Mass Spectrometric Comparison of the Lipid Residues from Ancient Brain Remains

Emma Jane Thimbleby

MSc (by research)

University of York

Chemistry

May 2018

ABSTRACT

High resolution matrix-assisted laser desorption/ionisation Fourier transform ion-cyclotron resonance mass spectrometric (MALDI FT-ICR-MS) analyses have been carried out on lipidic extracts of preserved brain remains from 14 contexts, obtained from four archaeological sites ranging from 200 to 2,500 years old. The aim of the study was to determine whether the high molecular weight organic material reported in a similar fraction of the wellpreserved York brain is a common feature of such unusually preserved brain specimens. Examination of the predominant signals in the resulting spectra in terms of signal-to-noise ratio and intensity, generated a list of peaks for comparison and interpretation. On the basis of the accurate mass measurements afforded by FT-ICR-MS, 37 empirical formulae were assigned. The components identified across almost all the sample extracts analysed fell into the same general class of organic molecules, that were generally functionalised with low numbers of heteroatoms (generally oxygen and nitrogen, or both). These components did not correspond to those identified in adipocere, but were similar in composition to subunits of kerogen-like structures reported in the literature. These results pave the way for further analyses aimed at understanding the processes that take place when brain material is, unusually, preserved in the archaeological record.

TABLE OF CONTENTS

ABSTRACT .		3
TABLE OF C	CONTENTS	5
LIST OF TAE	BLES	9
list of fig	URES	13
ACKNOWL	EDGEMENTS	17
DECLARATI	ON	21
1 INTROI	DUCTION	23
1.1 Ch	nemical Composition of the Brain	23
1.1.1	LIPIDS	25
1.1.2	AMINO ACIDS, PEPTIDES, NUCLEIC ACIDS AND PROTEINS	28
1.1.3	CARBOHYDRATES	29
1.2 So	oft Tissue Degradation and Preservation	31
1.2.1	Normal Tissue Decomposition	
1.2.1.	1 Autolysis	31
1.2.1.	2 Bacteria: the effects of normal or enteric flora and	
envir	onmental microbes	32
1.2.1.	3 Burial environment	34
1.2.2	Soft Tissue Preservation Mechanisms	34
1.2.2.	1 Moisture	35
1.2.2.	2 pH	36
1.2.2.	3 Temperature	

1.2.2.4	4	Oxygen	.37
1.2.2.5	5	Chemical inhibitors	.37
1.2.3	Specific	EXAMPLES OF PRESERVATION	.38
1.2.3.1	1	Desiccation	.38
1.2.3.2	2	Freezing	.40
1.2.3.3	3	Freeze-drying	.40
1.2.3.4	4	Bog bodies	.41
1.2.3.5	5	Heavy metals	.43
1.2.3.6	6	Adipocere	.44
1.2.3.7	7	Fossil fuels	.51
1.3 Bra	ain Prese	ervation	.53
1.4 Ma	ass Spec	trometry	.62
1.4.1	Overvie	W/HISTORY	.62
1.4.2	Ionisati	ON: MATRIX-ASSISTED LASER DESORPTION/IONISATION (MALDI)	.64
1.4.3	Mass an	NALYSERS	.66
1.4.3.1	1	Fourier-transform ion cyclotron resonance	.66
1.4.3.2	2	Ion cyclotron motion	.67
1.4.3.3	3	Observations from these equations	.69
1.4.3.4	4	Ion cyclotron resonance	.70
1.4.3.5	5	Ion cyclotron cell geometry	.72
1.4.3.6	6	Broadband resonance	.73
1.4.3.7	7	Image current detection	.75
1.4.3.8	8	Accuracy and resolution	.76

	1.4.4	4	Proteo	MICS	77
	1.	4.4.′	1	Introduction	77
	1.	4.4.2	2	Fractionation	78
	1.	4.4.3	3	Digestion	79
	1.	4.4.4	4	Mass spectrometry and fragmentation	80
	1.	4.4.5	5	Database searching	81
	1.5	Air	ns of th	e Thesis	83
2	EXP	ERIN	MENTAL		85
	2.1	Sar	nples		85
	2.1.	1	York		86
	2.1.	2	Hull M	AGISTRATES COURT	91
	2.1.	3	BLACKPO	DOL	93
	2.1.4	4	VILLIERS	STREET CRYPT	96
	2.2	Pro	oteomic	Analysis of Villiers Street Sample	. 100
	2.3	Org	ganic Ex	traction of Samples (mouse brain, modern human brain,	
	archae	eolo	gical br	ains, soil, solvent blank)	. 103
	2.4	Re	cording	Spectra	. 106
	2.4.	1	Peak Se	LECTION	. 107
	2.4.	2	Peak Id	ENTIFICATION	. 107
3	RES	ULT	S		. 109
	3.1	Sta	indards,	, Mouse Brain and Modern Human Brain Lipid Extracts	. 109
	3.2	Pro	otein ID	From Villiers Street Sample	.113
	3.3	Со	mparisc	on of Spectra of Ancient Brain Lipid Extracts	.115

	3.3.1	Key signals identified as a result of mass spectral comparisons 1	17
4	DISCUS	SSION 2	203
5	CONCL	USION AND FURTHER WORK2	219
AP	PENDICE	S 2	223
A	Appendix	I: Photos of Ancient Brain Remains2	223
A	Appendix	II: Unidentified Compound Tables2	229
AB	BREVIAT	IONS 2	261
RE	FERENCE	S2	263

LIST OF TABLES

Table 1. Biochemical composition of grey and white matter (approximate %). ² 25
Table 2. Percentage composition of 'Hard Clean Adipocere Wax' determined by
a variety of chemical methods. ⁷⁵ 49
Table 3. Chemicals found in adipocere 50
Table 4. Summary of scientific analyses that have occurred on selected surviving
brain masses
Table 5. Sample summary table, in descending date order
Table 6. MassList selection parameters 107
Table 7. Chemistry Smartformula parameters 108
Table 8. Summary of signal at m/z 371. C _x H _y 119
Table 9. Summary of signal at m/z 518. C _x H _y N121
Table 10. Summary of signal at m/z 490. C _x H _y N
Table 11. Summary of signal at m/z 487. C _x H _y N ₂ 125
Table 12. Summary of signal at m/z 411. C _x H _y N ₂ 127
Table 13. Summary of signal at m/z 405. C _x H _y N ₄
Table 14. Summary of signal at m/z 498. C _x H _y NO131
Table 15. Summary of signal at m/z 500. C _x H _y NO
Table 16. Summary of signal at m/z 530. C _x H _y NO
Table 17. Summary of signal at m/z 544. C _x H _y NO137
Table 18. Summary of signal at m/z 556. C _x H _y NO
Table 19. Summary of signal at m/z 558. C _x H _y NO141
Table 20. Summary of signal at <i>m/z</i> 586. C _x H _y NO143

Table 21. Summary of signal at m/z 726	. C _x H _y NO	145
Table 22. Summary of signal at m/z 752.	C _x H _y NO	147
Table 23. Summary of signal at m/z 754	. C _x H _y NO	149
Table 24. Summary of signal at <i>m/z</i> 778.	C _x H _y NO	151
Table 25. Summary of signal at m/z 780	. C _x H _y NO	153
Table 26. Summary of signal at m/z 782	. C _x H _y NO	155
Table 27. Summary of signal at m/z 806	. C _x H _y NO	157
Table 28. Summary of signal at m/z 810	. C _x H _y NO	159
Table 29. Summary of signal at m/z 501	. C _x H _y N ₂ O	161
Table 30. Summary of signal at m/z 511	. C _x H _y N ₂ O	163
Table 31. Summary of signal at m/z 513	. C _x H _y N ₂ O	165
Table 32. Summary of signal at m/z 463	. C _x H _y N ₄ O	167
Table 33. Summary of signal at m/z 502	. C _x H _y NO ₂	169
Table 34. Summary of signal at m/z 514	. C _x H _y NO ₂	171
Table 35. Summary of signal at m/z 464	. C _x H _y NO ₃	173
Table 36. Summary of signal at m/z 518	. C _x H _y NO ₃	175
Table 37. Summary of signal at m/z 564	. C _x H _y NO ₃	177
Table 38. Summary of signal at m/z 648	. C _x H _y NO ₃	179
Table 39. Summary of signal at m/z 584	. C _x H _y NO ₄	181
Table 40. Summary of signal at m/z 527	. C _x H _y N ₂ O ₂	183
Table 41. Summary of signal at m/z 731	. C _x H _y N ₂ O ₃	185
Table 42. Summary of signal at m/z 759	. C _x H _y N ₂ O ₃	187
Table 43. Summary of signal at m/z 321	. C _x H _y O ₇	189

Table 44. Summary of signal at m/z 365. C _x H _y O ₈	191
Table 45. Summary of signal at m/z 393. C _x H _y O ₉	193
Table 46. Summary of signal at m/z 549. C ₃₂ H ₄₂ N ₆ or C ₃₆ H ₄₀ N ₂ O ₃	196
Table 47. Summary of signal at m/z 629. $C_{44}H_{46}O_2$, $C_{41}H_{50}O_3$ or $C_{42}H_{40}N_6$	198
Table 48. Summary of signal at m/z 688. C ₄₂ H ₈₃ NO ₄ or C ₄₀ H ₇₇ N ₇ O ₂	200
Table 49. Summary of the chemical identities of the brain lipid residues and	I
their occurrence	209
Table 50. Significant peaks from the initial replicate mass spectra: the top fir	ve
S:N peaks, plus top five intense peaks	230
Table 51. Summary of signal at <i>m/z</i> 437	232
Table 52. Summary of signal at <i>m/z</i> 475	233
Table 53. Summary of signal at <i>m/z</i> 485	234
Table 54. Summary of signal at <i>m/z</i> 497	235
Table 55. Summary of signal at <i>m/z</i> 529	236
Table 56. Summary of signal at <i>m/z</i> 541.2	237
Table 57. Summary of signal at <i>m/z</i> 541.9	238
Table 58. Summary of signal at <i>m/z</i> 544	239
Table 59. Summary of signal at <i>m/z</i> 547	240
Table 60. Summary of signal at <i>m/z</i> 563	241
Table 61. Summary of signal at <i>m/z</i> 564	242
Table 62. Summary of signal at <i>m/z</i> 569	243
Table 63. Summary of signal at <i>m/z</i> 591	244
Table 64. Summary of signal at <i>m/z</i> 622	245

Table 65.	Summary of signal at <i>m/z</i> 629 2	246
Table 66.	Summary of signal at <i>m/z</i> 6402	247
Table 67.	Summary of signal at <i>m/z</i> 7532	248
Table 68.	Summary of signal at <i>m/z</i> 7692	249
Table 69.	Summary of signal at <i>m/z</i> 8152	250
Table 70.	Summary of signal at <i>m/z</i> 8352	251
Table 71.	Summary of signal at <i>m/z</i> 8362	252
Table 72.	Summary of signal at <i>m/z</i> 8482	253
Table 73.	Summary of signal at <i>m/z</i> 8502	254
Table 74.	Summary of signal at <i>m/z</i> 8522	255
Table 75.	Summary of signal at <i>m/z</i> 8532	256
Table 76.	Summary of signal at <i>m/z</i> 8572	<u>2</u> 57
Table 77.	Summary of signal at <i>m/z</i> 8662	258
Table 78.	Summary of signal at <i>m/z</i> 968 2	259

LIST OF FIGURES

	4
igure 2. Structure of a glycerophospholipid; insert a representationof a	
phospholipid bilayer20	6
igure 3. Structures of sphingomyelin and cerebroside related lipids	7
igure 4. Structure of cholesterol28	8
igure 5. Stearate chemical structures: (above) sodium stearate, (below) calcium stearate	า 6
Figure 6. Preserved brain soft tissue from the Cova des Pas site (Minorca, Bronze Age) ³⁹	4
igure 7. Schematic representation of the elements of a mass spectrometer 6	3
igure 8. Ion cyclotron motion. The magnetic field (B_0) provides a	
perpendicular force (F) to the ions' motion (v), creating a circular motion.	7
perpendicular force (F) to the ions' motion (v), creating a circular motion. 6 Figure 9. Resonant excitation. If the oscillating electric field has the same	7
perpendicular force (F) to the ions' motion (v), creating a circular motion. 	7 J
perpendicular force (F) to the ions' motion (v), creating a circular motion. 	7 J
perpendicular force (F) to the ions' motion (v), creating a circular motion. 	7 J 1 2
perpendicular force (F) to the ions' motion (v), creating a circular motion. 	7] 1 2 3
perpendicular force (F) to the ions' motion (v), creating a circular motion. 	7 J 1 2 3
perpendicular force (F) to the ions' motion (v), creating a circular motion. Gigure 9. Resonant excitation. If the oscillating electric field has the same frequency as the ion's cyclotron frequency then the ion is excited, leading to an increase in orbital radius	7 9 1 3
 perpendicular force (F) to the ions' motion (v), creating a circular motion. 6 Figure 9. Resonant excitation. If the oscillating electric field has the same frequency as the ion's cyclotron frequency then the ion is excited, leading to an increase in orbital radius	7 3 1 2 3

Figure	13. Peptide showing main backbone fragmentation patterns and
	standard nomenclature labelling, which indicates the charged species
	produced
Figure	14. (Clockwise, top to bottom): The skull as found (York Archaeological
	Trust), brain mass viewed using endoscope (Sonia O'Conner), brain
	fragment in storage at BARC, brain fragment after removal from skull and
	cleaning (Sonia O'Conner)87
Figure	15. Above: the location of the Heslington East development and the
	major archaeological excavation sites, below: the location of the
	excavated skull. ¹
Figure	16. Above: Map showing distribution of burials within the Hull Friary
	precinct. Below: Plan with burials from which surviving brain remains
	were used in this study are highlighted; green = juvenile, blue = male,
	pink = female, yellow = adult (unsexed)94
Figure	17. Fishtail coffin 116 in situ, containing skeleton 117, looking north-
	west. ¹⁴³
Figure	18. (a) [PC + Na] ⁺ and (b) [PC] ⁺ ions
Figure	19. Above: MALDI mass spectrum of phosphatidylcholine (PC) standard
2	
Figure	20. Above: MALDI mass spectrum of sphingomyelin (SM) standard 110
Figure	21. Example of a SM ion
Figure	22. Above: MALDI mass spectrum of galactocerebrosides (GalC)
	standard. Below: An example galactocerebroside 111
Figure	23. Human and mouse brain mass spectra 112

Figure 24. Mascot report showing myelin proteolipid protein peptide mat	:ch
found in sample V1 (this same sequence was also found in the prot	eomic:
analysis of the York brain) ¹	114

Figure 26. Above: Ethylene glycol Below: Hexaethyleneglycol (3,6,9,12,15-Pentaoxaheptadecane-1,17-diol), a possible structure for C₁₂H₂₆O₇.......207

Figure 32. Photograph of HMC94 SK2039, from which H11 was sampled.......224

Figure 34.	. Photograph of brain mass HMC SK2123 which had been stored	
sep	parately with the additional label 'Red sample', from which H14 was	
san	npled2	24

Figure	e 36. Photograph of the brain mass labelled VSS-A SK2463, from which		
	was sampled		
Figure	37. Photographs of ancient preserved brain matter. From (L-R) Top row:		
	H1, B1, V1, H1. Second row: H2, H3, H4, H5. Third row: H6, H7, H8, H9.		
	Bottom row: H10, H11, H12, H13 226		
Figure	38: (Figure 37 continued) H14 227		

ACKNOWLEDGEMENTS

My initial thanks goes to Dr Sonia O'Conner who has proved her expertise and access to the majority of brain samples, without which this project would have been impossible. My thanks also go to the Biological Anthropological Research Centre, University of Bradford, for the opportunity to sample these rare remains and to Dr Jo Buckberry, Dr Andrew Wilson, Rob Janaway and Louise Brown who provided access to the Villiers Street sample.

I would also like to thank Dr Martin Rumsby who made the initial lipid extract of the York brain and provided help and advice as well as modern human extracts for comparison. Thanks goes to the Bioscience Technology Facility Proteomics laboratory, Department of Biology, University of York, especially Rachel Bates and Dr Adam Dowle, Dr Jerry Thomas for their assistance with the proteomics analysis. And thanks to Dr Megan Cosgrove who provided the mouse brain, along with her support and friendship.

My gratitude goes to The Department of Chemistry who have supported me throughout my undergraduate and graduate work, especially the Chemistry Graduate Office: Rachel Crooks, Alice Duckett and Sharon Stewart. The many members of the JTO group who have provided help, support, friendship and guidance including: Karl, Ed, Rachel Smith, Kirsty High, Helen, Kirsty Skeene, Lance, Emily, Elena, Bella, Kyle, Lefkothea, Rachel, Carwyn and Anne. I would also like to thank Dr Adrian Whitwood for his advice and guidance.

Last but not least, I am deeply indebted to my supervisor Professor Jane Thomas-Oates, who has been an outstanding support, help and inspiration. Her encouragement has kept me going and her assistance has been invaluable.

In loving memory of my brother, John William Thimbleby, MSc.

DECLARATION

I declare that this thesis is a presentation of original work and I am the sole author. This work has not previously been presented for an award at this, or any other, University. All sources are acknowledged as References.

The proteomic analysis was carried out at the Bioscience Technology Facility Proteomics Laboratory, Department of Biology, University of York, by Rachel Bates and Dr Adam Dowle.

Emma Jane Thimbleby

1 INTRODUCTION

This research project investigates organic compounds found in ancient brain remains. The rare natural survival of soft tissue within burials, let alone survival of brain tissue, provides few opportunities to study such material and hence there is limited scientific literature. However, the fascinating find of a prehistoric human brain in Heslington, York, Yorkshire in 2008 initiated a range of scientific investigations,¹ of which this is a continuation. This is intriguing as it appears that in some cases, the brain tissue is the only soft tissue preserved, prompting the idea of a novel tissue preservation mechanism.

This introduction provides a brief overview of the chemical composition of 'fresh' brain tissue as well as surveying what is known about how soft tissue decomposes. The factors that affect soft tissue preservation and the main non-anthropogenic mechanisms are discussed with examples. The main investigative tool/critical technique of mass spectrometry is presented and the aims and objectives of the investigation are outlined.

1.1 Chemical Composition of the Brain

The human brain is a particularly specialised and complex organ within the human body. It is a well-protected organ enclosed within the bones of the skull and three membranes: the outer dura mater, the arachnoid and the inner patia mater.² These membranes form the blood-brain barrier, a highly selective shield that moderates chemical access to and from the blood and isolates the brain from the body. Within these membranes, the tissue consists of two types of cells, neurons and glia, surrounded by interstitial fluid. Neurons are cells along which chemical and electronic signals are passed and are found in a variety of shapes. They generally consist of a cell body containing the nucleus, dendrites

and an axon surrounded by a myelin sheath, which ends in synapses. Three types of glia exist in the brain: oligodendrocytes wrap around the axons of neurons to form the myelin sheath, microglia are specialist immune cells that destroy bacteria and damaged neurons, and astrocytes have multiple functions including supplying nutrients to neurons and physically supporting them in place. The cells found within the brain and central nervous system (CNS) differ in chemical composition from those in the rest of the body and the brain as an organ reflects this. The general macromolecular composition of brain tissue is shown in Figure 1, with water being by far the major constituent. In comparison with other bodily tissues (such as skeletal muscles) the brain has a high lipid content which has a structural function rather than, as in other organs, acting as energy storage.

Figure 1. Approximate chemical composition of the mammalian brain.³

Within the brain tissue, a distinction is made between white and grey matter: white matter is mainly composed of the myelinated nervous fibres (axons) whilst grey matter consists of the nerve cell bodies, dendrites, and non-myelinated fibres and is the larger proportion at 85%.⁴ The macromolecular proportions of white and grey matter vary slightly (see Table 1). The general molecular composition also varies between individuals due to age, sex, diet and health.

	Grey matter	White matter
Water	83	70
Lipid	6	15
Protein	7.5	8.5
Inorganic Salts	1.0	1.3
Other	2.5	13.2

Table 1. Biochemical composition of grey and white matter (approximate %).²

There are thousands of chemicals involved in brain chemistry; some of the more robust to degradation, larger and prevalent classes are outlined below as these are most relevant to this study.

1.1.1 LIPIDS

There are several classes of lipids that are found in brain tissue, where they have several roles, including in membrane structure (and function), in metabolism, and in signalling. The major component of the myelin sheath that surrounds nerve axons is lipidic.

Glycerophospholipids are constituents of cell membranes and consist of two fatty acid chains attached to glycerol, which is also attached to a head group (see Figure 2). The glycerol linkages may be ester or ether linkages. The head group may vary (e.g. ethanolamine, serine, choline or inositol) but is polar, compared to the hydrophobic, non-polar hydrocarbon chains of the fatty acids. A bilayer of glycerophospholipids with polar head groups on the exterior and hydrophobic chains on the interior is the backbone of cell membranes, providing stability, permeability and fluidity. Phosphatidates have a phosphate ester attaching to the glycerol and can have functional and structural roles within cells depending on the type of phosphate group. Phosphatidylcholines (PC) are phosphatidates that have a choline head group and are found in cell membranes.

Figure 2. Structure of a glycerophospholipid; insert a representation of a phospholipid bilayer

Sphingomyelins (SM) are phospholipids that are components of the myelin sheath, insulating nerve cells. The basic building block for these molecules are sphingosine, an unsaturated hydrocarbon chain attached to an amino alcohol functional group. Once bound with a fatty acid to form a ceramide, the hydrocarbon chains form the apolar tail and usually have phosphocholine or phosphoethanolamine attached as the polar head group (Figure 3). As well as playing a structural role in the cell membrane, SMs also have a role in signalling.⁵

Cerebrosides consist of a ceramide molecule (sphingosine plus a fatty acid) plus a six carbon carbohydrate ring; in nerve cells this is generally galactose, forming galactocerebrosides (GalC), (Figure 3). GalC is a major component of oligodendrocytes, a type of non-neural cell found in the central nervous system, which insulates and supports axons by creating the myelin sheath.^{6, 7} Cerebrosides that occur in myelin sheaths can also contain a sulfate group, in which case they are known as sulfatides.

Figure 3. Structures of sphingomyelin and cerebroside related lipids

Gangliosides comprise a ceramide molecule attached to an oligosaccharide (a polymer of a small number of monosaccharides) with one or more sialic acids connected to the oligosaccharide chain. They are found within cell membranes, predominantly those of the nervous system.⁸ With most of these lipids, enzyme-mediated hydrolysis releases the head groups, leaving the fatty acid chains attached as ceramides/glycerol esters.

Cholesterol, a sterol, is another lipidic molecule that is very important in cell membranes (Figure 4).

Figure 4. Structure of cholesterol

1.1.2 Amino Acids, peptides, nucleic Acids and proteins

The brain contains more free amino acids than are found in the plasma and other organs, with concentrations up to 6-8 times higher than elsewhere, partly because some amino acids are used as neurotransmitters². Distribution of amino acids are affected by changes such as fasting, exercise, and anoxia. High concentrations of γ -aminobutyrate and *N*-acetylaspartate are characteristic of brain tissue.³ A range of peptides can be found widely distributed within the CNS. Some, such as glutathione, are ubiquitous in other tissues; due to rapid oxidation it is reduced in quantity by 50% within three minutes after death.⁹ Others such as γ -glutamyl dipeptides, homocarnosine (γ -amino-*n*-butyryl histidine) and *N*-acetyl- α -aspartylglutamate, may be more specific to the brain.⁹ Higher concentrations of some nucleotides, such as cytidine and uridine diphosphate derivatives and cyclic guanosine monophosphate, are found in the

brain than elsewhere in the body, but these rapidly degrade on death or anoxia due to the tissue's high metabolic rate and so are not expected to be found in postmortem brain samples.² Adenine, cytidine, guanine and uridine nucleotides and their mono-, di-, triphosphates are found in the brain. Deoxyribonucleic acid (DNA) is mainly found in the nuclei of the brain cells as a component of chromosomes but also in the mitochondria. The combination of a large number of cytoplasmic and endoplasmic ribosomes (sites of protein synthesis), the high metabolic rate (with expectations of high enzyme turnover), high ribonucleic acid (RNA), essential for protein synthesis, and turnover all indicate high protein formation within the brain.³

Free proteins comprise 40% of the dry weight of the brain, and have structural and enzymatic functions. They fall into four main classes:

- Phospho-proteins
- Neurokeratin
- Collagen and elastin
- Proteins in association with lipids 'proteolipids'

Some proteins are specific to the brain and its particular functions.

1.1.3 CARBOHYDRATES

Glucose and glycogen are the main sources of energy for brain metabolism. The content of these in brain rapidly decreases on death due to post-mortem anaerobic glycolysis.¹⁰ Other small carbohydrate molecules are present in the brain tissue; however, larger carbohydrate-containing structures such as glycoproteins, gangliosides and mucopolysaccharides are also present, and would be degraded by endogenous, microbial and insect enzymes on death.

1.2 Soft Tissue Degradation and Preservation

1.2.1 NORMAL TISSUE DECOMPOSITION

For the most part the body consists of water, carbohydrates, proteins, lipids, DNA and RNA, which can be broken down into a variety of smaller molecules. Only 15% of the body (the bones and teeth) are durable biominerals.

1.2.1.1 Autolysis

Human death is a process in which the lack of oxygen transported to the tissues by blood from a pumping heart initiates a breakdown in the highly ordered metabolism of cells and their repair mechanisms, leading to irreversible cell death (autolysis) and decomposition.¹¹ Within cells, energy is transmitted as adenosine triphosphate (ATP) which is predominantly created by a metabolic pathway involving the oxidation and reduction of a series of membrane proteins and cofactors by electrons removed from hydrogen. The final electron acceptor is oxygen and so its absence disrupts ATP production. Although in hypoxic environments respiration is supplanted by fermentation (i.e. anaerobic conversion of pyruvic acid to lactic acid), the energy this produces is insufficient to maintain cell biosynthesis and ATP manufacture.¹¹ Without the production of ATP, proteins that require energy to transport molecules and ions across membranes fail, leading to extreme concentration gradients across membranes and an increasingly acidic intracellular environment¹⁰ resulting in swelling of the cytoplasmic and mitochondrial matrices.¹¹

The release of endogenous enzymes from membrane bound organelles called lysosomes, occurs both intra- and extra-cellularly.^{12, 13} The enzymes, many of which are powerful hydrolases, break up large molecules - proteins,

fats, carbohydrates, nucleic acids and complex biomolecules - by insertion of hydrogen or hydroxyl ions from water.¹³ This resulting disruption of molecules and membranes is a destructive process within the cell and also affects molecules supporting cell junctions. As cells detach from the tissues in which they were assembled, the macroscopic effects of necrosis are observable and liquefaction of tissues occurs.¹¹ Successive enzyme-mediated reactions break down the proteins, fats and carbohydrates further into small molecules soluble in water, or into gases.

The most metabolically active cells are affected first by enzymatic selfdigestion as these are the cells that are most sensitive to anoxia.¹¹ An order of tissue decomposition based on autolysis alone proposes that tissues where ATP production is highest and cells with high concentrations of hydrolytic enzymes such as macrophages would decompose first.¹¹ In this model, brain cells, being the most energy-demanding cells in the body, would decompose first.

1.2.1.2 Bacteria: the effects of normal or enteric flora and environmental microbes

Alongside autolysis, the activity of endogenous microbiota and bacteria from the surrounding environment also cause tissue decomposition. A range of commensal/mutualistic/parasitic^a bacteria that colonise the digestive and respiratory tracts as well as the skin are present in life and thus at the time of death.¹⁴ Molecules released from cells due to autolysis are taken up as nutrients

^a Bacteria can have symbiotic relationships with the human body acting as host. Commensalism is defined as the bacteria coexisting with the host, benefiting from it but without causing harm. Mutualistic bacteria have a cooperative and jointly beneficial relationship with the host, whilst parasitic bacteria benefit by harming the host.

by bacteria.¹⁰ Since the immune system (which prevents damage) is no longer operating, the homeostatic mechanisms that control the presence of normal flora fail and bacteria can multiply and invade body tissues quickly. As the body becomes hypoxic, aerobic bacterial activity within the body declines but the environment stimulates growth of anaerobic bacteria that are prevalent throughout the body, and occur in large numbers in the gastrointestinal tract. The bacteria decompose the immediately surrounding host cells and spread throughout the body. Large molecules are degraded into smaller soluble molecules (including organic acids such as propionic and lactic acid) or gases (e.g. methane, ammonia, hydrogen sulfide). This liquefaction and gasification causes bloating, colour changes, purging and odours, processes collectively known as putrefaction. As the soft tissues decompose, the variety of chemical reactions that occur to break down the protein, carbohydrate and lipid components of the body (and products they produce) can influence the body's rate of decay and potential preservation.¹²

Microscopic fungi and animals that specialise in eating decaying matter (saprophages) such as flies, beetles and worms as well as larger fauna such as scavenging mammals may also be involved.¹⁴ The decomposition of the soft tissues leaves the hard tissues (skeleton) which also undergo deterioration, although more slowly. Diagenesis^b of bone, the replacement of ions within the bone mineral with ions from groundwater occurs and weathering erosion can also take place. Non-enzymatic chemical reactions including hydrolysis, oxidation and esterification also cause tissue breakdown.¹⁵ As the rate of

^b Diagenesis is the modification of the physical and chemical properties of the bone's organic matter when exposed to the environment. This leads to chemical exchange including adsorption to bone surfaces, leaching into the surroundings and deposition of minerals within pore spaces.

autolysis and bacterial degradation is based on enzyme activity, factors which affect this activity, such as temperature, pH, presence of water and inhibitors such as heavy metal ions, affect the rate of the body's decomposition.

1.2.1.3 Burial environment

The nature of the burial and the environmental circumstances can affect the decay rate with four factors (temperature, moisture, pH, and the partial pressure of oxygen) being widely recognised as important in determining the extent of preservation.^{16, 17} The method of disposal also affects the access of flora and fauna to the body, and the environment affects microbial activity and the chemical exchanges that can occur.¹¹

Soft tissue in the open is unlikely to be preserved beyond days/months, but depending on the depth, burial of corpses can help to decelerate the rate of decomposition as it can prevent access to scavengers and reduce insect colonization.¹⁸ It also reduces temperature variation.

1.2.2 SOFT TISSUE PRESERVATION MECHANISMS

A wide range of mechanisms for soft tissue preservation are known, some of which are well described and understood, while others are a good deal less easy to explain.

Mummification has been defined as the arrested decay of a body or tissue.¹⁵ There are multiple mechanisms by which this can occur naturally (or spontaneously) and a variety of anthropogenic interventions that may enhance these, whether deliberately or accidentally. There are also intentional methods that humans use to alter decay patterns (such as the Ancient Egyptian forms of embalming) but deliberate 'artificial' techniques will not be surveyed here.

Interactions between the environment and the body occur after death; consequently, how a corpse is disposed of can have a huge effect on the decomposition process. In certain environments, the process of decomposition of a cadaver can be retarded or even stopped. In order to persist, the chemical products of decomposition processes have to be thermodynamically stable and/or kinetically inert in the environment in which the body has been left.

As some processes for soft tissue decomposition rely on enzymes, whether they originate from the body itself or from microbes, factors that decrease their reaction rate or prevent them from working can delay/halt decomposition. The placement of a body has a significant effect on the rate of decomposition as this influences factors such as moisture level, pH, temperature, oxygen and other gas exposure, chemical environment and access of microbiota, flora and fauna.¹¹ The four main factors are affecting enzyme activity and bacterial growth are discussed in more detail below.

1.2.2.1 Moisture

The presence of water is vital to the decomposition process for a variety of reasons. It acts as the solvent for numerous enzymes, biochemical and nonbiochemical molecules and it is the medium in which many metabolic reactions take place (including autolytic and bacterial). The presence of water can dilute reactants and produce an environment in which buffering can occur. It can also be a reactant providing hydrogen and hydroxyl ions, hydrolysis of large biomolecules being an essential reaction in the decomposition process. Water has a high specific heat capacity, requiring absorption or loss of a large quantity of energy before rising or falling in temperature, reducing fluctuations in temperature and providing thermal stability for enzymes. If a body is submerged in water decomposition varies: density and pressure effect oxygen availability, the microbiome is different from soil, insect activity is prevented (but alternative scavengers are present) and movement of remains including disarticulation is more likely. Whether it is fresh, salt, still or flowing water and depth also has an effect. Water may be present in the soil but even in arid regions, the body itself is a source of water.

1.2.2.2 pH

The acidity or alkalinity of the extracellular and intracellular environments affect enzyme activity. Changes in pH can alter the intermolecular bonds that hold proteins in their specific secondary and tertiary structures, and so lead to changes in how effective the enzymes are. Most enzymes operate within a small 'optimum' pH range. At pH extremes enzymes denature and/or coagulate and activity ceases. The initial stages of decomposition lead to the release of organic acids, and fermentation that occurs in the anoxic body also produces acids resulting in an initial decrease in pH.¹⁹ This acidic environment can increase the growth of fungi²⁰ and of acidophiles, bacteria that grow at low pH. In later stages of putrefaction, proteolysis products alter the overall pH to the alkaline range, in which alkaliphilic microorganisms may thrive.²¹

1.2.2.3 Temperature

Most enzymes are temperature sensitive. Raising temperatures increases the rate of decomposition reactions. If temperatures rise too high they can lead to denaturation of enzymatic proteins, whilst reducing the temperature reduces the rate of the reaction that the enzymes mediate. In terms of bacterial growth, the optimum temperature range for decomposition is 15-37°C.²² Low temperatures can inhibit the growth of most microorganisms that cause putrefaction. At temperatures below 4°C proliferation of most commensal bacteria is significantly reduced, and this stops under 0°C.²² However, there are
psychrophiles (bacteria that thrive near 0°C) and thermophiles (bacteria that thrive at temperatures over 50°C) that can be active at temperature extremes.

1.2.2.4 Oxygen

The partial pressure of oxygen is important in the decomposition process. It is the reduction of the levels of oxygen in the human body that triggers the initial comprehensive autolysis processes. Oxygen-deficient environments (e.g. waterlogged soils, high altitudes, deep burials, those submerged in water) have low redox potential, therefore oxidative decay processes occur more slowly. However, acidic and reducing environments can also occur in soils and water, especially if there is already decaying matter present. Well-aerated soils can have a high redox.²³

Oxygen availability affects the types of microbiota that can thrive within the body but anaerobiosis alone does not prevent putrefaction, as there are plenty of bacteria that flourish in anaerobic environments.²⁴

1.2.2.5 Chemical inhibitors

Activity of enzymes can be affected by inhibitors, molecules that interact with the protein to stop it working in a variety of ways, including irreversible and reversible (both competitive and non-competitive). Inhibitor molecules may compete with the normal substrate preventing a reaction from taking place at the active site, or can bind and alter the structure of the protein at an alternative site so it can no longer react with the original substrate. To prevent decomposition from occurring, irreversible inhibition of enzymes is more effective than reversible inhibition.

1.2.3 SPECIFIC EXAMPLES OF PRESERVATION

1.2.3.1 Desiccation

The process of desiccation, dehydration of tissue, produces the most common form of mummification.²⁵ It is often called spontaneous or natural mummification but can potentially be intentional, if a body is deliberately placed in a particular location in order to promote mummification. Hot, dry conditions are optimal. Mummification commonly occurs in arid/hyper-arid areas such as deserts¹⁴ and although rare in temperate climates²⁶ it can occur occasionally in more humid environments if an appropriate microclimate has been formed,¹⁵ e.g. in a cave system.²⁷

Hot, dry conditions inhibit bacterial growth due to water loss. In dry conditions water can be lost through evaporation due to heat, capillary action, low pressure (1.2.3.3 Freeze-drying) and possibly by osmosis. The absence of water severely retards enzymatic reactions and prevents decomposition by bacteria and autolytic mechanisms. High temperatures increase the rate of dehydration but can also reduce the rate of decay by retarding the activity of enzymes. At higher temperatures the structural bonds holding the enzymes in their precise conformations are more likely to break, and this denaturation leads to a loss of function. As enzymes increase the rate of reaction, losing this functionality slows down the rate of decomposition.

Provided the soft tissues are dehydrated quickly and water is not reintroduced, remains can be preserved for many years.^{12, 28} One of the oldest known examples is over 9000 years old (Chile's Chinchorro mummies).¹⁵ The first areas to dry are those that contain little fluid such as the ear lobes, fingers, toes and scrotum.¹³ Provided water is rapidly removed from the skin surface the concentration difference between the water content of the internal organs and

that at the skin provides a high water concentration gradient that increases the rate of water loss. Rapid dehydration of internal soft tissues can occur quickly enough that the complete decay of organs does not have time to occur.¹⁵ In these situations the skin surface is the last to dry, after water has been lost from the internal organs. Instances of mummification have occurred where other soft-tissue has been preserved but the brain has decomposed.^{14, 29} In rare cases dehydration of the outer surface occurs due to excessive heat, without the underlying organs dehydrating. Decomposition of the internal tissues can then still occur whilst the leathery skin surface acts as a barrier to further dehydration.²⁸

As well as hot, dry conditions, the porosity of the surrounding burial environment can affect the rate of dehydration. Clothing can have a wicking effect, drawing water from the body. In the case of desert burials it is argued that wicking away of water by capillary action due to the sand's porosity is the major factor in dessication.^{15, 27} Desiccation can be assisted by the surrounding chemical environment – the hygroscopic effect of limestone has been suggested to lead to tissue preservation.³⁰

In anecdotal evidence osmosis (the movement of water from a dilute to a more concentrated solution across a semi-permeable membrane) due to bodies being buried in honey can lead to desiccation.¹⁵ Ventilation may also be a cause of desiccation but would be dependent on the rate of air flow, humidity, access of microorganisms, flora and fauna etc.¹⁵ Spontaneous mummification has occurred when bodies have been exposed to constant air flow^{15, 31} and has been demonstrated experimentally.²⁷ Desiccation has been shown to occur within the same burial as adipocere formation (see 1.2.3.6 Adipocere).²⁶ The hypothesis suggested in that water within the body is used up in the hydrolysis of fatty acids leading to dehydration of the tissue, so that both desiccation and

adipocere formation processes can occur when exogenous water is unavailable.^{26, 32}

1.2.3.2 Freezing

Cooling a body slows decomposition as most enzyme activity occurs within a specific temperature range. For most endogenous enzymes and bacteria this is around normal body temperature, so lowering the temperature inhibits activity and can stop it altogether. At temperatures below 12°C reproduction of bacteria falls as cell division is retarded and between 5-0°C it tends to stop completely. When temperatures are below 0°C, water in the intracellular matrix freezes, preventing movement of molecules and stopping reactions occurring. Soft tissue preservation due to freezing is not uncommon,³³ especially if bodies are buried in the permafrost,¹⁵ where desiccation can also be a factor in preservation. The lower the temperature the smaller the degree of desiccation required to prevent putrefaction.²²

Several examples of soft tissue preservation in glaciers have been reported. Burial next to permafrost of crew members from Sir John Franklin's expedition to find the North West passage led to exceptional preservation,³⁴⁻⁴⁰ similar to Inuit remains such as the Qilakitsoq mummies.^{41, 42} In two of the oldest cases of brain tissue preservation, mammoth remains found in the permafrost in Russia have been dated to ca. 40 and 53 thousand years.^{43, 44}

1.2.3.3 Freeze-drying

Freeze-drying is a form of desiccation that can occur in cold climates, such as in the Arctic and Antarctic circles and at high altitudes. Ice from within a frozen body can sublime, transforming from a solid to a gas without becoming liquid, at low vapour pressures, leading to desiccation of a corpse. This can

occur in mountainous regions and has led to preservation of bodies in the Andes, such as the mummies found on Mount Llullaillaco in Chile,⁴⁵ or in glaciers, e.g. the Tyrolean Ice Man.⁴⁶⁻⁴⁹

1.2.3.4 Bog bodies

Soft tissue has been found preserved in bodies found in peat bogs across Northern Europe^(14, 15, 50-53) and bog bodies are perhaps one of the best documented types of soft tissue preservation; nonetheless, rigorous understanding of the underlying mechanisms remains limited, in spite of much speculation and theorising. Peat is made of partially decomposed and compacted organic matter that has accumulated under water-saturated conditions and provides a unique preservation environment. Full decomposition of organic matter doesn't occur due to the anoxic conditions, the hardy nature of the plant material and the acidic environment.⁵⁴ A variety of plants are involved including sedges, shrubs and mosses, most notably *Sphagnum* peat moss. Within a peatland environment, oxygen in the stagnant water is quickly used up, along with other nutrients, and as peat accumulates the conditions become more acidic. This is due to the high cation exchange capacity of the plant material. The majority of cations and other chemicals are adsorbed by the organic material in exchange for hydrogen ions.⁵⁴

It was generally considered that the anaerobic conditions within peat bogs prevent putrefaction as the anaerobic conditions inhibit the growth of aerobic bacteria.⁵² However many of the bacteria involved in decomposition are anaerobic and within minutes of blood circulation ceasing, most human tissue becomes anoxic.¹⁵ Peat bogs are by no means sterile, containing low but significant levels of anaerobic bacteria at deeper levels, as well as microbial activity at the surface.⁵⁵ Anaerobic bacteria that survive in peat bogs can carry out hydrolytic breakdown reactions and in the presence of other substrates suitable for reduction (such as carbon dioxide, sulfate or nitrate) can carry out oxidative reactions. Oxidation of fatty acids in anoxic conditions is dependent on the types of bacteria present and hydrogen concentrations.⁵⁶

The acidity of peat bogs has also been proposed to be responsible for preservation.⁵² Many anaerobic putrefactive bacterial species such as *Clostridium* grow best at neutral pHs 5.5-7.5.⁵⁷ Despite the acidic reputation of bogs, a variety of pH distributions occurs depending on the peatland classification: bogs pH 3.5-4.2, poor fen pH 4-5.5, intermediate/rich fen pH 5-7.⁵⁴ The acidity level in rich fens is low enough that bacterial species can survive and in more acidic fens more specialised bacteria, acidophiles, take part in the decomposition process.

There has also been speculation about compounds from *Sphagnum* moss, possibly only released on death of the moss, possessing antibacterial properties. Sphagnol, an unidentified crystalline phenol, was extracted after boiling *Sphagnum* moss with 0.25 M NaOH proved to have bacteriostatic properties, ⁵⁸ but later analysis has not been able to isolate this from living moss and it is considered unlikely to occur naturally.⁵⁹

More recently, speculation about the effects of sphagnan, a pectin-like polymeric carbohydrate produced by *Sphagnum* moss, has held sphagnan to be responsible for the bog's preservative effect.⁵¹ *Sphagnum* moss cell walls contain holocellulose, a combination of cellulose, hemicellulose and pectin (sometimes referred to as 'pectic acid') that acts as a cation exchanger. By absorbing the cations of salts and sequestering calcium and other multivalent ions, mineral acids are released. In dead moss, the polymer is broken down and 'pectic acid'-containing subunits, ~25% of which are D-lyxo-5-

hexosylopyranuronic acid (or trivially 5-keto-D-mannuronic acid (5-KMA)), are released. Sphagnan is associated with cell walls and has a high cation-exchange capacity due to its polyanionic character⁶⁰ and chelates metal cations essential for normal bacterial enzymatic action, for example reducing Ca²⁺ concentration by counterion-exchange.⁵¹ Sphagnan is unstable and is converted to humic acid which also sequesters multivalent cations with high selectivity. Removal of essential micronutrients helps suppress the growth of micro-organisms.

The sphagnan structure also immobilises enzymes released from bacteria and it has been shown experimentally that pepsin, trypsin, pronase and amylases bind irreversibly with *Sphagnum* holocellulose.⁶¹ As bacteria release enzymes to break down molecules too large to engulf, their binding and immobilisation helps prevent putrefaction.

The multiple carbonyl groups on the polysaccharide sphagnan means it can act as a tanning agent, cross-linking collagen fibres.^{51, 62} Sphagnan is proposed to trap nitrogen via Schiff base formation between its carbonyls and certain amines (including ammonia, proteins and enzymes) reducing availability of bound nitrogen for bacterial growth⁶¹ and lowering the pH of the surroundings which can prevent enzyme activity in bacteria not adapted to acidic environments.⁶³ However, re-examination of sphagnan has been unable to identify KMA subunits and ion-exchange capacity was attributed to GalA concentrations.⁶⁴ The exact mechanism for soft tissue survival in *Sphagnum* peat bogs, and if KMA has a role in this, is yet to be established.

1.2.3.5 Heavy metals

Enzyme denaturation by heavy metals can slow down soft tissue destruction. In areas where there are high concentrations of heavy metals (such as mercury, arsenic, copper and lead) it has even been suggested that these

heavy metals prevent total decomposition.⁶⁵ High levels of arsenic in Chilean river water that accumulate in the body during life were discussed as possibly aiding spontaneous mummification of Incan corpses buried in the Camarones River bank, preserving much soft tissue.¹³ However desiccation has also been held partly responsible for this preservation.¹⁵ Soft tissue preservation has also occurred in the presence of metallic grave goods, but only locally at low levels. Copper jewellery left in contact with the skin has led to narrow bands of flesh surviving⁶⁶ possibly due to copper ions binding to polypeptides and 'tanning' the soft tissue.

1.2.3.6 Adipocere

Adipocere is a fatty, waxy, soapy bulk also called 'grave wax' or 'corpse wax' that can form during corpse decomposition.⁶⁷ It has a range of appearances and textures and can be whitish in colour, through to grey or brown, it can range from a soft and greasy texture to hard and friable, and can smell mouldy, putrid or not at all. Adipocere formation has been called a chemical form of mummification¹⁵ as its formation inhibits post mortem changes, can form a protective layer and can lead to soft tissue preservation. However, adipocere itself, is a product of the corpse decomposition process and its creation only occurs within conducive environments. It occurs in a variety of forms from barely visible lesions to large regions replacing areas of soft tissue.¹³ The formation of adipocere has been reported to occur in a variety of environments, and can form quickly or slowly. It can also persist for very different lengths of time from 5⁶⁸ to 3350 years,⁶⁹ but can be degraded under the right conditions.

One of the first mentions of the substance was by Sir Thomas Browne in his work 'Hydriotaphia, Urn Burial' published in 1658.⁷⁰ However, it is generally

believed that Fourcroy^{71, 72} and Thouret⁷³ were the first to scientifically report the phenomenon during their examination of exhumed of bodies from the Cemetery of the Innocents in Paris in the late eighteenth century. Fourcroy suggested after experimentation that adipocere represented a form of soap resulting from reactions of fat with ammonia and phosphate of lime.^{71, 74, 75} Initial nineteenth-century chemical separation and analysis of various adipocere samples identified lime, fatty acids (palmitic, stearic, oleic or margaric), hydroxy fatty acids, cholesterol and ammonia as well as insoluble residues.⁷⁵ The insoluble residues were later identified as calcium palmitate, stearate and hydroxy stearate.⁷⁵

Observation has shown adipocere is more likely to occur in female corpses, especially around the thighs¹⁶ and in obese corpses¹¹ and doesn't occur in bodies suffering from starvation.⁷⁴ Along with the chemical evidence this agrees with the hypothesis that adipocere originates from subcutaneous fat tissues and corpses are more likely to have evidence of adipocere formation around fatty areas of the body. Despite investigation into its formation, a clear consensus on its origins has not been reached and a variety of theories for its formation have been suggested, as discussed in the following sections.

Saponification

A saponification theory of fatty acids has been suggested as the mechanism for adipocere formation. Hydrolysis of the ester bonds of triacylglycerides post-mortem can occur due to enzyme activity (either internal or bacterial lipases) or without, provided the fats are in a mildly acidic aqueous solution. Removal of a proton from the carboxylic acid means the fatty acid can take on sodium or potassium ions present in the environment (interstitial fluids, ambient water) at neutral or slightly alkaline pH, yielding a salt. The sodium or potassium can be further replaced by calcium/alkali-earth metals/bivalent metal ions (Equation 1, Figure 5), producing an insoluble, brittle soap, in a process called 'hardening'.¹¹ It has been noted that in areas of hard water fat, oil and grease deposits in sewers are more insoluble, have higher melting points and have increased calcium levels having undergone saponification.⁷⁶ In a similar way, the degree of saponification in the body may be related to the mineral content of the burial soil or water, with higher mineral content leading to greater saponification. A decrease in calcium concentrations with a corresponding increase in sodium concentrations in a burial pit pore water depth profile has been correlated with adipocere formation,⁷⁷ consistent with this model of formation.

$2 C_{17}H_{35}COO^{-}Na^{+} + Ca^{2+}$	$\rightarrow (C_{17}H_{35}COO^{-})_2Ca^{2+} + 2 Na^{+}$	Equation 1.

SODIUM STEARATE (SOLUBLE)

CALCIUM STEARATE (INSOLUBLE)

Figure 5. Stearate chemical structures: (above) sodium stearate, (below) calcium stearate

Despite early ideas, adipocere is not wholly composed of saponified fatty acids. Takatori analysed three samples of adipocere and found fatty acids from soap only constituted 2.3-34.5% by weight of the total fatty acid amount.⁷⁸

Fat migration theory

An alternative theory of adipocere formation is that of 'fat migration'. The triacylglycerides are freed from cells by the decomposition of supporting

structures allowing them to migrate. In wet conditions and over long periods of time the triacylglycerides are hydrolysed.⁷⁵ Once hydrolysed, the smaller fatty-acid products and glycerol are rapidly lost to the surroundings by diffusion or gravitational separation⁶⁹ and the remaining larger fatty acids congeal to form adipocere. In peat bogs as part of the tanning process, crosslinking between amino acid groups on collagen molecules may lead to tissue contraction physically squeezing lipids out, after which hydrolysis of fatty acids can occur.⁵⁷ This theory does not fully explain the different proportions of saturated and unsaturated fatty acids found before and after adipocere forms, and suggests enzymes and bacteria only play a secondary role.

Hydrogenation theory

The hydrogenation theory suggests that fatty acids are freed from triacylglyerols by hydrolysis in adipose tissue and the resulting liquid mixture containing mainly unsaturated fatty acids undergoes hydrogenation to form saturated fatty acids. This process is mediated by bacteria and includes β oxidation process to convert unsaturated oleic to saturated palmitic acid. Unlike the triacylglycerols which are liquid at body temperature the higher melting point of these saturated fatty acids means they remain solid, forming an insoluble air-tight shell, preventing further soft tissue decomposition.¹⁸

Experiments by den Dooren de Jong using a two phase system of olive oil and water inoculated with soil bacteria and left under anaerobic conditions produced a whitish crust with components that, when separated and identified by GC-MS, were similar to adipocere.⁷⁴ A similar experiment with triolein (glyceryl trioleate) and water showed that oleic acid could be converted to palmitic acid by bacteria.⁷⁴

Analysis of adipocere

After the initial identification of adipocere a limited number of studies were made during the eighteenth and early nineteenth century that tried to clarify its composition.⁷⁵ Chemical methods of identification and separation were employed with a range of soaps and fatty acids being isolated (see Table 2). In addition to soaps, further analysis has isolated a range of components also found in adipocere (Table 3).

Using GC-MS⁷⁸ it was possible to identify the structure of 10-hydroxy octadecanoic acid (10-hydroxy stearic acid) as a component of adipocere but it was not possible to confirm the presence of 9-hydroxy stearic acid and it was proposed this was in fact 10-hydroxy palmitic acid. Small amounts of a derivative of linoleic acid, 10-hydroxy-12-octadecenoate, have been detected in adipocere but not in comparable quantities to linoleic acid, suggesting further breakdown or other microbiological conversions of this fatty acid occur.⁷⁸

Takatori produced several papers showing production of hydroxy fatty acids and oxo fatty acids plays a role in the formation of adipocere; hydroxy fatty acids and oxo fatty acids are synthesised by bacterial enzymes. In addition, cholesterol and epicoprostanol (an isomer of coprostanol, a form of hydrogenated cholesterol) have been reported in adipocere samples.⁷⁹

Table 2. Percentage composition of 'Hard Clean Adipocere Wax' determined by a variety of chemical methods.⁷⁵

Component	Percentage by weight
Palmitic acid	67.52
Stearic acid	3.3
Oleic acid	5.24
-Hydroxy stearic acid	9.48
-Hydroxy stearic acid	6.32
Stearin and palmitin	1.21
Olein	0.16
Unsaponified matter	0.87
Calcium soaps	4.41
Protein	0.665
Ash	0.578
Humus and undetermined	0.247

Conditions for formation of adipocere

Adipocere formation is affected by a wide variety of burial characteristics, including the composition of the corpse, the method of burial, and the conditions of the resting place, including anaerobic conditions, humidity, temperature, sand the oil conditions. Water potentially promotes saponification as it reduces the rate of oxidative degradation of fatty acids, increasing their availability to, at low pH, produce salts. The formation of hydroxy and oxo fatty acids (with higher melting points than their corresponding straight chain fatty acids) is thought to stabilise adipocere.⁷⁸

Abbreviation*	Chemical constituent	Reference
C12:0	Lauric acid (dodecanoic acid)	
C14:1	Myristoleic acid	80
C14:0	Myristic acid (tetradecanoic acid)	
C16:1	Palmitoleic acid (<i>cis</i> -9-hexadecanoic acid)	
C16:0	Palmitic acid (hexadecanoic acid)	
C17:1	Heptadecenoic acid	80
C18:2	Linoleic acid (<i>cis,cis</i> -9-12- octadecadienoic acid)	
C18:1	Oleic acid (<i>cis</i> -9-octoadecanoic acid)	
C18:0	Stearic acid (octadecanoic acid)	
C20:0	Arachidic acid (eicosanoic acid)	
	Cholesterol	79
	Epicoprostanol	79
	9-hydroxystearic acid	75
	10-hydroxystearic acid 10-hydroxypalmitic	80, 81
	10-oxopalmitic/or margaric acid	
	9-hydroxyoctadecanoic acid	
	10-hydroxyhexadecanoic acid	
	10-hydroxyoctadecanoic acid	
10-OHODA	10-ketooctadecanoic acid	
10-OHHDA	10-ketohexadecanoic acid	

Table 3. Chemicals found in adipocere

* carbon count : number of double bonds

Extensive investigation of burials after the Second World War led to some key observations regarding adipocere formation.¹⁶ Moisture in the environment was reported to be conducive to adipocere formation but water from within the

body's tissues was sufficient. Anaerobic conditions were also conducive, but adipocere could also form under aerobic conditions.¹⁶ Experiments have shown that soil type affects the formation⁸² of adipocere, but that extremes of pH inhibit its formation.⁸³ Clothing has also been suggested to increase adipocere formation by increasing moisture content around the body.^{16, 84}

Decomposition of adipocere

Adipocere can persist for extended periods of time in a stable environment but can decompose.^{18, 85} Fatty acids can be oxidised into aldehydes and ketones, but this is prevented in anaerobic environments and adipocere deposits can remain for considerable periods of time. It has been shown to persist over 1600 years even with changing water levels.⁸⁶ Converting fats to fatty acids lowers the pH of the tissue, which can reduce bacterial growth, enhancing preservation.

1.2.3.7 Fossil fuels

Whilst the above-described forms of preservation can occur over periods up to thousands of years, on a geological timescale soft tissue preservation doesn't occur without considerable chemical transformation. Fossil formation tends to preserve the 'hard parts' (bones/teeth/scales/shell), by a process of mineralisation. It can be argued that the longest lasting form of soft tissue preservation, although undergoing much alteration, is that which results in the formation of fossil fuels. Whilst the origins of coal, oil and gas are mostly plant based, these contain many of the same precursor components as most other living matter – including lipids, proteins, carbohydrates and so on. With fossil fuels, the original organic material comes from zooplankton, algae etc. The original material's nature as organic is retained in the fossil fuels, with the presence of predominantly C, H, O, N, S atoms in a hydrocarbon framework.

When biomass (in large quantities) is submerged in anoxic water then incorporated into sediments and subjected to high temperatures and pressures over long periods of time the organic matter undergoes a series of transformations called diagenesis.⁸⁷ This leads to kerogen formation, a form of insoluble organic matter found in oil shales, and with further heat and pressure causing additional chemical change (catagenesis) produces petroleum and gas.⁸⁸ These organic mixtures can survive for millions of years.⁸⁷

1.3 Brain Preservation

Some specific instances of brain preservation have been described in the literature and limited chemical analyses have been carried out. Of these, most of the methods of preservation are those described above.

However, some reported brain preservations do not fall easily into any of the categories of preservation mechanisms surveyed in this introduction. For instance, brain tissue found within a skull in South Africa came from an environment which was not considered dry enough for standard desiccation or wet enough for adipocere formation, and yet was preserved.⁸⁹

Four examples of brain tissue have survived from Seyitömer Höyük, Turkey. The remains were found in a burnt layer of sediment and it has been speculated that the bodies were rapidly buried due to tectonic activity. A subsequent fire removed oxygen from the rubble and boiled the brains in their own fluids.⁹⁰ Lack of water and oxygen were proposed to have prevented enzyme activity and the high concentrations of potassium, magnesium and aluminium would have promoted saponification to form adipocere.⁹⁰ It would have been ideal if samples from these unusually preserved brains could have been analysed during this project. However, this proved impossible to arrange.

In some cases of soft tissue preservation, a combination of processes has been shown to occur. In the Cova des Pas, Minorca, an early Iron Age funerary complex, soft tissue remains including brain matter (Figure 6) show evidence that both desiccation and adipocere formation have occurred. It has been suggested the multiple corpses, including wrappings, induced an anaerobic and moist environment, in which adipocere formed in some instances but a climatic

increase in temperature and drop in moisture led to dehydration of tissue as

well.91,92

Figure 6. Preserved brain soft tissue from the Cova des Pas site (Minorca, Bronze Age) ³⁹

There have been some instances of brain preservation within wet springs such as at Windover farm in USA.⁹³ Here, although the bodies had been skeletonised, soft tissue within the skulls was observed. The brains had shrunk but showed some large structural features, and histological investigation showed microscopic detail consistent with brain matter.⁹⁴ This description highlights similarities with the York brain (for more details see 2.1.1).¹ One of the suggested mechanisms for lone brain matter survival is that unlike many other internal organs the brain is enclosed by a protective membrane (the meninges) as well as the skull, which provide it with greater physical protection.¹⁴ This also isolates the brain somewhat from bacteria, although autolysis can still occur. Isolated brain remains have also been found in a mass burial of cattle and pig carcasses (interned due to the 1967 foot and mouth outbreak, UK)⁷⁷ and it has been hypothesised that the skull itself creates a microclimate which allows brain preservation when other soft tissue was lost.⁹⁵

There are several examples of brains from waterlogged sites, such as the York brain, surviving when all other soft tissue has been lost. These are summarised by O'Connor¹ to include: in a flooded limestone cave in Warm Mineral Springs, Florida, USA, in a cemetery in Little Salt Spring, Florida, USA, in a swampy pond in Windover, Florida, USA, in 6 m deep flood debris, Zihl Canal, Switzerland, in frequently flooded graves in Svenborg, Denmark, in a waterlogged grave in Sandwell, UK, in waterlogged graves from an Augustinian Friary, Hull, UK, in a Roman riverside burial in Scole, UK and a child burial within a wet clay environment in Quimper-Bretagne, France. For a summary of the chemical investigations carried out on these remains, see Table 4.

The York brain was found in an isolated skull which had been removed from the body.¹ If removal of the head occurred at the time of death, this may have prevented the intestinal fauna reaching the brain and so delayed putrefaction. Blood would have drained out leading to fluid loss and potential desiccation. If burial of the head occurred quickly, this may have protected against some microbial access and so prevented environmental putrefactive organisms from infecting the head.¹⁸ Lipids make up approximately 10-12% of the wet weight of fresh brain.³ Notably the York brain remains yielded a much lower percentage of solvent extractable lipidic content (0.8–1.1% of wet weight) and the material identified from this extract is not consistent with adipocere formation.¹

Although there is a range of natural soft tissue preservation mechanisms known/postulated, none of these fully explains the instances of isolated brain tissue remains in otherwise skeletonised bodies. In the case of waterlogged burials, adipocere formation has occurred in some cases, and may well play a role in brain preservation,⁹⁶ but did not occur in the York brain example.¹

Where	How many	Age (years BP)	Method of brain preservation	Method of analysis	Compounds Found
Heslington, York, UK ¹	1 adult	2469 ± 34 BP (673-482 BC)	Unknown, possibly waterlogged pit	Radiocarbon dating of skull CT and MRI imaging, light microscopy, SEM and TEM, 3D laser scanning DNA (unpublished), amino acid and proteomic analysis 1D-TLC of lipid extract (made using the Folch ^{97, 98} wash method) Thermal desorption and pyrolysis GC-MS MALDI FT-ICR MS (unpublished)	C:N ratio was 6.3 (n=2) 5% of total tissue was hydrolysable amino acids, AA racemization levels D/L > 0.06 except for Asx Peptides from myelin proteolipid protein (lipophilin) and claudin-11 (oligodendrocyte-specific protein) identified Solvent soluble lipids were 0.8-1.1% wet weight Coprostanone, trace cholesterol Hydroxyfatty acids, aldehydes, thiophenes low levels of sterols/stanones Series of 2-hydroxyfatty acids (C22:0 – C25:0 and C24:1) High molecular weight, long chain organic material

Where	How many	Age (years BP)	Method of brain preservation	Method of analysis	Compounds Found
-------	----------	-------------------	------------------------------	--------------------	-----------------

Windover pond, Brevard County, Florida, USA ^{94, 99-101}	4 adults + 1 subadult with recognisable preserved/replac ed brain tissue 1 adult + 3 subadults with 'amorphous brain tissue mixed with peat'	6,990±70 BP	Fluctuating water level in peat pond (aqueous environment)	Accelerator- mass spectrometry of isolated collagen (dating) x-ray imaging, computerised axial tomography and proton magnetic resonance imaging, light and transition and scanning electron microscopy Nucleic acid extraction	Human mtDNA present
Cova des Pas, Minorca ^{91, 92, 102}	Three within funerary cave site	~ 3000 BP	Adipocere and desiccation	Light microscopy Scanning electron microscopy Transmission electron microscopy GC-MS	Lauric acid Myristic acid Pentadecanoic acid Palmitoleic acid Palmitic acid Linoleic acid Oleic acid 10 Hydroxy palmitic acid Stearic acid 10-Hydroxy stearic acid

WhereHow manyAge (years BP)Method of brain preservation	Method of analysis	Compounds Found
---	--------------------	-----------------

Kirauilyakh	2 (mannamatha)	40.000 and			No alverranheanhalinida
brook Kolyma	∠ (mammoths)		Frozen mummification		ivo giyceropnospholipias
river basin		~53,000 BP		Transform fatty acids to	Sphingomyelin detected
Magadan				methyl esters analyse by GLC	18 fatty acids detected – stearic
district and				TLC	major saturated, nervonic major
Timyr				Lipids extracted by column	unsaturated
peninsula in				chromatography, separated	Cerebrosides and sulfocerebrosides
Khatanga river				by TLC, underwent acid	– (hydroxyl fatty acid fraction and
basin ^{43, 44}				methanolysis – sphingosine	normal fatty acid fraction)
				bases transformed into	Sphingosine bases identified by
				trimethylsylil derivatives,	comparison with standard prep 4-
				analysed by GC	sphingenine and sphinganine
				Chromatogram – orcin	
				reaction, colocimetric test on	
				sulphate group with azur A	
				'resorcinal method', purified	Gangliosides – sialic acid
				by alkaline hydrolysis,	Monosialogangliosides (di-/tri)-
				chromatographed on a	
				Sephadex column	
				TLC) and GLC	Cholesterol and cholesterol esters

Where	How many	Age (years BP)	Method of brain preservation	Method of analysis	Compounds Found
-------	----------	-------------------	------------------------------	--------------------	-----------------

Tyrolean Iceman, Similaun glacier, South Tyrol, Italy ^{46-49,} ¹⁰³⁻¹⁰⁷	1 (male)	~5300 BP	High altitude freezing (desiccation)	Homogenised, 30min @ 100°C in 1ml of 7.5 N NaOH/methanol (1:1 v/v), add 2ml methanol/ 6 N HCl (4.6:5.4 v/v) heat 10 min @ 80°C	Fatty acids: Myristic acid (14:0) Palmitoleic acid (16:1) Palmitic acid (16:0) Linoleic acid (18:2) Oleic acid (18:1)
				GLC -MS	10-hydroxypalmitic acid (16:0 10OH)
				Accelerator mass spectrometry (dating)	Stearic acid (18:0) Arachidonic acid (20:4)
				Sample of cerebral cortex taken desiccated, immersed in cold fixative, held under vacuum, fixed in resin – light and electron microscopy	10-Hydroxystearic acid (18:0 10OH) Staining with Sudan black for lipids – reacted positively with myelin remains (unsaturated lipids and periodic acid-Schiff-reactive carbohydrates detected with electron microscopy)

WhereHow manyAge (years BP)Method of brain preservationMethod of analys	sis Compounds Found
---	---------------------

Hampton Road, Droitwich, Worcestershire ¹ ⁰⁸	1 NB notes others including one found in 1843	1,500-2,000 BP	Waterlogged site	Observation only No mention of chemical analysis	Bog burial rich in cholestrine
Quimper- Bretagne, North-western France ⁹⁶	1 formalin fixed brain (child – 18 month old)	~800 BP	Salt and fresh water, acidic clay soil environment	Macroscopic observation aDNA extraction MRI CT scanning GC-MS (65mg tissue) extracted using Makristathis method	Fatty acid composition evaluated: Ginkgolic acid (13:0) Myristic acid (14:0) Pentadecanoic acid (15:0) Palmitic acid (16:0) Heptadecanoic acid (17:0) Oleic acid (18:1) Stearic acid (18:0) 10-hydroxy stearic acid (18:0 1OH) ((Eicosenoic acid (20:1) found only in modern brain comparison)) Ancient brain high conc. Sat fatt acid, low unsat. Fat acid

Where	How many	Age (years	Method of brain	Method of analysis	Compounds Found
		BP)	preservation		

Warm Mineral Springs, Sarasota County, Florida ⁹³	Under sediment in cave under water – antibiotic activity of sediment/spring water?	10,000 BP ± 200 years	Suggested adipocere	Macroscopic investigation and light microscopic Positive Salkowski and Lieberman-Burchard reactions	Cholesterol, esters, phytosterols (assumed due to staining?)
Svenborg, Denmark ¹⁰⁹	56 of 74 skulls contained intracranial masses	714-410 BP	Adipocere, frequent floods, alkaline reaction of soil, exclusion of air in clay	Light microscopy Scanning electron microscopy Qualitative lipid analysis	Phospholipids, Neutral lipids and fatty acids cholesterol
Loshin site, Dubrinishte Billage, Bankso Community, Sofia District ⁹⁵	2 (inside intact skulls), 5 other brain structures (1 almost whole, others fragments)	10-0 BP	Microclimate within cranial cavity? Rapid evaporation of intracellular brain fluid	Elementary atomic spectral analysis (2g desiccated under IR for 10 days, cleaned, ground, homogenised with pure carbon powder (1:1) Electron microscopy	Similar Ca, Cu, Pb content of mummified brain compared to a modern brain Less P, Na but more Mn, Si, Al, Ti in the mummified remains

1.4 Mass Spectrometry

The analytical technique used to explore the components of the brain lipid extracts was high resolution mass spectrometry. This method was chosen because using the spectra it is possible to calculate the molecular weight of the sample components to 3 dp and so determine their likely empirical formulae. This then provides an insight into the component's chemistry. This section provides a short overview of the history of this technique and details of the particular instrument and ionization method used.

1.4.1 OVERVIEW/HISTORY

Mass spectrometry has developed into a powerful analytical tool from its beginnings over a century ago as a means of investigating anode and cathode rays.

