
Real-time Sound Spatialization,
Software Design and Implementation

David Robert Moore

Submitted for the degree of PhD

Department of Music

September 2004

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

THESIS CONTAINS

CD

Abstract

'Real-time Sound Spatialization, Software Design and Implementation' explores

real-time spatialization signal processing for the sound artist. The thesis is based

around the production of two prototype software projects, both of which are

examined in design and implementation.

The first project examines a conceptual method for performance based

spatialization mixing which aims to expand existing analogue designs. 'Super

Diffuse' , proven performance grade software and the encompassing M2 system, is

submitted, for model evaluation and example.

The second project focuses on Physical Modelling Synthesis and introduces

'Source Ray Pickup Interactions' as a tool for packaging real-time spatialization

digital signal processing. Submitted with the theoretical model is the 'Ricochet'

software, an implementation of 'Source Ray Pickup Interaction'. 'Ricochet'

serves as a model evaluation tool and example of implementation.

Acknowledgments

I would sincerely like to thank the following for their support: Adrian Moore

(University of Sheffield), for his academic guidance and personal support

throughout my PhD study; Braham Hughes (University of Huddersfield) and Bob

Davis, for their support of both my application to Sheffield and post-graduate

work as a whole; Jonty Harrison (University of Birmingham), Andrew Lewis

(University of Bangor), Robert Dow (University of Edinburgh) and James

Mooney (University of Sheffield) for their contributions to development and

presentation of the M2 system; Richard Holmes (Digidesign UK), for continued

personal and professional guidance; All the staffat the University of Sheffield

Music Department, who provided the academic and administrative backup

necessary for my study; All my friends and family, who provided me with much

appreciated support.

Contents

Abstract .. 3

Acknowledgments .. 4

Preface ... 9

1 Introduction .. 12

1.1 Why spatialize? .. 12

1.2 The need for sound spatialization tools ... 15

1.3 Fundamental categories of sound spatialization 17

1.4 Existing technology ... 19

1.4.1 Plan view spatial panning ... 20

1.4.2 Ambisonics .. 22

1.4.3 BEAST - DACS 3D .. 23

1.4.4 Gmebaphone and Cybemephone .. 24

1.5 Summary .. 25

2 Live Diffusion Mixing and Control .. 27

2.1 Diffusion mixing through the Mix Matrix .. 27

2.1.1 Digital expansion of the basic mix matrix .. 32

2.1.2 Matrix Auxiliaries .. 33

2.2 Controlling the matrix .. 34

2.2.1 Parameters (as hybrid variables) .. 34

2.2.2 Data transmission for matrix control ... 37

2.2.3 Multiple control prioritisation and summing ... 38

2.3 Summary .. 40

3 ·Super Diffuse' Digital Sound Diffusion 41

3.1 Development Tools ... 41

3.2 Client I Server, Common functionality ... 42

3.2.1 Parameter Mapping ... 42

3.2.2 TCPIIP implementation, MFC Sockets ... 44

3.2.3 Heap Array Templates ... 44

3.3 SDServer specific ... 46

3.3.1 Implementing a real time DSP Matrix ... 46

3.3.2 Additional functionality ... 48

3.4 SDClient specific .. 49

3.4.1 Implementing a parameter base class .. 49

3.4.2 Parameter Management .. 52

3.4.3 Parameter Groups ... 53

3.4.4 Eliminating feedback .. 54

3.4.5 Parameter Automation (Effects) ... 55

3.4.6 GUI for automated parameters ... 56

3.4.7 SDClient archiving ... 57

3.5 M2 User Manual ... 59

3.5.1 Setup method 1 (Single PC system) ... 60

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

3.5.9

3.5.10

Setup method 2 (Dual PC system) ... 61

SDServer Configuration ... 61

SDClient Configuration .. 63

Monitor view .. 64

Assigning parameters .. 66

Groups .. 67

Automation effects ... 68

Randomization effect ... 68

Watle automation effect ... 69

3.5.11 Chase automation effect.. .. 69

3.6 The M2 Diffusion system incorporating Super Diffuse 70

3.6.1 M3 - the future expansion of the M2 system .. 72

4 The 'Virtual Sound Environment' Model 80

4.1 Requirements of a model .. 80

4.2 A simple sound environment model. ... 82

4.3 Improving the model: .. 84

4.4 Reviewing the basic SRP model.. ... 92

4.5 Adding feedback: .. 92

4.5.1 Example: 8asic Room Reverberation ... 96

4.5.2 Example: Amplified Acoustic Guitar. ... 97

4.6 Representing the world ... 98

4.6.1 Position ... 98

4.6.2 Orientation ... 98

4.6.3 Scale ... 100

4.6.4 SRT Transforms .. 100

4.6.5 Hierarchical Scene Graphing ... 101

4.7 Providing Flexible Automation and Control 103

4.8 Consolidating the 'Virtual Sound Environment' model... 107

4.8.1 Case Study: The 'Virtual Sound Environment' model for the composer. .. 107

4.8.2 Case Study: The 'Virtual Sound Environment' model in the context of film

production .. 108

5 A Real 'Virtual Sound Environment' Modelling Tool.. 114

5.1 Development Tools ... 114

5.2 Implementing Real-Time SRP Synthesis .. 115

5.2.1 Virtual 110 .. 124

5.3 Implementing Hierarchical Scene Graphing 127

5.3.1 Vectors .. 127

5.3.2 Quaternions ... 129

5.3.3 SRT Transformation ... 130

5.3.4 Scene Graph Nodes .. 131

5.3.5 Connecting Nodes to SRP objects ... 134

5.4 Implementing Automation and Control. ... 134

5.4.1 Implementing Single Parameter Control ... ··· ... 134

5.4.2

5.5

Implementing Transform Control .. 135

Implementing Modularity and Expandability 137

5.6 Implementing Object Persistence ... 140

5.6.1 Object Persistence in 'Ricochet' ... 141

5.7 'Ricochet' General Implementation Methods 145

5.8 Ricochet user manual.. ... 148

5.8.1 Initial boot up ... 148

5.8.2 Creating objects: Create Tab ... 149

5.8.3 Selecting DSP Objects: Objects Tab .. 151

5.8.4 Routing DSP Objects: Routing Window .. 151

5.8.5 Processing, selecting and manipulating nodes 152

5.8.6 Viewing and Controlling Nodes: Node Tab ... 153

5.8.7 Assigning Parameter Controllers .. 155

5.8.8 Changing Settings: Settings Tab .. 156

5.8.9 Project Management. ... 156

5.9 Future expansion of 'Ricochet' .. 157

6 Audio and MIDI libraries .. 159

6.1 Real-time DSP on the host CPU ... 159

6.1.1 Notes on host based optimisation .. 161

6.1.2 Steinberg's ASIO for host based audio I/O ... 161

6.1.3 Packaging ASIO in ASIOSubSystem.dll ... 162

6.1.4 Future expansion of ASIOSubSystem .. 164

6.2 Accessing and Distributing MIDI Information 165

7 Conclusions ... 169

7.1 Super Diffuse and M2 ... 169

7.2 SRP and ·Ricochet' ... 169

7.3 In summary ... 170

7.4 Personal Reflection .. 170

References ... 172

Preface

In 1998, during the second year of my study for BA in Creative Music

Technology, I decided to produce a piece of sound panning software influenced

by a workshop hosted in Manchester's 'Green Room'. The workshop was my first

experience of both electro-acoustic works and the performance oflive stereo

sound diffusion and I was struck by the complexity of controlling spatialization of

sound. During the homeward journey a discussion of the workshop with my

undergraduate supervisor Braham Hughes led to a proposal for a project to link

Opcode MAX software control with the Yamaha 01 V mixer producing a

quadraphonic surround panning system. During 1999 I was introduced to the

digital signal processing extension to MAX, MSP. Dissatisfied with the graphical

interface possibilities of MAX, I decided to create a dual component oeta-phonic

panning system with separate GUI software and MAXlMSP processing. 'Deep

Pan' , produced for the project, was my first large scale attempt at improving both

the control of sound source positioning and the quality of its realization.

During rehearsals for the first, and only, demonstration of 'Deep Pan' I was

introduced to Dr Adrian Moore of The University of Sheffield and we discussed

the possibility of researching software tools for sound spatialization. It was very

clear from this meeting that we were both interested in producing fully working

tools that would be used by resident composers.

Having accepted the invitation to study for a PhD at Sheffield, I spent the summer

investigating tools and technologies available for audio software development. At

the time I believed that the forefront of future audio software design would be

with host based audio processing, a personal opinion I still hold today. I became

interested in Steinberg's VST (Virtual Studio Technology) plugin and ASIO

(Audio Streaming Input Output) systems. In order to develop software with these

technologies it was simplest to use C++ and I spent the majority of the summer of

1999 learning both the language, Steinberg API's and PC GUI related API's:

Win32, MFC, OpenGL and DirectX.

The first software I produced at Sheffield was a suite ofplugins to perfonn 3D

panning inside Steinberg's Cubase VST. At the time the VST SDK did not have

multi~hannel capability for anything more complex than stereo. In order to write

this software I designed a background audio bussing system that could sit behind

the processing engine ofCubase. Although this method perfonned correctly, it

was essentially a software 'hack' and was always prone to error or incompatibility

with future Cubase versions. It became clear from this early work that the VST

SDK} would not be suitable for multi~hannel spatialization1 and I focused my

attention on designing stand alone applications for sound spatialization.

My first developments of stand alone software at Sheffield were aimed at

producing 3 D panning systems and these very experimental attempts culminated

in the Source Ray Pickup Interaction concept and the first usable prototype of

'Ricochet' presented in this thesis. At this point my understanding of live sound

diffusion was becoming more focused and while setting up stage lighting for the

'Sound Junction 2003' concert I was inspired by the venue's digital lighting

console to design a similar parameter mapping system for an audio mix matrix.

This became the basis of 'Super Diffuse' and, later, Sheffield's M2 diffusion

system.

While researching some of the current techniques in audio software development I

have on a number of occasions been faced with a choice of development

language. C++ is my language of choice because it is widely documented and the

object orientated conceptualization appeals to me. Obviously there are other

popular 00 languages, JAVA or Smalltalk being first to come to mind. Whilst I

appreciate that other languages could certainly have been used, I have found C++

an ideal language for audio development. Furthennore, in learning C++ or any

other language, I have personally found code examples to be an efficient method

I Steinberg'S VST SDK2 now supports multi-channel plugins for use in its current flagship

software Nuendo. During my initial research I made a number of posts to the VST SDK

development mailing list regarding both a necessity for multi-channel capability and the discussion

of 'workarounds' that had been made by myselfand others.

of understanding the exact workings ofa software example. I therefore present

real annotated and commented code examples from the actual research software.

Software engineering is a field I have approached from a background in music

and creative music technology. This thesis illustrates and complements my

research into creative spatial audio production tools.

The real-time tools designed and implemented in this thesis represent my attempts

to expand the current creative toolset. I present two tools, each representing one

sound spatialization school of thought; live projection of pre -composed works and

simulation of physical properties of sound. In both designs I focus on the need for

appropriate control structures. Further, I highlight the possibilities of expandable

frameworks and show, by example, how such systems can be implemented.

D. Moore, University of Sheffield 2004

1 Introduction

1.1 Why spatialize?

'To deploy space is 10 choreograph sound: positioning sources and
animating movement. ' 2

As humans. an ability to hear the world in three dimensions augments the other

senses in making us spatially aware of our sUlTOundings. Primarily this spatial

hearing is a survival advantage but it also provides the composer and performer

with scope for artistic experimentation.

'The very nature of acoustic transmission of sound wilhin lhe air as a
medium invites composers 10 manipulate spatial properties in
performance. As soon as more than one performer is present there is a
spatial element J

Spatialization of sound is commonplace in modem sound art but its use has been

long documented prior to the dawn of stereo or even the electronic age.

Stevenson and Zvonor4 describe the antiphonals music of the medieval church as

the first historical example of spatial performance before highlighting

Renaissance Venice and specifically Basilica San Marco. Considered the central

location for Venetian music during the 16th century, the basilica housed two

spatially separated organs and choir lofts6 prompting the cori spezzati7

compositional technique. Adrian Willaert, appointed maestro di cappella8 of

Basilica San Marco in 1527, composed the earliest known work in this style,

2 Roads. C: 1997

3 Stevenson. I: 2000

4 Zvonor. R: 1999

~ Antiphonal: (Greek. meaning 'sounding across') A religious chant sung as

responses between a single voice and a group of voices, or between two different

groups of singers. The effect is described as antiphonal.

6 Farrell. B: 2001

7 Cori spezzati: (Italian. meaning 'broken choir')

• Maestro di cappella: (Italian. meaning 'director of chapel choir')

O. R. Moore 'Real-time Sound SPitlalzatlon, Software Oeslgn and Implementation' Page 12 t11n

1.1 - Why spatialize?
,~.< 't':\,:.' -'.-

Vespers (1550), featuring 'dialog fonn' and echo effects. The practice ofcori

spezzati was continued and extended by Andrea Gabrieli and his nephew Giovani

Gabrieli, producing works with up to five choirs.

These techniques became more widespread throughout Europe. Zvonor notes

Spem in alium (1573) by Thomas Tallis featuring 40 separate vocal parts arranged

into eight 5-voice choirs and Orazio Benevoli's Festal Mass (1628), having 53

parts with two organs and basso continuo. Stevenson further highlights the use of

antiphonal choral effects in J.S.Bach's St. Matthew Passion and Mozart's

Serenade in D for 4 Orchestras

Spatial sound became used for theatrical effect during the Romantic period.

Examples include Hector Berlioz's Requiem (1837), Giuseppe Verdi's Manzoni

Requiem (1874) and Gustav Mahler's Symphony No.2 (1895). In these examples

brass ensembles perfonn either offstage or enter from locations offstage.

During the 20th century similar use of moving, offstage or spatially separated

ensembles is employed in Charles Ives' The Unanswered Question (1908). Henry

Brant's Antiphony 1(1953), Voyage Four (1963) and Windjammer (1969) take

these ideas further.

Pierre Henry and Pierre Schaeffer created a repertoire of works for tape for

playback using a 4 channel tetrahedral configuration ofloudspeakers, with Front

Left, Front Right, Back, and Overhead. In order to control distribution of the

sound, Schaeffer used an interface named the potentiornetre d'espace (1951)

which used induction coils to control the signal routing. The photograph below

shows Pierre Henry perfonning with the potentiometre d'espace during a concert

at the Salle de L'Ancien Conservatoire, Paris, 19529
• It is perhaps the first

example of a real-time spatialization mixing and control system.

q Palombini. C: 1999

D. R. Moore 'Re.l-tlme Sound SPlltl.lIDtlon, Software Design and Implementation' Page 13 of 177

1.1 - VVhy spatialize?

tockhau en' Konlakl 1960) is an example of a composed work spatialized for

quadraph njc playback. t ckhausen made use of rotating loudspeakers

surr unded y micr ph ne in order to obtain the effect of rotating sound sources.

entially t ckhausen is in effect creating a real physical modelling system in

rder t patialize, i.e. a implified system in order to produce the effects of a

complicated ne.

The Philip Pa iii n an Installation of the Brussels Worlds' Fair, featured the tape

mp iti n Poeme El tronique (1958) by Edgard Varese. The sound system

u d 11 ind nd nt hann I and projected these channels though 425

around the pavilion. In order to control sound projection

m ti n ffi c w re re rd d and reproduced from a control tape.

t ckhausen continued to employ space in his

u ing works for performance in the German pavilion at

aka h pavili n w a geode ic dome containing 55 loudspeakers

arrang in 7 rin full urrounding both performer and listener. Stockhausen

c mm nt d nth e perien e fthe pavilion:

D. R. Moore 'Real-lime Sound Spatlalizalion, Software Design and Implementation' Page 14 of 177

1.2 - The need for sound spatialization tOO~6.. .

'To sit inside the sound, to be surrounded by the sound, to be able to
follow and experience the movement of the sounds, their speeds and
forms in which they move: all this actually creates a completely new
situation for musical experience. '

These large scale performances prompted the use of spatialization in multimedia

installations with two notable examples, John Cage and Lejaren Hiller's HPSCHD

and David Tudor's Rainforest IV (1973). Both audio/visual installations made use

of multiple loudspeakers but the latter also explored the acoustical characteristics

of resonant sculptures hanging in the performance space.

In 1964, John Chowning, a graduate of Stanford University, created a software

system on the Music IV computer that allowed a synthesized sound source to be

moved along a user defined trajectorylO. Amplitude, doppler and reverberation

localisation cues were generated by the program and written to a four channel

quadraphonic tape. This is the first example of a computer being used to control

and create spatialized sounds.

1.2 The need for sound spstis/izstion tools.

In the recently published book 'Spatial Sound', Rumsey talks briefly about the

increasing consumer interest in spatially encoded sound.

'The later part of the twentieth century, particularly the last ten years
gave rise to a rapid growth in systems and techniques designed to
enhance the spatial quality of reproduced sound, particularly for
consumer applications. Larger numbers of loudspeakers became
common and systems capable of rendering folly three-dimensional
sound images were realised by means of the digital signal processing
availahle in relatively low cost products. ' / /

Rumsey goes on to comment on new audio media formats acting as the catalyst

for this increasing interest:

10 Chowning. J: 1971

II Rumsey. F: 2001. p.ix

D. R. Moore 'R tim. Sound Spati.IZltlon, Software Design and Implement.tion' Page 15 of 177

1 .2 - The need for sound spatialization tools.

'In recent years the development of new consumer audio formats such
as DVD, and digital surround formats for cinema and broadcasting
such as Dolby Digital and DTS, have given a new impetus to surround
sound. The concept of the home cinema has apparently captured the
consumer imagination, leading to widespread installation of surround
sound equipment in domestic environments. ' 12

Other accounts of the increasing interest in surround fonnats are apparent,

Malham, of the University of York. appearing to agree, stating the following:

'In the dying years of the twentieth century, after more than a hundred
years of recorded sound and half a century in which the use of two
channel slereo has been widely regarded as synonymous with the high
fidelity reproduction of recorded music, multichannel surround sound
has finally begun 10 malce real inroads into the audio marlcet. ,/3

It is conceivable that this interest in consumer surround technologies will continue

and future systems will become more sophisticated, perhaps introducing newer

surround fonnats.

Dramatic increases in the computing power of the average home computer and the

introduction of high quality and cost effective multi-channel audio 110 cards have

enabled the average composer and perfonner access to sound technologies that

were previously confined to the large production studio. This progressive

lowering of sound processing latency14 and increase of sound processing power

has brought the possibility of real-time spatial signal processing technology into

the forefront of even low budget studio technology. In essence, the sound artist is

presented with an audience that has an increasing interest in spatial sound design

and composition. Perhaps then, composers and perfonners should be provided

with spatial sound design tools to explore and produce works for the consumer

surround sound of today and the spatialization fonnats of tomorrow.

With this in mind this research sets out to explore techniques that can help to

broaden the range of spatial sound design software available to the artist. While

12 ibid .• p.17

I) Malham. D. G: 2000

14 In audio host based processing, latency refers to the processing time delay between input and

output.

D. R. Moor. ·R .. ~lme Sound Spatialution, Software Design and Implementation' Page 16 of 177

1.3 - Fundamental categories of sound spatialization

researching and expanding spatial techniques the further aim is to develop

prototype spatial sound design and perfonnance software.

1.3 Fundamenta' categories of sound spatialization

~'" ,.'" ' '..{;. " __ ~·\:.,;r:.\,.,..

Typical techniques for spatialization of sound could be categorised into two very

general methodologies:

• Direct spatial positioning of sources, encoding for a known playback

configuration, i.e. modelling of source spatialization with some degree of

accuracy.

• Projection of pre~omposed multi~hannel source material into a

perfonnance space, i.e. controlling or modifying spatialization

appropriately for an audience within a given space.

Positioning audio images within a known speaker configuration such as stereo or

5.1 15 is often achieved using mathematical panning laws. Each panning law

governs the appropriate balance of source audio within the given setup, use of

stereo panning laws in mixing hardware being the most common spatialization

usage. In a similar fashion, the use of ambisonic techniques allows direct

positioning and encoding of source material for decoding and playback through

any given speaker configuration. Essentially both of these techniques provide

usable and often realistic spatially encoded source material. However, both rely

heavily on accurate loudspeaker design and placement together with ideal

listening conditions, i.e. the listener is positioned at the 'sweet spot' within the

configuration and the listening space has sufficient acoustic treatment to limit

colouration of the source image.

'Even on a good hi-fi system, with the listener in the 'sweet spot~ the
stability of the stereo image is notoriously fickle - turning or inclining

IS 5.1: An increasingly common home and cinema surround sound format consisting of 5 full

frequency range speakers and a single sub bass unit.

D. R. Moore 'R .. l-time Sound S~tiaHzation, Software Design and Implementation' Page 17 of 177

1.3 - Fundamental categories of sound spatialization
". ,,".' ." ," _, .~_c>_· ~·,::'<':'Hr .. ~.~JJ;'"

the head. or moving to left or right by just a few inches, can cause all
kinds of involuntary shifts in the stereo image .. 16

Inherently. the conditions for the ideal listening environment can be difficult to

obtain for the large audience in a large space. In this case the only realistic

solution capable of retaining an accurate image for the individual is to provide

independent headphones for the whole audience. Clearly, this practice would be

difficult to achieve logistically and the associated audience discomfort would be

undesirable. A multi~hannel headphone solution, although possible, suffers from

inflexibility in configuration. For example a single headphone driver design may

be incapable of playing a stereo piece and an eight channel piece without some

elaborate system of reconfiguration, remapping of spatial content being

unacceptable in this context.

Contrary to the above concept of pre -defining exact spatial imaging, sound

projection or diffusion is often used to present an audience with a vision of the

sound that is complemented by the acoustics of the performance space and is

tailored for the audience size and location. Here, the idea is to project a

composition. commonly stereo or eight channel spatially encoded, through a large

number of loudspeakers 17 positioned strategically within the performance space.

As Harrison describes. · ... the number and positioning o/Ioudspeakers is

primarily afunetion of the concert space .18.

In a typical diffusion concert the • projectionist' 19, often the composer of the

work. strives to present the audio such that pre~omposed spatial encoding makes

ideal use of the space. It is often argued that this sound diffusion practice is

flawed and can be detrimental to a composed piece. Wyatt observes a number of

composers with this opinion20
• Obviously, inherent multi-loudspeaker phase

16 Harrison. J: 1999

17 Twenty or more loudspeakers being typical. Harrison informs the author that he has used more

than eighty in some BEAST concerts.

II Harrison. J: 1999

19 'Projectionist' sometimes referred to as the • Diffuser'

20 Wyatt. S. A: 1999

O. R. Moen 'R~. Sound Spetl.llzellon. Softw.re Design and Implementation' Page 18 of 177

1.4 - Existing technology
• ,,·_.'''''''-:·,,·."'!' ... ··< ... , ~.':t:li~l.,...

cancellations and complex perfonnance venue acoustics are clear evidence that a

piece will not reach an audience exactly as it did in the studio environment.

However. in the absence of a perfect solution, sound diffusion systems provide a

method of creatively presenting a work that is acceptable, in fact desirable to

many composers. The final decision of whether or not to employ diffusion resides

with the composer and therefore it is a creative choice, not a scientific necessity.

As Wishart states:

'So scientists be forewarned! We may embark on signal processing
procedures which will appear bizarre to the scientifically
sophbilicated, The question we must ask as musicians however is
not, are these procedures scientifically valid or even predictable. but
rather, do they produce aesthetically useful results on at least some
types o/sound materials. '}I

Later. this thesis presents two software concepts that are designed with the above

categorisations in mind. The first software system focuses on diffusion of spatially

encoded material. The second is aimed at the design and reproduction of

specifically positioned sound sources. However, it should be noted that although

the tools have been categorised and their design was focused on particular usage,

their use in practice is entirely down to the user. For example Harrison

commented22 that he would find the M2 system suitable for composition as well

as live diffusion.

1.4 Existing technology

Many tools already exist for the purposes of spatializing sound. The intention of

this research is to produce a number of new tools, not to replace old ones that

have already proved their worth. It is hoped that by expanding the basic toolset for

the sound artist. the possibilities for creative exploration can be increased. The

21 Wishart. T: 1994, p.5

22 Harrison. J: verbal discussion during M2 development meeting. University of Sheffield Sound

Studios

O. R. Moore 'R Sound Spatiallzatlon, Software Design and Implementation' Page 19 of 177

1.4 - Existing technology

foil wing rib a bri f cro s ection of some tools available, but this is

b no m an a fu ll di u i n of all exi ting tools.

1.4.1 Plan view spatial panning

patial panning i nted in the form of plan view visualization of the

urr und D nnat. imple tw dim n ional control hardware, often joysticks or

ntr I, i u d to control the source positions within the view. Often

iti n fc rm nl part of the panning algorithm with additional

ifyi ng th r alg rithm factors.

Thi plan w i th approach talc n by the stock surround plugins of

t inb rg '. Al th ugh it is pos ible within Nuendo to present much

more c m rhap intuiti e interfaces this approach has the advantage of

implicity in u . P rhap the mo t ignificant disadvantage is the inability to

eas il rti al m m nt from a simple plan view.

Th wmg teinb rg S Nuendo version 2 software making

u plan w pann ing.

Th III I m n ph mc ource panned to the centre of a 7.1

cinema utl'u t ~tu . lu extending outwards show the signal gain for each

D. R Moore 'Real-time Sound Spatialization, Software DeSign and Implementation' Page 20 of 177

1.4 - Existing technology

output p ak r. th r panning methods make different use of the 2D plan view

conc pt. The following di play pans audio using a distance based algorithm
23

;

circle howampiitud drop in dB for each radial distance:

The imag b I w h w the impie plan view pan controls on 4 monophonic

aud io chann I .

In the ampl it h uld noted that each source is displayed on a separate

plan i w. It ma

that di pIa all ur e

ource can b m re

pain and P Ifr man r

u ing a ' light m d I fi r

e e in orne situations to provide a plan view interface

ne i wing area. This way the relative positions of

. ualized.

nt 'Interpolator' /4 a very hybridized plan view system

ntr II ing the interpolation of parameters. It would

seem Ii asi I that thi m d I uld be used for the spatial positioning of sounds.

2J Ba d n the in r quar la\ I/di tance2

24 pain , M; Polfr m n, R: 2001

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 21 of 177

1.4 - Existing technology

1.4.2 Ambisonics

Ambisonics is an xten ively researched subset of general sound spatialization

and centr on th concept of mathematically encoding soundfield infonnation

such that it can b d coded for almost any playback configuration. The

transitional 'encod d fonnat is known as 'B Fonnat'. A number of methods are

availabl for encoding patial information including software tools for directly

setting spatial characteristics of source material and direct soundfield

microphone that can capture the spatial characteristics live.

Malham describ a mathematical method in which single sound sources can be

Ambi onicall nc ded into 8 format' and decoded for arbitrary speaker

array 25 . H also de crib s the difficulties of encoding distance information from

the basic algorithm. In order to encode distance cues, Malham describes the use of

extra digital signal proces ing techniques.

Moonel 6 pr nt AmbiPan' and 'AmbiDec', VST plugins for direct encoding

and decoding int and out of8 Format. Malham and Field present a similar

syst m of plugin for Ambisonic special encoding and decoding within host

software27. Th UI ersion of B-Pan' is shown below:

The fi 1I0wing ph t graph hows the capsule layout of Sound field's '8 Format'

capabl mi r ph n th T250. This microphone, together with its encoding

hardwar can b record the soundfield directly to B Format.

2$ Malham, D. : I 98

26 M n y J: 2000

27 B-pan and B-d ofhvar ho t d at http://www.dmalham.freeserve.co.uk!vst_ambisonics.html

D. R. Moore 'Real·time Sound Spatialization, Software Design and Implementation' Page 22 of 177

1.4 - Existing technology

Perh p th rn t ign ifi ant ad antage of the Ambisonic system is its ability to

d code th am F nnat n d d material into different output formats.

ffecti nl th fi ur B Format channels require storage, an immediate saving

on data bandwidth wh n n id ring large numbers of output speakers involved in

typical multi hann 1 pia ba k y tern such as 5.1.

1.4.3 BEAST - DACS 3D

Harri on pr

the

In rd r t

tmu

A 28 diffu ion system for the projection of

c ntral onc pt in the BEAST system is the set of

th 'main eight ' consisting of four matched pairs of

nam d Main Wide, Di tant and Rear. Harrison regards this set as

rninimum for th playback of stereo tapes. ,29 . In concert, the

ight i ugm nt d with other matched pairs located to best match

tail fth placements are described fully in Harrison's

au int the multitude of output loudspeakers the BEAST

fi aturing a stereo switch matrix for 24 inputs

int 2 utpu . hi tern all an input odd/even pair to be routed to any

- Birmin ham

29 Harri n. J: I

ound Theatre

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 23 of 177

1.4 - Existing technology

output odd! en pai r th final individual output level being under direct control

of th proj ti ni t ia a high quality fader.

D 3D ibl in th ab e photograph) is a purely analogue design and has

the ad antag f ing highly robu t whilst perhaps lacking in some of the

ben fi f digital r -patching r mi-automated control.

1.4.4 Gmebaphone and Cybernephone

Th m b ph n ' , lat r kn wn a th ' ybemephone', presents a flexible digital

contr urfu e fi r Ii di tfu ion. A with the BEAST system, works are pre-

pati al i d and pr ~ t dint the enue at perfonnance time. In the

yb m ph n th ntrol hardware and complex layout of varied loudspeaker

D. R. Moore

an in truro nt in itself Loudspeakers have been designed and

nl wi thin limit d frequency ranges resulting in varied

'Real-lime Sound Spatialization, Software Design and Implementation' Page 24 of 177

1.5 - Summary

colouration in the output. Baudelaire treats the Cybemephone as an instrument in

itself;

' .. . a huge acoustic synthesizer, an interpretation instrument that the
composer plays in concert, an instrument that serves to express his
composition, to enhance its structure jor the benefit of the audience, to
bring it to sonic concretization. ,30

Loudspeakers are grouped in sets or 'registers ' with audio routed and controlled

live via the digital console to present the audience with contrasting perspectives.

