First to assess the effect of continuous exposure, the 

osteoblast-like Saos-2 osteosarcoma cells were exposed to conditioned medium from 

KHOS mock and KHOS Sema3A overexpressing cells 20% (v/v) in osteogenic 

medium and the medium was refreshed every two days and the experiment was 

terminated at 9 days (section  2.3.6). As shown in Figure 7.6, long term continuous 

exposure of Saos-2 osteosarcoma cells to tumour-derived Sema3A had no effect on 

alkaline phosphatase activity. In contrast, continuous exposure of Saos-2 to tumour-

derived Sema3A significantly reduced bone nodule formation by 32% (p<0.01). 

 
Figure 7.6. Continuous exposure osteosarcoma-derived Sema3A reduced bone nodule formation. 

Saos-2 cells were continuously exposed to conditioned medium from KHOS cells to assess the effect 

of osteosarcoma-derived Sema3A on alkaline phosphatase activity and mineralization at the end of the 

9 day culture period. Cultures were exposed to conditioned medium 24 hours after plating. After the 

culture period, cultures were either lysed with alkaline phosphatase lysing buffer or stained with 

Alizarin red to quantify mineraliazation using destaining solution (section 2.3.8). Quantification of 

human Saos-2 osteoblast-like osteosarcoma cell A. alkaline phosphatase activity and B. bone nodule 

formation after continuous exposure to 20% conditioned medium (v/v) of KHOS mock or KHOS 

Sema3A overexpressing cells (Sema3A
OE

) for 9 days. C.  Representative images of bone nodule 

formation of the cultures described in panel A and B. Values in the graph are mean ± SD and are 

obtained from 3 independent experiments. ** p<0.01  
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7.4.6 Osteosarcoma-derived Sema3A increased alkaline phosphatase activity 

after long term intermittent exposure 

Next, I investigated the effect of intermittent exposure of osteoblast-like Saos-2 

osteosarcoma cells to tumour-derived Sema3A in vitro. Saos-2 cells were exposed to 

conditioned medium in osteogenic medium from KHOS mock and KHOS Sema3A 

overexpressing cells 20% (v/v) for 6 hours of each 48 hour cycle. The Saos-2 cells 

were exposed to conditioned medium 20% (v/v)  in osteogenic medium for 6 hours 

and after 6 hours the medium was removed and replaced for regular osteogenic 

medium. This was repeated every 48 hours until the experiment was terminated at 9 

days (section 2.3.6). Intermittent exposure of osteoblast-like Saos-2 osteosarcoma 

cells to 20% (v/v) conditioned medium showed from KHOS mock and KHOS 

Sema3A overexpressing cells had no effect on bone nodule formation. However, 

exposure to tumour-derived Sema3A significantly increased the alkaline phosphatase 

activity of these cultures (36%, p<0.01 Figure 7.7) 

 

Figure 7.7. Intermittent exposure to osteosarcoma-derived Sema3A increased alkaline 

phosphatase activity. 

Saos-2 cells were intermittently exposed to conditioned medium from KHOS cells for 6 hours out of 

each 48 hour cycle to assess the effect of osteosarcoma-derived Sema3A on alkaline phosphatase 

activity and mineralization at the end of the 9 day culture period. Cultures were exposed to conditioned 

medium 24 hours after plating. After the culture period, cultures were either lysed with alkaline 

phosphatase lysing buffer or stained with Alizarin red to quantify mineraliazation using destaining 

solution (section 2.3.8). Quantification of human Saos-2 osteoblast-like osteosarcoma cell A. alkaline 

phosphatase activity and B. bone nodule formation after intermittent exposure to 20% conditioned 

medium (v/v) of KHOS mock or KHOS Sema3A overexpressing cells (Sema3A
OE

) for 9 days. C.  

Representative images of bone nodule formation of the cultures described in panel A and B. Values in 

the graph are mean ± SD and are obtained from 3 independent experiments. ** p<0.01  
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7.4.7 Osteosarcoma-derived Sema3A reduced phosphorylation of GSK3β, 

nuclear translocation of β-catenin and total β-catenin expression 

Semaphorin 3A is known to influence the Wnt/β-catenin in osteoblasts (Hayashi et al., 

2012). To investigate whether osteosarcoma-derived Sema3A affects the Wnt/β-

catenin pathway, I examined the level of phosphorylation of GSK3β, nuclear 

translocation of β-catenin and total β-catenin expression in mouse osteoblast-like 

MC3T3-E1 cells after exposure to conditioned medium from KHOS mock and KHOS 

Sema3A overexpressing cells 20% (v/v).  

The osteoblast-like MC3T3-E1 cells were incubated in serum free medium overnight 

and exposed to conditioned medium from KHOS mock and KHOS Sema3A 

overexpressing cells 20% (v/v) in serum free medium for 15 minutes. Cell lysates 

were collected and protein expression was measured using western blot (section 0). 

Exposure to conditioned medium from KHOS Sema3A overexpressing cells modestly 

but significantly reduced the phosphorylation of GSK3β in MC3T3-E1 by 7% 

(p<0.05).  

 

Figure 7.8. Osteosarcoma-derived Sema3A inhibited phosphorylation of GSK3β. 

To assess the effect of osteosarcoma-derived Sema3A on activation of the Wnt/β-catenin pathway 

MC3T3-E1 cells were exposed to conditioned medium from KHOS mock and KHOS Sema3A 

overexpressing cells and the ratio of GSK3β/Total GSK3β was measured using western blot. A. 

Quantification of the ratio of phosphorylated GSK3β/Total GSK3β in MC3T3-E1 cells exposed to 

conditioned medium from KHOS mock or KHOS Sema3A overexpressing cells (Sema3A
OE

) for 15 

minutes. B. Representative photomicrograph of a western blot described in panel A. Values in the 

graph are mean ± SD and are obtained from 3 independent experiments. * p<0.05 
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Next I investigated whether exposure of MC3T3-E1 to conditioned medium from 

KHOS Sema3A overexpressing cells had an effect on the nuclear translocation of β-

catenin and total β-catenin expression. Nuclear translocation was reduced by 38% 

(p<0.05) after 45 minutes of exposure and total β-catenin expression modestly but 

significantly reduced by 7% (p<0.05) after 24 hours of exposure. 

 

Figure 7.9 Osteosarcoma-derived Sema3A reduced nuclear localization and total β-catenin 

expression. 

