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Abstract 

Faecal incontinence is a highly debilitating condition, prevalent across the population 

worldwide. Coupled with a large unmet need for clinically viable treatment options, 

a paucity of research into the biomechanics of continence inhibits the development of 

treatments which address multi-faceted challenges associated with the condition. 

Consequently, this thesis presents a method to fabricate, measure and control a 

physical simulation of the human defecatory system to investigate individual and 

combined effects of anorectal angle and sphincter pressure on continence. To illustrate 

the capabilities and clinical relevance of the work, the influence of a passive-assistive 

artificial anal sphincter (FENIX) is evaluated. 

A model rectum and associated soft tissues, based on geometry from an anonymised 

computerised tomography dataset, was fabricated from silicone and showed 

behavioural realism in terms of their morphology to the biological system and ex-vivo 

tissue. Simulated stool matter with similar rheological properties to human faeces was 

developed. Instrumentation and control hardware were used to regulate injection of 

simulated stool into the system, define the anorectal angle and monitor stool flow rate, 

intra-rectal pressure, anal canal pressure and puborectalis force. Studies were 

conducted to examine the response of anorectal angles at 80°, 90° and 100° with 

simulated stool. Tests were then repeated with the inclusion of a FENIX device. 

Stool leakage was reduced as the anorectal angle became more acute. Conversely, 

intra-rectal pressure increased. Overall inclusion of the FENIX reduced faecal 

leakage, while combined effects of the FENIX and an acute anorectal angle showed 

the greatest resistance to faecal leakage. These data demonstrate that the anorectal 

angle and sphincter pressure are fundamental in maintaining continence. Furthermore 

it demonstrates that use of the FENIX can increase resistance to faecal leakage and 

reduce anorectal angles required to maintain continence. 

The physical simulation of the defecatory system is an insightful tool to better 

understand, in a quantitative manner, the effects of the anorectal angle and sphincter 

pressure on continence. This work is valuable in helping improve our understanding 

of the physical behaviour of the continence mechanism and facilitating improved 

technologies to treat severe faecal incontinence.
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Chapter 1: Introduction 

This chapter introduces faecal incontinence as a condition; its prevalence, effect on 

quality of life and the current conservative and interventional treatments available to 

manage its symptoms. With these challenges in mind, aims & objectives for the project 

are defined. 

1.1. Background 

Faecal Incontinence (FI) is the inability to carry out controlled defecation and leads 

to the involuntary passing of bowel content, including flatus, mucus and liquid and 

solid faeces. The overall prevalence of FI in adults is estimated between 11% [4] and 

15% [5] and this increases with age, with approximately 42% of people living in 

retirement homes (or similar institutions) affected [6]. Stigma and social taboo are 

associated with FI, leading to its underreporting. 

The rectum is a hollow muscular tube, typically 13cm in length when non-distended 

[7], composed of a continuous layer of longitudinal muscle that interlaces with the 

underlying circular muscle. The anal canal is a muscular tube 2.5-4cm in length [8]. 

At rest, it forms an angle of approximately 105° [9] with the axis of the rectum. During 

voluntary squeeze the angle becomes more acute, whereas during defecation, the 

angle becomes more obtuse, Figure 1.1. 

Figure 1.1 Schematic overview of physiological components of the defecatory 

system and role of the Puborectalis muscle in maintaining continence. 
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Continence relies on the coordinated function of the nervous system, gastrointestinal 

(GI) tract, and anal sphincter and pelvic floor musculature [10-14]. The sphincter 

complex (internal and external sphincters) applies pressure over the length of the anal 

canal creating occlusion, while the puborectalis (PR) and levator muscles produce 

occlusion in the upper anal canal. The PR also creates angulation between the anal 

canal and the rectum, termed the anorectal angle (ARA). The presence of an acute 

ARA has been considered important in maintaining continence [15, 16]. Dysfunction 

of only one of these components can result in severe FI, with common causes 

including diarrhoea, obstetric trauma, spinal cord injury and rectal prolapse [17]. 

Constipation, damaged muscle innervation and obstructed defecation (OD) can lead 

to low rectal compliances [18]. Frequent bowel movements and FI from damaged 

rectal sensation is common in patients with low rectal compliance [19]. FI is a 

condition with profound consequences for individuals, their family/friends, and the 

wider healthcare system [20]. 

Efforts to improve the technology to treat FI have taken inspiration from those applied 

for urinary incontinence. These techniques involve using an inflatable cuff to occlude 

the urethra [21, 22]. Efforts to use a similar approach to treat FI by occluding the 

sphincter [23, 24] have been plagued with complications including local ischaemia 

due to the large occlusive pressures necessary to maintain continence [13, 25-27]. 

Currently only a small number of surgical treatments are available for patients with 

severe FI and these focus on augmentation of the anal sphincter. 

The paucity of commercially available, clinically viable systems to treat FI reflect the 

difficulty of designing to meet the multi-faceted challenges surrounding this complex 

condition. A key failure mode in existing systems occurs when device-tissue 

interaction causes tissue erosion, resulting in device migration or rejection [28, 29]. 

There is a clear clinical need to develop improved devices to treat FI, and recent 

research reveals promising opportunities to exploit ARA modulation. To further 

advance this work requires an in-depth biomechanical understanding of continence 

mechanisms and rectal disorders and models to capture their complex behaviour. This 

would allow detailed investigation into the complex device-tissue interactions which 

occur in the biological system and provide test environments to speed development 

prior to pre-clinical and human trials. 
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Whilst computational studies have been developed, a physical model provides 

opportunities to further understand the biomechanics of FI to help develop and 

optimise new systems for treatment. In particular, physical models can readily 

simulate the complex physical properties of faecal matter and the physical interactions 

between this and different tissues. Furthermore, they provide a convenient means to 

evaluate new treatment concepts. Accordingly, our research concerns the 

development of a physical model to investigate the effect of ARA and sphincter 

occlusion on continence for the future development and evaluation of novel FI 

technologies. 

1.2. Project Aims & Objectives 

1.1.1. Aims 

This research aims to develop a physical model of the human defecation system to 

investigate the influence of biomechanical mechanisms associated with continence. 

1.1.2. Objectives 

1. Review relevant literature and consult clinicians to understand current clinical 

practice and define requirements of a physical simulation of the defecatory 

system 

a. Define FI, prevalence and its effect on QoL 

b. Review existing/emerging interventional treatments for FI 

c. Review existing (physical & computational) simulations of the 

defecatory system 

d. Identify and define influential biomechanics associated with 

continence and abnormalities which lead to FI 

e. Determine the clinical needs of the simulation 

2. Review methods used to fabricate complex soft models to select or develop an 

appropriate method to fabricate tissue phantom models 

a. Identify a material which represents the properties of biological tissue 

and lends itself to the fabrication of complex geometries 

b. Develop a fabrication method to recreate complex geometries of 

biological tissues 
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3. Equip the simulation with control and instrumentation hardware and software 

required to regulate continence parameters and measure fundamental system 

metrics in a laboratory setting 

4. Conduct a component-level- and global- simulation validation through cross-

analysis with the human system 

a. Conduct ex-vivo tissue testing on biological tissues represented in the 

simulation, where properties were not previously recorded 

b. Conduct in-silico testing on biomimetic materials 

c. Match the properties of artificial materials and biological tissue 

d. Match the rheological properties of simulated stool material with 

human stool 

5. Conduct an experimental investigation to determine the influence of 

continence parameters on severity of incontinence 

a. Apply an experimental matrix to observe the individual and combined 

effects of key biomechanical variables 

b. Identify correlations between biomechanical variables and severity of 

incontinence/other system parameters 

1.3. Chapter Descriptions 

Chapter 1 - Introduction 

This chapter introduces faecal incontinence as a condition; its prevalence, effect on 

quality of life and the current conservative and interventional treatments available to 

manage its symptoms. With these challenges in mind, aims & objectives for the 

project are defined. 

Chapter 2 – Literature Review 

A review of literature around faecal incontinence; description of the condition, 

history, prevalence and treatments, is conducted. Important biomechanics of the 

system are identified and corresponding values are pulled from literature; anatomical 

dimensions, forces, pressures and material properties are reported where possible. 

Comparisons are made between studies where conflicting data is presented. 

Furthermore the review compares current and novel FI devices in terms of their design 

and efficacy. Computational and physical simulations of the faecal system are also 
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reviewed to understand the current status of scientific community research and 

identify important modelling aspects which have been used previously. 

Chapter 3 – Technical Requirements, Design, Fabrication and Control of a 

Physical Simulation of the Human Defecatory System 

This chapter presents technical requirements for the conceived research questions 

defined in Chapter 2. Technical requirements are used to develop a series of 

specifications and an associated conceptual approach to the project. Tables of 

biomechanics of the biological system are compiled from literature, required for 

accurate representation of the defecation system with a physical simulation. Design 

considerations, fabrication methods and choice of control hardware and software for 

the physical simulation are documented along with a detailed overview of the 

simulation. 

Chapter 4 – Validation of the Physical Simulation 

This chapter compares the physical simulation to the human system. Firstly, by 

considering the component parts (simulated stool, rectum model, anal canal/sphincter 

complex and pelvic floor) and comparing these to corresponding aspects of the human 

system; stool viscosity, pelvic floor descent, rectum morphology and anal canal 

distensibility are among the metrics used in the cross-comparison. The individual 

parts were then brought together to compare the simulation as a whole, through 

replication of a typical biological scenario, to the human system. Component-level 

validation, and validation of the simulation as a combined entity, strengthens its 

viability as a development tool for new technologies in the management of faecal 

incontinence. 

Chapter 5 – Experimental Investigation into the Effects of Anorectal Angle and 

Sphincter Occlusion on Continence 

This chapter presents an exploratory investigation using the physical simulation 

developed and validated in the previous chapters. A protocol using the physical 

simulation aims to first investigate the effects of rectal compliance and changing ARA 

on continence and second explores the clinical relevance of the work by evaluating 

the influence of two models of a passive-assistive artificial anal sphincter (FENIX and 

FENIX Plus). This work provides the fundamental testing of the simulation for 

grounds on which its capabilities and relevance were explored. 



Chapter 1: Introduction 

6 

 

Chapter 6 – General Discussion, Conclusions and Future Work 

The research presented in this thesis has shown the development, analysis and 

application of a physical simulation of the human defecatory system. The proposed 

simulation was designed for the investigation of the effects of ARA, sphincter 

occlusion and rectal compliance on IR pressure and faecal leakage, to inform the 

design of emerging technologies in the treatment of FI. Findings from the 

investigation identify correlations between the modelled continence mechanisms and 

degree of continence. This discussion considers key features of this research regarding 

the validity of the technique, how it compares to current simulations and how it may 

be applied to the development of clinically viable technologies. Reassessment of 

research objectives and identification of potential modifications concludes this 

chapter along with a proposal of future work. 
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Chapter 2: Literature Review 

A review of literature around faecal incontinence; description of the condition, 

history, prevalence and treatments, is conducted. Important biomechanics of the 

system are identified and corresponding values are pulled from literature; anatomical 

dimensions, forces, pressures and material properties are reported where possible. 

Comparisons are made between studies where conflicting data is presented. 

Furthermore the review compares current and novel FI devices in terms of their 

design and efficacy. Computational and physical simulations of the faecal system are 

also reviewed to understand the current status of scientific community research and 

identify important modelling aspects which have been used previously. 

2.1. Faecal Continence, Incontinence & Quality of Life 

Faecal continence is the ability to voluntarily retain a bodily discharge. Continence is 

maintained by the anorectum (caudal end of the GI tract) which is also responsible for 

defecation. The continence mechanism is highly complex, it relies on the coordinated 

function of the central nervous system, GI tract and pelvic floor musculature. For 

normal defecation, three biomechanical operations coordinate: 

1. Spontaneous rectal contraction that initiates during storage (autonomic 

function) [30-32] 

2. Relaxation of the anal canal with an obtuse ARA (somatic function) [33, 34] 

3. Straining (somatic function) [35, 36] 

Failure in one of these operations can lead to incontinence, and the successful function 

of each depends on a complex interaction of a variety of nerves, muscles and 

supporting structures. Incontinence arises from anorectal disorders and the anatomical 

and physiological mechanisms must be clearly understood for successful treatment 

and restoration of continence. FI is a highly debilitating condition. Patients with more 

severe cases of FI experience substantial negative effects on lifestyle and QoL, 

through the restriction of social activity or interaction [20, 37]. This might be 

influenced by an event of soiling in public which is recognised as one of the most 

humiliating experiences a person can endure. Furthermore, patients who fail to 

respond to treatments are obliged to manage symptoms using time-consuming 

techniques, constant changing of pads, dietary modifications and constipation 

medications [38]. 
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2.1.1. Causes 

Due to the complexity of faecal continence, incontinence can rarely be attributed to a 

single factor and is often a result of multiple pathogenic mechanisms [39], brought 

about by a physical condition, with the most common causes being: 

 Problems with the rectum [40] 

 Problems with the sphincter muscles [40] 

 Nerve damage [40] 

 Other medical conditions 

Problems with the rectum generally involve two conditions, constipation and 

diarrhoea. Constipation is the leading cause of FI, it causes faecal impaction in the 

rectum which in severe cases can stretch the muscles, weakening them. Watery stools 

then leak around the compacted faeces in an incontinence episode. This is called 

overflow incontinence and occurs in people of all ages but most commonly in those 

who are elderly. Diarrhoea can be more difficult for the rectum to hold than solid 

stools and therefore, people with recurring diarrhoea can develop FI. Conditions that 

can cause recurring diarrhoea commonly include irritable bowel syndrome (IBS) 

which can also lead to scarring and weakening of the rectum, further evoking 

incontinence. 

Problems with the sphincter muscles can result in FI if they become weakened. 

Childbirth is a common cause of damage to the sphincter muscles, with further causes 

including other injuries, or damage during bowel or rectal surgery. During vaginal 

delivery, the sphincter muscles can become damaged from over-distention or through 

the use of forceps. 

Damage to the nerves connecting the brain and the rectum can mean that the body is 

unaware of stools in the rectum, making it difficult to properly control the anal 

sphincters. Neurogenic bowel dysfunction arises when there is damage to the 

autonomic nervous system leading to impairment of either sensory or motor control, 

or both. Diagnosis of neurogenic bowel dysfunction may include constipation, 

incontinence and disordered defecation. The autonomic neural pathways which 

control the rectum, colon and anal canal are disrupted as a consequence of damage or 

disease to the central nervous system [41]. 
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A number of conditions are associated with central nervous system damage and/or 

disease; these include spinal cord injury, multiple sclerosis, spinal bifida, cauda 

equina, cerebral palsy, stroke and Parkinson’s disease. While these conditions cause 

other disabilities with the patient, bowel dysfunction is also a significant burden. It 

has been suggested in previous studies that approximately half of patients with spinal 

cord injury have moderate to severe neurogenic bowel dysfunction symptoms. It has 

also been reported that around 52% of patients with multiple sclerosis will develop 

bowel symptoms [42]. Furthermore, around 34% of young patients with spinal bifida 

experience FI. 

2.1.2. Prevalence 

A limited number of prevalence studies for FI have been carried out in the past [43]. 

Among patients <65 years, prevalence of FI has been estimated at 0.7% [44] in the 

United States and 0.9% [45] in the United Kingdom. More commonly prevalence 

studies are carried out for patients >60 years. These estimate a prevalence between 

3.1% (United states) and 8.2% (New Zealand) although sample sizes tend to be small 

[46, 47] and individual studies are conducted in different demographic regions. 

However in all studies, a strong correlation between age and FI has been shown [48], 

with prevalence in the very elderly (>85 years) significantly higher. 

The majority of published work suggest a higher prevalence of FI in females than 

males, for reasons related to childbirth [49]. However one study carried out by Gut 

[20] reported that 1.4% of the global population had severe FI, and while it showed 

that incontinence was more prevalent and severe in older people, there was no 

significant difference between genders. The paper draws results from a rigorous 

questionnaire and suggests that previous and clinical studies lack attention to the male 

population. 

A more recent study by the National Institutes of Health [50] estimated that prevalence 

of FI in women living in the community world-wide lies at 6% in <40 year olds and 

increases to 15% in those who are older. Among men living in the community, FI is 

estimated at around 6-10%, with the rate increasing with age. The paper also 

addressed prevalence of FI in nursing homes, concluding that it varies widely 

depending on mental/physical ability and patient dependency, but overall prevalence 

was estimated at around 45% (ranging from 10-70%). A small number of studies 

comparing racial or ethnic groups did not find any differences. 
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It is apparent that data on prevalence and severity of FI in the overall population is 

too limited for accurate estimation of the actual statistic. However it can be learned 

that there is little difference in prevalence between men and women although 

prevalence is certainly prominent in our society, with the severity of symptoms 

increasing with age. 

2.1.3. Treatment Ladder 

Depending on the severity of FI, different managements are available. Conservative 

methods of symptom management are trialled in the initial stages of the treatment 

process and if unsuccessful, increasingly more invasive methods are employed. Figure 

2.1 demonstrates the stages of interventions in bowel management. In some instances 

it may be necessary to bypass conservative methods, particularly in the case of central 

nervous system damage where mobility and dexterity impairment may limit the 

incontinence management strategy [41]. [51] 

In the case of mild constipation, lifestyle and dietary/fluid modifications may restore 

normal function. For moderate classifications of FI, rectal interventions such as 

suppositories and enemas offer more intrusive treatment and for those whom 

conservative interventions are unsuccessful, irrigation techniques can resolve 

symptoms. Otherwise, progression up the treatment ladder leads to surgical 

interventions (such as sacral nerve stimulation) and lastly regular irrigations or 

antegrade colonic irrigation are reserved for patients with severely damaged sphincter 

muscles to manage symptoms long-term, while a stoma and colostomy bag would 

restore continence as a final resort. 

Figure 2.1 Proposed stepped approach to the treatment of bowel dysfunction; pale 

blue layers represent conservative methods, mid-tones represent minimally 

invasive methods and darker tones indicate incrementally more invasive methods 

[41]. 
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2.2. Anatomy & Biomechanics 

To investigate mechanisms associated with continence, first, the anatomy of 

fundamental parts of the human defecatory system should be understood, in healthy 

and abnormal states. Following which attention can be turned to modelling more 

complex physiology and biomechanics of the simulation platform. The physiological 

function of the fundamental components are addressed for a clearer understanding of 

the biomechanics of the defecation system and finally, biomechanical properties of 

these components are investigated and presented when possible. 

2.2.1. Anatomy 

Anatomical geometries play a central role in the development of a physical simulation 

of the human defecatory system. Biological tissues possess complex geometrical 

parameters tailored for particular functions as a part of the overall defecation system. 

Important components of the human defecation system are shown in Figure 2.2. 

The rectum, PR muscle and internal and external anal sphincters are fundamental in 

the maintenance of continence. Studies which shed light on the geometries and 

positioning of anatomical components are reviewed in detail in this section. 

Figure 2.2 Schematic overview of key physiological components of the defecation 

system. 
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2.2.1.1. Rectum 

The rectum is a muscular tube, composed of continuous longitudinal muscle which 

interconnects with underlying circular muscle [52]. These muscle layers are 

responsible for the peristalsis action which moves faecal matter along the gut. 

Posteriorly, the rectum interfaces with the rectouterine pouch and posteriorly it sits 

next to a layer of omental adipose tissue. A schematic overview of the tissues which 

interface with the rectum are shown in Figure 2.3. 

Anterior to the rectum sits the rectouterine pouch, serving as space into which the 

rectum can expand upon filling, and as such, movement of the anterior rectum is 

unconstrained. To the posterior, the rectum interfaces with the mesorectum which 

provides cushioning from the sacrum. The posterior rectum is constrained to the 

mesorectum which in turn is fixed to the sacrum and coccyx, preventing movement 

of the posterior rectal wall. 

The rectum has various anatomical features for the controlled transit of faeces through 

it, as demonstrated in Figure 2.4. 

[8] 

Figure 2.3 Schematic overview of the female pelvic cavity in the sagittal plane, 

indicating viscera within the cavity. 
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Upper and lower rectums are separated by a horizontal fold. The upper rectum is 

derived from the embryological hind gut, generally contains faeces, and can distend 

toward the peritoneal cavity. The lower part, derived from the cloaca, is surrounded 

by condensed extra peritoneal connective tissue and is generally empty in normal 

subjects, except during defecation. Where the lower part of the rectum is contracted, 

its mucous membrane is contorted into a number of folds, longitudinal in direction. 

There are also permanent transverse folds, in the empty state of the rectum, these folds 

overlap each other [8]. 

Anatomical Dimensions 

The rectum is typically 130 mm long [7] and 32 mm in diameter [53] [54]. A sensation 

of the presence of stool is usually experienced around 10 and 30 ml in the adult with 

a desire to defecate occurring at an average volume of 150ml, urgency between 150 

and 300 ml [55] and maximum distension around 400 ml [56]. The rectum contains a 

number of transverse folds, usually three. One is situated near the start of the rectum 

on the right side, a second extends inward from the left side, opposite the middle of 

the sacrum and a third (the largest) projects backward from the forepart of the rectum 

Figure 2.4 Coronal section of the rectum and anal canal, indicating the location of 

transverse rectal folds, rectal columns and internal and external anal sphincters [7]. 
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opposite the bladder. They are generally about 12 mm in width [57]. The geometry of 

the rectum is complex and highly variable between patients. 

Diseased States 

Faecal continence relies on a healthy, properly functioning rectum and associated 

tissues. Impairment to one of these tissues can lead to a host of problems including 

OD and FI. OD is a broad term of the pathophysiologic condition describing the 

inability to evacuate contents from the rectum. Common causes include descending 

perineum syndrome, rectoceles, pelvic floor dysfunction and anal stenosis [58]. 

During normal defecation, the rectum will contract, providing a low compliance tube 

through which faecal matter can easily transit. However in patients with FI, a lack of 

rectal sensation can inhibit this mechanism leading to a large rectal volumes and FI. 

2.2.1.2. Adipose Tissue 

The mesorectum is composed of adipose tissue (composed of adipocyctes) which 

connects the posterior rectum to the sacrum. It provides a soft interface between the 

two which acts to cushion the rectum, while constraining the rectum to the posterior, 

preventing anterior movement of the entire rectum when the PR muscle contracts to 

prevent the passing of faeces, also acting to enhance the ARA. 

2.2.1.3. Pelvic Floor 

The pelvic floor is a dome-shaped muscular sheet [59] mainly composed of striated 

muscle with midline permeations from the bladder, uterus and rectum, joined by 

connective tissue. The pelvic floor supports the abdominal viscera and plays an 

important role in maintaining continence between periods of evacuation of urine and 

stool. 

Pelvic floor tone is widely considered fundamental for the function of normal bowel 

behaviour. Many patients with FI have weak pelvic floor tone and consequently 

experience large rectal descents during defecation. Pelvic floor dysfunction is often 

caused by obstetric trauma, sphincter injury or damage to innervation [60] and there 

is a strong correlation between it and age [48]. Pelvic floor dysfunction entails a 

variety of conditions including OD and FI [61]. Options for pelvic floor reconstructive 

procedures are few and have poor efficacy. However, the PR muscle is a major 

component of the pelvic floor and it has been identified that poor PR function is a 
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contributing factor to the difficulties experienced by patients with weak pelvic floors. 