Below, the photograph shows the 1997 version of the Cybemephone console.

1.5 Summary

Two general categories of sound spatialization would seem to be in common use;

simulation or recording of realistic spatial audio acoustics and projection of pre

spatialized audio into a perfonnance space. It is perhaps interesting to note, that in

his paper outlining different spatialization methods, Malham does not reach a

conclusion as to an optimum. However, he does conclude the following:

' ... the optimum system for composition purposes must remain always
a decision of the composer, to be made on musical, not technical,
grounds. ,31

30 Baudelaire: 1997, p.268

31 Malham, D. G: 1998

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 25 of 177

1 .5 - Summary

In all of the above spatiaiization methods there is a clear need for appropriate

control. With accurate source spatialization systems, (panning and Ambisonics)

interfilces that allow good visualization of the simulated 3D space would seem a

logical choice. In live sound projection or diffusion, interfilces must allow flexible

routing of source sound to outputs.

This research will concentrate on two areas of interest to the sound artist, physical

modelling of real and surreal sound environments and tools for live spatial

performance.

Beginning with some simple theoretical models of sound spatialization and

progressively building them into more generic models, this thesis will attempt to

produce flexible theoretical systems for spatial sound design and performance.

With these theoretical systems to hand the project will propose and implement

real time software tools that will enable the sound artist to experiment and

perform. As increasingly complex models are produced the thesis will cover

theoretical ground necessary for practical implementation of each software

project.

D. R. Moore 'Rea~time Sound Spatialization, Software Design and Implementation' Page 26 of 1n

2.1 - Diffusion mixing through the Mix Matrix

2 Live Diffusion Mixing and Control

Live sound diffusion of composition or perfonnance is essential for many artists

and provides an enhanced audience experience. It is theoretically possible to

diffuse any number of sound sources into any number ofloudspeakers, although

in practice typical concerts diffuse stereo recordings into perhaps twenty

loudspeakers. The configuration of the speakers is determined by the piece and

the perfonnance space. Essentially, the speakers are placed to complement the

space or exploit interesting features in it. The pure logistics of setting up a

perfonnance space often constrain the diffusion system that is builf2. As a direct

result of this, the perfonner or 'diffuser' often has to work with different

configurations of speakers in each perfonnance space. In collaborative

perfonnances of many different composers' works it is often necessary to reach a

compromise in the final diffusion setup.

The goal of this project is to provide a method for diffusion mixing that provides

advantages in logistical setup and an enhanced control method for the perfonner.

In essence, an attempt is made to step from basic diffusion mixing into a digital

solution with potential for future exploration.

2.1 Diffusion mixing through the Mix Matrix

Diffusion of sound from a single source into multiple speakers is commonly

achieved through the mix matrix. In a mix matrix33 a monophonic source is

essentially split into a number of mono outputs either by use of switching or by

attenuator control. The following diagram illustrates this concept with a four

channel output system: (Circles represent switches or attenuators.

32 Wyatt, S. A: 1999

33 Davis, G; Jones, R: 1990, pp.162-163

D. R. Moore 'Real-time Sound SpatiaHzation, Software Design and Implementation' Page 27 of1n

2.1 - Diffusion mixing through the Mix Matrix

utput 2

und Source
tput3

utput 4

When expanded to include a second input the signal flow becomes more

complicated and it is useful to represent it in the fonn of a grid matrix. The

following diagram represents both the first representation expanded for two inputs

and the grid representation for the same signal flow:

JSOUree 1

ree2

In matrix form:

rce2

o
o
o
o

It is clear here that complex input/output systems are more easily represented in

this manner. If the matrix is realised with attenuators rather than switches it is

pos ible to exactly adjust the 'quantity' of each input sound going to each output

loudspeaker. Adding further attenuators to the above matrix provides additional

control of input level and individual output level:

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 28 of 177

2.1 - Diffusion mixing through the Mix Matrix

The above matrix allows the additional global control of inputs and outputs in

addition to the balancing/distribution of inputs to outputs.

Using a typical studio mixing desk and a device to split the input signal it is

possible to realise some ofthe above mix matrix for live performance. As input a

stereo source can be split into odd/even (L/R) pairs of mixer channels and the

direct recording outputs can be used to control the output levels of each individual

speaker. This configuration would typically be complemented with pairs of

speakers assigned such that the stereo left/right spatialization on the recording is

preserved. The diffuser is able to move the stereo 'image' between the pairs of

speakers to build up an enhanced 3D image within the performance space. This

configuration provides only a basic implementation of the full mix matrix. The

following diagram illustrates the method with respect to the full matrix. Unused

matrix elements are shown in grey:

urce ,

fSOU rce 2

It is relatively easy to include inline global input attenuators into the splitter box

to expand on the original technique but the full power ofthe matrix requires more

complex electronics to be implemented within the mixer and a custom built mixer

is necessary. The DACS 30
34

matrix desk expands on the basic studio technology

diffusion desk by providing a switch matrix that allows matrix style routing of

input pairs to output pairs. A basic flow diagram of key features is provided here:

34 See al so 1.4.3

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 29 of 177

2.1 - Diffusion mixing through the Mix Matrix

Pairs of channels are routable into output pairs via paired switches and this allows

the diffuser multiple sources to different speakers all with output control.

It is feasible that an analogue mixing console could be produced to provide the

full mix matrix but the ability to control the desk effectively requires some further

thought. Consider a similar matrix to the above with 4 inputs and 4 outputs. This

would require twenty four attenuatoTS. Attenuator totals are equated as follows:

aU 1 I = ins * outs + ins + outs
10 a

To have hands on control for 24 attenuators is feasible but a more typical 2 in 1 24

out system would require controlling 74 attenuators during a performance. A

greatly expanded system would require many more attenuators and the feasibility

of controlling the matrix mix during a performance becomes more difficult. In

addition to control complexity, it is also more difficult to expand an existing

system for more inputs and outputs because the matrix requires interconnection of

every input to every output. Copeland, Rolfe and Truax specifically highlight the

importance of computer control when dealing with large numbers of matrix

35 parameters .

Expansion and simplification of full matrix control with additional modularity of

1/0 requires consideration of digital techniques.

Two methods are considered; control of analogue attenuators via VCA' s and full

digital implementation ofthe mix matrix in hardware or software. It is feasible

35 Copeland, 0: 2000; Rolfe, C: 1999; Truax, B: 1997

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 30 of 177

2.1 - Diffusion mixing through the Mix Matrix

that an analogue matrix mixer be produced that has full VCA automation of all

parameters. A control surface could then be produced to provide hybridized

control methods for the mix parameters. Single faders and pots would control

multiple mix parameters via some form of mapping software. A similar approach

would be taken in a fully digital mixing solution in which mixing is performed by

digital attenuators with an external digital control surface. Essentially both of

these methods split the system into two major components, matrix mixer and

controller. In both cases the expansion of hard ware is more difficult than the

expansion of software. However, in an all digital system 110 expansion can be

achieved simply by adding more ADCIDAC devices and reconfiguring software,

whereas the VCA solution requires extensive alterations to matrix and VCA

hardware. Hardware control surface expansion would be difficult in both cases but

the software layer can be adjusted to cater for new mix parameters without adding

new controls. The following diagram illustrates the major concepts for both

methods:

Hardware control
surface

Software control
interpreter layer

Mix Matrix
(VCA or Digital)

The physical layout of the system could be built into a single box but it would be

advantageous to separate mix matrix and control systems into separate units for a

number of reasons: one control system could control many types of mix matrix;

one matrix can be controlled by many different controller systems. Providing a

standard control protocol allows many different controller types to be developed

independently of the mix matrix. In a performance setting, the ability to control

the same matrix using different control devices allows different performers to

have the right control device for their particular piece. For the performance space,

the ability to have a tailored mix matrix without concern for final control method

is beneficial for both cost and setup ease. An added benefit of this modularity is

the ability of one control surface to be mapped to multiple mix matrices.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 31 of 177

2.1 - Diffusion mixing through the Mix Matrix

One example of this remote mix matrix is produced by Richmond Sound Design

Ltd. The AudioboxAB6436 is a 64*64 digital mix matrix produced using dedicated

DSP chips. Versions of the Audiobox have been used for concert diffusion by

'Sound Travels,37. The system is controlled externally by software and control

communication is via MIDI. This system provides a good basis for diffusion

mixing but its hardware solution is limited in modularity and updateability. For

example, 'Super Diffuse', described later, has the ability to work with audio cards

from different manufacturers providing a choice in ADIDA converters and 110

channel specifications. A user is thus able to choose the type of connections

(Digital or Analogue 110, Microphone pre-amplified etc.) appropriate to the task

at hand while using the same software system. It is also a relatively simple

process to upgrade the 'Super Diffuse' software when compared to DSP hardware

solutions such as the Richmond design. A simple software installation program

can install a new version on the user's system. In a DSP based system it is

necessary to provide a firmware update and transmit it to the hardware unit. By

providing all functionality through software and standardized hardware as much

as possible, the system has the ability to be quickly extended and adapted. For

example, ethemet devices, used by 'Super Diffuse', are periodically upgraded for

improved stability and performance and the software solution is able to

immediately benefit from these upgrades, i.e. kilobit and gigabit ethernet systems

are automatically supported by the operating system. As new general audio cards

are produced, a software system can immediately take advantage of improvements

in ADIDA conversion and higher numbers of channels.

2.1.1 Digital expansion of the basic mix matrix

The use of a digital mix matrix allows integration of many digital processing

techniques into the basic mix matrix software. As an example the system might

consider DSP processing input and output matrix stages. Consider a phase, EQ

36 http://www.richmondsounddesign.com/ab64specs.html

37 Copeland, D: 2000

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 32of1n

2.1 - Diffusion mixing through the Mix Matrix

and variable delay stage placed inline with outputs. Frequency response and phase

of individual speakers could be tailored for the purposes of correcting room

response. The delay stage allows perceived speaker distance to be adjusted for

each output. Accurate calculation of delay times would allow correction of

speaker phase for differing distances. Extreme use of varying delay times would

produce the effect of Doppler shifting. These DSP techniques can be expanded

into other areas of the mix matrix and also to include other effect techniques such

as reverberation or delays with feedback. In essence the mix matrix becomes a

DSP matrix and this is illustrated below:

DSP is inserted into different areas for different requirements: source DSP gives

input source effect (processing of global sound input); output DSP provides

output effect (processing of global sound output); and individual matrix DSP

gives individual input to output effect (processing of individual matrix I/O

connections).

2.1.2 Matrix Auxiliaries

It is possible to add channels that act in a similar way to auxjliary channels on a

standard mjxing desk. These auxiliary channels use a mix matrix to receive signal

from sources and then are able to inject the mix back into the main DSP matrix.

The following diagram illustrates these aux input channels and the signal flow

diagram for them.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 33 of 177

2.2 - Controlling the matrix

This matrix based signal processing increases the potential for creative effects by

providing a huge number of possible parameters with which to perform sound

diffusion. The all digital software implementation allows expansion of signal

processing techniques based on processing power rather than hardware.

2.2 Controlling the matrix

The control of matrix parameters in any live tool is of paramount importance. It is

through control of the diffusion system that the vision of the performer is realized.

The ideal performance controller hardware is of course an area of extensive

research by both artists and manufacturers. A discussion of the many controllers

and interfaces produced for manufacture or in research projects is not a major

concern of this thesis. However, as DSP variables will always be the target of any

external control, the concept of the parameter is used here to represent a

constrained and automated variable of the DSP system that can be manipUlated

from any external device. This hybrid variable can be defined in such a way as to

provide expandability and a layered, tree like control structure.

2.2.1 Parameters (as hybrid variables)

Consider a simple variable representing attenuation amount; it might be defined

so that it should have a maximum value of 127 and a minimum value of 0; using

an integer representation the variable would have 128 steps. The act of setting and

retrieving the variable would require validation of user input and perhaps

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 34 of 177

2.2 - Controlling the matrix

formatting of retrieved data. Automation methods may be different for each

parameter and it is useful to consider automation technique as related to an

individual parameter. The following diagram illustrates the concept of the

parameter encapsulation:

The automation method in the above diagram forms the basis ofthe parameter

tree structure and acts as a placeholder for automation methods. The value

contained in the parameter controls the amount of automation to be applied to

both the raw DSP variable and any target parameters for automation. In addition,

external control is applied via a validation method and feedback of parameter

value is given through an output data formatting method. Hierarchical parameter

control is provided by the automation algorithm being able to control other system

parameters which may in turn control further parameters.

In the simplest of automation algorithms the parameter would provide a direct

mapping from internal value to direct system variable, effectively wrapping the

system variable in a shell. It is possible to have independent data formats for

parameter value and system variable and even multiple system variables

controlled from one parameter value.

As discussed above, the system variables may reside in a different unit to the

control system. It is necessary to allow the parameter construct to access the

system variables in some way. Three methods can be considered: using

parameters to encapsulate the actual DSP matrix variables and perform

automation within the DSP system; directly transmitting data changes from

control system parameters to DSP system variables; maintaining a copy of data

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 35 of 177

2.2 - Controlling the matrix

structures in both parts of the system encapsulating control variables with

parameters. The following diagram illustrates these three methods:

.. _. _._._._._._._.-.-._._._._.-.-.-.
;Control System I

~ . - . - . - . -.- .- . -.-. - .-..
The first two methods are similar, the only significant differences being location

of processing. In the first, parameter processing occurs alongside the nsp
calculations and in the second, parameter processing is the responsibility of the

control system. At first glance the third method would appear to be inefficient due

to redundant data, but the advantage lies in the possibility of varying control and

transmission rates. The extra layer of redundancy allows data to be written

directly to the local variables without concern for transmission. Copying of the

data can then be performed by a separate part of the system. The following

diagram shows an extension of this third method to provide a more robust system:

~ontrOi 'sYStem- . _. _. -. _. -. _. _. _. _. _. -. _. - .~

; arameter I

bSP-System -. _. - ._._ ._.-. _.- ._._;
I .

I

Transmission

I . . _. _. _. _. _. _. _. _. _._ . _. _._ ._ . _ ._. J
I . _ . _ . _ . - . - . -.- . - . - . - . - . - . - . - . - . - . - . - . - . - . ~

Transmission is handled by a transmission sub system and automation can be

continued without concern for the speed of data transmission.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 36 of 177

2.2 - Controlling the m~trix

2.2.2 Data transmission for matrix control

In order to transmit data between controller and matrix two methods are

considered, MIDI and TCPIIP.

MIDI

MIDI data transmission is common place in the studio environment and has a well

established standard but basic MIDI communication has low bandwidth and the

standard CC protocol provides only data values between 0 - 127. Although this

precision can be expanded using MSBILSB two byte techniques, the parameter

addressing of MIDI is not ideal when considering high numbers of parameters.

Logical channell parameter addressing with 16 channels and 128 CC addresses

gives 2048 parameter addresses but this is halved in an MSBILSB solution due to

the requirement of two addresses per parameter. A single 32 • 32 mix matrix

would require 1088 parameters and this exceeds the number available with

MSBILSB on CC messages. Obviously there are other message types that can be

used along with the CC messages but the protocol quickly becomes illogical.

MIDI channel cannot be used to represent input or output channel so controllers

must be assigned arbitrary CC addresses. In solution to this, a generic messaging

protocol utilizing MIDI System Exclusive is possible, but the extra data overhead

could start to impede transmission performance and the specific SYSEX protocol

takes away some of the advantages of generic MIDI communication between

general music devices.

TCP/IP - UDP/IP

An improved method is achieved using TCPIIP (Transmission Control Protocol /

Internet Protocol)38 and standard internet networking techniques. TCPIIP uses a

packet based system for data delivery. A given block of data is split into

appropriately sized packets containing destination address, ordering and

validation checksum information before being transmitted. A destination address

38 Jones, A; Ohtund, J: 1999, p.136

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 37 of 177

2.2 - Controlling the matrix

(IP Address) is given using a code in the fonn (a.b.c.d) where a,b,c and d are

single byte unsigned integers with the range 0-255 e.g. (192.168.3.2). TCP allows

posting of data to an address and is thus called a 'transport layer' for

communication. TCPIIP provides reliable data transmission though a system of

timeouts and delivery replies; a system sending data via the protocol waits for a

reply from the target system. If no reply is received within a timeout period the

delivery is assumed to have failed and is re-sent. On receiving, the TCP layer

attempts to reconstruct data from received packets and will send a request for re

transmission of a packet if corruption has occurred. This implementation of

transport reliability puts additional strain on systems so a second protocol can be

used if high speed is of greater importance than reliability. UDP/IP (User

Datagram Protocol I Internet Protocol) provides unreliable data transmission with

less overhead and is most suitable for transmissions of streamed data, i.e. data that

will become out of date before it can be re-transmitted. These two transport layer

protocols can coexist on the same IP network. It is possible for a single system to

transmit or receive data from both protocols simultaneously.

Advantages here are the increased data bandwidth and the advanced message

routing, even high bandwidth wireless communication being increasingly

commonplace. At the time of writing Digidesign Pro-Control hardware systems

use a fonn of IP communication for transmission of data and Pro-Control

technology is well established in both educational and professional studios. The

increased use of general network. technology means that TCPIUDP is well tested

and advances are more frequent than in ageing MIDI hardware systems. This

more general use also brings down the market cost of related technology and

hardware. Data transmission of huge numbers of parameters is easily possible due

to the higher bandwidth and the completely configurable data format allows very

logical addressing of the required parameters. For example, it would be very

simple to specify 8 bit integers for channel and parameter address fields giving 216

possible addresses (65536). Data for each parameter address could be of arbitrary

length allowing any precision or fonnat needed.

2.2.3 Multiple control prioritisation and summing

D. R. Moore 'Real-time Sound Spalialization, Software Design and Implementation' Page 38 of 1n

2.2 - Controlling the matrix

It is possible to have one parameter adjusted from more than one external

controller or automated parameter. In order to allow this multiple source control it

is necessary to provide some method for combining or selecting source data. Two

methods are considered, priority selection of source data and summation of source

data.

Either:
1--__ ---.tPredetermined or

Dynamic

Source data can be prioritised with predetermined hierarchy or can be dynamically

calculated depending on the state of source data and target value. Consider two

faders used to control a single parameter: In a predetermined priority system,

fader 1 could be given priority over fader 2. If control adjustments came from

fader 2 then the system could decide to only allow control iffader 1 was inactive.

If instead of predetermining the priority it is calculated constantly from a

predefined algorithm then multiple controllers could perhaps be used more

fluidly. In this case either fader could be given priority depending on the current

state of target variables. Many algorithms could be used in this situation such as

use of data from the last adjusted controller; use of data from the most stable

controller; use of data from the controller with the closest setting to the target

parameter etc. A problem with these prioritised controllers is that low priority data

is discarded.

In order to address the problem of discarded data, a method of controller

summation could be used. Summing the values received from each data source

results in data that is responsive to changes in all sources. However, a problem

occurs due to the increased range of the resulting data, i.e. data range [0,127] +

[0,127] gives a range [0,254]. This resultant range may not be compatible with the

target parameter. There are two obvious strategies: either clamp the data to the

correct range, or take the weighted sum of the inputs to obtain the correct range.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 39 of 177

2.3 - Summary

In clamping the data range, any data above or below the required range will be

discarded. Using a weighted sum or average, the correct range is created from

scaled input sources.

2.3 Summary

ange Adjustment

ither.
lamp or
eighted Sum

Having described concepts for a theoretical sound diffusion mixing system this

thesis moves on to the implementation techniques used in a real world sound

diffusion software tool.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 40 of 177

3.1 - Development Tools

3 'Super Diffuse' Digital Sound Diffusion

'Super Diffuse' was originally conceived to test some of the concepts described in

the previous chapter. The 'Super Diffuse' software and related control hardware39

fonns the 'M2 Diffusion System', one of the major projects currently in

development at the University of Sheffield Sound Studios. M2 has, at the time of

writing, been tested in five public perfonnances and has been discussed in three

developer/composer talks. The following text describes the most important

aspects of Super Diffuse's design and implementation. This section assumes prior

knowledge of software engineering concepts.

3.1 Development Tools

c++ was chosen as a development language for a number of reasons: high speed

compiled applications, very low level access to RAMlhardware and support for

Object Oriented development. C/C++ is at the time of writing the most widely

used language for real-time audio software development.

As with Ricochet, development was achieved with Microsoft's Visual C++ IDE

but the overall implementation was intended for stability so modular components

were left out of this initial design iteration.

Steinberg's ASI040 (Audio Streaming Input Output) is at the time of writing the

most widely used Audio 110 technology for professional music software and was

chosen over other technologies for its very low latency and wide compatibility. A

more detailed report on Steinberg ASIO and the 'ASIO Sub System' dynamic link

library developed to access it appears in 6.1.2, 'Steinberg's ASIO for host based

audio 110'. With regard to the design ofDSP frameworks the ASIO, VST and

39 Control hardware designed by Mooney, University of Sheffield.

40 Steinberg Soft- und Hardware GmbH: 1999

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 41 « 1n

3.2 - Client I Server, Common functionality

MAXIMSP Externals development documents are valuable references and

1 41 examp es .

3.2 Client / Server, Common functionality

Super Diffuse is designed with a client / server architecture in order to provide

abstraction between signal processing and control. 'SDServer' uses the

ASIOSubSystem.dll developed for this thesis to provide a DSP Matrix. TCPIIP

communication is used for transmission of data from the 'SDClient' software.

'SDClient' provides the graphical interface for controller mapping and connection

to external control hardware via MIDI. Automation is achieved within the

'SDClient' parameter system. The use ofTCPIIP communication allows the two

pieces of software to operate on independent computer systems if the need arises.

The following diagram illustrates the general software architecture:

Hardware control DClient.exe

f~g

The communication between the two pieces of software requires some

commonality in design.

3.2.1 Parameter Mapping

Parameter addressing between client and server uses a common base addressing

for the DSP parameters. The client software uses an extended address map for the

41 Steinberg Soft- und Hardware GmbH: 1999; Zicarelli, D: 1998;

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 42 of 177

3.2 - Client I Server, Common functionality

purposes of automation effects and parameter grouping. The basic map is defined

in the 'parametersystem' header and source files . An enumerated type

PARAMETER_ADDRESS_ROW defines the basic address types as follows:

enum PARAMETER_ADDRESS_ROW
{

};

PARJNPUT _GAIN = 128,
PAR_INPUT _MUTE,
PARJNPUT _ROUTE,

PAR_OUTPUT _GAIN ,
PAR_OUTPUT _MUTE,
PAR_OUTPUT _ROUTE,

PAR_MASTER_SECTION,

/I client side only parameter address rows
PAR GROUP = 256,
PAR=EFFECT, /I the effect fader section
PAR_EFFECT_PARAM/i the start of the effects parameters

During development, mute and routing were included for possible future revision

although the current implementation does not yet make use of them.

Stable address handling within the program is performed with the aid of the

CP Address class defined below:

class CPAddress
{
public:

};

int addrX;
int addrY;

CPAddress(){ addrX = -1 ; addrY = -1 ;}; I null addresses are specified as (-1 , -1)
CPAddress(int x, in! y){addrX = x; addrY = y;};

bool operator ==(CPAddress &op) { return addrX == op.addrX && addrY == op.addrY; };
bool operator !=(CPAddress &op) { return addrX != op.addrX II addrY 1= op.addrY; };

void Archive(CArchive &ar);

This class provides storage for the X and Y portions of an address with

overloading of boolean operators greatly simplifYing use within conditional

statements. The X address refers to the PARAMETER_ADDRESS_ROW type

described above and the Y address has differing meanings depending upon the

first part of the address. The address fields are both described with 32bit integers

giving large scope for future development. This structure is directly used by

archiving and the same source files being used in both client/server applications.

Common use of source files provides improved consistency during development

due to automatic propagation of changes to both applications.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 43 of 177

3.2 - Client I Server, Common functionality,.r ,

3.2.2 TCPRP implementation, MFC Sockets

TCP/IP communication in Super Diffuse is performed using MFC Sockets, an

encapsulation of Winsock2 which in turn derived from the BSD42 Sockets

implementation used in POSIX43 compatible systems. MFC Sockets provide

simple methods for performing non-blocking asynchronous44 networking and are

fully integrated with the MFC GUI functionality that was used in Super Diffuse.

'ServerComms' source and header files detail the common ground

implementation, providing 3 major classes 'SDServerSocket', 'SDListenSocket'

and 'SDClientSocket' inheriting from the MFC class 'CSocket'. These inheriting

classes provide the client server architecture for the system and define the

callbacks for interlinking comms and system code. Received messages are pre

translated and validated before being passed to the application supplied callback.

Socket communication begins with a listening socket (SDListenSocket) waiting

for incoming client socket (SDClientSocket) connection requests. Upon reception

of a client request, the listening socket passes control to an instance of the server

socket (SDServerSocket). Bi-directional communication is possible through this

single client/server socket connection although server to client transmission is at

present used only for initial 'handshake' server information.

'ServerComms' source also defines some generic structures for data transmission

of parameter values, server information and a general message transmission

header structure. The use of a generic client/server error numbering system further

reduces the code redundancy and reduces potential for bugs.

3.2.3 Heap Array Templates

42 BSD - Berkeley Software Distributions

43 Love, R: 2003, p.54

44 Jones, A; Ohlund. J: 1999, p.231

D. R. Moore 'Rell-time Sound Spatialization, Software Design and Implementation' page 44 of 1n

3.2 - Client I Server, Common functionality

DSPSystem below, uses custom designed Array<> and Array2<> template classes

to provide fast and safe access to heap allocated one dimensional and two

dimensional arrays. Automatic cleanup of heap allocated ram is achieved in class

destructors so the overall memory safety is improved when using these classes

over direct use of new and delete operators. These classes are defined in array2.h

and are also used in other areas of the client/server software. The basic public

interface to these classes is detailed below: (note: implementation has been

removed here)

template < class T >
class Array
{
public:

};

ArrayO;
Array(int _size);
Array(Array<T> &a);
-ArrayO ;

void DestroyO;
void Create(int _size) ;
void Create(int _size, T init);
T& operator O(int index) ;
operator T*O;

The above class supports various constructor methods including a copy

constructor45
• Memory allocation is achieved either via parameterized constructor

or directly thought CreateO and DestroyO functions. C style array access is

provided with an overloaded 0 operator and pointer based usage is proved with

overloaded T*. Array2<> is the 2 dimensional version of the array class with the

following interface:

template < class T >
class Array2
{
public:

};

in! Size() ;
int SizeXO;
int SizeYO;
Array20 ;
Array2(int x, int y) ;
Array2(Array2<T> &a);

void Create(int x, int y) ;
void Crea!e(int x, in! y, T init);
-Array20;
void DestroyO;
T& Index(int x, int y) ,
T& IndexNoBounds(int x, int y) ;
T* operatoro(int x) ,

45 Stroustrup, B: 2000, pp.245-246

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 45 of 177

3.3 - SDServer specific

Most functionality is as the Array<> class but element addressing is perfonned

with the function Index(x,y). At the time of writing C++ did not appear to provide

a method of overloading DO (2d array subscript operator).

3.3 SDServer specific

One of the most important goals of the SDServer software was to provide a stable

DSP engine that could be run with little human intervention on a remote machine.

It would be extremely difficult to eliminate all chances of error but simplification

in design helps to reduce the chance of human error in development. For this

reason many of the more complex DSP matrix algorithms discussed in theoretical

sections have not been implemented in the initial version although inclusion is

intended in future revisions. A simplified DSP matrix with I/O attenuation fonns

the basis of the first SDServer version.

3.3.1 Implementing a real time DSP Matrix

SDServer provides the functionality for signal processing using the

ASIOSubSystem.dll described later in this thesis. Signal processing is handled by

the DSPSystem class defined in SDDSP.h and SDDSP.cpp. DSPSystem::DSPO

forms the basis ofthe algorithm and its implementation is described below:

(simplified version)

for(o = 0; 0 < numOuts; 0++) cycle the outputs
(

memsetf(out[o),O.Of,bufferSize); clear the output buffer /I oplimlzed to float version

1/ only process output If gain is 1= 0
/I perform interpolate for output gains
INTERPOLATE(outputGain[o),ioutputGain[o));
if(outputGain[ojl= 0.0f) optimize for no processing on output gain 00
(

forti = 0; i < numlns; i++) cycle the Inputs
(

I NTER PO LA TE(in putGain[i), iinputGain[i));
if(inputGain[ij 1= 0.0) '/ optimize for no processing on input gain 0.0
(

INTERPOLATE(matrix.lndexNoBounds(i.o).
imatrix.lndexNoBounds(i,o));

fioat mval = matrix.lndex(i,o);
if(mval != 0.0f) /. optimize for no processing on matrix 0.0
(

now do calculation
gain = mval • inputGain[i) • outputGain[o); gain calculalion
DSPSumToBuss(in[ij,out[oj,gain,bufferSize); I matrix

summing

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 46 of 177

3.3 - SDServer specific

}
end input cycle

}
}/1 end output cycle

Essentially the algorithm is simply a nested 'for' loop providing iteration over the

I/O matrix. Three conditional statements optimize the (N2) matrix iteration by

discarding DSP calculations when gain factors are zero. Maximum performance

increases occur when output gains are zero. INTERPOLATE inline function

provides a fast and simple interpolation on gain factors in order to reduce zipper

noise. The algorithm is described below:

#define IP JACTOR O.9Sf /I log interpolation factor
inline void INTERPOLA TE(float ¶m. float &target)
{

param = (IP JACTOR • param) + «1.0f - IP JACTOR) • target);

Note that the interpolation factor constant IP FACTOR is adjustable to produce a

satisfactory smoothing curve.

DSPSurnToBussO provides an optimized buffer copy operation that provides

optimization when gain factors are one or zero. Copying is performed on 32bit

blocks rather than 8bit for improved performance on 32bit processors. When gain

factor is 1.0 or -1.0 it is possible to remove a redundant per sample multiplication.

'memsetfO' provides the functionality of the C 'memsetO,46 function but it is

optimized for 32 bit floating point data buffers, copying whole 32 bit floats rather

than 4 bytes.

