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Abstract

‘Real-time Sound Spatialization, Software Design and Implementation’ explores
real-time spatialization signal processing for the sound artist. The thesis is based
around the production of two prototype software projects, both of which are

examined in design and implementation.

The first project examines a conceptual method for performance based
spatialization mixing which aims to expand existing analogue designs. ‘Super
Diffuse’, proven performance grade software and the encompassing M2 system, is

submitted, for model evaluation and example.

The second project focuses on Physical Modelling Synthesis and introduces
‘Source Ray Pickup Interactions’ as a tool for packaging real-time spatialization
digital signal processing. Submitted with the theoretical model is the ‘Ricochet’
software, an implementation of ‘Source Ray Pickup Interaction’. ‘Ricochet’

serves as a model evaluation tool and example of implementation.
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Preface

In 1998, during the second year of my study for BA in Creative Music
Technology, I decided to produce a piece of sound panning software influenced
by a workshop hosted in Manchester’s ‘Green Room’. The workshop was my first
experience of both electro-acoustic works and the performance of live stereo
sound diffusion and I was struck by the complexity of controlling spatialization of
sound. During the homeward journey a discussion of the workshop with my
undergraduate supervisor Braham Hughes led to a proposal for a project to link
Opcode MAX software control with the Yamaha O1V mixer producing a
quadraphonic surround panning system. During 1999 I was introduced to the
digital signal processing extension to MAX, MSP. Dissatisfied with the graphical
interface possibilities of MAX, I decided to create a dual component octa-phonic
panning system with separate GUI software and MAX/MSP processing. ‘Deep
Pan’, produced for the project, was my first large scale attempt at improving both
the control of sound source positioning and the quality of its realization.

During rehearsals for the first, and only, demonstration of ‘Deep Pan’ | was

introduced to Dr Adrian Moore of The University of Sheffield and we discussed
the possibility of researching software tools for sound spatialization. It was very
clear from this meeting that we were both interested in producing fully working

tools that would be used by resident composers.

Having accepted the invitation to study for a PhD at Sheffield, I spent the summer
investigating tools and technologies available for audio software development. At
the time I believed that the forefront of future audio software design would be
with host based audio processing, a personal opinion I still hold today. I became
interested in Steinberg’s VST (Virtual Studio Technology) plugin and ASIO
(Audio Streaming Input Output) systems. In order to develop software with these
technologies it was simplest to use C++ and I spent the majority of the summer of
1999 leaming both the language, Steinberg API’s and PC GUI related API’s:
Win32, MFC, OpenGL and DirectX.



The first software I produced at Sheffield was a suite of plugins to perform 3D
panning inside Steinberg’s Cubase VST. At the time the VST SDK did not have
multi-channel capability for anything more complex than stereo. In order to write
this software I designed a background audio bussing system that could sit behind
the processing engine of Cubase. Although this method performed correctly, it
was essentially a software ‘hack’ and was always prone to error or incompatibility
with future Cubase versions. It became clear from this early work that the VST
SDK 1 would not be suitable for multi-channel spatialization' and I focused my

attention on designing stand alone applications for sound spatialization.

My first developments of stand alone software at Sheffield were aimed at
producing 3D panning systems and these very experimental attempts culminated
in the Source Ray Pickup Interaction concept and the first usable prototype of
‘Ricochet’ presented in this thesis. At this point my understanding of live sound
diffusion was becoming more focused and while setting up stage lighting for the
‘Sound Junction 2003’ concert [ was inspired by the venue’s digital lighting
console to design a similar parameter mapping system for an audio mix matrix.
This became the basis of ‘Super Diffuse’ and, later, Sheffield’s M2 diffusion

system.

While researching some of the current techniques in audio software development I
have on a number of occasions been faced with a choice of development
language. C++ is my language of choice because it is widely documented and the
object orientated conceptualization appeals to me. Obviously there are other
popular OO languages, JAVA or Smalltalk being first to come to mind. Whilst I
appreciate that other languages could certainly have been used, I have found C++
an ideal language for audio development. Furthermore, in learning C++ or any

other language, I have personally found code examples to be an efficient method

! Steinberg’s VST SDK2 now supports multi-channel plugins for use in its current flagship
software Nuendo. During my initial research I made a number of posts to the VST SDK
development mailing list regarding both a necessity for multi-channel capability and the discussion

of ‘workarounds’ that had been made by myself and others.



of understanding the exact workings of a software example. I therefore present

real annotated and commented code examples from the actual research software.

Software engineering is a field I have approached from a background in music
and creative music technology. This thesis illustrates and complements my

research into creative spatial audio production tools.

The real-time tools designed and implemented in this thesis represent my attempts
to expand the current creative toolset. I present two tools, each representing one
sound spatialization school of thought; live projection of pre-composed works and
simulation of physical properties of sound. In both designs I focus on the need for
appropriate control structures. Further, I highlight the possibilities of expandable

frameworks and show, by example, how such systems can be implemented.

D. Moore, University of Sheffield 2004



1 Introduction

1.1 Why spatialize?

‘To deploy space is to choreograph sound: positioning sources and
animating movement.’

As humans, an ability to hear the world in three dimensions augments the other
senses in making us spatially aware of our surroundings. Primarily this spatial
hearing is a survival advantage but it also provides the composer and performer

with scope for artistic experimentation.

‘The very nature of acoustic transmission of sound within the air as a
medium invites composers to manipulate spatial properties in
performance. As soon as more than one performer is present there is a
spatial element J

Spatialization of sound is commonplace in modem sound art but its use has been

long documented prior to the dawn of stereo or even the electronic age.

Stevenson and Zvonor® describe the antiphonal® music of the medieval church as
the first historical example of spatial performance before highlighting
Renaissance Venice and specifically Basilica San Marco. Considered the central
location for Venetian music during the 16th century, the basilica housed two
spatially separated organs and choir lofts® prompting the cori spezzati’
compositional technique. Adrian Willaert, appointed maestro di cappella® of
Basilica San Marco in 1527, composed the earliest known work in this style,

2 Roads, C: 1997
3 Stevenson, 1: 2000
4 Zvonor, R: 1999

s Antiphonal: (Greek, meaning 'sounding across') A religious chant sung as
responses between a single voice and a group of voices, or between two different
groups of singers. The effect is described as antiphonal.

¢ Farrell, B: 2001
? Cori spezzati: (talian, meaning ‘broken choir’)

* Maestro di cappella: (ltalian, meaning *director of chapel choir’)

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 12 of 177



1.1 - Why spatialize?

Vespers (1550), featuring ‘dialog form’ and echo effects. The practice of cori
spezzati was continued and extended by Andrea Gabrieli and his nephew Giovani

Gabrieli, producing works with up to five choirs.

These techniques became more widespread throughout Europe. Zvonor notes
Spem in alium (1573) by Thomas Tallis featuring 40 separate vocal parts arranged
into eight 5-voice choirs and Orazio Benevoli's Festal Mass (1628), having 53
parts with two organs and basso continuo. Stevenson further highlights the use of
antiphonal choral effects in J.S.Bach’s St. Matthew Passion and Mozart’s
Serenade in D for 4 Orchestras

Spatial sound became used for theatrical effect during the Romantic period.
Examples include Hector Berlioz's Requiem (1837), Giuseppe Verdi's Manzoni
Requiem (1874) and Gustav Mahler's Symphony No. 2 (1895). In these examples

brass ensembles perform either offstage or enter from locations offstage.

During the 20" century similar use of moving, offstage or spatially separated
ensembles is employed in Charles Ives’ The Unanswered Question (1908). Henry
Brant's Antiphony 1(1953), Voyage Four (1963) and Windjammer (1969) take
these ideas further.

Pierre Henry and Pierre Schaeffer created a repertoire of works for tape for
playback using a 4 channel tetrahedral configuration of loudspeakers, with Front
Left, Front Right, Back, and Overhead. In order to control distribution of the
sound, Schaeffer used an interface named the potentiométre d'espace (1951)
which used induction coils to control the signal routing. The photograph below
shows Pierre Henry performing with the potentiométre d'espace during a concert
at the Salle de L'Ancien Conservatoire, Paris, 1952°. It is perhaps the first

example of a real-time spatialization mixing and control system.

° Palombini. C: 1999

D. R. Moore ‘Real-time Sound Spatialization, Software Design and implementation’ Page 13 of 177



1.1 - Why spatialize?

Stockhausen's Kontakte (1960) is an example of a composed work spatialized for
quadraphonic playback. Stockhausen made use of rotating loudspeakers
surrounded by microphones in order to obtain the effect of rotating sound sources.
Essentially Stockhausen is in effect creating a real physical modelling system in
order to spatialize, i.e. a simplified system in order to produce the effects of a

complicated one.

The Philips Pavilion, an Installation of the Brussels Worlds' Fair, featured the tape
composition Poeme Electronique (1958) by Edgard Varese. The sound system
used 11 independent channels and projected these channels though 425
loudspeakers located around the pavilion. In order to control sound projection

motion effects were recorded and reproduced from a control tape.

Following the Brussels system, Stockhausen continued to employ space in his
composition, notably producing works for performance in the German pavilion at
Osaka EXPO 70. The pavilion was a geodesic dome containing 55 loudspeakers
arranged in 7 rings fully surrounding both performer and listener. Stockhausen

commented on the experience of the pavilion:

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 14 of 177



1.2 - The need for sound spatializatiqn tgp[s. N

‘To sit inside the sound, to be surrounded by the sound, to be able to
follow and experience the movement of the sounds, their speeds and
forms in which they move: all this actually creates a completely new
situation for musical experience.’

These large scale performances prompted the use of spatialization in multimedia
installations with two notable examples, John Cage and Lejaren Hiller’s HPSCHD
and David Tudor’s Rainforest IV (1973). Both audio/visual installations made use
of multiple loudspeakers but the latter also explored the acoustical characteristics

of resonant sculptures hanging in the performance space.

In 1964, John Chowning, a graduate of Stanford University, created a software
system on the Music IV computer that allowed a synthesized sound source to be
moved along a user defined trajectory'®. Amplitude, doppler and reverberation
localisation cues were generated by the program and written to a four channel
quadraphonic tape. This is the first example of a computer being used to control

and create spatialized sounds.

1.2 The need for sound spatialization tools.

In the recently published book ‘Spatial Sound’, Rumsey talks briefly about the

increasing consumer interest in spatially encoded sound.

‘The later part of the twentieth century, particularly the last ten years
gave rise (o a rapid growth in systems and techniques designed to
enhance the spatial quality of reproduced sound, particularly for
consumer applications. Larger numbers of loudspeakers became
common and systems capable of rendering fully three-dimensional
sound images were realised by means of the digital signal processing
available in relatively low cost products.’ '

Rumsey goes on to comment on new audio media formats acting as the catalyst

for this increasing interest:

'° Chowning, J: 1971
"' Rumsey, F: 2001, p.ix

D. R. Moore ‘Real-time Sound Spatiaization, Scftware Design and Iimplementation’ Page 15 of 177



1.2 - The need for sound spatialization tools_.; o

‘In recent years the development of new consumer audio formats such
as DVD, and digital surround formats for cinema and broadcasting
such as Dolby Digital and DTS, have given a new impetus to surround
sound. The concept of the home cinema has apparently captured the
consumer imagination, leading to widespread installation of surround
sound equipment in domestic environments.’ 12

Other accounts of the increasing interest in surround formats are apparent,

Malham, of the University of York appearing to agree, stating the following:

‘In the dying years of the twentieth century, after more than a hundred
years of recorded sound and half a century in which the use of two
channel stereo has been widely regarded as synonymous with the high
fidelity reproduction of recorded music, multichannel surround sound
has finally begun to make real inroads into the audio market.

It is conceivable that this interest in consumer surround technologies will continue
and future systems will become more sophisticated, perhaps introducing newer

surround formats.

Dramatic increases in the computing power of the average home computer and the
introduction of high quality and cost effective multi-channel audio I/O cards have
enabled the average composer and performer access to sound technologies that
were previously confined to the large production studio. This progressive
lowering of sound processing latency'* and increase of sound processing power
has brought the possibility of real-time spatial signal processing technology into
the forefront of even low budget studio technology. In essence, the sound artist is
presented with an audience that has an increasing interest in spatial sound design
and composition. Perhaps then, composers and performers should be provided
with spatial sound design tools to explore and produce works for the consumer

surround sound of today and the spatialization formats of tomorrow.

With this in mind this research sets out to explore techniques that can help to
broaden the range of spatial sound design software available to the artist. While

"2 ibid., p.17
'* Malham, D. G: 2000
" In audio host based processing, latency refers to the processing time delay between input and

output.

D. R. Moore ‘Real-time Sound Spatialization, Software Design and implementation’ Page 16 of 177



1.3 - Fundamental categories of sound spatialization

Hive

researching and expanding spatial techniques the further aim is to develop
prototype spatial sound design and performance software.

1.3 Fundamental categories of sound spatialization

Typical techniques for spatialization of sound could be categorised into two very
general methodologies:

o Direct spatial positioning of sources, encoding for a known playback
configuration, i.c. modelling of source spatialization with some degree of
accuracy.

e Projection of pre<composed multi-channel source material into a
performance space, i.e. controlling or modifying spatialization

appropriately for an audience within a given space.

Positioning audio images within a known speaker configuration such as stereo or
5.1'% is often achieved using mathematical panning laws. Each panning law
govems the appropriate balance of source audio within the given setup, use of
stereo panning laws in mixing hardware being the most common spatialization
usage. In a similar fashion, the use of ambisonic techniques allows direct
positioning and encoding of source material for decoding and playback through
any given speaker configuration. Essentially both of these techniques provide
usable and often realistic spatially encoded source material. However, both rely
heavily on accurate loudspeaker design and placement together with ideal
listening conditions, i.e. the listener is positioned at the ‘sweet spot’ within the
configuration and the listening space has sufficient acoustic treatment to limit

colouration of the source image.

‘Even on a good hi-fi system, with the listener in the ‘sweet spot’, the
stability of the stereo image is notoriously fickle — turning or inclining

'*5.1: An increasingly common home and cinema surround sound format consisting of 5 full

frequency range speakers and a single sub bass unit.

0. R. Moore ‘Real-time Sound Spatialization, Software Design and implementation’ Page 17 of 177



1.3 - Fundamental categories of sound smﬁalinﬁm

SR

the head, or moving to left or right by just a few inches, can cause all
kinds of involuntary shifis in the stereo image. 16

Inherently, the conditions for the ideal listening environment can be difficult to
obtain for the large audience in a large space. In this case the only realistic
solution capable of retaining an accurate image for the individual is to provide
independent headphones for the whole audience. Clearly, this practice would be
difficult to achieve logistically and the associated audience discomfort would be
undesirable. A multi-channel headphone solution, although possible, suffers from
inflexibility in configuration. For example a single headphone driver design may
be incapable of playing a stereo piece and an eight channel piece without some
elaborate system of reconfiguration, remapping of spatial content being

unacceptable in this context.

Contrary to the above concept of pre-defining exact spatial imaging, sound
projection or diffusion is often used to present an audience with a vision of the
sound that is complemented by the acoustics of the performance space and is
tailored for the audience size and location. Here, the idea is to project a
composition, commonly stereo or eight channel spatially encoded, through a large
number of IoudSpe:akelsl7 positioned strategically within the performance space.
As Harrison describes, ‘...the number and positioning of loudspeakers is
primarily a function of the concert space 8

In a typical diffusion concert the ‘projectionist’'?

, often the composer of the
work, strives to present the audio such that precomposed spatial encoding makes
ideal use of the space. It is often argued that this sound diffusion practice is
flawed and can be detrimental to a composed piece. Wyatt observes a number of

composers with this opinion’’. Obviously, inherent multi-loudspeaker phase

'* Harrison, J: 1999

'7 Twenty or more loudspeakers being typical, Harrison informs the author that he has used more
than eighty in some BEAST concerts.

'* Harrison, J: 1999

19 «projectionist’ sometimes referred to as the * Diffuser’

2 Wyatt, S. A: 1999

D. R. Moore ‘Resl-time Sound Spatiakization, Software Design and implementation’ Page 18 of 177



14 - Existing technology

er

cancellations and complex performance venue acoustics are clear evidence that a
piece will not reach an audience exactly as it did in the studio environment.
However, in the absence of a perfect solution, sound diffusion systems provide a
method of creatively presenting a work that is acceptable, in fact desirable to
many composers. The final decision of whether or not to employ diffusion resides
with the composer and therefore it is a creative choice, not a scientific necessity.

As Wishart states:

‘So scientists be forewarned! We may embark on signal processing
procedures which will appear bizarre to the scientifically
sophisticated, ... ...The question we must ask as musicians however is
not, are these procedures scientifically valid or even predictable, but
rather. do they produce aesthetically useful results on at least some
types of sound materials. 2!

Later, this thesis presents two software concepts that are designed with the above
categorisations in mind. The first software system focuses on diffusion of spatially
encoded material. The second is aimed at the design and reproduction of
specifically positioned sound sources. However, it should be noted that although
the tools have been categorised and their design was focused on particular usage,
their use in practice is entirely down to the user. For example Harrison
commented?? that he would find the M2 system suitable for composition as well

as live diffusion.

1.4 Existing technology

Many tools already exist for the purposes of spatializing sound. The intention of
this research is to produce a number of new tools, not to replace old ones that
have already proved their worth. It is hoped that by expanding the basic toolset for
the sound artist, the possibilities for creative exploration can be increased. The

' Wishart, T: 1994, p.§
22 Harrison, J: verbal discussion during M2 development meeting, University of Sheffield Sound

Studios

D. R. Moore ‘Rest-time Sound Spatialization, Software Design and implementation’ Page 19 of 177



1.4 - Existing technology

following sections describe a brief cross section of some tools available, but this is

by no means a full discussion of all existing tools.

1.4.1 Plan view spatial panning

Spatial panning is often presented in the form of plan view visualization of the
surround format. Simple two dimensional control hardware, often joysticks or
direct mouse control, is used to control the source positions within the view. Often
this X/Y 2D position forms only part of the panning algorithm with additional

controls specifying other algorithm factors.

This plan view basis is the approach taken by the stock surround plugins of
Steinberg’s ‘Nuendo’. Although it is possible within Nuendo to present much
more complex and perhaps intuitive interfaces, this approach has the advantage of
simplicity in use. Perhaps the most significant disadvantage is the inability to

easily express vertical movement from a simple plan view.

The following screenshots show Steinberg’s Nuendo version 2 software making

use of 2D plan view panning.
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The above image shows a single monophonic source panned to the centre of a 7.1
cinema output setup. Blue bars extending outwards show the signal gain for each
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output speaker. Other panning methods make different use of the 2D plan view
concept. The following display pans audio using a distance based algorithm23 f

circles show amplitude drop in dB for each radial distance:

The image below shows the simple plan view pan controls on 4 monophonic

audio channels.

In these examples it should be noted that each source is displayed on a separate
plan view. It may make sense in some situations to provide a plan view interface
that displays all sources in one viewing area. This way the relative positions of

sources can be more easily visualized.

Spain and Polfreman present ‘Interpolator’,24 a very hybridized plan view system
using a ‘light model” for controlling the interpolation of parameters. It would

seem feasible that this model could be used for the spatial positioning of sounds.

2 Based on the inverse square law 1/distance®

2 Spain, M; Polfreman, R: 2001
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1.4.2 Ambisonics

Ambisonics is an extensively researched subset of general sound spatialization
and centres on the concept of mathematically encoding soundfield information
such that it can be decoded for almost any playback configuration. The
transitional ‘encoded’ format is known as ‘B Format’. A number of methods are
available for encoding spatial information including software tools for directly
setting spatial characteristics of source material and direct soundfield
microphones that can capture the spatial characteristics live.

Malham describes a mathematical method in which single sound sources can be
Ambisonically encoded into ‘B format” and decoded for arbitrary speaker
arrays25 . He also describes the difficulties of encoding distance information from
the basic algorithm. In order to encode distance cues, Malham describes the use of

extra digital signal processing techniques.

Mooney”® presents ‘AmbiPan’ and ‘AmbiDec’, VST plugins for direct encoding
and decoding into and out of B Format. Malham and Field present a similar
system of plugins for Ambisonic special encoding and decoding within host
software?’. The GUI version of ‘B-Pan’ is shown below:

o1
S

The following photograph shows the capsule layout of Soundfield’s ‘B Format’

capable microphone the ST250. This microphone, together with its encoding

hardware can be used to record the soundfield directly to B Format.

> Malham, D. G: 1998
26 Mooney, J: 2000

27 B.pan and B-dec software hosted at http:/www.dmalham.freeserve.co.uk/vst_ambisonics.html
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Perhaps the most significant advantage of the Ambisonic system is its ability to
decode the same B Format encoded material into different output formats.
Effectively only the four B Format channels require storage, an immediate saving
on data bandwidth when considering large numbers of output speakers involved in

typical multichannel playback systems such as 5.1.

1.4.3 BEAST - DACS 3D

Harrison presents the BEAST?® diffusion system for the projection of
electroacoustic works. A central concept in the BEAST system is the set of
loudspeakers described as the ‘main eight’, consisting of four matched pairs of
loudspeakers named Main, Wide, Distant and Rear. Harrison regards this set as
‘ the absolute minimum for the playback of stereo tapes.”” . In concert, the
BEAST main eight is augmented with other matched pairs located to best match

the venue: the exact details of these placements are described fully in Harrison’s

paper on the subject.

In order to disperse audio into the multitude of output loudspeakers the BEAST
system uses the DACS 3D console featuring a stereo switch matrix for 24 inputs

into 32 outputs. This system allows any input odd/even pair to be routed to any

28 BEAST - Birmingham ElectroAcoustic Sound Theatre
29 Harrison, J: 1999
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output odd/even pair, the final individual output level being under direct control

of the projectionist via a high quality fader.

DACS 3D (Visible in the above photograph) is a purely analogue design and has
the advantage of being highly robust whilst perhaps lacking in some of the

benefits of digital re-patching or semi-automated control.

1.4.4 Gmebaphone and Cybernéphone

The ‘Gmebaphone’, later known as the ‘Cybeméphone’, presents a flexible digital
control surface for live diffusion. As with the BEAST system, works are pre-
spatialized and projected into the venue at performance time. In the
Cybeméphone the control hardware and complex layout of varied loudspeaker
designs is treated as an instrument in itself. Loudspeakers have been designed and

selected to operate only within limited frequency ranges resulting in varied
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colouration in the output. Baudelaire treats the Cybernéphone as an instrument in

itself;

‘...a huge acoustic synthesizer, an interpretation instrument that the
composer plays in concert, an instrument that serves to express his
composition, to enhance its structure for the benefit of the audience, to
bring it to sonic concretization. £

Loudspeakers are grouped in sets or ‘registers’ with audio routed and controlled
live via the digital console to present the audience with contrasting perspectives.

Below, the photograph shows the 1997 version of the Cyberméphone console.

1.5 Summary

Two general categories of sound spatialization would seem to be in common use;
simulation or recording of realistic spatial audio acoustics and projection of pre-
spatialized audio into a performance space. It is perhaps interesting to note, that in
his paper outlining different spatialization methods, Malham does not reach a

conclusion as to an optimum. However, he does conclude the following:

...the optimum system for composition purposes must remain always
a decision of the composer, to be made on musical, not technical,
grounds. !

30 Baudelaire: 1997, p.268
3! Malham, D. G: 1998
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In all of the above spatialization methods there is a clear need for appropriate
control. With accurate source spatialization systems, (panning and Ambisonics)
interfaces that allow good visualization of the simulated 3D space would seem a
logical choice. In live sound projection or diffusion, interfaces must allow flexible

routing of source sound to outputs.

This research will concentrate on two areas of interest to the sound artist, physical
modelling of real and surreal sound environments and tools for live spatial

performance.

Beginning with some simple theoretical models of sound spatialization and
progressively building them into more generic models, this thesis will attempt to
produce flexible theoretical systems for spatial sound design and performance.
With these theoretical systems to hand the project will propose and implement
real time software tools that will enable the sound artist to experiment and
perform. As increasingly complex models are produced the thesis will cover
theoretical ground necessary for practical implementation of each software

project.
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2 Live Diffusion Mixing and Control

Live sound diffusion of composition or performance is essential for many artists
and provides an enhanced audience experience. It is theoretically possible to
diffuse any number of sound sources into any number of loudspeakers, although
in practice typical concerts diffuse stereo recordings into perhaps twenty
loudspeakers. The configuration of the speakers is determined by the piece and
the performance space. Essentially, the speakers are placed to complement the
space or exploit interesting features in it. The pure logistics of setting up a
performance space often constrain the diffusion system that is built®. As a direct
result of this, the performer or “diffuser’ often has to work with different
configurations of speakers in each performance space. In collaborative
performances of many different composers® works it is often necessary to reach a

compromise in the final diffusion setup.

The goal of this project is to provide a method for diffusion mixing that provides
advantages in logistical setup and an enhanced control method for the performer.
In essence, an attempt is made to step from basic diffusion mixing into a digital

solution with potential for future exploration.

2.1 Diffusion mixing through the Mix Matrix

Diffusion of sound from a single source into multiple speakers is commonly
achieved through the mix matrix. In a mix matrix™ a monophonic source is
essentially split into a number of mono outputs either by use of switching or by
attenuator control. The following diagram illustrates this concept with a four

channel output system: (Circles represent switches or attenuators.

2 Wyatt, S. A: 1999
% Davis, G; Jones, R: 1990, pp.162-163
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When expanded to include a second input the signal flow becomes more
complicated and it is useful to represent it in the form of a grid matrix. The
following diagram represents both the first representation expanded for two inputs

and the grid representation for the same signal flow:

g e m—
o
e — e
:g > —

T 1

It is clear here that complex input/output systems are more easily represented in
this manner. If the matrix is realised with attenuators rather than switches it is
possible to exactly adjust the ‘quantity’ of each input sound going to each output
loudspeaker. Adding further attenuators to the above matrix provides additional

control of input level and individual output level:
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The above matrix allows the additional global control of inputs and outputs in

addition to the balancing/distribution of inputs to outputs.