To assess the effect of osteosarcoma-derived Sema3A on activation of the Wnt/β-catenin pathway 

MC3T3-E1 cells were exposed to conditioned medium from KHOS mock and KHOS Sema3A 

overexpressing cells and β-catenin protein expression was measured using western blot. Loading 

controls were probed on the same westen blot as target proteins. A. Quantification of nuclear β-catenin 

in MC3T3-E1 cells exposed to conditioned medium from KHOS mock or KHOS Sema3A 

overexpressing cells (Sema3A
OE

) for 45 minutes. Nuclear β-catenin was normalized to LaminA/C a 

loading control for nuclear protein. B. Quantification of total β-catenin expression in MC3T3-E1 cells 

exposed to conditioned medium from KHOS mock or KHOS (Sema3A
OE

) for 24 hours. Total β-

catenin was normalized using Actin as loading control and was analyzed using total protein lysates.  C. 

Representative photomicrograph of a western blot described in panel A. D. Representative 

photomicrograph of a western blot described in panel B. Values in the graph are mean ± SD and are 

obtained from 3 independent experiments. * p<0.05 
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7.4.8 Cytokine secretion by KHOS Sema3A overexpressing cells  

Exogenous Sema3A enhances osteoblast differentiation via activation of the Wnt/β-

catenin pathway (Hayashi et al., 2012). To investigate whether overexpression of 

Sema3A in the KHOS osteosarcoma cells had an effect on the expression of other 

secreted proteins, the conditioned medium from KHOS mock and KHOS Sema3A 

overexpressing cells was examined using the Proteome Profiler Human XL Cytokine 

Array Kit R&D systems, which measures the levels of 102 human cytokines (section 

2.7).  

Of the 102 panel of factors tested, 19 factors were found in the conditioned medium. 

Of the cytokines expressed, 5 were found to be upregulated and 5 were found to be 

downregulated in the conditioned medium from KHOS Sema3A overexpressing cells 

in comparison to conditioned medium from the control (Figure 7.10). Amongst the 

upregulated cytokines in the conditioned medium from KHOS Sema3A 

overexpressing cells were dickkopf WNT signalling pathway inhibitor 1 (DKK-1, 

254%), chemokine C-X-C motif ligand 5 (CXCL5, 311%), fms related tyrosine 

kinase 3 ligand (Flt-3 ligand, 305%), Interleukin-17A (IL-17A, 256%) and 

Osteopontin (661%). The cytokines that were downregulated by the KHOS Sema3A 

overexpressing cells were Macrophage migration inhibitory factor (MIF, 55%), 

Pentatraxin 3 (31%), Resistin (73%), ST2 (35%) and Thrombospondin-1 (24%).  
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Figure 7.10. Differential levels of cytokines in the conditioned medium of KHOS Sema3A 

expressing cells. 

The cytokine expression of KHOS mock and KHOS Sema3A overexpressing cells was measured in 

the conditioned medium using the human cytokine array kit on a chemidoc by densitometry analysis. 

KHOS mock cytokine expression represents a 100% Cells were counted and plated at 0.2x10
6
 left to 

adhere overnight and then supplemented with serum free medium. Conditioned medium was collected 

after 16 hours of culture. A. Quantification of cytokine expression higher expressed in the KHOS 

Sema3A expressing cells (Sema3A
OE

) in comparison to the KHOS mock control. B. Quantification of 

cytokine expression that are less expressed in the KHOS (Sema3A
OE

). The experiment was performed 

using a Proteome Profiler Human XL Cytokine Array Kit.     
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7.5 Discussion 

Osteoblasts express the Sema3A receptors and produce Sema3A which is known to 

enhance osteoblast differentiation (Gomez et al., 2005, Hayashi et al., 2012). By its 

dual effect on stimulating osteoblasts and inhibiting osteoclasts, Sema3A enhances 

bone volume and reduces bone resorption thereby increasing bone volume and 

protects against bone loss (Hayashi et al., 2012). Previous mechanistic studies in 

osteoblasts have shown that Sema3A activates the canonical Wnt/β-catenin pathway 

and as a result enhances osteoblast differentiation (Hayashi et al., 2012). The aim of 

this chapter was to investigate the role of tumour-derived Sema3A in human 

osteosarcoma cancer cell-osteoblast crosstalk in vitro and whether tumour-derived 

Sema3A affects the development of osteosarcoma-associated ectopic bone formation 

in mice. 

One of the hallmarks of osteosarcoma is the formation of ectopic bone and this has 

previously been reported in mouse models of osteosarcoma (Geller and Gorlick, 2010, 

Lamoureux et al., 2014). Here, I investigated whether osteosarcoma-derived Sema3A 

had any effect on ectopic bone formation of the tibia and fibula in the xenograft 

mouse model of osteosarcoma. Inoculation of KHOS mock cells caused ectopic bone 

formation and surprisingly, mice injected with KHOS cell overexpressing Sema3A 

showed a significant reduction in ectopic bone formation. In contrast, administration 

of exogenous Sema3A had no significant effect on the ectopic bone formation. It is 

important to note that exogenous Sema3A was only administrated twice a week 

leading to intermittent exposure whereas we anticipate osteosarcoma cells 

overexpressing Sema3A to continuously secrete it in the bone microenvironment. 

Thus we hypothesized that this discrepancy in ectopic bone formation may be 

attributed to the sustained exposure to tumour-derived Sema3A that reduced the 

ability of osteosarcoma cells and osteoblasts to form new bone.  

In an attempt to further examine this hypothesis, I assessed whether osteosarcoma-

derived Sema3A affected osteoblast viability and differentiation, using a panel of 

osteoblast-like cells, mouse primary osteoblasts, mouse MC3T3-E1 cells and human 

osteoblast-like osteosarcoma Saos-2 cells. Short and sustained exposure of these cells 

to conditioned medium from Sema3A overexpressing KHOS cells had no effect on 

their viability. This suggests that the inhibitory effect of osteosarcoma-derived 
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Sema3A is not attributed to a reduction in osteoblasts. However, exposure to tumour-

derived Sema3A significantly increased the alkaline phosphatase activity of primary 

osteoblasts and MC3T3-E1 but not in the osteoblastic Saos-2 osteosarcoma cells. The 

increase in alkaline phosphatase activity in the panel of osteoblast-like cells is in 

confirmation with previous studies (Hayashi et al., 2012) and the effect of exogenous 

Sema3A as described in Chapter 3. 

To investigate whether the reduction in ectopic bone could be due to sustained 

exposure to osteosarcoma-derived Sema3A, I investigated whether continuous or 

intermittent exposure of Saos-2 osteoblastic osteosarcoma cells had an effect on 

mineralization in vitro. Continuous exposure to osteosarcoma-derived Sema3A had 

no effect on alkaline phosphatase activity but significantly inhibited mineralization. 

