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Summary 

The phase equilibr i a in the gl a ss forming r egion of t he lithium 

oxide-zinc oxide- silica ternary system wer e invest i gated by the 

quenching t echnique with a vertical gradient furnace. The 131ass 

forming limit on the low silicu side ViC, S found to be near the fifty 

mol e per cent silica line , being higher in si lica at t he lithium oxide 

rich side. The refractive indices of the glasses Y/ere mellsured by the 

Beche line t echnique. Zinc oxide was found to i ncreas e the 11efract ive 

indices of the gl as ses more than t he lit hiur.l oxide. 

Tridymite , li thium disilicat e , lithium metasilicat e , zinc ortho-

silicate and t HO t ernu.r y compounds were found as primary phase orystals. 

One of t he ternary compounds was i dentified conclusively a s Li20.ZnO. 

Si02• The other t ernary compound was tentatively ident ified a s 

2Li20.4ZnO.3Si02. The opticn::' properties und the x-rc...y diffraction 

patterns of these two t ernary compounds are very sinilar and t hey form 

solid solutions vlith each other. Al so zinc ortho silic~te dis.solves in 

2L J..2u • . .,zn0 e3Si02 to form solid solutions. Conti nuous solid solution 

was found along the Li20.ZnO.Si02 - 2ZnO ,Si02 join with up to 60 mol % 

of zinc ortl 'osilicate dissolved i n Li20.ZnO.Si02 in the spe13imens 

o quenched fro m abovp 1500 C. 

Two eut ectic points and t wo r eaction points were f ound in the 

compositic..ns in'l estigat ed. The eut ectic point of the composi Uon 

triangle Si02 - Li20.2Si02 - Li20.ZnO.Si02 was found at Li
2

0 F5.5 mol % 
ZnO 10 mol fa , Si02 64.5 mol % and 955

0 ~5°C. The eutectic point of' t,he 

composit ion tl'iangl e Si02 - Li20.ZnO. Si02 - 2Li20.4ZnO.3Si02 was located 

at Li20 16.5 mol %, ZnO 23 mol %, Si02 60.5 mol % at 10SOo :!:SoC. The 

r eaction point of the composition triangl e Li2
0 , 2Si0

2 
- Li

2
0.Si0

2 
-

Li20.ZnO.Si02 was found at Li20 27.5 mol %, ZnO 9.8 Q.(',l %, Si0
2 

63.7 

mol % at 976
0 =5°;,;.. The r eaction point bot ween the SiO , 2ZnO.SiO and 

2 2 

2Li20.4ZnO.3Si02 WaS locat ed at Li20 15.7 mol %, ZnO 24.6 mol %, Si0
2 



% • + 0 59-7 malo and 1068 -5 c. The t wo-pha se regions were found below the 

solidus temperature in the composition triangle of 8i02 - Li20.ZnO.Si02 -

21i20.4ZnO .3Si02, 

Extraneous lines were found to be included in the lithium di-

silicate and lithium metasilicate d~ta in the X-Ray Powder Data File. 

The present powder data of lithium disilioate wore indexed as ortho· , 

rhombic crystal with oell paramet ers Uo ' a 5.80R, b. = 14.66R and 0. • 

4.806R, and t hat of the lithium metasiliout e wer e indexed as psoudo

hexagonal orthorhombic crystal with, cell : p~~amet ers a. =5.43R, ' - ~ ~ 

9.4lR and c = 4.6601. 
o 

The crystallization characteristics of fiv e glasses of this t ernary 

system wer e studied. Uniform crystallizat ion was found to occur in all 

the specimens. Big lithium disilicate crysta.ls were found in specimens 

.f four glas :' es. A high concentration ot' tiny crys tals was found in 

every sp ecimen. 

A hot stage microscope with a microfurnace \vas constructed to 

study the crystal growth in gla~ s e s of thi ~; syst em. Three glasses waG 

investigated. The usual hump shaped gr'owth r a t e ver sus t enper ature 

curves wer e obtained. The growth of the crys t als wer e found to be 

linear with time. The maxi mum growth r at e of lithium Qetasilicat e , 

~ithium disiiiC o.t a j, Li20~znO ~ Si.o2 o.~d . tri~Ymite ~ t~e~e g1a~ses w€)r e 
'j I l. ~ . '~. ~ . ~ I . I 

found to be ar out 3,500 ', 400" 70 nna' 20 micrort per m:lnui e t'8spectivelyi 

........... .. ...... 
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1. 

I NTRODUCTION --- ---.-

1. The Invention of the Glass-cer amio . process . 

In 1957, · Cornin.:.; GlG.sn Vior-ks of U. S.A. a.nnounced the 

invent i on of a new process of formin t5 o er[Lmio a.rticles which 

they described under the trade name pyrooeram. This kind of 

new mn.teri (~ is now collectivel y termed as ulnss-cernmice 

This pI'ocess has since b een proved to be i mportant not only 

on the commercial side but also in the technology and science 

of ceramics. 

This process is GssentiuJ.ly a controlled crystallization. 

The r11.w flw.t el'i : .. l i3 mel ted c.nd f ormed in to glc.s s n.rticle s 

according to conventional ,-lethods used in t he t?;l c.ss i nd'Jstr y . 

These articles nro th~.m converted into lar£;ely crysto.lline 

ceramics by hent trea. tment, which can b e roughly divided into 

0: nuoleation he (l.t tl' o:~tm(;nt and n crystul growth heat treo.tment 

at a higher temperature. Nucl eating a.Gents , s uch O.s titQllium 

oxide, or meta.l constituents are added to the gla.ss ba tch to 

control the 3ubsequent cry3ta.llizution. The~e nucloCl.ting a gents 

dissolve in the mel t and in the nucleation hea.t tree.tmont, they 

effect the stx'ucture of the ::;la:;s to provi de numerous nuclea.tion 

ai tea. D ,1!'in ~; the cryst'1.l growth heat trecLtment, a lot of tiny 

orys tals are cleveloped o.nd these oonvert the orie;innl glass 

artioles into c eramic articles having the same size and con-

taining inore than 50;" cryst[~lli.ne rnateria.ls. 

2. The advanta ,;e of the ,sIess cel'amic process. 

The cel'amic material made by this pr(')cess can b e transparent 

wi th L'I. sliGht tnn or opafIe with the att:cn.otive appeartU1Ce of' fi ile 

china. This mderial is ~~enerally stronger nnd harder than the 

pa.rent glass, end has gr euter scra.toh nnd. i.mpa.ct r·esistc.nce. 



2. ,~ 

Its thermal, el ectrical and chemical resistant properties depend 

on the properties of bot h the glass mat rix nnd the constituent 

crys t alline phas es. By choosinG suitable composi t ion and hent 

treatment, to yield the crys t alline phase hnving the desired phYsical 

properties , rnn t erinl of tulusua.l properties cnn be obtc\ined. 

Using composit i ons in L;i.20 - Al203 - Si02 - Ti02 system, Corning 

Glass Works is able to produce mat eri al s having good chemical 

durabilities and thermal exy>t.'1.nsion coeffi cient r c,n e;ing from 

ne gative to posit ive. Some nose cones of missiles and artificial 

satellites made by t his pr ocess wit h compos i tions of the MgO -

Al20
3 

- Si02 - Ti02 ~stem have unusual electrical propertie s with 

extremely low temperat ur e coef f icient and good thermal shock re

sistance. Although this material is poly-phase, it is essentinlly 

homogeneous due to the extreme small size of the crys t alline phase. 

Its physical properti es ar e essent i al ly isotr opic. 

Another advant aGe of this process is that the conventional 

glass forming proCf;sses can be; used to f'orm t he (,r ticles. The 

gl ass forming proces ses have been developed to a very high standar d 

of elf'J..neering, bec[ ~use t hey a.re r apid, automntic and cnn be carried 

out to close tolernnce with the el i mination of all poro sity. There

fore these provide menns of forming .,vi th low cost. 

With t hi s pr ocess, compositi ons which ca.rmot be us ed success

fully before cnn now be used. For examples , the commercial Pyro

coram tablevmr es cOilta.in essent ially ~-SpodumE:ne solid solution 

crystals. If' art icles wi th this composit ion g,r 6 made from 

crys t alline mat c:ri~ ,l s and fired a s in t he conventional porcelein 

process, the r f: sulto.nt articlel3 'will be very 'Weak und huve a very 

poor fin i sh, beca.use ~Spodumene bodi es are dif ficult "to gl aze". 

Wi th thi s new process, t he composition r ange of cerr.mic .. aterials 

is extended and n. new kind of mat erial with tulusual microstr ucture 

can be formed commercially. 



3. Effects on the cer:1mic ncience ond technolo l~. 

Probably, it is suitable to point out in here the i mplication 

of the invention of this proces s. Actu[~lly this process bridges an 

important gap in the mat erinl technolo ,...y. Not long c..c.,o, metallurgy, 

cer l'.mic teolillology and glc..ss t echnology were more or l es s completely 

separate branches of material teclmolo?ff. Although they all utilize 

natural or prooessed materials to produce utensil~s or en;:;ineering 

materials, their m~ufacturing process ru1d their approach were 

vastly differ ~nt and the properties of their products were not the 

same. With the o.ppeurance of cermet , the division of' c er()lJlic 

technology und meto.llurgy vLnished. In the glu.ss-ceramic process, 

the conventional m~nufacturing methods of the ~lass indust~ are 

used to form the articles , which ore heo.t treated to control the 

microstructur e M el hence the physical properties of th8 product as 

in the metalluX't;,y industry 'end the finnl product is 3iElil~tr to that 

of the cer~.~mic indust~. Therefore the three main branches of' the 

mat erial technolo&y are nov, unified. Also it is needl ess to s uy 

that the research work which le~ds to the :i.nvention of this process 

embraces the approach nnd the concepts of t he previously divided 

branches of the mnteri~ science. 

Phase t :mnsformntion has been an important field in science .. 

Usually overheating, if i t happons , is not very 11.1.1'6e, but under-

coolin6 can be very Gr eat. The t i'allsf'ormation of' more random 

structure to a more order'ed ;!tructure, e. g. the condensation of 

supersaturated vapour, and the r c-crysto.llizution of undercooled 

liquid is more difficult than the change from the ordered structure 

to the disordered structure. This is attributed to the necessity 

of the formation of' the nuclei us an essential step in the trans-

formation of random structure to ordered structure. Some progress 

has be:en made in very simple systems, but in more complex syst ems 

knowled6e is still very limited. 



The ab i lity of' a system to f orm gl ass on undercooling 

depends upon the kin etics of c lystallization. Since the 

compo si t ion r~J,nGes 0 :':' diffe r ent systems t ha.t form :.;lasses a.re v ery 

wide , a.nd the t emperat ure r anGes and time interval s in whi ch the 

phenomena. can b .) studied arc so vlide , ol :.:. ss i s a. v ory good medium 
for r.l[Ltion 

for the study of the mechc~ni!)L1 of pha 3e tran3i'orl~ntion. Act ually bl o.ss/ 

i s a very important und fundamenta l field in the study of the scienc(; 

of Glass. 'rhis f i eld 'fTU S negl c.:cted, pos s ibly due t o the 3ecl/in{;ly 

Ullrela ted nature between 61 0. 53 form a.t ion c.nd the norma.J. do.y-to-day 

production, and the l a ck of suitable i ns t rument s for the study. 

Rec rysta llization or devitrif'ication as it i s c o.lled in the 

glass industry, ha s b een an embarrassing occurr ence in the nor mal 

production of' Glas s. Therefore previ ous r esearch work had b een 

concentrated on the prevention of it, and its mechcnism was seldom 

studied in a.ny depth. With the invention of the gl a.ss-cera.mic 

process devitrif'i cation h[(s b een chl~ged from n liability to fill 

nsset, and the possibilities a.unlimi ted. This has stimula ted 

a.nd r evived the interest in the mechani sm of crysta.llizat i on. A 

lot of \'lOrk has b een done s ince t h e announcement of this process, 

and some advano e h:·.s b een made. However I the mechanism of 

crystallization is s t ill f a r f rom f ully understood y et. 

4. The choice of the present program. 

In the patents (1-6) taken out by the Corning Glass Works, 

more than ten glass forming systems are mid to be suitable for 

the glass ceramic process. From the research of other Ylorkers , 

more systems wer e f ound. In the mai n patent(l) of' the Corning 

Glass Works, a.1kali or a lkali-eerth a1U!.lirlO s ilicate systems are 

used. The comt:lercia.1 p,yroCer[Ltn products are mainly made of 

magnesium a1Ulnino siliccte :md lithium aluminosi1icate system. 

Both magnesium und lithiu.:: have high field strengths. 



There is 0. certain amount of' similarity b etween aluminium 

oxide und zinc oxide . They ar e bot~ a~plu'oteric and ;·,heir 

electrone gativi ties a re both 1.5. It is Imown that the co-

ordinat i on number of' the ·~lwninium ion in small amount s in silicate 

glas ses i s four nnd that of zinc ion in gla.:J s and in zinc ortho-

silica te is also four. 

From exper i ence, the Blas s industry ha s l earned tha t both 

zinc oxide and aluminium oxide a l'e 1"> en efioi o.l in the uev eloping of 

opacity during the production of fluoride opal glass in which re-

crystallization of tiny cry~ t als in the ::sl a s s occurs . Al !3o in the 

manufacture of ruby glass, in "l'lhioh recrystallization proces s es are 

also involved, zinc oxide is :f'ound to b e beneric.; i,~l. It was f elt 

that zinc oxide Ylould h elp the re-cry s tallization process in the 

glass c el 'runic process, ther efor e , thG lithium oxide .. zi.: .c oxido 

silicnt e system was chosen f'01"' the pre sent study. 

The knowledcie of' the pha se equilibria in the system is very 

helpful in the tmderstancling of a study of this nature. Unfortunately, 

no informntion about the phase equilibria of this t ernary system w~s 
, 

found in the literature, so the phase diagl'am of' the gla.ss forming 

region was first stuuied. 'rhe present thesis is divided :l nto two 

parts. The first part concerns the study of the phase oql:ilibria 

and the sec.ond part deals with the crystallization of gl a sses in 

this ternary system. 



\ ,' , 

PART A PHASE EQUILIBRYt..9F LI'L'lgmi OX+'pE _- ZINC O)f.;r:Jlli....: 

SILICA...§YS~. 

I. LITERATlm.E SURVEY. 

No reliable informa.tion wns found on the phase equilibria of 

the ternary lit hium oxide - zinc oxide - silicu system. However tW9 

of the binary systems had been investigated. 

1.. The lithium oxide - silica. system. 

The lithium oxide - silica system had been D1vestigo. ted by 

0. number of workers. Due to the high t endency t o devitrification of 

~la58es in this system, it is possible to obtain the approximate 

location of the melting point curves by thermal analysis. This 

method was used by Riche und Endell, Bulla ~nd Dittler, Schwarz and 

Sturm, Wr.11ace, F. I'i. Jaeger and H. S. Van Klooster. (7) However, 

their results did not agree with each other, possibly due to the 

inherent errors in this method. 

Reliable results were provided by the work of F. C. Kracek. 
(8) 

He used the quenching technique to investigate the liquidus tempera:-

in th SlI>it ' t ' l' t ture e oompso ~on range between silica and lithium me as~ ~ca e. 

With compositions having higher than fifty mole percent of lithium 

oxide, thermal an:\lysis with the he~Ltinb up curve technique wns used. 

was obtained between the duto. of' the heating up curve and that of 

the quenching technique on the melting point of lithiwn metasilicate. 

A petrological microscope was used to examine the specimen to 

identify the crys t als. 

Lithium orthosi1ica.te, lithium meto.si1ic ate and lithium 

disi1ico.te were found as primary phases in this system. Lithium 

o 
orthosilicate decompos es at 1255 0 before its melting point is 

reached, the composition of the liquid phase b eing 34.2 mole per-

cent silica. The eutectic point between lit hium orthosilicate and 

o 
lithium metasi1icate is nt 1024 0, 38.1 mole percent silica. 
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+ a Lithium metasilica.te melts at 1201 - ~ C and its liquidus curve 

meets the lllconcruent melting pOlllt curve of lithium disilica.te nt 

1033° and 66.7 mole percent silica" within 0.05;~ of the lithium 

disilicate composition. The lithium disilicate and tridymite 

eutectic point is at 1028°C" 69.7 mole percent silica.. The 

composition of the liquid at the trid~nite-crystabolite inversion 

(14700 C) is 83.5 mole percent silica. The phase diagram VlUS re-

produced as Fig. I. 

2. The zinc oxide - silica system. 

This system was investigated by various "Torkers ( 9) but 

their results were incomplete and contradictory. Several of them 

' 0;' 

t 0 

reported the existence of zinc metasilicate , but it y/O.s not obtained 

by the others. Zinc orthosilicate is found as natural mineral 

wilJ4m\te. 

Accura te do. to. \7~Hl provided by E. N. Bunting. (10) He us ed 

the normal quenching technique to investigate the full composition 

range t:. ld in temperature range between 1300° to 1700 °C. The phas e 

diagram is reproduced as Fig. II. The crystallllle phas~were 

identified wi th a petrological microscope. 

Only one compound" zinc orthosilicate, with melting point 

l5l20C was found in this system. A r egion of tVIO immiscible liquid 

phases in equilibrium with cristabolite at l69SoC Wc, s found to 

extend from 2 to 34 mole percent silioa. The upper limit of the 

two liquid regions vms not det ermined owing to the limitation of 

the working temperature o~ the furnace. The eutectic point 

between tr-idymite und zinc orthosilicnte v{us found at l4320 C and 

49.1 mole percent zinc oxide. The other eutectic point between 

zinc oxide and zinc orthosilicate was found at 1507°C and 77.5 

mole percent zinc oxide. 
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A special platinum iridium alloy button was used in an 

induction fUlnac e to determine the melting point of zinc oxide 

o 
which wa s found to be 1~75 C. An opt ical pyromet er with an 

+ 0 accuraoy of - 25 C was used t o measur e the temperat ure. 

Velatilization of zino oxide at high temperature was minimized 

by putting platinum iridium alloy spon6e on top of the specimen. 

The exis t ence of zinc metasilicate waS specially examined. 

Specimens containing 49.1 und 51.0 mole perc ent zinc si l icat e were 

heat treated at various temperatures from 11000 
- 13500C. At high 

magnification of lOOOX tridymite and zinc orthosilicate were 

identified. At low magnification of 100X and 200X, the mat erio.l 

appeared to be homogeneous. On e eutec t ic point was found 1nD be 

at 49.1 mcle percent of zinc oxide. A hi gh percentage of eutectic 

mixture would be found in the semple and could eas i l y be mistaken 

to be zinc met asilicate. Specimens containing 51.6 e.nd 65 mole 

percent zinc oxide were heat t reat ed above the eutectic temperature 

and quenched samples were examined by X-ray diffraction. Only 

zinc orthosilicate X-ray pattern was found. Specimens containing 

48.3 and 51.6 mole per cent zinc oxide were heat t r eated at l3500C 

and examined by X-ray, triclymi t e a.nd zinc orthos ilicate were found. 

Therefore the ab s ence of zinc oot 'Jlsilicate Wo. a pr oved conclusively. 

3. Lithium oxide - zinc oxide - silicat e system. 

H. S. Van Klooster(ll) investigated a f ew compositions 

along 50 mole percent silica lines in this system. Zinc meta-

silicate W'i 5 said t o be present, and a simple eutectic phase 

diagram along the zinc metnsilicate and lithium metasilicate join 

was reported. Since the ab s ence of zinc met a silicate was proved 

conclusively by E. W. Bunt ing, (10) the data reported by Van 

Kloo ster waD considered very inaccurat e, and ~uo not considered. 
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I. M. Stewart ruld G. J. P. Buchi(12) recently published 

the result of their work on the phase relationships in the 

systtlm of li thiwn oY.ide - zinc oxide - silica. 'I'hey prepared 

speoimens by pressing tbir.raw mat eri ell into compacts with ffil 

or8anic bonding agent which was subsequently burnt out at low 

temperature. The compacts were heat treated in the temperature 

o . 0 
range 925 to 1300 C for one or two hours, then the specimens 

were examined by X-ray dif fraction. The temperature and durL~tion 

of the heat tre ~ .tment for individual compositions were established 

by trial and error in the preliminary wo rk. The final heat 

treatment time and tempernture chosen were thu.t which gave a non 

glassy specimen, the diffr~Lction pattern of which was sharp. 

From the results of eighteen compos:i. tions investiciated, they 

conoluded that two ternnry compounds Li20 • ZnO • Si02 and 4 Li20. 

10 ZnO ~ 7 Si02 existed. The X-ray diffraction powder data of 

thestl ter'nary compound:3 was very similar. The pattern of Li20 • 

ZnO • 8102 was indexed on the basis of a primitive tetragonal oell 

of parameter &0 = 11.47 .R , Co = 10.78 R ,and tha.t of' 4 Li20 • 

10 ZnO • 7 8i02 on the basis of an orthorhombic cell of parameter 

a = 7.93 R , b = 9.13 i, C.= 12.80 X. A composition triangle 

diagrrun was published. The liquidus temperature of' the compositions 

was not investigated and no optical properties of' the terna~J com-

pounds were given. 



II. EiCPERIMENTl.L. YlORK. 

1.. RA'if MATERIfJ... 

Purest grade of lithium carbonate, zinc oxide and sand 

were used as the source of litluum oxide, zinc oxide and silica 

for the preparation of the specimens. Adequate qurultities of raw 

material were obtained at the s t art of the pr esent work to ensure 

the uniformity of the r aw mat&r i al. 

Lithium curbonate of reagent gr ade vms not available, so 

chemically pure grade wns used. The analysis given by the supplier 

J. Preston Ltd., is as follows: 

Moisture 

Analysis on dry sample: 

Li2 C0.3 

AS2 0.3 

Pb 

Cl 

Co. 

Mg 

8°4 

less than 1.5% 

not less than 98.510 

less than 5 p.p.m. 

less than 10 p.p.m. 

Passes agreed tests in B.P.C.49 

The moisture content was redetermined and found to be 0.13%. 

The lithium content was determined by flame photOlneter teclnlique 

/lIld found to be 99.2/~ expressed as lithium carbona.te. This 

factor was used for correction. 



Through the generosity 01' Amalgamated Oxide Ltd., chemically 

pure zinc oxide was received with a limit chemical analysi::; as 

follows: 

Moisture 

Analysis on dry sample: 

Zinc oxide ZnO 

Silica and insoluble matter 

Lead oxide PbO 

Cadmium Oxide CdO 

Copper Oxide CuO 

Ferric Oxide Fe20
3 

Alumino. A120
3 

Mangonous Oxide MnO 

Lime CaO 

Chlorine C12 

Sulphur Trioxide S03 

Arsenic 

0.05 - 0.15% 

Nil - Trace 

0.025% n:c.x. 

0.002 - 0.008% 

0.002% 

Nil - 0.00157-> 

Nil 

0.0002';; 

Nil 

Nil 

0.01 - 0.01510 

2 pts./million 

The moisture content vms redetermined and found to be 0.10%. 

J 1. 

No othqr chemical analysis was done. The moisture content wa.s used 

for correction. 

Belgium sond was used as the source of silica. It was first 

digested with concentrated hydrochloric a.cid over a steam bath for 

longer than sixteen hours and then washed with distilled water 

until free of chloride and dried. The purity as determined by 

the ~drofluoric decomposition method was found to be 99.91~ The 

moisture content was found to be 0.01%. 



All the compositions ,"rere calculated to be correct to 0.001~~. 

The raw rr: ",t orials necessary to give f'orty or fif'ty grammes of 

specimen were weighed on an analytical balance. Obviously, the 

composition of the f'inished sp ecimen would not be accurl.lte to this 

order due to loss i n handling of' the raw mo.terinl and during 

melting. However, it w .... s f elt thcLt it ",ould be advisc,ble to 

elimina te any possible addi tiona_l errol"', because not much extra 

work was necessary to r.l.chieve this order of accur cLcy in calculation 

and weighing. 

2. MELTING T~HNIQUE. 

(1) Furnace. 

Most of the compositions were melted in a normal Silit 

o 
Rod vertil)al funlO.ce with max:iJnwn working tempet'uture of 1500 C. 

During the first part of the work, the temperuture of this furnace 

was con trolled by a tra,.'1sf'ormer und a rheostat; later, a Cambridge 

mechanical controller WL_S added. Severul compositions with hiBh 

founding temperatures were melted in a platinum-rhodium wound 

vertical furnace. 'llhis furnace WI1.S cont rolled by a Variac, a 

rheostut, and a Cambridge optical controller, and had been operated 

(2) Preliminary l'fork. 

Before preparing specimens for the actual measurement 

of liquidus t emjl erclture, the meltin g behaviour of this system 

was surveyed, as it is known that a substantial anount of zinc 

oxide is quite dif'.i'icult to incorporate into ordinary commercial 

glasses and tha t lithium glasses have a very strong tendency to 

devitrifye 

Owing to the large number of comlJoaitions neaessary tc 

establish the phas::l diagram, it wa s not practical to analyse 

all the specimens. Therefore a melting technique with minimum 



volatila loss hud to be developed. The techni que of' putting the 

raw mot el'i .. l into th e fun18,ce at the founiiing t 8mper a t ure was tried, 

and found to be unsuit !1b l e b ecause of the very hi{;;h and variable 

loss by vol~tili sation. To avoid this uncontrolled loss of r aw 

material due to vigorous chemi c al reL.ction between the ra,', ma.terial 

at hibh temperature, the technique used by pr evious workers in the 

Department investit:;ating the liquidus temperature of ~la.sses , Via s 

used. The procedure consists of sinterin g the r[\.v, material at a 

low h ,mperature (e.g. about BoOoe) up to six hours and subsequently 

melting the partially rea cted. mater'ial at hi gher temperatur e with 

the aid of a mechanical stirrer. This worked fn ix'ly well with low 

zinc oxide glass, but consider ab l e unexpected difiicul t ies of 

segrego.tion were enCO'l.U1tere(l in Dolting high zinc oxide compositions 

in the preliminary work stube. Even the mechanica l stirrer did not 

improve the homogeni ty to a sufficiently high standm'd. The main 

difficulty wa s that some Innterinl stuck on the side Viall of the 

platinum crucible. When the sintered lllaterio.l vms put into the 

melting furnace, a fair amount of mater ial was partly melted and 

stuck on the side wa.ll of the crucible. Later the bulk of the 

material melted do"m and left some ma.t erial stuck onto the side 

wall unmelted. Therefore some modifications were introduced. 

Also it was found that t he glasses atta.cked the ph.tinwn crucible 

slightly. However the attack was so slight that platinum crucibles 

were used throughout this study. 

(3) Melting Procedure. 

The modified procedure of meltini;; ," 0.5 to sinter the 

mixed ra.w material in pla tinum crucible at 7500 
to 90ooe. 

according to the composition for up to six hours. The r e,1:' 

mater ial became 0. loosely bound mass, which wns crushed ins .~Ci.a 

the crucible, and then packed into cone shape to minimise the 



contact area with the side wo~l. This would reduce the volume of 

the sintered mass into about one half. The I .. dnter ed material was 

put into the melting furnace at about 1000° to 11000C. and t 11e 

temperature of the fUl'nace was then raised to the required founding 

temperature. When sufi'icient melt was fomed, a mechanica.l stirrer 

was lowered to stir the melt continuously until a homo genous 

specimen was obtained. The specimen w~s cast into rod form and 

• annealed at about 500 C. in a muffle furnace. The tendency to 

crystallization Vias very high. A number of specimens partly de-

vitrified after castino. 'rhe stirrer '.'"la s a refr~otol'y rod covered 

by a platinum shield and driven by a motor. 

OccD..'3ionally, a small amount of partially melted material was 

found on the side vi~ll of t he crucible, when very high percentage 

of' zinc oxide glasses ,7ere melted. The crucible Was taken out of 

the f'urna~e and tilted to get some of the melt onto the partially 

melted material. Shortly afterwards the crucible was put back 

into the furnace, stirring was started while the melt was still 

fairly viscous. This normally would eliminate any partially melted 

material on the siele wall. Most of the compositions were melted at 

13000 to l400·C for up to six hours with continuous stirring. The 

melti...'1g temperature was kept low und time was kept short to minimise 

the loss by volatilisation. The melt WaS normally fairly fluid, 

so the specimen was homogeneous as was confirmed by reproducibilities 

of the liquidus temperature determinations. Either forty or fifty 

gramme of specimen was melted for each composition. The amount of 

glass needed for the determination of liquid'i13 temperature was 

small but it was easier to obtain more homogeneous specimens with 

a bigger melt than with a few grawnes. Some of the specimen reds 

were used, ~"3tu~ the crystallization characteristics. The 

specimens of about twenty composit ions were weighed with the 

platinum crucible and platinum stirrer shield. By comparing 

with the weight expected, it was found that less than O.~/o of 
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weight loss occurred in ;;;ost cases, with maximum loss of 0.5% in 

one case. Therefor e t he calcula t ed composition of rllOst specimens 

would be correct to :t O. 25~ with II f ew extr,,~me cas es of :t 0.5%. 