The pelvic floor is composed of the levator ani muscle which is subdivided into four 

muscles (pubococcygeus, ileococcygeus, coccygeus and PR), and these are attached 

peripherally to the pubic body as shown in Figure 2.5. 

The pelvic floor is complex and consists of a variety of separate muscles, each with 

their own particular function, although together, they form a muscular sheet which 

provides support to the pelvic visceral organs. Perhaps the most influential muscle in 

the maintenance of continence, the levator ani consists of the PR muscle, which forms 

a sling extends from the symphysis pubis to wrap around the posterior rectum, 

responsible for modulation of the ARA. 

It is not known whether the PR should be considered a component of the levator ani 

complex or of the external anal sphincter. The PR appears as a distinct entity from the 

majority of the levator ani and rather as a continuous part of the EAS [62]. However, 

Figure 2.5 Pelvic view of the levator ani demonstrating its four main 

components: puborectalis, pubococcygeus, iliococcygeus and coccygeus 

muscles. 
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the PR and EAS are innervated by separate nerves, suggesting evolutionary 

differences between the two muscles [63]. 

2.2.1.4. Anal Sphincters and Puborectalis Muscle 

The sphincter complex sits around the anal canal, it consists of two muscles; the 

internal anal sphincter (IAS) and external anal sphincter (EAS). These muscles apply 

pressure to the anal canal which cause occlusion, preventing the passing of bowel 

contents when it is not appropriate to do so. Both sphincters are separate and 

independent. The anus is normally closed by subconscious activity of the IAS 

although the barrier is reinforced during voluntary squeeze of the EAS. The other 

contributors to anal resting tone include the EAS, the anal mucosal folds and the PR 

muscle. 

Internal Anal Sphincter 

The IAS is a thickened extension of the circular smooth muscle layer surrounding the 

colon that contains discrete muscle bundles separated by large septa. It is primarily 

responsible for ensuring that the anal canal is closed at rest [64]. It has been estimated 

during studies that anal resting tone is generated by nerve-induced activity in the IAS 

at 45% of anal resting tone [65]. However anal resting pressure is not fixed at these 

values but varies during the day by circadian and ultradian rhythm variations 

dependant on sleep/wake cycles [62]. 

External Anal Sphincter 

The external anal sphincter (EAS) is composed of superficial blends with the PR [8]. 

In men, this laminar pattern is preserved around the sphincter circumference. In 

women however, the anterior portion of the external sphincter is a single mass of 

muscle. External sphincter fibres are small, circumferentially oriented and separated 

by connective tissue [66]. 

Though resting sphincter tone is predominantly attributed to the IAS, studies under 

general anesthesia or after pudendal nerve block suggest the external anal sphincter 

generally accounts for 25-50% of resting anal tone [62]. When there is an urge to 

defecate and it is not appropriate to do so, the EAS contracts to augment anal tone, 

preserving continence. This response may be voluntary or it may be induced by 
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increased intra-abdominal (IA) pressure. Conversely, the EAS relaxes during 

defecation. 

Puborectalis Muscle 

The PR muscle (indicated in Figure 2.5) is a U-shaped sling and component of the 

levator ani muscle of the pelvic floor, it extends from the pubic bone, past the 

urogenital hiatus and around the anal canal with a primary function to maintain faecal 

continence. When it contracts, it tightens against the anorectum towards the anterior, 

accordingly enhancing the ARA. Some fibres of the PR muscle form another U-

shaped sling which interface with the urethra, important in the preservation of urinary 

continence. 

Anatomical Dimensions 

The anatomy of the musculature surrounding the anal canal at different points along 

its length can be revealed using MRI and an endo-anal coil to obtain images in the 

transverse plane, Figure 2.6. Slice A) shows the lowest part of the EAS, the two halves 

of which are embedded within the ischioanal space, slice B) shows visible bundles of 

longitudinal muscle between the two folds of the EAS, the two anterior halves of the 

EAS are connected, in slice C) anterior EAS is visible and forms a circular profile, 

while the posterior EAS has a thickened protrusion in contact with the urogenital 

diaphragm. Finally, visible in slice D), fibres of the PR muscle extend anteriorly to 

the urogenital diaphragm [67]. 

[67] 
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Still images from the magnetic resonance (MRI) analysis demonstrate the anal 

sphincters, PR muscle and surrounding structures. Towards the distal end of the EAS, 

posteriorly it is connected to the anococcygeal body and towards the caudal end, 

anterior fibres connect to superficial perineal muscle of the urogenital diaphragm [67]. 

Using ultrasonography, the lengths (along the proximal-distal axis of the anal canal) 

of the IAS, EAS and PR [1] have been measured along with the circumferential 

thickness of the PR [2] and EAS [3]. Another study used computerised tomography 

(CT) defecography to measure the morphological parameters of the PR muscle, this 

revealed that the PR is 147.6 mm in length at rest, it contracts to 127 mm during 

squeeze and extends to 189.8 mm during defecation [68]. These findings combined 

with length dimensions are summarised in Table 2.1. 

Figure 2.6 Top; schematic of the musculature surrounding the anal canal and 

Bottom; slices through the anal canal at the above locations, showing: A) Lowest 

part of the EAS; B) Slice slightly cranial to A; C) Slice slightly cranial to B and D) 

Slice slightly cranial to C [67]. 
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2.2.1.5. Anorectum and Anal Canal 

Continence is maintained by the structural and functional integrity of the anorectal 

unit. As a consequence, abnormalities of the anorectal unit often lead to FI. The 

anorectum consists of the distal portion of the rectum and the anal canal. The anal 

canal is a muscular tube, with various features to identify the composition of bowel 

contents and prevent evacuation when not appropriate to do so, Figure 2.7. 

The anal canal is surrounded by the IAS, supported by the Levator ani and encircled 

at its base by the EAS. In an empty state, it presents the appearance of a slit in the 

sagittal plane [69]. Posterior to the anal canal is a mass of muscular and fibrous tissue 

named the anococcygeal body. Anteriorly in the male, the anococcygeal body is 

Figure 2.7 Anatomy of the anorectum and anal canal; showing the anal columns 

and anal valves, which help provide a tight seal to prevent the passing of bowel 

contents. 

Table 2.1 Summary of reported anal sphincter and Puborectalis length and 

thickness measurements: 

Muscle Measurement Anterior Posterior Patient details 

EAS Length (mm) [1] 22.0 32.0 Female 

Thickness (mm) [2] 4.8 4.8 Female 

(Sphincter damage) 

IAS Length (mm) [1] 20.7 30.2 Female 

Thickness (mm) [3] 1.2 1.8 Mixed gender 
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separated from the urethra by connective tissue whereas in the female, it is separated 

from the vagina by a mass of muscular and fibrous tissue named the perineal body.  

Anatomical Dimensions 

The anal canal is a muscular tube, it forms an angle with the lower part of the rectum, 

named the ARA. The anal canal measures from 2.5 to 4 cm in length [8] and 3cm in 

diameter when distended [69], with a basal diameter of 19mm [70]. The axis of the 

rectum forms almost a right angle with thee axis of the rectum. It has been established 

that the anal canal is an antero-posterior slit in the resting state [69]. 

2.2.2. System Biomechanics 

Physiological parameters of the defecation system include forces and pressures 

applied by system components on one another to regulate the passing of bowel 

content. Some of the important physiological interactions are detailed in this section, 

to aid the design of actuation mechanisms of components of the physical simulation. 

2.2.2.1. Mucosal Folds 

The anal mucosal folds, together with expansive anal vascular cushions creates a tight 

seal. These barriers are further enhanced by the PR muscle which provides a forward 

pull and reinforces the ARA. Anal endovascular cushions consist of blood-filled 

vascular tissue of the anal mucosa that completely fill the anal orifice following 

contraction of the IAS, they exert pressures of 9mmHg and contribute 10 to 20 % of 

resting anal pressure [71]. It has been suggested that bowel contents are sensed 

periodically by anorectal sampling [72]. This process is the relaxation of the IAS to 

allow the stool contents from the rectum to come into contact with specialized sensory 

organs in the upper anal canal. The likely role of anal sensation is to discriminate 

between flatus and faeces. 

2.2.2.2. Anal Sphincters and Puborectalis Muscle 

It has been shown that the IAS and EAS contribute toward the pressures in the anal 

canal although the role of the PR in pressure generation is poorly understood. It has 

been reported however that the PR is responsible for the closure of the cranial part of 

the anal canal [2, 73]. The anal canal ‘high pressure zone’ is 39+/-1mm in length and 

the IAS, EAS and PR have been clearly visualised along its length to investigate their 

contribution towards the pressure profile. The pressure profiles through the anal canal 
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at rest and during squeeze are shown in Figure 2.8. It has been suggested that the 

critical level of anorecto-puborectalis pressure below which incontinence occurs 

seems to be about 18 mm Hg [74]. [2] 

As can be seen from this pressure profile, the IAS, EAS and PR muscles all contribute 

toward closure of the anal canal during rest. Upon squeezing, the PR muscle 

contributes to the pressure increase in the proximal part of the anal canal and the EAS 

to the distal anal canal. This suggests that the PR squeeze-related increase in anal 

canal pressure might be important in the maintenance of continence. 

At rest, the PR muscle produces an angle between the anal canal and axis of the 

rectum, causing passive occlusion of the anorectum and resistance to bowel contents.  

2.2.2.3. Anorectal Angle 

The presence of an acute ARA has been considered important in maintaining 

continence [15, 16]. During voluntary ‘squeeze’ the PR muscle tightens against the 

Figure 2.8 Top; anal canal pressure profile during the manometer pull through, all 

pressures during squeeze are far greater than at rest and the locations of the IAS, 

EAS and PR are shown. Bottom; trace of an ultrasound image showing the location 

of the muscles which correspond to different sections of the pressure profile [2]. 
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anorectal junction to enhance the ARA and increase resistance to faecal leakage and 

the ARA becomes more acute, whereas during defecation, the angle becomes more 

obtuse to allow easy passage to bowel contents. 

Dynamic proctography is a radiographic procedure widely used in the evaluation of 

pelvic floor function. The ARA is one parameter usually quantified during this 

examination, used among other observations as an indicator of a factor leading to 

incontinence. Accuracy and reproducibility of the ARA measurement has been 

criticised in the past due to the high variability of the anal canal between patients and 

the obscurity of how it should be defined. Two methods commonly used to determine 

the ARA area demonstrated in Figure 2.9. [75] 

The ARA is highly variable between patients and its definition is often disputed. 

Numerous studies have been compared in order to determine the most consistent 

values from a range of sources, particularly for incontinent and healthy subjects during 

states of rest and squeeze. The standard procedure, outlined in the journal of 

neurogastroenterology and motility [76], is to deliver a barium contrast to the rectum 

and with the patient seated, dynamic radiology is performed. Several literature studies 

make use of this imaging technique to observe the reproducibility of measuring the 

ARA. On study carried out by Mahieu et al. [77] imaged 56 normal healthy patients, 

of which 22 were men and 34 were women with a combined mean age of 47.5 years 

(range, 17-80 years), representing a demographic ARA value for healthy subjects. In 

Figure 2.9 Method A; The posterior rectal wall (line A) is plotted based on the 

impression of the puborectalis muscle and the tangential of the posterior rectal wall.  

Method B; The posterior rectal wall (line B) is plotted parallel to the central 

longitudinal axis, 1 = ARA; 2 = perineal descent; P = pubic symphysis; C = coccyx 

[75]. 

Method A Method B 
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another study conducted by Felt-Bersma et al. [78], using the standard protocol, 

defecographic examinations were carried out on 92 patients (30 of which had 

symptoms of FI). The ARA was not seen to be influenced by gender or age. 

ARA values have also been measured using the standard radiology protocol to observe 

differences between methods of ARA measurement (methods ‘A’ and ‘B’ described 

above). In a study conducted by Shorvon et al. [79], 47 healthy young volunteers 

underwent examination to determine the normal range. The study reported a broad 

range of ARA values being observed despite the volunteers being healthy, with a 

significantly more acute ARA values being observed using ‘method A’ over ‘method 

B’ at rest. 

Furthermore, the standard procedure was also adhered to observe differences in ARA 

between continent (N=69) subjects and incontinent (N=82) patients in a study carried 

out by Piloni et al. [9]. It was demonstrated that incontinence resulted in a significantly 

more obtuse ARA during states of both ‘rest’ and ‘squeeze’. 

Novel methods to image the ARA have also been explored. In a study conducted by 

Barkel et al. [80], to determine the influence of different body positions on the ARA, 

a novel method of imaging the anorectum was developed in which a cylindrical 

balloon was placed in the anorectum and anal canal and filled with a fluid. A gamma 

camera was then used to image the angulation of the balloon during states of ‘rest’, 

‘squeeze’ and ‘defecation’. This revealed that ‘sitting’ produces the most obtuse ARA 

compare with ‘lying’ or ‘standing’, and therefore of the positions tested, provides the 

least resistance to the passing of faeces. 
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A summary of the values obtained from the studies discussed are presented in Table 

2.2. 

Comparison of the results point to similarities but a high level of variation depending 

on the experimental method and definition of ARA. As has been recognised [76], the 

standard procedure for measuring ARA values is to use the definition from method 

A. The majority of studies practise this method and it will be taken as the preferred 

measurement in this thesis. 

Table 2.2 Summary of ARA values obtained from separate studies, using a 

variety of protocols (balloon topography & dynamic radiology) and methods of 

ARA measurement: 

Study Participants Test 

protocol 

ARA 

definition 

Other 

factors 

 Mean 

(°) 

SD 

(°) 

Range 

(°) 

Barkel, 

D. C. et 

al. 

(1988) 

13 healthy 

participants. 

Seven men, 

six women. 

Age 25 to 61 

years (mean 

35). 

Balloon 

topography, 

balloon 

filled to 

assume 

rectum 

Method A Lying Rest 102 18 - 

Squeeze 81 19 - 

Sitting Rest 119 17 - 

Squeeze 87 15 - 

Standing Rest 107 11 - 

Squeeze 88 6 - 

Mahieu, 

P. et al. 

(1984) 

56 healthy 

patients, 22 

men, 34 

women. Age 

17 – 80 years 

(mean 47.5). 

Standard 

dynamic 

radiology 

Method A - Rest 92 - - 

Squeeze - - - 

Felt-

Bersma, 

R. J. F. 

et al. 

(1990) 

30 mixed 

gender 

patients with 

faecal 

incontinence. 

Age unknown. 

Standard 

dynamic 

radiology 

Method A - Rest 104 17  

 Squeeze - - - 

Method B - Rest 124 18  

Squeeze - - - 

Shorvon, 

P. J. et 

al. 

(1989) 

48 healthy 

subjects. 23 

women mean 

age 21. 25 

men mean age 

26. 

Standard 

dynamic 

radiology 

Method A Men Rest 96 17 61 

Squeeze 80 16 71 

Women Rest 95 16 64 

Squeeze 71 12 41 

Method B Men Rest 118 12 49 

Squeeze 113 17 70 

Piloni, P. 

et al. 

(1999) 

69 continent 

and 82 

incontinent 

subjects. 

Approximately 

half men, half 

women. Age 

56.5±10.22 

and 59.3±9.7 

years 

respectively. 

Standard 

dynamic 

radiology 

Method A Continent Rest 104.5 10.3 - 

Squeeze 84.5 14.2 - 

Incontinent Rest 116.2 23.6 - 

Squeeze 95.1 20.1 - 
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There is notable variation between studies, depending on the population, investigative 

procedure and method for measuring the ARA. While Felt-Bersma and Shorvon have 

both demonstrated a prominent variation depending of on the method for ARA 

measurement, other factors also play a cause; Barkel demonstrated that depending on 

whether the patient was sitting, lying or standing, there could be substantial difference 

in the values observed. The review aimed to investigate the variation in ARA during 

rest and squeeze pressures. During squeeze, the pelvic floor muscles contract 

enhancing the angulation of the anorectum as seen across all studies, evident by a 

decrease in the ARA upon squeezing. FI appears to have a prominent impact on the 

values of ARA recoded, evident in an increase at rest for healthy subjects from 92° 

(Mahieu) and 95.5° (Shorvon) to 104° (Felt-Bersma) and 116.2° (Piloni). 

Demonstrating an increasing in the resting ARA of around 10-15° due to FI. ARAs 

observed during voluntary squeeze appear to be affected in a similar way, with healthy 

subjects producing an ARA during squeeze of 87° (Barkel) and 75.5° (Shorvon) 

compared with 95.1° observed for FI patients by Piloni et al. This suggests that the FI 

patients included in the study still have pelvic floor tone which can enhance the 

angulation of the anorectum, though perhaps not sufficiently to maintain continence. 

Little variation is observed between genders at rest although Shorven et al observed a 

more acute ARA in women during squeeze, however it is generally thought that 

gender and age are not factors which strongly effect the ARA [78]. 

Despite similarities in overall trends observed across the studies between healthy and 

FI subjects, there are still differences between reported values. This could be due to 

various reasons such as a small sample size, or the observer’s discretion. For the 

purpose of this thesis, values from Shorvon and Piloni are taken for healthy and FI 

subjects, due to their large sample sizes compared with the other studies. 

2.2.2.4. Rectal Compliance 

Rectal compliance is an aspect of anorectal function. The volume of fluid inside the 

rectum is incrementally increased and values of volume and corresponding rectal 

pressure are taken at certain physiological events; when the subject first experiences 

rectal sensation, upon the feeling of urge and the maximum tolerable volume. The 

measurement of rectal compliance is generally performed with a latex balloon filled 

with water. There are varied opinions in literature on the most accurate procedure, 

depending on the size and elasticity of the balloon [81-83]. However the values 
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reported in this review are from a study which uses a routine rectal compliance 

measurement with a compliant latex balloon in healthy subjects and patients referred 

for anorectal function evaluation [18] (discussed below). 

A person’s inability to detect faecal matter within the rectum negatively impacts on 

their ability to retain bowel contents, evident from observation of the volume at first 

sensation with an increase from 73 ml in healthy subjects to 94 ml in FI patients, also 

correlating in a slight increase in rectal pressure between the two subject groups. The 

variation in rectal pressures between the two groups becomes more pronounced as the 

rectal volume increases, upon sensing ‘urge’, in healthy subjects mean rectal pressures 

are observed of 29 mmHg whereas in FI patients mean pressures are observed of 34 

mm Hg. This increase in pressure could mean that an FI patient has less time to find 

an appropriate place to evacuate their bowels compared with a healthy subject, while 

the ability for an FI patient to overcome rectal pressure and retain the contents of their 

bowel is probably much worse. In patients with rectoceles, but without FI, much larger 

maximum tolerable rectal volumes are observed, evident in an increase in volume 

from a mean of 230 ml in healthy subjects to 251 ml in patients with rectoceles. 

Interestingly this volume increase is observed without a corresponding increase in 

pressure, with a mean of 29 mmHg recorded in both cases. This suggests that the 

addition of a rectocele essentially reduces the elasticity of the rectum, requiring a 

larger volume to achieve equivalent pressures. 

2.2.3. Mechanical Properties 

Where possible, the mechanical properties of important components of the human 

defecatory system are identified from literature, to inform the material selection for 

biological tissue phantoms. 

2.2.3.1. Rectum 

Several studies have addressed the tensile properties of porcine and human rectal 

tissue. One study conducted by Rubod et al. [84] produced test specimens from 5 fresh 

female cadavers, uniaxial tensile data was obtained through cyclic loading the 

specimens at a constant strain rate of 20mm/s at an ambient temperature of 20°C. 8 

samples were taken from each specimen, both in the longitudinal and transverse 

orientations and at the posterior and anterior portions to capture the global properties 
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of the tissue organ. The test area of each sample measured 15mm in length and 4mm 

in width. 

Another study conducted by Christensen et al. [85] compared the tensile properties of 

human and porcine rectum tissue. During the study, approximately 300mm of porcine 

bowel tissue was obtained immediately after slaughter, extending from the anus to 

sigmoid colon. Similar sized human bowel tissue samples were also obtained from a 

commercial tissue donation centre from 5 males (mean age 70.8 years) and 6 females 

(mean age 64.2 years). All samples were stored at -20°C prior to mechanical testing. 

Four samples measuring 50mm in length and 10mm in width were taken from each 

rectum sample in total, two orientated in the transverse direction to muscle fibres and 

two longitudinal. Prior to tensile testing, samples were pre-conditioned using ten 

cycles of 20% strain. Each sample was then loaded to failure at a constant strain rate 

of 0.5mm/s. The study concluded that human tissue was generally stronger, stiffer, 

and less compliant than porcine tissue. 

Finally in a study conducted by Qiao et al. [86], tensile specimens were taken from 

the porcine rectum wall in the transverse, longitudinal and 45° inclined orientations. 

The testing area of the specimens measured 1mm in length and 1mm in width. Prior 

to testing, 5 preconditioning cycles were carried out up to a strain of 40% before 

specimens were loaded to failure at a constant rate of 6mm/min. 

The stress-strain profiles obtained from these studies are compared in Figure 2.10.  

Figure 2.10 Comparison of rectum tensile data from separate studies. 
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While the loading profiles observed by Christenesen and Qiao are comparable, the 

loading profile observed by Rubod shows a much steeper gradient, demonstrating a 

greater material stiffness. Although omitted from Figure 2.10 for clarity, in the 

investigation conducted by Rubod, rectal tissue ruptured at a mean of around 25% 

strain, much lower than the rupture strains observed by Christensen (60%) and Qiao 

(90%). This is probably due to a faster loading rate used by Rubod (20mm/s) 

compared to tests conducted by Christensen (0.5mm/s) and Qiao (0.1mm/s). Due to 

the viscoelasticity of tissue, its loading profile is characterised by hysteresis, as visible 

in greater material stiffness observed for larger displacements, and this also attributes 

greater stiffness to the tissue when loaded at increased strain rates. The rectum model 

used in the physical simulation is expected to undergo similar strain rates to those 

employed by Christensen and Qiao. Given that the tests by Christensen et al. were 

conducted on human rectal tissue and the sample area was larger (therefore spanning 

muscle fibres and connective tissues), results from this particular study will be used 

within this thesis. 

2.2.3.2. Adipose Tissue 

Very few studies have been carried out on the tensile properties of adipose fatty tissue. 

The study described presents findings from a fairly large range of data, and will be 

considered a reliable representation of the tissues mechanical behaviour. 

In a study carried out by Alkhouli et al. [87], adipose tissue was obtained from 44 

patients of mixed gender undergoing surgery. Samples were taken which varied from 

8-17mm in length, 3-6.5mm in width and 1.5-3.5mm in thickness. They were then 

attached to paddles with a superglue gel and immersed in saline solution in preparation 

for tensile loading at a rate of 0.3mm/min. Results from the study are shown in Figure 

2.11. 

[87] 
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2.3. Interventional Treatments for Faecal Incontinence 

Typically, the treatment process for FI is divided into categories based on severity of 

the symptoms and degree of success from previous treatment attempts. 