Interestingly, intermittent exposure increased alkaline phosphatase activity and did 

not affect mineralization. These effects imply that the duration of Sema3A exposure 

may indeed play a role in the differential effects on the trabecular compartment and 

osteosarcoma-associated ectopic bone formation.   

Sema3A has been shown to enhance osteoblast differentiation at least in part by 

activating the Wnt/β-catenin pathway through FARP2 induced Rac activation 

(Hayashi et al., 2012). The canonical Wnt/β-catenin pathway is an important factor in 

osteoblast differentiation (Krishnan et al., 2006, Cawthorn et al., 2012, Day et al., 

2005). Without an activating signal, β-catenin is phosphorylated by CKI and GSK3-β, 

after phosphorylation β-catenin is degraded by a destruction complex (Reya and 

Clevers, 2005). Therefore, to investigate whether osteosarcoma-derived Sema3A had 

any effect on osteoblast Wnt/β-catenin signalling, MC3T3-E1 osteoblast-like cells 

were exposed to conditioned medium from KHOS Sema3A overexpressing cells. 

Surprisingly, conditioned medium from the Sema3A overexpressing cells modestly 

but significantly reduced phosphorylation of GSK3β, total β-catenin expression and 

nuclear translocation of β-catenin. Suggesting that conditioned medium from 

Sema3A overexpressing osteosarcoma cells inhibits osteoblastic canonical Wnt/β-

catenin signalling. This is in contrast with the effects of Sema3A on Wnt/β-catenin 

signalling in osteoblasts as described previously by Hayashi and colleagues (Hayashi 

2012). Evidently, Sema3A is not the only factor produced by the tumour cells as the 
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conditioned medium contains a cocktail of secreted factors. Therefore, contribution of 

other factors secreted by the tumour cells aside from Sema3A cannot be excluded.  

To test this hypothesis, 102 different cytokines were measured simultaneously in the 

conditioned medium of the KHOS mock and KHOS Sema3A overexpressing cells 

using the Proteome Profiler Human XL Cytokine Array Kit. Out of the 19 secreted 

factors detected, 10 were differentially expressed in the Sema3A overexpressing 

conditioned medium in comparison to the conditioned medium from the KHOS mock 

control. Of these 10, the following 5 factors were upregulated by the Sema3A 

overexpressing KHOS cells, DKK1, CXCL5, Flt-3 ligand, IL17A and Osteopontin. 

Furthermore, 5 factors, MIF, Pentatraxin, Resistin, ST2 and thrombospondin-1 were 

downregulated. Most of these cytokines have been shown to be involved in osteoblast 

differentiation, osteoclast formation and have been implicated to play a role in 

osteosarcoma cells (Table 7.1). 

The factors of main interest that were secreted at higher levels by the KHOS cells 

overexpressing Sema3A are DKK1, IL-17A and osteopontin because of their 

involvement in pathways affecting osteoblast differentiation. Acting as a Wnt/β-

catenin antagonist, DKK1 is a Wnt/β-catenin signalling antagonist and by inhibiting 

the Wnt/β-catenin pathway, DKK1 inhibits osteoblast differentiation which also leads 

to a decrease in OPG that in turns leads to more osteoclast formation (Qiang et al., 

2008, Diarra et al., 2007). In osteosarcoma, anti-DKK1 treatment reduced tumour 

growth and metastasis indicating that active Wnt signalling is involved in 

osteosarcoma and that by inhibiting the Wnt signalling pathway, DKK1 enhances 

osteosarcoma (Goldstein et al., 2016). Higher levels of DKK1 in conditioned medium 

from KHOS cells overexpressing Sema3A may explain the modest inhibition on the 

Wnt/β-catenin pathway in the osteoblasts and may also have contributed to the 

reduction in ectopic bone formation in vivo. Another factor that was upregulated by 

the KHOS cells overexpressing Sema3A was IL17A. IL17A also inhibits osteogenic 

differentiation of bone mesenchymal stem cells most likely by downregulation of 

Wnt molecules (Wang et al., 2017c). Furthermore, higher IL17A levels were 

associated with metastasis and clinical stage and enhanced osteosarcoma associated 

metastasis in vivo (Wang et al., 2013) which may in part be due to the effect of IL17A 

on Wnt production in bone mesenchymal stem cells.   
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Table 7.1 Involvement of differentially expressed cytokines in osteosarcoma and bone cells. 

Protein Osteosarcoma Osteoclast Osteoblast Reference 

CXC Motif Chemokine 

Ligand 5 (CXCL5) 

↑ - - (Dang et al., 2017) 

Dickkopf WNT 

inhibitor1 (DKK1) 

↑ ↑ ↓ (Qiang et al., 2008), 

(Diarra et al., 2007), 

(Goldstein et al., 

2016). 

Fms-related tyrosine 

kinase 3 (FLT3) ligand  

↑ ↑ - (Flores et al., 2017, 

Lean et al., 2001) 

IL17A ↑ ↓ ↓ (Balani et al., 2013) 

(Wang et al., 2017c) 

(Wang et al., 2013) 

Osteopontin ↔ ↓ ↑ (Holm et al., 2014) 

(Chellaiah et al., 

2003) (Li et al., 

2015b) 

Pentraxin-related protein 

3 (PTX3) 

- ↔ ↔ (Lee et al., 2014)  

ST2 - - -  

Macrophage migration 

inhibitory factor (MIF) 

↑ ↑ - (Wang et al., 2017a) 

(Madeira et al., 

2012) 

Resistin - ↑ ↑ (Thommesen et al., 

2006) 

Thrombospondin-1 

(TSP1) 

↑ ↑ ↓ (Hu et al., 2017) 

(Amend et al., 2015, 

Bailey Dubose et 

al., 2012) 

↑ Enhancement in metastatic properties of osteosarcoma, increase in osteoclast formation or 

enhanced osteoblast differentiation and/or function.  ↔ Inconclusive data or no effect. ↓ 
Reduction of metastatic properties, reduction of osteoclast formation or reduction in osteoblast 

differentiation and/or function. – No known effect. 
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Osteopontin was also upregulated in the conditioned medium from KHOS Sema3A 

overexpressing cells. Osteopontin one of the organic components of bone is produced 

by osteoblasts and is an important mediator of mineralization by osteoblasts but 

seems to have no role in osteoblast differentiation (Katagiri and Takahashi, 2002, 

Holm et al., 2014). Osteopontin deficiency has been shown to lead to a dysfunction in 

osteoclasts (Chellaiah et al., 2003). There is conflicting data regarding the role of 

osteopontin in osteosarcoma. Osteopontin is a marker of osteogenic differentiation, a 

lower level of osteopontin may therefore indicate an undifferentiated state of the 

osteosarcoma cell. Altered levels of osteopontin may play a role in osteosarcoma 

progression and metastasis (Li et al., 2015b). As osteopontin is a marker for 

osteogenic differentiation an increase in osteopontin may indicate that overexpression 

of Sema3A in the osteosarcoma cells leads to a more differentiated osteoblastic state. 