The loss of zinc oxide s eemed to be higher than that of the lithium 

oxide, as specimens containing high zinc oxide cended to have 

higher loss. It was felt tha t this technique of prepar,.tion of 

specimens was satisfactory for the present study. 

3. Heat treatment. 

(1) Apparatus. 

For the l iquidus temperature determination by quenching 

technique, a constant temperature fulnace is nor~ally used, but this 

method is very time consuming. It is found from previous work done 

in the Depar tment that a vertical i.J'udient furnaco is much more 

efficient. However the origina. l vertical gr <..dient furnace was a 

nichrome-wound furnace with a maximum working temperature about 

11000 C. Judgin g from the phase diagrams of the binary systems , the 

liquidus temperatures of some of the compositioi1.S in the system were 

expected to be hi l~h(~r than 11000C, therefore a speci.nl Pt-Rh wound. 

vertical gradient furna.ce was made, the construct ion of which was 

shown diClg~amatically in Fig. IlIa r~d IIIb. To obtain the d~red 
h 

temperature gradient, the f urnace was rewound. three times. Finally ~ 

the temper ature ran;~e of the lower six specimen cones was about 

50°0 at 10000C. The furnace was balanced by counterweiGht and could 

be lowered quickly to chill the specimen. 

The specimen holder was made of n ther mocouple grade Pt-Rh wire. 

Nine loops of the ~ rune type of wire were weldecl at one inch apart 

onto the v ertical wires. An insulated thermocouple grade platir.ura 

wire wa s welded on the micldle of each loop to form a thermocouple 

at each loop_ These thermocouples passed through the refractory 

stopper of the furnace and were sold.ered to compensating leads in an 

insulated box situated above the refractory stopper. Following an 
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ice-jWlction, the t hermocoupl es Y{Ore conn ec t ed by copper l oads to a 

t en point selection switch '1lhioh 'IlUS used. to connoot each thcrmo-

couple to the usual poten t iomet er , an d galvD.nomet er oircuit for 

temp er ature measurement. Also t hr ee t her mocoupl e s could be con-

n ected to a Cambridge multi-point t emperature r ecorder s o tha t 

permanent r ecords were obtained for each experiment over' t he whole 

dura tion of heat trea t ment. When the temperature of t he specimens 

was measured with the pot entiome t er circuit, thes e t hr'ee ther mo-

couples were di sconnected from the r ecorder. Hal f circles of 

platinum of 0.1 M\m. thick and 2 em. in diameter were f olded into 

the specimen cones Vlhi ch wer e placed into loops of th e spec.i men 

holder. 

(2) Temper a ture conh 'ol and calibration. 

A Variac, a Cambrid.se c 8ntre-line optical contr oller and a 

rheosta t were used t o cont r ol t he t emperature of t he furnace, the 

deteo'~ing element f'o r which, a Pt - Pt~h thermocouple , wa s placed 

very close to the f urnace winding to obtain quick r espon!3e . The 

circuit diagr am vms s ho.m a t Fig. IIIa. Va r i ous t omperature range s 

could be obtained by varying the voltage supply and the control poini; 

in the CambridbEJ centre-line controller. With pl'oper oombination of 

the st.tting in the Variao and rheostat, the t empera t ur'G of the furnaoe 

could be con t rolled to within ± 2°C. D\.lring the cours e of the work, 

the controlleI di d not f unction very well s ev er al times , llnd the 

+ 0 temperature of the f urnace f l uctuated up to - 5 c. As :, oon as the 

control limit wf'.s f ound t o i ncrec, s e b eyond: 3°C, the controller wa s 

readjusted unt il it tl.chi eved the b e3t performance. 

The thermocouples in the specimen holder as sembly were initially 

calibrated by ins ~rting a standard thermocouple into ea ch speoimen 

cone in turn. For the s even lower thermocoupl es, the maximum 

differ ence b et '7een t h e standard t h ermocoupl e and the corresponding 

thermocouple in the sp ecimen holder assembly vms l ess thnn 3°C, with 
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the error for tl~e middle one of about ~·C. The top thermocouple was 

found to give a. tem:L:> erature about 150e higher than thntof the 

standard thermocouple , nnel the second one about lODe hiGher. The 

tempera ture grn,dient of' this part of the f urnace was v8ry s t eep , and 

heat might b e conducted from the hot zon e of the furna.ce along the 

thick pt-Ril wire frame to the tup two thermocoupl es so tha t they 

registered higher temperaturen. Therefore the top position was not 

used t"Lnd the second Olle was us ed only on eX('llorlltor-y run s . Since it 

was not attempted to determine t he liquidus temperature with an 

accuracy of better thllll :!: 5°e, it vms felt t hat the pres ent design 

did not introcluce any 3iZ;nificllnt error in es t ablishing the phase 

diagram. 

After the specimen holder had b een properly vrired up into the 

heat treatment unit, it was not pos:Jible to calibrate the thermo-

couples periodically by the same t echnique. Ther efor e three ~lasse sl. 

the liquidus temperatures of which WAre de t er mined. in the first montl\ 

+ 0 of the pres6nt work to an accuraoy of - 2 e, wer e used to r e-calibra1;e 

the thermocoupl es every t wo months:. The liquidus temperutures of 

these three ~lasse8 were r edetermined and found to be within :t 30
e of' 

the criginal data. AlthouC;h the appee.ronce of the thermooouples was 

affected by heat1 the oalibr ation did not chanGe . 

(3) Determination of liquidus t emperature. 

The quenching technique wns us ed to determine the liquidus 

temper atures of' compositions ins ide the glass forming r ee;ion and was 

desoribed in this section. For compo sitions just outs ide the glass 

forming region, a hot staGe microscope was used. The construction of 

this hot stas e microscope and the experimental procedure vm.s dcs,\ 

cribed in t he sections about the study of rate of cr'Ystcl [;rowth. 

In the quenching technique , th!ol specimen rod was cru:lhed into 

small pieoes. Several pieoes of the glam being investifjated, WCP3 

placed in each of the platinum specimen cones. The wei :::;ht of each 



wa.s up to 0.2 gm. After t h e hea.t treatment furn ac e had atta:ined a 

steady condi t ion of the desired t emper a t ure range, t he furnace was 

raised to th e upper posit ion to heat treat the specimen s . The 

teUtperatures of' the top , the middle and the bottom CO:1e3 viera r e-

corded with u. multi-point recorder . A potent iometer was used to 

measure a ccur ately t he teml:·erature of each specimen f or five or six 

times over the heat t reatment period. The mean t emper-c.ture was taken 

as t he t emperature of the Dpecimen. The fluctuation of the specimen 

temperc.ture was a ss essed by me ~1. s uring the temper a.ture continuousJ.y for 

three control cycles , the t Yro ext r eme s were taken as the r an ge of 

fluctuetion. After the predetermined time of hent t reatment had 

elapsed, the furnace nas lowered and the sp ecimens wer e chilled in 

o 
air. The time t aken I'o r the srecimen to cool from 1200 C to below 

5000 C was· less than 15 seconds. Normally, no secon<lury 6rowth was 

found in the specimen, a l i.:houbh the glasses in t his system had a high 

tendency to devitrif'y . 

After the cones were cooled, they were unfolded to release the 

specimens, which w(;re exanined by petrolo t:;ice.l mioro3cope and X-ray 

diffraction. The specimen cones were reforme(l after "they were cleaned 

in hydrofluoric acid ~d hydrochloric acid. Each cone could be re-

used for a.bout t en til.l8s. In this way, a range of t emperature was 

covered by each experim 8J.'1 t and eaoh s peci:len was subjected to indi-

vidual heat-treatment . ~'/hen the s el ected te .. l; :er a ture r ange was corr ect, 

the liquidus t empera.ture of that s p ecimen could be doter mined to 

+ 0 - 5 c. at once. If one experiment could not yield the liquidus 

temperature to the de3irecl accuracy, then further experiments were 

done on different temperature ranges. Norma.lly two or three exp 'Jr i-

ments were necessary to determine the liquidus t emperature. When it 

was necessary to deterrr,ine the liquiJus temperature more accurately, 

e. g. those compositions u1J ed for re-calibro.tion of' the thermocouples, 

additional experiments were done to narrow ti1e limits. 



The duration of heat treatment rane;ed from one hour to six 

hours. When there were no other experimental complications, longer 

heat treatment time vms normally used to ensure equilibrili.,:\ con-

dition. The minil!1wn time necessary to obtain equilibrium was de-

termined by approaching the equilibrium condition from both 

directions for selected compositions in different composition ranges, 

instead of for each composition. Part of the specimen was heat 

treated at about 900°C to 950°C ove.Lnight to d evitrify the specimen 

completely. These devitrified samples were then heat t r eated for 

different times. Some specimens of the same oomposition in the glass 

state were also heat treated for different times. Both s et s of the 

specimen were examined for crystals. For most compositions, these 

two sets of specimens would yi eld the same liquidus t emperature 

within experimental error after half an hour of heat treatment. 

This did not prove conclusively that these specimens had reached 

equilibrium because the amount of crystals pres ent, whioh was not 

determined, in corresponding specimens might not be exactly the same. 

However, it was f elt that the specl men used to establish the liquidus 

temperature should have reached equilibrium condition b ecause they 

were held at terr.peratures for at least a;ul hour and norma.lly for 

six hours. 

Al thougb the 'liork seemed to be routine, some e xperimental 

difficulties were encountered. One of which was due to the 

characteristics of the controll er used. At the initial stage of 

the heat treatment, the tereperature of the furnac e dropped about 

150 C, as soon as the specimen holder 'IIUS inside the :f'urno.ce. The 

temperature of the furnace normally overshot the control temper ature 

o 
for about 15 C, when the temperature VlL. S brought back to the control 

temperature f r om lovrer temperature. The temperature of the furnace 

would eventually be brought back to the control temperature at about 

one and half hours' time. This vrould subject the specimen to 

varying heat trentment. This difficulty was overcome by setting 



o 
the control tempera.ture about 15 C hieher tha.n the desired control 

temperature before the specimen was heat treat ed. Im,l1edintely a.fter 

the furnace vms r nisE;d 'che control point was reset to the desired 

control telfLpero.ture. The initia.l temperature of the specimen would 

be up to 5°C lower than the desired temperatur.e but the specimens 

would attain the desired temperature in less than ten minutes without 

over-shooting the control point. With suitable adjustI;wnt, the 

specimens would x'each the desired temperature end maintain the steady 

state within two minutes a.fter the beginnin2, of heat t r eatment. 

In some of the com~)ositions with Li20 .. ZnO • Si02 or zinc 

orthosilicate as primary phas e crystal, over a ro.nge of temperature, 

crystals were found to be at the bottom of the specimen with clear 

glass at the top. When these specimens W0re examined under a micro-

scope, a secondary growth or'"' crystal seemed to be present. These 

phenomena were found in large specimens heat tr~ated for a long time. 

As this segregation of crystals might cause errors in the liquidus 

temperature, additional experiments were done on smaller specimens 

with successively shorter heat treatment t ime until the crystals in 

the specimen were distri buted more or less uniformly. ~ome errors 

were found in th& early liquidus temperature r esults, all these were 

redeter·mined. The segre,:;ation of crystal in the bottom of the 

specimen might be due to the high density of these crystals compared 

with that of the melt. At high temperature the melt was not very 

viscous, therefore the crystals f'ormed would gradually sink to the 

bottom. This would cause inhomogenity and error in the determination 

of the liquidus temper['.ture. 

Surface devitrification pos sibly due to volatilization at the 

J.i '" 
f .&> d' n e 't' 'th ~ '1' sur ace were .I.oun 1 som compos1 10ns WJ. ~sJ. 1ca. Re0.C-

terminations were done with shorte:(' heat treatment time for all these 

compositions. Some errors were found in the early results in the 

identification of the primary phase crysta.ls in the com{osition very 

near the primary phas9 boundary time. 



21. 

4.. ExamJ.nation of he~t trea.ted specimen. 

tl) Optical method. 

The chillod spec:l'nen vms crushed into slnaller pieces in a 

percussion mortar. Pieces from c. different part of the specimen vrere 

examined with a petrological microsoope to find whether any orystal-

line phase V{[;l. S present. The distr ibuti on of th 0 crystalline phase was 

also investigated to nee if' surface devitrii'ication occurred and 

whether the crY8talline phases se:;;r egated from the melt. 

In the early statie of the work only X-ray diffraction w-as used to 

identify the crystalline phases pr esent in t he specimen. However, 

X-ray diffraction was not very sensitive to low percentA.ges of 

crystals, esp<:cially tridymite. Ther f.:l i'or e specimens heat treated at up 

o to 50 C b elow the liquidus t emperLture had to be used to get ~denti-

f'iable amounts of crystal. When the comilosit i on being investigated was 

near the phase boundary line, s econdt!.ry crY8 ',.;(11s were normally present 

in specimens heat treut ed much below th e: liquidus t emperat ure. This 

made the ident i f ication of the prima~y phase crystal very diffioult. 

Therefore a petrolOGi cal micros cope was also used in conjunotion with 

the X-ray diff'r (·ctometer. 

In the petr olOGical micro scope examination, crushed pieces were 

immersed in liquids of knoml refractive indices. The browth habit and 

birefringenoe of crystals were noted. The orystal habits of some 

crystals changed with the composit ion of the specimen, therefore the 

refraotive indices of the crystalline phases were det ermined by the 

Beche line technique. In this teohnique, an individual crystal in 

contaot with the i mmersion liquid vias focused acc.'Urately and the bodJr 

of the microscope was raised slowly from the focused position. A line 

of light, called t he Becke line, following the contours of the crystal 

would move f r om the medium of the lower refractive index to that of 

higher index. By using liquid of different refrctctive indioes, the 

refructive indices of t he crystal could be detennined t o an acouracy 



of ! 0.003. The c '~ysta.l s present were normally very small, so 

accurate determino.t ion of r efrctive ind.ioes by Boche line t echnique 

vms not easy. When the difference of r8fractiv~ indices of t wo 

pt.~, ses under eXGmination increa s ed , it vms easiL~r to see the Becht:) 

line . T~erefore in s t ead of using immersion liquid with r efractive 

index ', ery clo se to the cry stals, liquids with r efractive index in 

b e tw'een the expectctl primary phases were used. to differentiat e the 

c:-ystal In the specimen. From data in the previous experiment, it was 

normally pos cible to predict the crystalline phases . All the heat 

treated speciiI:ens were examined. optically. The refractive in~i.ces of 

the primary pha se in a t least one specimen for each composition were 

measured av0UJ: c::.tel y . 'l;he liquidus t emperature of the s econdary 

crystol was also determined in some con'l)osi tions. 

~2) X-ray diffraction. 

To avoid :.my possible error in the identific ation of the 

crystalline phas e [',nd. to confirm the r csu:L ts in the opt i.ca l 1I'~.cro-

'"~('pe deter nination, X-ray diffra ctj,cm V' : 3 us eCi. extensively. The 

X-ray instrument, manufactur3d by SolLLs-Schell JJtd., was equipped with 

p. 9 cm. c amer a and a diffra.ctometer. To obtain higher acct...racy, the 

diffractometer V/D.S used. 'l'hrou t;hout the pr os \::nt WOJ'k, a copper ta,r get 

tube, giving nio£.el filtered copper k~ r ad5 J.tion Vlf. S us ed. 50 kv 

20 ma was used. A powdered quartz s pecimen v. as us ed. to check the 

ali q;I"'l'lent of the J.ifi"r:,ctometer periodically. 

The crushed specimen was ground in an agate:: mortar into ... 'ine 

powder. An o.lunnllium holder wi·I:.L a hole of I x If:x :i-~"'~' em was US ed. 

A piece of microscopic slide iSl as s was placed unr'l8I' the al.lminiu.l'fl 

holder , and the powdered. specimen WA!1 p.<lcked c'v"enly in the h010. 

A:10ther glass slide was stuck on top of the a l uminium holder t ,ID g:. ... , e 

some support to the powdered sample. The gl ass slide under the 

c.luminium hol~er was then r emoved a.nd the surfu.ce of the powdered 

specimen origi nal.LY in conta.ct with this gl ass slide vms used for 

X .. t-ay di:f.fruction nork. This method of packing the powdered specimen 



was prefer:ced to that by rubbing flt\t the surface of the SIjecimen 

with a glass slide , because rubbing the sur:t'ace tended to encourage 

preferential orientat i on of the crystals in the specimen. With the 

present method 01' packing, a very smooth surface w:ith mor o randomly 

orientat ed cFystals could be obta ined. 

o Specimens heat treated at about 30 C below the liquidus tempera-

ture were used. The powdered specimen was sconned at 10/min from 

5- - 45-9 autom~tically with a geiger counter. A trace was obtained 

from the recorder. These t races were compared with those obtained 

from specimens specially prepared as st andards. If the amount of tl'le 

crystal in the specimen was not high enough to permit conclusive 

identification, a different setting in the diffractometer was used. 

If it was still not possible to identify · the crY:3t~ .... lline phase, 

specimens heat treated at success i vely lower t emperatures were u3ed~ 

until the primary phase was identified. On the other ha.nd if two 

crystalline phas es were fOillld, th en specimens heat tre~ted at higher 

temperatures were used until only one crystalline phase Wt, S found tp be 

present. 

Not all the heat treated spec imens were examined by X-ray 

diffraction. Normally when the result from one specimen identified 

the primary phase crystal conolusively, the other spec~nen of the 

same composition was not examined by X-ray diffraction. With com-

positions nellr the boundary line, it was not pos sible to identify 

conclusively the primary phase crystal by X-ray diffraction work, 

then reliance wa.s placed on the r esult from the pet r ological micro-

scopic examll1at ion alone. 

During the cours e of the work, solid solution was found to be 

present in Li20 • InO • Si02 crystals. All the X-ray diffrnction 

traces were checked for shift "r pcr.uc pO-.8<iit:im. 'Nhenever there was any 

doubt, the specimen WH. S scanned minute by minute manually over the 

strong peaks to obtain conclusive r esults. This was f ound necessar,y, 

because the recorder drum in the recorder was driven by frietion and 



slight Blipping \";ould introduce error. Also the time constant of 

counter affected t he peak posit i on sli oht ly. The r elative intensities 

of the peaks were nor :'lally obtained from the t race. 

The X-ray diffr ac tion pattern s of t he specimens were compared 

with those of specio.lly prepar ed standards . These s tandards wer e 

pr epared f rom the same r uw materials and mel ted b'y the SUllIG t echnique. 

However the homo geneous melts of t he stanliardsnere hel tI a t suitable 

temperatures to crystallise and then chilled ral)irlly to 1'0010 tempera ... 

turc instead of pouring jnto r ods and then annealins an the other 

composit ions. The standards were examined under t he micr oscope and 

no glassy phase was detec t ed. Therefore t hese 3tnnd,~,rcls Hel'e pure. 

The melting te l!peratul'e and t he c rystalliza.tion temnerntux'e Vler e 

listed in Table I. 

TABLE I 

TmRMAL HISTORIES OF VJill IOUS STANDARDS. 

STANDARD MELTlNG CRYSTALLIZATION CRYSTALLIZATI ON 
TEI1PERI\.TURE TEMPERATURE TIME 

Lithium disilicate 1300
0
C 1000

0C Four hours 

Lithium metasilicate 1300
0
C 1150

0
C Three hours 

Lithium Orthosilicate 1400
0
C 1200

0
C Seven hours 

Zinc Orthosilicate 1550
0
C 1450

0
C Six hours 

Li20 • .,inO • Si02 1550
0
C 1400

0
C Six hours 

2 L120 • 4 ZnO • 3 S102 1550·C 1350
8
C Six heurs 

Atternpts had been mnde to prepare pure tridymite from quartz 01' 

precipitated silica, but small amounts of .either quartz or crysto-

balite was found in the specimen. 

The X-ray diffraction patterns of the l ithium orthosilicate 

standard and the zinc orthosilicat e standa.r d ,:e:1:"0 :f'ouncl to a ':'Tce 

with that :in the X-ray Powder Do.ta File. However , it was found tha.t 

the dat a of lithium disilicate and lithiunl metasilionta in the X-ray 



Pewdor Data. Fil contu.in0d sov"r 1 lino:.> which Vlcr0 not found in tht; 

X-r ay pattern of tho pre sent standard. Lat0r it; '/las possibl e t fl 

idant ify thcso Lxtre..n col1s lin GS in the X- ray Powdor Data FilL. MOL ' \) 

detai led il oIT1!ltion i s tsiv l";n in the disGu::;sion soction . 



III. RESULTS AND DISCUSSION. 

1. Genera.l. 

About one hundred c ompos:i.tions were I)repnred and investi-

gated. The ca lcula ted comp ositions in mole percent and weight percent 

were listed in Table II. The compositions were ca lcula ted to give the 

exact mole percent, ond the Yieight i)e:ccent data wa s given to two decirl1D. l 

places, because the actual compositions of' the specimens dio. not warrant 

any higher accuracy. The refractive index of the chilled specimen which 

formed glasses were a lso listed in Table II against the corresponding 

composi tions. 

The investiga ted composi t i ons were plotted in Fig. 4, with boundar;v 

curves and primary phase f ields. The composi t i on triangles Cend t he glass 

forming region limits were p lotted on l'-'ig. 5. F'lg • 9 was a plot of the 

isof'racts in the glasses forming region. The isofracts vrel'e derived from 

da t a given in Table II. 

In Fig. 6, isotherms had been a dded to t he ternary system and the 

comp OS:L tions had been omitted., The essential data from wru.ch Fig. 6 and 

9 were drawn, was given in Table II. By eml)loying the vertica l gradient 

furnace, more than 2000 specimens Y{ere quenched. Not 0.11 of t he data 

was listed in Table II, because most of it was not essential for the 

construction of the phase diagram. 

Tri dymite, lithitun disihca te, lithium metasilicate, z i nc or tho-

sili c a te and two neyl' te:cllD.r y compounds wi th the c oml)osi tions. of Li
2

0 • 

ZnO • Si0
2 

and 2Li
2

0 • 4ZnOt3 Si02 were found as primary phases. 

Although the high temperature form of silica l cristobali te WHre not 

found as primary pha se cry :... tal i n the comp osition inve stiga ted, cristo-

ba li te 'would be the primary crystal in glasse s having D. high percentage 

of silica. Therefore it was adcled in the phase dio.g l'o.m. 
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Table 2 

'Jomposi tions and refr c'~ive .J.ndic(. ~ n:.' s 'l)~~imens inves ~iLT,i1tcll 
an.i quenching uD:i;u 

----.-.-~----. -- ........ -.~ _. _ .. '- . ' " . .. . . .. ... . . . . . . ... . .. .. '-~ ._ . . '-
~ Compusiti011 

, , i 

j Refract.ive : Temgera ture i ~ 
: Index of Glass' (C) I Phases p~e: .. ent 
I ' ______ • ___ ~ . . .... ,, ' __ • __ ..... . .. . . - •• _ . • .. . ... . 1 ••• • • • _ .•• , • • •• __ 

Zn (J 

Tridymite field. 

10 

(4.87 

10 

(4. 79 

10 

(4. 71 

20 

26.54 

25 

32.61 

30 

38.47 

70 

68.59) 

65 

62.60) 

60 

56.82) 

1..552 

1.570 1127° 

1120° 

1l.587 1290° 

1280° 

1210
0 

I 
I 
I 

I 
j Glass 

I I Gla 3 ~, Tria... 

I Glass, Trid. 

Glass 

Glass Trid. 

Glass 

G1us s ,T:d.d . 

Glass, !J.'ril.lo 

1170° Glas~1 'rriC: . ~ S~I 

15 10 75 1.533 1430
0 

Glass I 
(7.77 14.11 78.12) 1400° Glass, T:"'id. I 

I 
15 15 70 1.547 ~360o I Glass" ! 

(7.63 20.78 71.59) 1350° G1as ."" Trir.~(\ 

1100° G1as ::l ,Tri li. , 

. ----~.-

~K _ _ ___ .... .. . __ • ___ ' _ .. ____ _ . ... --_...--- ..... 

~ Oompositions in brackets are wc~5ht percent. 

Trid. = Tridymite 

LnS = Lithium disilicate 

1MB = Lithium metasilicat~ 

ZS = Zirv~ orthosiliCllte 

A = L.-I·2() • ZnO • S102 

Ass = ... i (l 
~ 2 • Zm> • Si02 solid ' solutior. 

Bas = 2Li2O • ~.o • .3 S102 solid solu'Uon 

NGF = non glass forming. 



- _ . __ . __ .... _ .. - " ' - ' _. -----
Refra ctive ' Temg:ra ture , 

compo:~n_ .,.,.._ 'N . __ ! I~,:,,: G~S_~~ ~--J p~s~s pr::n~ ..... . 

, 0 I 15 

(7.49 

15 

(7.43 

15 

(7.39 

15 

(7.)6 

16.25 

(8.12 

(8.24 

20 65 1.560 I' 1234 ; Glass 

27 .2~ 65.30 1228° I Glass, Trid. 

22 .. 5 62.5 

30.31 62.26 

23.75 61.25 

31.87 60.74) 

25 60 

33.42 59.22) 

22.5 61.25 

30.49 61.39) 

23 60.5 

31.25 60.52) 

1.570 

1.577 

1.580 

1.575 

1.573 

I 1138° I Glass,Tri d. 

I 
1196° 

1127° 

1111° 

1096° 

1087° 

1130° 

1120° 

1080° 

1065° 

1060° 

1050
Q 

1040° 

! 

I Glass 

Glass, 'Irid. 

Glass, rr'rid,B ss 

Glass. 

Glass,Trid. 

Gla ss, Trid. 

Glus 5, Trid, ZS. 

I Glass 

Glas s, Trid. 

Gla ss,Trid. 

G1ass,Trid,ZS. 

Glass. 

G1ass"Trid. 

Glass,Trid. 

Glass, Trid ;B ss 

Glass 

:::: 1.2.ss,Trid. 

Tr..:..a,A ,B ss ss 
- '--' --- _ • • _ . • • _ - _ . '-~" ' " - • •• •• • . ••. •• • .••• • • __ • -!. .. .. - . - _ • • - . - - . •. ... _ _ . ---" '-" '-"---"'~'-----' ~. - .. . - ---• . • - .-• . - .. - . - ..... , •• _. - • • 



_ -_ _ _ .. _ _ .. ~ • • r ... . .. . .. .. ______ ... _ _ _ .. • • _ ~ . .. ~ ... , ... " ... . . . .. ~ •• • • • .._ ... _ __.... ' 

i Refractive i Temperature : 
Composition ; Index of Glass r (oe) ! Phases present 

--~ .. --.. -- .• _ ...... - ._.- 4 ·- ·-·--~··~ -- . - . 
62.5 j ° i 17.5 20 1 1.570 1125 I Glass 

63.57) I ° (8.87 27 .. 56 I ! 1120 I Glass, Trid. 
I 

10430, t • ! Glass, Tr:Ld. 

1026° 
I 

! Glass,Trid.,Ass 

18.5 18.5 63 1.565 1111° I 
I Glass 

I (9.46 25.76 64.. 78) 1105° Glass, Trid. 

1090° I Glass, Trid. 
I 

20 5 75 1.525 1330° ! Glass 

1320° 
, 

(10.84 7.38 81.78 I Glass, Trid. 
I 

1125° ! Glass,Trid. 
I 

I 
70 1.537 1238° 1 20 10 I Glass 

(10.64 14.49 74.88) 1231° G1ass,Trid. 

1115° I Glass, Trid. 
I 

20 15 65 1.555 1126° Glass 

(10.4;4- 21.33 68.23) 1114° i Glass, Trid. 
I 

1030° I G1uss,Trid. 
I 

995° I Gluss,Trid. ,A. 
I 

I 
22.5 10 67.5 1..543 11330 I Glass 

73.16) 1122° 
i 

(12.15 14.69 ! G1o.s8, TrH .•. I . 
I 

10050 i Glass, Trid. 
i 
1 

22.5 11.25 66.25 1.550 10300 I Glass 

(12.11 16.40 71.50) 10250 I 
Glass, Trid. 

985
0 

Glass, Trid. 

9760 
G1ass,Trid.,A. 

.. ... .. .. _. . ~ ., - -.. -- ~ _. __ .. _.- ." ._ .... _-. - j ---- --.. .-. .. ... ~ - .-. ---- , .. ... _'" .. - -.. .. - ... 



30 • 

• -~ ..... ... -_ ._ ...... __ • • _ ... ~_ . .. .. .. r 

Refractive j~em8erature l 
Composition Index of Glass (c) I Phases present 

, .. _ .... -
r 23.75 10 66.25 1.548 10610 Glass 

(12.91 14.79 72.30) 1052° Glass, Trid. 

10130 
Glass, Trid. 

23.75 1.0 ,., 625 65.625 1.54-9 1047
0 Glass 

(12.86 15.67 71.47) 1025° Glo.ss,Trid. 

1015° Glo.ss,Trid. 

973
0 G1o.ss, Trid. ,A. 