2.3.1. Irrigation 

Transanal irrigation (TAI) of the rectum and colon became established in the UK as 

an important player of the treatment schedule for many patients with bowel symptoms. 

It was initially introduced as a treatment for patients with neurological illnesses which 

caused bowel dysfunction although it has increasingly become considered for use in 

patients with functional disorders. TAI assists the evacuation of faeces from the bowel 

by introducing water via the anus. Regular use of TAI can help re-establish controlled 

bowel function which enables users to develop a consistent bowel routine. 

TAI can be used to manage long-term FI and/or constipation. It is generally used 

where other treatments have failed and consequently, is often reserved for those with 

more severe/neurogenic bowel dysfunction. Neurogenic bowel dysfunction is often 

diagnosed from birth as an underlying burden of a larger scale neurological disorder 

and therefore should be managed with the patient from an early age. The Peristeen 

TAI system was introduced in Our Lady’s Hospital (Dublin, 2011) where the 

colorectal department evaluated it to determine patient satisfaction. Of the 89 children 

evaluated, 75% still use Peristeen, 19% do not and a further 6% are scheduled for re-

training. Reasons for discontinuation include returning to another irrigation system 

and surgical intervention [88]. 

Figure 2.11 Tensile properties of adipose tissue [87]. 
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2.3.2. Antegrade Continence Enema 

The antegrade continence enema (ACE) procedure was first introduced as a technique 

to control faecal leakage in children [89]. An appendix is used to access the caecum 

creating a catheterisable channel though which antegrade enemas could be given. 

Technical modifications have meant that it is no longer necessary to reverse the 

appendix and introduction of laparoscopic technique has simplified it further. The 

ACE procedure has had consistent success in paediatric practice and its indication has 

been extended to include adults with FI [90]. Patients who are resistive to biofeedback 

or conventional surgery have had an underlying rectal evacuation disorder as a result 

of both sensory and motor disturbances within the anorectal complex. The ACE 

procedure aims at improving symptoms of disturbed evacuation and can also improve 

FI by regular colonic emptying. 

There is currently limited data on the experience of the ACE procedure in adults [91]. 

Short term results have shown that it has been successful in 40-60% of patients. 

However, although longer term results have be acceptable [92], they have not been 

without complications, the biggest being compliance of patients. The most common 

side effect of the procedure is leakage of material from the stoma. However, with good 

patient education, results are much more satisfactory and the ACE has offered patients 

considerable improvement of symptoms and QoL [93]. 

2.3.3. Anal Plugs 

Anal plugs have been used to reduce the loss of stool. The anal plug was first 

introduced in 1986 and was adapted from a stoma plug [94]. Coloplast has since 

modified the design of the device with the Peristeen® Anal Plug. It consists of a cup-

shaped foam plug with a gauze string for removal. The plug expands upon insertion 

to fit the contour of the lower rectum, effectively plugging the anus and preventing 

faecal leakage. Users are able to wear the device for up to 12 hours. Previous studies 

have shown that although it may be useful in the containment of faecal leakage, it is 

poorly tolerated in many patients [95-97]. These studies concluded that the plug was 

not suitable for permanent use, mainly due to discomfort. But it offers good protection 

against incontinence episodes. 
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2.3.4. Anterior Sphincteroplasty 

Anterior sphincteroplasty is a surgical procedure in which scar tissue in the anterior 

anal sphincter is divided before the muscle is repaired by overlapping the healthy 

tissue. Statistical analysis of the procedure has been carried out in a previous study; 

of 120 (median age of 58) patients who underwent the procedure, 23% encountered a 

postoperative complication, 21% of which experienced wound infection and the 

majority required further surgery to treat their complication. Follow-up results 

(median time interval of 111 months) revealed that of the patients operated on, 60% 

experienced a moderate to excellent outcome and 40% experienced a poor outcome, 

18% of which underwent additional surgery [98]. 

2.3.5. Graciloplasty 

Stimulated graciloplasty involves creating a new anal sphincter using transposed 

Gracilis muscle. Electrodes are implanted in the transposed muscle and connected to 

an electric pulse generator implanted in the abdominal wall. A continuous current 

from the pulse generator alters the character of the Gracilis muscle fibres, causing 

them to contract to provide continence, or relax during defecation. A systematic 

review of 37 studies of the graciloplasty procedure found that between 42% and 85% 

of patients became continent. Complications with the procedure arose however, in 

keeping with its poor safety record. The most common complication was wound 

infection. In a case series which included 121 patients, serious infection which needed 

hospitalisation was reported in 15%. In one study of 48 patients, 48% had technical 

problems with the pulse generator leading to hospitalisation. In a comparative study 

of 48 patients, 69% had evacuation difficulties or pain following graciloplasty, 

requiring hospitalisation. In a case series of 123 patients, 2% had deep vein thrombosis 

and one died following a pulmonary embolism 3 weeks after surgery [99]. 

2.3.6. Parks Post-Anal Repair 

A number of operations were developed in the 20th century to provide a treatment 

solution to patients whose anal sphincter was intact, but damaged or weak. One 

alternative strategy is the post-anal repair operation for idiopathic FI, designed to 

correct an overly obtuse ARA [11] by reducing the angulation [100, 101]. Devised in 

1975 the procedure used sutures to restore the ARA. Despite a good success being 

observed in some patients, other procedures failed due to the limited properties of 
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materials available, inadequate modification to the ARA and poor patient cooperation 

with post-operative care [11]. 

2.3.7. Sacral Nerve Stimulation 

In patients with a weak but structurally intact sphincter, it may be possible to alter 

sphincter and bowel behaviour using the surrounding nerves and muscles. Sacral 

nerve stimulation (SNS) involves applying an electric current to one of the sacral 

nerves via an electrode placed through the corresponding sacral foramen. Commonly, 

the procedure is tested in each patient over a 2- to 3-week period, with a temporary 

percutaneous peripheral nerve electrode attached to an external stimulator. If 

significant benefit is achieved, then the permanent implantable pulse generator can be 

implanted. The procedure benefits over half of patients reviewed. In patients that 

received the permanent implant, 41-75% experienced complete continence and 75-

100% of patients experienced a 50% decrease in number of incontinence episodes 

[102]. Of the patients that received permanent implants, 2% became infected, 5% 

experienced lead migration and 4% experienced pain [102]. 

2.3.8. Faecal Incontinence Devices 

AAS devices based on a circular cuff design, as used to treat urinary incontinence [21, 

22], have been applied to the treatment of FI in animals and humans. In early reports 

they were shown to produce intestinal ischaemia at operating pressures which 

maintain continence [24]. Due to a non-compliant implant-tissue interface, Artificial 

Anal Sphincter (AAS) devices can cause crenation of the anal canal tissue, leading to 

high localised pressure zones and tissue damage. The physiological structure of the 

bowel differs greatly from the urethra, and as a result it is less tolerant to ischaemia 

than the urethra [103]. Early developments of the AAS showed poor conformity with 

the bowel, this heterogeneous application of pressure has the potential to create 

localized high-pressure zones which may damage the bowel if it crenates into these 

areas [54, 103]. 

Large sphincter pressures from AAS devices can lead to tissue necrosis and 

abnormally large rectal volumes. In many cases with the implantation of an AAS, it 

is not uncommon for patients with prior history of FI to become constipated [104]. 

While it is widely accepted that the anal sphincters play a fundamental role in the 

maintenance of continence, their contribution in coordination with other continence 
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mechanisms are poorly understood. Studies have shown that the EAS is only ‘active’ 

during sensations of ‘urge’ or during ‘squeeze’, despite this, current AAS devices 

apply pressure to the anal canal at all times between periods of expulsion [105]. 

Despite its importance in maintaining continence, few FI devices aim to assist the 

modulation of the ARA. Although studies have shown that the ARA is effective in 

obstructing the passage of faeces, there is little understanding on its contribution to 

continence [106]. Currently only a small number of surgical treatments are available 

for patients with severe FI and these focus on augmentation of the anal sphincter. 

2.3.8.1. Passive Artificial Anal Sphincter 

The FENIX® Continence Restoration System is a relatively new commercially 

available passive-assistive medical device to treat FI. It consists of a ring of magnetic 

beads which sit around the anal canal. The beads pop open during defecation, enabling 

the device to expand radially to reduce anal canal occlusion and resistance to passing 

faeces.  It assists the sphincter muscles, keeping them closed at rest. Early studies on 

a few patients suggest that this device functions as intended but clinical data is limited 

and more studies are needed [107]. Benefits of the device are that it is passive and 

internal and does not require manual operation by the patient. However the system 

was first implanted in 2008 and long term clinical data is non-existent. It is unclear 

how the device might perform over a longer period of time, particularly in younger 

patients. Several devices have failed due to device migration by erosion through the 

rectum and infection of surrounding tissue. 

2.3.8.2. Active Artificial Anal Sphincter 

Numerous studies have been carried out into the development of AASs. Inflatable 

AAS designs [105, 108, 109] consist of 3 components; an inflatable cuff, fluid 

reservoir and a pump. The inflatable cuff is positioned around the anal canal, and its 

internal pressure is regulated by a pump, aiming to mimic pressures generated from 

the natural function of the sphincter muscles. When fluid is displaced from the cuff, 

it relaxes the pressure applied to the anal canal and defecation occurs. The balloon 

reservoir is positioned subcutaneously such that it has a sigmoid pressure-volume 

relationship and provides the hydraulic pressure to drive the system, while a constant 

maximum pressure is maintained in the system irrespective of inflation volume. The 

control pump provides the energy to transfer fluid between the sphincter component 
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and balloon reservoir. Other non-inflatable AAS devices have also been developed, 

making use of novel actuation methods [110], with a reduced number of components 

in an attempt to and increase the longevity of the device. An overview of a variety of 

AAS systems reported in literature are visible in Figure 2.12. [105, 108-110] 

Acticon Neosphincter 

Originally the American Medical Systems urinary sphincter was adapted for use as an 

artificial bowel sphincter. Inspired by this, the Acticon Neosphincter AAS has now 

been developed [105]. This AAS has three components: an inflatable cuff (the 

sphincter), a pressure regulating balloon and a control pump [111]. The device 

actively prevents incontinence and can be implanted in patients with no anal sphincter 

control. However it requires a complex surgical procedure and many devices failed 

due to infection and by causing erosion to the anal sphincter. Furthermore the system 

Figure 2.12 Images of AAS devices displaying; 1) Acticon Neosphincter[105]; 2) 

German Artificial Sphincter System[108]; 3) Novel Prosthetic Anal Sphincter 

[109] and 4) SMA Artificial Anal Sphincter [110] (in ‘A’: non-actuated closed 

state and ‘B’: actuated open state). 
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includes external components and requires manual operation by the patient. Studies 

have shown success rates (for people with a functioning device) of 65%, at a mean 

follow up of 26.5 months [112]. 

German Artificial Sphincter System 

Operation of the German artificial sphincter system is controlled by fluid which is 

pumped into the inflatable cuff using a micro piezo-electric pump, capable of applying 

a pressure of 120mmHg. Due to the use of an electric pump, the device eliminates a 

physical human input. This reduces operation time and effort required for defecation 

[113]. Due to the inclusion of fluid transfer mechanisms and electric components, this 

device is more complex and has an increased risk of failure and increased manufacture 

costs. 

Novel Prosthetic Anal Sphincter 

The prosthetic anal sphincter [114] consists of a fluid filled cuff element that is placed 

around the bowel at the level of the anorectal junction, to augment the action of the 

anal sphincters. This differs from other AAS designs by using a novel cuff design to 

reduce restriction of colonic blood flow [115]. The fluid filled cuff (sphincter 

component) consists of an inflatable linear expander and a soft gel-filled pillow, when 

the expander is inflated, it flattens the bowel against the pillow to cause angulation 

(Figure 2.12) in addition to circumferential stenosis. 

SMA Artificial Anal Sphincter 

An SMA AAS concept has been developed [116]. The device consists of two SMA’s 

attached to flexible heaters which promote actuation. Both are secured to hinges 

located at either end, allowing the artificial sphincter to clamp the anal canal when 

unactuated and form a circular profile when heated, releasing the anal canal and 

allowing bowel evacuation. The heaters are activated wirelessly using a 

transcutaneous energy transmission system [117, 118] (eliminating the need for 

percutaneous connections) and heat the SMA’s to 55° (their phase transformation 

completion temperature). Silicone pads surround the SMA’s and heaters to reduce 

pressure applied to the anal canal and help prevent tissue damage.  
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Transcutaneous Power Delivery System Artificial Anal Sphincter [119] 

This AAS system uses a transcutaneous power delivery system to transfer energy by 

means of electromagnetic induction between two coils placed face-to-face on either 

side of the abdomen. The transcutaneous power delivery system AAS makes use of a 

reservoir, front cuff, sensor cuff and micro-pump. There are two sensors to detect the 

pressure of the anal canal. One measures pressure of the front cuff (clamping the 

rectum) and the other measures pressure of the rectum. This allows the system to vary 

internal pressure of the artificial sphincter and consequently, the state of continence. 

Advantages of this system are that it monitors pressure within the anal canal to adjust 

cuff pressure to that required and notifies the user when to start and stop defecation. 

2.3.9. Pelvic Floor Mesh Support 

The use of meshes in the application of female pelvic floor reconstructive surgery has 

given rise to numerous complications, usually leading to surgical revisions or 

removals [120]. Pelvic floor meshes generally fail due to the material not being 

flexible and compliant. The TOPAS system consists of a minimally invasive self-

fixating mesh sling which is implanted and bonds to the pelvic floor providing 

reinforcement. This system aims to enhance the ARA and reduce incontinence 

episodes in women with moderate FI symptoms. A study which included 29 women 

implanted with the TOPAS system revealed that the number of incontinence episodes 

per week decreased from 6.9 prior to the treatment to 3.5 at 24 months follow-up. The 

most common adverse effects of the treatment were urinary incontinence in 6 cases, 

worsening FI in 2 cases and constipation in 2 cases. No device related erosions or 

extrusions were reported [121]. 

2.4. Physiological Organ Simulators 

While organ simulations and bio-reactors have been developed for a greater 

understanding of the biomechanics of the human system, very few models aim to 

replicate the defecatory system and mechanisms associated with continence. However 

a small number of physiological models of the pelvic floor and components of the 

pelvic cavity have been developed and these are detailed in this review. 
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2.4.1. Computational Models of the Pelvic Floor 

Finite element models of the pelvic floor have been developed in attempts to 

understand its function in the urinary and faecal continence mechanisms. One model 

has been developed to investigate the effect of stool consistency on continence [122]. 

While another looks at the effect of damaged ligaments on stress urinary incontinence 

[123]. Computational models have also been developed to characterise the global 

behaviour of the pelvic floor muscles [124-128]. However, there are large quantitative 

differences between the models and parameters used. 

2.4.1.1. Pelvic Organs and Pelvic Floor Musculature 

One study conducted by Brandão et al. [129] develops a numerical simulation which 

models the voluntary contraction of the pelvic floor muscles to evaluate the resulting 

displacements of the muscles along with pelvic organs. Structures were segmented 

from MRI images taken of a young female volunteer before material properties were 

attributed from a variety of constitutive models. Using a FE method, displacements 

produced in the model, Figure 2.13, were compared to those measured from MRI 

images.  

There were conflicting levels of agreement between the computational study and 

human measurements, movement of the pelvic floor musculature in the anterior 

direction was comparable between the two, evident from 5.2 mm observed in the 

numerical model compared with 5 mm in the human system. However there was 

Figure 2.13 Morphology of the pelvic organs and musculature showing a) 

magnitude values from FEA nodal displacements of the pelvic organs and pelvic 

floor muscles and b) schematic of variation in pelvic organ position from rest 

(solid, black) to their contraction (dashed, red) [129]. 
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substantial difference in the magnitude of movement observed in the vertical 

direction, with a movement of 6.6 mm observed in the simulation and 2.5 mm in the 

human system. The study hypothesises that this is due to a difference in intra-

abdominal pressure which is assumed a baseline value throughout the study.  

2.4.1.2. Stool Consistency 

A computational model was developed to investigate the effect of stool consistency 

on faecal leakage [130]. A FE model was developed which included influential 

structures in maintaining continence (rectum, vagina, uterus, bladder, levator ani and 

sphincter muscles), material properties were applied using constitutive models and a 

closing pressure of 88 mmHg was applied to the IAS to simulate anal resting tone. 

During tests IR pressure was incrementally increased under two different stool 

consistencies (solid and a semi-solid). As the intra-abdominal pressure increased the 

resting anorectal pressure could no longer retain stool in the rectum and leakage 

occurred. Results from the study showed that the minimum intra-abdominal pressure 

that resulted in leakage of stool regardless of consistency, was 73 mmHg. However, 

compared to solid stool, semi-solid stool resulted in a larger volume of stool leakage 

under similar biomechanical conditions. This work demonstrates that in addition to 

impaired EAS function, stool consistency plays a direct role in the volume of stool 

leakage with FI. 

2.4.2. Physical Models of the Pelvic Floor 

Alternative strategies to sphincter augmentation have also been explored. Notably, in 

vitro studies have shown that increasing the ARA reduces the occlusion pressure 

required to hold back solids and semi-solids [106, 115]. Similarly, another study 

reported increased retention of semisolid material when increasing ARA in an ex vivo 

porcine rectum, but no effect for water [106]. The question of whether the ARA or 

sphincter occlusion pressure is a greater contributor to continence remains 

unanswered, despite previous studies comparing the two [79, 131]. It is evident that 

modulating ARA is a key feature in maintaining continence and provides a 

complementary strategy to sphincter augmentation. There are currently no clinically 

available devices that exploit these features. 
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2.4.2.1. Anal Sphincter Tone 

Physical models of the anal sphincter muscle have been developed with the intension 

for improved haptic-based simulation tools for learning and training digital rectal 

examinations. In total, three sphincter models were developed [132], Figure 2.14, 

using different actuation techniques to investigate their ability to reproduce sphincter 

pressures observed in clinic. 

The designs consist of silicone sphincter model which is pneumatically actuated, 

another which is a pneumatic assembly encompassed by another pneumatic actuator 

and lastly, a cable driven model. Anorectal manometry was conducted on the 

sphincter models to empirically assess their performance, in addition to examinations 

conducted by nurse practitioners and colorectal surgeons. 

This study concluded that both actuation mechanisms were able to reproduce enough 

pressure on an examining finger along with a range of healthy and abnormal cases. 

2.4.2.2. Rectum Phantom 

In a qualitative study, a rectum was modelled using a silicone phantom based on CT 

scans of a male patient. A mould was made from which silicone rectum phantoms 

were cast using different grades of silicone (based on shore values) including different 

quantities of additives. Five surgical residents and one surgical consultant were asked 

to evaluate the rectum models. The rectum deemed to ‘feel’ the most realistic, in terms 

Figure 2.14 Pneumatic and cable driven anal sphincters, showing top; the 

pneumatic mechanisms (A, B and C), a thin layer of inextensible fabric (in yellow) 

encapsulates the actuators to prevent ballooning [132]. 
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of compressive strength and elasticity, was manufactured from silicone Ecoflex 00-

30 with a slacker softening agent [133]. 

2.4.3. Physical Models of Arteries 

Physical models of human organs have been developed in the past. They are 

particularly advantageous over computational methods when simulating complex 

biomechanical parameters, for example to observe wave propagation in arteries. 

Development a comprehensive model to observe this phenomenon presents a difficult 

challenge due to the viscoelasticity of arterial walls, together with their intricate 

geometries and transport of pulsatile flow of blood. 

2.4.3.1. Physical Modelling of Human Arteries 

A similar method to fabricate human arterial models has been employed by studies in 

the past; of the circle of Willis for testing blood flow characteristics [134] and of the 

human cerebral artery the influence of medical devices [135]. This method starts with 

a numerical model of the arterial structure to model, segmented from CT data, which 

is simplified to remove noise and small side-branches. The numerical model is then 

fabricated from wax using fused deposition rapid prototyping. The vasculature wax 

structure is dipped into elastomeric material to represent the arterial wall (silicone and 

polyurethane elastomers have been used) and then left to cure to create a membrane 

around the wax core. Finally, the composite wax-elastomer structure is placed in a 

hollow transparent casing and embedded with a silicone gel to represent the 

surrounding human tissue. Finally, the wax core is removed by selective dissolution 

using acetone as a solvent to complete the phantom model, Figure 2.15. [135] 

Figure 2.15 Physical model of the human cerebral artery fabricated from 

polyurethane and silicone elastomers. [135] 
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Transparent materials are selected for each component for ease of visualising the 

structure, and the flow of fluid through it. Transparency also allows photoelastic 

analysis to be conducted on the model to observe the distribution of stress in the 

arterial walls, when subject to a flow regime through the system [135]. 

2.4.3.2. Simulating Pulsatile Blood Flow 

A physical test simulation has been developed to observe characteristics of pulsatile 

blood flow during passage through a prosthetic porcine aorta [136]. A commercially 

available prosthetic porcine aorta valve was incorporated into a recirculating test 

simulation. Control hardware was implemented through use of a pulsatile flow system 

(Superdupr, Vivitro Systems Incorporated, Victoria, BC, Canada) to modulate the 

flow characteristics of a blood analogue around the simulator. The pulsatile flow 

system consisted of a waveform generator and a piston-in-cylinder pump head driven 

by a low inertia electric motor. Waveforms characteristic of physiological pulsatile 

flows through the aorta were generated and used as inputs to control the pump. PIV 

imaging, consisting of a video camera, laser-sheet lighting and addition of 

polycrystalline powder (as s seed particle for flow visualisation), was used to observe 

the flow velocity of blood exiting the aortic valve. Using these flow generation and 

imaging techniques the flow regime through the aortic valve were successfully 

observed in a 2-dimensioanl plane 

2.5. Summary 

Despite disagreement between prevalence studies on FI, it is clear that a large 

proportion of the population are bearers of the condition. Those who suffer from FI 

experience a range in the severity of symptoms; while conservative treatments are 

successful for some, there is a large unmet need in the treatment for patients with 

severe incontinence which is greatly more debilitating with a larger negative impact 

on QoL. While surgical interventions have been trialled, they often show poor efficacy 

and are not fit for of worldwide adoption. Current efforts have focussed around the 

AAS device, with many adaptions and iterations failing to address the complexities 

of the challenge at hand. Consequently, there is a need to investigate the function of 

other continence mechanisms which could be manipulated by future FI technologies. 

During this literature review, the roles of the pelvic floor, rectum, sphincter complex 

and PR muscle have been analysed in detail. It is evident that to preserve continence 
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requires coordination of numerous ‘components’ of the defecation system. To develop 

a device to assist the healthy function of a system, requires an understanding of the 

biomechanics of the native environment in which it will operate. 

The vast majority of FI devices rely on animal studies and clinical trials for 

development since the resources are not available for rigorous evaluation in laboratory 

environments. Through observation of an FI device within a physical simulation, the 

efficacy can be empirically assessed while the potential for the simulation to analyse 

FI devices can also be addressed. Additionally, the inclusion of an FI device which 

complements the natural occlusion pressure of the sphincter muscles on the anal canal 

facilitates observation of the effect of augmenting sphincter occlusion on the 

simulation, in conjunction with other continence mechanisms. 