Gain factors within DSPSystem are stored twice, first written into a temporary

placeholder that can be adjusted by communications code. During DSPO the

interpolation routine performs smoothly interpolated transition from the current

gain value to the new gain value stored in variables prefixed 'i'. The algorithm

used for interpolation is performed at sample buffer resolution rather than per

sample. This has the effect of increasing algorithm speed while linking DSP

reaction time with buffer size, with high buffer sizes causing much slower

46 Schildt, H: 1998, p.725

D. R. Moore 'Real-time Sound Spatialization. Software Design and Implementation' Page 47 of 177

3.3 - SDServer specific

responsiveness. Socket communication interacts with the gain factors via the

DSPSystem::SetParameter() function as follows:

void DSPSystem::SetParameter(CPAddress addr, f1oat v)
{

float value = v • (l.ot I 128.0f); conversion giving it a bit of headroom over 1 Ofl 127 Of

value clamping to positive and max gain of 1.0f;
If(value > 1.ot) value = 1.ot;
else if(value < 0 .0f) value = O.Of;

if«addr.addrX >= 0) && (addr.addrX < numlns))
(

}
else
(

this is a matrix parameter
imatrix.lndex(addr.addrX,addr.addrY) = value;

something more obvious
switch(addr .addrX)
(
case PARJNPUT_GAIN:

iinputGain[addr.addrY) = value;
break;

case PAR_OUTPUT_GAIN:
ioutputGain[addr.addrY) = value;
break;

The majority of the above code simply provides mapping from a CPAddress

structure into the actual DSP system gain factors. However, in addition to the

mapping the received value is range adjusted and clamped to the range [0, 1] in

order to reduce the possibility of digital overdrive. It should be noted that this

adjustment occurs in the server, the client produces output data that is not range

adjusted. A simple change of clamp range to [-1 1] allows the server to respond

to negative values as inverse phase summing with no changes to the client code.

3.3.2 Additional functionality

In addition to DSP handling the server provides a very basic GUI with a console

based display of current status. Functionality for displaying of errors and debug

reporting was included to use the GUI console. Options for setting up network and

A 10 are included and settings are stored between sessions via Windows registry

to facilitat th minimum of human intervention in a remote system. SD erver

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 48 of 177

networking supports multiple clients at once and may

have clients log in and out many times during a single

server session.

This image shows the basic boot-up screen for

SDServer, confirmation of initialisation of ASIO card

and current network configuration are shown in the

console view.

3.4 SDClient specific

3.4 - SDClient specific

. SlIp • .oitfvs.e Se , -
ASIC: LOold lng Ortve.: ASIC H.mm~lul DSP
ASlO· Drive, initials.d ole
DSP; Initiollismg
OSP· 00 ..
SERVER: Inltl.Ushtll W\nsodQ:
GERVl:R: WiMOda ok
SERVER: C,utlng UlVtf:lCldret on pert - 1230)
SERVER C,ut.4 SOIk.t ok

SDClient forms the performer's graphical interface into the mix matrix provided

by SDServer. External control via MIDI is directly mapped onto the main

performance page consisting of32 virtual faders. The assignment and control of

these faders acts as the control entry point into a parameter / automation tree as

discussed above. The main page is shown below:

_ x I

lor- -'II ~JJJ\ ' Iu 1 ,,-,-tIM!
I~

~~~~~ 

3.4.1 Implementing a parameter base class 

In DClient th parameter is one of the most fundamental concepts of the system 

architecture. Parameter describes a basic parameter class that builds on the 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 49 of 177 



3.4 - SDClient specific 

theoretical parameter concept discussed previously. It also forms the base class for 

group and effect classes that implement automation. The CParameter interface is 

as follows: 

class CParameter 
{ 

public: 

}; 

char name(32); 
int value; the value of the parameter 
int 10ckedValue; 
bool changed; flag 
BOOL islocked; 
BOaL isMuted; 
CPAddress address; 
CParameterSystem* system ; 

CParameterO; 
virtual -CParameterO 0; 
void SetAddress(CPAddress _address) {address = _address; }; 
CPAddress GetAddress() { return address; }; 
virtual bool ReferencesAddress(CPAddress _address) { return address == _address; }; 

relating to values 
virtual int GetValueO; 
virtual void SetValue(int oldV, int newV); 
virtual void SetValueDirect(int newV) { value = newV; changed = true;}; 

relating to value lock 
virtual void SetLocked(int _value) { isLocked = TRUE; 10ckedValue = _value; changed = true;} ; 
int GetLockedValueO { return 10ckedValue; }; 
virtual void UnlockO {isLocked = FALSE; changed = true;}; 
BaaL IsLockedO { return isLocked; }; 

relating to mute 
virtual void SetMute() { isMuted = TRUE; changed = true;}; 
virtual void UnMuteO { isMuted = FALSE; changed = true;}; 
BaaL IsMutedO { return isMuted; }; 

other things 
bool HasChangedO { return changed; }; 
void ResetChanged() { changed = false; }; 
void AttachSystem(CParameterSystem* _system) {system = _system; }; 
CParameterSystem* GetSystem(){return system; }; 

void SetName(const char" _name) {strncpy(name,_name,31); name(32) = ''D';}; 
const char" GetNameO { return name; }; 

virtual void Archive(CArchive &ar) ; 

The basic functionality provides methods for setting and retrieving the stored 

value of the parameter. Additional methods allow the system to determine if a 

parameter has recently changed. Much of the interface is defined as virtual for the 

purposes of inheriting classes. Early in development it was decided that a 

parameter would have three states relating to value update and retrieval. Normally 

parameter values can be altered using SetValueO and SetValueDirectO. When in 

'Mute tatu the parameter is forced to a value of 0 while 'Locked' status allows 

a fixed value to be locked into the parameter. The purpose of these states is to 

d i able any effects from either automation of external control while allowing the 

parameter to behave normally to the rest ofthe system. The implementation 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 50 of 177 



3.4 - SDClient specific 

CParameter::GetValueO detennines how these states affect the perceived 

parameter value: 

int CParameter::GetValueO 
{ 

if(isMuted == TRUE) 
return 0; 

if(isLocked == TRUE) 
return lockedValue; 

return value; 

Priority is given to the mute status, i.e. any muted parameter always returns zero. 

Second priority is given to locked status in which case the value returns its current 

locked value. Only in nonnal status does CParameter return its actual automatable 

value. Regardless of status, automation and external control can alter the internal 

value of the parameter but this value remains internal while any status is in effect. 

CParameter::SetValueO (below) only allows notification of change if during 

nonnal status. 

void CParameter. :SetValue(1n1 oldV,inl newV) 
{ 

int v = newV - oldV; 
if(v 1= 0) 
{ 

value += v; 
if(isMuted == FALSE && isLocked == FALSE) only set changed when not muted or 

locked 

changed = true; 

CParameter::SetValueO and CParameter::SetValueDirectO provide two direct 

methods of setting parameter values. The SetValueO method requires the calling 

function to pass both the new and previously sent values for the purposes of 

corr ct swnming. The actual method of summing is shown in the above code 

snippet; value delta from the calling function is first calculated and any changes 

are summed with the current parameter value. Perfonning the summing in this 

way allows mUltiple parameters to sum to a single target without the target storing 

linkage infonnation. SetValueDirectO sets values without regard for the summing 

system and is mainly intended for initialization. The following diagram illustrates 

the variables required for correct summing of parameters. Note that the affected 

parameter does not store any infonnation regarding the connected parameters. 

D. R. Moore 'Real·time Sound Spatialization, Software Design and Implementation' Page 51 of 177 



Parameter A 

3.4.2 Parameter Management 

arget 
~ __ .r-Parameter 0 

urrent value 

arget 
_":::::2!oo-+IParameter E 

urrent value 

3.4 - SDClient specific 

The management of parameters is implemented with the CParameterSystem class. 

This has a similar role to the DSPSystem class in SDServer, which is storage of 

all core system variables (CParameter instances) and correct addressing and 

updating of these variables. As with DSPSystem, CParameterSystem makes 

extensive use of Array and Array2 template classes. Methods are provided to 

directly access CParameter functionality for setting and retrieval of values without 

the need to extract the required parameter first. These methods allow the 

interlinking of parameter chains without the need for direct storage of pointers; 

parameter map address is sufficient to set or retrieve values. Network transmission 

of parameter values is initiated by SendChangedParametersO; only parameters 

registering changed values will be transmitted unless the forced Update boolean is 

set forcing all parameters to be transmitted regardless. The following section of 

SendChangedParametersO highlights the basic method used: (note condensed 

version) 

SDParameterMessage msg; 

lor(n = 0; n < numlnputs; n++) 
{ If(inputGain[n) .HasChangedO II forcedUpdate) 

D. R. Moore 

msg.addrX = PAR_INPUT _GAIN ; 
msg.addrY = n; 
msg.value = inputGain[n).GetValueO; 

socket->SendMsg(header,&msg,sizeof(SDParameterMessage» ; 
now reset it 

inputGain[n).ResetChangedO; 

'Real-time Sound Spatialization, Software Design and Implementation' Page 52 of 177 



3.4 - SDClient specific 

Each parameter is checked for update requirement or forced update. An 

SDParameterMessage instance is filled in before transmission via 

SDClientSocket::SendMsgO and reset of changed status. 

3.4.3 Parameter Groups 

SDClients allows multiple parameters to be sub grouped together under single 

parameter control. In order to achieve this the CGroup class inherits and extends 

the basic CParameter functionality. CGroup stores an STL vector<> 470 ftarget 

parameter addresses and overrides SetValueO and SetValueDirectO in order to 

pass on parameter adjustments to the sub group. CGroup::SetValueO is shown 

below. Note differences between this and the CParameter::SetValueO above: 

void CGroup::SetValue(int oldV,int newV) 
{ 

CParameter::SetValue(oIdV,newV); 
GroupUpdateO ; 

CGroup::GroupUpdateO is required by the above function and is shown below: 

void CGroup::GroupUpdateO 
{ 

if(IGetSystemOl return ; groups have to be given a valid pOinter to the parameterSystem 
If(HasChangedOl 
{ 

for(lnt n = 0; n < paramUst.sizeO; n++) 
{ 

int v = (fioat)GetValueO • (paramUst[nj.max 1 128.0f); 
GetSystemO->SetParameter(paramUst[n).addr,paramUst[nj.oldValue,v); 
paramList[nj .oldValue = V; 

CGroup makes use of the data structure 'CGroupParameter for storage of target 

CP Addres es and old values. A simple 'for' loop through ' paramList' calling 

SetParameter causes update of sub parameters. Parameter adjustment is scaled 

with a maximum sub parameter value producing proportionate group control. 

47 trou trup, B: 2000, pp.442-458 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 53 of 177 



3.4 - SDClient specific 

3.4.4 Eliminating feedback 

It should be clear at this point, that the ability to sub group parameters has the 

potential for feedback and thus stack overflow. A simple method of prevention is 

to remove the possibility of assigning a self referential loop. The algorithm used 

traverses the parameter tree checking for a self reference and is performed on 

assignment of a new target parameter. Due to the modular architecture it is 

necessary for each CParameter inheriting class to provide its own referential 

check algorithm. As an example, the following code shows CGroups self referral 

check algorithm: 

bool CGroup::ReferencesAddress(CPAddress _address) 
{ 

if(CParameter::ReferencesAddreSSCaddress» return true; 

check aU sub addresses 
for(int n = 0; n < paramList.sizeO; n++) 
{ 

if(GetSystemO->GetParameter(param List[ n ).addr)-> ReferencesAddreSSC address» 
{ 

return true; 

} 
return false; 

A recursive technique is used to determine self reference against a specified 

CP Address' first check against itself using a call to the base class 

(CPararneter::ReferencesAddressO); second, check all contained targets via calls 

to their overloaded ReferencesAddressO functions. In the event of an address 

match the function will return true and the system will be unable to use the 

specified address as a target within the tested chain. This method of recursive 

checking through polymorphic functions is future compatible with any new 

grouping or automation effects. The following code section shows CGroup Wnd 

using the recursive referential check prior to assignment of a parameter to a 

CGroup (code defined in CGroupWnd::AddParameterO): 

ch ... for referenCing of thIS group 
if(param->ReferencesAddress(groupAddr» 
{ 
AfxMessageBox("Super diffuse could not add the selected parameter \n to the group due to a circular 
reference"); 
return false; 
} 

A ircular reference warning message is displayed to the user if the reference 

cannot b added but the system recovers. 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 54 of 177 



3.4 - SDClient specific 

3.4.5 Parameter Automation (Effects) 

Updating the CParameterSystem class via its TickO method causes update of 

automatable parameters. Automation algorithms are described by inheriting from 

the CEffect class which extends the CParameter base class and defines the 

CEffect::Tick(float delta) virtual function. The current version ofSDClient 

introduces three different automation effects but system architecture allows future 

automation types to be added with only small alterations. Although not yet 

implemented, future revisions will aim to provide plugin based modularity for 

automation effects and much of the ground work for this is already in existence. 

The following code snippet shows the TickO overloading for the chase effect: 

void CChaseEffect::TIck(float delta) 
{ 

float amp = (float)GetValueO I 12B.Df; 
float pos = fmodf(t * freq1 ,numSteps); get relative position from time using modulus 
int IIndex = (int) pos; I get left index 
int rlndex = IIndex + 1; get right index 
if (rlndex >= numSteps) rlndex = 0; check for overlapping index 
int olndex = IIndex -1 ; 
if (olndex < 0) olndex = numSteps - 1; 
float nuliFloat; 
float rad = modff(pos,&nuIiFloat) * (3 .14159f12.0f); get fractional part * 90 degrees In rads 
I use the fraction to calculate crossfade between IIndex value and rindexValue 

set only two values 
Int newL = (int)«float)val[lIndex) * cosf(rad) * amp); 
int newR = (Int)«float)val[rlndexj* sinf(rad) • amp); 

GetSystemO->SetParameter(addrfolndex),oldV[olndex) ,0); should be 0 when chase has passed It 
GetSystemO->SetParameter(addr[lIndex],oldV[lIndex) , newL); 
GetSystem(}->SetParameter(addrfrlndex],oldV[rlndex) , newR): 

oldV[olndex) = 0; thiS one should be 0 by the time the chase has past it 
oldV[lIndex) = newL; 
oldV[rlndex) = newR; 

t += delta; update the time 

The chase effect tores an array of target addresses (24 in total) and performs 

cosine based panning laws to crossfade between each. The calls to 

Parameter ystem::SetPararneterQ connect the chase effect to its targets with 

addr s validity ch cking. It should be noted that old values (last set values) are 

stored and retran mitted on subsequent TickO calls. This storage of old values is a 

requir ment of the parameter summing method (see above) and is used to 

calculate delta value inside CParameter::SetValueO. The following diagram 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 55 of 177 



3.4 - SDClient specific 

illustrates the data storage for the chase effect. Note that CChaseEffect is derived 

from CEffect and therefore CParameter making it a viable target parameter: 

ChaseEffect ->CEffect->CParameter 

3.4.6 GUI for automated parameters 

In order to provide modular user interfaces for the modular parameter system the 

CFXEditor class was developed in conjunction with the CEffect. The technique 

u ed here is similar to Steinberg's VST Plugin editor classes although the GUI 

code makes extensive use ofMFC rather than Steinberg'S use ofWin32 core 

libraries. One key factor in this GUI implementation is the lack of window 

persistence between openings. Rather than store an inactive editor, the system 

simply discards the last opened window and creates a new one on request. The 

new window is initialised to the current status of the associated CEffect upon 

opening and remains linked until a new window is requested. It is the requirement 

of the CEffect derived class to create its own editor and this action must be 

p rformed in overriding the CEffect::GetEditorO virtual function. The following 

shows how CChaseEffect creates a new editor. Note here the passing of the ' this' 

pointer into the parameterized constructor of the CChaseEffectEditor derived from 

FXEditor. 

CFXEditor' CChaseEffect: :GetEditorO 
{ 

return new CChaseEffectEditor(this); 
} 

After construction the new CFXEditor derived instance is returned to the calling 

function and it i its job to create the appropriate container window and finalize 

editor con truction. After appropriate window construction the editor instance has 

D. R. Moore 'Real-time Sound Spalialization, Software Design and Implementation' Page 56 of 177 



3.4 - SDClient specific 

its OnCreateO handler called by the framework, CChaseEffect::OnCreateO is 

shown below: 

int CChaseEffectEditor::OnCreate(LPCREATESTRUCT IpCreateStruct) 
{ 

if (CFXEditor::OnCreate(lpCreateStruct) == -1) 
return -1; 

CRect rect(5,5,300,30) ; 
CChaseEffect* f = (CChaseEffect*) GetEffectO ; 

nSteps.Create(WS_BORDER I WS_CHILD I WS_VISIBLE I ES_READONLY 
,CRect(300,5,350,21 ),this,ID _ CHAS E_ SPIN_EDIT); 
nStepsClr1.Create(UDS_HORZ I UDS_WRAP I UDS_SETBUDDYINT I WS_CHILD I WS_V1SIBLE, 
CRect(350,5,400,21 ),this, ID_CHASE_SPIN); 
nStepsCtrl. SetBuddy( &nSteps); 
nStepsCtrl. SetRange(3, CHASE_ MAX_STEP) ; 
nStepsCtrl.SetPos(f->numSteps) ; 

freq1 .Create("Frequency",WS_CHILD I WS_ VISIBLE, rect ,this,IDKJREQ1); 
freq1 .SetVertical(FALSE); 
freq1 .SetMax(CHASE_MAX_STEP); 
freq1 .SetMin(O) ; 
freq1 .SetValue(f->freq1) ; 

rect = CRect(O,50,25,71); 
CString str; 
for(lnt n = 0; n < CHASE_MAX_STEP; n++) 
( 

str.Format("%d",n+1 ); 
assign[n) .Create(str,WS_VISIBLE,rect, this,IDJIRST_CHASE_ASSIGN + n); 
rect.OffsetRect(25,O) ; 

rect = CRect(O,80,25,380) ; 
for(n = 0; n < CHASE_MAX_STEP; n++) 
( 

str.Format(,Value %d",n+1); 
vals[n).Create(str,WS_CHILD I WS_VISIBLE, rect ,this,IDJIRST_CHASE_VALUE + n); 
vals[n).SetM ax(127) ; 
vals[n).SetMin(O) ; 
vals[n) .SetValue(f->val[n)) ; 
rect.OffsetRect(25,O) ; 

} 
return 0; 

Upon succes ful creation a CFXEditor creates all appropriate controls and 

initialises them to the values stored in the linked CEffect obtained from 

FXEditor::GetEffectO_ Normal Windows message mapping is used to perform 

user interaction with the linked CEffect adjusted accordingly. The above editor 

u es a combination of basic MFC controls and some specialised Active~8 

control developed for SDClient. 

3.4.7 SDClient archiving 

48 William : 2000 p. 115 

D. R. Moore 'Real-time Sound Spatialization, Software DeSign and Implementation' Page 57 of 177 



3.4 - SDClient specific 

DClient makes use of the MFC archiving system49 for the purpose of data 

storage and retrieval. Archiving requirements are much simplified over the 

complex technique used in Ricochet50 due to the simple software design approach. 

A basic archiving tree is fonned by data and system classes providing ArchiveO 

functions, a CArchive MFC instance is passed through the tree and all data is 

either retrieved from or stored to it. Use offixed sized object arrays rather than 

dynamic structures has greatly simplified archiving by reducing the need to 

r construct references and pointers between sessions. The following code snippet 

shows the CRandomizeEffect::ArchiveO function: (Note MFC practice of using 

one archive function for both storage and retrieval in order to maintain accurate 

fil fonnats) 

void CRandomizeEffed::Archive(CArchive &ar) 
{ 

CEffed::Archive(ar); call base class to store base info 

addr1 .Archive(ar) ; only single reference to CPAddress' Archive 
addr2.Archive(ar) ; for both storage and retrieval 

If(ar.lsStoring()) 
{ 

} 
else 
{ 

ar « freq1; operator« overloading makes variable storage easy 
ar« freq2; 
ar« amp1 ; 
ar« amp2 ; 

ar» freq1 ; 
ar» freq2 ; 
ar» amp1 ; 
ar» amp2 ; 

0ldV1 = 0; 
0ldV2 = 0; 

further advantage of the MFC CArchive class is the overloading of« and» 

operators for most built in types, this is also a feature of the C++ STL ofstream51 

clas . Thi method makes single variable storage and retrieval very simple. The 

Advantage of the single function for storage and retrieval is justified by the 

PAddre ::Archi eO function used to both store and retrieve in one function 

call. 

49 Feuer, 

so e al 

. R: 1997, p.233 

.6 

SI trou trup B: 2000, p.637 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 58 of 177 



3.5 - M2 User Manual 

3.5 M2 User Manual 

The M2 hardware system comprises the following components: 

• M2 Diffusion Control Surface52 

• CV to MIDI conversion device (Ircam Atomic) 

• MIDI interface (MAudio MidiSport 2x2) 

• IBM Compatible PC (AMD Athion 2500 CPU, ASUS Motherboard with 

onboard LAN and XVGA graphics support) 

• Steinberg ASIO compliant audio card (MOTU 24io) 

These hardware components fonn a single computer setup but the client software 

can be run on a second PC for a remote server setup. These two setups are 

described below: 

S2 Designed by Mooney 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 59 of 1n 



3.5.1 Setup method 1 (Single PC system) 

M2 Diffusion Control Surface 

c=J 
~ o 
3 
cr 

loudspeakers 
~ - , - , , 

, , , , , , 

3.5 - M2 User Manual 

, , 

IBM PC Running Super 
- - Diffuse dient and server 

ASIO Compatible Audio 
" Card (MOTU 24io) 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 60 of 177 



3.5.2 Setup method 2 (Dual PC system) 

2 Diffusion Control Surface 

Loudspeakers 

3.5.3 SDServer Configuration 

~ 
~ , , , , 

, , , 
, 

3.5 - M2 User Manual 

" , 

IBM PC Running Super 
Diffuse dient 

IBM PC Running Super 
Diffuse server 

ASIO Compatible Audio 
", Card (MOTU 24io) 

Ii re ing th lient oftware it is necessary to run SDServer software. The 

annot perate fully without connection to an instance of the 

D rv r that has b n correctly set up. 

D. R. Moore 'Real-t ime Sound Spatialization, Software Design and Implementation' Page 61 of 177 



3.5 - M2 User Manual 

_ OJ..!!,, 

h rver tting dialog is entered by selecting 'Settings' from the 'file' menu 

f erv r. 

1 ..... ,2Dl----- Port 

ASIO DiredX FIA D • • • 
ASIO M~ Dnvef 
tMDIAASIO 

Dnvet 

x 

OK 

Cancel 

ptions are configurable from this dialog: the TCPIIP port number for the 

rver and th A I compatible card to be loaded. The TCPIIP port number can 

t to any numb r gr ater than 0 and lower than 65535 although some ports are 

pre-as igned L other network uses (for instance HTTP for web pages is 

nfigur d to p rt 80 and FTP sits on port 21). It is possible that other software 

rna n d to u the default port of 5000 so this setup functionality allows 

a different etting. ASIO cards that are available for use will 

aut maticall app ar in the driver list but this does not necessarily mean that they 

will w rk orrectl . Although a number of cards have been tested it is possible 

that rver annot u e orne manufacturer's cards. 

p n e it fth etting dialog SDServer will detect changes and attempt 

PIIP Ii tening n th elected port and load the ASIO driver. Settings are 

aut maticall a ed t th Y tern registry if successful connections are made. 

rt d in the main DServer dialog with 'SERVER: Create socket 

k and' A I : Driv r initialized ok'. 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 62 of 177 



3.5 - M2 User Manual 

3.5.4 SDClient Configuration 

With the erver oftware running in the background, SDClient can be executed 

and will initially how the following screen: 

1 

h op ning page is known as the performance view and shows a direct 

i ualization of the 32 assignable master faders. The top 16 faders are controlled 

t mall via MIDI controller 7 (Channel Level) and the lower 16 are assigned to 

contr ller 10 ( hannel Pan). In order to correctly setup both the external MIDI 

d ic and the network connection a user selects the settings option from the File

> tting m nu hown below: 

I~ 15001 OK 

Conce! 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 63 of 177 



3.5 - M2 User Manual 

In the abo e creen shot the client is attempting to connect internally within one 

machine and localhost' has been set as the network address. It is possible to 

p cify any IP addre or domain name upon which an SDServer is running. The 

p rt ' 5001 i set to the ip port decided on when setting up the server. In addition 

to the n twork settings 'HDSP Midi In (1)' has been selected as the MIDI device 

for xternal control. The settings dialog will display all MIDI devices it finds on 

the local machine. As with the server, settings are stored in the system registry 

upon exiting the dialog. Status is displayed in a similar console view accessed via 

the View-> onsole menu . 

. s~ If ..... CIoert • 
~ comedIOn to Iocahlst . 1 ZlXl 
\IIns0ck2 Stafted 
ue~ed Cient S ockel 
Socket ComecC() eI[()(1 
MtDt t'llUl device opened 
New settings lequie recomection to the network server 

Atterrptr,g ccmecIJon to Iocahlst . 5001 
\IIns0ck2 Stalled 
u~ed Cient S ockeI 
SeI_ rio . SeIWlI S 

Th con ole iew displays the current status of the connection to an SDServer and 

temal MIDI device status. In the above screen shot the line ' Server info 

- erver: uper Diffuse - 12 inputs, 12 outputs' shows a valid connection to an 

D rver that has control of a 12 * 12 mix matrix. This line would display the size 

of the connected mix matrix on the remote machine. 

3.5.5 Monitor view 

When a ucce sful conn ction is made the client configures itself for the number 

fll matri parameters present on the server. SDClient represents the connected 

matri in the monitor view which can be accessed though View->Monitor: 

D. R. Moore 'Real-l ime Sound Spalializalion . Software Design and Implementation' Page 64 of 177 



3.5 - M2 User Manual 

This iew shows the attenuation level setting of all parameters in the server. In the 

screenshot below the lock (padlock icon) and mute (MT) buttons have been used 

to set direct connections from inputs 1 and 2 to stereo pairs of outputs. A locked 

parameter is et to zero attenuation and is unaffected by automation or external 

hardware. A muted parameter is set to full attenuation and is unaffected by 

automation or external hardware. Muted parameters also override the locked 

tatu . 

inp<A 1 

1~2 

U d in this way the Monitor window can act as a simple direct routing system for 

all I/O ports on the connected SDServer. 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 65 of 177 



3.5 - M2 User Manual 

3.5.6 Assigning parameters 

n the p rformance page the moveable fader representations can be assigned to 

any of the matrix parameters by selecting the 'Assignl' or 'Assign2' buttons. This 

r pr entation al 0 displays and allows control of the lock/mute status for the 

as igned parameter. After selecting' Assign l' or 'Assign2' the user is presented 

with the following dialog: 

£ 

I I~B ... Serd :::J 
~ ::J 
IOWM2 :::J 

0 Cancel I 

Parameters ar selected via the drop down combo boxes and any parameter or 

automation is electable. In the above the matrix parameter for input 1 attenuated 

into output 2 is elected. Right clicking on either of the assign buttons removes 

any as ignment after displaying the following confirmation box: 

~ 

Reset Master Fader AssQYnert1 

OK cancel 

The clo e up view below shows a single fader assigned to a parameter and with its 

control Ie el turned up to around 75%. The blue and yellow bar displays the 

actual valu of the assigned parameter which may not correspond to the fader 

value if automation or grouping has been used. Also note the 'Assign' buttons 

i ible from this creen shot. 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 66 of 177 



3.5 - M2 User Manual 

3.5.7 Groups 

If the user needs to assign a group of parameters to one fader this can be done in 

' Group view' accessible via the View->Group menu item. 

7 G. in 
8 <hln 
Q<hin 
10 G.in 
11 (bin 

12 G.in 

Abo e, the u r has assigned all 12 available outputs to the group simply by 

clicking inside a parameter box and dragging up or down to select a relative level. 

Parameters can also be added via the 'Add Parameter' push button which brings 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 67 of 177 



3.5 - M2 User Manual 

up the common parameter select dialog discussed previousli3
• Note here that 

om parameters (Output 2 and 4) have been assigned negative level (-25 and -20) 

r presented in numerical form and by the orange bar graph. Negative values in 

groups can be used to assign parameters that need to be reduced as the fader is 

turn d up. The 'RM' buttons in each parameter allow a parameter to be removed 

from a group and the combo box in the upper left allows selection of the group to 

be dited. 

3.5.8 Automation effects 

Automation ffects are created and edited through the Effect View accessible via 

the View->Effect menu item: 

'(j:t Effects ~. 

Effect 1 .... IJ ooe .... 

The initial iew shows that Effect! currently contains no effect. An effect is 

selected via the top left combo box and its type is assigned from the top right 

combo box. Depending on the selected effect type the appropriate effect interface 

hown. Below the three effect types are shown: 

3.5.9 Randomization effect 

Thi ffect generates randomized values over time. 

Fr qu nc and amplitude of the random value generation is controllable with 

sliders and th effect may be connected to two independent parameters via the 

53 e also: 3.5.6 'A igning parameters' p.66 

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 68 of 177 



3.5 - M2 User Manual 

, Assign 1 ' and 'Assign2' buttons. As with other parts of the software, the common 

parameter select dialog is brought up from these buttons. 

~~~~~~~~~ FrQquency2 r. Amplilud .. 2 

~----~--------~

3.5.10 Wave automation effect

Thi effi ct produces a time varying cosine wave.

Frequency amplitude and phase ofthe cosine wave is controllable from faders and

again, two parameters may be assigned via the common buttons .

.:J.gJ xJ

~~ii~Fr.qu.nCY2
Ph"se 2

Amplitude 2

3.5.11 Chase automation effect

Thi effect acts in a similar manner to a lighting 'Chase', crossfading between a

equence of parameters over time. The numbered buttons allow common

parameter selection for any of the 24 assignable slots. Frequency or speed of

equence is controlled from a horizontal fader and the loop step is selected from

the left and right arrow buttons. The loop step will always crossfade along the

quence tarting from step 1 and moving onto and including the loop step. For

each loop step it i possible to set a maximum level using the vertical faders.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 69 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse

.;;---=======1 Frequency 124

1

<= ... N M ~ ~ r- eo 0> <= ... N M ... N M ~ ~ ,... co 0> N N N N
III CD III C II) III III III C CD III III III III III III C II) II) III III C II)

:l

~ ;; ~ ;;:.