24.-375 10 65.625 l.549 1036° G1o.ss 

(13.28 14.84 71.89) 1.0270 
Gluss, Trid. 

1005° Glass, Trid. 

25 5 70 1.532 1139° Glass 

(13.94- 7.57 78.49) 1137
0 

Glass, Trid. 

10160 Glass, Tri d. 

991
0 

G1ass,Trid.,t>DS• 

25 10 65 1.549 1014
0 

Glass 

(13.66 14.89 71.45) 1.002° Glass,Trid. 

997
0 

G1ass,Trid. 

27 .. 5 5 67.5 1.540 lJJ40° Glass 

(15.57 7.70 76.74) 2037
0 

Glass, Trid. 

1024
0 

Glass,Trid. 

1007
0 G1ass,Trid.,LDS. 

, 
---L... ____ . . _ _ .__ _. __ , .. .. __ -- .1 



31. 

~--- .... --.-
I 

j i I 

I ' Refractive I TemBerature ! 

I·· 
Canposition _ F_of. Glass I _~ c~ _._r:"..:s .. ~,:"s~~~_ 

Lith1um disilicate f ield. I 

I i 
984

0 26 9 65 1.550 Glass , 
I 

(14.35 13.53 72.13) 9690" Glass, IDS. 

960
0 

Glass,LDS,Trid. 

I 

27.5 9 63.5 J..552 980
0 Glass 

(15.35 13.65 71.00) 970
0 Glass,LDS. 

Glass,Lm, A. 

28.5 5 66.5 1.540 989
0 

Glass 

(16.21 7.74 76.05) 9840 Glass,LDS. 

979
0 Glass,LDS,Trid. 

30 5 65 1..545 10120 Glass 

(17.21 7.81 74.98) 10080 
Glass,I.Jl3. 

9760" Gla.ss,LDS. 

Lithium metasilicate fie • 
28.5 9 62.5 1.552 980° Glass 

(15.95 13.72 70.34) 970
0 Glass,IMS. 

960
0 

Glass,LDS, Trid. 

28.75 10 61.25 1.556 1004
0 Glass 

(16.06 15.20 68.73) 995
0 G1ass,IMS. 

9880 Glass,IMS. 

9700" G1ass,lMS, A. 

30 10 60 1.560 1041+0 Glass 

(16.86 15.31 67.83) 10390" Glass,lMS. 

10070" Gla.ss,IMS,A. 

9700" G1uss,LDS,A. 



32 .. 

I " ---------.-- - -- . . .-... - ..... _ . 

i j 

Refractive I Temgerature I 

Composition _ -4 Ind.x ~. G_~SS ( C) Phases present 
I I . . .. ... ... "- .. .. ' . . t · .. • ...... . . . • '- .... _._ . --1 

32.5 5 62.5 1 .. 549 1041° Glass 

(18.94 7.93 73.13) 1037
0 

G1uss,IMS. 

1004° G1ass,IMS. 

984
0 

Glass,IMS,LDS. 

32.5 12.5 55 1.570 1157° Glass 

(18.39 19.1.4- 62.47) 11460 
Glass,lMS. 

1003° Glass,IMS, A. 

32.5 15 52.5 1..580 1169@ Glass 

(18.19 22.84 58.78) 1167° Gluss, IMS. 

:2.153° Glass,IMS, A. 

35 5 60 1.553 1096° Glass 

(20.68 8.05 71.28) lfJ79° Glass,IlvlS. 

1005
0 

Glass, D.1:S. 

35 10 55 1.567 1180° Glass 

(20.25 15.76 63.9~) li76° G1ass,UIS. 

1129° Glass, IMS. 

11020 
Glass,UIS. 

35 15 50 NGF 1170° Glass 

(19.84 23.16 57.00) 1150° Glass, IMS. 

37.5 5 57.5 NGF 1155° Glaa~ 

(22.52 8.17 69.32) • 1140
0 Gluss,IMS • 

37.5 10 5~.5 NGF 11800 Glass 

(22.05 15.99 61.96) 1170° Glass, Illffi. 

1 .•• • - _ --- . .;..-...----.-...::..--.. ...!;.....- .;.~--.------,--------.-.- _ .. _----.. _ ... ... _-_ ...... 
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---~ --"- ,- _._---_. ---_._.. . ~ .. -
I 

Refractive Tet;Berllture , 
Composition Index of Glass ( C) Phases present -_ ..... -. ' .... ........ _ .. " - _. __ ... ""- ,,--, 
Ji) 5 55 NGF 1160° Glass 

(24.36 8.29 67.35) 1150° Glass,IMS. 

40 10 50 NGF 1185° Glass 

(23 .. 84 16.23 59.93 1170° G1ass,LMS. 

45 5 50 NGF 1200° Glass 

(28.27 8.56 63.17) 1180° G1ass,lMS. 

Zinc Orthosi1icllte Fie1 

10 32.5 57.5 1.595 1267° Glass 

(4.67 41.33 ,54.00) 1259° Glass,ZS. 

1200° Glass,ZS,Trid. 

10 35 55 1.601 1290° Glass 

(4.6,3 44.15 51.22) 1275° G1ass,ZS. 

1259° G1ass,ZS. 

1210° Glass,ZS,Trid. 

10 40 50 1.610 1330° Glass 

(4.56 49.63 45.81) 1310° Glass,ZS. 

12.5 30 57.5 1.590 1213° Glass 

(5.96 38.94 55.10) 1195° G1ass,ZS. 

1150° Glass,ZS,Trid. 

15 25.625 59 • .375 1.583 1103° Glass 

(7.35 34.18 58.48) i 
1099

0 Glass,ZS. I 
I , 

1078° G1ass,ZS. 

I 1059° G1ass,Trid.., Bss. 
, I .. _;.-----_. ---.• - ..... --~ ... ------.. ---'---.. ..... -

- ~ ... - --- --- ---'-- _. -_ .. .. _-_ . ... .... . 



34.. 

--- .. ----_ . . ~- - - _ .- -- ----.--~--... ---
Ref'ractive Temperature I 

Oomposi tion Index of' Glass (°0) I Phases pre5ent 
- _ .... --........ - - ... -~ .. - . .. - _.--._ . 

15 26.25 58.75 1.583 1119° Glass 

t7.33 34.92 57.75) 1106° Glass,ZS. 

1087° Gluss,ZS. 

15 27.5 57.5 1.588 1140° Gluss 

(7.30 36.42 56.29) 1127° Glass,ZS. 

1088° Glass_,ZS. 

15 30 55 1.593 1165° Glas s 

(7.24 39.41 53.35) 1156° Glass,ZS. 

1101° Glass,ZS. 

15 35 50 1.605 1251° Glass 

(7.12 45.20 4.7.68) 1248° G1Ilss,ZS. 

1185° Glass,ZS. 

15.625 25 59.375 1.580 1089° Glass 

(7.69 33.52 58.79) :1082° Glnss,ZS. 

1069° Glass,ZS. 

104.9° GIns s, Trid.,B • 
, 55 

Li20 • ZnO • Si02 Field. 

17.5 22.5 60 1.577 1074° Glass 

(8.81 30.66 ~.53) 10630 
G1ass,A.ss• 

1045° A .B ,Tria. 
S8 !:'s 

20 20 60 1.575 10760 Glnss 

(10.25 27.91 ~1.84) 1058° Glo.ss,A.~ 

1.040° G1ass,A. 

988€l A, Trid. 

I~ 

.-~----- .. - -. _ ... _------.. , .. 



35 .. 

-_ .. ' - .. --_ .. .. .. ~ .. - .... ..... _--
Refractive I Te1'srature 1 

Composition Index of G1BSS C) Phases present 
- -,.". __ ._-

. .. .. .. • • .~ ... -. po . ... . - .- . - - --,---- ,. 
20 25 55 1.585 11410 

Glass 

(10.06 )4.27 55.67) 11380 
G1ass,A • ss 

10680 
Glass, A • as 

22.5 J.2.5 65 1.552 997
0 

Glass 

(12.05 18.11 69.84) 9910 Glass, A. 

985
0 

Glass, A,. Trid. 

22.5 15 62.5 1.565 1034° Glass 

(11.92 22.61 66.46) 10260 
Glass,A. 

10130 
Glass,A. 

9800 
G1ass,A, Trid. 

23.75 11.25 65 1.554 986
0 

Glass 

(12.86 16.50 70.65) 984
0 

G1ass,A. 

977
0 

Glass,A. 

965
0 

Glass,A,Trid. 

955
0 

A,Trid.,Lre. 

25 12.5 62.5 1.560 998
0 

Gluss 

(13.53 18.40 68.07) 9800 
G1ass,A. 

973
0 

Glass,A,Trid. 

25 15 60 1·.569 10660 Glass 

(13.40 21.90 64.70) 10610 
G1ass,A.. 

10290 
Glass,A, 

25 20 55 1.583 :1.1360 Glass 

(13.15 28.64- 5d .20) 1125° I Glass, A. 

10850 
Glass, A • 

.-. .... - . . _ ........... ' . ~, ' 



,-- - . - -

Refractive I Temperature ' 
Composition Index of Glass (oC) Phases present 

-_. --- , 

25 25 50 1.593 1210° ClaBs 

(12.91 35~16 51.93) 1185° Glass~A. 

26 10 64 1.552 955
0 Glass 

(14.29 14.97 70.74) 953
0 

Glass~A. 

951
0 

A,Trld •• LDS. 

27.5 10 62.5 1.552 9860 Glass 

(15.26 15.10 69.64) 9720 
G1ass~A. 

964
0 

G1ass,.A.~LDSct 

27.5 11.25 61.25 1.555 1009
0 Glass 

(15.20 16.85 67.95) 10060 
G1ass~A. 

9860 
Glass~A. 

9680 Glass,A,LDS., 

27.5 12.5 60 1.562 10930 Glass 

(15.13 18.61 66.26) W79° Glass,A. 

1059
0 

Glass~A. 

30 12.5 57.5 1.565 1075
0 

Glass 

(16.70 18.95 64.36) 1053
0 

G1ass,A. 

10300 Glass,A,IMS. 

30 15 55 1.572 11560 Glass 

(16.53 22.51 60.95 1148° G1ass,A. 

114].0 G1ass,A. 

1137° G1ass,A,UiS. 

10850 G1ass,A,IMS • 

... --.-- ~. , .- ~,- --- -. -.------ -- -- .. __ .- -- .... _-_ ... _-,--- _ _ .. ·_--w..-"'~ ... ~ . .k ... <lI.o _ .... .i.l lo-.,t 



.-- .- - _ ... .. ,_ . ..... . .. ... .... . -.... ' ---- _ ..... ---.. -- . ~ .. 

: l\.ofractive TemPBra ture : 
Composition : Index of Glo.ss ' ( C) ; ?hases present 

: , 
I _ . ..-... - .... - -~ ........ ...... - ----.-. ...,.. .. ~ -_ .. 

.30 20 50 3..587 12080 Glass 

(16.21 29.44- 54.35 1195° Glass,A, 
, 

2 LiZO • 4. ZnO • ,). SiOz.!Field. 

16.25 23.75 60 ' 3..579 lD72° Glass I 
(8,08 32.04 59.88) I JD64° GID.ss,B • ss 

I lD58° Glass.B ,Trid. ss 

16.25 25 58.75 1.583 10890 Glass 

(8.04 33.63 58.33) I 10780 GID.ss,B • ss 
! lD56° Glass,B • i ss 
I 
I 

1142° 28.5 
1 1.5;0 16.5 55 I Glass 

(8.06 37.92 54.03) I 1126° Glo..ss,B • ss 

17.5 25 57.5 3..586 1096° r.-J.ass 

(8.71 33.84 57.44) 108)° Glass,B • ss 

1064° G1ass,B • ss 

1048° Glass,B ,Trid. ss 

17.5 27.5 55 1.590 1142° Glass 

(8.65 36.84 54.51) 1140° Glass,B • ss 
1091° Gluss,B • ss 

17.5 32.5 50 1..600 l2J5° G.' .IHIS 

(8.50 42.80 4B.70) 1195° '1" 53 B l~ .. c. , sso 

10680 Glass,B • ss 

17.5 35 47 .5 1.605 127Co Glass 

(8.42 45.76 45.82) 12600 Glass,B • ss 

10750 G1aos,B • ss 
~ ...... . _-_._-- _.!.. , 

""--- -",.-. '- ~ .... -.... ...---.--~- .-



Refractive I Tempera ture 

__ O_0_mp_0_5_i_t_1_0n ___ -+_Ind_e_x_~ GlD.~t_~OC) __ 
?~ 30 50 1.597 12010 

40.40 49.71)1 11920 (9.89 

ll58° 

Pnases present 

Cr1nss 

Glass,Bss • 

Glnss,B • ss 
-------'---- - - - - -----'"----------- --_._ - ---_._" ... .. 
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(2) Composition triangle. 

The composition tri angles were e s t ablished ,vi th X-ray 

diffro.ction c1nta of specimen heo.t treat ed speci ully be low the solidus 

tam-perature. The compositions of the specimens and the X-ray dif'

fro.ction results were listed in To.ble 3, o.nd the compositi on trio.ngl~ s 

Vlere shown in Fig. 5. Specimens oi' selected c omrJosi tions were heu t 

treated at 950
0
C f or ut leas t twenty four hours. Fllrts cf t he specimens 

'were examined under t he microscope f or the glo.s sy pha se . Wi tr. some 

comJ} OS:l. tions, hea t t r eatments up to forty eight hours wer e done to 

ensure compi ete crys t allizo.tion. 

In this s eries of exp eriments, cristobo.lite wa s f ound i n some 

specimens. Since t:cidymi te wa s the stable i' arm of' ~ ilicu in t his hec t 

treo.tJUent temperature, these specimens were not in equi librium us f a r a s 

the silica phase was concerned. One or t he specimens w.J. th cristoba lite 

present wa s heat t r eo. t ed abc.in a t 950°C f or six <1uy s . Mos t of the 

silica wa s then f ound to be triclyrnite . Al so a nother sl?ecirnen wi t h 

0ristobalite , present wa s heo.t treated again llt 850°C fOl , t w .. mty-four. 

hours, unCi quartz ''\'''<.1. S 1'Olmd to be the only i'onn of silico. present. In 

both case s, the other c j,"'Y ~tals f ound i n the speci mens were not uffeqt ed . 

Therefore, the presence of cristobo.lite did not affect t he stute of t he 

other ~rystals lJresent :lon the specilnen. The existence of cr i s tobali te in 

the specimen o.i'ter long time hcut treatment might be d."Ll l~ {~o the slug

gishness of the cunversi on of" the c ristobuli te f orm to t ridy.'nJ.. te form. 

Theref ore, the presence of cristoba lite did not affect the conclusion of 

the comlJosi tion tri ll.ngles . 



~. 

Table 3 

X-ray datu of specimen heat treated at 9400 
- 950°0. 

- -_ ... _ ---
Composition (mol %) Phases Present. ~ 

~ 

i 
--_. -~ .. --.. -~ . .. 

; 
LiZ-0 Z~ 8i02 O-!tnO.Si0

2 2 ZonO. 8i02 I 1-· --' - .... ,,"'- ....... ... ........ _ .•. _. 
~ .. - '. . . --- ' .. _. .... -- ... -..... _-- -~ _ ...... 

I 

10 30 60 S, ZS, B • I ss 

I 10 35 55 s, ZS, B • ss 
I 15 30 55 S, B • i as : 

16.25 25 58.7 S, A , B • ss ss 

17.5 22.5 60 S, A • ss 

17.5 27.5 55 s, A • ss 

17.5 35 47.5 S, B sse 

20 15 65 S, A, IDS. 

20 25 55 5,.A • ss 

20 30 50 S, A ,B • ss ss 

25 15 60 s, A, IDS. 

25 20 55 S, A, LDS. 

30 10 60 S, A, 1113. 

30 20 50 S, A, LOO. 

32.5 ~5 52.5 5, A, Lr6. 

35 5 60 I A., IDS, ms. I 

45 5 I 50 I A, IDS, IlvIS. I 

~ 60 33i 20 80 B ss' ZS. 

13i 53-!- 3}~ 4D &:> B ss' ZS. 

19.04 47.62 33! 57 4.3 B ,ZS. ss 
(4 10 7) 

22.22 41+.44- 33i 66§ 3~ B 

(2 4 3) 

" . ---.. -- _ ' ____ 0_,,_,_, -r---- --.--______ ___ ._. __ __ ~ __ .. _ .... ___ ... __ ._ .. _ .. ___ . __ ... 
.. -.. . _._,. 



I . ... _- ""'.-.--~ --- .. -~ ... - .. ... - -~--

I Composi tion (mol %) ~ Phases Present. · 

L----r--~~ - ------~----

S = 
illS = 

LDS = 
~S = 
A = 

= 

B =-

= 

~- .-.. - -
43-$ 3~ 70 30 B sse 

4£) 33i 80 20 B ss' A ss· 

3~ 331 90 10 A sse 
, ._--._--_ .... _ .. .,.. -

QuartEt tridymite or cristobalite 

Lithium metnsilicnte 

Li tr<.um disilicnte 

Zinc orthosilicnte 

Li20 • ZnO • Si02-

Li2.0 • znO • Si02. selid. sQlutien;:(i. c: .. witl} P0A-l{ sh:i.fts) 

2 Li20 • 4 ZnO • 3 Si02-

2 L:l.~0 ·4 Zti) • 3 Si02 a.lid oeluti.n ·(i. e . ~whh p Artk s h:i.£ts) 

SI IEFFIE LD 
UN IVEnSITY 

Ll BP. !, RY 



(3) Glass forming region. 

T ., •• , 
. ..• .. : .. 

The glass forming limit on the low silica side in the 

present system was noted during the determination 0 f' the l~quidus 

te:nperature. The limit was f'olUld to be near the 50 mole percent silica 

line, being higher in silica at the lithium oxide rich side. Therefore 

lithium oxide imparted higher tendency of crystallization in the present 

system than zinc oxido did. 

Glass fonnation is a kinetic problem. Whether a given cow~osition 

will form a glass or not depends upon the rate of the cooling and thus 

the size of th~ ~pecimen affects the limiti ng composition for glass 

formation. In the present investigation, specimens about 0.2 grrumne in 
1 

the form of cones were used. The specimen was held u.t a temperature 

slightly higher than the liquidus temperature, until a clear melt W!l.S 

obtained. The specimen vms then wHhdrawn from the furnace rapidly 

and chilled in the air. A petrological microscope Wl1~ used to examine 

for crystalS. Any slight light scattellng effect vms r egarded a s an 

indication that the specimen was outside the glass forming r '1gion. 

Bastress(l3) investiga ted the glass forming r egion in the alkilli 

silicate systems. He found that the limit was 37 mole per'cent lithium , 
oxide in the lithium oxide - silica system, when specimen weighing 

0.3 grc ~e was used. In the present investigation, a 40 mole percent 

Ii thium oxide, 60 mole percent 5ilico. specimen vms prepo.red a nd. examined. 

It was found. that this composition was outside the glass forming rbgion 

with the present procedure. Therefore, the result of Bastr~ss WOos r 9· 

garded as consistent with the present procedure o.nd his result was us~d. 

The glass forming region was indicuted in Fig. 5. 

The glass forming region reported here is wider t rum it would have 

been if much bigger specimens \\ere used. When forty or fifty grrurmes of 

~O" 
'ocmposi tions with ·5 mole percent "higher tho.n the indicat·ed lili:ri.ting 



compositions were poured fram a plotinum crucible after melting, 

de".ritrification was often found. Compositions near the indicated lim.i-t 

inevi tably devi t:cii'i.ed during pouring. 

(4) Refractive index. 

The refractive indices of the specimens within the glass 

fonning region were measured by a microscope using the Beche line 

techni que. The refractive indice s of the rna tched imIner sion liquids were 

measured with a ~it.z-Jelley Refractometer. Curves of 'the refructive 

indices against percentage of lithium oxide with constant silica content 

or percentage of silica with constant lithium oxide content were plott~d. 

Data in the binary lithium silica te system was t aken from Ki'acek f s(8) 

v:ork. A few of these curves were reproduced in Fig. 7 und 8. The 

refractive indices did not change linearly with mole percent c;ornpositiqn 

wi th constant lithium oxide content but they c hanged linearly when zinq 

oxide was used to substitute lithium oxide. Com~ositions having vario~s 

refro.ctive indices wer'e read off' from the curves una plotted on the 

composition diagram, then the isofraot5 w~re constructed. The maximum 

experimental error of a single measurement with the Beche li'1e technique 

is ~ 0.003. With: the.i.pIl8nent mcthCld er. plott~g ,tlie:"isQr~lAct3, the a,pou
+ raoy should be about - 0.001. The r esults were given in Table 2 and Figo~ 

(5) The triqyrnitc field. 

The field of tridJmite was found to extend from 1470°0 to the 

eutectic point E Li20 25.5 mol % ZnO 10 Mol %, Si02 64.5 Mol ~ nt 

9SS
o t SoC and eutectic point F Li20 l6.S mol %, ZnO 23 illol %, SiO? 

60.5 mol % at 1050
0 t SOO in Fig. 6. In some very short tjme ex-

ploratory quenchings, meta stable cristobulite appeared in compositions 

of this field. In the actual detenninution of liquidus temperature, 

tric1ymite wa s found in every case, probably due to the long heat treat-

ment time employeo... The crystals obtained were small lath like, some

times round with v~ry low birefringence and refractive index, actually 

lower than the surrounding glass. These characteristics were used for 
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FIG.7 e£FRACTIV£ INDICESOFGLRSSES I,./ITH CONSTANT 
SILICR C.ONT£NT 

0-0 50 MOL..% ~"O • . 

10 

LiP 1'10LY.--
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optical identification. The frunilinr si."Cty degrees branching needle 

crystal of tridymite VIas not found in the present study. This crystal 

gave a very weak X-ray diff r ucL.on pattern. Therefore, it '"IUS someti mes 

d..!.fficult to use X-ray diffraction for identl.fication. Rewe'ITer, the 

optionl characteristics of t his crystal Vie r e so dif f erent from t he other 

primary phase crystal, that, it pres ~nted no probleo 'in identific~~n. 

The X ... r-<?-y diffr'Lction p :~ttorn found \7 .'1.8 the same .• il S' publishe~ ' irf -the 

X-ro.y Pet7uer •. Do.tu .. Fil() • . ' .( A. S. T. M. Cnrd). " " I" ... . 

• .. 
The point M was found tc be the minimum point on the join S10

2 
-

Li
2
0 • ZnO • Si02 ani the maximum point of on the boundary curve. 

The system Si02 - Li20 • Z11) • Si0
2 

- 2 Li
2

0 • 4- ZnQ. 3 Si02 is not 

complete ly ternary owing to an encr oo.chment of t he zinc orthosilicu to 

field. The eutectic point 0 i' tills sys t em W'<lS found to be Li20 16.5 

mol %, ZllO 23 mol ~~ unO. S102 60.5 mol ~~ at 1050 ± 5°0. The reaction, 

point between the silicu~ zinc orthosilico. te and 2 Li20 • 4 ZllO • 3 Si02 

!os located in this composition triang]e o.t L.i
2

0 15.7 mol %, ZnO 24.6 mol % 

Si0
2 

59.7 mol % at 1068° t 5°0. 

The system Si02. - Li
2
0 • 2. 8i02 - Li20 • ZnO • Si02 is not com~ 

pletely ternary owing to an encroachment of the lithium metasilicu t~ 

field. The eutectic point Wo. s f ound to be L:..ZO 25.5 mol % ZnO 10 Mol % 

Si0
2 

64.5 Mol % at 9550 ± 5°0. A second invaI' i ant point between lithium 

disil~cate, lithium .'l1etasilicate and Li20 • Zno • Si02 is loca ted in 

thi~ composition triangle at LiZO 27.5 mol % ZnO 9.8 mol % 8i02 63.7 

mol % at 976~ t 5°0. 

Cristobalite was not found as primary phase crystal in the cam-

positions investigated, because the high silica field wa s not investi-

gated. However, this field was exp ected from the duta in the bi nary 

systems. In ]'ige, 4 and 6 the c r :u.tobo.li te - tridymi te bounda..y was 

drawn tentatively to confirm with the accepted J..4700C inver sion 

temperature. 
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I , 

J?rofile of o;he c:cystFlI is no+. vp.ry disti nct:;- when exrumued unet ~:.: (J:7'·· .:O'· . .. c·~ .'f 

1ike~ positive eJ.ongt'.te,l cryst a l 1'!1. th J.;a:r.'u lle1 e:xt~nct~on; ctnc. (: . )1.'.:; .• : 1" _ 

listed. i e. 'l'ab le 4~ 

Table 4 

Opticu.:,_ ;':;::'operties of Ij.thitm j-_s:L H e Ll be crystal 

--------.-- - -- '.- _ ... -. - - .. ~. , . .. r - -- -~ .. -.. ... .. . -- - j"- ' -- ._. . .... - " _. '.' --.--
; P'::f .~~,d:i.ve I Mine ... ' cl. ' . I Cryst a l ICrystal 111 ~:-:ti:():''; - I' :·lc. ;'i ,p.-.A:l.lthC'LJ 

i __ ._-
~ --¥-Ir;.~~~~~--:r" 'L; G:':' )UP i System j Habi'~ : t i m ' ~ ·c.-i..en 

", 1.'4 -l~; t.~~- ! B-ir.z:~:r"-' 1'-' "1-, .. ·, ... ,-' I . (ll+) 
I A.Z.AustJ-h 

i I I I p esi ti -.·c I I 
I I ! I I 

! I 1 -. - ,., ,-I' " i D . . - I • 1 ~ . 'P I" "'y rnd )" -.;, I _ . • ? '~ I J.. , .... )0 1 ~<y)::~C' - i m~(. lO-I .... :1. '-'. Uo ., _ .. , .. .... ~ I' , 

• OS1~ :"' :11 \.l.0 I ' I posi t:!;]e: I .,'hc'rr;iJj ~ 
! I \ ! I I 

'1 . i.: l I I 1 I I F.lj.K:.aek· . ' 1.547 1' .• 550, ~1,.5513! :b~.,:! : 3.1 \ orth-,-
i I I . \,r, s ·,- · ~::l.w:! r holTibiq 
! I I !. I I 
: ' I . ~ ' ~ i B' . 1 I ! Present £tudy :L:~l · .' ,:',.:-'sr 'l. i. .,:; C:; '. ; ).<'\"''C~ £.;. , 

, ! : ?(' ~;:i. -:;i ve I 
I ; 

1 ; I 

(.;:>:'-r. no- JI 

.~ ' -""b'; r, _ . • .. v" . L. ..... v , 

I 
prism rP£l.:>:'a:' ! :) 1 . • ; .1 ' .... " . 

I 

Ip' .,...," , r. 'L: I·u .. c 
. .. . , ... . : 

pl'ism lpu·. ·ill .. t'· : .. : " 

..--.,- . .--.--.... --... --'-- . ~ --- _ ... _- .. - ... _ ... - "-- _ .. _ ... __ .. ' ... -- - - ... 

c omp nred v;:i. t.h toot i n the Y..-ray P()\\dl:;; r ' )u t o. !,'ile ~ i -i; . 'as f ouri;. ~hl). ·~ 

several oxtl 'a neous lines Y{e-re incluued j n the X-ray POY',der D<.l.1;u PiJe. 

other dutn of t his crys t a l was thp.n cc·llceted from the Ii tt::r·:"lt ur(:; .: ul':ld 

the pre ~3ent data was indexecl. . 

The -'1,'t!· "'n ; n' ~ II P d ". +" """1 . d A ( 11,) uu ~... w _ A-ray ov. e:' .t·.a wu .L: ~ e ~s ue to • Eit All Eitir: " . 

Rela tive intensities ".nd -SP<l<::ings were given but n0 Millor Indey WI.i. S 

g~ve!1.. Stwcj,'ul ext:cuneous line;:; i n this <luta W'1re dl1e to lithium meta-



silica te. The se might be due to the inhomogen1. t ie s in A. E. Austin's 
~ 

specjnen. 

G. Donnay and J. D. H. Dannay(15) measured the cell parameter of 

this crystal with We:issenberg single crystal technique. This ~rJstal was 

. .'" , , a 0 b 0 c found to be ort~mb~c ~th parameter 0 = 5.80 A, 0 = 14.66 A and 0 = 

4.806 2. No diffraction data was given. 

R. Roy and E. F. Osborn(16) gave the powder data of this crystal but 

no Wullor IllJ.cx was given. Using Donnay's parameter data G. Rindone(17) 

gave the MilloI' Index of his powder data. The d-spaci~s publ~shed seemed 

to be the calculated va lue instead of the observed value. 

The present powder du ta YiaS indexed as orthorhombic crys"t;als with 

cell pal'£llneter ao = 5.80 .R , bo = 14.66 R , and Co = 4.806 i. With four 

formulae weight r eI' unit cell, the calculated density was 2.438 &rr:Vcm3 

ane" agreed with the observed densi~ of 2.447 ~cm3. 