At the fundamental level, a modern mass spectrometer combines a method of sample introduction, a technique to ionise molecules (or atoms) from the sample, a device that can separate and measure the mass-to-charge ratio (m/z) of the resulting ions (mass analyser) and a way of determining each ion's abundance. They often include a method of selecting a specific ion and a fragmentation method, which can be used to provide important structural information. The resulting data are transferred to a processing unit where they are analysed and then depicted as a series of peaks in a mass spectrum. A brief schematic of this arrangement is shown in Figure 7..

Figure 7. Schematic representation of the elements of a mass spectrometer

Advances in each of these elements have improved the resolution, limit of detection, mass accuracy and mass range over which these instruments can operate. The range of analytes that can be examined has expanded both in terms of mass and complexity, and the types of experiments that can be carried out have increased the amount of information that can be collected. The technique has become increasingly important and has expanded, facilitating the generation of entirely new fields of study.

JJ Thomson developed the first apparatus that measured mass-to-charge ratios of ions, going on to determine the mass of the electron, for which he won the 1906 Nobel Prize in Physics. His first 'parabola spectrograph' used parallel electronic and magnetic fields to deflect atoms and molecules with detection by photographic plates.¹¹⁰ Further refinements to the apparatus were made by various scientists over the first few decades of the twentieth century.

The instrumentation was primarily used by physicists who were interested in the discovery and separation of atomic isotopes and AO Nier's use of mass spectrometry to separate ²³⁵U in 1939¹¹¹ was a major development of the atomic age and highlighted the technique. It was also applied early on to small organic molecules.¹¹²

The time-of-flight mass analyser was proposed by WE Stephens¹¹³ in 1946 and designed in 1948.¹¹⁴ Other analysers, such as ion cyclotron resonance,¹¹⁵ quadrupole and ion trap^{116, 117} were designed and built, although it was a while

before these were developed commercially. More recently the Orbitrap, an ion trap using an electrostatic quadro-logarithmic field based on the Kingdon trap,¹¹⁸ was designed by AA Makarov.¹¹⁹

The range of available ionisation approaches has expanded to include electron ionisation,¹²⁰ chemical ionisation, field desorption, atmospheric pressure chemical ionisation, plasma desorption, inductively coupled plasma, thermospray, matrix-assisted laser desorption/ionisation, electrospray, and nanoelectrospray. Mass spectrometers have been coupled to gas chromatographs, liquid chromatographs, high performance and ultraperformance liquid chromatographs.

The ability to ionise large molecules without fragmentation and the development of analysers with increased mass ranges meant that in the 1980s and 90s mass spectrometry took on a very much more significant role in the biological sciences.¹²¹

1.4.2 IONISATION: MATRIX-ASSISTED LASER DESORPTION/IONISATION (MALDI)

MALDI is a soft ionisation technique which allows even large molecules to be ionised without use of the high temperatures/energies that can lead to sample degradation. Originally, laser desorption made use of a focused laser pulse to ablate the surface of usually solid material, producing gaseous ions and neutral molecules in a plume. The molecules may react together within the dense vapour and fragmentation of molecules over 500 Da typically occurs. Time-of-flight or simultaneous mass analysis is required due to the short period of ion production following the laser pulse. Ease of vaporisation and ionisation depends on the properties of the analyte. Karas and Hillenkamp first introduced the use of organic matrices, allowing ionisation of large intact, non-labile molecules via laser ablation, in the technique named matrix-assisted laser desorption/ionisation (MALDI).¹²² MALDI is now a very widely used technique that allows proteins, oligosaccharides, lipids and other species to be analysed by mass spectrometry.

The sample is mixed with an excess of organic matrix, usually whilst both are in solution, and a spot of the resulting mixture is placed on a metal plate to dry, forming a matrix/analyte 'cocrystal' in which the analyte molecules are surrounded and embedded. Matrices are chosen to absorb the energy of the laser used, and to protect the analyte from damage by the laser energy. In the most commonly-implemented approach to MALDI a UV laser is used to produce a short pulse of laser energy, and small conjugated organic acids are the most common matrices. Absorption of the laser energy by the matrix molecules is believed to cause the matrix to desorb and ionise. Desorption of the matrix leads to co-desorption of the analyte, initially as a neutral, into a plume the develops just above the plate, as a result of the laser pulse. While the exact mechanism of ionisation is not well understood, it is proposed that in the plume, collisions between matrix ions and analyte molecules result in charge transfer reactions, that ionise some of the analyte species.

MALDI is widely adopted for a wide range of analyses, including of lipids, other lipidic compounds, for which it has been employed in this thesis (2.4, 3.3). It is rapid and conveniently tolerant of a range of contaminants that can affect ionisation efficiencies when using other ionisation approaches. However, due to the process of cocrystalisation and ionisation, which depends on desorption from the matrix/sample spot surface, this means the technique can suffer from poor spot to spot reproducibility.

1.4.3 MASS ANALYSERS

After the ions have been produced they are separated by their m/z ratios, in the mass analyser. A variety of different principles can be manipulated to cause ion separation, exploiting combinations of static and dynamic magnetic and/or electric fields, depending on which of a range of analyser designs is to be used. The performance of the mass analyser can be described in terms of how well it separates ions and how well it assigns their m/z values.

The mass accuracy afforded by the mass analyser is described as the difference between the true and measured m/z values, and is expressed in millimass units (mmu) or, for high accuracies, more conveniently in parts per million (ppm). Mass resolution is the ability of the mass analyser to yield distinct signals from ions with small m/z differences; resolving power, R =m/ Δ m, where m/z is the mass of the ion, and Δ m the difference in m/z values between two ions being separated.

1.4.3.1 Fourier-transform ion cyclotron resonance

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is a technique in which a mass analyser confines ions within a static, uniform magnetic field and records the electric current induced by cycling of the ions after excitation. Fourier transformation is used to convert the time-dependent signal into a frequency-dependent signal, which is then used to generate a mass spectrum.

Ions are trapped within a 'Penning' trap, first built by Hans G. Dehmelt. Dehmelt, along with Wolfgang Paul, won a share of the 1989 Nobel Prize in Physics for their work on ion trapping.¹¹⁷ Hipple, Sommer and Thomas first described the application of ion cyclotron resonance (ICR) in mass spectrometry

in 1949¹¹⁵ and the first use of Fourier transformation in conjunction with ICR was reported by Comisarow and Marshall in 1974.¹²³

1.4.3.2 Ion cyclotron motion

If an ion is placed in a static, uniform magnetic field it is subject to centripetal force:

$$F = q \boldsymbol{v} \times \boldsymbol{B}_0$$

Equation 2.

where q is the ionic charge, \mathbf{v} the velocity and \mathbf{B}_0 the magnetic field. As \mathbf{v} and \mathbf{B}_0 are vectors, the cross-product term (F) is perpendicular to the $\mathbf{v}B$ plane (see Figure 8).¹²⁴

Figure 8. Ion cyclotron motion. The magnetic field (B_0) provides a perpendicular force (F) to the ions' motion (v), creating a circular motion.

This means the ion moves with a circular trajectory. It is therefore also subject to centrifugal force \mathbf{F}' :

$$F'=\frac{m\boldsymbol{v}^2}{r}$$

Equation 3.

where m is the mass of the ion and r is the radius of the trajectory.¹²⁴ When these forces are in balance the trajectory is stable, and as

$$q\boldsymbol{B_0} = \frac{m\boldsymbol{v}}{r}$$

Equation 4.

the frequency of the ion completing a full circle (ϑ) in the xy plane can be given by:

$$\vartheta = \frac{\boldsymbol{v}_{xy}}{2\pi r}$$

Equation 5.

Angular velocity (ω) about the **B** or z-axis is then:

$$\omega = \frac{v_{xy}}{r}$$

Equation 6.

Then, with substitution, the "cyclotron" motion of the ion can be shown to have a frequency ω_c related to its mass to charge ratio (m/q) and independent of its velocity.

$$\omega_c = 2\pi\vartheta = \frac{q}{m}\boldsymbol{B_0}$$

Equation 7.

With rearrangement, the radius of the ion's cyclotron motion path can be determined,¹²⁴

$$r_c = \frac{m\boldsymbol{v}_{xy}}{q\boldsymbol{B}_0}$$

Equation 8.

remembering that:

q = ze

Equation 9.

where z is the charge number and e is the charge constant.

1.4.3.3 Observations from these equations

These equations show that an ion's cyclotron frequency is inversely proportional to its m/z ratio and the magnetic field strength. Ions with high m/zvalues orbit at lower frequencies than ions with smaller m/z values. Correspondingly the radii of heavy ions are larger than those of light ions, provided velocities are equal and within a uniform magnetic field. As the magnetic field is kept constant in an ICR cell, measuring the ion's frequency can be used to determine its m/z. If the magnetic field strength is very large and the velocity is very low, the cyclotron frequency is high and the radius of motion small, effectively 'trapping' the ions. All ions of the same m/z have the same cyclotron frequency independent of their velocity. The ions' velocity is directly proportional to radius of the cyclotron orbit, so that an increase in velocity (higher kinetic energy) leads to an increase in trajectory radius.¹²⁴

1.4.3.4 Ion cyclotron resonance

Ion cyclotron motion is not useful until the ions are excited to a large enough radius to be detected, by irradiation with an oscillating electric field of the same frequency (in resonance) as their rotation.

Assume an ion in a magnetic field is placed between two infinite parallel electrodes as shown in Figure 9. If a potential, or voltage, V, is used to form a sinusoidal waveform ($E_R(t)$) and applied to one plate, and a second voltage which is 180° out of phase with this waveform ($E_L(t)$) is applied to the second plate, the opposing potential waves generate an oscillating electric field. The electric field, E(t), can be described using **i** and **j** unit vectors parallel to the x and y axis:

$$\boldsymbol{E}(t) = E_0 \cos \omega_c t \boldsymbol{j} = \boldsymbol{E}_L(t) + \boldsymbol{E}_R(t)$$

Equation 10.

Where:

$$\boldsymbol{E}_{L}(t) = \frac{E_{0}}{2}\cos\omega t\boldsymbol{j} - \frac{E_{0}}{2}\sin\omega t\boldsymbol{i}$$

Equation 11.

$$\boldsymbol{E}_{R}(t) = \frac{E_{0}}{2} \cos \omega t \boldsymbol{j} + \frac{E_{0}}{2} \sin \omega t \boldsymbol{i}$$

Equation 12.

and E_0 is generated by applying $+V_0$ and $-V_0$ to opposite electrodes:

$$E_0 = \frac{2V_0}{d}$$

Equation 13.

where d is the distance between the electrodes. $^{124} \ensuremath{$

The ion absorbs power, A(t):

$$A(t) = force \cdot velocity = z \boldsymbol{E}(t) \cdot \boldsymbol{v}_{xy}$$

Equation 14.

This resonant absorption increases the kinetic energy of the ions, increasing their orbital radius and allowing their detection (see 1.4.3.7). If the ion kinetic energy is increased enough to overcome the ion dissociation threshold, then with the increased frequency of ion collision intramolecular bonds can be broken. Fragmentation due to collisions with neutral collision gas molecules is called collision induced dissociation (CID), but only occurs at sufficient pressure, lower pressures decrease the likelihood of collision. Excitation can also lead to expulsion of ions by increasing the orbital radius until it is larger than that of the trap.

Figure 9. Resonant excitation. If the oscillating electric field has the same frequency as the ion's cyclotron frequency then the ion is excited, leading to an increase in orbital radius

When a group of ions of the same m/z are introduced into the magnetic field they are not all in phase; despite having the same ω_c their random energy distribution means that they are scattered along the circular trajectory path. When the resonance frequency is applied, all the ions are excited at the same time and as the radius increases they are brought in phase, to travel in packets (Figure 10).

1.4.3.5 Ion cyclotron cell geometry

There is a variety of geometries the ICR cell can take but the principles of their operation remain essentially the same. A cell can be represented by a cube, within a magnetic field, composed of three pairs of opposing electrode plates: for trapping, excitation and detection. The magnetic field is generated by a superconducting magnet. Ions are introduced into the cell along the axis of the magnetic field, *z*. The trapping plates are perpendicular to the magnetic field and have a small voltage (~1 V) applied to them, causing a potential well,

Figure 10. Resonant excitation of ions travelling in phase

preventing ions from leaving the cell along the z axis. The ions consequently rotate around the z axis in the xy plane (cyclotron motion) and move up and down the z axis.

The electrically connected detector plates are positioned parallel to the magnetic field. If an ion packet passes close to one of the plates it attracts or repels the electrons in the plate, depending on the ions' charge, thereby inducing a current, known as the image current. When the sinusoidal
alternating currents for each of the different m/z values in the ion packet are combined, an image current for the combined ion population is produced. The cyclotron frequency of each ion, and thus its m/z, can be determined from the image current. Initially when the ions enter the cell their radius of motion is small compared to the cell dimensions and they do not pass close enough to the detector plates to form a significant image current. It is only after excitation and the increase in radius that they pass close enough to be detected.

The excitation plates are also positioned parallel to the magnetic field (as per Figure 11) and, when required, a small radiofrequency voltage of the same frequency as the ions' cyclotron motion is applied. Statistically, when the ions are out of phase the current induced by an ion passing one plate is cancelled out by an ion of the same m/z passing the opposite plate. Again, it is only after excitation when the ions are travelling with spatial coherence that an image current can be produced.

Figure 11. Geometry of a simple ion cyclotron resonance 'cell'

1.4.3.6 Broadband resonance

If we think of the energy absorbed by the ion as kinetic energy and take into account the time the ion is exposed to the excitation frequency, T_{exc} :

$$Energy = q\mathbf{E}(t) \cdot \mathbf{v}_{xy} \times T_{exc} = \frac{1}{2}m\mathbf{v}_{xy}^{2}$$

Equation 15.

On rearrangement of Equation 15 and substituting from Equation 8 then:

$$q\boldsymbol{E}(t) \cdot \frac{rq\boldsymbol{B}_0}{m} \times T_{exc} = \frac{1}{2}m \left(\frac{rq\boldsymbol{B}_0}{m}\right)^2$$

Equation 16.

so that:

$$r_{exc} = \frac{E_0 T_{exc}}{2\boldsymbol{B_0}}$$

Equation 17.

because:

$$E_0 = 4 E(t)$$

Equation 18.

This means that after excitation the new radius, r_{exc} is independent of m/z. This is very useful as it means that ions of any m/z undergoing excitation (i.e. increasing in kinetic energy due to resonance with the electric field) with a set *V* end up with the same radius of motion, *but* will have frequencies that depend on their m/z ratios.

In order to simultaneously excite all m/z values, so-called broadband excitation (using a range of excitation frequencies and a uniform voltage) is used; this is accomplished using <u>s</u>tored <u>w</u>aveform <u>i</u>nverse <u>F</u>ourier <u>t</u>ransform (SWIFT). This makes use of inverse Fourier transformation (FT)^c; after the m/z

^c The Fourier transform (FT) is a mathematical function that can be used to decompose complex wave patterns detected in the time domain and convert them into intensities in the frequency domain. Inverse FT converts the frequency function to the time function.

range for excitation is chosen, the required cyclotron frequencies (Equation 7.) (that depend on the magnetic field strength of the instrument) are calculated using inverse FT. Once an amplitude for the excitation has been determined, the inverse FT is performed to generate a radio frequency (rf) excitation voltage waveform. On the instrument used in this project, a frequency sweep rather than broadband excitation is used as an alternative means of exciting all the ions.

Once the voltage is applied, the ions across the chosen *m/z* range are all excited to the same extent. As the excitation magnitude is proportional to the excited ions' cyclotron radii (Equation 17) which is in turn proportional to the cyclotron signal magnitude, the image current signal detected from a constant amplitude excitation voltage reflects the ions' abundance accurately.

1.4.3.7 Image current detection

As the excited ions travel along their radial path, the image current is detected by the electrodes. Ions of different m/z values travel with different cyclotron frequencies and thus together the population of ions induces a complex image current, called a 'transient', which is a compilation of all these frequencies (Figure 12). The transient signal is collected in the time domain and FT is required for conversion into the frequency domain. From the frequencies, the m/z values can be obtained and the intensities reflect the ion abundance so a mass spectrum can be compiled.

Figure 12. Signal processing (L-R): the varying cyclotron frequencies are detected as changes in voltage over time, a complex image current is built up, this transient signal undergoes Fourier transformation from time to the frequency domain – which then provides *m/z* information

1.4.3.8 Accuracy and resolution

FT-ICR is renowned for having high mass accuracy (down to 0.5 ppm) and resolution (>10 million resolving power),¹²⁵ which makes it ideal for this study, as it allows the assignment of empirical formulae to the brain residues, based on accurate mass determinations. The high resolution ensures that even weak signals can be resolved from interfering background signals. Since FT originates in the time domain, resolution is dependent on observation time and this is linked to the signal disappearance time. Resolution is proportional to the number of times a spatially coherent packet of ions complete a full circle in the ICR cell (Equation 5).

Theoretical resolution =
$$\frac{\vartheta T_{aq}}{2}$$

Equation 19.

where T_{aq} is the acquisition time or transient length. For a given T_{aq} , resolution is proportional to **B** and inversely proportional to m/z. In order to achieve the theoretical resolution, the ions have to maintain their cyclotron motion and coherence for the duration of the measured transient length. The greater the magnetic field strength, the greater the mass resolution, in fact the highest mass to charge ratio that can be resolved in the ICR cell increases with **B**². Ion-molecule collisions slow the motion of ions, leading to signal disappearance. Collisional damping, reducing the energy of the ions through collision with inert gas molecules, reduces the axial and cyclotron motion. In order to minimise such reduction in cyclotron motion, and thus increase resolution, the cell in the instrument used for this research is placed under very high vacuum ~5⁻¹⁰ mbar (~5⁻⁸ Pa) so collisional damping is very low. As well as high resolution FT-ICR has high mass accuracy (the difference between the calculated and measured mass is very small). Accurate mass determination is an important way of verifying chemical composition and is partly dependent on high resolution. Using this instrument allows the calculation of accurate masses of components within a complex mixture, without the need for separation steps (during which information may be lost) and with a high degree of confidence.

1.4.4 PROTEOMICS

1.4.4.1 Introduction

Proteins are macromolecules made up of amino acid subunits connected by peptide bonds. The three dimensional structure of proteins is a result of, among other things, the sequence of the amino acids in the backbone, with twenty-two different proteinogenic amino acids occurring in nature. Proteins have a range of functions from structural roles, acting as catalysts, to transportation agents and molecular messengers.

Proteomics is the study of protein expression and employs a range of techniques and experiments including mapping where in a cell/organ/organism proteins are expressed, and monitoring how protein abundance changes with time or between genetically altered/diseased/etc. and normal cells, tissues or organisms. Determining the mass of a protein and its amino acid sequence has been a key way of identifying proteins. Until the development of desorption ionization techniques and later electrospray ionisation and MALDI, large biomolecules were not amenable to analysis by mass spectrometry as they were required to be gaseous, and most were too large and heat labile to be brought into the gas phase for ionisation. Techniques such as electrophoresis and chromatography were imprecise approaches to molecular mass estimation of proteins, because properties other than mass affect the results. The introduction of soft ionization techniques coupled with high resolution mass analysers has enabled mass spectrometric analysis of large molecular weight biomolecules with high mass accuracy. Mass spectrometric fragmentation of proteins/peptides provides information about the amino acid sequence of the protein or its constituent peptides and significantly aids identification.

There are two strategies for protein mass spectrometric identification: topdown sequencing which involves fragmentation of intact proteins (which is not relevant to this study and is not discussed further), and bottom-up analysis. Bottom-up analysis commonly involves an extraction step, can involve subfractionation of complex protein mixtures, enzymatic digestion of protein mixtures to form peptides that are of a size that is amenable to analysis, mass spectrometric analysis (which can include product ion analysis of the peptide fragments) and identification. This method was used to test the ambiguous Villiers Street sample for evidence of brain related proteins. Proteomic methods are well reviewed.^{126, 127}

1.4.4.2 Fractionation

A method for simplifying protein extracts (by removing some non-protein contaminants and inducing fractionation) is to use a sodium dodecyl sulfate polyacrylamide gel and carry out electrophoresis (SDS-PAGE). After solubilising the proteins in the sample by boiling in a buffer containing the detergent SDS,

which denatures the protein, the sample is equilibrated in a buffer solution containing an agent to reduce disulfide bonds to aid in protein denaturation. The negatively charged SDS molecules bind to the proteins via hydrophobic interactions in rough proportion to the protein's length, giving the proteins an overall negative charge. The proteins are then loaded into the polyacrylamide gel. The application of an electric field (electrophoresis) across the gel causes the negatively charged proteins to be attracted to the anode, forcing molecules to migrate through the gel matrix. The gel itself is formed using a polymerisation reaction which forms a crosslinked matrix with pores, the size of which can be altered by varying the ratio of reagents.¹²⁸ In general, smaller molecules move more easily through the pores in the gel and so travel faster and therefore further than larger molecules, effectively separating the proteins by size. Once the proteins have been separated they can be stained to visualise where they are within the gel and excised. Common stains are Coomassie brilliant blue or silver nitrate. After the bands have been excised they are washed to remove unbound components and reagents, and iodoacetamide plus a reducing agent is added to alkylate thiol groups, irreversibly preventing disulphide bonds from reforming.

1.4.4.3 Digestion

In order to produce peptides of a convenient size for mass spectrometric analysis, the intact proteins are chemically or enzymatically cleaved. Trypsin is an enzyme widely used for this purpose for a number of reasons. It has a welldefined specificity, consistently cleaving the peptide bond on the C-terminal side of the amino acids arginine and lysine (provided they are not followed by proline). As these amino acids appear regularly within proteins (with a combined occurrence of approximately 10%), the average length of peptides produced is ten amino acids. This is a good size for mass spectrometry analysis

as most analysers can provide good resolution in this *m/z* range, and this size is also readily amenable to collisional activation for sequencing. Because trypsin cleaves after basic amino acids the peptides produced are readily protonated. This means they readily accept hydrogen ions to produce charged species that can be detected by mass spectrometry. Conveniently, methods for in-SDS gel digestion have been developed, and are widely used.

1.4.4.4 Mass spectrometry and fragmentation

After digestion of the proteins, the peptides released can be analysed by mass spectrometry to determine size. Collision induced dissociation and product ion analysis can then be used to generate and record sequence ions formed on cleavage of the peptide backbone. After ionisation, the first mass analyser in a tandem mass spectrometer is used to select the m/z value of the peptide to be fragmented; it then typically undergoes collision induced dissociation and the fragment ions are then separated on the basis of their m/zvalues using the tandem instrument's second mass analyser. In the LC-TOF/TOF mass spectrometer used for the proteomics experiment in the work presented in this thesis, a spectrum of peptides present in a sample was recorded in so-called MS mode and then the MALDI laser energy increased, providing excess energy and causing the ions to fragment after leaving the ion source. A filter on the first TOF analyser leads to isolation of a precursor ion on the basis of its velocity (related to its m/z) and the second TOF analyser then records the fragmentation spectrum. However the product ion spectrum is produced and recorded, it provides structurally diagnostic information as peptides fragment via established and predictable pathways. Fragmentation most readily occurs at the peptide bonds along the amino acid backbone and is described by nomenclature introduced by Roepstorff^{129, 130} and refined by Biemann.¹³¹

After fragmentation, if the charge is associated with the N-terminal end of the peptide then the resulting ions are given the labels a, b, c depending on which bond is broken, and numbered according to how many amino acids the fragment contains. If the charge is associated with the carboxyl end then fragments are labelled x, y or z – again, numbered to indicate the number of amino acids in the fragment.

The mass difference between ions in the same series (b_n, y_n) is characteristic of which amino acid occupied the relevant position in the sequence. These spectra are often complicated and can be interpreted manually or with the aid of computer algorithms.

1.4.4.5 Database searching

Peptide mass fingerprinting (PMF) is a technique where once the masses of the peptides have been determined, they can be used to identify the original protein(s) from which they came. This assumes unique proteins have unique sets of peptides (with unique sets of peptide masses). Algorithms are used to match peptide mass fingerprints determined experimentally, using mass spectrometry to mass analyse protein digests, and those predicted using a search engine such as MASCOT,¹³²⁻¹³⁴ which predicts enzyme cleavage products and their masses, for protein sequences in protein sequence databases. Generally matching several peptides at high mass accuracy from the same protein is required to determine its identity using PMF approaches.

Protein sequence databases can comprise data derived from experimentally-determined protein sequences from literature or computational analysis and/or sequences computer-predicted from genomic data. The m/zvalues of peptides produced on enzymatic digestion of the protein sequences are predicted by search engines and then matches in the protein sequence database are examined in the first step of data analysis when tandem mass spectrometric data are available. MASCOT uses an algorithm that screens databases for predicted peptides of similar size to the peptide m/z values measured in the mass spectrum. It then measures the similarity of the fragmentation spectra recorded to predicted fragment patterns, that are based on our understanding of how peptides fragment on tandem MS. MASCOT then presents the closest matches as potential sequences and the protein(s) these are found in. Confidence scores are provided to enable the user to assess the quality and reliability of the peptide sequence matches, and thus the protein identification; proteins identified on the basis of single peptide matches need to be considered critically, as 'one hit wonders' as these have become known, require manual validation. Manual validation of borderline or other controversial matches is also required.

1.5 Aims of the Thesis

After the discovery of the ancient brain remains in York and as part of the subsequent (unpublished) investigation, Dr Martin Rumsby, Department of Biology, University of York, produced organic lipid extracts of the material using the Folch wash method.^{97, 98} The resulting extracts were analysed by Dr Rumsby using 1D TLC (and co-analysing authentic standards) and MALDI FT-ICR MS in the Centre of Excellence in Mass Spectrometry, to determine whether surviving brain lipids, or lipids representative of adipocere were detectable. The TLC data hinted at some brain-typical lipids, but also showed evidence of an intense high molecular mass residue, that did not migrate on the plates. FT-ICR mass spectrometric signals consistent with the families of glycolipids, phospholipids and sphingomyelin(s) typical of brain tissue were not observed, and neither were signals indicating the presence of the hydroxy fatty acids of the adipocere literature. Instead, a series of large, presumably water-insoluble organic species with limited nitrogen or oxygen content were identified. This discovery was contrary to expectations and does not match any of the literature reports of waxy residues associated with decaying/preserved remains.

The main aim of this investigation was to determine whether the occurrence of such apolar residues is unique to the 'York brain' or whether similar chemical species were to be found in other ancient brain remains. If these were unique to the 'York brain' the aim was to try and identify if there were any other residues that all or some brain remains had in common. If any residues occur commonly, is their occurrence related to the age of the brain? If compounds can be identified, this will give insight into the chemistry of the components across ancient brains and so to determine if they can be linked to preservation or decomposition processes.

The objectives of the study:

- Obtain appropriate samples (2.1)
 - Demonstrate using proteomic analysis that the Villiers Street sample is indeed brain, as its appearance raised some doubt (2.2, 3.2)
- Prepare lipid extracts (2.3)
- Use a high resolution mass spectrometry technique used to detect lipidderived ions (2.4)
- Devise a procedure for analysis and comparison of mass spectrometric data (3.3)
- Compare the spectra and determine those signals that reoccur (2.4.1, 3.3)
- Identify potential chemical formulae (2.4.2, 3.3)
- Summarise and compare the findings between contexts and sites in this study (3.3.1)
- Compare this study's results with current literature on preserved soft tissue (4)

2 EXPERIMENTAL

This chapter provides details of the samples gathered for analysis along with the extract preparation technique and a description of the mass spectrometry method used for all the ancient brain lipid analyses. It also details the proteomics experiment used to test the ambiguous brain sample.

2.1 Samples

The samples analysed in the work presented in this thesis included a modern mouse brain sample, in order to trial the extraction method (provided by Dr Megan Cosgrove, Department of Biology, University of York), an extract of a modern human brain (provided by Dr Martin Rumsby, Department of Biology, University of York), and a range of archaeological and historical samples derived from the Biological Anthropological Research Centre (BARC), University of Bradford collection.

Brains (Table 5) from the BARC collection were essential to the work presented in this thesis. The specific examples were selected on Dr O'Connor's recommendation, because they were largely indisputably brain material, because it was possible for some study of sample replicates, and to allow the samples taken to span a range of sites, ages, and site geologies (for images of the samples see Appendix I: Photos of Ancient Brain Remains). However, unfortunately, soil samples from the different sites had not been taken and archived (this is because the facility was originally an anthropological resource, curating human remains, and so sampling relevant to an archaeo/geochemical study such as this one was not the object of the original sampling and curation). The sites from which brains were included were York, Hull, Blackpool and Villiers Street.

Surface oil samples were collected from Heslington, York at the approximate position of the original brain recovery for control purposes.

2.1.1 YORK

The research described in this thesis was undertaken following the surprising find of preserved brain matter on a local archaeological site (grid ref SE636506) and primary analysis of its chemical composition. The University of York decided to extend its campus in 2004 onto Heslington East,¹³⁵ an area 3 km south-east of the centre of York. A previous investigation¹³⁶ had provided some information on the site including a geophysical survey.¹³⁷ This new development presented the opportunity to conduct archaeological excavations which were initially carried out by the York Archaeological Trust, starting in late 2007, but then succeeded by Onsite Archaeology and the Department of Archaeology at the University of York. The northern part of this survey explored the presence of settlement. During the excavation of area A1 (Figure 15) in the summer of 2008, the remains of a human skull were found (Figure 14).

The site is situated over a layer of Bunter and Keuper sandstone and a glacial moraine forms a hill in the north of site. The soil is a mixture of glaciofluvial silts, sands, gravels and boulder clay, with an area of peat on the south-western edge of the site. There is a series of Iron Age features, including linear ditches, well points and Iron Age pits, that were not due to typical waste and have been suggested to be ceremonial. It was in one of the pits that the skull was found. Radiocarbon dating of collagen from the mandible was given as 519 ± 34 BC.

After removal of the skull from the original context^d it was examined further and found that the void within the cranium was not empty. Endoscopy was used to show there was a mass within the skull that did not appear to be residual soil. While the skull was intact, a conventional CT scan and MRI were recorded to observe the mass *in situ*, revealing sulci and gyri, as well as internal voids, although these analyses weren't able to distinguish white and grey matter. The skull was taken to the University of York's Department of Biology where it was opened using a bone saw and the cranial masses removed. After delicate cleaning, the five major brain masses were photographed. Samples were taken from a single brain mass for consistency, and to preserve the remaining sections for later study.

Figure 14. (Clockwise, top to bottom): The skull as found (York Archaeological Trust), brain mass viewed using endoscope (Sonia O'Conner), brain fragment in storage at BARC, brain fragment after removal from skull and cleaning (Sonia O'Conner)

^d In archaeology 'context' is a technical term that not only refers to an item but the surrounding soil and site, i.e. the stratigraphic layer within which it is found.

Figure 15. Above: the location of the Heslington East development and the major archaeological excavation sites, below: the location of the excavated skull.¹

The cranial masses clearly visually resembled brain matter (Figure 14). A transmission electron microscope was used to examine finer details and observed structures resembling degraded myelin sheaths, but was unable to identify other cell or matrix structures. A few bacterial spores were observed but no other indications of putrefactive bacteria or fungi.

A variety of chemical analyses were undertaken. The C:N ratio of the brain tissue was measured as 6.3 (n=2), indicating retention of nitrogen within the remaining brain masses, suggested to be degraded protein or from potential cyanobacterial colonisation. A higher ratio of matter characterised as protein was found within the brain mass than within the sediments surrounding the skull. Amino acid racemisation analysis was undertaken in order to ascertain the likelihood of protein preservation, with 10 amino acids analysed. Despite picking five samples that appeared different, the amino acid concentrations were found to be consistent. However, only 5% of dry brain tissue was made up of hydrolysable amino acids, indicating that nitrogen retention was not solely due to proteinaceous matter. The brain matter was shown to be depleted in polar amino acids and enriched in hydrophobic amino acids. The level of racemisation was consistent with low levels of protein breakdown, with the acidic amino acid asparagine/aspartic acid having higher D/L levels, which may be due to protein refolding to form stacked β -sheets.^{138, 139}

A proteomics experiment detected two proteins associated with nerve cells. Three peptide sequences matched the myelin proteolipid protein (lipophilin) version in human/other mammals, which may play a role in maintenance of myelin sheaths. A single peptide sequence was also identified for the tight junction protein claudin-11 (oligodendrocyte-specific protein) present in humans/orangutans, a protein occurring between layers of myelin sheath.

The lipid content of the brain had been reduced, with only 0.82-1.14% (wet weight as compared to 17.1% of modern rat brain) being solvent extractable. Thin layer chromatography (TLC) of the extracted brain lipids was run in the solvent system chloroform/methanol 185:15 (v/v) and resulted in bands migrating similarly to hydroxy-fatty acid GalC in rat brain and an authentic GalC standard, as well as trace bands migrating similarly to authentic fatty acid and cholesterol standards. A very non-polar, dark brown band found only in the ancient brain lipid extract was also revealed. In a more polar TLC solvent, chloroform/methanol/water 100:40:6 (v/v), trace bands were identified that migrated similarly to sphingomyelin and phosphatidylcholine in a modern rat brain control extract. The lipid extract of the York brain did not display strong bands for the expected phospholipids or cholesterol.

MALDI FT-ICR MS analysis of the same lipid extract as analysed by TLC was carried out in a 2,5-dihydroxybenzoic acid (DHB) matrix at medium and very high mass resolutions. Signals were observed in three main areas m/z 300, 550 and 800, but these results were not consistent with the TLC results. Despite the observed signals falling into the expected regions, the signals around m/z 800 were for components with an odd number of nitrogen atoms, inconsistent with sphingomyelins, phosphatidylcholines and galactocerebrosides. Peaks in the m/z 550 and 300 regions were for components too small to be the compounds suggested by the TLC results, but could possibly derive from their breakdown products. What was very noticeable in the spectra instead of the expected lipids was a series of high molecular weight signals, corresponding to long chain organic compounds with a heterogeneity in degree of unsaturation. It is this hydrophobic component that this thesis sets out to investigate.

2.1.2 HULL MAGISTRATES COURT

A new Magistrates Courts building was proposed for Kingston upon Hull, with construction due to start in August 1995. The site designated for the development was on the north side of Garrison Road at its junction with Market Place at NGR TA 101 285. This site was of exceptional archaeological interest due to its location in the 'Old Town' and that it was proposed to encompass part of a medieval Augustinian Friary and its cemetery, several medieval tenements, potentially the 1806 Town Hall and the 1796 House of Correction. The archaeological work was undertaken by Humberside Archaeology Unit (later Humber Archaeology Partnership); excavation began in May 1994 and continued through the spring and summer.

The underlying geology of the Old Town is largely alluvial warp with some reclaimed soils on the eastern edge, whereas to the north and east there are glacial tills. Due to dramatic fluctuations in sea levels and as Hull itself sits at the confluence of the rivers Humber and Hull, the area has been subject to flooding. Prior to the drainage in the 18th and 19th centuries, much of the surroundings were marshland. Test bores made on site showed a stratification of about 16 m of soft alluvial clay (warp), sand and peat over glacial clay, sand and gravel to a depth of about 30 m under which lay chalk bedrock. The standing groundwater level was indicated to be about 2 m above ordnance datum and when samples were analysed, they had pH values of 7.7 to 7.9.

Interestingly, the report states "Organic preservation was excellent in all of the lower layers, as waterlogged conditions were encountered at a depth of about 0.50 m beneath the level at which machine clearance had stopped: anaerobic conditions were also occasionally found in the topmost layers of archaeological deposits, but as the watering of the upper deposits was more

variable, preservation of organic material was generally poorer." "The quality of preservations of bones, coffins, associated costume and dress fittings...[was] surprisingly good."^{140, 141}

The friary was founded in 1316-7 when Geoffrey de Hotham and John de Wetwang obtained a licence and plot of land for a friary; the friary was dissolved in 1540. The excavation of the friary and its cemetery uncovered 180 grave cuts and 44 coffins (Figure 16). The grave cuts were mainly individual but multiple intercutting graves were found within the friary's church site. Preliminary inspection of the coffin timbers indicates that these are from the mid to late 14th century, with dendrochronology revealing no timbers later than AD 1400^e, and stratigraphy suggests later burials were predominantly in shrouds. The initial assessment of the skeletal remains of 244 individuals from articulated burials, of which 207 were relatively complete, has been made. The remains of males, females, juveniles and two foetuses, one *in utero*, have been identified. Degenerative joint disease has been discovered on a third of adults indicating older individuals. In addition, the remains of a minimum of 56 individuals were recovered as disarticulated human bones based on the number of left proximal femurs discovered.

From these burials, twenty masses were found within cranial cavities and Dr Sonia O'Connor, Lead Conservator, suggested these were brain remains. These remains were carefully placed in individual plastic receptacles and given to BARC where they were then deposited in a cold store. Samples were taken

^e The timbers from coffin 696 appeared to have been felled in AD 1347 and coffin 848 includes some timbers felled in AD 1362.

from some of the brain remains for planned DNA analysis and kept in stoppered glass vials. These pre-prepared samples were then provided for this survey.

2.1.3 BLACKPOOL

BARC provided a sample of brain matter discovered during the excavation of burial ground at St John the Evangelist, Church Street/Abingdon Street, Blackpool, Lancashire (centred SD 3490 0303). This was undertaken in 2009 as Blackpool Borough Council planned to redevelop this area with a pedestrian zone, fountain and artwork. It was originally believed that the churchyard had previously been cleared (according to church records in 1927 and 1954). However, funerary remains including coffins and bones were discovered.

The St John the Evangelist Church was founded in 1821 and after additions to the original building a new church finished construction on the site in 1878. The churchyard is located close to the town centre of Blackpool and prior to redevelopment consisted of flagstone paving, several walled gardens, a couple of gravestones and a monument to individuals removed from the graveyard in 1927.

Studies have shown that the underlying geology of the area comprises of Permo-Triassic sandstones which are masked by deep drift deposits of post glacial till and alluvium.¹⁴² The topsoil is mainly fine sand and gravel. Given the damp heavy clay burial environment and on-site observations, the site was considered to be likely to include well-preserved organic material.

Figure 16. Above: Map showing distribution of burials within the Hull Friary precinct. Below: Plan with burials from which surviving brain remains were used in this study are highlighted; green = juvenile, blue = male, pink = female, yellow = adult (unsexed)

During the excavation to the required depth for redevelopment, 73 graves were found, 53 of which were grave cuts. Nine coffins at the edge of the disturbance were exposed, recorded and left *in situ*. Only where deep excavation (up to 2 m below ground level) was required, were the remnants of seven individuals and a well-preserved single burial removed for later reburial. The burial was of a fishtail coffin (Figure 17) containing the complete skeleton of a 25-35 year old woman (skeleton 117).

During examination of skeleton 117, a mass was identified within the skull which was suggested likely to be brain after examination by forensic pathologist Dr Jenny Robinson at the University of Central Lancashire, Preston. Dr Sonia O'Connor at Bradford University confirmed this and it was placed in coldstorage at BARC.

Figure 17. Fishtail coffin 116 *in situ*, containing skeleton 117, looking north-west.¹⁴³

2.1.4 VILLIERS STREET CRYPT

Information about this site has yet to be published. The project is currently ongoing and work is being carried out at BARC at the University of Bradford involving Dr Jo Buckberry, Dr Andrew Wilson, Rob Janaway and Louise Brown. Despite repeated attempts to obtain further information, only limited details are available about this site and sample at this time. The site was excavated and human remains were found. The sample selected was assigned: Site: VSS A, Vault: 2, Context: 2464, Sample: 446, and labelled with the description: "spongy organic matter from endocranial area" and is believed to be from a 19th century burial. There was a question, based on this samples' appearance, whether it was indeed brain material. Consequently, a proteomic analysis, similar to that performed on the original York brain sample was carried out, in an attempt to produce molecular evidence of the material's origin.

Site	Burial Age	Archaeolo gical sample site code	Archaeolog ical context label	Bulk sample label	Physical Sample Description		Aliquot sample	Label in
					Colour	Texture	label	unesis
York	673-482 BC	Hes Brain Unit C	2619	Y1	Cream coloured interior with darker brown exterior	Spongy and fibrillose	Y1a	Y1a
Hull Mid to late 14th		Hull	SK1709 Vault 1872	H1	Brown with areas of cream and tan	Dense, compressed layers, fibrillous, wet	H1a	H1a
	century				Creamy white-brown	Waxy paste, wet	H1b	H1b
		Hull HMC94	0675	H2	Creamy grey-brown	Firm lumps with granular inclusions and flakes	H2a	H2a
		Hull Brain	SK1057	H3	Pale cream to dark brown with dark orange patch	Irregular, waxy, laminous chunks, very wet	H3a	H3a
		Hull Skull	1368	H4	Chocolate brown with small areas of lighter cream	Large lumps of moist fibrous with smaller granules	H4a	H4a
		Hull HMC	1450 'Brain'	H5	Cream, tan, brown and rust	Sponge-like with fibrous channels	H5a	H5a
		Hull 1708	1871	H6	Creamy brown with grey areas	Chunks were hard, dry and layered also granules	H6a	H6a

 Table 5. Sample summary table, in descending date order

Site	Burial Age	Archaeolo gical sample site code	Archaeolog ical context label	Bulk sample label	Physical Sample Description		Aliquot sample	Label in
					Colour	Texture	label	thesis
Hull	Mid to late 14th century	НМС	SK1913	H7	Black and dark brown-grey with rust flecks	Very hard, dry matrix with crystalline sandy granules	H7a	H7a
		Hull HMC 94	1937	H8	Creamy pale brown with darker brown patches	Firm and fibrous, clay-like, wet	H8a	H8a
		HMC94	1937 Hull 1+2	Н9	Generally tan with rust orange and dark grey areas	Firm, hard mousse with granules, wet	H9a	H9a
		Hull	SK2031	H10	Creamy brown with grey areas	Dry, hard laminous chunks and silty particles	H10a	H10a
		Hull HMC94	SK2039	H11	Light-mid tan	Soggy, matted fibrous lumps with silty particles	H11a	H11a
		Hull Brain	SK2123	H12	Mottled brown, ranging from pale cream, tan and rusty orange-red	Moist and crumbled, larger lumps appear laminous	H12a	H12a
		Hull 2123	H13	Grey-brown, ranging from creamy to dark	Firm, matted layers of tiny fibres with spongy texture	H13a	H13ai *	
								H13aii *

Site	Burial Age	Archaeolo gical sample site code	Archaeolog ical context label	Bulk sample Label	Physical Sample Description		Aliquot sample	Label in
					Colour	Texture	label	thesis
Hull Mid to 14th century	Mid to late 14th century	НМС	SK2123 'Red Sample'	H14	Grey-brown with rusty orange	Loose silty particles with larger crystalline granules (resembled soil)	H14a	H14a
	HN	HMC SK2123 'Red Sample'	SK2123	H14	Rusty orange with grey surface	Gritty solid	H14b	H14bi
			'Red Sample'					H14bii *
Villiers Street	19th century	VSS-A	446	V1	Peach layer with mottled brown and layer	Peach layer appears spongy and laminous, the brown is granulated, wet	V1a	V1a
Blackpool	19th century (1821 – 1927)	SJB09	SK117	B1	Dark brown	Firm and spongy 'paste' with fibrous indications	B1a	B1a

Grey = All from the same archaeological sample context

* Due to volume of filtrate and dried down in separate vessels i and ii

2.2 Proteomic Analysis of Villiers Street Sample

This proteomic analysis was carried out at the Bioscience Technology Facility Proteomics Laboratory, Department of Biology, University of York, by Rachel Bates and Dr Adam Dowle, who carried out the original analysis on the York brain.

Following a generally-accepted LC-MS/MS data-dependent approach for shotgun proteomic analyses,^{1, 144-146} 15.6 mg of the Villiers Street brain sample was added to 25 µL NuPAGE[™] LDS sample buffer, 10 µL NuPage[™] reducing agent solution and 65 µL water. The solid tissue was homogenised in solution, using a Potter-Elvejhem glass-teflon homogeniser, at room temperature, rotating at approximately 200 rpm. Protein from the resulting brain suspension was solubilised with heating at 70°C for 10 mins before running into a 7 cm NuPAGE[™] Novex[™] 10% Bis-Tris gel (Life Technologies) at 200 V for 6 mins. Gels were stained with SafeBLUE protein stain (NBS biologicals) for a minimum of 1 h before destaining with ultrapure water for a minimum of 1 h. In-gel tryptic digestion was performed after reduction with dithioerythritol and Scarbamidomethylation with iodoacetamide. Gel pieces were washed twice with aqueous 50% (v/v) acetonitrile (Fisher Chemicals, HPLC grade) containing 25 mM ammonium bicarbonate, then once with acetonitrile and dried in a vacuum concentrator for 20 min.¹⁴⁴ Sequencing-grade, modified porcine trypsin (Promega) was dissolved in 50 mM acetic acid (Sigma Aldrich), then diluted 5fold with 25 mM ammonium bicarbonate to give a final trypsin concentration of 0.02 μ g/ μ L. Gel pieces were rehydrated by adding 25 μ L of trypsin solution, and after 10 min enough 25 mM ammonium bicarbonate solution was added to cover the gel pieces. Digests were incubated overnight at 37°C. Peptides were extracted by washing three times with aqueous 50% (v/v) acetonitrile containing

0.1% (v/v) trifluoroacetic acid (Fisher Chemical, LC/MS grade), before drying in a vacuum concentrator and reconstituting in aqueous 0.1% (v/v) trifluoroacetic acid for LC-MS analysis.¹⁴⁴

LC-MS/MS: Samples were loaded onto a nanoAcquity[™] UPLC system (Waters) equipped with a nanoAcquity[™] Symmetry C18, 5 µm trap (180 µm x 20 mm Waters) and a nanoAcquity[™] HSS T3 1.8 µm C18 capillary column (75 mm x 250 mm, Waters).¹⁴⁷ The trap wash solvent was 0.1% (v/v) aqueous formic acid (Fisher Chemical, LC/MS grade) and the trapping flow rate was 10 µL/min. The trap was washed for 5 min before switching flow to the capillary column. Separation used a gradient elution of two solvents (solvent A: aqueous 0.1% (v/v) formic acid; solvent B: acetonitrile containing 0.1% (v/v) formic acid). The capillary column flow rate was 300 nL/min and the column temperature was 60 °C. The gradient profile had two linear steps: 2-30 % B over 125 min, then 30-50 % B over 5 min. All runs then proceeded to wash with 95 % solvent B for 2.5 min. The column was returned to initial conditions and re-equilibrated for 25 min before subsequent injections.

The nanoLC system was interfaced with a maXisTM HD LC-MS/MS system (Bruker Daltonics) with a CaptiveSprayTM ionisation source (Bruker Daltonics).¹⁴⁵ Positive ESI-MS and product ion spectra were acquired using AutoMSMS mode. Instrument control, data acquisition and processing were performed using Compass 1.7 software (microTOF control, Hystar and DataAnalysis, Bruker Daltonics). Instrument settings were: ion spray voltage: 1,450 V, dry gas: 3 L/min, dry gas temperature 150°C, ion acquisition range: m/z 150-2,000, MS spectra rate: 2 Hz, MS/MS spectra rate: 2 Hz at 2,500 cts to 12 Hz at 250,000 cts, cycle time: 1 s, quadrupole low mass: m/z 300, collision RF: 1,400 Vpp, transfer time 120 ms. The collision energy and isolation width settings were automatically calculated using the AutoMSMS fragmentation table, absolute

threshold 200 counts, preferred charge states: 2 - 4, singly charged ions excluded. A single product ion spectrum was acquired for each precursor and former target ions were excluded for 0.8 min unless the precursor intensity increased fourfold.¹⁴⁶

Database Searching: Product ion spectra were searched against the human subset of the UniProt[™] database (20259 sequences; 11329622 residues) using a locally-running copy of the Mascot[™] program (Matrix Science Ltd., version 2.5.1), through the Bruker ProteinScape[™] interface (version 2.1). Search criteria specified: enzyme, trypsin; fixed modifications, carbamidomethyl (C); variable modifications, deamidation (N,Q), oxidation (M), Gln -> pyro-Glu (N-term Q), and Glu -> pyro-Glu (N-term E); peptide tolerance, 10 ppm; MS/MS tolerance, 0.1 Da; instrument, ESI-QUAD-TOF. Peptides with an expect score of 0.05 or lower were accepted, as this is the default significance threshold.^{134, 148}

2.3 Organic Extraction of Samples (mouse brain, modern human brain, archaeological brains, soil, solvent blank)

The initial sample from the York brain had been treated using the Folch wash method^{97, 98} to extract the lipidic fraction. In order to make comparable extracts, the same method was employed on all of the archaeological brain samples. A modern mouse brain sample was prepared for comparison with ancient brain material extracts. In addition, Dr Martin Rumsby (Department of Biology, University of York) provided a lipid extract prepared in this manner of a sample of modern human brain tissue for comparison.

All solvents, HPLC grade water, dichloromethane and chloroform, and LC-MS grade methanol, were purchased from either Sigma Aldrich or Fisher Chemicals. All glassware was washed thoroughly with detergent and hot water twice, and then rinsed with tap water followed by deionised water twice, before rinsing with methanol, with chloroform and then finally three times with 2:1 (v/v) chloroform/methanol. To remove the meninges, the mouse brain matter sample only was rinsed with a small volume of cold 0.15 M NaCl solution, and blotted briefly on filter paper to dry. The weight of each brain or soil sample was recorded before and after lyophilisation, which typically required around 12 hours to dry the samples completely.

Prior to extraction, the lyophilised brain tissue was homogenised in chloroform/methanol 2:1 (v/v) to a final volume 20 times the volume of the tissue sample, e.g. the homogenate from 1 g of tissue was extracted using a volume of 20 mL using a Potter-Elvejhem glass-teflon homogeniser, at room temperature, rotating at approximately 200 rpm. For the soil sample, instead of

using the homogeniser, a ball mill was used, and the soil pulverised dry, and then resuspended in 2:1 (v/v) chloroform/methanol, in which it was agitated. The extracts were filtered through 12 cm glass fibre filter circles prewetted with chloroform/methanol 2:1 (v/v). 0.1 M KCl solution was added to the filtrate in a volume that was 20% of the filtrate volume, e.g. for 20 mL solvent, 4 mL 0.1 M KCl was used. This was well mixed and allowed to stand overnight at room temperature to resolve the two phases. The lower phase is composed of chloroform/methanol/water in the proportions 86:14:1 (by volume) and contains virtually all of the lipids, while the upper phase consists of the same solvents in the proportions 3:48:47 (by volume). The upper phase was removed, and solids at the interface were also removed by carefully rinsing three times with the removed upper phase, which was then discarded. The solvent was removed from the lower phase under nitrogen. The samples were weighed and stored in sterile glass sample vials under nitrogen at -20 °C prior to analysis.

A reagent blank was also prepared, which underwent all steps of the above but without solid matter (brain or soil) being included. After the final drying step, the residue was resuspended in sufficient amounts of 2:1 (v/v) chloroform/methanol solution to give a dilution of 1 mg/mL ahead of mass spectrometric analysis.

Standards used were galactocerebrosides, from bovine brain ~99%, 25 mg/mL in chloroform/methanol/water 19:10:1 (v/v), sphingomyelin from bovine brain, 1 mg/mL in chloroform/methanol 1:1 (v/v), and L- α -phosphatidylcholine, Type XVI-E, 0.5 mg/mL in dichloromethane/methanol 1:1 (v/v) (Sigma Aldrich).

Table 5 (2.1) shows a summary of the samples and extracts prepared for this study. Each extract was spotted on the MALDI plate three times and a mass spectrum recorded from each spot (2.4). As well as spotting the extracts of the

archaeological samples, the reagent blank, and a Folch wash extract of a soil sample from close to the Heslington (York) site, were each spotted three times as controls. Finally, the DHB matrix solution alone was spotted three times. It should be noted that these control spots were separate to an earlier series of matrix spots that were analysed to generate a master list of matrix signals for comparison.

2.4 Recording Spectra

The original York brain extract had been analysed in the same mass spectrometry facility (Centre of Excellence in Mass Spectrometry, York) several years before the work described in this thesis. At that time, the FT-ICR instrument was a Bruker Daltonics Apex ultra¹, which was subsequently significantly upgraded ahead of the work described here. The instrument used for the work described in this thesis has considerably better performance specifications than the instrument used for the original analyses. The Bruker solariX XR has hexapole ion optics which increased transmission of ions into the cell, meaning ion sensitivity is much improved and has a ParaCell ion cell which allows for much higher resolution measurements.¹⁴⁹⁻¹⁵¹

1 µL of matrix solution (2,5-dihydroxybenzoic acid (DHB) 10 mg/mL in 1:1 (v/v) acetonitrile: 0.1% aqueous formic acid) was applied to a Bruker MTP AnchorChip[™] 400/384 MALDI sample plate and allowed to air dry.1 µL of brain or soil extract solution (with concentration of 1 mg/mL) was spotted on top of the matrix spot and allowed to air dry. Samples were spotted in triplicate.

Samples were analysed using MALDI in the positive mode using a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. The 9.4 T solariX FT mass spectrometer (Bruker Daltonics) was equipped with a smartbeam[™] nitrogen Nd:YAG laser (355 nm). Mass spectra were recorded over the *m/z* range 300 – 2000, acquiring 10 scans, of 2000 laser shots each, with a laser power setting of 30 %. Calibration was carried out using Bruker Peptide Calibration Standard II (PCSII). Data processing was performed using Bruker ftmsControl 2.1.0 (Build 98) software.

2.4.1 PEAK SELECTION

The software used was Bruker Compass DataAnalysis 4.4 (x64) containing DataAnalysis Version 4.4.200 (Build 102.47.2299) (64-bit). Each of the PCSII spectra was calibrated internally against the appropriate reference mass list. The adjusted PCSII spectra were then used as external calibrants for the eight sample spectra recorded spatially closest to the standard spot. After each spectrum had been calibrated appropriately, peak selection took place. This varied for each spectrum depending on signal strength and the background intensity. Peaks were selected using the MassList tool, with peak finder to calculate peak position selected, and parameters set as in Table 6:

Table 6. MassList selection parameters

Parameter	Chosen setting	
Instrument type	Default (Fourier transform)	
Peak finder	FTMS	
S/N threshold	4	
Relative intensity threshold (base peak)	0.1% (0.01%)*	
Absolute intensity threshold	100000	

* For DHB matrix only spots, to ensure all matrix derived signals were accounted for.

2.4.2 PEAK IDENTIFICATION

The Chemistry SmartFormula tool in the Bruker Compass DataAnalysis 4.4 software was used to generate empirical formulae for the signals meeting the intensity, signal:noise, and relative intensity thresholds (see 3.3.1).

The parameters used to provide a range of applicable empirical formulae that were then screened manually are shown in Table 7. For m/z values < 2000, the elements C, H, N and O are considered implicitly in the calculations unless

restricted explicitly in the parameters, where all other elements must be specified.

Parameter	Chosen setting		
Lower Formula	—		
Upper Formula	$N_9O_9P_3S_3$		
Positive ions	M+H ⁺ , M+NH ₄ ⁺ , M+Na ⁺ , M+K ⁺		
Charge (if not assigned)	1		
Maximum no. of formulae	10		
Relative Intensity Threshold	1%		
Electron configuration	even		
Limit: mSigma	600		
Tolerance	6 ppm		
Check rings plus double bonds	Minimum 0	Maximum 20	
Filter H/C ratio	Minimum 0	Maximum 10	

Table 7. Chemistry Smartformula parameters
3 RESULTS

This chapter reports the results from the mass spectrometric analysis of a modern mouse and human brain extract as well as lipid standards, used to confirm that the components of the York brain lipid extracts were not consistent with fresh lipids. The results from the proteomics experiment of the ambiguous Villiers Street sample are also described (3.2). The majority of this chapter is composed of tables summarising the most intense reoccurring non-matrix signals found in the ancient brain lipid extract mass spectra, and the potential chemical formulae that they have been assigned.

3.1 Standards, Mouse Brain and Modern Human Brain Lipid Extracts

Positive ion MALDI spectra of commercial authentic standards of phosphatidylcholines (PC), sphingomyelins (SM), and galactocerebrosides (GalC), all lipids expected to be isolated from undecayed brain material using a Folch wash,^{97, 98} were recorded. The data, together with proposed compositional assignments, for phosphatidylcholines, phospholipids that have a choline head group, are shown in Figure 19, with ion structures in Figure 18.

Figure 18. (a) [PC + Na]⁺ and (b) [PC]⁺ ions

Figure 19. Above: MALDI mass spectrum of phosphatidylcholine (PC) standard

The spectrum with proposed compositional assignments for sphingomyelins, sphingolipids found in the membranes of the myelin sheath around nerve cell axons, is shown in Figure 20 and SM ion in Figure 21.

Figure 20. Above: MALDI mass spectrum of sphingomyelin (SM) standard.

Figure 21. Example of a SM ion

Figure 22. Above: MALDI mass spectrum of galactocerebrosides (GalC) standard. Below: An example galactocerebroside

The spectrum with proposed compositional assignments for

galactocerebrosides, a marker for oligodendrocytes in the brain, is shown in Figure 22.

The equivalent MALDI mass spectra produced from the modern human and mouse brain lipid extracts (Figure 23) show a range of PC, SM, and GalC components, standard signals typical of brain lipids.

Figure 23. Human and mouse brain mass spectra

Whilst producing signals consistent with typical brain lipid components, the spectra of these extracts of modern brains do not contain peaks with the same m/z as those found in the extracts of the original York brain.

3.2 Protein ID From Villiers Street Sample

Because there was some question, based on the appearance of the material sampled, whether sample V1 was indeed brain material, a proteomic analysis, similar to that performed of the original York brain, was carried out. This analysis was carried out in collaboration with, and under the supervision of, the same scientists in the Bioscience Technology Facility Proteomics laboratory who carried out the original analysis.

After protein extraction, digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, a single peptide match was made to myelin proteolipid protein, see Figure 24. This protein (moreover the same peptide), was also detected in the York brain and plays an important role in the formation and maintenance of the multilamellar structure of myelin found in the central nervous system. A single peptide match was also made to another neural protein, SLIT and NTRK-like protein 4 (Figure 25), which is expressed in the cerebral cortex of the brain.

The matches were made with short, single peptide sequences and a significant amount of keratin contamination was present, as would be normal for samples that have been handled without taking the precaution of specifically excluding keratin. It would be desirable to complete an additional proteomics analysis after removing a surface layer from the organic sample. Whilst the peptide matches were short, the distinctive nature of the proteins they came from give confidence to the claim that the sample is ancient brain remains.

113

Protein View: P60201

Myelin proteolipid protein OS=Homo sapiens GN=PLP1 PE=1 SV=2

 Database:
 UniProt_human_SP

 Score:
 27

 Nominal mass (M_r):
 30855

 Calculated pI:
 8.71

Sequence similarity is available as an NCBI BLAST search of P60201 against nr.

Search parameters

 MS data file:
 13229323905432979.mgf

 Enzyme:
 Trypsin: cuts C-term side of KR unless next residue is P.

 Fixed modifications:
 Carbamidomethyl.(C)

 Variable modifications:
 Deamidated.(NQ), Gin->pyro-Glu.(N-term Q), Glu->pyro-Glu.(N-term E), Oxidation.(M).

Protein sequence coverage: 2%

Matched peptides shown in **bold red**.

1 MGLLECCARC LVGAPFASLV ATGLCFFGVA LFCGCGHEAL TGTEKLIETY 51 FSKNYQDYEY LINVIHAFQY VIYGTASFFF LYGALLLAEG FYTTGAVRQI 101 FGDYKTTICG KGLSATVTGG QKGRGSRGQH QAHSLERVCH CLGKWLGHPD 151 KFVGITYALT VVWLLVFACS AVPVYIYENT WTTCQSIAFP SKTSASIGSL 201 CADARMYGVL PWNAFPGKVC GSNLLSICKT AEFQMTFHLF IAAFVGAAAT 251 LVSLLTFMIA ATYNFAVLKL MGRGTKF

Figure 24. Mascot report showing myelin proteolipid protein peptide match found in sample V1 (this same sequence was also found in the proteomic analysis of the York brain)¹

Protein View: Q8IW52

SLIT and NTRK-like protein 4 OS=Homo sapiens GN=SLITRK4 PE=2 SV=1

Database: UniProt_human_SP Score: 30 Nominal mass (Mr): 95355 Calculated pI: 7.95

Sequence similarity is available as an NCBI BLAST search of Q8IW52 against nr.

Search parameters

 MS data file:
 13229323905432979.mgf

 Enzyme:
 Trypsin: cuts C-term side of KR unless next residue is P.

 Fixed modifications:
 Carbamidomethyl (C)

 Variable modifications:
 Deamidated (NQ), Gln->pyro-Glu (N-term Q), Glu->pyro-Glu (N-term E), Oxidation (M)

Protein sequence coverage: 0%

Matched peptides shown in bold red.

1	MFLWLFLILS	ALISSTNADS	DISVEICNVC	SCVSVENVLY	VNCEKVSVYR
51	PNQLKPPWSN	FYHLNFQNNF	LNILYPNTFL	NFSHAVSLHL	GNNKLQNIEG
101	GAFLGLSALK	QLHLNNNELK	ILRADTFLGI	ENLEYLQADY	NLIKYIERGA
151	FNKLHKLKVL	ILNDNLISFL	PDNIFRFASL	THLDIRGNRI	QKLPYIGVLE
201	HIGRVVELQL	EDNPWNCSCD	LLPLKAWLEN	MPYNIYIGEA	ICETPSDLYG
251	RLLKETNKQE	LCPMGTGSDF	DVRILPPSQL	ENGYTTPNGH	TTQTSLHRLV
301	TKPPKTTNPS	KISGIVAGKA	LSNRNLSQIV	SYQTRVPPLT	PCPAPCFCKT
351	HPSDLGLSVN	CQEKNIQSMS	ELIPKPLNAK	KLHVNGNSIK	DVDVSDFTDF
401	EGLDLLHLGS	NQITVIKGDV	FHNLTNLRRL	YLNGNQIERL	YPEIFSGLHN
451	LQYLYLEYNL	IKEISAGTFD	SMPNLQLLYL	NNNLLKSLPV	YIFSGAPLAR
501	LNLRNNKFMY	LPVSGVLDQL	QSLTQIDLEG	NPWDCTCDLV	ALKLWVEKLS
551	DGIVVKELKC	ETPVQFANIE	LKSLKNEILC	PKLLNKPSAP	FTSPAPAITF
601	TTPLGPIRSP	PGGPVPLSIL	ILSILVVLIL	TVFVAFCLLV	FVLRRNKKPT
651	VKHEGLGNPD	CGSMQLQLRK	HDHKTNKKDG	LSTEAFIPQT	IEQMSKSHTC
701	GLKESETGFM	FSDPPGQKVV	MRNVADKEKD	LLHVDTRKRL	STIDELDELF
751	PSRDSNVFIQ	NFLESKKEYN	SIGVSGFEIR	YPEKQPDKKS	KKSLIGGNHS
801	KIVVEQRKSE	YFELKAKLQS	SPDYLQVLEE	QTALNKI	

Figure 25. Mascot report showing SLIT and NTRK-like protein 4 peptide match

3.3 Comparison of Spectra of Ancient Brain Lipid Extracts

The 17 different archaeological specimens came from 14 different archaeological contexts^f over four separate sites. For each separate archaeological specimen (labelled Y1, B1 etc, Table 5) a lipid extraction procedure using a Folch wash was performed (2.3). For those samples for which there was sufficient material, duplicate extracts were made (e.g. H12a and H12b), and for those where the volume of the filtrate was large, they were split across two sample vials (e.g. H13a i/H13a ii).

The mass spectra were analysed using Bruker DataAnalysis software. After identifying peaks using the MassList function (see 2.4.1for parameters), the data were analysed using the SmartFormula function, which assigns empirical formulae on the basis of accurate *m/z* measurements, and also uses isotopic signal intensities. The empirical formulae assigned were screened manually, to ensure a good match of the measured and simulated isotopic envelopes for each suggested formula, and to ensure the empirical formulae were realistic before proceeding.

For each series of sample MALDI spot replicates, the resulting m/z values for the first spot were arranged in order of decreasing signal-to-noise ratio and compared first with the data in a similar list obtained from the original master list of matrix signals. Peaks that had the same m/z values to within 2 d.p. were assigned as deriving from matrix background and were removed from the list.

^f Three of the samples were taken from the same single skeleton; two more samples also came from a single skeleton. Since these had been subsampled and archived separately, they have been handled separately here too, while remaining mindful of the common origin of the samples.

The remaining *m/z* values were presumed to correspond not to matrix background but to sample-specific signals; the top five S:N peaks were inspected to determine that the they were the monoisotopic signals, and not deriving from other signals in the isotopic envelope.

The resulting list of signals and their proposed empirical formulae were then compared with those signals from all the other specimens and their replicates, to determine whether they were also observed in other samples. Signals were considered to match if the m/z values were within 2 ppm of each other; the mass accuracy performance of the mass spectrometer was such that mass accuracies are typically below 1 ppm, and almost always within 2 ppm this 2 ppm cut-off was thus chosen to be conservative enough to include all potential matches. A check was then carried out to establish whether this process had missed including high intensity peaks due to some samples giving spectra with high noise, which could have meant intense signals did not meet the S:N cut-off for inclusion. The five most intense peaks from the m/z list for each sample were assessed in this way. If these m/z values had not been included in the original list, they were added and also compared with the m/zvalue lists for all samples and replicates. In addition to these three further signals that were identified during the initial analysis of the MALDI mass spectrum of the York brain were also included.

The data were compiled into Tables for each empirical formula, arranged by sample age vertically.

116

3.3.1 Key signals identified as a result of mass spectral comparisons

Each of the following tables presents one of the empirical formulae assigned to each of the components in a variety of compound classes, and summarises the mass spectrometric evidence for this component from each of sample spots analysed (1, 2, or 3) for each of the sample extracts. The samples are listed in descending date order, with the oldest sample (from York) at the top. The tables give the m/z value at which the component was identified in each of the sample spots, the m/z error (difference in ppm between the measured and theoretical m/z for this empirical formula), and then gives the absolute intensity of the signal, its intensity as a percent of the most intense signal in the m/z range considered (m/z 303 -3000), the S:N ratio for the signal, and the mass resolution of that signal. To make the data easier to comprehend, heat map colouring has been used to highlight high, medium, and low values for each of the variables reported, with dark green being the highest values, and dark red the lowest (see legend to tables). Where signals were not detected, their absence is marked by a blank cell. This colour coding allows the most intense signals to be identified 'at a glance' – they are in shades of green.

Table Leg	gend
10	Highest values
9	
8	
7	
6	
5	
4	
3	
2	
1	
0	Lowest values
	Not detected

The data presented in Table 8 show that a peak at m/z 371, assigned an empirical formula [C₂₇H₄₆] + H⁺ (a purely hydrocarbon residue with five double bond equivalents (dbe)), occurred in several of the extracts, most notably in samples H1, H5, H6 and H10. Whilst this component is not present in samples from across all sites, being absent from Villiers Street samples (C19th), there are indications of its presence in the York remains (Iron Age), Hull samples (C14th) and the Blackpool remains (C19th), suggesting that it occurs across all the time periods represented by the sites from which samples have been analysed. Its absence from the original York brain extract analysis may be explained by the upgrade to the mass spectrometer that took place between the original analysis and the current analyses. The residue is not detected in the Villiers Street sample or in H14. Whilst the relative intensity of this signal in some of the spectra is low (under 1.0 %) the m/z error is less than one ppm, the S:N values are high, as is the resolution. The table also clearly shows that the residue is not detected in DHB matrix alone nor in the soil controls or the solvent blank.