It i pO ible to assign groups of effects and assign groups to effects and this can

lead to accidental circular feedback. SDClient prevents feedback automatically

and will present the user with the following dialog if an assignment that would

2!J
s...,." dffuse ccUd not add the selected par ametOf
to the 9fO'o4l We to a crcWr reference

cau e itoccurs: __________________________ ~

In thi case the as ignment is cancelled.

3.6 The M2 Diffusion system incorporating Super Diffuse

A de crib d during the introduction to this project, Super Diffuse forms the basis

for the ni ersity of Sheffield Sound Studio's 'M2' live sound diffusion system.

The M2 platform consists of industrial rack mounted computer, custom built fader

y tern and uper Diffuse software components. M2 has at the time of writing

manag d Ii e ound diffusion for concerts at the universities of Sheffield,

Birmingham Bangor and Edinburgh and is the focus of 'M2 Diffusion - The live

diffo ion of ound in pace a paper co-written by A.Moore, D.Moore and

pre ented at the ICMC54 2004.

S4 I M - Intern ational omputer Music Conference

~
N
III
:l

~
~

D. R. Moore 'Real-t ime Sound Spatialization, Software Design and Implementation' Page 70 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse

The following photographs were taken during setup and rehearsals with the M2

system for the 2004 Electroacoustic Wales performance at University of Bangor.

Abo e: Close up photograph of 'Super diffuse' software with the M2 Control

hardware visible.

B low: View of the diffusion loudspeaker setup at Bangor, A.Moore in control of

the s stem.

D. R. Moore 'Real-time Sound Spalialization, Software Design and Implementation' Page 71 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse

3.6.1 M3 - the future expansion of the M2 system

up r Diffuse and M2 is a prototype system and as such is now the focus of

ongoing research. Collaboration with composers and performers has already

highlighted many new directions for the project. At the time of writing a number

ofuni ersities have agreed to a development partnership focusing on the

de elopment ofM2. It is hoped that this partnership will provide a larger pooling

of id a for both M2 and future sound diffusion tools.

Perti rmance with M2 has highlighted the need for future improvements to setup

logi tic . Although this is mainly a user interface problem it is clear that

irnpro em nts need to made to provide a clearer system for classification ofUO

p rt in audio hardware and a much improved method of selecting different

control parameters. Initial development ideas have settled upon the general

on n u for a Venue chematic' view. The intention of the OUI element is to

con tru t and pre ent a visual representation of the room layout to the user. This

cb matic i w concept can naturally be extended to cover other areas of the

pr gram uch as external hardware layout and spatial configuration of input

our . [n mapping input chematics against venue schematics it is hoped that

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 72 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse
>, r. - . '{ .• <~~ •• < A~~'_'''''~:-:'~ ~;""'''.

selection will become more intuitive and the possibility of automatic re-mapping

for new venues will be possible.

GUI complication implications when using large numbers ofl/O channels causes

a difficulty in visualising the DSP matrix. In the M2 development system

consisting of only 24 inputs and 24 outputs, the user is presented with a very large

and complex interface to perform both the assignment of parameters and the

viewing of parameter status. In a 96 • 96 channel system, the maximum possible

with current hardwaress, parameter presentation would be unusable. Although the

use of the 'schematic view' concept will hopefully address this problem to some

extent it is felt that functionality should reflect the common usage oflow numbers

of inputs and high numbers of outputs. As hardware manufacturers typically

support equal numbers ofllO channels it has been suggested within development

meetings that the system should support low level disabling of hardware 110 ports.

If ports are not needed in a particular setup they should be turned off and thus not

be included in any interface visualization. DSP performance in the server would

also benefit greatly from the ability to turn off channels as conversion from

hardware data formats to internal 32 bit float need not occur for unused channels.

ASIOSubSystem design is perhaps naIve in assuming that a piece of software

would require all of its 110 passing to the host application but this conclusion has

only become apparent after using hardware with large 110 numbers.

An ability for the server to take the place of external playback hardware such as

CD player, ADAT IDA-88 based tape or other multi-channel playback system

again reduces the necessary logistical problem of providing for multiple formats

at concert time. In the author's experience, it is common to provide a number of

external playback systems during performance and this is essentially a redundant

concept if a well featured file format and playback system can be provided. Server

side audio streaming directly to the 110 system is proposed in M3 and will be

closely tied to the concept of a concert program. Concert programming will

provide automatic reconfiguration of the system for the specific needs of a

55 Hardware: 4 • MOTU 24io on PCI-424 master card.

D. R. Moore 'Rell-time Sound Spltillization, Software Design Ind Implementation'

3.6 - The M2 Diffusion system incorporating Super Diffuse
.. '.".... , .• t_ •• ·~" .,: _ -":,..~,>4'

particular concert item. In order to provide stable file playback the system will use

a strictly tested audio format and conversion from performers' presentation

formats will occur during setup and rehearsal. Live input from external playback

hardware will continue to be supported, but the internal system should remove the

need for external hardware in the majority of cases. It is also conceivable that a

playback system could support streaming over IP and allow the client to play files

directly, although this will not be a feature included in early re-designs.

In order to reduce the need for external hardware and improve logistical setup

times it would seem useful to provide an output master section for loudspeaker

balancing, EQ and phase compensation. M3 currently proposes output trim

controls and a delay unit that can have distance based delay times added. By

increasing the delay time of close speakers it is possible to compensate for phase

de-correlation in speakers at different distances for the audience. Although this

feature is perhaps undesirable for the traditional sound diffusion concept it could

still find a use in correcting speaker pairs that would ideally be correlated but

cannot be due to the constraints of the venue. Adding the facility for real position

measurements to be entered, the 'Venue schematic' concept could be extended to

provide the interface for correcting phase de-correlation over sets ofloudspeakers.

In modem PA systems the use of multi-band EQ is commonplace for correcting

the frequency response characteristics of the venue and loudspeakerss6• It is

sensible to assume that corrective EQ might be useful for diffusion systems

although its use would again be purely optional. It is possible that this room

corrective matrix section could be extended to provide automatic correction from

a reference pink noise generator, a system commonly available in digital multi

band EQ units. In the first iterations ofM3 development it is certain that output

DSP will be designed carefully for the future addition of features discussed above.

In consideration of extending the master output section it is logical that the full

DSP matrix concept also be considered and the ability to insert audio plugins, in

either VST or DirectX format, has been put forward. Although the addition of this

feature would provide a great deal of scope for experimentation, the inherent

56 Stark, S. H: 1996, p.97; Davis, G; Jones, R: 1990, pp.25 1-252

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 7<4 of1n

3.6 - The M2 Diffusion system incorporating Super Diffuse
,': .;,."""""!"<."",,,,,~;,,\<-<>i'

complication to the DSP section and the possibility of third party plugins causing

unforeseen server failure during performance compels a decision not to include

this functionality. Obviously, tailor made and well tested algorithms could extend

the DSP matrix design with less chance of compatibility problems but the decision

has been made not to extend from the attenuators in the first iteration ofM3.

In the current version, server to client feedback is very limited with only a small

amount of initial hardware configuration information provided upon client

connection. In future versions it is intended that the server become more

autonomous and provide full control from the client. This is of particular use if the

server system is to be locked away, perhaps made inaccessible except for

maintenance. Additional feedback of run time information such as audio metering,

DSP performance status and error reports would be of benefit to an audio

installation. Taken to the extreme this feature could be extended for the purposes

of venue health and safety, with supervisor setting ofSPL limits and connection to

alarms for quick shutdown in a fire. Theatre house lighting systems are often

connected to alarms so that lights are forced up for escape.

Many users of M2 have stated that the ability to control sub parameters of

automation effects during a performance would be desirable. This feature was

included to some extent in the original 'Super Diffuse' but the interfacing

functionality and bug testing was not ready for performance and was left out in

tested versions. It has been unanimously decided within the development group

that this feature will be complete in M3. Addition of this feature is likely to

require extensive reviewing of the current parameter system model in order to

produce the stability required.

Super Diffuse was originally written for the purposes of performance and one

proposed extension is to provide two modes of use for the system. In 'Rehearsal'

mode the M3 system will allow editing of performance setup and rehearsal of

performance items. The 'Performance' mode is intended to lock settings and

provide a degree of stability at performance time. Again this is a concept

borrowed from lighting desks which often have similar modes available. It is

desirable that performance setup cannot be altered during performance in order to

D. R. Moore 'Real-time Sound SpatiaHzation, Software Design and Implementation' Page 75 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse

remove the chance of user error. In simplifYing the interface options at

performance time the system can be constrained much more efficiently.

". ". ",.;{ ... ~';,·~·~;q';:-tll,."';"-,,:

In addition to mode seUing and multi-channel audio file playback it is proposed

that a user should have the facility to record performance cues. These cues would

be named and provide storage for notes. During performance mode the system

would present the stored cues in sync with audio file playback. With the addition

ofa stored 'Preroll' time it would be possible to present the cues prior to the

related event. In this case a performer would be alerted to significant events

during the recording in time to react accordingly. Performance cues have been met

with general approval for M3. Future possibilities of this concept include the

addition of time locked graphical score display although this will not be featured

in the next iteration.

Following discussion regarding the hardware control it has become desirable to

provide a hardware abstraction layer similar to that used in ASIO and DirectX for

the pwposes of generalizing the control method. It is intended that this layer will

gather together a number of different hardware control concepts and provide a

stable API for use in M3 and other software projects. After further design

meetings this system may become linked with ASIOSubSystems7
•

A.Moore (University of Sheffield) has specified a desire for the addition of

performance data loggingS8
• The goal would be to record sufficient control data

for both reproduction and analysis of performance spatialization. This feature

could be added to the server system and it is logical that performance data would

be logged using the standard MIDI file format. In this format, analysis with 3nt

party software would be supported as it is not a goal ofM3 to provide local

features for statistical analysis.

It should be clear that the basic parameter concept discussed in this thesis is

capable of providing control of other performance based systems. In fact, due to

S7 See also: 6.1.4

sa Moore, A; Moore, D; Mooney, J: 2004

D. R. Moore 'Rea~e Sound SpatiaHzation, Software Design and Implementation' Page 76 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse
, J, ."~' ·.':I.:-<~"~";"'"1 ... ~

its lighting design concept, it is suited to the control ofDMX (Acronym of Digital

Multiplex) lighting systems. Very low cost DMX control hardware is available

and could easily be addressed from the server software. Although this extension

could be useful in some circumstances, M3 is unlikely to provide equal

functionality to high quality specialist lighting systems. However, the ability to

easily extend the basic parameter system within both the server and the client is

perhaps desirable for the addition of control features in later versions. For this

reason, M3 design will focus on providing a more extensible parameter system.

At this early stage, much of the design for M3 is not yet fully clarified but some

basic guidelines for the development cycle and early software structure diagrams

have been put forward as follows:

UML based CASE59 tools for development have become of interest to the

development team and it is hoped that following a well planned software

development technique such as 'Rational Unified Process,60 will promote a stable,

well thought out solution.

59 Computer Aided Software Engineering

60 Booch, G; Rumbaugh, J; Jacobson, I: 2003, pp.449-453

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 77 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse

Id M3 Preliminary Components

~
Control H rdware

Via M 1011 USB I DlrectX or fu ture method

Control
Via AP I li nk ~

ClientGUI

Abstraction Laye r

Via Arllink

~
Network Layer

Via Arllink

[]
Via API l ink

[]
Server GUI Audio

Abstraction Layer

~. ASK> Di.""'1 0' '''''. m.thod

:[]
Audio Hardware

Thi la red appr ach to the components of the system is intended to promote

tag d d lopm nt of each component in isolation. For example, providing the

int rrac fi r the ontrol Abstraction Layer and Network Layer remain

un hang d. it will b po sible to produce new versions of the Client GUI

mp nent. ach c mponent s development will apply the following staged

d cl :

• Pha c 1: Prop al of ideas and requirements. Address feasibility issues

t .

• Mil tone 1: Pr duce requirements ' use case' and feature list documents.

• Pba e 2: ign and implementation, refinement and finalizing.

• Mile tone 2: Pr duce final design document for this iteration.

• Pha n truction following design documents.

• Mile tone 3: Rele e candidate for testing.

D R Moore 'Real-time Sound Spatialization . Software Design and Implementation' Page 78 of 177

3.6 - The M2 Diffusion system incorporating Super Diffuse
. ~ ." •• ,... •.. '~ .. - f".';",: ,.:..",,~', "''"''

• Phase 4: Testing and refinement.

• Milestone 4: Produce bug lists and fix obvious errors. Re-document if

necessary.

D. R. Moore 'Real-time Sound Spatlalization, Software Design and Implementation' Page 79 of 177

4.1 - Requirements of a model
•.. ~ .~_." -.' __ :-'~~ ... ~3·,~J ...

4 The 'Virtual Sound Environment' Model

As highlighted earlier, projection of pre -composed works represents one method

of sound spatialization. The M2 I Super Diffuse project represents a proven live

sound projection system. It is a logical progression from analogue or hardware

based sound diffusion. However, it does not aim to reproduce realistic spatial

sound effects and therefore, this thesis now addresses the concept of spatial sound

simulation.

The goal of the 'Virtual Sound Environment' project is to create a three

dimensional physical modelling system for sound that can simulate many real

world situations while still being flexible enough to allow creative

experimentation with sound. In order to provide the necessary flexibility a

conceptual framework for spatial sound processing is also proposed.

4.1 Requirements of II model

A model of a real system is precisely as stated; a model, not the real thing. In

other words the model can never be perfect unless it is the real thing. When

attempting to recreate the physical properties of sound it is quickly apparent that it

will not be possible to recreate every subtle nuance in any model.

The purpose of a model is to describe a system in sufficient detail for meaningful

experimentation to be achieved. With this done the model can be used to produce

practical results that would otherwise be difficult or impossible to obtain from

experimentation in the real world.

'A model is a simplification of reality . .6/

Obviously, 'results' from a model of sound physics are expected to sound realistic

and, regardless of purpose, the closer to achieving realism the better the model. In

61 Booch, G; Rumbaugh, J; Jacobson, I: 2003, p.6

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 80 of 177

4.1 - Requirements of a model
,··._",>'O;-!1:"·}''''''''''.IIJ:'f-:'''

a laboratory setting it may be necessary to obtain very precise sound

measurements and this would place strict requirements on any model used.

However, in the case of artistic and creative use, 'realism' may be sacrificed in

favour of more personal, qualitative properties of a sound. Therefore,

requirements for a creative tool would aim to promote experimentation and

composer feedback.

'PhAt2 Synthesis methods do not attempt to create a "complete"
physical model of an instrument. Rather than accounting for all
possible conditions of the instrument's existence, they need only to
account for the physics % an instrument in the highly constrained
situation of performance. 3

Roads explains that the required accuracy in modelling is related only to the needs

of the given situation, in this case modelling an instrument for the purpose of

sound creation. It is conceivable that the same is true when modelling sound

propagation.

Poli and Rocchesso describe the use of physical sound models as necessary to

overcome the ' ... slavery to "frozen" sounds. ' 64, preferring PhM's interactivity

and direct control.

Artistic process is not the subject of this thesis; however, it is clear and relevant

that a creative user of a sound model is concerned with producing works of artistic

merit and not scientific accuracy65. For this reason, the model created here is

carefully designed to be capable of producing desirable results for the artist.

Roads puts forward some desirable qualities of physically modelled instruments.

'Simulation by physical models can create sounds of fancifol
instruments that would otherwise be impossible to build. In this

62 PhM- Physical Modelling

63 Roads, C: 1996, p.266

64 Poli, G; Rocchesso, D: 1998

65 Wishart, T: 1994, p.5

D. R. Moore 'Real-time Sound SpatiaUzation, Software Design and Implementation' Page 81 of 177

4.2 - A simple sound environrne~",:!,,~~,;, ",,,.

category we can include phantasmagorical instruments whose
characteristics and geometry can change over time .66

Clearly this creative experimentation with the parameters of physical modelling is

not limited to the modelling of instruments and can be applied to spatialization of

sound.

When compromises in modelling are inevitably made, due to practical constraints,

this project favours creative possibilities rather than precise modelling of physical

properties. Poli and Rocchesso describe the inherent computational constraints of

real-time spatialization models67
• Malham highlights computational penalties for

precise modelling and describes simplified methods such as ray tracing as being

realistic enough for human perception68
• As an example of computational

problems, the decision to make the model calculable in real-time has affected

almost every algorithm used in the project. However, the use of real-time

processing is perhaps one of the most desirable features to some composers and

essential to the live perfonner. Wishart highlights the usefulness of real-time

audio manipulation for the studio composer when attempting to provide elements

ofperfonnance:

' ... the success of studio produced sound-art depends on the fusion of
the roles of composer and performer in the studio situation. For this
to work effectively, real-time processing (wherever this is feasible) is
a desirable goal . .69

4.2 A simple sound environment model.

Consider a solo violin performance to a small audience. As the soloist plays, the

violin's vibrating strings cause very small changes in air pressure. The air

66 Roads, C: 1996, p.266

67 Poli, G; Rocchesso, D: 1998

68 Malham, D. G: 1998

69 Wishart, T: 1994, p.8

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 82 of 1n

4.2 - A simple sound environment model.
'. " ',; ".">;~""j".tI;,,,.~.,,,l.v;.\';i-,

pressure changes, if occurring at a frequency within the human hearing range, are

perceived by a nearby audience as the sound of the violin.

Taking the above description and condensing it into a simple flow diagram, the

system can be described as follows:

Violin Propagation of air pressure Audience
Vibrating strings cause changes from the source to the Perceives pressure
air pressure changes. audience's ears. Propagation r changes as the

takes a anall amount of time. sound of the violin.

It is possible to take the descriptive diagram above and use it to create a digital

process that simulates the propagation of the sound through air. This could be

described as a computer based physical model ofthe sound propagation. It would

be possible to capture the direct sound of the violin strings using a pickup and

play it back directly into the audience's ears via headphones. Inserting the digital

sound propagation simulation between the pickup and the audience would

produce a simulated output of the propagation effects. Putting this concept in

diagrammatical form produces the following:

Close recording of a Di~al delay. Audience listening
violin via pickup or mic. Delay time set to the time on headphones.

taken for sound to travel the
distance between the violin
and the audience.

The model is not complex enough capture every nuance of the performance space

but this simple model does describe one aspect of the real situation quite well. The

distance between the violin and the audience is described by the delay and this is

quite accurate. The real world delay time between the violin and audience is

calculated with the following equation70
:

t delay
Vs

where:

70 Smith, J.O: 2002.

D. R. Moore 'Real-time Sound Spatialization, Software DeSign and Implementation' Page 83 of 1n

4.3 - Improving the model:
, --. < ." .,.&=''1 •. ,'<.<,,_. ":;;"'''';''

v is the speed of sound in air and pI, p2 are vector positions of the violin

and audience relative to a single point

This fonnula results in a time that can be used in a simple delay line to produce

some effects of distance on a sound wave propagating through air.

Of course this is still a long way from a convincing model of the perfonnance

space. Many factors have been left out: How does the room affect the sound

waves? Where are the audience in relation to the room and the soloist? Is the

soloist moving? Is the audience moving or looking in the right direction?

To improve on the model, more generic tenns will be used to further simplifY the

diagram. The soloist and violin can be grouped together and tenned a 'Perfonner',

i.e. a 'Perfonner' defined as a single sound producing entity. For example, an

electric guitarist playing through an amplifier could be considered one

'Perfonner'. As the generic model is built, other tenns will be introduced to

describe a single point of sound emanating from a perfonner. In the case of the

guitarist it could be said that there are two sound sources, one from the direct

sound of the strings and a second from the amplified sound of the amplifier.

Instead of describing the audience as a group it would be advantageous to

consider single listeners to the system, i.e. 'Listener' defined as a single listening

entity. For example, a single person listening to a perfonnance would be

considered one 'Listener'. A single microphone recording a perfonnance is also

one 'Listener'. As with the 'Perfonner', furthertenninology will be introduced to

describe individual listening areas.

Using the new tenns in the basic model produces the following:

Solo VioHn as 1
Performer

Oisjtal delay.
Delay time set to distance

t---~ Audience as 1
Ustener

4.3 Improving the model:

D. R. Moore 'Real-time Sound Spatialization. Software Design and Implementation' Page 84 of 177

In th ab

4.3 - Improving the model :

model the audience was considered as a single entity, which is of

implification if the audience is bigger than one person. Every

p on Ii t ning i likely to be located at a different distance from the performer.

adjusted to compensate for this and at the same time use the

m re gen ri t rminology Listener' . Taking a single performer and an audience

f thr at d at di tances A,B and C produces this diagram:

~ . -.- . - . - . - . - . -.- . -.-.- . - . - . - . -.,

~ Audience ; ,
Digital delay.
Time set from distance A

f------+' ~ Listener at A

Single Performer Digital delay. Listener at B
Time set from distance B

Digital delay. Listener at C
Time set from distance C

, .
. _ . _ -- . _ -- -- -- ._ -_ . _ . _ . _ . _ . _ . _ . _ .1

H wd th m d I change when considering more than one 'Performer'? The

n iagram pand the above model to include a trio of performers. The digital

d la pr will be repre ented by 'DD x - y' where DD is digital delay x and y

ar tart and nd locati n for the calculated delay time. The letters A,B,C will

r pre nt peril rrn r location and D,E,F describe listener locations.

DDA- D

- . - .- . - . - . - . - . - . - . - . - . - . - . - . - . - . ~ . . DD B- D ~ . - . - . -.- . - . - . - . - . - . - . - . - . - . - . - . ,

, Trio ~ Audience i
DDC-D

Performer at A Listener at D

DDA- E

PerformeratB DD B- E Listener at E

DDC-E

Performer at C Listener at F
DD A- F

- -- .- .- .- .-._. _-_. _.- .- .- ._._._.1 DD B- F

DDC-F

R idl, lh numb r f d lay needed to de cribe these basic interactions has

m lar r. It e noted that this i still not a precise model of the

nUJ''' ' IPr, it i th basi for a much more realistic model that takes

,

D R Moore 'Rea l-time Sound Spatialization , Software DeSign and Implementation' Page 85 of 177

4.3 - Improving the model :

int a count the effects of independent performers and listeners. Assuming that

th mod I abo e calculated the transmission and room effects realistically for each

listen r then th y tern could recreate a sound from any point in a theoretical

n ir run nt with any number of performers. lfthe system were to be processed

in real time it w uld be possible to move both listener and performer locations

within th 'Virtual nvironment and hear the effects immediately.

It i intere ting t note at this point that the above 'simple' model, if calculated

u ing digital d la with variable delay time, will produce the Doppler shifting

ppl r effi t i perceived in audio waves as a pitch increase or decrease

d p nd nt on the radial velocity of sound source to listener. It is an aural cue for

p d and therefore add realism to this 'animated' sound model. The classic

ample fth Doppler effect is the siren on a police car driving past, with

In r as d pitch as the iren moves towards you then decreased as it moves away7).

und p ducing object moves relative to a listener the increasing or

ing di tance cau e the wavelength of the sound to be stretched or

mpre d.

St .. ~t'"" V)~====~::::;:S~ta,....-!tiC Listener

~ Wavefronts

h a iagram h w that the wavefronts emitted from the sound generated

ure are enl a ed du t the ource remaining statically located. When the

71 R ad, : I , pp.46 -466; rway R. A: 1996, pp.487-491

D R oore 'Real-lime Sound Spatialization, Software Design and Implementation' Page 86 of 177

4.3 - Improving the model :

ourc mo es th wavefronts become compressed and thus the wavelength is

hort r from the perspective of the listener. See diagram below:

Static Listener

~====~::::~VVavefronts

Looking back to the last model moving a performer location in real time will

cau a imulated Doppler shift due to the delay time changing. This works in

much th am way as it would in the real world. With the delay line, the same

tretching and compressing of wavelength is caused when the delay's read

p ition rno relative to the write position in order to change the delay time.

With the pre nt model of transmission a delay line represents the time taken for a

ound t tra el b tw en locations. As distance increases sound takes longer to

propagate fr m p rformer to listener and it also decreases in amplitude. The

amplitud I i due to the spherical nature of sound waves emanating from a

pint ur 72 and is given by:

. 1
1=-

d2

Wh r : i = und inten ity factor and d = radial distance from the source.

In rp rating the pherical sound propagation concept into the sound transmission

th

72

ing a gain factor adjusted according to distance produces a more realistic

p rii rmers are moved away the distance affects both the arrival time of

und and j amplitude. The term 'Ray' is now used to describe the whole

r ay, R. : pp,484-485; verest, F. A: 1994, pp.68-71; Smith, J.O: 2002

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 87 of 177

4.3 - Improving the model:

transmission model used for the system, in this case the combined effects of the

delay and the distance gain factor.

-.~

'Ray' I

I

DI!jtal Delay Gain Factor I

I Performer
1 J

l
Listener J

I
time calculated calculated from
from distance. distance I

!
I ._._._._._._._._.-._._._._._._._._._._._-_._._.-'

A 'Ray' is thus defined in this thesis as an entity representing the effects on sound

due to transmission between two points. The 'Ray' term was borrowed from 'Ray

Tracing', a technique commonly used in 3D graphics to describe light

transmission and surface reflection / refraction effects that also provided some

inspiration for this modelling technique 73.

The model of a listener is reasonable but it fails to describe a human being in any

great detail as humans have two independent listening organs, the left and right

ears. It would be simple to use two listeners to describe one person's ears but this

quickly becomes confusing when more than one listener is involved. A better

technique is to use the concept of 'Pickups' acting as individual monophonic

listening points and to use the 'Listener' term as a convenient logical grouping. A

'Pickup' is defined as a single monophonic omni-directional sound listening

point. A 'Listener' is now redefined as a logical container of 'Pickups' . Using

these terms in a model describing one human listener and one violin performer

produces the following:

Solo Violin
'Performer'

'Ray' generated from viofin
performer to Left ear

'Ray' generated from vIoln
performer to Right ear

-._._._._._._._._.,
Human 'Listener' i

Left Ear
'Pickup'

Right Ear
'Pickup'

I

It is important to note here that there are two rays used in this system because

each ear is located at a different position. Having two positions means there will

73 'Ray' also used in Serway, R. A: 1996, pp.484-485

D. R. Moore 'Real-time Sound SpatiaHzation, Software Design and Implementation' Page 88 of 1n

4.3 - Improving the model :

b two calculated distances and so there must be two rays to perform the

pr c sing. In the above case every additional human listener would require an

additional two rays to be calculated.

L gicall th next step is to consider the 'Performer' as a practical grouping of

ource . Thi concept becomes crucial when looking at more complex

in truments: for e ample a single percussionist will have many percussion

m trum nts located in different positions. Taking this into account, 'Sources' can

bud to d scribe ound generating points on an instrument or a number of

in trum nts. A guitarist with separate amplification has already been considered

as a cas for thi terminology. A 'Source' is defined as a point from which sound

mitted mni-directionally. The term 'Performer' is redefined as a logical

ource . Using this new terminology the following diagram looks at

a timpani t p rformance. In the example the timpanist uses three timpani, and

th r ar tw human listeners A and B.

Solo Timpanist 'Performer'

Timpani 1
'Source'

Timpani 2
'Source'

Timpani 3
'Source'

. -~-.- . - . - . - . - . - . - - - . -
I

Human 'Listener' A I

Left Ear
'Pickup'

Right Ear
'Pickup'

t ' - ' - '- ' - ' - ' - ' - ' -'-'- ' ~

; Human 'Listener' B

Left Ear
'Pickup'

Right Ear
'Pickup'

r m thi diagram it i clear that every Source is connected to all Pickups via

Ra d rib thi onnection the term Source Ray Pickup Interaction' or

RP intr duced. The numb r ofSRPs in a system is given by the number of

ur multipli d b the number of Pickups.

D. R. Moore 'Real-time Sound Spatialization, Software DeSign and Implementation' Page 89 of 177

4.3 - Improving the model:

SRP,olal = pickuP,ota' X source,olal

An SRP can be defined as the process from which to detennine sound arriving at a

single Pickup from a single Source .

... _ ... _._ .•. _ ... -
I .

Performer I
I

I .
I Ustener

Source Ray Pic!<up Interaction (SRP)

1 Source I; .1 Ray t---------'1.~.1 Pickup
I ~ __ ...J

~-.-.-.-.-.-.-.-.~ ~-.-.-.-.-.-.-.-.

At this point it is necessary to demonstrate the differences between a Ray and an

SRP. A Ray describes only the effects of transmission of the sound. An SRP

includes the transmission but also adds the properties of the source emission and

the pickup reception. It is important to realise that emission and reception are

relative to an individual SRP calculation and not to an individual Source or

Pickup. To explore this in more depth the current model will be expanded.

The current model uses omni-directional pickups to describe the ear and this is

inaccurate because in reality the ear is a much more directional pickup 74. An

improved model would be a pickup with aspect related sensitivity. In order to

calculate directional factors of the improved pickup model, the associated SRP is

used. An SRP can be said to be orientated along a vector. This vector is used to

generate angles that describe the orientation of the pickup relative to the source. A

simple model can use the angle to generate an appropriate gain factor for the

pickup. This gain factor is generated based on a single SRP so it will be different

for other related SRPs. Using this method to apply directionality to the Pickup

does not relate to the Ray because a Ray, by definition, only deals with the

transmission of the sound. It is the Pickup which 'receives' the sound 'arriving' at

its position. The advantage of using both the Ray model and the SRP is that the

74 Everest. F.A: 1994. pp.51-53

D. R. Moore 'Real-time Sound Spatializatlon, Software Design and Implementation' Page90d1n

4.3 - Improving the model:

model describing sound transmission (Ray) is kept independent of the model

de cribing reception of the sound (Pickup).

Further advantages of the SRP model are found when considering directional

ourc s. A trumpet or speaker are very directional sources and an aspect related

gain function similar to that of the pickup can be used to simulate directionality.

Again taking the RP orientation vector and using it to generate a gain factor, an

effect is produced that controls the amplitude of the sound passed to the Ray. As

with the Pickup the modelling of orientation is not related to the transmission

model 0 the source modelling function is packaged independently of the Ray.