A handful of physical and computational models of the faecal system have been 

developed in the past. Many of which look only at certain aspects of the faecal system, 

while negating others, and many models focus on the innervation to the pelvic floor 

or ligament forces. From this review, a distinct paucity in the modelling 

(computational and physical) of FI and continence mechanisms has been identified. 

Existing work is dominated by the use of computational models to simulate aspects 

of the pelvic floor system. FE models of the pelvic floor have been developed in 

attempts to understand its function in urinary and faecal continence mechanisms. One 

model has been developed to investigate the effect of stool consistency on continence 

[122], while another looks at the effect of damaged ligaments on stress urinary 

incontinence [123]. Computational models have also been developed to characterise 

the global behaviour of the pelvic floor muscles [124, 137-140]. However, there are 

large quantitative differences between the models and parameters used [141].  

While computational models allow iterative improvement to the model and longevity, 

and system properties to be simulated accurately with ease, they show deficits in 

realism when simulating complex interactions between multiple ‘components’. On 

the other hand, physical modelling of tissues is challenging, in regards of both 

geometrical and mechanical properties. Despite fabrication challenges, a physical 

simulation provides opportunities for a deeper understanding of the biomechanics 

involved during faecal continence, and can aid and accelerate the evaluation of 

numerous treatment concepts during early development stages. 
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A detailed review of literature has provided values for geometric and kinematic 

parameters of the system, summarised in Table 2.3. 

 

 

 

 

 

 

 

 

 

 

Simulation 

component 

Parameters Conditions Values 

Stool Apparent 

viscosity @1Hz 

Homogeneous (high 

moisture); Heterogeneous 

52.8 Pa.s [142]  

Volume - 100 ml [143] 

Flow rate - 9.26 ml/s [143] 

Rectum Length Empty 130 mm [7] 

Diameter Empty, male 32 mm [53] 

IR Pressures Strain 71±33 mmHg [144] 

Anorectal angle Rest; Strain 84.5°;104.5° [9] 

Elastic modulus 

(0-35%) 

‘Active’ 0.060 MPa [85] 

PR muscle Length Rest; Squeeze; Strain 147.6 mm; 127 mm; 

189.8 mm [68] 

Width - 18 mm [2] 

EAS Anterior length Rest, male 34.2±1.8 mm [1] 

Posterior length Rest, male 36.6±1.8 mm [1] 

Elastic modulus 

(0-35%) 

‘Passive’ 0.996 MPa (Presented 

in Chapter 4) 

Anal canal Pressure Rest; Squeeze 73±23 mmHg ; 

290±155 mmHg [144] 

Distensibility 

index 

Rest (healthy); Rest (FI) 1.5 (0.3-10.4, N=40) ; 

3.9 (0.7-12.1, N=34) 

[145] 

Omental 

adipose tissue 

Elastic modulus 

(0-35%) 

- 0.038 MPa [87] 

Table 2.3 Biomechanical parameters and variables required for simulation 

modelling, obtained from the literature review: 
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Despite the identification of these parameters, the complete biomechanics of faecal 

continence are still not properly understood. While studies have been carried out on 

rectal volume tolerability and corresponding IR pressures [18], the material properties 

of rectum tissue vary greatly with age [146, 147] and clinical abnormalities. 

Furthermore, since the rectum is a muscle, its properties are vastly different between 

states of rest and squeeze. The influence of rectum properties of the normal function 

of the defecation system is poorly understood. In addition, although sphincter 

occlusion pressure has been considered the major attributor for continence [79, 131] 

in the past, numerous studies also report that the PR muscle (through its modulation 

of the ARA) could be of greater significance than previously believed [2, 73, 106]. As 

of yet, there is poor understanding on the actual contribution of each of these 

mechanisms towards continence during different biological ‘states’ (including the 

variation of stool consistency), both individually and combined. 

A number of clinicians (two colorectal surgeons and a consultant radiologist) were 

consulted to help understand the biomechanics of continence, and recognise pitfalls 

in knowledge surrounding FI. The clinical personal were briefed prior to the meetings 

that there was need for improved technologies for the treatment of severe FI, as 

identified among patients, clinicians (Appendix II) and in published literature (above). 

During the meetings, a number of challenges in the area of improvement to knowledge 

surrounding continence mechanisms and technologies for the treatment of FI were 

brought to light. Combined with the literature review, four research questions in 

particular where derived: 

“What is the influence of: 

1. Sphincter occlusion 

2. Anorectal angulation 

3. Rectal compliance 

4. A commercially available FI device 

…on the faecal system and continence?” 

Research questions are established as prerequisites in the development of any surgical 

robotic application, by defining the goals and specifications of a project. This thesis 

presents the steps taken to answer these questions by providing a greater 

understanding on the effect of rectal compliance on the faecal system, and the ability 

for continence mechanisms (sphincter occlusion and ARA) to retain a range of rectal 
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contents. It is with this motive, that a physical simulation of the faecal system is 

developed. 
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Chapter 3: Technical Requirements, Design, 

Fabrication and Control of a Physical Simulation of 

the Human Defecatory System 

This chapter presents technical requirements for the conceived research questions 

defined in Chapter 2. Technical requirements are used to develop a series of 

specifications and an associated conceptual approach to the project. Tables of 

biomechanics of the biological system are compiled from literature, required for 

accurate representation of the defecation system with a physical simulation. Design 

considerations, fabrication methods and choice of control hardware and software for 

the physical simulation are documented along with a detailed overview of the 

simulation. 

3.1. Research Questions 

A set of research questions were conceived in Chapter 2 which this project looks to 

address. These were carefully defined from an in-depth review of literature, listening 

to patient demands at IMPRESS Network events, and discussion with clinical 

personnel on the deficits in currently available treatments, and their needs in the 

pursuit of effective treatments for FI. 

Four research questions emerged from this; “What is the influence of 1) sphincter 

occlusion; 2) anorectal angulation; 3) rectal compliance and 4) a commercially 

available FI device on the faecal system and continence?”  

The physical simulation will be developed to focus on these key themes by 

considering the technical requirements and associated specifications linked with each. 

3.2. Simulation Requirements 

Research questions are taken into consideration individually and translated into a set 

of technical requirements for the physical simulation. They are then reviewed together 

to define global simulation requirements, for an understanding of its characteristics 

and to assess external devices on the system. 

1. What is the influence of sphincter occlusion on the faecal system and continence? 

For an understanding of the effect of sphincter pressure on continence, a 

geometrical representation of the sphincter complex is required, which is 

positioned according to the human anatomy, in a physical simulation of the human 
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faecal system. The elastic modulus of the sphincter complex component should 

be similar to the biological equivalent, to ensure representative pressures are 

applied to the anal canal and that the distensibility of the simulated anal canal is 

consistent with clinical data. In addition, the component should replicate the 

closure mechanism of the natural system. 

2. What is the influence of the ARA on the faecal system and continence? 

An anatomical representation of the anorectum is required, which represents the 

natural system with an obtuse ARA, similar to during defecation. The ARA of the 

representation should be configurable, such that the anorectal junction can 

positioned posteriorly or anteriorly to produce different angulations, in a range for 

typical ‘continent’ and ‘defecation’ values in healthy patients. A means to visually 

or autonomously monitor the ARA needs to be implemented for its measurement 

before and during tests along with a method to quantify the influence of the ARA 

on faecal leakage. 

3. What is the influence of rectal compliance on the faecal system and continence? 

Rectum models with a range of rectal compliances should be included within the 

simulation. Through investigation with the rectal compliances and 

implementation of an experimental matrix which incrementally varies important 

system variables one at a time, the influence of rectal compliance on the faecal 

system and continence can be observed. Properties of the rectum model should 

aim to represent the distensibility of the human rectum, through data obtained in 

literature, and a range of rectal compliances should be selected based on this. 

4. What is the influence of a commercially available FI device on the faecal system 

and continence? 

By observing the effect of an FI device which complements the natural occlusion 

pressure of the sphincter muscles on the anal canal, the efficacy of such a device 

can be empirically assessed, along with its influence in conjunction with other 

continence mechanisms. 

The first three modelling aspects are brought together to form the simulation. Then 

their individual and combined effects are observed on the system, together with a 

commercially available FI device. 
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3.3. Conceptual Approach to a Physical Simulation 

There are a number of different components that need to be included in the physical 

simulation of the defecatory system, and each component with a potential to be 

configured in numerous ways i.e. to represent different genders, age groups, or 

‘healthy’ or ‘incontinent’ states. A detailed review of literature has provided values 

for geometric and kinematic parameters of the system and these are used in addition 

to the technical requirements, in assisting design decisions during the conception of 

the simulation. 

3.3.1. Soft Components 

Soft representations of biological components, shown in Figure 3.1, that are 

paramount in the maintenance of continence are housed in a rigid frame to form the 

basis of the simulation. At the heart of the simulation is a phantom model of the human 

rectum combined with the anal canal, the rectum is based on the anatomy of a 

nulliparous subject in an empty ‘resting’ state. Since the anal canal is closed at rest, 

its diameter is instead modelled based on a maximum diameter as experienced during 

evacuation, measured during distensibility studies. The anal canal forms an angle with 

the rectum which assumes a healthy value during ‘strain’, it is then augmented to form 

a more acute angle. The rectum model is fixed superiorly where it would connect to 

the colon in the biological system, and inferiorly to the ‘anal verge’. A configurable 

rigid frame is used to provide support and fixation to soft components. 

The levator ani has been identified as an important component of the pelvic floor in 

the maintenance of continence. Subsequently the PR muscle forms part of the levator 

ani and is considered responsible for interacting with rectum and modulating the 
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ARA. In the physical simulation, a model of the PR muscle acts on the base of the 

rectum to apply a force and augment the ARA. A model of the sphincter complex is 

positioned around the anal canal and applies ‘passive’ resistance to the passage of 

faeces, by recreating the natural closing mechanisms of the anal canal, as within in a 

healthy ‘resting’ system. 

The inclusion of a FI device enhances anal canal pressures to values observed in a 

healthy system during ‘squeeze’, and these effects on the intra-rectal (IR) pressure 

and faecal leakage from the system can be monitored, along with the influence of the 

PR muscle component, rectal compliance and stool consistency. 

3.3.2. Simulated Stool 

Simulated stool material forms a flow regime through the rectum. A homogeneous 

medium models diarrhoea as a worst case scenario, whereas use of a heterogeneous 

medium would be used to represent a ‘normal’ movement of stool though the bowel. 

Biomechanics of the rectum are recreated to ensure the flow regime through the 

Figure 3.1 Schematic overview of the biomechanical mechanisms of the physical 

simulation of the faecal system, ‘controls’ are shown in red and ‘measurements’ 

are shown in green. 
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system is consistent with the natural system, this means close simulation of 

mechanical properties, methods of constraint and interaction with surrounding soft 

tissues. Posteriorly, the rectum interfaces with simulated adipose tissue whereas 

anteriorly, it will be free to expand without constraint. The volume and flow rate of 

the stool introduced to the system is controlled, together with rectal biomechanics, to 

recreate a flow regime characteristic of homogeneous stool through the biological the 

system. Stool transit through the system is a direct indication of continence. The 

pressure inside the rectum is observed along with leakage of stool from the anal canal, 

allowing factors affecting the pressure and transit rate of stool through the system to 

be quantified. 

3.3.3. System Control 

Control hardware is used to enable regulated delivery of stool analogue to the system 

and the position of the anorectum by loosening and tightening the PR muscle 

phantom, shown in Table 3.1. 

Measurement hardware is implemented, to monitor the force applied to the rectum by 

the PR muscle component, and measure the mass of faecal leakage from the anal 

canal. Visualisation of the rectum and anal canal models is used in the manual 

measurement of the ARA in preparation for testing. 

 

Table 3.1 Details of controls and measurements for components of the physical 

simulation: 

Simulation 

Component 

Controls Measurements 

Stool simulant Stool viscosity; 

Homogeneous/heterogeneous 

- 

Stool transit Flow rate; Volume Mass leakage 

Rectum Mechanical properties; 

Anorectal angle 

IR pressure; ARA 

PR muscle & 

anal canal 

Mechanical properties; PR 

tension 

PR force 

EAS Mechanical properties; 

Sphincter pressure 

Sphincter distension 
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3.4. Specifications of a Physical Simulation of the Human Defecatory 

System 

Table 3.2 includes the major design specifications that were derived from the 

requirements. Requirements are defined for each modelling aspect of the simulation 

based on the research questions in Section 3.1. Specifications for the simulation are 

then derived from these requirements. 
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Model aspect Requirement Specifications 

Rectum Represent biological rectal 

geometry 

Length: 130 mm [7]; Diameter: 32 mm [53]; Include 

anatomical features (rectal folds) 

Replicate rectum interfaces Inclusion of omental adipose tissue with biological 

tensile properties (E=0.038 MPa [87]), positioned 

between proximal rectum and sacrum 

Replicate starting pressure 

(priming method) 

Rectum modelled in non-distended state; rectum 

filled with stool simulant but not distended before 

tests 

Represent anorectal 

geometry with an obtuse 

ARA 

Possess a ‘resting’ ARA of 104.5° [9] 

Mimic rectum properties (E) Elastic modulus of 0.06 MPa [85] 

Configurable Anorectal junction should move in posterior and 

anterior directions 

Represent rectum properties 

in its ‘active’ state 

Be stiff enough to produce IR pressures observed 

during defecation 

Recreate biological 

attachments 

Constrained at proximal (connection to colon) and 

distal (connection to epidermis) 

Sphincter 

complex 

Represent sphincter complex 

geometry and positioning 

Sit around anal canal; anterior length: 34±1.8 mm; 

posterior length: 36±1.8 mm; thickness: 3mm; OD at 

least 16mm [1] 

Represent mechanical 

properties 

Elastic modulus of 0.996 MPa (presented in Chapter 

4) 

Simulate closure mechanism Produce mucosal folds in the anal canal 

Produce ‘FI’ distensibility 

index in anal canal 

Produce a radial DI of 1.5 [145] 

Pelvic floor Represent contact area with 

rectum 

22mm at posterior/along sides of anorectum 

Mimic augmentation of 

rectum 

Range of motion of 10.3 mm [68]; produce forces in 

axis between anorectum and pubic bone 

Simulate ‘continent’ and 

‘defecation’ ARA values 

Able to produce a range of ARA’s from 84.5° to 

104.5° [9] 

Mimic material properties 

(E) 

Elastic modulus of 0.996 MPa (presented in Chapter 

4) 

Positions anorectum Ability to maintain different positions during tests 

Stool Produce a biological flow 

regime (stool viscosity/stool 

flow rate) 

Apparent viscosity @1HZ: 52.8 Pa.s [142]; Flow 

rate: 9.26 ml/s [148] 

Represent a range of stools 

indicated on the Bristol stool 

form scale 

Formation of homogeneous and heterogeneous 

stools; while encompassing a range of viscosities 

Instrumentation Measure ARA Visualisation of the anorectum for measurement of 

the ARA 

Measure IR pressure Ability to measure pressure in the rectum, using an 

appropriate pressure transducer 

Measure faecal leakage Measure mass of stool leakage from the system 

during controlled delivery at the inlet to the rectum, 

for ‘continent’ and ‘defecation’ values 

Measure force Measurement of the forces applied by the pelvic 

floor, to the rectum 

FI device Produce ‘healthy’ DI in anal 

canal 

Produce a radial DI of 3.9 [87] along the anal canal 

Table 3.2 Technical requirements and corresponding specifications of the system: 
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The subsequent sections describe the design and fabrication processes of the 

simulation. Each requirement is considered individually, and an approach is 

developed which allows each specification to be met by the particular modelling 

aspect. Where there is a lack of clarity in fully defining the parameters for a modelling 

aspect, an approach is implemented based on an interpretation of the biological 

component. 

3.5. A Physical Simulation of the Human Defecatory System 

This section provides a full description of the physical simulation of the human 

defecatory system, and is divided into two sections based on key components; soft 

tissue models and connective and supporting structures. 

Biomechanical representations of the soft tissue components of the physical 

simulation are achieved using a casting process, in which the geometry and 

mechanical properties of each component are approximated. As presented in Section 

3.3.1. , the simulation includes sphincter complex, pelvic floor, rectum, anal canal and 

adipose fat components to capture characteristics of the human defecatory system. 

The pelvic floor is formed by the levator ani muscle, coccygeus muscles and the 

covering fascia. It provides support to the pelvic viscera and is an important 

component of the simulation. The PR fibres of the levator ani muscles blend with the 

deep part of the EAS, Figure 3.12. These fibres form a sling which is attached in front 

to the pubic bones and passes around the junction of the rectum and the anal canal, 

pulling the two forward at an acute angle. The sphincter complex and PR muscle work 

in coordination with one another, and both muscles will be included in the simulation, 

although as separate discrete components. 

3.5.1. Material Selection 

Biological tissues are composed of structural proteins (collagen and elastin) and cells. 

The concentration and structural arrangement of constituents such as these strongly 

influence the mechanical behaviour of biological tissue [149]. They exhibit 

viscoelasticity as is evident through inherent hysteresis effects, which reveal an in-

elastic response. It is thought that the dissipative effect of viscous energy is partially 

due to the motion of proteins within the viscous ground substance of the extracellular 

matrix [150]. 
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Biological tissues structures form complex geometries and possess material properties 

of anisotropic behaviour and viscoelasticity. With further non-linearity’s observed in 

these properties with age [146, 147]. Furthermore there are large anatomical variations 

between ethnicities [151] and gender. Consequently, the simulation aims to represent 

‘typical’ geometries, characteristic of the western male population <60 years of age, 

while acknowledging modelling deficits. 

A large majority of biomedical materials and implants are stiff structures, designed to 

work in conjunction with bony tissue. However, for the case of interaction with the 

soft tissue of the pelvic cavity, more flexible, compliant materials are required. There 

is a dearth of research into soft tissue implants, although current studies have 

developed soft materials for a range of applications including arterial prosthesis, 

pericardial and hernia patches, tracheal conduits and oesophageal tubes [152]. 

Silicone and hydrogel are two materials recognised as having good tissue-mimicking 

properties [153] combined with the ability to be used with moulds to form complex 

geometries. 

Silicone is a commercially available chemically synthesised polymer which can 

exhibit a wide range of mechanical properties, which are commonly identified by their 

shore hardness value (once cured). It is usually supplied in two parts (catalyst and 

cross linker) as a fluid which are then mixed in equal proportions to initiate curing, 

lending itself well to casting techniques for the formation of batch-produced 

components with complex geometries. Low shore hardness silicones have been used 

in previous studies as tissue phantoms [154, 155], as they exhibit similar elastic 

behaviour under low strains [156]. Furthermore, additives can be introduced to the 

material upon mixing to tailor its properties, such as mineral oil to reduce surface 

friction [155]. However these can often produce a tacky surface and may require 

encapsulation before the phantoms are usable. Silicones do not contain water and 

therefore are not affected by problems of evaporation or bacteria growth. Its wide 

range of mechanical properties and long-term stability [157] provide additional 

advantages over other polymer based materials [153].  

Another common tissue phantom material is PVA hydrogel [158, 159]. Hydrogels are 

water-swollen cross-linked polymer networks which often exhibit tissue 

characteristics, such as tissue-like elasticity and mechanical strength. The appearance 

and feel of PVA hydrogel are similar to those of human arterial tissue [160]; the 
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mechanical properties of PVA arterial vessels developed in a previous study [161] are 

similar to those of porcine aortas. PVA can be used not only for bio-artificial materials 

but also for phantom materials used for medical research. Forecasting soft tissue 

deformation by analysing interventional treatments, and performing minimally 

invasive surgery simulations, may greatly improve the proposed treatment as well as 

the accuracy of surgical procedures [162]. Simulation experiments require the use of 

tissue-simulating objects that mimic the properties of human or animal tissues. These 

phantom materials should have similar deformation rates of elasticity as compared 

with the target tissue, as well as exhibit long term structural stability (when stored in 

water), high water content and optical transparency. Using an appropriate ratio of 

PVA and water, a gel can be formed that possesses such tissue-mimicking properties 

[163]. 

Silicone is recognised as an excellent material for rapid manufacture of prototypes 

and functional parts, and has been used along with casting techniques in phantom 

tissue studies in the past [133]. Although PVA hydrogels possess properties which 

more closely match soft tissues, silicone is better suited to repeatable testing and has 

superior elastic properties, determined by its range of attainable elastic moduli (0.2-

25.8 kPa [164, 165]) compared with PVA hydrogel (10-100 kPa [166]). 

Consequently, silicone is selected as the material to fabricate tissue phantoms in this 

thesis. 

3.5.1.1. Uniaxial Tensile Testing 

While the tensile properties of human rectum and adipose tissues were available in 

literature [84, 85, 87], the mechanical properties of the sphincter muscle were not. 

Therefore tests were conducted in a first instance on porcine IAS and EAS to obtain 

loading data which can be used to characterise their tensile properties. This is 

combined with values from literature to form a complete set of tensile data, to inform 

the validation of materials selected for the simulation components. Following on from 

tissue testing, various grades of silicone were tested using a similar test method, to 

directly compare their tensile properties to biological tissue. 

IAS and EAS 

To measure the mechanical properties of the IAS & EAS, a tensile testing method was 

employed similar to a method used in a previous study to characterise the tensile 
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properties of human rectal tissue [85]. Porcine sphincter tissue (Fresh Tissue Supplies, 

East Sussex, UK) were dissected to isolate the intact IAS and EAS muscle from 

surrounding tissue. ‘Dumbbell’ shape test samples were cut from the isolated IAS and 

EAS muscles using a dumbbell die cutter, in orientations perpendicular and parallel 

to the direction of the muscle fibres. In total 40 specimens were tested to failure. As 

many repeats as possible were taken from the muscles, with each endeavouring to 

replicate the orientation and thickness of the other samples. Due to the geometry of 

the muscles, it was more challenging to gain repeatability with perpendicular samples 

and therefore fewer repeats for these were obtained. The test samples were then 

mounted into a uniaxial tensile test machine (Zwick Z2.5/TN zwicki-line) and 

submerged in a water bath heated to body temperature (37 °C). They were then loaded 

at a rate of 30 mm/s until rupture. Force and deflection of the samples were recorded 

during tests, which was normalised by calculating engineering stress and strain for 

each sample. 

Any samples which showed an elongation ±2SD than the mean were omitted from 

post-analysis. With 14 of the specimens tested, the water bath could not be brought 

up to body temperature, therefore the data for these specimens were gathered at room 

temperature (21°C). These have been plotted but were omitted from the forthcoming 

analysis. 

There is notable variation between the samples tested for each muscle and orientation. 