Whilst the exact mechanism by which tumour-derived Sema3A regulates the 

differentiation of osteoblasts and osteosarcoma cells remains to be explored, the 

results in this chapter showed that tumour-derived Sema3A increases osteoblast 

alkaline phosphatase activity without affecting osteoblast viability. Furthermore, 

conditioned medium from Sema3A overexpressing cells reduced Wnt/β-catenin 

signalling. DKK1 and IL17A were upregulated by KHOS Sema3A overexpressing 

cells which may have contributed to the reduction of osteoblastic β-catenin signalling 

and the reduction in ectopic bone formation seen in the Sema3A overexpressing 

tumours (Figure 7.11). 
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Figure 7.11 Schematic summary of the effect of Sema3A overexpression in KHOS osteosarcoma 

cells on osteoblasts.  

Tumour-derived Sema3A reduced wnt signalling in osteoblasts and enhanced alkaline phosphatase 

activity without affecting viability. In Saos-2 osteosarcoma cells, conditioned medium from KHOS 

Sema3A overexpressing cells reduced mineralization in vitro and ectopic bone formation in vivo. 

Additionally, overexpression of Sema3A enhanced expression of osteopontin, DKK1 and IL17A in the 

KHOS osteosarcoma cells. For detailed information see text. ALP, Alkaline phosphatase activity. 

DKK1, dickkopf WNT signalling pathway inhibitor 1. IL17A, Interleuking-17A   
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8 General discussion 

Osteosarcoma is the most common malignant primary bone tumour, the disease 

mainly affects children and young adults and is more common in males than females 

(Meyers and Gorlick, 1997). Osteosarcoma is characterized by severe chromosomal 

instability at the time of diagnosis (Bousquet et al., 2016), this is one of the 

underlying challenges in finding a treatment that benefits the majority of patients. 

Since the introduction of chemotherapy the survival rate for osteosarcoma patients 

has not improved, the 5-year survival rate for metastatic osteosarcoma patients is 

particularly poor and remains around 25-30% (Allison et al., 2012), illustrating the 

need to identify new therapeutic targets.  

Osteosarcoma is thought to arise from the mesenchymal stem cell lineage or a more 

differentiated form of mesenchymal derived osteogenic precursors (Mohseny et al., 

2009, Xiao et al., 2013, Mutsaers and Walkley, 2014). In 2012, Sema3A was 

identified as an osteoblast derived factor that influences both osteoblasts and 

osteoclasts and enhances bone formation (Hayashi et al., 2012). However, the role of 

Sema3A in osteosarcoma is still unknown. Sema3A is a member of the semaphorin 

class-3 secreted signalling proteins. Initially Sema3A was found to be important for 

the development of the bone, heart and nervous system (Behar et al., 1996). More 

recently, Sema3A was found to be important in osteoblast-osteoclast coupling, bone 

development and bone metabolism (Adams et al., 1997, Behar et al., 1996, Hayashi et 

al., 2012). Both osteoclasts and osteoblasts express the Sema3A receptors, 

neuropilins and plexins, and osteoblasts produce and secrete Sema3A (Gomez et al., 

2005). Over the years Sema3A has been implicated in cancer and depending on the 

type of cancer, Sema3A exhibits tumour promoting or tumour suppressive effects 

(Table 1.3) (Casazza et al., 2011, Zhou et al., 2014, Muller et al., 2007, Bagci et al., 

2009, Hu et al., 2016, Mishra et al., 2015b, Chakraborty et al., 2012, Huang et al., 

2017). Moreover Nrp1 and Nrp2, the receptors for the semaphorin class-3 proteins, 

have been implicated in osteosarcoma (Ji et al., 2015, Handa et al., 2000, Boro et al., 

2015, Zhu et al., 2014). Altogether, these studies suggest that Sema3A might play a 

role in osteosarcoma and may be of value for the treatment of osteosarcoma. The aim 

of this thesis was to examine the effects of exogenous and osteosarcoma-derived 

Sema3A in vitro and xenograft mouse models of osteosarcoma. 
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Previous studies have shown that administration of Sema3A increases the number of 

osteoblasts, enhances bone formation, protects against ovariectomy induced 

osteoporosis and stimulated fracture healing suggesting Sema3A acts as a bone 

anabolic (Hayashi et al., 2012, Li et al., 2015a).  In agreement with these previous 

studies, administration of exogenous Sema3A significantly enhanced bone volume of 

the trabeculae in the tibia. This effect was accompanied by an increase in osteoblast 

number. Furthermore, administration of exogenous Sema3A also enhanced trabecular 

and cortical bone volume of the femur and showed a corresponding trend in enhanced 

P1NP and reduced CTX serum markers. Whilst these findings confirm that Sema3A 

exhibits bone anabolic activity and may be of use in osteolytic bone diseases, caution 

is required as present and previous studies (Hayashi et al., 2012, Li et al., 2015a), are 

limited to  a treatment regimen of a single or double dose a week and the effect of 

continuous Sema3A treatment on bone is unknown. 

One of the common features of osteosarcoma is the formation of ectopic bone (Geller 

and Gorlick, 2010). Consistent with the anabolic activity of Sema3A observed in the 

healthy leg, I detected a significant increase in bone volume in the tumour-bearing 

tibia of the mice that received exogenous Sema3A. In agreement with previous data 

(Fukuda et al., 2013, Hayashi et al., 2012) exogenous Sema3A enhanced alkaline 

phosphatase activity in osteoblasts, these effects were also observed by exposure to 

osteosarcoma-derived Sema3A. Moreover, exogenous Sema3A also enhanced the 

alkaline phosphatase activity of the low metastatic osteosarcoma cell lines but had no 

effect on the alkaline phosphatase activity of the highly metastatic MNNG/HOS 

osteosarcoma cell line. These results suggest that the effects of Sema3A on the low 

metastatic osteosarcoma cell lines in vitro are comparable with the effects of Sema3A 

on calvarial osteoblasts as reported by Hayashi and colleagues (Hayashi et al., 2012).  

Surprisingly administration of exogenous Sema3A had no effect on osteosarcoma-

associated ectopic bone formation. This indicates that Sema3A could be used in 

osteosarcoma patients to protect the bone without exacerbating the ectopic bone 

formation. This may especially be useful in patients where the tumour cannot be 

removed by surgery.  