Using a typical studio mixing desk and a device to split the input signal it is
possible to realise some of the above mix matrix for live performance. As input a
stereo source can be split into odd/even (L/R) pairs of mixer channels and the
direct recording outputs can be used to control the output levels of each individual
speaker. This configuration would typically be complemented with pairs of
speakers assigned such that the stereo left/right spatialization on the recording is
preserved. The diffuser is able to move the stereo ‘image’ between the pairs of
speakers to build up an enhanced 3D image within the performance space. This
configuration provides only a basic implementation of the full mix matrix. The
following diagram illustrates the method with respect to the full matrix. Unused

matrix elements are shown in grey:

[ vwing

It is relatively easy to include inline global input attenuators into the splitter box
to expand on the original technique but the full power of the matrix requires more
complex electronics to be implemented within the mixer and a custom built mixer
is necessary. The DACS 3D** matrix desk expands on the basic studio technology
diffusion desk by providing a switch matrix that allows matrix style routing of

input pairs to output pairs. A basic flow diagram of key features is provided here:

3 See also 1.4.3
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Pairs of channels are routable into output pairs via paired switches and this allows

the diffuser multiple sources to different speakers all with output control.

It is feasible that an analogue mixing console could be produced to provide the
full mix matrix but the ability to control the desk effectively requires some further
thought. Consider a similar matrix to the above with 4 inputs and 4 outputs. This

would require twenty four attenuators. Attenuator totals are equated as follows:

att, , =ins * outs + ins + outs

total
To have hands on control for 24 attenuators is feasible but a more typical 2 in / 24
out system would require controlling 74 attenuators during a performance. A
greatly expanded system would require many more attenuators and the feasibility
of controlling the matrix mix during a performance becomes more difficult. In
addition to control complexity, it is also more difficult to expand an existing
system for more inputs and outputs because the matrix requires interconnection of
every input to every output. Copeland, Rolfe and Truax specifically highlight the
importance of computer control when dealing with large numbers of matrix

parameters’ .

Expansion and simplification of full matrix control with additional modularity of

1/0 requires consideration of digital techniques.

Two methods are considered; control of analogue attenuators via VCA’s and full

digital implementation of the mix matrix in hardware or software. It is feasible

35 Copeland, D: 2000; Rolfe, C: 1999; Truax, B: 1997
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that an analogue matrix mixer be produced that has full VCA automation of all
parameters. A control surface could then be produced to provide hybridized
control methods for the mix parameters. Single faders and pots would control
multiple mix parameters via some form of mapping software. A similar approach
would be taken in a fully digital mixing solution in which mixing is performed by
digital attenuators with an external digital control surface. Essentially both of
these methods split the system into two major components, matrix mixer and
controller. In both cases the expansion of hardware is more difficult than the
expansion of software. However, in an all digital system I/O expansion can be
achieved simply by adding more ADC/DAC devices and reconfiguring software,
whereas the VCA solution requires extensive alterations to matrix and VCA
hardware. Hardware control surface expansion would be difficult in both cases but
the software layer can be adjusted to cater for new mix parameters without adding

new controls. The following diagram illustrates the major concepts for both

methods:
Hardware control Software control Mix Matrix
surface interpreter layer (VCA or Digital)

TTe

The physical layout of the system could be built into a single box but it would be
advantageous to separate mix matrix and control systems into separate units for a
number of reasons: one control system could control many types of mix matrix:
one matrix can be controlled by many different controller systems. Providing a
standard control protocol allows many different controller types to be developed
independently of the mix matrix. In a performance setting, the ability to control
the same matrix using different control devices allows different performers to
have the right control device for their particular piece. For the performance space,
the ability to have a tailored mix matrix without concern for final control method
is beneficial for both cost and setup ease. An added benefit of this modularity is

the ability of one control surface to be mapped to multiple mix matrices.
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One example of this remote mix matrix is produced by Richmond Sound Design
Ltd. The AudioboxAB64% is a 64*64 digital mix matrix produced using dedicated
DSP chips. Versions of the Audiobox have been used for concert diffusion by

37 The system is controlled externally by software and control

‘Sound Travels
communication is via MIDI. This system provides a good basis for diffusion
mixing but its hardware solution is limited in modularity and updateability. For
example, ‘Super Diffuse’, described later, has the ability to work with audio cards
from different manufacturers providing a choice in AD/DA converters and /O
channel specifications. A user is thus able to choose the type of connections
(Digital or Analogue I/O, Microphone pre-amplified etc.) appropriate to the task
at hand while using the same software system. It is also a relatively simple
process to upgrade the ‘Super Diffuse’ software when compared to DSP hardware
solutions such as the Richmond design. A simple sofiware installation program
can install a new version on the user’s system. In a DSP based system it is
necessary to provide a firmware update and transmit it to the hardware unit. By
providing all functionality through software and standardized hardware as much
as possible, the system has the ability to be quickly extended and adapted. For
example, ethemnet devices, used by ‘Super Diffuse’, are periodically upgraded for
improved stability and performance and the software solution is able to
immediately benefit from these upgrades, i.e. kilobit and gigabit ethemet systems
are automatically supported by the operating system. As new general audio cards
are produced, a software system can immediately take advantage of improvements

in AD/DA conversion and higher numbers of channels.

2.1.1 Digital expansion of the basic mix matrix

The use of a digital mix matrix allows integration of many digital processing
techniques into the basic mix matrix software. As an example the system might

consider DSP processing input and output matrix stages. Consider a phase, EQ

3 http://www.richmondsounddesign.com/ab64specs.htm}
37 Copeland, D: 2000
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and variable delay stage placed inline with outputs. Frequency response and phase
of individual speakers could be tailored for the purposes of correcting room
response. The delay stage allows perceived speaker distance to be adjusted for
each output. Accurate calculation of delay times would allow correction of
speaker phase for differing distances. Extreme use of varying delay times would
produce the effect of Doppler shifting. These DSP techniques can be expanded
into other areas of the mix matrix and also to include other effect techniques such
as reverberation or delays with feedback. In essence the mix matrix becomes a

DSP matrix and this is illustrated below:

DSP is inserted into different areas for different requirements: source DSP gives
input source effect (processing of global sound input); output DSP provides
output effect (processing of global sound output); and individual matrix DSP
gives individual input to output effect (processing of individual matrix I/O

connections).

2.1.2 Matrix Auxiliaries

It is possible to add channels that act in a similar way to auxiliary channels on a
standard mixing desk. These auxiliary channels use a mix matrix to receive signal
from sources and then are able to inject the mix back into the main DSP matrix.
The following diagram illustrates these aux input channels and the signal flow

diagram for them.
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This matrix based signal processing increases the potential for creative effects by
providing a huge number of possible parameters with which to perform sound
diffusion. The all digital software implementation allows expansion of signal

processing techniques based on processing power rather than hardware.

2.2 Controlling the matrix

The control of matrix parameters in any live tool is of paramount importance. It is
through control of the diffusion system that the vision of the performer is realized.
The ideal performance controller hardware is of course an area of extensive
research by both artists and manufacturers. A discussion of the many controllers
and interfaces produced for manufacture or in research projects is not a major
concermn of this thesis. However, as DSP variables will always be the target of any
external control, the concept of the parameter is used here to represent a
constrained and automated variable of the DSP system that can be manipulated
from any external device. This hybrid variable can be defined in such a way as to

provide expandability and a layered, tree like control structure.

2.2.1 Parameters (as hybrid variables)

Consider a simple variable representing attenuation amount; it might be defined
so that it should have a maximum value of 127 and a minimum value of 0; using
an integer representation the variable would have 128 steps. The act of setting and
retrieving the variable would require validation of user input and perhaps
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formatting of retrieved data. Automation methods may be different for each
parameter and it is useful to consider automation technique as related to an

individual parameter. The following diagram illustrates the concept of the

parameter encapsulation:
ernal Parameter
ntrol
_[nput Data . [Parameter value ut Data
alidation Method af Formatting

IAutomation Method . [Pirect control of

» JParameter
L

Parameter

The automation method in the above diagram forms the basis of the parameter
tree structure and acts as a placeholder for automation methods. The value
contained in the parameter controls the amount of automation to be applied to
both the raw DSP variable and any target parameters for automation. In addition,
external control is applied via a validation method and feedback of parameter
value is given through an output data formatting method. Hierarchical parameter
control is provided by the automation algorithm being able to control other system

parameters which may in turn control further parameters.

In the simplest of automation algorithms the parameter would provide a direct
mapping from internal value to direct system variable, effectively wrapping the
system variable in a shell. It is possible to have independent data formats for
parameter value and system variable and even multiple system variables

controlled from one parameter value.

As discussed above, the system variables may reside in a different unit to the
control system. It is necessary to allow the parameter construct to access the
system variables in some way. Three methods can be considered: using
parameters to encapsulate the actual DSP matrix variables and perform
automation within the DSP system; directly transmitting data changes from

control system parameters to DSP system variables; maintaining a copy of data
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parameters. The following diagram illustrates these three methods:
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The first two methods are similar, the only significant differences being location

of processing. In the first, parameter processing occurs alongside the DSP

calculations and in the second, parameter processing is the responsibility of the

control system. At first glance the third method would appear to be inefficient due

to redundant data, but the advantage lies in the possibility of varying control and

transmission rates. The extra layer of redundancy allows data to be written

directly to the local variables without concemn for transmission. Copying of the

data can then be performed by a separate part of the system. The following

diagram shows an extension of this third method to provide a more robust system:

T Y
I

Control System

Parameter

IAutomation Method

-

Transmiskion su

Direct control of
Jocal copy variable

Data Validation

Transmission is handled by a transmission sub system and automation can be

continued without concern for the speed of data transmission.
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2.2.2 Data transmission for matrix control

In order to transmit data between controller and matrix two methods are
considered, MIDI and TCP/IP.

MIDI

MIDI data transmission is common place in the studio environment and has a well
established standard but basic MIDI communication has low bandwidth and the
standard CC protocol provides only data values between 0 — 127. Although this
precision can be expanded using MSB/LSB two byte techniques, the parameter
addressing of MIDI is not ideal when considering high numbers of parameters.
Logical channel / parameter addressing with 16 channels and 128 CC addresses
gives 2048 parameter addresses but this is halved in an MSB/LSB solution due to
the requirement of two addresses per parameter. A single 32 * 32 mix matrix
would require 1088 parameters and this exceeds the number available with
MSB/LSB on CC messages. Obviously there are other message types that can be
used along with the CC messages but the protocol quickly becomes illogical.
MIDI channel cannot be used to represent input or output channel so controllers
must be assigned arbitrary CC addresses. In solution to this, a generic messaging
protocol utilizing MIDI System Exclusive is possible, but the extra data overhead
could start to impede transmission performance and the specific SYSEX protocol
takes away some of the advantages of generic MIDI communication between

general music devices.
TCPI/IP - UDP/IP

An improved method is achieved using TCP/IP (Transmission Control Protocol /
Internet Protocol)™® and standard internet networking techniques. TCP/IP uses a
packet based system for data delivery. A given block of data is split into
appropriately sized packets containing destination address, ordering and
validation checksum information before being transmitted. A destination address

3% Jones, A; Ohlund, J: 1999, p.136
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(IP Address) is given using a code in the form (a.b.c.d) where a,b,c and d are
single byte unsigned integers with the range 0-255 e.g. (192.168.3.2). TCP allows
posting of data to an address and is thus called a ‘transport layer’ for
communication. TCP/IP provides reliable data transmission though a system of
timeouts and delivery replies; a system sending data via the protocol waits for a
reply from the target system. If no reply is received within a timeout period the
delivery is assumed to have failed and is re-sent. On receiving, the TCP layer
attempts to reconstruct data from received packets and will send a request for re-
transmission of a packet if corruption has occurred. This implementation of
transport reliability puts additional strain on systems so a second protocol can be
used if high speed is of greater importance than reliability. UDP/IP (User
Datagram Protocol / Intemet Protocol) provides unreliable data transmission with
less overhead and is most suitable for transmissions of streamed data, i.e. data that
will become out of date before it can be re-transmitted. These two transport layer
protocols can coexist on the same IP network. It is possible for a single system to

transmit or receive data from both protocols simultaneously.

Advantages here are the increased data bandwidth and the advanced message
routing, even high bandwidth wireless communication being increasingly
commonplace. At the time of writing Digidesign Pro-Control hardware systems
use a form of IP communication for transmission of data and Pro-Control
technology is well established in both educational and professional studios. The
increased use of general network technology means that TCP/UDP is well tested
and advances are more frequent than in ageing MIDI hardware systems. This
more general use also brings down the market cost of related technology and
hardware. Data transmission of huge numbers of parameters is easily possible due
to the higher bandwidth and the completely configurable data format allows very
logical addressing of the required parameters. For example, it would be very
simple to specify 8 bit integers for channel and parameter address fields giving 216
possible addresses (65536). Data for each parameter address could be of arbitrary

length allowing any precision or format needed.

2.2.3 Multiple control prioritisation and summing
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It is possible to have one parameter adjusted from more than one external
controller or automated parameter. In order to allow this multiple source control it
is necessary to provide some method for combining or selecting source data. Two

methods are considered, priority selection of source data and summation of source

data.
Parameter
[T < iority Switching
" | [Automation Method
Either:
arameter Predetermined or q
utomation Dynamic
A
Parameter irect cortrol of

utomation _\_/‘ Zpyyeae

Source data can be prioritised with predetermined hierarchy or can be dynamically
calculated depending on the state of source data and target value. Consider two
faders used to control a single parameter: In a predetermined priority system,
fader 1 could be given priority over fader 2. If control adjustments came from
fader 2 then the system could decide to only allow control if fader 1 was inactive.
If instead of predetermining the priority it is calculated constantly from a
predefined algorithm then multiple controllers could perhaps be used more

fluidly. In this case either fader could be given priority depending on the current
state of target variables. Many algorithms could be used in this situation such as
use of data from the last adjusted controller; use of data from the most stable
controller; use of data from the controller with the closest setting to the target
parameter etc. A problem with these prioritised controllers is that low priority data

is discarded.

In order to address the problem of discarded data, a method of controller
summation could be used. Summing the values received from each data source
results in data that is responsive to changes in all sources. However, a problem
occurs due to the increased range of the resulting data, i.e. data range [0,127] +
[0,127] gives a range [0,254]. This resultant range may not be compatible with the
target parameter. There are two obvious strategies: either clamp the data to the

correct range, or take the weighted sum of the inputs to obtain the correct range.

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 39 of 177



2.3 - Summary

In clamping the data range, any data above or below the required range will be

discarded. Using a weighted sum or average, the correct range is created from

scaled input sources.

ml

arameter

Earameter
utomation

Earameter
utomation

Range Adjustment

Either:
Clamp or
MWeighted Sum

2.3 Summary

Y

JAutomation Method

Direct control of
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Having described concepts for a theoretical sound diffusion mixing system this

thesis moves on to the implementation techniques used in a real world sound

diffusion software tool.

D. R. Moore

‘Real-time Sound Spatialization, Software Design and Implementation’

Page 40 of 177



31- Develqprngm qulsu .

3 ‘Super Diffuse’ Digital Sound Diffusion

‘Super Diffuse’ was originally conceived to test some of the concepts described in
the previous chapter. The ‘Super Diffuse’ software and related control hardware
forms the ‘M2 Diffusion System’, one of the major projects currently in
development at the University of Sheffield Sound Studios. M2 has, at the time of
writing, been tested in five public performances and has been discussed in three
developer/composer talks. The following text describes the most important
aspects of Super Diffuse’s design and implementation. This section assumes prior

knowledge of software engineering concepts.

3.1 Development Tools

C++ was chosen as a development language for a number of reasons: high speed
compiled applications, very low level access to RAM/hardware and support for
Object Oriented development. C/C++ is at the time of writing the most widely

used language for real-time audio software development.

As with Ricochet, development was achieved with Microsoft’s Visual C++ IDE
but the overall implementation was intended for stability so modular components

were left out of this initial design iteration.

Steinberg’s ASIO*’ (Audio Streaming Input Output) is at the time of writing the
most widely used Audio I/O technology for professional music software and was
chosen over other technologies for its very low latency and wide compatibility. A
more detailed report on Steinberg ASIO and the ‘ASIO Sub System’ dynamic link
library developed to access it appears in 6.1.2, “Steinberg’s ASIO for host based
audio /O’. With regard to the design of DSP frameworks the ASIO, VST and

39 Control hardware designed by Mooney, University of Sheffield.
4° Steinberg Soft- und Hardware GmbH: 1999
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MAX/MSP Externals development documents are valuable references and

examples‘“ :

3.2 Client/ Server, Common functionality

Super Diffuse is designed with a client / server architecture in order to provide
abstraction between signal processing and control. ‘SDServer’ uses the
ASIOSubSystem.dll developed for this thesis to provide a DSP Matrix. TCP/IP
communication is used for transmission of data from the ‘SDClient’ software.
‘SDClient’ provides the graphical interface for controller mapping and connection
to external control hardware via MIDI. Automation is achieved within the
‘SDClient’ parameter system. The use of TCP/IP communication allows the two
pieces of software to operate on independent computer systems if the need arises.

The following diagram illustrates the general software architecture:

ound Input from
ive source or CD

TMEF “%d == mﬁm
RARRRR

The communication between the two pieces of software requires some

commonality in design.

3.2.1 Parameter Mapping

Parameter addressing between client and server uses a common base addressing

for the DSP parameters. The client software uses an extended address map for the

*! Steinberg Soft- und Hardware GmbH: 1999; Zicarelli, D: 1998;
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purposes of automation effects and parameter grouping. The basic map is defined
in the ‘parametersystem’ header and source files. An enumerated type

PARAMETER ADDRESS ROW defines the basic address types as follows:

enum PARAMETER_ADDRESS_ROW

{
PAR_INPUT_GAIN = 128,

PAR_INPUT_MUTE,
PAR_INPUT_ROUTE,
PAR_OUTPUT_GAIN,
PAR_OUTPUT_MUTE,
PAR_OUTPUT_ROUTE,
PAR_MASTER_SECTION,

client side only parameter address rows
PAR_GROUP = 256,

PAR_EFFECT, // the effect fader section
PAR_EFFECT_PARAM// the start of the effects parameters

During development, mute and routing were included for possible future revision

although the current implementation does not yet make use of them.

Stable address handling within the program is performed with the aid of the
CPAddress class defined below:

class CPAddress

{

public:
int addrX;
int addrY;

CPAddress(){ addrX = -1; addrY = -1}, // null addresses are specified as (-1, -1)
CPAddress(int x, int y){addrX = x; addrY = y;};

bool operator ==(CPAddress &op) { return addrX == op.addrX && addrY == op.addrY; %
bool operator I=(CPAddress &op) { return addrX != op.addrX || addrY != op.addrY; };

void Archive(CArchive &ar);

This class provides storage for the X and Y portions of an address with
overloading of boolean operators greatly simplifying use within conditional
statements. The X address refers to the PARAMETER ADDRESS ROW type
described above and the Y address has differing meanings depending upon the
first part of the address. The address fields are both described with 32bit integers
giving large scope for future development. This structure is directly used by
archiving and the same source files being used in both client/server applications.
Common use of source files provides improved consistency during development

due to automatic propagation of changes to both applications.
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3.2.2 TCP/IP implementation, MFC Sockets

TCP/IP communication in Super Diffuse is performed using MFC Sockets, an
encapsulation of Winsock2 which in turn derived from the BSD** Sockets
implementation used in POSIX*’ compatible systems. MFC Sockets provide
simple methods for performing non-blocking asynchronous* networking and are
fully integrated with the MFC GUI functionality that was used in Super Diffuse.

‘ServerComms’ source and header files detail the common ground
implementation, providing 3 major classes ‘SDServerSocket’, ‘SDListenSocket’
and ‘SDClientSocket’ inheriting from the MFC class ‘CSocket’. These inheriting
classes provide the client server architecture for the system and define the
callbacks for interlinking comms and system code. Received messages are pre-

translated and validated before being passed to the application supplied callback.

Socket communication begins with a listening socket (SDListenSocket) waiting
for incoming client socket (SDClientSocket) connection requests. Upon reception
of a client request, the listening socket passes control to an instance of the server
socket (SDServerSocket). Bi-directional communication is possible through this
single client/server socket connection although server to client transmission is at

present used only for initial ‘handshake’ server information.

‘ServerComms’ source also defines some generic structures for data transmission
of parameter values, server information and a general message transmission
header structure. The use of a generic client/server error numbering system further

reduces the code redundancy and reduces potential for bugs.

3.2.3 Heap Array Templates

42 BSD - Berkeley Software Distributions
3 Love, R: 2003, p.54
“4 Jones, A; Ohlund, J: 1999, p.231
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DSPSystem below, uses custom designed Array<> and Array2<> template classes
to provide fast and safe access to heap allocated one dimensional and two
dimensional arrays. Automatic cleanup of heap allocated ram is achieved in class
destructors so the overall memory safety is improved when using these classes
over direct use of new and delete operators. These classes are defined in array2.h
and are also used in other areas of the client/server software. The basic public
interface to these classes is detailed below: (note: implementation has been

removed here)

template < class T >

class Array

{

public:
Array();
Array(int _size),
Array(Array<T> &a);
~Array();

void Destroy();

void Create(int _size),

void Create(int _size, T init);
T& operator [J(int index);
operator T*();

5

The above class supports various constructor methods including a copy
constructor®. Memory allocation is achieved either via parameterized constructor
or directly thought Create() and Destroy() functions. C style array access is
provided with an overloaded [] operator and pointer based usage is proved with
overloaded T*. Array2<> is the 2 dimensional version of the array class with the

following interface:

template <class T >
class Array2

{
public:

int Size();

int SizeX();

int SizeY();

Array2() ;

Array2(int x, inty);
Array2(Array2<T> &a);

void Create(int x, int y);

void Create(int x, int y, T init);
~Array2();

void Destroy();

T& Index(int x, int y);

T& IndexNoBounds(int x, int y);
T* operator{](int x);

* Stroustrup, B: 2000, pp.245-246
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Most functionality is as the Array<> class but element addressing is performed
with the function Index(x.y). At the time of writing C++ did not appear to provide

a method of overloading [][] (2d array subscript operator).

3.3 SDServer specific

One of the most important goals of the SDServer software was to provide a stable
DSP engine that could be run with little human intervention on a remote machine.
It would be extremely difficult to eliminate all chances of error but simplification
in design helps to reduce the chance of human error in development. For this
reason many of the more complex DSP matrix algorithms discussed in theoretical
sections have not been implemented in the initial version although inclusion is

intended in future revisions. A simplified DSP matrix with I/O attenuation forms

the basis of the first SDServer version.

3.3.1 Implementing a real time DSP Matrix

SDServer provides the functionality for signal processing using the
ASIOSubSystem.dll described later in this thesis. Signal processing is handled by
the DSPSystem class defined in SDDSP.h and SDDSP.cpp. DSPSystem::DSP()

forms the basis of the algorithm and its implementation is described below:

(simplified version)

for(o = 0; 0 < numOuts; o++) // cycle the outputs

{

memsetf(out[o],0.0f bufferSize); // clear the output buffer // optimized to float version

/l only process output if gain is != 0

/| perform interpolate for output gains

INTERPOLATE (outputGain[o],ioutputGain[o]);

if(outputGainfo] != 0.0f) // optimize for no processing on output gain 0.0

for(i = 0; i < numins; i++) / cycle the inputs
{
INTERPOLATE (inputGain(i],iinputGain[i]);
if(inputGainl[i] != 0.0) // optimize for no processing on input gain 0.0

INTERPOLATE (matrix.IndexNoBounds(i,o0),
imatrix.IndexNoBounds(i,0));

float mval = matrix.Index(i,o0);

if(mval != 0.0f) // optimize for no processing on matrix 0.0

now do calculation
gain = mval * inputGain[i] * outputGain[o]; // gain calculation
DSPSumToBuss(in[i],out[o],gain,bufferSize); // matrix
summing

}
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}/ end output cycle

Essentially the algorithm is simply a nested ‘for’ loop providing iteration over the
[/O matrix. Three conditional statements optimize the (N?) matrix iteration by
discarding DSP calculations when gain factors are zero. Maximum performance
increases occur when output gains are zero. INTERPOLATE inline function
provides a fast and simple interpolation on gain factors in order to reduce zipper

noise. The algorithm is described below:

#define IP_FACTOR 0.95f // log interpolation factor
inline void INTERPOLATE(float &param, float &target)
{

}

param = (IP_FACTOR * param) + ((1.0f - IP._FACTOR) * target);

Note that the interpolation factor constant [P FACTOR is adjustable to produce a

satisfactory smoothing curve.

DSPSumToBuss() provides an optimized buffer copy operation that provides
optimization when gain factors are one or zero. Copying is performed on 32bit
blocks rather than 8bit for improved performance on 32bit processors. When gain
factor is 1.0 or -1.0 it is possible to remove a redundant per sample multiplication.

‘memsetf{)’ provides the functionality of the C ‘memset()’*®

function but it is
optimized for 32 bit floating point data buffers, copying whole 32 bit floats rather

than 4 bytes.

Gain factors within DSPSystem are stored twice, first written into a temporary
placeholder that can be adjusted by communications code. During DSP() the
interpolation routine performs smoothly interpolated transition from the current
gain value to the new gain value stored in variables prefixed ‘i’. The algorithm
used for interpolation is performed at sample buffer resolution rather than per
sample. This has the effect of increasing algorithm speed while linking DSP

reaction time with buffer size, with high buffer sizes causing much slower

*6 Schildt, H: 1998, p.725
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responsiveness. Socket communication interacts with the gain factors via the

DSPSystem::SetParameter() function as follows:

void DSPSystem::SetParameter(CPAddress addr,float v)
{

NI4T 0O
Ul

float value = v * (1.0f / 128.0f); / conversion giving it a bit of headroom over 1.0f/127.0
value clamping to positive and max gain of 1.0f

if(value > 1.0f) value = 1.0f;

else if(value < 0.0f) value = 0.0f;

if((addr.addrX >= 0) && (addr.addrX < numins))

{

this is a matrix parameter
imatrix.Index(addr.addrX,addr.addrY) = value;

else

something more obvious
switch(addr.addrX)

{

case PAR_INPUT_GAIN:
iinputGain[addr.addrY] = value;
break;

case PAR_OUTPUT_GAIN:
ioutputGain[addr.addrY] = value;
break;

The majority of the above code simply provides mapping from a CPAddress
structure into the actual DSP system gain factors. However, in addition to the
mapping, the received value is range adjusted and clamped to the range [0, 1] in
order to reduce the possibility of digital overdrive. It should be noted that this
adjustment occurs in the server, the client produces output data that is not range
adjusted. A simple change of clamp range to [-1, 1] allows the server to respond

to negative values as inverse phase summing with no changes to the client code.