The r~lative intensities of these crystals can easily 1~ affected by 

pref'eI'ential orientation in the powder specimen. The intensities of Ifl 

a~ C~~ increa sed greatly when coarse particles were present in the 

specimen. The intensi ties of the se lines decrea sed with further grindJ..ng 

and carei'ul preparation of the powder specimen. R. Ro/ l6) and 

G. RinQOne's(l7) data seems to indicate thnt preferential orientation 

occur"red in their specimens. The calculated and observed powder data 

was listed in Table 5, togethel" with other data in the li teruture. 
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hkl 

020 
_liO 

021. 
1,30 
040 
III 

200 

002 
221 
151 
241-
042 
170 
202 
oBo 
222 

113 
033 
1.33 
042 

I 332 
420 

223 

, 45l. 
I 372 
! 

T&b1e 5. 

X-ray Data of Lithium Disilica te 

P;,;~ sent study J
' A.~.1}US-:U;rR.R·~Y' s ~i _. G.Rin~~~~(~7)~ · -~1 

d 
(cal) 

7.332 
5.392 

4.007 
3.738 
3.665 
3.589 

2.900 

2.403 
2.353 
2.298 
2.055 
2.010 
1.970 
1.850 
1.832 
1.794 

t 
1.536 
1..522 
1.473 
1.468 
1..44{) 
1.422 

1.378 

1..255 
1.225 

PD.:f;Q.{~:-ro{ iE.F.Osbom's Data 
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The Li.20 • 2 5i02 - Li.20 • Zno • 5i02 join is not a true binary 

system owing to the presence of lithium metasilicnte. The compounds, 

lithium disilicate, lithium metasilicate and Li20 • ZnO • 8102 ~orm a 

composition triangle. The invariant point of this cOOlposition triangle is 

a reaction point which is Li20 27.5 mol % Zno 9.8 mol % 8i02 63.7 mol r~ 

at 9760 
: SoC in the lithium disilicate, silica and 1i20 • znO • 5i02 

composition triangle. 

(7) The lithium metasilica te field. 

The Jlthium metasilicate ~ield above the f~ty mole percent 

silica line is outlined by the area ABC. 

The lithium metasilicate crystals generally appeared in the glass ~s 

lath like positive elongated crystals with parallel extinction. The 

crystal ha~it changed considerably. When the compositions were near ~he 

lithium metasilicate compositions, the crystals were ~ound to be well 

formed laths with rounded corners. J1.hen the compositions approached the 

Li
2
0 • Si0

2 
- Li20 • Zno • 8102 boundary, the crystals tended to become 

rD.,t\Ae.a. triangles. The specially prepar ed lithium metasilicate standards 

were: well developed trial1&ular prisms which could be easily broken i n'to 

tiny needle-shaped crystals. '\!hen it VIUS exrunined with the needles 

lying flat, they appeared to be unio.x.ial. Since this crystal vms re-

ported in the literature to be pseudo-hexagonal orthorhombic, a 

specimen v.us specially prepare:d to examine the crystal along the o.xis of 

this ne ... dle. Severa l crysto.J. prisms ,,!ere mounted vertically in Pari~ 

pl£Ster reinforced by Canadian balsam. This specimen was so ground that 

the rur:is of these prisms were parallel to the light path of the 

petrological microscope well developed bio.x.ial interference ~igure was 

obtained from t his specimen. Therefore it had proved concl1.lsively that 

this crystal is actually bio.x.ial. The optical. properties 0:: t his crystal 



Table 6 

Optica l propertie s uf Ii thiwll meta silica te cryst a l. 

,-
Authors 

R.Roy and 
(16) 1.590 1.610 

.F.Osborn I 
F.C.Kraeck(8) 11.591- 1.611 

G.Dorme/lS ) 1.584 1.609 
and J.D.H. 
Donney 

Unirucia 
positive 

Uni.a.xio.l 
positive 

Uniaxi a l 

Biaxial 
positive 

ortho- lath 
rhombic 

araliel teg-i 
." , egati-rel araL ...... 

I 
I 

arUl.JfU. 
I 

Fitive 

!Present St~ 1.585 11•593 1.611 Biaxial ortho-
Positivel rhonii.c ! I 

I 
! , 

... -..--~-~----

Several extraneous lines were also found in the data in the X-ray 

Powder Ihta File when they were compared with that obtained from the ' 

si;an&lrd prepared in the pre sent study. The data in the X-roy Powder , lhta 

File is also due to A. E. Austin(14). Hclative intensities and tI-spapings 

were given but not the Miller Index. These ext:..uneous lines were latpr 

identified to be due to I i t Jlium orti: osilicate. 

The cell parD.IllCters were measw:ed by G. Donnay and J. D. H. DOIlIlfl.Y(15) 

wi th Weisenberg single crystal technique. , No diffraction data was given . 
, . 

They indexed these crystals as pseudo-hexagonal orthorhombic with ao r: 

5.43 i ,bo = 9.4LR , and Co = 4.660 R • 
The present po\vder data \¥~ S indexed as pseudo-hexagonal ortho

rhombic based on Donnay's cell parameter. Since alb = 0.577, this cr,Ysta l 
, 

was hexagonnl within the eA-pcrimentn.l D.ccuracy, if dimensions c.lone were 

considered. However. results from the optical examination have proved 

conclusively that this crystal is biaxial. Therefore, the d a ta was 

indexed as an orthorhoniliic crys t al. With fO~. fQrmulD.e weight per unit 
.. ~ . J .. ' ~ 

cell, the calculated density is 2.51 g;.r/ crrt in agreement vlith the observed 



density of 2.520 g;n/cm3• The ca lculated a nd observed pO'l'Jder data was 

listed in Table 7 together v{lth A. E. Austin,s(14) ta.ta. 

Table 7 

X-ray Da ta of Lithium Metasilicate 

110,020 4.705 

111,021 3.311 

130,200 2.716 

131,201 

002 

2.347j 

2.330 

4.70 

3.31 

2.34 

112,022 

132,202 

1150,240 

2.088 2.09 

1. 769l 

1.779 

222,042 1.655 

060,.330 1.568 

003 ~553 

312,242 1.413 

260,400 1.357 

133,203 1.348 

I 062,.3.32 1 • .300 
; 
351,42~ 1.256 

1313,243 1.170 

\422,352: 1.138 

I 

1.773 

1.655 

1.567 

1 • .355 

1 • .349 

I ~::: I 
I 

i 1.170 

! 1.138 

100 

22 

92 

~7 

3 

8 

7 

40 

40 

3 

4 

4 

7 

6 

3 

3 

~-~~"-~:t~, :m)- Dat£l : 
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~'3.20 
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1.66 
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1.14 
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2 
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10 

22 
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12 
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(8) The zinc orthcsilicate fluid. 

The zinc orthosilicELte f ield above the fifty mole percent 

silica line is fairly big and is outlined by the area GHJ. 

The zinc orthosilicate crystals generally appeured in the glass us 

well developed hexagonal long prisms 'Va th high refractive indices and 

birefringetlOe. Sometimea this crystal wns found to be irregular grain 

with no characteristic crystal habit. The X-ray diffraction pattern was 

found to 1,;: the same as published in the X-ray Powder Data File (A.S.T.M. 

Curds) • 

Zinc orthosilicate forms a composition triangle with silica and 

2 Li
2
0 • 4 ZnO • 3 S102• The invariant point of this ccmpo ni tion 

triangle is a reaction point at Li20 15 ~ 7 mol %, znO 24.5 mol %-and 

8i0
2 

59.7 mol ~~ and 10680 t 50
0 in the 2 Li

2
0 • 4 ZnO • 3 Si02 , silica 

~nd Li
2
0 • ZnO • 8i02 compcsition triangle. Zinc orthosilicate dissolves 

in 2 Li20 • 4 ZnO • 3 Si02 to fOI'm solid solution. 

(9) The Li20 • ZnO , 8i02 field. 

The Li
2
0 • znO • Si02 field abu~e the fifty mole percent silica 

is outsided by the area ACEMFIK. The primary phase crystal of the 

compositions in the area ACEMK is pure Li20 • ZnO • 8i02, bdcause it does 

not form solid solution with lithium disilicate, lithium metnsilico.te or 

silica. However it forms partial solid solution wlth 2 Li20 • 4 ZnQ • 

3 Si0
2

, and t"fO phase regions were found on the right of the line KM. 

'lhe COILilosi tion of this primary crystal A was fully investigat~d. 

Several compositions vrith simple oxide ratio were prepared by repented 

grinding and sintering or by melting with mech~icnl stirring. The~e 

specimens were then completely devi trified. The results were shovm in 

Table 8. 
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Table 8 

Compositions vrith simple oxide ratio. 

_________ ~._ •. ___ .M_.· _ _ ___ ___ '_ .' .• _. ____ ~ _. __ __ • 

LiO 
2 

Composi tion (mol %) --- . . _----------_._-.. _.-
ZnO SiC 

:2 

X-ray resul"ts 

52~ 

----~---.. -- .- ... -.----.-. -.. -+----------.----,, -- .~-. -

l. 1 

1 1 

2 2 

1 1 

2 

. . 3 

2 

3 

1. 

2 

A + Si02 

A + Si02 

A + Si02 

A 

~.-.--..... - - ---
Note: Si02 D~ludes quartz, tridymite, and cristobalite. 

Six compositions arounn Li
2

0 • ZnO • SiO~ were investigated by 

o X-ray diffraction. All the specimens were heat treated at 950 C for one 

or two dayse The results were listed in Table 9. 

Table 9 

Compositions around Id.20 • ZnO • Si02e 

,~ ----- - ---_. ,---
• 

I 

Compositions (mol %) X-ray results 
._----- - --;------- ----- -. _-. 

Li20 ZnO Si02 ------i------t-----+-------+--.. - ...... --........ - ---
1 35 

2 35 

3 30 

4- 32 

5 32 

C 36 
I 

! I 

30 35 

35 30 

35 35 

32 36 

36 32 

32 32 

Ii. (with Pf'i!k shift) + ~02 

A + Si02 

A + ZnO 

. A. 
. .. . - --... ---- - ----.- ---- ._-: ----------- ..... --_ .... " -"-'" .... _ ..... J 



Assuming that t 11e composition of this primary phase crysta l A is 

Li,O • ZnO • Si02 " the excess Li20 in No.2 and No.6 ccmpositions could 

not be found. This may be due to the low atomic number of lithium. The 

othe:.. four compositions indicated that this primD.ry phase 0ry;::. t a l A does 

not form a~ appreciable solid solution with zinc oxide, lit!uum meta-

silicute or silica. 

The phase relationships at 950
0

0 were investigated to establish the 

composition triangles. The results were presented and discussed in the 

section conce:..~ning the composj.tion triangles. From this data lll.' "'hat i:.. 

the preceding two sections, the composition of this primary cry~tal A is 

certain to be Li
2

0 • znO • Si02 • Although the presence of solid solution 

may CaUse error in interpretation, the dut~ on the left of the Li20 • 

ZnO • Si0
2 

- Si02 join clearly indicates that the conclusion is correct. 

Two specimens of LiZO • ZnO • Si0
2 

were pl~pared - one by repeated 

grinding and sintering and the other by melting. Both specimens showed 

peaks corresponding to those of the primary crystal A. There c.re som~ 

C .!. .. ,,~: ·pancies in the ratio of intensities between the Li?O • ZnO • Si02 .. 
specimen and those of the prirr.ary crystal A. However, it was found ttlat 

the intensity ratios are not as reproducible as with other compounds. 

This waS found both iJ1. the Li
2

0 • ZnO • Si02 and in the primary phase 

crystal A. I. M. Stewart and G. J. P. Buchi(12) had also identified this 

composition as Li
2

0 • znO • S~2. in their work on the phase relation$ip 

of Li"l- - ZnO - Si0
2 

system. They had indexed their powder data on the 

basis of primitive tetragonal cell vvith parameter ao = 11.47 X and Co = 
10.78 2. It was f'o'md in the present study that the pov'rder data coulp, 

also be indexed on the basis of hexaGonal cell \';i th paramet~r ao = 18.7 2 

and Co = 8.2 2. Discrepancies were found in several lines between the 

cu:'culated and o L) served value in the ba sis of both uni t ce ~U. 3) with 

slightly better ag~eement with the hexagonal cells. The discrepanci~s 

were slightly bigger than the rmximum experimenwl errOl'. These two 

unit cells were not tran~~ormable, therefore they are incompatible. 

The apparent fit with these unit cell s IllD.y be due to the big unit cells 



used and the l arge m'lximum error assumed. The density of this crystal was 

found to be 3.39 gm/c.c. by displ acement techni que. Ther efore each h~~-
gonal cell contains thirty for.mula units and the tctragonal unit cell 

cc..l-t;ains seventeen f ormula unit s, so thnt both unit cells seem to be f a r 

too big. It may be possible that the true unit cell of Li20 • ZnO • Si02 

is only very close to the hexagonal cell. The X-ray diff r actl on dat was 

shown in Table 10. 



, 

55. 

Table 10. 

X-ray powder data of Li2U • ZnO • Si02 

Present study 

, 

~ 
I. M. S L eward and G-.J . P. Buchi .. (12) I 

I 
J----------~-------------_+--------------~----------------~ 

______ d __ ~--------I-/-I-O----+_------d-----~----------~-I-O------~11 
5.~~ 70 5.405 5 

4.05 60 4.059 rnd I 
I 

3.93 50 3.941 md I 
3.64 100 3.665 va I 
3.12 10 

3.08 90 

2.88 

2.70 

2.65 

2.56 

2.51 

2.44 
2.36 

2.3'+ 

2.190 

2.120 

2.020 

1.940 

1.901 

1.865 

1.816 

1.796 

1.757 

1.610 

10 

100 

90 

8 

70 
1.0 

20 

20 

5 
5 

40 

5 
10 

10 

20 

10 
8 

5 

10 

20 

50 

5 

3.099 

2.991 

?888 

2.815 

2.696 

2.643 

2.578 

~.508 

~ +31 

2 .. 266 

2.199 

2.123 

2.019 

1.942 

1.889 

1.865 

1.820 

1.794 

1. 748 

~.692 

1.615 

1.592 

1.563 

1.536 

1.511 

VVVl 

vw 

vvw 
+ 

S 

+ 
W 

'rwd 

a 

vvwd 

vvwd 

w 

w 

w 

w 

vw 
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1 
r I 

d I/I. d 

~ 
I/I • 

1.488 vvw 

1.466 JLO 1.468 wd 

1.446 8 1·453 vw 

1.438 vvw 

1.423 + vvw 
-1.410 10 1.409 vvw' 

1.364 vvv{-d 

1.354 vvwd 

l.310 25 
--,_.- ~--



The LiZ-0 • ZnO ~ Si02. crystals were norma lly found to be 

rectongular t ablets with rounded corners in the glass:ol The LiZ-0 • 

ZnO • Si02. standard prepared for X-ray work was found to be irregular 

grc:J.ins with no characteristic crystal fonn or habit and wi ~h no good 

cleavage. Also multiple twinning in all directions seemed to be pres~nt 

in these samples. Therefore it was very difficult to obtain accurate 

refractive indices. The maximum and rninUnum refractive indices were 

determine~ and found to be 1.635 and 1.664. 

(10) The 2 Li20 • 4 ZnO • 3 Si02 field. 

The 2 Li
2
0 • 4 ZnO • 3 Si02 field above the fifty mol~ percent 

silica is outlined in the area FGJI. The refruc-cive indices and the 

X-ray da ta of this crystal are very simii8r to toot of Li
2
0 • znO • 8i02 • 

Also solid solutions were found between the se two compounds. Therefore 

tl:lese Made it diff icult to locate ycry a ccurately the eutoctic paint F 

in the 8;i02 - Li20 • Zno • Si02 - 2 Li20 • 4 ZnD • 3 Si02 oomposition 

triangle. Liquidus temperatures of compositions a r ound the po~t F were 

·ube ~ for locati ng F. The present data. of point F is Li
2
C 16.5 mol %, 

ZnO 23 mol " Si02 60.5 mol % at 10500. :!: 5°C. 

During ti1e early stage of the investiga tion of liquidus temperatures 

of the compositions in the glass forming region, the primary phase field 

of the crystal B was mistaken as that of the crystal Li20 • ZnO • 8i02. 

After I. M. stewart and G. J. ? Burchi(12) had reported the existe~e of 

the ternary compounds Li2~ • Zno • Si02 and 4 Li20 • 10 znO • 7 Si02~ 

the X-ray diffraction data of all compositions with Li2C • Zno • ~i02 as 

primary phase crystal were re-examined. It wa s found that the X-roy data 

of seven compositions near the zinc orthos:Uicate field showed sligh~ 

shifts of peak positions. Owing to the close similarity between t.he 

X-ray pattern of crystal B and that of Li
2
0 r. ZnO • Si02 and t l"> ': ill"" 

defined pattern o· .>tained from the smo.ll amount of crystal in the X-r~y 

specimen, these differences were overlooked at the time of the experiment. 

Specimens of these compositions, heat treated a G lower temperature, but 

o 
above 1000 C were then examined by X-ray diffraction and the peak shifts 



were confirmed. Aft.::r the investiga tion of the Li
2
0 • ZnO • Si02 -

2 znO • Si02 join, the existence of the primary p!k1.se crysta l B a nd its 

pr:iJllury phase field inside the glass i'orming region were confirmed. Also 

data in the zinc orthosilicate primary phase field supported the existence 

of another ter'nary com.i.)ound. 

The composition of this primary phase crystD.l B was not investig.::l ted 

us conslusively as thu t of Li20 • Zno • Si021 but 2 Li20 • 4 znO • 3 Si02 

seems t o be the most likely composition for this primary phase crystal B. 

'rhis point wUP. discu~sed in more detail i n the following sect:... or "'''n~ern-!.ng 

the Li20 • ZnO • S102 - 2 Zno • Si02 join. The X-ray datu of 2 £12° T 

4 znO • 3 Si0
2 

were shmm in Tuble 11. 
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Table 11. 
X-raJ powder data of 2 ; i 2' • 4 ZnO • 3 3i02. 

I 

r/r •. I 

d I 

I 5.47 25 

5·24 10 
4.07 75 
3.97 45 
3.69 40 
3.63 35 
3.21 20 
3.15 5 
3.07 25 
2.86 25 
2.74 100 
2.63 80 

2.51 80 

2.44 5 
2.1~0 25 
20319 5 
2.135 25 
2.026 ~5 

1.936 20 

1.879 5 
1.850 20 

1.816 5 
1.742 5 
1.601 30 

1.5.36 40 
1.470 15 
l.438 le 
1.369 15 
1.307 20 

- .'. 
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(11) The Li20 • Zr£) • Si02 - 2 znO • Si02 join. 

Four compositions in this join were prepared by repeated 

grinding a nd sintering a t 1400
o

C. The results outained were not re-

pro<...ucible. Therefore new specimens wey'e prepared by melting a t 

l~ - 1500°0 in a Pt/Rh wlncling furnace and these specimens were used 

for sUb;,.equent heat trea tment experiments. Finally nine compO'sitiO'ns 

were prepared. 

The melted specimens chilled from the melting tempera ture were 

examined by ":f.-ray diffraction. Gradual ci1:.1,n3e s of the peak p O['4 ~ . .; 0::1~ 

and intensities with C0lTl2 0s i tion were f ound. The peak shifts ,",'ere not 

constant and also not in the srune dix'ecti on 1'or 0.11 peaks. The big6~st 

shifts were in the two strong pea ks fron 2. 70 ~ to 2.76 1t and from 

2.65 R to 2.61 R. Also the peo.k of Li
2
0 • znO • Si02 at 3.64R spii~ 

j nto a double peak. Compositions containing up to' 6af6 of zinc ortho,; 

silicatel:,ave one phase with an X-ray pattern similar to T,i
2

0 • ZnO ~ 

Si02 , and no zinc orthosilicat e was detected. This ir.dicates the 

e ,33~ence of a continuous series of solid solution in the Li
2

0 • ZnO • 

Si02 - 2 znO • Si02 join up to 60}& of zinc orthosilica te in Li20 • ZnO • 

Si0
2 

in specimen chilled from higher than 1500O'C. Attempts were made to 

index the powder datE', of this series of solid solution on the oosis 1Of' a 

hexD{;orw.l cell with l)D.ra'lleter no = 18.7 .R ane: Co = 8.2 R for the Li2.0 • 

ZnO • Si0
2 

crystal, with increasing 0.0 and decree. sing Co for this series 

of s~~~d solation. IIigher discrepanci es were found between the 

calculn ted £'.l1d the observed v a lues than that in the Li20 • ZnO • Si02 

crys·~a1.. This may be due to the wrong unit cell used for the Li
2
0 . : 

ZnO • Si02 crystal. 

These compositions were also heat treated a t various ternp~r :.' , t ures in 

l.~e range of 950C - 1500
O'

C. The X,·ray data was f airly difficult to 

interpret due to the close similarities of the X-ray pattern of the 

crystal B and L120 • ZnO • 8i02 • However the presence of zinc ortho

silicute could eusily be identified. Compositions containing higher than 
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4Of~ 2 znO • Si02 and heat treated a t low temperatures gave the X-ray 

pa"itern of zinc orthosilicate and un X-ray pattern simi l ar to Li
2
0 • 

znO • Si02• In the spe cimen corresponding to the composition of 

4 T.1.
2

0 • 10 ZnD • 7 8i02 only one phase with an X-ray pa ttern similar to 

Li
2
0 • Zno • 8i02 was f' ound, when the specimen was quenched f rom above 

105000; Jelow that temperature zinc orti10silicute l;>recipi t a t ed out a nd 

the X-ray pattern of the other crystal shifted toward that of Li20 ~ 

znO • SiO?, This data proved conclusively that the IIcompoundl1 

4 Li
2
0 • 10 7,n':> • 7 Si02 reported by I. lVi. Steward and G. J. p. Buch~ (12) 

is not a true compound, but a solid solution of zinc ol'thosili"'ute in a 

compound with compositi on si tun ted on the left of t he 4 Li20 • 10 z nO • 

7 Si0
2 

composition a long the Li
2
0 • ZnD • S102 - 2 ZrD • 8i02 join. 

Zinc orthosilica te was not f ound ir. specimens containing les!) than 

3~ of 2 znO ,Si02 , In thp. region bet,reen Li
2

0 • Zno • Si02 and 33~ 

2 ZnO • Si02, only one X-ray pattern similar to Li
2
0 • ZnO • Si02 , was 

found, except in compositions near 2~ 2 Z!lO • Si02 • The X-ray pattern 

c~ the specimen containing 2~~ 2 ZnO SiOr heat trea ted a t low temperature 
~ 

were the surne as in the specimen chil' dd from above t he liquidus tempera-

ture except the two strong peaks at 2.61 Rand 3.64 R which. split into 

double peaks. If these double peaks o.:ce interpreted as from two different; 

comp ounds wi th very close X-~ay diffra ction patterns then there is ~ 

ternary compound in the regir)n of 20 - 35% 2 Zno • Si02 , Within this 

regi e. "., the only simple oxide rutio compound is 2 Li20 • 4 ZrO • 3 ~i02' 

It should be pointed out here tha t the peak shifts of these ~ pea~s are 

much bigger than ~hose of the other peaks, when solid solutions were 

found in the specimens chilled from a bove t he liquidus ten.peru ture. If 

the specimen containing 2q% 2 ZnO • Si02 bro~e dovr.n f r om one phase ~t the 

tigh temperuture into two phases a t the lower temperature, the strong 

peaks would split but the other peaks would ~ust become broader peaks, 

owing to the smull peak shifts, Theref ore , it is reasonable to assume 

the existence of another ternary compound in this join, 



During the inv~stigation of phase rela tionships a t 9500 0, it was 

th0usht that only ~;~ phases, silica and Li20 • znO • Si02 solid solutio~ 

were f ound in the area outlined by KMGJ, but on closer e xamination some 

sppc.mens also showed t he split of these two strong pea ks in their X-ray 

patterns. Therefore two two""'.Pnase regions separated by a three phase 

regi on wvre shown in the composition triangle diagram. 

Several com~os~tions in the 2 znO • 5i02 primary phase f ield were 

found to contain trid3mi te and crystals similar to Li20 • ZnO • Si02 

only and 2 ZrJ • SiC2 WaS not present in specimens heat treuted ., + 

o 
temperature lower than 1070 O. Thi s indicu. ted that the point G is only 

a reaction point and another compound is present vdth compo sition in the 

Li
2
0 • Zno • Si02 - 2 ZnO • 8i02 join. 

Attempts to determine the liquidus t.emperature along this join by 

quenching technique were not successf ul, because it was not possible to 

differentiate the umall amount of the crystal B from Li20 • Zno • Si02 

by X-ray clifi'raction due to the close similarity of these two X-ray 

T'£.":t erns and the exi stence of solid soluti uns between them. Identifi-
I 

ca tion by op tica l methods werf:; not suc.!essful, because the optical 

properties of these two compounds are very similar and the size of 

crystals fonned d1U'ing the high temperature hea t treatment was similqr to 

those formed during t he quenching from high t r;mpera ture to low tempera-

ture. 

lL~ the n:oment, fI.O differ ential therma l analysis apparatus capab~e 

of r l)uding 1500':>0 was a\Eli..lable, so the quenching f urru:tce wa s u::;ed i'o;f 

thermnl analysis. Two alumina specimens were put in t wo adja cent 

specimen cones. Temperature difference between these two cones ... vere 

deduced from the tempera ture mea surement of alternate cone at half a 

minute intervals. Li thium meta silica te was used to find i f 8 01J 8 

thermal effect co"l.ld be detected. The temperature difference of these 

two cones over md above that found in t he alumina run were regarded as 

thermal eff ect of the lithium metasilicate. The same heat up schedule 

was used. At 1205
0

0 (liquidus temperature of lithium metasilica te is 



120lo ~ lOO) a tempc!ra ture drop of about 5°0 wa s f OW1d. The specimens of 

other compositions were investiga tec.l with t he some procedure. A tempera

ture drop of about 4°0 was fOW1d a t 1480°0 with -:Li .. 
2
0 • ZnO • Si02 , and a 

o 0 
tf'llnJ?era ture drop of about 3 C wa s a lso found at 14.30 o. Unfcrtunately, 

no significant thermal effec"; \vas fOW1d wit h other cOffij" osi tion. 

Obviou~ ..... y this wa s due to the insensi ti vi ty of the arr angement of the 

appa ratus, because the thermocouples were outside the specimen cone~ 

instead of !~bedded in the specimen. Al though the comp osition of the 

primary pha£"e Cl'yshls ~ was not proved to be 2 Li20 • 4 ZnO • ~ S~.02 

conclusively by the liqui dus curve in the Li
2

0 • ZnO • Si02 - 2 ZnO • 
jein, 

SiO~ it is tenta tively identified as 2 Li
2

0 • 4 ZnO • 3 Si02 on th~ 

evidence discu~sed above. 



PART B. MESHANIS:T OF C1WSTALL)],ATION 

I. LITERATURB SURVEY. 

~. Explanation of terms. 

In the literature , different ter-InS have been used by 

various workers to refer to the same processes. For the convenience 

of discussion, the terms us ed :in this thesis will be expla:ined here 

to avoid confusion. 

When nucleation takes place anywhere :in D. ntructure, the 

process is callt:d homo[;eneous nucleation. Generally, the r ate of 

nucleation does not chanGe vri th time. If nucl Gation takes place at 

prepared sites, the process is called heterogeneo us nucleation. 

The rate of such nllcl Gation deereases with ti!l1.C as the preferred 

nucleation sites ::tre exha.usted. 

If the concentration of crystals at the surface of a specimen 

is much higher than that of the whole body, the process is called 

surface crystallization. When there is not much difference between 

the concentrations of crystals on the surface and in the body, the 

process is called uniform crystallization. 

The mechanisms of clystalliz:-... tion are classified according to 

the behaviour of the speciillcn in the nucleation stabe. 'J.lhe 

crystallization proces ses genel:' dly refer to the microstl'ucture of 

the 51-Gcimen. 

2. Nucleation. 

(1) Cla~cal nucleation theory. 

G. Tammo.nn(18) considered the free energy chC'.nge in the 

crysttulization processes of undercooled liquids. Clas s ical 

nucleation theory i.s bM:!ed mainly on his ar6"Uments and experimental 

results. In un undercooled liquid system, thtl liquid phase has a 

higher f'ree ener[:y than that of the stnble crystalline phase. 