Previous studies have shown that osteoblasts produce Sema3A (Hayashi et al., 2012, 

Li et al., 2015a) and the Sema3A receptor Nrp1 has been implicated in osteosarcoma 
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(Boro et al., 2015). Tumour specific expression of Sema3A in the primary tumour 

microenvironment may have several effects. Sema3A could inhibit the migration and 

invasion of the tumour into the tissue surrounding the tumour by its effect on cell 

motility. Furthermore, Sema3A is a known factor to inhibit angiogenesis and may 

contribute to a reduction in tumour growth due to a reduction in tumour 

vascularisation. To assess the effects of tumour-specific Sema3A expression in 

osteosarcoma, I overexpressed Sema3A in the metastatic human KHOS osteosarcoma 

cells and examined the effects of tumour-derived Sema3A on osteosarcoma growth, 

osteolysis and lung metastasis. In contrast to the administration of exogenous 

Sema3A, tumour-derived Sema3A had no effect on the bone volume of the tumour-

bearing tibia or femur despite a significant increase in osteoblast differentiation in 

vitro by conditioned medium from these cells and a trend towards increased 

osteoblast number in mice. Surprisingly tumour-derived Sema3A significantly 

reduced ectopic bone formation. My in vitro studies have indicated that the 

discrepancy in the effect of exogenous Sema3A and tumour-derived Sema3A on 

ectopic bone formation may be due to the inhibition of osteoblast differentiation – but 

not viability - due to sustained exposure to tumour-derived Sema3A and other factors 

present in the conditioned medium from KHOS overexpressing Sema3A cells. 

Sema3A is known to stimulate osteoblast differentiation by engaging the canonical 

Wnt/β-catenin pathway (Hayashi et al., 2012). Surprisingly, despite an enhanced 

alkaline phosphatase activity in osteoblasts, conditioned medium from the KHOS 

Sema3A overexpressing cells significantly reduced phosphorylation of GSK3β, 

nuclear translocation of β-catenin and total β-catenin expression. This suggests that, 

in contrast with previous studies with exogenous Sema3A (Hayashi et al., 2012), 

conditioned medium from KHOS cells overexpressing Sema3A inhibits canonical 

Wnt/β-catenin signalling. Interestingly, continuous exposure of osteoblast-like Saos-2 

cells to tumour-derived Sema3A significantly reduced mineralization without 

affecting alkaline phosphatase activity in vitro, while intermittent exposure had no 

effect on mineralization but enhanced alkaline phosphatase activity. Evidently, the 

conditioned medium from osteosarcoma consists of a variety of factors that may play 

a role in the reduction in osteoblastic Wnt/β-catenin signalling and mineralization in 

vitro.  
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Ten secreted factors were found to be differentially expressed in the Sema3A 

overexpressing osteosarcoma cells compared to the control. Of these 10, DKK1, 

osteopontin and IL17A were upregulated and of specific interest because of their role 

in osteoblasts. DKK1 is a Wnt signalling antagonist that inhibits osteoblastic 

differentiation and IL17A inhibits osteogenic differentiation at least in part by 

downregulating Wnt signalling (Wang et al., 2017c, Diarra et al., 2007, Qiang et al., 

2008). The upregulation of DKK1 and IL17A could explain the modest inhibition 

seen on the Wnt/β-catenin pathway in the osteoblasts. The upregulation of these 2 

factors most likely also contributed to the reduction of mineralization in vitro and 

inhibition of ectopic bone formation in vivo. The other protein of interest that was 

upregulated in the conditioned medium from KHOS Sema3A overexpressing
 
cells 

was osteopontin. Osteopontin is a marker for mature osteoblasts and an important 

protein in mineralization by osteoblasts (Katagiri and Takahashi, 2002, Holm et al., 

2014). An increase in osteopontin may indicate that overexpression of Sema3A in the 

osteosarcoma cells leads to a more differentiated osteoblastic state. In summary, both 

the duration of exposure to Sema3A and the production of DKK1 and IL17A may 

play a role in the reduction of ectopic bone formation in mice. Whilst these findings 

are interesting, the involvement of these osteosarcoma-derived factors, besides 

tumour-derived Sema3A, on the inhibition of ectopic bone formation warrants further 

investigation. Incidentally, previous studies have shown that parathyroid hormone 

(PTH) exerts a bone anabolic effect when given intermittently but continuous 

treatment has been found to be detrimental to bone health (Potts and Gardella, 2007, 

Iida-Klein et al., 2005). Thus, further testing of intermittent and continuous dosing of 

exogenous Sema3A in preclinical models of bone diseases is needed. 

Previous studies including research conducted in our laboratories (MSc thesis de 

Ridder unpublished data, 2014) have shown that Sema3A inhibited RANKL induced 

osteoclast formation in vitro (Fukuda et al., 2013, Hayashi et al., 2012). Exogenous 

Sema3A and tumour-derived Sema3A significantly reduced osteoclast formation in 

osteosarcoma-osteoclast cocultures in vitro. In vivo, exogenous Sema3A significantly 

reduced osteoclast numbers in the healthy mouse tibia. Consistent with these 

observations, exogenous Sema3A showed a trend towards a reduction in osteoclasts 

in the tumour-bearing tibia whereas tumour-derived Sema3A significantly reduced 

osteoclast numbers in the tumour-bearing tibia. Immunostaining of Sema3A would 
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have added additional information to where Sema3A was expressed and to what 

extent the overexpresssion was efficicent within the tumour microenvironment. One 

of the limitations of this model is the rapid tumour growth which may have 

contributed to the limited effects on preservation of bone volume despite the 

inhibition of osteoclast number.  

Sema3A overexpression has been reported to reduce tumour growth in vivo in a 

variety of cancer cell types including breast cancer, melanoma and oral cancer 

(Chakraborty et al., 2012, Mishra et al., 2015a, Casazza et al., 2011). Furthermore, 

tumour specific expression of Sema3A has been shown to affect cancer cell migration 

and invasion in a variety of cancer cells (Muller et al., 2007, Bagci et al., 2009, Pan 

and Bachelder, 2010, Herman and Meadows, 2007, Mishra et al., 2015b, Casazza et 

al., 2011). Here, I showed for the first time that both exogenous Sema3A and tumour-

derived Sema3A inhibited osteosarcoma cell motility in vitro. Treatment with 

exogenous Sema3A had no effect on the viability of any of the osteosarcoma cell 

lines tested but overexpression of Sema3A reduced the viability of the KHOS 

osteosarcoma cells. My results indicate that this difference may be explained by the 

differential expression of the other tumour-derived factors listed above. Furthermore, 

exogenous Sema3A administration had no effect on osteosarcoma tumour growth 

although there was a trend towards less lung metastasis. These in vivo observations 

are in agreement with the results I reported in vitro where exogenous Sema3A 

inhibited osteosarcoma cell motility without affecting viability. Interestingly, in 

contrast to previous studies in other cancers (Chakraborty et al., 2012, Mishra et al., 

2015a, Casazza et al., 2011), tumour-specific overexpression of Sema3A had no 

effect on tumour growth.  