3.3.2 Additional functionality

In addition to DSP handling the server provides a very basic GUI with a console
based display of current status. Functionality for displaying of errors and debug
reporting was included to use the GUI console. Options for setting up network and
ASIO are included and settings are stored between sessions via Windows registry

to facilitate the minimum of human intervention in a remote system. SDServer
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networking supports multiple clients at once and may
have clients log in and out many times during a single

server session.

This image shows the basic boot-up screen for
SDServer, confirmation of initialisation of ASIO card
and current network configuration are shown in the

console view.

3.4 SDClient specific

3.4 - SDClient specific

-0|x
Fie Heb

- SupeDiffuse Server-

ASIO: Loading Driver. ASIO Hammenall DSP
ASIO: Driver intialised ok

DSP: Initialising

DSP: Done

SERVER: InHialising WinsodQ

SERVER: Winsod2 ok

SERVER: Creating server socket on port- 12300
SERVER: Created sodet ok

SDClient forms the performer’s graphical interface into the mix matrix provided

by SDServer. External control via MIDI is directly mapped onto the main

performance page consisting of 32 virtual faders. The assignment and control of

these faders acts as the control entry point into a parameter / automation tree as

discussed above. The main page is shown below:

3.4.1 Implementing a parameter base class

In SDClient the parameter is one of the most fundamental concepts of the system

architecture. CParameter describes a basic parameter class that builds on the
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theoretical parameter concept discussed previously. It also forms the base class for
group and effect classes that implement automation. The CParameter interface is

as follows:

class CParameter
: char name[32];
int value; // the value of the parameter
int lockedValue;
bool changed; / flag
BOOL isLocked;
BOOL isMuted;
CPAddress address;
CParameterSystem* system;
public:
CParameter();
virtual ~CParameter() {};
void SetAddress(CPAddress _address) { address = _address; };
CPAddress GetAddress() { return address; };
virtual bool ReferencesAddress(CPAddress _address) { return address == _address; },

relating to values
virtual int GetValue();
virtual void SetValue(int oldV, int newV);
virtual void SetValueDirect(int newV) { value = newV; changed = true;};
relating to value lock
virtual void SetLocked(int _value) { isLocked = TRUE; lockedValue = _value; changed = true;};
int GetLockedValue() { return lockedValue; };
virtual void Unlock() { isLocked = FALSE; changed = true;};
BOOL IsLocked() { return isLocked; };
relating to mute
virtual void SetMute() { isMuted = TRUE; changed = true;};
virtual void UnMute() { isMuted = FALSE; changed = true;};
BOOL IsMuted() { return isMuted; };
other things
bool HasChanged() { return changed; };
void ResetChanged() { changed = false; };
void AttachSystem(CParameterSystem* _system) { system = _system:; };
CParameterSystem* GetSystem(){return system; };

void SetName(const char* _name) { strncpy(name,_name,31); name[32] = "\0"};
const char* GetName() { return name; };

virtual void Archive(CArchive &ar);
|3

The basic functionality provides methods for setting and retrieving the stored
value of the parameter. Additional methods allow the system to determine if a
parameter has recently changed. Much of the interface is defined as virtual for the
purposes of inheriting classes. Early in development it was decided that a
parameter would have three states relating to value update and retrieval. Normally
parameter values can be altered using SetValue() and SetValueDirect(). When in
‘Mute’ status the parameter is forced to a value of 0 while ‘Locked” status allows
a fixed value to be locked into the parameter. The purpose of these states is to
disable any effects from either automation of external control while allowing the
parameter to behave normally to the rest of the system. The implementation
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CParameter::GetValue() determines how these states affect the perceived

parameter value:

int CParameter::GetValue()
if(isMuted == TRUE)
return O;
if(isLocked == TRUE)

return lockedValue;
return value,

}

Priority is given to the mute status, i.e. any muted parameter always returns zero.
Second priority is given to locked status in which case the value returns its current
locked value. Only in normal status does CParameter return its actual automatable
value. Regardless of status, automation and external control can alter the internal
value of the parameter but this value remains internal while any status is in effect.
CParameter::SetValue() (below) only allows notification of change if during

normal status.

void CParameter::SetValue(int oldV,int newV)
{

intv=newV - oldV,;
if(v!=0)
{

value +=v;
if(isMuted == FALSE && isLocked == FALSE) // only set changed when not muted or

{
}

changed = true;

CParameter::SetValue() and CParameter::SetValueDirect() provide two direct
methods of setting parameter values. The SetValue() method requires the calling
function to pass both the new and previously sent values for the purposes of
correct summing. The actual method of summing is shown in the above code
snippet; value delta from the calling function is first calculated and any changes
are summed with the current parameter value. Performing the summing in this
way allows multiple parameters to sum to a single target without the target storing
linkage information. SetValueDirect() sets values without regard for the summing
system and is mainly intended for initialization. The following diagram illustrates
the variables required for correct summing of parameters. Note that the affected

parameter does not store any information regarding the connected parameters.

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 51 of 177



3.4 - SDClient specific
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3.4.2 Parameter Management

The management of parameters is implemented with the CParameterSystem class.
This has a similar role to the DSPSystem class in SDServer, which is storage of
all core system variables (CParameter instances) and correct addressing and
updating of these variables. As with DSPSystem, CParameterSystem makes
extensive use of Array and Array2 template classes. Methods are provided to
directly access CParameter functionality for setting and retrieval of values without
the need to extract the required parameter first. These methods allow the
interlinking of parameter chains without the need for direct storage of pointers;
parameter map address is sufficient to set or retrieve values. Network transmission
of parameter values is initiated by SendChangedParameters(); only parameters
registering changed values will be transmitted unless the forcedUpdate boolean is
set forcing all parameters to be transmitted regardless. The following section of
SendChangedParameters() highlights the basic method used: (note condensed

version)

SDParameterMessage msg;

for(n = 0; n < numinputs; n++)
{ if(inputGain[n].HasChanged() || forcedUpdate)

msg.addrX = PAR_INPUT_GAIN;
msg.addrY = n;
msg.value = inputGain[n].GetValue();

socket->SendMsg(header,&msg, sizeof(SDParameterMessage)),

now reset it

inputGain[n].ResetChanged();
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Each parameter is checked for update requirement or forced update. An
SDParameterMessage instance is filled in before transmission via

SDClientSocket::SendMsg() and reset of changed status.

3.4.3 Parameter Groups

SDClients allows multiple parameters to be sub grouped together under single
parameter control. In order to achieve this the CGroup class inherits and extends
the basic CParameter functionality. CGroup stores an STL vector<> *’of target
parameter addresses and overrides SetValue() and SetValueDirect() in order to
pass on parameter adjustments to the sub group. CGroup::SetValue() is shown

below. Note differences between this and the CParameter::SetValue() above:

void CGroup::SetValue(int oldV,int newV)

CParameter::SetValue(oldV,newV);
GroupUpdate();

CGroup::GroupUpdate() is required by the above function and is shown below:

void CGroup::GroupUpdate()

if(IGetSystem()) return; // groups have to be given a valid pointer to the parameterSystem
if(HasChanged())

for(int n = 0; n < paramList.size(); n++)
{
int v = (float)GetValue() * (paramList[n].max / 128.0f);

GetSystem()->SetParameter(paramList[n].addr,paramList[n].oldValue,v);
paramList[n].oldValue = v;

CGroup makes use of the data structure ‘CGroupParameter’ for storage of target
CPAddresses and old values. A simple ‘for’ loop through ‘paramList’ calling
SetParameter causes update of sub parameters. Parameter adjustment is scaled

with a maximum sub parameter value producing proportionate group control.

*7 Stroustrup, B: 2000, pp.442-458
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3.4.4 Eliminating feedback

It should be clear at this point, that the ability to sub group parameters has the
potential for feedback and thus stack overflow. A simple method of prevention is
to remove the possibility of assigning a self referential loop. The algorithm used
traverses the parameter tree checking for a self reference and is performed on
assignment of a new target parameter. Due to the modular architecture it is
necessary for each CParameter inheriting class to provide its own referential
check algorithm. As an example, the following code shows CGroups self referral
check algorithm:

bool CGroup::ReferencesAddress(CPAddress _address)
if(CParameter::ReferencesAddress(_address)) return true;

check all sub addresses
for(int n = 0; n < paramList.size(); n++)

if(GetSystem()->GetParameter(paramList[n].addr)->ReferencesAddress(_address))
{

return true;

}

return false;

A recursive technique is used to determine self reference against a specified
CPAddress; first check against itself using a call to the base class
(CParameter::ReferencesAddress()); second, check all contained targets via calls
to their overloaded ReferencesAddress() functions. In the event of an address
match, the function will retumn true and the system will be unable to use the
specified address as a target within the tested chain. This method of recursive
checking through polymorphic functions is future compatible with any new
grouping or automation effects. The following code section shows CGroupWnd
using the recursive referential check prior to assignment of a parameter to a

CGroup (code defined in CGroupWnd::AddParameter()):

check for referencing of this group
if(param->ReferencesAddress(groupAddr))
AfxMessageBox("Super diffuse could not add the selected parameter \n to the group due to a circular

reference”);
return false;

}

A *Circular reference’ warning message is displayed to the user if the reference

cannot be added, but the system recovers.
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3.4.5 Parameter Automation (Effects)

Updating the CParameterSystem class via its Tick() method causes update of
automatable parameters. Automation algorithms are described by inheriting from
the CEffect class which extends the CParameter base class and defines the
CEffect::Tick(float delta) virtual function. The current version of SDClient
introduces three different automation effects but system architecture allows future
automation types to be added with only small alterations. Although not yet
implemented, future revisions will aim to provide plugin based modularity for
automation effects and much of the ground work for this is already in existence.

The following code snippet shows the Tick() overloading for the chase effect:

void CChaseEffect::Tick(float delta)

{
float amp = (float)GetValue() / 128.0f;

float pos = fmodf(t * freq1,numSteps), // get relative position from time using modulus

int lindex = (int) pos; // get left index

int rindex = lindex + 1; // get right index

if (rindex >= numSteps) rindex = 0; // check for overlapping index

int olndex = lindex -1,

if (olndex < 0) olndex = numSteps - 1;

float nullFloat;

float rad = modff(pos,&nullFloat) * (3.14159f/2.0f); // get fractional part * 90 degrees in rads
use the fraction to calculate crossfade between lIndex value and rindexValue

set only two values
int newL = (int)((float)val[lindex] * cosf(rad) * amp);
int newR = (int)((float)val[rindex] * sinf(rad) * amp);

GetSystem()->SetParameter(addr{olndex],oldV[oIndex] , 0); // should be 0 when chase has passed it
GetSystem()->SetParameter(addr(lindex],oldV[lindex] , newL);
GetSystem()->SetParameter(addr{rindex],oldV[rindex] , newR);

oldV[olndex] = 0; // this one should be 0 by the time the chase has past it
oldV[lindex] = newlL;
oldV[rindex] = newR;

t += delta; // update the time

The chase effect stores an array of target addresses (24 in total) and performs
cosine based panning laws to crossfade between each. The calls to
CParameterSystem::SetParameter() connect the chase effect to its targets with
address validity checking. It should be noted that old values (last set values) are
stored and retransmitted on subsequent Tick() calls. This storage of old values is a
requirement of the parameter summing method (see above) and is used to

calculate delta value inside CParameter::SetValue(). The following diagram
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illustrates the data storage for the chase effect. Note that CChaseEffect is derived

from CEffect and therefore CParameter making it a viable target parameter:

ChaseEffect ->CEffect->CParameter

rrent valve
Oid value 1 [Old value 2 [Old value 3 OId value ... 24
value 1 New value 2 value 3 vale ... 24

e Bl e e

CParameter ICParameter ICParameter CParameter

3.4.6 GUI for automated parameters

In order to provide modular user interfaces for the modular parameter system the
CFXEditor class was developed in conjunction with the CEffect. The technique
used here is similar to Steinberg’s VST Plugin editor classes although the GUI
code makes extensive use of MFC rather than Steinberg’s use of Win32 core
libraries. One key factor in this GUI implementation is the lack of window
persistence between openings. Rather than store an inactive editor, the system
simply discards the last opened window and creates a new one on request. The
new window is initialised to the current status of the associated CEffect upon
opening and remains linked until a new window is requested. It is the requirement
of the CEffect derived class to create its own editor and this action must be
performed in overriding the CEffect::GetEditor() virtual function. The following
shows how CChaseEffect creates a new editor. Note here the passing of the ‘this’
pointer into the parameterized constructor of the CChaseEffectEditor derived from

CFXEditor.

CFXEditor* CChaseEffect::GetEditor()
{

}
After construction, the new CFXEditor derived instance is returned to the calling

return new CChaseEffectEditor(this);

function and it is its job to create the appropriate container window and finalize

editor construction. After appropriate window construction the editor instance has
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its OnCreate() handler called by the framework, CChaseEffect::OnCreate() is

shown below:
int CChaseEffectEditor::OnCreate(LPCREATESTRUCT IpCreateStruct)

if (CFXEditor::OnCreate(lpCreateStruct) == -1)
return -1;

CRect rect(5,5,300,30);
CChaseEffect* f = (CChaseEffect*) GetEffect();

nSteps.Create(WS_BORDER | WS_CHILD | WS_VISIBLE | ES_READONLY
,CRect(300,5,350,21),this,ID_CHASE_SPIN_EDIT);

nStepsCtrl.Create(UDS_HORZ | UDS_WRAP | UDS_SETBUDDYINT | WS_CHILD | WS_VISIBLE,
CRect(350,5,400,21),this, ID_CHASE_SPIN);

nStepsCtrl.SetBuddy(&nSteps);

nStepsCtrl.SetRange(3,CHASE_MAX_STEP);

nStepsCtrl.SetPos(f->numSteps);

freq1.Create("Frequency”,WS_CHILD | WS_VISIBLE, rect,thisIDK_FREQ1);
freq1.SetVertical(FALSE);

freq1.SetMax(CHASE_MAX_STEP);

freq1.SetMin(0);

freq1.SetValue(f->freq1);

rect = CRect(0,50,25,71);
CString str;
for(int n = 0; n < CHASE_MAX_STEP; n++)

{
str.Format("%d",n+1);

assign[n].Create(str, WS_VISIBLE rect,this,ID_FIRST_CHASE_ASSIGN + n);
rect. OffsetRect(25,0);

}

rect = CRect(0,80,25,380);
for(n = 0; n < CHASE_MAX_STEP; n++)

{
str.Format("Value %d" ,n+1);

vals[n].Create(str, WS_CHILD | WS_VISIBLE, rect,this,ID_FIRST_CHASE_VALUE + n);
vals[n].SetMax(127);

vals[n].SetMin(0);

vals[n].SetValue(f->val[n]);

rect.OffsetRect(25,0);

return 0;

Upon successful creation a CFXEditor creates all appropriate controls and
initialises them to the values stored in the linked CEffect obtained from
CFXEditor::GetEffect(). Normal Windows message mapping is used to perform
user interaction, with the linked CEffect adjusted accordingly. The above editor
uses a combination of basic MFC controls and some specialised ActiveX*

controls developed for SDClient.

3.4.7 SDClient archiving

** Williams, A: 2000, p.115
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SDClient makes use of the MFC archiving system*’ for the purpose of data
storage and retrieval. Archiving requirements are much simplified over the
complex technique used in Ricochet™ due to the simple software design approach.
A basic archiving tree is formed by data and system classes providing Archive()
functions, a CArchive MFC instance is passed through the tree and all data is
either retrieved from or stored to it. Use of fixed sized object arrays rather than
dynamic structures has greatly simplified archiving by reducing the need to
reconstruct references and pointers between sessions. The following code snippet
shows the CRandomizeEffect::Archive() function: (Note MFC practice of using
one archive function for both storage and retrieval in order to maintain accurate

file formats)
void CRandomizeEffect::Archive(CArchive &ar)
{

CEffect::Archive(ar); / call base class to store base info

addr1.Archive(ar), // only single reference to CPAddress::Archive
addr2.Archive(ar), / for both storage and retrieval

if(ar.1sStoring())

{
ar << freq1; // operator << overloading makes variable storage easy
ar << freq2;
ar << amp1;
ar << amp2;

else
ar >> freq1,
ar >> freq2;
ar >> ampf1;
ar >> amp2;

oldV1 = 0;
oldv2 = 0;

}

A further advantage of the MFC CArchive class is the overloading of << and >>
operators for most built in types, this is also a feature of the C++ STL ofstream’’
class. This method makes single variable storage and retrieval very simple. The
Advantage of the single function for storage and retrieval is justified by the
CPAddress::Archive() function used to both store and retrieve in one function

call.

* Feuer, A. R: 1997, p.233
0 See also 5.6

’! Stroustrup, B: 2000, p.637
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3.5 M2 User Manual

The M2 hardware system comprises the following components:

e M2 Diffusion Control Surface®?

e CV to MIDI conversion device (Ircam Atomic)

e MIDI interface (MAudio MidiSport 2x2)

e IBM Compatible PC (AMD Athlon 2500 CPU, ASUS Motherboard with
onboard LAN and XVGA graphics support)

e Steinberg ASIO compliant audio card (MOTU 24i0)

These hardware components form a single computer setup but the client software
can be run on a second PC for a remote server setup. These two setups are

described below:

52 Designed by Mooney
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3.5.1 Setup method 1 (Single PC system)

M2 Diffusion Control Surface
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'

MIDI
Interface
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ASIO Compatible Audio
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Loudspeakers

SEIR
’ ~
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3.5.2 Setup method 2 (Dual PC system)

M2 Diffusion Control Surface

CD Player

MIDI
Interface

. IBM PC Running Super
Diffuse client

IBM PC Running Super
_.-~" Diffuse server

ASIO Compatible Audio
,-~ Card (MOTU 24io)

ADAT or DA-88

Loudspeakers

-~
]
~

3.5.3 SDServer Configuration

Before using the client software it is necessary to run SDServer software. The

client software cannot operate fully without connection to an instance of the

SDServer that has been correctly set up.
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The server settings dialog is entered by selecting ‘Settings’ from the ‘file’ menu
of SDServer.

Two options are configurable from this dialog: the TCP/IP port number for the
server and the ASIO compatible card to be loaded. The TCP/IP port number can
be set to any number greater than 0 and lower than 65535 although some ports are
pre-assigned to other network uses (for instance HTTP for web pages is
configured to port 80 and FTP sits on port 21). It is possible that other software
may need to use the default port of 5000 so this setup functionality allows
SDServer to use a different setting. ASIO cards that are available for use will
automatically appear in the driver list but this does not necessarily mean that they
will work correctly. Although a number of cards have been tested it is possible

that SDServer cannot use some manufacturer’s cards.

Upon exit of the settings dialog, SDServer will detect changes and attempt
TCP/IP listening on the selected port and load the ASIO driver. Settings are
automatically saved to the system registry if successful connections are made.

Success is reported in the main SDServer dialog with ‘SERVER: Create socket
ok’ and ‘ASIO: Driver initialized ok’.
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3.5.4 SDClient Configuration

With the server software running in the background, SDClient can be executed

and will initially show the following screen:
L isotbent e 7 =10/

The opening page is known as the performance view and shows a direct
visualization of the 32 assignable master faders. The top 16 faders are controlled
externally via MIDI controller 7 (Channel Level) and the lower 16 are assigned to
controller 10 (Channel Pan). In order to correctly setup both the external MIDI
device and the network connection a user selects the settings option from the File-

>Settings menu shown below:

[locaibos {5001 o< ]
_ Concel_ |

rﬂ_
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In the above screen shot the client is attempting to connect internally within one
machine and ‘localhost” has been set as the network address. It is possible to
specify any IP address or domain name upon which an SDServer is running. The
port 5001 is set to the ip port decided on when setting up the server. In addition
to the network settings ‘HDSP Midi In (1)’ has been selected as the MIDI device
for external control. The settings dialog will display all MIDI devices it finds on
the local machine. As with the server, settings are stored in the system registry
upon exiting the dialog. Status is displayed in a similar console view accessed via
the View->Console menu.

- SuperD ffuse Chent -

Altempling connecton to localhost : 12300

Winsock2 Started

Created Chent Socket

Socket Connect() emor

MIDI: Input device opened

New settings require reconnection to the network server
Altempling connection to localhost : 5001

‘Winsock2 Started

Created Chent Socket

Server nfo - Server SﬁDihne-Qﬂ' :,12011#3

The console view displays the current status of the connection to an SDServer and
shows external MIDI device status. In the above screen shot the line ‘Server info
— Server: Super Diffuse — 12 inputs, 12 outputs’ shows a valid connection to an
SDServer that has control of a 12*12 mix matrix. This line would display the size

of the connected mix matrix on the remote machine.

3.5.5 Monitor view

When a successful connection is made the client configures itself for the number
of I/O matrix parameters present on the server. SDClient represents the connected

matrix in the monitor view which can be accessed though View->Monitor:
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This view shows the attenuation level setting of all parameters in the server. In the
screenshot below the lock (padlock icon ) and mute (MT) buttons have been used
to set direct connections from inputs 1 and 2 to stereo pairs of outputs. A locked
parameter is set to zero attenuation and is unaffected by automation or external
hardware. A muted parameter is set to full attenuation and is unaffected by
automation or external hardware. Muted parameters also override the locked

status.

+]Monitor

Used in this way the Monitor window can act as a simple direct routing system for

all I/0 ports on the connected SDServer.
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3.5.6 Assigning parameters

On the performance page the moveable fader representations can be assigned to
any of the matrix parameters by selecting the ‘Assignl’ or ‘Assign2’ buttons. This
representation also displays and allows control of the lock/mute status for the
assigned parameter. After selecting “Assignl’ or ‘Assign2’ the user is presented

with the following dialog:

[Select Parametefi x|
| Input Buss Send >
[input 1 - -]
Outt 2 2
o] oo |

Parameters are selected via the drop down combo boxes and any parameter or
automation is selectable. In the above the matrix parameter for input 1 attenuated
into output 2 is selected. Right clicking on either of the assign buttons removes

any assignment after displaying the following confirmation box:

sDChent SO x|

!5 Reset Master Fader Assignment?

.

The close up view below shows a single fader assigned to a parameter and with its
control level tumed up to around 75%. The blue and yellow bar displays the
actual value of the assigned parameter which may not correspond to the fader
value if automation or grouping has been used. Also note the ‘Assign’ buttons

visible from this screen shot.
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il Assignl
' ssign
i Assign2|

3.5.7 Groups

If the user needs to assign a group of parameters to one fader this can be done in

‘Group view’ accessible via the View->Group menu item.

+ ; CGroupWnd e =10/ x]
Output 1 Gain
Output 2 Gain
a |[Output 3 Gain
Output 4 Gain
Output 5 Gain
Output 8 Gain
Output 7 Gain
Output 8 Gain
Output 9 Gain
Output 10 Gain
Output 11 Gain
Output 12 Gain

o o o o o
4] = o = o o o o o o = o
- o
3

L

Above, the user has assigned all 12 available outputs to the group simply by
clicking inside a parameter box and dragging up or down to select a relative level.

Parameters can also be added via the ‘Add Parameter’ push button which brings
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up the common parameter select dialog discussed previously™ . Note here that
some parameters (Output 2 and 4) have been assigned negative level (-25 and -20)
represented in numerical form and by the orange bar graph. Negative values in
groups can be used to assign parameters that need to be reduced as the fader is
turned up. The ‘RM’ buttons in each parameter allow a parameter to be removed
from a group and the combo box in the upper left allows selection of the group to

be edited.

3.5.8 Automation effects

Automation effects are created and edited through the Effect View accessible via

the View->Effects menu item:

=]

The initial view shows that Effect] currently contains no effect. An effect is

selected via the top left combo box and its type is assigned from the top right
combo box. Depending on the selected effect type the appropriate effect interface

is shown. Below, the three effect types are shown:

3.5.9 Randomization effect

This effect generates randomized values over time.
Frequency and amplitude of the random value generation is controllable with

sliders and the effect may be connected to two independent parameters via the

* See also: 3.5.6 ‘Assigning parameters’ p.66
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‘Assignl’ and ‘Assign2’ buttons. As with other parts of the software, the common

parameter select dialog is brought up from these buttons.

[cEfects N [=] B!
v A
1
i

3.5.10 Wave automation effect

This effect produces a time varying cosine wave.
Frequency amplitude and phase of the cosine wave is controllable from faders and
again, two parameters may be assigned via the common buttons.

10l x|

NP

Frequency 2

Phase 2

4| Amplitude 2

3.5.11 Chase automation effect

This effect acts in a similar manner to a lighting ‘Chase’, crossfading between a
sequence of parameters over time. The numbered buttons allow common
parameter selection for any of the 24 assignable slots. Frequency or speed of
sequence is controlled from a horizontal fader and the loop step is selected from
the left and right arrow buttons. The loop step will always crossfade along the
sequence starting from step 1 and moving onto and including the loop step. For

each loop step it is possible to set a maximum level using the vertical faders.
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It is possible to assign groups of effects and assign groups to effects and this can

lead to accidental circular feedback. SDClient prevents feedback automatically

and will present the user with the following dialog if an assignment that would
socient

1 Super diffuse could not add the selected parameter
. to the group due to a circular reference

[Seoesn]

cause it occurs:

In this case the assignment is cancelled.

3.6 The M2 Diffusion system incorporating Super Diffuse

As described during the introduction to this project, Super Diffuse forms the basis
for the University of Sheffield Sound Studio’s ‘M2’ live sound diffusion system.
The M2 platform consists of industrial rack mounted computer, custom built fader
system and Super Diffuse sofiware components. M2 has at the time of writing
managed live sound diffusion for concerts at the universities of Sheffield,
Birmingham, Bangor and Edinburgh and is the focus of ‘M2 Diffusion — The live

diffusion of sound in space’ a paper co-written by A.Moore, D.Moore and
J.Mooney presented at the ICMC™* 2004.

S ICMC - International Computer Music Conference
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The following photographs were taken during setup and rehearsals with the M2

system for the 2004 Electroacoustic Wales performance at University of Bangor.

Above: Close up photograph of ‘Super diffuse’ software with the M2 Control

hardware visible.