This is a common attribute of tissue tests, an explanation for these inconsistencies 

could be due to the number of muscle fibres contained within each specimen and their 

orientation. Since the individual location and orientation of specimens were controlled 

by eye from areas of similar thickness and predominant fibre orientation. Furthermore 

the low friction interface between hydrated tissue and tester grips caused slight 

slippage with some samples which could cause greater strains being measured than 

were observed in reality. Both muscles demonstrate a greater stiffness in the 

transverse orientation (perpendicular to the muscle fibres), suggesting that the 

endomysium connective tissue provides a greater stiffness than the muscle fibres 

themselves. However since both the IAS and EAS expand radially during defecation, 

requiring extension in the longitudinal direction, only longitudinal data is used during 

the post-analysis. Following omission of any anomalies, the mean stress is plotted 

versus strain for the IAS and EAS muscles in the longitudinal orientation, Figure 3.2. 
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The stress-strain profiles show consistent loading characteristics in both muscles. 

Stress increases exponentially with strain at first due to the viscoelasticity of the 

tissue. This continues until the sample begins to rupture, at which point the curve 

plateaus as the ability for the muscle fibres to store elastic energy diminishes, until 

the sample eventually fails. 

Figure 3.2 Mean (N=10) stress vs strain values for IAS and EAS longitudinal 

muscle with ±1 STD shaded region. 
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Silicone 

Uniaxial tensile tests were also carried out on silicone specimens to observe their 

loading response. This allows a grade of silicone to be selected to model the biological 

tissue components which exhibit similar linear properties. During testing, the ASTM 

D412-A protocol (for testing elastic materials) was followed to produce consistent 

results. Three grades of silicone were selected for testing which have been used for 

the fabrication of tissue phantoms in the past [133]. Silicones were used which had 

shore harness values of 00-20, 00-30 and 00-50, selected from the Ecoflex range 

(Smooth-OnTM, Minnesota). To fabricate specimens with dimensions as defined in the 

protocol, a mould was built from 2D laser-cut sections of acrylic, this ensured each 

cast specimens was identical. The samples were then mounted in the grips of a 

uniaxial tensile test machine (Mecmesin, Imperial 1000) and loaded at a rate of 

500mm/min up to a displacement of 200mm, the load was then removed at 

500mm/min and the loading regime repeated 5 times for each specimen. An example 

of the response of the loading curves obtained during testing is shown in Figure 3.3. 

Five cycles were carried out for each specimen, the elastic modulus of the specimen 

decreases slightly with progressive cycles. The step change in elastic modulus is most 

significant from cycle 1 to cycle 2, with the step decrease getting smaller for 

Figure 3.3 Cyclic stress-strain response from 5 repeats of silicone shore 00-30, 

demonstrating the decrease in stiffness for progressive cycles. 
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progressive cycles, Figure 3.3. This demonstrates that silicone is suited to applications 

in which it is stressed repeatedly, as maintains its elastic properties over repeated use. 

The mean of the responses from the final cycle, following preconditioning, were 

compared (Figure 3.4). 

3.5.1.2. Matching Silicone and Biological Tissue Properties 

There are several types of viscoelastic models in which elastic and viscous parameters 

are linearly combined. There are advantages and shortcomings of these models in 

relation to phenomena such as creep, relaxation and hysteresis. Stress exhibited by an 

elastic component (σE) can be expressed as a product of elastic modulus (E) and strain 

(ε): 

Whereas stress created by a viscous element (ση) depends on the derivative of strain 

and viscosity (η): 

The Kelvin-Voigt model is composed of an idealised spring (with elasticity) and a 

damper (with viscosity) in parallel and represents a material which is subject to 

Figure 3.4 Comparison of the loading responses of silicones with various shore 

00-grades. 

𝜎𝐸 = 𝐸. 𝜀 

𝜎𝜂 = 𝜂.
𝑑𝜀

𝑑𝑡
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reversible viscoelastic strain. The benefit of which is that it produces realistic model 

parameters for constant stress. 

The Maxwell model is represented by a spring and damper placed in series. A 

limitation of Maxwell model is that it produces an unrealistic creep prediction when 

a constant load is applied. Therefore, when constant load is applied in the simulation, 

the Kelvin-Voigt model is better suited to represent the viscoelastic response than the 

Maxwell model. However the Kelvin-Voigt is only suited to low strains due to its 

limited degrees of freedom. 

Linear modulus has been used to characterise biological tissues in the past [167]. In 

consideration of the complexity of capturing the behaviour of a viscoelastic material 

with an elastomer, in the first instance of this simulation a linear relationship is used 

to capture the properties of biological tissue at a particular strain value. A 

corresponding grade of silicone is then selected which exhibits a similar elastic 

modulus at this value. 

For the research presented in this thesis, tensile data is obtained for porcine IAS and 

EAS through tensile testing, while data for human rectum and adipose tissues were 

taken from literature. Tensile testing is also conducted on various grades of silicone 

to obtain their stress-strain responses. Using a method which has been used previously 

for determining linear modulus of highly non-linear materials [168], linear fits are 

applied to the loading profiles of both the biological tissues and grades of silicone, to 

calculate a mean elastic modulus over a portion of the loading curve. The elastic 

moduli metrics of the tissues were then compared to those for the different grades of 

silicone, in order to match each tissue to a grade of silicone which most closely 

represents its tensile properties. 

Elastomeric materials possess highly non-linear elastic properties whereas biological 

tissues possess viscoelasticity, this presents a challenge in matching their tensile 

properties. The physical simulation aims to replicate the behaviour of the biological 

system as closely as possible, requiring accurate representation of the tensile 

behaviour of biological tissues. For example, for the simulation to behave correctly, a 

rectum phantom model should apply the same elastic contraction force to its contents, 

as the biological rectum during defecation. Aspects of the loading profiles for silicone 

and biological tissues were compared to provide a means to match their properties, 

for which various metrics were considered: 
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a) Maximum stress at maximum distension (Figure 3.5a) 

b) Elastic moduli at the maximum distension for tissue (Figure 3.5b) 

c) Mean elastic modulus over a portion of the loading curve (Figure 3.5c) 

Matching stress at maximum distension (method a)), would result in a silicone which 

possessed a greater stiffness at rest than its biological counterpart. Given the different 

loading profiles of tissue and silicone, this would not be a suitable method since the 

rectum phantom is required to simulate the properties of active muscle. With this in 

mind method b) exaggerates the issue, although the properties for the phantom and 

tissue would be equivalent at maximum distension, the initial properties will contain 

greater discrepancies. Method c) produces an approximation of the properties of 

biological tissue over the range of its operational strain. The silicones elastic modulus 

at 0 % strain will be more comparable to the elastic modulus of tissue at its maximum 

strain (for the chosen range), than with the other options, and therefore this method 

was chosen for the analysis. 

Figure 3.5 Schematic demonstration of a method to match the loading profile of 

silicone to biological tissue by; a) matching the stress at the rupture strain for tissue; 

b) matching the elastic modulus at the rupture strain for tissue; and c) matching the 

mean elastic moduli over a portion of the loading curve. 
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Linear Analysis 

The mean loading curves of the biological tissues were compared with stress-strain 

data from the various grades of silicone tested, Figure 3.6. 

A linear fit is computed using a custom built algorithm in Matlab (Mathworks) which 

implements the ‘polyfit’ function to approximate the elastic modulus over a portion 

of these stress-strain curves. The coefficient of determination (R2) compares how 

closely a mathematical function relates to the plotted data. The expression for R2 is 

defined using equation 1, an R2 value of greater than 0.99 denotes that the respective 

portion of a loading curve is linear [167].  

Where n = the number of data points, 𝑥𝑖  = the x value for analysis, �̅� = the 
mean x value, 𝑦𝑖 = the y value for analysis, �̅� = the mean y value, 𝜎𝑥 = the 

standard deviation of x, 𝜎𝑦 = the standard deviation of y 

Figure 3.6 Comparison of the loading responses from various shore 00-grade 

silicones with tissue tensile data (EAS, Rectum and Adipose). 

𝑅2 =  
1

𝑛
 

 𝑥𝑖 − �̅�  𝑦𝑖 − �̅� 

𝜎𝑥𝜎𝑦
 

2

                  (1) 
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The linear fit is applied to stress-strain curves for the biological tissues represented in 

the physical simulation. The mean elastic modulus is approximated across a strain 

range of 0-35%. Over this range, it is apparent that adipose and rectum tissue were 

fairly well matched to silicone 00-20 and 00-30 respectively, although a stiffer 

silicone is required to simulate the properties of the EAS, as shown in Figure 3.7. 

Table 3.3 summarises the elastic modulus and R2 values calculated the biological 

tissues and Table 3.4 summarises the values for silicone. 

Figure 3.7 Comparison of linear fits (solid, black) for tissue constituents and 

corresponding silicone grades for a) adipose, b) rectum and c) EAS. 

a) b) 

c) 
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A large variation in stiffness and strains to failure were exhibited by the different 

tissues modelled by the physical simulation. Silicone demonstrates similar linear fits 

over the specified strain range, with all values for R2 > 0.99. Whereas the biological 

tissues appear to possess less linearity over their initial loading response, with both 

Adipose and Rectum tissue displaying values for R2 < 0.99. This suggests that while 

the average elastic modulus is comparable between tissue and silicone, the 

characteristics of the loading response is not. 

Based on the approximated elastic moduli, the tissue properties were matched to 

silicone over a small strain range, demonstrated in Figure 3.7. From this analysis, 

Table 3.5 indicates components of the simulation and their corresponding silicone 

grades, none of the silicones tested during this analysis show a stiffness great enough 

to model the EAS. 

3.5.2. Rectum and Anal Canal 

The rectum and anal canal are modelled as a single continuous component, its 

modelling considerations and implementation are detailed below. 

Table 3.5 Biological tissues and corresponding grades of silicone: 

Tissue constituent Silicone grade 

(Ecoflex series) 

Adipose 00-20 

Rectum/IAS 00-30 

EAS >00-50 

 

Table 3.3 Linear fit gradient of tissue loading responses over a 0-35% strain range: 

Tissue 

constituent 

Elastic Modulus 

(MPa) 

R2 

Adipose 0.038 0.956 

Rectum 0.060 0.946 

EAS 0.210 0.996 

 

Silicone 

Shore Value 

Elastic 

Modulus (MPa) 

R2 

00-20 0.031 0.994 

00-30 0.051 0.995 

00-50 0.080 0.0994 

 

Table 3.4 Silicones and the corresponding Elastic Modulus approximated from 0-

35% strain: 
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Faecal continence relies on a healthy, properly functioning rectum and associated 

tissues. During normal defecation, the rectum will contract, providing a low 

compliance tube through which faecal matter can transit. However in patients with FI, 

a lack of rectal sensation can inhibit this mechanism leading to large rectal volumes 

and FI. Consequently in natural circumstances, the rectum can exhibit a range of 

material properties. As a result, rectum models will be fabricated with a range of 

compliances to investigate its influence on the system. 

The rectum has a highly complex anatomy, Figure 3.8. [53] 

To represent the behaviour of the rectum in the simulation, its biomechanics and 

geometry must be carefully modelled. For manufacture of a rectum with anatomical 

features, a die mould is used with a vacuum casting process. Die moulds are generally 

complex and their production can be costly in terms of both time and money. To 

rapidly manufacture a mould for the fabrication of the rectum model, the mould is 

made by 3D printing. Despite the limitations of material properties which can be 

Figure 3.8 Illustration of the rectum indicating its geometrical and anatomical 

features [53]. 
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achieved with 3D printed parts, its fast lead times and low costs make it well suited to 

a mould intended for small batch production. 

3.5.2.1. Physiological Overview 

The rectum is a continuation of the sigmoid colon; it passes downward following the 

curve of the sacrum and coccyx before piercing the pelvic floor and forming the anal 

canal. The lower part of the rectum is dilated to form the rectal ampulla. The 

peritoneum covers the surfaces of the first third of the rectum and the anterior surface 

of the middle third, leaving the lower third uncovered. The mucous membrane of the 

rectum and inner circular muscle layers form semi-circular permanent folds called 

transverse folds of the rectum, as demonstrated in Figure 3.8. There are usually three 

of these folds. Posteriorly, the rectum is in contact with the adipose tissue lining the 

sacrum and coccyx. The rectum will be modelled as an anatomical tube, continuous 

with the anal canal, fixed at the terminal rectum and distal anal canal. It will be 

supported by replicate adipose tissue adjacent to the sacrum and constrained at the 

anorectal junction by the PR muscle, and the anal canal by the sphincter complex 

muscles. 

3.5.2.2. Model Overview 

Flanges provide fixation points, as demonstrated by Figure 3.9, which allow the model 

to be constrained in the same way as the rectum in the body. Due to their similar tissue 

properties, the rectum, anal canal and IAS will be modelled as a single continuous 

component. 
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While the modelled rectum represents associated anatomical features, an anal canal 

section has been approximated. Due to the nature of the anal canal, it is always closed 

in its resting state and therefore it is challenging to define its dimensional anatomy 

from CT scans. The anal canal section was therefore assumed to be cylindrical, and 

an arbitrary diameter was selected for the initial test mould. 

Several anatomical CAD models were considered to form the basis of a rectum 

phantom, Figure 3.10. 

[133, 169-171] 

 

 

 

 

 

Figure 3.9 Schematic representations and corresponding images demonstrating 

flanges used to fix the tissue phantoms within a rigid housing. 
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Each model included geometrical features of the rectum, but were based on different 

‘states’ (empty, filled and distended), and segmented using different techniques, 

therefore they possess different dimensions and volumes. For the simulation, a rectum 

in its natural ‘resting’ state is required. 

The TCIA collections profile [169] is segmented from CT data of a distended rectum, 

while this demonstrates all the anatomical features of the rectum the rectal walls have 

been greatly elongated. The Visible Human rectum [170] is based on data taken from 

a male human cadaver which has been sliced into 1mm sections, photographed and 

digitised to produce a numerical dataset. While the ‘state’ of the rectum is uncertain 

prior to digitisation, its features are less pronounced than other models used in the 

comparison and the rectal volume appears greater. This could be because the rectum 

was in a ‘filled’ sate during the analysis, or variations in the segmentation method 

compared to using CT/MRI scan data. The 3DirCAD profile [133] is segmented CT 

data from a 44 year old male patient with focal nodular hyperplasia of the liver, but 

no condition relating to FI. This model showed pronounced features and close 

agreement with other published works [7, 54] on the size and volume of the human 

rectum. Finally, the Duke rectum [171] was segmented from population-averaged data 

of the human rectum in an empty state. While this model closely resembles rectal 

dimensions, its features also appear smoothed, making it less suited for used in the 

simulation since these features are paramount in the maintenance of continence. Based 

Figure 3.10 Side-by-side comparison of numeric rectum model geometries from 

separate sources, overlaid on a cm × cm grid. 
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on this comparison and with the advice of clinical personnel, the 3DirCAD rectum 

was selected for used in the simulation. 

A model for the rectum to be used in the simulation was made using SolidWorks 

(Dassault Systèmes, Vélizy-Villacoublay, France). This was constructed using a 3D 

model of the human rectum was segmented by 3DirCAD [171] from simulated CT 

data. This model was imported into SolidWorks and various features added to allow 

the manufactured model to be integrated into the test simulation setup, Figure 3.11. 

Flanges are located at the distal and caudal end of the rectum phantom to allow 

fixation to the rigid simulation housing. A balloon catheter port allows the insertion 

of a balloon catheter into the rectum to facilitate pressure measurements during 

testing, a cable tie tightened around the silicone catheter port seals the entrance and 

secures the catheter in place. 

3.5.3. Pelvic Floor Components 

Influential aspects of the pelvic floor are modelled in the simulation, these are 

identified in the following sections along with details of fabrication. 

Figure 3.11 SolidWorks render of the 3DirCAD rectum model cast using the die 

mould, detailing its features. 

https://en.wikipedia.org/wiki/Dassault_Syst%C3%A8mes
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3.5.3.1. Physiological Overview 

The pelvic floor is formed by sheet like ‘levator ani’ musculature, ‘coccygeus’ 

musculature and the covering fascia. It provides support to the pelvic viscera and is 

an important component of the simulation. The PR fibres of the levator ani blend with 

the deep part of the EAS, Figure 3.12. 

The PR fibres form a sling which is attached in front to the pubic bones and passes 

around the junction of the rectum and the anal canal, pulling the two forward at an 

acute angle. The sphincter complex and PR muscle work in coordination with one 

another, and both muscles are included in the simulation, although as separate entities. 

3.5.3.2. Model Overview 

The anal canal and sphincter complex are modelled as a passive assembly, consisting 

of an inner silicone tube (the anal canal) and an outer constraint layer used to represent 

the combined occlusive action of the sphincter complex. The anal canal was modelled 

in a distended state (as during ‘defecation’) which is then constrained by the passive 

Figure 3.12 Schematic representation of the rectum and anal canal, demonstrating 

the arrangement of muscle fibres of the PR and various parts of the EAS. 
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sphincter element to produce an occlusion, with features representing mucosal folds. 

The dimensions of these features were obtained from anatomical studies [1, 2] and the 

3D-IRCADb database [172] discussed above. A 1mm × 3mm retaining groove was 

added to the outer wall of the sphincter to locate a FI device and prevent the device 

moving longitudinally along the canal during use. 

An important aspect of the PR to be recreated within the simulation is its contact area 

with the rectum, this was approximated from anatomical studies [2, 68] and defined 

as 18mm in width, Figure 3.13. The length of the PR varies during its operation, 

Figure 3.14, and in the simulation this is modulated through an actuation mechanism 

(described in Section 3.7.1. ). 

 

 

 

 

 

 

 

 

Figure 3.13 Left; ultrasound image of an endo probe in the anal canal and Right; 

schematic representation of the anal canal showing lengths of the surrounding 

musculature. 
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Figure 3.14 Seated CT defecography; images of puborectalis plane A) At rest, the 

puborectalis is lower case “u”-shaped B) During squeeze, the puborectalis shortens 

and becomes “v”-shaped; the centripetal force of the puborectalis shuts the genital 

hiatus and anus tightly C) During defecation, the puborectalis lengthens and 

becomes capital “U”-shaped; the centrifugal force of the levator ani opens the 

genital hiatus and anus. 
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3.5.4. Connective and Supportive Structures 

A range of elements were made to hold and support the functional parts of the 

defecation models (rectum, anal canal, PR sling & sphincter complex), housed in an 

adult male pelvis model (Male Pelvis Skeleton, 3B Scientific, Hamburg, Germany) 

which provided visual anatomical reference points during simulation analysis, Figure 

3.15. 

The bony pelvis provides a strong, stable connection between the trunk and the lower 

extremities. Its main functions are to transmit body weight from the vertebral column 

to the femurs, and to contain, support and protect the pelvic viscera, including the 

rectum. The pelvis provides attachment points for muscles of the pelvic floor which 

constrain the movement of the sphincter complex and provide support to the rectum. 

Adipose fat was modelled using silicone which approximates the mechanical 

properties of adipose tissue in healthy adults [87], and it is attached to the sacrum to 

provide a soft interface between the posterior rectum and bony pelvis. The most distal 

Figure 3.15 Schematic overview of the connective and supportive structures and 

soft tissue phantoms as part of the physical simulation assembly. 
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part of the anal canal and proximal end of the rectum are fixed relative to the pelvis 

using the soft silicone flanges, custom acrylic mounts and a customisable aluminium 

framework (Rexroth, Bosch), configured in a way that the rectum assumes a resting 

anatomical position. 

The location of the rectum is determined by the position of the posterior anorectal 

junction relative to the apex of the sacrum, since this is a measurement which can be 

easily defined from clinical data. In the simulation, the anorectal junction is located 

42 mm anteriorly to the apex of the sacrum, and 5 mm inferiorly, Figure 3.16. The PR 

control spool was positioned in place of the pubic bone (which in the biological 

system, anchors the PR muscle). As such, the spool was located 90 mm anteriorly to 

the anorectal junction and 40mm superiorly, Figure 3.16. This enabled the PR 

phantom model to be moved along the axis between the anorectal junction and pubic 

bone as it does in the biological system. To make this modification, the pubic bone 

was removed from the simulation in place of the stepper motor and spool assembly. 

The upper sacrum is constrained in the vertical axis and the distal anal canal flange is 

constrained in the horizontal axis. 

Figure 3.16 Scale dimension drawing of the simulation components in the sagittal 

plane, indicating the positions of the Puborectalis control spool and sacral base 

relative to the anorectal junction. 
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3.5.5. Simulated Stool 

The composition of faecal matter can vary greatly between different people, and 

among different faecal samples from the same person. This variation is attributed to a 

person’s diet, age, health, lifestyle, climate and geographical region [173]. And as 

such, it is common for human faeces to contain a wide range of moisture contents 

with large variability in homogeneity. The Bristol Stool form scale depicts the various 

forms of stool Figure 3.17. 

While FI can occur in patients with all these forms of stool, a high moisture stool can 

increase severity. Type 7 in included in tests conducted with the physical simulation. 

3.6. Fabrication 

A range of techniques are used in the fabrication of components of the physical 

simulation, to meet their individual demands. These are discussed in detail in the 

following sections; ‘Soft Tissues’ and ‘Connective and Supportive Structures’. 

Figure 3.17 Overview of the different types of faeces which constitute the Bristol 

stool form scale. 
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3.6.1. Soft Tissues 

The procedures used to fabricate all silicone-based simulation components are 

described as follows: 

1. Prepare the custom mould by cleaning with an acetone wash, and once dried, 

apply a mould release agent (Smooth-On, Universal® Mould Release) 

2. Assemble the custom mould 

3. Pour silicone catalyst and crosslinker parts into a dry mixing container in 

proportions specified on product information provided by the manufacturer 

4. Load the mixing container into a planetary mixer and degassing machine 

(THINKY, ARA-250, Intertronics, Kidlington), mix for 30 seconds at 2000 

rpm then degass for 120 seconds at 2200 rpm 

5. Pour the premixed, degassed silicone into the prepared mould, allowing the 

silicone to flow naturally into any crevices 

6. Leave to cure for the cure time specified in the product information 

7. Demould and remove excess material with a sharp blade 

3.6.1.1. Rectum and Anal Canal 

A custom mould was required to fabricate the rectum as a hollow silicone shell. 

Firstly, the 3D geometry, Figure 3.18, was imported into a CAD package 

(SolidWorksTM, Dassault Systèmes), and modified to add flanges for mechanical 

fixation and interfacing with adjoining components. A 3D mould, Figure 3.18, was 

then constructed using the modified rectum geometry. The mould consisted of two 

halves with an insert. Fixation points allowed the rectum insert to be correctly aligned 

within the mould cavity such that a uniform wall thickness was achieved. Lastly, a 

material reservoir and inlet ducts were added to the mould to enable fabrication by 

vacuum casting. 

Due to the high variability of the biological anal canal, the mould features an adaptable 

anal canal section, allowing multiple anal canal geometries to be replicated using the 

same mould. The anal canal cavity sections are separate from the main body of the 

mould allowing them to be interchangeable with different profiles, Figure 3.18. The 

mould is manufactured by 3D printing, meaning that different anal canal geometries 

can be manufactured and incorporated in little time. The manufactured mould is 

shown in Figure 3.19. 
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With pre-mixed, de-gassed silicone in the material reservoir the mould was positioned 

in a vacuum chamber for 4 hours. When a vacuum is applied, air in the mould cavity 

is displaced with silicone where it cures, and the rectum model is de-cast (Figure 

3.18). 