Table 8.	Summary of	of signal at	<i>m/z</i> 371.	C _x H _y
----------	------------	--------------	-----------------	-------------------------------

Calculated m/z	371.36723	C27H47					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	371.36674	1.26	Yes	7.7	1059558	0.4	150657
Y1a 2	271 26722	0.02	NO	7.2	1010271	0.2	202705
Original Heslington	3/1.30/22	0.03	No	1.2	1016271	0.3	283/85
H1a 1	371.36726	-0.10	Yes	1485.6	161548096	16.3	213606
H1a 2	371.36716	0.19	Yes	1713.3	178478768	44.7	213659
H1a 3	371.36712	0.30	Yes	465.3	48796764	7.4	214398
H1b 1	371.36696	0.73	Yes	349.8	36754136	4.3	214496
H1b 2	371.36692	0.84	Yes	249.2	25610290	6.7	210282
H1b 3	371.36326	0.89	Yes	292.1	30516188	7.2	212935
H2a 1	371.36692	0.83	Yes	336.8	35224688	6.5	214529
	3/1.30/13	0.27	Yes	172 5	24157752	7.3	213053
H2a 5 H3a 1	371.30098	0.07	Yes	264.1	28327398	5.1	215759
H3a 2	371.36719	0.11	Yes	141.5	15346917	2.5	211919
H3a 3	371.36712	0.30	Yes	77.1	8325893	1.1	217070
H4a 1	371.36735	-0.32	Yes	184.3	19194676	1.1	214245
H4a 2	371.36725	-0.05	Yes	202.2	21295320	2.4	213850
H4a 3	371.36718	0.12	Yes	403.6	42386056	5.1	213495
H5a 1	3/1.36696	0.72	Yes	340.8	34862620	18.3	214578
H5a 3	3/1.30/01	0.58	Ves	322.0	31/2/010	11.0	213408
H6a 1	371 36716	0.58	Yes	796.9	83953880	3.0	212022
H6a 2	371.36715	0.20	Yes	732.8	76508592	10.4	213556
H6a 3	371.36716	0.18	Yes	1016.1	107124200	11.4	215023
H7a 1	371.36702	0.56	Yes	207.2	22087590	5.4	213065
H7a 2	371.36712	0.30	Yes	210.7	22758882	3.6	212961
H7a 3	371.36703	0.52	Yes	362.9	38427096	5.7	213244
H8a 1	371.36719	0.10	Yes	302.5	32146176	5.5	213492
H8a Z	3/1.36/16	0.19	Yes	224.7	23231216	5.4	207449
H9a 1	371.30703	-0.12	Yes	286.8	29935876	3.7	212049
H9a 2	371.36732	-0.25	Yes	598.1	62373828	7.2	214871
H9a 3	371.36717	0.16	Yes	85.2	9060308	2.0	220730
H10a 1	371.36719	0.11	Yes	159.1	16857612	2.8	213560
H10a 2	371.36707	0.41	Yes	253.3	25955170	13.3	211151
H10a 3	371.36716	0.19	Yes	595.8	62973608	17.1	213406
H11a 1	3/1.36/2/	-0.12	Yes	221.0	23149630	10.1	212403
H11a 3	371.36706	-0.12	Yes	92.7	9164518	1.5	219297
H12a 1	371.36737	-0.44	Yes	41.4	4627903	1.0	207602
H12a 2	371.36731	-0.23	Yes	57.9	6385782	1.3	220140
H12a 3	371.36739	-0.44	Yes	40.4	4536027	1.1	219614
H13aii 1	371.36734	-0.30	Yes	46.1	5135555	1.3	213684
H13aii 2	371.36737	-0.38	Yes	36.7	4075661	1.0	222278
H13aii 3	3/1.36/08	0.39	Yes	21.6	2493963	0.4	221076
H14a 1 H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1			No				
V1a 2			NO				
81a 1	371 36738	-0 14	Yes	27 9	3173883	0.6	215223
B1a 2	371.36706	0.45	Yes	23.0	2634959	0.9	223936
B1a 3	371.36695	0.74	Yes	14.7	1772013	0.4	221042
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			NO				
Soil 3a 2			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3	1		NO		1	1	

The data indicating the presence of singly nitrogenated hydrocarbon species are summarised in Table 9 and Table 10.

The most abundant signal (by average intensity) consistent with the protonated molecule (M+H⁺) of a singly nitrogenated hydrocarbon species was observed at a nominal m/z value of 518 (Table 9). This component was assigned an empirical formula of $[C_{36}H_{71}N] + H^+$, consistent with an organic compound with 36 C atoms, two degrees of unsaturation/double bond equivalents (i.e. rings or double bonds), and a single N atom. The heat map colouration of the table makes it easy to see that this component is not observed in the spectra of the matrix alone, either of the soil extracts, or in the solvent blank. Its presence is most strongly detected in the extract of sample H12 but it was also an intense ion in the spectra of several of the other Hull sample extracts. It is not universally detected, being limited to detection in the H1, H5, H8, H9, and H14 extracts; it was not detected in extracts of H6 and H10. The spectra of the York extracts have intense m/z 518 signals, comparable in intensity to that in many of the Hull sample spectra. In the Villiers Street sample extract, there are low intensity peaks but its presence in the Blackpool sample spectra confirms that this component is present in much younger brain samples. Again the m/z error in these signals is generally under 1 ppm, giving confidence in the quality of the data and their assignment.

After the signal at m/z 518, the next most abundant signal for a mononitrogenated hydrocarbon was that at nominal m/z 490.

Table 9. Summary of signal at m/z 518. C_xH_yN

Calculated m/z	518.56593	C36H72N					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	518.56597	-0.08	Yes	291.80	39821152	13.20	153227
Y1a 2	518.56583	-0.08	Yes	241.20	31666116	11.60	155029
Y1a 3	518.56591	0.04	Yes	243.20	33440106	9.70	152725
Original Heslington	518.56563	0.57	Yes	11.70	1422465	1.10	96197
H1a 1	518.56586	0.12	Yes	15.90	2481151	0.20	163731
H1a 2	518.56576	0.32	Yes	10.30	1513142	0.40	177880
H1a 3			No				
H1b 1	518.56556	0.71	Yes	15.30	2178036	0.30	168946
H1b 2	518.56550	0.82	Yes	9.30	1405594	0.40	124590
H10 3	518.56540	1.02	Yes	13.90	1954995	0.50	144105
HZa 1	518.56543	0.97	Yes	277.60	33704532	6.20	153627
H2a 2	518.50557	0.00	Voc	120.40	16241737	4.90	151052
H2a 3	518.50502	0.33	Vos	264 50	10003922	9.00	152020
H3a 7	518 56592	0.24	Voc	252.20	3/8/1612	5.30	152657
H3a 3	518 56576	0.01	Vos	162.80	20472262	2 70	15/2007
H4a 1	518 56604	-0.21	Yes	208 10	32376338	1 90	153122
H4a 2	518 56617	-0.47	Yes	243.90	38279608	4 40	153547
H4a 3	518,56604	-0.21	Yes	703.80	105716680	12.70	153133
H5a 1	518.56630	-0.75	Yes	4.20	744853	0.40	174453
H5a 2	518.56568	0.48	Yes	5.90	982994	0.30	163365
H5a 3	518.56541	1.00	Yes	11.20	1732423	0.20	165822
H6a 1			No				
H6a 2			No				
H6a 3			No				
H7a 1	518.56581	0.22	Yes	92.30	11830667	2.90	154108
H7a 2	518.56596	-0.07	Yes	83.90	11338334	1.80	153464
H7a 3	518.56576	0.33	Yes	125.30	16093076	2.40	157133
H8a 1			No				
H8a 2			No				
H8a 3	518.56557	0.68	Yes	5.50	984952	0.20	186590
H9a 1			No				
H9a 2	518.56588	0.09	Yes	8.10	1473977	0.20	170385
H9a 3			No				
H10a 1			No				
H10a 2			No				
H10a 3	540 56622	0.50	NO	240.40	22242042	14.10	452620
	518.50023	-0.58	Yes	248.40	32313812	14.10	152039
H11a 2	518 56583	-0.44	Voc	91.60	1035/617	8.00	153353
H12a 1	518 56635	-0.10	Yes	1141 50	167784208	37.30	153151
H12a 2	518,56640	-0.90	Yes	2178.20	320249056	65.10	152346
H12a 3	518.56634	-0.79	Yes	1237.70	184214928	45.80	153455
H13aii 1	518.56629	-0.70	Yes	372.60	52974428	13.40	153637
H13aii 2	518.56629	-0.71	Yes	383.60	52235528	13.40	152103
H13aii 3	518.56607	-0.27	Yes	263.60	33609248	5.70	153904
H14a 1			No				
H14a 2	518.56585	0.14	Yes	10.10	1793395	0.20	166879
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3	518.56636	-0.83	Yes	60.60	10536869	0.20	155908
V1a 1	518.56602	0.03	Yes	83.50	12275678	0.60	154176
V1a 2	518.56599	-0.13	Yes	79.70	10876827	1.70	154603
V1a 3	518.56593	0.00	Yes	83.00	11460806	2.40	156962
B1a 1	518.56621	-0.54	Yes	1064.70	178215808	34.70	152748
B1a 2	518.56596	-0.06	Yes	437.90	60832316	19.80	151673
B1a 3	518.56569	0.45	Yes	308.30	38989648	9.10	153/8/
DHB 1			NO				
			NO				
DED 3			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

A second signal consistent with the protonated molecule (M+H⁺) of a singly nitrogenated hydrocarbon species was observed at a nominal m/z value of 490 (Table 10). This component was assigned an empirical formula of $[C_{34}H_{67}N] + H^+$, consistent with an organic compound with 34 C atoms, just one degree of unsaturation, and a single N atom. The heat map colouration of the table makes it easy to see that this component is not observed in the spectra of the matrix alone, either of the soil extracts, or in the solvent blank. It is however, observed in the spectra of most of the samples, with the exception of H6, H8, H10 and H14, and is observed, albeit at low intensity in the spectra of extracts of H1, H5 and H9, as well as the original York brain extract. Notably, it is identified in brain extracts of brains that represent the full range of ages sampled, from the extracts made in this work of the York brain (Iron Age), in some of the Hull Magistrate Court samples (C14th), as well as in Blackpool and Villiers Street samples, which are only a couple of hundred years old. It is noteworthy that the m/z accuracies of these data are very high – with one exception, always below 1 ppm – and that, even for low intensity signals, the mass resolution remains very high, giving good confidence in the assignment of these data.

······································	Table 10.	Summary	<pre>/ of signal at</pre>	t <i>m/z</i> 490.	C _x H _y N
--	-----------	---------	---------------------------	-------------------	---------------------------------

Calculated m/z	490.53452	C34H68N					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	490.53462	0.01	Yes	428.9	55384392	18.4	160134
Y1a 2	490.53452	0.22	Yes	377.7	47148336	17.3	162002
Y1a 3	490.53461	0.04	Yes	373.6	48573028	14.1	162076
Original Heslington	490.53402	1.24	Yes	8.1	1013508	0.8	105171
H1a 1	490.53447	0.33	Yes	18.9	2756671	0.3	173766
H1a 2	490.53449	0.28	Yes	12.7	1745210	0.4	185366
H1a 3			No				
H1b 1	490.53404	1.20	Yes	18.1	2432171	0.3	167332
H1b 2	490.53436	0.55	Yes	12.2	1690521	0.4	185389
H10 3	490.53397	1.34	Yes	14.7	1978319	0.5	1/5921
H2a 1	490.53418	0.91	Yes	210.3	24788954	4.6	162422
	490.53432	0.02	Yes	90.8	10041524	3.0 2.1	165243
H2a 3	490.53454	0.38	Yes	227.1	42002052	3.1	161072
130 1	490.53452	0.22	Vos	215.6	28212744	1.0	160814
H3a 3	490.53402	0.01	Voc	159.0	19/03852	4.0	160753
H4a 1	490 53473	-0.20	Yes	114 7	16607238	1.0	162409
H4a 2	490 53485	-0.45	Yes	126.8	18529236	2.1	163735
H4a 3	490 53472	-0.18	Yes	394 5	55258680	6.7	162892
H5a 1	490.53442	0.43	Yes	5.0	821666	0.4	206317
H5a 2	490.53435	0.57	Yes	12.4	1697411	0.6	153601
H5a 3	490.53416	0.95	Yes	9.8	1481337	0.2	174063
H6a 1			No				
H6a 2			No				
H6a 3			No				
H7a 1	490.53449	0.28	Yes	66.9	8344507	2.0	165337
H7a 2	490.53457	0.11	Yes	55.0	7211294	1.1	167817
H7a 3	490.53445	0.35	Yes	80.7	10073580	1.5	166828
H8a 1			No				
H8a 2			No				
H8a 3			No				
H9a 1			No				
H9a 2	490.53471	-0.17	Yes	7.3	1277265	0.1	163369
H9a 3	490.53461	0.03	Yes	5.9	996838	0.2	201186
H10a 1			No				
H10a 2			No				
H10a 3	100 50 107	0.40	NO	202.4	25400406	11.0	462444
H11a 1	490.53487	-0.49	Yes	202.4	25198196	11.0	162441
	490.53480	-0.48	Yes	92.2	775120	1.0	162415
	490.53457	-0.74	Voc	257.6	///3120	11.0	161/65
H17a 7	490.53499	-0.74	Voc	652.2	899/1288	18.3	160478
H12a 3	490 53499	-0.73	Yes	376.8	52596028	13.1	161445
H13aii 1	490 53492	-0.61	Yes	197.6	26610480	6.7	161997
H13aii 2	490 53490	-0.55	Yes	165.1	21455778	5.5	160532
H13aii 3	490.53474	-0.24	Yes	135.6	16719509	2.8	162693
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1	490.53474	-0.23	Yes	45.8	6465144	0.3	170860
V1a 2	490.53472	-0.18	Yes	56.4	7427034	1.2	164819
V1a 3	490.53467	-0.08	Yes	54.6	7278893	1.6	164456
B1a 1	490.53487	-0.50	Yes	347.7	53424928	10.4	161321
B1a 2	490.53464	-0.02	Yes	169.7	22398784	7.3	161041
B1a 3	490.53442	0.43	Yes	119.4	14660145	3.4	163923
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			NO				
5011 3a 2 Soil 2a 2			NO				
			No				
Soil 2b 2			No				
Soil 3b 2			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

In addition to mononitrogenated hydrocarbons Table 11 shows evidence the most abundant signal (by average intensity) consistent with the protonated molecule (M+H⁺) of a dinitrogenated hydrocarbon species at m/z 487, assigned an empirical formula [C₃₄H₅₀N₂] + H⁺. The component with 11 double bond equivalents, was detected in nearly all of the sample extracts with the exceptions of the York samples (both the original and current) and H1, H14 and V1. This is very highly unsaturated compared to the original brain lipids; it may be the result of condensation of a number of small unsaturated molecules. This compound wasn't detected in any of the controls (DHB, soil or solvent). The fact that it was not detected in the oldest sample may indicate that if it is a chemical present due to the decomposition or preservation processes, it has undergone further chemical changes over a longer period of time. This does not explain its absence from H1 and H14 or V1. It is notably present in samples H4, H8 and H10 and B1 at high intensities but can also be detected in most other samples with confidence.

Calculated m/z	487.40468	C34H51N2					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1	407 40 407	0.04	No	10.4	1402700	0.4	104170
H10 2	487.40427	0.84	Yes	10.4	1482708	0.4	184178
H10 3	487.40448	0.40	No	8.3	1235430	0.3	213505
H7a 7			No				
H2a 3	487,40420	0.97	Yes	8.8	1247844	0.4	168992
H3a 1	487.40459	0.17	Yes	42.8	5757612	1.0	168433
H3a 2	487.40473	-0.11	Yes	58.1	7836520	1.3	159838
H3a 3	487.40444	0.48	Yes	25.2	3289503	0.4	165985
H4a 1	487.40472	-0.09	Yes	2288.4	326055392	19.0	162924
H4a 2	487.40486	-0.37	Yes	1766.5	254412912	29.1	163501
H4a 3	487.40472	-0.09	Yes	1804.4	251727424	30.3	163238
H5a 1	487.40433	0.71	Yes	67.1	7676542	4.0	167887
H5a 2	487.40442	0.52	Yes	88.9	10529521	3.5	166556
H5a 3	487.40439	0.58	Yes	113.6	14238334	1.6	164032
ньа 1	487.40461	0.13	Yes	437.8	54/23252	7.4	163738
	487.40459	0.19	Voc	503.0	52525064	8.4	162907
H7a 1	407.40460	0.16	Yes	416.7	95//291	5.6	160600
H7a 2	487 40465	0.14	Yes	67.4	8770599	1.4	168240
H7a 3	487.40452	0.32	Yes	68.1	8538995	1.3	162514
H8a 1	487.40466	0.03	Yes	982.3	131166160	22.6	163037
H8a 2	487.40485	-0.35	Yes	720.8	89030888	20.6	161588
H8a 3	487.40458	0.19	Yes	798.5	97172640	18.8	162536
H9a 1	487.40470	-0.04	Yes	628.9	84759304	10.5	162395
H9a 2	487.40468	0.00	Yes	544.7	74275672	8.6	162646
H9a 3	487.40454	0.29	Yes	359.1	44110740	9.7	161912
H10a 1	487.40463	0.09	Yes	1200.1	150049920	25.1	163471
H10a 2	487.40448	0.40	Yes	980.1	111422568	57.1	162020
	487.40401	-0.14	Yes	1977.7	090/9720	09.2 12.2	163104
H11a 2	487 40489	-0.43	Yes	530.9	67548592	43.2	163162
H11a 3	487.40461	0.13	Yes	272.6	29591570	22.7	163792
H12a 1	487.40500	-0.67	Yes	883.3	121549352	27.0	162843
H12a 2	487.40498	-0.61	Yes	745.2	102729224	20.9	162421
H12a 3	487.40499	-0.64	Yes	1036.0	144104224	35.8	163393
H13aii 1	487.40494	-0.54	Yes	249.1	33477306	8.5	162733
H13aii 2	487.40493	-0.51	Yes	221.5	28688376	7.4	162124
H13aii 3	487.40485	-0.36	Yes	189.0	23195892	3.9	164558
H14a 1			No				
H14a 2			NO				
H14a 3	497 40505	0.76	NO	11.0	1074477	0.2	175006
H14bi 2	487.40503	-0.70	Yes	8.9	1519081	0.2	208375
H14bi 3	407.40324	1.10	No	0.5	1313001	0.2	200373
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1	487.40490	-0.46	Yes	798.8	122348976	23.8	162950
B1a 2	487.40465	0.05	Yes	771.9	100887160	32.9	161853
B1a 3	487.40443	0.49	Yes	653.1	78924800	18.5	163374
DHB 1			No				
			NO				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No	1		1	

Table 11. Summary of signal at m/z 487. C_xH_yN₂

A second dinitrogenated hydrocarbon was detected at m/z 411 (Table 12). This signal assigned $[C_{28}H_{46}N_2] + H^+$, for a component with 7 double bond equivalents, occurred with highest intensities in samples H5 and H12, moderate intensities in H4, H11, H13 and B1 and was detected at low levels in other Hull samples as well as in Y1. Whilst this component is not present in samples from across all sites, being absent from Villiers Street samples, there are indications of its presence in the York remains and the Blackpool remains, suggesting that it occurs across all the time periods. This compound is also highly unsaturated compared to standard brain lipids. Again, its absence from the original York brain extract may be explained by the upgrade to the mass spectrometer that took place between the original analysis and the current analyses. However, this compound wasn't detected in all of the current project's York replicates and so its absence may be due to the inherent variability of MALDI. The component is clearly not detected in several of the Hull samples, e.g. H1 and H6 or in the Villiers Street sample. Whilst the relative intensity of this signal in some of the spectra is low (under 1.0 %) the m/z error is less than one ppm, the S:N values are high, as is the resolution. The table also clearly shows that the residue is not detected in DHB matrix alone nor in the soil controls or the solvent blank.

Table 12.	Summary of signal at <i>m/z</i> 411.	C _x H _y N₂
Table 12.	Summary of Signal at <i>m/2</i> 411.	CxHyIN2

Calculated m/z	411.37338	C28H47N2					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2	411.37292	1.11	Yes	5.4	842786	0.3	206063
Y1a 3	411.37337	0.02	Yes	4.0	702962	0.2	288638
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3	444.07000	0.07	NO	0.5	4476647	0.1	222644
H10 1	411.37298	0.97	Yes	8.5	11/661/	0.1	232644
H10 Z	411.37299	1.07	Yes	5.4 7.2	822725 1025279	0.2	259000
H10 3	411.57295	1.07	No	7.5	1055576	0.2	194570
H2a 2			No				
H2a 3	411 37344	-0.16	Yes	5 1	782367	0.2	132343
H3a 1	411.37335	0.07	Yes	29.3	3522732	0.6	212736
H3a 2	411.37328	0.23	Yes	14.2	1850830	0.3	220418
H3a 3			No				
H4a 1	411.37345	-0.18	Yes	251.5	28452994	1.7	193377
H4a 2	411.37347	-0.23	Yes	158.7	18259868	2.1	193819
H4a 3	411.37338	-0.01	Yes	154.3	17635520	2.1	193987
H5a 1	411.37307	0.74	Yes	725.2	75432024	39.6	192208
H5a 2	411.37313	0.59	Yes	959.2	101894848	33.5	193273
H5a 3	411.37311	0.65	Yes	918.1	99596392	11.4	191164
H6a 1			No				
H6a 2			No				
H6a 3			No				
H/a 1			NO				
H/a Z			NO				
H/a 3			No				
H8a 7			No				
H8a 3	411 37316	0.51	Yes	75	1061967	0.2	206352
H9a 1	411.57510	0.51	No	7.5	1001307	0.2	200332
H9a 2			No				
H9a 3			No				
H10a 1			No				
H10a 2			No				
H10a 3	411.37327	0.26	Yes	5.3	841586	0.2	237774
H11a 1	411.37349	-0.29	Yes	113.0	12484020	5.5	195255
H11a 2	411.37350	-0.31	Yes	36.9	4342552	0.6	190894
H11a 3	411.37331	0.15	Yes	46.6	4964630	3.8	204384
H12a 1	411.37355	-0.43	Yes	1302.9	147542336	32.8	192690
H12a 2	411.37354	-0.39	Yes	1252.5	142142672	28.9	192790
H12a 3	411.37354	-0.40	Yes	1201.2	136865392	34.0	193352
H13all 1	411.3/352	-0.35	Yes	3/2.1	42066632	10.7	193203
H13all 2	411.37350	-0.31	Yes	383.2	42355268	10.9	191246
	411.57545	-0.15	No	297.7	52427094	5.5	192997
H14a 1			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1	411.37350	-0.30	Yes	298.2	34873896	6.8	192815
B1a 2	411.37332	0.14	Yes	236.1	26238866	8.6	192278
B1a 3	411.37320	0.23	Yes	222.4	24130730	5.6	193478
			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No	1	1	1	
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

The data presented in Table 13 show an unusual peak at m/z 405, which was detected at an extremely high intensity in sample H1 (specifically replicate 1, but also in replicate 2) and it's only present in one other spectrum, one of the replicates of H5. Whilst its presence is rare in the data from this selection of brain samples, the signal has high resolution and S:N ratios. This peak was assigned an empirical formula $[C_{27}H_{24}N_4] + H^+$, or possibly $[C_{27}H_{21}N_3] + NH_4^+$. Since the other components have ionised as M+H⁺ species, if this compound behaves similarly, this would be consistent with a very highly unsaturated species (18 double bond equivalents) which is probably highly aromatic. As the signal wasn't detected in the spectra of the youngest or oldest sample extracts, only in those from Hull, it could be hypothesized that this compound is created during the decomposition process and then undergoes further chemical changes at this specific site. However, its absence from the majority of samples (as well as a larger than 1 ppm m/z error in replicate H1a 2) may indicate that this component is probably not a significant decomposition product. Its relatively high level of functionalisation and very high level of unsaturation when compared to the majority of the components identified in these preserved brains, mark it out as rather different from most of the largely hydrocarbon species, with little or no functionalisation.

Calculated m/z	405.20737	C27H25N4					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1	405 20733	0.11	Yes	442.2	50097424	5.0	196634
H1a 2	405 20788	-1 25	Yes	2.8	555152	0.1	216967
H1a 3	100120700	1120	No	2.0	000102	0.1	210007
H1b 1			No				
L16 2			No				
1102			No				
110.5			No				
HZa 1			NO				
			NO				
H2a 3			NO				
H3a 1			NO				
H3a Z			NO				
H3a 3			No				
H4a 1			No				
H4a 2			No				
H4a 3			No				
H5a 1	405.20732	0.13	Yes	4.0	665646	0.3	188022
H5a 2			No				
H5a 3			No				
H6a 1			No				
H6a 2			No				
H6a 3			No				
H7a 1			No				
H7a 2			No				
H7a 3			No				
H8a 1			No				
H8a 2			No				
H8a 3			No				
H9a 1			No				
H9a 2			No				
H9a 3			No				
H10a 1			No				
			No				
H10a 2			No				
H10a 3			No				
			No				
H11a 2			NO				
H11a 3			NO				
H12a 1			NO				
H12a 2			NO				
H12a 3			NO				
H13aii 1			NO				
H13aii 2			No				
H13aii 3			No				
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1			No				
B1a 2			No				
B1a 3			No				
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3h 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 2			No				
ISUIVENT 3	1		INO		1		

Table 13. Summary of signal at m/z 405. C_xH_yN₄

A series of singly nitrogenated hydrocarbon compounds was detected that also contained a single oxygen atom, Table 14 to Table 28. Table 14 details a compound assigned $[C_{35}H_{47}NO] + H^+$ at m/z 498, a component with 13 double bond equivalents. The signal in the spectra of all B1 replicates has high intensity and S:N and it is found consistently with moderate intensities in H4, H8, H9, H10, H11 and H12. It was not detected at all in the York or Villiers Street sample extracts and it is also absent from several of the Hull sample spectra. It was detected in one replicate soil control and one replicate solvent blank spectrum. However, it was not observed consistently in the soil and solvent controls, and when it was detected, it was at low intensity and S:N, while in the sample extract spectra, the signal was much more consistently observed, and at higher S:N and relative intensity, which enhance the confidence in these observations. Interestingly, the soil blank MALDI spot in which this signal was potentially identified, was adjacent on the MALDI plate to one of the H10a replica spots, and so cross contamination is not out of the question. However, the solvent blank spot containing a weak signal at this m/z was not close enough to any of the sample spots for this to provide an explanation for its detection in this control.

Calculated m/z	498.37304	C35H48NO	-	_		-	-
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
110 1			No				
110 2			No				
H10 3			NO				
HZa 1			NO				
HZa Z			No				
H2a 3			No				
H3a 1	498.37297	0.15	Yes	93.4	12371798	2.2	161902
H3a 2	498.37300	0.09	Yes	57.6	7869396	1.3	159409
H3a 3	498.37279	0.51	Yes	14.9	2079054	0.3	169821
H4a 1	498.37309	-0.09	Yes	300.5	43907008	2.6	159731
H4a 2	498.37319	-0.30	Yes	343.7	50708700	5.8	159403
H4a 3	498.37308	-0.08	Yes	280.7	40112968	4.8	159821
H5a 1	498.37245	-0.77	Yes	9.2	1290371	0.7	148181
H5a 2	498.37263	0.83	Yes	11.0	1556298	0.5	199344
H5a 3	498.37293	0.22	Yes	14.9	2132928	0.2	172150
H6a 1	498 37302	0.22	Yes	21.0	2971680	0.4	1608/1
H6a 2	108 27205	0.00	Voc	21.4	4741415	0.4	170096
H62 2	400.37233	0.19	Voc	24.9	2/20601	0.0	170300
1170 1	490.37200	0.32	Yes	24.0	020662	0.4	1/102/
H/a 1	498.37285	0.16	res	5.3	920662	0.2	192298
H/a Z			NO				
H7a 3	498.37279	0.51	Yes	7.5	1201021	0.2	163199
H8a 1	498.37303	0.03	Yes	297.2	40481716	7.0	159960
H8a 2	498.37313	-0.18	Yes	113.7	14451217	3.4	157320
H8a 3	498.37290	0.29	Yes	171.6	21326776	4.1	159811
H9a 1	498.37306	-0.04	Yes	554.5	75987400	9.4	159303
H9a 2	498.37305	-0.02	Yes	733.2	101554536	11.7	159259
H9a 3	498.37292	-0.25	Yes	98.1	12387393	2.7	158669
H10a 1	498.37294	0.20	Yes	51.0	6723750	1.1	157292
H10a 2	498.37300	0.09	Yes	57.5	6846523	3.5	159325
H10a 3	498.37294	0.20	Yes	237.0	31166148	8.5	159868
H11a 1	498 37327	-0.46	Yes	158.3	19991648	87	159498
H11a 2	498.37327	-0.26	Vos	45.7	61/6589	0.8	159258
LI110 2	408 27202	0.20	Vos	43.7	5/19022	0.0	166002
H110 J	498.37302	0.04	Voc	47.0	12004272	4.2	162265
1120 1	490.37341	-0.74	Yes	90.5	12694575	2.9	105505
H12a 2	498.37338	-0.67	Yes	94.8	13539910	2.8	160536
H12a 3	498.37336	-0.64	Yes	/2.5	10523685	2.6	163683
H13aii 1	498.37332	-0.57	Yes	58.7	8230004	2.1	160446
H13aii 2	498.37328	-0.48	Yes	48.8	6632260	1.7	155472
H13aii 3	498.37321	-0.33	Yes	30.1	3963297	0.7	164656
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	498.37337	-0.66	Yes	10.6	1830832	0.2	125929
H14bi 2	498.37309	-0.09	Yes	6.6	1212998	0.2	197235
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1	498.37323	-0.38	Yes	1303.1	203859920	39.7	159206
B1a 2	498 37299	0 10	Yes	592.3	78603744	25.6	158822
B1a 3	198 37278	0.53	Vos	367.1	1/19/0512	10.5	160232
	450.57270	0.55	No	507.1	44340312	10.5	100252
			No				
			NO				
			INO No				
5011 38 1			NO				
Soil 3a Z			NO				
Soil 3a 3			No	ļ			
Soil 3b 1			No				
Soil 3b 2	498.37391	-1.75	Yes	5.6	1156363	0.1	120372
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3	498.37391	-1.74	Yes	5.6	1156363	0.1	120372

Table 14. Summary of signal at m/z 498. C_xH_yNO

Table 15 shows the data for the compound assigned [C₃₅H₄₉NO] + H⁺ at m/2 500, for a compound with 12 double bond equivalents. This signal is clearly absent from the spectra of the extracts of the York and Villiers Street samples as well as H1, H2 and H14. It is also undetected in the DHB, soil and solvent controls. This signal has a significant intensity and S:N in the youngest sample (B1) but is also present consistently within most of the Hull sample extracts (and their replicates), with a minority having low relative intensities (< 0.5%). The strength of the signal in the B1 extract could indicate that there is proportionally more of this compound in younger brains and this concentration decreases with age, leading to its non-detection in the oldest samples, but the absence from the other young sample, Villiers Street, is not consistent with this suggestion. Alternatively, the conditions leading to the preservation of the brain in the sample from the Blackpool site may have been unusual and led to the production of this component only at this site.

Calculated m/z	500.38869 C35H50NO						
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
			No				
110 2			No				
110.5			No				
HZa 1			NO				
HZa Z			NO				
H2a 3			No				
H3a 1	500.38867	0.05	Yes	207.6	27132620	4.9	160046
H3a 2	500.38871	-0.03	Yes	76.0	10302716	1.7	164345
H3a 3	500.38845	0.49	Yes	26.5	3471247	0.5	179327
H4a 1	500.38880	-0.21	Yes	344.7	50330268	2.9	159133
H4a 2	500.38889	-0.39	Yes	469.1	69104888	7.9	159181
H4a 3	500.38877	-0.16	Yes	414.8	59124008	7.1	159756
H5a 1	500.38845	0.48	Yes	16.4	2089044	1.1	165065
H5a 2	500.38839	0.61	Yes	23.6	3022508	1.0	176876
H5a 3	500.38827	0.84	Yes	19.8	2747358	0.3	167912
H6a 1	500.38857	0.34	Yes	34.9	4671451	0.6	166912
H6a 2	500 38865	0.30	Yes	/1.9	5428440	0.0	170/31
	500.38803	0.08	Voc	41.0	6712170	0.7	162704
1170 1	500.38856	0.22	Yes	50.7	0713170	0.7	103704
H/a 1	500.38850	0.52	res	5.0	888157	0.2	223907
H/a Z	500.38776	1.86	Yes	6.2	1072385	0.2	182336
H7a 3	500.38873	-0.07	Yes	9.8	1483579	0.2	135382
H8a 1	500.38869	0.00	Yes	304.9	41521500	7.1	159093
H8a 2	500.38881	-0.23	Yes	101.7	12957818	3.0	159347
H8a 3	500.38861	0.17	Yes	134.3	16754881	3.2	159149
H9a 1	500.38873	-0.09	Yes	507.6	69586752	8.6	158456
H9a 2	500.38874	-0.10	Yes	1032.0	142825200	16.5	158724
H9a 3	500.38852	0.34	Yes	55.0	7067208	1.6	158809
H10a 1	500.38861	0.36	Yes	27.3	3729970	0.6	172110
H10a 2	500.38860	0.18	Yes	62.5	7418223	3.8	163413
H10a 3	500.38862	0.14	Yes	189.7	25001586	6.8	158945
H11a 1	500.38895	-0.52	Yes	133.4	16894804	7.4	161311
H11a 2	500 38898	-0.58	Yes	29.5	4068340	0.5	154626
H11a 3	500 38870	-0.02	Yes	42.6	4873773	37	164338
H12a 1	500 38905	-0.72	Yes	154.0	21783994	4.8	160786
L120 1	500.38505	-0.72	Voc	102.0	27740824	4.0	150000
1120 2	500.38903	-0.72	Vec	192.9	17672759	5.5	159009
H12a 5	500.38901	-0.04	Tes Vee	123.1	1/0/2/38	4.4	159547
	500.38901	-0.64	res	132.0	18135424	4.0	101335
H13aii 2	500.38902	-0.66	Yes	/9.0	105515/3	2.7	158252
H13aii 3	500.38881	-0.23	Yes	68.8	8701489	1.5	159704
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	500.38876	-0.15	Yes	7.2	1344219	0.1	168860
H14bi 2	500.38855	0.28	Yes	7.9	1398281	0.2	168155
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1	500.38892	-0.46	Yes	2311.5	361371808	70.4	158624
B1a 2	500.38866	0.05	Yes	710.6	94241648	30.7	157111
B1a 3	500.38847	0.45	Yes	458.2	56014704	13.1	159814
DHB 1		0.45	No	100.2		13.1	
DHB 2			No				
			No				
Soil 2o 1			No				
			No				
			NO				
			NO				
5011 30 1			NO				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 15. Summary of signal at m/z 500. C_xH_yNO

The peak at m/z 530, shown in Table 16, was assigned the empirical formula $[C_{36}H_{67}NO] + H^+$, for a component with only four double bond equivalents. The strength of the signal in the spectra of the original York sample extract meant this component was flagged during the original investigation as worthy of further consideration. This is corroborated by its consistent presence and signal strength in the current analysis of the York brain, sample Y1. This compound was also found consistently across all the other samples excepting H14 and a replicate of H1. It wasn't detected in the DHB matrix control, soil controls or solvent blank. The largest measured m/z error was 1.48 ppm in H1b 2 but the majority was less than 1 ppm. The S:N ratios were generally high and resolution was good for all samples. This compound was one of significant interest as it appears to be part of series of related residues with four degrees of unsaturation, differing by (CH₂)_n which include the following: Table 17, Table 19, Table 20, Table 26 and Table 28. The high intensity signal in the mass spectra from Y1a potentially suggests this residue occurs in older brains in higher concentrations. In theory, this may be due to an increase in its production as the brain remains age, or a decrease in the concentration of other chemical species.

Table 16. Summary of signal at <i>m/z</i> 530. C _x H	,NO
---	-----

Calculated m/z	530.52954 C36H68NO						
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	530.52950	0.08	Yes	584.5	80591432	26.8	150582
Y1a 2	530 52935	0.37	Yes	670.0	88561008	32.5	149879
V1a 3	530 52946	0.16	Yes	640.3	88799592	25.8	150278
Original Heslington	530.52940	1.02	Yes	479 7	50985892	40.9	92430
	330.32300	1.02	No	475.7	50505052	40.5	52450
110 1	E20 E2028	0.50	Noc	10.4	2620219	0.7	166227
110 2	530.52926	0.50	Yes	19.4	2029510	0.7	100257
114.5	530.52915	0.74	Yes	12.4	2710762	0.3	151515
H10 1	530.52916	0.71	Yes	19.4	2/19/62	0.3	152767
H10 Z	530.52876	1.48	Yes	9.2	1401022	0.4	1/4242
H1b 3	530.52898	1.05	Yes	14.6	2052///	0.5	151105
H2a 1	530.52907	0.90	Yes	47.5	6056076	1.1	149760
H2a 2	530.52911	0.82	Yes	44.9	6540455	2.0	151643
H2a 3	530.52916	0.71	Yes	43.2	5249764	1.5	159194
H3a 1	530.52934	0.38	Yes	72.2	10109357	1.8	152973
H3a 2	530.52947	0.13	Yes	67.0	9606948	1.6	149936
H3a 3	530.52919	-1.27	Yes	31.6	4246692	0.6	148517
H4a 1	530.52952	0.05	Yes	329.5	52149244	3.0	148961
H4a 2	530.52966	-0.23	Yes	294.9	47176184	5.4	150696
H4a 3	530.52955	-0.05	Yes	289.2	44428988	5.4	150830
H5a 1	530.52906	0.92	Yes	88.1	10304791	5.4	153278
H5a 2	530.52914	0.76	Yes	113.2	13882830	4.6	152891
H5a 3	530.52917	0.70	Yes	159.2	21021916	2.4	150402
H6a 1	530.52943	0.20	Yes	94.0	12661483	1.7	150295
H6a 2	530.52937	0.32	Yes	80.7	10686020	1.5	148960
H6a 3	530.52935	0.37	Yes	98.1	13335409	1.4	151015
H7a 1	530.52925	0.54	Yes	27.3	3736447	0.9	154999
H7a 2	530.52944	0.19	Yes	26.6	3833124	0.6	153936
H7a 3	530.52920	0.64	Yes	25.1	3490295	0.5	166549
H8a 1	530,52946	0.16	Yes	29.0	4473086	0.8	159428
H8a 2	530 52972	-0.33	Yes	26.3	3742018	0.9	153840
H8a 3	530 52930	0.45	Yes	24.3	3408682	0.7	163767
H9a 1	530 52935	0.45	Vos	/1.8	6403425	0.7	1/8/23
	520 52054	0.00	Vos	27.0	5782652	0.0	152194
100 2	530.52954	0.00	Voc	37.0	2255250	0.7	160002
	530.52910	0.84	Voc	19.6	2757147	0.7	150992
H10a 1	530.52943	0.21	Yes	18.0	2757147	0.5	159827
H10a Z	530.52933	0.40	Yes	29.2	3724636	1.9	153369
H10a 3	530.52939	0.28	Yes	/2.4	10255432	2.8	152398
H11a 1	530.52977	-0.42	Yes	166.3	21992668	9.6	150703
H11a 2	530.52976	-0.41	Yes	109.9	15090892	2.0	147548
H11a 3	530.52949	0.10	Yes	55.8	6452659	5.0	155467
H12a 1	530.52987	-0.61	Yes	180.3	2/221394	6.1	151115
H12a 2	530.52988	-0.63	Yes	193.7	29261544	5.9	149304
H12a 3	530.52983	-0.53	Yes	1/5.8	26898016	6.7	149736
H13aii 1	530.52980	-0.48	Yes	216.6	31399490	8.0	150612
H13aii 2	530.52979	-0.47	Yes	216.7	30056904	7.7	149694
H13aii 3	530.52966	-0.22	Yes	147.9	19187624	3.3	149535
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	530.52984	-0.57	Yes	10.9	1987392	0.2	173883
H14bi 2	530.52996	-0.79	Yes	6.1	1220058	0.2	187282
H14bi 3			No				
V1a 1	530.52950	0.08	Yes	52.7	7989736	0.4	149353
V1a 2	530.52954	0.01	Yes	63.9	8886556	1.4	154021
V1a 3	530.52943	0.22	Yes	53.8	7629571	1.6	152212
B1a 1	530.52969	-0.28	Yes	106.6	18547068	3.6	149703
B1a 2	530.52948	0.12	Yes	78.9	11380443	3.7	151030
B1a 3	530.52922	0.61	Yes	72.3	9461597	2.2	149041
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 17 shows the data for another component that was flagged up during in the initial analysis of the York brain. It was assigned [C₃₇H₆₉NO] + H⁺, is detected at m/z 544, and corresponds to a compound with four double bond equivalents. The largest signal (both by S:N/intensity/relative intensity) was found in the York sample but its detection in the H13 extract is comparable. There were moderately strong signals found in H4, H5, H6, H11 and H12 and B1. The regularity of occurrence indicates that this residue is either present at burial or formed early on in the decomposition process as it appears in the youngest brain samples (Blackpool and Villiers Street). The stronger signal in the York sample suggests it may occur in older brains in higher levels. This may be due to an increase in its formation over time or a decrease in the concentration in other compounds over m/z 310 due to their gradual breakdown or leaching into the soil surroundings. The peak is detected in all samples excluding H14a and the DHB matrix control. There are signals at similar m/z values in the spectra of the soil extract (Soil 3a replicate 2 and Soil 3b replicate 2). However, the m/zvalues for the signals in the control extract spectra have much larger ppm errors than those in the brain sample spectra. Moreover, the mean measured m/zvalue for this signal in the spectra of brain samples is 544.54519, and that of the controls is 544.54609. The standard deviation of this mean for the brain samples is 0.0003165 and that for the control is 0.00002828. 544.54519 + 0.000633 = m/z 544.54582 whereas 544.54609 - 0.00005656 = m/z

544.54603. There is no overlap of these values for plus or minus 2 standard deviations, suggesting that even though the mass error is below 2 ppm, the compound detected in the soil control is probably not the same as that in the brain extracts.

136

Table 17.	Summary	of signal	at <i>m/z</i> 544	. C _x H _y NO

Calculated m/z	544.54519	C37H70NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	544.54527	-0.15	Yes	140.6	20176056	6.7	146451
Y1a 2	544.54511	0.15	Yes	158.8	21758054	8.0	148560
Y1a 3	544.54514	0.09	Yes	142.8	20613106	6.0	147040
Original Heslington	544.54461	1.06	Yes	113.8	12454207	10.0	90161
H1a 1			No				
H1a 2	544.54536	-0.31	Yes	3.0	653862	0.2	123484
H1a 3			No				
H1b 1		0.50	No		000446		400.405
H10 2	544.54492	0.50	Yes	5.1	920416	0.2	182425
H10 3	544.54527	-0.14	Yes	5./	985137	0.2	1/1164
	544.54453	1.22	Yes	0.9	1615742	0.3	162505
H7a 3	544.54407	0.33	Voc	9.2	1262362	0.3	159622
H3a 1	544 54503	0.31	Yes	10.4	1762706	0.4	181524
H3a 2	544.54541	-0.40	Yes	6.7	1258964	0.2	183172
H3a 3			No				
H4a 1	544.54520	-0.02	Yes	41.7	7147420	0.4	149181
H4a 2	544.54548	-0.53	Yes	45.0	7766289	0.9	147006
H4a 3	544.54528	-0.17	Yes	47.4	7833278	0.9	149848
H5a 1	544.54485	0.64	Yes	11.8	1643725	0.9	152202
H5a 2	544.54469	0.92	Yes	15.4	2166416	0.7	169209
H5a 3	544.54481	0.71	Yes	23.0	3365806	0.4	143021
H6a 1	544.54499	0.38	Yes	10.4	1695376	0.2	174408
H6a 2	544.54514	0.10	Yes	8.4	1397108	0.2	166809
H6a 3	544.54506	0.23	Yes	14.8	2309027	0.2	151092
H7a 1	544.54566	-0.62	Yes	7.2	1219644	0.3	151930
H7a 2			No				
H7a 3			No				
H8a 1	544.54548	-0.53	Yes	10.2	1825746	0.3	146944
H8a 2	544.54523	-0.71	Yes	5.4	1033240	0.2	170638
H8a 3	544.54498	0.39	Yes	8.3	13/8563	0.3	1/6309
H9a 1	544.54472	0.86	Yes	8.3	1555361	0.2	129795
H9a Z	544.54529	-0.17	Yes	11.3	2032671	0.2	150567
H9a 3	544.54532	-0.24	Yes	5.8	1105704	0.2	1/8360
	544.54502	0.11	Voc	5.1	807/07	0.2	142005
H10a 3	544.54498	0.05	Yes	16.9	2697258	0.5	145066
H11a 1	544 54552	-0.60	Yes	33.2	4735247	2.1	155552
H11a 2	544.54538	-0.35	Yes	21.1	3224963	0.4	156639
H11a 3	544.54510	0.17	Yes	7.3	1092411	0.8	170320
H12a 1	544.54563	-0.80	Yes	48.6	7830229	1.7	151210
H12a 2	544.54567	-0.87	Yes	50.9	8189959	1.7	147947
H12a 3	544.54566	-0.87	Yes	65.1	10517305	2.6	146639
H13aii 1	544.54559	-0.73	Yes	165.5	24829956	6.3	146215
H13aii 2	544.54559	-0.74	Yes	131.8	18941330	4.9	144905
H13aii 3	544.54544	-0.45	Yes	100.4	13423244	2.3	149392
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	544.54556	-0.67	Yes	14.8	2668246	0.3	160560
H14bi 2	544.54574	-1.00	Yes	10.9	1967243	0.3	151185
H14DI 3	544 54520	0.12	NO	110.0	17010240	0.0	140024
	544.54520	-0.13	Yes	110.9	17912242	0.8	148024
V1a 2	544.54524	-0.09	Voc	121.0	16319851	2.7	1/18890
R1a 1	544.54515	-0.51	Voc	/1 9	7823133	1.5	146739
B1a 2	544 54515	0.01	Yes	31.5	4870244	1.5	148014
B1a 3	544 54468	0.00	Yes	23.4	3327673	0.8	146577
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2	544.54607	-1.61	No	4.5	1083350	0.1	190946
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2	544.54611	-1.69	No	7.9	1698374	0.1	170408
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3	1	1	NO	1	1	1	1

The peak detected at m/z 556 shown in Table 18 was assigned [C₃₈H₆₉NO] + H⁺ for a species with five double bond equivalents. As the table shows, this was a very intense signal in the spectrum of the York sample extracts (both original and current) and it was detected in all brain sample extracts except H14a, although less consistently in the sample replicates than some of the already described peaks. It was found in all samples of all age ranges and the strength of the signal in the oldest sample shows similar trends to those for m/z 544, Table 16. This compound also appears to be part of series of related residues with five degrees of unsaturation, differing by (CH₂)_n which also includes Table 22 and Table 25.

Calculated m/z	556.54519	C38H70NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error (ppm)	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	556.54531	-0.21	Yes	190.3	27592560	9.2	143035
Y1a 2	556 54509	0.18	Yes	169.7	23537144	8.6	143893
Y1a 3	556 54518	0.03	Yes	185.9	27141152	7.9	144101
Original Heslington	556 54448	1 28	Yes	92.1	10123522	8.1	89172
H1a 1	556151116	1120	No	52.12	10120022	0.11	00172
H1a 2	556 54508	0 19	Yes	79	1269616	0.3	167708
H1a 3	5501515000	0.125	No	7.5	1205010	0.0	10,700
H1b 1			No				
H1b 2	556 54484	0.64	Yes	10 5	1605118	0.4	167777
H1b 3	556 54579	-1 07	Yes	6.2	1063330	0.3	144240
H2a 1			No				
H2a 2	556 54496	0.42	Yes	6.5	1247567	0.4	173378
H2a 3			No				
H3a 1	556,54548	-0.52	Yes	10.1	1732414	0.3	154700
H3a 2	556,54497	0.40	Yes	9.6	1708312	0.3	158342
H3a 3			No				
H4a 1	556.54528	-0.16	Yes	46.2	8047631	0.5	144983
H4a 2	556.54553	-0.61	Yes	53.1	9301514	1.1	143896
H4a 3	556.54528	-0.17	Yes	54.8	9170112	1.1	145404
H5a 1	556.54448	1.29	Yes	8.8	1304689	0.7	163183
H5a 2	556.54504	0.28	Yes	12.3	1805993	0.6	154030
H5a 3	556.54484	0.63	Yes	21.1	3158168	0.4	155081
H6a 1	556.54545	-0.46	Yes	11.4	1854317	0.3	168865
H6a 2	556.54504	0.28	Yes	11.5	1835675	0.2	162426
H6a 3	556.54512	0.14	Yes	14.8	2345594	0.2	145198
H7a 1	556.54526	-0.12	Yes	7.2	1237168	0.3	157223
H7a 2	556.54527	-0.15	Yes	10.2	1720146	0.3	177413
H7a 3	556.54523	-0.07	Yes	9.5	1554178	0.2	171563
H8a 1	556.54531	-0.21	Yes	7.4	1432542	0.2	138074
H8a 2	556.54543	-0.43	Yes	10.1	1683020	0.4	154129
H8a 3	556.54523	-0.07	Yes	7.9	1353104	0.3	145502
H9a 1	556.54525	-0.11	Yes	5.6	1170813	0.1	163380
H9a 2	556.54519	0.00	Yes	6.7	1356580	0.2	182715
H9a 3	556.54523	-0.06	Yes	5.9	1086777	0.2	182607
H10a 1			No				
H10a 2			No				
H10a 3	556.54539	-0.35	Yes	10.4	1794935	0.5	151499
H11a 1	556.54552	-0.59	Yes	31.0	4506060	2.0	147499
H11a 2	556.54562	-0.77	Yes	16.1	2554999	0.3	148580
H11a 3	556.54512	0.13	Yes	6.6	1017594	0.8	182675
H12a 1	556.54567	-0.85	Yes	34.5	5756682	1.3	144336
H12a 2	556.54562	-0.77	Yes	35.9	5985424	1.2	148229
H12a 3	556.54567	-0.85	Yes	40.1	6729918	1.7	146088
	556.54561	-0.76	Yes	82.3	12706139	3.2	145014
	556.54550	-0.55	Yes	64.9	961/823	2.5	142674
H1451	530.54543	-0.43	No	41./	5815345	1.0	122288
H14a 1			No				
H14a 2			No				
H14bi 1	556 54556	-0.66	Voc	6.7	1/17965	0.2	164571
H14bi 2	556 54477	0.00	Yes	4.3	993245	0.2	145133
H14bi 3	330.34477	0.70	No	4.5	555245	0.2	143133
V1a 1	556 54520	-0.02	Yes	42.6	6837569	0.3	147813
V1a 2	556,54530	-0.20	Yes	35.2	5227246	0.8	144314
V1a 3	556.54512	1.57	Yes	27.5	4210110	0.9	153397
B1a 1	556.54553	-0.61	Yes	53.6	10167584	2.0	141766
B1a 2	556.54523	-0.08	Yes	42.6	6576177	2.1	144047
B1a 3	556.54495	0.44	Yes	21.6	3136757	0.7	148382
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				

No No No No No

Soil 3b 1 Soil 3b 2 Soil 3b 3 Solvent 1 Solvent 2 Solvent 3

Table 18. Summary of signal at m/z 556. C_xH_yNO

Table 19 shows the detection of a signal at m/z 558. This was assigned to a component with four double bond equivalents, and empirical formula $[C_{38}H_{71}NO] + H^+$. This table shows very similar trends to those for the two preceding components (Table 17 and Table 18) and so similar comments can be applied. It is again detected in all the brain samples barring H14a (and is only detected in one replicate of H1) and is absent from the controls. There is a moderate S:N and intensity to signals from samples H4, H5 H12, H13, V1 and B1.

Table 19. Summary of	signal at <i>m/z</i> 55	58. C _x H _y NO
----------------------	-------------------------	--------------------------------------

Calculated m/z	558.56084	C38H72NO						
Sample designation +	Measured							
MALDI replicate no.	m/z	Error [ppm]	Present	S:N		Intensity	Rel. Int. %	Resolution
Y1a 1	558.56085	-0.01	Yes		1110.8	159625264	53.1	142865
Y1a 2	558.56067	0.31	Yes		1090.3	149629296	55.0	143243
Y1a 3	558.56077	0.12	Yes		1088.7	157439088	45.7	143617
Original Heslington	558.56026	1.05	Yes		873.1	94157008	75.6	87715
H1a 1			No					
H1a 2	558.56077	0.12	Yes		6.1	1049438	0.3	174316
H1a 3			No					
H1b 1	558.56050	0.31	Yes		11.1	1727585	0.2	128351
H1b 2	558.56087	-0.04	Yes		8.8	1392002	0.4	160831
H1b 3	558.56030	0.96	Yes		10.7	1617816	0.4	158563
H2a 1	558.56029	0.99	Yes		37.1	4919893	0.9	149422
H2a 2	558.56041	0.77	Yes		27.7	4319181	1.3	151084
H2a 3	558.56039	0.82	Yes		34.3	4317231	1.2	155241
H3a 1	558.56074	0.18	Yes		35.0	5264343	1.0	149480
H3a 2	558.56078	0.11	Yes		33.9	5217418	0.9	135438
H3a 3	558.56060	0.43	Yes		19.6	2826460	0.4	151724
H4a 1	558.56082	0.05	Yes		297.4	50143060	2.9	142078
H4a 2	558.56106	-0.39	Yes		307.8	52394160	6.0	142616
H4a 3	558.56088	-0.08	Yes		2/1.3	44152576	5.3	143131
H5a 1	558.56036	0.87	Yes		64.6	//8382/	4.1	144229
H5a Z	558.56038	0.82	res		83.5	10586600	3.5	146427
H5a 3	558.56041	0.78	Yes		140.6	19303958	2.2	142235
H6a 1	558.560/1	0.24	Yes		80.2	1125/412	1.5	144463
H6a 2	558.56074	0.19	Yes		/1.1	9783883	1.3	145019
H6a 3	558.56068	0.29	Yes		/8.5	11151//8	1.2	144206
H/a 1	558.56051	0.59	Yes		20.0	2898578	0.7	148982
H/a Z	558.56073	0.20	Yes		19.5	2999906	0.5	152111
H/a 3	558.56058	0.47	Yes		10.8	1725413	0.3	167098
H8a 1	558.56074	0.19	Yes		29.1	4/02/60	0.8	149772
H8a 2	558.50088	-0.07	Yes		25.0	3/14//0	0.9	140374
H0a 3	558.50004	0.33	Voc		21.0	51/190/	0.0	145082
	558.50080	0.07	Voc		52.4 21.4	5300331	0.7	145965
H9a 2	558 56052	0.13	Voc		20.7	1276020	0.0	149792
	558 56074	0.33	Voc		29.7	2500045	0.9	147770
H10a 1	558 56050	0.18	Voc		20.8	2807935	1.4	15231/
H10a 3	558 56062	0.02	Vos		/13.0	6469685	1.4	144063
H11a 1	558 56120	-0.64	Ves		71 7	10024988	4.4	145543
H11a 2	558 56104	-0.35	Yes		45.1	6629130	0.9	146484
H11a 3	558 56065	0.35	Yes		17.6	2260702	1 7	166019
H12a 1	558.56121	-0.66	Yes		221.5	35195940	7.8	142736
H12a 2	558.56126	-0.75	Yes		197.5	31446502	6.4	141796
H12a 3	558.56120	-0.64	Yes		180.5	29143880	7.2	141578
H13aii 1	558.56117	-0.58	Yes		150.9	23037694	5.8	143284
H13aii 2	558.56120	-0.64	Yes		136.8	19940652	5.1	143465
H13aii 3	558.56099	-0.26	Yes		89.7	12156266	2.1	143851
H14a 1			No					
H14a 2			No					
H14a 3			No					
H14bi 1	558.56121	-0.66	Yes		11.8	2241476	0.2	150275
H14bi 2	558.56064	0.37	Yes		12.1	2192303	0.3	147320
H14bi 3			No					
V1a 1	558.56081	0.06	Yes		93.7	14658965	0.7	140067
V1a 2	558.56079	0.10	Yes		102.0	14570216	2.3	139146
V1a 3	558.56072	0.22	Yes		96.6	13991797	3.0	142003
B1a 1	558.56102	-0.33	Yes		174.8	32371388	6.3	142334
B1a 2	558.56077	0.13	Yes		139.1	20781066	6.8	143432
B1a 3	558.56054	0.54	Yes		76.8	10386214	2.4	146367
DHB 1			No					
DHB 2			No					
DHB 3			No					
Soil 3a 1			No					
Soil 3a 2			No					
Soil 3a 3			No					
Soll 3b 1			NO					
Soll 3b 2			NO					
Soll 3b 3			NO					
Solvent 1			NO					
Solvent 2			NO					
ISOIVENT 3	1	1	INO					

Table 20 summarises the data for the peak at m/z 586, assigned to a component with four double bond equivalents, and empirical formula $[C_{40}H_{75}NO] + H^+$. In the original analysis of the York brain this peak was considered worth further investigation. The relative intensity of the peaks in the mass spectra of the current project's extract spectral replicates also indicate this component is of significance. It is again detected in all the brain sample extracts barring H1a and H14. It is not detected as consistently across all the replicates of H1b, H2a, H8, H9, H10 and H11. There is a moderate S:N and intensity to signals from samples H4, H5 H12, H13, V1 and B1. The detection in the soil sample has an error of over 2 ppm and is thus not likely to represent the same component.

As well as high intensity and S:N in the spectra of the York sample extract, the mass spectra of the most modern brain extracts, V1 and B1, also have evidence of this component.

Table 20. Summa	ry of signal at	<i>m/z</i> 586.	C _x H _y NO
-----------------	-----------------	-----------------	----------------------------------

Calculated m/z	586.59214 C40H76NO						
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	586.59197	0.29	Yes	68.5	10490418	3.5	136664
Y1a 2	586.59188	0.46	Yes	61.4	8975159	3.3	139511
Y1a 3	586.59200	0.24	Yes	65.4	10080365	2.9	138362
Original Heslington	586.59153	1.05	Yes	81.9	9352824	7.5	82856
H1a 1			NO				
H1a 2			NO				
H18 3	E96 E0172	0.72	NO	0.4	1541106	0.2	152014
H1b 2	586 59184	0.72	Voc	J.4 4.6	8866/1	0.2	126937
H1b 3	500.55104	0.52	No	4.0	000041	0.2	120557
H2a 1	586.59151	1.09	Yes	11.0	1689596	0.3	160726
H2a 2	586.59183	0.53	Yes	6.1	1216948	0.4	169246
H2a 3			No				
H3a 1	586.59199	0.26	Yes	14.7	2416219	0.4	130516
H3a 2	586.59212	0.03	Yes	12.3	2124965	0.3	150307
H3a 3	586.59211	0.06	Yes	9.4	1528387	0.2	166201
H4a 1	586.59196	0.32	Yes	30.1	5459820	0.3	143370
H4a 2	586.59224	-0.16	Yes	36.1	6644937	0.8	139500
H4a 3	586.59210	0.06	Yes	37.3	6516075	0.8	137172
H5a 1	586.59199	0.27	Yes	4./	837641	0.4	201918
	586.59153	1.05	Voc	10.2	1568340	0.5	168872
H6a 1	586 50161	0.84	Vos	16.6	2590945	0.3	121/75
H6a 2	586 59206	0.51	Voc	10.7	2022870	0.4	159087
H6a 3	586 59188	0.15	Yes	20.1	3121493	0.3	153147
H7a 1	586.59165	0.83	Yes	10.8	1737815	0.4	159140
H7a 2	586.59205	0.15	Yes	12.7	2107650	0.3	139778
H7a 3	586.59189	0.43	Yes	7.6	1322478	0.2	156807
H8a 1	586.59189	0.43	Yes	5.0	1084959	0.2	183098
H8a 2			No				
H8a 3			No				
H9a 1			No				
H9a 2	586.59184	0.51	Yes	6.0	1265257	0.1	181108
H9a 3	586.59127	1.49	Yes	6.5	1184628	0.3	175493
			No				
H10a 3	586 59157	0.98	Yes	13.9	2334757	0.6	141880
H11a 1	586.59254	-0.67	Yes	15.7	2485167	1.1	155574
H11a 2	586.59202	0.22	Yes	10.2	1767988	0.2	149860
H11a 3			No				
H12a 1	586.59252	-0.65	Yes	27.6	4779750	1.1	143270
H12a 2	586.59259	-0.76	Yes	24.7	4300603	0.9	147667
H12a 3	586.59248	-0.57	Yes	23.0	4085564	1.0	134904
H13aii 1	586.59224	-0.16	Yes	26.3	4410983	1.1	135998
H13aii 2	586.59241	-0.46	Yes	33.0	516/604	1.3	128464
	586.59232	-0.31	Yes	23.3	3465378	0.6	142066
H14a 1			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1	586.59208	0.11	Yes	60.3	9784428	0.4	133513
V1a 2	586.59212	0.05	Yes	62.0	9273187	1.5	137155
V1a 3	586.59189	0.43	Yes	63.2	9511151	2.0	135585
B1a 1	586.59230	-0.27	Yes	39.5	/665599	1.5	139725
B1a 2	586 50172	0.22	Yes	20.0	4981020	1.0	141208
DHB 1	500.55175	0.71	No	23.3	4200313	1.0	135300
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2	586.59342	-2.18	No	4.4	1185460	0.1	148197
Soll 3b 3			NO				
Solvent 2			No				
Solvent 3			No				

Table 21 summarises details of the peak observed at m/z 726 in the spectra. This was assigned a composition of [C₅₀H₉₅NO] + H⁺ which has a high degree of saturation with only three double bond equivalents. This peak was noted in the original mass spectra of the York brain extract as belonging to the hydrocarbon chains with limited functionality. It occurs in the spectra of the new York sample extracts and is observed in the data from samples from across all sites, but only at low relative intensities within the other sample spectra. It was not detected within the H14a extract.

The peaks at similar m/z values in the soil and solvent sample have an error of over 2 ppm for this empirical formula, and so it is unlikely that these signals are due to the same chemical compound.
Table 21. Su	mmary of signal	at <i>m/z</i> 726.	C _x H _y NO
--------------	-----------------	--------------------	----------------------------------

Calculated m/z	726.74844	C50H96NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	726.74855	0.13	Yes	188.1	32257322	10.7	110694
Y1a 2	726.74827	0.52	Yes	190.1	30493344	11.2	110574
Y1a 3	726.74844	0.27	Yes	201.2	34526444	10	110691
Original Heslington	726.74802	0.86	Yes	34.2	4418276	3.5	71627
H1a 1	726.74857	0.10	Yes	13.1	2252367	0.2	117629
H1a 2	726,74819	0.62	Yes	11.1	1851458	0.5	124308
H1a 3	726 74742	1.68	Yes	13	2006036	0.3	114214
H1b 1	726 7478	1 15	Yes	32.2	4881003	0.6	110264
H1b 2	726 74834	0.42	Vos	24.8	3702691	0.0	107/3/
H1b 3	726 74805	0.42	Vos	24.0	3264448	0.8	108939
H10 5	726.74803	1.36	Voc	21.8	2520024	0.8	116154
1120 1	720.74703	1.30	Voc	24.3	4222752	1.2	110154
1120 2	720.74756	1.47	Yes	20.9	4522752	1.5	112005
1120 3	720.74764	1.10	Yes	23.0	1066484	0.9	119512
H3a 1	726.74858	0.09	Yes	11.0	1966484	0.4	120995
H3a Z	726.74909	-0.61	Yes	10.8	1914474	0.3	11/605
нза з	/26./4/9/	0.93	Yes	6.1	1118661	0.1	141724
H4a 1	/26./484	0.33	Yes	46	8198388	0.5	112/3/
H4a 2	/26./48/3	-0.12	Yes	55.8	11040459	1.3	115034
H4a 3	726.74857	0.10	Yes	68.2	12378662	1.5	110288
H5a 1	726.74784	1.11	Yes	30.1	4000006	2.1	113171
H5a 2	726.74816	0.66	Yes	48.0	6622318	2.2	114753
H5a 3	726.74784	1.11	Yes	57.7	8518377	1.0	112878
H6a 1			No				
H6a 2	726.74856	0.11	Yes	2.9	708902	0.1	194568
H6a 3			No				
H7a 1	726.74819	0.62	Yes	9.7	1723820	0.4	107317
H7a 2	726.74872	-0.11	Yes	12.7	2284632	0.4	113296
H7a 3	726.74805	0.82	Yes	9.1	1637223	0.2	129032
H8a 1	726.74873	-0.11	Yes	13.6	2382552	0.4	123778
H8a 2	726.74853	0.15	Yes	15.3	2528610	0.6	119258
H8a 3	726.74891	-0.37	Yes	9.4	1609829	0.3	102010
H9a 1	726.74842	0.31	Yes	16.8	2812948	0.3	120668
H9a 2	726.74835	0.40	Yes	16.0	2692511	0.3	118304
H9a 3	726.74907	-0.59	Yes	5.5	1055526	0.2	102715
H10a 1			No				
H10a 2			No				
H10a 3	726,74777	1.20	Yes	7.5	1409001	0.4	120770
H11a 1	726 74896	-0.44	Yes	121.3	18688024	8.2	110217
H11a 2	726 74901	-0.50	Yes	66.8	10462792	1.4	111333
H1123	726 74852	0.50	Vos	37.6	4793903	3.7	11333
H12a 1	726 74923	-0.81	Vos	66.3	11558565	2.6	113/11
H12a 1	726.74525	-0.79	Vos	58.9	10101910	2.0	111972
H120 2	726.74922	-0.75	Vos	62.5	11224271	2.1	112780
H12a 5	726.74919	-0.75	Voc	202.6	50492152	12.0	112780
	720.74908	-0.60	Yes	292.0	30463132	12.0	110154
	726.74907	-0.59	Yes	233.9	37342444	9.0	110158
	720.74891	-0.30	Tes Ne	108.2	25222094	4.3	108814
H14a 1			NO				
H14a 2			NO				
H14a 3			NO				100000
H14bi 1	/26./4881	-0.23	Yes	8.4	1692047	0.2	123020
H14bi 2	/26./489	-0.36	Yes	1.1	14/92/4	0.2	118878
H14bi 3			NO				
V1a 1	/26./4852	0.17	Yes	278.5	47007488	2.1	110513
V1a 2	726.74855	0.12	Yes	283.1	47039084	7.5	109457
V1a 3	726.74838	0.37	Yes	249	39843428	8.5	109751
B1a 1	726.74884	-0.28	Yes	34.1	6204785	1.2	115516
B1a 2	726.74842	0.31	Yes	18.8	3082339	1	116442
B1a 3	726.74755	1.51	Yes	16.3	2470869	0.6	102186
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1	726.75157	2.19	No	4.8	1483061	0.2	127295
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2	726.75132	2.55	No	7.7	2138567	0.1	113853
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No	1			

Table 22 summarises the results for the peak at m/z 752. This was assigned an empirical composition of $[C_{52}H_{97}NO] + H^+$, for a species with 5 double bond equivalents. The signal was detected in all sample spectra except that of H14 (a and b) and not in any of the matrix, soil or solvent controls. The signal (both S:N and intensity) was particularly high in sample H13, but was also found in the York replicates, H4, H5, H11, H12, V1 and B1. It is present across samples of all age ranges and so appears a persistent product of degradation. Resolution is good across spectra, S:N is generally good and error in ppm is less than 2 ppm.