Below: View of the diffusion loudspeaker setup at Bangor, A.Moore in control of

the system.
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3.6.1 M3 - the future expansion of the M2 system

Super Diffuse and M2 is a prototype system and as such is now the focus of
ongoing research. Collaboration with composers and performers has already
highlighted many new directions for the project. At the time of writing a number
of universities have agreed to a development partnership focusing on the
development of M2. It is hoped that this partnership will provide a larger pooling
of ideas for both M2 and future sound diffusion tools.

Performance with M2 has highlighted the need for future improvements to setup
logistics. Although this is mainly a user interface problem it is clear that
improvements need to made to provide a clearer system for classification of I/O
ports in audio hardware and a much improved method of selecting different
control parameters. Initial development ideas have settled upon the general
consensus for a “Venue Schematic’ view. The intention of the GUI element is to
construct and present a visual representation of the room layout to the user. This
schematic view concept can naturally be extended to cover other areas of the
program such as external hardware layout and spatial configuration of input

sources. In mapping input schematics against venue schematics it is hoped that

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 72 of 177



3.6 - The M2 Diffusion system incorporating Super Diffuse

selection will become more intuitive and the possibility of automatic re-mapping

for new venues will be possible.

GUI complication implications when using large numbers of I/O channels causes
a difficulty in visualising the DSP matrix. In the M2 development system
consisting of only 24 inputs and 24 outputs, the user is presented with a very large
and complex interface to perform both the assignment of parameters and the
viewing of parameter status. In a 96 * 96 channel system, the maximum possible
with current hardware®>, parameter presentation would be unusable. Although the
use of the ‘schematic view’ concept will hopefully address this problem to some
extent it is felt that functionality should reflect the common usage of low numbers
of inputs and high numbers of outputs. As hardware manufacturers typically
support equal numbers of I/O channels it has been suggested within development
meetings that the system should support low level disabling of hardware 1/O ports.
If ports are not needed in a particular setup they should be turned off and thus not
be included in any interface visualization. DSP performance in the server would
also benefit greatly from the ability to turn off channels as conversion from
hardware data formats to internal 32 bit float need not occur for unused channels.
ASIOSubSystem design is perhaps naive in assuming that a piece of software
would require all of its I/O passing to the host application but this conclusion has

only become apparent after using hardware with large I/O numbers.

An ability for the server to take the place of external playback hardware such as
CD player, ADAT/DA-88 based tape or other multi-channel playback system
again reduces the necessary logistical problem of providing for multiple formats
at concert time. In the author’s experience, it is common to provide a number of
external playback systems during performance and this is essentially a redundant
concept if a well featured file format and playback system can be provided. Server
side audio streaming directly to the I/O system is proposed in M3 and will be
closely tied to the concept of a concert program. Concert programming will

provide automatic reconfiguration of the system for the specific needs of a

55 Hardware: 4 * MOTU 24io on PCI-424 master card.
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particular concert item. In order to provide stable file playback the system will use
a strictly tested audio format and conversion from performers’ presentation
formats will occur during setup and rehearsal. Live input from external playback
hardware will continue to be supported, but the internal system should remove the
need for external hardware in the majority of cases. It is also conceivable that a
playback system could support streaming over IP and allow the client to play files
directly, although this will not be a feature included in early re-designs.

In order to reduce the need for external hardware and improve logistical setup
times it would seem useful to provide an output master section for loudspeaker
balancing, EQ and phase compensation. M3 currently proposes output trim
controls and a delay unit that can have distance based delay times added. By
increasing the delay time of close speakers it is possible to compensate for phase
de-correlation in speakers at different distances for the audience. Although this
feature is perhaps undesirable for the traditional sound diffusion concept it could
still find a use in correcting speaker pairs that would ideally be correlated but
cannot be due to the constraints of the venue. Adding the facility for real position
measurements to be entered, the ‘Venue schematic’ concept could be extended to
provide the interface for correcting phase de-correlation over sets of loudspeakers.
In modem PA systems the use of multi-band EQ is commonplace for correcting
the frequency response characteristics of the venue and loudspeakers®. It is
sensible to assume that corrective EQ might be useful for diffusion systems
although its use would again be purely optional. It is possible that this room
corrective matrix section could be extended to provide automatic correction from
a reference pink noise generator, a system commonly available in digital multi-
band EQ units. In the first iterations of M3 development it is certain that output
DSP will be designed carefully for the future addition of features discussed above.

In consideration of extending the master output section it is logical that the full
DSP matrix concept also be considered and the ability to insert audio plugins, in
either VST or DirectX format, has been put forward. Although the addition of this
feature would provide a great deal of scope for experimentation, the inherent

56 Stark, S. H: 1996, p.97; Davis, G; Jones, R: 1990, pp.251-252
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complication to the DSP section and the possibility of third party plugins causing
unforeseen server failure during performance compels a decision not to include
this functionality. Obviously, tailor made and well tested algorithms could extend
the DSP matrix design with less chance of compatibility problems but the decision
has been made not to extend from the attenuators in the first iteration of M3.

In the current version, server to client feedback is very limited with only a small
amount of initial hardware configuration information provided upon client
connection. In future versions it is intended that the server become more
autonomous and provide full control from the client. This is of particular use if the
server system is to be locked away, perhaps made inaccessible except for
maintenance. Additional feedback of run time information such as audio metering,
DSP performance status and error reports would be of benefit to an audio
installation. Taken to the extreme this feature could be extended for the purposes
of venue health and safety, with supervisor setting of SPL limits and connection to
alarms for quick shutdown in a fire. Theatre house lighting systems are often

connected to alarms so that lights are forced up for escape.

Many users of M2 have stated that the ability to control sub parameters of
automation effects during a performance would be desirable. This feature was
included to some extent in the original ‘Super Diffuse’ but the interfacing
functionality and bug testing was not ready for performance and was left out in
tested versions. It has been unanimously decided within the development group
that this feature will be complete in M3. Addition of this feature is likely to
require extensive reviewing of the current parameter system model in order to
produce the stability required.

Super Diffuse was originally written for the purposes of performance and one
proposed extension is to provide two modes of use for the system. In ‘Rehearsal’
mode the M3 system will allow editing of performance setup and rehearsal of
performance items. The ‘Performance’ mode is intended to lock settings and
provide a degree of stability at performance time. Again this is a concept
borrowed from lighting desks which often have similar modes available. It is
desirable that performance setup cannot be altered during performance in order to
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remove the chance of user error. In simplifying the interface options at

performance time the system can be constrained much more efficiently.

In addition to mode setting and multi-channel audio file playback it is proposed
that a user should have the facility to record performance cues. These cues would
be named and provide storage for notes. During performance mode the system
would present the stored cues in sync with audio file playback. With the addition
of a stored ‘Preroll’ time it would be possible to present the cues prior to the
related event. In this case a performer would be alerted to significant events
during the recording in time to react accordingly. Performance cues have been met
with general approval for M3. Future possibilities of this concept include the
addition of time locked graphical score display although this will not be featured

in the next iteration.

Following discussion regarding the hardware control it has become desirable to
provide a hardware abstraction layer similar to that used in ASIO and DirectX for
the purposes of generalizing the control method. It is intended that this layer will
gather together a number of different hardware control concepts and provide a
stable API for use in M3 and other software projects. After further design
meetings this system may become linked with ASIOSubSystem’’.

A.Moore (University of Sheffield) has specified a desire for the addition of
performance data logging®®. The goal would be to record sufficient control data
for both reproduction and analysis of performance spatialization. This feature
could be added to the server system and it is logical that performance data would
be logged using the standard MIDI file format. In this format, analysis with 3™
party software would be supported as it is not a goal of M3 to provide local
features for statistical analysis.

It should be clear that the basic parameter concept discussed in this thesis is

capable of providing control of other performance based systems. In fact, due to

57 See also: 6.1.4

58 Moore, A; Moore, D; Mooney, J: 2004
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its lighting design concept, it is suited to the control of DMX (Acronym of Digital
Multiplex) lighting systems. Very low cost DMX control hardware is available
and could easily be addressed from the server software. Although this extension
could be useful in some circumstances, M3 is unlikely to provide equal
functionality to high quality specialist lighting systems. However, the ability to
easily extend the basic parameter system within both the server and the client is
perhaps desirable for the addition of control features in later versions. For this

reason, M3 design will focus on providing a more extensible parameter system.

At this early stage, much of the design for M3 is not yet fully clarified but some
basic guidelines for the development cycle and early software structure diagrams
have been put forward as follows:

UML based CASE? tools for development have become of interest to the
development team and it is hoped that following a well planned software
development technique such as ‘Rational Unified Process’® will promote a stable,

well thought out solution.

59 Computer Aided Software Engineering
% Booch, G; Rumbaugh, J; Jacobson, I: 2003, pp.449-453
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Control Hardware

Via MIDI / USB / DirectX or future method

Control
Abstraction Layer

Via API link
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Client GUI

I
Via API link

Network Layer

T
Via API link

Server GUI

Via API link

Audio

Abstraction Layer

Via ASIO DirectX or future method

|
|
Audio Hardware

This layered approach to the components of the system is intended to promote

staged development of each component in isolation. For example, providing the

interfaces for the Control Abstraction Layer and Network Layer remain

unchanged, it will be possible to produce new versions of the Client GUI

component. Each component’s development will apply the following staged

development cycle:

e Phase 1: Proposal of ideas and requirements. Address feasibility issues

elc.

e Milestone 1: Produce requirements ‘use case’ and feature list documents.

e Phase 2: Design and implementation, refinement and finalizing.

e Milestone 2: Produce final design document for this iteration.

e Phase 3: Construction following design documents.

e Milestone 3: Release candidate for testing.
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e Phase 4: Testing and refinement.
e Milestone 4: Produce bug lists and fix obvious errors. Re-document if

necessary.
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4 The ‘Virtual Sound Environment’ Model

As highlighted earlier, projection of pre-composed works represents one method
of sound spatialization. The M2 / Super Diffuse project represents a proven live
sound projection system. It is a logical progression from analogue or hardware
based sound diffusion. However, it does not aim to reproduce realistic spatial
sound effects and therefore, this thesis now addresses the concept of spatial sound

simulation.

The goal of the ‘Virtual Sound Environment’ project is to create a three
dimensional physical modelling system for sound that can simulate many real
world situations while still being flexible enough to allow creative
experimentation with sound. In order to provide the necessary flexibility a

conceptual framework for spatial sound processing is also proposed.

4.1 Requirements of a model

A model of a real system is precisely as stated; a model, not the real thing. In
other words the model can never be perfect unless it is the real thing. When
attempting to recreate the physical properties of sound it is quickly apparent that it

will not be possible to recreate every subtle nuance in any model.

The purpose of a model is to describe a system in sufficient detail for meaningful
experimentation to be achieved. With this done the model can be used to produce
practical results that would otherwise be difficult or impossible to obtain from

experimentation in the real world.

‘A model is a simplification of reality. !

Obviously, ‘results’ from a model of sound physics are expected to sound realistic

and, regardless of purpose, the closer to achieving realism the better the model. In

¢! Booch, G; Rumbaugh, J; Jacobson, I: 2003, p.6
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a laboratory setting it may be necessary to obtain very precise sound
measurements and this would place strict requirements on any model used.
However, in the case of artistic and creative use, ‘realism’ may be sacrificed in
favour of more personal, qualitative properties of a sound. Therefore,
requirements for a creative tool would aim to promote experimentation and

composer feedback.

‘PhM® Synthesis methods do not attempt to create a “complete”
physical model of an instrument. Rather than accounting for all
possible conditions of the instrument’s existence, they need only to
account for the physics gf an instrument in the highly constrained
situation of performance. 3

Roads explains that the required accuracy in modelling is related only to the needs
of the given situation, in this case modelling an instrument for the purpose of
sound creation. It is conceivable that the same is true when modelling sound

propagation.

Poli and Rocchesso describe the use of physical sound models as necessary to
overcome the *...slavery to “frozen” sounds.’ **, preferring PhM’s interactivity

and direct control.

Artistic process is not the subject of this thesis; however, it is clear and relevant
that a creative user of a sound model is concerned with producing works of artistic
merit and not scientific accuracy®’. For this reason, the model created here is
carefully designed to be capable of producing desirable results for the artist.
Roads puts forward some desirable qualities of physically modelled instruments.

‘Simulation by physical models can create sounds of fanciful
instruments that would otherwise be impossible to build. In this

¢2 phM- Physical Modelling

%3 Roads, C: 1996, p.266

% Poli, G; Rocchesso, D: 1998
¢ Wishart, T: 1994, p.5
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category we can include phantasmagorical instruments whose
characteristics and geometry can change over time

Clearly this creative experimentation with the parameters of physical modelling is
not limited to the modelling of instruments and can be applied to spatialization of

sound.

When compromises in modelling are inevitably made, due to practical constraints,
this project favours creative possibilities rather than precise modelling of physical
properties. Poli and Rocchesso describe the inherent computational constraints of
real-time spatialization models®’. Malham highlights computational penalties for
precise modelling and describes simplified methods such as ray tracing as being
realistic enough for human perception“. As an example of computational
problems, the decision to make the model calculable in real-time has affected
almost every algorithm used in the project. However, the use of real-time
processing is perhaps one of the most desirable features to some composers and
essential to the live performer. Wishart highlights the usefulness of real-time
audio manipulation for the studio composer when attempting to provide elements

of performance:

‘...the success of studio produced sound-art depends on the fusion of
the roles of composer and performer in the studio situation. For this
to work effectively, real-time processing (wherever this is feasible) is
a desirable goal. ®

4.2 A simple sound environment model.

Consider a solo violin performance to a small audience. As the soloist plays, the

violin’s vibrating strings cause very small changes in air pressure. The air

¢ Roads, C: 1996, p.266

¢ poli, G; Rocchesso, D: 1998
8 Malham, D. G: 1998
 Wishart, T: 1994, p.8

D. R. Moore ‘Real-time Sound Spatialization, Software Design and implementation’ Page 82 of 177



4.2 - A simple sound environment model.

B A

pressure changes, if occurring at a frequency within the human hearing range, are

perceived by a nearby audience as the sound of the violin.

Taking the above description and condensing it into a simple flow diagram, the

system can be described as follows:

Violin
Vibrating strings cause
air pressure changes.

Propagation of air pressure
changes from the source to the
audience’s ears. Propagation
takes a small amount of time.

Audience
Perceives pressure
changes as the
sound of the violin.

It is possible to take the descriptive diagram above and use it to create a digital

process that simulates the propagation of the sound through air. This could be

described as a computer based physical model of the sound propagation. It would

be possible to capture the direct sound of the violin strings using a pickup and

play it back directly into the audience’s ears via headphones. Inserting the digital

sound propagation simulation between the pickup and the audience would

produce a simulated output of the propagation effects. Putting this concept in

diagrammatical form produces the following:

Cilose recording of a
violin via pickup or mic.

Digital delay.

Delay time set to the time
taken for sound to travel the
distance between the violin
and the audience.

Audience listening
on headphones.

The model is not complex enough capture every nuance of the performance space

but this simple model does describe one aspect of the real situation quite well. The

distance between the violin and the audience is described by the delay and this is

quite accurate. The real world delay time between the violin and audience is

calculated with the following equation’®:

where:

_ Py~ P,

s

7 Smith, J.0: 2002.
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o)

v is the speed of sound in air and p1, p2 are vector positions of the violin

and audience relative to a single point

This formula results in a time that can be used in a simple delay line to produce

some effects of distance on a sound wave propagating through air.

Of course this is still a long way from a convincing model of the performance
space. Many factors have been left out: How does the room affect the sound
waves? Where are the audience in relation to the room and the soloist? Is the

soloist moving? Is the audience moving or looking in the right direction?

To improve on the model, more generic terms will be used to further simplify the
diagram. The soloist and violin can be grouped together and termed a ‘Performer’,
i.e. a ‘Performer’ defined as a single sound producing entity. For example, an
electric guitarist playing through an amplifier could be considered one
‘Performer’. As the generic model is built, other terms will be introduced to
describe a single point of sound emanating from a performer. In the case of the
guitarist it could be said that there are two sound sources, one from the direct

sound of the strings and a second from the amplified sound of the amplifier.

Instead of describing the audience as a group it would be advantageous to
consider single listeners to the system, i.e. ‘Listener’ defined as a single listening
entity. For example, a single person listening to a performance would be
considered one ‘Listener’. A single microphone recording a performance is also
one ‘Listener’. As with the ‘Performer’, further terminology will be introduced to

describe individual listening areas.

Using the new terms in the basic model produces the following:

Solo Violin as 1 5| Digital delay. Audience as 1
Performer Delay time set to distance > Listener

4.3 Improving the model:
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In the above model the audience was considered as a single entity, which is of
course a gross simplification if the audience is bigger than one person. Every
person listening is likely to be located at a different distance from the performer.
The model can be adjusted to compensate for this and at the same time use the
more generic terminology ‘Listener’. Taking a single performer and an audience

of three seated at distances A,B and C produces this diagram:

i cmimtm i me i m - -

! Audience
1
Digital delay. ! | ListeneratA
Time set from distance A
Single Performer o | Digital delay. .| ListeneratB

Time set from distance B

Digital delay.
Time set from distance C

Listener at C

How does the model change when considering more than one ‘Performer’? The
next diagram expands the above model to include a trio of performers. The digital
delay process will be represented by ‘DD x - y’ where DD is digital delay x and y
are start and end locations for the calculated delay time. The letters A,B,C will

represent performer locations and D,E,F describe listener locations.

DDA-D
—imemimemsmtmee e T - 4 DDB-D R T T S Y £ e e
' Trio 1 ! Audience

Listener at D

DDA-E

DDB-E T Listener atE

DDC-E

Performer at C Listener at F

DDA-F

1
'
'
i
: Performer at B
]
'
'
'
'

P e L S | DDB-F e U S S By

DDC-F

Rapidly, the number of delays needed to describe these basic interactions has
become larger. It should also be noted that this is still not a precise model of the

real system. However, it is the basis for a much more realistic model that takes

1
1
1
1
1
1
1
1
1
1
I
1
1
1
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into account the effects of independent performers and listeners. Assuming that
the model above calculated the transmission and room effects realistically for each
listener then the system could recreate a sound from any point in a theoretical
environment with any number of performers. If the system were to be processed
in real time it would be possible to move both listener and performer locations

within the ‘Virtual’ Environment and hear the effects immediately.

It is interesting to note at this point that the above ‘simple’ model, if calculated
using digital delay with variable delay time, will produce the Doppler shifting

effects associated with velocity.

The Doppler effect is perceived in audio waves as a pitch increase or decrease
dependent on the radial velocity of sound source to listener. It is an aural cue for
speed and therefore adds realism to this “animated’ sound model. The classic
example of the Doppler effect is the siren on a police car driving past, with
increased pitch as the siren moves towards you then decreased as it moves away’ .
As a sound producing object moves relative to a listener the increasing or
decreasing distance causes the wavelength of the sound to be stretched or

compressed.

Static Source N\ Static Listener
@) | O

avefronts

AN

The above diagram shows that the wavefronts emitted from the sound generated

source are evenly spaced due to the source remaining statically located. When the

"' Roads, C: 1996, pp.463-466; Serway, R. A: 1996, pp.487-491
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source moves the wavefronts become compressed and thus the wavelength is

shorter from the perspective of the listener. See diagram below:

Moving Source Static Listener

Looking back to the last model, moving a performer location in real time will
cause a simulated Doppler shift due to the delay time changing. This works in
much the same way as it would in the real world. With the delay line, the same
stretching and compressing of wavelength is caused when the delay’s read

position moves relative to the write position in order to change the delay time.

With the present model of transmission a delay line represents the time taken for a
sound to travel between locations. As distance increases sound takes longer to
propagate from performer to listener and it also decreases in amplitude. The
amplitude loss is due to the spherical nature of sound waves emanating from a
point source’” and is given by:
1
d2

=

Where: i = sound intensity factor and d = radial distance from the source.

Incorporating the spherical sound propagation concept into the sound transmission
model using a gain factor adjusted according to distance produces a more realistic
result. As performers are moved away the distance affects both the arrival time of

the sound and its amplitude. The term ‘Ray’ is now used to describe the whole

7 Serway, R. A: pp.484-485; Everest, F. A: 1994, pp.68-71; Smith, J.O: 2002
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transmission model used for the system, in this case the combined effects of the

delay and the distance gain factor.

' 'Ray’ '
' ]
1 | Digital Delay Gain Factor !
Performer |———— time caiculated |———1 calculated from (——————{ Listener
: from distance. distance :

A ‘Ray’ is thus defined in this thesis as an entity representing the effects on sound
due to transmission between two points. The ‘Ray’ term was borrowed from ‘Ray
Tracing’, a technique commonly used in 3D graphics to describe light
transmission and surface reflection / refraction effects that also provided some

inspiration for this modelling technique”.

The model of a listener is reasonable but it fails to describe a human being in any
great detail as humans have two independent listening organs, the left and right
ears. It would be simple to use two listeners to describe one person’s ears but this
quickly becomes confusing when more than one listener is involved. A better
technique is to use the concept of ‘Pickups’ acting as individual monophonic
listening points and to use the ‘Listener’ term as a convenient logical grouping. A
‘Pickup’ is defined as a single monophonic omni-directional sound listening
point. A ‘Listener’ is now redefined as a logical container of ‘Pickups’. Using

these terms in a model describing one human listener and one violin performer

produces the following:

Yy L .
+ Human ‘Listener

1]
‘Ray’ generated from violin i.]| LeftEar :
performer to Left ear g ‘Pickup’ i
Solo Viofin i i
‘Performer’ ' i
‘Ray’ generated from violin ' | RightEar !
performer to Right ear ™ ‘Pickup’ !
(] 1
[}

It is important to note here that there are two rays used in this system because

each ear is located at a different position. Having two positions means there will

3 ‘Ray’ also used in Serway, R. A: 1996, pp.484-485
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be two calculated distances and so there must be two rays to perform the
processing. In the above case every additional human listener would require an

additional two rays to be calculated.

Logically the next step is to consider the ‘Performer’ as a practical grouping of
‘Sources’. This concept becomes crucial when looking at more complex
instruments: for example a single percussionist will have many percussion
instruments located in different positions. Taking this into account, ‘Sources’ can
be used to describe sound generating points on an instrument or a number of
instruments. A guitarist with separate amplification has already been considered
as a case for this terminology. A ‘Source’ is defined as a point from which sound
is emitted omni-directionally. The term ‘Performer’ is redefined as a logical
container of ‘Sources’. Using this new terminology the following diagram looks at
a timpanist’s performance. In the example the timpanist uses three timpani, and

there are two human listeners A and B.

Ray
Ray : Human ‘Listener’ A :
1
+a| Left Ear :
ermtmimi =t st B Ray t ‘Pickup' .
' Solo Timpanist ‘Performer’ ' :
: ! Ray i -
: : : Right Ear i
! Timpani 1 ! ¥ ‘Pickup’ !
: ‘Source' : Ray - i
! o gy Y e Y
: - Ray
i Timpani 2 :
i ‘Source’ .
! Ray
! Timpani 3 Ray
- ‘Source’
1
e T T e S s e i Ray
Ray ‘.| Right Ear
‘Pickup’
Ray
Ray

From this diagram it is clear that every Source is connected to all Pickups via
Rays. To describe this connection the term ‘Source Ray Pickup Interaction’ or
‘SRP’ is introduced. The number of SRPs in a system is given by the number of

Sources multiplied by the number of Pickups.
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SRBoral = p ICkuI)toml X Sourcetotal

An SRP can be defined as the process from which to determine sound arriving at a

single Pickup from a single Source.

: Performer i : Listener !
s : : 5
; Source Ray Pickup Interaction ( SRP ) .r :
; Source : Ray Ih Pickup :
i 2 5 :

At this point it is necessary to demonstrate the differences between a Ray and an
SRP. A Ray describes only the effects of transmission of the sound. An SRP
includes the transmission but also adds the properties of the source emission and
the pickup reception. It is important to realise that emission and reception are
relative to an individual SRP calculation and not to an individual Source or

Pickup. To explore this in more depth the current model will be expanded.

The current model uses omni-directional pickups to describe the ear and this is
inaccurate because in reality the ear is a much more directional pickup’. An
improved model would be a pickup with aspect related sensitivity. In order to
calculate directional factors of the improved pickup model, the associated SRP is
used. An SRP can be said to be orientated along a vector. This vector is used to
generate angles that describe the orientation of the pickup relative to the source. A
simple model can use the angle to generate an appropriate gain factor for the
pickup. This gain factor is generated based on a single SRP so it will be different
for other related SRPs. Using this method to apply directionality to the Pickup
does not relate to the Ray because a Ray, by definition, only deals with the
transmission of the sound. It is the Pickup which ‘receives’ the sound ‘arriving” at

its position. The advantage of using both the Ray model and the SRP is that the

™ Everest, F.A: 1994, pp.51-53
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model describing sound transmission (Ray) is kept independent of the model

describing reception of the sound (Pickup).

Further advantages of the SRP model are found when considering directional
Sources. A trumpet or speaker are very directional sources and an aspect related
gain function similar to that of the pickup can be used to simulate directionality.
Again taking the SRP orientation vector and using it to generate a gain factor, an
effect is produced that controls the amplitude of the sound passed to the Ray. As
with the Pickup, the modelling of orientation is not related to the transmission

model so the source modelling function is packaged independently of the Ray.

The following diagram highlights the use of directional Sources and Pickups and
demonstrates the concept of the SRP using a Performer that contains both omni
and directional Sources with a Listener containing omni and directional Pickups.

Individual SRPs are shown with individual colour codes.

Omni Source (S1) Omni Pickup (P1)

) »E S2-P2 Reception

i

|

: S1-P1 Emission et L3 S1-P1 Reception
; i R e [ s |

i NCR ’ i

: S1-P2 Emission i : $2-P1 Reception
i ! Ray i

: ; '

' — : :

: Directional Source (S2) : Ray ' | Directional Pickup (P2)
| $2-P1 Emission ! ] [ $1-P2 Reception
: : /V{ Ray (e : p

: by e A

: $2-P2 Emission ' =

' " 1

i 2 ! i

i ! i

The diagram shows how the SRP allows independent modelling methods for
Source, Ray and Pickup. These modelling methods are independent from each
other i.e. a directional source can be connected to an omni pickup without

additional functions being needed.