Initial fabrication produced a part which contained air pockets, due to the viscosity of 

the silicone, all the air in the mould cavity was displaced. The casting method was 

a) b) 

Figure 3.19 a) internal view of the mould, showing the mould cavity and core 

component; b) isometric view of the manufactured mould, showing the silicone 

reservoir and sprue. 

Figure 3.18 Fabrication process for the rectum phantom model detailing a) the 

segmented geometry b) exploded view of the 3D printed vacuum injection mould 

and c) cast phantom rectum Phantom. 
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modified to include a step in which both sides of the mould were primed with degassed 

silicone, before assembling the mould. This produced a part which was fully degassed, 

Figure 3.20. 

3.6.1.2. Sphincter Complex 

The sphincter complex phantom was fabricated using a mould compiled of layers of 

2D acrylic profiles, manufactured by laser cutting. A high shore hardness grade 

silicone core, Figure 3.21, was fabricated separately (using a similar technique to the 

sphincter). This forms a complex, thin geometry which would otherwise be 

challenging to fabricate with acrylic. The acrylic profiles and core components are 

assembled to form the mould. Mould release agent (Smooth-On, Universal mould 

release spray) is applied to the inner surfaces of the mould to prevent silicone from 

adhering. Pre-mixed, degassed silicone is then poured into the mould cavity and left 

to cure at atmospheric pressure. 

Figure 3.20 Image of the fabricated silicone rectum with casting runners 

removed. 



Chapter 3: Technical Requirements, Design, Fabrication and Control of a Physical Simulation 

of the Human Defecatory System 

79 

 

The mould allows a sphincter phantom to be fabricated (Figure 3.22) with features 

that allow it to occlude the anal canal by mimicking the natural closure mechanism of 

the biological system, by producing mucosal folds in the anal canal wall. It also has a 

recess which keeps a FI device in position during testing. 

3.6.1.3. PR Muscle 

Similar to the sphincter complex, the PR muscle phantom was fabricated using a soft 

silicone elastomer, providing a soft interface between PR and rectum, and backed by 

a fine inextensible mesh (fiberglass mesh) to allow precise positional adjustments 

without elongation of the phantom. A mould was manufactured using laser cut sheets 

of 2D acrylic to form a 3D mould, Figure 3.23. The mould consists of three sections 

(base constraint, PR profile and top constraint). The middle section features the profile 

Figure 3.22 The model silicone sphincter showing a) side view; b) top view; c) 

simulated mucosal folds along the anal canal and d) the anal canal with the sphincter 

distended. 

Figure 3.21 SolidWorks render of the sphincter mould, indicating its features and 

components. 
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of the PR phantom, along with a silicone inlet (pictured) and air outlet (not pictured) 

slots. A layer of fibre-glass mesh is positioned and clamped between the middle and 

top acrylic layers, by tightening bolts which hold the mould sections together during 

fabrication. Pre-mixed, degassed silicone is then poured into the mould cavity and the 

phantom is left to cure at atmospheric pressure. Once cured the part is de-cast, excess 

mesh is removed and Nylon wire is threaded through each end, Figure 3.23, leading 

to a spool which is actuated to adjust the position of the phantom. 

3.6.1.4. Connective and Supportive Structures 

Adipose tissue was fabricated using the same method as for the PR muscle, except 

there was no addition of a mesh constituent. A mould with a uniform rectangular 

cavity was bolted together and premixed silicone was poured into a silicone inlet 

where it flowed freely and filled the mould cavity. Once cured the part was de-cast. 

The tissue phantom was fixed to the sacrum using a silicone adhesive (SilPoxyTM, 

Figure 3.23 Top; SolidWorks renders of the mould used to fabricate the PR 

muscle phantom and bottom; image of the fabricated part, trimmed down and fitted 

with nylon wire. 
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Smooth-on), where excess hanging over the sides of the sacrum was removed. Finally, 

the surface of the adipose phantom was encapsulated using a silicone encapsulator 

(Super BaldiezTM, Mouldlife) to produce a low friction surface which interfaces with 

the rectum phantom. 

A Rexroth frame was constructed which was large enough to house all the soft tissue 

phantoms along with control and sensing instrumentation. The anatomical pelvis was 

bolted to the frame, and sections of Rexroth were positioned and connected to provide 

fixation for the soft tissue phantoms while allowing adjustments to their position in 

3D space. This accommodated for changes in the geometries of phantom models and 

configurational modifications. Custom fixtures were cut from 2D sheets of acrylic, to 

secure the proximal and distal flanges of the rectum phantom to the rigid frame. 

3.6.1.5. Simulated Stool 

Simulated stool was prepared using a smectite clay (VEEGUMTM R) suspension in 

water as used for a stool analogue in a previous study [148]. It was mixed in a ratio 

such that its moisture content was 91% to produce a consistency of 42.2 (as 

determined in Chapter 4, Section 4.1.2.3. ), comparable to the consistency of high 

moisture content faeces, reported as 39.33 [142]. The mixture was homogenised using 

a hand held blender for 2 minutes and until no clumps of clay were apparent. To 

prevent dehydration of the suspension, it was covered when it wasn’t in use, and it 

was always made on the day of testing. The suspension was regularly mixed to ensure 

that its molecular structure was in a consistent state of breakdown/repair. 
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3.7. Control and Data Acquisition 

The physical simulation was instrumented with a range of hardware detailed in Table 

3.6. Sensing hardware was used to sample the PR muscle force, IR pressures and 

faecal mass leakage. A global overview of the instrumentation and electronic 

subsystems of the physical simulation is presented in Figure 3.24. 

 

Table 3.6 Details of simulation control hardware: 

Testing variable Hardware Manufacturer and model 

Anorectal angle Stepper motor RS Pro,  535-0366 

Mass flow rate Linear stage PSAA-60 W 

Test indicator LED - 

Figure 3.24 Overview of the instrumentation and corresponding electronic 

subsystems of the physical simulation assembly. 
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3.7.1. Control hardware 

Augmentation of the ARA was driven using a stepper motor and spool assembly, 

controlled by a host PC. A complete wiring diagram for the control of the stepper 

motor is presented in Figure 3.26. Figure 3.25 shows a schematic of the simulation 

with all the control hardware detailed. 

 

 

 

 

 

Figure 3.25 Schematic representation of the control hardware assembled within 

the physical simulation. 
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The PR muscle is connected to the spool through an inextensible nylon cord and 

tightened against the anorectum through rotation of the spool, causing augmentation 

of the ARA. Stool simulant was introduced to the system by controlled injection using 

a lead-screw linear actuator which drove a syringe containing the stool simulant. Stool 

leakage from the anal canal is retained in a collection tray. 

3.7.2. Sensing hardware 

Sensing hardware was implemented to measure the PR muscle force, IR pressures and 

faecal mass passed from the system, these data were recorded at a sample rate of 

100HZ to monitor the variables over time, as stool simulant was injected into the 

system. Table 3.7 details the sensing hardware implemented in the simulation, and 

Figure 3.26 Wiring diagram of thee terminal connections between the bipolar 

stepper motor driver and DAQ device to control PR modulation. 
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Figure 3.27 shows a schematic representation of the system highlighting the positions 

of sensing hardware. 

A balloon catheter (Medi Plus, 2309) was located within the rectum which fed to a 

pressure transducer (Utah Medical, Deltran® 6199), capable of measuring pressures 

in the range -50 to 300 mmHg. The transducer signal was amplified using an amplifier 

Figure 3.27 Schematic representation of the sensing hardware assembled within 

the physical simulation. 

Table 3.7 Sensing hardware implemented within the physical simulation assembly: 

Testing variable Hardware Manufacturer and model 

Intra-rectal pressure 
Balloon catheter Medi Plus, 2309 

Pressure transducer Utah Medical, Deltran® 6199 

PR muscle force Load cell RS, 1004 

Mass leakage Load cell RDP, RLS005kg 

Visualisation Webcam Logitech, HD Pro C920 
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(RDP, DR7DC) which allowed more accurate determination of the dynamic rectal 

pressures within the simulation. While the transducer is accurate to ±2 %, the 

configuration of the balloon catheter within the rectum means that readings might be 

less accurate. As rectal volume varies, it is likely that the catheter tip would move 

slightly in the vertical axis, resulting in varying proportions of the pressure observed 

being the static head. To compensate for this error, pressure readings will be 

considered accurate to ±5 % the measured value. A complete wiring diagram between 

transducer, amplifier, transformer and DAQ device terminals to acquire the pressure 

data is shown in Figure 3.28. 

Two load cells are included in the simulation. The stepper motor used to regulate the 

position of the PR muscle was mounted to one load cell (Sensor Techniques, 1004) 

allowing the forces acting on the anorectum by the PR to be measured. Stool leakage 

retained by a collection tray was mounted to a second load cell (RDP, RLS005kg) 

such that mass, and mass flow rate, could be measured. While the load cell is accurate 

to ±0.007 % the applied load, discrepancies between actual and measured values arise 

Figure 3.28 Wiring diagram of the terminal connections between the pressure 

transducer and DAQ device to measure intra-rectal pressure. 
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due to the configuration of the load cells and connected components. The stool load 

cell is orientated to measure force applied vertically, in the same axis as the force 

applied by the weight of faeces in the collection tray. The error for this measurement 

therefore will be considered accurate to the manufacturers quoted value. For 

measurement of PR force, the load cell is orientated to measure force applied in the 

horizontal axis. However the wire connecting the load cell to the PR phantom deviates 

slightly from being normal to the load cell due to the phenomena of pelvic floor 

descent. This means that the force observed will be a component of varying amounts 

the actual value. Consequently the values obtained for PR force will also be 

considered accurate to ±5 %. The wiring diagrams to obtain measurements from both 

of these load cells is demonstrated in Figure 3.29. 

A high definition universal serial bus webcam (C920 HD Pro, Logitech) was mounted 

on the model’s supportive framework to provide a sagittal plane video-stream of the 

rectum at 30 Hz throughout each experiment. The video stream was used to monitor 

Figure 3.29 Wiring diagram of the terminal connections between the load cells 

and DAQ device to measure Puborectalis force and stool mass leakage. 
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and iteratively modulate the ARA as demonstrated by the loop control shown in 

Figure 3.30, and was recorded for post-hoc analysis. 

The loop control presented in Figure 3.30 was used in the configuration of the ARA 

prior to testing. The ARAs included in the variable matrix for testing were configured 

individually while the positions required of the stepper motor to achieve each ARA 

was noted, this ensured that the PR muscle could be relaxed and returned to exactly 

the same position between tests. A short study was performed to verify the 

repeatability of measuring the ARA by visual analysis given the inevitability of 

human error. The ARA was configured to 90° and a snapshot was obtained using the 

serial bus webcam. Both axes (anal canal & rectum) which form the basis of the ARA 

measurement were then constructed by hand onto the image 10 times, independently 

of one another. On each image, the angle between the axes was then measured, Figure 

3.31.  

 

 

Figure 3.30 Flow chart demonstrating the loop control implemented for ARA 

augmentation, the loop begins at ‘A)’. 
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Observation of the spread between ARA measurements provide an insight into the 

repeatability of this method to configure the PR position. The measurements ranged 

from 89.47° and 90.52° with a mean of 90.03° (standard deviation ±0.328°). This 

suggests that despite the arbitrary definition of the ARA, it can be measured reliably 

by visual analysis to within ±1° of the actual value. 

Sensing hardware was tested to produce calibration curves. For the load cells, known 

masses were incrementally added up to a maximum and then removed incrementally, 

while the voltage outputs were recorded. Upper and lower limit values of the 

simulation are estimated for faecal mass passed (0 to 110 g) and for IR pressure (0 to 

60 mmhg). The range of mass’ and pressures tested during the calibration phase 

encompass this range. In order to calibrate the pressure transducer, a balloon catheter 

was connected to the pressure monitoring line and positioned at the base of a water-

tight container while a head of water was incrementally increased to a maximum and 

then incrementally removed, while the voltage output was recorded. The hardware 

showed no hysteresis, and high linearity was observed (R2>0.99), Figure 3.32. 

Coefficients from the calibration analysis, Table 3.8, were inputted to the LabVIEW 

Figure 3.31 Ten repeat dimensions taken to test the repeatability of anorectal angle 

measurements. 
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control platform so that real-time values of the test variables could be displayed during 

testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Pressure transducer Load cell 1 (PR) Load cell 2 (Leakage) 

Coefficient 0.019 0.929 4.337 

 

Table 3.8 Calibration constants for sensing instrumentation: 

Figure 3.32 Calibration curves for simulation sensing hardware: mass load cell, 

PR load cell and pressure transducer. 
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3.7.3. Control Software 

This section describes the development of software for the data acquisition, control 

and data logging for the physical simulation. LabVIEWTM (National Instruments) was 

used as a programming platform. The software architecture was selected and 

implemented to allow simple configuration of testing protocols. The user interface of 

the program is divided into two parts, a ‘configuration’ tab and a ‘display’ tab. The 

‘configuration’ tab allows the user to define channels to write and read on the DAQ 

device for each piece of hardware, input custom calibration data and manually set the 

speed of the PR control stepper motor. The ‘display’ tab, Figure 3.33, shows plots of 

faecal mass passed, PR muscle force and IR pressure in real-time during testing. It 

also allows the position of the stepper motor and position and speed of the linear stage 

to be adjusted during testing, a file name to be defined and the initiation/termination 

of data recording. A flow chart for the operation of the vi is shown in Figure 3.33. 

An overview of the faecal simulation is demonstrated in Figure 3.34, which details 

the tissue phantoms, control and instrumentation hardware along with the combined 

electronic subsystems. 
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Figure 3.33 Top; LabVIEW program UI: ‘Display’ tab Bottom; Flow chart 

schematic of the software for user operation during a testing sequence. 
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3.8. Summary 

The full biological continence mechanism is complex and consists of the coordinated 

function of the nervous systems, GI tract, and anal sphincter and pelvic floor 

musculature. Our current model focusses on investigating the effects of varying ARA 

and sphincter pressure, and accordingly we have simplified the system to facilitate 

fabrication and detailed analysis of these functions. 

In the development of a physical simulation of the faecal system, an approach was 

implemented which fabricated ‘soft’ representations of key parts of the anatomy, 

consisting of the rectum, PR muscle, sphincter complex and adipose tissue. These 

were developed from biomechanics of the human faecal system to be modelled, and 

manufactured using silicone fabrication techniques. Soft silicone representations were 

Figure 3.34 Schematic overview of the control and sensing hardware and silicone 

phantom model constituents of the physical simulation assembly together with the 

underlying electronic subsystems. 
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combined with computerised control and instrumentation; implemented to control 

system variables to objectively monitor and regulate physiologically relevant 

parameters (derived from the simulation specifications). A stool simulant was 

implemented within the physical simulation to recreate the natural flow regimes 

observed in the biological system. 

Tensile data was obtained from literature for rectum and adipose tissues and tests were 

conducted on porcine IAS and EAS to obtain force-displacement data, which together 

with data from literature, meant the loading profiles were obtained of all tissues 

represented in the simulator. Tensile data was also obtained for 3 grades of silicone, 

and a method to match a portion of their loading curve with the represented biological 

tissues identified Ecoflex 00-20 as matching the properties of Adipose tissue and 

Ecoflex 00-30 as matching the properties of Rectum and IAS tissues. Consequently, 

these silicones were used to fabricate their retrospective tissues, with the exception of 

the rectum in which 3 lower compliance grades were selected to represent an ‘active’ 

state, characteristic of the biological rectum during defecation. 

The rectum, adipose fat and PR muscle components are simulated by cast, 1:1 scale, 

silicone models, anatomically positioned within a housing linking these elements to 

control and instrumentation, as shown in Figure 3.34. The system is driven through a 

stool injection mechanism while the ARA is regulated through an active PR muscle. 

By varying the pressure exerted by the PR muscle on the rectum, the ARA can be 

controlled and its effects on faecal leakage are observed during the influx of simulated 

stool. The anal canal is represented within the rectum geometry with passive occlusion 

from an anal sphincter cuff. The anal sphincter occludes the anal canal by instating 

mucosal folds in the wall of the rectum phantom. This allows for expansion without 

elastic deformation of the rectal wall, to critically observe effects of sphincter pressure 

on the system. 
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Chapter 4: Validation of the Physical Simulation 

This chapter compares the physical simulation to the human system. Firstly, by 

considering the component parts (simulated stool, rectum model, anal canal/sphincter 

complex and pelvic floor) and comparing these to corresponding aspects of the human 

system; stool viscosity, pelvic floor descent, rectum morphology and anal canal 

distensibility are among the metrics used in the cross-comparison. The individual 

parts were then brought together to compare the simulation as a whole, through 

replication of a typical biological scenario, to the human system. Component-level 

validation, and validation of the simulation as a combined entity, strengthens its 

viability as a development tool for new technologies in the management of faecal 

incontinence. 

4.1. Stool Simulant 

Tests to determine the physical properties of faeces have shown that they vary 

considerably in viscosity, hardness and consistency [142]. A pharmaceutical grade 

smectite clay (VEEGUM R, Magnesium Aluminium Silicate NF Type IA, Vanderbilt 

Company) is used as simulated stool during nuclear proctographic studies, as it shows 

similar rheological properties (consistency) to human faeces. For this reason it has 

also been used as a stool analogue for research in the past [148]. It consists of dry 

particles which are multiple layers of individual platelets which form a homogenous 

solution with water. The extent to which the particles are delaminated into individual 

platelets depend on the degree of hydration. Proportions of clay and water and degree 

of hydration can be adjusted to obtain similar physical properties of density and 

viscosity comparable to those reported for soft faeces [142]. 

4.1.1. Simulation Stool Flow Characteristics 

In the determination of shear rates which should be investigated for the 

characterisation of the stool analogue, the maximum shear rates through the 

simulation are estimated by modelling the laminar flow of a Newtonian fluid through 

a pipe, Figure 4.1. 
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To calculate the maximum estimated shear rate experienced by the stool simulant 

flowing through the simulation, a maximum volumetric flow of 9.26 ml s-1 is used 

together with the narrowest diameter of the rectum model, located at the anorectal 

junction (23 mm). This produces a maximum shear rate of 15.5 s-1. 

4.1.2. Rheology of Smectite Clay Suspensions in Water 

The formulation of the stool simulant was determined through experimental analysis 

of its rheological properties. Dynamic viscosity curves of simulated stool are 

compared to fresh human faeces, following which power law indexes are calculated 

from the viscosity curves to compare shear thinning properties between the two. 

Finally, a stool suspension is selected based on its consistency through direct 

comparison with human faecal consistencies. 

4.1.2.1. Dynamic Viscosity Curves 

A range of samples were made by adding measured amounts of magnesium silicate 

powder to distilled water to produce suspensions with 91 %, 92 %  and 93 % moisture 

contents. Moisture contents were initially chosen based on corresponding contents of 

runnier fresh human faeces [142], then 3 were selected to cover a range of 

consistencies up to the operational limits of the rheometer, as determined by trialling 

different solutions. Samples were dispersed using a chemical homogeniser for 2 

minutes. Following homogenisation, samples were transferred immediately to the 

vessel of a rheometer (Bohlin Gemini II, Malvern Panalytical) to obtain shear rate-

dynamic viscosity flow curves using a vane tool (V 25), for varying clay suspension 

moisture contents. During tests, samples were immersed in a water bath at a 

temperature of 25°C. Samples were pre-sheared for 10 s at a rate of 20 s-1 to 

𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒,𝑦 =
8𝜈

𝑑
, 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝜈 =

𝑄

𝜋  
𝑑
2
 

2 

Where Q = volumetric flow rate, d = diameter  

Figure 4.1 Calculation of shear rate by modelling the flow of a Newtonian fluid 

through a pipe. 
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breakdown the molecular structure of the colloid suspension, as per the test protocol 

used to test human faeces [142], before being left to rest for 5 minutes. This ensures 

that temperature and concentration of colloid particles are uniform within the samples 

and establishes a consistent state of molecular breakdown/rebuild at the point of 

shearing. Finally the samples were subject to a logarithmic ramp of shear rates 

between 1×10-5 s-1 and 1000 s-1, encompassing the approximate range of shear rates 

experienced within the simulation (maximum shear rate: 15.5 s-1). The pre-shear, rest 

and ramp cycle was repeated 5 times. 

The shear rate-dynamic viscosity flow curves obtained from the test are presented in 

Figure 4.2. 
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Figure 4.3 Dynamic viscosity profiles and power law fits of left; VEEGUM R 

suspensions in water showing mean (N=5) and right; typical human faecal samples 

with a range of moisture contents. 

Figure 4.2 Raw dynamic viscosity profiles obtained for various moisture content 

VEEGUM R suspensions, each plot shows 5 cycles. 
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As can be seen, little variation is observed between cycles, indicating that the 

properties of suspensions do not vary over the course of the test. From the cyclic data, 

mean dynamic viscosities were calculated, displayed in Figure 4.3. It was noted that 

while testing the 91 % moisture suspension in particular, a large amount of noise is 

visible in the viscosity profile for shear rates under 1 s-1, due to limitations of the 

rheometer. 

4.1.2.2. Power Law Indexes 

Using the mean plots of shear rate-dynamic viscosity, the power law index (PLI) is 

calculated using a standardised method [174] and compared to PLI’s for dynamic 

viscosity profiles of a range of moisture contents human faeces, Figure 4.3. The power 

law region of a flow curve describes the shear thinning behaviour of fluids. This 

region shows linearity with a constant gradient on the log-log plot of dynamic 

viscosity vs shear rate. A power law fluid (or the Ostwald de Waele relationship), is 

a Newtonian fluid for which the shear stress, τ, is given by: 

Which can be re-written to define an apparent viscosity, η: 

Consistency is defined as the dynamic viscosity of the solution at a shear rate of 1 s-1. 

PLIs were calculated for shear rates ranging from 1 s-1 to 100 s-1, as all flow curves 

showed linearity between these limits. Values of PLI (η) and consistency (k) are 

displayed in Table 4.1 along with the R2 value of the power law fit. 

A strong power law relationship (R>0.99) is seen for all flow curves displayed in 

Figure 4.3. The PLIs calculated for all suspensions were comparable, with little 

Solution Repeats 

(N) 
PLI (η) Consistency 

(k) 

R2 

value 

Clay (91% moisture) 5 1.01 42.2 0.999 

Clay (92% moisture) 5 1.01 25.2 0.999 

Clay (93% moisture) 5 1.01 11.9 0.999 

Stool (73.3% moisture) 1 0.80 1410 0.999 

Stool (80.2% moisture 1 0.86 617 0.999 

Stool (88.4% moisture 1 0.72 39.3 0.997 

 

Table 4.1 PLI’s calculated for various moisture content VEEGUM R suspensions 

and human stools: 

𝜂 = 𝑘𝛾 𝑛−1 

𝜏 = 𝑘𝛾 𝑛  

Where k = consistency,  𝛾  = shear rate 
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variation between the different moisture contents tested. All PLIs for the suspensions 

were less shear thinning than a range of stools used in a previous study on human 

faeces; ranging from 0.72 at a 88.4% moisture content to 0.86 at an 80.2% moisture 

content [142], whereas the suspensions possess a PLI of 1.01. A range of moisture 

content stool samples were chosen from a previous study to include in the analysis, 

and since every stool is different, no repeats were obtained for each sample. However, 

human stools showed a relation between moisture content and consistency, ranging 

from 1410 Pa.s at a 73.3% moisture content to 39.3 Pa.s at an 88.4% moisture content 

[142]. Values observed for PLI of different moisture content stools were variable and 

with now apparent trend, probably due to a lack of repeat tests. Due to operating 

limitations of the rheometer, thicker consistency suspensions could not be tested, 

despite the need for thicker consistencies to represent lower moisture content faeces. 