Therefore there is a decrease in fr ee energy during the b 'ans-
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forraation of the li qui e1. pha se int o the cr y s talline phase. However, 

in the formation of the crystalline phase, a nevI bOlUldnry is formed, 

and this increases the tot[>~ fr ee energy of the whole sys tem in the 

form of sUl'face en0:" .-Y- Durin ,~ the ini tial stc.~e of' the forrn Ettion of 

the crystalline phase , the totJl free energy of the whole system 

increa ses, whil e the crystal grows, because the increase of the 

surface energy- of the boundary, due to the n aV71y for:l! ed crystal, is 

hiGher than the decl'ense of fr ee ener2.Y 01uing to the diff erence 

between the fre e ener?;:! of t~e crystal and that of t he undercooled 

liquid. The net r es ult is un increa se of free ener gy for the whole 

system a:::isin~ f rom the high surfac e to volume ratio of a small 

particle_ Ther efore nuclea t.ion has an ener uY barr ier. If the 

crystal is bigger than a c ertain size, the total energy of the 

system decreases while the crJrstal grows, becaus e the increase of 

surface energy as a result of the l a rger s urface of the crystal is 

lower than the decrease of fr ee energy due to the differer.oe between 

the free energy of the crystal and tha t of th e undercooled liquid. 

rr'herefore, in these conditions, the totr.l free CllGrty of the sys t em 

decreases, during the growth of the crystal and the crystal is 

stable. The minimum s ize of' the stable orystal depends both on the 

surfc.ce ene l"{;S of the boundary nnd the difference of f r ee enertSY of 

the liquid ll..Y}d the orY3tal. This minimum size i s called the critioal 

size and it changes with tel,tpernture. As a result, nuclei above ~~he 

oritical size .7ill f::;row and those below the criti cal size will be 

dissolved. The homogeneous formation of nuolei is instantaneous 

and oan only arise from thermodyna.mic fluotuations of suffioient 

magnitude. 



After the f orme.tion of the :table nuclei, the grovTth of the 

crystals will decrease the total fr ee enerbY of the systom. There-

i'ore , there is no enerQf barrier in the s t eady state crystal growth. 

OVling to the different natur e of these two stabes of crystallization, 

Tammann (18) divided the mechanism of cl'ystallization into tYIO separate 

processes, the f orma.tion of stable nuclei and the steady state 

crystal gro7lth. 

He considered that the ability ,of a liquid to be undercooled 

depends both on the rate of formation of stable nucl ei end the r ate 

of steady state crystal grovnh. The rate of nucleus formation in-

creases with the det3ree of undercooling and then clecreases after 

r eaching a maximum. The rate of nucleus fornation verB.l8 degree of 

undercooling curve is in the form of a random distribution curve. 

He also predicted that the shape of the growth rat e versus degree of 

under cooling curve would be of the same form. 

He verified his theory by experimental work on organic liqu~ds, 

mainly pure compounds. In the abs ence of accur ate dat a on the sUl~ace 

ener GY of the crystal and liquid interface , he predicted that the 

critical size of nuclei ~as very small. He undercooled organic 

liquids for a certain time interval at constant t emperature and then 

held them at higher temr>erature to grow the nuclei. By assuming that 

no new nuclei were formed at the higher temperature, he counted the 

cryslials and obtainea. the rate of nucleus formation. The numb er of 

crystals was not constant but follow"red the l aw of probability. He 

found that the r ate of nucleus formation at eaoh temperature de-

crecsed with sucoessive undercooling. Also holding for a long 

time at higher temperatures decrea. sed the rate. However, the 

shape of the rate 'rersus temperature curve as !".\ umed the predicted 

form and the maximum rate temperature was not affected by repeat ed 

heating. 



R. T. Jacobdine (19) studied the rate of nucleus formation in a 

binary lithium silicat e gl Cl':';~ contCl.ining 30 mol % of lithium oxide. 

000 
The s l)ocimens were hDut t i 'c",ted at 520 ,560 or 600 C for up to 

three days . After acid etchin " , the spec:i.Ulens wer e exo.mined tmder 

micl~oscope . Li t hiwn disilioa t e '1'1: . 3 found to be the cry ,3"~o.lline 

phase. The size of the cr,jstals was not un:£orn indicating tha t 

they did not start to grow at the same t ime. The nwnb er of crystals 

per unit a.rea. vms fOLmd to incrense linea:::-ly with time at the 

three t9l:\pern. ture s :LV).vestil.;;ated. The rate Gf nucleus fOl' lllution was 

hie,her at higher t e~ lpero.t ure. However not enoL~Gh data was obtain ed 

to enable conclusions to b e dr'::.VlTl a.bout the rate of nucleus formation 

over a. wide temperature range. 

O. Kapp(2O,) studied the nucleat i on of a l ead glasf.l and a 

maf.Pesia glass by holdinE'; the specimen at constant t emper ature. 

o 
In the specimen of the mo. ;;nesin glass heat treated a t 700 C for 

various time intervals from thirty minutes to three hours, all 

crystals were of the saIDe size indicating simultaneous growth. In 

the specimens of the lead glass, SOl!le small crystals were found 

suggesting the forn ation of new nu clei at later stll :;es of heat 

trea t ment. In another s eries of experiment I he h eat tre!~ted seven 

o 
specimens of ma,;nos i a glass and lead glasses at 750 C for a half of 

an ho'..11', and photogr[~phs wore taken. The nwnb -I' of crystals in one 

sixth of the photo Gro.:l!h were (Jounted. Very widely scattered result~ 

were obtained. The standal'd devilltion for ellch specimen WIlS found 

to be as high as t wenty five percent of the mean. By using Graf's 

statistical anlllysis, he concluded that the varia tion in the I' ate 

of nucleus formation was due to choncs. Also he found that ellch 

glass ha.d its mm r u.nge of' ratG of nuclei formation. 

During tha inves t icio.tion of tito.nia white enamel, T. B. Yee 

and A. I. Andrev,/21) studied the number of crystals formed during 

the heat trea tment. Thin films of tho ena.mel wer e supported on 



quartz slides and t oat trec, t ed a t t eill})erat ur e range f rom 700 0 
to 

11000C fo r t wo t o ei t ht minut es . The numb er of crysta l s in unit 

ar ea were counted in the enlm~,O:; Dd photomicr ographno The rate of 

67" 

1 .&' tOO d oth 0 0 t t to 8 h." 0 _ nuc eus .L orma l on m crease Wl. J.IlCrC~ ' S :Lnb emller a °ure up :./U 

900°C and decrea s ed at higher t emper a ture. Howev er a v er y high 

scatter was found and the curve wa s not symmetri co.l. Both M 9.t ase and 

rutile were found as crystalline pha s es in t he enamel. 

(22) R. D. Maurer s tudied t he nucl ea t i on proc ess of a phot o-

sensitive gla s s . ~'ho sp ecimens wer e expos ed t o hi gh energy r o.dia:tion 

of var y inc; int e.l s :l:t.~ os and f'or vnr :o,-ous J. en st hs of! t ime and t h en h ea t 

treated. Light scatt ering allU liGht ab sorption me £, surement s were u sed 

to deduce t he numb er and si ze of' the stabl e bold nuclei. He concluded 

tha t the numb nr of stable nuclei in the specirn fJl1 tl.Gpended s olely on 1fhe 

intensity and l en gth of irradiat i on b ut no t h e tl t t :centment. The 

smallest stable gold nucl ei was only on e t o t hr ee a toms b i g and the 

growth of the gold crystal obey ed a simpl e diff'usion l aw. 

(2) HeterOGeneous nucleation. 

a. ~lass c er amic proc e ss. 

S. M. Ohlberg , A. R. ~olob and D. ''i'l . Str ickl e/ 23 ) studied 

the mechanism oi" cF,fs to.l l i zatiol1. in threE: quat erna r,f sy s t em. Elec-

tronic micr o s cop e , optical micr os cope end an X-ray di f frac t ometer 

were 11S edt 

In t he IJ1agnesia - aluf.l ina - s ilica. - ~tania syst em , a seri es 

of specimens was heE:.t t reated at 10000C for diffe r ent times. Tho 

crystalline phase wa.s identified. Silica - 0 c r y stals were found 

first. Cordierite cryst~ls wer e identified l ater. Rutile was found 

only after a long hea t trea tment. In A.not he:c seri es of experi..lI ::nts, 

the sp ecimen vms :. eat trea.t ed a t 900°C o.t di ffer en t i.:i mee .. Aft er 

tVlenty-five minut es of heat treatment, about ei ght' percent of 

crys talline pha s es wa s found, but t hese cry stalline pha.ses wer e not 

identified. They concluded t hat when the sp ec i men was chilled during 
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c e.sting, glass-in-( l.ass phase sepa r a tion ocourred. During the heat 

tr"at.ment, droplets of' glass of dif.ferent composition from the main 

body of the glass increa.,ed in size. La t er , magnes ium ditatano.te 

was formed which nucleated the silica-O crys t als heterogeneously. 

Cordierite and l 'utile VTere developed later, by the r eaction of the 

intermediate crystn.lline phases and the Glass matrix. 

In the lithia - lime - silica - titania system , the specimens 

wel~e heat treated o.t aii'ferent temperature for different times. 

When the heat treutment t eml) erature was b elow 600 0e, no crystalline 

phase was identified by X-ray di ffraction, but small dropl ets were 

found in the electron micrographs. At higher tompere.ture heat 

trecLtment, orystalline phases were found, and the appearanoe of the 

bound:J.ry of the droplets ohanGed during Cr:'lstalliza.tion. In the 

specimen h eat tre~\ted f'or a long time, quartz, lithium disilice.te 

and an unknown crysto.ll inc phase with a total orystalline oont ent of 

90% ViaS found. The,:' concluded that, glass in glass phase separation 

oocurred when the speoimen wa.s cast. During the heat t reatment more 

glass droplets were formed and these h eterogeneously nucleated the 

minor cl.~ystals which then grew from the boundary. In t he final 

stage , the minor crysta ls nuclented the ma jor orystals heterogenously. 

In the lithia - me. :..;nesia - alumina - s ilicate sys tem, the 

specimens were heat treuted at loner temperature and then at higher 

temperature. Droplets were found in the eleotron micro~raphs. 

Later, the oryst (~llization s ·carted at t h e interf'aoes of the droplets 

and the crystal grew into the dr·oplet. In the specimen heat treated 

at high temperature for a long time , 85>0 ofi~-spodumen e ~md silioa-o 

crystals were found. They concluded that in this system, glas s in 

gla.ss phase s eparation also occurred. 



w. Vegel and K. Gerth(23) studiod two gla3scs,one of which 

was mainly a l i thi a - alumina. - silica - tit onia glass with minor 

constituent s a.nd the ct h8r w~s a. lit h:i_a - bet'yJJ:La. fluor ide glass. 

In both Glasses , phase s eparation droplet s WE:r e cI ';al'ly c.emonstreted 

in the el ectron mi crogr aphs. In the aluminosili co.tc gl nss , the 

droplets crystf~lized fir s t and then the Glass matrix crystallized. 

In the fluoride glass, the glass matrix cryst[,llizecl fi .. ~st and then 

the droplets crys t alli zed. They concluded that cato.l ysts (i.e. 

titania and cerium oxide ) promoted phase :3epllrat i on. During the 

phas e s epa.ration, n eblOrk fo rmer oxi iles would concentx'at e in one phas e 

and the other phase whi ch cont ained a high percent a3e of net work 

mo di f i er oxide would clevi t r ify f i r s t und then thi s crystalline pr.ase 

hetero ::;enously nuclent ed the ot her phase . 

R. D. Maurer(24) studied the crystallizat ion of a titania 

nuclea.ted gl as s . Results f rom li!;;ht scat t ering and X-ray diffract~on 

were used to deduce the size and number of cr yst als. At the initi al 

stage, i30tr opic r egions were fo und which became anisotropic with time. 

Higher te:l1peratures f avour t his t r ansformat i on. It vm s concluded that 

liquid i n liqui d pha se s eparat i on occurred at the early stae;e of heat 

tre' t ment, end the ph[~se separ :>..t i on promoted the crystalliza.t i on of 

magnesium di ti tanate. Yii th about t en percent of total crystalline 

phase t he sizes of the cryst als VI8j:'e found t o range frow 57 ~ to 

211 .R in sp8cirnens i1eat tr'eat ed at diff eren ~ temperat ur e for different 

time. The number:) of crystals in these specimens wer e found to he 

10 - 1000 x 1015 crystal/cm3. 

J. P. Willi!lllls and G. B. Carrier(25) investi oat ed t he crys t al-

lization process es in two glass es. In t he lithia. - alumina - s ~ .l ; .c q, -

titania glass, tl: e specimens Vlere heat treated nt BOOoe fo:(' one hour 

and then at hiGher temper a. t ur e i'or one or f our hours. jJ -eucrypti te 

wa s found in the specimen hea.t t1' 6~lted a.t BoOoe only. Prolonged 

heat treatment nt t hi s temp er atur e did not a.f f ect the size and number 



of crystals ~,dGnir"i(,c.ntly.. If the specimen was heat treat ed at 
o , 

800 C and then at 930 C .for one hour, t he crystal s er ew sliGhtly. 

o I !f the heat treatment temperature wun ro.is ,d t o higher t han 94.0 C, 

the crys t als gr ew much fo.s ter, and changed from hexagonal,.:: -eucryptite 

to tetragonal ' -spodumane. In the fully heat treo.tod specimen, only 

-spodumane solid 50lution crystals, nl wniniQm titanate and glass 

matrix wer e f ound. 

In the bar i um o.lU!ni..'1os i licute gl o.ss , the specimens were heat 

• treated at 950 C for t wo hours and then o.t dif'fer en "t higher t emperature 

for ten hours. Only mullite crystals were found. Bigger cry3 t als and 

lower crystal content wer e found in specimens heat tr eated at higher 

temperature. The ucid resistru1ce of the specimen chan bed with the 

final heat treatment temperature. 

R. Roy(26) discussed the phenomena in th e crystallizo.tion of 

glasses in the lithia. - alumina - silica and magnesia - alumina -

silica - titania systems. In the ear ly st~ge of heat trbotment, 

silica-O crystals 'Nt"re identified always. Later )-eucryptite solid 

solution,. ~ . -spodumane solid solution or cordierite crystals were found. 

Also different crystals were found si multaneously, indicating the 

precipitation of dii'fer'cmt crystals fro m phases of different composi-

tions. The "catalyst" cryst als (i.e. titania and l i thium disilicate 

in these cases) wore found only at a very late stage of t he hea.t 

trea~ment, s~ phas e J eparat~on was the initiel step of cryst allization. 

Metastable pha.se s eparation VIa S favoured by a stable tVIO liquid r egion 

at high ter;lperature and .:l. fl uttened liquidus curve. 

He suggested tl at the structure of a liquid"vlOUld be described as 

random, and that of glass as possessing short r ange order". l:u:.dng 

isothermal crystallization, the structure of glass cllanged, and meta

stable two liquids, or a metastable crystal mi (:;ht fo :c-m b efore the 

appearance of the final stable crystals. In the oriGinal liquid, 

sub-critical nuclei existed in l ar ge numbers . These nuclei were 
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simply regions of different compos i t ions, still having only short-

range order and were in clynamic equilibrium with each other with no 

surface separ at ing the areas. On quenching :md reheating, such 

nuclei grew as a result of a ve~{ low activation energy process, 

since the structural demands of the short ranGe order were minima.l. 

Therefore uniform crystallization coulcl most easily be accomplished 

by the separation of a second short ran (!,e order phase. This would 

imply the formation of meta stable phase separation or tho cryst:4l-

lization of a. meta stable crystal~ ca.pable of forming solid solution. 

vr. B. Hillig(27) discussed theorl:Jtically the effects of liq~idus 
temperature, time, surface free energy and diffusion coefficient on the 

rate of nucleus formation. The barium oxicle - silica - titania and 
The liquidus 

the barium oxide - alumino. - silica - ti tunia. systems wore inv03t·i ·gated./ 

temperature, the critical homogen eous nucleation temper nture, cr;itical 

nucleation t e!1lperature on platinum, and lower cut off to homogeneous 

nucleation were measured. He concluded thnt for the system investi-

gated, a nucleation ca.talyst was not necessary to produce glass -

ceramic. 

F. P. H. Chen(28) studied the crystallization of a synthetic 

mica glass. The specimens were heat tx·oo.ted at different temper atures 

for different time intervals. The carbon replica. technique was used in 

c,,:'l electron microscope to investigate the microstructure of the 

specimen. The number of crystals per' unit b.rea wa.s obtained br 

counting the particles in the electron microgr aphs. An unidentified 

intermediate phase was found in the crystallizat ion of mica. crystals. 

Nucleation of the intermedio.te phase Vias , af fected by the heat treat-

ment temperature. The rate of nuclei fOl'l!l o.t i on was higher when the 

specimens were heat treated. at the lower te:nperature. Also the rate 

at con3t Bllt temperature decreased with increasing t ime of heat 

treatment. T~e final stable mica crystal is formed from the trans-

formation of the intermediate uns table crystalline phase. He con-

eluded tha t the f orma.tion of the intermediate phase vm.s a hetere-



geneous nuclea tion process an d the decrea se of the rate of' the 

nuclei fonnation was due t o the cxooustion of p r eferr ed nucleation 

site., 

b. Photosensitive g l a ss process. 

The fina l microstr'ucture of the a:rti..cle made by the gla ss-

cel'l:lrnic process is very s:J..mila r to t hat made by the photosnsi tive 

glass pI'ocess. Both of' them are muinly polycr ystalline materia ls 

wi th extr'emely small cry s t a l s und zero porosity. They w 'f er 

in the processes by which they ure f ormed. In the l,Jhotosensi t i v ... 

g1.n.ss process, the ru:ticle s u:t'e irrac.i:i.a ted by hi.gh e nel'gy n .. Ciiati on 

and then heat t );eat ed t o conveJ.:,t the e::--'1>0 sed glas s i nto polycrys t a lline 

ma te:l,'i al. TheI'efore the gl ass is "nucleat ed" by ir'radiat~on. In the 

glas s cerrunic .l?rocess, h eat trv;.ltInent is u sed to "nuc l eate" t he nrtic le ., 

As it is difficult, i f not impossible , to heat treat o.ccuro.tely u l)UI't 

of the ilrticle, the i'~l mi crostl 'uc tux'e of' t he ."hole a :dicle In' de by 

the glass c e:i:'runic vrocess is substal'lti ..:. lly t he .samt; . In t he photo-

se::l?i ~ :ive Gl as s process, part of the article can be exposed to radifl.tion~ 

,"yrole the ot her parts are dl~elded f rom t he I'a di ntion. Af ter hea t 

trea tment part of the ru:tic l e \"h ll be nw.i.nly in the cry:;, t ... ,lline state 

and the other j?a:..'ts vlill be muinly J.n g l a s sy state .. 

These t wo prdces se s J.l:e also different in their mechnni srns of 

crysta lliza tion. Al t hough they <'1.:I,'e both hete:cogeneous nucl~ution 

processes, theil' ..!u t hs hl'e dif l ·el'ent. In the ~lnss ceramic proce ss, 

all the experimentul evidence points t o the initia l ~~e of li~uid 
'\' 

in liquid ph£l.se sepaI'a '~ion, t hen t he 1'ormo.t~on OJ: t he intermediate 

unstable crystalli ne pha ses on the lJMse boundary of' the liquids and 

finally t he tro.nsi'ormu tion of the unstable cry sta l h ne phD.se s to the 

stable crystulline j?hu se. Alt •. ough in some e X,LJe:d.ments, the hquid 

in liquid phuse sepuratJ.on wa s not appa l 'ent, on t h.::; evi denco of other 

reseal 'ches, it would be r ea sonable to a ssume that the specimen, with 

the shortest hea t treatment t ha t they eXamined, had passed tho liquid in 



liquid phase separation stage. In the photosensitive glas s process, 

metallic paI,ticles are predipi tated homogeneously in the glass body, 

durin~ the early stage of the heat tlcatment. These particles grow to 

a size big enough to act as nuclei to provide nucleation s1. tes for th~ 

stable crystalline phase., Iri other vlOrds, the sta ble crysta lline phase 

precipitdted dil'e~i;1y from the glassy phase onto the metallic particles 

without the intermedia.te step of' liqmd in hquid phase separation or 

the step of the t:t.l.l.nsi'ormution of' unstable crystulJ.inc ' phase into the 

stable crystull~ne pnase. 

Not much wQJ:'k about the photosensi hve glass proC'ess had b~en 

published.. S. D. stookey(29) had described the pa th of crysta lli.z!ltion 

of photosensitive gla ss as part of his Qiqcussion on catalyzed cryst 1-

- -- , ( 22) had h h' k l' lizati.on· of gla ss. h. D. Maurer s own I 'rom ~ s WOX' in. ~ght 

F JatteJ.'ing ar.d li.;ht absorption th'lt the r,old l:'al,tic l es wer e precipi-

tated. homo,seneously from the g l ass phase. The gl'owth of' 'the gold 

crystuls obeyed a siml?le clif'1'us ion l aw.. The snnllest st<.\ble !,!,l.l.Cle:L VlU S 

O:-.-'y ~me to three atoms. Por c a t a lyz ';,ng the crYsta lli z ,,1;ion of' 1 HhhlJ'Tl 

meta silica te, the' minimum size of t he gold ,ilarticles wa s about 80 .R 

(i. e. ar-o'J.~ ten thousand. gold utoms),~ He suggested t hat this recluire, 

ment was due to the ::;tres s on the nuclei of l :i.thium meta silicate al'ising 

from the slight m:' sfit between the latt ice spl:lcings of the gold crys t I s 

and that of the lithium metasilica te. 

3. Stea~y state crystal gro\vth. 

(1) Cr-.)I stal grovrth in pure compound-s. 

G. T~nn(18) also investigated the r !lte of' c:cy:::tv.l g:t,'r".tth 

in the undercooled organic liquJ.ds by observing the a.dvance of the , 

c:cystul liquid interface. The organic liqmds investigated Vlere pure 

compounds. He nucleated the undercooled liquid s by putting the cor-

respcnding crY.:itals on the surface of the liqt:.jd. The growth was 

found to be linear' with time and the usual hump shaped growth rate 

versus temperature curves were obtained. The maximum rate was found 
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at Co +empe!'a'~u-r:'e higher t ru:..n tb£( '~ of t :1e maximum rate of nuclei 

fcrmation. When the r ate was higher than .5 mnI min, t he relctionship 

was very compl i ca ted .. 
(30) 

VI. D. Scott and J. il.. Pack stuched the crysta l grovrtr 0-:: sodium 

disilicate from its own melt \nth u hot staGe microscope. No homo-

geneous ~lUcleo.tio'J lIDS obser ved. All the cr ysto. llizo. t i on sturted 0. t 

the interface with the platinum wire or with o.b'. Both 0( und 0 
sodium disj lica te were found depending on t he nucleating temperD.ture~ 

Sometimes bo -it, type:J of crystals vJere found to grovi simul t aneo\... '" • 

The [;rowth r a te fo llowed the equu t :Lon 

u 
1 -5 -I ' 0 ,., r: = A T .1 - ovJ 

whel'C U = growth r a te 

A = fluidity 

~ = lU1dcr cooling 9 

Using existing v iscosity data, the Jj'Y'oiricll l eCiUo.tion fitted the 

data -Iuite well. 

N. (J., Hinslie, C. R. ivlorelock £'.nd D. TurnueU(3l ) s tudied the 

crysta llizo.tion of f used silica , >:1otv.rogeneous nucleo.t:Lon by lldirtll 

on the surface 1,'{o. S demonstrutecl. IJ.; i\!~ S fo~mri toot fire f iro.sh could 

prevent this nuclea tion effectl-..relya Ordino:cy specimens without f :'re 

finish were heo.t t r ea ted a ·t different temperature from 13560 to l6780c 

for time up to six dDYs :'I..n electric furnace.. Crysto.llizo.tion do.rted 

frOlT.~he surface, (J.na the thicknes~ of the cr:rsta lline layer wa s 

measured at room tempera ture with 0. microscope. D;i,ff., t 'ent o.t lnospheres 

were used. With water vapour and oxygen in the 5 '" 2.=,: Gopsule s con-

toining the specimen the crys tal rate wo.s the sruue o.s that in o.ir. 

With dry a.rgon or nitrogen a tmosphere, the crystal l !lyer was only about 

one t.enth of t ... .at ~n air. The growth of the cr:rstalline layer was f ound 

to be proportionul '~o the squure root of time instead of linear with 

time. When grnphi te, c hrornium or germa.nium " IUS put on the surface of 



lD.y~r was much tlu.nner dr-d S~eI!!f.;u. "1;(1 .lncrev se 1. 11.0.:11' ly with ti.'ne . 

Interf1..Lll crystc.lliza tion wa s obser"lecl occ1J. si onally. 2.'h(: g:cowth rate 

incr..:;used with temperutur'e up +.0 ner.>rly the melting p oint of c: 'isto-

buli i;e. Also the growth rn te "..vas found "';f) be much higher thLlr.. thn t 

derived t!.eo~.'dti(;l1lJ.y. T.hey concluded th:..l. t the growth of cr'istob lite 

'NUS ini'luencec:. grer..tly by :L.."'1.pur:.t. t :;.es, Ilnd the imPl1l'i ti::;::> ill'fused from 

the surface. +hrough the crys t a lline J ayer to the c l'Y ~b.l a nd gl us s 

interfe.ce. Tht.1:'efore the gro,\'rth W'dS <iii'fuf;i on COlltl'olled. 

S. D. Brovm and S. S. Kistle (32) studied the devi t rif' icu·t ::.on of 

i'used Bilica cont:'lining J .005 - 0 • .5 mol ~~ of nluminn. G,rea t Care was 

tuken in the selection of bD. tch lllD. te~~:.t.ul Clr':l the prepa r a tion of' the 

specimens "l~ O ob~;1J.in homog~neous spe::: cimens ~ The sl)ecimens were nucleo. ted 

by iJr.mcrsion iT. wabr and heat treat:-1ent at low temj?er.1tul'e. The growth 

r ;)-:;0 W:J.S obtained by o'.::>serving the o.dvanc:e , of the crysta l lU.d gluss 

:L"lterface in u rod at rli:'f erent time intervals until about ni:le '~y 

p t ,ree)\ T of the speCimei1. Vias crystalliz.eJ... T,'1e growth Ver.:;ll1S time:: 

cruvc-;s for di.ffer~.'1t ~c:npe::CiJ.tures were !'ound to be stnnght hnes. The 
., / 

log :,, -" O'{\ri;!:-'. :-:-::. te versus "r ~urve were D.,i.SO straight line~1r The growth 

:':'0. te \ ·r..l5 fauncl to iI1C:C{;[lSe ' : r.J. t .h. increD ~ung tf}m2e~' D.ture. Over the 

Ci " , 
tempe:,:,£. ture ro.nge f , am 1280 -(;1) 1460 G. the expcdJnentD.l diJ:ca fitted 

the toqUD. b.on 

u = A r grovrth r<l te 

T .: D.bsolut{~ t ern )erD.i~ure 

A,B = constant 

Log A decl'eu:Jed with increasing amount of u lurniro but r" r. J.nimwr.. 

-vms f ound. B also dt:.cl·eased 'Nith inr.reasing Uffi.Junt of a lumino.. r aJ1.8;i ng 

5 t 34 
K Call. . 1 

from 5 0 ' lV10 • The gray, '~h r a te 0. t different t emperuture wu s 

plotted aguinst composition. At the s ame temperatur~ , the growth r ute 



increased ga:larally va th addi tio~l of: a l LtQi.n£l." 'Lhe viscosity over the 

srune temperature r unge wa s found to incr~ase with increasing amount of 

alumina. Cri stobali te was found to '!Je t h e only ~rystalline phase .. 

(2) Crysta l growth in complex gluss. 
(33) 

E. Pre ston heat treated a commerciOol sheet glass in a 

grD,dier.:..; furnace for different t:une and a t various temper atures to 

studJ' crysta l growth. The l inear growth r a te V.'ll.S obtuined from the 

half length of the crystals mea sured under a microscope a.t room 

temper'uture. It vms found t hat the cryst..'1.1 size on the surfacp. "las 

diff erent from that i nside the g l ass . The pr.LlIOol.'y phase crystal Vi s 

devitrite. The u suOol hump shaped curves i'or the r a te of growth versus 

temper!.lture were obtained. It WOoS f ound t oot the eXl)e:.':unento.l da.tOo 

fitted the follovang f ormula qui t e well. 

Where A, C = cons t ant 

U = growth r ntb 

T = heat trec,tment temperOo ture 

Tliq = liquidus tempernture. 

G. o. Jone5(33) gave the f i gure of 15 k Cal/mol a s the typical va lue 

for J... The length of the crys t a l v~r sm tilDe curves wer'e s t rai ght lines 

at shor t time interva l but tDiling off af ten:ards. 

A. T. ML.ne(34) studied a soda lime silica glass wi. th i.-,, ~at 

trC:.atment a t different temperature for different t :Une.. J.,b~o the 

maximum ,2;rowth rate tempera ture , the linear gl'owth r a te v o.ried 

to the degree of undercooling . The log r , te inversely proportional 

of grc.rth ver sus J./ \.:: curve was a straight line at low t emperature 

The calculated activation energy w~s about 10 K ca~mol. range. 