The independence of modelling functions is important because it allows Source
models to be developed without thinking about all possible pickup models. The
reverse also applies; Pickup models can be developed without consideration of

Source models. Perhaps less obviously, it is also possible to have independent Ray

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 91 of 177



4.4 - Reviewing the basic SRP model.

models used within the same network. One use of this technique would be to
allow high accuracy transmission models to be used in critical areas and low
accuracy to be used is less critical areas. This possibility has interesting

implications for processing optimisation.

4.4 Reviewing the basic SRP model.

The current SRP based network for performers and listeners is able to model the

following functions:

e The effect on sound arrival time caused by distance.

e The dissipation of sound energy caused by distance.

e Directional or omni-directional sound sources.

e Directional or omni-directional sound pickups.

e Doppler Shift effects caused by moving sources or listeners.

e Binaural Localization effects in human hearing caused by different

distances between a source and each ear’>.

Simple improvements could be made to the modelling techniques to improve the
perception of directionality and sound dissipation. Many other source or pickup
patterns could be modelled within the current system by simple algorithm
changes. In fact, the SRP allows different modelling algorithms to be used within
the same network interchangeably.

What this current system will not do is allow feedback of processed spatial sound
back into the same system. Allowing for feedback brings the possibility of echo
and reverberation. Using small delay values with feedback allows for resonating

objects and is the subject of the following sections.

4.5 Adding feedback:

S Everest, F. A: 1994, p.54
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This diagram describes a simple delay line with feedback:

Input signal

Delay with time t

A

Output signal

*

The multiplication symbol represents a gain factor that can be used to control the

feedback. The addition symbol represents summation of input and feedback.

Positive gain factors < 1 will produce stable feedback with exponential decay in

amplitude. Gain factors > 1 will produce unstable feedback with an exponential

increase in amplitude. A gain factor of 1 will produce infinite delay feedback.

Taking two delay lines and connecting them such that they feedback into each

other creates a building block known as a waveguide®.

ek s -

Delay A

B e
; .

Output signal A f&i—

7

Input signal B

Output signal B

Each delay line feeds the other after applying some processing. The processing

could be a simple gain but it could also filter the signal in some way. Each delay

line can be excited by an incoming signal as well as outputting the signal

elsewhere. The delay lines’ inputs and outputs form the ‘ends’ of the waveguide

and are termed ‘nodes’. Using these waveguide building blocks it is possible to

build up a waveguide network that simulates a resonating system by connecting

the nodes from many waveguides.

Input 1

Waveguide 1

Waveguide 6

Waveguide 2

\ Waveguide 3

Waveguide 5

Waveguide 7

Waveguide 4

Waveguide 8

Output 1

The node connections are bi-directional but with control of feedback gain and/or

’® Roads, C: 1996, p.282; See also general references: Smith, J. O: 2004
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filtering. A very simple waveguide network can produce a very complex

resonating output. Combinations of delay times will produce complex filtering

and reflections. Waveguides are commonly used in the physical modelling of

resonance in instruments and rooms.

It is possible to build the feedback concept into the SRP model and thus allow for

the creation of SRP based waveguide networks. One way for this to be achieved is

to allow for a Pickup to feed its ‘results’ back into a Source. This technique

creates a single feedback path that can be considered as half of a single waveguide

building block. Adding a second feedback path by performing the same operation

twice results in an SRP based waveguide. The following diagrams illustrate this

method using the terms defined earlier:

Sourcg Ray Pickup Interaction ( SRP )

-

Ray

In the above a Pickup’s incoming sound is fed forward into a Source. This Source

is then considered in the Listener’s related SRP.

1
; i |
\ i | SRP : a /
' - 1
\,\\ Source » Ray » Pickup |
1 .
i - : - !
: ; i :
' | srRP ; ' ;
- - ! A 2
)
—¥ Pickup Ray Source i1
i : i i S~—p

SRP Waveguide Nodes

In the above diagram a waveguide structure has been built using two SRPs. At

this point the similarity in structure of the SRP waveguide and the delay based

waveguide should be noted. Like the basic waveguide the SRP version also has

D. R. Moore
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two nodes. However, the SRP waveguide is more advanced than the basic
structure as it inherently contains the features of pickups and sources. This means
that the waveguide nodes can be designed based on the more advanced sources
and pickups that feature directionality. In the SRP waveguide model the direct
pickup to source transactions form the point at which additional feedback
algorithms can be applied. It is possible that a feedback algorithm may simply
‘copy’ the pickup’s sound perspective into the source’s outgoing transmission. In
this case, feedback is still controlled by both the pickup response and source
emission algorithms. Of course filtering could be applied in addition to the effects
of pickup and source. This ‘copying’ algorithm from pickup to source needs a
placeholder and for this the term ‘manipulator’ is put forward. A ‘manipulator’ is
defined as a container of both sources and pickups, it contains a ‘copy’ or
‘transfer’ algorithm that dictates the method of transferring sound data from the
contained Pickups to the contained Sources.

A deliberate omission of some SRP structures has been made from the diagram
above in the interest of simplicity. As stated earlier every pickup is connected to
every source via a Source Ray Pickup Interaction. This means that pickups and
sources contained within a manipulator have SRP connection as well as
‘copy/transfer’ connection. The following diagram fixes the problem and

introduces the new terms:

................... - cmcmmtmsmemms e -y

< : Manipulator A i : Manipulator B
- T '{' """"" ;'
SRP \ ' i SRP : i | SRP
] ! :
: Source » Ray Pickup

_______________________________

I FaR ¢

The above diagram shows the two new SRP connections (solid blue boxes). It
should be noted from this diagram that a new feedback path now exists internally
within the manipulator. This internal feedback path can be undesirable in certain
cases. For example, an omni source and pickup could exist at the same location
and the copy/transfer function may be a simple direct copy operation. Due to the

zero time delay caused by zero distance between source and pickup the resulting
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feedback loop would have no energy loss, and is thus unstable. It is useful to
provide possible disconnection of the returning SRP, breaking the feedback loop

and allowing special case objects to be considered.

The following diagram illustrates the concepts looked at in the SRP model and

describes performer, listener and manipulator objects acting as an SRP

waveguide.
: Manipulator A '
. 1
1 -
1
i Source — Ray
: ] i
Ray ! - fimrmememame s -
- ' ; Performer i
: Pickup i S Ray - i
: i \ i~| Source 3
................. - \\‘ ‘
e 5 25, 20 T P \
; Manipulator B ! | Ray ' Ray } ; \
i : e Ray \
e Source : /
. e L R e e Lo =~
Ray ' : : Listener i/ |
1 - - {
- - ' ' %
————1p! Pickup & Ray > Pickup 1|
: ......... Wiy : : :
’\\\ L Rt ; ,‘_} /,
—— Ray (&

The network above shows the potential of the SRP method. It contains the basic
building blocks of a complex spatial model. A single performer object
‘introduces’ sound into the network via its source, the sound may feedback

indefinitely between the manipulator pair, the sound ‘result’ is returned to the

human user via the listener object.

4.5.1 Example: Basic Room Reverberation

Consider a theoretical rectangular room with a performing violinist and an
audience of one. A simple model is created easily with the SRP network. Taking a
manipulator in which source and pickup exist at the same point, eliminating the
self referential feedback (as discussed above), the manipulator can be considered a
perfect spherical reflector of sound. This object will now be named a Reflector.
Four of these reflectors are placed at the centres of the four walls of the room to

be modelled, one reflector per wall. This creates an SRP waveguide network
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simulating basic room reflections in which the walls are perfect reflectors of
sound (note that the ceiling and floor have been intentionally left out to simplify
the model). Designing a ‘copy/transfer’ algorithm that dissipates some of the
energy at each ‘wall’ reflector creates a more precise network. Adjusting the
amount of energy reduction simulates different types of surface. Using a
performer with one source allows sound energy (from the violin) to be injected
into the virtual room and a listener with one pickup allows extraction and
conversion of sound into a ‘real world’ signal, in this case monophonically. The
following diagram describes the network structure (connections represent Source
Ray Pickup Interactions and the ray objects are not shown for simplicity.
Connections between manipulators represent bi-directional SRP waveguide

connections).

griparonts ia Giayg

,J Reflector Reflector
/, ‘Manipulator’ '\/’ ‘Manipulator’
Violin
‘Performer’

\ / ‘\

\ Audience
‘Listener’

‘sl Reflector %/‘\ Reflector

‘Manipulator’ ‘Manipulator’

N O e S

4.5.2 Example: Amplified Acoustic Guitar

Consider an acoustic guitarist rehearsing through a microphone and amplified
speaker, with room effects ignored in this case. The guitarist can be thought of as
the only listener, so he/she is modelled with a single Listener with two pickups
(left and right ears). A microphone and amplifier can be modelled as a single

manipulator, one directional pickup for the microphone and a directional source
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for the speaker. The body sound of the guitar is a performer with one source. The

network produced is as follows:

t Guitar ‘Performer’

1
1
-
! Guitar ‘Source’
1
)

4.6 Representing the world

Sound processing in SRP networks is performed using positions and orientations
of sound objects as direct variables in the processing algorithms. It is vital then
that any three dimensional spatialization system uses an appropriate method for
representing real world dimensions in order that calculations are performed easily
and precisely. The following sections focus on concepts and techniques

appropriate for such a system.

4.6.1 Position

In the simplest of terms, position can be specified with reference to a single
origin. Using this method, position is specified in three dimensions labelled x, y, z
and the origin is specified as (0, 0, 0). A position in the world is given as a three
dimensional vector coordinate in the form (x,y,z). Position could also be called a

‘translation’ from the origin by a vector quantity.

4.6.2 Orientation

For orientation of an entity relative to the world there are a number of useful

representations. Three will be discussed.

A 3D normalised vector (a vector with magnitude of 1) can signify the direction
an object is pointing, with a second vector required to specify rotation about the
first vector. This second vector is sometimes called the ‘up vector’.
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A second representation makes use of a 3x3 rotation matrix. The matrix is
constructed using Euler’s method”’, specifying angles for roll(x), pitch(y), and
yaw(z) of the object.

Euler’s equation for constructing an orientation 3x3 matrix when vector initial

direction is along the x axis, i.e. direction = (1,0,0), up = (0,1,0) is shown below:

cosld,) 0 sin(@,)] [cos(,) -sin6,) 0] [1 o0 0
M orientation = O 1 0 Sin(ez) COS(BZ) 0 O COS(BX) _Sin(ex)
~sin(8,) 0 cosfg)| | © 0 1],0 sin@) cos@,) ],

Matrix multiplication is not commutative so the order in which rotation
transformations are applied is very important, i.e. M M, # M,M, . A problem
associated with rotational matrices occurs when animating a rotation using
repeated matrix multiplications, compound floating point accuracy errors can
eventually cause the rotation matrix to become combined with unpredictable
skewing/scaling/translating transformations.

A less well known orientation method makes use of a mathematical entity called a
Quaternion developed by William Hamilton in 1843, during his investigations
into complex mathematics’®. A Quaternion is a 4D entity in the form (n, v,y,)
which can be used to represent a complete orientation. Notice here that only 4
terms are required to store a complete orientation as opposed to the 9 used in a

3x3 matrix. A quatemion can be constructed from a specified rotation angle
around an arbitrary axis defined by a unit vector:

q= (cos %) sin %)r)”

7 Eberly, D. H: 2001, p.18; Lengyel, E: 2002, p.60
7 Akenine-Moller, T; Haines, E: 2002, p.44
7 Bourg, D. M: 2002, p.228
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Quaternions can be multiplied by the equation:
qp = (nqn,, -V, v,, ny,+ny, + (vq x vp))8°

As with matrix multiplication, quaternion multiplication is not commutative®', i.e.

QaQb # Qan
It is possible to build a quaternion in a similar manner to the rotational matrix
Euler method by constructing quaternions aligned to axes and multiplying the

resulting quaternion rotations.

Regardless of the representation used, an object’s orientation can be called its

rotational transform.

4.6.3 Scale

In addition to specifying position and orientation it is useful to specify scaling
transforms. Scale can be represented as a uniform scaling factor s, where s, scales
all vector components equally or by a non-uniform scale vector in the form (s, sy,
sz). A non-uniform scale represents independent scaling factors for each

component of a vector.

Other transforms such as skewing or shearing are less relevant to the task of

representing the world and so are not discussed here.

4.6.4 SRT Transforms

Three transform types are the most commonly used: translation, rotation and

scale. These types can be combined to form a single entity representing the

% ibid., p.307
%! Lengyel, E: 2002, p.68
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position, orientation and scaling of an object. This entity is commonly referred to
as the ‘Scale Rotate Translate Transform’ or ‘SRT’%2. SRT transformations can be
implemented as a 4x4 matrix but it is more efficient in 3D modelling to use a split
representation with scale and translation as 3D vectors and a single quaternion to
represent rotation. Using this technique allows a considerably simpler calculation
of the inverse SRT and further benefits, including reduced effects from compound
errors in repeated matrix rotation transformations. An SRT becomes a particularly
useful building block in a hierarchical world object model because it can be
implemented to behave like a matrix transformation at a fraction of the processing

cost.

4.6.5 Hierarchical Scene Graphing

Many 3D modelling systems use a hierarchical tree structure to represent complex
transforms involving compound objects. This structure is often called a
Hierarchical Scene Graph®. The structure is made up of ‘nodes’ and the first node
is the root. Each node can have any number of child nodes. Each node in the tree
is paired with an SRT. Instead of using the SRT as a transform relative to the
world, the scene graph allows the SRT to transform an object relative to its parent
node in the tree. If a parent node’s SRT transform is adjusted, the child node’s

SRTs now represent the transform relative to the new parent node transform.

Node

—1 Node | [t S
et i W5 | /
- — / | SRT
World ‘Node' |«—— Node —] SRT |
/ ! 7 AERE | o
SRT 1 SRT { =SS <__‘T“_ Node
' e
| / 1 SRT
SRT |
|
: N =
L~ Node .,,?de,[,,__ -
7 SRT
SRT

%2 Eberly, D. H: 2001, p.144
**ibid., pp.141-167; Akenine-Méller, T; Haines, E: 2002, pp.346-357
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In order to clarify the SRT terminology it is useful to examine a simple model; the
following diagram describes possible nodes in a theoretical model of a human

arm. All nodes are assumed to be connected with associated SRT structures.

e - —— |LT Finger 1
Shoulder  «—{ UpperAm |«— Forearm  «— Hand H P e
J L —— —_ | ‘

e T ) g PR o i
‘Lj Finger 2

L—{?};ge;3
IR ey

Nr——ry

Note that adjustment of the ‘shoulder’ node’s SRT will recursively affect nodes
lower in the hierarchy so all nodes are transformed accordingly. Adjusting the
hand node has the same recursive effect but only ‘thumb’ and ‘finger’ nodes are
altered.

The SRT in a scene graph provides a simple method of mapping vectors between
coordinate systems. It is possible to traverse the scene graph’s tree and use each
node’s SRT to transform the vector at each stage. Similarly a single SRT that

performs direct translation between two coordinate systems on the graph is

obtained by traversing the tree and multiplying the SRT Transforms.

A question arises; how can the SRP network and the Hierarchical Scene Graph be

combined to produce a full spatial model?

If it is stated that all pickups and sources are associated with individual nodes then
an SRT Transform is made available to each significant sound processing object.
The nature of the hierarchical scene graph allows logical spatial groupings of
nodes by a parent node, a feature which aids greatly in control of compound
objects. For example, a human listener object has been considered; a person’s ears
are locked together by their connection to the head and the ears are modelled by
two directional pickups. By grouping nodes associated with each pickup into a
‘head’ parent node a logical spatial grouping is made which facilitates spatial

control. Transform the ‘head’ node and the pickup nodes are transformed along
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with it. This diagram shows the integration SRP Network with that of the scene
graph. A human listener and single violin performer are shown.

e e -

—— R Ear ‘Node’

' -
i Human ‘Listener’ 1
P 9] ,
= e + L Ear ‘Pickup’ }‘!
World ‘Node' |4——— Head ‘Node’ |«— SRT ! X
| Lo dod i i\
/ | / i_| REarPi , i
—/l,. ‘ ar ‘Pickup
SRT ‘ SRT —— Sl z
‘ —L R Ear ‘Node’ / e s e T T —
| L L ’
i SRT Ray
|
i ] = -
- Violin ‘Node’ ‘ e
are / . i Violin ‘Performer’
SRT ' Violin ‘Source’

Association between a pickup and node provides a useful mechanism for storing
the transformation data. It is worth noting here that a single Source Ray Pickup
interaction can obtain transformation data by traversing the scene graph loop,
created between a pickup and source. Conveniently the scene graph traversal can
be used to provide positions and orientations of pickups relative to one another.
For example, in the above the ‘Right Ear Pickup’ can obtain the position and
orientation of the *Violin Source’ relative to its own current SRT by successive
transform of the initial vector (0,0,0), first down the tree to the ‘World’ node then
up through ‘Head’ and ‘R Ear’ nodes. Performing the reverse operation through
inversion of the transform can provide the ‘Violin’ source with the position and

orientation of the ‘Right Ear’ pickup relative to itself.

Another advantage of the Scene Graph is its use when rendering a 3D graphical
user interface. Its hierarchical implementation works very conveniently with 3D
graphical engines. This will be covered in more depth when looking at the

implementation of a software solution.

4.7 Providing Flexible Automation and Control

A theoretical 3D system for sound design has been proposed and as it stands there

are structures in place for holding and performing suitable DSP algorithms (SRP
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Interaction Network). There is also a flexible structure for detailing the spatial
layout of the world (SRT based Hierarchical Scene Graph). The two concepts
make available the necessary complexity for creative expression with a minimum
of constraints. However, with the complexity comes a difficulty in providing
usable control. It is vital that a flexible control concept be designed to
complement the flexibility in the underlying system in order for the model to
become a practical artistic tool. Spain and Polfreman highlight a need for intuitive
control for the high numbers of parameters available in a typical real-time digital
audio tool®.

A step by step process will be taken with the goal of designing a flexible model of
spatial and DSP control.

What parameters should be controllable?

If a constraint on the ability to dynamically alter the SRP network and the Scene
Graph structure in real-time is assumed, there are only two major controllable
parameter areas in the model; control of DSP Parameters that do not relate to the
scene graph and control of SRT Transforms within the scene graph. To aid
creation of a single spatial model the decision can be made to force all spatially
related vector parameters to be nodes in the scene graph. For example, a DSP
algorithm requiring a position of reference as a parameter would use a scene graph

node to represent that position.

To facilitate control of a parameter the term ‘Controller’ is introduced. A
controller is defined as an entity that can be attached to a parameter in order to
provide updated data. The controller concept forms an abstraction layer between a
parameter and its method of control. In other words, different classes of controller
can be used to control the same parameter. For example, one parameter may be
controlled via a wave generating function while another could be controlled by a
direct MIDI device.

% Spain, M; Polfreman, R: 2001
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DSP Algorithm
: Wave function
Parameter1 |«¢+—" | ‘Controller

Parameter 2 <;¥ MIDI ‘Controller’ External Device

Allowing each parameter in the model to have a single controller attached to it
provides a powerful means to control the system. To further the flexibility of
control the concept of ‘Controller Parameters’ are introduced. In the example
above, a wave generating controller is used to affect a parameter. By adding
parameters to the controller and allowing these parameters to be attached to
additional controllers, the control system becomes a hierarchical tree structure.
The following diagram shows the hierarchical controller concept by adding two

parameters to the “Wave function’ controller type.

------------------- = MIDI ‘Controller’ | | External Device

DSP Algorithm . Wave function
- ‘Controller’
Parameter 1 |+
:\ Parameter 1 |«

- Wave function
: ‘Controller f
Parameter 2 -
Parameter2 |« Parameter 1 |«

Parameter 2 <~\

MIDI ‘Controller’ External Device

It should be noted in the diagram above that the control ‘tree’ can extend outwards
as far as necessary. An implementation of this hierarchical control model would
ideally provide utility controllers that allow combining of control data via

mathematical or related functions.

Returning to the subject of controlling SRT transforms, the parameters of a single
SRT can be broken down into three sections: translation, rotation and scale.
Expanding the basic controller entity into a ‘Transform controller’ entity is a
simple way of providing a powerful SRT control method. As with the basic
controller the transform controller can optionally contain further parameters,
therefore creating a hierarchical control chain. Each SRT can potentially be

assigned three separate transform controllers corresponding to position, rotation
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and scale. A particular transform controller type will use different algorithms to
generate control data for the three SRT sections, as each section has differing
constraints and storage structure. Consider a theoretical transform controller that
gives direct MIDI fader control to a node’s transform section. Applied to position,
the fader adjusts the x position between -1 and 1 metre. On rotation it determines
the percentage of a full rotation about the y axis. With scale it applies a scaling
factor between 0 and 2. The point here is that the controller concept makes sense
to a user when attached to any of the sections and the attachment itself determines
the appropriate algorithm to use. The following diagram consolidates this concept
but it should be noted that the separation of the algorithms would not be necessary

in all Transform Controller types.

Node Fader 1 Wave function
‘Transform Controller’ ‘Controller’
l Parameter 1
SRT r Translation Algorithm
Translation 1/ |mmmmme e e me s ———— - Parameter 2
— ! Rotation Algorithm :
T Rotation .« S g R S e | e T s s !
— ' Scale Algorithm :
Scale
Parameter 1 o3
Fader 2

‘Transform Controller’

Parameter 1

Describing the transform controller with specific algorithms for each section is
less ideal when designing special case controllers that need to control more than
one section of the SRT. Consider a theoretical ‘Path’ transform controller; the
controller aims to move a node such that it follows a defined route or path. At all
times the node is orientated along the path. The point here is that the controller’s
algorithm requires it to affect both SRT translation and rotation simultaneously.

The most flexible solution is to allow a transform controller to be assigned such
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that one controller type may define algorithms for all three sections, but force a

single transform section to only have one assigned controller.

4.8 Consolidating the ‘Virtual Sound Environment’ model

Two small theoretical case studies will be used to review some of the concepts
discussed and illustrate the potential power of a fully implemented system. The
case studies are based around a theoretical ‘Virtual Environment’ model but the

principles of use would be similar in a real system.

4.8.1 Case Study: The ‘Virtual Sound Environment’ model for the
composer

Consider a composer of multi-channel works for tape. The composer wishes to
generate spatial gestures from monophonic and stereo recordings. Each gesture is
to be recorded into a multi-channel sound bite and these ‘spatialized’ sound bites
are to be composited and mixed in a sound sequencing package at a later date. The
composer has chosen an eight channel output format with loudspeakers to be

located in an evenly distributed circle about the audience’s listening position.
The composer has a version of the ‘Virtual Sound Environment’ and an

appropriate ‘listener’ object has been provided that will produce sound in the

desired output format. This object is constructed as follows:
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In the above listener, each pickup is assigned to an individual sound output with
the channels allocated in the same pairings as coloured above. For each multi-
channel sound bite the composer uses file playback performer objects to inject the
sound recordings into the virtual environment model. The composer is able to
control the positions and aspects of the performers in real-time directly though the
interface. Linking a sequencing package via MIDI and using MIDI based
transform controllers to move the various nodes in the system provides time-based
control. Each sound bite can be recorded to multi-channel tape or even into an

audio sequencer directly.

An interesting point here is the ability of the composer to move his or her “virtual
listening point” within the model. The sound bite heard by both the composer and
the final audience would of course parallel the virtual listener in the room.
Mixing of sound bites can, if so desired, result in the audience hearing a

composite of sound perspectives taken from the same modelled environment.

4.8.2 Case Study: The ‘Virtual Sound Environment’ model in the
context of film production.

Consider some possible difficulties presented in the sound design for a short film

sequence. In this theoretical sequence the sound designer could use traditional
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methods to design and mix the spatial components for the sequence. For the
purposes of illustrating how the SRP model could relate to real world sound

design situations consider the following theoretical situation.

The scene:

During a conversation between subjects A and B a car drives past on the street.
The film is shot from three camera positions (A,B,C). Positions A and B are static
locations and position C is the moving car. All camera shots focus attention on
the conversation. It is impossible to record the conversation at shooting so it is
dubbed by the actors and the noise of the car running is recorded while
stationary. The film director’s concept is for the shots to be edited into a single
sequence with a cut from shot A to B, then a blend from B to C. The sound
designer decides to complement the film cuts and blend by attempting to spatially
mix the sound as if captured from the camera shot locations. Over the blend from
B to C it is decided to cross fade the spatial mixes. To further complicate matters

the film is to be mixed for multiple formats, 5.1 surround and stereo.

The following diagram provides a simple illustration of the theoretical scene.

Position A

Position C in moving car

PersonA [ —»

Camera Focal Poi

Position B

Using SRP to provide a solution:

Obviously there are many conventional compositional methods that could produce

appropriate audio for the described situation but the SRP model can represent the
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whole scene directly. In a theoretical SRP based implementation the sound
designer would be able to work on the project using a simulated visualization of
the real world situation. Some theoretical objects could be created and used to
simplify the task. Listener objects would be designed to emulate 5.1 and stereo
microphones. The 5.1 microphone listener would be created by five directional
pickups aimed towards the left, centre, right, rear left and rear right speaker
locations in a 5.1 playback system. Control of LFE® pickup and listener gain
would be provided as parameters of the DSP algorithm. This diagram describes

this simple modelling technique.
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The stereo listener could use the same directional 5.1 pickup technique but with
only two pickups. This would behave in a similar manner to a coincident (X/Y)

stereo microphone pair.

, Stereo Listener :

1
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* LFE: Low Frequency Effects channel ( Sub bass channel of 5.1 surround system )
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Assuming that the following theoretical objects are provided with the software

implementation, the sound designer could potentially use existing sound design

software in conjunction to the SRP model:

e ‘MIDI Transform’ a transform controller for translation responding to

MIDI Continuous Controller data.

e Omni-directional live input source.

e Directional live input source.