The observation that smectite clay suspensions possess smaller PLIs (demonstrating 

less shear-thinning behaviour) than human stool, suggests that the flow curves would 

cross over at low shear rates (< 0.1 s-1). At the point of crossing, the fluids would 

possess the same apparent viscosity; indicating similar flow characteristics at this 

shear rate. It was estimated that the flow regime through the rectum model would 

produce a maximum shear rate of 15.5 s-1. While the suspensions tested have greater 

shear thinning properties than the stool samples, lower moisture content suspensions 

can increase apparent viscosity. This would bring the flow characteristics of simulated 

stool more in line with human stool for a given shear rate. Since a maximum shear 

rate of 15.5 s-1 was estimated for stool flow within the simulation, the majority of flow 

would be subject to a shear rate smaller than this. Therefore the apparent viscosity of 

simulated and human stool are compared at a shear rate of 1 s-1 (also termed the 

‘consistency’ of a fluid). 

4.1.2.3. Determination of Stool Formulation 

The consistencies of clay suspensions were plotted against moisture content, Figure 

4.4. Interpolation of this relationship allows the moisture content to be estimated given 

a desired stool consistency, required of the simulation. This analysis produced an 

interpolated power law which showed close relationship to the viscosity-moisture 

content profile (R2>0.99). 
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The measured moisture contents of human faeces range from 58.5% to 88.7% by 

mass, with consistencies ranging between 52.8 and 3306.3 Pa.s [142]. Using the 

power law relationship defined in Figure 4.4, the clay formulation was selected at 

90.5% moisture content. This formulation produced a consistency of 47.1 Pa.s which 

is similar to high moisture-content semisolid faecal samples, yet fluid enough to pass 

through the simulation without damage to soft components. Also when mixed in this 

ratio, the simulated stool did not leak from the simulation at resting pressures. While 

this is not representative of the viscosity of a mean moisture content stool, it presents 

a ‘worst case’ with which to rigorously test the continence mechanisms in the physical 

simulation. 

 

 

 

 

 

Figure 4.4 Interpolated power law of the relationship between apparent viscosity 

and water content for various moisture content VEEGUM R suspensions. 
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4.2. Tissue Phantoms 

Direct comparison between individual soft tissue components and corresponding 

components of the human system is challenging as part of the full simulation. 

Therefore an isolated validation was performed on individual components highlighted 

in Figure 4.5 (rectum, sphincter complex and pelvic floor), to increase their face 

validity.  

A majority of the modelling criteria for the components have been informed with data 

from literature. Each fabricated component was compared back to this data during the 

validation process. Tests were conducted on the rectum model to define a pressure-

distension profile; a common assessment carried out in previous studies to determine 

the compliance of rectal tissue. Distensibility tests were carried out on the anal 

canal/sphincter assembly to obtain pressure-diameter data at various points along its 

length and calculate an index for cross-comparison with the human system, using the 

same protocol as used on human subjects in the past. Finally, the range of angulation 

achieved by modulating the position of the PR was observed and compared to a range 

of clinically observed values. Following individual validation, the components were 

brought together to compare aspects of the simulation as a whole to the biological 

system, while subject to parameters characteristic of ‘healthy’ defecation. 

Figure 4.5 Soft silicone components are highlighted for which validation checks 

are carried out, before performing a typical test scenario on the components 

combined. 
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4.2.1. Rectum 

Based on the analysis in Chapter 3 (Section 3.5.1.2. ) preliminary stool injection tests 

were conducted with a rectum fabricated from Ecoflex 00-30, to investigate the effect 

of ARA on continence. However tests carried out with any substantial resistance to 

leakage (obtuse ARA’s) caused gross distension of the rectum without the passing of 

faeces, due to inadequate elastic forces in the rectal wall. In Chapter 3, tests to analyse 

tensile properties of the rectum tissue, were performed in a ‘passive’/resting state, 

whereas in the biological system during defecation it is ‘active’. To counter this, three 

stiffer grades of silicone were chosen to represent the rectum in an ‘active’ state, 

characteristic of a rectum during defecation in a healthy subject, these included 

Dragon Skin 10A, 20A and 30A. The operational strains experienced by the rectum 

in the simulation lie well within the strains which these silicones undergo before 

failure (which are all in excess of 364 %). Furthermore, the elastic moduli of these 

silicones range from 0.15 MPa for Dragon Skin 10A to 0.59 MPa for Dragon Skin 

30A, which encompass a range an order of magnitude stiffer than the Ecoflex-series 

silicones tested in Chapter 3 (Section 3.5.1.2. ). A stiffer grade of silicone acts to 

simulate the properties of contracted muscle. During defecation, intrinsic contraction 

of the rectum plays an important role in reducing resistance to passing. It also allows 

the transit of higher viscosity stools in the simulation, which are similar to fresh 

human faeces. This allows the effects of a greater range of ARA’s and sphincter 

occlusion pressures to be tested, since the elastic contraction of the rectum has the 

ability to overcome greater resistance to leakage. 

In order to simulate rectal interfaces, a phantom model of adipose tissue was 

fabricated using Ecoflex 00-20, as identified in Section 3.5.1.2. to be positioned 

between the rectum and sacrum. A silicone deadener additive (SlackerTM, Smooth-

OnTM, Minnesota) was added to the silicone during fabrication in quantities defined 

on the product information for a ‘very tacky’ cast component. This modifies the 

rebound properties of the component in a way which behaves more like human tissue. 

The component was then brushed with a silicone encapsulator (Super BaldiexTM, 

Mouldlife, Bury Saint Edmunds) to produce a low-friction finish. Table 4.2 displays 

materials used to fabricate the rectum and adipose components. 
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4.2.1.1. Pressure-Distension Profile 

Tests were conducted to observe the pressure-distension profile of the rectum, to 

compare with the biological system. A rectum fabricated from Dragon Skin 20A was 

used during the analysis and stool was formed with VEEGUM R using a 90.5% 

moisture content solution, prepared using the same method as in section 4.1.2. The 

simulation pressure transducer (to measure IR pressures) was set to zero under 

atmospheric pressure. The outlet to the rectum was fully occluded before introducing 

50 ml of stool simulant at a rate of 2 ml/s at the inlet, while the change in IR pressure 

(with reference to atmospheric) was observed. A total of 10 repeats were conducted. 

Figure 4.6 demonstrates the measured mean ±1 STD of the IR pressure change during 

the distension. 

Studies have been carried out to assess the ‘push’ pressure in the rectum during 

defecation with balloon expulsion tests, using a high resolution manometry catheter. 

It has been reported that urged is sensed with a rectal volume of 167 ml [18] and at 

this distension, the IR pressure is 29 (21-36) mmHg. Another study [175] on healthy 

males revealed that the peak IR pressure during ‘push’ was 72.3±9.4 mmHg (N=64). 

Figure 4.6 Variation of rectal pressure with time during a controlled influx of stool 

to the rectum, solid line shows mean (N=10) with 1STD error bars. 

Pelvic constituent Model  material 

Rectum Dragon Skin 10A, 20A & 30A [6] 

Adipose fat 1:1 wt% Ecoflex 00-20:SlackerTM [6] 

 

Table 4.2 Indicated tissue phantoms and corresponding materials: 
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This suggests that a change in pressure of 41.3 mmHg is experienced between sensing 

urge and the maximum pressure experienced during ‘push’. From Figure 4.6, an IR 

pressure of 41.3mmHg in the physical simulation corresponds to a rectal distension 

of 29.9 ml. Taking into account the non-distended volume of the rectum, this 

correlates to a total rectal volume of 86.6 ml. Whereas greater rectal volumes were 

observed in the human system upon defecation, the pressures generated with the 

simulation were comparable with literature findings during defecation. Inclusion of a 

more compliant rectum with the simulation would allow the effect of greater rectal 

volumes to be investigated with the system. 

4.2.2. Sphincter Complex 

As determined in Chapter 3 (Section 3.5.1.2. ), Ecoflex 00-20 was selected to model 

the IAS. Consequently this was used for fabrication of the sphincter phantom and the 

following section describes the steps taken to characterise it. 

4.2.2.1. Anal Canal Distensibility 

An important modelling consideration is that the pressure profile along the anal canal 

of the physical simulation and biological system are comparable. The physical 

simulation aims to model the resting pressures of FI patients, to form a ‘baseline’ 

configuration. An AAS device is then fitted with the intention of elevating pressures 

to be closer to the resting state of a healthy patient, demonstrated schematically in 

Figure 4.7. 

Since FI patients have poor EAS function, the sphincter phantom used a grade of 

silicone which represented the properties of the IAS. The IAS is composed of smooth 

Figure 4.7 Typical ‘healthy’ and ‘incontinent’ anal canal pressure profiles at rest. 
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muscle and has similar properties to the rectum, which as determined in Section 

3.5.1.2. is most closely matched to Ecoflex 00-30. 

A series of tests were carried out using the EndoFLIP® to assess the distensibility of 

the anal canal, and contribution of a passive-assistive commercially available device 

with two stiffnesses (Consisting of the ‘FENIX’ and a stiffer model of the same 

design; the ‘FENIX Plus’) on sphincter pressures throughout the anal canal. The 

EndoFLIP system consists of a balloon catheter and pressure transducer/catheter 

volume control unit. The balloon catheter is constructed of a straight, stiff core with 

16 impedance sensors along its length, contained in an inflatable non-compliant bag. 

The impedance sensors measure the diameter of the bag at various positions along its 

length to within ±1 mm and bag volume is modulated to within ±1 ml the desired 

value. The PR muscle forces were configured to produce ARAs of 80° and 100°. The 

simulation was orientated in the left lateral position and the EndoFLIP probe was 

inserted into place. Before using the system, air was removed from the probe and the 

baseline intra-bag pressure was set to zero. PR force, anal canal diameters and the 

mean anal canal pressure were recorded throughout. 

The following protocol was followed for each test with the faecal simulator and 

EndoFLIP: 

1. Initialise System and position the EndoFLIP®. Mineral oil is used to lubricate the 

probe which is then manoeuvred until its sensors occupy the `high pressure zone of 

the anal canal. 

2. Configure ARA position and sphincter. Adjust PR tension until desired ARA 

achieved, FENIX/FENIX Plus is fitted if required. 

3. Run test. Bag is inflated incrementally. 

4. End test. Bag is deflated. 

During tests, the EndoFLIP bag is inflated incrementally from 15 to 50 ml in intervals 

of 5 ml, at each increment inflation is paused to allow values to settle, before pressures 

and diameters were recorded. The EndoFLIP was positioned and secured at the start 

of testing and remained in place for the duration of tests. Anal canal diameters were 

recorded at 5 mm intervals, the distance between impedance sensors along the probe. 

The CSA measurements and pressures were sampled at 10 Hz and were stored in the 

data acquisition system. Measured outputs were mean anal canal pressure, anal canal 

diameters and PR muscle force. Tests for ARA effects were carried out, these were 

repeated 5 times for ARA values of 100° and 3 times for ARA values of 80°. 
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All tests were performed at room temperature (25°C). Images of the rectum were 

analysed using ImageJTM (National Institutes of Health) to measure the augmented 

ARA, varying PR force iteratively until it was correct within 0.5°. Each test was 

recorded using a high definition universal serial bus webcam (C920 HD Pro, 

Logitech). Tests for sphincter effects were carried out for baseline values using a 

silicone sphincter model, and with the addition of a FENIX/FENIX Plus device. 

Figure 4.8 displays an experimental schematic (top), along with the data obtained 

during the analysis (bottom). 

 

 

 

 

 

Figure 4.8 Top; schematic donating sensor locations of the EndoFLIP Bottom left; 

Anal canal diameters for the bag volumes recorded (N=3) Bottom right; Baseline, 

FENIX and FENIX Plus anal canal diameters recorded and ARA’s of 80° (N=3) 

and 100° (N=5), mean diameters are shown in solid with 1 STD as shaded region. 
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The full test protocols were successfully completed. Figure 4.9 shows images of each 

experimental configuration for stool injection testing (obtained from the webcam), the 

variation in ARA obtained by tensioning the model PR muscle. Figure 4.9 shows 

experimental stages for anal manometry testing with the FENIX, while balloon 

volumes were regulated with the EndoFLIP. 

The anal canal diameters and mean anal canal pressures were recorded.  Figure 4.8 

shows plots of anal canal diameters with changing bag volumes. Distension of the 

anal canal is most pronounced at the proximal and distal ends of the anal canal. Figure 

4.8 demonstrates effects of ARA and FENIX on anal canal distension. Sensor 10 

reveals the effect of the ARA on anorectal occlusion, approximately 50mm from the 

anal verge, with a reduced rectal diameter of 16.22 mm at an ARA of 100° to 14.13 

mm at an ARA of 80°. Inclusion of the FENIX and FENIX Plus devices have also 

shown to reduce anal canal distension. 

Sensor 6 was identified as being located at the centre of the high pressure zone in the 

anal canal, as demonstrated in Figure 4.8. At this location, calculated CSAs were 

plotted versus mean anal canal pressure (distensibility), displayed in Figure 4.10. 

 

 

 

 

 

Figure 4.9 View of the anal canal during manometry testing with the FENIX device 

fitted, for a range of manometer-bag volumes tested. 
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The pressure in the bag in both tests increased as the anal canal diameter increased 

with growing distension volume. These data show a clear decrease in distensibility 

with use of the FENIX. For an ARA of 100°, at an inflation volume of 50 ml, CSA’s 

of 240.0 mm2 for baseline, 200.6 mm2 with the FENIX and 158.4 mm2 with the 

FENIX Plus were measured. For an ARA of 80°, at an inflation volume of 50 ml, 

CSA’s of 252.6 mm2 for baseline, 203.6 mm2 with the FENIX and 178.3 mm2 with 

the FENIX Plus were measured. 

Distensibility Index 

Based on previous studies on the esophagogastric junction, the distensibility index 

(DI) is a relevant parameter in clinical practice for defining distensibility. Using the 

same method as used in a previous studies [145, 176] DI is calculated as the median 

CSA at the narrowest point divided by the corresponding bag pressure, at 50 ml 

inflation volume. DIs are calculated for the physical simulation, and compared with 

values from literature, Figure 4.11. 

 

 

 

Figure 4.10 Anal canal CSA (at sensor 6) versus balloon pressures with different 

sphincter configurations for ARA = 80° (left) and ARA = 100° (right). Each plot 

shows mean (N=10) with 1 STD error bars. 
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When the ARA has minimum effect (ARA=100°), the rate of increase in the narrowest 

section of the anal canal relative to the rate of increase in bag pressure was 4.74 at 

baseline compared to 3.88 with the FENIX and 2.72 with the FENIX Plus. Higher DIs 

were associated with higher severities of FI. Previous assessments with the EndoFLIP 

[145] have reported the DI at rest as 3.9 (0.7-12.1, N=34) for FI patients, and 1.5 (0.3-

10.4, N=40) for healthy patients. 

The DI decreases with increased sphincter occlusion pressure (i.e. with inclusion of 

the FENIX and FENIX Plus). Therefore by addition of these devices, the anal canal 

DI can be modulated to become more in line with values observed for healthy patients. 

The simulated DI without an AAS device fitted is comparable to the DI for FI patients, 

suggesting that a similar pressure is required for expansion of the anal canal in both 

the human system and physical simulation. The FENIX and FENIX Plus offer an 

improvement to the DI of the anal canal, in-line with the biological values for healthy 

subjects when used with our model. 

4.2.3. Pelvic Floor 

The position of the fabricated PR model was regulated using a stepper motor which 

also allows ARA’s to be maintained at a constant value during tests. By modulating 

the force this component applies to the rectum, a range of ARA’s can be produced, 

Figure 4.12, which encompass those required for normal function as defined in the 

specifications in Chapter 3. 

Figure 4.11 Calculated DIs for the physical simulation and biological system at 

rest, each plot shows the median (in solid) and range (whiskers). 
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The ARA’s were measured by constructing the axes of the centre of the anal canal 

and inferior-posterior wall of the rectum (as per the method in Section 3.7.2. ). Where 

they intersect, these axes form the ARA. A software package, ImageJTM, is used to 

manually construct these axes and measure the value for the ARA. Visual markers 

help in identifying anatomical landmarks used as reference in the potting of axes, 

positioned at 1) inferiorly and at the centre of the anal canal; 2) anorectal junction and 

3) inferiorly on the posterior wall of the rectum. Inaccuracies arise due to a degree of 

dependency of the measurement on human judgment. Although as determined in 

Chapter 3 (Section 3.7.2. ), using this method the ARA can be measured reliably to 

±1° of the intended value. 

By modulating the position of the PR component, ARA’s were achieved between 75° 

and 110°. As identified in Chapter 2, ARAs observed in healthy patients at rest were 

104.5°, and during squeeze these become more acute to 84.5° [9] to prevent the 

passing of faeces during urgency. The simulation has demonstrated its capability of 

reproducing a range of ARA’s which encompass these biological limits. Furthermore, 

by observing the position of the stepper used to augment the PR muscle, it is noted 

that the PR muscle phantom moves 12mm between positions required to produce 

ARAs of 110° (simulating ‘rest’) and 80° (simulating ‘squeeze’). This is comparable 

to values obtained from literature which show that the PR muscle augments 10.3 mm 

between positions at rest and squeeze [68]. 

Figure 4.12 Webcam view of the ARA within the physical simulation, indicating 

the range of ARA’s which can be configured. 
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4.3. The Physical Simulation 

Following a component level validation, individual parts were brought together for 

comparison of the physical simulation as a whole to the human system. Images were 

taken of the simulation in the sagittal plane and compared alongside images from 

proctographic studies. In both systems, the pelvic floor descent is measured as a 

parameter to quantify similarities between their functionality. In addition, a short 

study is conducted to test a typical defecation scenario, from which metrics from the 

simulation were compared to the biological system, these include the total mass 

leakage and IR pressure change. Finally, rectal morphology was observed during the 

study, revealing the effect of IR pressures on expansion and rotation of the rectum. 

4.3.1. Comparison with Proctographic Images 

Proctographic images were taken in the sagittal plane during healthy biological 

‘states’ [177], and compared to the physical simulation in corresponding 

configurations, Figure 4.13. 

During squeeze, the ARA is acute due to the indentation of the PR muscle on the 

posterior rectal wall, and at rest, this indentation is still present although less 

pronounced. During defecation, there is mild pelvic floor descent with relaxation of 

the PR, and consequently, the ARA becomes wider, so that the rectum and anal canal 

become aligned in an almost straight line followed by evacuation. These features were 

Figure 4.13 Comparison of MR proctographic scans of the biological system with 

the physical simulation during 3 different states; squeeze, rest & defecation. 
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visible in both systems, Figure 4.13, the physical simulation can be configured to 

represent each biological state: squeeze, rest & defecation. 

4.3.1.1. Pelvic Floor Descent 

During simulated defecation, the PR muscle descends with the onset of a transit of 

faeces through the rectum, as it straightens. In literature, this descent is defined by the 

perpendicular from the pubococcygeus line, down to the anteroposterior dimension of 

the hiatus. Analysis was conducted using the physical simulation to measure the pelvic 

floor descent. A rectum was selected which was fabricated from Dragon Skin 20A, 

and a stool simulant was formed using a 90.5 % moisture content solution of 

VEEGUM R and water. The rectum was filled with stool simulant. Two snapshots of 

the simulation were recorded for the analysis. A snapshot for ‘rest’ was achieved 

while the force applied by the PR muscle produced an ARA of 90°. Defecation was 

achieved by configuring the ARA to 100°, and injecting 100 ml of stool simulant into 

the rectum at a rate of 9.26 ml/s, the snapshot was recorded at the maximum observed 

distension of the rectum. ImageJ was used to process images of both states, and 

measure the pelvic floor descent from the transition between ‘rest’ and ‘defecation’, 

Figure 4.14. 
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In normal healthy subjects it is reported that the pelvic floor descends by 19mm 

between states of rest and defecation [178], in the physical simulation this was 

measured as 6.8mm. The pelvic floor descent in the simulation is less severe than 

observed in the human system, an explanation for this could be due to passive 

properties of the tissue phantoms. In the human system, the PR muscle relaxes in 

coordination with defecation, allowing the rectum to straighten and provide a passage 

of least resistance to the transit of faeces. In the physical simulation on the other hand, 

the PR muscle cannot relax, and continues to passively constrain the posterior rectum 

during an influx of stool to the rectum. However this is not an issue, since the 

simulation is used to evaluate the effect of the anteroposterior dimension of the hiatus 

on continence. 

Figure 4.14 Comparison of the physical simulation in two states; rest and 

defecation/pelvic floor descent. Dashed lines denote the coccyx (green), 

pubococcygeus line (red) and anteroposterior dimension of the hiatus (blue). 
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4.3.2. Simulating Defecation 

A test scenario was implemented using the physical simulation to represent 

defecation, to characterise the relation between stool transit and IR pressure in the 

simulation. In addition, observation of rectal morphology during the test revealed the 

effect of stool influx (increasing IR pressure) on expansion and rotation of the rectum. 

4.3.2.1. Mass Passed and IR Pressure Characteristics 

For the study, a rectum was selected which was fabricated from Dragon Skin 20A, 

representing a compliance similar to the rectum in an ‘active’ state. The ARA was 

configured to 100°; characteristic of a healthy subject during defecation. During the 

test, 100 ml of stool simulant, formed using a 90.5 wt% moisture content solution of 

VEEGUM R and water, was introduced to the rectum at a rate of 9.26 ml/s, while the 

IR pressure change and mass leakage were observed, Figure 4.15. 

Metrics were calculated from the plots of mass leakage and IR pressure, versus time. 

These include the time at leakage, total mass passed and overall pressure change over 

the duration of the test, as demonstrated in Figure 4.15. Table 4.3 presents values for 

these metrics. 