H. R. S1.vi.ft(35) studied the effect of magnesia. a nd o. lumina on 'the 

rate of crysta l growth. Heat t reated specimens were exomined under a 

microscope a t room tempera ture. The longest cl y s t nl was t uken for 



me~surel"lleni; ~ tut. ':"OJtI;.;·i:;imes ,l the 5<l.!ne cryst a l WU 3 me:lsured at 

dif'ferent time interval of r.ea t t:i.'eu tment ~ The crystals were found 

to origina te f:co:.'1 the surface. All the crystal length verus time 

cur\~s were straight lines und the solution r a te joined conti:tnously 

to the grcwth rate velSlS t t'.mpcrutu:'e cruve. 'rhe primary phuse cryetal 

and the , econ&U'j crystal were all i nvestigated. The nUlXimwn grmlrth 

rate of the secondary l)ha se crystal might be hi/Zher t han thLLt of the 

primary phase cry ",tal. The infle:xion point in the maximum growth r nt t'l 

versus compos .. jion C'Jrve cor:cesj?onded to the entecti c point in ... , 

phuse diagram. The usual hump shaped rntoe of erystul g rowth 'leX-SllS 

temperature curves wer.e obtuined. The exp eriinentul data vrere f OlU1C1. to 

be close to the formula 

R = ~ (Tliq - T) 
Where: R = growth r a te 

\ ~ = viscosity 

T = hent trea tment 

temp-erature 

~ . 
1".q 

_ .. li·quidus . teJ,lperature. 

o~ Ii •. ;;'rauer and E. H • . :rrOIlli lton~3G) 'f.' tudied the liquidus 

tempera tur.e and r:rystal g:."'owth of. 0. sodn lime silica gluss with a 

gradient furroce. The usuul hump shapailicurves were obtained f or 

crystal size . versus tempernture. All the crysta l length versus time 

curves were straight lines passing through origin~ 

;:. '1' , Littleton(37) reviewed Dietzel's work on cry r-:; t o. n;_~ f.l. tio.l of 

soda lime silica g lass. The rate of grovvth wa s determ:i. :r.~~ d by the t Wle 

taken for a crystal to reach a length of three h'.l.."1dred ll"j nrons~ The 

usual hump shuped curves were obtained. 'rhe maximum g.o:'I),,:th I'ute 

tempera. ture chunged with glass and also thi!l ~ tempel'a ture did not 

correspond to any s ~ ecific visco_ity v a lue. A straight lin~ wns 

obtained for the maximum gl'owth ra.te v ersus fltility. When the product 

ci' growth rate time viscosity was p lotted against the tempera ture, the 
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straight E~'2~ oJ' tl !.~ high o~~mperat·..u~~ sid:: extended f a r beyond th~ 

maximum growth r ate poin°;;_ into the luw t empera ture ra.ng" o 

T. B. Yee ar..d A. I. Andrews(2l) also investigated the g r owth 

ratA of ti tania crystals in the enrunel. Datn WIle obtained .frC'm both 

peoto and electron micrographs. The rep lica technique was u sed in the 

electron :nicroscope. The growth r a te was f ound to increa se with 

temperature over the temperature range studied. 

J. G. MOrley(38) studied the crystal growth rate of five binn~ 
lithium silicat~ glas~es with D. microfurnnce ~e hot Dtage micr -

scope. Cristobalite, tridymite, lithium disilicate und lithium 

meta silica te were f ound to be the crystnlli ne phases by X-ray dif-

fraction. The growth of the crystals was found to be line I' with time. 

The uSllill ~urnp shaped growth rate versus temperature curves were 

obtained. T:-.e maximum growth rate of silicOo wns about 340 microns per 

minute, The maximum growth rate of one lithium silicOote WIld f ound to 

be about 850 micron per minute and that of the other was about :.::00 

) .ri~ - :..:! per minute, It was not possible to mnke posJ.. tive identifica'~ion 

as to which of these lithium silicates sho·,I .:. ... : the very high growth I' teo 

1'.ae mrucL'lltt'll growth ra ttl of the lithi um sili<":a te with a hlgh growth rate 

increased vdth high~r Jithium oxide content a t first und then levelled 

off at about 850 micron per minute aol; still h:!.gner litl"iurn oxide 

content. Morley suggested toot the growth L:.lte might be limited by the 

rate of :leat transfer during the crysta l grovrth process. 

G. E. Rindone(39) studied the influence of platinum on the 

crystal:ization in a binary litiJium silicate gluss containing twenty 

mole percent of lithium oxide. The !'Dte of crystnl}oiza t i on \\IJ.~ in-

creQsed with platinum content. Pla tinum precipi tOoted out "'oJ c:l"Jre heat 

treD:anent, because the gluss was grey in colour.. X-ray diffraction was 

used to measure the percemage of ~rystal in the specimen. The per-

centage of crystal versus time curves were all straight lines for short 

time periods but tu.iled off at longer time. When the activation energy 

was calculated, it was found toot the origin;). l va lue of 120 K cal/mol 
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wi th01.i.t p l D.G. i.::ll.l'!l dt." .. ' 0Ll s ed. +iO 50 'I mo.l at h.l.2;her concentra b .Qn 

and mainta ined this va l u e . L:i.thj. un~ ')xid9 ric h r egions were saiJ. to b e 

found in 'cl1e ele r:tr ::m microg r aph.. These r egion s . rLcrcu sed from 2)0 tt) 

500 1 after pla t inwn wa s a dded . 
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II. NUCLEATION. 

The crystalliza tion cha racter istics of the glu5ses in this 

Li
2
0 - ZnO - Si02 ternary system were compared with D. commer cia l soda 

lime silicate gla.ss. The glass used wal:j G.E .O. Htmbly X-8. It is a 

complex gJa ss and its liquidus temperature is g iven a t 8500 0. 

Sp ecimen rods were heat treated individunlly at about 500 0 interva ls 

in the temperature range from 3900 to 650°0 for one or two days. Af ter 

the heD:G treatment, the specimens remained clear, and no change could be 

detected with a microscope. These s j.)ecimens we:r-e t hen l'urther hoat 

° trea ted at 750 0 for one or tyro days . These ~l)ecimens defor med unO. 

their surface hf"'nme clouJ;y". When they were examinecl with a micro-

scope, islands of crysta ls were f" Oll.Yl.d on the surface, but no crys t als 

were found :in the inter'iors of the rods. Other sJ..)ec:.i.mcns W01'e hen t 

o 
trea ted at 750 0 for two or three days without 1Jrevious hea t tl'eatment, 

and again only surface devi trification wus observed.. Vfuen the s:pecjmens 

which had been heat t r eated at 750°0 f or t wo days y[ere compar ed, no 

significant difference \"iU S f ound be t ween these with pr ev i ous low 

te'llperature heat t rea tment a nd those without. 

Two :;;eries of expel'iments weJ:e done on specimens of glasses in this 

tenlllry system. In one series, the effect of t e-mperuture was invest i-

gated. In the other series, the effect of time wus inves tigated. 

The specimens of five glasses were investiga ted. Their composltions, 

liquidus temperatures and primary phD.se crys tals were listed in Table ~2. 
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Table 12 

Glasses used in the nucleation experlinent 
,'--'-'--~---' ----.... --- - ,-,,- ----- -- --_ .. _ ._ ... __ ._- -'1 
i Glass; Oomposi tion (mol %) j Liquidus : Prin1£.l.ry phase ! 
! numbAr' r ---Li

2
0 . ZnO'T--SI02'-" temperature i crystals I 

I l ! -.. , --_ ... _-- I •. --.. - .-.. -- -~ . . ---~ 
~ 25 I 10 65 i 1008 :. 5°0 tridymite i 

I i 
23•75 1]C 66.25 10560 

+ 5°0 tridymite ! 
23. 75 1 11~25 65 985

0 
+ 5°0 Li20 • ZnO • 8i02 

no 15 65 1120° + 5°0 , I tridymite 

15 I 20 65 12300 
+ 5°0 tridymitb 

2 

3 

4 

5 
I ___ ..:.-___ --l _____ ____ -..:.. ____________ __ ____ ._. _ _ .. _ _ .1 

1. Ei'fect _f t emper r:d.urelt 

(1) Experimenta l work. 

Th ; s:;; ec imens in the f onn of triangular rods of the firs t 

three compositions were hea t Jureuted individually in u horizontal 

gradient furnace In the temperature range of 400° - 550°0 f or twenty 

four hours. They wereexumined at room t e'llperature VJ.sua lly and under 

t i1e microscope. After the examinations! cne side of each rod was ground 

and polished and the whole specimens were inuner sed. in l~~ hyd.rofluoric {lcid 

for ten mint4tes. The ground and poli shed. surface s were examined under a 

microscope with reflected light. Freshly broken surfa ces of the high 

temperature and low temlJerature end of the sp..:cimen of glass No. I were 

examined with an electron rnicroscoJ?e with r eplicD. technique. Also the 

high temperature zone of this specimen was exumi ned by X- r oy d-L'fra ction. 

~l:ese specimen:: v/ere then subjecteu to f urther heat treatment. The 

temperature of the f urnace was r a ised from 550°0 to 750°0 in one hour . 

These specimens were then examined under u microscope before t hey were 

o 
held at 750 0 for half an hour. 
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Table 12 

Glasscs used in the nucleation experunent 
i' --'--~ - - --.-.-- - -.- ---- -- --- ----.- -----, 
I Glass l Composi tion (mol %) ! Liquidus : Prirnary phase ! 

: numbp.r! - Li20-

I
" ZillrT--SIOZ·· i tempera ture i crystals ~ 

I ~ 25' 10 I 65 i 100;;; 5o-;T~;i~~:. ---I 
2 

3 

4 

5 

23. 75 1 Je' 66.25 10560 + 5°'c tridymite 

65 985
0 + 5°C 

23•75
1 

llc.25 Li20 • ZnO • 510 

15 65 1120° + 5°C tridymi te 2C I -

15 I 20 65 1230° -: 5°C tridymitb 

I ._--_. __ . 
1. Effect _f' t emper nt.ure. 

(1) Experimental work. 

Th ; s:c ecimens in the form of triangular rocls of' the first 

three compositions were heat ~reated individuul~ in u horizontal 

o 0 
gradient furnace ].n the temperature r unge of 400 - 550 C f or twenty 

2 

four hours. They wereexruninecl at room te~peruture vl suully and under 

t i1e microscope. After the examinations . cne side of each rod was ground 

and polished and the whole specimens were immersed in l/~ hydrofluoric acid 

for ten mint;.tes. The ground and polished surface s were exumined under 0. 

microscope with reflected light. Freshly broken surfaces of the high 

temperature and low temlJerature end of the sp-:'cimen of glass No. 1 wer e 

examined with an electron microscope wi th r eplica technique. Also the 

high temperature zone of this specimen was eXUl'runed by X-rD.y d-; ~frf..l.ction. 

':'1".ese specimen::: wer'e then subjecteJ. to f urther heat treatment . The 

temperature of the furnace was raised from 550
u
C to 750°C in one hour. 

These specimens were then examined under u microscope before t hey were 

° held at 750 C for half an hour. 



(2) Results~ 

In contrast to the commercial soda lime silicate gl ass 

investiga ted previously, all specimenG were pale opal in colour at the 

high temperature zone J but remained clear u t the low t empera·vur ~ zone, 

after the initial heat treatment at the lower t emperature. )Vhen the 

specimens~ere viewed with transmitted l ight, the colour cha nged 

graduully a long the rod indicati ng the change ~n size of the light 

scatterlng particles. The lengths of the specimens wbich gave light 

sca ttering effe.:;~. va ried slightly, but t he t emperature range wus "'-.L ' 

o 0 
proximately from 500 - 550 c. 

Small broken pieces from the high teml)er uture end of the specimens 

were exonuned under a microscope wi th trunsnitted light. Small spheres 

of crystals wei.'e f ound. The crysta ls a t the l:J llIlle tempera ture were found 

to be very uniform i .n size. They were about seventy microns a t sections 

hea t treated a t 5500
0 und about thirty five microns a t 5200

0. Below 

o 500 c, no crysta ls were detected . In thef30 broken pieces, half spheres 

of :J . ys~als wel'e founcl to be a t the ed.[!;e3 with the edges pa~sing through 

the centres of' the crystals. SometiInes sectOl s of crysta l s were found to 

lie with the l-entresof the crystal s a t the corners of the broken pieces. 

These seemed to Suggest that the sp ecimens broke a long the cleavage 

planes of the crysta ls and t ha t t hese cleavage planes were radiating 

f rom the centres of the crystals. Owing to the uncertain t y of the 

thickness of the broken l'ieces, it wus found difficult to e s timate the 

number of crystals at different tempen ... ture. 

By the Beche I l ne technique, all t h ese spheri cal crysta ls were 

found to be lithium disilicate. This result was cox'irmed by X-ray 

diff raction (m the specimen of glass No.1, and no other cry s t a ls were 

ident.i..fied. The concentra tion of the lithium disilicl:, te ,",'us about 

three percent. Oalccla ted from the size and concentration of the 

lithium disilicate crystals, the number of crystals wns about 105 

cubic centimeter, compared w~ith 1015 
per cubic centimeter in the 

commercial glass ceramic. 

per 



Besides the big spherical crystals described above, there were a 

lot of tiny crysta l s in t he gl as s matrix of the high t emperature zone of 

the s,r?ecimens. Tb:: se tiny crysto.ls were jus t vi sible with 350 X Irulgni

fico. t::'on, so they m.ould be Sffi£J.ller than one micron. Y/hen the se broken 

pieces were examined with light perpendicular to the op tica l axis of the 

microscopt. ':. a cloudy appearance W·d.S observed. Some specimens without 

!len t trea tnlent were examined under t he same conditions tind no light 

scatter~ng effect was observed. 

Some elec+'rol1 mic-rogr nphs were taken on the broken surfaces " f' tr.e 

high temperature end and the low t en • .f:Jera ture end of the specimen of 

glass No. 1 by Mr. J. Lewins of the Department of Glo. zs Technology. 

Some electron j,licrogr nphs were r eproduced as Fig •. 10, 11 and 12. The 

carbon replica technique wa s used. Unfortuna te ly, the micrographs were 

not very clear due to the low contrast of the replica Vii th this technique. 

A platinum presha dowed carbon replica will provide much more deta i l, 

but this technique on glass specimen Vias not yet a cquired into per-

fe r! '- :":"VD by Mr. J. Lewins. However, the pr e s,-,nt microgn.\pr. s did show up 

the di:ffe:cence between the section at the hig h tempera ture zone and th'lt 

ali the low tLr.rperature zone. Some particles of the size of 0.4- micron 

were found on the micrograph of the high temp erature zone speci mens ::mly. 

This corresponded fairly well with the observuhon under the microscope. 

Theref ore there were tvro sizes of' cryst als present i n the hea t trea ted 

specimen. The size of 'che big crystals wu s too big and their !1umber was 

too few to give the light scattering eff ect. Therefore the light 

sC!.ltter~ng effect might be mainly due to the small crysta ls. 



Electron Micrographs. 

Magnification 40,000 x. 

• t 

Fig. 10 

Unheo.t treat ed 
soda lime silicate 
X-8 gl as s. 

Fig.ll 

G1a~s No . 1 heet 
t rec,ted a t about 

o 
430 C for 24 hours. 

Fig.12 

Glas s No . I heat 
o treated g,t 550 C 

for 24 hcurs. 
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Ai'ter the hydrofluoric acid treatment. some small pits were found 

on the polished surfac e . en exomination under the microscope with 

reflected light, these pits were found to be of the slw.pe and size of 

t h.e well developed spherical big crysta ls observed with tl an.3Il1i tted 

light. Therefore these pits were the 5ites of these crysta ls preferen

tia lly ,ttacked by the acid. More pits were found a t the higher 

tem!?erature zone. 

The Jl0lished surface seemed to be smooth except for the pits, 

after the (wit.. etcr.:..ng, but the origina l surfa ce of the whole :.. ' . wns 

not smooth. This indica ted that the I,roiJerties of the surface Vlere 

significantly difI"erent from that of the bulk of' the glass. One 

specimen without heat trea tment wal:; alf.;o 'lcid treated at the srune 

time, anu the surface remained bright und clear. This suggested that 

.reat treatment had produced regions on the surface which caused the 

etched ef fect on the surf ace due to differential acid res~stunce, anD. 

that the structure of the low teml)erature zone ViUS not as random as 

·L1F'.t of' the non heat treD. ted specimen. although it di.d not have any 

light scattering effect. 

Afi·er:- the heat treatment from ';50
0 

to 7500
0, the lithium di

silicate crysta ls at the high tempera ture zone had grown to 125 micros. 

The sizo of the c"'ystals in t he srune temperature zone VIas found to be 

as unifonn as before. Small lithium disilica te crJstuls were found to 

extend to the 10'\'ter temperature zone. The tiny crysta ls were bigger 

and ~asier to be seen, but they were still too small to be me a sured. 

with a microscope. 

After the spec~l1ens were held at 750°0, they were examined under a 

microscope with transmitted light. The lithium aisilicate spherical 

crysta ls were found to merge into each other Cit the high temperature 

zone. Some smull lithium disili-:ate crysta ls seemed to have developed 



at the high temperature zone indic <..:. tiI1f: tha t new crysta.l s were formed a t 

o 
th~ heat trea.tment a.t 750 C. The tiny crys t a ls could be seen in the ga.ps 

of the big spher:i.ca.l crystD.l s . 

2. E~~ect o~ time. 

(1) Experimenta.l work. 

Gla. sses ifo. 1, 4- und 5 were investiga.ted in this series. 

The hea.t treatment consisted of holding a t 550°0 for twenty four hours, 

raising the tempera.ture to 750°C and holding a t 75(1°C f or eight hours .. 

Eleven specimens of gla.ss No. 1 were heat trea ted. One specimen 

-'No. S t£l.l<:en out at the end of the heat treatment at , '50°0 for ~, 1, 2, 4, 

8, 16 and 2J.... bC1]'>;'s; Vlhe:" "the hea.t treatment had reached 750°C; and a.fter 

o 
the heat treatment at 750 C for 2, 4- a.nd 8 hours. li'ive specimens of 

glass No.4-an:... 5 were heat t reated. The e:tYect of time in heat treat

ment at 550()C; for less than twenty :'our hours Vias not investiga.ted, so 

they wel'e all heat t:cea.ted at 5500 C for twenty four hou.cs bef ore they 

were heat treated a t higher t emperaturer, 

(2) Results. 

The specimens were intended for examination in the electron 

microscope. Owing to the experimental d:i..fr'icultie s of the r eplica 

technique, only visua l and microscoFic examinations wer e done. The 

results of the exruninations were pre sent in Tables 13-15. All the 

specimens were found to retain their original shapes, and no deformati on 

was noticed. 



Table 13 

Results of heat treat ment of glass No.1 

j 
i Heat treatment Result i '" -.. - -.. - .------- .... . -- '---,- -- - '--
I 550°'0 I 5500 

_ 750°0 : 750°0 
.-.-.---.-.--~ - - ---CrystD.JTLn.e· -... . ' 

I I 
Appear ance : phases 

; .. ~ ----.. -f---.. _-
! 

~ hr. 

1 hr. 

2 hrs. 

4 hrs. 

8 hrs. 

16 hrs. 

24 hrs. 

24 hrs. I hr. 

24 hrs. ::. hr. 

24 hrs. 1 hr. 

24. hrs. 1 hr. 

\I 

II 

" 
Slight light 
scattering. 

Light sca ttering 
increa.·ed. 

Light scattering 
further increase. : 

I 

Slight opu.l I 

2 hrs. , Light o~al. , 

4 hrs. ! Opal. 

8 hrs. 1 Opal. 

\I 

" 
., 

" 

Spherical lithium 
disilica te 4O.M 
and tiny cry~bls. 

Spherical lithium 
disilicate 6~ p., 
and tiny crypt.als. 

Spherjcal lithium 
disilicate ~O Po 
and slightly bigger 
~iny cryst al/'>. 

Spherical lithium 
disilicate 50 -
180 A und bigger 
tiny crysta l;>. 

1 

I 
Lithium disilicate 'I 
size varied put 
could not be ' , 

I 

I measured because 
crystal mergl'ld. 

Sume !D.:" abovp. 

___ --'"' ___ .. -.-: .......... s .. ' ... ' S';;;.;-.... ·:;:.-·...,· ";;:;0';'::;- =- =,..,,,:;;a;.:;;s=·.,--::.=a=::== __ ===_::aooa:::aa::'"'"'"':IDO':_""w,,,.;., _______ _ 



Table 14 

Results of heat trea tment of gl a ss No.4,. 

~------------------ j ' 

Heat treatment Result 
------~--- .. - .'-..-.--- -- - -- ---.---.- - . -----rrs:.slaliine-- ·· ! 

550'::0 550° - 750°0 ; 750°0 APpea~.:~e ___ j __ .. _~ses ~ 

24 hrs. Light scattering. ; Spherical lithium ! 

24 hI'S. 1 hr. 

21 .. hrs. 1 ''lr. 2 hrs. 

24 hrs. 1 hr. 4 hrs. 

Light opal. 

Opal. 

I disilica te 25)A
I much less in 

number. Higher 
concentra tion of 
til1\Y crys t a l s . 

Lithium disilicate 
merged into each 
other. 'rhe size 
was not unif'onn. 
Tiny crysta.ls in 
the glass ma trix. 

Lithium disilicate 
cryst als merged 
together. High 
concentration of 
tir.y crystals in 
the gl ass matrix. 

Lithium di silica te 
cryst al s m~rged 
together. Hi~h 
concentration of 
sligl'1tly bigger 
til1\Y cryst als in 
the glass lnat:r;ix. 

. 24 hrs. 
I: 

1 hr • 8 hrs.. Opal. Lithium disil :j.ca te 
crystals merged 
together. , I , 

I 
I ,---- -'------- - --_._-_._-_ .. --_ . . _. 



8d. 

Table 15 

Results of heat trea tment of glass No .5 

~ .-------~ --------- ---.- -
i 

: Hea t treatment Result ! - -_.- .-_._---_.-._-_._-- -., - ... .. . .! '-
! 

--->--- -- -----
I 5500.0 550° _ 750°0 ; 750°0 
I 

Appearance 

'f- ~ ... "-"'~----'-----'--
i 

I 24 hrs. 

I 
I 

24 hrs. 

Light sca ttering. 

1 hr. Light s ca tter ing. 

I 
I 
I 

I 
24 hrs. 1 hr. 2 hrs. Light sca ttering . 

24 hrs. 1 hr. 4 hrs. Light opal. 

24 hrs. 1 hr. 

I. , 

j 
8 hrs. I Light opal. 

I 
I 

\ 
Crystals 

---_ .. 
None 

High concentra tbn 
of tiny c rys tal s 
up to about 2JA 
big. 

Simi l ex to apove. 

Hi gh concentration 
of t i ny crysta ls 
up to about I+)A 
big. 

High concentr~ 
of tiny crystals 
up to about 5jJL 
big. 



1. HOT STAGE HICROSCOPE. 

(1) Design of' v~.rious "bJpo s of hot :::t at;G llticr oscope . 

Befor e decidi n e; vlhich fo r r.l of hot s t a30 f!l i cro scope was 

going 1P b0 construct~d, a s urv"y of the desisn of hot s t age 

microscope was m[~dc . Although numerous modifi c at i ons ho.d b oon 

us ed by differ ~;nt ,10r1:or3 to suit thoir own pur pos es , a ll the 

designs could b e allocated into one of the three 6roup s describ ed 

b elov/. 

a. Conven t ional furn o.ce with o.n auxilio.ry l ens sys t em. 

ilith t his dO:Ji;71 . 0. conventional furna ce is us ed. The 

r eal i mo.3e of the Spoc i lilon in the furnac e i s fO I1nod by t he 

auxiliary l ens sys t em. The r oal imagu , which i s outside tho 

furnace, is then vieViod by f!licroscope . The geneI'uJ. (l es i gIl of 

this type is shorm dia ",-:::'a lillnatically in Fig. 13. 

The t emper a ture of tho sp ecimen c~n easily be measured and 

controlled to rdthin closo limits by conventional methods. The 

s pecimen c an be quit e big and the prott:ction of the obj ectiv~ l ens 

of the T'licros cope is compar atively easy. The limitat i on of this 

de sign is the nil (}lific a. tion that can b 0 a.ch i ev ed. Owin g to the 

auxiliary l ens syst eru , t he r esolving pOYlor is s erious ly diminished. 

Also it is difficult to use polariz ed light becaus e. n or r.lUlly re

fl ected light i s used in this d esi gn. 

This type of hot s t a2ie microscope was t estod a t rOOD t cmp0ra

ture to i nv estic at e t he char~cteristics of t h e optical syst em. A 

lens sys t erns 'wi th 4-.5 inches focal l ene;t h and {\ 4-50 pris m were 

used as the auxiliar y l ens system , to throw the 

i ma ge of the specirr. "' '1 out s ide the f4r no.c e. It Wo.s fotul cl tha.t 

the distanc e of r elay l ens system f rom the specir.Jen was long 

enough 80 tha t a wa t e r cooling sys t eo might not be n ecessary for 
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protection of the opt i cal sys t en. The magnH 'i ca tion could also 

be ve.riod within limits and it v'Ta s possible to obtain a Llagnifi

cation of 50X without unduo diff i culti es. However, the un e of a 

relay l ens system decreas ed the r esolving power greatly. 

Differ ent f.le thods of illUl:J.inating the s pecimen wore tried, but 

the resolution was still poor. It vms f elt that while this type 

of design could be i mproved by using a more suitable r elay l ens 

system, the improvement would not be likely to mee t the pr esent 

r equirement. Also tho ther mel c apacity of the convent ional 

furnac e would be too biG and the change of the speoimen t emperature 

would not be quick enough. Ther efore , thi s syntern vms not investi

gated any further. 

b. Hot wire fUl~ac e on the stage of microscope. 

Several workers hew€) used a noble metul wire or a 

ther mocouple to form 0. loop to hold the specimen which is heat ed 

by a current flowing throuc;h the wire. This hot wire fUl~ac e is 

placed directly on the s t aGe of the ordinary microscope. The 

temperature is measured by thl-) emissivity of the met (;.l wire or the 

e.m.f. of the thor mocouple. Viith suitable desi2,n , the heating and 

the t emperature measurements are essentially continuous. 

The energy us ed in this type of the furnac e i s so small that 

the obj ective lens can be brought f airly close to the specimen 

without water cooling. Ther efore, the resolution and maGnifi

cation are higher than in any oth~r de8 i gn. The thernal capacity 

of the unit is small and the t emperature can be chengcd very 

quickly. The incorporation of a contr olled a tmosphere chamber 

is relatively easy. By means of voltage stabilizer and ,,,lased 

specimen chamber, the temperature of the specimen can b ~ con

trolled to close limits for r easonable periods. The chief 

limitation of this design is the small size of the specimen and 

the temperature gradient in the specimen. 



A hot stage micr oscope of this design manufactured by 

Grti'f:LTl and George Ltd. was tried. The hot wire :furnuce was a 

5;~ RrvPt - 20% RlyPt thcnrtocoupl e. Using G. silican diode cI"Jst al 

in the circuit to separat e the heating tU1d thermo- el ectric 

currents, the thermocouple V/aS hea.ted at alternat e ho.1.1' c¥cles of 

the supply voltage ; ir.. the inter mediate half cyclc when t he 

heating current was cut off, a phas ed sViitch:in5 syst&m vras used 

to connect t he thermocouple to the temperature measuring circuit. 

Ther efore , the heat i n::;; end the t emperatur e measur ement s wer e 

practically continuous. The ':Iorking tempor atur e of this micr o

scope was up to 1 BoOoC in inert atmosphere. Tho temper ature o:f 

the hot wire could be controlled to within l·C for longer than 

six hours and could be changed very quickly. The specimen was 

held by surface tension at the j unction of the t hermocouple and 

its dimensions were a.bout 0.15 mm. X 0.15 rom . X 0.7 rom. 

Powdered specimen of composition .30 801 ~~ Li20, 5 mol % 1n0, 

65 mol % 8i02 was used f'or the investigC'.tion. During the tria.l, 

it was found t hat the a80unt of specimen used, had a pronounced 

effect on the accuracy of the temper o.ture l!!eaSUremcnt. When too 

big a specimen lias used, the apparent liquidus temperature was up 

to 60·C higher thc.n the actual liquidus t emper ature. Ylhen the 

right llIllount of specirlCn was used the liquidus t emper ature could be 

reproc:.uced within 50 C easily. HOYlever the shape of the thermo

couple junction VIas found t o be very critica.l for correc t t empera.

ture mea.surement. Magnifica.tion and resolution Vler e good with 

this design. Therefore it would be ver y useful for liquidus 

~CDperature measureme.nt, it equilibri~~ could b e obtallled in l es s 

than a few hours. 



vVhen this apparutus was triod for the stur~ of crystal 

grcwth r :,t o, difficult i es wer e ol1counter ucl. Ow:ing to the small 

sjze of the specimen, the surface had an c..ppr ecieble curvature. 

Therefore the specimen i ts el f' actecl a s a l ens and accurate 

measur ement of the dimensions of the crystal could not be obtained. 

The depth of the field of the leng Vlorking distance objective was 

quite deep, so differ ent dimensions could be assigned to the same 

crystal by adjusting t he distance of the obj ective from the 

specimen, even thou.gh the cryst al was still in focus all the time. 