The sound designer could use typical multi-channel sound production software,

for example Digidesign’s Pro-tools software, on a separate computer synchronised

to film. Three audio tracks containing edits of the dubbed recordings would be set

up and fed digitally into the environment modelling software. Returning from the

modelling software, eight digital audio channels would be routed into

corresponding tracks and set to monitor their input. The following diagram

illustrates these connections:
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Using the modelling software, the sound designer could create a basic model of
the shooting location and set up three 5.1 listeners and three stereo listeners
corresponding to the original camera positions. The outputs of the listeners would
be linked back to the recording software’s return tracks and directly routed to the
studio monitors. Three performers would be created and assigned to the incoming
pre-recorded audio tracks. The recording software could have direct control of the
position and orientation of listeners and performers via the theoretical ‘MIDI

Transform’ controllers.

While synchronised to the video, the sound designer is in theory able to preview
the audio mix for the whole scene. To perform the cuts and cross-fade, MIDI
controllers might be assigned to the gain parameters of the three listeners and
could again be directly controlled from recording software via MIDI. Using MIDI
for control data transfer would allow the sound designer to use familiar
sequencing techniques and tools to fully automate the desired parameters. This
audio blend between camera perspectives is potentially a very complicated
automation using conventional techniques. However, the ability to cross fade the
“Listeners’ allows the sound designer to perform the blend without much effort. In
fact, the exact same MIDI cross fade could perform both 5.1 and stereo
automation. It should be emphasized that one MIDI CC controller would therefore
be able to perform a smooth transition between one listener’s sound perspective

and another’s.

Note that at any stage in the mix process the sound designer could toggle between
spatialization formats by selectively monitoring outputs, at mix time being able to
bounce all formats simultaneously to separate channels. In essence both formats

could be rendered simultaneously.

Further to this case study, computer generated film sequences increasingly
common in modern film and video often make use of 3D modelling tools. Instead
of MIDI transform control the system could be directly controlled from the

animation software. Simple 3D audio is already in use in computer game
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technologies such as Microsoft’s DirectX with real time game animation also

linked to audio sound effects.
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5 A Real ‘Virtual Sound Environment’
Modelling Tool

Theoretical case study has provided an indication of the potential for SRP based

spatial synthesis. Now this thesis investigates a real world implementation of the
concepts presented in the previous sections. ‘Ricochet’ was developed in parallel
with the ‘Virtual Sound Environment’ conceptualization. It is intended as both a

test bed for the model and a tool for the sound artist.

This implementation section of the thesis assumes some knowledge of the C/C++
language, general software development terms and concepts. Many concepts of

DSP are related to both project applications and the section entitled ‘Real-Time

DSP on the host CPU” covers the technical aspects of this.

5.1 Development Tools

‘Ricochet” has been developed for the Windows 2000/XP platform using
Microsoft’s Visual Studio IDE. The version submitted has been written based on
two previous prototype versions that highlighted many design implementation
problems. These previous versions also helped to consolidate the final model

concept. The software makes use of two 3" party technologies for the purposes of
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speeding development and allowing simplified hardware compatibility for audio

and 3D graphics.

Silicon Graphic’s OpenGL provides a very usable and well supported graphics
processing implementation. Its C language API is cross platform compatible
across Microsoft Windows and Apple Mac. OpenGL provides access to hardware
accelerated 3D graphics functions and so is a useful tool when creating software
that requires fast graphical representation of world models. Woo, Neider, Davis,

and Shreiner provide a more than adequate description of OpenGL and its use®

5.2 Implementing Real-Time SRP Synthesis

Using an object oriented model for development allows a very direct translation of

the SRP concepts and entities discussed earlier.

This table below shows the entities discussed in the model and the implementation
C++ class names that are used to parallel them. Note that during development the
prefix ‘R’ represented ‘Ricochet’ and was a prefix used for reducing pollution of
the global namespace. The full ricochet source code defines most DSP related

functionality in the following files: dspsystem.h and dspsystem.cpp.

Model Entity Ricochet C++ class
Performer RDSPObject
Manipulator RDSPObject
Listener RDSPObject

Source RSource

Ray RRay

Pickup RPickup

SRP Interaction RSRPInteraction

RDSPObject provides a base class for specific DSP algorithms to inherit from.

This implementation allows a single derived class to act as any of the three

container entities. RDSPObject contains key virtual functions for forming part of
the DSP framework. These functions are defined here.

virtual void PerformerDSP(long bufferSize){},
virtual void ManipulatorDSP(int renderPass,long bufferSize){};
virtual void ListenerDSP(long bufferSize){},

% Woo, M; Neider, J; Davis, T; Shreiner, D: 1999
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It can be seen that these functions are undefined in the base class, they act purely

as placeholders for DSP algorithms. Other DSP classes have similar placeholders:

RSource:

virtual void AudioPhysics(RSRPInteraction *interaction,long bufferSize){};

RRay:
virtual void AudioPhysicsTransmit(RSRPInteraction *interaction, DSPFloat *buffer,long bufferSize){};
virtual void AudioPhysicsReceive(RSRPInteraction *interaction, DSPFloat *buffer,long bufferSize){};

RPickup: Also contains srpList (explained later)

FastDynamicArray<RSRPInteraction*> srplList;

virtual void AudioPhysics(RSRPInteraction® interaction, DSPFloat *buffer,long bufferSize){};
The RSRPInteraction structure stores references to all interested parties in a single
SRP Interaction. This should become clearer as the algorithm definition moves
on. The GLSGVector3 structures, vectorToPickup and vectorToSource contain

calculated vectors for each nodes relative position in terms of their local

{7/
transform’ .

RSRPInteraction: (Condensed definition showing data only)
struct RSRPInteraction

{

RSource *source; // the source involved in the interaction
RRay *ray; / the ray involved

RPickup *pickup; // the pickup involved

GLSGVector3 vectorToPickup; // vector in terms of the source
GLSGVector3 vectorToSource; // vector in terms of the pickup

RDSPManager is a singleton object that acts as the central manager for the entire
DSP system. Its DSP() function is the call-back function supplied to
ASI()SubSyslcm“ and GetPickupPerspective() is a function used by Manipulator
and Listener algorithms contained in an RDSPObject. The manager contains three
RDSPObject lists that hold the currently created Performer, Manipulator and

Listener objects for the current SRP network.

RDSPManager: (Condensed definition showing limited data only)
FastDynamicArray<RDSPObject*> performerList;
FastDynamicArray<RDSPObject*> manipulatorList;

¥ See also: 5.3.1 ‘Vectors' p.127
" See also: 6.1.3 *Packaging ASIO in ASIOSubSystem.dll’ p.162
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FastDynamicArray<RDSPObject*> listenerList;

void DSP(DSPFloat **inputs, DSPFloat **outputs, long bufferSize);

void GetPickupPerspective(RPickup *pickup,DSPFloat *buffer,long bufferSize, RSource *invisible =
0),

A rough explanation of the implementation concept follows:

DSP for a single buffer begins from ASIOSubSystem by calling
RDSPManager::DSP(). This function performs the following tasks:

Update all parameter and variable data ready for processing this buffer.

Cycle through each Performer Object and call its RDSPObject::PerformerDSP() function.
Cycle through each Manipulator Object and call its RDSPObject::ManipulatorDSP() function
Cycle through each Listener Object and call its RDSPObject::ListenerDSP() function

(3 P =

The three DSP functions will in actuality be defined in the classes which inherit
from RDSPObject. Exploring the full DSP algorithm involves examples from

inherited classes.

BasicPerformerObject::PerformerDSP():

void BasicPerformerObject::PerformerDSP(long bufferSize)

float *in = *GetinputChannel(0).buffer;
float *sBuffer = GetSource(0).buffer;
memcpy(sBuffer,in,sizeof(float)*bufferSize);

This performer class contains one physical sound input® and one RSource object.

The algorithm simply copies from its real audio input buffer to its RSource buffer.

BasicListenerObject::ListenerDSP():

void BasicListenerObject::ListenerDSP(long bufferSize)

{
float *out = *GetOutputChannel(0).buffer;

RPickup *pickup = &GetPickup(0);

dspManager.GetPickupPerspective(pickup,out, bufferSize);

This listener class contains one physical sound output and one RPickup object.

Afler obtaining a pointer to an output buffer and a pointer to its pickup the listener

** Physical inputs / outputs: connections to real-world audio 1/0 — See also: 5.2.1 ‘Virtual 1/0’
p.124
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algorithm makes a single call to RDSPManager::GetPickupPerspective() via the
global ‘dspManager’, passing its pickup and its output buffer. The purpose of
GetPickupPerspective() is to obtain an individual pickup’s sound ‘perspective™®®
and write it into the buffer provided. So in this case, BasicListenerObject requests
the DSP manager object to obtain the current perspective for its one pickup and

write the sound data directly to its output buffer. Examining a simple Manipulator

algorithm further explains the concept.
BasicManipObject::ManipulatorDSP():

void BasicManipObject::ManipulatorDSP(int renderPass,long bufferSize)
{

float *b = source->buffer;
memset(b,0,sizecf(DSPFloat) * bufferSize);
dspManager.GetPickupPerspective(pickup,b, bufferSize, source); / source is invisible

}
This manipulator class contains one RSource and one RPickup. The algorithm

simply obtains its source’s write buffer and passes it to the
GetPickupPerspective() function along with a pointer to its pickup. In effect the

pickup’s view of the world is played directly back into the source.

The implementation of SRP synthesis is carried out by the GetPickupPerspective

function and this is examined here:

void RDSPManager::GetPickupPerspective(RPickup *pickup,DSPFloat *buffer,long bufferSize, RSource
*invisible)

{
int size = pickup->srplList.Size();
for(int n = 0; n < size; n++)

{
RSRPInteraction *i = pickup->srpList[n]; // get the next interaction

if(i->source != invisible) // skip if the source needs to be invisible to this pickup
{
update interaction vectors from the SRT transform
?->vedorToPicth - i‘->squroe—>GetNode()->GetVectorToTarget(i—>pickup->GetNode());
i->vectorToSource = n—>plckup->GetNode()->GetVectorToTarget(i->source->GetNode());
perform source dsp
->source->AudioPhysics(i,bufferSize);
perform pickup dsp

I-> pickup->AudioPhysics(i, buffer,buffer Size):
}

" Pickup perspective: A rendering of sound from the point of view of an individual pickup.
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The first thing to notice is the srpList contained in RPickup. This is another
FastDynamicArray and it contains all RSRPInteraction objects associated with
this pickup. RPickup::srpList construction is performed by the RDSPManager and

is explained later in this text. The concept is fairly simple:

Cycle through each SRP interaction skipping an SRP if the source should be invisible.
For each SRP
{

Update the SRP vectors for use in RSource or RPickup calculations.
Call the associated source's AudioPhysics() function
Call the associated pickup's AudioPhysics() function passing in the output target buffer.

}
Of note here is the repeated call to RPickup::AudioPhysics(), the associated

pickup is always the same for one call of GetPickupPerspective(). Multiple calls
are needed because each SRP Interaction will produce different results for each

RSource.

Taking a look at an Omni Directional RSource algorithm starts to explain the SRP

calculation:

void ROmniSource::AudioPhysics(RSRPInteraction *interaction,long bufferSize)
{

}

interaction->ray->AudioPhysicsTransmit(interaction,(float*)&buffer, bufferSize);

Remember here that RDSPObject::PerformerDSP() has already been called for all
performer objects, therefore all RSource objects should contain up to date sound
data”'. The source simply obtains the associated RRay from the interaction and

calls its AudioPhysicsTransmit() function passing in the pre-filled buffer.

Moving on to the RPickup::AudioPhysics() function:

Joid ROmniPickup: ‘AudioPhysics(RSRPInteraction* interaction, DSPFloat *buffer,long bufferSize)
{

float “temp = new float[bufferSize]; / creation of temporary buffer
float "t = temp,
float *b = buffer;

interaction->ray->AudioPhysicsReceive(interaction temp,bufferSize); // this call obtains sound from
long size = bufferSize;

while(size-- > 0)

{

}

*be+ += "te+; // sSUumming calculation

! Manipulators create a special case and are examined later.

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 119 of 177



5.2 - Implementing Real-Time SRP Synthesis

delete [] temp;

Again this is a simple function, the only complication here is the necessity for
‘summing’ to the output buffer. This summing (+=) is a requirement of any
pickup implementation in order to perform audio mixing of a single pickup’s
SRPs. In the above code a temporary buffer is passed to the ray to obtain the
signal received at the pickup. This temporary buffer is then summed into the
output buffer.

RRay transmission:

void RBasicRay::AudioPhysicsTransmit(RSRPInteraction *interaction,DSPFloat *buffer,long bufferSize)
{

no transmission effects occur so this is just a write onto the delay buffer
long size = bufferSize;

float *b = buffer;

while(-size >= 0)

{
writeindex &= 262143,
delay[writeindex] = *b;
b+,
writeindex++;

}

Transmission into the ray is initiated from RSources and the algorithm for this
basic ray class is a simple write into a circular delay line. A fast technique is used
in this case to perform the circular indexing by using delay buffer sizes in powers
of two and a bitwise AND operation to avoid requirement of per sample
conditional tests. This basic ray type is a simple delay with distance based gain
and most of the calculations are performed in the AudioPhysicsReceive()

function.

vold RBasicRay: AudioPhysicsReceive(RSRPInteraction *interaction, DSPFloat *buffer,long bufferSize)

{
float ipf = 0.975; // interpolation factor

float d = interaction->vectorToSource.GetMagnitude(); // distance
d = ((1.0f - ipf) * d) + (ipf *oldDistance); // log interpolation function
oldDistance = d,

float ¢ = 345.0f; // speed of sound

fioat t = 44100.0f, // sample rate

float newdt = (d / ¢) * t; //delay time is in samples

float gain = 1.0f/(d * 0.5 + 1.0); / inverse square law with scale factor 0.5: +1 to avoid division by 0
float dt = lastDT,

float bs = bufferSize;

float delayinc = (newdt - dt) / bs;

float delayedOut;
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int readindex; // always caiculated
long size = bufferSize;
while(size-- > 0)

{

dt += delayinc; // increment the float delay time

readPos = ((writePos - bufferSize - dt) + size) & loopPoint;
readindex = ((writelndex - size - (int)dt) + 262143) & 262143; // calculate the index
delayedOut = delay[readindex]; // get value from the delay line

*buffer = delayedOut * gain;
increment

buffer++;

fastDT = ct; / store old dt
}
This simple ray algorithm calculates a delay time from the smooth interpolated
distance: distance is obtained from the vector to source held in the SRP. The
calculated delay time is used to index the circular buffer and obtain audio
samples. Delayed samples are written to the output buffer® after multiplication by
a simple distance based gain factor.
This completes the basic ‘Ricochet’ SRP implementation and the following

diagram illustrates the technique.

Sample Frame Begins —— w_‘"_‘
RDspManager o —— } ............ .
Call every Performer DSP  : —
DSP() e e <k
: Call every ManipulatorDSP  : ——
GetPickupPerspective() |- --------------- -
¢ I Call every ListenerDSP P
DR, A i | SN | ) | A e e =
| For each SRP in Pickup |
~— Call each source + pickup .
| AudioPhysics() function | BasicPerformerObject
PerformerDSP() <
BasicSource ——
__________________________ {-- -t o
AudioPhysics() . - = Bt
| |._|__| BasicRay BasicManipObject
> Audihbhysicsggceive() ManipulatorDSP() ¢
BasicPickup AudioPhysicsTransinit()
AudioPhysics() pw-rm BasicListenerObject
IR o ListenerDSPY)
= NI A Moo ~ e

g

*? The output buffer was passed from the RPickup initiating the call to GetPickupPerspective()
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Note that objects represented in blue inherit from RDSPObject; objects in red
inherit from the three associated classes RSource, RRay and RPickup; the path of
an audio input buffer through one SRP interaction is superimposed to simplify the

concept.

During this explanation, simplifications have been made with respect to
Manipulator objects. In a single sample frame each manipulator is considered one
at a time. This implies that each pickup contained in manipulators is processed in

a sequence and herein lies a problem. To illustrate:

LA} E
v ey -
g riienn
B
e \ ]
W
v L/ C \4
\ ]
/ -\ -
r Time

From the diagram; Manipulators A,B and C all contain one pickup and one
source. The first pickup obtaining a ‘pickup perspective’ requires the audio
‘results’ of sources contained in manipulators B and C. This creates a ‘which
came first the chicken or the egg?’ scenario and resolution is not possible within
the single buffer timescale™. A partial solution comes from the delay line in the
basic ray implementation; with delay times longer than the sample frame, pickups
are reading data from previously processed buffers. Therefore, for realistic results
to be achieved, distances between Sources and Pickups must be kept such that
delay times are always greater than the current I/O buffer length. The problem

with this constraint for longer delay times is that a direct relationship between

" 1t should be noted that MAX/MSP has a similar short delay problem when dealing with ‘tapin’,
‘tapout” objects. The ‘delay’ object that has no feedback can produce delay lengths less than the
audio vector size, feedback with ‘tapin’ requires delays lengths greater than the vector size.
Dobrian, C; Zicarelli, D; Puckette, M: 1997, p.198, p.207, pp.280-282. Also determined from
experimentation in MAX/MSP.
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system latency and simulation detail is created; as latency increases, the ability to
model small scale resonance decreases. Note here that Listener Pickups are not
affected by delay times smaller than the buffer size so, regardless of latency,
accurate distance effects are always achieved. As an attempt to provide small
scale resonance effects regardless of latencies, a multiple render pass technique is
used. Although not the same principle, this technique takes its inspiration from
graphical ray tracing in which a maximum trace depth is used to specify the
maximum number of reflections calculated. By repeatedly recalculating the
manipulator’s DSP function each render pass effectively creates one more

reflection in SRPs with delay times less than the buffer size. To illustrate:

§ ,
3 _
Ve ©'e

A=0 A=2 A=4 Number of
B=1 B=3 B=5 reflections
[ Repeated Manipulator calculations

Obviously this technique only produces a finite number of reflections and also
produces an imbalance in the number of reflections at each pickup. It does,
however, create some illusion of reflection when latencies are high. Examining

the implementation of this method, the following code is taken from

RDSPManager::DSP()

size = manipulatorList. Size(),
for(int pass = 0; pass < maxPasses; pass++) / Process a number of render passes
{
Process Each Manipulator Object
for(n = 0; n < size; n++)

{
}

manipulatorList{n]->ManipulatorDSP(pass,bufferSize);
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Note from the above, the multiple render pass method is an (N?) algorithmg“ and

therefore causes a large degree of processor loading.

5.2.1 Virtual I/O

Audio input and output from the physical world to the virtual world is
accomplished by the use of two classes RPhysicalChannel and RVirtualChannel.
A physical channel can be created as either input or output and essentially forms a
buffer containing the current sample frame data. The virtual channel, again
creatable as either input or output, is an object that allows connection of
performer/ manipulator/ listener objects to a physical channel. The principle is

explained here:

ASIO I Performer
PhysicalChannel Input PR VirtualChannel Input 1

VirtualChannel Input 2
VirtualChannel Output

Manipulator

VirtualChannel Input

km—o.m

Listener
VirtualChannel Input

RDSPObject contains a list of input virtual channels and a list of output virtual
channels. The DSP functions can all access these lists and obtain data from any of
the associated virtual inputs. The number of ins and outs is determined by the
particular object class that inherits from RDSPObject while the connection of
physical inputs and outputs is controlled from the user interface.
RPhysicalChannel provides an abstraction layer between the actual physical audio
input and the virtual channel and this allows interchangeable connection between
audio I/0 methods. For example, audio /O streaming from files can be

accommodated without the need to update virtual channel code.

" Sedgewick, R: 1999, pp.36-39
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At this point the flexibility of the system is hinted at, but to clarify, the following

list of DSP features are available in the framework: Note that the Ricochet

implementation essentially provides three ‘positions’ in its DSP process ‘chain’;

Performer, Manipulator and Listener.

In RDSPObject derived classes:

Can contain algorithms for use in all three DSP chain positions.

Can create any number of virtual I/O channels, RVirtualChannels.

Can create any number of RSource derived objects.

Can create any number of RPickup derived objects.

DSP chain position is determined at object creation.

PerformerDSP() dictates how RVirtualChannels connect to RSource
derived objects.

ManipulatorDSP() dictates how pickups and sources are internally
connected.

ListenerDSP() dictates how RVirtualChannels connect to RPickup derived

objects

In RSource derived classes:

AudioPhysics() dictates how source buffer sound is emitted to an RRay

derived class.

In RPickup derived classes:

AudioPhysics() dictates how sound from an RRay derived class is

received.

In RRay derived classes:

AudioPhysicsTransmit() dictates effects on sound before transmission
along a ray.
AudioPhysicsReceive() dictates effects on sound after transmission along

aray.
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With these concepts reviewed, the focus moves on to the task of representing the

world.
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5.3 Implementing Hierarchical Scene Graphing

In order to implement a scene graph it is first necessary to create a 3D
mathematics and utility library to enhance the basic functionality supplied with
ANSI C/C++. Making use of C++ operator overloading greatly simplifies the
usability of such a library and is well suited to mathematical classes. For
reference, the majority of ‘Ricochet’ maths and scene graph functionality is
defined in the scenegraph.h and scenegraph.cpp files. In the ‘Ricochet’
implementation the prefix GLSG” was used, again to reduce namespace

pollution.

5.3.1 Vectors

3D Vectors are, for the most, implemented in ‘Ricochet’ by the structure
GLSGVector3. The frequent use of GLSGVector3 and some interesting extension

calculations warrants detailed examination.

struct RSDK_API GLSGVector3

{
GLSGFloat x,y,z,

GLSGVector3({{x=y=z=0;};

GLSGVector3(GLSGFloat _x,GLSGFloat _y, GLSGFloat _z){x=_x;y=_y;z=_z};
GLSGVector3(GLSGFloat *_v){x=_v[0]; y = _V[1]; 2= _v[2]}}; = -

GLSGVector3 operator +(GLSGVector3 &op){return GLSGVector3(x + op.x, y + op.y, z + 0p.z);};
GLSGVector3 operator (GLSGVector3 &op){return GLSGVector3(x - op.x, y - op.y, Z - op.z);)-' ’
GLSGVector3 operator -(){return GLSGVector3(-x,-y, -2);}; 5

GLSGVector3& operator +=(GLSGVector3 &op){x += op.x; y += op.y; z += op.z; return *this}};
GLSGVector3& operator -=(GLSGVector3 &op){x -= op.x; y -= op.y; z -= op.Z; return 'thiS'}" ;
GLSGVector3& operator *=(float &op){x *= op; y *= op; z *= op; return *this;}; )
GLSGVector3& operator /=(float &op){x /= op; y /= op; z /= op; return *this;};

GLSGVector3 operator *(float &op){ return GLSGVector3(x * op, y * op, z * op); };
GLSGVector3 operator /(float &op){ return GLSGVector3(x / op, y / op, z / op); };.

GLSGVector3 operator *(GLSGVector3 &op){ return GLSGVector3(x * op.x, y * op.y, 2 * op.2); };
GLSGPolar GetPolar();

GLSGFloat GetMagnitude();

GLSGFloat GetRadialAngle(int plane = R_ANGLE_NEG_2); // returns the radial angle

% Representing ‘openGL Scene Graph’, The Scene Graph implementation also features much of

the OpenGL interfacing.
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Note that vector multiplication by a scalar provides uniform scaling and
component multiplication by a vector causes non uniform scaling; vector addition
is equivalent to vector translation. The majority of the functionality is written

inline” for possible compiler optimisation with the exception of the following:

GLSGPolar GLSGVector3::GetPolar()

{
GLSGPolar p;

p.rho = sqrt((x*x) + (y'y) + (z*2));
ptheta = acos(z/p.rho);

ifly >=0)

{

p.phi = acos(sqrt( z/ ((x*x) + (y*y))));

, p.phi = -acos(sqrt( x / ((x*x) + (y*y))));

return p;

}

GLSGFloat GLSGVector3::GetMagnitude()
{

}

return sqrt((X*x) + (y*y) + (2*2));

GLSGFloat GLSGVector3::GetRadialAngle(int axis /*=R_ANGLE_NEG_Z*)
{

switch(axis)

{
case R_ANGLE_NEG_X:

return fabs(atan2(sqrt((z*z) + (y'y)),-x));
case R_ANGLE_NEG_Y:

return fabs(atanZ(sm((X X) +(2°2)),-y));
case R_ANGLE_NEG_Z

return fabS(atan2(sqr1((x X) + (y'y)),-2));
case R_ANGLE_X:

return fabs(atan2(sqrt((z Z) + (y'y)),X));
case R_ANGLE_Y

return fabs(atan2(sq‘t((x‘x) +(2*2)).y);
case R_ANGLE_Z:

return fabs(atan2(sqrt((x*x) + (y*y)),2));
Zeturn 0.0f;

GetPolar() and GetRadialAngle provide useful calculations for use in source and
pickup DSP; GetPolar() returns the vector converted to polar coordinates;
GetRadialAngle() calculates the angle between the vector and a specific axis

vector by the following equation: arranged for radial angle against —x axis

% Stroustrup, B: 2000, p.144
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This implementation makes use of the ‘atan2’”” function to correctly handle
quadrant calculations during the inverse tan operation. The GetRadial Angle()
function is used in the RDirectionalSource and RDirectionalPickup classes to

determine directional gain factors in DSP.

5.3.2 Quaternions

Quaternions are represented in the Ricochet implementation as
GLSGQuaternion’s. As with GLSGVector3, standard mathematical operation is
achieved with operator overloading. Quaternions can be constructed in a number

of ways as shown below:

struct RSDK_API GLSGQuaternion // quaternions are used to for quicker and smoother rotational transforms

{

float w,
GLSGVector3 v,

GLSGQuatemnion() {w = v.x = v.y = v.z = 0.0f; }; // null constructor
GLSGQuatemion(float angle, GLSGVector3 axis); // construct from angle around axis

construct from manually from know components
GLSGQuatemion(float _w, float _x, float _y, float _2) {w=_w;v.x=_xvy=_y;vz=_2};

In practice, quaternions are often constructed with the BuildFromTriAxis()
function which makes use of the angle / axis constructor. This constructor takes a
directional vector axis and an angle in which to rotate around it. The

implementation is shown below:

GLSGQuaternion::GLSGQuaternion(float angle,GLSGVector3 axis)

{
w = cos(DegRad(angle) / 2.0f);
float s = sin(DegRad(angle) / 2.0f);
v=axis's,

The Quaternion implementation features some useful functions for creation from,

and rotation of GLSGVector3s.

inline GLSGVector3 QVRotate(GLSGQuaternion q, GLSGVector3 v)
{

retun (@ * v * ~q.v,

%7 Schildt, H: 1998, p.734
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}
inline GLSGVector3 QVinverseRotate(GLSGQuaternion q,GLSGVector3 v)
{

retun (~q*v*q).v;

}
inline GLSGQuaternion BuildFromTriAxis(GLSGVector3 v)

{
GLSGQuaternion q(v.x,GLSGVector3(1,0,0));

g = q * GLSGQuaternion(v.y,GLSGVector3(0,1,0));
q = q * GLSGQuaternion(v.z,GLSGVector3(0,0,1));
q.Normalize();

return q;

QVRotate() and QVInverseRotate() feature highly in rotation of vectors through
the scene graph structure. The quaternion implementation of vector rotation is
more efficient than one based on a 3*3 matrix particularly for inversion of the
transform: 3*3 matrix inversion requiring significant calculation and the

quaternion method requiring a simple rearrangement of the terms.