The following diagram highlights the use of directional Sources and Pickups and

demon trat s the concept of the SRP using a Performer that contains both ornni

and directional ources with a Listener containing omni and directional Pickups.

Lndi idual RP are shown with individual colour codes.

r ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' ~

Perfonner

Omni Source (S1)

S1-P1 Emission

S1-P2 Emission

Directional Source (S2)

S2-P1 Emission

S2-P2 Emission

Ray

Ray

I Ustener

I Omni Pickup (P1)
I

X i

S1-P1 Reception

S2-P1 Reception

Directional Pickup (P2)

S1-P2 Reception

S2-P2 Reception

h diagram how h w the RP allows independent modelling methods for

urc , R and Pickup. These modelling methods are independent from each

th r i.e. a dire tional ource can be connected to an omni pickup without

additi nal fun ti n b ing needed.

hind f m delling functions is important because it allows Source

ped without thinking about all possible pickup models. The

al appli . Pi kup models can be developed without consideration of

mI. Perhap 1 obviou Iy, it is also possible to have independent Ray

D R Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 91 of 177

4.4 - Reviewing the basic SRP model.

models used within the same network. One use of this technique would be to

allow high accuracy transmission models to be used in critical areas and low

accuracy to be used is less critical areas. This possibility has interesting

implications for processing optimisation.

4.4 Reviewing the basic SRP model.

The current SRP based network for performers and listeners is able to model the

following functions:

• The effect on sound arrival time caused by distance.

• The dissipation of sound energy caused by distance.

• Directional or omni-directional sound sources.

• Directional or omni-directional sound pickups.

• Doppler Shift effects caused by moving sources or listeners.

• Binaural Localization effects in human hearing caused by different

distances between a source and each ear75
•

Simple improvements could be made to the modelling techniques to improve the

perception of directionality and sound dissipation. Many other source or pickup

patterns could be modelled within the current system by simple algorithm

changes. In fact, the SRP allows different modelling algorithms to be used within

the same network interchangeably.

What this current system will not do is allow feedback of processed spatial sound

back into the same system. Allowing for feedback brings the possibility of echo

and reverberation. Using small delay values with feedback allows for resonating

objects and is the subject of the following sections.

4.5 Adding feedback:

7S Everest, F. A: 1994, p.54

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 92 of 1n

4.5 - Adding feedback:

Thi diagram de cribes a simple delay line with feedback:

Input signal Delay with time t output signal

The multiplication symbol represents a gain factor that can be used to control the

feedback. The addition symbol represents summation of input and feedback.

Po iti e gain factors < 1 will produce stable feedback with exponential decay in

amplitude. Gain factors> 1 will produce unstable feedback with an exponential

illcr ase in amplitude. A gain factor of 1 will produce infinite delay feedback.

Taking two delay lines and connecting them such that they feedback into each

other create a building block known as a waveguide76
•

Input signal A Input signal B

Output signal A
:._ ._. _._._._._._._._ ._._._. _._._._._. ___ ._._._._._._._.J Output signal B

ach delay line feeds the other after applying some processing. The processing

uld b a imple gain but it could also filter the signal in some way. Each delay

line can be xcited by an incoming signal as well as outputting the signal

el wh reo The delay lines' inputs and outputs form the 'ends' of the waveguide

and are termed nodes ' . Using these waveguide building blocks it is possible to

build up a wa eguide network that simulates a resonating system by connecting

the node from many waveguides.

Waveguide 3

Waveguide 5
Waveguide 4

Waveguide 6 Waveguide 8

Output 1

onnecti n are bi-directional but with control of feedback gain and/or

76 Road : 1996, p.282· ee also general references: Smith, 1. 0 : 2004

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 93 of 177

4.5 - Adding feedback:

filtering. A ery simple waveguide network can produce a very complex

r onating output. Combinations of delay times will produce complex filtering

and reflections. Waveguides are commonly used in the physical modelling of

r onance in instruments and rooms.

It is possible to build the feedback concept into the SRP model and thus allow for

the cr ation of RP based waveguide networks. One way for this to be achieved is

to allow for a Pickup to feed its 'results' back into a Source. This technique

creat a single feedback path that can be considered as half of a single waveguide

building block. Adding a second feedback path by performing the same operation

twice results in an RP based waveguide. The following diagrams illustrate this

method u ing the terms defined earlier:

Ustener

! - . - . - . - . - . - . - . - . ~ I I

In the abo e a Pickup's incoming sound is fed forward into a Source. This Source

th n con idered in the Listener's related SRP.

i- ' - ' - ' - ' - ' - ' - ' - ' - ' ~ i-'- ' -'-'- ' - ' - ' - ' - ' ~

I

--- I •

~ . - . - . -. - . - . - . - . - . -) ~ . -.-.-.- . - . -.-.- . -}

SRP Waveguide Nodes

In th ab e djagram a waveguide structure has been built using two SRPs. At

thi pint th imilarity in tructure of the SRP waveguide and the delay based

h uld b noted. Like the basic waveguide the SRP version also has

D. R. Moore 'Real-time Sound Spatialization, Software DeSign and Implementation' Page 94 of 177

4.5 - Adding feedback:

two nodes. However, the SRP waveguide is more advanced than the basic

structure as it inherently contains the features of pickups and sources. This means

that the waveguide nodes can be designed based on the more advanced sources

and pickups that feature directionality. In the SRP waveguide model the direct

pickup to source transactions form the point at which additional feedback

algorithm can be applied. It is possible that a feedback algorithm may simply

'copy the pickup's sound perspective into the source's outgoing transmission. In

this cas feedback is still controlled by both the pickup response and source

emi ion algorithms. Of course filtering could be applied in addition to the effects

of pickup and source. This 'copying' algorithm from pickup to source needs a

placeholder and for this the term 'manipulator' is put forward. A 'manipulator' is

defined as a container of both sources and pickups, it contains a 'copy' or

' transfer algorithm that dictates the method of transferring sound data from the

contained Pickups to the contained Sources.

A delib rate omission of some SRP structures has been made from the diagram

abo e in the interest of simplicity. As stated earlier every pickup is connected to

every source via a Source Ray Pickup Interaction. This means that pickups and

sourc s contained within a manipulator have SRP connection as well as

copy/transfer' connection. The following diagram fixes the problem and

introduce the new terms:

. - . - . - . - . - . - . - . -.- . ~

; Manipulator A !
f-'- ' - ' - ' - ' - ' - ' - ' -'~

i Manipulator B ~

L-.--~-;r-'------'- 7 - - - - - - - - i- ...L.-___ ---.::-...L-..l.,~--...J

~ . - . - . - . - . - . -._ . _ . _.I ~. _ ._._ . _ . _._. _ ._._ .

The abov diagram shows the two new SRP connections (solid blue boxes). It

hould b noted from this diagram that a new feedback path now exists internally

within the manipulator. This internal feedback path can be undesirable in certain

c e. For example an ornni source and pickup could exist at the same location

and the cop /tran fer function may be a simple direct copy operation. Due to the

zer time delay caused by zero distance between source and pickup the resulting

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 95 of 177

4.5 - Adding feedback:

fe dback loop would have no energy loss, and is thus unstable. It is useful to

provide possible disconnection of the returning SRP, breaking the feedback loop

and allowing sp cial case objects to be considered.

Th following diagram illustrates the concepts looked at in the SRP model and

de cribes performer listener and manipulator objects acting as an SRP

wav guide.

Ray

t Manipulator A i
I

I

~- . - . - . - . - . - . - . - . ;

I Manipulator B i
I

I

Ray

._._._ ._._._-- ---,
I Performer i

I Ray

I

I

i-'~'-'-'-'-'-'-':

i Ustener I

Th network above shows the potential ofthe SRP method. It contains the basic

building blocks of a complex spatial model. A single performer object

introduces sound into the network via its source, the sound may feedback

indefinitely between the manipulator pair, the sound 'result' is returned to the

human u er via the listener object.

4.5.1 Example: Basic Room Reverberation

on ider a theoretical r ctangular room with a performing violinist and an

audi nce of on . A simple model is created easily with the SRP network. Taking a

manipulator in which source and pickup exist at the same point, eliminating the

Ifrefer ntial feedback (as discussed above), the manipulator can be considered a

p r11 ct pherical reflector of sound. This object will now be named a Reflector.

F ur fthe refl ctors are placed at the centres of the four walls of the room to

b modelled ne refl ctor per wall. This creates an SRP waveguide network

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 96 of 177

4.5 - Adding feedback:

imulating basic room reflections in which the walls are perfect reflectors of

ound (note that the ceiling and floor have been intentionally left out to simplify

the model). Designing a 'copy/transfer' algorithm that dissipates some of the

nergy at each 'wall' reflector creates a more precise network. Adjusting the

amount of energy reduction simulates different types of surface. Using a

p rfonner with one source allows sound energy (from the violin) to be injected

into the irtual room and a listener with one pickup allows extraction and

on ersion of sound into a 'real world' signal, in this case monophonically. The

fc Howing diagram describes the network structure (connections represent Source

Ray Pickup Interactions and the ray objects are not shown for simplicity.

onn ctions between manipulators represent bi~irectional SRP waveguide

onnections).

4.5.2 Example: Amplified Acoustic Guitar

n ider an acou tic guitarist rehearsing through a microphone and amplified

p aker, with r om ffects ignored in this case. The guitarist can be thought ofas

the onl Ii t ner 0 h /she is modelled with a single Listener with two pickups

(1 ft and right ears). A microphone and amplifier can be modelled as a single

manipulator one directional pickup for the microphone and a directional source

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 97 of 177

4.6 - Representing the world

for th peaker. The body sound of the guitar is a performer with one source. The

network produced is as follows:

,' - ' _. _. _. _. _. _. _. _. _. _.-:
i Guitar 'Performer' '

, . - . -.- . - . - . - . - . -.- . - . - . - .~

i Mic and Speaker ~
Combination 'Manipulator' ' ,

4.6 Representing the world

I ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' ~

i Guitarist 'listener' ~ . , ,

Left Ear 'Pickup'

ound proce ing in SRP networks is performed using positions and orientations

found objects as direct variables in the processing algorithms. It is vital then

that an three dimensional spatialization system uses an appropriate method for

repre enting real world dimensions in order that calculations are performed easily

and preci I . The following sections focus on concepts and techniques

appropriate for uch a system.

4.6. 1 Position

In the imple t of term ,position can be specified with reference to a single

rigin. ing this m thod position is specified in three dimensions labelled x, y, z

and th ongm 1 pecified as (0, 0, 0). A position in the world is given as a three

dim n i nal ector coordinate in the form (x,y,z). Position could also be called a

tran lation from the origin by a vector quantity.

4.6.2 Orientation

F r rientation of an entity relative to the world there are a number of useful

repre ntation. Three will be discussed.

n rmali ed ector (a vector with magnitude of 1) can signifY the direction

an tip inting, with a econd vector required to specifY rotation about the

t r. Thi econd ector is sometimes called the 'up vector'.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 98 of 177

4.6 - Representing the world

A second representation makes use ofa 3x3 rotation matrix. The matrix is

constructed using Euler's method77
, specifying angles for roll(x), pitch(y), and

yaw(z) of the object.

Euler's equation for constructing an orientation 3x3 matrix when vector initial

direction is along the x axis, i.e. direction = (1,0,0), up = (0,1,0) is shown below:

-sin(oJ

cos(oz) 01 [1 ° °
1 . °

° cos(8x } -sin(OJ °]
° pilch

sin (OJ

Matrix multiplication is not commutative so the oroer in which rotation

transformations are applied is very important, i.e. MaMb * MbMQ . A problem

associated with rotational matrices occurs when animating a rotation using

repeated matrix multiplications, compound floating point accuracy errors can

eventually cause the rotation matrix to become combined with unpredictable

skewing/scaling/translating transformations.

cos(OJ roll

A less well known orientation method makes use of a mathematical entity called a

Quaternion developed by William Hamilton in 1843, during his investigations

into complex mathematics78
• A Quaternion is a 4D entity in the form (n, vxyz)

which can be used to represent a complete orientation. Notice here that only 4

terms are required to store a complete orientation as opposed to the 9 used in a

3x3 matrix. A quatemion can be constructed from a specified rotation angle

around an arbitrary axis defined by a unit vector:

q = (cos (%'), sin (%'~)79

77 Eberly, D. H: 2001, p.18; Lengyel, E: 2002, p.60

71 Akenine-MOller, T; Haines, E: 2002, p.44

79 Bourg, D. M: 2002, p.228

D. R. Moore 'Real-time Sound Spatlalization, Software Design and Implementation' Page 99 of 1n

4.6 - Representing the world
'" - ','- "-<' ,,' ~.:, t',:'

Quaternions can be multiplied by the equation:

As with matrix multiplication, quaternion multiplication is not commutative81
, i.e.

It is possible to build a quatemion in a similar manner to the rotational matrix

Euler method by constructing quatemions aligned to axes and multiplying the

resulting quaternion rotations.

Regardless of the representation used, an object's orientation can be called its

rotational transform.

4.6.3 Scale

In addition to specifYing position and orientation it is useful to specifY scaling

transforms. Scale can be represented as a uniform scaling factor Su where Su scales

all vector components equally or by a non-uniform scale vector in the form (sx, Sy,

sz). A non-uniform scale represents independent scaling factors for each

component of a vector.

Other transforms such as skewing or shearing are less relevant to the task of

representing the world and so are not discussed here.

4.6.4 SRT Transforms

Three transform types are the most commonly used: translation, rotation and

scale. These types can be combined to form a single entity representing the

80 ibid .• p.307

81 Lengyel. E: 2002. p.68

D. R. Moore 'Real-tlme Sound SpatiaHzation, Software Design and Implementation' Page 100 of 177

4.6 - Representing the world

p ition on ntation and scaling ofan object. This entity is commonly referred to

as th cale Rotate Translate Transform' or 'SRT'82. SRT transformations can be

impl mented as a 4x4 matrix but it is more efficient in 3D modelling to use a split

r pre ntation with cale and translation as 3D vectors and a single quatemion to

r pre nt rotation. Using this technique allows a considerably simpler calculation

of the in erse RT and further benefits, including reduced effects from compound

err rs in r p ated matrix rotation transformations. An SRT becomes a particularly

u ful building block in a hierarchical world object model because it can be

impl m nted to behave like a matrix transformation at a fraction of the processing

t.

4.6.5 Hierarchical Scene Graphing

Man 3D mod lling systems use a hierarchical tree structure to represent complex

tran form in olving compound objects. This structure is often called a

Hi rarchical cene Graph83. The structure is made up of 'nodes' and the first node

the root. ach node can have any number of child nodes. Each node in the tree

paired with an RT. Instead of using the SRT as a transform relative to the

world the cene graph allows the SRT to transform an object relative to its parent

nod in th tree. If a parent node's SRT transform is adjusted, the child node's

RT now r pr ent the transform relative to the new parent node transform.

[NOde
SRT

World 'Node' SRT

SRT SRT Node

7
SRT

SRT

NOde;=J
Node

SRT
SRT

82 bert, D. H: 2001 , p.144

J ibid . pp.141-167; Akenine-Moller T; Haines, E: 2002, pp.346-357

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 101 of 177

4.6 - Representing the world

In order to clarify the SRT terminology it is useful to examine a simple model; the

fo llowing diagram describes possible nodes in a theoretical model of a human

arm. All nodes are assumed to be connected with associated SRT structures.

Shoulder

ot that adjustment of the ' shoulder' node's SRT will recursively affect nodes

I w r in the hierarchy so all nodes are transformed accordingly. Adjusting the

hand node has the same recursive effect but only ' thumb' and 'finger' nodes are

alter d.

Th RT in a scene graph provides a simple method of mapping vectors between

coordinate y terns. It is possible to traverse the scene graph's tree and use each

node RT to transform the vector at each stage. Similarly a single SRT that

p rform dir ct translation between two coordinate systems on the graph is

obtained by trav rsing the tree and multiplying the SRT Transforms.

A que tion ari e . how can the SRP network and the Hierarchical Scene Graph be

c mbin d to produce a full spatial model?

If it j tat d that all pickups and sources are associated with individual nodes then

an RT Tran form is made available to each significant sound processing object.

Th natur of the hierarchical scene graph allows logical spatial groupings of

n d b a parent node a feature which aids greatly in control of compound

obj t. For e ample a human listener object has been considered; a person' s ears

are 10 k d together by their connection to the head and the ears are modelled by

tw di re tional pickup . By grouping nodes associated with each pickup into a

h ad parent node a logical spatial grouping is made which facilitates spatial

ontr I. Tran form the head ' node and the pickup nodes are transformed along

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 102 of 177

4.7 - Providing Flexible Automation and Control

with it. Thi diagram shows the integration SRP Network with that of the scene

graph. A human listener and single violin performer are shown.

," _. _. _. _. - -_. _ . _. _. - .-:
R Ear 'Node' Human 'Listener'

7 L Ear 'Pickup'
World 'Node' SRT

R Ear 'Pickup'
SRT SRT

Violin 'Performer'

SRT Violin 'Source'

I._._._ . - . - . -.-.-.-.- . ~

ociation between a pickup and node provides a useful mechanism for storing

th tran formation data. It is worth noting here that a single Source Ray Pickup

interaction can obtain transformation data by traversing the scene graph loop,

cr ated between a pickup and source. Conveniently the scene graph traversal can

be u d to provid positions and orientations of pickups relative to one another.

or ample in the above the 'Right Ear Pickup' can obtain the position and

rientation ofth Violin Source' relative to its own current SRT by successive

tran form of the initial vector (0,0,0), first down the tree to the 'World' node then

up through Head and 'R Ear' nodes. Performing the reverse operation through

in rsion ofth transform can provide the 'Violin' source with the position and

rientation of the 'Right Ear' pickup relative to itself

Another ad antage of the Scene Graph is its use when rendering a 3D graphical

u er interface. Its hierarchical implementation works very conveniently with 3D

graphical engine . This will be covered in more depth when looking at the

impl m ntation of a software solution.

4.7 Providing Flexible Automation and Control

A th reti al 3D Y tern for sound design has been proposed and as it stands there

ar tructure in plac for holding and performing suitable DSP algorithms (SRP

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 103 of 177

4.7 - Providing Flexible Automation and Control
> f::-, _ , .. ~,..l' ",-:.,.

Interaction Network}. There is also a flexible structure for detailing the spatial

layout of the world (SRT based Hierarchical Scene Graph). The two concepts

make available the necessary complexity for creative expression with a minimum

of constraints. However, with the complexity comes a difficulty in providing

usable control. It is vital that a flexible control concept be designed to

complement the flexibility in the underlying system in order for the model to

become a practical artistic tool. Spain and Polfreman highlight a need for intuitive

control for the high numbers of parameters available in a typical real-time digital

audio too 184
•

A step by step process will be taken with the goal of designing a flexible model of

spatial and DSP control.

What parameters should be controllable?

If a constraint on the ability to dynamically alter the SRP network and the Scene

Graph structure in real-time is assumed, there are only two major controllable

parameter areas in the model; control ofDSP Parameters that do not relate to the

scene graph and control ofSRT Transforms within the scene graph. To aid

creation of a single spatial model the decision can be made to force all spatially

related vector parameters to be nodes in the scene graph. For example, a DSP

algorithm requiring a position of reference as a parameter would use a scene graph

node to represent that position.

To facilitate control of a parameter the term 'Controller' is introduced. A

controller is defined as an entity that can be attached to a parameter in order to

provide updated data. The controller concept forms an abstraction layer between a

parameter and its method of control. In other words, different classes of controller

can be used to control the same parameter. For example, one parameter may be

controlled via a wave generating function while another could be controlled by a

direct MIDI device.

U Spain. M; Polfreman. R: 2001

D. R. Moore 'Real-time Sound SpatiaHzation, Software Design and Implementation' Page 104 of 177

._. _. _. _. - . _.- . _._'
I

DSP Algorithm

Parameter 1

Parameter 2

Wave function
'Controller'

MIDI 'Controller'

4.7 - Providing Flexible Automation and Control

External Device

All wing ach parameter in the model to have a single controller attached to it

pr id a p werfu l means to control the system. To further the flexibility of

nc pt of ontroller Parameters' are introduced. In the example

ab gen rating controller is used to affect a parameter. By adding

param t rs t th controller and allowing these parameters to be attached to

ad iti nal ntr 11 rs, the control system becomes a hierarchical tree structure.

h fi II wing diagram hows the hierarchical controller concept by adding two

pararn ters t th Wave function' controller type.

~- . - . - . - . - . - . - . - . - . ~

DSP Algorithm I

Parameter 1

Parameter 2

Wave function
'Controller'

Parameter 1

Parameter 2

MIDI 'Controller'

External Device

Parameter 1

Pararneter2

External Device

It h uld b not d in the diagram above that the control 'tree' can extend outwards

far ne ary. An implementation of this hierarchical control model would

id all pr id utility controllers that allow combining of control data via

math mati al r related functions.

R turning t th ubject of controlling SRT transfonns, the parameters of a single

RT an b broken d wn into three sections: translation, rotation and scale.

panding th b ic controller entity into a 'Transfonn controller' entity is a

imp! wa f pro iding a powerful SRT control method. As with the basic

ntr 11 r th tran fi rm controller can optionally contain further parameters,

th reli re reating a hierarchical control chain. Each SRT can potentially be

ign d three parate tran form controllers corresponding to position, rotation

D. R Moore 'Real-time Sound Spatialization, Software Design and Implemefltatitm' Page 10&00+1

4.7 - Providing Flexible Automation and Control

and ale. A particular transform controller type will use different algorithms to

g n rat ontro l data for the three SRT sections, as each section has differing

n tralnts and torage structure. Consider a theoretical transform controller that

gl di re t MIDI fader control to a node's transform section. Applied to position,

the fader adjusts the x position between -1 and 1 metre. On rotation it determines

th p r ntage of a full rotation about the y axis. With scale it applies a scaling

fac t r betw n 0 and 2. The point here is that the controller concept makes sense

t a u r when attached to any of the sections and the attachment itself determines

the appropriate algorithm to use. The following diagram consolidates this concept

but it hould b noted that the separation of the algorithms would not be necessary

in al l Tran form ntroller types.

tim

Node

SRT

Translation

Rotation

Scale

Fader 1
'Transform Controller'

Translation Algorithm

1- - - - - - - - - - - - - - - - - - ,

: Rotation Algorithm :
~------------------,
,- - - - - - - - - - - - - - - - - - ,
: Scale Algorithm :
~------------------,

Parameter 1

Fader 2
'Transform Controller'

1- - - - - - - - - - - - - - - - - - ,

: Translation Algorithm :

Rotation Algorithm

,- - - - - - - - - - - - - - - - - -,
: Scale Algorithm :
~------------------j

Parameter 1

Wave function
'Controller'

Parameter 1

Parameter 2

ri ing the tran form controller with specific algorithms for each section is

id al when de igning special case controllers that need to control more than

cti n fthe RT. onsider a theoretical 'Path ' transform controller; the

t move a node such that it follows a defined route or path. At all

rientated along the path. The point here is that the controller' s

alg rithrn require it to affect both SRT translation and rotation simultaneously.

Th m t ft e ible olution j to allow a transform controller to be assigned such

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 106 of 177

4.8 - Consolidating the 'Virtual Sound Environment' model
. '. ".al;.'·;,.I;_"':;~<,!'S ... \j,'..-~.1~·~

that one controller type may define algorithms for all three sections, but force a

single transform section to only have one assigned controller.

4.8 Consolidating the 'Virtual Sound Environment' model

Two small theoretical case studies will be used to review some of the concepts

discussed and illustrate the potential power of a fully implemented system. The

case studies are based around a theoretical 'Virtual Environment' model but the

principles of use would be similar in a real system.

4.8.1 Case Study: The 'Virtual Sound Environment' model for the

composer

Consider a composer of multi-channel works for tape. The composer wishes to

generate spatial gestures from monophonic and stereo recordings. Each gesture is

to be recorded into a multi-channel sound bite and these 'spatialized' sound bites

are to be composited and mixed in a sound sequencing package at a later date. The

composer has chosen an eight channel output format with loudspeakers to be

located in an evenly distributed circle about the audience's listening position.

The composer has a version of the 'Virtual Sound Environment' and an

appropriate 'listener' object has been provided that will produce sound in the

desired output format. This object is constructed as follows:

D. R. Moore 'Real-tine Sound Spatialzation, Software Design and Implementation' Page 107 of 177

, 8 Point Circular Surround
, Ustener ,
,
,

C Pickup

o Pickup

E Pickup

F Pickup

G Pickup

H Pickup JI-----'----

4.8 - Consolidating the 'Virtual Sound Environment' model

Node

Node

Node

Node
Pickup nodes orientated as above

Node

8 Point Circular Surround Node
Node

Node

Node

In th ab e Ii tener each pickup is assigned to an individual sound output with

th hannel allocated in the same pairings as coloured above. For each multi

hannel ound bite the composer uses file playback performer objects to inject the

und recording into the virtual environment model. The composer is able to

ntrol the p itions and aspects of the performers in real-time directly though the

int rfac. inking a sequencing package via MIDI and using MIDI based

tran form controll rs to move the various nodes in the system provides time-based

1. ach sound bite can be recorded to multi-channel tape or even into an

audi quencer directly.

An intere ting p int here is the ability of the composer to move his or her 'virtual

Ii t ning point within the model. The sound bite heard by both the composer and

th final audi nce would of course parallel the virtual listener in the room.

Mixing fund bite can ifso desired, result in the audience hearing a

omp it of ound perspectives taken from the same modelled environment.

4.8.2 Case Study: The IVirtual Sound Environment' model in the

context of film production.

m p ible difficulties presented in the sound design for a short film

qu n . In thi th oretical sequence the sound designer could use traditional

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 108 of 177

4.8 - Consolidating the 'Virtual Sound Environment' model

m th d to de ign and mix the spatial components for the sequence. For the

f illu trating how the SRP model could relate to real world sound

de ign ituation con ider the following theoretical situation.

Tb cene:

Durin a conver ation between subjects A and B a car drives past on the street.

Th film i hot from three camera positions (A,B,C). Positions A and B are static

locations and po ilion is the moving car. All camera shots focus aftention on

Ihe on er alion. It i impo ible to record the conversation at shooting so it is

dubbed b the actors and the noise of the car running is recorded while

lationary. The film director's concept is for the shots to be edited into a single

equ nc with a cut from hot A to B, then a blend from B to C. The sound

de igner decide to complement the film cuts and blend by attempting to spatially

mix Ih ound a if capturedfrom the camera shot locations. Over the blendfrom

B 10 if i de ided to cro s fade the spatial mixes. To further complicate matters

the fi lm i to be mix dfor multiple formats, 5.1 surround and stereo.

he fi 11 wing diagram provides a simple illustration of the theoretical scene.

Position A

Position C in moving car

D

Person A

in RP to provide a solution:

b i u I there ar many conventional compositional methods that could produce

appr priat audi :6 r the de cribed situation but the SRP model can represent the

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 109 of 177

ml

4.8 - Consolidating the 'Virtual Sound Environment' model

tl . In a theoretical SRP based implementation the sound

able to work on the project using a simulated visualization of

ituati n. orne theoretical objects could be created and used to

k. i t ner bjects would be designed to emulate 5.1 and stereo

h 5.1 microphone listener would be created by five directional

kup aim d t ward the left, centre, right, rear left and rear right speaker

ati n in a 5.1 pIa back y tern. Control ofLFE85 pickup and listener gain

w uJd id d parameter of the DSP algorithm. This diagram describes

thi impl m Iling t hniqu.

- - - _ . - - ' - ' - · - ' - '-' - ' -'- ' - ' - ' 1
5.1 LIStener

FL PICkup Node

C Pickup 1-1 - - ------'"-- Node

FRPdrup l~--------~--__ Node 5.1 Microphone Node

RL Pickup Node
Pickup nodes orientated as above

RR Pickup J~-------+-- Node

.. - . - . - . -._ .-._.-._ . _._._._.- . - . - .

Th uld u the arne directional 5.1 pickup technique but with

nl pi kup . Thi would b have in a similar manner to a coincident (XJY)

t ~ re mi ph n pair.

- - - - - - - -',
Stereo Uslener

L Pickup ll-i--
R Pickup l~-

Node I
Node ~ Stereo Microphone Node

Pickup nodes orientated as above

hannel (ub bass channel of 5.1 surround system)

o R oore 'Real-time Sound Spatialization, Software Design and Implementation' Page 110of177

4.8 - Consolidating the 'Virtual Sound Environment' model

uming that th following theoretical objects are provided with the software

impJ m ntati n, th ound designer could potentially use existing sound design

aware in njuncti n to the RP model:

• a transform controller for translation responding to

ntinu us ontroller data.

• mni-dire tionalli e input source.

• ire ti nat Ii e input source.

und d igner uld use typical multi-channel sound production software,

fi r ampl igide ign Pro-tools oftware, on a separate computer synchronised

t film. hr audi track containing edits of the dubbed recordings would be set

up and G d digitall int the nvironment modelling software. Returning from the

m d Bing ftware ight digital audio channels would be routed into

and s t to monitor their input. The following diagram

illu trat th nnections:

--- - - - - - _._._._._. To 5.1 Studio To Stereo Video Source
I DIQldeSlgn Pro-tools Monitors Studio Monitors VTC/L TC Sync

Source

c: c: 0>
.Q .Q c:

~ ~ 'U E c: E 8 ::J c: ::; ::J
G> G> c: E E E Qj :; Qj Qj
1: 1: G> :; a: ::J ::J ::J a: Qj a: a:
0 0

~ Qj Qj Qj Qj a: 0 u U IV a: a: .0 0 a: a: G> ~ c{ CD U Q; ~ ~ Q)

0 0 .0 uj uj Ci5 Ci5 ~ c
0J a: Q)J a:
c{ en a: a: u 0

MIDI Control

:; :;
a. a.