Also crysto.l~ which grew from the thermocouple interfered with the 

obs erv~\tion of the crystal inside the melt and bubbles evolved 

continuously from t he Ql c.ss-thurn1ocouple intorface in a certain 

range oi' temperatures. The lithium silicate crystals grew very 

rapidly and it took l ess than 20 seconds for the crystal to grow 

from side to side even at comparatively moder ate [<rowing rates for 

the type of crys to.ls. OHing to those difficulties, i t W[~ S f elt 

that this type of hot sta~e micros cope would only be suitable for 

the det erminat i on of liquidus t emperature but not for the study of 

crystal growth rete. 

c. Unconventiona.l furnace on the stage of microscope. 

With this deSign, 0. micro-furnace i s pl aced on the stage 

of the microscope. Transmitted li3ht or r ",fl ected light can be 

used. To pro+.ect the objeotj.ve l ens, which i s fairly olose to the 

furnaoe top, an elaborate cooling system hc.s to be incorporo.ted 

into the dosiGIl. 

Magnifica.tion and resolution o.re between that of t he oon

ventional furno.ce desi gn and that of the hot wire fUrnnc6 design. 

The specimen cannot be very big , but up to 0.5 em. is possibl e~ 

The Iaeo.surement of the specimen temperature is not easy owing to 

the thermal gradient in the fUlnace. It is not ea.sy to incorporate 



a micro-furnace vri th 0. controllnbh : o.t :nosphor e. Th e:: t emper o.ture of 

the furna.ce is very SGl1sitivc t o dru.ut:;hts bec['.us e of its low 

thermal cnpaci ty. On the other h:md , r a.pid h ;mp cr at uro change is 

possible. 

Although ther e are s everal dis a.dvantages with this type of 

hot stage microscope , this design has been prov ed to be successful 

by J. G. Mo d ey, studying the crysto.l growth ro.te of lithium 

silicate. The mo.Dl disadv~tD.ge i s that the construction is 

complicnted, becnus e of the provision of wat ~r cooling o.nd the 

supply of very high a .c. current o.t low voltage. However, it w[ts 

felt that this type of hot stage microscope woulQ be mos t suitable 

for the study of the growth r at e of cryst al in glass. The det o.iled 

design of the instrument used in the pr esent study is describ ed Dl 

the next s ection. 

(2) Design of' the pres ent hot sto.ge microscope. 

( 0. ) Optical arrangement. 

The desi gn of the present hot stne,e microscope VII:1S bnsed 

on that used by J. G. Morley, in investigating the crysto.l growth 

in bino.ry lithium s ilicate glasses . Only sli :;ht modifications were 

made on the orib~nal design. The general arrangement was shown in 

Fig. l4n and 14b. 

The design of the furnace depended mainly on the ob jective 

lens used in the microscope. To minimize the temperature gr adient 

in t~~t part of the furnace where the specimen would be , the 

furnace had to be very long compared with the siz e of the 

specimen. Ther efor e on obj ective l ens with 0. long working 

distance and r easonable magnific:.tion and numeric[tl aper t ure was 

necessary to obtain goo d ma&nificntion and r esolution. During 

the design stOoge , t he r eac1ily obtainabl e obj ective l ens vms that 

manufactured by Cook Troughton , and Sil:llns, having an ini tio.l 



Fig. 14a. 

GenerlU. arr'lll1gement of the hot stage mioroscope. 

Fig. 14 b. 

Showing microfurnace , thermo~ouple and water cooled 
objective and sub stage condenser. 



9}' , 

mo.gnific :::!.tion of 5X) [1, numerical c..perture of O.~5 and 0. Vlorking 

disto.nce of 17 mm. The furn eoce W: .• s ther efor e designed according to 

this obj ective. 

The miorosoope used vms 0. polarizing microscope Mode~. MP made 

by Jnoes Swift and Son Co. The body of the Pentax singl e l ens 

reflex co.mero. made by Aso.hi of Jo.pa.n vms used to photogro.ph the 

specimen. The lens of th camero. Vlo.S taken off and a microscope 

a.do.ptor was put into its plaoe. Illumination was provided by 

transmitted light from 0. Swift ML microscope lrunp. 

The camero. was first mounted on top of the microscope with 0. 

microscope adaptor which did not fit the eye piece of the micro

scope very well. A tube was then made to enable the ndo.ptor to fit 

the microscope us ed. It was l at er found that the camera unit was 

so heavy that the microscope slipped slightly. Ther efore the 

cumera was finally mounted independently. A graticule with one 

hundredth of 0. centimeter scnle was used in the eye piece. The 

adjustment of the top lens of the projecting eye pieoe wus not 

enough, so 0. ring about one oentimeter high was placed in between 

the gro.ticule and the top lens of the eye piece to o.ct as 0. spacer 

to project the eye pieoe scule onto the film. 

The heat from the furnace was quite intense, so 0. water cooling 

jo.oket was used to protect the objective lens. The work~1g distance 

of t he original sub-stage condenser was not long enough, und an 

identico.1 long working distance objective with 0. wo.ter cooling 

jacket was used in place of the substage oondenser. The design 

of the water cooling jacket is shown in Fig. 15. A film of water 

about one millimeter thick was maintained in front of the l ens by 

oontinuous pumping. The vmter was pumped through a. close circuit 

from a tank to the water cooling jacket of the objeotive lens then 

the furnace terminal, the water oooling jaoket of the sub-stage 
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lens and finally back to the ta~(. This system did not seriously 

i mpair the optics of the syst em :md protected t he l ens from over

he2ting ~t furnace temper ature up to 1400·C. 

The pol&:.rizer of the microscope was in the optical syst em 0.11 

the time , but the analyser could be put in and out of the optical 

syst em by oper ating a lever. 

Throughout the present study, the microscop0 was screwed down 

onto the base plate .f the unit; the camera support and the furnace 

terminal block support were secured at fixed points of ~~e support 

col~n. Therefore the distance between the speciman and the camer a 

body would be the seme. 

During the trial run of the instrument, it was found that the 

distanCe between the objective water cooling j acket und the top of 

the furnace was only three millimet ers. Although the obj ective 

lens was not unduly heated, ther e vms not enough room to operate 

the thermocouple. By this time, it had become lOlOwn that J ames 

Swift and Son Ltd., produced an objective l ens vdth wo rking 

distance 26 mID, a numerical aperture of 0.16 and ini t ial magnifi

cation of 5X. Since this obj ective vIas better in every r espect 

for the present study, it rlas acquired and used throuGhout the 

study. The distance that the thermocouple could be moved vertically 

was now about one centimeter. 

(b) Furnace De~i~. 

The micro-furnace vms constructed f r om thin 10% 

rhodi~platinum sheets according to the design shown in Fig.16~ 

The heating element vms 0. tube mounted vertically, having a 

circuJ ar diaphragm one c entimeter from the top. This tube was 

welded onto the thin upper and lower circular plates which in 

turn were welded ,-__ to the circular current distribution b ars. 



This furnnce vms supportod by two henvy current input l eads 

t er mjno.t ed in t he ci r cular distribution bars. The out er r adiation 

und draught shi eld we.s welded to th e outs id<=: of the upper circulnr 

bar and thE:; inner on e vm s wel ded t o the inside of the 10Vl er circula.r 

bnr. The \'1hole unit na s made of the same mat. erial to minimiz e the 

unavoidable thermal stress es. 

When the f m'nac e was in oper ation, the furnace tub e expanded. 

The thin upper nnd 10ilCr cir culnr plat es c.cted a.s buffers to mini

mize the ther mal stress on the tub e. The mechn.nical support wa s 

provided by tr.e heavy current input bar s and the circulnr di stri

bution bars. The t wo r adiCl. tion and drCl.ught shi elds wer e invalua.ble 

in i mproving th e t emperature distribution and decrcaslllg fluctuation. 

The dic.phragm wa s put at a point higher thnn the middle point of 

the furnace tube, becaus e it had b0en found by previous worker 

that the highest temperature would be nt this point. Also the 

temper ature gra.dient in this region was expected to be very small. 

The specimen holder was actually 0. t a.pered ring which sat Of, the 

hole in the di~phragm. The melt wes held in ' position by its OVnl 

surface tension. 

The dimensions of the present furnac e wer e slightly modified. 

Since crystals growing f r om the side of the specimen holder inter

fered with obs ervrltion of the crystal inside the melt, the specimen 

holder was p.nlarged from three to four millimeter. The geometry of, 

the furnace wa s dictated by the size of the specimen holder and 

the numerical aperture of the obj ective lens. These ef fect.s 

were shown in Fig. 17. Theref ore the dit~eter of the f urnnce 

tube was irlcreased to s even millimeter to obtuin the best 

result. Too wide n tub e was avoided; because it wns felt that 

this would increas e the temperature gradient inside the furnace. 

The length of' the tube Vlns also increased f r olTl t wenty to twenty 

seven millimeters to obtain better temperature dist ribution. 



!n order to carry the bTeater weight of the furnace and to 

with~tand the mechanical r esistance of the flexible heav,y current 

l eads connecting the furnc..ce t er minal block with the transformer, 

two tlsliding heads" of small l athe mounted at right angl es to each 

other, were used to construct the mechanical stage unit instead of 

using the ordinary mechanical stac;o. The two "sliding heads" provided 

means to adjust the horizontal position of the fu rnace so that the 

furnace tube would be in aliunment with the microscope at all 

temperatures. The mechanical ateeo was mounted on a column which 

also provided the independent support for the camera. 

(c) Power supply arrangement and temperature measurement. 

Large low voltu5e current had to be used to provide the 

power. The circuit diagram was shown in Fig.18. A vol tags 

stabilizer was used to steady the input voltage . A small Variac 

was placed between the stabilizer ond the t ro.nsformer to control 

the voltage input to the transformer. The r eduction ratio of the 

tronsformer was one to eighty. The tro.nsformer wa.s ct.·r.nected to 

the furnace t erminals by seventy ordinary 5 ampere copper wires to 

provide flexibility. The copper furnace terminals we_G water 

cooled by close circuit :::ater. The insulated furnllce terminal 

block was fixed at the end of the w.echanical stage unit. The two 

heavy current input l eads of the furnace were secured onto the 

terminal block by screws. 

During the exper iment, 60 to 120 runper es at 0.8 to 2 volts 

was used. The relationship between the applied voltage on the 

primary phase of the transformer [Lnd the specimen t emper Dtu'!'e was 

shown at Fig. 19. The tempera.ture achieved at the same applied 

voltage vw,s not the same every time. The temperature seemed to 

be affected by the ambient t emperature and the t emper llture of 

the cooling water. 
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The thermocouples used were of 13% Riy r't; - Pt. The wire 

diameter being only O.OO~" in order to mi ni mi ze errors due to 

thermal conduction up the ther mocouple l eads ru1d to obtain a very 

small junction. These t hermocouples wer e carried in twin bore 

fus ed silic~ ~leev~s . In the present study, one of the thermo

couples vms used to nucleate t he crystals, and the other wus us ed 

for periodical calibration purpos es. Both of them had to be put 

into the confined spuce of the furnace tube. Ther efore they were 

carried in two three-dimension micromanipulators to f acilitat e the 

accurate movement. 

The thermocoupl E: l eads wer e connect ed to compensating l eads in 

junction boxes s i t uated at the micromanipulators. The compensating 

leads were connected at the ice junction to copper l eads which 

terminated at the potentiometer. A two way switch was us ed to 

connect the unb ul D.nc ed voltage from the potentiometer ei t her to 

scul e lamp galvanometer, or t he Gr aphspot. The Graphspot is a spot 

follower device with a r ecorder, the speed of which c:m be varied 

widely by different combination of gears. The spot of liGht from 

the external light source is followed by a photoc ell, or an external 

electrical s ignal i s converted into an internal li r,ht source by a 

built-in galvunometer. This instr ument provides a oonvenient meana 

of recording oontinuously an electrioal signal or the movement of the 

spot of li6ht from an external light souroe. The scale l amp 

galvanometer WQS us ed as the null-point instrument f or standardizin~ 

the potentiometer or e xaot temperature measurem ent. The graphs pot 

was used to provide a continuous r ecord of t he specimen t emper atur e, 

When the graphspot vms used, the pot entiometer vms s et at s ix 

millivolt and the exc ess e.m.f. was fed into the Graphspot " so 

that a more sensit:ve Bcale could be used. Under thes e condi tions, 

the scale on the chart was about three degree centi :;.,rnde to one 

millimeter. This was accurate enou:sh for the cryst/1l &rov/th study. 



During the periodic c::tlibration of the thermocouples , the scale 

o l nmp was used and an accuracy of 0.1 C could be achieved. 

2. EXPERIhrEN'rAL VlORK. 

(1) Calibration of the graticule, the Graphspot and the 

thermocouples. 

A graticule graduated in tenth of a millimeter was fitted 

into the microscope eye piece, and it appeared superimposed upon the 

photographs. It was necessary to calibrate the s cal e on the grati

cule so that t he actual length of the cry'sta.ls could be deduced. 

The camera and t he microscope were independently supported s o that 

the microscope could be focused onto various depths of the specimen 

which vras about two millimeter t hick. Ther efore it V/lL S 0.180 

necessary to inveotigate whether the vertical position of the 

crystals in the specimen could affect the magnifico.tion. 

During th e calibration, the microscope and the camero. were 

fixed at the same position as in the experiment with the cooling 

water system operating. The furnnce uas first fixed at the usual 

position nnd the microscope was focused on top of the specimen. 

The furnace \'ms then taken off. A stage micrometer calibrated in 

~th of a millimeter was carried by 0. three dimension micro

manipulator. Its position was adjusted to bring the stage micro-

meter into sharp focus. The scal e of the stage microscope was at 

the same position as that of the top of the specimen. A photogra~h 

was taken. The stage micrometer was then lowered one millimeter ~nd 

was at the s ~,me position as that of the middle of the specimen. The 

microscope WL S then readjusted to focus the stage microscope. 

Another photograph VlO,S taken. The srune procedure yms repeated 

with the stage m:·,0.rometer at the same position as that of the 

bottom of the specimen. From this s eries of photographs, it was 

found that there was no detectable change of magnification due to 

variation of the positions of the stage micrometer. Under this 
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condition, the ratio between the two roale .<.l vms found to be about two 

to threo, and one small scale division on the graticule ~as about 

thirty-three microns. These 11hotographs are reproduced us Fig.20. 

The range used in the Graphspot vras 0-10 MV. However it ViaS 

found that the calibration was not exactly linear as stated in the 

operation manual of the instrument. Therefore calibration ourves 

were obtained so that the t emperature could be r end off from the 

scale reading on the 250 millimeter wide chart in the Graphspot. 

During the calibration, the output of a thermocouple in a 

furna.ce at constant temperature vms used a s the source of e.m.f. 

This was first balanced exactly by the potentiometer using the 

sco.le lamp galvanometer as null-point instrument . The potentio

meter was then turned down o.t steps of on8 millivolt, and the un

balunced voltage was fed to the Graphspot. Four 9urves, two of which 

were with inoreasing voltage and the other with decreasing voltage 

were obtained. This chart was reproduced as Fig. 21. A calibration 

curve of scale I' eading - voltage applied was constructed from the 

data obtained from the chart. 6 W was added to the data and the 

resultant millivolt was converted to temperuture by appropriate 

conversion table. The calibration curve of scale reading-temperature 

was then plotted from these r esult s , and was used in the experiment, 

during which the potentiometer was set at s ix millivolts. Thes e 

calibration curves were shown in Fig.22. 

In the present study, ttro thermocouples were used. Both of 

them were calibrated by specimen of known liquidus t emperature, 

and the measured liquidus temperuture was found to be within 

: 20 C. In the determination of liquidus temperature or crystal 

growth rate, one of these thermocouples was immersed in the melt to 

measure the temperature and to nucleate the melt. This thermo

couple was cleaned in hydrofluor ic acid after an experiment on on~ 

specimen and was then calibrated by the other thermocouple. During 

the calibration, both thermocouples were put into the furnace and 



Fig. 20. 

Micrograph for the Calibration of Graticule. 

/ 

" 

(a) 

Stage micromet er 
at the top pos ition. 

(b) 

Stage micrometer 
at the middle 
posi tion. 

(c) 

Stage micrometer 
at the bottom 
position. 



17~ 

,~ 

IZS 

ICC 

,.., 
-.t 
~ 

75 

t ~ Q 

:: 
CI 

... .. t~ .. 
~ 

0 

FIG ZJ Gf!APH5R:>T CAAer roe CIILlBRATtON or SCAL£. 
f2EADING. 

I 
..J ~II 

4 .. 1/. 

~ 500il 

'- tat. 

- '-« .-J 

Jl 
I 

I 

~ Ll I r l r-' 

~ 

~ 'G 22 OntS CAT/ON ((II2V£'::> or sellLE J2£flDINGS. 

0 - 0 !>. 12. - ... 11. Cu IlV/: 

"-K S. R. - Tl:MPEIiZIIT"ut!£ C l.II!.vE 
(W'TII ", ... 11. liT" ) 

PoTE .. rn01>frrr£!. 

i 

,~ 

,DO 

.... 11 " Z t .. S l# 1 • • '0 

T~"NurlJlr fI«f 70(/ set! fCJ I0O<I ,11K! JUJ lacO I~ 160C 



were pla.ced. ver'lJ close together above the surface of a specimen. 

o 
Yfhen the indicated tei!lperaturos differed more than 5 C, about one 

11)1 ;. 

centimeter of the used thermocouple was cut off' and 0. new junction 

was mC!.de. The used therH!Qcouple vms checked nl3ain by the standn.rd 

thermocouple. 

(2) Temperature distribution in the furnace. 

The temperature distrj.butiuns in the r egi.on above the 

specimen of the furnace were investigated with a crucible of the 

same size in pluce of the tapered ring speoim n holder, tv sUlilute 

the experimentoJ. oondition. The thermocouple was curried in the 

gro.dunted three dimension micromunipul~L tor and meas uremonts sturted 

at the centre of the bottom of the crucible so that the exact position 

of the therI:1.ocouplo Vias known. Potentiometer and galvMometer unit 

were used to measure the temperature. It was found that the maximum 

temperature wus at nbout one millimeter above the rim of the cruoi ble. 

The nxial temperature varintion, up to three millimeter above the 

crucible, wns slight. The maximum variation in the crucible was 

about seven degrees. The temperature near t he top of the furnace 

dropped rapidly and it was difficult to obtain steady r eading at 

these points. This might be due to the convection air current going 

down at the centre of the furnace tube and coming up along the wall. 

The rndial temperature distribution was investignted at 0.5 rom above 

the rim of the crucible and also at n point very nenr the bottom of 

the crucible. A very r apid increase of temperature wus noted when 

the theI'lJlocouple vra8 moving uvmy from the centre. Inorease of 26°C/ 

mm. was noted whcm the thermocouple was nea.r the ll"o.ll of the furnaoe 

tube. It vms f elt that the therlJooouple ViaS not rea.dinB correotly 

the temperature of the surrounding a~r, beca.us e it r eoeived fairly 

high radiation from the vrall of the furnac e tube. Since this 

survey nas done with the thermocouple hanging free in the ~ir, the 

apparent temperature varintion Vlould be higher thnn the actual 

temperature variation of the air due to error introduoed by the 
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radiation f rom the vIllI. OVling to this interfel'ence, the radial 

t empera ture dis tribution in the s pecimen v;us investigat ed. The 

thermocouple ViaS ir!lr.'lers ed in the melt about one millimeter b elow the 

top surface. The maximum tenperature varia tion \"las found to be only 

six degrees compc.red n ith about t wenty degrees in the previous in

vestigation. The axial temperature distribution \"lD.S not investi

gated becaus e it was found inpl";.ctical to puuh the thermocouple into 

the bottom of the melt. However it would b e saf'e to conclude that 

the maximum temperature variation at different points of the specimen 

VlflS less than t811 degrees centigrade. The temperature distri bution 

curves were shoylIl. i n l~igure 23 and 24. 

Earlier, it had been stated that this type of f urnace VlO.S 

sensitive to draught and it \"m s difficult to hola the temperature 

for a long period. It VlO.S found during this survey that, when the 

ther mocouple was honging free above the speci:nen, the teoperature of 

the thermocouple junction dropped, up to 50
0

C, by just blowing into the 

furnace tube. However, if' precautions were token to avoid. creating a 

disturbanc e in the room nnd the thermocouple was immersed in the melt, 

the recorded temper a ture wa s found to b e within :!: 2°C. for a.t least 

half of an hour. Since t he time needed to study the i:;,1.'ovrth rate at 

each temperature w:]. s ranging from thirty seconds to fifteen minutes 

in the present study, it llO.3 felt that the temperature of the specimep 

was stea~ enough for its present purpose. 

(3) Determination of liquidus temperature. 

A small piece of specimen of the composition under 

investigation WnS put in the specimen holder which was plaoed in a 

rider in a pla tinum crucible. The whole unit was then put into an 

ordinary electric r"'u rnace holdinG at t emperat ur e near the liquidus 

temperature of the bpecimen. After the specimen had melted and 

adhered to the :.> pecil"en holder, the pla.tinum cruuible nus taken out 

of the furnace. Some more specimen vras filled into the specimen 

holder which wet S th ::l1 r et urned to the furnac e. This procedure wa.s 
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repeated until enough specimen h ad b eon filled in the holder. With 

this L'Iethod, a specimen .. lith a r easonable flat upper and lovler sur-

face could be ob~ained. Also it avoided the difficulty of filling 

the specime!1 holder Vlithout spilling while it wa s in the mi~ro-

furnace of the hot stage I:licroscope. 

The s pecimen was carefully placed in the diaphragm of the 

furnace, so th at its surfaces 'iTOuld be as horizonto.l a s possible, 

and the furnace was secured in its terminal block. The camer a Lmit 

vias taken off, so that the spec:i.men could be ob s orved visually more 

easily. The furnace wus heat ed up slovll.y to just above tho liquidus 

temperature of the specinen to melt all the crystals that might be 

present. With the aiu of the microscope, the thermocoupl e was 

lovlered into the melt until its junction was just imners ed. The 

thermocouple VlD.S then r'aised to a position at temper ature about 

50 0 C. below the melt. The temperature of the melt was then lowered 

to about 50°C. beloY{ the liquidus. The glass canting on the junction 

of the thermocouple would then devitrifT fairly quickly. Then the 

thermocouple Has a gain lowered into the melt and crys tal growth would 

start from the junction. The temperature of the furna.c e Y/as rais ed 

a 
to about 15 C below the liquidus temperature. The t empera ture was 

measured accurately with the potentiometer and galvanometer unit. 

Normally a small ball of crystals v/ould fono at the junction sur-

rounded by the melt. This crystalline mass vms observed until it 

reached its equilibrium size, usually taking about only one minute. 

The temperature of tne furnac e was r a ised in a~out 5°C. steps, and 

the furnace 'lIas held at each temperature for nbou'~ five mir:I.U·~e~ and 

the crystals Ylere observed. D.lring tha t time, the temperature was 

measured. This procedure we s r epeated until all the cryrtnls ~ere 

dissolved. The liqt<:"dus temperature was taken as the middle tC;lmpera-

ture between that WhE.~l t e las t trace of crys tt:'.le had persisted and 

that .. then all the cryst.3.ls had dissolved. The determination of the 

liquidus temper at ur e VTaS repented three times and the results wero 

within 5°'C. 
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(4) Determination of the r ate of crystal b£owth. 

After the determination of liquidus t emper ature, crystal 

growth characte~'istics at three or four different t emperatures were 

observed visually. The co.m ero. unit was then put back intn position 

and illumination was adjusted. The potentiometer wa s set at six 

millivolt and the unbalanced voltage was fed into the Graphspot. 

After all the adjustmen ha.d been made , the measurement of crystal 

growth rate could then begin. 

In the d et ermination of the rate of crysta.l ;;;rowth» the 

position of the cry3tals was controlled by nucleating the melt 

with the thermocouple. The temperature of the J elt VIaS raised 

well above the liquidus temperature and h.31d there for a while 

to dissolve !lny cryst al that might be present and also to destroy 

the "memory" of the crystals in the melt. At this moment, the 

thermocouple wus above the melt. The tet!lperature of the f urnace 

via s then lowered by decreasing the applied voltage to a pre

selected level. The thermocouple junl)+' ·.on was lOr/ered into ":he 

melt. The amount of immersi('ln vms 80 chosen that the interferenoe 

of the meniscus of the melt upon observation was at a minimum. 

The mioroscope wa s r ea.djusted if necessary to focus the thermo

couple junction inside the melt. By virtue of its low thermal 

capaCity, the temperat ure of the melt would a.pproa.ch the s teady 

temperature in a f ew seconds. After the crystals had grovm to an 

observeJ 1e size, photographs were t a.ken at regula.r time intervals 

ranging from five seoonds to two minutes, depending upL'n ~he 

prevailing growth rate, until the crystals greVI to outsiLi.e the 

field of 't;he cnmera , or the observati.Jn Vla.S i..'lt eri'ered with by 

o~her crystals. The temperature of' the furnace was again raised 

above the liquidut temperature to dissolve all the crystals, and 

the thermocouple we~ then raised above the melt. The same pro

cedure was then repeuted for another temperature at about 100e 

interval. The rate of the crystal growth was studied from just 



below the liquidu.3 t emperature down t o the 10'1'. es t t emperature , at 

which th e observation was practic :!.l with the pr esent appar atus. 

While the thermocouple was 'bove the melt, there vms 0. coating 

of the melt at the junction. Due to the much smaller heO.t capacity 

of the thermocouple junction than that of the melt, its t emperature 

dropped much rast er , when the applied voltu.;e vms t urned down. As 

soon as the juncti on was lowered down into the melt aciain, its 

temperature would rise beca.use the melt vms at a hi6her t emperature. 

The indicated temperature then dropped again and approached u stead¥ 

level in a very short time" showing that the melt was then at a 

steady temper Elture. These wer e rt::corded on the chart in the 

Graphspot, and the record for the exp€ri~8nts at several t empera

t ures was reproduced as Fig. 25. Since the t hermocouple junction 

ViaS at a. lovler temperature for a longer time and reheated on 

enterin6 the melt" usually the coating of the melt at the junction 

surface would crystallize. Shortly after the junction was in the 

melt" these cryst als would start to grow into the melt. Th3refore 

the crystn.ls were normt.lly arm.md the junction and at the Q8Jl.tre Of 

the photo braphs. 

Depending upon the temperatur e and compos i tion, crystals some,.. 

times started to grow from the si de wall of the specimen holder, 

but the centra.l mass around the thermocouple always gr ew t o an 

appreciable size before this occurred. Therefore 0nough photo

graphs could nO r'T!U.l.lly be t aken to determine the [~rowth rate. 

At lower temperature, difficulties were encountered. V.'hi10 the 

c~talline mass around the thermocouple was growing steadily, 

crystals started to Grow on the sur~uce of the melt, and this 

interfered with the obser vction of the crystals at the middle. 

Therefore the th '::'IIlocouple was le~t in the melt when the tempera

ture of the furna.-·e vms dropped. Crystallization would normally 

start at the thermoconpl e junction immediately and this wC'uld give 
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a longer time to obs ,;rve the growth of the cr'ystals at the middle. 

At still lower te,ape:catures, even this method did not h81p very 

much, becaus e t he crystal s started to grow a t th e surface very 

quickly and the numb er of crystals on the surface was quite large. 

In a very short time , the whole surface Vias occupied by a lot of 

ti.."lY crystals. This was found to be the limiting factor at the 

lowest t elnper ature that ob ::; ervo.tion could be carried out. 

At the lOVl8r t emperature r ange , the thermocouple was lowered 

immediately aft er the applied voltage was lowered. At higher 

temperature, it was found neces sary to wait f or a while before the 

junction vm.s lowered into melt to give some time for the melt on the 

junction to crystallize. This time int erval ranging from a f ew 

seconds to about two minutes increased with the t emperature. 

At temperatures just belovl the liquidus temperature , crystals 

did not star t to grow i mmediately after the j unotion was lowered 

into the melt. A f ew minutes might be taken before the crystals 

appeared at the junction, even in composit i on having a very ' high 

crystal growth rat e at this temperature range. In this temperature 

range, the thermocouple junction was normally raised to a posit ion, 

the temperature at which was much lower than that of the melt. 

When the t emper ature of the furnao e vms lowered, the junction would 

be at a t 611lperature range at which crystals would ~ow immediately. 

Therefore , before the junction was lowered , the coating of the melt 

on the junction would lmve crystallized o.lreudy. Under this con

dition, crystals would s tart to groVi in the melt shortly after the 

junction was in the melt. 

An attempt VlaS made to grow the same crystallin0 mass at 

different temperatures. In this attempt, the ther mocouple 

junction was left in the melt all the time and the temperature 

.f the furnace was innretlsed to about SaC. higher than the liquidus 



temperature, after the observation at one te!i1pero.ture vm.s completed. 