Table 22. Summary of signal at <i>m/z</i> 752. C _x H _y NC

Calculated m/z	752.7649	C52H98NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	752.76433	-0.05	Yes	426.7	73668544	24.5	105567
Y1a 2	752.76402	0.36	Yes	420.9	67828184	24.9	106701
Y1a 3	752.76421	0.10	Yes	443.9	76703072	22.3	106317
Original Heslington	752.76361	0.91	Yes	60.3	7758606	6.2	66434
H1a 1	752.76475	-0.61	Yes	8.8	1619584	0.2	120356
H1a 2	/52./6368	0.81	Yes	13.3	21/3432	0.5	11/61/
H1a 3	752.76320	1.45	Yes	21.4	1/9/412	0.3	122605
H1D 1 H1D 2	752.70328	1.35	Yes	31.5	4810499	0.0	108007
H1b 2	752 76356	0.00	Yes	23.3	4187793	1.0	107836
H2a 1	752 76346	1 11	Yes	12.8	2022146	0.4	117214
H2a 2	752.76374	0.74	Yes	13.2	2273174	0.7	118379
H2a 3	752.76313	1.55	Yes	10.7	1677798	0.5	122242
H3a 1	752.76413	0.22	Yes	22.2	3471432	0.6	107427
H3a 2	752.76443	-0.18	Yes	18.2	3003837	0.5	116743
H3a 3	752.76334	1.26	Yes	6.1	1130954	0.1	136898
H4a 1	752.76432	-0.04	Yes	135.0	23369060	1.4	106931
H4a 2	752.76469	-0.52	Yes	189.9	37208404	4.3	106641
H4a 3	752.76435	-0.08	Yes	216.4	38957276	4.7	105896
H5a 1	752.76349	1.07	Yes	72.2	9313175	4.9	107654
H5a 2	752.76368	0.81	Yes	114.9	15633533	5.1	107344
H5a 3	752.76362	0.89	res	156.2	22/40582	2.6	10/626
	752.76422	0.10	Voc	12.9	1815405	0.3	127140
H6a 3	752.70415	0.22	Vec	10.8	17253/1	0.2	12/140
H7a 1	752 76419	0.24	Yes	13.5	2302561	0.2	118180
H7a 2	752.76384	0.60	Yes	23.0	3912797	0.6	109845
H7a 3	752.76379	0.67	Yes	13.4	2292341	0.3	109801
H8a 1	752.76408	0.29	Yes	34.1	5497035	0.9	109311
H8a 2	752.76417	0.16	Yes	25.3	3992475	0.9	110081
H8a 3	752.76422	0.10	Yes	22.9	3479412	0.7	107879
H9a 1	752.76422	0.10	Yes	25.7	4099817	0.5	113987
H9a 2	752.76417	0.16	Yes	26.0	4150653	0.5	105196
H9a 3	752.76384	0.60	Yes	14.4	2294619	0.5	110249
H10a 1	752.76380	0.65	Yes	10.6	1843016	0.3	118218
H10a 2	752.70377	0.70	Vec	9.5	3009613	0.8	11370/
H11a 1	752 76478	-0.65	Yes	284.8	43903752	19.2	105371
H11a 2	752.76467	-0.50	Yes	137.2	21398716	2.8	106700
H11a 3	752.76413	0.21	Yes	77.2	9624112	7.4	106374
H12a 1	752.76501	-0.95	Yes	183.0	31192322	6.9	106398
H12a 2	752.76507	-1.03	Yes	179.1	29878288	6.1	107225
H12a 3	752.76495	-0.87	Yes	172.4	29808460	7.4	106172
H13aii 1	752.76490	-0.81	Yes	765.2	132357272	33.5	106471
H13aii 2	752.76490	-0.80	Yes	602.9	96410632	24.8	105206
H13aii 3	/52./6461	-0.42	Yes	434.8	65290308	11.1	106389
			No				
H14a 2			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1	752.76433	-0.05	Yes	115.5	19818032	0.9	107190
V1a 2	752.76432	-0.03	Yes	124.9	21224710	3.4	106302
V1a 3	752.76408	0.29	Yes	104.2	16995128	3.6	107427
B1a 1	752.76463	-0.45	Yes	111.4	19365608	3.8	106561
B1a 2	752.76416	0.17	Yes	/1.0	10/48262	3.5	107421
	/52./0380	0.58	No	35.2	4983908	1.2	111195
DHB 1 DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			NO				
Solvent 3			No				

This signal at m/z 754 was very strong in the spectra of the Villiers Street sample replicates and also in H13 and Y1a extract spectra, as shown in Table 23. The m/z was assigned the empirical formula [C₅₂H₉₉NO] + H⁺ which has 3 double bond equivalents. In the sample spectra the relative intensities and S:N for this m/z are not strong in H1, H3, H6, H7, H8, H9, H10 and H14b but it is only undetected in H14a. Although there were signals present in the soil controls at similar m/z values, these were over 2.5 ppm from the calculated value, and so are not likely to be from the same compound. This component is a regular presence across all sample ages and sites.

Calculated m/z	754.77994	C52H100NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	754.77980	0.19	Yes	490.6	84655504	28.2	105069
Y1a 2	754.77955	0.52	Yes	469.3	75596128	27.8	105439
Y1a 3	754.77973	0.28	Yes	524.4	90554136	26.3	105889
Original Heslington	754.77971	0.31	Yes	67.5	8652561	6.9	69242
H1a 1	754.77966	0.37	Yes	32.5	5086482	0.5	112584
H1a 2	754.77945	0.66	Yes	32.7	4871734	1.2	103651
H1a 3	754.77916	1.04	Yes	35.2	4926191	0.7	110306
H1b 1	754.77911	1.11	Yes	91.4	13381085	1.6	107191
H1b 2	754.77914	1.07	Yes	83.7	11830387	3.1	107114
H1b 3	754.77885	1.45	Yes	67.5	9505623	2.2	104517
H2a 1	754.77887	1.42	Yes	85.1	11662285	2.2	107772
H2a 2	754.77889	1.39	Yes	82.1	12449746	3.8	105555
H2a 3	754.77921	0.97	Yes	69.0	9183530	2.6	106226
H3a 1	754.77974	0.27	Yes	32.8	4982619	0.9	108321
H3a 2	754.78013	-0.25	Yes	35.0	5480909	0.9	103353
H3a 3	754.77963	0.41	Yes	22.4	3304082	0.4	112079
H4a 1	754.77976	0.24	Yes	111.8	19415652	1.1	107738
H4a 2	754.78002	-0.10	Yes	168.8	33123336	3.8	103464
H4a 3	754.77983	0.15	Yes	180.7	32590134	3.9	105319
H5a 1	754.77893	1.35	Yes	49.5	6483523	3.4	112279
H5a 2	754.77917	1.03	Yes	73.0	10049272	3.3	107497
H5a 3	754.77914	1.07	Yes	103.2	15139778	1.7	106352
H6a 1	754.77967	0.36	Yes	51.5	7661674	1.0	105992
H6a 2	754.77963	0.42	Yes	36.8	5419710	0.7	107452
H6a 3	754.77945	0.65	Yes	44.7	6593364	0.7	108663
H7a 1	754.77983	0.15	Yes	14.8	2492023	0.6	116360
H7a 2	754.77962	0.43	Yes	18.7	3245657	0.5	114700
H7a 3	754.77937	0.76	Yes	17.6	2906985	0.4	108057
H8a 1	754.77973	0.29	Yes	42.9	6827325	1.2	108756
H8a 2	754.77987	0.10	Yes	32.6	5049735	1.2	104566
H8a 3	754.77951	0.58	Yes	37.4	5470523	1.1	108442
H9a 1	754.77974	0.26	Yes	51.1	7839163	1.0	107956
H9a 2	754.77967	0.37	Yes	52.4	8036458	0.9	105481
H9a 3	754.77935	0.78	Yes	23.5	3550127	0.8	110000
H10a 1	754.77972	0.30	Yes	8.6	1545106	0.3	126633
H10a 2	754.77936	0.77	Yes	7.9	1303633	0.7	127930
H10a 3	754.77951	0.58	Yes	14.9	2480514	0.7	111549
H11a 1	754.78030	-0.48	Yes	306.2	47180304	20.6	104591
H11a 2	754.78026	-0.42	Yes	173.2	26921368	3.5	105226
H11a 3	754.77977	0.23	Yes	100.1	12395763	9.5	105932
H12a 1	754.78051	-0.75	Yes	208.7	35527060	7.9	105727
H12a 2	754.78053	-0.78	Yes	213.5	35546456	7.2	105171
H12a 3	754.78049	-0.73	Yes	204.2	35230968	8.8	106881
H13aii 1	754.78039	-0.59	Yes	694.6	120171928	30.4	104979
H13aii 2	754.78041	-0.62	Yes	566.9	90670336	23.3	104627
H13aii 3	754.78020	-0.34	Yes	398.4	59863876	10.2	105733
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	754.78025	-0.40	Yes	13.8	2553951	0.3	114424
H14bi 2	754.78107	-1.50	Yes	5.0	1084193	0.2	130873
H14bi 3			No				
V1a 1	754.77981	0.17	Yes	1752.4	295897120	13.5	105688
V1a 2	754.77984	0.13	Yes	1819.1	304607584	48.4	105580
V1a 3	754.77968	0.35	Yes	1527.4	244459808	52.2	105801
B1a 1	754.78010	-0.21	Yes	115.9	20149168	3.9	106195
B1a 2	754.77979	0.21	Yes	79.8	12033674	3.9	104920
B1a 3	754.77943	0.68	Yes	58.9	8132372	1.9	108494
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1	754.78185	-2.53	No	5.3	1610655	0.2	115689
Soil 3a 2	754.78293	-3.96	No	4.3	1386710	0.1	114284
Soil 3a 3	754.78289	-3.91	No	4.0	1270467	0.3	144028
Soil 3b 1	754.78347	-4.67	No	7.1	2077755	0.3	110540
Soil 3b 2	754.78250	-3.39	No	7.7	2184976	0.1	114641
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 23. Summary of signal at *m/z* 754. C_xH_yNO

Table 24 summarises the results of the mass spectra in respect to the signal at m/z 778. The assigned compound [C₅₄H₉₉NO] + H⁺ has six double bond equivalents and is most strongly detected in the extracts of H13 and Y1. It was not detected in the sample extracts from H2, H14 (a or b) or any of the controls. The S:N and relative signal intensity in the original York analysis are moderate, as they are in extracts of H4, H5, H11 and H12. In the other samples where this component is detected, the relative intensities are much lower, but resolution remains good.

Table 24. Summary of signal at <i>m/z</i> 778. C _x H _y N	0
--	---

Calculated m/z	778.77994	C54H100NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	778.77990	0.06	Yes	390.1	67360424	22.4	102664
Y1a 2	778.77962	0.41	Yes	365.8	58931428	21.6	102333
Y1a 3	778.77980	0.18	Yes	408.2	70545168	20.5	102638
Original Heslington	778.77916	1.01	Yes	62.3	8010677	6.4	63985
H1a 1			No				
H1a 2	778.78036	-0.54	Yes	7.0	1295196	0.3	129064
H1a 3	778.81537	1.23	Yes	34.4	4832168	0.7	106708
H1b 1	//8.//914	1.03	Yes	16.0	2606084	0.3	113/2/
H10 2	778.77962	0.41	Yes	8.3	1465614	0.4	101770
H10 3	778.77849	1.80	No	13.0	2090258	0.5	80/95
			No				
H2a 3			No				
H3a 1	778.81601	1.33	Yes	18.3	2918281	0.5	100553
H3a 2	778.78017	-0.29	Yes	5.7	1167948	0.2	112514
H3a 3	778.81584	1.38	Yes	10.8	1758802	0.2	115267
H4a 1	778.77986	0.10	Yes	174.1	29999554	1.8	102322
H4a 2	778.78022	-0.35	Yes	258.3	50702156	5.8	101725
H4a 3	778.77997	-0.03	Yes	279.5	50453408	6.1	102511
H5a 1	778.77905	1.14	Yes	75.9	9857823	5.2	104703
H5a 2	778.77921	0.94	Yes	126.4	17326014	5.7	103056
H5a 3	778.77916	1.00	Yes	178.2	26043088	3.0	102863
H6a 1	778.77887	1.38	Yes	10.2	1778931	0.2	110465
H6a 2	//8.//916	1.01	Yes	3.9	861289	0.1	1/208/
H6a 3	778.77846	1.91	Yes	6.9	1284320	0.1	11/092
	778 77011	0.11	Yes	5.0	1246278	0.3	122704
H7a 3	778 77968	0.33	Yes	7.0	1354547	0.2	125866
H8a 1	778 77988	0.08	Yes	33.7	5456989	0.2	105420
H8a 2	778.77978	0.21	Yes	20.2	3264597	0.8	114258
H8a 3	778.77968	0.34	Yes	20.1	3101994	0.6	107561
H9a 1	778.77979	0.19	Yes	27.2	4322449	0.5	101277
H9a 2	778.77958	0.47	Yes	21.8	3534004	0.4	105277
H9a 3	778.77907	1.12	Yes	5.3	1054638	0.2	123219
H10a 1	778.77973	0.28	Yes	4.2	930679	0.2	119081
H10a Z	778.77864	1.67	Yes	8.9	1441490	0.7	104200
H11a 1	778 78045	-0.65	Voc	20.0	15627888	19.9	104599
H11a 2	778,78036	-0.53	Yes	165.6	25906332	3.4	102751
H11a 3	778.77968	0.34	Yes	77.0	9645057	7.4	103626
H12a 1	778.78066	-0.93	Yes	197.6	33389980	7.4	102683
H12a 2	778.78063	-0.89	Yes	200.4	33164114	6.7	102209
H12a 3	778.78060	-0.84	Yes	187.6	32149282	8.0	102369
H13aii 1	778.78052	-0.74	Yes	907.6	156401504	39.6	102470
H13aii 2	778.78053	-0.76	Yes	716.9	114516608	29.4	102093
H13aii 3	778.78026	-0.41	Yes	472.8	70994632	12.0	102765
H14a 1			NO				
H14a Z			NO				
H14a 5			No				
H14bi 2			No				
H14bi 3			No				
V1a 1	778.78002	-0.10	Yes	30.2	5444243	0.2	104506
V1a 2	778.77999	-0.06	Yes	34.0	6027291	1.0	106477
V1a 3	778.77989	0.06	Yes	21.7	3805239	0.8	113907
B1a 1	778.78039	-0.57	Yes	132.7	23072326	4.5	101963
B1a 2	778.77979	0.20	Yes	80.7	12240507	4.0	103406
	//8.//944	0.05	No	39.2	5543994	1.5	109301
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soll 3b 3		ļ	NO		ļ		
Solvent 2			No				
Solvent 3			No				

The next assigned compound, in Table 25, has two more hydrogens than that of the previous compound, shown in Table 24. The ion is assigned as $[C_{54}H_{101}NO] + H^+$, for a component with five double bond equivalents, and it has a similar detection pattern. The peak in the mass spectra of H13 and Y1 has high S:N and relative intensity %, with moderate detection in sample extracts H4, H5, H11 and H12, as well as the original York analysis. It is also not detected in H14 (a and b) and the controls. A significant difference is that this more saturated compound is detected in the H2 extract, although at low intensity, while $[C_{54}H_{99}NO] + H^+$ is not.

	Table 25.	Summary	/ of signal a	at <i>m/z</i> 780.	C _x H _y NO
--	-----------	---------	---------------	--------------------	----------------------------------

Sample designation + MALD1 regletants Present Fror [pan] Present S.M. Intensity Rel. Int. 5: Resolution Yia 1 780,75543 0.22 [Vest 330.2 67344550 22.4 1910075 Yia 2 780,7555 0.33 [Vest 422.5 59974812 59974812 59974812 59974812 100076 Original Healington 780,7953 0.26 [Vest 412.2 7120004 200.2 19983 Hia 2 780,7950 0.66 [Vest 42.3 24696455 0.05 101076 Hia 2 780,7940 0.02 [Vest 42.6 3212351 0.0 10075 Haa 1 780,7941 1.65 [Vest 1.14 1206030 0.6 106663 Haa 1 780,7941 0.65 [Vest 1.14 2216821 0.6 106876 Haa 2 780,7954 0.11 [Vest 1.14 2216821 0.6 106876 Haa 1 780,7954 0.21 [Vest 1.14 223487 0.4 108276 Haa 1 780	Calculated m/z	780.79564	C54H102NO					
MALD replicate no.ProceedPr	Sample designation +	Measured						
Yia 1 780.7553 0.2 [vis] 300.2 67344500 22.4 99122 Yia 2 780.7536 0.3 [vis] 412.2 7201024 22.0 100076 Yia 3 780.7535 0.3 [vis] 642.2 7201024 20.7 9986 Hia 1 780.7550 0.41 [vis] 64.6 121233 0.3 139013 Hia 2 780.7550 0.66 [vis] 7.3 126893 0.2 101744 Hib 1 780.7956 0.62 [vis] 2.4 466345 0.6 19937 Hib 3 780.7941 1.65 [vis] 1.11 1953300 1.08765 Ha2 2 780.7941 1.65 [vis] 1.14 221621 0.6 19999 H3a 1 780.7941 0.5 [vis] 1.14 221621 0.6 19999 H3a 2 780.7941 0.5 [vis] 1.17 223650 0.4 12622 H3a 2 780.7946 0.5 [vis] 1.17 223650 0.4 1262451	MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Yia 2 780.753.6 0.35 (vs. 43.2 897.4812 22.0 10007.40 Via 3 780.753.9 0.36 (vs. 63.3 81.60934 6.6 6553 Mia 1 780.753.7 0.41 (vs. 6.6 6553 81.60934 6.6 6553 Mia 1 780.75927 0.41 (vs. 6.6 612333 0.3 19013 Hib 1 780.79455 0.11 (vs. 5.2 982.6 933.1251 0.7 10.0766 Hib 2 780.79451 0.62 (vs. 7.2 982.6 933.1251 0.7 10.0766 Hib 2 780.7951 0.11 (vs. 1.4 2.248.27 0.6 3192.51 0.4 10.062.7 Ha 1 780.7961 0.25 (vs. 17.4 2.248.27 0.6 10.062.4 Ha 2 780.7963 0.12 (vs. 17.4 2.935.556 0.12 (vs. 17.4 2.935.556 0.22 (vs. 17.2 3.931.0 0.5 10.064 Ha 2 780.795.0 0.55 (vs.	Y1a 1	780.79543	0.2	Yes	390.2	67344560	22.4	99152
Yi a 3 780.7530 0.3 (vs.) 4122 71201024 20.7 99886 Hia 1 780.7530 0.5 (vs.) 0.53 81.054 6.6 6553 Hia 2 780.75908 0.66 (vs.) 7.8 1226893 0.2 101784 Hia 3 780.75908 0.66 (vs.) 7.8 1226893 0.2 101784 Hib 1 780.79497 0.8 (vs.) 2.4 4945345 0.6 100704 Hib 2 780.79491 0.67 (vs.) 2.11 107807 101765 1118 1940390 0.6 108668 Hib 3 780.7941 1.52 (vs.) 1142 234357 0.4 108929 Hia 1 780.7964 -0.57 (vs.) 17.5 1323180 0.2 104242 Hia 1 780.79575 -0.12 (vs.) 17.2 335878 0.4 108696 Hia 1 780.79575 -0.12 (vs.) 17.2 335876 0.4 113578 Hia 1 780.79532 0.13 (vs.) 1.8	Y1a 2	780.79516	0.55	Yes	372.8	59974812	22.0	100076
Original Hesington 780.79539 0.26 (vs. 6.3.5 810.0924 6.6 68533 Hia 1 780.79527 0.41 (vs. 6.4 122223 0.3 119034 Hib 2 780.79655 1.21 (Vs. 3.24 496.3455 0.6 107744 Hib 1 780.7945 1.21 (Vs. 3.31251 0.0 10065 Hib 2 780.7941 1.65 (Vs. 1.11 1950390 0.6 108747 H2a 1 780.7941 1.52 (Vs. 1.11 1950390 0.6 108626 H2a 3 780.7951 0.11 (Vs. 1.47 223.8375 0.4 102527 H3a 2 780.79604 -0.57 (vs. 7.5 1323180 0.4 102527 H4a 2 780.79567 -0.22 (vs. 1.12 (vs. 1.97 201606 3.3 97840 H4a 2 780.79557 0.21 (vs. 1.97 201505 3.4 98245 3.4 98245 H4a 3 780.79551 1.18 (vs. 1.92	Y1a 3	780.79536	0.3	Yes	412.2	71201024	20.7	99868
Hia 1 No Control Control Control Control Hia 2 780.7950 0.65 Yes 7.3 1202833 0.2 101744 Hib 1 780.7950 0.65 Yes 22.4 496345 0.6 101744 Hib 2 780.79497 0.8 Yes 22.4 495345 0.6 101744 Hib 3 780.7941 0.5 Yes 110 1780599 0.6 10863 H2a 1 780.7951 0.11 Yes 14.2 22357 0.4 102652 H3a 1 780.7961 0.5 Yes 17.8 261033 0.4 102652 Haa 2 780.7964 0.5 Yes 17.8 235456 1.2 10444 Haa 3 780.7965 0.12 Yes 18.3 306160 3.5 1984 Haa 3 780.7965 0.12 Yes 132.2 3310.05 10647 Haa 3 780.79520 0.5	Original Heslington	780.79539	0.26	Yes	63.5	8160934	6.6	66553
Ha2 780.7557 0.41 Ves 0.4 121223 0.3 11901 Hib1 780.7965 1.21 Ves 2.24 4963455 0.6 107744 Hib2 780.79511 0.62 Ves 2.24 4963455 0.6 10787 Hib3 780.79511 0.62 Ves 2.06 3131251 0.7 110765 H2a1 780.7951 0.11 Ves 1.14 720.5951 0.11 Ves 1.47 720.8252 0.6 0.69 0.69 106620 0.8 1.41 720.7351 0.4 102652 1.6 102652 1.6 102652 1.6 102652 1.6 102652 1.2 102652 1.6 102652 1.6 102652 1.6 102652 1.6 102652 1.6 102652 1.6 102642 1.6 102652 1.6 102642 1.6 102642 1.6 102642 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 <t< th=""><th>H1a 1</th><th></th><th></th><th>No</th><th></th><th></th><th></th><th></th></t<>	H1a 1			No				
Hia 3 //20.7508 U.E Kes J.Z J269893 U.Z J01/14 Hib 1 780.79497 0.8 Ves 25.4 382151 1.0 108165 Hib 2 780.79497 0.8 Ves 25.4 382151 0.7 100764 Hib 3 780.79431 1.55 Ves 11.0 1786666 0.3 108270 Haa 1 780.79511 0.11 Ves 14.7 2216821 0.6 9994 Haa 1 780.79612 0.67 Ves 15.7 261333 0.4 10524 Haa 2 780.79612 0.57 Ves 117.2 2060160 3.9 97840 Haa 2 780.79542 0.15 Ves 117.2 2060160 3.9 97840 Haa 2 780.79551 0.11 Ves 18.3 22.8 103147 398678 4.3 106420 Haa 2 780.79530 0.5 Ves 1.22.8 1382210.0 0.5	H1a 2	780.79527	0.41	Yes	6.4	1212323	0.3	119013
H ID 780.7945 I.12 ItS 22.4 3993450 0.05 10/74 H ID 780.79511 0.62 Vesi 2.04 331251 0.7 110765 H ID 780.79511 0.62 Vesi 2.04 331251 0.7 110765 H ID 780.79511 0.62 Vesi 1111 1950390 0.66 108623 H ID 780.7944 1.52 Vesi 1142 2246375 0.4 108909 H ID 780.7940 0.57 Vesi 117.6 2034596 1.2 98755 H ID 780.7940 0.15 Vesi 117.7 2034596 1.2 98755 H ID 780.79476 1.16 Vesi 117.7 2034596 3.1 91643 H ID 780.7950 0.11 Vesi 197.9 313 106470 H ID 780.7950 0.5 Vesi 17.9 2831277 0.4 135226 H ID	H1a 3	780.79508	0.66	Yes	7.3	1269893	0.2	101784
HD 2 780.79497 LOS Kts 2.54 Bac1912 LD LD LD H2a 1 780.79431 LGS Kes LD 110055 H2a 1 780.79431 LGS Kes LD 110055 H2a 2 780.79551 LL Kes LA 2236523 O.6 9494 H3a 1 780.79512 O.67 Kes LD 22354596 L1 950796 H3a 3 780.79612 O.67 Kes 1373 3968746 L3 233530 O.2 10244 Haa 2 780.79551 O.11 Kes 1373 3968744 L3 9226 H5a 1 780.79655 O.12 Kes B22 1322 L3 106140 H6a 1 780.79650 O.5 Kes 132 2300156 O.4 113577 O.4 113577 O.4 113577 O.4 113577 O.4 113577 O.4 1135970 O.4 10637	H101	780.79465	1.21	Yes	32.4	4963456	0.6	107704
TAD 3 780.7941 1.66 15.0 20.0 3.312.31 0.1 11.0075 H2a 1 780.79441 1.65 Yes 11.0 1506668 0.3 108270 H2a 2 780.79451 0.51 Yes 11.4 1506668 0.6 108675 H3a 1 780.79551 0.11 Yes 11.7 260103 0.4 108909 H3a 2 780.79564 -0.57 Yes 7.5 132130 0.2 10242 H4a 2 780.79576 -0.22 Yes 7.5 1323180 0.2 10242 H4a 2 780.79576 -0.22 Yes 3.5 551653 2.8 104169 H5a 1 780.79450 1.05 Yes 66.4 9331768 3.1 96140 H5a 3 780.79520 0.5 Yes 15.2 2303156 0.5 1031675 0.3 106470 H5a 3 780.79550 0.5 Yes 11.5 2303156 0.5 <th>H10 Z</th> <th>780.79497</th> <th>0.8</th> <th>Yes</th> <th>25.4</th> <th>3821912</th> <th>1.0</th> <th>108165</th>	H10 Z	780.79497	0.8	Yes	25.4	3821912	1.0	108165
nrad 780.7932 1.00 100	H10 3	780.79511	0.02	Yes	20.0	1706660	0.7	109270
Tab. Tob. Tob. <th< th=""><th>H7a 7</th><td>780.79431</td><td>1.03</td><td>Voc</td><td>11.0</td><td>1950390</td><td>0.5</td><td>108270</td></th<>	H7a 7	780.79431	1.03	Voc	11.0	1950390	0.5	108270
H3a 1 780.79491 0.88 Yes 142.2 2343575 0.4 109909 H3a 2 780.79644 -0.67 Yes 1.7 2661083 0.4 100552 H4a 1 780.79548 0.15 Yes 1.7.6 20354596 1.2 102442 H4a 2 780.79576 -0.22 Yes 1.7.2 24080160 3.5 97840 H4a 2 780.79476 1.06 Yes 38.9 5251633 2.8 104169 H5a 1 780.79476 1.06 Yes 89.2 1332311 1.5 95236 H5a 2 780.79520 0.5 Yes 1.9 233170 0.5 1155 H6a 1 780.79550 0.69 Yes 1.5 230156 0.5 106694 H7a 1 780.79551 0.27 Yes 1.6 1.22821 1.3 11422 H8a 3 780.79550 0.61 Yes 1.5 230438 0.7 104116	H2a 3	780.79551	0.11	Yes	14.7	2216821	0.6	94994
H3a 2 780.76612 -0.67 Yes 7.5 123380 0.4 102522 H3a 1 780.79548 0.15 Yes 17.6 20364596 1.2 8757 H4a 2 780.79576 0.22 Yes 172.2 34080160 3.9 97840 H4a 3 780.79576 0.12 Yes 379.7 9589784 4.3 92956 H5a 1 780.79551 0.11 Yes 389.9 5251653 2.8 104169 H5a 2 780.79453 0.5 Yes 252 393120 0.5 105004 H6a 1 780.7952 0.3 Yes 7.9 281277 0.3 1046470 H7a 1 780.79559 0.65 Yes 1.15 2030156 0.5 106474 H7a 2 780.79550 0.31 Yes 9.6 1282654 0.3 122821 H7a 3 780.79550 0.65 Yes 1.5 2030156 0.5 106474 H8a 3 780.79550 0.61 Yes 1.6 122824 10.6 <	H3a 1	780.79491	0.88	Yes	14.2	2343575	0.4	108909
H3B 3 780.79504 -0.57 Yes H7.5 132380 0.2 102442 H4a 1 780.79548 0.15 Yes 117.6 20354596 1.2 98755 H4a 2 780.79576 0.12 Yes 172.2 30400160 39 97840 H5a 1 780.79551 0.11 Yes 38.9 5211653 2.8 104166 H5a 2 780.79451 1.28 Yes 38.9 5211653 2.8 101416 H5a 3 780.79453 1.24 Yes 89.2 13232211 595236 10504 H6a 3 780.79550 0.65 Yes 11.5 203156 0.3 12228127 0.3 114274 H7a 2 780.79551 0.31 Yes 11.5 203156 0.3 12228127 H7a 3 780.79541 0.27 Yes 11.5 250026 0.6 122881 H7a 2 780.79550 0.65 Yes 15.1 2520926 0.6 122881 H7a 2 780.79550 0.02 Yes 15.1	H3a 2	780.79612	-0.67	Yes	15.7	2661083	0.4	102652
H4a1 780.79548 0.15 Yes 117.6 2034396 1.2 97755 H4a2 780.79576 -0.22 Yes 172.2 34080160 3.9 97840 Ha3 780.79551 0.11 Yes 38.9 5251653 2.8 104169 H5a1 780.79463 1.24 Yes 38.9 5251653 2.8 104169 H5a2 780.79463 1.24 Yes 88.9 1328211 15 95236 H6a1 780.79502 0.5 Yes 12.4 2031376 0.4 113379 H6a2 780.79509 0.65 Yes 11.5 2030156 0.5 106694 H7a1 780.79509 0.65 Yes 12.4 2151055 0.3 1128221 H7a3 780.79551 0.31 Yes 15.0 225028 0.5 10614 H8a1 780.79550 0.31 Yes 15.0 225028 0.5 11612 H7a3 780.79550 0.31 Yes 15.0 250287 0.5 11612	H3a 3	780.79604	-0.57	Yes	7.5	1323180	0.2	102442
H42 2 780.79556 -0.22 Ves 172.2 34080160 3.9 97840 H43 3 780.79551 0.11 Ves 197.9 35985784 3.1 99296 H5a 1 780.79459 1.28 Ves 3.8 525163 2.8 10416 H5a 2 780.79450 1.08 Ves 88.2 12322311 15 59236 H6a 1 780.79532 0.35 Ves 12.2 3933120 0.5 105004 H6a 2 780.79571 0.69 Ves 11.5 2031575 0.60 106470 H7a 1 780.79501 0.69 Ves 12.4 2161055 0.3 122281 H7a 2 780.79510 0.65 Ves 16.1 250262 0.6 122981 H8a 1 780.79554 0.06 Ves 16.1 250262 0.6 10624 H9a 2 780.79554 0.06 Ves 16.1 2304991 0.3 10552 H0a 1 780.79560 0.64 Ves 16.4 3394348 0.6	H4a 1	780.79548	0.15	Yes	117.6	20354596	1.2	98755
Ha3 780.79551 0.11 Ves 197.9 33985784 4.3 99226 HSa1 780.79459 1.28 Ves 38.9 5251653 2.8 104160 HSa2 780.79463 1.24 Ves 66.4 9331768 3.1 96140 HSa3 780.79463 1.24 Ves 66.4 9331768 3.1 95236 HSa1 780.79520 0.55 Yes 1.24 3013675 0.4 113579 HGa1 780.79505 0.69 Yes 1.1.5 2030156 0.5 106674 H7a1 780.79500 0.65 Yes 1.2.6 1282854 0.3 1122281 HSa2 780.79554 0.06 Yes 1.6.1 2550287 0.5 11061 HSa2 780.79550 0.03 Yes 1.3 4457007 0.4 106824 H3a3 780.79550 0.04 Yes 1.6 1328621 0.2 10242	H4a 2	780.79576	-0.22	Yes	172.2	34080160	3.9	97840
HSa 1 780.79456 1.28 Yes 38.9 5251653 2.8 104169 HSa 2 780.79466 1.24 Yes 89.2 13282311 1.5 95236 HGa 1 780.79532 0.5 Yes 25.2 393120 0.5 105040 HGa 2 780.79552 0.55 Yes 17.9 2831277 0.3 106470 H7a 1 780.79571 0.55 Yes 11.5 2030156 0.5 106694 H7a 2 780.79541 0.24 Yes 9.6 1828654 0.3 122821 H7a 3 780.79551 0.65 Yes 12.4 2161055 0.3 1122821 H8a 1 780.79550 0.67 Yes 15.0 252026 0.6 122881 H8a 2 780.79550 0.01 Yes 27.3 433803 0.5 106404 H9a 1 780.79557 0.09 Yes 27.4 3436700 0.4 10552 H1a 1 780.79567 0.09 Yes 5.4 994568 0.5	H4a 3	780.79551	0.11	Yes	197.9	35985784	4.3	99296
HSa 2 780.79476 1.06 Yes 66.4 9331768 3.1 95140 HSa 3 780.79520 0.5 Yes 13282311 15 95236 HGa 1 780.79520 0.5 Yes 19.4 301675 0.4 11357 HGa 2 780.79505 0.66 Yes 19.4 301675 0.4 11357 H7a 1 780.79507 1.05 Yes 11.5 2030156 0.5 106644 H7a 2 780.79509 0.65 Yes 11.5 2230156 0.3 1122821 H7a 3 780.79509 0.65 Yes 12.4 2161055 0.3 1122821 H8a 2 780.79510 0.61 Yes 21.6 3934348 0.7 101244 H8a 2 780.79550 0.01 Yes 21.4 3467007 0.4 106878 H9a 1 780.79550 0.01 Yes 13.6 2394588 0.5 145630 H10a 1 780.79526 0.43 Yes 13.6 2306067 0.6 1039484 <	H5a 1	780.79459	1.28	Yes	38.9	5251653	2.8	104169
HSa 3 780.79463 1.24 Yes 89.2 13282311 1.5 95236 HSa 1 780.79520 0.5 Yes 17.4 2831277 0.3 105404 HGa 3 780.79530 0.69 Yes 17.3 2831277 0.3 106470 HTa 1 780.79500 0.69 Yes 17.5 203165 0.5 106694 HTa 2 780.79514 0.24 Yes 9.6 1226654 0.3 122821 HTa 3 780.79500 0.65 Yes 15.0 2520926 0.6 122981 HSa 3 780.79553 0.27 Yes 15.0 2520926 0.6 122981 HSa 3 780.79550 0.01 Yes 21.4 3467007 0.6 122981 HSa 3 780.79550 0.02 Yes 21.4 3467007 0.2 130816 H9a 3 780.79550 0.01 Yes 21.4 3467007 0.6 10338 H1a 1 780.79526 0.43 Yes 21.6 333844 2.4 101024 </th <th>H5a 2</th> <td>780.79476</td> <td>1.06</td> <td>Yes</td> <td>66.4</td> <td>9331768</td> <td>3.1</td> <td>96140</td>	H5a 2	780.79476	1.06	Yes	66.4	9331768	3.1	96140
H6a 1 780.79520 0.5 Yes 25.2 393120 0.5 10500 H6a 2 780.79505 0.69 Yes 17.9 2831277 0.3 106470 H7a 1 780.79505 0.69 Yes 11.5 2030156 0.5 106694 H7a 2 780.79505 0.69 Yes 11.5 2030156 0.5 106614 H7a 2 780.79505 0.65 Yes 12.4 2161055 0.3 114274 H8a 1 780.79551 0.31 Yes 23.6 3934348 0.7 104116 H8a 2 780.79551 0.66 Yes 16.1 2550287 0.5 116011 H9a 1 780.79550 0.61 Yes 21.4 3467007 0.4 106878 H9a 2 780.79550 0.01 Yes 21.4 3467007 0.4 10587 H10a 1 780.79550 0.03 Yes 13.6 230607 0.6 1032451 H10a 1 780.79560 0.23 Yes 13.6 230607 0.6 10051<	H5a 3	780.79463	1.24	Yes	89.2	13282311	1.5	95236
H6a 2 780.7952 0.35 Yes 19.4 3013675 0.4 11357 H6a 3 780.79505 0.69 Yes 17.9 283127 0.3 106470 H7a 1 780.79547 1.05 Yes 9.6 1828654 0.3 122821 H7a 2 780.79541 0.24 Yes 9.6 1828654 0.3 122821 H8a 1 780.79551 0.31 Yes 15.0 2520926 0.6 122881 H8a 3 780.79550 0.06 Yes 15.0 2520926 0.6 122881 H9a 2 780.79550 0.06 Yes 16.1 2502927 0.5 116011 H9a 3 780.79550 0.01 Yes 21.4 3467007 0.4 10687 H9a 3 780.79557 0.09 Yes 5.4 994568 0.5 145630 H10a 1 780.79543 0.21 Yes 18.6 2306607 0.6 145630 H11a 2 780.79543 0.21 Yes 18.0 3894684 2.4 101570	H6a 1	780.79520	0.5	Yes	25.2	3933120	0.5	105004
Hea 780 (7505) 0.69 (ves) 17.9 2831/7 0.8 1084/7 H7a 780 (79477) 1.05 (ves) 9.6 1828654 0.3 122821 H7a 780 (79505) 0.65 (ves) 12.4 2161055 0.3 114274 H8a 780 (79535) 0.65 (ves) 12.4 2161055 0.3 114274 H8a 780 (79535) 0.06 (ves) 16.1 2550287 0.05 116011 H9a 780 (79550) 0.61 (ves) 27.3 433903 0.5 100244 H9a 780 (79550) 0.01 (ves) 27.4 3450007 0.4 106891 H9a 780 (79557) 0.01 (ves) 2.1.4 3450007 0.6 100344 H0a 780 (79567) -0.09 (ves) 6.6.9 1328621 0.2 130816 H10a 780 (79567) -0.04 (ves) 16.3 13024376 6.7 99894 H11a 780 (79567) -0.68 (ves) 1803 30241376 6.7	H6a 2	780.79532	0.35	Yes	19.4	3013675	0.4	113579
H7a 1 780.79541 0.24 Yes 9.6 1828654 0.3 122821 H7a 2 780.79550 0.65 Yes 12.4 2161055 0.3 114224 H8a 1 780.79531 0.31 Yes 23.6 3934348 0.7 104116 H8a 2 780.79551 0.27 Yes 15.0 252026 0.6 1122981 H8a 3 780.79554 0.06 Yes 16.1 2550287 0.5 116011 H9a 1 780.79550 0.63 Yes 27.3 4339803 0.5 102642 H9a 2 780.79550 0.8 Yes 7.1 1304991 0.3 105529 H0a 1 780.79567 -0.09 Yes 6.9 1328621 0.2 130816 H10a 2 780.79526 0.43 Yes 13.6 2300607 0.6 109385 H11a 1 780.79626 -0.43 Yes 13.6 2300607 0.6 109385 H11a 2 780.79627 -0.66 Yes 180.3 3041376 6.7 99894 H11a 2 780.79626 -0.43 Yes 180.3 3041376 6.7 99894 H11a 3 780.79626 -0.63 Yes 180.3 3041376 6.7 99894 H12a 1 780.79608 -0.63 Yes 180.5 1055512 26.8 99466 H12a	H6a 3	/80./9505	0.69	Yes	17.9	28312//	0.3	106470
nra 2 760.79509 0.65 yes 1.24 216105 0.3 1.22281 HBa 1 780.79509 0.61 yes 1.24 216105 0.3 1.22281 HBa 2 780.79531 0.31 yes 1.50 2.520926 0.6 1.22981 HBa 3 780.79551 0.63 yes 27.3 4.339803 0.5 1.0641 H9a 1 780.79510 0.63 yes 27.1 1304991 0.3 105529 H10a 1 780.79530 0.01 yes 2.1.4 346707 0.4 106878 H10a 2 780.79530 0.03 yes 5.4 99456 0.5 145630 H10a 3 780.79526 0.43 yes 13.6 2300607 0.6 109385 H11a 1 780.79540 0.41 yes 16.61 1838664 2.4 01570 H11a 2 780.79543 0.2 yes 170.1 28951845 7.2 99851 H11a 3 780.7962 -0.77 yes 170.1 2895186	H/a 1	780.79477	1.05	Yes	11.5	2030156	0.5	100094
1783 780.79535 0.01 Yes 12.6 1934348 0.7 104116 H8a 1 780.79554 0.06 Yes 150 2520926 0.6 122981 H8a 3 780.79554 0.06 Yes 15.1 2520926 0.5 116011 H9a 1 780.79550 0.38 Yes 27.3 4339803 0.5 102642 H9a 2 780.79550 0.38 Yes 7.1 1304991 0.3 105529 H10a 1 780.79550 0.38 Yes 7.1 132621 0.2 13885 H10a 2 780.79543 0.21 Yes 5.4 994568 0.5 145630 H10a 3 780.79543 0.21 Yes 16.3 13396864 2.4 101724 H11a 1 780.79543 0.22 Yes 66.1 8356096 6.4 101024 H11a 3 780.79562 0.43 Yes 18.3 30241376 6.7 99884 H12a 1 780.79626 -0.65 Yes 180.3 30241376 6.7 99872 H12a 3 780.79626 -0.63 Yes 495.9 7279040	H7a 2	780.79541	0.24	Voc	9.0 12.4	2161055	0.5	11/27/
No. 2 160.79581 -0.27 Yes 15.0 2520926 0.6 12281 H8a 2 780.79554 0.06 Yes 16.1 2520926 0.6 12281 H9a 1 780.79550 0.63 Yes 21.4 3436707 0.4 106878 H9a 2 780.79501 0.38 Yes 7.1 1304991 0.3 105529 H10a 1 780.79567 -0.09 Yes 6.9 1328621 0.2 130816 H10a 2 780.79567 -0.09 Yes 13.6 2300607 0.6 109385 H11a 2 780.79526 0.43 Yes 11.6 13386844 2.4 101570 H11a 2 780.79543 0.2 Yes 166.1 8356096 6.4 101024 H12a 2 780.79562 -0.35 Yes 187.2 37069116 6.3 98851 H12a 3 780.79508 -0.63 Yes 495.9 7927900 20.4 97652	H8a 1	780.79505	0.03	Yes	23.6	3934348	0.3	104116
H8a 3 780.79554 0.06 Yes 16.1 2550287 0.5 116011 H9a 1 780.79550 0.03 Yes 27.3 4339803 0.5 102642 H9a 2 780.79550 0.01 Yes 2.1 4367007 0.4 108529 H10a 1 780.79567 -0.09 Yes 6.9 1328621 0.2 130816 H10a 2 780.79567 -0.09 Yes 6.9 1328621 0.2 130816 H10a 3 780.79567 -0.09 Yes 16.3 2300607 0.6 103355 H11a 3 780.79501 -0.13 Yes 116.3 18396864 2.4 101570 H11a 3 780.79527 -0.36 Yes 180.3 30241376 6.7 99854 H12a 1 780.79626 -0.63 Yes 187.2 3076916 6.3 99853 H12a 1 780.79608 -0.63 Yes 314.4 47327236 8.0 99116	H8a 2	780.79581	-0.27	Yes	15.0	2520926	0.6	122981
H9a 1 780.79510 0.63 Yes 27.3 4339803 0.5 102642 H9a 2 780.79559 0.01 Yes 21.4 3467007 0.4 106878 H9a 3 780.79550 0.03 Yes 7.1 1304991 0.3 105529 H10a 1 780.7957 -0.09 Yes 5.4 994568 0.5 145630 H10a 2 780.79526 0.43 Yes 13.6 2300607 0.6 109385 H11a 1 780.79526 0.43 Yes 116.3 18336864 2.4 101570 H11a 2 780.79543 0.2 Yes 66.1 835606 6.4 101024 H12a 1 780.79562 -0.85 Yes 187.2 30769116 6.3 99853 H12a 2 780.79626 -0.63 Yes 187.2 30769116 6.3 99853 H12a 1 780.79568 -0.63 Yes 161.8 10585152 2.6 98466 H13aii 2 780.79584 0.2 Yes 206.7 34960308	H8a 3	780.79554	0.06	Yes	16.1	2550287	0.5	116011
H9a 2 780.79559 0.01 Yes 21.4 3467007 0.4 106878 H9a 3 780.79530 0.38 Yes 7.1 1304991 0.3 105529 H10a 1 780.79567 -0.09 Yes 6.9 1328621 0.2 130816 H10a 2 780.79526 0.43 Yes 5.4 994568 0.5 146630 H10a 3 780.79526 0.43 Yes 13.6 2300607 0.6 109385 H11a 1 780.79501 -0.41 Yes 116.3 18396864 2.4 101024 H11a 2 780.79527 -0.86 Yes 180.73 30241376 6.7 99834 H12a 1 780.79627 -0.86 Yes 187.2 30769116 6.3 99851 H12a 2 780.79626 -0.63 Yes 187.2 30769116 6.3 99854 H13aii 1 780.79568 -0.3 Yes 314.4 47327236 8.0 99116 H14a 1 No No No Interve No	H9a 1	780.79510	0.63	Yes	27.3	4339803	0.5	102642
H9a 3 780.79530 0.38 Yes 7.1 1304991 0.3 105529 H10a 1 780.79567 -0.09 Yes 6.9 1328621 0.2 130816 H10a 2 780.79567 -0.09 Yes 5.4 994568 0.5 145630 H10a 3 780.79526 0.43 Yes 13.6 2300607 0.6 109385 H11a 1 780.79501 -0.53 Yes 61.1 31839684 2.4 101570 H11a 2 780.79520 -0.87 Yes 180.3 30241376 6.7 99894 H12a 1 780.79626 -0.85 Yes 187.2 3076911 6.3 998519 H12a 3 780.79608 -0.63 Yes 615.8 10585152 26.8 98466 H13aii 1 780.79560 -0.63 Yes 314.4 47327236 8.0 99116 H14a 2 No	H9a 2	780.79559	0.01	Yes	21.4	3467007	0.4	106878
H10a 1 780.79567 -0.09 Yes 6.9 1328621 0.2 130816 H10a 2 780.79543 0.21 Yes 5.4 994568 0.5 14563 H10a 3 780.79526 0.43 Yes 13.6 2300607 0.6 109385 H11a 1 780.79501 -0.53 Yes 219.7 34058292 14.9 98519 H11a 2 780.79543 0.2 Yes 66.1 8356096 6.4 101024 H12a 1 780.79543 0.2 Yes 180.3 30241376 6.7 99893 H12a 2 780.79626 -0.85 Yes 180.3 30241376 6.7 99853 H13aii 1 780.79608 -0.63 Yes 180.8 10585152 26.8 98466 H13aii 2 780.79583 -0.3 Yes 314.4 47327236 8.0 99116 H14a 1 No	H9a 3	780.79530	0.38	Yes	7.1	1304991	0.3	105529
H10a 2 780.79543 0.21 [Yes] 5.4 994568 0.5 14568 H10a 3 780.79526 0.43 [Yes] 13.6 230007 0.6 109385 H11a 1 780.79501 -0.53 [Yes] 219.7 34058292 14.9 98519 H11a 2 780.79501 -0.41 [Yes] 116.3 1839684 2.4 101570 H11a 3 780.79543 0.2 [Yes] 66.1 3356096 6.4 101024 H12a 1 780.79626 -0.85 [Yes] 187.2 30769116 6.3 99853 H12a 3 780.79608 -0.63 [Yes] 170.1 28951846 7.2 99372 H13aii 1 780.79608 -0.63 [Yes] 495.9 79279040 20.4 97652 H13aii 3 780.79583 -0.3 [Yes] 314.4 47327236 8.0 99116 H14a 1 No No	H10a 1	780.79567	-0.09	Yes	6.9	1328621	0.2	130816
H10a 3 780.79526 0.43 Yes 13.6 2200607 0.6 109385 H11a 1 780.79501 -0.53 Yes 219.7 34058292 14.9 98519 H11a 2 780.79543 0.2 Yes 66.1 8356096 6.4 101024 H12a 1 780.79543 0.2 Yes 66.1 8356096 6.4 101024 H12a 1 780.79627 -0.86 Yes 180.3 30241376 6.7 99894 H12a 3 780.79626 -0.85 Yes 187.2 30769116 6.3 99853 H12a 3 780.79608 -0.63 Yes 615.8 105855152 26.8 98466 H13aii 2 780.79608 -0.63 Yes 314.4 47327236 8.0 99116 H13aii 3 780.79583 -0.3 Yes 314.4 47327236 8.0 99116 H14a 1 No No 101686 101686 H14a 2 No No 100934 16.109494 101686 101686 V1a 1 780.79540 0.17 Yes 190.9 32510	H10a 2	780.79543	0.21	Yes	5.4	994568	0.5	145630
H11a 1 780.79601 -0.53 Yes 219.7 34058292 14.9 98519 H11a 2 780.79591 -0.41 Yes 116.3 18396864 2.4 101570 H11a 3 780.79524 0.2 Yes 66.1 8356096 6.4 101024 H12a 1 780.79627 -0.86 Yes 180.3 30241376 6.7 99894 H12a 2 780.79626 -0.85 Yes 187.2 30769116 6.3 99853 H12a 3 780.79608 -0.63 Yes 615.8 105855152 26.8 98466 H13aii 2 780.79508 -0.63 Yes 314.4 47327236 8.0 99116 H14a 1 No No	H10a 3	780.79526	0.43	Yes	13.6	2300607	0.6	109385
H11a 2 780.79591 -0.41 Yes 116.3 18398664 2.4 101570 H11a 3 780.79543 0.2 Yes 66.1 8356096 6.4 101024 H12a 1 780.79627 -0.86 Yes 180.3 30241376 6.7 99894 H12a 2 780.79626 -0.85 Yes 187.2 30769116 6.3 99853 H12a 3 780.79626 -0.77 Yes 170.1 28951846 7.2 99372 H13aii 1 780.79608 -0.63 Yes 615.8 105855152 26.8 98466 H13aii 2 780.79583 -0.3 Yes 314.4 47327236 8.0 99116 H14a 1 No No - - - - H14a 2 No No - - - - - H14a 1 No No - - - - - - H14a 1 No No - - - - - - - - - - - - - <td< th=""><th>H11a 1</th><td>780.79601</td><td>-0.53</td><td>Yes</td><td>219.7</td><td>34058292</td><td>14.9</td><td>98519</td></td<>	H11a 1	780.79601	-0.53	Yes	219.7	34058292	14.9	98519
H1133 780.79543 0.2 (tes) 06.1 8350056 6.4 101024 H12a 1 780.79627 -0.86 (ves) 180.3 30241376 6.7 99853 H12a 2 780.79627 -0.85 (ves) 187.2 30769116 6.3 99853 H12a 3 780.7962 -0.77 (ves) 170.1 28951846 7.2 99372 H13aii 1 780.79608 -0.63 (ves) 615.8 105855152 26.8 98466 H13aii 2 780.79508 -0.63 (ves) 495.9 79279040 20.4 97652 H13aii 3 780.79583 -0.3 (ves) 314.4 47327236 8.0 99116 H14a 1 No No	H11a 2	/80./9591	-0.41	Yes	116.3	18396864	2.4	101570
Inited 1 780.7962 -0.68 yes 180.2 30241376 6.7 99853 H12a 2 780.7962 -0.77 yes 170.1 28951846 7.2 99833 H13aii 1 780.7962 -0.77 yes 170.1 28951846 7.2 99372 H13aii 1 780.79608 -0.63 yes 615.8 105855152 26.8 98466 H13aii 2 780.79608 -0.63 yes 314.4 47327236 8.0 99116 H14a 1 No No	H11a 3	780.79543	0.2	Yes	190.2	20241276	6.4	101024
112a 3 780.7962 -0.77 Yes 12072 2807210 2009112 99372 H13aii 1 780.79608 -0.63 Yes 615.8 10585152 26.8 98466 H13aii 2 780.79608 -0.63 Yes 495.9 79279040 20.4 97652 H13aii 3 780.79583 -0.3 Yes 314.4 47327236 8.0 99116 H14a 1 No No 1 <th>H12a 1</th> <td>780.79027</td> <td>-0.80</td> <td>Voc</td> <td>187.2</td> <td>30769116</td> <td>6.7</td> <td>99694</td>	H12a 1	780.79027	-0.80	Voc	187.2	30769116	6.7	99694
No No No No H14aii 780.79608 -0.63 Yes 615.8 105855152 26.8 98466 H13aii 780.79608 -0.63 Yes 495.9 79279040 20.4 97652 H13aii 780.79583 -0.3 Yes 314.4 47327236 8.0 99116 H14a1 No No 1 <th>H12a 3</th> <td>780 7962</td> <td>-0.77</td> <td>Yes</td> <td>170 1</td> <td>28951846</td> <td>7.2</td> <td>99372</td>	H12a 3	780 7962	-0.77	Yes	170 1	28951846	7.2	99372
H13aii 2 780.79608 -0.63 Yes 495.9 79279040 20.4 97652 H13aii 3 780.79583 -0.3 Yes 314.4 47327236 8.0 99116 H14a 1 No No No Image: Constraint of the second se	H13aii 1	780.79608	-0.63	Yes	615.8	105855152	26.8	98466
H13aii 3 780.79583 -0.3 Yes 314.4 47327236 8.0 99116 H14a 1 No No No Image: Solution of Soluting of Soluting of Soluting of Solution of Soluting of Solution of	H13aii 2	780.79608	-0.63	Yes	495.9	79279040	20.4	97652
H14a 1 No No No H14a 2 No No No H14a 3 No No No H14bi 1 No No No H14bi 2 No No No H14bi 3 No No No V1a 1 780.79546 0.17 Yes 190.9 32510822 1.5 100934 V1a 2 780.79546 0.27 Yes 206.7 34960308 5.6 101686 V1a 3 780.79533 0.34 Yes 161.9 26124596 5.6 102621 B1a 1 780.79590 -0.4 Yes 135.5 23628180 4.6 99439 B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No No No No Soil 3a 1 No Soil 3a 2 No Soil 3b 1 No Soil 3b 3 No Soil 3b 3 <t< th=""><th>H13aii 3</th><td>780.79583</td><td>-0.3</td><td>Yes</td><td>314.4</td><td>47327236</td><td>8.0</td><td>99116</td></t<>	H13aii 3	780.79583	-0.3	Yes	314.4	47327236	8.0	99116
H14a 2 No No Image: constraint of the second	H14a 1			No				
H14a 3 No No H14bi 1 No No Image: Constraint of the second	H14a 2			No				
H14bi 1 No No No No H14bi 2 No No No No H14bi 3 No No No No V1a 1 780.79546 0.17 Yes 190.9 32510822 1.5 100934 V1a 1 780.79546 0.2 Yes 206.7 34960308 5.6 101686 V1a 3 780.79533 0.34 Yes 161.9 26124596 5.6 102621 B1a 1 780.79500 -0.4 Yes 135.5 23628180 4.6 99439 B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No No Image: State	H14a 3			No				
H14bi 2 H14bi 3 No No No V1a 1 780.79546 0.17 Yes 190.9 32510822 1.5 100934 V1a 2 780.79546 0.2 Yes 206.7 34960308 5.6 101686 V1a 3 780.79533 0.34 Yes 161.9 26124596 5.6 102621 B1a 1 780.79590 -0.4 Yes 135.5 23628180 4.6 99439 B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No No No No No No No Soil 3a 1 No No No No No Soil 3a 2 No Soil 3a 3 No No No Soil 3b 1 No Soil 3b 3 No Soil 3b 3 No Soil 3b 3 Soil 3b 3 No Soil 3b 3 No Soil 3b 3 Soil 3b 3 Soil 3b 3 Soil 3b 3 No Soil 3b 3	H14bi 1			No				
H14bi 3 No No No V1a 1 780.79546 0.17 Yes 190.9 32510822 1.5 100934 V1a 2 780.79544 0.2 Yes 206.7 34960308 5.6 101686 V1a 3 780.79533 0.34 Yes 161.9 26124596 5.6 102621 B1a 1 780.79590 -0.4 Yes 135.5 23628180 4.6 99439 B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No No No No No No Soil 3a 1 No No No No No Soil 3a 2 No Soil 3a 3 No No No Soil 3b 1 No Soil 3b 3 No Soil 3b 3 No Soil 3b 3 No Soil 3b 3 Soil 3b 3 No Soil 3b 3 Soil 3b 3<	H14bi 2			No				
V1a 1 780.79546 0.17 Yes 190.9 32510822 1.5 100934 V1a 2 780.79544 0.2 Yes 206.7 34960308 5.6 101686 V1a 3 780.79533 0.34 Yes 161.9 26124596 5.6 102621 B1a 1 780.79539 -0.4 Yes 135.5 23628180 4.6 99439 B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No DHB 2 No No Soil 3a 1 No No 100472 105959	H14bi 3	700 705 40	0.47	No	100.0	22540022	4.5	400024
V1a 2 780.79544 0.2 Yes 206.7 34960306 5.6 101680 V1a 3 780.79533 0.34 Yes 161.9 26124596 5.6 102620 B1a 1 780.79533 0.34 Yes 135.5 23628180 4.6 99439 B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No DHB 2 No No Soil 3a 1 No Soil 3a 2 No Soil 3b 1 No Soil 3b 3 No Solvent 2 No	V1a 1	780.79546	0.17	Yes	190.9	32510822	1.5	100934
V13 3 780.79533 0.34 res 20124350 3.0 102211 B1a 1 780.79530 -0.4 Yes 135.5 23628180 4.6 99439 B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No DHB 2 No No Soil 3a 1 No No Soil 3a 2 No Soil 3a 3 No Soil 3b 1 No Solvent 1 No Solvent 2 No	V1a 2	780.79544	0.2	Yes	200.7	26124506	5.0	101080
B1a 2 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79537 0.29 Yes 91.6 13927549 4.5 100472 B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No 6631984 1.6 105959 DHB 2 No No 100472 100472 Soil 3a 1 No No 100472 100472 Soil 3a 2 No No 100472 100472 Soil 3a 3 No No 100472 100472 Soil 3b 1 No No 100472 100472 Soil 3b 3 No 100472 100472 100472 Solvent 1 No 100472 100472 100472	R1a 1	780.79555	-0.4	Voc	101.9	23628180	3.0	102021
B1a 3 780.79501 0.74 Yes 47.0 6631984 1.6 105959 DHB 1 No No 1.6 105959 DHB 2 No No 1.6 105959 DHB 3 No No Soil 3a 1 No No Soil 3a 2 No No Soil 3b 1 No No Soil 3b 2 No No Solvent 1 No No Solvent 2 No No	B1a 2	780 79537	0.4	Yes	91.6	13927549	4.5	100472
DHB 1 No DHB 2 No DHB 3 No Soil 3a 1 No Soil 3a 2 No Soil 3a 3 No Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	B1a 3	780.79501	0.74	Yes	47.0	6631984	1.6	105959
DHB 2 No DHB 3 No Soil 3a 1 No Soil 3a 1 No Soil 3a 2 No Soil 3a 3 No Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	DHB 1			No				
DHB 3 No Soil 3a 1 No Soil 3a 2 No Soil 3a 3 No Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	DHB 2			No				
Soil 3a 1 No Soil 3a 2 No Soil 3a 3 No Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	DHB 3			No				
Soil 3a 2 No Soil 3a 3 No Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	Soil 3a 1			No				
Soil 3a 3 No Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	Soil 3a 2			No				
Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	Soil 3a 3			No				
Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No	Soil 3b 1			No				
Soli 30 3 NO Solvent 1 No Solvent 2 No	Soil 3b 2			No				
Solvent 2 No	Soll 3b 3			NO				
Solvent 2	Solvent 2			NO				
	Solvent 2			No				

Table 26 shows the next assigned compound, [C₅₄H₁₀₃NO] + H⁺, with four double bond equivalents represents the product of a further hydrogenation of the compounds assigned in Table 24 and Table 25. This signal was noted to be of interest in the original mass spectrum of the York brain extract. The mass spectra for the extracts show this signal has a particularly high relative intensity in the V1 extract replicates, but similar S:N and relative intensities as the previous more unsaturated compounds in extracts Y1, H11, H12 and H13. Comparing the relative intensities across the three tables, there appears to be an increase in signal intensity as the compound becomes more dehydrogenated. As well as being detected in H2, there is limited detection in the H14b replicates. It is only not detected in the controls and H14a.

	Table 26.	Summary	of signal at	<i>m/z</i> 782.	C _x H _y NO
--	-----------	---------	--------------	-----------------	----------------------------------

Calculated m/z	782.81124	C54H104NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	782.81124	0.00	Yes	347.4	59990716	20.0	98480
Y1a 2	782.81093	0.39	Yes	301.4	48553044	17.8	98889
Y1a 3	782.81117	0.10	Yes	351.8	60815600	17.6	99169
Original Heslington	782.81115	0.12	Yes	43.6	5673239	4.6	68508
H1a 1	782.81113	0.15	Yes	26.6	4185579	0.4	105204
H1a 2	782.81060	0.83	Yes	28.9	4327643	1.1	95253
H1a 3	782.81058	0.84	Yes	20.4	2995034	0.5	105446
H1b 1	782.81046	1.00	Yes	70.5	10416510	1.2	104420
H10 2	782.81056	0.87	Yes	/5.4	10/15092	2.8	104048
H10 3	782.81024	1.28	Yes	65.5	9259270	2.2	104009
	782.81018	1.30	Yes	105.9	12170977	2.7	102485
H2a 2	782.81040	1.00	Voc	00.2 74 5	0067040	4.0	103113
H2a 3	782.81045	0.51	Voc	39.6	59/6287	2.0	104403
H3a 2	782.81000	0.01	Yes	93.0	14105720	23	100461
H3a 3	782 81077	0.60	Yes	42 1	5969549	0.8	107376
H4a 1	782.81133	-0.11	Yes	83.0	14459533	0.8	99105
H4a 2	782.81156	-0.41	Yes	114.2	22724094	2.6	98644
H4a 3	782.81135	-0.13	Yes	124.7	22803036	2.7	98940
H5a 1	782.81011	1.44	Yes	20.1	2854253	1.5	112783
H5a 2	782.81066	0.75	Yes	36.1	5210999	1.7	98493
H5a 3	782.81030	1.21	Yes	48.7	7395334	0.8	95208
H6a 1	782.81108	0.21	Yes	129.1	18782768	2.5	102241
H6a 2	782.81104	0.26	Yes	99.0	14107183	1.9	102932
H6a 3	782.81093	0.40	Yes	105.4	15134702	1.6	102428
H7a 1	782.81066	0.74	Yes	21.2	3468954	0.8	105510
H7a 2	782.81133	-0.12	Yes	25.4	4281226	0.7	109391
H7a 3	782.81095	0.37	Yes	21.7	3539613	0.5	107685
H8a 1	782.81118	0.08	Yes	27.7	4548611	0.8	109072
H8a 2	782.81098	0.34	Yes	21.1	3419310	0.8	109812
H8a 3	782.81107	0.22	Yes	22.7	34/2824	0.7	100383
H9a 1	782.81111	0.17	Yes	40.9	6343755	0.8	104196
H9a 2	782.81127	-0.04	Voc	12.2	2020258	0.7	128024
H10a 1	782.81030	1.40	Voc	6.4	1255920	0.4	11/036
H10a 2	782.81014	-0.03	Yes	5.4	996257	0.2	146467
H10a 3	782.81153	-0.37	Yes	11.4	1978501	0.5	112383
H11a 1	782.81173	-0.62	Yes	183.6	28526206	12.5	97810
H11a 2	782.81178	-0.69	Yes	125.2	19784938	2.6	100522
H11a 3	782.81108	0.21	Yes	62.0	7860355	6.0	100926
H12a 1	782.81207	-1.06	Yes	195.7	32793128	7.3	99515
H12a 2	782.81208	-1.07	Yes	210.6	34578280	7.0	99283
H12a 3	782.81197	-0.93	Yes	183.3	31166000	7.7	99931
H13aii 1	782.81188	-0.81	Yes	456.8	78608888	19.9	98951
H13aii 2	782.81185	-0.78	Yes	400.2	64043792	16.4	98080
H13aii 3	782.81158	-0.43	Yes	275.4	41502024	7.0	99184
H14a 1			NO				
H14a 2			NO				
H14a 5	782 81160	-0.45	Noc	12 7	2528055	0.2	00077
H1461 1	782.81100	0.43	Voc	9.5	1758204	0.3	112277
H14bi 3	/02.01105	0.15	No	5.5	1750204	0.5	112277
V1a 1	782.81126	-0.02	Yes	2988.2	503781568	23.0	102002
V1a 2	782.81126	-0.02	Yes	3270.4	547980864	87.1	101610
V1a 3	782.81110	0.19	Yes	2674.7	426458976	91.0	101948
B1a 1	782.81177	-0.67	Yes	138.7	24166634	4.7	98189
B1a 2	782.81114	0.16	Yes	93.1	14152196	4.6	98707
B1a 3	782.81068	0.72	Yes	76.8	10628778	2.5	102557
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
5011 3a 3 Soil 2b 1			NO				
5011 3D 1			No				
5011 30 Z			NO				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

The peak at m/z 806 (Table 27) was assigned [C₅₆H₁₀₃NO] + H⁺, which has six double bond equivalents. The S:N and intensities for this signal were high in the extracts of Y1 and H13. However, this was undetected in more of the sample extracts, H2, H3, H7 and H14 (a and b). It was detected at very low S:N and intensity in a replicate 2 of the DHB matrix control, which may indicate this is a contaminant from the background. However, the spot for one of the H12a replicates was adjacent on the MALDI plate to this DHB matrix replicate, so cross contamination is a possibility.

Table 27.	Summary	of signal	at <i>m/z</i> 806.	C _x H _y NO
Table 27.	Summary	or signal	at <i>111/2</i> 000.	CxHyINO

Calculated m/z	806.81128	C56H104NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	806.81132	-0.10	Yes	199.6	34618480	11.5	95204
Y1a 2	806.81092	0.40	Yes	168.1	27198022	10	95721
Y1a 3	806 81129	-0.06	Yes	191 7	33285500	97	95855
Original Heslington	806 81052	0.89	Yes	28.6	3893619	31	69262
H1a 1	000.01052	0.05	No	20.0	0000010	0.1	00202
H1a 2			No				
L12 2	806 81057	0.84	Voc	5.2	001526	0.2	85547
H10 5	800.81057	0.84	No	J.2	331320	0.2	85547
110 1	906 91020	1.06	Noc	11.2	1970741	0.5	102704
110 2	806.81039	1.00	Yes	11.5	1204162	0.5	103704
H10 3	806.81139	-0.18	Tes	7.8	1384103	0.3	123218
HZa I			NO				
HZa Z			NO				
HZa 3			NO				
H3a 1			No				
H3a 2			No				
H3a 3			No				
H4a 1	806.81132	-0.09	Yes	91.3	15863463	0.9	95968
H4a 2	806.81179	-0.68	Yes	117.8	23533906	2.7	94509
H4a 3	806.81147	-0.28	Yes	137.8	25280648	3.0	93538
H5a 1	806.81057	0.84	Yes	21.9	3116550	1.6	100200
H5a 2	806.81036	1.10	Yes	44.1	6357947	2.1	89742
H5a 3	806.81053	0.88	Yes	61.4	9298555	1.1	93743
H6a 1			No				
H6a 2	806.81080	0.54	Yes	5.7	1117940	0.2	120346
H6a 3			No				
H7a 1			No				
H7a 2			No				
H7a 3			No				
H8a 1	806 81119	0.07	Yes	14 5	2555500	0.4	103037
H8a 2	806 81144	-0.24	Yes	13.2	2278880	0.5	100403
H83 3	806 81102	0.24	Vos	12.0	212/0000	0.5	99218
	806 81120	-0.06	Vos	9.4	1569667	0.4	121974
100.2	006 01170	-0.00	Voc	12 5	2166260	0.2	102426
1198 2	000.01170	-0.07	Ne	12.5	2100200	0.5	105420
			No				
H10a 1	000 01110	0.00	NO		1442272	0.7	07054
H10a 2	806.81118	0.08	Yes	8.8	1442273	0.7	97051
H10a 3	806.81162	-0.47	Yes	8.9	1623309	0.4	103593
H11a 1	806.81190	-0.82	Yes	134.7	21056150	9.2	94694
H11a 2	806.811//	-0.65	Yes	/1./	11541954	1.5	97057
H11a 3	806.81118	0.08	Yes	30.8	4074215	3.1	99682
H12a 1	806.81210	-1.06	Yes	102.7	17233316	3.8	94743
H12a 2	806.81207	-1.02	Yes	103.3	17000718	3.5	91352
H12a 3	806.81191	-0.83	Yes	93.8	15995995	4	94194
H13aii 1	806.81195	-0.87	Yes	378.1	64897644	16.4	92064
H13aii 2	806.81195	-0.88	Yes	286.3	45899668	11.8	91575
H13aii 3	806.81167	-0.53	Yes	182.7	27649572	4.7	92523
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1	806.81156	-0.39	Yes	23.3	4273189	0.2	104924
V1a 2	806.81116	0.11	Yes	26.8	4848030	0.8	95753
V1a 3	806.81103	0.26	Yes	20.6	3612513	0.8	96643
B1a 1	806.81201	-0.96	Yes	104.2	18306010	3.6	97238
B1a 2	806.81127	-0.03	Yes	62.1	9609020	3.1	96390
B1a 3	806.81049	0.93	Yes	29.3	4281017	1	100946
DHB 1			No				
DHB 2	806.81129	-0.06	Yes	4.3	846707	0.1	135576
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3h 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				
Solvento		1				1	

Table 28 provides information on the peak detected at m/z 810, a peak of interest in the original York brain extract mass spectrum. This was assigned $[C_{56}H_{107}NO] + H^+$, for a component with four double bond equivalents. The signal was strongest in the spectra of the V1 extract, with it being the largest peak in the spectrum for the second replicate. It was detected in the spectra for the extracts from all sites and ages except sample H14a. There were signals detected in the soil controls at a similar m/z, but the error was 2.49 ppm or over and so these are considered not to be the same compound. It was absent in the DHB control and solvent blank spectra.