One of the challenges of this osteosarcoma xenograft model is its aggressive nature 

which may have limited the effects of Sema3A on tumour growth and metastasis. 

Another limitation of this xenograft model is the immunodeficiency. Sema3A has 

previously been shown to enhance the macrophage M1 phenotype which enhanced 

natural killer cells and CD8 T cell recruitment to the tumour (Wallerius et al., 2016), 

highlighting the importance of Sema3A in anti-tumour immunity. Furthermore, 

osteosarcoma are highly heterogeneous and the main limitation of osteosarcoma 

research in general is the limited availability of cell lines and models (Peterse et al., 
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2017, Bousquet et al., 2016). To provide a definitive conclusion on the efficacy of 

Sema3A on osteosarcoma growth and metastasis, future studies should test the effect 

of Sema3A on osteosarcoma tumours in syngeic immunocompetent models, such as 

MOS-J, and investigate the effects of Sema3A on the development and progression of 

osteosarcoma in spontaneous osteosarcoma models (Grigoriadis et al., 1993, Walkley 

et al., 2008, Entz-Werle et al., 2010).  

In conclusion, my present findings, when combined with previous studies, 

administration of exogenous Sema3A significantly enhanced bone volume in mice. 

The bone anabolic nature of administration of Sema3A may provide an alternative 

approach to osteoporosis treatment due to its coupled effect on bone resorption and 

bone formation. We caution however that the treatment regimen has to be 

investigated in more detail as long term continuous exposure to Sema3A may inhibit 

bone formation. In osteosarcoma models, I have shown for the first time that 

exogenous Sema3A enhanced bone volume in mice bearing human osteosarcoma, 

and tumour-derived Sema3A, but not exogenous Sema3A, reduced osteosarcoma-

associated ectopic bone formation. Both exogenous and osteosarcoma-derived 

Sema3A act as a tumour inhibitor on osteosarcoma in vitro and despite a lack of 

effect on tumour growth showed a trend towards fewer lung metastases in vivo. 

Current osteosarcoma treatment consists of chemotherapy followed by removal of the 

tumour and adjuvant chemotherapy. Therefore, the protective effect on bone by 

exogenous Sema3A administration may provide an option to preserve bone without 

exacerbating ectopic bone formation in an adjuvant setting in the osteosarcoma 

tumours that are inaccessible for surgery. 
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10 Appendices      

10.1 Materials and Reagents  

Materials and reagents Supplier 

1.5ml Eppendorf tubes with cap Starlab, Milton Keynes, UK 

12% Criterion™ TGX™ Precast Midi 

Protein Gel, 12+2 well 

Bio-Rad Laboratories, Hertfordshire, 

UK 

Acetic Acid Glacial Sigma Aldrich, Dorset, UK 

AlamarBlue
TM

 reagent Invitrogen, Paisley, UK 

Alizarin Red S Sigma Aldrich, Dorset, UK 

BD microlance needles (19, 21 and 

25G) 
Fisher Scientific, Leicestershire, UK 

Bicinchoninic acid (BCA) solution Sigma Aldrich, Dorset, UK 

Bovine serum albumin Sigma Aldrich, Dorset, UK 

Calcium carbonate Sigma Aldrich, Dorset, UK 

CD14 microbeads human Miltenyi Biotech, Gladbach, Germany 

Centrifuge tubes 15ml 
Scientific laboratory supplies (SLS), 

Nottingham UK 

Centrifuge tubes 50ml Fisher Scientific, Leicestershire, UK 

Cetyl pyridinium chloride 

monohydrate 
Sigma Aldrich, Dorset, UK 

Clarity Western ECL Substrate 
Bio-Rad Laboratories, Hertfordshire, 

UK 

Collagenase (type 1A) Sigma Aldrich, Dorset, UK 

Copper (II)-sulfate Sigma Aldrich, Dorset, UK 

Corning™ Transwell™ Multiple Well 

Plate with Permeable Polycarbonate 

Membrane Inserts 

Corning, Flintshire, UK 

Cover slips Fisher Scientific, Leicestershire, UK 

CTX ELISA IDS, Boldon, UK 

DAKO Agilent, CA, US 

Dehydrate trisodium citrate Sigma Aldrich, Dorset, UK 



  

 

 

181 

 

Diethanolamin Sigma Aldrich, Dorset, UK 

DL-Dithiothreitol (DTT) Sigma Aldrich, Dorset, UK 

DMSO Sigma Aldrich, Dorset, UK 

DPX mounting medium 
VWR International, Leicestershire, 

UK 

EDTA Sigma Aldrich, Dorset, UK 

Electrophoresis power supply 
Bio-Rad Laboratories, Hertfordshire, 

UK 

Eosin powder 
VWR International LTD, 

Leicestershire, UK 

Ethanol Absolute Sigma Aldrich, Dorset, UK 

Fetal calf serum (FCS) Fisher Scientific, Leicestershire, UK 

Filter Tips any size Starlab, Milton Keynes, UK 

Forceps watchmaker’s Fisher Scientific, Leicestershire, UK 

Glycine Acros organics, Geel, Belgium 

Gill's II haematoxylin  
VWR International LTD, 

Leicestershire, UK 

Goat serum Vector laboratories, Peterborough, UK 

Histopaque Sigma Aldrich, Dorset, UK 

ImmPACT™ DAB Vector laboratories, Peterborough, UK 

Immunedge pen (PAP pen) Vector laboratories, Peterborough, UK 

Isopropanol Fisher Scientific, Leicestershire, UK 

Jackson ImmunoResearch Anti-rabbit 

secondary ab  

Stratech Scientific Unit, Newmarket 

Suffolk, UK 

Jackson ImmunoResearch Anti-goat 

secondary ab  

Stratech Scientific Unit, Newmarket 

Suffolk, UK 

Kaleidoscope Pre-stained standards 
Bio-Rad Laboratories, Hertfordshire, 

UK 

Magic Marker Invitrogen, Paisley, UK 

Magnesium chloride Sigma Aldrich, Dorset, UK 

Maxima H Minus First Strand cDNA 

Synthesis kit 
Fisher Scientific, Leicestershire, UK 

M-CSF mouse recombinant R & D Systems, Abingdon, UK 
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Methanol 
VWR International LTD, 