Note in the above; the advantage of the operator overloading in both vectors and

quaternion classes, quaternion vector rotation is calculated using the equation’®;
vV =qgqvq

Due to operator overloading the implementation can be coded as newv = g*v*~q. It
should be clear that the ability to code equations in a manner similar to the hand
written format provides a significant aid in translation from conventional notation

to implcmcntation°°.

BuildFromTriAxis() allows construction of a quaternion from rotation angles in

each axis, the rotations in this case, performed in succession around x - y — z axis.

5.3.3 SRT Transformation

SRT transformation is implemented via the class GLSGTransform: (simplified for

clarity).

class RSDK_API GLSGTransform // holds an SRT transform, in Quaternion form

% Eberly, D. H: 2001, p.13
% Stroustrup, B: 2000, p.241
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public:
GLSGVector3 s,
GLSGQuatemionr;
GLSGVector3 t; /!

GLSGVector3 LocalToWorld(GLSGVector3 v); // vector transformed from local coord system into
GLSGVector3 WorldToLocal(GLSGVector3 v), // vector transformed from world coord system into

GLSGTransform operator *(GLSGTransform &op); // multiply SRT transforms
void GLPerformTransform(); / perform this transform on current matrix stack using OpenGL

From the above note the storage of scale, rotation and translation data in the
variables s, r, t. LocalToWorld() provides the functionality to transform a vector
from the local (transformed) coordinate system into the world (non-transformed)
coordinate system. WorldToLocal() performing the inverse. This functionality

forms the basis of the scene graph calculations and is implemented thus:

GLSGVector3 GLSGTransform::LocalToWorld(GLSGVector3 v)
{

}

GLSGVector3 GLSGTransform::WorldToLocal(GLSGVector3 v)
{

}

return QVRotate(r,v * s) + t;

return QVinverseRotate(r,v - t) * GLSGVector3(1/s.x,1/s.y, 1/s.2);

Note again the use of operator overloading to provide readable code. In
LocalToWorld() the vector v, multiplied by the scaling factor s, is rotated via the
quaternion r, translation is then performed with a simple addition. To perform
inversion the translation t is subtracted from vector v before performing inverse
quaternion rotation, finally the vector multiplied by the reciprocal of the scaling

factor s.
The final function GLPerformTransform() integrates the functionality of the
GLSGTransform for use in OpenGL. When called, transformation of the current

OpenGL matrix stack occurs, enabling graphics to be rendered relative to the

transforms’ coordinate system.

5.3.4 Scene Graph Nodes
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The Hierarchical Scene Graph is implemented with a tree structure and the basis

for the implementation is the GLSGNode class: (highly simplified for clarity).

class RSDK_API GLSGNode : public PersistentObject

{

GLSGNode *parent; // this node's parent

GLSGNode *child; // points to the first child node

GLSGNode *sibling; / points to the next sibling node

GLSGTransform local; // transform from parent

GLSGTransform world; // transform to world

void Update(long time); // recursive update including this node // traversal is top to bottom
}

In the above, the pointers *parent, *child and *sibling form the tree structure. The

GLSGNode class makes significant use of recursive algorithms to perform the

majority of its tasks. Recursion is a typical implementation technique in tree based

structures' ™. The following diagram illustrates the tree form used in GLSGNode:

NULL
P

GLSGNode LP2re™ |
child ing

GLSGNode L2arett GLSGNode LEarent | GLSGNode LE2re™ |
fcmd m fehid W fchid Fu_ng
GLSGNode Lexert | GLSGNode Leare™

fehid Fsibing | child

Essentially the sibling pointer forms the connection in a singly linked list'"'; the

child pointer linking the first of the node’s children. A GLSGNode with a null

parent pointer is designated the root of the tree.

190 Sedgewick, R: 1999, p.201
191 ibid., p.91
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Transformation in the Scene Graph is accomplished with the aid of two
GLSGTransform objects: local and world. The ‘local’ transform contains the
transformation required at this particular node; the ‘world’ transform acts as a
storage object. A call to the world root node'** Update() function initiates a
recursive traversal of the whole tree. During this traversal each node’s world
transform object is calculated from its parent’s world transform. This storage of
successive world transforms provides a pre-calculated single transform from one
node’s coordinate system to the world system. With this method it is possible to
transform from any node in the tree to any other with just two transform

calculations. Examining this principle with a simplified Update() function:

void GLSGNode::Update(long time)

{ if(parent)
{

world = parent->world * local; // multiply the parents world SRT transform by local transform

}

else

{
}

Do

world = local; // has no parent so the local transform is the world transform

Do recursive traversal
GLSGNode *t = child;
while(t)

t->Update(time), // recursive call
t=t->sibling;

In the above: a check is made for the existence of a parent node; if a parent exists
then the parent’s world node is multiplied by the current node’s local transform;
the result is stored in the current node’s world transform object; the current node
then performs a call to each of its children’s Update() functions effectively

traversing the entire tree.

The implementation of GLSGNode provides many functions for management of
the node tree. These are provided to simplify and validate changes to the structure.

Much functionality is provided for the use of transform controllers, a later topic.

192 The world node represents the root node designated as the base of all nodes contained in the

world.
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5.3.5 Connecting Nodes to SRP objects

Connection of GLSGNodes to RSource and RPickup objects is handled in the
base classes by simple methods. Both RSource and RPickup classes are provided
with the method AttachToNode() which simply allows a particular pickup to be
attached to a particular node. In this implementation it is not necessary for a node
to ‘know’ about objects that are connected to it. It is the responsibility of the

source or pickup class to use the transformation information provided in the node.

5.4 Implementing Automation and Control

In the ‘Ricochet’ example, implementation of automation and control is achieved
with one class forming a basis for inherited controller types. RController and
GLSGTransformController are parallels to the Controller and Transform
Controller entities described in the virtual environment model. To facilitate
storage and controller assignment the RParameter class is provided along with
extended functionality to the GLSGNode class. As with the ‘Virtual Environment

Model’ the two control sections are treated separately.

5.4.1 Implementing Single Parameter Control

RControllers are assigned to parameters using methods from the parameter class

RParameter defined as follows: (simplified for clarity)

class RSDK_API RParameter : public PersistentObject
{

RController *controller;
float value; // the actual value
public:
void AssignController(RController *_controller); // assigns a controller to this parameter
float GetValue(); // returns the parameter value
void SetValue(float _value);
void Update(long time); // updates any controllers

This definition helps visualise the controller-parameter linkage and shows some
features of the parameter object class. A parameter’s value may be obtained and
set via GetValue() and SetValue() methods. AssignController() creates the

functionality for connecting a single controller. A call to Update() requests that
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the parameter obtain updated data from its controller, if assigned. Moving on to
controllers, RController is defined thus: (simplified for clarity).

class RSDK_API RController : public PersistentObject, public GUIListener
{

private:

FastDynamicArray<RParameter*> parameterList,
protected:

DSPFloat value;
public:

void CreateParameter(T_RParameterinfo parameterinfo);
DSPFloat GetValue() { return value; };
virtual void Update(long time); // overload to determine what happens when the system updates

The implementations of RParameter and RController act as a pair to form the full
hierarchical controller tree. An RParameter may be assigned an RController and a
single RController contains a list of sub RParameters. The Update() methods of
each class are called in sequence; RParameter::Update() makes a call to its
assigned RController::Update(); this in turn calls all RParameter::Update()
methods for its list of parameters. This action is essentially a recursive algorithm
that performs traversal of a controller/parameter tree. To provide the control
algorithm RController is inherited from and the Update() method is overloaded to
provide the control algorithm.

5.4.2 Implementing Transform Control

Using the implemented RController as a base class it is possible to add
functionality for connection to GLSGTransforms. GLSGTransform controller is

therefore defined as follows: (simplified for clarity)

class RSDK_API GLSGTransformController : public RController
{

public:

GLSGTransform “target;
void SetTarget(GLSGTransform *_target) { target = _target; };

virtual void UpdateTranslate(long time){}; // overload for translation
virtual void UpdateRotate(long time){}; // overload for rotation
virtual void UpdateScale(long time){}; // overload for scale

The complete functionality for transform controllers to contain sub parameters is
inherited directly from RController. An advantage of inheriting is the ability to

define a single controller class that can be used for both SRT and single parameter

D. R. Moore ‘Real-time Sound Spatialization, Software Design and Implementation’ Page 135 of 177



5.4 - Implementing Automation and Control

control; this actually extends the original model slightly. Similarly to RController,
control algorithms are defined by overloading methods within inheriting classes,
in this case UpdateTranslate(), UpdateRotate() and UpdateScale(). These update
functions would typically make adjustments to the target SRT.
GLSGTransformControllers are connected to GLSGTransforms within the
GLSGNode and this connection is performed with the following additional
GLSGNode functionality:

void GLSGNode::AssignTransformController(GLSGTransformController *controller,int type)
{

controller->SetTarget(&local);
RemoveTransformController(type);

switch(type)

(case T_C_T_TRANSLATE:
tc_translate = controller;
break;

case T_C_T_ROTATE:
tc_rotate = controller;
break;

case T_C_T_SCALE:
tc_scale = controller;
break;

}
)This function allows controllers to be connected to one of three connection points
tc_translate, tc_rotate and tc_scale, corresponding to the three components of SRT
transformation. Notice the call to GLSGTransformController::SetTarget() passes
this node’s local transformation SRT as the target for control. The additions to
GLSGNode::Update() below, show the different calls made for each type of
controller when updating.

if(tc_translate)

tc_translate->Update(time); // first call updates controller parameters
tc_translate->UpdateTranslate(time); / this call causes update of the local SRT

}
if(tc_rotate)

tc_rotate->Update(time);// first call updates controller parameters
tc_rotate->UpdateRotate(time);// this call causes update of the local SRT

if(tc_scale)
{

tc_scale->Update(time),/ first call updates controller parameters
tc_scale->UpdateScale(time);// this call causes update of the local SRT

}
The following diagram shows the entity relationships and update path for control

implementation:
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5.5 Implementing Modularity and Expandability

Audio signal processing software with the facility for extension and
experimentation already exists in a number of forms. DSP processes can be
described graphically using Cycling 74’s Max MSP software. In itself the power
and creative flexibility of Max MSP is powerful but an important feature is the
ability for the software designer to access the underlying framework of Max and
produce ‘Externals’ for use in the graphical modelling environment. Many
researchers in signal processing create Max MSP Externals for experimental
purposes and the ability to concentrate solely on an algorithm without regard for

interface is of benefit.

Steinberg’s VST technology provides another framework for expression of signal
processing algorithms. Software developers are able to both design algorithms for
use in VST software hosts and produce VST host software that can use other
designer’s algorithms. A software package that supports the VST framework has
immediate access to a large variety of signal processing algorithms in the form of

the VST plugin.
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The underlying frameworks above are of help to software users as well as
software developers. Developers can test and release new experimental algorithms
more easily and more often and therefore users are presented with an ever
increasing set of tools with which to produce audio. The benefits to the creativity

of both developer and user are apparent.

However, writing software for use in a framework requires a developer to follow
the constraints of the framework and this means that the framework must impose

limitations on the type of software that can be embedded in it.

‘Ricochet’, a framework for sound spatialization signal processing, provides
useful functions for spatial processing and imposes guidelines and limitations on

how the spatialization must be performed.

The implementation described in the previous sections serves as a framework for
spatial DSP and spatial control. The actual algorithms that perform DSP and
control require additional object classes to inherit from the framework base
classes. During the discussion of DSP a number of these inherited classes were
introduced. In essence, the framework provides the functionality for connection
and categorisation of spatial objects using the SRP model. In order to promote
creative extension to the SRP model the ‘Ricochet’ engine provides all of its
functionality to the 3" party developer via a ‘Plugin’ based Software
Development Kit (SDK). This kit can be used by any software developer to create
new object classes based on the framework objects. An introduction to the
Ricochet SDK (RSDK) is provided by examination of a basic plugin. The
following code would be compiled and linked as a dynamic link library that is

placed in the ricochet plugin directory:

class BasicPerformerObject : public RDSPODbject
{

public:

PERSISTENT_OBJECT_HEADER(BasicPerformerObject,'bper’)

void PerformerDSP(long bufferSize);
void Create(GLSGVector3 pos);
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Taken directly from baseplugin.h the above class header shows the full class
definition for the BasicPerformerObject in an earlier example. The full

implementation follows and is taken from baseplugin.cpp:

void BasicPerformerObject: Create(GLSGVector3 pos)

{
CreateChannel("Source Input® true); // create an input channel

GroupNode* node = new GroupNode; // create a node
node->SetNode(pos), // set the node to the position set by the interface
node->SetName("Source 1%); // name the node in the interface
ROmniSource* source = new ROmniSource; // create a source
source->AttachToNode(node), // attach the source to the node
AttachSource(source); // attach the source to the dsp engine
AttachNode(node); // attach the node to the graphics engine

)

void BasicPerformerObject::PerformerDSP(long bufferSize)

{
float *in = *GetinputChannel(0).buffer;

float *sBuffer = GetSource(0).buffer;
memcpy(sBuffer,in, sizeof(float) *bufferSize);

The framework components needed by the object i.e. virtual channels, nodes,
sources and pickups are obtained within the overloaded Create() function. Using
simple function calls, the 3" party developer is able to build an object that is
under full control of the interface. It should be noted here that this is the complete
source code for one object and all that remains is for the B party developer to
register it within the system. This is performed with a number of simple macros

and functions.

PERSISTENT_OBJECT_SOURCE(BasicPerformerObject)
int RPluginMain()

( SPLASH_MESSAGE("Simple RSDK example plugin.”);
5&?LSJER_DSP_CLASS(BasicPerfo:morObjed.'Basic Performer”,1,0,0);

!l‘he above function name is automatically found and called by Ricochet when it

searches its plugin directory. The macro SPLASH_MESSAGE allows an author

to have a message displayed by Ricochet when the plugin is loaded.

REGISTER DSP_CLASS simply registers this object class with a name seen by

the user and also allows specification of which DSP algorithms exist.

PERSISTENT OBJECT HEADER and PERSISTENT_OBJECT_SOURCE are

macros defined for the purposes of saving and loading, a later topic in this

document.

In just 31 lines of code, an object has been developed that behaves as an omni

directional performer in a virtual environment. The object’s SRT transformation is
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hooked into Ricochet’s graphical interface providing user control of motion. /O
assignment is immediately provided to the user via the channel object. Details of
object positions and parameters are automatically saved and loaded with a
Ricochet document. The advantage of ‘plugin’ modularity is that 3rd party
developers can create new tools for the spatial artist without the need to develop a
full framework. In particular someone interested in researching the SRP technique
can develop new DSP algorithms and test them with other developer’s ideas
without in depth knowledge of the GUI or SRP framework.

5.6 Implementing Object Persistence

In providing a dynamic and expandable system this implementation has created a
difficult task for the purposes of saving and loading user files. Consider a typical
user of the system who creates an SRP network containing multiple object types,
some developed by 3™ party developers, deeply nested groupings of nodes in the
scene graph and multiple levels of control. The necessity to store data for
dynamically created objects (object persistence) is of particular importance in this
project. The particular implementation of the data structures makes significant use
of memory pointers to reference data/objects that are dynamically created and
destroyed. It is possible to traverse all created objects storing contained data, but a
problem arises when storing the pointer references. To store the value of a
dynamic memory pointer between user sessions is inherently pointless as
recreation of the originally stored dynamic objects will inevitably allocate
different memory blocks from the heap. It is feasible that pointer references be
discarded in favour of unique ids for each dynamically created object. The
disadvantage here is the speed bottleneck in looking up an id and cross
referencing it every time object/object interaction is required. This method can be
sped up using pointers and id variables; ids provide persistence between sessions:
cross referencing to set pointers to accurate object memory locations is performed
on file load. Of course the problem here is the implied doubling in data storage
required per pointer and the increased complexity of dynamic creation algorithms.
In this case a simple tree structure becomes significantly more complex to design.
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The solution makes use of the inherent uniqueness of pointer values. Two objects
cannot occupy the same memory location so object pointers always take a unique
value. By using pointer values as unique ids it is possible to provide an efficient
object persistence solution that does not suffer in speed or complexity of data
structure. Object persistence is achieved by storing information about an object’s
class and storing its current memory location as its unique id. Each object’s
individual data is stored along with any pointers to persistent objects. Upon
loading, objects are recreated from the stored class information. The stored
memory location is used to create a lookup table of old and new memory locations
for the object. Loading of data is as normal but any stored pointers are first cross
referenced in the lookup table and the new memory location is stored. With this
method the entire data structure of the system, regardless of complexity in

referencing, is stored and retrieved successfully.

5.6.1 Object Persistence in ‘Ricochet’

e Objects that require persistent storage inherit from PersistentObject

o Persistent object classes provide a ‘factory’'® function via use of macros.

e Persistent object classes provide Run Time Type Information (RTTI)'*
data via same macros.

¢ If an object contains other references/pointers to other persistent objects it
overloads the virtual function PrepSave(). Within this function any child
objects PrepSave() function is called, providing data structure traversal.

When Saving:

o The system sets up the file stream object ready for saving. A new file is
created etc.

e The system then calls PrepSave() for all of the parent objects that require
storage.

193 Sgroustrup, B: 2000, p.323 and Eberly, D. H: 2001, p.460
194 Geroustrup, B: 2000, pp.407-418 and Eberly, D. H: 2001, pp.444-451
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The PrepSave() call propagates through the data structures to all objects
that need saving.
With the PrepSave() calls done, the file stream now has a list of all objects
that require saving.
The file stream traverses the list and performs the following for each
object:
o Object info data header is stored first and contains the RTTI info
and the current memory address of the object to be saved.
The stream then reiterates the list performing the following:
o The object’s Save() function is called.
o The individual save functions will store static data for themselves.
o Any object references must be saved using the SaveObject() of the
file stream.
The base system can now save any of its own raw data. Any objects that

must be pointed at can be saved with SaveObject().

The file structure at the end of this is as follows:

{[RTTI and instance info]}... {[ObjectDataSize][Object data]}... {[System raw

data]}

RTTI and instance info is stored in the same order as the object data.

When Loading:

The system sets up the file stream for loading of the data.
The system traverses the file and for each object block performs the
following:
o The object header is loaded.
o RTTI data is used to create a new object.
o The new object’s address and its old memory address are stored in
a lookup table. If the object failed to create then a NULL value is
stored.
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e Traverse the list of created objects stored in the table. If an object could
not be created then a memory NULL pointer will have been stored and the
system will skip the data. For each object the following is performed:

o Read object data header info — basically just the size of the stored
data

o Call the object’s own Load() function

o Any object pointers will be read via LoadObject() which cross
references the old pointer value with the new one. It is possible that
this function will return a NULL pointer and in this case the object
should be coded to act accordingly.

e The final system data is loaded and if any pointers exist they can be loaded

as above.

The full source for this technique is supplied in the files: persistence.h and
persistence.cpp. These files contain many classes that essentially perform the
above technique. This thesis will not provide an in depth discussion of this code
but a review of the steps necessary to create a persistent object class is relevant for

the software development Kit.

A new class taking advantage of the *Ricochet’ object persistence model can do
so very simply. Two macros PERSISTENT_OBJECT_HEADER and
PERSISTENT OBIJECT_SOURCE are used to insert most persistence
functionality to a new class. It is also a requirement that a base class inherits from
PersistentObject. Overloading of three virtual functions PrepSave(), Save() and
Load() allows an object to provide information about child objects and store and
retrieve class specific data. The FStream class provides access to the actual file
and a saving or loading object will be presented with the FStream instance that is
in use. To examine this concept the following is a condensed version of

RDSPObject’s persistence methods:

class RSDK_API RDSPObject : public PersistentObject, public GUIListener

4 PERSISTENT_OBJECT_HEADER(RDSPObject,'rsdp')
virtual void PrepSave(F Stream &stream);
virtual void Save(F Stream &stream),
virtual void Load(F Stream &stream),
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A e T D SIS

The above is from the header file and the following should be noted:
PersistentObject is inherited from; the PERSISTENT OBJECT_HEADER()
macro is used first in the class definition passing the name of this class and a
unique 4 character code (developer defined); all three virtual functions are

overloaded. The source implementation follows (simplified for clarity):

PERSISTENT_OBJECT_SOURCE(RDSPObject)

vold RDSPObject::PrepSave(F Stream &stream)

¢ PersistentObject: PrepSave(stream);
mtn,

for(n = 0, n < info.numSources,n++)
{

)

sourcelist{n}->PrepSave(stream), // register source instances

)

void RDSPObject: Save(F Stream &stream)
{

save giobal obiect data
stream. WriteData(&info, sizeo/(RDSPObjectinfo),1);
mn;
for(n = 0; n < info.numSources,n++)

{
}

stream. SaveObject(sourcelist[n]), // save source instances

)

void RDSPObject:Load(F Stream &stream)
{

load gioba

stream ReadData(8info,sizeo/(RDSPObjectinfo),1);
nmn

for(n = 0; n < info.numSources;n++)

{

)

sourcelist Add((RSource*)stream.LoadObject());// load source instances

Firstly note use of the PERSISTENT_OBJECT_SOURCE macro, again passed
the class name. SOURCE in this case represents ‘source code’ because this
macro must be used in a C++ source file. The implementation of PrepSave() first
calls the base class PrepSave() with the current stream causing registration and
correct storage of this object instance. BaseDSPObject then goes on to register its
child objects, in this case all of the sources. In an object that has no child
persistent objects the overloading of PrepSave() is not necessary as the base class
provides the necessary functionality. Save() and Load() are similar using
FStream::WriteData() and FStream::ReadData() to write and read blocks of non

dynamic class data. Storage of child objects is accomplished with
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FStream::SaveObject() called in this case for all sources. FStream::LoadObject()
is used to load each source and perform the pointer cross reference before adding

to the source list.

5.7 ‘Ricochet’ General Implementation Methods

A complete line by line explanation of Ricochet’s implementation is of little
relevance to the core of this thesis. In lieu of this the following section provides
only an overview of the general implementation methods and ongoing
development areas. It should be noted however, that although the methods are less
relevant to the SRP technique, many are still vital to production of a complete

software application.

The Graphical User Interface (GUI) for ‘Ricochet’ was developed using a
combination of the Microsoft Foundation Classes (MFC) and the Win32 API.
Comprehensive coverage of these APIs is given in Petzold, Brown, Feuer,

195 The Win32 API was used as a base for the ricochet plugins’

Gregory and Jones
own GUI interfaces. It was intended that the ricochet SDK should not force the

use of MFC.

The design of the GUI was loosely based on Discrete’s ‘3D Studio Max’ software,
a tool for 3D graphics modelling and rendering. The basic principle of the design
is four windows displaying views from different ‘cameras’ in the 3D world. These
windows provide a CAD like design space where action in one view is
immediately shown in all the others. A menu and toolbar provide access to the
commands in the interface. Creation of objects and direct navigation is provided
in a tabbed window. A tabbed properties window shows the properties of the
currently selected object. This diagram describes the basic layout:

105 petzold, C: 1999; Brown, S: 2000; Feuer, A. R: 1997; Gregory, K: 1997; Jones, R. M: 2000
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Menu
Toolbar
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As discussed earlier, the implementation of ‘Ricochet’ makes use of OpenGL to
provide the 3D graphics rendering required by the user interface. Integration of
MFC and OpenGL was performed by creating an extension to the MFC CWnd
class called GLViewWnd. Each view is created with the GLViewWnd class with
all other GUI features created by extensions to other MFC classes. The OpenGL
implementation makes use of many extensions to the GLSGNode class. These
extensions provide for both rendering of 3D meshes and selection of objects.
Node selection is performed with OpenGL’s pick matrix and off screen rendering.

Selection of groups of objects is achieved with a special GLSGNode which is

inserted into the Scene Graph.

In order to provide user interface features to plugin developers without forcing
every developer to use MFC, it was decided to create a simplified set of GUI
interface classes and functions that would integrate with the main interface
automatically. This method provided the best solution for a researcher wishing to
produce a simple experimental SRP object. It should be noted however, that the
3" party developer is not required to use the simple GUI library and may use
either Win32 or MFC if so desired. This simple GUI was created using only the
raw Win32 command set. All classes and functions relating to the simple GUI are
contained in the files PluginGULh and PluginGUI.cpp. These are compiled and
linked into the dynamic link library PluginGUI.dII.
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Non-visual design of 3D meshes for rendering is not a simple task and therefore a
small library for loading .3DS'® files was made to facilitate design of meshes
using an external editor. The 3" party developer is able to use a .3DS file mesh to
represent a node in the interface. This functionality is provided by the classes
C3DSModel and C3DSModelManager which wrap-up and extend classes and
functions from Ben Humphrey’s web based tutorial on 3DS file loading'”".

The user’s mouse controlled tools are designed on a base class RTool. This base
class allows new tools to be more easily designed and integrated within the
windowing and object selection system with the aim of providing for future
expansion of the system. In this early version, only the bare minimum tools for

creating, selecting, moving, rotating and scaling are provided.

In order to implement the modular plugin architecture the system makes use of
Microsoft Windows Dynamic Link Libraries (DLLs)'*. The Windows API
provides functions that can obtain a pointer to a function contained in a DLL.
‘Ricochet’ searches through all DLLs contained in its plugins directory and
attempts to obtain a pointer to a function called RPluginMain(). If the function
exists then Ricochet runs it and the plugin is then registered together with any
additional functionality. The RPluginManager class is designed to perform all the
necessary registration of plugins. This technique is used in all of the plugin
architectures looked at during research and is well discussed in Steinberg’s VST
SDK. It would have been simpler to provide an architecture that forced one plugin
to provide only one additional object class to the system but it was felt more
useful to provide the option of creating a whole library of additional classes in one

DLL. A single plugin may register many classes with the active RPluginManager.