	Table 28.	Summary	/ of signal a	t <i>m/z</i> 810.	C _x H _y NO
--	-----------	---------	---------------	-------------------	----------------------------------

Calculated m/z	810.84254	C56H108NO					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	810.84233	0.27	Yes	142.4	24788378	8.2	93571
Y1a 2	810.84203	0.64	Yes	111.5	18156236	6.7	94293
Y1a 3	810.84221	0.41	Yes	132.8	23175538	6.7	94408
Original Heslington	810.84280	-0.32	Yes	12.6	1855672	1.5	76148
H1a 1	810.84196	0.71	Yes	15.0	2488284	0.3	96108
H1a 2	810.84130	1.53	Yes	16.1	2553660	0.6	100332
H1a 3	810.84153	1.25	Yes	12.9	2009284	0.3	108744
H1b 1	810.84166	1.09	Yes	49.3	7401927	0.9	100501
H1b 2	810.84190	0.79	Yes	62.4	8934655	2.3	97586
H1b 3	810.84142	1.39	Yes	46.0	6598793	1.6	101548
H2a 1	810.84137	1.45	Yes	81	1111/049	2.1	99629
H2a 2	810.84151	1.27	Yes	54.7	8254321	2.5	101017
H2a 3	810.84182	0.89	Yes	40.4	11007205	1.8	98920
	810.84230	0.50	Voc	02.5 165.4	2/012002	2.2	96970
H3a 3	810.84242	0.10	Voc	54.0	7578724	4.1	100/67
H4a 1	810 84218	0.05	Vec	/3.5	7733853	0.5	93635
H4a 2	810 84275	-0.26	Yes	59.3	12037681	1.4	94139
H4a 3	810 84241	0.20	Yes	54.3	10178638	1.4	88052
H5a 1			No				
H5a 2	810.84207	0.59	Yes	9.0	1548306	0.5	116355
H5a 3	810.84190	0.79	Yes	9.4	1697815	0.2	116640
H6a 1	810.84223	0.38	Yes	178.6	25922602	3.5	98782
H6a 2	810.84215	0.48	Yes	160.9	22765422	3.1	97725
H6a 3	810.84211	0.53	Yes	148.7	21217556	2.3	97797
H7a 1	810.84233	0.27	Yes	26.1	4222385	1.0	97698
H7a 2	810.84229	0.32	Yes	34.9	5763031	0.9	95394
H7a 3	810.84212	0.52	Yes	26.4	4252615	0.6	100271
H8a 1	810.84225	0.36	Yes	9.7	1824275	0.3	105385
H8a 2	810.84218	0.45	Yes	9.0	1662391	0.4	108333
H8a 3	810.84213	0.51	Yes	6.4	1209018	0.2	117585
H9a 1	810.84176	0.96	Yes	18.8	3092587	0.4	93088
H9a 2	810.84254	0.01	Yes	15.9	2674640	0.3	103727
H9a 3	810.84230	0.31	Yes	6.2	1188789	0.3	110478
H10a 1	810.84178	0.94	Yes	5.8	1191476	0.2	113527
H10a 2		0.05	No		005530		400700
H10a 3	810.84259	-0.06	Yes	4.6	995528	0.3	123728
	810.84292	-0.47	Yes	64.8	10312926	4.5	92703
	810.84280	-0.32	Voc	47.4	2201722	1.0	106202
H17a 1	810.84230	-0.02	Voc	1/13 5	2303/050	5.3	96//8
H12a 2	810 84329	-0.92	Yes	135.8	22238334	4 5	94800
H12a 3	810.84310	-0.69	Yes	114.6	19453778	4.8	98430
H13aii 1	810.84309	-0.67	Yes	195.8	33783372	8.6	94268
H13aii 2	810.84296	-0.52	Yes	180.6	29076606	7.5	94747
H13aii 3	810.84280	-0.31	Yes	134.0	20364778	3.5	95955
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	810.84301	-0.57	Yes	19.0	3380178	0.4	107018
H14bi 2	810.84315	-0.74	Yes	13.1	2296497	0.4	107286
H14bi 3			No				
V1a 1	810.84242	0.15	Yes	3186.3	536857920	24.5	98365
V1a 2	810.84242	0.16	Yes	3752.3	629071296	100.0	98209
V1a 3	810.84226	0.36	Yes	2874.2	457445408	97.6	98518
B1a 1	810.84287	-0.40	Yes	133.9	23415848	4.6	95795
B1a 2	810.84210	0.55	Yes	76.9	11826/51	3.9	95949
DLB 1	810.84172	1.02	No	/1./	10013132	2.3	99920
			No				
DHB 3			No				
Soil 3a 1	810,84632	-4 65	No	47	1492056	0.2	100608
Soil 3a 2		4.05	No	4.7	2.52050	0.2	200000
Soil 3a 3	810.84646	-4.83	No	4.6	1414755	0.3	103464
Soil 3b 1	810.84574	-3.94	No	4.7	1531803	0.2	92510
Soil 3b 2	810.84456	-2.49	No	6.2	1835816	0.1	114693
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

As well as compounds with C_xH_yNO general formulae, some signals were consistent with a $C_xH_yN_2O$ formula. Table 29 shows the information for the peak found in the mass spectra at m/z 501, which as $[C_{34}H_{48}N_2O] + H^+$ would have 11 double bond equivalents. This gave a very strong signal (S:N, intensity and relative intensity %) in the extract of B1 spectral replicates, and to a lesser extent in those of H4, H8, H9, H10 and H11. It was only detected in a single replicate of the extracts of H1 (a and b), H14b. The signal strengths (S:N and relative intensity) were low in Y1 and H2 extract mass spectra but resolution was consistently over 150,000. This component was not detected in the original York brain analysis (this may be due to the subsequent upgrade of the mass spectrometer), nor in the spectra of extracts of H14a and V1. This peak was also not found in any of the control spectra.

Calculated m/z	501.38394	C34H49N2O					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	501.38389	-0.07	Yes	16.3	2402691	0.8	161818
Y1a 2	501.38382	-0.34	Yes	12.8	1889729	0.7	166731
Y1a 3	501.38397	0.46	Yes	13.4	2042641	0.6	168129
Original Heslington			No				
H1a 1			No				
H1a 2	501.38449	-1.10	Yes	2.6	581602	0.1	240146
H1a 3			No				
H1b 1			No				
H10 2	501 20202	1.02	NO		1210221	0.2	11105
H1D 3	501.38302	1.83	Yes	8.0	1218321	0.3	111354
	501.38338	1.05	Voc	10.0	1258650	0.4	215082
H2a 3	501.38371	0.45	Yes	17.5	2231431	0.4	158511
H3a 1	501.38388	0.11	Yes	245.6	32058080	5.8	158965
H3a 2	501.38396	-0.05	Yes	379.6	50277868	8.2	157511
H3a 3	501.38378	0.32	Yes	179.2	21896552	2.9	160503
H4a 1	501.38400	-0.11	Yes	2016.5	293033088	17.1	157962
H4a 2	501.38413	-0.36	Yes	1503.7	220870912	25.3	158392
H4a 3	501.38400	-0.11	Yes	1366.2	194081040	23.4	158459
H5a 1	501.38356	0.77	Yes	91.6	10446816	5.5	158850
H5a 2	501.38362	0.63	Yes	114.2	13555837	4.5	156890
H5a 3	501.38360	0.68	Yes	169.2	21311908	2.4	157715
H6a 1	501.38386	0.16	Yes	160.8	20492628	2.8	157848
H6a 2	501.38385	0.18	Yes	199.8	24914852	3.4	15/186
	501.38384	0.20	Yes	142.2	14000200	1.9	158480
H7a 2	501.36364	0.21	Voc	105.3	13681324	3.4	157518
H7a 3	501 38383	0.14	Yes	103.3	14662607	2.2	160924
H8a 1	501.38392	0.04	Yes	2751.9	372404512	64.0	158094
H8a 2	501.38411	-0.32	Yes	1786.9	222973904	51.7	157305
H8a 3	501.38384	0.20	Yes	1932.6	237312992	45.9	158213
H9a 1	501.38397	-0.07	Yes	5307.5	724846080	89.7	157518
H9a 2	501.38396	-0.03	Yes	4371.1	603998912	69.7	157788
H9a 3	501.38381	0.26	Yes	2376.7	293602944	64.7	157644
H10a 1	501.38390	0.09	Yes	1059.8	134094080	22.4	158537
H10a 2	501.38376	0.35	Yes	857.5	98248616	50.3	157657
H10a 3	501.38386	0.16	Yes	701.6	217/62432	59.2	15861
H11a 2	501.38421	-0.33	Yes	440.0	56690156	7.4	159422
H11a 3	501.38386	0.15	Yes	221.9	24268884	18.7	160173
H12a 1	501.38431	-0.74	Yes	244.9	34460576	7.7	157795
H12a 2	501.38429	-0.70	Yes	210.0	29641590	6.0	156462
H12a 3	501.38429	-0.69	Yes	285.5	40589544	10.1	157319
H13aii 1	501.38421	-0.53	Yes	141.7	19447234	4.9	159652
H13aii 2	501.38423	-0.57	Yes	137.2	18119688	4.7	157840
H13aii 3	501.38411	-0.33	Yes	107.2	13409798	2.3	161162
H14a 1			No				
H14a 2			NO				
H14a 5			No				
H14bi 2	501 38467	-1 46	Yes	67	1233117	0.2	171717
H14bi 3	501.50407	1.40	No	0.7	1233117	0.2	1/1/1/
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1	501.38415	-0.42	Yes	3111.8	486390528	94.8	157626
B1a 2	501.38393	0.02	Yes	1850.2	244920112	79.9	157374
B1a 3	501.38368	0.51	Yes	1296.5	157998512	37.0	158867
DHB 1			No				
			No				
Soil 25 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 29. Summary of signal at m/z 501. C_xH_yN₂O

The mass spectra of the B1 extract showed a strong signal at m/z 511, another C_xH_yN₂O compound. This was assigned [C₃₅H₄₆N₂O] + H⁺, which has 14 double bond equivalents; data are summarised in Table 30. The signal strength (S:N and relative intensity %) was reasonably high in the mass spectra for H4, H8, H9, H10 and H11. It was only detected in a single replicate of the extracts from H7 and H14b. The component was undetected in the extracts from H1 (a and b), H2, H14a, V1 and the controls.

Table 30. Summary of signal at <i>m/z</i> 511. C ₂	H _y N ₂ O
---	---------------------------------

Calculated m/z	511.3682	C35H47N2O					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	511.36817	0.24	Yes	17.3	2603937	0.9	166091
Y1a 2	511.36815	0.28	Yes	21.6	3056176	1.1	148507
Y1a 3	511.36813	0.31	Yes	23.2	3403985	1.0	165440
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
LID 1			No				
L16 2			No				
110.5			No				
1120 1			No				
1120 2			No				
HZd 3	544.20044	0.25	NO	52.2	7250524	1.2	100570
H3a 1	511.36811	0.35	Yes	53.3	7359524	1.3	160570
H3a 2	511.36818	0.21	Yes	67.0	9353036	1.5	155282
H3a 3	511.36814	0.30	Yes	20.8	2832432	0.4	164117
H4a 1	511.36824	0.10	Yes	1423.9	215397248	12.6	155976
H4a 2	511.36833	-0.07	Yes	1094.3	167304528	19.1	156212
H4a 3	511.36822	0.14	Yes	1008.3	148566576	17.9	156375
H5a 1	511.36792	0.73	Yes	26.2	3219502	1.7	158908
H5a 2	511.36801	0.54	Yes	32.1	4065488	1.3	172763
H5a 3	511.36791	0.74	Yes	49.3	6557568	0.8	155379
H6a 1	511.36815	0.27	Yes	53.2	7127318	1.0	161444
H6a 2	511.36817	0.24	Yes	96.5	12432997	1.7	158504
H6a 3	511.36811	0.36	Yes	60.2	8104588	0.9	162805
H7a 1	511.36829	0.00	Yes	7.0	1148330	0.3	158355
H7a 2			No				
H7a 3			No				
H8a 1	511.36823	0.12	Yes	306.0	42943512	7.4	155066
H8a 2	511.36837	-0.16	Yes	250.0	32226264	7.5	154821
H8a 3	511.36815	0.27	Yes	253.9	32108700	6.2	156066
H9a 1	511.36821	0.15	Yes	738.7	104524016	12.9	155551
H9a 2	511.36822	0.13	Yes	644.6	92389856	10.7	155685
H9a 3	511.36811	0.35	Yes	419.5	53220488	11.7	155658
H10a 1	511.36819	0.20	Yes	231.0	30156976	5.0	154934
H10a 2	511.36807	0.44	Yes	175.7	20658758	10.6	153183
H10a 3	511 36814	0.30	Yes	393.8	52964896	14.4	157352
H11a 1	511 36848	-0.36	Yes	280.4	36016992	15.7	157242
H11a 2	511 368/1	-0.24	Vos	161.3	21/6/910	2.8	155765
H113 3	511 36821	0.16	Vos	88.6	9961659	7.7	156718
H12a 1	511.36855	-0.51	Vos	182.1	26569232	5.9	155501
H12a 2	511.36856	-0.52	Vos	155.9	22816386	4.6	156445
L120 2	511.36856	-0.52	Vos	176.2	26052172	4.0	157708
H12a5	511.30030	-0.35	Vos	127.0	10269090	0.5	157656
113811	511.30847	-0.30	Vec	157.0	19308080	4.9	157050
H13all 2	511.50651	-0.43	Ves	111.0	20044070	3.4	150229
	511.50656	-0.18	Ne	111.0	14206247	2.4	130070
H14a 1			No				
1148 2			No				
H148 5	E11 2694E	0.20	Noc	6 5	1295002	0.1	172409
	511.50645	-0.50	Ne	0.5	1203992	0.1	1/5406
114012			No				
H14015			No				
V1a 1			No				
V1a 2			NO				
V1a 3	544 20020	0.14	NO	002.7	146200022	20.5	455562
B1a 1	511.36836	-0.14	Yes	893.7	146298032	28.5	155562
B1a 2	511.36820	0.19	Yes	544.7	74469312	24.3	155621
B1a 3	511.36797	0.63	Yes	339.4	42435668	9.9	156079
DHB 1			INO No				
DHB 2			NO				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No	1		1	

Table 31 provides information on the peak at m/z 513, assigned [C₃₅H₄₈N₂O] + H⁺ which has 13 double bond equivalents. This has a strong signal (S:N and relative intensity) in the spectra for H4, H9, H11 and B1. It was undetected in H1 (a and b), H14a, V1 and the controls (the compound in solvent replicate 2 is assumed to be different due to the large ppm error).

All of the $C_xH_yN_2O$ compounds appear to be prevalent (high relative intensity) in the B1 extract replicate spectra. This may indicate that these compounds are found in higher concentrations in younger brains, or that concentrations of other lipids are lower. Their absence from all of the V1 spectra however is not consistent with this suggestion. Alternatively, these compounds may indicate an additional distinctiveness of the Blackpool burial environment.

Calculated m/z	513.38394	C35H49N2O					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	513.38357	0.73	Yes	6.1	1104160	0.4	18126
Y1a 2	513.38394	0.00	Yes	5.2	949921	0.3	156204
Y1a 3	513.38370	0.46	Yes	10.5	1698526	0.5	17224:
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
H10 2			NO				
H1D 3	E12 20267	0.52	NO	12.6	1700015	0.2	10120
H2a 2	513 383/7	0.55	Voc	9.3	15/36/6	0.5	20130
H2a 3	513 38315	1 55	Yes	6.3	984570	0.3	19187
H3a 1	513 38381	0.25	Yes	397.7	53003976	9.6	15441
H3a 2	513.38390	0.08	Yes	618.5	83887368	13.7	15439
H3a 3	513.38374	0.38	Yes	223.6	27752276	3.7	155712
H4a 1	513.38391	0.06	Yes	4630.1	699732800	40.9	15514
H4a 2	513.38403	-0.18	Yes	3591.0	548323648	62.7	15558
H4a 3	513.38390	0.07	Yes	3648.5	536799232	64.7	15552
H5a 1	513.38347	0.91	Yes	50.2	5916634	3.1	16237
H5a 2	513.38358	0.70	Yes	63.4	7765494	2.6	163540
H5a 3	513.38358	0.70	Yes	90.4	11783916	1.4	153993
H6a 1	513.38383	0.22	Yes	195.8	25472972	3.4	15847
H6a 2	513.38379	0.30	Yes	289.6	36757696	5.0	15515
H6a 3	513.38379	0.30	Yes	225.7	29593050	3.1	155364
H7a 1	513.38383	0.41	Yes	21.0	2881421	0.7	155662
H7a 2	513.38965	0.04	Yes	7.3	1245665	0.2	18093
H7a 3	513.38376	0.36	Yes	30.3	4072024	0.6	16192
H8a 1	513.38388	0.12	Yes	792.0	110680232	19.0	15513
H8a 2	513.38406	-0.22	Yes	627.7	804/16/2	18./	154/08
H8a 3	513.38381	0.25	Yes	622.6	/8334560	15.2	154924
H9a 1	513.38390	0.08	Yes	24/6./	349772384	43.3	15513
H9a 2	513.30300	0.11	Voc	1280.7	174521920	29 5	15495
H10a 1	513 38383	0.30	Voc	1/5 8	101/1305/	30.3	15692
H10a 2	513 38368	0.22	Yes	140.0	14234548	73	15523
H10a 3	513 38384	0.01	Yes	264.2	35622460	9.7	15595
H11a 1	513.38415	-0.41	Yes	1163.5	148525648	64.9	15509
H11a 2	513.38411	-0.33	Yes	608.1	80140032	10.5	15640
H11a 3	513.38386	0.15	Yes	367.1	40425964	31.1	15660
H12a 1	513.38424	-0.58	Yes	459.1	66534492	14.8	15480
H12a 2	513.38422	-0.55	Yes	421.4	61162732	12.4	15429
H12a 3	513.38422	-0.54	Yes	491.3	72042160	17.9	155432
H13aii 1	513.38416	-0.43	Yes	399.1	55871320	14.2	15544
H13aii 2	513.38420	-0.51	Yes	375.2	50387700	12.9	15463
H13aii 3	513.38409	-0.28	Yes	274.9	34669252	5.9	156754
H14a 1			No				
H14a 2			No				
H14a 3	542 20446	0.40	No		4520470		4.6200
H14bi 1	513.38416	-0.42	Yes	8.2	1529179	0.2	16280
H1401 2	513.38410	-0.32	No	5.7	111/081	0.2	1/958
H1401 5			No				
V1a 1			No				
V1a 3			No				
B1a 1	513.38406	-0.20	Yes	3139.5	513161056	100.0	15480
B1a 2	513.38385	0.18	Yes	2249.0	306540608	100.0	15439
B1a 3	513.38364	0.60	Yes	1692.2	210444000	49.3	155653
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No	ļ			
Solvent 1			No				
Solvent 2	513.3822	3.39	No	5.1	1237239	0.2	97793
Solvent 3			NO				l

Table 31. Summary of signal at m/z 513. C_xH_yN₂O

A curious signal was found in the mass spectra for a single replicate of H1 a, at m/z 463, shown in Table 32. This was assigned [C₃₀H₃₀N₄O] + H⁺, a highly unsaturated species with 18 double bond equivalents. This had a very high S:N ratio and so was selected for comparison with other extracts but did not appear in any other spectra, including the controls. Is this an anomaly or contaminant?

Table 32. Summary of signal at m/z 463. C _x H _y N ₄ O
--

Calculated m/z	463.24924	C30H31N4O					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No		,		
V1a 2			No				
V1a 3			No				
Original Heslington			No				
	462 24021	0.07	Voc	11/6 0	1/2582702	145	172020
110 1	403.24921	0.07	No	1140.9	143363792	14.5	172025
110 2			No				
			No				
			NO				
H10 Z			NO				
H10 3			NO				
H2a 1			No				
H2a 2			No				
H2a 3			No				
H3a 1			No				
H3a 2			No				
H3a 3			No				
H4a 1			No				
H4a 2			No				
H4a 3			No				
H5a 1			No				
H5a 2			No				
H5a 3			No				
H6a 1			No				
H6a 2			No				
H6a 3			No				
H7a 1			No				
H7a 2			No				
H7a 3			No				
H8a 1			No				
H8a 2			No				
H8a 3			No				
H9a 1			No				
H9a 2			No				
H9a 3			No				
			No				
H10a 1			No				
H10a 2			No				
			No				-
			No				
H11a 2			No				
H11a 3			No				
			NO				
H12a 2			NO				
H12a 3			NO				
HI3all I			NO				
H13aii 2			No				
H13aii 3			No				
H14a 1			NO				
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1			No				
B1a 2			No				
B1a 3			No				
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 33 displays the data for the peak at m/z 502 assigned [C₃₄H₄₇NO₂] + H⁺. This is the first of several compounds that have multiple oxygen atoms but only a single nitrogen atom. It has 12 double bond equivalents and so is highly unsaturated. This compound appears at high relative intensity and S:N in some of the Hull brain sample extract spectra, especially H4, H8, H9, H10, H11. Conversely it is entirely absent from spectra from H1 (a and b) and H14a and is only in certain replicates of H2 and H14b. Aside from the Hull brain extracts this component is not detected in any of the York extracts (modern or the original York analysis) or the Villiers Street brain extracts. It does appear in the Blackpool extracts which indicates it can form within a shorter time period.

Calculated m/z	502.36796	C34H48NO2					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
H1b 2			No				
L16 2			No				
110 5	E02 26752	0.97	Noc	19.0	2516526	0.5	167002
1120 1	502.50752	0.87	Ne	10.9	2510520	0.5	107992
HZa Z			NO				
H2a 3	500 06704		NO	100.0	52602200	0.0	450200
H3a 1	502.36784	0.24	Yes	400.3	52690288	9.6	158300
H3a 2	502.36793	0.05	Yes	632.0	84588688	13.8	157966
H3a 3	502.36776	0.38	Yes	205.1	25248654	3.3	159710
H4a 1	502.36793	0.05	Yes	7745.7	1.147E+09	67.0	158028
H4a 2	502.36804	-0.16	Yes	5844.3	874623744	100.0	158093
H4a 3	502.36791	0.08	Yes	5743.1	829623040	100.0	158502
H5a 1	502.36753	0.05	Yes	112.9	12887130	6.8	159384
H5a 2	502.36763	0.66	Yes	163.5	19446794	6.4	158636
H5a 3	502.36760	0.71	Yes	280.0	35478088	4.1	159373
H6a 1	502.36784	0.23	Yes	322.9	41345768	5.6	158164
H6a 2	502.36782	0.28	Yes	482.9	60447724	8.2	158554
H6a 3	502.36782	0.27	Yes	335.2	43286172	4.6	158684
H7a 1	502.36776	0.17	Yes	33.2	4351545	1.1	166500
H7a 2	502.36772	0.47	Yes	32.3	4440354	0.7	162242
H7a 3	502.36775	0.40	Yes	42.5	5536963	0.8	158558
H8a 1	502.36790	0.12	Yes	2668.6	366584576	63.0	158081
H8a 2	502 36806	-0.21	Yes	1461.0	184594768	42.8	157303
H8a 3	502.36782	0.26	Yes	1659.4	206019904	39.9	157990
H9a 1	502.36794	0.20	Vos	4538.6	630138816	78.0	157771
	502.30734	0.04	Vos	4158.0	59/211972	67.4	158060
1150 2	502.30792	0.08	Voc	4138.0	205262004	67.2	158000
1198 5	502.30780	0.31	Vec	2444.0	142480104	07.5	150245
H10a 1	502.36787	0.18	Yes	1120.9	143489104	24.0	158/31
H10a 2	502.36776	0.38	Yes	947.7	109377208	50.0	15/195
HIUa 3	502.36784	0.22	res	1978.0	261348368	/1.0	158862
H11a 1	502.36817	-0.42	Yes	1815.2	228869696	100.0	158513
H11a 2	502.36812	-0.34	Yes	846.3	1100/5264	14.4	158841
H11a 3	502.36787	0.17	Yes	699.5	/63480/2	58.7	158924
H12a 1	502.36824	-0.56	Yes	365.4	52134524	11.6	158153
H12a 2	502.36823	-0.55	Yes	303.7	43425892	8.8	158668
H12a 3	502.36822	-0.52	Yes	357.2	51567952	12.8	158524
H13aii 1	502.36819	-0.46	Yes	296.2	40925820	10.4	159638
H13aii 2	502.36821	-0.50	Yes	321.9	42682904	11.0	156927
H13aii 3	502.36810	-0.29	Yes	256.1	31981334	5.4	158463
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	502.36835	-0.78	Yes	10.0	1766020	0.2	158994
H14bi 2	502.36789	0.13	Yes	12.9	2116527	0.3	181016
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1	502.36809	-0.26	Yes	1115.4	178460000	34.8	157496
B1a 2	502.36790	0.11	Yes	672.0	90445040	29.5	158218
B1a 3	502.36767	0.56	Yes	470.3	58074100	13.6	158870
DHB 1		2.50	No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3h 1			No				
Soil 3b 1			No				
			No				
Solvent 1			No				
Solvent 1			No				
Solvent 2			No				
ISUIVENT 3			INO	1	1		

Table 33. Summary of signal at *m/z* 502. C_xH_yNO₂

The details for the peak at m/z 514 are shown in Table 34. This signal was assigned to $[C_{35}H_{47}NO_2] + H^+$, for a compound with 13 double bond equivalents. It has a similar empirical formula to the compound in Table 33, but is a degree more unsaturated. The strongest presence of this peak occurred in the spectra from the Blackpool brain extract and it was most evident in H9 and H11 of the Hull extracts. This compound was entirely undetected in the York sample and in certain Hull samples, H1 (a and b) and H2. It was only detected, and at low intensities and S:N, in some replicates of the following sample extracts: H5, H8, H14 (a and b) and V1.

Calculated m/z	514.36796	C35H48NO2					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
H1b 2			No				
H1b 3			No				
H20 1			No				
120 1			No				
1120 2			No				
HZd 5	544 26702	0.05	NO	00.2	11004656	2.2	155040
H3a 1	514.36793	0.05	res	88.2	11984656	2.2	155049
H3a Z	514.36809	-0.26	res	81.0	11246054	1.8	153211
НЗа З	514.36784	0.22	Yes	25.4	3401542	0.4	158791
H4a 1	514.36808	-0.24	Yes	407.1	61/89488	3.6	154369
H4a 2	514.36826	-0.60	Yes	296.0	45469016	5.2	155438
H4a 3	514.36808	-0.24	Yes	254.5	37720032	4.5	153758
H5a 1			No				
H5a 2	514.36735	1.18	Yes	15.4	2100786	0.7	150159
H5a 3	514.36754	0.81	Yes	15.1	2208481	0.3	169330
H6a 1	514.36801	-0.11	Yes	26.5	3692367	0.5	154496
H6a 2	514.36797	-0.02	Yes	28.1	3821399	0.5	154650
H6a 3	514.36796	0.00	Yes	25.8	3637353	0.4	163567
H7a 1	514.36790	0.11	Yes	8.0	1282543	0.3	168797
H7a 2	514.34842	-0.19	Yes	5.6	1023196	0.2	214214
H7a 3	514.36835	-0.77	Yes	7.7	1252034	0.2	169434
H8a 1			No				
H8a 2	514.36819	-0.46	Yes	148.8	19298170	4.5	151887
H8a 3	514.36790	0.10	Yes	176.0	22345908	4.3	155437
H9a 1	514,36808	-0.24	Yes	531.0	75226112	9.3	154024
H9a 2	514 36803	-0.13	Yes	598.0	85730048	9.9	154411
H9a 3	514 36783	0.24	Yes	181.3	23164522	5.5	154545
H10a 1	514.36795	0.01	Vos	77.4	10297115	1.7	152155
	514 26775	0.01	Vos	72.0	8850207	1.7	152226
L102 2	514 26702	0.41	Vos	108.6	26851648	7.3	153530
H110 1	514.30732	0.07	Voc	153.0	10910649	7.3	153549
	514.50650	-0.07	Vec	155.5	19619046	0.7	154280
1110 2	514.50620	-0.46	Vec	55.2	7343373	1.0	153009
H11a 5	514.50795	0.00	Vec	102.1	15020200	4.9	156514
H12a 1	514.30835	-0.76	Yes	102.1	15030200	3.3	155304
H12a 2	514.36839	-0.85	res	84.8	12554708	2.6	151841
H12a 3	514.36835	-0.78	Yes	92.1	13754643	3.4	155484
H13aii 1	514.36831	-0.68	Yes	67.2	9647407	2.4	157098
H13aii 2	514.36830	-0.67	Yes	59.4	8218304	2.1	154490
H13aii 3	514.36816	-0.40	Yes	46.4	6081523	1.0	162265
H14a 1			No				
H14a 2	514.36836	-0.78	Yes	6.1	1186333	0.2	152243
H14a 3			No				
H14bi 1	514.36831	-0.70	Yes	14.8	2511742	0.3	163932
H14bi 2	514.36796	-0.02	Yes	14.8	2421333	0.4	168189
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3	514.36775	0.41	Yes	7.2	1248831	0.3	156146
B1a 1	514.36826	-0.59	Yes	1335.3	218444224	42.6	154101
B1a 2	514.36800	-0.09	Yes	735.7	100474872	32.8	153211
B1a 3	514.36773	0.44	Yes	500.0	62379800	14.6	154951
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No			1	
Solvent ?			No				
Solvent 3			No				

Table 34. Summary of signal at *m/z* 514. C_xH_yNO₂

The data for a strong peak in the spectrum of brain sample extract H1a at m/z 464 are as shown in Table 35. This signal was assigned the formula $[C_{27}H_{39}NO_3] + K^+$, due to the isotope pattern, which has nine degrees of unsaturation. Like the compound in Table 32 this had a very high S:N ratio and so was selected for comparison with other extracts but did not appear in any other spectra, including the controls.

Calculated m/z	464.25693	C27H39KNO	3				
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1	464.25693		Yes	628.0	78751896	7.9	170723
H1a 2			No				
H1a 3			No				
H1b 1			No				
H1b 2			No				
H1b 3			No				
H20 1			No				
120 1			No				
1120 2			No				
1120 1			No				
H34 I			NO				
H3a Z			NO				
H3a 3			NO				
H4a 1			NO				
H4a 2			No				
H4a 3			No				
н5а 1			NO				
H5a 2			No				
H5a 3			No				
H6a 1			No				
H6a 2			No				
H6a 3			No				
H7a 1			No				
H7a 2			No				
H7a 3			No				
H8a 1			No				
H8a 2			No				
H8a 3			No				
H9a 1			No				
H9a 2			No				
H9a 3			No				
H10a 1			No				
H10a 2			No				
H10a 3			No				
H11a 1			No				
H11a 2			No				
H11a 3			No				
H12a 1			No				
H12a 2			No				
H12a 3			No				
H13aii 1			No				
L12011 2			No				
112011 2			No				
			No				
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 2			No				
V1d 5			No				
D1a 1			NO				
B1a 2			NO				
B1a 3			NO				
DHB 1			No				
DHB 2			NO				
DHB 3			NO				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No	1		1	

Table 35. Summary of signal at m/z 464. C_xH_yNO₃

The peak in the mass spectra at m/z 518 (Table 36) was assigned the empirical formula [C₃₄H₄₇NO₃] + H⁺, with 12 double bond equivalents. This is similar to the compound in Table 33, but with an additional oxygen atom. It has a comparable detection pattern, appearing at high relative intensity and S:N in some of the Hull extracts, especially H8, H9, H10, H11, but less so in H4 than the compound in Table 33. It, too, is entirely absent from H1 (a and b) and H14a and is only in certain replicates of H14b, but is additionally entirely absent from H2. Aside from the Hull extracts this component is not detected in any of the York extracts (modern or the original York analysis) or the Villiers Street extracts. It is also detected in the Blackpool extracts.

Calculated m/z	518.36287 C34H48NO3						
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3			No				
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
H1b 2			No				
H1b 3			No				
H10 J			No				
120 1			No				
1120 2			No				
HZd 3	540 26266	0.40	NO		12222500	2.2	157000
H3a 1	518.36266	0.40	Yes	88.9	12232569	2.2	157888
H3a 2	518.36276	0.22	Yes	163.5	22690870	3.7	155489
НЗа З	518.36262	0.49	Yes	56.1	/23946/	1.0	158566
H4a 1	518.36282	0.11	Yes	642.3	99304624	5.8	153847
H4a Z	518.36293	-0.12	Yes	487.1	/6158800	8.7	155104
H4a 3	518.36281	0.11	Yes	594.8	89382760	10.8	155130
H5a 1	518.36241	0.88	Yes	90.7	10535260	5.5	154855
H5a 2	518.36252	0.68	Yes	132.3	16045343	5.3	155676
H5a 3	518.36243	0.85	Yes	149.4	19501960	2.2	156184
H6a 1	518.36268	0.37	Yes	121.1	16043446	2.2	154896
H6a 2	518.36266	0.40	Yes	198.3	25539116	3.5	157781
H6a 3	518.36265	0.42	Yes	122.1	16335090	1.7	158021
H7a 1	518.36248	0.75	Yes	15.3	2199416	0.5	194175
H7a 2	518.36224	1.22	Yes	14.9	2257825	0.4	177772
H7a 3	518.36218	1.33	Yes	13.2	1956058	0.3	172887
H8a 1	518.36276	0.21	Yes	892.8	126657896	21.8	153869
H8a 2	518.36296	-0.18	Yes	497.9	64706840	15.0	153772
H8a 3	518.36269	0.35	Yes	682.0	86748960	16.8	154132
H9a 1	518.36282	0.10	Yes	1386.0	199198384	24.7	153484
H9a 2	518 36277	0.19	Yes	944.4	137582016	15.9	153737
H9a 3	518 36263	0.46	Yes	877.5	112297096	24.7	153835
H10a 1	518 36272	0.40	Yes	646.2	84869960	14.7	153989
H10a 2	518 36258	0.20	Vos	457.5	53783308	27.6	154534
H10a 2	518 26270	0.30	Voc	1079.1	146580202	27.0	154334
H10a 5	518.30270	-0.32	Voc	726 5	95229560	35.8	154022
	518.50500	-0.37	Voc	730.5	51026116	41.0	154025
1110 2	518.50502	-0.29	Yes	301.7	31030110	0.7	154461
H11a 3	518.36276	0.21	Yes	237.3	20383118	20.3	154930
H12a 1	518.36317	-0.58	Yes	149.6	22258102	5.0	15/616
H12a 2	518.36315	-0.53	Yes	135.1	20151558	4.1	155582
H12a 3	518.36310	-0.44	Yes	139.0	20961076	5.2	155018
H13aii 1	518.36308	-0.40	Yes	52.9	///2386	2.0	162563
H13aii 2	518.36311	-0.46	Yes	62.6	8//3/85	2.3	157950
H13aii 3	518.36303	-0.30	Yes	32.6	4403227	0.7	167652
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	518.36276	0.21	Yes	7.6	1468192	0.2	206577
H14bi 2	518.36307	-0.38	Yes	5.8	1153138	0.2	216090
H14bi 3			No				
V1a 1			No				
V1a 2			No				
V1a 3			No				
B1a 1	518.36298	-0.21	Yes	143.2	24241152	4.7	156444
B1a 2	518.36273	0.28	Yes	92.9	13132001	4.3	155952
B1a 3	518.36249	0.73	Yes	71.5	9261392	2.2	160343
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 36. Summary of signal at m/z 518. C_xH_yNO₃

A multiply oxygenated, mono-nitrogenated compound detected in the oldest sample (York) spectra is found at m/z 564. A summary of the spectral information for this signal is provided in Table 37. The peak was assigned the formula [C₃₆H₆₉NO₃] + H⁺, with only three double bond equivalents; this is the most saturated component identified of this class of compound. This component is detected in all sample extracts. It is not detected in the DHB matrix and the peaks in the soil controls and solvent blank replicates are over 2.5 ppm from the calculated m/z and so are not considered to be the same component.

In the first replicate of the current York extract the peak had the highest relative intensity, and is also very high in the other two replicates, but it has a low relative intensity % in the original York analysis. This may be due to the instrument upgrades or due to the additional time (before the current extract was made) that the brain sample has spent out of its burial environment and in cold storage, where further chemical changes may have taken place.

In the spectra of all the other sample extracts the relative intensity of the signal is generally low (less than 1%), but all *m/z* values were within an error margin of 1.5 ppm, and the signals have good resolution. The signal is not always detected across all replicates, but only in H14a is it only identified in a single replicate. With such low relative intensities, it may appear in other replicates but would have been excluded using the current screening criteria.

176

Table 37.	Summary	of signal	at <i>m/z</i> 564.	C _x H _y NO ₃

Calculated m/z	564.5351	C36H70NO3					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	564.53510	-0.14	Yes	2064.2	300621824	100.0	140835
Y1a 2	564.53492	0.18	Yes	1671.4	232160384	85.3	141016
Y1a 3	564.53503	-0.02	Yes	1953.8	286345344	83.1	141489
Original Heslington	564.53446	0.99	Yes	35.7	4123617	3.3	87473
H1a 1	564.53485	0.31	Yes	16.4	2712414	0.3	147223
H1a 2	564.53463	0.69	Yes	13.0	1919697	0.5	164774
H1a 3			No				
H1b 1	564.53457	0.80	Yes	32.8	4571409	0.5	142282
H1b 2	564 53496	0.10	Yes	18 3	2610413	0.7	126762
H1b 3	564 53460	0.74	Yes	24.3	3345208	0.8	145493
H2a 1	564 53440	1.09	Yes	27.3	3729277	0.7	146562
H2a 2	564 53459	0.77	Vos	16.4	2712781	0.8	1/8130
H2a 3	564 53449	0.95	Vos	13.9	1925929	0.5	160252
H2a J	564 52484	0.55	Voc	26.2	5/0707/	1.0	152496
130 1	504.53484	0.32	Voc	20.2	497574	1.0	122480
1130 2	504.55505	-0.00	Yes	50.8	4655127	0.8	122220
	504.53424	1.39	Yes	9.8	15/5588	0.2	132229
H4a 1	564.53510	-0.14	Yes	99.1	17229292	1.0	140893
H4a Z	564.53529	-0.48	Yes	/1.6	126/5803	1.4	144168
H4a 3	564.53519	-0.30	Yes	82.0	13801866	1./	142343
H5a 1	564.53462	0.72	Yes	43.9	5416951	2.8	146895
H5a 2	564.53466	0.63	Yes	60.8	7854402	2.6	142963
H5a 3	564.53473	0.52	Yes	79.7	11195468	1.3	141238
H6a 1	564.53506	0.07	Yes	11.4	1879858	0.3	158702
H6a 2	564.53482	0.36	Yes	12.6	1991295	0.3	146572
H6a 3	564.53467	0.61	Yes	18.2	2852124	0.3	162523
H7a 1	564.53438	1.14	Yes	7.6	1302116	0.3	160893
H7a 2	564.53524	-0.38	Yes	8.0	1425992	0.2	172349
H7a 3	564.53499	0.05	Yes	8.6	1448073	0.2	149014
H8a 1	564.53496	0.10	Yes	30.6	5000042	0.9	145666
H8a 2	564.53541	-0.69	Yes	29.3	4351590	1.0	139463
H8a 3	564.53492	0.18	Yes	20.0	2988841	0.6	155747
H9a 1	564.53520	-0.31	Yes	16.3	2864749	0.4	157521
H9a 2	564.53522	-0.36	Yes	18.3	3221405	0.4	166940
H9a 3	564.53472	0.53	Yes	7.2	1278939	0.3	189045
H10a 1	564.53512	-0.17	Yes	6.9	1257855	0.2	166956
H10a 2	564.53459	0.77	Yes	10.9	1619946	0.8	150187
H10a 3	564.53483	0.33	Yes	27.0	4234809	1.2	154984
H11a 1	564.53539	-0.65	Yes	34.9	5090939	2.2	149031
H11a 2	564.53543	-0.73	Yes	21.6	3367782	0.4	145466
H11a 3			No				
H12a 1	564.53555	-0.94	Yes	35.3	5964161	1.3	147560
H12a 2	564.53542	-0.71	Yes	34.6	5864499	1.2	141797
H12a 3	564.53547	-0.79	Yes	31.3	5399150	1.3	153234
H13aii 1	564.53550	-0.85	Yes	44.2	7073855	1.8	146663
H13aii 2	564.53530	-0.49	Yes	44.7	6820341	1.8	142995
H13aii 3	564.53537	-0.61	Yes	34.7	4937962	0.8	145157
H14a 1			No				
H14a 2	564.53493	0.16	Yes	10.3	1965286	0.3	148810
H14a 3			No				
H14bi 1	564.53553	-0.90	Yes	12.7	2410267	0.3	159603
H14bi 2	564,53543	-0.73	Yes	7.6	1508035	0.2	169366
H14bi 3			No				
V1a 1			No				
V1a 2	564 53552	-0.89	Yes	11 1	1875552	03	145011
V1a 3	564 53475	0.48	Yes	6.4	1227756	0.3	172431
B1a 1	564 53537	-0.62	Yes	65.0	12500726	2.4	143053
B1a 2	564 53500	0.05	Yes	39.9	6266823	2.0	148960
B1a 3	564 53480	0.05	Vos	27.6	3957757	0.9	136427
DHB 1	504.55480	0.55	No	27.0	3337737	0.5	130427
			No				
DHB 3			No				
Soil 25 1			No				
Soil 3a 2			No				
Soil 22 2	564 52600	2.24	No	6.2	1/02224	0.2	120714
Soil 3h 1	307.33089	-5.51	No	0.2	1402324	0.5	130714
Soil 2h 2	564 52650	2.62	No	0.5	2064000	0.1	144554
Soil 30 2	504.53650	-2.03	No	9.5	2061998	0.1	144554
Solvent 1	E64 52672	2.02	No		1724070		140400
Solvent 2	504.530/3	-3.03	No	6.8	1/218/6	0.0	146498
Solvent 2			No				
jouvent 5		1	INU	1	1	1	1

Table 38 shows the data for the peak at m/z 648, assigned [C₄₂H₈₁NO₃] + H⁺, with three double bond equivalents. This peak is detected in the spectra of nearly all the sample extracts, if not in all the replicates, but it was not detected in the original analysis of the York brain extract. This may have been due to the change in instrumentation or additional time in storage. The strongest S:N and relative intensity % for this peak were found in the spectra for the extracts of H5, H10 and H11. It was only detected with small S:N and relative intensity % in the spectra for H1a, H14 (a and b) and V1. Most of the detections in the soil and solvent controls were over 2 ppm away from the calculated m/z and so are considered not to be the same compound. However, one signal fell within this error range, and so could be considered to indicate compound's presence within the soil background. However, the m/z value assigned is well outside the 1.5 ppm error margin within which all the other sample m/z values are measured, and so there must be doubt about this identification in the one soil replicate.

Table 38.	Summary	of signal	at <i>m/z</i> 648.	C _x H _y NO ₃

Calculated m/z	648.62892 C42H82NO3						
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	648.62901	0.05	Yes	99.2	16093210	5.4	124633
Y1a 2	648.62883	-0.90	Yes	67.9	10491214	3.9	125730
Y1a 3	648.62895	-0.13	Yes	116.1	18842400	5.5	124709
Original Heslington			No				
H1a 1	648.62878	0.21	Yes	118.7	17780358	1.8	125538
H1a 2	648.62856	0.56	Yes	111.9	15138508	3.8	124695
H1a 3	648.62845	0.73	Yes	158.1	20621118	3.1	122342
H1b 1	648.62840	0.81	Yes	301.3	41476884	4.8	123791
H1b 2	648.62189	0.80	Yes	294.7	39214316	10.2	121074
H1b 3	648.62827	1.01	Yes	362.7	47760348	11.3	122900
H2a 1	648.62822	1.09	Yes	528.2	687/1144	12.8	123001
H2a Z	648.62833	0.91	Yes	198.0	29561560	8.9	122528
HZa 3	648.02841	0./3	Yes	152.7	19130522	5.4	124310
H3a 1	648.02002	0.10	Yes	2/3.4	50104572	/.1	123055
H3a 2	CAR 62858	0.12	Yes	112 /	15113936	2.0	1233//
H3a 5	640.02000	-0.07	Voc	551.1	94425016	2.0	123344
H4a 1 H4a 2	648 62934	-0.64	Ves	267.0	49199552	5.5	123237
H4a 3	648.62907	-0.23	Yes	413.8	71159000	8.6	124023
H5a 1	648.62828	0.86	Yes	623.9	75403760	39.6	123197
H5a 2	648.62843	0.76	Yes	498.6	64293572	21.1	122844
H5a 3	648.62839	0.82	Yes	361.6	50850196	5.8	123112
H6a 1	648.62885	0.11	Yes	141.4	20141758	2.7	124575
H6a 2	648.62879	0.20	Yes	182.8	25304904	3.4	124073
H6a 3	648.62877	0.24	Yes	202.7	28714906	3.1	125073
H7a 1	648.62876	0.25	Yes	200.3	28058438	6.9	123186
H7a 2	648.62884	0.12	Yes	159.4	23852888	3.8	122674
H7a 3	648.62876	0.25	Yes	200.1	28297852	4.2	123599
H8a 1	648.62889	0.05	Yes	485.6	74201520	12.8	122968
H8a 2	648.62898	-0.08	Yes	292.0	41582808	9.6	120696
H8a 3	648.62866	0.40	Yes	368.3	50398348	9.8	121716
H9a 1	648.62881	0.18	Yes	281.8	43035688	5.3	122861
H9a 2	648.62892	0.00	Yes	268.6	41374524	4.8	123168
H9a 3	648.62845	0.72	Yes	125.9	17437172	3.8	126732
H10a 1	648.62876	0.25	Yes	165.8	23643404	4.0	123349
H10a 2	648.62846	0.71	Yes	195.8	24642084	12.6	121911
H10a 3	648.62874	0.27	Yes	652.6	94883208	25.8	123592
H11a 1	648.62930	-0.59	Yes	411.5	60014560	26.2	123145
H11a 2	648.62934	-0.05	Yes	122.9	32/11350	4.3	124971
H11a 3	640.02004	0.13	Yes	135.5	72870264	16.2	120700
H12a 1	640.02333	-1.02	Yes	396.2	64979128	13.2	122045
H17a 3	648 62950	-0.89	Ves	285.9	48197292	12.0	124118
H13aii 1	648,62944	-0.80	Yes	338.7	55595496	14.1	123730
H13aii 2	648.62937	-0.69	Ves	345.0	52957304	13.6	121875
H13aii 3	648.62923	-0.47	Yes	264.4	37770488	6.4	123733
H14a 1		-	No				
H14a 2	648.62885	0.12	Yes	10.2	1942652	0.3	141524
H14a 3			No				
H14bi 1	648.62906	-0.21	Yes	12.4	2358631	0.3	133991
H14bi 2	648.62889	0.05	Yes	6.8	1377159	0.2	128338
H14bi 3			No				
V1a 1	648.62895	0.03	Yes	88.5	14693231	0.7	124974
V1a 2	648.62905	-0.20	Yes	111.3	17534086	2.8	123787
V1a 3	648.62897	0.07	Yes	68.2	10688888	2.3	122848
B1a 1	648.62930	-0.58	Yes	219.0	39446188	7.7	122936
B1a 2	648.62880	0.19	Yes	162.8	24344622	7.9	124341
B1a 3	648.62858	0.53	Yes	224.3	29983818	7.0	124155
DHB 1			No				
DHB 2			NO				
DHB 3	C40 C2427	2.02	NO	10.0	2620200	0.2	426522
Soil 3a 1	648.63127	-3.62	NO	10.9	2638290	0.3	136532
Soil 3a 2	649 62112	2 20	No	7 1	1902/19	0.4	120716
Soil 3h 1	648 63149	-3.35	No	7.1	1803418	0.4	120/10
Soil 3h 2	648 63061	-2 60	No				
Soil 3h 3	648 63013	-1.86	Yes	5.6	1577305	0.3	140991
Solvent 1	648 63090	-3.05	No	13 3	3275128	0.5	122879
Solvent 2	648.63125	-3.59	No	5.4	1528911	0.2	146137
Solvent 3	648.63127	-2.11	No	10.9	2638290	0.3	136532

A more highly oxygenated compound was assigned to the peak at m/z584. This was assigned the formula $[C_{36}H_{73}NO_4] + H^+$, which has a single double bond equivalent. Table 39 shows that this compound was not detected in any of the controls or the youngest sample extracts, B1 and V1. It was sporadically detected in the Hull samples but the peak was most strongly seen in the spectra for Y1, with high S:N, intensities and relative intensity %s. It wasn't detected in all the Hull samples, only consistently across all replicates of H1 (a and b), H2, H4 and H5. This pattern may suggest that this is a later stage degradation product, produced after a series of other chemical changes over time, and so is more apparent in older samples. It may also indicate that some aspect of the York site was conducive to its formation or preservation within the original sample burial, and so this component appears higher in intensity. The intensity within the York sample extract compared to the Hull samples may indicate it is observed in larger quantities in the York extract, but may alternatively indicate that the abundance of other chemical compounds has decreased, so it appears more prominent.
Table 39.	Summary	/ of signal	at <i>m/z</i> 584.	C _x H _y NO ₄
			-	

Calculated m/z	584.56124	C36H74NO4					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	584.56131	-0.13	Yes	1368.1	203449392	67.7	136145
Y1a 2	584.56114	0.17	Yes	1182.3	167242288	61.4	136343
Y1a 3	584.56124	0.00	Yes	1441.9	215606560	62.6	136331
Original Heslington	584.56144	-0.35	Yes	14.2	1799286	1.4	93241
H1a 1	584.56126	-0.04	Yes	16.2	2700206	0.3	130673
H1a 2	584.56127	-0.06	Yes	19.3	2738609	0.7	144345
H1a 3	584.56106	0.30	Yes	11.5	1752962	0.3	128411
H1b 1	584.56088	0.61	Yes	39.9	5557330	0.6	136814
H1b 2	584.56088	0.61	Yes	28.7	3963520	1.0	135549
H1b 3	584.56076	0.82	Yes	31.4	4278210	1.0	143079
H2a 1	584.56029	1.62	Yes	11.9	1808492	0.3	158998
H2a 2	584.56023	1.72	Yes	4.9	1038248	0.3	140783
H2a 3	584.56138	-0.25	Yes	5.8	980427	0.3	182015
H3a 1	584.56100	0.40	Yes	8.0	1456096	0.3	192619
H3a 2	584.56175	-0.88	Yes	5.7	1149639	0.2	149974
H3a 3	504 56452	0.40	NO	10.7	2000500	0.0	145025
H4a 1	584.50152	-0.49	Yes	19.7	3080500	0.2	145935
H4a 2	584.50183	-1.01	Yes	12.3	2481338	0.3	142020
H4a 5	584.50132	-0.49	Yes	10.5 E1.4	6222522	0.4	12030
	584.56091	0.00	Voc	51.4	9265240	3.3	120116
H5a 3	584 56083	0.73	Voc	75.2	10639891	1.0	139110
H6a 1	564.50005	0.05	No	75.2	10055051	1.2	130355
H6a 2			No				
H6a 3			No				
H7a 1			No				
H7a 2			No				
H7a 3			No				
H8a 1	584.56112	0.19	Yes	16.0	2763860	0.5	144355
H8a 2			No				
H8a 3	584.56100	0.40	Yes	9.1	1526385	0.3	163987
H9a 1			No				
H9a 2			No				
H9a 3			No				
H10a 1			No				
H10a 2			No				
H10a 3			No				
H11a 1	584.56154	-0.53	Yes	12.1	1991546	0.9	145429
H11a 2			No				
H11a 3	584.56124	-0.01	Yes	6.8	1055299	0.8	115744
H12a 1			No				
H12a 2			No				
H12a 3	584.54109	-1.88	Yes	12.7	2398897	0.6	134144
H13aii 1	584.56239	-1.97	No	5.0	1101857	0.3	181937
H13aii 2	584.56183	-1.02	Yes	4.0	905513	0.2	172240
H13aii 3			No				
H14a 1			NO				
H14a 2			NO				
H14a 3	F04 FC190	1 1 2	NO	6.2	1257554	0.2	107077
H1401 1	584.56189	-1.12	No	0.2	135/554	0.2	10/0//
H14012			No				
V1a 1			No				
V1a 1			No				
V1a 3			No				
B1a 1			No				
B1a 2			No				
B1a 3			No				
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3	1	1	No	1	1	1	1

A dinitrogenated, dioxygenated hydrocarbon was identified as likely occurring at m/z 527, shown in Table 40. This was assigned $[C_{35}H_{46}N_2O_2] + H^+$, which has 14 double bond equivalents and is highly unsaturated. It is a significant peak in the spectra from the H9 and B1 replicates, with high S:N, intensity and relative intensity %. It was detected in the current York extract but not the original York analysis. It was not detected in several of the Hull sample extracts (H1a and b, H2, H14a) and not in the Villiers Street extract either.

Calculated m/z	527.36321	C35H47N2O	2				
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	527.36310	0.19	Yes	15.4	2407194	0.8	155586
Y1a 2	527.36317	0.07	Yes	13.9	2121042	0.8	175514
Y1a 3	527.36293	0.52	Yes	16.5	2582634	0.7	153741
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			No				
H1b 1			No				
			No				
110 2			No				
110.5			NU				
HZal			NO				
H2a 2			No				
HZa 3			No				
H3a 1	527.36310	0.20	Yes	34.9	5038793	0.9	160418
H3a 2	527.36316	0.08	Yes	43.0	6275630	1.0	151645
H3a 3	527.36292	0.54	Yes	22.7	3132787	0.4	154295
H4a 1	527.36316	0.09	Yes	700.6	110532424	6.5	149541
H4a 2	527.36333	-0.24	Yes	562.3	89672432	10.3	150159
H4a 3	527.36317	0.06	Yes	482.5	73923080	8.9	150662
H5a 1	527.36255	1.24	Yes	21.1	2675446	1.4	157538
H5a 2	527.36284	0.69	Yes	26.7	3492171	1.1	156068
H5a 3	527.36280	0.76	Yes	44.8	6129583	0.7	153601
H6a 1	527.36306	0.27	Yes	42.4	5867731	0.8	154069
H6a 2	527.36309	0.27	Yes	56.4	7547188	1.0	154824
H6a 3	527 36306	0.27	Yes	46.5	6471623	0.7	156019
H7a 1	527 36328	-0.15	Vos		1112263	0.7	153112
	527.36320	0.15	Vos	7.0	1252442	0.3	142440
17.0 2	527.30234	0.30	Voc	12.0	2066127	0.2	142440
11/2 3	527.30310	0.20	Vec	13.9	72028206	0.3	142069
H04 1	527.30313	0.15	Yes	505.9	73038296	12.0	150279
H8a Z	527.36329	-0.15	res	335.8	44295324	10.3	149286
H8a 3	527.36304	0.32	Yes	367.3	47395096	9.2	150500
H9a 1	527.36318	0.04	Yes	1082.6	158351728	19.6	149933
H9a 2	527.36312	0.15	Yes	885.6	131315360	15.2	149920
H9a 3	527.36299	0.41	Yes	590.9	76607448	16.9	149109
H10a 1	527.36311	0.18	Yes	170.5	22887994	3.8	151409
H10a 2	527.36292	0.55	Yes	144.9	17364808	8.9	149823
H10a 3	527.36307	0.26	Yes	303.2	41969720	11.4	150384
H11a 1	527.36343	-0.42	Yes	271.5	35718248	15.6	151352
H11a 2	527.36342	-0.40	Yes	161.3	22009662	2.9	150180
H11a 3	527.36315	0.11	Yes	99.4	11274921	8.7	152571
H12a 1	527.36351	-0.58	Yes	111.9	17008854	3.8	151545
H12a 2	527.36355	-0.65	Yes	109.6	16683979	3.4	149207
H12a 3	527.36351	-0.58	Yes	125.3	19260306	4.8	148149
H13aii 1	527.36344	-0.45	Yes	69.5	10281454	2.6	152611
H13aii 2	527.36351	-0.58	Yes	71.3	10085382	2.6	150640
H13aii 3	527,36337	-0.31	Yes	54.5	7252952	1.2	152249
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2	527 36394	-1 39	Vos	63	1239/15	0.2	162114
L14612	527.50554	1.55	No	0.5	1235413	0.2	102114
V121			No				
V10 1			No				
V1a 2			No				
V1d 5	527 26224	0.26	NO	C 47 2	110052212	21.0	140627
D1a 1	527.30334	-0.26	Yes	647.2	110952312	21.0	149627
B1a 2	527.36311	0.18	res	420.9	59378720	19.4	149720
B1a 3	527.36288	0.61	Yes	277.7	35532948	8.3	151445
DHB 1			NO				
DHB 2			NO				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 40. Summary of signal at m/z 527. $C_xH_yN_2O_2$

Table 41 shows a summary for the peak at m/z 731. This ion was assigned the formula [C₄₆H₈₀N₂O₃] + Na⁺, which has eight double bond equivalents and was a high intensity peak in the H12 spectra. The peak was detected in spectra from all sites/ages and not in any of the controls. The S:N and relative intensity % were also relatively large, across all replicates in Y1, H4, H11 and H13. It was undetected in H14, a and b.

Calculated m/z	731.60612	C46H80N2N	aO3				
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	731.60606	0.08	Yes	431.3	74481144	24.8	108712
Y1a 2	731.60578	0.46	Yes	408.1	65856728	24.2	109025
Y1a 3	731.60597	0.20	Yes	417.0	72113800	20.9	109527
Original Heslington	731.60492	1.63	Yes	18.9	2545543	2.0	69233
H1a 1	731.60579	0.45	Yes	157.9	23600660	2.4	109553
H1a 2	731.60555	0.78	Yes	669.1	93945304	23.5	109367
H1a 3	731 60552	0.81	Yes	142.1	18932144	2.9	111040
H1b 1	731 60537	1 01	Yes	81 7	11980917	14	110406
H1b 2	731 60538	1.00	Yes	79.4	11229051	2.9	107597
H1b 3	731.60530	1.00	Vos	82.5	115/3/88	2.5	111/01
H20 1	731.00530	1.11	Vos	226.2	12921056	2.7	100485
120 1	731.00521	1.24	Voc	320.3	43821030	10.2	110110
1120 2	731.00550	1.12	Voc	121.6	17160020	10.2	112604
1120 1	731.00551	0.83	Vec	151.0	11045808	4.0	112004
пза I up- 2	731.60589	0.31	Yes	75.3	11045808	2.0	111072
пза 2 up- 2	731.60602	0.13	Yes	79.4	11955923	2.0	10189
H3a 3	731.60573	0.53	Yes	29.2	4200968	0.6	107295
H4a 1	/31.60599	0.16	Yes	1143.8	195700720	11.4	109347
H4a 2	/31.60639	-0.38	Yes	688.2	133400800	15.3	109428
H4a 3	731.60608	0.05	Yes	722.1	128661304	15.5	109866
H5a 1	731.60542	0.95	Yes	46.9	6101208	3.2	113236
H5a 2	731.60539	0.99	Yes	62.3	8541047	2.8	109447
H5a 3	731.60529	1.13	Yes	57.1	8473195	1.0	108454
H6a 1	731.60588	0.32	Yes	506.9	72430552	9.8	109233
H6a 2	731.60587	0.34	Yes	522.7	72704688	9.9	109700
H6a 3	731.60582	0.40	Yes	726.2	102298192	10.9	109572
H7a 1	731.60586	0.35	Yes	17.2	2824545	0.7	122070
H7a 2	731.60589	0.30	Yes	26.1	4390243	0.7	112877
H7a 3	731.60640	-0.38	Yes	9.6	1735542	0.3	131899
H8a 1	731.60603	0.12	Yes	72.8	11335620	1.9	109012
H8a 2	731.60628	-0.23	Yes	72.0	10719546	2.5	111715
H8a 3	731.60567	0.61	Yes	72.2	10241692	2.0	109061
H9a 1	731.60591	0.28	Yes	171.4	25518382	3.2	109426
H9a 2	731.60589	0.31	Yes	223.3	33173400	3.8	109699
H9a 3	731.60553	0.79	Yes	100.0	13973069	3.1	108370
H10a 1			No				
H10a 2			No				
H10a 3	731.60567	0.61	Yes	36.2	5544880	1.5	113529
H11a 1	731.60650	-0.53	Yes	880.7	134848896	58.9	109146
H11a 2	731.60648	-0.50	Yes	560.1	85828920	11.2	109402
H11a 3	731.60594	0.24	Yes	268.6	32620636	25.1	109396
H12a 1	731.60667	-0.76	Yes	2643.1	449381664	100.0	109316
H12a 2	731,60668	-0.78	Yes	2353.8	391142208	79.5	108873
H12a 3	731,60667	-0.76	Yes	2335.1	402325024	100.0	109486
H13aii 1	731.60658	-0.64	Yes	1697.4	294104992	74.5	109464
H13aii 2	731 60661	-0.68	Yes	1302.9	208053136	53.4	108949
H13aii 3	731 60638	-0.36	Yes	1055.4	157992192	26.8	109359
H14a 1	/31.00030	0.50	No	1000.4	157552152	20.0	105555
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1			No				
V1a 2	731 60624	-0.18	Vos	12 5	2/13/107	0.4	119751
V10 2	731.60606	-0.20	Vos	421.2	74481144	24.9	109712
P1a 1	731.00000	-0.23	Voc	431.3	10170724	24.0	108712
B1a 2	731.00033	-0.30	Voc	110.0 96 E	12027056	3.7	110062
P1o 2	731.00337	0.20	Voc	50.J	7221057	4.2	114002
DUD 1	751.00558	0.74	Ne	55.2	/55165/	1.7	114004
			NO				
DHB 2			NO				
DHB 3			NO				
5011 3a 1			NO				
SOII 38 2			NO				
5011 38 3			NO				
Soil 3b 1			NO				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1	731.60852	-3.28	No	4.0	1322414	0.0	120898
Solvent 2			No				
Solvent 3			No	1	1	1	

Table 41. Summary of signal at m/z 731. C_xH_yN₂O₃

The peak at m/z 759, see Table 42, was assigned [C₄₈H₈₄N₂O₃] + Na⁺, which has eight double bond equivalents and is the equivalent of the compound in Table 41 with the addition of CH₂-CH₂. It has a similar detection pattern to the smaller analogue compound summarised in Table 41, with the most prominent peak intensities being found in the spectra from the H12 extract, followed by H11 and H13. The S:N and intensities are reduced in Y1 and H4 as compared to those in the previous table and as well as being undetected in H14, a and b, it is also only detected in a single replicate from H10 and V1 (and these have errors of over 1.5 ppm), and does not appear in the original York analysis.

Calculated m/z	759.63742	C48H84N2N	aO3				
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	759.63761	-0.26	Yes	47.5	8510727	2.8	107368
Y1a 2	759.63721	0.27	Yes	39.1	6602984	2.4	109644
Y1a 3	759.63749	-0.10	Yes	43.3	7799512	2.3	103897
Original Heslington			No				
H1a 1	759.63723	0.24	Yes	20.9	3388549	0.3	110255
H1a 2	759.63694	0.62	Yes	82.6	11837839	3.0	106744
H1a 3	759.63684	0.75	Yes	16.8	2515897	0.4	117717
H1b 1	759.63751	-0.13	Yes	10.7	1846131	0.2	111040
H1b 2	759.63692	0.65	Yes	10.0	1695273	0.4	129799
H1b 3	759.63595	1.92	Yes	13.0	2078070	0.5	109826
H2a 1	759.63641	1.33	Yes	65.6	9063418	1.7	107271
H2a 2	759.63649	1.22	Yes	32.0	5052156	1.5	112804
H2a 3	759 63679	0.82	Yes	24.0	3397970	1.0	108491
H3a 1	759 63711	0.40	Yes	19.2	3049540	0.6	125398
H3a 2	759 63737	0.06	Yes	23.5	3789676	0.6	115369
H3a 3	759 63746	-0.07	Vos	9.1	1520/18	0.0	132162
H4a 1	759.63740	-0.08	Vos	245.3	1320410	2.5	10/1982
	750 62801	-0.70	Vos	155.0	20616024	2.5	104512
	759.63761	-0.75	Vos	175 7	21701/22	3.5	104313
	759.03701	-0.20	Voc	1/3./	1246219	3.8	119340
H5a 2	750 6264	1.02	Voc	0.4	1940518	0.7	110240
LE2 2	750 62707	1.02	Voc	11.5	2002400	0.6	126692
1130 3	750.03/0/	0.46	Voc	12.3	2092409	0.2	120082
	759.03/43	-0.02	Voc	60.3	8916/24	1.2	104087
	759.03733	0.11	Yes	57.7	8318443	1.1	104147
HDd 3	759.03715	0.34	Yes	81.5	11/5//40	1.3	106210
H/a 1	759.63710	0.42	Yes	7.3	1391201	0.3	101635
H/a Z	759.63725	0.22	Yes	11.7	2149101	0.3	114629
H/a 3	/59.63//9	-0.50	Yes	6.3	1258591	0.2	141213
H8a 1	759.63814	-0.96	Yes	5.5	1165527	0.2	134914
H8a Z	/59.63/82	-0.54	Yes	5.1	10/1092	0.2	154618
H8a 3	759.63684	0.75	Yes	15.6	2462678	0.5	114847
H9a 1	759.63757	-0.21	Yes	19.8	3241050	0.4	106578
H9a 2	759.63741	0.01	Yes	47.9	7366484	0.9	103676
H9a 3	/59.636/4	0.89	Yes	20.1	3075659	0.7	101/19
H10a 1			No				
H10a 2	/59.68361	1.83	Yes	7.0	1199706	0.6	107767
H10a 3			No				
H11a 1	/59.63/9/	-0.73	Yes	126.0	19614886	8.6	105231
H11a 2	/59.63/88	-0.61	Yes	/4.6	11/85283	1.5	107295
H11a 3	759.63729	0.17	Yes	39.8	5100703	3.9	113802
H12a 1	759.63823	-1.08	Yes	1949.5	329006080	73.2	105157
H12a 2	759.63824	-1.08	Yes	1905.1	314519072	63.9	104734
H12a 3	759.63823	-1.07	Yes	1564.2	267634096	66.5	105179
H13aii 1	759.63814	-0.95	Yes	533.3	92353568	23.4	104825
H13aii 2	759.63812	-0.93	Yes	366.9	58804596	15.1	104388
H13aii 3	759.63776	-0.46	Yes	316.7	47645124	8.1	104783
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1			No				
H14bi 2			No				
H14bi 3			No				
V1a 1			No				
V1a 2	759.63639	1.35	Yes	4.2	1041308	0.2	154604
V1a 3			No				
B1a 1	759.63802	-0.73	Yes	96.6	16846912	3.3	105694
B1a 2	759.63736	0.08	Yes	58.9	8974776	2.9	105138
B1a 3	759.63706	0.47	Yes	42.7	5989972	1.4	107471
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3			No				
Solvent 1			No				
Solvent 2			No				
Solvent 3			No				

Table 42. Summary of signal at m/z 759. C_xH_yN₂O₃

Although the extracts contained a range of oxygenated and nitrogenated hydrocarbons, interestingly there were very few examples of hydrocarbons that contained only oxygen. The tentative assignment of a highly oxygenated organic compound giving a signal at m/z 321 is shown in Table 43, as [C₁₂H₂₆O₇] + K⁺. This compound is fully saturated and so is suggested to be a fatty alcohol, presumably related to the fatty acids found in brains. It was a significant signal in the spectrum of the extract of sample H6, with both high S:N and relative intensity, consistent across all replicates. The peak was detected in the spectra of some other sample extracts (such as H5 and H11) but not consistently across all replicates. It is detected in both Y1 and V1 extracts but not in the extract of the youngest sample, B1. The ionisation of this compound is unusual; although salts are likely to be present within the matrix and sample, proton ionisation was observed much more consistently. However, this component is chemically quite distinct from the majority of the components detected, which were large organics, and so it is not impossible to imagine that a short fatty alcohol may behave differently. Because of the m/z range used for recording the spectra, it isn't possible to determine whether its protonated molecule is also formed.