"S S S "S "S :; a. a. a. 0 0 a. :; :; "S CD u oS 0 0 0
Gi c{ CD U

Q) Q) Q)
c: c: c:

E ~ Q) Q) Q)
G> G> Q) Ui Ui Ui .g c: c: c:
G> Q) G> ~ ~ ~

G>]i Ui 1ii 0 0 0 a..J ~ ~ ~ Q) ~ 0 0 Q; t) t) .. ~ ~ Q) Q)

c{ c{ u uj uj uj en Ci5 en
I I - ---'-'-'-'-'-'-'-'-'-'-' - '-'-'-' - ' - '- '- '- '

D R oore 'Real-time Sound Spalialization, Software Design and Implementation' Page 111 of 117

4.8 - Consolidating the 'Virtual Sound Environment' model

Using the modelling software, the sound designer could create a basic model of

the shooting location and set up three 5.1 listeners and three stereo listeners

corresponding to the original camera positions. The outputs of the listeners would

be linked back to the recording software's return tracks and directly routed to the

studio monitors. Three perfonners would be created and assigned to the incoming

pre-recorded audio tracks. The recording software could have direct control of the

position and orientation oflisteners and perfonners via the theoretical 'MIDI

Transfonn' controllers.

While synchronised to the video, the sound designer is in theory able to preview

the audio mix for the whole scene. To perfonn the cuts and cross-fade. MIDI

controllers might be assigned to the gain parameters of the three listeners and

could again be directly controlled from recording software via MIDI. Using MIDI

for control data transfer would allow the sound designer to use familiar

sequencing techniques and tools to fully automate the desired parameters. This

audio blend between camera perspectives is potentially a very complicated

automation using conventional techniques. However. the ability to cross fade the

'Listeners' allows the sound designer to perfonn the blend without much effort. In

fact, the exact same MIDI cross fade could perfonn both 5.1 and stereo

automation. It should be emphasized that one MIDI CC controller would therefore

be able to perfonn a smooth transition between one listener's sound perspective

and another's.

Note that at any stage in the mix process the sound designer could toggle between

spatialization fonnats by selectively monitoring outputs, at mix time being able to

bounce all fonnats simultaneously to separate channels. In essence both fonnats

could be rendered simultaneously.

Further to this case study, computer generated film sequences increasingly

common in modem film and video often make use of 3D modelling tools. Instead

of MIDI transfonn control the system could be directly controlled from the

animation software. Simple 3D audio is already in use in computer game

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 112 of 177

4.8 - Consolidating the 'Virtual Sound Environment' model
c d - ~""'J"').;lt""'~"~~~.i';',:,'\.,~~!!'

technologies such as Microsoft's DirectX with real time game animation also

linked to audio sound effects.

D. R. Moore 'Real-time Sound SpatiaHzation, Software Design and Implementation' Page 113 of 177

5.1 - Development Tools

5 A Real 'Virtual Sound Environment'
Modelling Tool

hi jm

p

P nth h

tud h provided an indication of the potential for SRP based

w thi th is investigates a real world implementation of the

in the previou ections. 'Ricochet' was developed in parallel

und nvironment' conceptualization. It is intended as both a

I and a to I for the sound artist.

ti n of the thesis assumes some knowledge of the C/C++

ftware de lopment tenns and concepts. Many concepts of

th pr j ct applications and the section entitled 'Real-Time

ers th technical aspects of this.

5.1 Development Tools

'Ri

D R core

n d ip d fi r the Windows 20001XP platfonn using

I . The version submitted has been written based on

that highlighted many design implementation

al 0 helped to consolidate the final model

fiv rc mak u ftwo 3
rd

party technologies for the purposes of

'Re I-hme Sound Spatialization , Software Design and Implementation' Page 114 of 177

5.2 -Implementing Real-Time SRP Synthesis

speeding development and allowing simplified hardware compatibility for audio

and 3D graphics.

Silicon Graphic's OpenGL provides a very usable and well supported graphics

processing implementation. Its C language API is cross platfonn compatible

across Microsoft Windows and Apple Mac. OpenGL provides access to hardware

accelerated 3D graphics functions and so is a useful tool when creating software

that requires fast graphical representation of world models. Woo, Neider, Davis,

and Shreiner provide a more than adequate description of OpenGL and its use86

5.2 Implementing Real-Time SRP Synthesis

Using an object oriented model for development allows a very direct translation of

the SRP concepts and entities discussed earlier.

This table below shows the entities discussed in the model and the implementation

C++ class names that are used to parallel them. Note that during development the

prefix 'R ' represented 'Ricochet' and was a prefix used for reducing pollution of

the global namespace. The full ricochet source code defines most DSP related

functionality in the following files: dspsystem.h and dspsystem.cpp.

Model Entity Ricochet C++ class
Performer RDSPObject

Manipulator RDSPObject

Listener RDSPObject

Source RSource

Ray RRay

Pickup RPickup

SRP Interaction RSRPlnteraction

RDSPObject provides a base class for specific DSP algorithms to inherit from.

Thjs implementation allows a single derived class to act as any of the three

container entities. RDSPObject contains key virtual functions for forming part of

the DSP framework. These functions are defined here.

virtual void PerformerDSP(long bufferSize)O;
virtual void ManipulatorDSP(int renderPass,long bufferSize)Q;
virtual void ListenerDSP(long bufferSize)Q;

86 Woo, M; Neider, J; Davis, T; Shreiner, D: 1999

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 115 of 177

It an

RSourco:

ual

RRay:

n that th

5.2 - Implementing Real-Time SRP Synthesis

functions are undefined in the base class, they act purely

P algorithms. Other DSP classes have similar placeholders:

a AudloPhysics(RSRPlnteraction -interaction,long bufferSize)O;

o d AudioPhysicsTransmit(RSRPlnteraction -interaction,DSPFloat -buffer, long bufferSize){};
d AudloPhysicsReceive(RSRPlnteraction -interaction,DSPFloat -buffer, long bufferSize){};

RPrckup: Al so oontalns srpUst (explained later)
FastDyn mlCArray<RSRPlnteraction-> srpList;

a AudloPhysics(RSRPlnteraction- interaction, DSPFloat -buffer,long bufferSize)Q;

h' R Plnt ra ti n tru ture tores references to all interested parties in a single

tran
7 rm .

h uld become clearer as the algorithm definition moves

vectorToPickup and vectorToSource contain

h node relative position in terms of their local

RSRPlnteracUon: (Cond nsed definition showing data only)
RSRPlnteraction

):

R P 1an

RDSP

o R oor

RSource • source; h source Involved In the Interaction
RRay ·ray; ray Involved
RPlCkup ·pickup; It, piCkUp Involved
GLSGVedor3 vectorToPickup; vector in terms of the source
GLSGVedor3 veclorToSource; vector in terms of the pickup

ri a In leL n bject that acts as the central manager for the entire

n i the call-back function supplied to

tPi kupPerspectiveO is a function used by Manipulator

ntain d in an RDSPObject. The manager contains three

th t h Id th urr ntly created Performer, Manipulator and

D r th urrent RP network.

tor ' p. 127

.1 • P kaglll , I in A I ub ystem.dll ' p. 162

'R l· lIme Sound Spatialization, Software Design and Implementation' Page 116 of 177

5.2 - Implementing Real-TIme SRP Synthesis

F astDynam icArray<RDSPO bject"> listenerList;
d DSP(DSPFloat "·inputs, DSPFloat ""outputs, long bufferSize) ;
d GetPlCkupperspective(RPid<up "pickup,DSPFloat "buffer, long bufferSize, RSource "invisible =

0),

ugh xplanati n fthe implementation concept follows:

P fc r a ingl buffer begins from ASIOSubSystem by calling

R anag r:: P. Thi function performs the following tasks:

B

1 Update all parameter and variable data ready for processing this buffer.
2 Cycle through each Performer Object and call its RDSPObject: :PerformerDSPO function.
3 Cycle through each Manipulator Object and call its RDSPObject::ManipulatorDSPO function
4 Cycle through each Listener Object and call its RDSPObject::ListenerDSPO function

P fun tion will in actuality be defined in the classes which inherit

t. ploring the full DSP algorithm involves examples from

bj ct::PerfonnerDSPO:

d BaSlcPerformerObject::PerforrnerDSP(long bufferSize)

t at "In = ·GetinputChannel(O).buffer;
"sBuffer = GetSource(O).buffer;

memcpy(sBuffer,ln,Slzeof(float)"bufferSize) ;

hi c ntains one physical sound input89 and one RSource object.

rithm impl c pi from its real audio input buffer to its RSource buffer.

t·· tenerD PO:

d BaSlcl.lstenerObject::LJstenerDSP(long bufferSize)

r at "out = "GetOutputChannel(O).buffer;
RPid:up "pickup = &GetPickup(O);

dspManager.GetPlckupPerspective(pickup ,out,bufferSize);

ntain one physical sound output and one RPickup object.

pint r t an output buffer and a pointer to its pickup the listener

9 Ph 31 input I utput: nn ction to real-world audio I/O - See also: 5.2.1 'Virtual I/O'

p. 12

o R oor 'Real· llme Sound Spatialization, Software Design and Implementation' Page 117 of 177

0.2 - Implementing Keal·llme SKI-' syntttesis

al rithm mak: a ingl call to RDSPManager::GetPickupPerspectiveO via the

anager , pas ing its pickup and its output buffeL The purpose of

i to obtain an individual pickup's sound 'perspective,90

an write it int the buffer provided. So in this case, BasicListenerObject requests

th P manag r bj ct to obtain the current perspective for its one pickup and

writ th und data directly to its output buffer. Examining a simple Manipulator

al rithm furth r 'plain the concept.

t::ManipulatorDSPO:

t. d BaSI 8mpObjec:t .. ManlpulatorDSP(mt renderPass, long bufferSize)
(

I 'b = source->buffer;
memset(b,O, zeof(DSPFloat)' bufferSize) ;
dspManager.GetPickupPerspective(pickup,b,bufferSize,source); I source IS invisible

}

Thi manipulat r la contains one RSource and one RPickup. The algorithm

pi

he impl

RDSP
'm I III)

write buffer and passes it to the

function along with a pointer to its pickup. In effect the

rid i play d directly back into the source.

f RP ynthesis is carried out by the GetPickupPerspective

'amin d h re:

rGetPickupPerspective(RPickup 'pickup,DSPFloat 'buffer, long bufferSize, RSource

= piclrup-> srpList. S IzeO;
ror(n = 0, n < SIZe; n++)
{

, I lup

o R 00f

RSRPlnteracbon 'I = pickup->srpList[nj; get the next interaction

,(source 1= invisible) skip If the source needs to be invisible to this pickup
{

n tors from the SRT transform
vec:torToPlckup = 1->~urce->GetNode().>GetVectorToTarget(i->pickup->GetNode(»;
ec:torToSource = I->plckup->GetNode()->GetVectorToTarget(i->source->GetNode());

urce->AudioPhys/cs(I,bufferSlze) ;

I-> plckup->AudioPhYSics(1,buffer,bufferSize) ;
)

ltv : r 'nderin fund from the point of view of an individual pickup.

R 1· lIm Sound Spatialization, Software Design and Implementation' Page 118 of 177

5.2 -Implementing Real-Time SRP Synthesis

h fi t thing t n tic i the rpList contained in RPickup. This is another

F ontains all R RPInteraction objects associated with

thi pi kup. RPi k'Up:: rp i t construction is performed by the RDSPManager and

pI in I t r in thi text. The concept is fairly simple:

Cycle through each SRP Interaction skipping an SRP if the source should be invisible.
For each SRP
(

Update the SRP vectors for use in RSource or RPickup calculations .
Call the assoCIated source's AudioPhysics() function
C th assOCIated pickup's AudioPhysics() function passing in the output target buffer.

fn re i th re at d call to RPickup::AudioPhysicsO, the associated

pi kup i for one call ofGetPickupPerspectiveO. Multiple calls

ea h RP Int raction will produce different results for each

R

Ln k t an mm irectional R ource algorithm starts to explain the SRP

I ul ti n:

ROmruSouroeAudloPhysics(RSRPlnteraction · interaction,long bufferSize)

eractlon->ray->AudloPhysicsTransmit(interaction,(float·)&buffer,bufferSize);

R m m r h th t R P bject::PerforrnerDSPO has already been called for all

91

III

o
(

t ,th reu re all R urce objects should contain up to date sound

tain the as ociated RRay from the interaction and

ran mit function passing in the pre-filled buffer.

n t th RPi kup::Audi Phy icsO function:

up AudlOPh cs(RSRPlnteraction· Interaction,DSPFloat "buffer, long bufferSize)

o (bufferSlze) ; tlun 0, temporary buffer

ray->AudioPhysicsReoeive(interaction,temp,bufferSize); thiS call obtainS sound from

bu Size,
> 0)

'b++ +a *1++, ummln calculation

91 and are e amined later.

o R oor 'R I lime Sound Spatiahzation, Software Design and Implementation' Page 1190f177

5.2 - Implementing Real-Time SRP Synthesis

d [)temp,

run thi i a imp) function, the only complication here is the necessity for

utput buffer. This summing (+=) is a requirement of any

n in rder to perform audio mixing ofa single pickup ' s

d a temporary buffer is passed to the ray to obtain the

d t th pickup. This temporary buffer is then summed into the

utput uffi r.

RR tmn mi n:

RBa cRay- ~AudoPhysicsTransmit(RSRPlnteraction "interaction,DSPFloat "buffer,long bufferSize)

ran ml

in thi

fun li n.

SIZe = bufferSize;
t 'b = buffer;

(-SIZe >= 0)

C I. ..0 this IS JUst a wnte onto the delay buffer

wntelndex &= 262143;
delay[wrrtelndexl = "b;
b++,
wntelndex++ ;

n int th ra I initiated from RSources and the algorithm for this

write into a circular delay line. A fast technique is used

ircular indexing by using delay buffer sizes in powers

p ration to avoid requirement of per sample

ra type is a simple delay with distance based gain

the 1 ul are performed in the AudioPhysicsReceiveO

RB cR Y Au oPhysicsReceive(RSRPlnteraction "interaction ,DSPFloat "buffer, long bufferSize)

lpi 0975,

• d = '"te ctlon->vectorToSource.GetMagnitudeO: distance
d «1 Of - lpi) , d) + (ipf ' oldDistance): log interpolation function
oklDI nee · d,

IS In samples
nverse square law With scale factor 0.5: +1 to avoid divIsion by 0

D R oorG 'Re I-lime Sound Spatialization, Software Design and Implementation' Page 120 of 177

}

readlnde ays calculated

size = bufferSize;
(SIZe- > 0)

5.2 - Implementing Real-TIme SRP Synthesis

dt += delaymc; M.., nt the float delay lime
w ,"" bufferSize - dt) + Size) & loopPoint:

readlndex = «writelndex - size - (mt)dt) + 262143) & 262143; calculate the Index
delayedOut = delay!readlndex) ; get value from the delay line

"buffer = delayedOut • gain;

buffer",

I stDT = dl, or old dt

hi impl

di tan

alg rithm a1culate a delay time from the smooth interpolated

tain d from the vector to source held in the SRP. The

1 u d to index the circular buffer and obtain audio

pi

impl di t

mpl 1

are written to the output buffer92 after multiplication by

gain factor.

Ric chet RP implementation and the following

th t chnique. di gram illu trat

Sample Frame Begins

- - - - - _& _,
I For ch SRP in PICkup i
. C II ch source + pickup ,
I AudloPhyslCS() function i

B~Source

RDSPManager

DSPO

GetPickupPerspectiveO

AUdiOPhysicsTran~itO
orcular Buffer

--------- ------

fSOUnd ~In

r"- " - " - " .. _ .. _ .. _ .. f-,
: Call every Performer DSP : :
~ . -- . -- . -- . -- . -- . --.--.~.
: Call every ManipulatorDSP 1:
~ . --.--.--.-- . -- . -- . --.~

1.. :~I.I-=~~~ .~~~.~r~~~. _ .. J.:

BasicPerformerObject

L-__ ~~~~~~ •• ---------------- ... _-. -----------

!SOUnd Data out I

9 I h Ulput uffi'r \ n pn d fr m the RPickup initiating the call to GetPickupPerspectiveO

D R oore 'Real-time Sound Spatiahzation, Software DeSign and Implementation' Page-U1-of-H1-

5.2 - Implementing Real-TIme SRP Synthesis

rep nt d in blue inherit from RDSPObject; objects in red

inh rit fr m th three iated classes RSource, RRay and RPickup; the path of

an udi input uffi r thr ugh one SRP interaction is superimposed to simplify the

t.

unn thi planati n, implifications have been made with respect to

anipul t r . In a ingle ample frame each manipulator is considered one

t a tim. hi impli that each pickup contained in manipulators is processed in

.

th

and h rein Ii apr blem. To illustrate:

I A \

."
\ I

B
...... ..,

(I: I B \
\ I I'",

I C \
\ I

..........

TIme ~
m th' di ram' anipu lat A B and C all contain one pickup and one

kup btaining a 'pickup perspective' requires the audio

ntain d in manipulators Band C. This creates a 'which

r the gg? cenario and resolution is not possible within

r tim al 9 . A partial olution comes from the delay line in the

impl m ntati n; with delay times longer than the sample frame, pickups

pr ce d buffers. Therefore, for realistic results

hi .ditan

d In tim are h

n ource and Pickups must be kept such that

at r than the current 110 buffer length. The problem

ng r d lay times is that a direct relationship between ith thi

9) It M P ha a im ilar short delay problem when dealing with ' tap in "

bj I thaI ha no feedback can produce delay lengths less than the

k \ ilh ' lapin' r quire delay lengths greater than the vector size.

rt n, ; It r'lli. 0 ; Pu kit , M: 1997, p.198, p.207, pp.280-282. Also determined from

tA, / P.

o R, ()()('Re I-lim Sound Spatialization, Software Design and Implementation' Page 122 of 177

m

d.

graphi

m

5.2 - Implementing Real-Time SRP Synthesis

an imulati n detail i created; as latency increases, the ability to

al re nan e decrease . Note here that Listener Pickups are not

d la tim mall r than the buffer size so, regardless oflatency,

ern t ar always achieved. As an attempt to provide small

gardle oflatencies, a multiple render pass technique is

principle thi technique takes its inspiration from

mg m hi h a maximum trace depth is used to specify the

r f fie li n calculat d. By repeatedly recalculating the

manipul t r '

r n ti n in

ach render pass effectively creates one more

than the buffer size. To illustrate:

" §
1:1
o
i

~
~
~
~
~ Number of
~ reflections

R peated Manipulator calculations ~
l----~-_~

P

h

th

R

o R 00f

nl produce a finite number ofre:t1ections and also

alan in th numb r of reflection at each pickup. It does,

m' illu i n f reflection when latencies are high. Examining

thi m th d th following code is taken from

Slze().
< m Passes; pass++) Process a number of render passes

(n O. n < z . n++)

manlpulatorllst[nr>ManipulatorDSP(pass.bufferSize) ;

oR aI-time Sound Spatlahzation. Software Design and Implementation' Page 123 of 177

5.2 -Implementing Real-Time SRP Synthesis

m th the multiple render pass method is an (N2) algorithm94 and

th ref1 re au a large degree of processor loading.

5.2.1 Virtual/IO

udi input and utput fr m the physical world to the virtual world is

a u e of two classes RPhysicalChannel and RVirtualChannel.

an b created as either input or output and essentially fonus a

urrent ample frame data. The virtual channel, again

ith r input r output is an object that allows connection of

rfi rm rI manipulat rl Ii tener objects to a physical channel. The principle is

plain d h

th

parti ular

ph i

Performer

ViltualChannellnput 1

VlrtualChannellnput 2

VlrtualChannel Output

Manipulator

VlrtualChannellnput

V,rtualChannel Output

Listener

V,rtualChannellnput

V,rtualChannel Output

ntain a Ii finput virtual channels and a list of output virtual

can all acces these lists and obtain data from any of

he number of ins and outs is determined by the

that inh rit from RD PObject while the connection of

d ntrolled from the user interface.

RPh i al hann I p ide an ab traction layer between the actual physical audio

input and th irtual hann I and thi allow interchangeable connection between

udi ample, audio 110 treaming from files can be

a mm ted with ut th n d t update virtual channel code.

dg wi k, R: 1 • pp. -

D R oore 'Re I· llme Sound Spatialization. Software Design and Implementation' Page 124 of 177

5.2 -Implementing Real-TIme SRP Synthesis

At this point the flexibility of the system is hinted at, but to clarify, the following

list ofDSP features are available in the framework: Note that the Ricochet

implementation essentially provides three 'positions' in its DSP process 'chain';

Performer, Manipulator and Listener.

In RDSPObject derived classes:

• Can contain algorithms for use in all three DSP chain positions.

• Can create any number of virtual 110 channels, RVirtualChannels.

• Can create any number ofRSource derived objects.

• Can create any number ofRPickup derived objects.

• DSP chain position is determined at object creation.

• PerformerDSPO dictates how RVirtualChannels connect to RSource

derived objects.

• ManipulatorDSPO dictates how pickups and sources are internally

connected.

• ListenerDSPO dictates how RVirtualChannels connect to RPickup derived

objects

In RSource derived classes:

• AudioPhysicsO dictates how source buffer sound is emitted to an RRay

derived class.

In RPickup derived classes:

• AudioPhysicsO dictates how sound from an RRay derived class is

received.

In RRay derived classes:

• AudioPhysicsTransmitO dictates effects on sound before transmission

along a ray.

• AudioPhysicsReceiveO dictates effects on sound after transmission along

a ray.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 125 of 177

5.2 - Implementing Real-TIme SRP Synthesis

With these concepts reviewed, the focus moves on to the task of representing the

world.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 126 of 177

5.3 - Implementing Hierarchical Scene Graphing

5.3 Implementing Hierarchical Scene Graphing

In ord r to implement a scene graph it is first necessary to create a 3D

mathematic and utility library to enhance the basic functionality supplied with

AN I / ++. Making use of C++ operator overloading greatly simplifies the

usability of uch a library and is well suited to mathematical classes. For

r fer nce the majority of 'Ricochet' maths and scene graph functionality is

defined in the scenegraph.h and scenegraph.cpp files. In the 'Ricochet'

implementation the prefix GL G95 was used, again to reduce namespace

pollution.

5.3.1 Vectors

3D Vectors are for the most implemented in 'Ricochet' by the structure

GL GV ct r3. The frequent use ofGLSGVector3 and some interesting extension

calculation warrants detailed examination.

struct RSDK_API GLSGVedor3
{

};

GLSGFloat X,Y,z;

GLSGVector3(Xx = y = z = O;};
GLSGVector3(GLSGFloat _x,GLSGFloat _Y , GLSGFloat _z){x = _x: Y = _y; z = _z;};
GLSGVedor3(GLSGFloat "_v){x = _vIOl; Y = _v(1); z = _v(2);};
GLSGVedor3 operator +(GLSGVector3 8.op){return GLSGVector3{x + op.X, Y + op.y, z + op.z);};
GLSGVector3 operator -(GLSGVector3 &op){return GLSGVector3(x - op.X, Y - op.y, Z - op.z);};
GLSGVedor3 operator -O{return GLSGVector3(-x,-y, -z);};

GLSGVedor38. operator +=(GLSGVector3 &op){x += op.x; y += op.y; Z += op.Z; return "this;};
GLSGVector38. operator -=(GLSGVedor3 &op){x -= op.x; y -= op.y; Z -= op.z; return "this;};
GLSGVedor3& operator "=(float &op){x "= op; y "= op; Z "= op; return his;};
GLSGVedor38. operator 1= (float &op){x 1= op; y 1= op; Z 1= op; return "this;};

GLSGVedor3 operator "(float 8.op){ return GLSGVector3(x • op, y. op, Z " op); };
GLSGVedor3 operator I(float &op){ return GLSGVector3(x lop, y lop, Z lop); };

GLSGVedor3 operator "(GLSGVector3 &op){ return GLSGVedor3(x • op.x, y " op.y, Z • op.z); };

GLSGPolar GetPolar() ;
GLSGFloat GetMagnitudeO;
GLSGFloat GetRadialAngle(int plane = R_ANGLE_NEG_Z); returns the radial angle

95 Repre enting op nGL cene raph', The Scene Graph implementation also features much of

the pen interfacing.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 127 of 177

5.3 - Implementing Hierarchical Scene Graphing

Note that ector multiplication by a scalar provides uniform scaling and

component multiplication by a vector causes non uniform scaling; vector addition

is equivalent to vector translation. The majority ofthe functionality is written

inline96 for po sible compiler optimisation with the exception of the following:

GLSGPolar GLSGVector3::GetPolar(}
{

GLSGPolar p;
p.rho = sqrt«x"x) + (y"y) + (Z'Z»;
p.theta = acos(z/p.rho) ;
If{y >= 0)
{

p.phi = acos{sqrt(z I «x·x) + (y.y»)));

p.phi = -acos{sqrt(x I «x·x) + (y.y»)) ;
}
return p;

GLSGFloat GLSGVector3::GetMagnitudeO
{

return sqrt«x"x) + (y.y) + (Z·Z»;

GLSGFloat GLSGVector3::GetRadiaIAngle{int axis "=R_ANGLE_NEG_Z'
{

swltch(axis)
{
case R ANGLE NEG X:

- return fabs(atan2{sqrt«z·z) + (Y·Y)),-x));
case R ANGLE NEG Y:

- return fabs(atan2{sqrt«x·x) + (z·z)),-y));
case R_ANGLE_NEG_Z:

return fabs(atan2(sqrt«x·x) + (y·y»,-z));
case R ANGLE X:

- return fabs(atan2(sqrt«z·z) + (y·y)),x));
case R ANGLE Y:

- returnfabs(atan2(sqrt«x*x) + (z·z)),y)) ;
case R ANGLE Z:

- return fabs(atan2(sqrt«x*x) + (y·y»,z));
}
return O.Of;

GetPolar() and GetRadialAngle provide useful calculations for use in source and

pickup D p. etPolarQ returns the vector converted to polar coordinates;

etRadialAngleO calculates the angle between the vector and a specific axis

vector by the following equation: arranged for radial angle against -x axis

B
JZ2 + l

tan =-'---
- x

96 trou trup B: 2000 p.144

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 128 of 177

5.3 -Implementing Hierarchical Scene Graphing

Thi impl m ntation makes use of the 'atan2,97 function to correctly handle

quadrant calculations during the inverse tan operation. The GetRadialAngleO

function i used in the RDirectionalSource and RDirectionalPickup classes to

det rrn.in dir ctional gain factors in DSP.

5.3.2 Quaternions

Quaternion are repre ented in the Ricochet implementation as

GL Quaternion. As with GLSGVector3, standard mathematical operation is

achie d with op rator overloading. Quaternions can be constructed in a number

of wa as hown below:

struct RSDK_API GLSGQuaternion quaternions are used to for quicker and smoother rotational transforms
{

float w ;
GLSGVector3 v;

GLSGQuatemionO {w = v.x = v.y = v.z = O.Of;}; II null constructor
GLSGQuatemion(float angle, GLSGVector3 axis); construct from angle around axis

con ... c anuallY from know components
GLSGQuatemion(float _w, float _x, float -y, float _z) {w = _w; v.X = _x; v.y = _y; V.z = _z; } ;

};

In practice quaternion are often constructed with the BuildFromTriAxisO

function which make u e of the angle / axis constructor. This constructor takes a

directional ector axi and an angle in which to rotate around it. The

implementation i hown below:

GLSGQuatemion ::GLSGQuatemion(float angle,GLSGVector3 axis)
{

w = cos(DegRad(angle) 12.0f);
float s = sin(DegRad(angle) 12.0f) ;
v = axis· s;

Th Quaterni n implem ntation features some useful functions for creation from,

and r tati n of L V ctor3 .

Inline GLSGVector3 QVRotate(GLSGQuatemion q, GLSGVector3 v)
{

retum (q • v • -q).v;

97 childl, H: 1998, p.734

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 129 of 177

5.3 -Implementing Hierarchical Scene Graphing

~nline GLSGVector3 QVlnverseRotate(GLSGQuaternion q,GLSGVector3 v)

{
return (-q • v • q).v;

~nhne GLSGQuatemion BuildFromTriAxis(GLSGVector3 v)
{

GLSGQuaternion q(v.x.GLSGVector3(1,O,O));
q = q' GLSGQuaternion(v.y,GLSGVector3(O,1,O));
q = q. GLSGQuaternion(v.z,GLSGVector3(O,O,1));
q.NormalizeQ;
return q;

VRotate and VlnverseRotateO feature highly in rotation of vectors through

the cene graph tructure. The quatemion implementation of vector rotation is

mor fficient than one based on a 3*3 matrix particularly for inversion of the

transform' 3*3 matrix inversion requiring significant calculation and the

quaternion m thod r quiring a simple rearrangement of the terms.

Note in the abo e' the advantage of the operator overloading in both vectors and

quatemion clas e , quaternion vector rotation is calculated using the equation98
:

v' = qvq

Due t p rator erloading the implementation can be coded as newV = q*v*-q. It

sh uld b clear that the ability to code equations in a manner similar to the hand

written Ii nnat pro ide a significant aid in translation from conventional notation
. 1 . 99 to Imp em ntatJ n .

Build r m riAxi 0 allows construction of a quaternion from rotation angles in

each i th r tation in thi case, performed in succession around x - y - z axis.

5.3.3 SRT Transformation

R tran ~ nnati n I implemented via the class GLSGTransform: (simplified for

larit .

class RSDK_API GLSGTransform holds an SRT transform , in Quaternion form

98 berly D. H: 200 I p.1

99 trou trup B: 2000, p.241

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 130 of 177

(
public:

world

local

n

GLSGVedo(.3 s;
GLSGQuatemlon r,
GLSGVedo(.3 t;

e factor
o atlon quaternlon
I 'on

5.3 - Implementing Hierarchical Scene Graphing

GLSGVedo(.3 LocaIToWorld(GLSGVector3 v); vector transformed from local coord system into

GLSGVedo(.3 Wor1dToLocal(GLSGVector3 v); vector transformed from world coord system mto

GLSGTransform operator ·(GLSGTransform &op); multiply SRT transforms
vOid GLPerformTransformO; orm thiS transform on current matrix stack uSing OpenGL

r m the a note the torage of scale, rotation and translation data in the

variable r t. L calT World provides the functionality to transform a vector

fr m the I al tran formed) coordinate system into the world (non-transformed)

co rdinate t m. WorldToLocalO performing the inverse. This functionality

form th basi ofth sc ne graph calculations and is implemented thus:

GLSGVedo(.3 GLSGTransform::LocaIToWorld(GLSGVector3 v)
{

retum aVRotate(r,v • s) + t ;
}

GLSGVedor3 GLSGTransfonn::WorldToLocal(GLSGVector3 v)
(

retum aVlnverseRotate(r,v - t) • GLSGVedo(.3(l/s.x,l/s.y, l/s.z) ;

te again th u of op rator overloading to provide readable code. In

ocal 0 World th ctor v, multiplied by the scaling factor s, is rotated via the

quatemi n r tran lation i then performed with a simple addition. To perform

in rs i n th tran lati n t i ubtracted from vector v before performing inverse

quatemi n r tation finally the v ctor multiplied by the reciprocal of the scaling

fact r .