Internal reporting macros and functions were designed initially to aid run time
debugging of the main system but this functionality has been purposely left in the
system to aid the 3 party developer. These features can produce run time reports

1% Discrete’s 3DS Max export format supported on a number of other 3D applications
197 Humphreys, B: 2002
198 williams, A: 2000, p.15
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to a debug window and will automatically be skipped when compiling a release

version.

A future extension to ‘Ricochet’ could be the integration of Steinberg VST
plugins and the beginnings of an appropriate VST plugin host are provided in the

as yet incomplete CVSTPlugin class.

5.8 Ricochet user manual

5.8.1 Initial boot up

After executing the Ricochet application a small splash screen is displayed before
reaching the main page. The splash screen displays the available RSDK plugins as
it detects them on the lower display line. Below, the screenshot shows the splash

screen after successfully loading plugins.

The main page of Ricochet is presented immediately after the splash screen

loading and initially displays as follows:
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The four main OpenGL editing panes form the majority of the interface and

provide the user with Top, Left, Front and Perspective views in order to visualize

the 3d sound space. In the upper right of the screen the ‘Create’ tab shows a tree

view displaying a categorized list of the available objects for creation. The

‘Objects’ tab shows objects that have been created and the ‘Nodes’ tab displays

the complete world node hierarchy. Settings can be adjusted from the ‘Settings’

tab.

5.8.2 Creating objects: Create Tab
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To create an object the user selects an object class from the create tab and clicks
within any of the edit panes. All 3d object classes will use the position of the click
to establish a creation location and will display a node visualization graphic in the
edit panes. Visualization graphics are related to the types of nodes that are created.
If an object creates 8 nodes then the user will see 8 node visualizations in the edit

pane. The following diagram shows a selection of created objects displayed in the

“Top’ edit pane.

Once created, the object will open its parameter window and this window may be
moved to a desired location. An object’s parameter window displays the editable
parameters that relate to the whole object such as pickup gain or directionality.
The screenshot below shows a test interface object class purely for development

purposes but it highlights a typical interface GUI

Controls contained in these popup interfaces operate in real time and typically
control parameters that relate to DSP or other aspects not encompassed by the
node hierarchy. If the parameter GUI disappears from view then the ‘Param Ctrl’

button will bring it back into focus.
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5.8.3 Selecting DSP Objects: Objects Tab
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Created objects are displayed in the objects tab under the processing categories
Performers, Manipulators and Listeners. Selecting an object in this view causes it

to become the object of focus for the routing window described below.

5.8.4 Routing DSP Objects: Routing Window

The above screenshot shows the routing window for an octaphonic listening
object. The blue context menu appears after clicking on any of the virtual output

controls and allows routing of the virtual output to a physical output. In the
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screenshot below virtual input routing is shown. Note: Some object classes may

have both inputs and outputs.

5.8.5 Processing, selecting and manipulating nodes

A 3d node can be selected by clicking on its representation in the edit pane.
Multiple nodes may be selected by clicking and dragging to form an
encompassing rectangle. Once a selection is made the user is able to manipulate it

using the basic tools in the toolbar (shown below).

File Edt Window Hebp

»| ¢|o|H| x|v|z]

The ‘Play’ button is the processing on/off toggle and this determines whether or
not audio and controller processing is running. When processing is off no sound is

heard and the animated controllers remain static.

The “Translate’ tool allows the selection to be moved within the plane of the
current edit pane, in the “Top” pane this represents a movement in the XZ plane of
the modelled environment. Rotate and scale tools make use of the axis lock
buttons X. Y and Z. When using the rotate tool the axis of rotation is selected

using the axis lock buttons, clicking and moving the mouse up and down directly
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rotates the selection group around the selected axis. The scale tool works in a

similar way but the axis lock selects the axis along which scaling is applied.

Any selection of nodes can be grouped at any time by selecting Edit->Group. A
dialog is displayed for the entry ofa group name (shown below). Note: grouped

nodes cannot be ungrouped in the current version of the interface.

[omp setbeeted L x)
—T

Groups can be selected in the same manner as any other node. If a node is selected

its highest level encompassing group is selected. It is not currently possible to

reopen a grouped node.

5.8.6 Viewing and Controlling Nodes: Node Tab
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The node tab (above) displays the complete node/group hierarchy based on the
world node. When a node selection is made the tab also displays the selection
node which forms the mechanism for node manipulation. Selected nodes will be
removed temporarily from the world node and added to the selection node. Upon
de-selection, the transform contained in the temporary selection node is applied

directly to all selection child nodes. The original world node hierarchy is then

restored.
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Nodes can be highlighted in the node tab view. A highlighted node can have

controllers applied to it via the controller assign buttons.

Each button brings up the controller assign dialog and a vector controller class
may be selected. Only controllers that have the capability of acting on the selected
transform component (Scale, Rotate or Translate) are visible in the dialog. Note:

only vector controllers visible.

Vecto MIDI Corteol Uhange

Vet Sre Wave

_Cres_ |

M

Upon selecting a controller class a new controller instance is created and its

editing GUI is shown in a popup window.
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5.8.7 Assigning Parameter Controllers

Any controller or object parameter dialog can assign sub-controllers by right
clicking on the contained parameter controls. The context menu shown allows

assignment, editing and removal of a controller.

Upon assignment a controller selection dialog is shown displaying a list of the
available scalar controller classes. Selection of a class results in the creation of a
controller instance and display of the controller’s popup GUI. A hierarchical tree
of controllers can be built up be adding sub-controllers to each GUI. The

screenshot below shows the controller selection dialog. Note: only scalar

controllers visible.

[Assion Controller |
M1 Cormol Charge | |
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5.8.8 Changing Settings: Settings Tab

An ASIO driver can be selected from the settings tab. The driver’s own settings

panel can be opened with the Panel button.

Croate | Otiocts | Nodes  Setirgs
ASI0
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ASIO Harmedal D57
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|

5.8.9 Project Management

At any time, a new blank project can be created by selecting ‘File->Project-

>New’. Selecting “New” will present the following confirmation dialog:

e =

=] o |

Saving and loading is also achieved from the ‘File->Project” menu. Saving or

loading a project presents the user with the standard windows file selection dialog

in order to choose a file.

Fie name. l ng-_;

Flot of o [ Rcoctmt Foes [ ) * oy ool

A single “.ric’ file is created for each saved scene. Upon loading a “.ric’ file the
system will destroy the currently active project.
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Ricochet screenshot showing many created objects multiple selections and a

number of open parameter windows.
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5.9 Future expansion of ‘Ricochet’

‘Ricochet’ is an ongoing project and it has much potential for future development
in numerous areas. The software was designed from the start to be modular and
the first expansions of the system will likely be in the form of advanced plugin
objects. There are many possibilities but it is a reasonable assumption that more
variety in DSP and control objects would be the first goal. It is hoped that interest
from 3™ party developers will both increase the variety in objects and provide a
forum for improvement and expansion of the Ricochet Software Development
Kit. This has been the approach of Steinberg in its VST plugin framework and the

variety in signal processing of both commercial and non-commercial products is

considerable.
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Future development of the user interface will strive to improve the usability of the
software with respect to the sound artist. At present the graphical interface does
not have the benefit of solid user testing and feedback. Serious consultation with
potential users is necessary before making changes. However, it is obvious that
particular interest will come from the expansion of hardware control of the

system, for example, motion tracking of performance and live instrumental

control.

A major future goal is improved integration of the software into the sound artist’s
typical tool box of 3" party software. This would provide: increased file format
support; support for the multitude of DSP plugin formats, VST, DirectX and
RTAS; support for inter-process / network audio transmission; direct control by
3D graphics software such as 3DS Max. Much of this work would focus on an
improved version of the audio sub system that can provide both simpler use in

experimental software and greater functionality.

Perhaps though, any future developments should not ask the question ‘What
software should be designed?’ but instead ask ‘What do artists want to create and

how do they want to create it?’
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6 Audio and MIDI libraries

This section describes some of the libraries that were developed and used during

the development of Ricochet and Super Diffuse.

6.1 Real-time DSP on the host CPU

In order to perform real-time signal processing on a modem personal computer
there are two techniques and associated hardware. One method assists the ‘host’
CPU (ie. Intel Pentium or equivalent Motorola), performing all DSP calculations
inside an expansion board. This dedicated DSP processing board, sometimes
integrated with Audio /O, is under user control via the host CPU. In a typical
system all signal processing occurs on the DSP board and all user interface
features are performed on the host.

Host CPU Dedicated DSP Processor Audio /O /—\

Powers user [€¢——{ Performs signal processing ${ Performs signal

interface conversion V@j

The technique allows signal processing to be performed with very low latencies

(1 sample latency is often claimed) and at very high sample rates (192 kHz on

Pro-tools HD at the time of writing)'®

. Of use to the software developer is the
ability to perform DSP at a single sample level without concemn for other system
tasks. If the required latency is 1 sample, the DSP algorithm for a single sample of
input must be computed within a single sample rate clock tick. However, since no
other processing needs to be performed, using the full power of the chip to
complete the DSP algorithm is acceptable. A disadvantage of dedicated DSP is its

high cost for both initial purchase and future expansion or upgrade.

19 Single sample latency at 192 kHz produces a potential ‘reaction’ time of 1/192000" of a

second.
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In the ‘host based’ solution, both DSP and user interface processing are processed
simultaneously by the host CPU, AD/DA conversion is performed by an

expansion circuit.
Host CPU Audio /O /\,
Powers user interface and | Performs signal
performs signal processing on conversion via AD/DA

incoming buffers and buffering U

Obviously, compared to the dedicated hardware solution, the host CPU is now
required to perform significantly extra data processing. More importantly
however, the host must also perform two tasks at once. Signal processing in
dedicated hardware can be performed continuously but in host based DSP there
are many other tasks to be performed simultaneously. These tasks are often time
critical and require the CPU to be interrupted. In order to perform DSP on the host
CPU it is necessary to buffer the input signal and perform DSP in a burst.
Identical performance to dedicated DSP can only be achieved by buffering in
single sample blocks but this is not feasible with current CPU speeds and complex
DSP algorithms. If, however, buffering is used to split the I/O stream into sample
blocks, the host CPU is able to take advantage of various techniques which reduce
the processing load. At this point it should be noted that the size of I/O buffers
directly affects system latency and the potential for host processing optimisation.
It is important to realise that many optimisations, ignoring the I/O latency, are
achieved with absolutely identical outcome to a per sample algorithm. However,
some have the disadvantage of losing control reaction speed and sample level
accuracy. The design of a real-time host DSP algorithm has added complexity
because of the need to optimise speed. Although host based DSP is not as accurate
and arguably more algorithmically complex than a dedicated system, it is highly
cost effective due to the reduced expense on hardware. This reduced cost makes

host based processing more accessible to the average user.
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6.1.1 Notes on host based optimisation

Host based systems using buffering can take advantage of many optimisations'"”

but some common ones are explained as follows. In this case ‘cost’ refers to
‘processing cost’ in CPU cycles. Some prior knowledge of sofiware engineering

terms is assumed.

e Performing simple calculations on large blocks of data will sometimes
take advantage of CPU optimisations such as caching and pipelining, an
optimising compiler can also make use of these features.

e Performing calculations once per buffer is less costly than performing
them once per sample so it is common to pre-calculate a value and use it
for the whole buffer.

e Performing function calls is a costly CPU operation due to pushing of
registers into a call stack and program jump overhead. For this reason
calling of functions tends to be kept to a minimum on per sample
operations. Often, ‘macro’ functions and the C++ ‘inline’ concept is used
to simulate function based code for the developer but remove it from the

compiled algorithm.

6.1.2 Steinberg’s ASIO for host based audio /0

{ASI

Audio Streaming Input and Output (ASIO) is a library that allows low latency

connection to current audio I/O cards. ASIO forms an abstraction layer between
audio hardware and software by requiring hardware developers to provide a driver
compliant with the ASIO specification and by providing functions to the host

software that allow generic control of any driver. This hardware abstraction

119 Coulter, D: 2000, p.209
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technique is common for software connection to other optional card types, for

example graphics cards.

In order to develop music software the developer includes the relevant header files
and source from Steinberg’s ASIO SDK and performs a lengthy but simple
initialisation creating audio buffer memory blocks and making a number of
function calls to access the selected ASIO Driver. ASIO makes use of a ‘call-
back’ function for the purpose of providing the hardware manufacturers ASIO
driver with a function to perform when an audio buffer is ready for processing by
the host. In other words the host provides a pointer to a function that is designed
to process an audio buffer using the desired algorithm. The host supplied call-
back function is required to deal with a number of different audio buffer formats

(16 bit integer, 24 bit integer contained in 32 bits, 64 bit floating point etc.).

6.1.3 Packaging ASIO in ASIOSubSystem.dll

In order to facilitate faster development of common audio programs an
intermediate library was created to package the ASIO library and a number of
conversion routines into a dynamic link library for creating audio programs
processing with 32bit floating point. The ASIOSubSystem.dll was one of the
earliest pieces of software developed for this research project and was
subsequently used and expanded during development of Ricochet and Super
Diffuse. The version used with software described in this thesis was tested with a

range of audio hardware including the following:

e MOTU: 2408 and 24i0
e RME: Hammerfall DSP 96/32 and Multiface
e Creamware: Scope fusion platform

o Creative: Soundblaster 64 and Audigy

In pseudo code, use of the ASIOSubSystem.dll is as follows:

Initialise asio and create 32bit float buffers for all inputs and outputs in the system
ASIOBufferCallbackRoutine()
For each input channel buffer

{
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call conversion routine on this channel from driver format to float

}
call ASIOSubSystem host supplied function with converted float buffers

for each output channel buffer

{
}

call conversion routine on this channel from float to driver format

A typical conversion routine is as follows. Notice the use of ‘inline’ optimisation
to replace function call. This function provides conversion from 32bit integer in

most significant bit format to 32bit float (DSPFloat) format used by the host.

inline void int32MSB16ToF loat(int *input, DSPFloat *output, int size)

{ float ratio = 1.0/ 32768.0;

size++,

while(-—size > 0)
*output = ratio * (float)*input;
input++;
output++;

}

Firstly the function pre-calculates (for the whole buffer) a ratio between the
maximum integer value 32768 and the DSPFloat maximum value of 1.0 (The
compiler actually pre-calculates this ratio at compile time). Each sample in the
buffer is multiplied by the ratio to provide the conversion. The “while(-size > 0)’
iteration is used quite frequently in the DSP code of both projects in this thesis
and provides a loop connected to buffer size. By incrementing the size value once
the iteration condition is able to use the pre-decrement (--n) method which is

faster than the post-decrement (n--).

A typical application produced call-back has the following format.

void DSPMain(DSPFloat **inputs,DSPFloat **outputs,long bufferSize)
{

}

/| Perform application specified per buffer DSP here

Setting up an ASIO driver and specification of a DSP algorithm using
ASIOSubSystem is as follows. This code section opens a driver, runs the null

algorithm defined above for 10 seconds then shuts down gracefully.

SetDSPCallback(DSPMain); // set the dsp callback passing a function pointer to the application DSP call-back
InitASIO(“ASIO Multimedia Driver”,44100.0); // Open the driver called ASIO Multimedia Driver S/R 44 1kHz
StartASIO(); // Inform the driver to begin processing audio

Sleep(10000); // Windows command to wait for 10 seconds
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StopASIO(); // Inform the driver to stop processing audio
CloseASIO(); // Unload the driver and cleanup memory etc

It should be clear from the above that using the ASIO Sub System DLL provides a

very quick and simple method for accessing ASIO Drivers.

6.1.4 Future expansion of ASIOSubSystem

Developed during the first few months of research at USSS, ASIOSubSystem has
begun to show signs of age despite periodic bug fixes and upgrades. A new
version is planned for future research and expansion of other software and a small

proposed feature list follows:

e Complete redesign and rewrite of the system;

e Full C++ class implementation dropping current function based system;
Inheritance to replace function callback mechanism;

e Full and tested audio card format conversion with emphasis on speed
optimization. Optimized DSP functions to be provided to the client;

e Improved browsing of available drivers including a default ASIO setup
and selection dialog that can be overridden by client software if necessary;

e Improved browsing of audio card capabilities and the addition of named
I/0 channels again using a default dialog;

e Per I/O channel default options: allow channels to be disabled, muted and
balanced;

e Integral channel routing similar to Ricochet’s virtual I/O system;

e Improved client ASIO information system;

e Integral safety features, improved exception handling and automatic driver
cleanup in the event of software failure. This is intended to safely catch
serious machine shutdown errors that can occur with incorrect use of the
current library;

e Integral thread synchronisation features, DSP Mutex / Critical section;

e Built in support for file and network audio streaming, transparent

connection with I/O. WAV and OGG Vorbis file support;
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¢ Direct file streaming for all output streams to enable offline rendering
direct from the library. This would be performed without the need to re-
route channels;

o Integration with MIDIManager system to create a singular audio media
I/O system;

e MTC timecode support functionality with disk stream synchronisation;

e Integrated support for 3" party VST plugins;

e Integrated DSP algorithms such as forward and inverse FFT, FIR and IIR

filters, other basic building blocks such as oscillators;

It should be noted that some of the functionality proposed has been researched
and even featured in test applications but has not reached a state of sufficient
usability to be fully documented.

6.2 Accessing and Distributing MIDI Information

The software projects discussed in this thesis make use of MIDI for control and
automation. In both, the standard MIDI I/O system provided by Microsoft
Windows is used to access hardware. Messick and Penfold detail both the
windows MIDI API and the MIDI specification'"". In order to simplify the setup
of drivers and provide a more robust implementation, a pair of classes was
created, wrapping the basic Windows Functionality. The MIDIManager and
MIDIListener classes defined directly in both applications allow simple addition
of MIDI I/O to individual object classes.

The current implementation of the MIDIManager class only allows for single
input and output devices to be concurrently open. However, the input may be on a

separate device to the output.

The MIDIManager class is intended as a singleton object that forms a central
point of reference from which to control the initialisation and shutdown of MIDI

11 Messick, P: 1998; Penfold, R. A: 1995
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devices. Examination of the class header shows the interface methods: (simplified

for clarity)
class MIDIManager

{
public:
MIDIManager();
~MIDIManager();
unsigned long GetMessageCount() { return msgCounter; };
int GetNumInputDevices();
const char* GetlnputDeviceName(int id);
int OpeninputDevice(int id);
int GetNumOutputDevices();
const char* GetOutputDeviceName(int id);
int OpenOutputDevice(int id);
int GetControllerValue(int channel, int controller);
float GetMappedControllerValue(int channel, int controller, float min, float max);
void MidilnMessage(BYTE status, BYTE dataA, BYTE dataB, DWORD timeStamp);
void MidiOutMessage(BYTE status, BYTE dataA, BYTE dataB, DWORD timeStamp);
void CloseDevices(),
void Start();
void Stop();
void Halt() { if(isRunning) { Stop(); wasRunning = true; } };
void Resume() { if(wasRunning) { Start(); } },
void RegisterMIDIListener(MIDIListener *listener),
void UnregisterMIDIListener(MIDIListener *listener);

;
extern MIDIManager midiManager; // the one singleton instance of the midi manager

Sending MIDI data requires a call to OpenOutputDevice() specifying an id
number for the desired device. Devices are assigned a sequential id number, the
first being device(0). Manufacturer device names are obtained by calling
GetOutputDeviceName() again specifying the id of the desired device. Once a
device has been successfully opened, calls can be made to MidiOutMessage() to

send short MIDI messages (SYSEX is not supported in this version).

MIDI input devices are initialised in the same manner as MIDI output devices but
from then on the task is slightly more complicated and requires the use of the
second class MIDIListener. Forwarding incoming MIDI messages to all areas of
the program involves a callback mechanism provided though object class
inheritance. An object class that needs to be informed of any received messages
must inherit from MIDIListener and overload the MidiMessage() function. It is
not necessary for any other function calls to be made because the MIDIListener
makes the correct references at construction. The following shows the definition

of MIDIListener:
class MIDIListener
public:

MIDIListener();

virtual ~MIDIListener();
virtual void MidiMessage(BYTE status, BYTE dataA, BYTE dataB, DWORD timeStamp) {} ;
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Any class that inherits and overloads correctly has its version of the MidiMessage
function called automatically by the MIDIManager whenever a MIDI message is
received. At this point ‘status’, ‘dataA’ and ‘dataB’ contain the message and
‘timestamp’ contains the arrival time of the message specified in milliseconds
from system boot up. As an example of use the following code is the overloaded
MidiMessage() function from Super Diffuse’s CMidiControllerInput class: (Note
MIDI status byte conversion functions also written into the MIDI management
module)

void CMidiControllerinput::MidiMessage(BYTE status,BYTE dataA,BYTE dataB,DWORD timeStamp)

if(MIDIStatusToChannel(status) == midiChannel) &&
(MIDIStatusToType(status) == MIDI_CONTROL_CHANGE) &&
(dataA == midiControlierNum))

if(target)
target->SetValueExternai(dataB);

In the above example it is clear how obtaining and translating a simple Control
Change message is not as simple as it might be. It should be realised that
reception of MIDI messages in this manner is not particularly efficient as a
complete function call is used for every MIDI listener, for every message; in
addition, the inherent callback mechanism effectively means that MIDI message
reception runs in a separate thread of execution and thread synchronisation needs
to be considered. If Control Change messages are the only desired input and no
direct notification of message reception is required the MIDIManager class

provides an altemative.

The MIDIManger object automatically tracks value changes to all Control Change
addresses across all 16 MIDI channels on the current input device. These values
are stored in a 16 * 128 array for later access. This method does not suffer from
thread synchronisation problems. A call to GetControllerValue() specifying midi
channel and CC id returns the last sent value of the specified Control Change
address. Additionally the manager provides GetMappedControllerValue() which
automatically maps from the MIDI CC range (0..127) to the range specified. As
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an example the following code is the Update() function from Ricochet’s

MIDIScalarController class:

void MIDIScalarController::Update(long time)

RController::Update(time);

value = midiManager.GetMappedControllerValue((int)GetParameter(0).GetValue(),
(int)GetParameter(1).GetValue(),
GetParameter(2).GetValue(),
GetParameter(3).GetValue());

}
In the above the Update() function “polls’ GetMappedControllerValue to obtain a

pre mapped value; RParameters are used to set range, channel and CC address.
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7 Conclusions

7.1 Super Diffuse and M2

M2 and its control software ‘Super Diffuse’ has successfully diffused during real
concert performances and at the time of writing it, or its successor M3, is
scheduled to ‘perform’ in the upcoming USSS Sound Junction 2005. Comments
from users have been both favourable and constructive. M2 has resulted in the
formation of a diffusion software development partnership between the
Universities of Bangor, Belfast, Birmingham, Edinburgh and Sheffield and this in
itself is a very exciting future prospect. The presentation of ‘M2 Diffusion — The
live diffusion of sound in space ''? at ICMC 2004 is expected to promote further

development interest.

7.2 SRP and ‘Ricochet’

The ‘Source Ray Pickup Interaction’ concept for modelling the ‘Virtual Sound
Environment’ has provided a promising expansion of the basic waveguide
network. By classifying and implementing distinct entities for spatial signal

processing a modular spatial waveguide network framework has been conceived.

The ‘Ricochet’ project creates a practical test bed for an SRP interaction model.
The testing has proved that the SRP technique can be implemented successfully in
a real-time host based system. Modularity of the Ricochet Software Development
Kit has enabled 3™ party exploration of the SRP model without the need to

redevelop an entire framework.

"2 Moore, A; Moore, D; Mooney, J: 2004
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‘A model is a simplification of reality. "> However, this model can be improved
and refined; it is hoped that ‘Ricochet’ will act as a basis for future expansion of
the SRP model and as an example of general implementation techniques for the
3D sound spatialization models of the future.

7.3 In summary

From its inception in 1999, this project has set out to produce new tools for
spatialization of sound. Two tools have been successfully implemented and offer
sound artists new ways of working. In creating new tools the possibilities for
creativity have been expanded but it is the products of such tools that will
determine their usefulness. It is hoped that the products of this research will
further future creative possibilities.

7.4 Personal Reflection

As I write this thesis and consequently reinvestigate deep-rooted aspects of the
software projects, I find myself wishing to redesign these more elegantly or for
increased features. This is clearly a factor of my increasing programming
experience, but also reflects my ongoing interest in this field. If time were
limitless I would explore many more of the ideas described in the futures section
of each project. However, I expect to find that all explored avenues will create yet
more future possibilities. Time is a precious commodity and I have found it
difficult to stop modifying or tweaking projects in order to present this ‘snapshot’
of perhaps limitless research scope. I am hopeful that the requirements of working
in a team will force focused and well constrained development plans that will

further the research in steady stages.

The M2 system specifically has been a highly successful project for the University
of Sheffield Sound Studios. Interest from third parties in both industry and

' Booch, G; Rumbaugh, J; Jacobson, I: 2003, p.6
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academia has been exceptional, much greater than I had expected. At the time of
writing, the studios have had development interest from Richmond Audio and
have entered a collaboration agreement with DACS Ltd to co-create a specialized
control surface for diffusion. Links created from this collaborative venture
provide a basis for future research in both Ricochet and Super Diffuse. I hope that
this forum will eventually lead to a concept for a spatialization tool that unifies

and extends the projects presented here.

Perhaps most pleasing are the comments I have had from users. At Bangor,
Andrew Lewis made the decision to use the M2 system in place of the system that
had been previously set-up. I felt that this made a strong case for the significance
of the project. Jonty Harrison of Birmingham was asked about his interest in the
M2 system by James Mooney during a recorded interview and had these
complimentary words on M2 relating to his visit to Sheffield “...1 think it’s
fascinating and the control is fantastic — and I want one... . Later he enquires
about a Macintosh version and talks about some of the things he would explore
with the M2 system in its current state. Harrison seems very keen to explore
sound diffusion using the M2 system and provide very constructive feedback for
future versions. I think that this is an extremely positive outcome from the project
and I expect it to further potential research at Sheffield for some time.
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