Calculated m/z	321.13101	C12H26KO7					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1			No				
Y1a 2			No				
Y1a 3	321.13074	0.85	Yes	4.0	675447	0.2	321769
Original Heslington			No				
H1a 1			No				
H1a 2			No				
H1a 3			NO				
H10 1			NO				
H10 Z			No				
H10 3			No				
H2a 2			No				
H2a 3			No				
H3a 1			No				
H3a 2			No				
H3a 3			No				
H4a 1			No				
H4a 2			No				
H4a 3			No				
H5a 1	321.13063	1.19	Yes	6.2	883556	0.5	221107
H5a 2	321.13060	1.29	Yes	4.5	717497	0.2	313717
H5a 3			No		44700		
H6a 1	321.13077	0.74	Yes	4256.3	447302528	60.4	248874
H6a 2	321.13077	0.75	Yes	4340.1	451906560	61.5	248872
	321.13077	0.74	No	4964.9	522470560	55.0	248833
H7a 2			No				
H7a 3			No				
H8a 1			No				
H8a 2			No				
H8a 3			No				
H9a 1			No				
H9a 2			No				
H9a 3	321.13097	0.12	Yes	14.2	1715155	0.4	276080
H10a 1			No				
H10a 2			No				
H10a 3			No				
H11a 1			No				
H11a 2	321.13078	0.72	Yes	96.5	10469033	1.4	246020
H11a 3	321.13068	1.02	Yes	57.4	5948500	4.6	256978
			No				
H12a 3			No				
H13aii 1			No				
H13aii 2			No				
H13aii 3			No				
H14a 1			No				
H14a 2			No				
H14a 3			No				
H14bi 1	321.13085	0.50	Yes	36.4	4299900	0.5	239254
H14bi 2	321.13104	-0.08	Yes	6.2	946564	0.1	271734
H14bi 3			NO				
	221 12081	0.04	NO	10.1	1226122	0.2	200154
V1a 2	321.13081	0.64	No	10.1	1320132	0.2	200154
R1a 1			No				
B1a 2			No				
B1a 3			No				
DHB 1			No				
DHB 2			No				
DHB 3			No				
Soil 3a 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soli 3b 3			NO			ļ	
Solvent 1			NO				
Solvent 3			No				

Table 43. Summary of signal at *m/z* 321. C_xH_yO₇

A further highly oxygenated fully saturated organic compound that was identified was detected at m/z 365 and, like the signal at m/z 321, was also observed with high S:N and intensity in the data from sample H6. This was assigned [C₁₄H₃₀O₈] + K⁺ and is shown in Table 44. Its presence was detected in several other sample extracts but not across all replicates and it was also detected in one replicate of the soil and of the solvent blank. The very high relative intensity of the signal in the H6 extract spectra suggest it may be present in high quantities in this sample - the relative intensities in the soil and solvent blank single replicates are very low.

Table 44.	Summary	/ of signa	l at <i>m/z</i> 365.	C _x H _y O ₈
-----------	---------	------------	----------------------	--

Calculated m/z	365.15723	C14H30KO8					
Sample designation +	Measured						
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	365.15697	0.71	Yes	6.8	969444	0.3	186296
Y1a 2	365.15704	0.51	Yes	4.1	678823	0.2	300038
Y1a 3			No				
Original Heslington			No				
H1a 1			No				
H1a Z	205 45 601	0.07	No		1059027	0.2	241702
	305.15091	0.87	Yes	1.7	1058937	0.2	211/85
H10 1	303.1303-	0.77	No	13.5	1003337	0.2	203013
H16 2	365 15685	1.04	Ves	7.6	1044679	0.2	246899
H7a 1	505.25002		No		100.1		2.0000
H2a 2			No				
H2a 3			No				
H3a 1			No				
H3a 2			No				
H3a 3	365.15664	1.59	Yes	7.7	1056455	0.1	241676
H4a 1			No				
H4a 2			No				
H4a 3			No				
H5a 1			No				
H5a 2			No				
H5a 3	205 15709	0.20	NO	E912.8	C10774784	82.5	210108
	265 15707	0.55	Yes	5866.4	610736448	83.1	219108
H63 3	365 15708	0.41	Ves	6822.4	717843712	76.4	210320
H7a 1	303.13, 52		No	00111	71,040,11	7.01.1	210202
H7a 2			No				
H7a 3			No				
H8a 1			No				
H8a 2	365.15695	0.77	Yes	5.1	766377	0.2	232727
H8a 3			No				
H9a 1			No				
H9a 2			No				
H9a 3	365.15714	0.24	Yes	20.9	2407552	0.5	227532
H10a 1			No				
H10a 2	205 15720	0.07	No	4.1	C910E0	0.2	220541
H10a 3	305.15720	0.07	Yes	4.1	081029	0.2	230341
HI10 1	265 15717	0.15	NO	159.4	17120492	22	223896
H11a 2	365 15701	0.60	Ves	46.7	4889316	3.8	223030
H12a 1	505.20.0		No				
H12a 2			No				
H12a 3			No				
H13aii 1	-		No				
H13aii 2			No				
H13aii 3			No				
H14a 1			No				
H14a 2	365.15708	0.40	Yes	47.0	5425592	0.7	215935
H14a 3			NO				
H1401 1	265 15701	0.50	NO	8.2	1192611	0.2	20/1278
H14bi 3	505.15701	0.55	No	0.5	1102011	0.2	204270
V1a 1			No				
V1a 2	365.15704	0.51	Yes	10.0	1310916	0.2	234274
V1a 3			No				
B1a 1			No				
B1a 2			No				
B1a 3			No				
DHB 1			No				
			NO				
Soil 25 1			No				
Soil 3a 2			No				
Soil 3a 3			No				
Soil 3b 1			No				
Soil 3b 2			No				
Soil 3b 3	365.15777	-0.54	Yes	4.7	734890	0.1	277188
Solvent 1			No				
Solvent 2	365.15736	-0.13	Yes	9.3	1259844	0.2	262054
Solvent 3		1	No	1	1		1

The peak at m/z 393, assigned $[C_{16}H_{34}O_9] + Na^+$ for another fully saturated species, summarised in Table 45, was again a significant detection in the sample H6 extract and again in replicates of other samples, including one of the soil controls. The high relative intensity of these highly oxygenated, strongly ionised organic compounds in the extracts of H6 may indicate a unique brain chemistry or unique environment for decomposition, e.g. this may have been found in different soil conditions, have included grave goods or the original brain chemistry may have differed from that of other burials. The presence in the soil control is at very low S:N, especially when compared with that of the signal in the spectrum of the H6 extract. It is worth noting this replicate spot was adjacent on the MALDI plate to the H6 spots and so cross contamination may explain its presence in this spectra. However, the solvent control was not close enough for cross contamination to be likely.

Table 45. Summary of signal at <i>m/z</i> 393.	C _x H _y O ₉
--	--

Calculated m/z	393.20939 C16H34NaO9							
Sample designation +	Measured							
MALDI replicate no.	m/z	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution	
Y1a 1			No					
Y1a 2			No					
Y1a 3			No					
Original Heslington			No					
H1a 1	393.20954	-0.09	Yes	11.2	1485710	0.1	223558	
H1a 2	393.20930	0.52	Yes	12.7	1578020	0.4	213149	
H1a 3	393.20920	0.75	Yes	10.3	1338047	0.2	195022	
H1b 1	393.20938	0.30	Yes	19.8	2334555	0.3	216831	
H1b 2	393.20927	0.59	Yes	19.9	2286593	0.6	209750	
H1b 3	393.20921	0.74	Yes	10.5	1347898	0.3	278461	
H2a 1		-	No					
H2a 2			No					
H2a 3	393 20957	-0.17	Yes	57	837561	0.2	148251	
H3a 1			No					
H3a 2	393 20944	0 15	Yes	9.8	1307732	0.2	225386	
H3a 3	333.20344	0.15	No	5.0	1307732	0.2	225500	
H4a 1			No					
			No					
140 2	202 20007	1 10	Noc	7.0	1002921	0.1	220502	
	393.20907	1.10	No	1.5	1093821	0.1	220393	
			No					
			No					
	202 20020	0.00	NO Vec	4007 4	422222240	F0 F	202220	
H6a 1	393.20939	0.30	Yes	4087.1	433222240	58.5	203226	
H6a 2	393.20938	0.71	Yes	2798.2	293792384	40.0	203110	
Ньа З	393.20938	0.32	Yes	3152.9	334861440	35.6	202935	
H7a 1			No					
H7a 2			No					
H7a 3			No					
H8a 1			No					
H8a 2	393.20908	1.09	Yes	4.6	720798	0.2	311421	
H8a 3			No					
H9a 1			No					
H9a 2			No					
H9a 3		0.02	Yes					
H10a 1	393.20931	0.49	Yes	12.6	1578831	0.3	205543	
H10a 2	393.20905	1.15	Yes	4.6	714468	0.4	185437	
H10a 3	393.20923	0.70	Yes	9.2	1229217	0.3	255296	
H11a 1			No					
H11a 2	393.20953	-0.08	Yes	119.1	12971392	1.7	200813	
H11a 3	393.20934	0.42	Yes	27.4	2983954	2.3	208390	
H12a 1			No					
H12a 2			No					
H12a 3	393.20937	0.34	Yes	5.6	856887	0.2	218925	
H13aii 1			No					
H13aii 2			No					
H13aii 3	393,20952	-0.04	Yes	14.0	1716276	0.3	201938	
H14a 1			No					
H14a 2	393,20943	0.19	Yes	33.8	4020980	0.5	213678	
H14a 3			No					
H14bi 1			No					
H14bi 2			No					
H14bi 3			No					
V1a 1			No					
V1a 2			No					
V1a 3			No					
B1a 1			No					
B1a 2			No					
B1a 3			No					
DHB 1			No					
DHB 2			No					
			No					
Soil 3a 1			No					
Soil 2a 2	202 20002	0.43	Voc	0.0	1100045	0.1	216462	
Soil 2a 2	333.20393	-0.43	No	8.0	1100645	0.1	210403	
Soil 3h 1			No					
			No					
			No					
Solvent 1			No					
Solvent 1			No					
Solvent 2								
Solvent 3		1	INO	1		1		

In addition to the 38 signals, already described, for which reasonable, unique empirical formulae could be assigned, consistent with the mass accuracy performance of the FT-ICR instrument used for these analyses, there were several more signals for which single reasonable empirical formulae could not be assigned. These were m/z 549.31, 629.34, 688.62. For each of these signals, more than one potential empirical formula could be proposed and it was not possible to determine which was the most likely on the basis of the data and their constraints. These signals were highlighted in the summary list of signals extracted from all the sample spectra (Table 50 in Appendix II), and then the list sorted in order of descending S:N, in order to assess the importance of the unassigned signals. The ten highest S:N unassigned signals were then further examined as follows. Instead of restricting the potential empirical formulae to those with a maximum of 9 oxygen, 9 nitrogen, 3 phosphorus and 3 sulfur atoms, all restrictions on the possible number of these heteroatoms were removed, and the assignment process for these ten signals repeated, reviewing and assessing to matches in the same way as before. Since this process was no more successful in assigning reasonable formulae consistent with the data and the constraints of their mass accuracy and isotope patterns, no further attempts were made using this approach, and we report these signals with their most likely candidate formulae, noting that we are unable from these data to differentiate between the possible formulae.

An alternative approach was attempted, by assessing the mean m/z errors (averaging the error over all the samples in which the signal was observed) for the different candidate formulae, to assess whether one formula gave a noticeably smaller mean m/z error; this approach was largely similarly unhelpful in determining the most likely formula. An exception to this was for the signal at m/z 549, as shown in Table 46, where the possible assignments of the signal

at m/z 549 are suggested as $[C_{32}H_{42}N_6] + K^+$ or $[C_{36}H_{40}N_2O_3] + H^+$, with 14 or 18 double bond equivalents respectively, both of which are highly unsaturated suggestions. The average error for the measured m/z in comparison to the calculated m/z in the mass spectra for the sample extracts of $[C_{32}H_{42}N_6] + K^+$ was -0.49 ppm whilst the average error for $[C_{36}H_{40}N_2O_3] + H^+$ was 1.19 ppm, suggesting the former formula is more likely to be correct.

Table 46 shows the m/z 549 compound is present across all sites except Villiers Street and occurs with highest intensity in the spectra for the H14b replicates. It also occurs with good S:N, if at lower relative intensity percentages, in other Hull samples: H3, H7, H8 and H14a.

There are signals at similar m/z values in the spectra of the soil extracts (Soil 3a and Soil 3b replicates). The m/z values for the signals in the control extract spectra have larger ppm errors than those in the brain sample spectra, principally when comparing the measured values for $[C_{32}H_{42}N_6] + K^+$. The mean measured m/z value for this signal in the spectra of brain samples is 549.310522 and that of the controls is 549.31183. The standard deviation of this mean for the brain samples is 0.000247869 and that for the control is 0.000170646. 549.310522+0.000495738 = m/z 549.3110177 whereas 549.31183-0.000341292 = m/z 549.3114887. There is no overlap of these values, suggesting that even though the mass error is below 2 ppm, the compound detected in the soil control is probably not the same as that in the brain extracts.

Calculated formula		C32H42KN6	C36H41N2O	3				
Calculated m/z		549.31025	549.31117					
Sample designation +	Measured							
MALDI replicate no.	m/z	Error [ppm]	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	549.31067	-0.76	0.91	Yes	23.6	3636566	1.2	150441
Y1a 2	549.31046	-0.38	1.29	Yes	15.8	2435370	0.9	151763
Y1a 3	549.31057	-0.58	1.09	Yes	17.8	2837409	0.8	153692
Original Heslington				No				
H1a 1	549.31038	-0.22	1.45	Yes	20.3	3208350	0.3	150986
H1a 2	549.31013	0.22	1.89	Yes	22.2	3021558	0.8	149655
H1a 3	549.31030	-0.09	1.58	Yes	36.8	4849331	0.7	145663
H1b 1	549.31006	0.35	2.02	Yes	32.5	4442085	0.5	150407
H1b 2	549.31031	-0.11	1.56	Yes	53.3	6902780	1.8	146575
H1b 3	549.31011	0.26	1.92	Yes	50.3	6479661	1.5	149311
H2a 1	549.31001	0.44	2.10	Yes	45.0	5845618	1.1	152456
H2a 2	549 31008	0.32	1 99	Yes	33.9	5144129	1.6	142703
H2a 3	549 31017	0.15	1.82	Yes	84 5	10145661	29	147459
H3a 1	549 31041	-0.28	1 39	Yes	170 9	24154464	4.4	145713
H3a 2	549 31055	-0.53	1 13	Yes	384 5	55206192	9.0	144368
H3a 3	549 31030	-0.09	1.13	Yes	232.5	29986808	4.0	144771
H4a 1	549 31063	-0.69	0.98	Yes	89.8	15044741	0.9	146171
H4a 2	5/9 31083	-1.06	0.50	Vec	71.4	121/1/137	1.4	1/95/0
H4a 2	549.31063	-0.70	0.01	Voc	54.6	8072506	1.4	150064
HEa 1	549.31004	-0.27	1 20	Voc	4.7	817542	0.4	178020
H5a 2	549 210/0	-0.57	1.29	Yes	4.7 5.0	1000606	0.4	196522
H5a 3	540 21062	-0.43	1.24	Yes	12.0	2152656	0.5	168040
H5a 5	549.31003	-0.08	1.26	Voc	15.9	6558480	0.2	1/8105
H6a 2	540 21022	-0.41	1.20	Yes	40.4 50.2	6909570	0.9	1/0920
108 2	549.31032	-0.12	1.55	Voc	J0.2	6645612	0.3	145530
108 5	549.31033	-0.17	1.45	Voc	244.5	21794446	7.0	145095
H7a 1	549.51045	-0.31	1.55	Yes	244.4	31764440	7.0	145065
H7a 2	549.51044	-0.54	1.55	Yes	200.7	25521720	3.7	143601
H/a 3	549.51055	-0.18	1.49	Yes	200.7	20421930	5.9	144079
100 1	549.51051	-0.47	1.20	Yes	190.9	29349390	5.1	140291
поа 2 118- 2	549.31067	-0.76	0.91	Yes	180.7	25424060	5.9	145092
H8a 3	549.31046	-0.38	1.29	Yes	155.6	20734820	4.0	146778
H9a 1	549.31062	-0.68	0.99	Yes	44.6	/0518//	0.9	151690
H9a Z	549.31055	-0.55	1.12	Yes	33.4	5430774	0.6	152566
H9a 3	549.31043	-0.32	1.35	Yes	52.6	/253/2/	1.6	152620
H10a 1	549.31051	-0.47	1.20	Yes	88.2	12291822	2.1	14/15/
H10a 2	549.31040	-0.27	1.40	Yes	51.2	6428672	3.3	150359
H10a 3	549.31048	-0.40	1.26	Yes	94.4	13655090	3./	14/125
HIIAI	549.31098	-1.32	0.35	Yes	58.8	8165536	3.6	149804
H11a 2	549.31072	-0.85	0.82	Yes	43.9	6376637	0.8	148616
H11a 3	549.31047	-0.39	1.28	Yes	10.9	1493800	1.1	1/6/52
H12a 1	549.31095	-1.27	0.39	Yes	86.3	13654912	3.0	146009
H12a 2	549.31094	-1.25	0.42	Yes	73.1	11031297	2.4	140228
H12a 3	549.31096	-1.29	0.38	Yes	99.1	15859353	3.9	143775
	549.31103	-1.41	0.26	Yes	27.1	4325033	1.1	150926
H13all 2	549.31090	-1.18	0.49	Yes	33.7	2820545	1.3	148502
	549.31084	-1.07	0.60	Yes	19.4	2830545	0.5	153750
	549.31037	-0.20	1.40	Yes	95.3	15441758	1.1	140392
H14a 2	549.51042	-0.50	1.57	Yes	142.2	25525690	5.1	146070
H14d 5	549.31037	-0.38	1.09	Yes	145.5	20470520	24.7	140159
	549.51070	-0.92	0.75	Yes	1404.5	166745212	24.7	144955
	549.51004	-0.71	0.90	Yes	1098.1	170942449	23.0	145251
N14015	549.51081	-1.02	0.05	No	945.0	170642446	5.4	144912
				No				
V1a 2				No				
V1d 5	F 40 21077	0.04	0.72	NO	05.6	17454470	2.4	145100
	549.31077	-0.94	0.73	Yes	95.0	17454476	3.4	145109
D1a 2 B1a 2	549.31059	-0.62	1.05	Yes	04.5	9646104	3.1	149430
	549.51026	-0.04	1.05	Ne	45.4	0164465	1.4	154150
				NO				
				NO				
	F 40 24 4 70	2		NO	10.0	2740070	0.5	120442
	549.311/8	-2.//	-1.11	Possibly	19.0	3/100/2	0.5	138413
	549.31188	-2.96	-1.29	Possibly	24.0	4401494	0.4	1418/4
	549.31201	-3.20	-1.54	Possibly	27.9	3262762	1.2	106057
SOIL 3D 1	549.311/5	-2./3	-1.06	Possibly	21.4	3830155	0.5	141600
5011 3D 2	549.31156	-2.38	-0./1	Possibly	26.7	4953770	0.3	131599
SUII SD S	549.31200	-3.19	-1.52	POSSIDIY	14.2	26/4/47	0.5	113/55
Solvent 1				NO				
Solvent 2				NO				
Solvent 3		1	1	INO	1	1		

Table 46. Summary of signal at m/z 549. $C_{32}H_{42}N_6$ or $C_{36}H_{40}N_2O_3$

Table 47 summarises the data for peak at m/z 629 with the following tentative formula possibilities: $[C_{44}H_{46}O_2] + Na^+$ with 22 degrees of unsaturation, $[C_{41}H_{50}O_3] + K^+$ with 17 degrees of unsaturation or $[C_{42}H_{40}N_6] + H^+$ with 26 degrees of unsaturation. The average error in ppm for each of these are similar in magnitude and cannot help distinguish a more likely candidate. All of these compounds are extremely unsaturated which may indicate they include a series of ring structures as well as double bonds.

Similarly to the peaks in Table 32 and Table 35, this signal *m/z* 629 was found at high intensity in the spectra of a single replicate of the H1a extract. Contrarily, it was also detected in the spectra of H4, H12 and H13 extracts. As the compound was not detected in the oldest (York) or youngest (Blackpool and Villiers Street) samples it may indicate that this is an intermediary decomposition product. Chemical changes may have occurred to the original organic matter from the brain over a longer period of time than 200 years to form this compound, and it may undergo further processes over time such that it is no longer detected in a sample over 2500 years old. Alternatively, this may be a compound linked to the environment of the Hull burials and so is a sitespecific product.

Calculated formula	C44	H46NaO2	C41H50KO3	C42H41N6					
Calculated m/z		629.339	629.33915	629.33872					
Sample designation +	Measured					[
MALDI replicate no.	m/z	Error [ppm]	Error [ppm]	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1					No				
Y1a 2					No				
Y1a 3					No				
Original Heslington					No				
H1a 1	629.33859	0.65	0.89	0.20	Yes	455.9	67364672	6.8	125588
H1a 2					No				
H1a 3					No				
H1b 1					No				
H1b 2					No				
H1b 3					No				
H2a 1					No				
H2a 2					No				
H2a 3					No				
H3a 1					No				
H3a 2					No				
H3a 3					No				
H4a 1	629.33/34	2.64	2.88	2.19	Yes	19.7	3698/18	0.2	132205
H4a 2	629.33/88	1.78	2.02	1.34	res	12.4	25/3984	0.3	136832
п4а 3 UГа 1	629.33752	2.36	2.60	1.92	res	38.8	6910128	0.8	1269/2
1 6CU					NO				
					No				
					No				
H6a 2					No				
HGa 2					No				
H7a 1					No				
H7a 2					No				
H7a 3					No				
H8a 1					No				
H8a 2					No				
H8a 3					No				
H9a 1					No				
H9a 2					No				
H9a 3					No				
H10a 1					No				
H10a 2					No				
H10a 3					No				
H11a 1					No				
H11a 2					No				
H11a 3					No				
H12a 1	629.33792	1.71	1.95	1.27	Yes	9.5	1895435	0.4	159124
H12a 2	629.33845	0.87	1.11	0.43	Yes	4.2	1025458	0.2	181175
H12a 3	629.33750	2.39	2.63	1.95	Yes	8.9	1810388	0.4	158121
H13aii 1	629.33807	1.47	1.71	1.03	Yes	22.8	3993099	1.0	137073
H13aii 2	629.33813	1.38	1.62	0.94	Yes	15.6	2670132	0.7	139144
H13aii 3	629.33790	1.76	2.00	1.31	Yes	12.0	1990191	0.3	140895
H14a 1					No				
H14a 2					NO				
H14a 3					NO				
T1401 1					NO				
H1461 Z					No				
V12 1					No				
V1a 1					No				
V1a 3					No				
B1a 1					No				
B1a 2					No				
B1a 3					No				
DHB 1					No				
DHB 2					No				
DHB 3					No				
Soil 3a 1					No				
Soil 3a 2					No				
Soil 3a 3					No				
Soil 3b 1					No				
Soil 3b 2					No				
Soil 3b 3					No				
Solvent 1	İ				No				
Solvent 2					No				
Solvent 3					No				
	-	-	-	-		-		-	-

Table 47. Summary of signal at *m/z* 629. C₄₄H₄₆O₂, C₄₁H₅₀O₃ or C₄₂H₄₀N₆

The peak at 688, Table 48, has a variety of possible assignments. The most probable were $[C_{42}H_{83}NO_4] + Na^+$ with two double bond equivalents or $[C_{40}H_{77}N_7O_2] + H^+$ with six double bond equivalents. The average error for the peak measurements found in the sample extracts for the former was 0.42 ppm and for the later 0.02 ppm, which implies that $[C_{40}H_{77}N_7O_2] + H^+$ is the more likely ion to be detected.

The signal itself was detected in all sample extracts except H14a, although wasn't detected in all replicates of H14b or V1. It was found with the highest relative intensity in the Hull extracts: H2, H10 and H11.

Calculated formula	C42	2H83NNaO4	C40H78N7O	2				
Calculated m/z		688.62115	688.61875					
Sample designation +	Measured							
MALDI replicate no.	m/z	Error [ppm]	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	688.62108	0.51	0.10	Yes	67.6	11491469	3.8	121284
Y1a 2	688.62100	0.62	0.21	Yes	69.1	11028392	4.1	122174
Y1a 3	688.62108	0.51	0.10	Yes	65.8	11216683	3.3	119410
Original Heslington				No				
H1a 1	688.62091	0.76	0.36	Yes	57.2	8750562	0.9	118868
H1a 2	688.62091	0.76	0.35	Yes	89.9	12545136	3.1	119845
H1a 3	688.62083	0.88	0.47	Yes	146.5	19310544	2.9	116413
H1b 1	688.62073	1.02	0.61	Yes	177.8	25125248	2.9	117135
H1b 2	688.62074	1.00	0.59	Yes	280.0	37995256	9.9	115840
H1b 3	688.62058	1.23	0.82	Yes	234.7	31612422	7.5	116641
H2a 1	688.62050	1.35	0.94	Yes	521.1	68780520	12.8	116308
H2a 2	688.62056	1.27	0.86	Yes	351.4	52362708	15.8	115596
H2a 3	688.62080	0.92	0.52	Yes	452.4	57137308	16.1	116049
H3a 1	688.62111	0.46	0.05	Yes	171.5	24772174	4.5	116413
H3a 2	688.62129	0.21	-0.20	Yes	230.6	34122516	5.6	116543
H3a 3	688.62097	0.67	0.27	Yes	131.2	17684262	2.3	118959
H4a 1	688.62123	0.29	-0.11	Yes	185.2	31967150	1.9	116932
H4a 2	688.62171	-0.40	-0.81	Yes	511.6	96475264	11.0	115928
H4a 3	688.62140	0.04	-0.37	Yes	288.3	50577784	6.1	116956
H5a 1	688.62063	1.16	0.76	Yes	189.2	23374970	12.3	116477
H5a 2	688.62081	0.90	0.49	Yes	187.7	24732002	8.1	115860
H5a 3	688.62063	1.16	0.75	Yes	109.0	15706394	1.8	115774
H6a 1	688,62109	0.50	0.09	Yes	54.1	7958603	1.0	119637
H6a 2	688,62102	0.60	0.20	Yes	35.4	5176556	0.7	124260
H6a 3	688 62102	0.59	0.18	Yes	36.5	5438024	0.6	116510
H7a 1	688 62106	0.53	0.13	Yes	137.4	19790718	4.8	113715
H7a 2	688 62110	0.47	0.07	Yes	109.2	16844818	2.7	118438
H7a 3	688 62102	0.60	0.19	Yes	253.6	36580376	5.4	116856
H8a 1	688 62124	0.28	-0.13	Yes	369.8	56407932	9.7	115734
H8a 2	688 62119	0.35	-0.06	Yes	334 7	48101104	11.2	114557
H8a 3	688 62103	0.58	0.18	Yes	311.4	42881256	83	115958
H9a 1	688 62118	0.30	-0.04	Yes	139.0	21092652	2.6	116159
H9a 2	688 62110	0.37	0.07	Yes	150.6	22929688	2.6	116644
H9a 3	688 62087	0.47	0.07	Yes	89.2	12473297	2.0	117164
H10a 1	688 62114	0.01	0.02	Yes	501.8	71218056	11.9	115888
H10a 2	688 62082	0.45	0.02	Ves	291.3	36823888	18.9	115018
H10a 3	688 62115	0.00	0.40	Yes	440.2	64023352	17.4	115754
H11a 1	688 62173	-0.41	-0.85	Voc	300.9	45062758	19.7	116108
H11a 2	688 62168	-0.36	-0.77	Vos	119.4	18206106	2.4	116600
H11a 3	688 62125	0.30	-0.15	Yes	172 7	20769404	16.0	115847
H12a 1	688 62196	-0.76	-1 17	Yes	233.0	39354408	8.8	117214
H12a 2	688 62189	-0.67	-1.08	Yes	233.0	37841984	7.7	115474
H12a 2	688 62192	-0.71	-1 12	Vos	210.2	36003632	8.9	116500
H13aii 1	688 62177	-0.50	-0.90	Yes	71.2	12287215	3.1	117645
H13aii 2	688 62170	-0.30	-0.80	Vos	63.8	10268217	2.6	117107
H13aii 3	688 62163	-0.30	-0.70	Vos	75.0	11220745	1.9	117776
H14a 1	000.02103	0.50	0.70	No	75.0	11220743	1.5	11///0
H14a 2				No				
H14a 3				No				
H14bi 1				No				
H14bi 2	688 62198	-0.80	-1 21	Yes	5.2	1111322	0.2	141749
H14bi 3	000.02150	0.00		No	5.2	1111522	0.2	141743
V1a 1				No				
V1a 2	688 62095	0.70	0.30	Yes	7.4	1519100	0.2	112046
V1a 3	000.02055	0.70	0.50	No	7.4	1515100	0.2	112040
B1a 1	688 62134	0.13	-0.28	Yes	27.3	5126488	1.0	119319
B10 2	688 62081	0.15	0.20	Voc	27.3	4627421	1.0	128260
B1a 3	688 62082	0.50	0.50	Vos	/19.2	6818530	1.5	117282
DHB 1	000.02002	0.00	0.40	No	43.2	0010550	1.0	11/202
DHB 2				No				
				No	1			
Soil 3a 1				No				
Soil 3a 2				No	1			
				No				
Soil 3h 1				No				
	600 60101	0.70	0.70	Voc	10	1424004	0.1	117020
Soil 3b 2	000.02191	-0.70	-0.76	No	4.8	1424904	0.1	11/820
Solvent 1				No				
Solvent 1				No				
Solvent 2				NO No				
Solvent 3				NU				

Table 48. Summary of signal at *m/z* 688. C₄₂H₈₃NO₄ or C₄₀H₇₇N₇O₂

Appendix II: Unidentified Compound Tables provides details of the remaining signals (excluding those from DHB) that were not assigned to formulae using this method.

Having completed analyses of all of the spectra as described above, a final analysis was carried out on a randomly chosen sample extract in order to test whether organic material with low oxygen and nitrogen content was present among signals of lower intensity/S:N. All of the spectra from the current extract of the York brain sample were considered as follows; a complete list of all signals not found in the matrix spectra was assembled, unrestricted empirical formula assignments using the Bruker software were carried out and the outcomes compared with those from the analyses described above. It is notable that even when the allowed compositions are unrestricted and all signals (rather than just the most intense ones) were considered, a significant number of *m/z* values received unique assignments, and that these were to empirical formulae that were almost always organic components with small numbers of oxygen and/or nitrogen atoms, just as for the vast majority of the assignments reported above. In other words, whatever the basis for the data analysis and screening, the results are consistent with the chloroform/methanol extracts of all the brains analysed containing functionalised organics, with small numbers of oxygen and/or nitrogen atoms.

4 **DISCUSSION**

Through comparing the MALDI mass spectra of the lipid extracts from the ancient brain residues, a variety of organic compounds, with varying degrees of saturation, have been identified to occur in samples across all age ranges and burial sites. By looking at the signals with the strongest S:N and intensities in the spectra, the aim was to target dominant organic-soluble/lipidic components and identify them.

The range of samples analysed supports our original hypothesis, that the presence of these components is not isolated to the beautifully preserved York brain, but also occurs in other less immediately recognisable brain remains. However, it is easy to see that even within one preserved brain, different subsamples can reflect a range of chemical compositions. Lipid extracts H12a, H13a, H14a and H14b all came from the same brain remains identified from a single skeletal burial and yet the spectra are recognisably rather different. Whilst H12a and H13a spectra appear to mirror each other closely, the compounds detected within these samples are often absent from those of the H14a extract. However, while the H14b spectra differ from those from H12a and H13a for some compounds, there remains similarity between the spectra with respect to other components. These differences may be related to the difficulty of sample recovery and soil contamination. It is hard to 'clean' an ancient brain sample without knowing if damage is being done to the brain mass and so many of the samples in storage also have associated soil matrix. However we have been unable to test the effect of this, since soil samples from the burial sites were not archived. By carefully reviewing the DHB matrix data and the solvent blank experiment, the peaks identified can be demonstrated to be unique to the samples, but lack of soil controls is an unavoidable issue. Ideally, soil samples should have been taken from the same archaeological context but

with sufficient distance from the skull/brain remains to have prevented chemicals associated with these from leaching into the control soil sample. Even though these soil samples weren't available for this analysis, the detection of so many components in the spectra of the Hull, Villiers Street and Blackpool brain remains that also occur in the exceptionally preserved York brain indicates that these compounds are unlikely to derive from the different soils surrounding these very different sites, but rather from the preserved tissue remains. A clearer knowledge of these burial environments is likely to be essential to understanding how the preservation mechanism works.

From the combined data derived from these studies, it is harder to determine if these compounds are age-related, as peak intensities in mass spectra produced by MALDI are not necessarily reflective of chemical concentrations.¹⁵² This is due to a number of factors, including some compounds being more readily ionisable and the potential for uneven crystallisation of components within the matrix (e.g. the 'coffee-ring' effect).¹⁵³ High relative intensities in one spectrum do not necessarily mean that a component occurs in greater concentration in that mixture. When looking at the results (3.3.1), often when a peak was not detected in the youngest samples (V1a and B1a) it was also not detected in the oldest sample (Y1a), i.e. the peak was only detected in samples from the Hull Magistrates Court site. Such components may not be an indicator of age but rather a consequence of local environment.

The proteomics experiment on sample V1 is consistent with the material being brain matter, by identifying peptides that are clearly related to the CNS, myelin proteolipid protein and SLIT and NTRK-like protein 4. The level of these peptides was very low, and only single peptide matches were made to these proteins. However, the peptides were identified with expect scores lower than

0.05, and so it is possible to have confidence in these single-peptide protein identifications. Ideally, a more invasive (larger) sample of the brain remains would need to be extracted, such as from the interior of the mass, to reduce keratin contamination from the handling of the surface and potentially a more protected and therefore preserved environment, where higher protein levels may have been maintained.

The components identified from brain lipid extracts had molecular weights that varied from 321 Da to 810 Da with the majority of their mass due to carbon atoms. Many of the organic compounds included a very limited number of oxygen and nitrogen atoms, with up to five heteroatoms in total compared to more than 28 carbon atoms. However, there were three highly oxygenated species with up to nine oxygen atoms, and where no single assignment was possible higher nitrogen content (up to seven N atoms) has been proposed. There is a range of degrees of unsaturation, from zero to almost twenty double bond equivalents (dbes). Compounds with low numbers of nitrogen and oxygen atoms will be apolar in nature, and thus have low water solubilities, encouraging preservation (1.2.2.1). Those which are saturated, or have low degrees of unsaturation are probably especially apolar and so particularly resistant to chemical change. These lipids are likely to be hard waxes and insoluble in water, potentially forming a barrier to further chemical or enzymatic decomposition.

Whilst there doesn't appear to be a clear pattern relating oxygen and nitrogen content with age or site, there does appear to be a slight trend between degrees of unsaturation and age and/or site. Species with higher numbers of double bond equivalents are less consistently detected in the oldest brain extracts, but are more commonly detected in the intermediate age (Hull) brain extracts and generally in the youngest (Blackpool) brain extract. This may

be more related to site than age though, as these more unsaturated components are not always detected in the other young sample extract, from Villiers Street. It would be understandable to link this trend to age, as unsaturated organic molecules tend to be more reactive than fully saturated organic molecules¹⁵⁴ and so their concentrations may be expected to decrease over time.

The components of the ancient brain lipid extracts tentatively identified (3.3.1) can be provisionally grouped into classes: C_xH_y, C_xH_yN_n, C_xH_yN_nO_o, C_xH_yO_o, etc. shown in Table 49. The compound class with most representatives, identified in the ancient brain lipid extracts is made up of organic species containing a single oxygen and a single nitrogen atom with varying levels of unsaturation. These compounds have a wide molecular weight range from 529.923 Da to 810.457 Da and most have three to six degrees of unsaturation. For each degree of unsaturation, it is possible to propose a homologous series of components which are related by increasing numbers of CH₂ subunits. These compounds occur across all sites and brain ages, being detected in York, Hull, Blackpool and Villiers Street sample extracts. There are two additional examples in this category (C₃₅H₄₉NO and C₃₅H₄₇NO) which are highly unsaturated (12 and 13 dbes respectively) and so are slightly lighter: 499.771 Da and 497.755 Da. These two components are not detected in the oldest brain extract (York), which suggests that they are altered over time; however, they are also not present in one of the youngest samples – from Villiers Street. All of these compounds are much larger than any of the lipids described routinely in the adipocere literature but appear to be similarly apolar and hydrophobic. They could potentially be the results of condensation reactions.¹⁵⁵

More oxygenated species include $C_{36}H_{69}NO_3$ (563.939 Da) and $C_{42}H_{81}NO_3$ (648.099 Da) which both have three degrees of unsaturation. These chemicals

were identified in the mass spectra from the lipid extracts of samples from all sites. There is a possibility that these derive from ceramides (brain lipids) that have yet to be fully hydrolysed to their fatty acid constituents. Furthermore, there are more unsaturated forms of $C_xH_yNO_3$: $C_{27}H_{39}NO_3$ (425.605 Da, 9 dbe), which was only detected in a single Hull sample extract and $C_{34}H_{47}NO_3$ (517.743 Da, 12 dbe), which was detected in some Hull extracts and the youngest extract from Blackpool.

Two possibly related compounds are $C_{46}H_{80}N_2O_3$ (709.141 Da) and $C_{48}H_{84}N_2O_3$ (737.194 Da), both of which contain eight double bond equivalents and differ by C_2H_4 . They have a similar detection pattern, as the associated ions are found in the spectra of all the brain lipid extracts across all ages and sites.

The compond class with the lowest molecular weight range is a series of completely saturated, highly oxidised species: C₁₂H₂₆O₇, C₁₄H₃₀O₈, C₁₆H₃₄O₉ (respective molecular weights: 282.383 Da, 326.383 Da, 370.436 Da). These are possibly a homologous series differing by ethylene glycol subunits (Figure 26). Signals for all three compounds were detected in the spectra of the H6a extract replicates. Whilst the smallest two compounds are detected in the old (York) and young (Villiers Street) samples, as well as in sporadically within the intermediate (Hull) samples (the largest compound was only detected in the Hull samples). This makes it difficult to interpret whether these are age or site related. It is unlikely that these components are linked to adipocere formation as they contain much more oxygen than the reported constituent of adipocere.

OH

OH

Figure 26. Above: Ethylene glycol Below: Hexaethyleneglycol (3,6,9,12,15-Pentaoxaheptadecane-1,17-diol), a possible structure for C₁₂H₂₆O₇

Other almost saturated compounds include the amines $C_{34}H_{67}N$ and $C_{36}H_{71}N$. These are both found in the oldest (York) and youngest (Blackpool and Villiers Street) as well as in many of the intermediate age (Hull) brain lipid extracts, suggesting that these are resistant to chemical change as discussed above. Another almost saturated compound with a similar carbon number is $C_{36}H_{73}NO_4$. The additional oxygen atoms may indicate this is a sphinganine-like residue; sphinganine is a brain lipid.¹⁵⁶ The related ion is not detected in the youngest lipid extract spectra but is found in the spectra from the older Hull and York brain extracts. This may suggest the chemical alteration pathway takes longer to produce this residue, or it may be that the environment of the younger sites did not support its formation.

More highly unsaturated organic residues are likely to have (arene) ring structures such as the following trio of potentially related compounds: C₃₄H₄₈N₂O (11 dbe), C₃₅H₄₆N₂O (14 dbe), C₃₅H₄₈N₂O (13 dbe). These are found in the York, Hull and Blackpool extracts.

Ion formulae	C ₂₇ H ₄₇	C34H68N	C ₃₆ H ₇₂ N	C ₂₈ H ₄₇ N ₂	C ₃₄ H ₅₁ N ₂	C ₂₇ H ₂₅ N ₄	C ₅₀ H ₉₆ NO	C ₅₂ H ₁₀₀ NO	C ₃₆ H ₆₈ NO	C37H70NO	C ₃₈ H ₇₂ NO	C40H76NO	C ₅₄ H ₁₀₄ NO	
Calculated m/z	371.36723	490.53452	518.56593	411.37338	487.40468	405.20737	726.74844	754.77994	530.52954	544.54519	558.56084	586.59214	782.81124	
Class	C _x H _y	C*H	l _y N	C _× H	Jy N ₂	C _× H _y N₄	C _x H _y N			C _x H _y NO	HyNO			
Compound	C27H46	CadHeaN	CacH71N	CasHacNa		CazHa4N4			CacHerNO	CarHeeNO	C₂₀H₂₁NO	C40H7ENO		
formulae	6271.140	C341 10/1 C	03017110	6201 1401 12	0341 1301 12	6271 1241 14	0,0,1,3,1,0	0,211,551,10	0,000	2371105110	0.000	C401175110	0,41110,5110	
Molecular Weight	370.655	489.904	517.957	410.679	486.776	404.507	726.297	754.351	529.923	543.950	557.978	586.031	782.404	
dbe of compound	5	1	2	7	11	18	3	3	4	4	4	4	4	
N/C ratio	0.000	0.029	0.028	0.071	0.038	0.148	0.020	0.019	0.028	0.027	0.026	0.025	0.019	
O/C ratio	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.019	0.028	0.027	0.026	0.025	0.019	
H/C ratio	1.704	1.971	1.972	1.643	1.471	0.889	1.900	1.904	1.861	1.865	1.868	1.875	1.907	
Y1a	Detected	Yes	Yes	Detected	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Original Hestington	No	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
H1a	Yes	Detected	Detected	No	No	Detected	Yes	Yes	Detected	Detected	Detected	No	Yes	
H1b	Yes	Yes	Yes	Yes	Detected	No	Yes	Yes	Yes	Detected	Yes	Detected	Yes	
H2a	Yes	Yes	Yes	Detected	Detected	No	Yes	Yes	Yes	Yes	Yes	Detected	Yes	
H3a	Yes	Yes	Yes	Detected	Yes	No	Yes	Yes	Yes	Detected	Yes	Yes	Yes	
H4a	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
H5a	Yes	Yes	Yes	Yes	Yes	Detected	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
H6a	Yes	No	No	No	Yes	No	Detected	Yes	Yes	Yes	Yes	Yes	Yes	
H7a	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Detected	Yes	Yes	Yes	
H8a	Yes	No	Detected	Detected	Yes	No	Yes	Yes	Yes	Yes	Yes	Detected	Yes	
H9a	Yes	Detected	Detected	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Detected	Yes	
H10a	Yes	No	No	Detected	Yes	No	Detected	Yes	Yes	Yes	Yes	Detected	Yes	
H11a	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Detected	Yes	
H12a	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
H13aii	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
H14a	No	No	Detected	No	No	No	No	No	No	No	No	No	No	
H14bi	No	No	Detected	No	Detected	No	Detected	Detected	Detected	Detected	Detected	No	Detected	
V1a	No	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
B1a	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
DHB	No	No	No	No	No	No	No	No	No	No	No	No	No	
Soil 3a	No	No	No	No	No	No	No	No	No	No	No	No	No	
Soil 3b	No	No	No	No	No	No	No	No	No	No	No	No	No	
Solvent	No	No	No	No	No	No	No	No	No	No	No	No	No	

 Table 49. Summary of the chemical identities of the brain lipid residues and their occurrence

Ion formulae	C ₅₆ H ₁₀₈ NO	C38H70NO	C52H98NO	C54H102NO	C54H100NO	C ₅₆ H ₁₀₄ NO	C35H50NO	C35H48NO	C34H49N2O	C35H47N2O	C35H49N2O	C ₃₀ H ₃₁ N ₄ O
Calculated m/z	810.84254	556.54519	752.7649	780.79564	778.77994	806.81128	500.38869	498.37304	501.38394	511.3682	513.38394	463.24924
Class	C _x H _y NO								C _x H _y N₂O			C _x H _y N₄O
Compound formulae	C56H107NO	C38H69NO	C52H97NO	C54H101NO	C54H99NO	C56H103NO	C35H49NO	C35H47NO	C34H48N2O	C35H46N2O	C35H48N2O	C ₃₀ H ₃₀ N ₄ O
Molecular Weight	810.457	555.962	752.335	780.388	778.372	806.425	499.771	497.755	500.759	510.754	512.770	462.587
dbe of compound	4	5	5	5	6	6	12	13	11	14	13	18
N/C ratio	0.018	0.026	0.019	0.019	0.019	0.018	0.029	0.029	0.059	0.057	0.057	0.133
O/C ratio	0.018	0.026	0.019	0.019	0.019	0.018	0.029	0.029	0.029	0.029	0.029	0.033
H/C ratio	1.911	1.816	1.865	1.870	1.833	1.839	1.400	1.343	1.412	1.314	1.371	1.000
Y1a	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No
Original Heslington	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No
H1a	Yes	Detected	Yes	Detected	Detected	Detected	No	No	Detected	No	No	Detected
H1b	Yes	Detected	Yes	Yes	Yes	Detected	No	No	Detected	No	No	No
H2a	Yes	Detected	Yes	Yes	No	No	No	No	Yes	No	Yes	No
H3a	Yes	Detected	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	No
H4a	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
H5a	Detected	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
H6a	Yes	Yes	Yes	Yes	Yes	Detected	Yes	Yes	Yes	Yes	Yes	No
H7a	Yes	Yes	Yes	Yes	Yes	No	Yes	Detected	Yes	Detected	Yes	No
H8a	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
H9a	Yes	Yes	Yes	Yes	Yes	Detected	Yes	Yes	Yes	Yes	Yes	No
H10a	Detected	Detected	Yes	Yes	Yes	Detected	Yes	Yes	Yes	Yes	Yes	No
H11a	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
H12a	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
H13aii	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
H14a	No	No	No	No	No	No	No	No	No	No	No	No
H14bi	Detected	Detected	No	No	No	No	Detected	Detected	Detected	Detected	Detected	No
V1a	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No
B1a	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
DHB	No	No	No	No	No	Detected	No	No	No	No	No	No
Soil 3a	No	No	No	No	No	No	No	No	No	No	No	No
Soil 3b	No	No	No	No	No	No	No	No	No	No	No	No
Solvent	No	No	No	No	No	No	No	No	No	No	No	No

Ion formulae	C34H48NO2	C35H48NO2	C27H39KNO3	C34H48NO3	C36H70NO3	C42H82NO3	C36H74NO4	C35H47N2O2	C46H80N2NaO3	C48H84N2NaO3
Calculated m/z	502.36796	514.36796	464.25693	518.36287	564.5351	648.62892	584.56124	527.36321	731.60612	759.63742
Class	C _x H _y	/ NO 2	C _x H _y NO₃			C _x H _y NO ₄	C _x H _y N ₂ O ₂ C _x H		N2O3	
Compound formulae	C34H47NO2	C35H47NO2	C27H39NO3	C34H47NO3	C36H69NO3	C42H81NO3	C36H73NO4	C35H46N2O2	C46H80N2O3	C48H84N2O3
Molecular Weight	501.744	513.755	425.605	517.743	563.939	648.099	583.971	526.753	709.141	737.194
dbe of compound	12	13	9	12	3	3	1	14	8	8
N/C ratio	0.029	0.029	0.037	0.029	0.028	0.024	0.028	0.057	0.043	0.042
O/C ratio	0.059	0.057	0.111	0.088	0.083	0.071	0.111	0.057	0.065	0.063
H/C ratio	1.382	1.343	1.444	1.382	1.917	1.929	2.028	1.314	1.739	1.750
Y1a	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Original Heslington	No	No	No	No	Yes	No	Yes	No	Yes	No
H1a	No	No	Detected	No	Detected	Yes	Yes	No	Yes	Yes
H1b	No	No	No	No	Yes	Yes	Yes	No	Yes	Yes
H2a	Detected	No	No	No	Yes	Yes	Yes	No	Yes	Yes
H3a	Yes	Yes	No	Yes	Yes	Yes	Detected	Yes	Yes	Yes
H4a	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
H5a	Yes	Detected	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
H6a	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
H7a	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
H8a	Yes	Detected	No	Yes	Yes	Yes	Detected	Yes	Yes	Yes
H9a	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
H10a	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Detected	Detected
H11a	Yes	Yes	No	Yes	Detected	Yes	Detected	Yes	Yes	Yes
H12a	Yes	Yes	No	Yes	Yes	Yes	Detected	Yes	Yes	Yes
H13aii	Yes	Yes	No	Yes	Yes	Yes	Detected	Yes	Yes	Yes
H14a	No	Detected	No	No	Detected	Detected	No	No	No	No
H14bi	Detected	Detected	No	Detected	Detected	Detected	Detected	Detected	No	No
V1a	No	Detected	No	No	Detected	Yes	No	No	Detected	Detected
B1a	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
DHB	No	No	No	No	No	No	No	No	No	No
Soil 3a	No	No	No	No	No	No	No	No	No	No
Soil 3b	No	No	No	No	No	Detected	No	No	No	No
Solvent	No	No	No	No	No	No	No	No	No	No

Ion formulae	C12H26KO7	C14H30KO8	C ₁₆ H ₃₄ NaO ₉
Calculated m/z	321.13101	365.15723	393.20939
Class			
Compound formulae	C ₁₂ H ₂₆ O ₇	C ₁₄ H ₃₀ O ₈	C ₁₆ H ₃₄ O ₉
Molecular Weight	282.383	326.383	370.436
dbe of compound	0	0	0
N/C ratio	0.000	0.000	0.000
O/C ratio	1.714	1.750	1.778
H/C ratio	2.167	2.143	2.125
Y1a	Detected	Detected	No
Original Heslington	No	No	No
H1a	No	Detected	Yes
H1b	No	Detected	Yes
H2a	No	No	Detected
H3a	No	Detected	Detected
H4a	No	No	Detected
H5a	Detected	No	No
H6a	Yes	Yes	Yes
H7a	No	No	No
H8a	No	Detected	Detected
H9a	Detected	Detected	Detected
H10a	No	Detected	Yes
H11a	Detected	Detected	Detected
H12a	No	No	Detected
H13aii	No	No	Detected
H14a	No	Detected	Detected
H14bi	Detected	Detected	No
V1a	Detected	Detected	No
B1a	No	No	No
DHB	No	No	No
Soil 3a	No	No	Detected
Soil 3b	No	Detected	No
Solvent	No	Detected	No

Having determined that organic compounds with low numbers of oxygen and nitrogen atoms occur across the range of brains sampled, and that they are a consistent feature as opposed to being only found in the York brain, a literature search was undertaken to see if similar compounds had been reported elsewhere as decomposition products with longevity. Some of the formulae assigned in 3.3.1 are remarkably similar to those of substructures of kerogen, those that include saturated carbons and little functionalisation, such as that shown in Figure 27.

Kerogen is solid complex organic matter, generally found in sedimentary rocks (such as shale and mudstone), that is considered insoluble in standard organic solvents.⁸⁸ It can be associated with bitumen, often considered to be the black viscous fraction that is soluble in organic solvents.

The organic matter (OM) found in sediments is produced either as a byproduct of metabolism by living organisms or from their remains on death.¹⁵⁷ The OM undergoes decomposition, usually by metabolic or physico-chemical

Figure 27. Structural model of Green River oil shale kerogen.¹⁵⁸

processes such as oxidation and hydrolysis. This produces a range of small simple molecules: CO₂, H₂O, H₂, NH₃, N₂ and SH₂. These are reincorporated into biological organisms or the recycling processes within the environment. However, some material does not decompose easily and instead of being broken down it remains, more or less unaltered, and is incorporated into sediments. The types of OM that are preserved tend to be those that are unable to be used as energy sources by other organisms, those that may be toxic or those that undergo rapid structural changes such as polymerisation or mineralisation that then prevent enzymatic deterioration.⁸⁸ Matter that is left in environments where there are no organisms or oxygen within the sediments also tend to be preserved. There are certain types of OM that have low chemical reactivity or, by virtue of being inert have longevity and so are exploited as protective chemicals. Chemicals such as waxes and resins (saturated hydrocarbons), chitin (a glucose derivative found, among others, in insect exoskeletons), certain pigments, isoprenoids and porphyrins, or certain metabolites such as steroids and terpenoids are examples of components liable to be preserved.⁸⁸

Once the OM has undergone initial decomposition changes and has been incorporated into sediments, further degradation (whether microbial or chemical) can lead to recombination and polymerisation. These transformations are summarised in Figure 28.

Figure 28. Schematic pathway of successive transformations of OM (taken from ¹⁵⁹)

In kerogen formation, the organic metamorphisms are classified at different stages as diagenesis, catagenesis and metagenesis.⁸⁷ Once the organic matter is incorporated into sediments, then additional geochemical and geodynamic processes such as weathering, temperature and pressure due to changes in depth come into play.⁸⁸ Kerogen may even migrate from the

original 'source' rock to 'reservoir' rock.¹⁶⁰ Once kerogen is formed, generally over thousands of years, it is insoluble in most organic solvents due to the high molecular weight of its components (over 1,000 Da).⁸⁸

This change from OM to kerogen differs both in timescale and structural complexity from the organic materials reported in this thesis, but the components we are identifying can certainly be described as resembling kerogen substructures. Comparing the hydrogen:carbon and oxygen:carbon ratios of the lipid residues (Figure 29) to van Krevelen plots of kerogen shows that the majority of points fall in the region of the plot typical of kerogen.¹⁶¹

Figure 29. Left: Van Krevelen plot of ancient brain lipid residues shown in Table 49 (except the highly oxygenated $C_{12}H_{26}O_7$, $C_{14}H_{30}O_8$, $C_{16}H_{34}O_9$). Right: Van Krevelen plot of kerogen (types I, II and III)⁸⁷
When studying kerogen, the use of organic solvents to extract 'free hydrocarbons' or associated organic matter can be carried out before Soxhlet extraction. Mixing or ultrasonic methods are then used to remove fixed kerogen from rock sources. The initial solvent extraction often follows a similar methodology to that used in the experiments presented in this thesis e.g. Farrimond et al's¹⁶² work, in which the extracted components are described as solvent-soluble biohopanoids and geohopanoids:

"Solvent-soluble biohopanoids and geohopanoids were extracted and derivatised as outlined in Innes et al. (1997). Briefly, freeze-dried sediments were extracted with chloroform/methanol (2:1 v/v) using a Gerhardt Soxtherm apparatus, and separate aliquots of the extract were derivatised by means of three methods"¹⁶³

Once extracted, kerogen is often analysed by GC-MS or pyrolysis GC. There are few examples of high resolution MS of kerogen, although this is a well-established approach in petroleomics, the identification of the molecular constituents of crude oil.¹⁶⁴⁻¹⁶⁷

Kerogen literature generally assigns kerogen as coming from marine sources or vegetation. Very little is identified as coming from mammals or higher lifeforms, although the proposed source compounds (amino acids, lipids, carbohydrates) should not be too different. Whilst kerogen has possible similarities with the components identified in the brain samples, the source differs from those commonly discussed, and it doesn't come from an entire organism but a single organ.¹⁵⁹ The timescale of preservation is also quite different, with the components of the ancient brain remains being produced in skeletonised burials within 200 years, as opposed to requiring the thousands of years reported for kerogen.

217

There is always the technical possibility that the species identified in some of the more amorphous brain matter samples are derived from organic matter found within the soil from the burial environments; the soil may be difficult to physically separate from such amorphous brain matter. However, the extraordinary preservation and definition of the York brain (it was washed and was visibly clearly a brain from which the soil could confidently be removed) meant that it was possible to be certain that the material being extracted was demonstrably from the brain material and not from the surrounding soil; compounds from this sample have been identified within most of the other brain samples. These compounds appear to fall within the kerogen formation pathway, but presumably correspond to steps that occur very early in that pathway. The organic matter is likely to be resistant to chemical change and has low water solubility, which would explain their persistence and preservation in the burial environment. In summary, these lipidic residues may thus represent the products of a common soft tissue preservation mechanism not yet generally recognised, that can allow brain material to be preserved under appropriate conditions.

5 CONCLUSION AND FURTHER WORK

Following the description of the excellent preservation of the York brain, the current investigation has sourced several ancient brain specimens from different archaeological sites for comparison. After extracting the lipidic content of these samples using the same extraction method as was used for the York brain, the high resolution mass spectrometry analysis technique allowed us to determine that all the ancient brain remains examined contained solventextractable organic compounds with low functionalisation. This study has demonstrated that the large lipidic residues originally identified are not unique to the York brain, but also occur in ancient brain remains from other sites and dates. However the data do not support a relationship with archaeological age as a factor, as no distinctive trends in residue occurrence have been related to the age of the original specimens. Having identified some of the chemical formulae of these residues using the high mass accuracy resulting from FT-ICR MS it has been possible to explore their chemistry.

To the best of my knowledge, such structures are not discussed within the current body of literature with regards to human body decomposition or preservation. This absence from the literature may be due to the rarity of brain samples from burials and the very limited scientific investigation into their preservation. It may also be due to the general preference for using GC-MS for archaeological investigations, rather than the high resolution MALDI FT-ICR MS method which we used for this investigation. With GC-MS it is unlikely that these heavy, un-labile, waxy residues would have been identified. Having demonstrated that these components are common to preserved brain matter, the next step will be to begin to unravel chemical mechanisms for the formation of these components. For that, information on their chemical structures (not just compound classes) is now required.

What we can conclude is that these compounds are not found within fresh brain lipid extracts (3.1), although their probable precursors are, and so are presumably formed as part of a decomposition process, presumably following a similar chemical process as takes place during kerogen formation: bio- and nonbiodegradation followed by random polymerisation and condensation.¹⁵⁹ Once the compounds have been modified to be insoluble (in water) and resistant to chemical change, they remain preserved within the skull cavities.

It would be interesting to see the results of a similar experiment using high resolution MALDI FT-ICR MS to identify components of a classic adipocere sample. Does adipocere contain similar components to those discovered in the ancient brain remains, or is it solely composed of smaller lipids and salts? Determining whether there are components in common between the different preserved organic matter may help in understanding the preservation process itself.

The next step in a follow-up investigation would be to determine how similar the components identified in the ancient brain remains are to those found in kerogen (or associated with kerogen). MS/MS could be used to determine more detail of the molecular structures of the highlighted components. This would allow comparison with current kerogen literature but potentially it could also be used to see if any of these compounds show a similarity to those found within the living brain, i.e. are biomarkers for brain or CNS structures. As well as demonstrating provenance, this may reveal more about the chemical pathways required for the formation of the compounds found in the ancient brain extracts.

Comparison with kerogen, and the solvent-soluble OM associated with kerogen, could be achieved by performing similar extractions and analysis by

220

MALDI FT-ICR MS of authentic kerogen samples (e.g. Jet Rock from the Whitby Mudstone Formation). Standard tests run on kerogen and proto-kerogen, such as GC-MS, pyrolysis-GC and chemical degradation could also be carried out on the brain samples (if sufficient quantities are available), for better comparison with the existing kerogen literature. By combining these techniques, we could determine how similar the molecular structures of the solvent-extractable OM within the brain samples are, which may provide additional information on how and why the brain tissues were preserved.

A more direct method of determining why the brain tissue was preserved would be to carry out burial tests, either within the laboratory or at a body farm. The main controls would be related to tissue preservation (see introduction), temperature (a variety of temperatures similar to those of soils at appropriate burial depths), water (a range of moisture levels, especially limited hydrations), pH range, using abiotic soil and standard soils as well as more clay-like soils, and with limited oxygen levels. Having more information regarding the original burial environments of the brain samples provided would be invaluable. Either samples of fresh brain tissue would have to be placed in simulated skulls or entire burials would be required (e.g. piglet burials). The major factor would be time, as none of the samples studied were less than 100 years old; how to process burials to 'speed them up' (e.g. use of elevated heat or pressure) would need investigation if this route were to be taken. Finally, it would naturally be ideal if more preserved brains were to be discovered, or samples from other collections accessed and investigated for the presence of similar compounds to those identified here.

221

APPENDICES

Appendix I: Photos of Ancient Brain Remains

Figure 30. Photograph of brain mass HMC SK1709, from which sample H1 had been removed for potential DNA analysis.

Figure 31. Photograph of brain mass labelled HMC SK1913, from which H7 was sampled.

Figure 32. Photograph of HMC94 SK2039, from which H11 was sampled.

Figure 33. Photograph of brain mass labelled HMC SK2123, from which samples H12 and H13 had been sampled.

Figure 34. Photograph of brain mass HMC SK2123 which had been stored separately with the additional label 'Red sample', from which H14 was sampled.

Figure 35. Photograph of the brain mass labelled SJB09 SK117, after sample B1 was removed.

Figure 36. Photograph of the brain mass labelled VSS-A SK2463, from which V1 was sampled.

Figure 37. Photographs of ancient preserved brain matter. From (L-R) Top row: H1, B1, V1, H1. Second row: H2, H3, H4, H5. Third row: H6, H7, H8, H9. Bottom row: H10, H11, H12, H13.

Figure 38: (Figure 37 continued) H14

Appendix II: Unidentified Compound Tables

This appendix provides summary data of peaks that were unable to be assigned formula using the method described in 3.3 Comparison of Spectra of Ancient Brain Lipid Extracts. Table 50 shows the top peaks identified using S:N and intensities using the MassList data from the first replicate of each sample.

Legend
Formula assigned
Assigned (of interest)
Multiple assignments
Unassigned

Table 51 onwards provides the S:N, intensity and relative intensity % information along with the measured m/z values for the unassigned peaks.