Th final fun ti n LP rfc rmTransformO integrates the functionality of the

ran 6 rm :fi rUin penGL. When called transformation of the current

matri tack curs enabling graphics to be rendered relative to the

rdinat y tern.

5.3.4 Scene Graph Nodes

D. R Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 131 of 177

5,3 - Implementing Hierarchical Scene Graphing

he Hierarchical cene Graph is implemented with a tree structure and the basis

for th implem ntation is the GLSGNode class: (highly simplified for clarity).

class RSDK_API GLSGNode : public PersistentObject
{

GLSGNode ·parent; hi:; node's parent
GLSGNode ·child; pomts to Ihe first child node
GLSGNode "sibling; POints to the next sibling node

n
GLSGTransform local; Ir nsform from parent
GLSGTransform world; II ansform 10 world

VOid Update(long time) ; recursive update including this node /I traversal is top to bottom

In th abo the p inters *parent *child and *sibling form the tree structure. The

cl ignificant use of recursive algorithms to perform the

rnaJ rity fits k. Recursion is a typical implementation technique in tree based

tructure 100 . h following diagram illustrates the tree form used in GLSGNode:

ntiall th ibling p inter forms the connection in a singly linked liseol ; the

child p int r linking the first of the node's children. A GLSGNode with a null

par nt int rid ignated the root of the tree.

100 edg ick, R: t 999, p.20 I

101 ibid ., p.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 132 of 177

5.3 - Implementing Hierarchical Scene Graphing

Tran formation in the c ne Graph is accomplished with the aid of two

L Tran ~ nn bj cts: local and world. The ' local' transform contains the

transfonnati n r quired at this particular node; the 'world' transform acts as a

torag obj t. all to th world root node 102 UpdateO function initiates a

recursi e tra ersal fthe whol tree. During tbis traversal each node ' s world

tran form 0 ~ tical ulated from its parent's world transform. This storage of

w rid tran form provides a pre-calculated single transform from one

node tern to the world system. With tbis method it is possible to

tran Ii rm fr mann de in the tree to any other with just two transform

amining thi principle with a simplified UpdateO function:

vOid GLSGNode::Update(long time)
{

'f(parent)
{

world = parent->world < local ; multiply the parents world SRT transform by local transform
}
else
{

world = local; has no parent so the local transform is the world transform

JI

GLSGNode <t = child;
whlle(t)
{

t->Update(time); recursive call
t=t->sibhng;

In the ab : a h ck i made for the existence of a parent node; if a parent exists

then th parent' w rld node i multiplied by the current node's local transform;

t red in th urrent node' world transform object; the current node

then p rn rrn a al l t each fit children's UpdateO functions effectively

tra ersing th ntire tree.

he imp! m ntati n f L Node provides many functions for management of

the n tre. Th are pro ided to implify and validate changes to the structure.

Much func ti naJit i pr vided for the use of transform controllers, a later topic.

102 he.. rid nod r pr nl the r l node designated as the base of all nodes contained in the

w rid.

D. R Moore 'Real-lime Sound Spatialization, Software Design and Implementation' Page 133 of 177

5.4 - Implementing Automation and Control

5.3.5 Connecting Nodes to SRP objects

onn ction of L Nodes to RSource and RPickup objects is handled in the

bas clas by imple methods. Both RSource and RPickup classes are provided

with the method AttachToNodeO which simply allows a particular pickup to be

attached to a particular node. In this implementation it is not necessary for a node

to 'know about obj cts that are connected to it. It is the responsibility of the

ource or pickup clas to use the transformation information provided in the node.

5.4 Implementing Automation and Control

In the Ric h t e ampl , implementation of automation and control is achieved

wi th one cIa fo rming a basis for inherited controller types. RController and

L Tran fc rID ontroller are parallels to the Controller and Transform

ontr II r enti tie de crib d in the virtual environment model. To facilitate

torage and c ntro ller ass ignment the RParameter class is provided along with

ext nded functional ity to the GL GNode class. As with the 'Virtual Environment

Mod I th tw contro l ctions are treated separately.

5.4.1 Implementing Single Parameter Control

R ontro llers ar as igned to parameters using methods from the parameter class

RParam ter d fi n d as follows: (simplified for clarity)

class RSDK_API RParameter : public PersistentObject

(

public:

};

RControlier ·controller;
float value; h ctual value

VOId AssignController(RControlier "_controller) ; I assIgns a controller to thIS parameter
float GetValue() ; run the parameter value
VOId SetValue(float _value) :
VOId Update(long time) ; updates any controllers

hi d fini ti n h Ip i uali e the controller-parameter linkage and shows some

fth parameter object class. A parameter's value may be obtained and

tValu and etValueO methods. AssignControllerO creates the

functi nal ity fc r nn ting a ingle controller. A call to UpdateO requests that

D. R. Moore 'Real-time Sound Spatialization , Software Design and Implementation' Page 134 of 177

5.4 - Implementing Automation and Control

the parameter btain updated data from its controller, if assigned. Moving on to

controll rs, R ontr lIer is defined thus: (simplified for clarity).

class RSDK_API RControlier : public PersistentObject, public GUIListener

{
private:

FastDynamicArray<RParameter'> parameterList;
protected:

public:
DSPFloat value;

vo,d CreateParameter(T _RParameterlnfo parameterlnfo);
DSPFloat GetValueO { return value; };
virtual vOid Update(long time); overload to deterrmne what happens when the system updates

};

Th implementation of RParameter and RController act as a pair to form the full

hierarchical ntroller tree. An RParameter may be assigned an RController and a

ingle R ntr II r c ntain a list of sub RParameters. The UpdateO methods of

each c1as are call d in quence; RParameter::UpdateO makes a call to its

pdateO; this in turn calls all RParameter::UpdateO

f parameters. This action is essentially a recursive algorithm

that p rfi rm tra e al of a controller/parameter tree. To provide the control

alg rithm R ntr Il r i inherit d from and the UpdateO method is overloaded to

pr id the ntrol alg rithm.

5.4.2 Implementing Transform Control

jng th implem nted R ontroller as a base class it is possible to add

functi nality fi r c nnection to GLSGTransforms. GLSGTransform controller is

th ren re d fin d fi II ws: (implified for clarity)

class RSDK_API GLSGTransformControlier : public RControlier

{

public.

};

GLSGTransform "target;

vOid SetTarget(GLSGTransform ·_target) {target = _target; };

virtual vOid UpdateTranslate(long time)O; overload for translation
virtual vOid UpdateRotate(long time)O; overload for rotation
virtual vOid UpdateScale(long time)O; overload for scale

h mpl t fun ti nality for transform controllers to contain sub parameters is

inherit d dire tl fi m R ntroller. An advantage ofinheriting is the abiJity to

defin a ingl that can be used for both SRT and single parameter

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 135 of 177

5.4 - Implementing Automation and Control

c ntr I' thi a tuall xtend the original model slightly. Similarly to RController,

ntrol alg rithm are defined by overloading methods within inheriting classes,

in thi c pdaL Tran lat 0 UpdateRotateO and UpdateScaleO. These update

functi n w uld typi all make adjustments to the target SRT.

ntrollers ar connected to GLSGTransforms within the

de and thi nnection is performed with the following additional

vOid G LSGNode::Asslgn TransfonnController(GLSGTransfonnControlier ·controller, int type)

(

}

controller -> SetT arget(& local);
Rem ove T ransfonnController(type);
SoN ch(type)
{
case T C T TRANSLATE:

- Ic -translate = controller;
break;

case T C T ROTATE:
- Ic '=-rotate = controller;

break;
case T C T SCALE:

- Ic.=-scale = controller;
break;

hi fun ti n all w ntrollers to be connected to one of three connection points

tc tran laL tc r tate and tc_scale corresponding to the three components ofSRT

n. the call to GLSGTransformController::SetTargetO passes

al tran formation RT as the target for control. The additions to

b I w, how the different calls made for each type of

c ntr II r h n updating.

tc_trnnslate->Update{time); first call updates controller parameters
tc_trnnslate->UpdateTranslate(time); thiS call causes update of the local SRT

}
Ifetc_rotate)
(

tc_rotate->Update{time); first call updates controller parameters
tc_ rotate->UpdateRotate(time); thiS call causes update of the local SRT

tc_scale->Update(time); first call updates controller parameters
tc_scale-> UpdateScale(time); thiS call causes update of the local SRT

he fi 11 wing dia ram how the entity relationships and update path for control

impl m ntati n:

D. R Moore 'R a~tlme Sound Spatialization, Software Design and Implementation' Page 136 of 177

5.5 - Implementing Modularity and Expandability

RParameter RController RParameter RController

GLSGNode

5.5 Implementing Modularity and Expandabi/ity

Audi ignal r 109 ftware with the facility for extension and

xp rim ntati n ah-ead e i ts in a number of forms. DSP processes can be

d rib d graphi all u ing cling 74's Max MSP software. In itself the power

and reati fl xibili ty [Max M P is powerful but an important feature is the

ftware d ign r to access the underlying framework of Max and

in ign

fb n fit.

teinb

d igner alg

imm diat

th T plugin.

in the graphical modelling environment. Many

ing cr ate Max MSP Externals for experimental

ncentrate solely on an algorithm without regard for

gy provides another framework for expression of signal

fiwar developers are able to both design algorithms for

and produce V T host oftware that can use other

ftware package that supports the VST framework has

larg ariety of ignal processing algorithms in the form of

D. R Moore 'Real-hme Sound Spatlalization, Software Design and Implementation' Page 137 of 177

5.5 - Implementing Modularity and Expandability

The underlying frameworks above are of help to software users as well as

software developers. Developers can test and release new experimental algorithms

more easily and more often and therefore users are presented with an ever

increasing set of tools with which to produce audio. The benefits to the creativity

of both developer and user are apparent.

However, writing software for use in a framework requires a developer to follow

the constraints of the framework and this means that the framework must impose

limitations on the type of software that can be embedded in it.

'Ricochet' , a framework for sound spatialization signal processing, provides

useful functions for spatial processing and imposes guidelines and limitations on

how the spatialization must be performed.

The implementation described in the previous sections serves as a framework for

spa6al DSP and spatial control. The actual algorithms that perform DSP and

control require additional object classes to inherit from the framework base

classes. During the discussion ofDSP a number of these inherited classes were

introduced. In e sence the framework provides the functionality for connection

and categorisation of spatial objects using the SRP model. In order to promote

creative extension to the SRP model the 'Ricochet' engine provides all of its

func60nality to the 3rd party developer via a 'Plugin' based Software

Developm nt Kit (SDK). This kit can be used by any software developer to create

new object elas e based on the framework objects. An introduction to the

Ricochet DK (R DK) is provided by examination of a basic plugin. The

following code would be compiled and linked as a dynamic link library that is

placed in the ricochet plugin directory:

class BasicPerformerObject : public RDSPObject

{

public:

};

PERSISTENT_OBJECT _HEADER(BasicPerformerObject,'bper')

void PerformerDSP(long bufferSize);
void Create(GLSGVector3 pos);

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 138 of 177

5.5 - Implementing Modularity and Expandability

m plugin.h th a e elas header shows the full elass

d finiti n r th arlier example. The full

II v an i t en from b plugin.cpp:

VOid B ePerformtwObject C te(GLSGVedo(.3 pos)
(

eChanne ·Source Input·,),
Group ode, cr t

o d Ba eP rformtwO P rformerOSP(ong bufferSlze)
(

h fram \.\ rk

, and

y th bj ct i.e. virtual channels, nodes,

reate function. Using

able to build an object that is impl fun

und r ull . It h uld en ted here that this is the complete

1 th t remain i D r the 3rd party developer to

}

Th

rna

In ·u. t

,t m. Thi i p rfi rm d with a number of simple macros

T_OBJ CT_SOURCE(B eP rform rObj ct)

o
SP~SH ESSAGE("Slmpl RSDK ex mple plugin . .,;
REGIST -R_OSP _C~SS(B IcPerformerObJect:Basic Performer",1 ,0,0) ;

n O.

nt

m aut m li all ft und and called by Ricochet when it

P H M AGE allow an author

loaded.

with a name seen by

P alg rithrns exist.

BJE T OURCE ar

. r a in and I ading, a later topic in this

as an omni

'rIC nn r in a \ irtu I 'n nm nL Th bject RT transformation is

° R ()()(
Sound Sp II liz tlon, Software Design and Implementation' Page 139 of 177

5.6 - Implementing Object Persistence

hooked into Ricochet's graphical interface providing user control of motion. 110

assignment is immediately provided to the user via the channel object. Details of

object positions and parameters are automatically saved and loaded with a

Ricochet document. The advantage of , plug in' modularity is that 3rd party

developers can create new tools for the spatial artist without the need to develop a

full framework. In particular someone interested in researching the SRP technique

can develop new DSP algorithms and test them with other developer's ideas

without in depth knowledge of the GUI or SRP framework.

5.6 Implementing Object Persistence

In providing a dynamic and expandable system this implementation has created a

difficult task for the purposes of saving and loading user files. Consider a typical

user of the system who creates an SRP network containing multiple object types,

some developed by 3 rd party developers, deeply nested groupings of nodes in the

scene graph and multiple levels of control. The necessity to store data for

dynamically created objects (object persistence) is of particular importance in this

project. The particular implementation of the data structures makes significant use

of memory pointers to reference data/objects that are dynamically created and

destroyed. It is possible to traverse all created objects storing contained data, but a

problem arises when storing the pointer references. To store the value of a

dynamic memory pointer between user sessions is inherently pointless as

recreation of the originally stored dynamic objects will inevitably allocate

different memory blocks from the heap. It is feasible that pointer references be

discarded in favour of unique ids for each dynamically created object. The

disadvantage here is the speed bottleneck in looking up an id and cross

referencing it every time object/object interaction is required. This method can be

sped up using pointers and id variables; ids provide persistence between sessions;

cross referencing to set pointers to accurate object memory locations is performed

on file load. Of course the problem here is the implied doubling in data storage

required per pointer and the increased complexity of dynamic creation algorithms.

In this case a simple tree structure becomes significantly more complex to design.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 140 of 177

5.6 - Implementing Object Persistence
\~ .t:., ';'''f':';'~'''"r'·\'·''~''-:''';:"'l''._eh:tM'*

The solution makes use of the inherent uniqueness of pointer values. Two objects

cannot occupy the same memory location so object pointers always take a unique

value. By using pointer values as unique ids it is possible to provide an efficient

object persistence solution that does not suffer in speed or complexity of data

structure. Object persistence is achieved by storing information about an object's

class and storing its current memory location as its unique id. Each object's

individual data is stored along with any pointers to persistent objects. Upon

loading, objects are recreated from the stored class information. The stored

memory location is used to create a lookup table of old and new memory locations

for the object. Loading of data is as normal but any stored pointers are first cross

referenced in the lookup table and the new memory location is stored. With this

method the entire data structure of the system, regardless of complexity in

referencing, is stored and retrieved successfully.

5.6.1 Object Persistence in 'Ricochet'

• Objects that require persistent storage inherit from PersistentObject

• Persistent object classes provide a 'factory' 103 function via use of macros.

• Persistent object classes provide Run Time Type Information (RTTI)l04

data via same macros.

• If an object contains other references/pointers to other persistent objects it

overloads the virtual function PrepSaveO. Within this function any child

objects PrepSaveO function is called, providing data structure traversal.

When Saving:

• The system sets up the file stream object ready for saving. A new file is

created etc.

• The system then calls PrepSaveO for all of the parent objects that require

storage.

10J Stroustrup, B: 2000, p.323 and Eberly, D. H: 2001, p.460

104 Stroustrup, B: 2000, ppA07-418 and Eberly, D. H: 2001, pp.444-451

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 141 of 177

5.6 - Implementing Object Persistence
, "~.~- , ... ·""'·:,'·v~',;:6"'·";lf:~"',,' •• ;;e,n,,~'l'

• The PrepSaveO call propagates through the data structures to all objects

that need saving.

• With the PrepSaveO calls done, the file stream now has a list of all objects

that require saving.

• The file stream traverses the list and perfonns the following for each

object:

o Object info data header is stored first and contains the RITI info

and the current memory address of the object to be saved.

• The stream then reiterates the list perfonning the following:

o The object's SaveO function is called.

o The individual save functions will store static data for themselves.

o Any object references must be saved using the SaveObjectO of the

file stream.

• The base system can now save any of its own raw data. Any objects that

must be pointed at can be saved with SaveObjectO.

The file structure at the end of this is as follows:

{ [R ITI and instance info]} . .. {[ObjectDataSize][Object data]} . .. {[System raw

data]}

RITI and instance info is stored in the same order as the object data.

When Loading:

• The system sets up the file stream for loading of the data.

• The system traverses the file and for each object block perfonns the

following:

D. R. Moore

o The object header is loaded.

o RITI data is used to create a new object.

o The new object's address and its old memory address are stored in

a lookup table. If the object failed to create then a NULL value is

stored.

'Real-time Sound SpatlaAzation, Software Design and Implementation' Page 142 of 177

•

o

o

o

•

th

p

fun

p

and a

in u

R P r·

5.6 - Implementing Objeet Persistence

reat d bj c t red in the table. If an object could

m m ry LL pointer will have been stored and the

d tao • reach bject the following is performed:

- basically just the size of the stored

da

ad function

will read ia LoadObjectO which cross

ld pinter aIu with the new one. It is possible that

thi fun ti n will return a LL pointer and in this case the object

h uld a t a rdingly.

d d and if any pointers exist they can be loaded

uppli d in the files: persistence.h and

nLain man e that essentially perform the

id an in depth discussion of this code

ary t reate a persi tent object class is relevant for

bject persistence model can do

8JE T HEADERand

are u d t in ert most persistence

a requirement that a base class inherits from

irtuaI function PrepSaveO SaveO and

n ab ut child objects and store and

pro ide acce s to the actual file

'pre nt d with the FStream instance that is

pI th Ii II wing i a ndens d version of

• m th

cI RSD _API RDSPObj p entObjeet, public GUIListener
{

DR 00f R I lime Sound Sp II liz tlon , Software Design and Implementation' Page 143 of 117

m

rl

5.6 - Implementing Object Persistence

m th h ad r fi1 and th following hould be noted:

finitj n pas ing the name of this class and a

I p r d fin d)' all three virtual functions are

lm In nt ti n {; 11 w (simplified for clarity):

PERSISTE T _OBJECT _SOURCE(RDSPObJect)

v RDSP0bted Pr pS. (FStr m &stream)

o RDSPObj
{

o RDSPO
{

n,

Obfe<;t Pr pSa e(re m),

SO\XCeLI ream): r glster source instances

'(RDSPObjectlnfo),1):

Into numSource n++)

m S Obj (urceList[n)): ve source Instances

o (RDSPObf ctlnfo),1):

OI(n . 0, nino numSources.n++)
{

th P

D R oor

del (RSour ')stream .LoadObjectO); load source instances

BJ UR E macro, again passed

pre nts ourc code' because this

impl rn ntation of Pre pSav eO first

P bj ct then goes on to register its

bject that has no child

n t necessary as the base class

ad are similar using

write and read blocks of non

rnplished with

Sound Sp tl hz lion, Softw re Design and Implementation' Page 144 of 177

5.7 - 'Ricochef General Implementation Methods
; •. ,- . , . .J,,·~·:'"}~,..-.~Wit-<">"·~"~;\~I:ioI'

FStream::SaveObjectO called in this case for all sources. FStream::LoadObjectO

is used to load each source and perfonn the pointer cross reference before adding

to the source list.

5.7 'Ricochet' General Implementation Methods

A complete line by line explanation of Ricochet's implementation is oflittle

relevance to the core of this thesis. In lieu of this the following section provides

only an overview of the general implementation methods and ongoing

development areas. It should be noted however, that although the methods are less

relevant to the SRP technique, many are still vital to production of a complete

software application.

The Graphical User Interface (GUI) for 'Ricochet' was developed using a

combination of the Microsoft Foundation Classes (MFC) and the Win32 API.

Comprehensive coverage of these APIs is given in Petzold, Brown, Feuer,

Gregory and Jones lOS. The Win32 API was used as a base for the ricochet plugins'

own GUI interfaces. It was intended that the ricochet SDK should not force the

useofMFC.

The design of the GUI was loosely based on Discrete's '3D Studio Max' software,

a tool for 3D graphics modelling and rendering. The basic principle of the design

is four windows displaying views from different 'cameras' in the 3D world. These

windows provide a CAD like design space where action in one view is

immediately shown in all the others. A menu and toolbar provide access to the

commands in the interface. Creation of objects and direct navigation is provided

in a tabbed window. A tabbed properties window shows the properties of the

currently selected object. This diagram describes the basic layout:

lOS Petzold, C: 1999; Brown, S: 2000; Feuer, A. R: 1997; Gregory, K: 1997; Jones, R. M: 2000

D. R. Moore 'Real-time Sound Spatiamtlon, Software Design and Implementation' Page 145 of 177

5.7 - 'Ricochet' General Implementation Methods

Menu
Toolbar

Top View Right View Create,
Navigate
Tabs

Front View Camera View

As discussed earlier, the implementation of 'Ricochet' makes use ofOpenGL to

provide the 3D graphics rendering required by the user interface. Integration of

MFC and OpenGL was performed by creating an extension to the MFC CWnd

class called GL ViewWnd. Each view is created with the GL ViewWnd class with

all other GUr features created by extensions to other MFC classes. The OpenGL

implementation makes use of many extensions to the GLSGNode class. These

extensions provide for both rendering of 3D meshes and selection of objects.

Node selection is performed with OpenGL's pick matrix and off screen rendering.

Selection of groups of objects is achieved with a special GLSGNode which is

inserted into the Scene Graph.

In order to provide user interface features to plugin developers without forcing

every developer to use MFC, it was decided to create a simplified set of GUI

interface classes and functions that would integrate with the main interface

automatically. This method provided the best solution for a researcher wishing to

produce a simple experimental SRP object. It should be noted however, that the

3 rd party developer is not required to use the simple GUI library and may use

either Win32 or MFC if so desired. This simple GUI was created using only the

raw Win32 command set. All classes and functions relating to the simple GUI are

contained in the files PluginGUI.h and PluginGUI.cpp. These are compiled and

linked into the dynamic link library PluginGUI.dll.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 146 of 177

5.7 - 'Ricochet' General Implementation Methods

Non-visual design of 3D meshes for rendering is not a simple task and therefore a

small library for loading .3DS106 files was made to facilitate design of meshes

using an external editor. The 3rd party developer is able to use a .3DS file mesh to

represent a node in the interface. This functionality is provided by the classes

C3DSModei and C3DSModelManager which wrap-up and extend classes and

functions from Ben Humphrey's web based tutorial on 3DS file loadingl07.

The user's mouse controlled tools are designed on a base class RTool. This base

class allows new tools to be more easily designed and integrated within the

windowing and object selection system with the aim of providing for future

expansion of the system. In this early version, only the bare minimum tools for

creating, selecting, moving, rotating and scaling are provided.

In order to implement the modular plugin architecture the system makes use of

Microsoft Windows Dynamic Link Libraries (DLLs)108. The Windows API

provides functions that can obtain a pointer to a function contained in a DLL.

'Ricochet' searches through all DLLs contained in its plugins directory and

attempts to obtain a pointer to a function called RPluginMainO. If the function

exists then Ricochet runs it and the plugin is then registered together with any

additional functionality. The RPluginManager class is designed to perform all the

necessary registration of plug ins. This technique is used in all of the plugin

architectures looked at during research and is well discussed in Steinberg's VST

SDK. It would have been simpler to provide an architecture that forced one plugin

to provide only one additional object class to the system but it was felt more

useful to provide the option of creating a whole library of additional classes in one

DLL. A single plugin may register many classes with the active RPluginManager.

Internal reporting macros and functions were designed initially to aid run time

debugging of the main system but this functionality has been purposely left in the

system to aid the 3rd party developer. These features can produce run time reports

106 Discrete's 3DS Max export format supported on a number of other 3D applications

107 Humphreys, B: 2002

101 Williams, A: 2000. p.IS

O. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 147 of 177

5.8 - Ricochet user manual

t a debug . nd v and will automatically be skipped when compiling a release

A futu n t Ri het could b the integration of Steinberg VST

plugin an th ginning [an appropriate VST plugin host are provided in the

t in mpl Plugin clas .

5.8 Ricochet user manual

5.8.1 Initial boot up

utin th Ri

re hing th main

thm

The main pa fRi

din an initiall

h t application a small splash screen is displayed before

plash creen displays the available RSDK plugins as

I w r di play line. Below the screenshot shows the splash

t i pre nt d immediately after the splash screen

i pi as follow :

D R oore 'R aI-time Sound Spatialization, Software Design and Implementation' Page 148 of 177

5.8 - Ricochet user manual

~~ .. ~============~====================~~------ _~x

th' mpl t \\- rI

tao

..... _te.·°ttd
t..clJOh .. ----"-"""
xn

-.0,""",, _

D nn the majority of the interface and

ft Fr nt and P rspective views in order to visualize

. In th upp r right of the creen the ' Create ' tab shows a tree

available objects for creation. The

b n created and the 'Nodes' tab displays

hi rarch tting can be adjusted from the 'Settings'

5.8.2 Creating objects: Create Tab

0 , R OOf R I lime Sound Sp Ii hz lion, Software Design and Implementation' Page 149 of 177

1 'at' n

"vithin an.

n

'1 p edit pan .

ut it hi hli

nt

n

D R 00f

an

5.8 - Ricochet user manual

fr m the create tab and clicks

will u e the position of the click

a n de isualization graphic in the

types of node that are created.

n de visualizations in the edit

f created objects displayed in the

n I param L r wind wand this window may be

t' param t r window displays the editable

pi kup gain or directionality.

purely for de elopment

pu int p rat in reaJ time and typically

r th rap' tnt ncompass d by the

11 di op a IT m i w then the 'Param Ctr}'

DeSign and Implementation' Page 150 of 177

5.B - Ricochet user manual

5,8.3 Selecting DSP Objects: Objects Tab

m th

und r the processing categories

ting an bject in this view causes it

~ r th ' utin win w describ d below.

5.8.4 Routing DSP Objects: Routing Window

utin \ to w fi ran ctaphonic listening

nll 'n . aft 'r Ii king nan of the virtual output

rlh' irtuul utput t a ph ical output. In the

OR.QOf Ign and Implementation' Page 151 of 177

5.8 - Ricochet user manual

\\ \ irtu' I in ut utin t: orne object clas es may

h

5.8.5 Processing selecting and manipulating nodes

cn m

usin lh'

'r h . 'PI . utt n I th

lh . .lfllnlut 'd

h' 'r

, Ii kin n I repre ntation in the dit pane.

m and dragging to fonn an

n I m d th u er i able to manipulate it

I ar 'h wn I w).

nl tTt I and thi determine whether or

i nmnin . Wh n proce ing is offno sound is

main tati .

d within the plane of the

m m nt in the XZ plane of

of the axis lock

\ h '[1 1I m lh' f r tation i selected

usin t th . m u up and down directly

O R 00f oun p II II lion, Softw re Design and Implementation' Page 152 of 177

n

\

n

o

5.8 - Ricochet user manual

un i . Th cal tool works in a

fa

axi - al ng which caling i applied .

t an time

upnam

el cting Edit->Group. A

wn b low). Note: grouped

f the interface.

m 'mann r an th r n de. If a node is selected

up It. It i not currently possible to

S.8 6 Viowing and Controlling Nodes: Node Tab

oor

up hi rarchy based on the

al dj plays the selection

manipulati n. Ie ted nodes will be

ddt th lection node. Upon

in th ,t m rary ti n node i applied

hll III ' .. rh ri inel \I rid n d hierarchy is then

Page 153 of 177

5.8 - Ricochet user manual

hi Ihli hI in lh . n . ta highlighted nod can have

'i n utt n .

. ~ .. . ~. ' ...
. -.....-......-~

h ult n brin' \I tl nl 11 'r a .. j n in! and a ntroll r class

111 (11 '1\' th' apa ility fating on the selected

I in the dialog. Note:

t It '\\ nl reat d and it

\\ .

Itw t 0 I n nd Impl mentation' Page 154 of 177

D

5.8 - Ricochet user manual

5 .. 8.7 Assigning Parameter Controllers

nm 'nl. itin

n

ila

r W , •

aran1 t r dial

h

'm \a[a nt \I r.

Ign ub- ontrollers by right

ntext menu shown allows

wn di playing a list of the

ults in the creation of a

VI. A hierarchical tree

ach GUI. The

nt n dial g. Nt: only scalar

II h II n, ftw r De 19n and Implementation' Page 155 of 177

5.8 - Ricochet user manual

5.8.8 Changing Settings: Settings Tab

An A I dri r an b it d from the settings tab. The driver' s own settings

panel can p n d with th Panel button.

c. 1 Ot,octt - s.oo"g.

..s!()

F
'o O, ocO(Ful 0 0

..sIOH .. OSP

..slO W 0-..
tNll)lAASlI)

I SolO-)

~ p I

5.8.9 Project Management

At an tim an

>New. tin

a ing and 1

loading a

in rd

I.Dok n l

ill

I OJ ------
"l
" it"')
oJ
"I'",

A jngl

iJl

Ian pr ~ t an b created by selecting 'File->Project

·11 pre ent the fo lJowing confirmation dialog:

Ii I .

a hi d from the 'File->Project' menu. Saving or

th u r with the tandard windows file selection dialog

1 ,

ha d cene. Upon loading a ' .ric' file the

nt! a ti p ~ect.