II'. the low temperature range, the time necessary to heat the specimen 

to above the liquidus temperature vIas quite long" and the whole mass 

was completely crystallized during the heating up period. Under this 

oondition, the l ast t race of crystals was normally on the surface of 

the melt and also a'lTD.y from the thermocouple junction. When the 

temperature Has lOViered again, these crystals started to gr:'ow bef'ore 

that at the thermocouple junction. Therefore the observed orystal

line mass was not the same for suocessive experim -nts at different 

temperature. At higher temperature range, the specimen did not 

crystnllize completely during the heating up period. However, the 

orystalline mass normally started to dissolve from the bottom. The 

crystalline mass became thiruler and thinner, and at the later stage 

only a few long crYDt ~lls were left radiating out from the junction. 

~en the temperature of' the furnace was lowered again, the crystals 

normally grew dO?IDward instead of' at horizontal direction. This 

made the observ0.tion very dif'ficult. l~lso the time for the last 

trace of crystals to dissolve was only about a second. This made it 

very difficult to control the size of the last trace of crystals. 

Due to the above practical difficulties, this technique was not used 

in the present study" instead a new crystalline mass was nucleated 

for the experiment at each temperature. 

In one specimen ;;'ith composition of lithium oxide 25 Hal % 
zinc oxide 15 Mol lo and s.ilica 60 Mol '1; , some special difficulty 

was encountered. When the thermocoupl e junction wa.s lowered into 

the melt with the furnace temperature below the liquidus temperaturEil, 

the crystals originally in the coating of the melt on the junction 

detached from the junction and f16w to the surface quickly. These 

crystals were Vel? close to each other. and 5TeW into each other at 

a ver,y short time. This made the observation very diffioult. 

Therefore this composition was not studied. 



After the study of crystal growth r ate at various t emperatures 

was fini shed, the liquidus temperatur'e of the specimen was rede

termined twice .vi th the ~.lllme experimental procedure aIr ady described. 

The liquidus t emper ature of t he specimen vms always found to be 

within 5°C to that determined before the stuJ;y of the r ate of orystal 

growth. Normally n lillUidus t emperature of 3°C higher was obtnined 

after the study of the growth rat e. Therefor e the chwlge of the 

composition due to selective volatilization wus very slight and 

this did not significantly affect the re sults obtained. 

In the t emperature r ange with a very high orystal growth rate, 

the indicated temperat-u.re rose up to twenty deBl'ees Centigrade during 

the crystallization. This WU3 mainly due to the release of latent 

he at of crystallization. Under this condition, the a.veraGe t empera

ture was t aken to be the temperature of the experiment. The indioated 

t emper ature wus the t emperature of the thermoooupl e .. t the oentre of 

the crystalline mass, and the inorease of tempero.ture at the crystals 

and melt interface would have to be h:'gher. ThelS was flO wa.y to 

measure the telT'.}Jerature precisely. Therefore the a.ctual tempel'ature 

of the experiment was in doubt. However, this was met at only two 

or three temperatures at each speoimen. For the experiment at all 

other temperatures, ther e was no observable change of temperature 

during the experiment. 

(5) Identification and measurement of the crystalline phase. 

After the study of liquidus temperature and crystal 

growth rate, the crystalline phase at different temperatures was 

identified. A small crystalline ma.ss was alloWbd to groVi a.s in 

the study of crysta.l growth rate. The thermocoupl e was ra.ised 

out from the melt bringing with it the crystalline mass, at the 

same time the app~ied voltage to the furnace was cut off to 

freeze the crystals at the thermocouple junction. This crysta.l

line mass was then immersed in liquids of different refraotive 



indio~e. Th<> Rech e line tAchniq~e ~-;c.s '.lR "-? d. to identify the 

orystalline phas e at the e dbe of the crys t alline mass. 

The rate of the crystal growth was deduc ed from the photo

graphs taken. Films of diff erent speed wer e tried. Since there 

was fairly low contrast between t he crystalline mass and the melt in 

the negatives , it W3.S nec essary to increase the contrast. This vias 

done by slightly under-exposing and over-developing a. sloV! film. 

The best r esult wn.n obtained with lIf OI'd FP3. The intensity of the 

transmitted liC;h'C vms so adjusted that an exposure of one thirtieth 

of 0. seoond would give a negative slight ly under exposed. The de

veloper used was rlford Microphen Fine Grain Developer " and the 

developing time was increa.sed from the normal seven and a. half 

minutes to el even minutes . 

It was quite easy t o deduce the Ime;th of the crystals from an 

image projected from 0. negative by a photographic enla.rbcr. The 

negatives taken in the calibration of the graticules were used for 

standardization. It ViaS found that when(;he imaGe of the two 

millimeter stage m:crometer was ten inches long" th~ image of the 

sixty division of the gratioule was 9.1 inch s long. When the 

l ength of the orystal was measured, the photographic enlar ger was 

so adjusted that the superimpos ed image of sixt y d.ivision of the 

gratioule would be 9.1 ins. long. Under t his oondition, 0.1 in. on 

the base plate of the enlarger was equivalent to twenty microns. 

A graph paper with 0.1 in. graduation wa.s placed on the base plate 

of the enlarger and the distance between a r eference point ad. t he 

edge of the crystalline ma.ss was r ead off from the gr aph paper. 

The edge with the f astest growth rate was me:J. 3ured; the edge Vlith 

a slower growth r ate was neglected, becaus e at t.his point , the 

crystnl was not growing in the plan of observation, or this line 

was not parallel to the direction of the bTowth. 



These glasses were investigated. Their c ompositions, 

li'luidus tempera tures ana. l?ri.mary pha se crysta ls were listed in 

TE) '.Jle 16. 

~'able 16 

Glasses used in the crystal growth experiment. 

---! I 
Liquidu~ PrirnD.ry Phase Glass Nc .. ; Composi~ion 1 I 

~ .. .-. 
LiO : - -~;-SiO~ · · Tcmpera t.n-e Crys~.ial 

2 i I I 
t 

I I 

f r-ll~~O t-sOc. t .0- .. _ __ ----,. 

20 15 i 65 4 I i Tri~ite. 

I I 

30 5 
I 

65 
I 1010° ! 5°C. i Lithium di-6 I I I I 1 

I silica te. 
I I i 
I , 

1188
0 + 5°C. 60 I 

7 I 35 5 I I Li thium me ta'-
! I I silica t e . ! 

.--.... -~ . 
- _ - _ ___ 0 - .. _--, 

The length of crys t a l versus time curve and the grov~h rate versus 

t.;.;r; ) rature curves are shown i n Fig .. Z6-3~. A series of micrographs 

showing the grov' th of Li20 • ZnO • 3i02 we.>: e reproduced ns Fig. 330 All 

the leng~h of crystal versus time cu..:'ves nre s t r'uight l i nes indicating 

linear growth r a te. The growth rates at various temperatures were ob-

tained from the slopes of the length of crys t a ls versu s time curves . 

The usual hump shaped growth rate versus temperature curves were ob-

tained • 

• '1.. high sca ttering of results were obta ined with g l ass No.7. 

The main CaUse of the scattering was the measurement of t en'J? el'uture~ 

A very high growth rate of over three thousand Inicrons per minute were 

obtained with this glass. During the growth of the c rystuls, the 

° tempera ture of the specimen increa:::;ed up to 30 C. The t emperature WaS 

measured at the c l:!ntre of the c.Y.,r s tal1ine mass, s o the incr'e ase of 

I 
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temperature at the urysta l and me lt interfa ce wa s much high er. There 

was no way to mea sure the temperature of the interfa ce very accura t e ly. 

At present, the 'lverage temper a ture during [~rowth W.:.l.S u sed to plot the 

cu-':°vas. This uncertaintyof' tempera ture mea surement ca use :l t he "vide 

sca tteri.ng. 

ow:...1g to the high rate s of growth, the time to observe the crys t o.l 

was limited to D.bout half' a minute. Five second intervals v/ere found 

to be the shortest time for operating the camera accura tely. If thre0 

second inter\ als wer e used, it was difficult to t uke the photog:r~"'.phs a t 

the right moment. Therefore, only f ive photographs wer e t aken to obt ain 

the growth r a te., Ovving to the r api d change of' t empera ture, t he grvNth 

r a t e changed Do S well. Thi s ma de the l-Joi nt s on t he lengt h of c rystu). 

ver.sus t~me curves sca tter. The best straight l ine s were dr awn through 

t~e points to obt8.i n the gr:.;wth r a t.e . This ,O[ould a l s o introduce s ome 

e1"1"Or. 

At the lovier rote of' grovrth, t he d a t a obta ined was more a~cur:lte . 

I . , ,)o.SS No. 4,the growth rates of whi ch; Te below seventy f ive fll ::' cron ~1 

per minute, the -points were all f a lling on the growth r a te versus 

tt:!ll1pera tur 3 cUl'ves. Except for very high Browth r a t e curves, the point ~ 

of the length of cry~to. ls versus time s a ll fallon the strai ght line 

f a irly accurately~ 

The lineal' gr ovvth rates obta ined r a nged f r om about ten micr ons pe r 

minu"te to over t hree thousa nd mi crons per mi nute. The maxinr..un grO'.vth 

rates of different crystals ranged from about t wenty microns per mi nute 

in tl°ldyrni te to over three thousand mic r ons per minute in lithi um rne t a -

silicate. J. G. lliorley f ound thr ... t t he maxJ.mum gr'I")v,rth rat es in t he lit hium 

silicates were about eight hundred microns per minute in the glDf> ses ne . 
livestiga ted. He saggest ed t ha t the r ate a t '·rhich t he laten t he2. t of:' 

crys t a lliza tion c ~uld b e conducted iJ.way might be t he limit i ng f a ctor of 

the g rowth r a te. From the much higher 8r owth r ate obtained in the p)'e::;en~G 

study, it could be concluded t hat his sugge s tion wa;j not correct. 
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Wi thchd p-r:e serl 'i:. eX1Jerimental procedure, only the hi gher r a te of 

grnwth could. be obtained, when diffeI'ent types of cry s t a ls were growing 

simul t uneously, l)E,' cause the crysta l and melt int~rface wa s tho. t 0 1' the 

cry.3~al which had a higher rate of gr'owth. In glo.sses No.6 o.ncl 7, thf.. 

g:~owth r i.l tes of the primllry phases were higher thlln toot of the secondary 

prose s, ... heref' or(~ only the groV',:th r a to s of the primm y phase s could b e 

obta ined. In gl ass No. 11-, tile growth I 'ute of the secondary phuse cl"'y-stul 

was obtllined below about 1000
0
0, beclluse its growth r nte w, s higher than 

tha t of the p:---.:'.mary phase. 

The present hot stage microscope proved to be very useful ~;o stu~ 

the growth r a te of the crystal a t high t emperuture . A wide l:ange of 

growth rates could be studied with the p':esent appal': tus . The errOr i n 

the obsel'va tion of high growth I'D. t e is ar. inherent difficul W of the stU( 'y 

and ca nnot be elimina ted by 'U.sing other appI1I'atus, becau se it is im-

possible to meaSure the ternvera ture of the moving interfacp between the 

crystal a nd melt continuousJ..y. However this appllX'atus is lirniJved t \ t low 
of the melt 

~\ ,.l.J ~r'a ture ranges by the high tendency of' the surface Ito dev i t rify" flo 

tha t the position of the gro'Ning crystnl cO.lld not be controlled by the 

illca surilJg '-h"mnocouple and the t i ny crys t nls on t he surfuce interfere~ 

with observa tion. In the present study, the tempe:mture l'nnge stud:l d 

o 
extended from just below the Jiqui d'.1s temperu'l..ure to nbout 850 0. 
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IV. DISCUSSIO~ OF RriSUL'rs. 

G. Ta.mmann's concep t of the mechanism of c ry s t a lliza t i on has been 

accepted as t he classi ca l t heory of nuclea tion. By consj.derat i on of 

the tota l f ree energy chang') during the i nitia l stage of t he phnse 

trunsf orma t:i.on from a n unstLtbl~ phase t o a stable ph£lse , he concluded 

t 11.1..1. t t here is an e-.ergy barrie r i n the formation of the new ph£lse . 

In this theory, only the direc t trnnsf orma t i on cf the unstable phos e 

to the stable phase is considered, the other paths wi th intermediate 

s t eps are not consi dered. In the t ransr'ormution of a pure rna t e-ci.al, 

the direct transformation of the unstable phase i nto the s t able pha s e 

is the only pat '.,_. Howev"'~::, in the pr ecipi t ut i on of a s t abl e phase f:r:-om a 

complex solution, diff erent p a th.:; with various i ntermediate steps are 

conceivable,. the energy bun-ier of ea ch i ntermediu te step i s lower. 

than th£lt of the direct forma t i on of the s t able phase, i t i s more lik~ly 

that the path of the direct form£l t i on will r.o t be f ollowed. 'rhe 

separation 0 f a second liquid phase seelJ'S t'::l be un easi e r step, b ecnuse 

the surface tensions of the lilJ.ui ds are simi l a r " 

In the cla ssica l theory, the concep t of the inter fac e be twe en the 

stable phase a nd the unstal.lle phase is of a macl' oscopic scale. In t hl1 

absence of precise knowledge o:£' the propertie s of the i nterfac e of t he 

small nuclei, the concept of t he interface of m!lcro scopic scale , is a 

(29) 
rea sonable assumption" Howevel-s S. D. S.tookey has pointed out in his 

discussion of t :· e crystnlliza t i on of the photosensitive g l ass t r'a t thq 

minin~n size of the stable gold nuclei in t he homogeneous nuclea t i on wa s 

found to be one to three gold atoms. These result~ wer e ob1-.c.i ned in-

dependently from light sca tter ing exper iments a nd f rom the I n t ent imnge 

stabiliza tion experimpnt~ I f t he minimmn s ize of a s t able nucleus i s in 

the order of one to three atoms, it :Ls difficult to conceive t he concept 



of interface SUlCI'ounding this group of atom . ~ven the concep t of all 

illterfuce in the mo.croscopic scnle is a co('pted J tho 11j,'0J:le r t ies of 

this i nterface may be compl e t ely di ffer nt from tho. t of' U )11 'ti clo n 

t':1e macroscopic scale. With a purticle consisting of' .only O':1e to th.r~ e 

atoms, some other f actors (e. g . the l 'c lut i ve geome t rioa l posi t 'on 

betwee~ them) rr~y be more i mportant t hnn t le sur ce n0rgy t rm i n the 

considera tion of t he classical t heory. Ovling t o the fo e ~oil g l' () 3 np, 

the clasr:;cal nuclea tion t heory can only ~erv", us til b:.l.okgroun knc.."Wr

ledge of' the I.Jroces ;:le5 of crys t alliza t i on of oomplex "ystems (.Lr ·1 t 

cannot be app lied directly i ll mo st cuses . 

It has been repo.:.~ted by other worker s and observed in th pr(;HJ\;l n ' 

study of the growth rat e of' crystul t hat over u r 'e of temp r ut e 

just below the l i qui dus t emperut ure , the l!ry st a l s do not g l 'OW imine io.1..e l.y 

r f' ter the specime n is below the liquidus t em ',l(;l r l.l ture J oven t ho growth 

r D. te s of the cry s ';;u15 ure ve1'Y high :1.n thi s temperl tur ~ I 'a . Th e 

indice.tes the very high e ne r gy barl'~er of th<.J 10 rna 'ion 0 the n VI 

: . • l o 1c": in t hi s t emper a ture r D.11Be . I r ~ he . o.ri ous r ooesses of cor.-

di t i oning the "'pecimen, bcfor'e t he Cl'y !:; tu1 ".l £'\l'C ble to be 'in the 

steady f;t o te or y st al gr owth , al'e regardec1 os the "nucl. tion pro(Jess", 

inster,J of' Luniting the t erm nuc l eation to the f ormnti n of ::Ii:uble 

nuclei, the clasr',ica l t heol'y can be extended oon5i6. ro.bly to inolude 

more phenomena. In other- ",Drds , the processes of overoom:lng t.h~ en rgy 

barrier of the steady s t a t e crysbl 8' .. r owth cun be con idered ' s the 

"nuc: ea t';.on" stage. 

D.lring t he present study of nuc l eation, only surfac. cry t o. l1ia n 

wa g observed in the commer c ial soda l ime sili.ca:r. gl a :>s. Also in the 

cry sta~ grovrth s tudy, surf ace: crys t allization wo.s t he l imit'118 f l ctor 

of the low t emper.'ut ur e limit f or the ob s ervation of t he c y ntul growth ,. 

Actuolly i n the l-re sent t echniCi"e, to study the cr'y s t :.t l [9.'ovrth r ute , t he 

coa ting of glass on t he thermocoup l e j unc t ion W:'IS luced in fo.vour bl e 
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condi tion~ for het0i.-ogene ous nuclea tion by providing a large pla tinum 

ar..:l melt interi'uce" air and me It interface an d the sui t able t empe r ll t ure . 

The crystals formed in the CO£l t i ng on the thermo ~ouple were u sed 1l!3 

"r . ..l.c l ei ll for the crysta lliza tion of t he specimen. Therefcre the 

crystals ,vere actually nucleated heterogenously . The easiness of the 

hetero~~ne0us nucleation may be due to the differences be~veen the 

structure of the specimen and tha t of the interior" or due to the lower 

energy bl)rT'ier in the nucleation processes" or due to i ml)uri ties. In the 

acid etching (.xperilr.ent on the hea t treat~d specimen" ~ t was f oul1 J. t h t 

the properties of the surface were different from those of the i:'1t-:: r i or. 

A higher differen tial acid r'esi stance wa s found on t he surface thu~~ in 

the interior of the glass. This inUiclltes a higher inhomogeni ty o:! the 

surface than in the interior. On the surface, the condition i s different, 
(33) 

r nd the energy barrier should be Ciffel'ent. Turnbcllhad sho'fm in the 

study of crystal grow·th in f used silica that impuritie s .hav e a prono1..1Jlced 

effect ')n the ea sines s of the "nucleution" stnge. 

In the glass cerrunic process, prase 'epara tion WUf' found to 1 e thl-l 

ini tial essent:i.1l.1 step for the fonna t i on cf the high concentrat i on o f 

the ti:i"~v crysta ls a t t.he l a ter stage. 'rheref ore the unifor m CI'"'J s t ul-

lization of the 61D.~' s cerDmic materi a l s is actu~lly n he ter ogene ous 

nucleation process, instead of 11 1.011l0geneous nuc lea tion process . Tr~.,;; 

success of the glass cerU!nic process is [lctually the introduction of an 

evenly distributed liquid a nd liquid interfuce into the interior o f the 

mat€.:ial and hence the energy barrier of crysta llization i n t ne intqr:i.or 

is lowered to the same, or even lovrer" level of toot on the surfccer 
Therefore a lot of crystallization centres are j;'1tl'oduced i n the intc:cior 

of the mnte:.:i111 and a lot of crysta l will f orm s imultaneous ly to corr'/e!'t 

the ma tel'iFJ.l to an essentially po.lycrystalli:1.e !l'lLl. terial. 



In the pr e!.>ent study of the nucleD .. ~ ::.. on of the g lasses ill the 

Ii thium oxide - zinc oxi de - silica terna ry syst em" uniform c:cystal

lization was found in every specimen. Therefore the t endency to 

c':ystallizution of t he interior of' +.he gl a ss wi,ll be compar llJle to tha t 

of the surface. However the :c · 8'..llt s of t he a cid etching experiment 

indica'c" tha t higher segregation occurred on the sUI'fa ce of the 

specimen. This may mean a Slig~ltly higher tendp.llcy to crystnllizo. t i on 

of' the s1..4..:. f ace than tha t of the interior. In the present s tudy, the 

effects of dirf'ereni. heat treatment were not studied . Possib~. ~ more 

sui table heat treatment schedule muy eli mj note th:). s slightly higher 

tendency to crystalli~ntion of the surface. 

The primary phase cry :.; t a ls 01' the t-w 1 at' the thr~e glasses 

studied o.re tridymite and that of the third is Li20 • ZnO • Si02 • 

""he composi t::'ons of these three glJ.sses a re very simila r a nd close to 

the eutectic point E of the compo ::.ition triaI1{3le of Si02 - Li
2

0 . , Si0
2 

-

Li
2
0 • Zno • Si02 • Big lithium disilicate crystals us well u s £l lot of 

, ry crystals were f ound in these thr:!e bl,ecimens, 0.1 though the pr :un{lry 

phase of these glasses are not lithium disi,1ica te. From the effect of 

time in l"ucleation exper~LIoents, the gro'wth r a te of the lithi um di

silicate was fOllild t~ be much higher than tha t of the t i ny crystals in 

the temi)era ture :r'o..nge of the exper:unent. Since the se cry s tLlls we "i.'e 

found to grow simultaneously; the different sizes of these two types 

of crystals would be mainly due to the different ~rowth r a t~ ins~ead 

of tf1e di.fference between the ea siness of their "nucleation". Tht!:t:'e-

fore in the sub-solidus tempera +'ure , the ;,;rowth I"~te of 'he different 

crystals have a higher effect on the size of the cry stu], aHd hence the 

crysta:line content of the final product" than whe ther a particula r 

crystal is the primary phose of this specimen or not" if toe heat 

treatment i s not continued to tl"'e equilibril.:D' condition. 
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The fonnation of the spherica l cry s t 1 5 nd t heir ou't','/ r d 

growth of them should not be taken us t he proof thll t t hese crystnl s 

grow f'rom .the stnbie nuc.lei ns de::>c I'ibe i i n the cl0.8si co.l nuel tion 

theory, because Oldberg, Golob llnd Strickler (23) d 3 VITl too t ory-at I s 

originated from the interface of n sph oric 1 dropl et nl so lorm a h 'io 1 

crystals, 

It wa s observed t hnt the hea t tre~ted specimen b 'ok a long t he 

cleavage plane of the crystuls. Therefore t h se crys t J. S III t o 

weaken the mnt~rinls.. In a ny co.se , unil 'orm size . cry at I s is d-

vantugeous in the glass ceramic process . I n t h ef 'ec t 01 t i me i n 

nuclention experiment, the comJ)o '" tions of the gl sse l:l No. 4 nd 5 l.\re 

further away from the con~o sition of l i t hium disi l ica t e . uoh Ie s nd 

smnller lithium d:J. si lica te crys t nls weL'e f ound i n the s coimen of' gl S 8 

No ... 4 than ~1 g.L.ns~ No. 1 to 3, nf t er heo t treo. tmcnt t t he l ower 

temperature. After heat treo.tment o. t 550
0 

- 7500
0 f or on l our , t he 

lithium disilicute in glo.ss No. 4 seemed to b e bigger than th t i n gln s 

No :l. to 3, ' possibly due to the hi gher growth r t e of l ' thl uJn dis i ont a 

in gluss No.4 thnn in gluss No. I to 3. i n t l i s temperCl ture r ngo . 

In gln~ s No.5, vlhi ch it;; out side the silicu - lithi um disilioute -

Li20 • ZnO • Si02 ~omposition trinngle, no lithi um disiliou t e wus 

identified, und only 0. very high concentrution of tiny arys t I s w~re 

found in the he 0. t treo. ted speci.JT1ens. Ther efore the oomposi tiona on the 

right c: the 5i02 - Li20 • Zno • Si02 join s eem to be more suit ubl for 

the production uf glass ceramics. 

In the crystal growth expel iment, the growth of the crys t a l wns 
(31) 

found to be linear with time. I n the lite r ature , cnly Tur nbl.-1J.und h ' a 

Associo.t~s had reported root time relationship in the oryst ul growth i n 

glLlsses. They found in their stuc\y of the c ryst ul g rowth of cri sto-

bo.lite in fused si:icu that the utmosphere hus £I. pronounoed ef a t und 

they suggested that the d1f'fusian of cntn1ytic oxygen, wnter vupour or 

impuri ty in the cry!';tFllli ne ] f.wer vms the controlling fuctor 01' the growth 
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rate. If the oxides other th:m sil:Lca in the g lass al'e regarded us 

II impurities" , then in u coml)lex system~, the diff'u !:lion of "impux'i ties" 

v'fill not be the controlling factor of the growth rate because the 

concentra tion of "impurities" is so high :1.11 every part ' of the g l ass 

ulready. 

The 1.p.mperature ranges of the crystul growth investigution in the 

present study are quite narrow" ur.d it VIIlS found difficult to deduce any 

inforrna tion of the mechunism of' the gro\'!th r a te from ' them. Severul 

'workers hud suggested that viscosity is the dominant factor of the 

growth rate below the muximum growth temperature. By plotting the 

product of the growth rate and viscosity versus temperature, Ldttleton(37) 

had demonstrated that the struight line from 'high temperuture extended 

to f a r below the rnuximum growth temperature, suggesting that viscosity 

is +he dominant f a ctor over tW.s tempera ture range. 

~ their investigution of growth r u te of cristobuli t e in fused 

silicu containing small amounts of nlumina,., Kis t le und Brow~51Ud found 

thi'.t ~'. .. grov/th 1'[" tes u t the surne temper uture i ncreused with the umount 

of uluminu, but tht. viscosi ties a t the some t£:.mperutun :, ulso increused 

'wi th the UIP.'.)11l"'t of ulumina. They had S'.lg[<;e sted that t hi s WI). 8 U contru-

dictory cuse to the generully observed effect of viscosity. In the 

tempera ture rD.nge th~y studied, the gro\ ith rute of the srune gluss in-

creused va th temperu ture , indicating thu t the temperature runge was 
(31) 

below the maximum growth r a te tempe r uture. TlU'nbull showed tha t t ,11e 

growth r u te :>f cri sto ba li te increased wi th tempera ture up to about 

fifty degrees below the liquidus temperuture. By comparing the tempera-

ture range, it was found toot the temperature runge in which Brm'm und 

(32) 
!listIe studied was belovi the maximum grol1,th rate temperature. From the 

pOOse diugrD..i.n of the binary ulumina - silica system, it is noted t oot 

the liquidus temperuture of' silicu i;~ lowered grec..tly by smull t:',ddition 

of uluminu. Since the growth rute v ersus temperature curve Ilre nOI'IlUlly of' 



the srune hump shnpe . The lowm:ing of the liquidus t empern ture by 

ndtli tion of' alU!llJ.nD. will move the gro ',rth r ut ver:)U t emperl.\ ture 

curves to n lower t eml.JerntUl'e . Vhen the groYrth rute s of if" r ent 

gl :lsses a t the snrne t emper ture were compo. r ed, the di f (') nt pnrt of 

the growth r nte versus tern.!: erll ture cw'ves were used. This (loes not 

present (;he true picture of t l e crys t n l g rowth proncss , beonu se the 

effect of viscosity is mnsked by the of co t of 1 qU:1.dus temper ture . 

The compnri::.on of the mo.ximum growth I' t e mJJ.y huv mor~ mini ng . 
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In the j,)r esent 3tUdy of t he gl OVIth of cryst 1, Il very rid -- ge 

of mnximum grm .... th r a t e f rom about tw nty micron per mi nute to over 

three thousa nd micron per minute w S obtlli ned. The r nt i o between th n 

is over n hundred. This phenomelln is very s t riki , b 

compositions of t he glasses are not wide~ diff rent. In the nbs nee of 

r " hable viscosity & tn of the se gl usses , i t is dii't' i uult to o.s ess the 

effect of viscosity. Since )~he maximum gr O\';th I' te wore :t'O\md in o.p

proxima tely the sume temp en). t 'ure I'llIlBO , the dilf r'ence of v isco ' t"Y of 

";h.;};~ glusses at the mnximl..UTI growth r nte t em ernture will not be 10.1'go . 

Therefore some ot-her fl.\otoI'S muy be impor t t . 'rht) se llIl.lXimum growth 

:::'I.ltes ar~ not obtuined from t he srune lcind of cryot~. Ther I' or~ the 

difference between th.) struc t ure of t he mel t nnd the ory to t l~ m y be 

important. 

The crystallization cho.:mcteristics of glo.ases in t his wrnnry 

system were only studied slightly. Wi th the r esult obt i ned 1 0 f r , 

it is noted that the glnsses cryst llized unifor mly. Th:.i s w. y IMke 

these glasses sui table for the glClss ceromic process . The C olTlI oei tions 

on the right of the Si02 - Li
2

0 • ZnO • Si02 joi n will b" morc ui t bl , 

because the high gro"rth ro.te crystnls of lithi um met si11c te o.nd l i thium 

disilicl.l te are e~nnted. The Li
2
0 • znO • Siu2 soli d soluti n und 
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2 1i20 • 4 ZnO .. 3 ::.ii02 solid solution fie lds s.e em to be more sui table 

m:ring to the existence of solid solutions, which will assist the pre

cipita t i on of crystals. 

The physical properties of the paJ.'tia lly crystullizeu. nnteri al 

have not been studied. Since the physical proper ties of glass ceramic 

materia~ s depend on the properties of the consti tuent crystalline pha~es 

and the glass rna trix, desirable properti es may be obtained by choo sin~ 

suitable cOOlpositions and heat trea tments to give the desir'cd c r y stals . 

The effect 01' heat treatment on the mi crostructur e of the fina~ »roduc t 

and their physical properties of compositi ons in the Li20 • znO • Si02 

solid solution and 2 Li20 • 4 Zn::l • 3 8i02 should be investigated further. 
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