Table 50. Significant peaks from the initial replicate mass spectra: the top five S:N peaks, plus top five intense peaks

Sample	S:N	m/z	Intensity	Resolution	Ranking	Table No.
H4a	7745.7	502.36793	1147219584	158028	#1	33
H6a	5888.6	497.23573	740723968	160132	#1	53
H6a	5812.8	365.15708	610774784	219108	#2	44
H9a	5307.5	501.38397	724846080	157518	#1	29
H4a	4630.1	513.38391	699732800	155149	#2	31
H6a	4556.0	437.23565	522658496	181733	#3	50
H9a	4538.6	502.36794	630138816	157771	#2	33
H6a	4256.3	321.13077	447302528	248874	#4	43
H6a	4087.1	393.20939	433222240	203226	#5	45
H6a	3750.1	541.26198	500162272	147294	#4 Intensity	55
V1a	3186.3	810.84242	536857920	98365	#1	28
B1a	3139.5	513.38406	513161056	154806	#1	31
B1a	3111.8	501.38415	486390528	157626	#2	29
V1a	2988.2	782.81126	503781568	102002	#2	26
H8a	2751.9	501.38392	372404512	158094	#1	29
H8a	2668.6	502.36790	366584576	158081	#2	33
H12a	2643.1	731.60667	449381664	109316	#1	41
H9a	2476.7	513.38390	349772384	155132	#3	31
H10a	2421.3	850.67377	365529600	93276	#1	72
B1a	2311.5	500.38892	361371808	158624	#3	15
H4a	2288.4	487.40472	326055392	162924	#4	11
Y1a	2064.2	564.53510	300621824	140835	#1	37
H4a	2016.5	501.38400	293033088	157962	#5	29
H12a	1949.5	759.63823	329006080	105157	#2	42
H11a	1815.2	502.36817	228869696	158513	#1	33
V1a	1752.4	754,77981	295897120	105688	#3	23
H13a	1697.4	731.60658	294104992	109464	#1	41
H1a	1485.6	371.36726	161548096	213606	#1	8
H4a	1423.9	511.36824	215397248	155976	#5	30
H14b	1404.3	549.31076	222491712	144935	#1	46
H9a	1386.0	518.36282	199198384	153484	#4	36
Y1a	1368.1	584.56131	203449392	136145	#2	39
B1a	1335.3	514.36826	218444224	154101	#4	34
B1a	1303.1	498.37323	203859920	159206	#5	14
H12a	1302.9	411.37355	147542336	192690	#3	12
Y1a	1295.2	769.56191	222809984	103772	#3	67
H5a	1294.9	866.64701	171511376	91666	#1	76
H12a	1245.2	753.58853	210274880	105944	#4	66
H13a	1224.7	769.56257	210928064	104070	#2	67
B1a	1220.0	866.64885	212526496	91464	#5 Intensity	76
H10a	1200.1	487,40463	150049920	163471	#2	11
H11a	1163.5	513.38415	148525648	155093	#2	31
H1a	1146.9	463,24921	143583792	172029	#2	32
H12a	1141.5	518,56635	167784208	153151	#5	9
H8a	1121.6	850,67390	172735088	93373	#3	72
H10a	1120.9	502.36787	143489104	158731	#3	33
Y1a	1110.8	558 56085	159625264	142865	#4	19
H10a	1104.8	857 26041	166969232	93191	#4	75
H11a	1095.9	753 58830	167992176	105784	#3	66
H9a	1082.6	527 36318	158351728	149933	#5	40
Y1a	1080.4	622 51721	167955776	178722	#5	63
Y1a	1055.2	853 65577	181226224	90679	#4 Intensity	74
H8a	982.3	487 40466	131166160	163037	#4	11
H13a	907.6	778 78052	156401504	102470	#3	24
H85	907.0	518 26276	126657906	152960	#5	36
ilod	092.8	210.202/0	12002/030	122003	π.J	50

Sample	S:N	m/z	Intensity	Resolution	Ranking	Table No.
H11a	882.2	591.16932	123699448	132197	#4	62
H11a	880.7	731.60650	134848896	109146	#5	41
Orig Hes	873.1	558.56026	94157008	87715	#1	19
H5a	848.0	850.67306	111252360	93425	#2	72
H10a	817.8	836.65833	122328568	95362	#5	70
H11a	817.1	835.66685	126273656	94952	#5 Intensity	69
H13a	794.6	591.16935	124609912	133029	#4	62
H2a	793.9	850.67285	106139416	93563	#1	72
H13a	765.2	752.76490	132357272	106471	#5	22
H13a	750.0	753.58846	129733888	106310	#5 Intensity	66
H5a	725.2	411.37307	75432024	192208	#3	12
H3a	721.8	850.67377	102309128	93542	#1	72
H7a	676.1	866.64786	102886432	90979	#1	76
H14a	668.3	475.03456	91763808	166905	#1	51
H7a	635.7	850.67370	96096720	92987	#2	72
H1a	628.0	464.25693	78751896	170723	#3	35
H5a	623.9	648.62828	75403760	123197	#4	38
H2a	606.0	564.14496	76517744	140815	#2	60
H14a	565.3	541.95693	90001352	146137	#2	56
H2a	528.2	648.62822	68771144	123001	#3	38
H1b	523.1	850.67319	75562120	93427	#1	72
H2a	521.1	688.62050	68780520	116308	#4	48
V1a	503.9	866.64834	85048648	91526	#4	76
Orig Hes	479.7	530.52900	50985892	92430	#2	16
H5a	458.3	852.63134	60274400	93276	#5	73
H1a	455.9	629.33859	67364672	125588	#4	47
V1a	446.5	569.43305	70081832	139853	#5	61
H1a	442.2	405.20733	50097424	196634	#5	13
H1a	436.3	640.61474	64501928	130878	#5 Intensity	65
H2a	401.0	815.69879	53771760	97115	#5	68
H3a	400.3	502.36784	52690288	158300	#2	33
H3a	397.7	513.38381	53003976	154414	#3	31
H3a	364.5	518.56580	49211336	152930	#4	9
H14a	357.8	485.30279	50028080	163971	#3	52
H1b	349.8	371.36696	36754136	214496	#2	8
H14a	339.9	629.86603	56399184	126522	#4	64
H3a	327.1	490.53452	42092952	161973	#5	10
H14a	322.1	544.95136	51415856	146089	#5	57
H7a	315.4	968.58583	46827556	82196	#3	77
H1b	307.5	866.64723	44625348	91727	#3	76
H1b	301.3	648.62840	41476884	123791	#4	38
H7a	288.3	529.25136	36703012	147819	#4	54
H7a	266.1	848.56176	40420960	92848	#5	71
H14b	227.0	485.30310	31942806	165864	#2	52
H14b	186.0	547.33153	29765016	146472	#3	58
H1b	177.8	688.62073	25125248	117135	#5	48
H14b	162.0	541.95726	25964372	145197	#4	56
H14b	158.1	563.32646	26167880	138558	#5	59
Orig Hes	113.8	544.54461	12454207	90161	#3	17
Orig Hes	92.1	556.54448	10123522	89172	#4	18
Orig Hes	81.9	586.59153	9352824	82856	#5	20
Orig Hes		726			Of Interest	21
Orig Hes		780			Of Interest	25
Orig Hes		806			Of Interest	27

Calculated m/z	437.235					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	437.23574	Yes	7.2	1106967	0.4	211025
Y1a 2		No				
Y1a 3		No				
Original Heslington		No				
H1a 1	437.23551	Yes	29.4	3780609	0.4	165392
H1a 2	437.23543	Yes	8.5	1192966	0.3	218178
H1a 3		No				
H1b 1	437.23545	Yes	24.3	2979088	0.3	179491
H1b 2	437.23555	Yes	25.2	3002469	0.8	181957
H1b 3	437.23528	Yes	18.7	2314939	0.5	194485
H2a 1		No				
H2a 2		No				
H2a 3	437.23521	Yes	4.9	779290	0.2	244220
H3a 1		No				
H3a 2		No				
H3a 3		No				
H4a 1		No				
H4a 2		No				
H4a 3		No				
H5a 1		No				
H5a 2		No				
H5a 3		No				
H6a 1	127 22565	Vos	1556.0	522659400	70.0	101722
	437.23305	Voc	4550.0	2486679490	/0.6	101547
	437.23305	Voc	3083.2	400507720	47.5	18154/
	437.23564	Yes	34/3./	400597728	42.0	120024
H/a 1	437.23560	Yes	5.7	902597	0.2	129034
H/a Z	427 22555	NO	10.0	1 100 150		400000
H/a 3	437.23555	Yes	10.8	1488459	0.2	198289
H8a 1		NO				
H8a 2	437.23544	Yes	4.8	/96257	0.2	200980
H8a 3	437.23593	Yes	5.7	900355	0.2	206700
H9a 1		No				
H9a 2		No				
H9a 3	437.23556	Yes	14.6	1903005	0.4	157081
H10a 1	437.23566	Yes	14.7	1943232	0.3	209670
H10a 2		Yes				
H10a 3	437.23569	Yes	9.3	1353630	0.4	193526
H11a 1		No				
H11a 2	437.23587	Yes	101.7	12081922	1.6	182129
H11a 3	437.23541	Yes	14.2	1726821	1.3	182503
H12a 1		No				
H12a 2		No				
H12a 3		No				
H13aii 1		No				
H13aii 2		No				
H13aii 3	437.23577	Yes	13.6	1785287	0.3	184823
H14a 1		No				
H14a 2	437.23565	Yes	51.6	6670331	0.9	183100
H14a 3		No				
H14bi 1		No				
H14bi 2		No				
H14bi 3		No				
V1a 1		No				
V1a 2		No				
V1a 3		No				
B1a 1		No				
B1a 2		No				
B1a 3		No				
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	437.23843	Possibly	11.2	1710052	0.2	191227
Soil 3a 2	437.23832	Possibly	19.6	2711679	0.3	185435
Soil 3a 3	437.23826	Possibly	11.7	1772674	0.4	170985
Soil 3b 1	437.23820	Possibly	6.7	1094950	0.1	262073
Soil 3b 2	437.23834	Possibly	6.1	1063838	0.1	222850
Soil 3b 3	437.23616	Possibly	5.2	906032	0.2	340455
Solvent 1	437.23801	Possibly	15.6	2392853	0.1	188323
Solvent 2	437.23827	Possibly	7.9	1358350	0.2	169420
Solvent 3	437.23363	Possibly	5.6	991328	0.1	226739

Table 51. Summary of signal at m/z 437

Table 52. Sum	mary of signal at <i>m/z</i> 475
---------------	----------------------------------

Calculated m/z	475.0346					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	475.03458	Yes	10.4	1579009	0.5	166357
Y1a 2	475.03427	Yes	12.1	1743666	0.6	176696
Y1a 3	475.03473	Yes	7.6	1228247	0.4	188633
Original Heslington		No				
H1a 1	475.03425	Yes	12.4	1858661	0.2	183474
H1a 2	475.03450	Yes	14.0	1876917	0.5	189019
H1a 3	475.03437	Yes	42.9	5214576	0.8	164896
H1b 1	475.03434	Yes	140.5	16768396	2.0	167071
H1b 2	475.03435	Yes	55.5	6599193	1.7	169894
H1b 3	475.03430	Yes	153.2	17817048	4.2	170704
H2a 1	475.03421	Yes	39.1	4760563	0.9	181877
H2a 2	475.03434	Yes	79.4	10355035	3.1	167750
H2a 3	475.03429	Yes	126.1	14153377	4.0	165351
H3a 1	475.03452	Yes	140.3	17796960	3.2	168660
H3a 2	475.03461	Yes	405.7	51732772	8.5	165538
H3a 3	475.03443	Yes	316.1	37434144	4.9	167449
H4a 1		No				
H4a 2		No				
H4a 3	475.03455	Yes	9.6	1573263	0.2	199782
H5a 1	475.03418	Yes	84.5	9501151	5.0	169266
H5a 2	475.03428	Yes	96.5	11241642	3.7	171480
H5a 3	475.03419	Yes	47.1	5940580	0.7	170437
H6a 1	475.03443	Yes	27.0	3561484	0.5	174396
H6a 2	475.03444	Yes	38.0	4815529	0.7	170050
H6a 3	475.03449	Yes	10.4	1540557	0.2	157756
H7a 1	475.03447	Yes	143.4	17262694	4.2	168048
H7a 2	475.03455	Yes	135.7	17013558	2.7	166325
H7a 3	475.03427	Yes	19.8	2625851	0.4	170658
H8a 1	475.03460	Yes	89.7	11898242	2.0	168985
H8a 2	475.03480	Yes	62.2	7756604	1.8	171583
H8a 3	475.03453	Yes	55.4	6861025	1.3	172634
H9a 1	475.03467	Yes	33.4	4625546	0.6	169686
H9a 2	475.03463	Yes	15.6	2328441	0.3	173639
H9a 3	475.03444	Yes	39.4	4981208	1.1	173955
H10a 1		No				
H10a 2		No				
H10a 3		No				
H11a 1	475.03503	Yes	7.5	1181243	0.5	168900
H11a 2		No				
H11a 3		No				
H12a 1		No				
H12a 2		No				
H12a 3		No				
H13aii 1	475.03485	Yes	4.5	856905	0.2	178372
H13aii 2		No				
H13aii 3		No				
H14a 1	475.03456	Yes	668.3	91763808	6.5	166905
H14a 2	475.03455	Yes	697.2	94010056	12.6	166657
H14a 3	475.03470	Yes	1022.8	154462192	7.4	167266
H14bi 1	475.03486	Yes	84.6	11911432	1.3	170649
H14bi 2	475.03474	Yes	73.5	10118442	1.6	171829
H14bi 3	475.03488	Yes	523.4	77456968	1.5	167423
V1a 1	475.03462	Yes	171.3	22722732	1.0	167913
V1a 2	475.03458	Yes	212.4	26594982	4.2	165439
V1a 3	475.03454	Yes	277.6	35036228	7.5	166854
B1a 1	475.03481	Yes	46.5	7093970	1.4	167036
B1a 2	475.03458	Yes	121.2	15634869	5.1	163637
B1a 3	475.03435	Yes	246.1	29340442	6.9	168656
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	475.03641	Possibly	9.4	1654723	0.2	189312
Soil 3a 2	475.03620	Possibly	21.0	3233749	0.3	159486
Soil 3a 3	475.03597	Possibly	23.0	3627947	0.8	166594
Soil 3b 1	475.03630	Possibly	31.0	4545242	0.6	158692
Soil 3b 2	475.03589	Possibly	4.3	908638	0.0	203344
Soil 3b 3	475.03608	Possibly	9.8	1623640	0.3	153953
Solvent 1	475.03589	Possibly	24.7	4137956	0.1	160673
Solvent 2	475.03608	Possibly	12.4	2274775	0.3	198406
Solvent 3	475.03641	Possibly	9.4	1654723	0.2	189312

Table 53.	Summary	of signal	at <i>m/z</i> 485
-----------	---------	-----------	-------------------

Calculated m/z	485.3031					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	485.30282	Yes	101.6	13172061	4.4	167046
Y1a 2	485.30262	Yes	141.6	17648636	6.5	165304
Y1a 3	485.30274	Yes	125.2	16257716	4.7	165401
Original Heslington		No				
H1a 1	485.30270	Yes	15.6	2294325	0.2	187742
H1a 2		No				
H1a 3		No				
H1b 1		No				
H1b 2	485.30262	Yes	5.0	850687	0.2	260397
H1b 3	485.30233	Yes	12.9	1756697	0.4	183301
H2a 1	485.30273	Yes	11.2	1566883	0.3	205692
H2a 2	485.30270	Yes	10.9	1679524	0.5	199141
H2a 3	485.30261	Yes	16.4	2079016	0.6	176983
H3a 1	485.30282	Yes	17.5	2485661	0.5	177997
H3a 2	485.30276	Yes	31.1	4271870	0.7	173361
H3a 3	485.30271	Yes	31.1	3957876	0.5	171866
H4a 1		No				
H4a 2		No				
H4a 3	485.30311	Yes	6.4	1159568	0.1	199473
H5a 1	485.30244	Yes	25.7	3089781	1.6	177276
H5a 2	485.30252	Yes	36.6	4462409	1.5	168386
H5a 3	485.30250	Yes	44.8	5726927	0.7	173115
H6a 1	485.30268	Yes	23.3	3135957	0.4	176985
H6a 2	485.30272	Yes	17.1	2335186	0.3	178358
H6a 3	485.30276	Yes	27.6	3702176	0.4	170254
H7a 1	485.30273	Yes	55.4	6895027	1.7	172053
H7a 2	485.30285	Yes	30.2	4048230	0.6	171569
H7a 3	485.30273	Yes	33.8	4343932	0.6	180657
H8a 1	485.30272	Yes	14.1	2138891	0.4	195873
H8a 2	485.30290	Yes	10.9	1610620	0.4	193591
H8a 3	485.30255	Yes	17.8	2406861	0.5	171928
H9a 1	485.30281	Yes	42.4	5885537	0.7	167839
H9a 2	485.30265	Yes	16.4	2473398	0.3	178418
H9a 3	485.30269	Yes	23.1	3062138	0.7	168660
H10a 1		No				
H10a 2	485.30262	Yes	10.7	1475965	0.8	191296
H10a 3	485.30298	Yes	4.2	808384	0.2	187730
H11a 1		No				
H11a 2	485.30309	Yes	11.3	1691350	0.2	163941
H11a 3	485.30295	Yes	4.0	692449	0.5	212726
H12a 1	485.30285	Yes	5.3	1005119	0.2	168486
H12a 2		No				
H12a 3	105 20201	No	12.4	2027200	0.5	177040
H13aii 1	485.30301	Yes	13.4	2037298	0.5	1/7649
H13aii 2	485.30248	Yes	9.1	1427280	0.4	181061
HI3all 3	485.30283	Yes	19.0	2550473	0.4	189573
H14a 1	485.30279	Yes	357.8	30414380	3.5	163971
H14a Z	485.30281	Yes	287.0	59414380	5.3	105502
H14d 5	485.30300	Yes	330.8	21042806	2.5	165964
H14611	485.30310	Vos	227.0	22681550	5.0	165411
H14bi 3	485 30314	Vos	115.1	176/1380	0.3	166106
V1a 1	485 30283	Yes	290.8	38933396	1.8	164404
V1a 2	485 30276	Yes	398.1	50162712	8.0	162513
V1a 3	485 30275	Yes	333.1	42467140	9.0	164696
B1a 1	485 30304	Yes	44.4	6932624	1.4	172835
B1a 2	485 30275	Yes	50.1	6713034	22	173812
B1a 3	485 30266	Yes	33.4	4254729	1.0	171337
DHB 1	100100200	No		1201720	1.0	1/100/
DHB 2		No				
DHB 3		No				
Soil 3a 1	485.30404	Possibly	414.1	61788532	7.8	152408
Soil 3a 2	485.30437	Possibly	159.4	23178656	2.1	162989
Soil 3a 3	485.30421	Possibly	187.9	28124302	6.2	160493
Soil 3b 1	485.30440	Possibly	290.6	41005240	5.4	160318
Soil 3b 2	485.30395	Possibly	284.9	42274620	2.2	163179
Soil 3b 3	485,30441	Possibly	100.8	14407908	2.7	164638
Solvent 1	485.30413	Possibly	71.3	11686924	0.3	171109
Solvent 2	485.30429	Possibly	84.3	14144505	1.7	167407
Solvent 3	485.30404	Possibly	414.1	61788532	7.8	152408

Table 54. Summary of signal at m/z 497

Calculated m/z	497.23573					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	497.23554	Yes	13.5	2034204	0.7	165313
Y1a 2	497.23534	Yes	11.0	1660329	0.6	190924
Y1a 3	497.23554	Yes	12.9	1972666	0.6	180187
Original Heslington		No				
H1a 1	497.23540	Yes	9.1	1483924	0.1	137540
H1a 2		No				
H1a 3	497.23526	Yes	5.9	970688	0.1	136830
H1b 1	497.23571	Yes	29.3	3810684	0.4	167333
H1b 2	497.23594	Yes	10.8	1540608	0.4	178563
H1b 3	497.23550	Yes	14.7	2000039	0.5	181164
H2a 1		No				
H2a 2		No				
H2a 3		No				
H3a 1		No				
H3a 2	497.23556	Yes	6.3	1123307	0.2	155995
H3a 3	497.23527	Yes	8.0	1240956	0.2	210580
H4a 1		NO				
H4a Z		NO				
H4a 3		NO				
		No				
		No				
	407 22572	Noc	F000 C	740722000	100.0	100122
H6a 1	497.23573	Yes	5888.0	740723968	100.0	160132
	497.23572	Yes	7400.2	734608192	100.0	159948
HDa 3	497.23571	Yes	10.5	93998/130	100.0	156222
	497.23590	Voc	10.5	1160569	0.4	130232
H7a 2	497.23592	Vos	12.2	1789/01	0.2	166479
H8a 1	437.23308	No	12.5	1700431	0.5	100473
H8a 2	497 23562	Yes	5.4	959117	0.2	241084
H8a 3	457.25502	No	5.4	555117	0.2	241004
H9a 1		No				
H9a 2		No				
H9a 3	497.23565	Yes	32.1	4244641	0.9	167326
H10a 1	137120000	No	02.12		0.5	10/020
H10a 2		No				
H10a 3		No				
H11a 1		No				
H11a 2	497.23603	Yes	74.5	9831020	1.3	164436
H11a 3	497.23501	Yes	7.6	1091140	0.8	113291
H12a 1	497.23359	Yes	8.9	1539347	0.3	183747
H12a 2	497.23382	Yes	8.6	1501758	0.3	192137
H12a 3	497.23396	Yes	9.6	1648004	0.4	163210
H13aii 1		No				
H13aii 2		No				
H13aii 3	497.23600	Yes	41.6	5369805	0.9	157758
H14a 1	497.23560	Yes	18.7	2973298	0.2	159905
H14a 2	497.23573	Yes	185.0	26254996	3.5	158880
H14a 3		No				
H14bi 1	497.23626	Yes	10.0	1/50521	0.2	141613
H14bi 2	497.23571	Yes	16.9	2645586	0.4	1558/1
H1401 3		NO				
	407 22551	NO	11 1	1709055	0.2	175670
V1a 2	497.25551	Voc	10.6	1665066	0.5	175070
R1a 1	437.23380	No	10.0	1003900	0.4	1//455
B1a 2		No				
B1a 3		No				
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	497.23678	Possibly	6.2	1269158	0.2	205487
Soil 3a 2	497.23688	Possibly	6.0	1188975	0.1	137492
Soil 3a 3	497.23683	Possibly	6.0	1227658	0.3	150631
Soil 3b 1	497.23727	Possibly	5.5	1095719	0.1	162734
Soil 3b 2	497.23653	Possibly	9.5	1765659	0.1	159697
Soil 3b 3	497.23712	Possibly	13.1	2208579	0.4	182777
Solvent 1		No				
Solvent 2	497.23744	Possibly	6.3	1391531	0.2	121999
Solvent 3	497.23678	Possibly	6.2	1269158	0.2	205487

Calculated m/z	529.251					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	529.25206	Yes	13.1	2091754	0.7	144237
Y1a 2	529.25138	Yes	17.2	2550732	0.9	166898
Y1a 3	529.25163	Yes	18.7	2875921	0.8	150406
Original Heslington		No				
H1a 1		No				
H1a 2	529.25130	Yes	9.9	1484800	0.4	149745
H1a 3	529.25124	Yes	17.4	2398598	0.4	151130
H1b 1	529.25111	Yes	29.2	3942199	0.5	139226
H1b 2	529.25179	Yes	7.1	1147408	0.3	153035
H1b 3	529.25102	Yes	19.3	2615891	0.6	156450
H2a 1	529.25165	Yes	9.0	1380201	0.3	132336
HZa Z	529.25149	Yes	10.0	1682395	0.5	115368
HZa 3	529.25112	Yes	86.9	102/21/8	2.9	14/585
H3a 1	529.25128	Yes	19.2	2903952	0.5	154594
H3a Z	529.25140	Yes	/1.0	10242021	1.7	147028
	529.25127	No	90.9	12074955	1.7	145125
H4a 2	529 25193	Voc	9.6	1838171	0.2	132011
H4a 2 H4a 3	529.25155	Voc	21.1	3521729	0.2	15/1511
H5a 1	529 25100	Yes	220.9	25425224	13.4	150594
H5a 2	529,25112	Yes	267.0	32359742	10.4	150401
H5a 3	529.25107	Yes	130.4	17264238	20.0	151168
H6a 1	529,25133	Yes	135.5	18136326	2.4	148928
H6a 2	529.25136	Yes	144.8	18943726	2.6	149854
H6a 3	529.25135	Yes	132.5	17923218	1.9	151081
H7a 1	529.25136	Yes	288.3	36703012	9.0	147819
H7a 2	529.25140	Yes	164.9	22253920	3.5	148945
H7a 3	529.25136	Yes	53.3	7086914	1.0	156779
H8a 1	529.25144	Yes	81.4	12015359	2.1	146523
H8a 2	529.25168	Yes	50.7	6943652	1.6	154718
H8a 3	529.25134	Yes	67.4	8931793	1.7	151219
H9a 1	529.25147	Yes	238.9	35176952	4.4	149308
H9a 2	529.25139	Yes	80.3	12186672	1.4	152977
H9a 3	529.25127	Yes	333.4	43345964	9.6	148941
H10a 1	529.25140	Yes	16.7	2509974	0.4	158379
H10a 2	529.25131	Yes	7.5	1160484	0.6	193270
H10a 3		No				
H11a 1	529.251/9	Yes	44.6	6107634	2.7	152589
H11a 2	529.25170	Yes	29.8	4304638	0.6	149048
H112 3	529.25170	No	14.9	1922034	1.5	151515
H12a 2		No				
H12a 3	529.25121	Yes	5.0	1062707	0.3	171861
H13aii 1	529.25210	Yes	6.9	1289925	0.3	138046
H13aii 2		No				
H13aii 3	529.25169	Yes	5.7	1015005	0.2	191652
H14a 1	529.25145	Yes	13.0	2309980	0.2	171973
H14a 2	529.25175	Yes	12.6	2186754	0.3	132612
H14a 3	529.25166	Yes	23.4	4419660	0.2	148962
H14bi 1	529.25155	Yes	13.3	2361717	0.3	160452
H14bi 2	529.25191	Yes	12.6	2172929	0.3	162496
H14bi 3		No				
V1a 1		No				
V1a 2		No	_			
V1a 3	529.25173	Yes	5	980375	0.2	149730
B1a 1		NO				
B1a 2		NO				
		No				
		No				
DHB 2		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				

Table 56.Summary of signal at m/z 541.2

Calculated m/z	541.26198					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	541.262	Yes	9.5	1623121	0.5	168618
Y1a 2	541.26168	Yes	9.9	1611549	0.6	155832
Y1a 3		No				
Original Heslington		No				
H1a 1		No				
H1a 2		No				
H1a 3		No				
H1b 1	541.26176	Yes	25.1	3461672	0.4	146634
H1b 2	541.2628	Yes	8	1266771	0.3	166405
H1b 3	541.26179	Yes	7	1144486	0.3	145685
H2a 1		No				
H2a 2	541.26308	Yes	14	2271481	0.7	148068
H2a 3	541.26214	Yes	4	748181	0.2	166957
H3a 1		No				
H3a 2	541.26332	Yes	9.9	1700923	0.3	181643
H3a 3	541.2615	Yes	6.7	1141705	0.2	140372
H4a 1		No				
H4a 2		No				
H4a 3		No				
H5a 1		No				
H5a 2		No				
H5a 3		No				
H6a 1	541.26198	Yes	3750.1	500162272	67.5	147294
H6a 2	541.26197	Yes	3812.3	4.97E+08	67.7	146971
H6a 3	541.26195	Yes	4634.8	6.25E+08	66.5	147182
H7a 1		No				
H7a 2		No				
H7a 3	541.26174	Yes	7.8	1301363	0.2	124849
H8a 1	541.26328	Possibly	15.2	2525386	0.4	161332
H8a 2		No				
H8a 3	541.26327	Possibly	5.8	1047538	0.2	149327
H9a 1		No				
H9a 2		No				
H9a 3	541.26182	Yes	31.3	4380332	1	157080
H10a 1		No				
H10a 2		No				
H10a 3		No				
H11a 1		No				
H11a 2	541.26245	Yes	31.1	4541274	0.6	150890
H11a 3		NO				
H12a 1		NO				
H12a 2		NO				
11285		No				
		No				
H12aii 2	E41 2622	Noc	20 0	4019950	0.7	149477
	541.2023	Vos	20.0	2720090	0.7	146477
H14a 2	541 26202	Vos	145.4	22325700	3	146335
H14a 3	541 262/15	Yes	143.4	2702022	0.1	145572
H14bi 1	341.202 4 3	No	13.3	2702023	0.1	143073
H14bi 2	541.26224	Yes	q	1658603	0.3	142770
H14bi 3		No				
V1a 1		No				
V1a 2	541.26221	Yes	8.3	1427076	0.2	147693
V1a 3	541.26141	Yes	9.3	1585012	0.3	103022
B1a 1		No				
B1a 2		No				
B1a 3		No				
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	541.26394	Possibly	7.4	1609213	0.2	162618
Soil 3a 2	541.26424	Possibly	8.2	1689568	0.2	175437
Soil 3a 3		No				
Soil 3b 1	541.26342	Possibly	7	1444763	0.2	178711
Soil 3b 2		No				
Soil 3b 3	541.26397	Possibly	10.5	2030030	0.4	162607
Solvent 1		No				
Solvent 2	541.26465	Possibly	5.2	1350395	0.2	183734
Solvent 3	541.26394	Possibly	7.4	1609213	0.2	162618

Calculated m/z	541.9569					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	541.95703	Yes	9.2	1594994	0.5	116377
Y1a 2	541.95674	Yes	10.9	1773604	0.7	164923
Y1a 3	541.95646	Yes	10.7	1822632	0.5	137092
Original Heslington		No				
H1a 1		No				
H1a 2	541.95627	Yes	9.6	1464091	0.4	160268
H1a 3	541.95665	Yes	25.7	3470953	0.5	142337
H1b 1	541,95661	Yes	40.6	5471998	0.6	143536
H1b 2	541 95694	Yes	4.4	839450	0.2	177581
H1b 3	541 95663	Yes	20.9	2867192	0.7	149396
H2a 1	541 95630	Yes	13.2	1912513	0.4	156402
H2a 2	541.95629	Yes	9.1	1608051	0.4	154895
H2a 3	5/1 956/8	Vos	27.4	3/80832	1.0	160611
H2a J	541.05686	Vos	15.4	6622602	1.0	1/5852
H2a 2	541.95080	Vos	45.4	12972420	2.2	145526
138 2	541.95702	Voc	93.0	11016211	2.3	145520
H/a 1	541.95081	No	84.0	11010311	1.5	143087
H4a 2		No				
H4a 2		No				
HFa 1	E41 05052	Voc	20.2	2654220	1.0	140045
	541.95053	Voc	29.3	3054230	1.9	171120
1150 2	341.92080	Ne	18.0	2480734	0.8	1/1136
H5a 3	F 44 05 55 -	INO		F20.400		4 40
ньа 1	541.95686	res	37.1	5304901	0.7	143753
ньа 2	541.95686	res	29.1	4129616	0.6	147879
ньа 3	541.95682	Yes	20.3	3066702	0.3	141258
H7a 1	541.95700	Yes	214.1	27887308	6.8	144280
H7a 2	541.95695	Yes	334.5	45919016	7.2	145785
H7a 3	541.95613	Yes	17.2	2533758	0.4	117288
H8a 1	541.95614	Yes	11.1	1961867	0.3	134328
H8a 2	541.95740	Yes	6.5	1170838	0.3	165421
H8a 3	541.95679	Yes	8.5	1413476	0.3	140217
H9a 1	541.95699	Yes	21.2	3507900	0.4	124278
H9a 2	541.95694	Yes	43.3	6950157	0.8	146624
H9a 3	541.95680	Yes	42.8	5952823	1.3	141470
H10a 1		No				
H10a 2		No				
H10a 3		No				
H11a 1	541.95734	Yes	4.7	928645	0.4	164923
H11a 2		No				
H11a 3		No				
H12a 1		No				
H12a 2		No				
H12a 3		No				
H13aii 1	541.95604	Yes	6.3	1247168	0.3	96371
H13aii 2		No				
H13aii 3		No				
H14a 1	541.95693	Yes	565.3	90001352	6.4	146137
H14a 2	541.95690	Yes	385.1	59543532	8.0	145378
H14a 3	541.95712	Yes	1175.7	214821568	10.3	146923
H14bi 1	541.95726	Yes	162.0	25964372	2.9	145197
H14bi 2	541.95711	Yes	266.9	40778120	6.3	145970
H14bi 3	541.95734	Yes	57.5	10717671	0.2	136143
V1a 1	541.95701	Yes	155.3	23691560	1.1	146182
V1a 2	541.95694	Yes	175.7	24547782	3.9	143763
V1a 3	541.95691	Yes	150.7	21370884	4.6	146109
B1a 1	541.95706	Yes	26.5	5067735	1.0	141072
B1a 2	541.95708	Yes	48.0	7263601	2.4	146893
B1a 3	541.95668	Yes	97.8	12984663	3.0	146920
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2	541.95824	Possibly	6.1	1356713	0.1	120140
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2	541 95891	Possibly	4.0	1149615	0.1	163935
Solvent 3	5-1.55091	No	4.0	1149013	0.1	103933
35.146.116.5		110				

Table 57. Summary of signal at m/z 541.9

Table 58. Summary of signal at m/z 544

Calculated m/z	544.95136					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1		No				
Y1a 2	544.95133	Yes	5.9	1097299	0.4	193885
Y1a 3	544.9512	Yes	8.4	1500842	0.4	165936
Original Heslington		No				
H1a 1		No				
H1a 2		No				
H1a 3	544.95147	Yes	16.1	2281690	0.3	148910
H1b 1	544.95118	Yes	27.9	3854396	0.4	144536
H1b 2		No				
H1b 3	544.95131	Yes	13.8	1988360	0.5	153849
H2a 1		No				
H2a 2		No				
H2a 3	544.95106	Yes	6.8	1078549	0.3	186793
H3a 1	544.95149	Yes	26.7	4029019	0.7	143310
H3a 2	544.95163	Yes	43.8	6556992	1.1	151522
H3a 3	544.95123	Yes	49.8	6654864	0.9	149168
H4a 1		No				
H4a 2		No				
H4a 3		No				
H5a 1	544.95103	Yes	15.8	2105886	1.1	174719
H5a 2	544.95097	Yes	15.1	2136236	0.7	149760
H5a 3		No				
H6a 1	544.95143	Yes	24.3	3569477	0.5	154157
H6a 2	544.95123	Yes	16.2	2428940	0.3	162377
H6a 3	544.95154	Yes	7.9	1376126	0.1	155860
H7a 1	544.95142	Yes	112.5	14786144	3.6	146031
H7a 2	544.95142	Yes	200.0	27574838	4.3	146758
H7a 3		No				
H8a 1	544.95188	Yes	5.1	1067378	0.2	182246
H8a 2		No				
H8a 3		No				
H9a 1	544.95152	Yes	5.9	1204734	0.1	175327
H9a 2	544.95160	Yes	25.5	4217240	0.5	158316
H9a 3	544.95137	Yes	27.5	3933191	0.9	144971
H10a 1		No				
H10a 2		No				
H10a 3		No				
H11a 1		No	1			
H11a 2		No				
H11a 3		No				
H12a 1		No				
H12a 2		No				
H12a 3		No				
H13aii 1		No				
H13aii 2		No				
H13aii 3		No				
H14a 1	544.95136	Yes	322.1	51415856	3.6	146089
H14a 2	544.95136	Yes	240.6	37319632	5	147000
H14a 3	544.9516	Yes	721.5	131967392	6.3	145440
H14bi 1	544.95171	Yes	93.3	15086237	1.7	148477
H14bi 2	544.95159	Yes	141.6	21780156	3.3	147004
H14bi 3		No				
V1a 1	544.9515	Yes	95.4	14672339	0.7	146926
V1a 2	544.95142	Yes	96.6	13629429	2.2	142678
V1a 3	544.95142	Yes	95.5	13656124	2.9	148996
B1a 1	544.95153	Yes	12.8	2619118	0.5	159639
B1a 2	544.95155	Yes	24.9	3908161	1.3	150366
B1a 3	544.95125	Yes	58.9	7931436	1.9	150264
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				

Table 59.	Summary	of signal	at <i>m/z</i> 547
-----------	---------	-----------	-------------------

Calculated m/z	547.33153					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	547.33010	Yes	5.1	1028032	0.3	151431
Y1a 2		No				
Y1a 3	547.33145	Yes	6.9	1288700	0.4	166608
Original Heslington		No				
H1a 1		No				
H1a 2		No				
H1a 3		No				
H1b 1		No				
H1b 2		No				
H1b 3		No				
HZa 1		NO				
HZa Z		NO				
HZa 3		NO				
H3a 1	F 47 221CF	NO	47	000000	0.2	152508
H2a 2	547.55105	No	4.7	962505	0.2	155596
		No				
H4a 1		No				
H4a 3		No				
H5a 1		No				
H5a 2		No				
H5a 3		No				
H6a 1	547 33217	Yes	14.3	2225132	03	151300
H6a 2	547.33217	Vos	22.0	3192310	0.5	1/15583
H6a 3	547 33226	Yes	20.4	3074150	0.4	157230
H7a 1	547.55220	No	20.4	3074130	0.5	137230
H7a 2		No				
H7a 3		No				
H8a 1		No				
H8a 2		No				
H8a 3		No				
H9a 1		No				
H9a 2		No				
H9a 3		No				
H10a 1		No				
H10a 2		No				
H10a 3		No				
H11a 1		No				
H11a 2		No				
H11a 3		No				
H12a 1	547.33267	Yes	7.1	1416270	0.3	163035
H12a 2		No				
H12a 3	547.33322	Yes	8.7	1674021	0.4	111986
H13aii 1		No				
H13aii 2		No				
H13aii 3		No				
H14a 1	547.33107	Yes	28.3	4804970	0.3	160/30
H14a 2	547.33115	Yes	31.7	5189595	0.7	149429
H14a 3	547.33131	Yes	34.9	6696388	0.3	150725
H14DI 1	547.33153	Yes	186.0	29765016	3.3	146472
H1401 Z	547.33142	Yes	151.3	23249702	3.0	140280
V121	547.55155	No	131.4	27094218	0.5	142704
V1a 2		No				
V1a 3		No				
B1a 1		No				
B1a 2		No				
B1a 3		No				
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No		1	1	

Table 60. Summary of signal at m/z 563

Calculated m/z	563.32646					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	563.32658	Yes	5.8	1147511	0.4	158306
Y1a 2		No				
Y1a 3	563.32703	Yes	7.1	1347433	0.4	130798
Original Heslington		No				
H1a 1		No				
H1a 2		No				
H1a 3		No				
H1b 1		No				
H1b 2	563.32532	Yes	4.8	901693	0.2	144247
H1b 3		No				
H2a 1	563.32581	Yes	9.0	1599578	0.3	145335
H2a 2		No				
H2a 3		No				
H3a 1		No				
H3a 2	563.32644	Yes	22.8	3664814	0.6	134011
H3a 3	563 32641	Yes	6.5	1141200	0.2	129815
H4a 1	500102011	No	0.0	1111200	0.2	120010
H4a 2	563 32766	Vec	86	180711/	0.2	136357
H4a 3	563 32660	Yes	8.6	1730722	0.2	15/1575
H5a 1	563 22500	Voc	5.0	803934	0.2	199556
H5a 2	505.52590	No	5.2	092024	0.5	100000
HEn 2	562 22646	Voc	0.1	1502200	0.2	124747
	503.32616	Ne	9.4	1593299	0.2	134/4/
	FC2 22570	NO	2.0	FCODOF		250726
	503.325/0	Ne	2.0	569335	0.1	259736
H6a 3		No				
H7a 1	563.32596	Yes	6.1	1096926	0.3	205366
H7a 2	563.32677	Yes	8.5	1498567	0.2	128398
H7a 3	563.32599	Yes	9.5	1557316	0.2	138507
H8a 1	563.32650	Yes	30.0	4906865	0.8	144143
H8a 2	563.32650	Yes	19.6	3010635	0.7	137032
H8a 3	563.32701	Yes	28.5	4131415	0.8	81411
H9a 1		No				
H9a 2		No				
H9a 3		No				
H10a 1		No				
H10a 2	563.32623	Yes	11.7	1722130	0.9	157059
H10a 3	563.32636	Yes	23.7	3759657	1.0	132756
H11a 1	563.32724	Yes	5.1	1005840	0.4	116209
H11a 2		No				
H11a 3		No				
H12a 1	563.32747	Yes	10.4	1988288	0.4	116216
H12a 2	563.32736	Yes	6.1	1305675	0.3	122134
H12a 3	563.32766	Yes	7.0	1452866	0.4	130463
H13aii 1	563.32846	Yes	8.0	1547457	0.4	85006
H13aii 2	563.32721	Yes	6.4	1238477	0.3	101428
H13aii 3		No				
H14a 1	563.32555	Yes	8.8	1776410	0.1	176285
H14a 2	563.32661	Yes	11.5	2154190	0.3	123926
H14a 3	563.32576	Yes	16.0	3390225	0.2	152922
H14bi 1	563.32646	Yes	158.1	26167880	2.9	138558
H14bi 2	563.32630	Yes	86.4	13793081	2.1	141902
H14bi 3	563.32655	Yes	85.5	16479149	0.3	140704
V1a 1		No				
V1a 2		No				
V1a 3		No				
B1a 1	563.32677	Yes	6.5	1560484	0.3	170747
B1a 2	563.32666	Yes	5.6	1146761	0.4	159393
B1a 3		No				
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				

Calculated m/z	564.14495					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1		No				
Y1a 2		No				
Y1a 3		No				
Original Heslington		No				
H1a 1		No				
H1a 2		No				
H1a 3		No				
H1b 1		No				
H1b 2		No				
H1b 3	564.14476	Yes	6.6	1121938	0.3	153068
H2a 1	564.14496	Yes	606.0	76517744	14.2	140815
H2a 2	564.14505	Yes	204.0	30255750	9.1	142368
H2a 3	564.14508	Yes	403.6	48057812	13.5	140641
H3a 1	564.14541	Yes	128.4	18702668	3.4	140129
H3a 2	564.14552	Yes	240.3	35567364	5.8	141350
H3a 3	564.14526	Yes	167.9	221/0340	2.9	142081
H4a 1	564.14549	Yes	55.6	9815905	0.6	144552
H4a 2	564.14573	Yes	56.1	10003723	1.1	140737
п4а 3 UГа 1	504.14558	res	62.0	10521984	1.3	140797
L BCU		NO				
		NO				
H58 3	FC4 44521	NO	22.2	4007000		4 474 40
ньа 1	564.14531	res	32.8	4837683	0.7	14/148
ньа 2	564.14537	res	45.8	6476349	0.9	14/263
H6a 3	564.14528	Yes	45.3	6630120	0.7	144227
H/a 1	564.14487	Yes	4.5	888019	0.2	175299
H/a Z	564.14530	Yes	5.6	1093683	0.2	177549
H/a 3	564.14543	Yes	10.0	1035315	0.2	140610
H8a 1	564.14556	Yes	46.6	7454513	1.3	140610
Hoa 2	504.14508	Yes	30.2	5305143	1.2	138049
H0a 3	504.14545	No	34.9	4980132	1.0	13/990
	E64 14EE0	Noc	6.0	1266010	0.1	00070
	504.14550	Yes	0.0 E E	1200010	0.1	126227
	564.14585	Voc	204.7	1046765	7.2	1/0728
H10a 1 H10a 2	564.14542	Voc	209.5	258/3690	13.2	139/7/
H10a 3	564 14539	Yes	437.4	63876820	17.4	139934
H11a 1	564 14596	Yes	98.5	13818729	6.0	140347
H11a 2	564 14577	Yes	45.6	6775279	0.0	137577
H11a 3	564 14535	Yes	30.7	3759265	2.9	144380
H12a 1	564.14593	Yes	223.5	36087664	8.0	140549
H12a 2	564.14589	Yes	148.6	24119972	4.9	141022
H12a 3	564.14591	Yes	208.6	34197988	8.5	139777
H13aii 1	564.14585	Yes	573.5	88004664	22.3	140895
H13aii 2	564.14585	Yes	574.7	83943168	21.6	139966
H13aii 3	564.14571	Yes	402.0	54066084	9.2	141434
H14a 1		No				
H14a 2		No				
H14a 3		No				
H14bi 1		No				
H14bi 2		No				
H14bi 3		No				
V1a 1		No				
V1a 2		No				
V1a 3		No				
B1a 1	564.14581	Yes	36.8	7219441	1.4	138575
B1a 2	564.14555	Yes	29.3	4684682	1.5	147466
B1a 3	564.14519	Yes	20.8	3059296	0.7	143349
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3	1	No	1	1	1	1

Table 61. Summary of signal at m/z 564

Calculated m/z	569.43305					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	569.43264	Yes	31.1	4876424	1.6	175216
Y1a 2	569.43263	Yes	45.4	6658016	2.4	153450
Y1a 3	569.43285	Yes	44.2	6841952	2	155564
Original Heslington		No				
H1a 1		No				
H1a 2	569.43211	Yes	12.1	1813734	0.5	211538
H1a 3		No				
H1b 1		No				
H1b 2		No				
H1b 3	569.43492	Yes	64.6	8427930	2	142697
H2a 1	569.43473	Yes	33	4457626	0.8	135899
H2a 2	569.43488	Yes	144.6	21552302	6.5	137867
H2a 3		No				
H3a 1		No				
H3a 2		No				
H3a 3		No				
H4a 1		No				
H4a 2		No				
H4a 3		No				
H5a 1		No				
H5a 2		No				
H5a 3		No				
H6a 1		No				
H6a 2		No				
H6a 3	569.43498	Yes	16.8	2651137	0.3	146328
H7a 1	569.43243	Yes	41.2	5752676	1.4	164501
H7a 2	569.43217	Yes	17.4	2761644	0.4	181957
H7a 3	569.43215	Yes	28.4	4104032	0.6	174650
H8a 1		No				
H8a 2		No				
H8a 3		No				
H9a 1		No				
H9a 2		No				
H9a 3		No				
H10a 1		No				
H10a 2		No				
H10a 3		No				
H11a 1		No				
H11a 2		No				
H11a 3		No				
H12a 1		No				
H12a 2		No				
H12a 3		No				
H13aii 1	569.43313	Yes	6.1	1264545	0.3	143861
H13aii 2	569.43238	Yes	4.8	943275	0.2	219659
H13aii 3		No				
H14a 1	569.43284	Yes	670.9	110471344	7.8	146835
H14a 2	569.433	Yes	550	87443544	11.7	139066
H14a 3	569.43309	Yes	651.8	124420280	6	147843
H14bi 1	569.43255	Yes	14.2	2668350	0.3	189665
H14bi 2	569.43217	Yes	15.4	2722050	0.4	190137
H14bi 3		No				
V1a 1	569.43305	Yes	446.5	70081832	3.2	139853
V1a 2	569.43304	Yes	536.3	77024264	12.2	139655
V1a 3	569.43297	Yes	386.2	56109232	12	139303
B1a 1	569.43286	Yes	65	12428485	2.4	165708
B1a 2	569.43289	Yes	57.3	8857013	2.9	155407
B19 3	569.43258	Yes	50.6	/011653	1.6	152292
DHB 1		NO				
DHB Z		NO				
DHB 3	FC0 1015-	NO		400000		450.055
Soil 3a 1	569.43407	Yes	20.5	4205710	0.5	153479
Soil 3a Z	569.43494	Yes	4.3	1120690	0.1	157629
5011 3a 3	569.43403	res	6	14/4274	0.3	147743
5011 30 1	569.43467	res	12.3	24/4166	0.3	153480
		NO No				
SOII 3D 3	FC0 42055	NO	-	4567467		100050
Solvent 1	569.42859	res	6	156/107	0	120056
Solvent 2	569.42888	res	4.7	1341949	0.2	144068
jouvent 3	09.4340/	162	20.5	4205/10	0.5	153479

Calculated m/z	591.169					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1		No				
Y1a 2		No				
Y1a 3		No				
Original Heslington		No				
H1a 1		No				
H1a 2		No				
H1a 3		No				
H1b 1		No				
H1b 2		No				
H1h 3		No				
H2a 1	591 16841	Yes	244.7	31395072	5.8	132993
H2a 2	591 16847	Yes	95.9	14415247	4.4	132546
H2a 3	591 16852	Yes	166.4	20264962	5.7	132340
H3a 1	591 16889	Yes	129.2	18805350	3.4	134128
H3a 2	591 1689/	Vos	144.2	21/75952	3.4	131519
H22 2	501 16971	Vos	90.2	12100422	1.6	121067
H/a 1	501 16800	Vos	577.9	08062216	5.9	122752
H4a 2	501 16076	Ves	010 6	162249794	19.6	122025
H4a 3	501 16000	Ves	919.0	1/6122056	17.0	122440
H5a 1	501 16027	Vos	16.9	2272520	17.0	1/1672
H5a 2	501 160/1	Ves	25.2	3470292	1.2	151024
HEn 2	501 16020	Voc	25.2	6497745	1.1	1251224
HGo 1	501 16003	Voc	44.9	62795704	0.7	135129
	221.10003	Voc	456.9	62421726	8.6	132206
	221.10001	Voc	458.4	68086376	8.5	121725
	291.10000	Voc	484.3	041055	7.2	147004
	591.1/000	Voc	4.7	941055	0.2	115022
	591.16913	Yes	7.9	1442489	0.2	115023
H/a 3	591.16882	Yes	5.4	1040241	0.2	150992
H0a 1	591.16892	Yes	818.7	125411120	21.0	132818
Hoa 2	591.16911	Yes	491.5	68/301/6	15.9	130735
H8a 3	591.16880	Yes	472.9	64117652	12.4	132939
H9a 1	591.16896	Yes	110.3	1/383/30	2.2	131784
H9a Z	591.16893	Yes	189.6	30025640	3.5	132816
H9a 3	591.16870	Yes	26.6	3912554	0.9	137603
H10a 1	591.16889	Yes	393.2	55303488	9.3	133251
H10a 2	591.168/7	Yes	522.4	164561568	33.0	130912
	591.10005	Yes	202.2	122600448	54.0	132400
	591.10952	Yes	425.6	62004676	54.0 8.2	121462
	591.10924	Yes	455.0	26059074	0.2	122160
H110 5	591.10002	Yes	671.2	102011020	20.0	121966
	591.10945	Yes	671.5 E70.1	02211569	24.2	121470
H12a 2	591.10944	Yes	570.1	92211500	10.7	131470
H12d 5	591.10940	Vec	704.6	107514992	20.7	132130
	591.16935	Yes	794.0	124609912	31.0	133029
	591.16936	Yes	/12.4	105708104	27.1	132442
	591.16921	Ne	494.0	67790608	11.5	132918
H14a 1		No				
1144 2		No				
114d 3		No				
H1461 1		No				
114012		No				
V12 1		No				
V1a 1		No				
V1a 3		No				
P1a 1	E01 16020	Noc	194 2	24262226	67	121002
	591.10929	Vec	104.2	1000204	0.7	131095
D1a 2	591.16896	Yes	111.5	10899394	5.5	132506
DLB 1	591.10853	Ne	05.2	8951317	2.1	129500
		No				
		No				
Soil 25 1		No				
Soil 2a 2		No				
Soil 2a 2		No				
Soil 26 1		No				
Soil 2b 2		No				
		No				
Solvent 1		No				
Solvent 1		No				
Solvent 2		No				
IJUIVEIIL 3		INU				

Table 63. Summary of signal at m/z 591

Table 64.	Summary	of signal	at <i>m/z</i> 622
-----------	---------	-----------	-------------------

Calculated m/z	622.517						
Sample designation +	Measured						
MALDI replicate no.	m/z	Present	S:N		Intensitv	Rel. Int. %	Resolution
Y1a 1	. 622.51721	Yes		1080.4	167955776	55.9	128233
Y1a 2	622,51698	Yes		1119.8	164598592	60.5	128467
Y1a 3	622,51712	Yes		1101 3	171901568	49.9	128759
Original Heslington	022.31/12	No		1101.3	171301300	45.5	120/39
		No	-				
		No					
HIA Z		NO					
H1a 3		No					
H1b 1		No					
H1b 2		No					
H1b 3		No					
H2a 1		No					
H2a 2	622.51504	Possibly		8.4	1557742	0.5	141194
H2a 3		No					
H3a 1		No					
H3a 2		No					
H3a 3		No					
H/a 1		No					
		No					
1140 2		No					
п4а 3	600 T 100	INO			100000		400.00
H5a 1	622.51668	Yes		6.6	1082230	0.6	189492
H5a 2	622.51646	Yes		8.0	1321222	0.4	162074
H5a 3	622.51636	Yes		14.4	2312618	0.3	142658
H6a 1		No					
H6a 2		No					
H6a 3		No	L				
H7a 1	622.51932	No		5.7	1092277	0.3	143706
H7a 2	622.51568	No		7.2	1373176	0.2	119506
H7a 3		No					
H8a 1		No					
100 1		No					
Под 2	622 51004	NU Deseileks		C 1	1125227	0.2	120015
H8a 3	622.51984	Possibly		6.1	1135327	0.2	130615
H9a 1		No					
H9a 2		No					
H9a 3		No					
H10a 1		No					
H10a 2		No					
H10a 3		No					
H11a 1		No					
H11a 2		No					
H11a 3		No					
H12a 1		No					
H12a 2		No					
L120 2	622 51042	Rossibly		11	1064920	0.2	144220
H12d 3	022.51942	POSSIDIY		4.4	1004950	0.5	144550
HI3all I		NO					
HIJAII Z	622.51916	Possibly		5.2	1104555	0.3	123316
H13aii 3		No	<u> </u>				
H14a 1		No					
H14a 2		No					
H14a 3		No					
H14bi 1	622.51720	Yes		9.5	1886734	0.2	170786
H14bi 2	622.51690	Yes		4.8	1080790	0.2	194101
H14bi 3		No					
V1a 1		No					
V1a 2	622.51975	Possibly		15.1	2602639	0.4	129462
V1a 3	622,51928	Possibly		7 1	1388996	0.3	120813
B1a 1	522.51520	No		7.1	1000000	0.5	120013
B1a 2		No					
P10 2		No					
5 610		INO NI					
DHR 1		NO					
DHB Z		NO					
DHB 3	622.51468	Possibly		5.5	993921	0.1	163769
Soil 3a 1	622.51686	Yes		12.5	2878020	0.4	144002
Soil 3a 2		No					
Soil 3a 3	622.51725	Yes		19.7	4214860	0.9	124802
Soil 3b 1	622.51654	Yes		6.6	1640875	0.2	143389
Soil 3b 2	622.51669	Yes		22.0	4749899	0.3	129617
Soil 3b 3		No					
Solvent 1	622 51601	Yes		60.2	13307652	0.4	122016
Solvent 2	622 51031	Ves		25.0	7720600	1.0	120510
Solvent 2	622.51/10	Voc		12.5	2070000	1.0	144002
Jouvent 5	022.31080	162		12.5	28/8020	0.4	144002

Table 65.	Summary	/ of signal	at <i>m/z</i> 629
-----------	---------	-------------	-------------------

Calculated m/z	629.86603					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	629.86633	Yes	35.0	5760173	1.9	134290
Y1a 2	629,86602	Yes	43.9	6758955	2.5	130047
Y1a 3	629 86612	Yes	55.7	9001892	2.6	131496
Original Heslington		No				
H1a 1		No				
H12 2	620 86608	Voc	2.4	746102	0.2	05212
110 2	029.80008	Ne	3.4	740192	0.2	95215
	620.005.00	NU	27.2	20705.00	0.5	121002
	029.80508	res	27.2	3978500	0.5	131803
H10 Z		NO				
H1b 3		NO				
HZa 1		No				
H2a 2		No				
H2a 3	629.86535	Yes	6.7	1111339	0.3	158642
H3a 1		No				
H3a 2	629.86614	Yes	26.7	4238130	0.7	127338
H3a 3	629.86577	Yes	44.0	6087236	0.8	129618
H4a 1		No				
H4a 2		No				
H4a 3		No				
H5a 1	629.86552	Yes	37.4	4761332	2.5	134903
H5a 2	629.86568	Yes	43.9	5891271	1.9	127945
H5a 3	629 86563	Yes	24.5	3720535	0.4	134921
H6a 1	629.86505	Yes	66.2	9556962	1.2	121555
H62 2	620 06500	Voc	101.1	14077520	1.3	131335
100 2	029.80596	Ves	101.1	10020021	1.9	120805
H6a 3	629.86601	Yes	75.9	10936821	1.2	128562
H/a1	629.86605	Yes	82.1	11530015	2.8	128478
H7a 2	629.86610	Yes	54.0	816/4/8	1.3	130/3/
H7a 3		No				
H8a 1		No				
H8a 2		No				
H8a 3	629.86622	Yes	9.0	1526780	0.3	132676
H9a 1	629.86600	Yes	19.2	3268006	0.4	131889
H9a 2	629.86595	Yes	8.3	1602963	0.2	138015
H9a 3	629.86588	Yes	24.8	3673080	0.8	121207
H10a 1		No				
H10a 2		No				
H10a 3		No				
H11a 1		No				
H11a 2		No				
H11a 3		No				
H12a 1		No				
H17a 7		No				
L120 2		No				
H12a3	620 96665	Voc	26 E	4591207	1.2	122227
H13all 1	029.80005	Yes	20.5	4561207	1.2	155257
	629.80050	Yes	8.3	1578851	0.4	104583
H13aii 3	629.86629	Yes	15.4	2460513	0.4	146380
H14a 1	629.86603	res	339.9	56399184	4.0	126522
H14a Z	629.86607	Yes	134.0	21434662	2.9	127796
H14a 3	629.86626	Yes	458.0	87797424	4.2	126171
H14bi 1	629.86654	Yes	64.4	10781896	1.2	127157
H14bi 2	629.86637	Yes	85.4	13422087	2.1	130159
H14bi 3		No				
V1a 1	629.86623	Yes	65.7	10866587	0.5	128334
V1a 2	629.86614	Yes	88.0	13606567	2.2	123886
V1a 3	629.86601	Yes	99.6	15228116	3.2	127239
B1a 1	629.86642	Yes	113.3	20845060	4.1	126887
B1a 2	629.86610	Yes	54.4	8383911	2.7	130492
B1a 3	629.86578	Yes	79.1	10788137	2.5	130291
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No	1		1	
Soil 3a 2	629,86879	Possibly	73	1788707	0.2	111769
Soil 3a 3		No		2.00.07	0.2	
Soil 3b 1	629 86819	Possibly	5.4	1405950	0.2	137861
Soil 3b 2	020.00019	No	5.4	1405550	0.2	13/001
Soil 3h 3	629 86470	Possibly	5.5	1/0/020	0.2	1/2606
Solvent 1	020.00479	No	5.5	1404009	0.5	1-3000
Solvent 2		No				
Solvent 3		No				
	1			1		

Table 66. Summary of signal at m/z 640

Calculated m/z	640.61474					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	640.6148	Yes	8.6	1684479	0.6	153314
Y1a 2		No				
Y1a 3		No				
Original Heslington		No				
H1a 1	640.61474	Yes	436.3	64501928	6.5	130878
H1a 2	640 61465	Yes	13.2	2041459	0.5	129211
H1a 3	040.01405	No	15.2	2041433	0.5	125211
L16 1	640 61415	Voc	1/1 9	2214440	0.2	146520
110 1	640.61413	Voc	14.0	5026727	0.3	121970
110 2	640.61441	Yes	42.9	2771244	1.5	131870
H10 3	640.61447	Yes	19	2771344	0.7	139290
HZa 1		NO				
HZa Z	640.61423	Yes	45.4	/025/42	2.1	132785
H2a 3		No				
H3a 1	640.6148	Yes	95.4	13952800	2.5	133997
H3a 2	640.61495	Yes	30.3	4769589	0.8	136277
H3a 3	640.61456	Yes	50.7	6973349	0.9	133270
H4a 1		No				
H4a 2		No				
H4a 3		No				
H5a 1	640.61424	Yes	8.7	1336928	0.7	147586
H5a 2		No				
H5a 3	640.61387	Yes	7.1	1304560	0.1	126249
H6a 1	640 61453	Yes	15.6	2491423	03	139528
H6a 2	0 10101 100	No	10.0	2102120	0.0	100020
H6a 3	640 61475	Ves	40.1	5933782	0.6	129579
108 5	640.61464	Voc	40.1	2715716	0.0	123373
H7a 1	040.01404	Ne	17.5	2/15/10	0.7	15//10
n/a 2	C 40 C 4 470	NO	20.4	20000.42	0.5	4.40004
H/a 3	640.61478	Yes	20.1	3099943	0.5	148221
H8a 1		No				
H8a 2		No				
H8a 3	640.6146	Yes	8.5	1460387	0.3	141992
H9a 1		No				
H9a 2	640.61481	Yes	156.7	24402192	2.8	129757
H9a 3	640.61455	Yes	40	5744328	1.3	129523
H10a 1		No				
H10a 2	640.61445	Yes	11.1	1680602	0.9	154434
H10a 3	640.61445	Yes	6.5	1267390	0.3	166742
H11a 1		No				
H11a 2		No				
H11a 3		No				
H12a 1	640.61542	Yes	17.8	3266801	0.7	138743
H12a 2	640.61559	Yes	8.5	1720507	0.3	161888
H12a 3	640 61542	Yes	9.5	1928023	0.5	154998
H13aii 1	640 61555	Yes	13.6	2532585	0.6	141404
H13aii 2	040.01555	No	15.0	2552505	0.0	141404
L12011 2	640 61525	Voc	02.1	12202915	22	1212/2
	640.61470	Voc	33.1	2002652	2.3	146949
H142 2	640.014/9	Voc	10.0	8049252	0.2	1240048
1140 2	040.01487	No	49	0048352	1.1	154013
114d 5	640 64527	Noc	02.4	12677020	4.5	121400
	040.0153/	Vec	82.4	130//028	1.5	131468
H1401 2	640.61529	Yes	29.7	4877488	0.7	139792
H14bi 3		NO				100100
V1a 1	640.61502	Yes	14.4	2651385	0.1	133192
V1a 2		No				
V1a 3	640.61503	Yes	38.6	6145556	1.3	131648
B1a 1		No				
B1a 2	640.61474	Yes	78.8	11962818	3.9	130064
B1a 3	640.6146	Yes	7.9	1350762	0.3	132211
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	640.6167	Possibly	8.4	2085042	0.3	154194
Soil 3a 2	640.61707	Possibly	22.7	4889158	0.5	130113
Soil 3a 3	640,61707	Possibly	19.9	4297140	0.9	128340
Soil 3b 1	640,61724	Possibly	86.7	17537028	2 3	124292
Soil 3b 2	640 61663	Possibly	50.3	10535977	0.6	133883
Soil 3h 3	0-0.01003	No	50.5	10555577	0.0	10000
Solvent 1	640 64655	Dossibly	27	0200572		120040
Solvent 1	040.01055	Dessibly	3/	03005/3	0.2	126640
Solvent 2	040.0108	POSSIDIY	47.6	10482499	1.3	125004
Solvent 3	640.6167	Possibly	8.4	2085042	0.3	154194

Calculated m/z	753.588					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	753.58778	Yes	805.7	138793088	46.2	105833
Y1a 2	753.58757	Yes	904.5	145378432	53.4	106049
Y1a 3	753.58776	Yes	918.3	158324240	45.9	106455
Original Heslington		No				
H1a 1	753.58757	Yes	90.2	13549418	1.4	107181
H1a 2	753,58738	Yes	558.3	78220824	19.6	105566
H1a 3	753,58740	Yes	160.7	21380882	3.2	107773
H1b 1	753.58725	Yes	53.7	7993408	0.9	106700
H1b 2	753 58719	Yes	153.2	21394932	5.6	105059
H1b 3	753 58706	Yes	103.3	14387553	3.4	107114
H2a 1	753 58702	Yes	230.1	30997508	5.7	105445
H2a 2	753 58700	Yes	316.2	47000348	14.2	105761
H2a 3	753 58734	Vos	307.1	39809972	11.2	106059
H3a 1	753.58763	Vos	39.6	5953769	1 1	104782
H20 2	752 59791	Vos	102.7	15/22182	2.5	107945
H20 2	752 59750	Vos	72 /	10110416	1.2	107543
	752 59774	Vos	214.0	269/9599	2.3	107012
H/a 2	753 50007	Ves	1225.0	238305280	2.2	105697
H/a 3	753 50706	Ves	617.4	110512000	12.2	105087
	752 50700	Voc	517.4	7099621	13.3	112450
	752 50720	Voc	54.4	0255107	3./	107592
	753.58/29	Voc	07.8	4091211	3.1	10/582
	753.58698	Vec	32.5	4981311	0.6	109912
	/53.58/65	Yes	774.3	72564064	14.9	105904
	/53.58/64	Yes	528.0	73561064	10.0	106299
117-1	753.58/63	Yes	497.9	70247680	7.5	112552
H/a 1	753.58763	Yes	38.6	5974281	1.5	113553
H/a Z	753.58763	Yes	32.3	5350769	0.8	111383
H/a 3	753.58784	Yes	30.7	4843951	0.7	109190
H8a 1	753.58784	Yes	108.3	16/39922	2.9	107566
поа 2 119- 2		Yes	80.2 102.9	12820037	3.0	100085
H8a 3	753.58750	Yes	103.8	14634922	2.8	106768
H9a 1	753.58767	Yes	186.7	27759012	3.4	106288
H9a Z	753.58772	Yes	165.3	24640104	2.8	106629
H9a 3	753.58734	Yes	257.1	35654232	7.9	106114
H10a 1	753.58742	Yes	27.1	4205108	0.7	106129
H10a 2	753.58712	Yes	10.4	1623582	0.8	108046
H10a 3	753.58778	Yes	32.8	5069289	1.4	109972
H11a 1	753.58830	Yes	1095.9	16/9921/6	/3.4	105784
H11a Z	753.58832	Yes	410.9	04320270	8.4	105911
H11a 3		Yes	407.6	49574784	38.1	105897
H12a 1		Yes	1245.2	210274880	40.8	105944
H12a 2	753.58852	Yes	1335.0	220507440	44.8	105619
H12a 3	753.58847	Yes	1484.1	253942072	03.1	106059
	753.58846	Yes	/50.0	129733888	32.9	106310
H13aii 2	753.58835	Yes	434.1	69507696	17.8	105965
H13aii 3	/53.58821	Yes	665.0	99697320	16.9	106137
H14a 1		NO				
H14a 2		No				
п14d 3 U14bi 1		No				
		No				
H1401 Z		No				
H1401 3		No				
V1a 1	752 50705	NO	12.4	2444270	0.4	121050
V1a 2	753.58795	Yes	12.4	2411378	0.4	121059
V1a 3	753.58747	Yes	8.2	1052947	0.4	114403
D1a 1	753.58818	Yes	100.0	11220290	2.2	107230
D1a 2		Yes	100.6	12242520	4.9	107495
D10 3	/53.58/38	Ne	89.9	12242539	2.9	107599
		No				
		No				
Soil 25 1		No				
		No				
		No				
Soil 36 3		No				
		NO				
5011 310 2		NO				
Soil 3b 3		NO				
Solvent 1		NO				
Solvent 2		NO				
Solvent 3		NO				

Table 67. Summary of signal at m/z 753

Calculated m/z 769.561 Sample designation + Measured MALDI replicate no m/z Present S:N Intensity Rel. Int. % Resolution Y1a 1 769.56191 Yes 1295.2 222809984 74.3 103772 769.56167 Yes Y1a 2 1214.0 194787632 71.5 104049 769.56187 Yes 103891 Y1a 3 1311.8 225905760 65.6 **Original Heslington** 769.56116 Yes 22.1 24 6453 3005843 H1a 1 769.56190 Yes 13.2 2242194 0. 99785 H1a 2 769.56148 Yes 114.0 16177983 4.1 104579 H1a 3 769.56134 Yes 2672188 122225 18.0 0.4 769.56127 Yes 27.3 4230631 H1b 1 0.5 102174 769.56133 Yes H1b 2 26.8 4005281 10 99729 H1b 3 769.56136 Yes 28.8 4239769 104063 1.0 H2a 1 769.56088 Yes 41.5 5849720 104336 1.1 H2a 2 769.56125 Yes 33.8 5290571 99263 1.6 769.56113 Yes 8680315 103069 H2a 3 64.9 2.4 H3a 1 769.56190 Yes 11.4 1942237 0.4 112290 H3a 2 769.56194 Yes 40.5 6305398 1.0 101906 H3a 3 769.56154 Yes 107767 32.7 4687603 0.6 H4a 1 769.56198 Yes 164.9 28443070 1.7 103571 H4a 2 25647918 102180 769.56221 Yes 129.7 2.9 H4a 3 769.56204 Yes 220.4 39844232 4.8 103090 H5a 1 769.56107 Yes 54.6 7177302 3.8 100818 H5a 2 769.56136 Yes 10327635 103198 74.4 3.4 H5a 3 769.56114 Yes 7999048 107933 53. 0.9 702.6 100625016 H6a 1 769.56174 Yes 13.6 103675 H6a 2 769.56172 Yes 702.6 97954016 13.3 103670 H6a 3 769.56175 Yes 103944 693.1 97678272 10.4 H7a 1 769.56167 Yes 33.8 5299575 1.3 106921 H7a 2 769.56181 Yes 4210080 107641 24.9 0.7 H7a 3 769.56102 Yes 7.6 1452542 0.2 107260 H8a 1 769.56188 Yes 34.0 5499229 0.9 104876 H8a 2 769.56217 Yes 4540595 10509 28.9 1.1 H8a 3 769.56155 Yes 4579930 101981 30.8 0.9 H9a 1 769.56182 Yes 156.4 23303694 2.9 103284 H9a 2 769.56200 Yes 69.3 10521153 1.2 105083 H9a 3 769.56140 Yes 223.7 31270500 103966 6.9 H10a 1 No H10a 2 No 769.56311 Yes H10a 3 133503 1059364 H11a 1 769.56241 Yes 447.1 68850256 30.1 102781 H11a 2 769.56240 Yes 279.2 43439776 5.7 104250 H11a 3 769.56183 Yes 130.1 16099622 12.4 106077 H12a 1 769.56272 Yes 426.7 71706432 16.0 103461 H12a 2 769.56272 Yes 327.3 53943316 11.0 103145 106097096 H12a 3 769.56265 Yes 623.7 26.4 103430 H13aii 1 769.56257 Yes 1224.7 210928064 53.4 104070 H13aii 2 769.56250 Yes 116528360 103279 729.5 29.9 103469 H13aii 3 769.56226 Yes 852.5 127748936 21.7 H14a 1 No H14a 2 No H14a 3 No H14bi 1 Yes H14bi 2 No H14bi 3 No V1a 1 769.56196 Yes 19.3 3601324 95494 4088476 V1a 2 769.56186 Yes 22.4 0.6 96613 V1a 3 769.56197 Yes 107749 3328082 18.7 0. 106 1 18520260 105594 B1a 1 769 56230 Yes 36 B1a 2 769.56186 Yes 128.4 19269426 6.3 102455 B1a 3 769.56139 Yes 80.8 11098002 102177 2.6 DHB 1 No DHB 2 No DHB 3 No Soil 3a 1 No Soil 3a 2 No