Leicestershire, UK 

Microtubes (0.5, 1.5, 2ml) Sarstedt Ltd, Leicester, UK 

Minimum Essential Medium (αMEM) Fisher Scientific, Leicestershire, UK 

Minimum Essential Medium (DMEM) Fisher Scientific, Leicestershire, UK 

MS Columns Miltenyi Biotech, Gladbach, Germany 

N,N-Dimethylformamide Sigma Aldrich, Dorset, UK 

Napthol-AS-BI-phosphate Sigma Aldrich, Dorset, UK 

Neubauer Haemocytometer Hawksley, Lancing, UK 

Nucleospin RNA isolation kit Machery-Nagel, Düren, Germany 

PINP ELISA IDS, Boldon, UK 

Paraformaldehyde Taab Lab, Berkshire, UK 

Pararosanilin Sigma Aldrich, Dorset, UK 

Penicillin/Streptomycin Fisher Scientific, Leicestershire, UK 

Pierce™ Bovine Serum Albumin 

Standard Pre-Diluted Set 
Fisher Scientific, Leicestershire, UK 

Pierce Protein Concentrators, 9K 

MWCO 
Fisher Scientific, Leicestershire, UK 

Phosphatase inhibitor cocktail  Sigma Aldrich, Dorset, UK 

Phosphate buffered saline Sigma Aldrich, Dorset, UK 

Phosphate buffered saline tablets Sigma Aldrich, Dorset, UK 

Pipette tips (all sizes) Starlab, Milton Keynes, UK 

Protease inhibitor cocktail  Sigma Aldrich, Dorset, UK 

Proteome Profiler Human XL 

Cytokine Array Kit 
R & D Systems, Abingdon, UK 

4-Nitrophenyl phosphate disodium salt 

hexahydrate powder 

Scientific laboratory supplies (SLS), 

Nottingham UK 

Recombinant Human Semaphorin 3A 

Fc Chimera Protein, CF 
R & D Systems, Abingdon, UK 

Scalpel, disposable 
VWR International LTD, 

Leicestershire, UK 

Scissors (fine points and spring bow 

handles) 
S Murray & Co Ltd, Surrey, UK 
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SignalStain® Antibody Diluent 
Cell signaling technology, Leiden, the 

Netherlands 

SignalStain® Boost IHC Detection 

Reagent (HRP, Rabbit) 

Cell signaling technology, Leiden, the 

Netherlands 

Sodium acetate trihydrate  
VWR International LTD, 

Leicestershire, UK 

Sodium barbiturate Sigma Aldrich, Dorset, UK 

Sodium chloride Sigma Aldrich, Dorset, UK 

Sodium dodecyl sulphate (SDS) 
Bio-Rad Laboratories, Hertfordshire, 

UK 

Sodium hydroxide 
VWR International LTD, 

Leicestershire, UK 

Sodium phosphate Sigma Aldrich, Dorset, UK 

Sodium tartrate dibasic dihydrate Sigma Aldrich, Dorset, UK 

Starguard® laboratory gloves Starlab, Milton Keynes, UK 

Sterile filter (0.2 and 0.45μm) Pall lifesciences, Portsmouth, UK 

Streptavidin/Biotin Blocking Kit Vector laboratories, Peterborough, UK 

Stripettes (5, 10, 25 and 50ml)  Fisher Scientific, Leicestershire, UK 

Superfrost Plus™ Adhesion 

Microscope Slides 
Fisher Scientific, Leicestershire, UK 

Syringes (all sizes) Fisher Scientific, Leicestershire, UK 

Tissue culture 25, 75, 175cm
2
 flasks Fisher Scientific, Leicestershire, UK 

Tissue culture microplates (6, 12, 24, 

48 and 96-well plates) 
Corning, Flintshire, UK 

Transblot Turbo midi Size PVDF 

membrane 

Bio-Rad Laboratories, Hertfordshire, 

UK 

Transblot Turbo midi Size Transfer 

stacks 

Bio-Rad Laboratories, Hertfordshire, 

UK 

Tris 
Bio-Rad Laboratories, Hertfordshire, 

UK 

Tris-EDTA buffer Sigma Aldrich, Dorset, UK 

Tris-Glycine buffer 10x 
Bio-Rad Laboratories, Hertfordshire, 

UK 

Triton X-100
TM

 Sigma Aldrich, Dorset, UK 
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Trizma® hydrochloride Sigma Aldrich, Dorset, UK 

Trizma® base Sigma Aldrich, Dorset, UK 

Trypsin/EDTA Sigma Aldrich, Dorset, UK 

Tween-20 Acros organics, Geel, Belgium 

Ultraclear Xylene Taab Lab, Berkshire, UK 

L-Ascorbic acid Sigma Aldrich, Dorset, UK 

Western blot tips Starlab, Milton Keynes, UK 

XT-MOPS 
Bio-Rad Laboratories, Hertfordshire, 

UK 

Xylene Sigma Aldrich, Dorset, UK 

β-glycerophosphate disodium Sigma Aldrich, Dorset, UK 
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10.2 Antibodies  

Materials and reagents Supplier 

Rabbit anti-β-Actin Cell signaling technology, Leiden, the Netherlands 

Rabbit anti-β-catenin Cell signaling technology, Leiden, the Netherlands 

Rabbit anti-GAPDH Cell signaling technology, Leiden, the Netherlands 

Rabbit anti-GSK3β Cell signaling technology, Leiden, the Netherlands 

Rabbit anti-Lamin Cell signaling technology, Leiden, the Netherlands 

Rabbit anti-pGSK3β Cell signaling technology, Leiden, the Netherlands 

Rabbit anti-pIκB Cell signaling technology, Leiden, the Netherlands 

Rabbit anti-Sema3A Abcam Abingdon, UK 

Sheep anti-Nrp1 block R & D Systems, Abingdon, UK 
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10.3 Apparatus 