D. R. Moore ·R I-Itme Sound Spall Iization , Software Design and Implementation' Page 156 of 177

5.9 - Future expansion of 'Ricochet'

Ricochet cre n h t h wing many created objects multiple selections and a

numb r of p n param t r windows.

- "'- ()
Pw:t.IcI I II
'--I II

• ·11 J TM·U
TflLtI
""' II
tR·lI
.'H I
-II

"'" " '--I I)
- Il.-s.dIn I)

- 0i::W 1l
-II
m.u
T""IJ

.... " .""1 1

.... -11

- "

5.9 Future expansion of 'Ricochet'

'Ricochet i an ng ing pr ~ t and it has much potential for future development

the first

objec .

variety in

from 3rd part

Kit. Thi h

are

variety in ignal p

con id ra I .

ftwar was designed from the start to be modular and

tern will likely be in the fonn of advanced plugin

ibilitie but it i a reasonable assumption that more

ts would be the first goal. It is hoped that interest

th increase the variety in objects and provide a

m nt and cpan i n of the Ricochet Software Development

a h f teinberg in its VST plugin framework and the

10 f b th commercial and non-commercial products is

~ ..

D. R. Moore 'Real-lime Sound Spatialization, Software Design and Implementation' Page 157 of 177

5.9 - Future expansion of 'Ricochet'
..... ,. -~--'"'<::--s.~'.:...j..,~\!$oO~_M" _. __ _

Future development of the user interface will strive to improve the usability of the

software with respect to the sound artist. At present the graphical interface does

not have the benefit of solid user testing and feedback. Serious consultation with

potential users is necessary before making changes. However, it is obvious that

particular interest will come from the expansion of hardware control of the

system, for example, motion tracking of performance and live instrumental

control.

A major future goal is improved integration of the software into the sound artist's

typical tool box of3 rd party software. This would provide: increased file format

support; support for the multitude ofDSP plugin formats, VST, DirectX and

RT AS; support for inter-process / network audio transmission; direct control by

3D graphics software such as 3DS Max. Much of this work would focus on an

improved version of the audio sub system that can provide both simpler use in

experimental software and greater functionality.

Perhaps though, any future developments should not ask the question 'What

software should be designed?' but instead ask 'What do artists want to create and

how do they want to create itT

O. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 158 of 177

6.1 - Real-time DSP on the host CPU

6 Audio and MIDI libraries

This section describes some of the libraries that were developed and used during

the development of Ricochet and Super Diffuse.

6.1 Real-time DSP on the host CPU

In order to perform real-time signal processing on a modem personal computer

there are two techniques and associated hardware. One method assists the 'host'

CPU (ie. Intel Pentium or equivalent Motorola). performing all DSP calculations

inside an expansion board. This dedicated DSP processing board. sometimes

integrated with Audio 110. is under user control via the host CPU. In a typical

system all signal processing occurs on the DSP board and all user interface

features are performed on the host.

Holt CPU
Powerauser
Interface

Dedlclted DSP Procesaor
Performs signal processing

Audio VO 14--" Performs signal
convel'1lion via ADIDA

The technique allows signal processing to be performed with very low latencies

(1 sample latency is often claimed) and at very high sample rates (192 kHz on

Pro-tools HD at the time ofwriting)109. Of use to the software developer is the

ability to perform DSP at a single sample level without concern for other system

tasks. If the required latency is 1 sample. the DSP algorithm for a single sample of

input must be computed within a single sample rate clock tick. However, since no

other processing needs to be performed, using the full power of the chip to

complete the DSP algorithm is acceptable. A disadvantage of dedicated DSP is its

high cost for both initial purchase and future expansion or upgrade.

109 Single sample latency at 192 kHz produces a potential 'reaction' time of 1/192000th ofa

second.

D. R. Moore 'Real-time Sound Spatlalization, Software Design and Implementation' Page 159 of 177

6.1 - Real-time DSP on the host CPU

In the 'host based' solution, both DSP and user interface processing are processed

simultaneously by the host CPU, ADIDA conversion is performed by an

expansion circuit.

Host CPU
Powers user interface and
performs signal processing on
incoming buffers

AudioVO
Performs signal
conversion via AD/DA
and buffering of VO

Obviously, compared to the dedicated hardware solution, the host CPU is now

required to perform significantly extra data processing. More importantly

however, the host must also perform two tasks at once. Signal processing in

dedicated hardware can be performed continuously but in host based DSP there

are many other tasks to be performed simultaneously. These tasks are often time

critical and require the CPU to be interrupted. In order to perform DSP on the host

CPU it is necessary to buffer the input signal and perform DSP in a burst.

Identical performance to dedicated DSP can only be achieved by buffering in

single sample blocks but this is not feasible with current CPU speeds and complex

DSP algorithms. If, however, buffering is used to split the 110 stream into sample

blocks, the host CPU is able to take advantage of various techniques which reduce

the processing load. At this point it should be noted that the size of 110 buffers

directly affects system latency and the potential for host processing optimisation.

It is important to realise that many optimisations, ignoring the 110 latency, are

achieved with absolutely identical outcome to a per sample algorithm. However,

some have the disadvantage oflosing control reaction speed and sample level

accuracy. The design of a real-time host DSP algorithm has added complexity

because of the need to optimise speed. Although host based DSP is not as accurate

and arguably more algorithmically complex than a dedicated system, it is highly

cost effective due to the reduced expense on hardware. This reduced cost makes

host based processing more accessible to the average user.

D. R. Moore 'Real-time Sound Spatlalization. Software Design and Implementation' Page 160 of 177

6.1 - Real-time DSP on the host CPU

6.1.1 Notes on host based optimisation

Host based systems using buffering can take advantage of many optimisations I 10

but some common ones are explained as follows. In this case ' cost' refers to

'processing cost' in CPU cycles. Some prior knowledge ofsoftware engineering

terms is assumed.

• Performing simple calculations on large blocks of data will sometimes

take advantage of CPU optimisations such as caching and pipelining an

optimising compiler can also make use of these features .

• Performing calculations once per buffer is less costly than performing

them once per sample so it is common to pre-calculate a value and u e it

for the whole buffer.

• Performing function calls is a costly CPU operation due to pu hing of

registers into a call stack and program jump overhead. For this reason

calling of functions tends to be kept to a minimum on per sarnpl

operations. Often, 'macro' functions and the C++ 'inline' concept is u ed

to simulate function based code for the developer but remove it from the

compiled algorithm.

6.1.2 Steinberg's ASIO for host based audio liD

Audio Streaming Input and Output (ASIO) is a library that allows low latenc

connection to current audio I/O cards. ASIO forms an abstraction layer between

audio hardware and software by requiring hardware developers to provide a dri er

compliant with the ASIO specification and by providing functions to the ho t

software that allow generic control of any driver. This hardware abstraction

11 0 Coulter, D: 2000, p.209

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 161 of 177

6.1 - Real-time DSP on the host CPU

technique is common for software connection to other optional card types, for

example graphics cards.

In order to develop music software the developer includes the relevant header files

and source from Steinberg's ASIO SDK and performs a lengthy but simple

initialisation creating audio buffer memory blocks and making a number of

function calls to access the selected ASIO Driver. ASIO makes use ofa 'call

back' function for the purpose of providing the hardware manufacturers ASIO

driver with a function to perform when an audio buffer is ready for processing by

the host. In other words the host provides a pointer to a function that is designed

to process an audio buffer using the desired algorithm. The host supplied call

back function is required to deal with a number of different audio buffer formats

(16 bit integer, 24 bit integer contained in 32 bits, 64 bit floating point etc.).

6.1.3 Packaging ASIO in ASIOSubSystem.dll

In order to facilitate faster development of common audio programs an

intermediate library was created to package the ASIO library and a number of

conversion routines into a dynamic link library for creating audio programs

processing with 32bit floating point. The ASIOSubSystem.dll was one of the

earliest pieces of software developed for this research project and was

subsequently used and expanded during development of Ricochet and Super

Diffuse. The version used with software described in this thesis was tested with a

range of audio hardware including the following:

• MOTU: 2408 and 24io

• RME: Hammerfall DSP 96/32 and Multiface

• Creamware: Scope fusion platform

• Creative: Soundblaster 64 and Audigy

In pseudo code, use of the ASIOSubSystem.dll is as follows:

Initialise asio and aeate 32bit float buffers for aU inputs and outputs in the system
ASIOBufferCalibackRoutine()
For each input channel buffer
{

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 162 of 177

6.1 - Real-time DSP on the host CPU

call conversion routine on this channel from driver format to float

call ASIOSubSystem host supplied function with converted float buffers

for each output channel buffer
{

call conversion routine on this channel from float to driver format

A typical conversion routine is as follows. Notice the use of 'in line' optimisation

to replace function call. This function provides conversion from 32bit integer in

most significant bit format to 32bit float (DSPFloat) format us d by the ho t.

inline void int32MSB16ToFloat(int *input,DSPFloat *output, int size)
{

float ratio = 1.0 I 32768.0 ;
size++;
while(-size> 0)
{

*output = ratio * (float)*input;
input++;
output++;

Firstly the function pre-calculates (for the whole buffer) a ratio between the

maximum integer value 32768 and the DSPFloat maximum value of 1.0 (The

compiler actually pre-calculates this ratio at compile time). Each sample in the

buffer is multiplied by the ratio to provide the conversion. The while(--size > 0) '

iteration is used quite frequently in the DSP code of both projects in this thesi

and provides a loop connected to buffer size. By incrementing the siz value nce

the iteration condition is able to use the pre-decrement (--n) method which is

faster than the post-decrement (n--).

A typical application produced call-back has the following format.

void DSPMain(DSPFloat **inputs,DSPFloat *'outputs,long bufferSize)
{

II Perform application specified per buffer DSP here

Setting up an ASIO driver and specification of a D P algorithm using

ASIOSubSystem is as follows . This code section opens a driver run the null

algorithm defined above for 10 seconds then shuts down gracefully.

SetDSPCaliback(DSPMain); Ii set the dsp callback passing a function pointer to the application DSP call· back
InitASIO("ASIO Multimedia Driver" ,44100.0) ; Open the dnver called ASIO Multimedia Dnver SIR 441kHz
StartASIO(); II Inform the driver to begin procesSIng audiO
Sleep(10000); Windows command to wait for 10 seconds

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 163 of 177

6.1 - Real-time DSP on the host CPU

StopASIOO; II Inform the driver to stop processing audio
CloseASIO(); Unload the driver and cleanup memory etc .

It should be clear from the above that using the ASIO Sub System DLL provides a

very quick and simple method for accessing ASIO Drivers.

6.1.4 Future expansion of ASIOSubSystem

Developed during the first few months of research at USSS ASIOSub y tern has

begun to show signs of age despite periodic bug fixes and upgrades. A new

version is planned for future research and expansion of other software and a small

proposed feature list follows:

• Complete redesign and rewrite of the system;

• Full C++ class implementation dropping current function based y tern'

Inheritance to replace function callback mechanism'

• Full and tested audio card format conversion with emphasis on peed

optimization. Optimized DSP functions to be provided to the client·

• Improved browsing of available drivers including a default A 10 etup

and selection dialog that can be overridden by client software if nece ary'

• Improved browsing of audio card capabilities and the addition of named

I/O channels again using a default dialog;

• Per I/O channel default options: allow channels to be disabled muted and

balanced;

• Integral channel routing similar to Ricochet s virtual I/O system'

• Improved client ASIO infonnation system'

• Integral safety features, improved exception handling and automatic driver

cleanup in the event of software failure. This is intended to safely catch

serious machine shutdown errors that can occur with incorrect use of the

current library;

• Integral thread synchronisation features DSP Mutex I Critical section'

• Built in support for file and network audio streaming transparent

connection with I/O. WAY and OGG Vorbis file support·

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 164 of 177

6.2 - Accessing and Distributing MIDI Information
, .,,' "-' "",~,~ "'\,\"-'\,,\' I"",", ,-""" .l:;;t(,.~~

• Direct file streaming for all output streams to enable offline rendering

direct from the library. This would be performed without the need to re

route channels;

• Integration with MIDIManager system to create a singular audio media

lIO system;

• MTC timecode support functionality with disk stream synchronisation;

• Integrated support for 3rd party VST plugins;

• Integrated DSP algorithms such as forward and inverse FIT, FIR and IIR

filters, other basic building blocks such as oscillators;

It should be noted that some of the functionality proposed has been researched

and even featured in test applications but has not reached a state of sufficient

usability to be fully documented.

6.2 Accessing and Distributing MIDI Information

The software projects discussed in this thesis make use of MID I for control and

automation. In both, the standard MIDI 110 system provided by Microsoft

Windows is used to access hardware. Messick and Penfold detail both the

windows MID I API and the MID I specification Ill. In order to simplify the setup

of drivers and provide a more robust implementation, a pair of classes was

created, wrapping the basic Windows Functionality. The MIDIManager and

MIDIListener classes defined directly in both applications allow simple addition

of MIDI lIO to individual object classes.

The current implementation of the MIDIManager class only allows for single

input and output devices to be concurrently open. However, the input may be on a

separate device to the output.

The MIDIManager class is intended as a singleton object that forms a central

point of reference from which to control the initialisation and shutdown of MIDI

III Messick, P: 1998; Penfold, R. A: 1995

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 165 of 177

6.2 - Accessing and Distributing MIDI Information

devices. Examination of the class header shows the interface methods: (simplified

for clarity)

class MIDIManager
{
public:

};

MIDIManagerO;
-MIDIManagerO;
unsigned long GetMessageCountO { return msgCounter; };
int GetNumlnputDevices();
const char> GetinputDeviceName(int id);
int OpenlnputDevice(int id);
int GetNumOutputDevices();
const char> GetOutputDeviceName(int id);
int OpenOutputDevice(int id);
int GetControlierValue(int channel, int controller) ;
float GetMappedControlierValue(int channel , int controller, float min, float max);
void MidilnMessage(BYTE status, BYTE dataA, BYTE dataB, DWORD timeStamp);
void MidiOutMessage(BYTE status, BYTE dataA, BYTE dataB, DWORD timeStamp);
void CloseDevices();
void StartO;
void StopO;
void HaitO { if(isRunning) { Stop(); wasRunning = true; } };
void ResumeO { if(wasRunning) { StartQ; } };
void RegisterMlDIListener(MIDIListener >Iistener);
void UnregisterMlDIListener(MIDIListener >listener);

extern MIDIManager midiManager; the one Singleton Instance of the midi manager

Sending MIDI data requires a call to OpenOutputDevice specifying an id

number for the desired device. Devices are assigned a sequential id numb r, the

first being device(O). Manufacturer device names are obtained by calling

GetOutputDeviceNameO again specifying the id of the desired device. Once a

device has been successfully opened calls can be made to MidiOutMe age t

send short MIDI messages (SYSEX is not supported in this version).

MIDI input devices are initialised in the same manner as MIDI output device but

from then on the task is slightly more complicated and requjres the u e of the

second class MIDIListener. Forwarding incoming MIDI mes ages to all ar as of

the program involves a callback mecharusm provided though object clas

inheritance. An object class that needs to be informed of any received me age

must inherit from MIDIListener and overload the MidiMessage function. It i

not necessary for any other function calls to be made b cause the MIDILi tener

makes the correct references at construction. The following show the definition

of MIDI Listener:

class MIDIListener
{
public:

MIDIListenerO;
virtual -MIDIListenerO;
virtual void MidiMessage(BYTE status, BYTE dataA, BYTE dataB, DWORD timeStamp) 0 ;

};

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 166 of 177

6.2 - Accessing and Distributing MIDI Information
: ·.·'H..-:..-:.>.~'Io'~~..!;¢,"':.,IOto.t.!'O!!I-

Any class that inherits and overloads correctly has its version of the MidiMessage

function called automatically by the MIDIManager whenever a MIDI message is

received. At this point 'status', 'dataA' and 'dataB' contain the message and

'timestamp' contains the arrival time of the message specified in milliseconds

from system boot up. As an example of use the following code is the overloaded

MidiMessageO function from Super Diffuse's CMidiControllerInput class: (Note

MIDI status byte conversion functions also written into the MIDI management

module)

void CMldIControllerlnput::MldiMessage(BYTE status,BYTE datBA,BYTE dataB,DWORD timeStamp)
(

if«MIDlstatusToChannel(status) == mldiChannel) &&
(MIDlstatusToType(status) == MIDLCONTROL_CHANGE) &&
(dataA == midiControlierNum»

if(target)
target->SetValueEKtemal(dataB);

In the above example it is clear how obtaining and translating a simple Control

Change message is not as simple as it might be. It should be realised that

reception of MIDI messages in this manner is not particularly efficient as a

complete function call is used for every MIDI listener, for every message; in

addition, the inherent callback mechanism effectively means that MIDI message

reception runs in a separate thread of execution and thread synchronisation needs

to be considered. If Control Change messages are the only desired input and no

direct notification of message reception is required the MIDIManager class

provides an alternative.

The MIDIManger object automatically tracks value changes to all Control Change

addresses across all 16 MIDI channels on the current input device. These values

are stored in a 16 • 128 array for later access. This method does not suffer from

thread synchronisation problems. A call to GetControllerValueO specifying midi

channel and CC id returns the last sent value of the specified Control Change

address. Additionally the manager provides GetMappedControllerValueO which

automatically maps from the MIDI CC range (0 . .127) to the range specified. As

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 167 of 177

6.2 - Accessing and Distributing MIDI Information

an example the following code is the UpdateO function from Ricochet

MIDIScalarController class:

void MIDIScalarController: :Update(long time)
{

RController::Update(time);
value = midiManager.GetMappedControlierValue{{lnt)GetParameter(O).GetValueO,

(Int)GetParameter(1).GetValue() ,
GetParameter(2).GetValueO,
GetParameter(3).GetValueO);

In the above the UpdateO function 'polls GetMapped ontr llerValue t btain a

pre mapped value; RParameters are used to set range, channel and addre .

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 168 of 177

7.1 - Super Diffuse and M2
., ~".; :.-, '.... ", """ ... ~~~"~.

7 Conclusions

7.1 Super Diffuse and 112

M2 and its control software 'Super Diffuse' has successfully diffused during real

concert perfonnances and at the time of writing it, or its successor M3, is

scheduled to 'perfonn' in the upcoming USSS Sound Junction 2005. Comments

from users have been both favourable and constructive. M2 has resulted in the

fonnation of a diffusion software development partnership between the

Universities of Bangor, Belfast, Binningham, Edinburgh and Sheffield and this in

itselfis a very exciting future prospect. The presentation of 'M2 Diffusion - The

live diffusion of sound in space ,112 at ICMC 2004 is expected to promote further

development interest.

7.2 SRP and 'Ricochet'

The 'Source Ray Pickup Interaction' concept for modelling the 'Virtual Sound

Environment' has provided a promising expansion of the basic waveguide

network. By classifying and implementing distinct entities for spatial signal

processing a modular spatial waveguide network framework has been conceived.

The 'Ricochet' project creates a practical test bed for an SRP interaction model.

The testing has proved that the SRP technique can be implemented successfully in

a real-time host based system. Modularity of the Ricochet Software Development

Kit has enabled 3rd party exploration of the SRP model without the need to

redevelop an entire framework.

112 Moore, A; Moore, D; Mooney, J: 2004

D. R. Moore 'Real-time Sound SpatiaHzation, Software Design and Implementation' Page 169 of 177

7.3 - In summary
" ~\-- ,";~- -,,,,,,,·.·,.'('·~"·!~l·..-<r~';·;.F·';;.,~:",;,.-;;;

'A model is a simplification of reality. ,113 However, this model can be improved

and refined; it is hoped that' Ricochet' will act as a basis for future expansion of

the SRP model and as an example of geneml implementation techniques for the

3D sound spatialization models of the future.

7.3 In summary

From its inception in 1999, this project has set out to produce new tools for

spatialization of sound. Two tools have been successfully implemented and offer

sound artists new ways of working. In creating new tools the possibilities for

creativity have been expanded but it is the products of such tools that will

detennine their usefulness. It is hoped that the products of this research will

further future creative possibilities.

7.4 Personal Reflection

As I write this thesis and consequently reinvestigate deep-rooted aspects of the

software projects, I find myself wishing to redesign these more elegantly or for

increased features. This is clearly a factor of my increasing programming

experience, but also reflects my ongoing interest in this field. If time were

limitless I would explore many more of the ideas described in the futures section

of each project. However, I expect to find that all explored avenues will create yet

more future possibilities. Time is a precious commodity and I have found it

difficult to stop modifYing or tweaking projects in order to present this 'snapshot'

ofperbaps limitless research scope. I am hopeful that the requirements of working

in a team will force focused and well constrained development plans that will

further the research in steady stages.

The M2 system specifically has been a highly successful project for the University

of Sheffield Sound Studios. Interest from third parties in both industry and

1\3 Booch, G; Rumbaugh, J; Jacobson, I: 2003, p.6

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 170 of 177

7.4 - Personal Reflection

academia has been exceptional, much greater than I had expected. At the time of

writing, the studios have had development interest from Richmond Audio and

have entered a collaboration agreement with DACS Ltd to co-create a specialized

control surface for diffusion. Links created from this collaborative venture

provide a basis for future research in both Ricochet and Super Diffuse. I hope that

this forum will eventually lead to a concept for a spatialization tool that unifies

and extends the projects presented here.

Perhaps most pleasing are the comments I have had from users. At Bangor,

Andrew Lewis made the decision to use the M2 system in place of the system that

had been previously set-up. I felt that this made a strong case for the significance

of the project. Jonty Harrison of Birmingham was asked about his interest in the

M2 system by James Mooney during a recorded interview and had these

complimentary words on M2 relating to his visit to Sheffield ' .. .! think it's

fascinating and the control is fantastic - and I want one ... '. Later he enquires

about a Macintosh version and talks about some of the things he would explore

with the M2 system in its current state. Harrison seems very keen to explore

sound diffusion using the M2 system and provide very constructive feedback for

future versions. I think that this is an extremely positive outcome from the project

and I expect it to further potential research at Sheffield for some time.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 171 of 177

References

Akenine-Moller, T; Haines, E. (2002). Real-Time Rendering Second Edition.

Natick, Massachusetts: A K Peters.

References

Baudelaire. (1997). 'Presentation of the Gmebaphone concept and the

Cybemephone instrument.' in Composition Diffusion en Musique Electroacoustic

Volume III. Academie Bourges: Editions MNEMOSYNE. pp. 266 - 281

Booch, G; Rumbaugh, J; Jacobson, I. (2003). The Unified Modeling Language.

Boston: Addison Wesley.

Bourg, D. M. (2002). Physicsfor Game Developers. Sebastopol: O'Reilly.

Brown, S. (2000). Visual Basic Developers Guide to the Win32 API. San

Francisco: Sybex.

Chowning, J. (1971). 'The Simulation o/Moving Sound Sources.'

http://ccrma.stanford.edu/courses/220a-fall-200 l/chowning.pdf

Copeland, D. (2000). 'The Audience At The Center: Diffusion Practice at Sound

Travels.' Toronto.

http.llwww.soundtravels.ca!soundtravels/2003/audcen.html

Coulter, D. (2000). Digital Audio Processing. Lawrence, Kansas: R&D Books.

Davis, G; Jones, R. (1990). Sound Reinforcement Handbook Second Edition.

Milwaukee: Hal Leonard.

Dobrian, C; Zicarelli, D; Puckette, M. (1997). MSP The Documentation. San

Francisco: Cycling '74.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 172 of 177

Eberly, D. H. (2001). 3D Game Engine Design. A Practical approach to Real

Time Computer Graphics. San Francisco: Morgan Kauffinan.

References

Everest, F. A. (1994). The Master Handbook of Acoustics 3rd Edition. New York:

TAB Books McGraw Hill.

Farrell, B. (2001). 'Adrian Willaert (1490-1562).'

http://www.ptloma.edu/music/MUHlcomposers/willaertlwillaert.htm

Feuer, A. R. (1997). MFC Programming. Reading, Massachusetts: Addison

Wesley Longman Inc.

Gregory, K. (1997). Special Edition Using Visual C++ 5. Indianapolis: Que

Corporation.

Harrison, J. (1999). 'Diffusion: theories and practices, with particular reference to

the BEAST system.'

http.!/cec.concordia.calecontactIDiffusionlBeast.htm

Humphreys, B. (2002). '3DS File Loader Tutorial.'

http.!lwww.gametutorials.comffutorials/opengIlOpenGLPg4.htm

Jones, A; Ohlund, J. (1999). Network Programmingfor Microsoft Windows.

Redmond, Washington: Microsoft Press.

Jones, R. M. (2000). Introduction to MFC Programming with Visual C++ . New

Jersey: Prentice Hall PTR.

Lengyel, E. (2002). Mathematics for 3D Game Programming and Computer

Graphics. Hingham, Massachusetts: Charles River Media.

D. R. Moore 'Real-time Sound Spatiallzation, Softw.e Design and Implementation' Page 173 of 177

Love, R. (2003). Linux Kernel Development. Indianapolis: Sams Publishing.

Malham, D.G. (1998). 'Approaches to spatialisation.' Organised Sound. 3(2).

pp.l67-177

Malham, D.G. (2000). 'Homogeneous and Nonhomogeneous Surround Sound

Systems.'

http.l/www.york.ac.uk/instlmustechl3daudio/homogeneous.htm

Messick, P. (1998). Maximum MIDI Music Application in C++ . Greenwich,

Connecticut: Manning Publications.

Mooney, J. (2000). 'Ambipan and Ambidec - Towards a Suite ofVST Plugins

with GUI for Positioning Sound Sources Within an Ambisonic Soundfield in

Real-time.' York.

http.//www.york.ac.uk/inst/mustech/gsp/mustechprojects.html

Moore, A; Moore, D; Mooney, J. (2004). 'M2 DiffuSion - The live diffusion of

sound in space. 'Miami: ICMC 2004.

Palombini, C. (1999). 'Musique Concrete Revisited.'

http://www.rem.utpr.brIREMv4/voI4/arti-palombini.htm

Penfold, R. A. (1995). Advanced MIDI User's Guide Second Edition. Kent: PC

Publishing.

Petzold, C. (1999). Programming Windows Fifth Edition.

Redmond, Washington: Microsoft Press.

Poli, G; Rocchesso, D. (1998). 'Physically based sound modelling.' Organised

Sound. 3(1). pp. 61-76

References

D. R. Moore 'Real-time Sound Spatlallzatlon. Softw .. e Design and Implementation' Page 174d1n

Roads, C. (1996). The Computer Music Tutorial. Cambridge, Massachusetts: The

MIT Press.

Roads, C. (1997). 'Musical Space: the virtual and the physical.' Composition

Diffusion en Musique Electroacoustic, Volume III. Academie Bourges: Editions

MNEMOSYNE. pp.l58-160

Rolfe, C. (1999). 'A Practical Guide To Diffusion.'

httP.!/www.soundtravels.calsoundtravels/2003/difpract.html

Rumsey, F. (2001). Spatial Audio. Oxford: Focus Press.

Schildt, H. (1998). C++: The Complete Reference Third Edition. Berkeley:

Osborne McGraw Hill.

Sedgewick, R. (1999). Algorithms Third Edition in C++ . Reading,

Massachusetts: Addison Wesley.

Serway, R. A. (1996). Physics for Scientists and Engineers with Modem Physics

Fourth Edition. Philadelphia: Saunders College Publishing.

Smith, J. O. (2002). 'An Acoustic Echo Simulator.', 'Converting Propagation

Distance to Delay Length.', 'Spherical Waves from a Point Source.' Physical

Audio Signal Processing.

httP.!/www .ccrma.stanford .edu/-ios/waveguide/ ...

Spain, M; Polfreman, R. (2001). 'Interpolator: a two-dimensional graphical

interpolation system for the simultaneous control of digital signal processing

parameters.' Organised Sound. 6(2). pp.147-151

References

D. R. Moore 'Real-lime Sound Spatlallzation, Software Design and Implementation' Page 175 of 177

Stark, S. H. (1996). Live Sound Reinforcemen: A Comprehensive Guide to P.A

and Music Reinforcement Systems and Technology. Emeryville, California: Mix

Books.

References

Steinberg Soft- und Hardware GmbH. (1999). 'Visual Studio Technology Plug-In

Specification 2.0 Software Development Kit Documentation Release #1.'

Germany: Steinberg.

http.!lwww.steinberg.de (By application only)

Steinberg Soft- und Hardware GmbH. (1999), 'Audio Streaming Input Output

Specification, Development Kit 2.0 Document Release # 1.' Germany: Steinberg.

http.!lwww.steinberg.de (By application only)

Stevenson, I. (2000), 'Diffusion: Realisation, Analysis and Evaluation', ACMC

http://www.mikropol.netlvolume6/stevenson i/stevenson i.html

Stroustrup, B. (2000). The c++ Programming Language Third Edition. Reading,

Massachusetts: Addison Wesley.

Truax, B. (1997). 'Composition & Diffusion. Space In Sound In Space.'

Bourges.

http.!lwww.sfu.cal-truaxlbourges.html

Williams, A. (2000). Windows 2000 Systems Programming Black Book.

Scottsdale, Arizona: Corolis.

Wishart, T. (1994). Audible Design. UK: Orpheus the Pantomime Ltd.

Woo, M; Neider, J; Davis, T; Shreiner, D. (1999). Open GL Programming Guide

Third Edition. Reading, Massachusetts: Addison Wesley.

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 176 of 1n

References
·..f,J)t<t;i>::.l.;''m'J:.I~~~.

Wyatt, S. A. (1999). 'Investigative Studies on Sound DiffusionlProjection.'

Illinois.

http.llcec.concordia.ca!contactIDiffusion!Investigative.htm

Zicarelli, D. (1998). 'How to Write MSP Externals Revision 3 of 1.'

http.llwww.cycling74.com

Zvonar, R. (1999), 'A HISTORY OF SPATIAL MUSIC'

http://www.zvonar.com/writing/spatial music/History.html

D. R. Moore 'Real-time Sound Spatialization, Software Design and Implementation' Page 1nof1n