No

No

No

Yes

No

No

No

769.56132

Soil 3a 3

Soil 3b 1

Soil 3b 2

Soil 3b 3

Solvent 1

Solvent 2

Solvent 3

Table 68. Summary of signal at *m/z* 769

0.7

120132

3872421

Calculated m/z	815.698					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	815.69986	Yes	197.5	34256788	11.4	94826
Y1a 2	815.69955	Yes	170.6	27612170	10.1	94695
Y1a 3	815.69977	Yes	193.3	33572144	9.7	95124
Original Heslington	815.69948	Yes	10.1	1540566	1.2	73052
H1a 1	815.69964	Yes	200.7	29250796	2.9	97278
H1a 2	815.69934	Yes	217.6	30386918	7.6	95560
H1a 3	815.69916	Yes	154.4	20631994	3.1	96984
H1b 1		No				
H10 2	815.69906	Yes	113.1	15925629	4.1	94011
H10 3	815.69895	Yes	116.8	16269584	3.8	97291
HZa 1	815.69879	Yes	401.0	33771760	10.0	97115
H2a 2	815.09898	Yes	128.0	16066596	10.0	95514
H2a 3	815.09924	Voc	25.1	5201282	4.8	97001
H3a 7	815.09998	Voc	45.1	7035405	1.0	93824
H3a 3	815 70016	Yes	12.6	2008788	0.3	108467
H4a 1	815 69988	Yes	934.2	159038400	93	95105
H4a 2	815,70020	Yes	691.4	136369200	15.6	93751
H4a 3	815.69994	Yes	674.4	122372352	14.8	94300
H5a 1	815.69903	Yes	65.3	8688625	4.6	96489
H5a 2	815.69914	Yes	99.2	13921444	4.6	97452
H5a 3	815.69901	Yes	104.6	15618298	1.8	97363
H6a 1	815.69967	Yes	144.1	20975384	2.8	93532
H6a 2	815.69960	Yes	140.6	19935904	2.7	92417
H6a 3	815.69964	Yes	180.4	25675590	2.7	93674
H7a 1	815.70006	Yes	17.4	2930005	0.7	100597
H7a 2	815.69965	Yes	23.1	3938428	0.6	101708
H7a 3	815.70028	Yes	13.4	2325344	0.3	98042
H8a 1	815.69986	Yes	84.0	13179053	2.3	96039
H8a 2	815.70032	Yes	84.1	12706084	2.9	93444
H8a 3	815.69943	Yes	70.5	10141548	2.0	95079
H9a 1	815.69986	Yes	87.7	13212759	1.6	90995
H9a 2	815.69988	Yes	208.0	30873514	3.6	94961
H9a 3	815.69941	Yes	45.2	6664728	1.5	99414
H10a 1	815.69924	Yes	11.1	1969166	0.3	105517
H10a 2	815.69927	Yes	8.9	1461140	0.7	120942
H10a 3	815.69966	Yes	58.9	8922300	2.4	9/338
	815.70034	Yes	410.7	42172506	28.2	02246
	815.70041	Voc	127.5	42175590	12 2	92240
H12a 1	815.00004	Yes	524.2	86491656	12.3	92470
H12a 2	815,70071	Yes	551.7	89306696	18.2	93295
H12a 3	815.70062	Yes	375.7	62982488	15.7	91704
H13aii 1	815.70045	Yes	288.5	49608904	12.6	87735
H13aii 2	815.70047	Yes	203.4	32704778	8.4	85975
H13aii 3	815.70015	Yes	158.1	23972936	4.1	88603
H14a 1		No				
H14a 2		No				
H14a 3		No				
H14bi 1		No				
H14bi 2		No				
H14bi 3		No				
V1a 1	815./002/	Yes	27.7	5019660	0.2	96400
V1a 2	815.70003	Yes	33.5	595/636	0.9	9//3/
V1a 3	815.09982	Yes	30.2	10071210	1.1	94102
B1a 1	815.70000	Voc	26.6	590/119	2.1	97002
B1a 3	815 69939	Yes	24.6	3642149	0.9	102705
DHB 1	015.05555	No	24.0	3042143	0.5	102703
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1	İ	No			İ	
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3	1	No			1	

Coloulated m/r	925 666						
	835.000		r –				
Sample designation +	Measured	_					
MALDI replicate no.	m/z	Present	S:N		Intensity	Rel. Int. %	Resolution
Y1a 1	835.66623	Yes		314.9	54378100	18.1	95593
Y1a 2	835.66596	Yes		338	54288384	19.9	95116
Y1a 3	835.66616	Yes		366.2	63237160	18.4	95569
Original Heslington		No					
	925 66622	Voc		26.0	ECOEQOE	0.6	06643
	835.00025	Tes		50.9	5005825	0.0	90043
H1a Z	835.66571	Yes		140.8	19708226	4.9	94963
H1a 3	835.66542	Yes		42.7	5943936	0.9	97588
H1b 1	835.66576	Yes		32.6	5018995	0.6	95438
H1b 2	835.66531	Yes		61.8	8864284	2.3	97676
H1b 3	835.66527	Yes		59.5	8459346	2	96643
H2a 1	835 66509	Yes		86	11782574	22	97244
H20 2	925 66520	Voc		120.2	20102506	6.1	07710
1120 2	835.00525	Tes Nee		110.2	20193590	0.1	97710
HZa 3	835.66551	Yes		110.6	147/1681	4.2	97666
H3a 1		No					
H3a 2	835.66705	Yes		8.6	1619980	0.3	102985
H3a 3		No					
H4a 1	835.66637	Yes		127.1	21918690	1.3	98220
H4a 2	835 66675	Voc		93/1 0	18/96798/	21.1	95983
1140 2	835.00075	Vec		534.0	02050776	11.2	06210
H4a 3	835.66640	Yes		514.8	93959776	11.3	96310
H5a 1	835.66515	Yes		27.9	3926519	2.1	97581
H5a 2	835.66560	Yes		44.8	6520961	2.1	98616
H5a 3	835.66512	Yes		23.4	3769640	0.4	104083
H6a 1	835.66601	Yes		370.9	53580880	7.2	95552
H6a 2	835 66600	Voc		229.8	32440302	1.1	96070
1100 2	835.00000	Vec		223.0	20272502		00070
Ньа з	835.66604	Yes		213.8	30372508	3.2	96576
H7a 1	835.66650	Yes		12.5	2214349	0.5	103031
H7a 2	835.66588	Yes		11.2	2090992	0.3	106919
H7a 3	835.66670	Yes		9.6	1769096	0.3	100489
H8a 1	835.66602	Yes		97.0	15202560	2.6	97024
H8a 2	835 66658	Yes		76.9	11695727	27	95582
192 2	835 66606	Voc		01.9	12162577	2.5	96274
	835.00000	165		91.0	13102377	2.5	90274
H9a I	835.66626	Yes		141.8	21155372	2.6	96775
H9a 2	835.66615	Yes		107.0	16042073	1.9	96650
H9a 3	835.66565	Yes		81.0	11764275	2.6	96247
H10a 1	835.66644	Yes		26.1	4227808	0.7	99995
H10a 2	835.66573	Yes		9.6	1561807	0.8	119537
H10a 3	835 66628	Yes		32.9	5153113	14	110067
H1121	825 66685	Voc		917.1	126272656	55.2	04052
	835.00085	Tes		017.1	1202/3030	55.2	94932
HIIa Z	835.66675	Yes		297.5	4/1244/2	6.2	95445
H11a 3	835.66600	Yes		254.5	316/0468	24.3	95769
H12a 1	835.66714	Yes		344.8	56462560	12.6	95477
H12a 2	835.66714	Yes		342.6	55135736	11.2	94523
H12a 3	835.66705	Yes		396.8	65895404	16.4	95643
H13aii 1	835 66697	Yes		259.2	44430600	11 3	95803
	825 66601	Voc		142.7	22022540	5.0	96284
	835.00091	Tes Nee		200.4	23033340	5.5	90284
H13all 3	835.00058	Yes		208.4	31506474	5.3	95178
H14a 1		No					
H14a 2		No					
H14a 3		No					
H14bi 1		No					
H14bi 2		No					
		No					
		No					
VIaI		INO					
V1a 2	835.6662	Yes		7.4	1596818	0.3	116427
V1a 3		No					
B1a 1	835.66608	Yes		13.5	2704777	0.5	100735
B1a 2	835.66547	Yes		7	1397958	0.5	105472
B1a 3	835 66686	Yes		45	939450	0.2	151921
	000000	No		4.5	555455	0.2	131321
DHR 2		NO					
DHB 3		No					
Soil 3a 1		No					
Soil 3a 2		No					
Soil 3a 3		No					
Soil 3h 1		No					
		No					
5011 50 2		NU					
Soil 3b 3		No					
Solvent 1		No					
Solvent 2		No					
Solvent 3		No					

Table 70. Summary of signal at m/z 835

Table 71.	Summary	of signal	at	m/z	836
-----------	---------	-----------	----	-----	-----

Calculated m/z	836.658					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	836.65883	Yes	117.2	20470886	6.8	80241
Y1a 2	836.65835	Yes	107.8	17560274	6.5	87762
Y1a 3	836.65860	Yes	117.7	20577296	6.0	90041
Original Heslington		No				
H1a 1	836.65819	Yes	51.8	7739227	0.8	96226
H1a 2	836.65816	Yes	93.8	13246263	3.3	89378
H1a 3	836.65793	Yes	98.6	13311500	2.0	94718
H1b 1	836.65765	Yes	169.4	24661972	2.9	95203
H10 2	836.65781	Yes	262.0	36523932	9.5	94440
H10 3	836.65754	Yes	197.2	27276056	6.4	95756
HZa 1	830.05742	Yes	238.8	32150544	0.0	94912
H2a 2	030.03731	Yes	211.0	30778700	9.5	94700
H2a 3	830.03770	Vos	251.1	25955622	7.5	93808
H3a 7	836 65853	Voc	231.1	58273816	9.5	93808
H3a 3	836 65812	Yes	153.7	21059062	2.8	95264
H4a 1	836 65864	Yes	302.9	51719852	3.0	94059
H4a 2	836 65915	Yes	1239.2	245283968	28.0	93883
H4a 3	836.65873	Yes	551.6	100651888	12.1	92918
H5a 1	836.65759	Yes	288.7	37707780	19.8	95787
H5a 2	836.65773	Yes	353.3	49220212	16.2	95131
H5a 3	836.65762	Yes	233.4	34643400	4.0	94673
H6a 1	836.65846	Yes	213.1	30929132	4.2	90082
H6a 2	836.65845	Yes	136.1	19354982	2.6	88358
H6a 3	836.65833	Yes	130.9	18728980	2.0	92484
H7a 1	836.65827	Yes	213.4	32268320	7.9	93609
H7a 2	836.65834	Yes	193.2	30333858	4.8	95881
H7a 3	836.65818	Yes	318.3	47868100	7.1	94870
H8a 1	836.65844	Yes	430.5	66307916	11.4	94630
H8a 2	836.65872	Yes	313.4	46654640	10.8	92784
H8a 3	836.65821	Yes	304.1	42845520	8.3	93681
H9a 1	836.65848	Yes	183.4	27261892	3.4	92962
H9a 2	836.65848	Yes	226.2	33530986	3.9	94210
H9a 3	836.65809	Yes	114.1	16439404	3.6	93341
H10a 1	836.65833	Yes	817.8	122328568	20.5	95362
H10a 2	836.65779	Yes	383.9	50242784	25.7	94398
H10a 3	836.65832	Yes	852.5	125192024	34.0	95077
H11a 1	836.65932	Yes	293.0	45497636	19.9	78972
H11a 2	836.65920	Yes	116.6	186/9456	2.4	81551
H11a 3	830.05840	Yes	261.7	42020216	11.4	01709
L120 1	836.65949	Vos	201.7	42939210	3.0	80721
H12a 3	836 65952	Yes	240.7	36029580	9.0	89742
H13aii 1	836 65936	Yes	187.0	32154044	8.1	92284
H13aii 2	836 65928	Yes	146.6	23652990	61	90948
H13aii 3	836.65894	Yes	153.5	23292632	4.0	92381
H14a 1		No				
H14a 2		No				
H14a 3		No				
H14bi 1		No				
H14bi 2	836.65896	Yes	7.0	1392079	0.2	107317
H14bi 3		No				
V1a 1	836.65857	Yes	103.8	17821124	0.8	95778
V1a 2	836.65859	Yes	99.7	17069834	2.7	95318
V1a 3	836.65844	Yes	85.1	13864774	3.0	94546
B1a 1	836.65921	Yes	237.6	41409604	8.1	94559
B1a 2	836.65845	Yes	224.3	34072992	11.1	95409
B1a 3	836.65794	Yes	293.2	40186720	9.4	95655
DHB 1		No				
DHB 2		No				
DHB 3		NO				
Soil 3a 1		NO				
Soil 3a 2		NO				
Soil 38 3		NO				
Soil 30 1		No				
Soil 2b 2		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				
Calculated m/z	848.561					
----------------------	-----------	----------	-------	-----------	-------------	------------
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1		No				
Y1a 2		No				
Y1a 3		No				
Original Heslington		No				
H1a 1		No				
H1a 2		NO				
H1a 3	040 56452	NO	12.5	2427602	0.2	114520
H10 1	848.56153	Yes	12.5	212/682	0.2	114526
H1D 2	848 56202	Voc	7.4	12/2076	0.2	122571
H10 5 H2a 1	848.30203	No	7.4	1342370	0.5	122371
H2a 2		No				
H2a 3		No				
H3a 1		No				
H3a 2		No				
H3a 3		No				
H4a 1	848.56159	Yes	37.4	6686596	0.4	86851
H4a 2	848.56257	Yes	26.2	5577573	0.6	96742
H4a 3	848.56212	Yes	35.5	6861711	0.8	93090
H5a 1		No				
H5a 2		No				
H5a 3		No				
H6a 1	848.56178	Yes	62.6	9337389	1.3	92689
H6a 2	848.56181	Yes	69.6	10074768	1.4	96217
H6a 3	848.56178	Yes	61.8	9021509	1.0	97548
H7a 1	848.56176	Yes	266.1	40420960	9.9	92848
H7a 2	848.56181	Yes	186.7	29318610	4.6	92849
H7a 3	848.56165	Yes	65.4	10140202	1.5	94435
H8a 1		No				
H8a 2	848.56077	Yes	8.3	1569875	0.4	94667
H8a 3	040 56244	NO	22.2	2760247	0.5	00004
H9a 1	848.56214	Yes	23.3	3/6824/	0.5	86884
H9a Z	848.56145	Yes	6.4	12/9130	0.1	84856
	646.50276	No	15.7	2274075	0.5	105752
H10a 2		No				
H10a 3		No				
H11a 1	848.56266	Yes	19.1	3302526	1.4	91912
H11a 2	848.56178	Yes	8.3	1666498	0.2	103672
H11a 3		No				
H12a 1		No				
H12a 2		No				
H12a 3		No				
H13aii 1	848.56260	Yes	10.8	2195567	0.6	99240
H13aii 2	848.56364	Yes	8.3	1668702	0.4	68688
H13aii 3		No				
H14a 1		No				
H14a 2		No				
H14a 3		No				
H14bi 1		NO				
H14bi 2		No				
H14bi 3		No				
		NO				
V1a 2	848 56100	Voc	5.4	1206227	0.2	120506
R1a 1	848.30133	No	5.4	1200237	0.5	120500
B1a 2	848 56157	Yes	6.0	1259117	0.4	88599
B1a 3	040.50157	No	0.0	1255117	0.4	00555
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	1	No		1	1	
Soil 3a 2	848.56503	Possibly	20.0	5253643	0.5	72980
Soil 3a 3	848.56553	Possibly	21.0	5061953	1.1	72358
Soil 3b 1	848.56956	Possibly	11.6	3178572	0.4	64612
Soil 3b 2	848.56288	Possibly	10.9	2870315	0.2	60640
Soil 3b 3	848.56561	Possibly	14.6	4115814	0.8	87883
Solvent 1	848.56606	Possibly	24.6	5707658	0.2	49750
Solvent 2		No				
Solvent 3		No				

Table 73.	Summary	of signal	at	m/z	850
-----------	---------	-----------	----	-----	-----

Calculated m/z	850.673					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	850.67409	Yes	329.9	56908884	18.9	91243
Y1a 2	850.67371	Yes	316.9	50851312	18.7	91822
Y1a 3	850.67393	Yes	361.5	62394216	18.1	91846
Original Heslington		No				
H1a 1	850.67371	Yes	145.0	20949284	2.1	94182
H1a 2	850.67350	Yes	287.3	39728664	10.0	92913
H1a 3	850.67344	Yes	329.0	43707860	6.6	93433
H1b 1	850.67319	Yes	523.1	75562120	8.8	93427
H1b 2	850.67334	Yes	803.5	111472224	29.0	92877
H1b 3	850.67297	Yes	600.9	82540904	19.5	93883
H2a 1	850.67285	Yes	793.9	106139416	19.7	93563
H2a 2	850.67301	Yes	719.8	103002288	31.1	93419
H2a 3	850.67325	Yes	593.6	78217464	22.0	93365
H3a 1	850.67377	Yes	721.8	102309128	18.6	93542
H3a 2	850.67400	Yes	1160.5	174155216	28.5	93217
H3a 3	850.67356	Yes	429.0	58373728	7.7	93995
H4a 1	850.67400	Yes	1010.8	171511712	10.0	93217
H4a 2	850 67439	Yes	4109 5	816641728	93.4	93348
H4a 3	850 67408	Yes	1872 9	342682112	41 3	93161
H5a 1	850 67306	Yes	848.0	111252360	58.5	93425
H5a 7	850 67329	Ves	984.7	138028112	45.4	938//
HE2 2	850 67206	Voc	611.2	00702576	10.4	02/08
	850.07300	Yes	611.2	90795570	10.4	95496
	050.07302	Yes	450.0	90225048	15.0	92942
	850.67383	Yes	450.1	53376912	8.0	93422
H6a 3	850.67376	Yes	405.4	5/322184	6.1	92732
H/a 1	850.67370	Yes	635.7	96096720	23.5	92987
H/a 2	850.6/3//	Yes	652.5	101591608	16.0	93638
H7a 3	850.67361	Yes	1058.0	158982672	23.5	93/14
H8a 1	850.67390	Yes	1121.6	1/2/35088	29.7	93373
H8a 2	850.67414	Yes	882.0	131380536	30.5	92272
H8a 3	850.67366	Yes	817.4	115042408	22.3	92459
H9a 1	850.67389	Yes	463.9	68430864	8.5	92169
H9a 2	850.67392	Yes	604.3	88986736	10.3	92907
H9a 3	850.67339	Yes	285.3	40949284	9.0	92901
H10a 1	850.67377	Yes	2421.3	365529600	61.1	93276
H10a 2	850.67336	Yes	1103.9	144765680	74.2	92597
H10a 3	850.67376	Yes	2502.8	368020000	100.0	93293
H11a 1	850.67467	Yes	776.3	120246872	52.5	91506
H11a 2	850.67461	Yes	318.5	50772452	6.6	92137
H11a 3	850.67382	Yes	317.6	39671292	30.5	92354
H12a 1	850.67495	Yes	611.9	98919760	22.0	91493
H12a 2	850.67494	Yes	567.8	90346480	18.4	91302
H12a 3	850.67490	Yes	521.7	85691704	21.3	91329
H13aii 1	850.67478	Yes	456.9	77738328	19.7	92800
H13aii 2	850.67467	Yes	360.6	57654172	14.8	91398
H13aii 3	850.67441	Yes	394.8	59414368	10.1	92974
H14a 1		No				
H14a 2	850.67470	Yes	8.2	1620527	0.2	109886
H14a 3		No				
H14bi 1	850.67557	Yes	7.1	1485480	0.2	99948
H14bi 2	850.67585	Yes	5.3	1139259	0.2	129778
H14bi 3		No				
V1a 1	850.67413	Yes	288.8	48936688	2.2	93941
V1a 2	850.67408	Yes	297.2	50219460	8.0	93576
V1a 3	850.67396	Yes	251.4	40182744	8.6	93872
B1a 1	850.67459	Yes	627.3	109082720	21.3	93423
B1a 2	850.67386	Yes	630.3	95825648	31.3	92724
B1a 3	850.67341	Yes	792.3	108749840	25.5	93839
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	850.67695	Possibly	5.5	1693337	0.2	95990
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2	850.67781	Possibly	5.6	1678905	0.1	106383
Soil 3b 3		No				
Solvent 1	850.67676	Possibly	7.2	1962182	0.1	57442
Solvent 2	850.67852	Possibly	4.0	1244486	0.2	92277
Solvent 3	850.67695	Possibly	5.5	1693337	0.2	95990

Table 74.	Summary	/ of signal	at <i>m/z</i> 852
-----------	---------	-------------	-------------------

Calculated m/z	852.631					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	852.63243	Yes	226.2	39137804	13.0	81863
Y1a 2	852.63216	Yes	202.6	32629614	12.0	79792
Y1a 3	852.63232	Yes	218.7	37904140	11.0	81383
Original Heslington		No				
H1a 1		No				
H1a 2	852.63204	Yes	26.9	4013304	1.0	84220
H1a 3	852.63176	Yes	25.7	3708269	0.6	104318
H1b 1	852.63152	Yes	108.2	15904056	1.9	92435
H1b 2	852.63138	Yes	65.1	9328204	2.4	90604
H1b 3	852.63133	Yes	88.3	12405865	2.9	90752
H2a 1	852.63134	Yes	50.3	7023293	1.3	95473
H2a 2	852.63177	Yes	30.2	4640963	1.4	75920
H2a 3	852.63173	Yes	66.7	9068568	2.6	93401
H3a 1	852.63199	Yes	99.0	14316330	2.6	93474
H3a 2	852.63232	Yes	259.9	39274788	6.4	93054
H3a 3	852.63187	Yes	161.3	22152042	2.9	93272
H4a 1	852.63237	Yes	337.3	57473308	3.4	92169
H4a 2		No				
H4a 3	852.63243	Yes	214.1	39506408	4.8	86500
H5a 1	852.63134	Yes	458.3	60274400	31.7	93276
H5a 2	852.63162	Yes	515.7	72440240	23.8	93147
H5a 3	852.63141	Yes	445.2	66235356	7.6	92763
H6a 1	852.63222	Yes	212.5	30904736	4.2	82953
H6a 2	852.63223	Yes	192.1	27237376	3.7	82052
H6a 3	852.63211	Yes	185.9	26462390	2.8	82070
H7a 1	852.63200	Yes	237.0	36044064	8.8	92613
H7a 2	852.63206	Yes	175.0	27506568	4.3	92982
H7a 3	852.63202	Yes	108.9	16670544	2.5	95618
H8a 1	852.63225	Yes	203.8	31668226	5.4	93261
H8a 2	852.63243	Yes	110.4	16747439	3.9	91734
H8a 3	852.63208	Yes	170.5	24253032	4.7	92021
H9a 1	852.63231	Yes	272.2	40300344	5.0	89705
H9a 2	852.63229	Yes	140.8	20991626	2.4	91098
H9a 3	852.63175	Yes	189.1	27245454	6.0	90431
H10a 1	852.63207	Yes	117.7	18086572	3.0	92901
H10a 2	852.63171	Yes	69.4	9398925	4.8	93511
H10a 3	852.63215	Yes	82.4	12445331	3.4	93639
H11a 1	852.63301	Yes	134.8	21171094	9.3	88924
H11a 2	852.63298	Yes	68.8	11237416	1.5	87724
H11a 3	852.63211	Yes	41.6	5461554	4.2	79527
H12a 1	852.63334	Yes	94.5	15579422	3.5	80434
H12a 2	852.63327	Yes	64.0	10486964	2.1	81388
H12a 3	852.63322	Yes	86.0	14431590	3.6	82188
H13aii 1	852.63318	Yes	315.3	53765284	13.6	77768
H13aii 2	852.63313	Yes	228.2	36616448	9.4	80041
H13aii 3	852.63275	Yes	212.8	32187310	5.5	80035
H14a 1		No				
H14a 2	852.63091	Yes	9.9	1879773	0.3	94843
H14a 3		No				
H14bi 1	852.63369	Yes	9.9	1935512	0.2	94637
H14bi 2	852.63237	Yes	13.1	2317039	0.4	100037
H14bi 3		No				
V1a 1	852.63244	Yes	197.7	33609852	1.5	92930
V1a 2	852.63244	Yes	240.7	40742748	6.5	92718
V1a 3	852.63228	Yes	165.2	26527772	5.7	93679
B1a 1		No				
B1a 2		No				
B1a 3	852.63173	Yes	479.7	65974600	15.4	93391
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				

Table 75.	Summary	of signal	at	m/z	853
-----------	---------	-----------	----	-----	-----

Calculated m/z	853.65577					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	853.65577	Yes	1055.2	181226224	60.3	90679
Y1a 2	853.65542	Yes	877.9	140216368	51.5	90831
Y1a 3	853.65567	Yes	1058.9	182047712	52.8	90998
Original Heslington	853.65632	Yes	12.5	1895970	1.5	59989
H1a 1	853.65591	Yes	21.4	3372314	0.3	100473
H1a 2	853.65491	Yes	59.6	8506539	2.1	90124
H1a 3	853.65507	Yes	41	5729343	0.9	92342
H1b 1	853.65492	Yes	70.9	10538196	1.2	93001
H1b 2	853 65452	Yes	53.8	7776198	2	96173
H1b 3	853 65469	Yes	67.6	9580399	23	90215
H2a 1	853 65452	Vec	90.3	12353556	2.3	93107
LI20 1	852 65440	Vos	47.5	7110002	2.5	05280
1120 2	853.05449	Voc	47.5	9427551	2.1	01751
1128 3	853.05474	Voc	15.7	2551265	2.4	00087
H3a 1	853.65527	Yes	15.7	2551205	0.5	90087
H3a Z	853.65606	Yes	38	6029401	1	95084
H3a 3	853.65494	Yes	27.1	3994806	0.5	97786
H4a 1	853.65577	Yes	2/3.3	46642656	2.7	90597
H4a 2	853.65629	Yes	295.0	58974368	6.7	90845
H4a 3	853.65589	Yes	438.4	80489712	9.7	91399
H5a 1	853.65478	Yes	326.1	42979728	22.6	92882
H5a 2	853.65500	Yes	387.4	54496360	17.9	92308
H5a 3	853.65467	Yes	193.8	29025950	3.3	92351
H6a 1	853.65550	Yes	294.7	42731324	5.8	88156
H6a 2	853.65544	Yes	282.2	39862140	5.4	87874
H6a 3	853.65536	Yes	254.7	36134964	3.8	85533
H7a 1	853.65517	Yes	59.6	9315660	2.3	91113
H7a 2	853.65538	Yes	54.4	8787891	1.4	92535
H7a 3	853.65604	Yes	19.2	3226777	0.5	99379
H8a 1	853.65552	Yes	99.6	15652687	2.7	91134
H8a 2	853.65592	Yes	53.8	8337139	1.9	92959
H8a 3	853.65533	Yes	84.7	12212203	2.4	92014
H9a 1	853.65561	Yes	177.5	26398160	3.3	89425
H9a 2	853 65573	Yes	95.5	14355231	17	92282
H9a 3	853 65512	Yes	152.5	22043978	4.9	91584
H10a 1	853 65535	Vos	10.6	1931577	4.5	99380
H10a 2	853 65558	Ves	9.0	15/19076	0.5	105170
H10a 2	853.05558	Voc	10.6	1892246	0.8	02014
H110 1	853.05401	Voc	256.7	EE42E224	24.2	93914
H11a 2	853.05025	Voc	212 5	22005216	24.2	87222
H11a 2	853.05030	Voc	212.3	10476626	4.4	80535
H110 J	853.05541	Voc	120.2	22614022	5.1	00255
1120 1	853.05000	Yes	102.0	22014922	3.0	90555
H12a 2	853.05007	Yes	102.9	10054875	3.4	07540
H12a 3	853.65662	res	103	27025154	6.7	87519
HI3all I	853.65647	Yes	3/8.4	64440656	16.3	8/161
H13aii 2	853.6563	Yes	214	34350776	8.8	86381
H13aii 3	853.65599	Yes	289.5	43657052	7.4	88703
H14a 1		No				
H14a 2		No				
H14a 3		No				
H14bi 1		No				
H14bi 2		No				
H14bi 3		No				
V1a 1	853.65589	Yes	84.1	14507082	0.7	93728
V1a 2	853.65589	Yes	106	18140208	2.9	92265
V1a 3	853.65562	Yes	67.3	11014724	2.3	93516
B1a 1	853.65620	Yes	119.5	21079274	4.1	91690
B1a 2	853.65546	Yes	127	19590120	6.4	92147
B1a 3	853.65507	Yes	106.5	14902762	3.5	94325
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3	853.65614	Yes	4.5	1620096	0.3	131725
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				

Calculated m/z	857.26					
Sample designation +	Measured					
MALDI replicate no.	m/z	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1		No				
Y1a 2		No				
Y1a 3		No				
Original Heslington		No				
H1a 1		No				
H1a 2		NO				
H1a 3		NO				
H10 1		NO				
H10 Z		No				
H10 3		No				
H7a 7		No				
H2a 3		No				
H3a 1		No				
H3a 2		No				
H3a 3		No				
H4a 1		No				
H4a 2		No				
H4a 3		No				
H5a 1		No				
H5a 2		No				
H5a 3		No				
H6a 1	857.25952	Yes	8.7	1588095	0.2	103572
H6a 2		No				
H6a 3		No				
H7a 1		No				
H7a 2		No				
H7a 3		No				
H8a 1		No				
H8a 2	857.26098	Yes	180.5	27152672	6.3	91721
H8a 3		No				
H9a 1		No				
H9a Z		NO				
H9a 3	057 20044	NO	1104.0	4000000000	27.0	02101
H10a 1	857.26041	Yes	1104.8	1146524	27.9	93191
H10a 2	857.20220	No	0.5	1140524	0.0	/1115
H10a 5		No				
H11a 2		No				
H11a 3		No				
H12a 1		No				
H12a 2		No				
H12a 3		No				
H13aii 1	857.26145	Yes	4.2	1077569	0.3	96064
H13aii 2		No				
H13aii 3	857.26118	Yes	8	1542696	0.3	112078
H14a 1		No				
H14a 2		No				
H14a 3		No				
H14bi 1	857.26191	Yes	6	1320513	0.1	111900
H14bi 2		No				
H14bi 3		No				
V1a 1		NO				
V1a Z		NO				
V1a 3		NO				
		No				
B1a 2		No				
		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1		No				
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				

Table 76. Summary of signal at m/z 857

Sample designation +						
MALDI replicate no.	Error [ppm]	Present	S:N	Intensity	Rel. Int. %	Resolution
Y1a 1	-0.59	Yes	583.2	100280728	33.4	88374
Y1a 2	-0.09	Yes	511.9	81783160	30.0	88842
Y1a 3	-0.47	Yes	566.6	97536528	28.3	88627
Original Heslington		No				
H1a 1	0.02	Yes	28.7	4384112	0.4	96808
H1a 2	0.26	Yes	71.0	10032262	2.5	91321
H1a 3	0.33	Yes	81.3	11061937	1.7	91052
H1b 1	0.62	Yes	307.5	44625348	5.2	91727
H1b 2	0.37	Yes	156.4	21990544	5.7	91161
H1b 3	0.73	Yes	244.3	33783672	8.0	90875
H2a 1	1.07	Yes	171.2	23143036	4.3	91534
H2a 2	0.66	Yes	86.5	12568269	3.8	90960
H2a 3	0.50	Yes	170.6	22811172	6.4	92278
H3a 1	-0.13	Yes	264.5	37639228	6.8	91756
H3a 2	-0.44	Yes	661.8	99897528	16.3	90960
H3a 3	0.16	Yes	427.3	58304740	7.7	90975
H4a 1	-0.51	Yes	940.3	159298368	9.3	91381
H4a 2	-1.22	Yes	464.4	93125200	10.6	90636
H4a 3	-0.68	Yes	642.2	118401352	14.3	90953
H5a 1	0.87	Yes	1294.9	171511376	90.1	91666
H5a 2	0.53	Yes	1467.3	207730496	68.3	91706
H5a 3	0.71	Yes	1116.8	166784544	19.2	91477
H6a 1	-0.24	Yes	597.5	86483664	11.7	91196
H6a 2	-0.15	Yes	576.3	81225624	11.1	90818
H6a 3	-0.07	Yes	538.9	76103256	8.1	90871
H7a 1	-0.12	Yes	676.1	102886432	25.1	90979
H7a 2	-0.11	Yes	533.8	83174488	13.1	92153
H7a 3	0.09	Yes	338.0	51245596	7.6	91906
H8a 1	-0.36	Yes	518.8	80355000	13.8	91445
H8a 2	-0.73	Yes	298.8	44980476	10.4	90149
H8a 3	-0.04	Yes	387.2	54882408	10.6	90787
H9a 1	-0.35	Yes	600.5	88468776	11.0	89997
H9a 2	-0.29	Yes	310.2	45820756	5.3	90662
H9a 3	0.28	Yes	405.0	58445188	12.9	90076
H10a 1	-0.12	Yes	296.4	45565756	7.6	91113
H10a 2	0.67	Yes	196.0	26134532	13.4	90618
H10a 3	-0.10	Yes	226.6	33736220	9.2	91863
H11a 1	-1.16	Yes	331.1	51589644	22.5	88237
H11a 2	-1.21	Yes	170.2	27489014	3.6	90048
H11a 3	-0.10	Yes	104.5	13339066	10.3	89990
H12a 1	-1.63	Yes	198.3	31962536	7.1	88802
H12a 2	-1.50	Yes	136.8	21836590	4.4	88311
H12a 3	-1.55	Yes	204.0	33378428	8.3	88212
H13aii 1	-1.39	Yes	716.4	121156480	30.7	89937
H13aii 2	-1.24	Yes	534.2	85189768	21.9	89198
H13aii 3	-0.85	Yes	525.4	78993328	13.4	89116
H14a 1		No				
H14a 2	-0.52	Yes	22.8	3779781	0.6	94433
H14a 3	-1.28	Yes	23.9	4547973	0.2	87076
H14bi 1	-1.71	Yes	13.9	2567017	0.3	97363
H14bi 2	-0.79	Yes	22.8	3779781	0.6	94433
H14bi 3		No				
V1a 1	-0.67	Yes	503.9	85048648	3.9	91526
V1a 2	-0.69	Yes	645.6	108747888	17.3	91132
V1a 3	-0.41	Yes	441.5	70172664	15.0	91906
B1a 1	-1.26	Yes	1220.0	212526496	41.4	91464
B1a 2	-0.29	Yes	1158.8	177176896	57.8	91022
B1a 3	0.31	Yes	1238.5	171004384	40.0	92158
DHB 1		No				
DHB 2		No				
DHB 3		No				
Soil 3a 1	-2.19	Possibly	6.5	1924502	0.2	79439
Soil 3a 2		No				
Soil 3a 3		No				
Soil 3b 1		No				
Soil 3b 2		No				
Soil 3b 3		No				
Solvent 1		No				
Solvent 2		No				
Solvent 3		No				

Table 77. Summary of signal at m/z 866

866.64642

Calculated m/z

Calculated m/z 968.585 Sample designation + Measured MALDI replicate no m/z Present S:N Intensity Rel. Int. % Resolution 968.58618 Yes Y1a 1 441 -71453576 23.8 81560 968.58588 Yes Y1a 2 384.9 58805740 21.6 8192 968.58612 Yes Y1a 3 77728504 82025 482.0 22.6 **Original Heslington** No H1a 1 968.58473 Yes 9.9 170381 0. 8050 H1a 2 968.58562 Yes 34.9 5049937 1.3 83704 H1a 3 968.58557 Yes 4523876 0.7 83541 31.6 H1b 1 92.6 13356062 1.6 82096 968.58517 Yes H1b 2 968 58536 Yes 80795 108 7 15131043 30 H1b 3 968.58502 Yes 93.0 12953893 83703 3.1 H2a 1 968.58477 Yes 129.3 17614082 3.3 82909 H2a 2 968.58507 Yes 142.1 20040200 82166 6.0 H2a 3 968.58547 Yes 20438892 81579 150.0 5.8 H3a 1 968.58601 Yes 129 0 18403682 3.3 82040 H3a 2 968.58638 Yes 394.3 58729404 9.6 81975 H3a 3 968.58577 Yes 151.9 20979482 82467 2.8 H4a 1 968.58643 Yes 35.0 5956002 0. 83175 H4a 2 38007372 968.58669 Yes 205.6 81964 4.3 H4a 3 968.58630 Yes 194 9 33613028 4 1 81582 H5a 1 968.58524 Yes 392.0 52544504 27.6 82018 H5a 2 968.58550 Yes 63561436 81979 451.6 20.9 H5a 3 968.58510 Yes 26157540 177.0 82962 3. 331.2 H6a 1 968.58610 Yes 47307864 6.4 8215 H6a 2 968.58602 Yes 256.1 35734616 4.9 81270 H6a 3 968.58603 Yes 187.5 26247116 2.8 83066 H7a 1 968.58583 Yes 315.4 46827556 11.4 82196 968.58586 Yes H7a 2 42270504 82003 281.9 6.7 28405462 8255 H7a 3 968.58588 Yes 191.3 4.2 H8a 1 968.58617 Yes 447.5 66862784 11.5 81786 H8a 2 968.58641 Yes 80758 242.7 36054052 8.4 H8a 3 968.58592 Yes 299.3 41883624 82186 8.1 H9a 1 968.58618 Yes 216.7 31277282 3.0 81874 H9a 2 968.58632 Yes 173.9 25169072 2.9 83089 H9a 3 968.58570 Yes 175.9 25303602 81813 5.6 H10a 1 968.58596 Yes 199.3 29972804 5.0 82041 H10a 2 968.58557 Yes 103.0 13986070 7.2 82425 H10a 3 968.58609 Yes 21206696 144.9 5.8 81595 H11a 1 968.58697 Yes 219.2 32850686 14.4 81749 H11a 2 968.58690 Yes 95.7 14995575 82427 2.0 H11a 3 968.58593 Yes 53.7 7147024 5.5 85619 H12a 1 968.58708 Yes 12739157 2.8 81423 81.6 H12a 2 968.58738 Yes 67.9 10545885 2.1 86020 H12a 3 968.58738 Yes 77.2 12205683 3.0 84629 H13aii 1 968.58715 Yes 178.6 28746404 7.3 82798 968.58703 Yes H13aii 2 100.3 15673367 83084 4.0 968.58675 Yes 22850260 H13aii 3 154.7 81805 3.9 H14a 1 No H14a 2 No H14a 3 No H14bi 1 No H14bi 2 968.58542 1751261 0.3 83588 Yes 9.4 H14bi 3 No V1a 1 968.58648 Yes 74.2 12448198 0.6 84182 13326226 V1a 2 968.58642 Yes 79.7 2.1 82164 V1a 3 968.58611 Yes 7989501 83591 49.2 1. 38803304 232.2 B1a 1 968.58699 Yes 76 81474 B1a 2 968.58605 Yes 250.0 37837228 12.3 81651 B1a 3 968.58560 Yes 280.8 39308656 81816 9.2 DHB 1 No DHB 2 No DHB 3 No Soil 3a 1 No Soil 3a 2 No Soil 3a 3 No Soil 3b 1 No Soil 3b 2 No Soil 3b 3 No Solvent 1 No Solvent 2 No

No

Solvent 3

Table 78. Summary of signal at m/z 968

ABBREVIATIONS

AA	amino acid
ATP	adenosine triphosphate
BARC	Biological Anthropological Research Centre, Bradford
BP	before present (1 January 1950 = present)
CID	collision induced dissociation
CNS	central nervous system
СТ	computed tomography
d.p.	decimal place(s)
Da	Dalton, unit of mass
dbes	double bond equivalents
DHB	2,5-dihydroxybenzoic acid
DNA	deoxyribonucleic acid
ESI	electrospray ionisation
FT	Fourier transform
GalC	galactocerebroside(s)
GC	gas chromatography
HPLC	high performance liquid chromatrography
ICR	ion cyclotron resonance
KMA	5-keto-D-mannuronic acid (or D-lyxo-5-hexosylopyranuronic acid)
LC	liquid chromatography
LDS	lithium dodecyl sulfate
MALDI	matrix assisted laser desorption/ionisation
mmu	millimass units
MRI	magnetic resonance imaging
MS	mass spectrometry
MS/MS	tandem mass spectrometry
m/z	mass to charge ratio
PAGE	polyacrylamide gel electrophoresis
PC	phosphatidylcholine(s)
PCSII	protein calibration standard II
PMF	peptide mass fingerprintingPMF
ppm	parts per million
QUAD	quadrupole (MS analyser)

RNA	ribonucleic acid
SDS	sodium dodecyl sulfate
sds	standard deviations
SEM	scanning electron microscopy
rf	radio frequency
SM	sphingomyelin(s)
S:N	signal to noise ratio
TEM	transmission electron microscopy
TLC	thin layer chromatography
TOF	time of flight (MS analyser)
UV	ultraviolet

REFERENCES

- S. O'Connor, E. Ali, S. Al-Sabah, D. Anwar, E. Bergstroem, K. A. Brown, J. Buckberry, S. Buckley, M. Collins, J. Denton, K. M. Dorling, A. Dowle, P. Duffey, H. G. M. Edwards, E. C. Faria, P. Gardner, A. Gledhill, K. Heaton, C. Heron, R. Janaway, B. J. Keely, D. King, A. Masinton, K. Penkman, A. Petzold, M. D. Pickering, M. Rumsby, H. Schutkowski, K. A. Shackleton, J. Thomas, J. Thomas-Oates, M.-R. Usai, A. S. Wilson and T. O'Connor, *Journal of Archaeological Science*, 2011, **38**, 1641-1654.
- 2. A. J. Dunn and S. C. Bondy, *Functional Chemistry of the Brain*, Spectrum Publications, Inc., New York, 1974.
- 3. H. McIlwain and H. S. Bachelard, *Biochemistry and the Central Nervous System*, Churchill Livingstone, Edinburgh, 5th Edition edn., 1985.
- 4. H. McIlwain, *Biochemistry and the Central Nervous System*, J. & A. Churchill, Ltd., Great Britain, 2nd edn., 1959.
- 5. Y. A. Hannun and L. M. Obeid, *Nature Reviews Molecular Cell Biology*, 2008, **9**, 139-150.
- 6. M. C. Raff, R. Mirsky, K. L. Fields, R. P. Lisak, S. H. Dorfman, D. H. Silberberg, N. A. Gregson, S. Leibowitz and M. C. Kennedy, *Nature*, 1978, **274**, 813-816.
- 7. A. Bosio, E. Binczek and W. Stoffel, *Proceedings of the National Academy of Sciences of the United States of America*, 1996, **93**, 13280-13285.
- 8. R. W. Ledeen, *Journal of Supramolecular Structure*, 1978, **8**, 1-17.
- 9. A. Lajtha, *Handbook of Neurochemistry*, Plenum Press, New York, 1969.
- 10. M. A. Clark, M. B. Worrell and J. E. Pless, in *Forensic Taphonomy : the postmortem fate of human remains*, eds. W. D. Haglund and M. H. Sorg, CRC Press, Boca Raton, 1997, ch. 9, pp. 151-164.
- H. Gill-King, in *Forensic Taphonomy : the postmortem fate of human remains*, eds. W.
 D. Haglund and M. H. Sorg, CRC Press, Boca Raton, 1997, ch. 6, pp. 93-108.
- 12. J. Hunter, C. A. Roberts, D. R. Brothwell and A. Martin, *Studies in crime: an introduction to forensic archaeology*, Batsford, London,, 1996.
- 13. A. C. Aufderheide, *International Journal of Paleopathology*, 2011, **1**, 75-80.
- 14. A. T. Chamberlain and M. Parker Pearson, *Earthly remains : the history and science of preserved human bodies*, British Museum, London, 2001.
- 15. A. C. Aufderheide, *The scientific study of mummies*, Cambridge University Press, Cambridge, 2003.
- 16. A. Boddington, A. N. Garland and R. C. Janaway, *Death, decay, and reconstruction : approaches to archaeology and forensic science*, Manchester University Press, Manchester, 1987.
- 17. A. A. Vass, Forensic Science International, 2011, **204**, 34-40.
- 18. S. Fiedler and M. Graw, *Naturwissenschaften*, 2003, **90**, 291-300.
- 19. B. Ioan, C. Manea cas. Amariei, B. Hanganu, L. Statescu, L. Solovastru and I. Manoilescu, *The chemistry decomposition in human corpses*, 2017.
- 20. S. Alvarez-Perez, J. L. Blanco, P. Alba and M. E. Garcia, *Revista Iberoamericana De Micologia*, 2011, **28**, 159-165.
- 21. R. C. Janaway, S. Percival and A. Wilson, *Decomposition of Human Remains*, 2009.
- M. S. Micozzi, in *Forensic Taphonomy: the post-mortem fate of human remains*, eds.
 W. D. Haglund and M. H. Sorh, CRC Press, Boca Raton, 1997, ch. 11, pp. 171-180.
- 23. R. C. Murray and J. C. F. Tedrow, *Journal*, 1975
- 24. F. Backhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson and J. I. Gordon, *Science*, 2005, **307**, 1915-1920.

- 25. P. S. Sledzik and M. S. Micozzi, in *Forensic Taphonomy : the postmortem fate of human remains*, eds. W. D. Haglund and M. H. Sorg, CRC Press, Boca Raton, 1997, ch. 31, pp. 483-495.
- 26. E. M. J. Schotsmans, W. Van de Voorde, J. De Winne and A. S. Wilson, *Forensic Science International*, 2011, **206**, e43-e48.
- 27. S. Aturaliya and A. Lukasewycz, *Journal of Forensic Science*, 1999, 44, 893–896.
- 28. A. Galloway, W. H. Birkby, A. M. Jones, T. E. Henry and B. O. Parks, *Journal of Forensic Sciences*, 1989, **34**, 607–616.
- 29. E. Tapp, *Paleopathology newsletter*, 1985, 10-13.
- 30. L. M. McKinley, *The Journal of Pathology*, 1977, **122**, 27-28.
- 31. F. Kauffmann-Doig, *Politica Internacional*, 1996, **46**, 113-143.
- 32. H. Nushida, J. Adachi, A. Takeuchi, M. Asano and Y. Ueno, *Forensic Science International*, 2008, **175**, 160-165.
- 33. M. S. Micozzi, *Journal of Forensic Sciences*, 1986, **31**, 953-961.
- 34. R. Amy, R. Bhatnagar, E. Damkjar and O. Beattie, *Canadian Medical Association Journal*, 1986, **135**, 115-117.
- 35. D. N. H. Notman, L. Anderson, O. B. Beattie and R. Amy, *American Journal of Roentgenology*, 1987, **149**, 347-350.
- 36. W. A. Kowal, P. M. Krahn and O. B. Beattie, *International Journal of Environmental Analytical Chemistry*, 1989, **35**, 119-126.
- 37. W. Kowal, O. B. Beattie and P. M. Krahn, *Nature*, 1990, **343**, 319-320.
- 38. W. Kowal, O. B. Beattie, H. Baadsgaard and P. M. Krahn, *Journal of Archaeological Science*, 1991, **18**, 193-203.
- 39. D. Notman and O. Beattie, in *Human Mummies: Global Survey of Their Status and the Techniques of Conservation*, eds. K. Spindler, H. Wilfing, E. RastbichlerZissernig, D. zurNedden and H. Nothdurfter, 1996, vol. 3, pp. 93-106.
- 40. S. Mays and O. Beattie, International Journal of Osteoarchaeology, 2016, **26**, 778-786.
- 41. C. F. Merbs, Arctic Anthropology, 1995, **32**, 173-177.
- 42. J. P. H. Hansen and J. Nordqvist, *Human Mummies: Global Survey of Their Status and the Techniques of Conservation*, 1996, **3**, 107-121.
- 43. E. M. Kreps, E. V. Chirkovskaya, L. F. Pomazanskaya, N. F. Avrova, M. V. Levitina and M. A. Chebotareva, *Journal of Evolutionary Biochemistry and Physiology*, 1979, **15**, 194-202.
- 44. E. M. Kreps, N. F. Avrova, M. A. Chebotarëva, E. V. Chirkovskaya, M. V. Levitina and L. F. Pomazanskaya, *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry*, 1981, **68**, 135-140.
- 45. J. Schobinger, *Natural History*, 1991, 62-69.
- K. Makristathis, R. Mader, K. Varmuza, I. Simonitsch, J. Schwarzmeier, H. Seidler, W. Platzer, H. Unterndorfer and R. Scheithauer, in *Human Mummies: Global Survey of Their Status and the Techniques of Conservation*, eds. K. Spindler, H. Wilfing, E. RastbichlerZissernig, D. zurNedden and H. Nothdurfter, 1996, vol. 3, pp. 279-281.
- 47. M. W. Hess, G. Klima, K. Pfaller, K. H. Kunzel and O. Gaber, *American Journal of Physical Anthropology*, 1998, **106**, 521-532.
- D. Zurnedden, K. Wicke, R. Knapp, H. Seidler, H. Wilfing, G. Weber, K. Spindler, W. A. Murphy, G. Hauser and W. Platzer, *Journal of Archaeological Science*, 1994, **21**, 809-818.
- 49. H. Seidler, W. Bernhard, M. Teschler-Nicola, W. Platzer, D. z. Nedden, R. Henn, A. Oberhauser and T. Sjøvold, *Science*, 1992, **258**, 455-457.
- 50. J. M. Pestka, F. Barvencik, F. T. Beil, R. P. Marshall, E. Jopp, A. F. Schilling, A. Bauerochse, M. Fansa, K. Pueschel and M. Amling, *Naturwissenschaften*, 2010, **97**, 393-402.

- 51. T. J. Painter, *Carbohydrate Polymers*, 1991, **15**, 123-142.
- 52. P. V. Glob, *The bog people : iron-age man preserved*, Faber, London, 1969.
- 53. J. B. Bourke, D. R. Brothwell, British Museum. and I. M. Stead, *Lindow Man : the body in the bog*, Published for the Trustees of the British Museum by British Museum Publications, London, 1986.
- 54. H. Rydin, J. K. Jeglum and A. Hooijer, *The Biology of Peatlands*, Oxford University Press, Oxford, 2006.
- 55. S. A. Waksman, *American Journal of Science*, 1930, **19**, 32-54.
- 56. M. A. Monetti and M. I. Scranton, *Biogeochemistry*, 1992, **17**, 23-47.
- 57. T. J. Painter, in *Bog bodies : new discoveries and new perspectives*, eds. R. C. Turner and R. G. Scaife, British Museum Press, London, 1995, ch. 10, pp. 88-99.
- 58. F. Czapek, *Naturwissenschaften*, 1913, **1**, 1105-1107.
- 59. H. Rudolph and B. Engmann, *Berichte Der Deutschen Botanischen Gesellschaft*, 1967, **80**, 114-&.
- 60. O. Smidsrod and T. J. Painter, *Carbohydrate Research*, 1984, **127**, 267-281.
- 61. K. Y. Børsheim, B. E. Christensen and T. J. Painter, *Innovative Food Science & Emerging Technologies*, 2001, **2**, 63-74.
- 62. T. J. Painter, *Carbohydrate Polymers*, 1998, **36**, 335-347.
- 63. T. Stalheim, S. Ballance, B. E. Christensen and P. E. Granum, *Journal of Applied Microbiology*, 2009, **106**, 967-976.
- 64. S. Ballance, K. Y. Borsheim, K. Inngjerdingen, B. S. Paulsen and B. E. Christensen, *Carbohydrate Polymers*, 2007, **67**, 104-115.
- 65. R. J. Schulting, in *In Proceedings of the First World Congress on Mummy Studies*, Archaeological and Ethnographical Museum of Tenerife, Santa Cruz, Tenerife, Canary Islands, 1995, vol. 2, pp. 771-780.
- 66. A. G. Morris, *South African Archaeological Bulletin*, 1981, 36-42.
- 67. D. H. Ubelaker and K. M. Zarenko, *Forensic Science International*, 2011, **208**, 167-172.
- 68. G. E. Cotton, A. C. Aufderheide and V. G. Goldschmidt, *Journal of Forensic Sciences*, 1987, **32**, 1125-1130.
- 69. T. L. Bereuter, E. Lorbeer, C. Reiter, H. Seidler and H. Unterdorfer, *Human Mummies: Global Survey of Their Status and the Techniques of Conservation*, 1996, **3**, 265-273.
- 70. T. Browne, *Hydriotaphia, Urn Burial, or, a Discourse of the Sepulchral Urns lately found in Norfolk*, London, http://penelope.uchicago.edu/hgc.html edn., 1658.
- 71. A. F. Fourcroy, *Annales de Chimie*, 1791, **8**, 17-73.
- 72. A. Fourcroy, *Memoires*. *Academie de Chirurgie*, 1789.
- 73. M. Thouret, *Histoire de la Société Royale de Médecine avec les Mémoires de Médecine et de Physique Médicale*, 1790, 238-271.
- 74. L. E. den Dooren de Jong, *Antonie Van Leeuwenhoek Journal of Microbiology and Serology*, 1961, **27**, 337-361.
- 75. R. F. Ruttan and M. J. Marshall, *Journal of Biological Chemistry*, 1917, **29**, 319-327.
- 76. J. B. Williams, C. Clarkson, C. Mant, A. Drinkwater and E. May, *Water Research*, 2012, **46**, 6319-6328.
- 77. C. H. Vane and J. K. Trick, *Forensic Science International*, 2005, **154**, 19-23.
- 78. T. Takatori, *Legal medicine (Tokyo, Japan)*, 2001, **3**, 193-204.
- 79. J. Adachi, Y. Ueno, A. Miwa, M. Asano, A. Nishimura and Y. Tatsuno, *Lipids*, 1997, **32**, 1155-1160.
- 80. M. Algarra, J. E. Rodriguez-Borges and J. C. G. Esteves da Silva, *Journal of Separation Science*, 2010, **33**, 143-154.
- 81. K. Saito, *Journal of Biochemistry*, 1966, **59**, 487-&.
- S. L. Forbes, B. B. Dent and B. H. Stuart, *Forensic Science International*, 2005, **154**, 35-43.

- 83. S. L. Forbes, B. H. Stuart and B. B. Dent, *Forensic Science International*, 2005, **154**, 24-34.
- 84. S. L. Forbes, B. H. Stuart and B. B. Dent, *Forensic Science International*, 2005, **154**, 44-52.
- 85. D. Schoenen and H. Schoenen, *Forensic Science International*, 2013, **226**, 301.e301-301.e306.
- 86. S. Fiedler, F. Buegger, B. Klaubert, K. Zipp, R. Dohrmann, M. Witteyer, M. Zarei and M. Graw, *Journal of Archaeological Science*, 2009, **36**, 1328-1333.
- 87. B. P. Tissot and D. H. Welte, *Petroleum Formation and Occurrence*, Springer Verlag, Berlin, 2 edn., 1984.
- 88. B. Durand, *Kerogen : insoluble organic matter from sedimentary rocks*, Technip ; London : Distributed by Graham & Trotman, Paris, 1980.
- 89. N. Eklektos, M. R. Dayal and P. R. Manger, *Journal of Forensic Sciences*, 2006, **51**, 498-503.
- 90. C. Barras, New Scientist, 2013, **220**, 11-11.
- G. Prats-Munoz, A. Malgosa, N. Armentano, I. Galtes, J. Esteban, J. A. Bombi, M. Tortosa, E. Fernandez, X. Jordana, A. Isidro, J. M. Fullola, M. Angels Petit, V. M. Guerrero, M. Calvo and P. L. Fernandez, *Pathobiology*, 2012, **79**, 239-246.
- 92. G. Prats-Munoz, I. Galtes, N. Armentano, S. Cases, P. L. Fernandez and A. Malgosa, *Journal of Archaeological Science*, 2013, **40**, 4701-4710.
- 93. W. Royal and E. Clark, American Antiquity, 1960, 26, 285-287.
- 94. G. H. Doran, D. N. Dickel, W. E. Ballinger, O. F. Agee, P. J. Laipis and W. W. Hauswirth, *Nature*, 1986, **323**, 803-806.
- 95. S. Radanov, S. Stoev, M. Davidov, S. Nachev, N. Stanchev and E. Kirova, *International Journal of Legal Medicine*, 1992, **105**, 173-175.
- 96. C. Papageorgopoulou, K. Rentsch, M. Raghavan, M. I. Hofmann, G. Colacicco, V. Gallien, R. Bianucci and F. Ruehli, *Neuroimage*, 2010, **50**, 893-901.
- 97. J. Folch, I. Ascoli, M. Lees, J. A. Meath and F. N. Lebaron, *Journal of Biological Chemistry*, 1951, **191**, 833-841.
- 98. J. Folch, M. Lees and G. H. S. Stanley, *Journal of Biological Chemistry*, 1957, **226**, 497-509.
- 99. G. H. Doran and D. N. Dickel, *Purdy, B. a. (Ed.). Wet Site Archaeology; International Conference Held in Gainesville, Florida, USA, December 12-14, 1986. Xiii+338p. Telford Press: Caldwell New Jersey, USA. Illus. Maps, 1988, 263-290.*
- 100. W. W. Hauswirth, C. D. Dickel, G. H. Doran, P. J. Laipis and D. N. Dickel, Ortner, D. J. and a. C. Aufderheide (Ed.). Human Paleopathology: Current Syntheses and Future Options; Meeting, Zagreb, Yugoslavia, July 24-31, 1988. Viii+311p. Smithsonian Institution Press: Washington, D.C., USA; London, England, Uk. Illus. Maps, 1991, 60-72.
- 101. C. M. Stojanowski, R. M. Seidemann and G. H. Doran, *American Journal of Physical Anthropology*, 2002, **119**, 15-26.
- 102. N. Armentano Oller, X. Esteve Gracia, D. Nociarova and A. Malgosa Morera, *Quaternary International*, 2012, **275**, 112-119.
- A. Makristathis, J. Schwarzmeier, R. M. Mader, K. Varmuza, I. Simonitsch, J. C. Chavez, W. Platzer, H. Unterdorfer, R. Scheithauer, A. Derevianko and H. Seidler, *Journal of Lipid Research*, 2002, 43, 2056-2061.
- 104. K. Varmuza, A. Makristathis, J. Schwarzmeier, H. Seidler and R. M. Mader, *Mass Spectrometry Reviews*, 2005, **24**, 427-452.
- 105. M. J. Thali, B. Lux, S. Losch, F. W. Rosing, J. Hurlimann, P. Feer, R. Dirnhofer, U. Konigsdorfer and U. Zollinger, *Forensic Science International*, 2011, **211**, 34-40.
- 106. K. Hollemeyer, W. Altmeyer, E. Heinzle and C. Pitra, *Rapid Communications in Mass Spectrometry*, 2012, **26**, 1735-1745.

- F. Maixner, T. Overath, D. Linke, M. Janko, G. Guerriero, B. H. J. van den Berg, B. Stade, P. Leidinger, C. Backes, M. Jaremek, B. Kneissl, B. Meder, A. Franke, E. Egarter-Vigl, E. Meese, A. Schwarz, A. Tholey, A. Zink and A. Keller, *Cellular and Molecular Life Sciences*, 2013, **70**, 3709-3722.
- 108. K. P. Oakley, *Man*, 1960, **60**, 90-91.
- 109. I. Tkocz, P. Bytzer and F. Bierring, *American Journal of Physical Anthropology*, 1979, **51**, 197-202.
- 110. J. J. Thomson, *Proceedings of the Royal Society of London. Series A*, 1913, **89**, 1-20.
- 111. A. O. Nier, *Physical Review*, 1939, **55**, 0150-0153.
- 112. R. Conrad, *Transactions of the Faraday Society*, 1934, **30**, 0215-0220.
- 113. W. E. Stephens, *Physical Review*, 1946, **69**, 691-691.
- 114. A. E. Cameron and D. F. Eggers, *Review of Scientific Instruments*, 1948, **19**, 605-607.
- 115. J. A. Hipple, H. Sommer and H. A. Thomas, *Physical Review*, 1949, **76**, 1877-1878.
- 116. W. Paul and H. Steinwedel, *Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences*, 1953, **8**, 448-450.
- 117. W. Paul, H. P. Reinhard and U. Vonzahn, *Zeitschrift Fur Physik*, 1958, **152**, 143-182.
- 118. H. Dehmelt and N. Yu, *Proceedings of the National Academy of Sciences of the United States of America*, 1997, **94**, 10031-10033.
- 119. A. Makarov, Analytical Chemistry, 2000, **72**, 1156-1162.
- 120. A. J. Dempster, *Physical Review*, 1918, **11**, 316-325.
- 121. Matthias Mann, Ronald C. Hendrickson and A. Pandey, http://dx.doi.org/10.1146/annurev.biochem.70.1.437, 2003.
- 122. M. Karas, D. Bachmann, U. Bahr and F. Hillenkamp, *International Journal of Mass Spectrometry and Ion Processes*, 1987, **78**, 53-68.
- 123. M. B. Comisarow and A. G. Marshall, *Chemical Physics Letters*, 1974, 25, 282-283.
- 124. A. G. Marshall, C. L. Hendrickson and G. S. Jackson, *Mass Spectrometry Reviews*, 1998, **17**, 1-35.
- 125. Bruker solariX MRMS routine IFS for unambiguous results, https://www.bruker.com/products/mass-spectrometry-andseparations/mrms/solarix/overview.html, (accessed September 2018).
- 126. A. Pandey and M. Mann, *Nature*, 2000, **405**, 837-846.
- 127. R. Aebersold and M. Mann, *Nature*, 2003, **422**, 198-207.
- 128. H. J. Issaq and T. D. Veenstra, *Biotechniques*, 2008, 44, 697-+.
- 129. P. Roepstorff and J. Fohlman, *Biomedical Mass Spectrometry*, 1984, **11**, 601-601.
- 130. P. Roepstorff, *Biomedical Mass Spectrometry*, 1985, **12**, 631-631.
- 131. K. Biemann, Biomedical and Environmental Mass Spectrometry, 1988, 16, 99-111.
- 132. K. Helsens, L. Martens, J. Vandekerckhove and K. Gevaert, *Proteomics*, 2007, **7**, 364-366.
- 133. D. Hussain, M. Najam-ul-Haq, F. Jabeen, M. N. Ashiq, M. Athar, M. Rainer, C. W. Huck and G. K. Bonn, *Analytica Chimica Acta*, 2013, **775**, 75-84.
- 134. Matrix Science, http://www.matrixscience.com, (accessed March 2018).
- 135. B. Antoni, M. Johnson and J. McConish, *The University of York, Heslington East, York, Assessment report 48.*, York Archaeological Trust for Excavation and Research Ltd, 2009.
- I. Mason and J. McComish, *Campus 3Development, University of York, Zone E: Campus 3 Development, University of York, Zone E: Report on an Archaeological Desktop Study.*, York Archaeological Trust, (unpublished developer report), 2003.
- 137. A. D. H. Bartlett and M. J. Noel, University of York Heslington East Development Archaeological Geophysical Survey Phases 1, 2 and 3, GeoQuest Associates, 2004.
- 138. M. Collins, E. R. Waite and A. van Duin, *Predicting protein decomposition: The case of aspartic-acid racemization kinetics*, 1999.

- 139. M. L. Moro, M. J. Collins and E. Cappellini, *Biochemical Society Transactions*, 2010, **38**, 539-544.
- 140. D. H. Evans, *Project Design for the Magistrates Courts Site, Kingston Upon Hull,* Humberside Archaeology Unit, Beverley, 1994.
- 141. D. H. Evans, *The Post-excavation Assessment and Updated Project Design for The Hull Magistrates Courts Site*, Humber Archaeology Partnership, Hull, 1998.
- 142. R. Middleton , C. Wells and E. Huckerby, *The Wetlands of North Lancashire*, Lancaster Imprints, Lancaster, 1995.
- 143. J. Griffiths, *St. John the Evagelist Churchyeard, Church Street, Blackpool.*, Oxford Archaeological North, Oxford, 2010.
- 144. A. M. Alessi, S. M. Bird, J. P. Bennett, N. C. Oates, Y. Li, A. A. Dowle, I. Polikarpov, J. P. W. Young, S. J. McQueen-Mason and N. C. Bruce, *Scientific Reports*, 2017, **7**.
- 145. A. A. Dowle, J. Wilson and J. R. Thomas, *Journal of Proteome Research*, 2016, **15**, 3550-3562.
- 146. F. Sabbadin, G. Pesante, L. Elias, K. Besser, Y. Li, C. Steele-King, M. Stark, D. A. Rathbone, A. A. Dowle, R. Bates, J. R. Shipway, S. M. Cragg, N. C. Bruce and S. J. McQueen-Mason, *Biotechnology for Biofuels*, 2018, **11**.
- 147. F. Sabbadin, G. R. Hemsworth, L. Ciano, B. Henrissat, P. Dupree, T. Tryfona, R. D. S. Marques, S. T. Sweeney, K. Besser, L. Elias, G. Pesante, Y. Li, A. A. Dowle, R. Bates, L. D. Gomez, R. Simister, G. J. Davies, P. H. Walton, N. C. Bruce and S. J. McQueen-Mason, *Nature Communications*, 2018, **9**.
- 148. D. Fenyo and R. C. Beavis, *Analytical Chemistry*, 2003, **75**, 768-774.
- 149. E. N. Nikolaev, I. A. Boldin, R. Jertz and G. Baykut, *Journal of the American Society for Mass Spectrometry*, 2011, **22**, 1125-1133.
- 150. M. L. Easterling, T. H. Mize and I. J. Amster, *Analytical Chemistry*, 1999, **71**, 624-632.
- 151. M. Easterling, *Technical Note # TN-33: Top-Down Analysis Using the solariX-TD*, Bruker Daltonics, Billerica, MA, USA, 2009.
- 152. B. Fuchs and J. Schiller, *European Journal of Lipid Science and Technology*, 2009, **111**, 83-98.
- 153. J. B. Hu, Y. C. Chen and P. L. Urban, *Analytica Chimica Acta*, 2013, **766**, 77-82.
- 154. R. G. Bergman, *Nature*, 2007, **446**, 391-393.
- 155. G. R. Harvey, D. A. Boran, L. A. Chesal and J. M. Tokar, *Marine Chemistry*, 1983, **12**, 119-132.
- 156. C. Mencarelli and P. Martinez-Martinez, *Cellular and Molecular Life Sciences*, 2013, **70**, 181-203.
- 157. I. A. Breger, *Geochimica Et Cosmochimica Acta*, 1960, **19**, 297-308.
- 158. M. Siskin, S. G. Scouten, K. D. Rose, T. Aczel, S. G. Colgrove and R. E. Pabst Jr., in *Composition, Geochemistry and Conversion of Oil Shales*, ed. C. Snape, Kluwer Academic Publishers, Dordrecht, 1995, pp. 143-158.
- 159. M. Vandenbroucke and C. Largeau, Organic Geochemistry, 2007, **38**, 719-833.
- 160. M. Vandenbroucke, *Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles*, 2003, **58**, 243-269.
- 161. D. W. van Krevelen, *Coal: Typology Chemistry Physics Constitution*, Elsevier Science, United Kingdom, 3 edn., 1981.
- 162. P. Farrimond, G. D. Love, A. N. Bishop, H. E. Innes, D. F. Watson and C. E. Snape, *Geochimica Et Cosmochimica Acta*, 2003, **67**, 1383-1394.
- 163. P. Farrimond, G. D. Love, A. N. Bishop, H. E. Innes, D. F. Watson and C. E. Snape, *Geochimica Et Cosmochimica Acta*, 2003, **67**, 1385.
- 164. A. G. Marshall and R. P. Rodgers, *Accounts of Chemical Research*, 2004, **37**, 53-59.
- 165. S. Kim, R. P. Rodgers and A. G. Marshall, *International Journal of Mass Spectrometry*, 2006, **251**, 260-265.

- 166. A. G. Marshall and R. P. Rodgers, *Proceedings of the National Academy of Sciences of the United States of America*, 2008, **105**, 18090-18095.
- 167. Y. Cho, A. Ahmed, A. Islam and S. Kim, *Mass Spectrometry Reviews*, 2015, **34**, 248-263.