Apparatus Supplier 

Bench-top centrifuge  Fisher Scientific, Leicestershire, UK 

Bench-top Eppendorf centrifuge  Fisher Scientific, Leicestershire, UK 

ChemiDoc XRS+ Bio-Rad Laboratories, Hertfordshire, UK 

Digital heatblok VWR International LTD, Leicestershire, UK 

NoAir Class II Biological safety cabinet  Walker, Glossop, UK 

histoSTATION (milestone)  Milestone, Milan, Italy 

Ika Vortex Thistle Scientific, Glasgow, UK 

Lab Vision™ PT Module Fisher Scientific, Leicestershire, UK 

Leica manual microtome  Leica microsystems, Wetzlar, Germany 

Leica inverted phase contrast microscope Leica microsystems, Wetzlar, Germany 

Leica AF6000 Time lapse  Leica microsystems, Wetzlar, Germany 

LeicaDMI4000B  Leica microsystems, Wetzlar, Germany 

Nanodrop Fisher Scientific, Leicestershire, UK 

Ohaus Explorer® Analytical balance Camlab, Cambridge, UK 

Ohaus Portable Balance Scout Pro Camlab, Cambridge, UK 

Osteomeasure histomorphometry system  OsteoMetrics Inc, Atlanta, USA 

Pannoramic 250 Flash III 3DHistech, Budapest, HUNGARY 

Skyscan 1076 in-vivo Micro-CT Brucker, Kontich, Belgium 

SpectraMax® M5 microplate reader  Molecular devices, San Jose, USA 

Stuart scientific shaker Stuart, Staffordshire, UK 

Stuart scientific see saw rocker Stuart, Staffordshire, UK 

Tissue processor Microm Microtech, Brignais, France 

Trans-Blot® Turbo™ Rapid Transfer System Bio-Rad Laboratories, Hertfordshire, UK 

Vertical Criterion
TM

 gel tanks  Bio-Rad Laboratories, Hertfordshire, UK 

Precision™ Circulating Water Baths Fisher Scientific, Leicestershire, UK 
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10.4 Software 

Software Supplier 

Chemotaxis and Migration Tool  Ibidi, USA 

Endnote Thomson Reuters, Toronto Canada 

GraphPad Prism (version 7)  GraphPad Software Inc., CA-US 

ImageJ  
U. S. National Institutes of Health 

Bethesda 

Image Lab™ Software Bio-Rad Laboratories, Hertfordshire, UK 

Leica Microscope Imaging Software Leica microsystems, Wetzlar, Germany 

Molecular devices, San Jose, USA Molecular devices, San Jose, USA 

Osteomeasure Software OsteoMetrics Inc, Atlanta, USA 

Qupath, Quantitative pathology software Queen’s University Belfast, Ireland 

Skyscan CTAn analysis software  
Cell signaling technology, the 

Netherlands 

Skyscan CTVol software 
Cell signaling technology, the 

Netherlands 

Skyscan NRecon reconstruction system 
Cell signaling technology, the 

Netherlands 

Tscratch  ETH Zürich, Switzerland 
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10.5 Solutions and chemicals 

TRacP solutions in vitro staining  

Naphthol-AS-BI-phosphate 

10 mg/ml Naphthol-AS-BI-phosphate in Dimethylformamide 

Veronal buffer 

1.17 g sodium acetate anhydrous and 2.94g sodium barbiturate both dissolved in 100 ml 

of dH2O 

Acetate buffer 

0.82 g sodium acetate anhydrous dissolved in 100 ml of dH2O and pH adjusted to 5.2 

with 0.6 ml glacial acetic acid made up to 100 ml with dH2O 

Pararosanilin 

1 g Pararosanilin dissolved in 20 ml of dH2O and 5 ml of 5M HCl added to it 

The solution was heated carefully whilst stirring and filtered after cooling. 

TRAcP Staining Solution 

The TRAcP staining solution was freshly prepared by mixing solution A and B as 

outlined below. 

Solution A 

150 ml of Napthol-AS-BI-phosphate 

750 ml of Veronal buffer 

900 ml Acetate buffer 

900 ml Acetate buffer with 100 mM Sodium Tartate 

Solution B 

120 ml of Pararosanilin 

120 ml of Sodium Nitrate (4% w/v) 
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TRacP solutions histomorphometry  

Pararosanilin: 

1 g Pararosanilin dissolved in 20 ml of dH2O and 5 ml of 5M HCl added to it 

The solution was heated carefully whilst stirring and filtered after cooling. 

 

Acetate buffer 0.2M (pH 5.2): 

5.44g sodium acetate trihydrate in 200ml distilled water. 

pH to 5.2 with 50-60mls 1.2% acetic acid. 

 

Acetate-tartrate buffer:  

4.6g sodium tartrate in 200ml acetate buffer 

 

Naphthol AS-BI phosphate: 

20mg naphthol AS-BI phosphate in1ml dimethylformamide  

 

4% sodium nitrite: 

80mg sodium nitrite in 2ml distilled water. 

 

Solution A 

1ml naphthol/dimethylformamide per 50ml acetate-tartrate buffer 

Solution B 

mix 2ml pararosaniline stock with 2ml of 4% sodium nitrite solution.  

Just before use, add 2.5ml of this hexazotised solution to 50ml acetate-tartrate buffer  
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Cell lysis solutions 

RIPA Lysis buffer 

1% Triton 100X, 0.5% (w/v) Sodium Deoxycholate, 0.1% (w/v) Sodium Dodecyl 

Sulphate (SDS), 50 mM Tris-HCl (pH 7.4) and 150 mM Sodium Chloride were 

dissolved in dH2O.  

Cytoplasmic fraction Lysis buffer 

10 mM Tris [pH 7.5], 0.05% NP-40, 3 mM MgCl2, 100 mM NaCl, 1 mM EGTA were 

dissolved in dH2O 

 

Western blot solutions 

RIPA Lysis buffer 

1% Triton 100X, 0.5% (w/v) Sodium Deoxycholate, 0.1% (w/v) Sodium Dodecyl 

Sulphate (SDS), 50 mM Tris-HCl (pH 7.4) and 150 mM Sodium Chloride were 

dissolved in dH2O.  

Cytoplasmic fraction Lysis buffer 

10 mM Tris [pH 7.5], 0.05% NP-40, 3 mM MgCl2, 100 mM NaCl, 1 mM EGTA were 

dissolved in dH2O 

Electrophoresis running buffer 

100 ml of TGS (10X) in 900 ml of dH2O 

Samples loading protein buffer (5X stock) 

5.2 ml of 1M Tris-HCl pH adjusted to 6.8, 1 g of DL-Dithiothreitol (DTT), 3 g SDS, 6.5 

ml glycerol and 130 µl of 10% (w/v) Bromophenol Blue.  

Transfer buffer 

200ml Biorad transfer buffer (5X), 600ml Nanopure water, 200 ml 100% Ethanol. 

TBS 

Dissolve 6.05 g Tris and 8.76 g NaCl in 800 mL of H2O. Adjust pH to 7.5 with 1 M HCl 

and make volume up to 1 L with H2O 
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TBST 

0.1% (v/v) Tween-20 in TBS. Stored at room temperature. 

Stripping buffer 

1 mM DTT, 2% (w/v) SDS and 62.5 mM Tris-HCl (pH 6.7).  

 

 

 

  



 

      

 

10.6 Copyright Clearance 

 

Figure 10.1 Copyright clearance 

Related to Figure 1.1, Figure 1.3, Figure 1.4 and Figure 1.5 in chapter 1. 
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