 

 

Figure 4.15 Variation of stool leakage and intra-rectal pressure with time during 

injection of stool into the simulation at a controlled rate, also indicating the 

definitions of metrics used for simulation characterisation: time @ leakage, peak 

mass and pressure change. 
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As stool simulant is introduced to the rectum, the volume increases as the elastic 

potential of the rectum walls increases. When contraction of the rectum leads to IR 

pressures which are sufficient to overcome holdback pressures incurred by PR muscle 

forces, leakage from the anal canal occurs. As pressures reach an equilibrium, stool 

flows steadily from the anal canal. When the influx of stool into the rectum ceases, 

leakage continues at a reduced rate until the holdback pressure is sufficient to contain 

any remaining faeces in the rectum. The pressure change during this test was 25.1 

mmHg, and this is in line with the change in rectal pressure between rest and 

defecation reported in literature (41.3 mmHg [18, 175]). 

m (g) 
dP 

(mmHg) 
t_l (s) 

86.6±2.2 25.1±1.3 2.79±0.27 

Table 4.3 Mean values ± 1SD (n=10) for stool injection tests, reporting peak mass, 

pressure change and time at leakage: 
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4.3.2.2. Rectum Morphology 

A number of snapshots were taken using the webcam between initiation of stool 

injection, and the onset of stool leakage, at intervals of 1s. Outline traces of the rectum 

were then constructed for each image using PhotoshopTM (CC, 2017) by maximising 

the image contrast then applying a stroke, the same construction method was applied 

for each image for consistency. Each trace was then overlaid on the initial image 

(t=0s) to display the morphology of the rectum in the sagittal plane throughout the 

test, Figure 4.16. 

During the distension of the rectum, its morphology shows similarities when 

compared to the MR Proctographic scans in Figure 4.13. As stool is injected, 

expansion is visible and most pronounced in the posterior rectum, while the PR 

muscle descends to allow straightening of the anorectum. Movement of the proximal 

rectum to the posterior, coupled with the anorectum remaining close to stationary, 

shows that the rectum rotates slightly but visibly as stool is injected, this phenomenon 

has been observed in the human system and is described by the double-flap-valve 

mechanism [15]. This mechanism is a natural occurrence to resist leakage in which 

Figure 4.16 Traces of the rectum at various time increments since the onset of 

stool injection, with an ARA = 100°. 
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the ARA becomes more acute upon rectum filling while forming a flap across the anal 

canal to block the passage of faeces. 

4.4. Summary 

Rheological properties of various-moisture-content smectite clay (VEEGUM R) 

suspensions were compared to fresh human faeces. A 91% moisture content 

suspension had a consistency of 42.2, which is comparable to the consistency of high 

moisture content faeces, reported as 39.33 [142]. Using this consistency with the 

simulation would represent a ‘worst case’ with regards to maintaining continence. 

Due to operational limitations of the rheometer used for rheology, thicker consistency 

suspensions could not be tested. However construction of an interpolated power law 

meant the dynamic viscosity of suspensions which weren’t analysed, could be 

approximated, allowing use of thicker stool of known consistency to be used with the 

simulation. Furthermore, formulation of heterogeneous stool by addition of a fibre-

reinforcement can form stools with a thicker consistency, to represent different types 

of stool identified on the Bristol stool form scale [148]. 

A stool injection test was conducted to construct a pressure-distension profile of the 

rectum, to provide an insight into the IR pressure experienced by the simulation for 

different rectal volumes. From this, the pressures generated at rectal volumes which 

were usually associated with a sense of urge were identified. In the human system, the 

rectum distends to 167 ml before urgency is experienced, corresponding to a change 

in IR pressure of 41.3 mmHg [18, 175], compared with pressures at rest. In the 

physical simulation, IR pressure increased by 41.3 mmHg with the injection of 86.6 

ml of stool simulant. While this is lower than the volumes observed from clinical data, 

inclusion of a more compliant rectum with the simulation and adjustments to PR force 

and sphincter occlusion will allow the effect of greater rectal volumes to be 

investigated. 

Data on the distensibility of the anal canal with and without the addition of a 

FENIX/FENIX Plus device was successfully obtained using an EndoFLIP device. 

Consequently, the DI for the anal canal was calculated as 4.74 for baseline values, and 

2.72 with the FENIX Plus device. Previous assessments using the EndoFLIP reported 

values at rest of 3.9 for FI patients and 1.5 for healthy patients [145]. The values 

measured in the physical simulation were in line with those observed in the human 
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system. Despite values being more pronounced in the biological system, the baseline 

DI of the simulation was similar to FI patients. Addition of the FENIX Plus device 

increased the DI although it did not achieve the DIs observed in healthy subjects, 

suggesting that there would be some faecal leakage in patients using the device when 

experiencing normal IR pressures associate with urgency. 

The functionality of the PR component of the pelvic floor was assessed, by 

demonstration it could achieve a full range of motion as defined in the technical 

requirements in Chapter 3. Indicating ARAs were configurable between 75° and 110°, 

encompassing the values associated with healthy subjects during rest (104.5°) and 

during squeeze (84.5°) [9]. 

The simulation as a whole was also compared to the biological system. Images taken 

in the sagittal plane of the physical simulation, assuming configurations to represent 

various biological states of ‘rest’, ‘squeeze’ and ‘defecation’, were compared to 

corresponding MR proctographic images. The physical simulation showed 

similarities to the human system regarding the ARAs observed during these states, 

while pelvic floor descended with the onset of defecation in both systems. Between 

states of ‘rest’ and ‘defecation’, the movement of the PR muscle was measured at 

6.8mm in the physical simulation, while radio-proctographic studies have measured 

pelvic floor descents of 19mm in healthy subjects [178]. Pelvic floor descent is more 

pronounced in the human system than in the physical simulation, probably due to the 

passive properties of the simulation phantoms used to simulate active components of 

the biological system. Consequently the PR muscle cannot relax, and continues to 

passively constrain the posterior rectum, preventing it from straightening and 

producing downward movement of the sphincter complex and PR muscle. 

A scenario was conducted using the physical simulation to recreate biological 

defecation. During the study, values of faecal leakage and IR pressure were recorded. 

These were used to calculate metrics, including total faecal leakage and IR pressure 

change during the tests. The change in IR pressure during the test was calculated as 

25.1 mmHg, whereas during manometry studies in literature, values for IR pressure 

have been observed as 41.3 mmHg [18, 175]. Although the IR pressure change 

reported in literature is greater, these values were comparable. Outline traces of the 

rectum were constructed on selected images of the rectum, taken over the duration of 

stool injection, to observe rectal morphology throughout the distension. These 
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revealed that expansion is most pronounced towards the posterior rectal wall. It also 

showed that the anorectum remains relatively stationary while the proximal rectum 

appeared to move anteriorly, this could be described by phenomenon observed in the 

human system of a double-flap valve to prevent the passing of faeces [15]. 

The sections in this chapter have demonstrated that aspects of the physical simulation 

respond in a similar manner to the human system when subject to parameters 

representing biological scenarios. It has been demonstrated that the simulation 

components possess similar material properties to their biological counterparts. 

Furthermore, tests have shown that the forces and pressures used to augment the tissue 

phantoms, by magnitudes observed in the biological system, were in line with 

published values in literature based on human studies. In addition to the assessment 

of its components, the simulation as a whole has demonstrated its ability to be 

configurable, for the representation of a variety of relevant biological states. And a 

study to recreate a typical biological scenario reveals the ability of the simulation to 

acquire data on the response of important system variables while running pre-selected 

input parameters. 
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Chapter 5: Experimental Investigation into the 

Effects of Anorectal Angle and Sphincter Occlusion 

on Continence 

This chapter presents an exploratory investigation using the physical simulation 

developed and validated in the previous chapters. A protocol using the physical 

simulation aims to first investigate the effects of rectal compliance and changing ARA 

on continence and second explores the clinical relevance of the work by evaluating 

the influence of two models of a passive-assistive artificial anal sphincter (FENIX and 

FENIX Plus). This work provides the fundamental testing of the simulation for 

grounds on which its capabilities and relevance were explored. 

5.1. Introduction 

The paucity of commercially available, clinically viable systems to treat FI reflects 

the difficulty of designing medical technologies to meet the multifaceted challenges 

surrounding this complex condition. A key failure mode in many attempts at new 

technology has been when device–tissue interaction causes tissue erosion, resulting in 

device migration or rejection [28, 29]. Alternative strategies to sphincter 

augmentation have also been explored. A comprehensive review on the importance of 

continence mechanisms was presented in Chapter 2. Notable in vitro studies have 

shown that increasing ARA reduces the occlusion pressure required to hold back 

solids and semi-solids [106, 115]. Similarly, another study reported increased 

retention of semisolid material when decreasing ARA in an ex vivo porcine rectum, 

but no effect for water [79]. The question of whether the ARA or sphincter occlusion 

pressure is a greater contributor to continence remains unanswered, despite previous 

comparative studies [79, 131]. However, it is evident that modulating the ARA is a 

key feature in maintaining continence, and that this provides a complementary 

strategy to sphincter augmentation. 

It is clearly of clinical relevance to investigate mechanisms around ARA modulation 

which future FI technologies could exploit. The constituent models of the physical 

simulation of the human defecatory system were described together with the 

combined computational measurement and control in Chapter 3. Using the physical 

simulation, an in-depth investigation on the biomechanics of the associated 

physiological continence mechanisms and the effect of rectal disorders was carried 
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out. An experimental method was conceived to answer the research questions defined 

at the beginning of this project, outlined below. 

“What is the influence of: 

1. Sphincter occlusion 

2. Anorectal angulation 

3. Rectal compliance 

4. Commercially available FI device 

…on the faecal system and continence?” 

These questions are answered through the application of an experimental matrix to 

observe the influence of the variables on continence, and the identification of 

correlations between them and important system parameters. The experimental 

method produced elevated rectal pressures in the model to investigate the individual 

and combined effects of ARA and sphincter occlusion on the system for a range of 

rectal compliances. Observation of the mass of stool leakage from the system together 

with the pressures generated in the rectum model allow quantification of the influence 

of continence mechanisms, and comparison with clinical and published data. 
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5.2. Experimental Methods 

An experimental investigation was carried out to observe the effects of simulation 

variables, including the ARA, rectum compliance and sphincter augmentation (using 

a FENIXTM and FENIX PlusTM device), on continence using the physical simulation. 

5.2.1. Controlled Variables and Measured Outputs 

An experimental matrix was defined in which the controlled experimental variables 

were ARA (80°, 90° and 100°), rectum compliance (using materials: DragonSkin 

10A, 20A and 30A) and sphincter state (baseline, with FENIX/FENIX Plus fitted). In 

turn, each variable was incrementally changed while the others remained fixed to 

produce a comprehensive array of different configurations to be tested, displayed in 

Table 5.1. 

A series of tests were then conducted during which a fixed volume of stool (100 ml) 

was injected into the proximal rectum at a uniform controlled rate (9.26 ml-1). During 

each test permutation, one of the variables was changed systematically to evaluate its 

effect on the system, averaged across 10 repeats. The FI devices were only fitted for 

the extremes of the ARA values tested (80° and 100°), to simplify the test matrix and 

observe their combined effect with ARA. 

5.2.2. System Configuration 

Prior to any laboratory testing using the simulation, steps were taken to configure the 

system to ensure consistent test conditions across tests carried out on different days. 

 
Rectal compliance (Shore A grade) 

10 20 30 

A
n
o
re

ct
al

 A
n
g
le

 (
°)

 

1
0
0

 

b, F, F+ b, F, F+ b, F, F+ 

9
0

 

b b b 

8
0

 

b, F, F+ b, F, F+ b, F, F+ 

 

Table 5.1 Experimental matrix employed during the experimental investigation; 

indicating baseline (“b”), FENIX (“F”) and FENIX Plus (“F+”) sphincter occlusion 

configurations, tested for various anorectal angle and rectal compliance arrangements: 
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Instrumentation and control systems were integrated into the model to quantitatively 

measure key aspects of the model and to provide repeatable automation of the 

defecation process, as discussed in Chapter 3 (shown schematically in Figure 3.34). 

A central PC was used to coordinate the measurement and control components using 

a commercially available data interface (NI USB-6212; National Instruments Ltd., 

Austin, Texas, USA) in conjunction with a custom control program on the LabVIEW 

platform (National Instruments). 

5.2.2.1. Control Program 

Throughout the tests, a custom control program on the LabVIEW platform (National 

Instruments) is used to define the operating configuration of the defecation model to 

initiate experiments and to record subsequent data streams with reference to a 

hardware-timed clock, Figure 5.1. 

Figure 5.1 ‘Configuration’ tab of the custom control program used to configure 

hardware of the physical simulation in preparation for testing. 
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The program is configured by inputting stool mass, PR load and IR pressure load cell 

calibration gains (defined during calibration in Chapter 3). The connected USB NI 

DAQ device is selected along with sensor input channels (stool mass load cell, PR 

load cell and IR pressure transducer) and hardware output channels (linear stage, 

stepper motor and LED). The stepper motor step increment could also be configured; 

during stool injection tests it was set to half-steps, with each increment producing a 

displacement of 0.9°. 

The program measured and recorded IR pressure, PR force and stool mass leakage 

and a Boolean signal at 100Hz. The Boolean signal indicated operation of the linear 

stage (and hence stool injection), which facilitated the identification of data recorded 

during stool delivery to the system. 

Video-stream data was acquired from the webcam at 30Hz using the corresponding 

manufacturer’s software (Logitech Webcam Software), and this was saved with a 

time-stamp so video data could be matched to corresponding simulation data in post 

analysis. An LED was visible in the frame, which illuminated while the linear stage 

Boolean indicator was written to the data stream. Allowing synchronisation between 

video and measured variables. 

5.2.2.2. Rectum 

The compliance of rectum phantoms was regulated through the use of various pre-

fabricated phantoms. Each phantom had identical geometries, and were fabricated 

using three different grades of silicone (Dragon Skin 10A, 20A and 30A). Prior to 

each test, a rectum with the desired compliance was loaded in the simulation and a 

balloon catheter (2309; Mediplus, High Wycombe, UK) was fed through the catheter 

port before being secured with a cable tie. Using a syringe, the balloon catheter was 

instilled with 5 ml water ensuring any air bubbles are displaced. The rectum was then 

primed with stool simulant. A rigid external housing with the same geometry as the 

rectum was placed around it, and stool injected until leakage from the anal canal 

occurred and all air was displaced, finally the housing was carefully removed. This 

was performed before each test to ensure a consistent initial rectal volume. 

5.2.2.3. Stool Simulant 

Stool simulant was prepared using the same technique as during rheology tests, 

presented in Chapter 4. Throughout this investigation the clay formulation was 
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selected at 90.5% water content, producing an apparent viscosity of 47.065 Pa.s; 

similar to high moisture-content semisolid faecal samples [142]. Stool leakage from 

the anal canal is collected in a tray mounted to a second load cell (RLS005kg; RDP). 

The tray was emptied before each test to ensure there was no risk of overflow. 

5.2.2.4. Anorectal Angle 

The different ARA permutations tested are shown in Figure 5.2. 

The desired ARA was configured by positioning the PR model, by manual adjustment 

through the control program and stepper motor and spool assembly. Analysis was then 

performed on the webcam (C920 HD Pro; Logitech, Lausanne, Switzerland) image of 

the rectum using ImageJTM (National Institutes of Health) to measure the augmented 

ARA, determined by joining the visual markers as demonstrated in Figure 5.2. This 

process was iterated until an ARA was obtained within a tolerance of 0.5° to the 

desired value. Subsequent repeats at this ARA used the same PR configuration to help 

ensure consistency. 

5.2.2.5. FI Device 

The FENIX and FENIX Plus were fitted and configured as specified in the clinical 

guidance provided with the devices. A supplied sizing tool was used to measure the 

sphincter circumference and thus determine the appropriate length of the device. It 

Figure 5.2 Webcam view of the model rectum for the range of ARA values used 

during the experimental investigation, and demonstration of the FENIX device fitted 

around the anal canal. 
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was then applied around the recess in the sphincter complex, shown in Figure 5.2. The 

same length was used for both devices. 

5.2.3. Test Protocol 

All experiments were performed at room temperature (20°C). During tests, 100ml of 

stool simulate was delivered to the proximal rectum at a constant flow of 9.26 ml/s, a 

typical flow rate for stool being passed during defecation [143], via the control 

program introduced in Chapter 3 (Section 3.3.3. ). The protocol below was adhered to 

for each experiment, also demonstrated schematically in Figure 5.3. 

1. Assemble simulation components 

a. Mount a rectum phantom with the desired material compliance into the 

simulation, securing it using custom fittings 

b. Feed a balloon catheter through the rectum catheter port and secure it in 

place with a cable tie, then instil 5ml of water to the catheter and ensure 

all air bubbles are removed 

c. Mix stool simulant with the specified water content and homogenise 

d. Lubricate soft-on-soft surfaces with mineral oil 

2. Initialise system 

a. Ensure PR is fully relaxed and set PR force to zero 

b. Initiate data/webcam recording 

c. Prime the rectum: encase the rectum with a rigid external housing (with 

the geometry of the non-distended rectum) and inject stool simulant until 

leakage from the anal canal occurs and all air pockets are displaced, 

remove the housing 

3. Configure ARA position and sphincter 

a. Adjust the PR position using the control program until the desired ARA is 

achieved. Set-up the sphincter configuration by fitting a FENIX or FENIX 

Plus device if required and lubricate with mineral oil 

4. Configure variables 

a. Reset IR pressure and faecal mass passed to zero 

5. Run test 

a. Inject a metered volume of stool simulate into the rectum at a pre-defined 

flow rate 

6. Save data & end test 
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a. Wait until steady state (stool mass leakage) is achieved then relax the PR, 

stop data/webcam recording and save acquired data 

For each test permutation within the variable matrix, a single test is conducted with 

the rigid housing secured around the rectum, essentially simulating an entirely non-

compliant rectum. This data point is included on plots during analysis. 

Measured outputs from each test include: 

 Stool mass passed 

 PR muscle force 

 IR pressure 

Following stool injection, these outputs are saved by the control program. Ten test 

repeats are carried out for each test permutation. 

Figure 5.3 Hardware flowchart demonstrating the stool injection test protocol 

employed during the experimental investigation. 
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5.2.4. Data Analysis and Post-Processing 

During tests, data files were acquired by the control program containing arrays for PR 

force, IR pressure, mass leakage, time and Boolean indication of linear stage 

operation. Arrays of PR force, IR pressure and mass leakage were plotted versus time 

from which metrics were calculated of the total mass passed, IR pressure change and 

time at faecal leakage. Metrics were presented to observe the effect of sphincter 

configuration, on separate plots for each test permutation (same ARA configuration 

and rectal compliance). The data files were saved with a timestamp so they could be 

matched to webcam footage recorded during the tests. If any unusual values appeared 

while plotting the measured outputs, webcam footage was reviewed to help find a 

cause for the discrepancy. An example of the unprocessed mass response data for one 

particular test permutation is demonstrated in Figure 5.4. 

From observation of the unprocessed mass responses, it appears that test 10 is outside 

the normal range of values observed for this particular configuration. Reviewing 

webcam footage of this test revealed an air pocket which was trapped in the rectum 

and expelled during stool injection, resulting in a reduction in stool leakage for this 

test repeat. Consequently, data from this test was excluding from post-processing. 

This analysis was repeated for every variable measured during each test permutation. 

Figure 5.4 Unprocessed mass responses observed for repeats over a single test 

permutation, demonstrating the identification of anomalous data. 
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With anomalies removed, algorithms were implemented in Matlab (Mathworks) to 

import the remaining data files, extract value arrays and create plots of each variable 

versus time, included in the Appendix (IV). A 10-point moving average is applied to 

the raw data arrays using the smooth function in Matlab to remove excessive noise. 

The mean and standard deviation (STD) from the ten repeats (minus anomalies) is 

then computed and plotted against time. Figure 5.5 shows typical data obtained from 

the system of faecal mass passed and IR pressure during simulated defecation, in this 

case without the presence of sphincter augmentation. Plots for the full experimental 

dataset is provided in the Appendix (III).  

Figure 5.5 Left; Faecal mass passed and Right; IR pressure versus time for different 

ARA configurations. Each plot shows mean (N=10) in solid with 1 STD as shaded 

region. 
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The plots show the mean in solid with shaded error regions, which indicate values that 

fall within ± 1STD from the mean at any given time. From the variable responses, 

metrics of peak mass (m), pressure change (dP) and time at leakage (t_l) were 

calculated, as demonstrated in Figure 5.5. A definitive set of the calculated metrics is 

documented in Table 4.3, with significance between sphincter configurations denoted 

in Table 5.3. 

5.3. Results 

The metrics shown in Figure 5.6 reveal how the effects of rectal compliance and 

sphincter augmentation (through the FENIX device) couple with changing ARA. 

Table 5.2 summarises these metrics, with significance values between sphincter 

configurations indicated in Table 5.3. 
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Figure 5.6 Effects of rectal compliance on faecal mass passed (top), IR pressure 

change (middle) and leakage time (bottom). Each plot shows mean (N=10) with 

1STD error bars. Statistical significance (p<0.05) is shown between baseline/FENIX 

configurations of sphincter state (*1), FENIX/FENIX Plus configurations of 

sphincter state (*2), compliance with no device fitted (*3), compliance with the 

FENIX (*4) and compliance with the FENIX Plus (*5). 
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ARA Compliance 
Sphincter 

configuration 
m (g) dP (mmHg) t_l (s) 

100° 

10A 

Baseline 59.7±3.6 21.0±1.1 5.25±0.29 

FENIX 28.5±5.6 22.9±1.0 6.67±0.70 

FENIX Plus N/A 22.9±1.0 N/A 

20A 

Baseline 86.6±2.2 25.1±1.3 2.79±0.27 

FENIX 83.2±2.2 29.4±1.8 3.50±0.36 

FENIX Plus 78.1±3.1 33.5±1.8 4.14±0.27 

30A 

Baseline 83.4±2.0 25.4±1.2 3.14±0.24 

FENIX 84.7±2.6 28.9±1.2 3.53±0.22 

FENIX Plus 82.4±2.1 28.3±1.4 3.55±0.24 

Rigid Baseline 100.8 26.2 1.24 

90° 

10A 

Baseline 

36.3±5.4 22.5±1.4 7.19±0.46 

20A 82.1±4.4 25.2±1.6 3.04±0.23 

30A 83.2±6.3 24.7±1.1 2.83±0.22 

Rigid 102.4 26.2 1.23 

80° 

10A (n=9) 

Baseline 10.9±5.2 23.4±1.2 9.49±0.79 

FENIX 1.8±2.9 23.7±1.0 
13.96±2.9 

(n=8) 

FENIX Plus N/A 23.4±1.0 N/A 

20A 

Baseline 85.5±2.0 27.1±0.9 3.17±0.23 

FENIX 80.6±2.8 31.8±1.8 3.91±0.20 

FENIX Plus 72.3±3.4 36.1±1.9 4.76±0.31 

30A 

Baseline 87.4±1.3 26.9±0.8 3.05±0.09 

FENIX 81.5±1.4 31.7±1.6 3.87±0.26 

FENIX Plus 77.9±1.9 33.3±1.0 4.24±0.16 

Rigid Baseline 98.8 24.8 1.15 

 

Table 5.2 Mean vales ± 1SE (n=10) for stool injection test metrics reporting peak 

mass, pressure change and time at leakage for ARAs of 80°, 90° and 100°: 

 

ARA Compliance I J m (g) dP (mmHg) t_l (s) 

100° 

10A 
Baseline 

FENIX p < 0.01 p < 0.01 p < 0.01 

FENIX Plus 
p < 0.01 p < 0.01 NA 

FENIX p < 0.01 p > 0.05 NA 

20A 
Baseline 

FENIX p < 0.05 p < 0.01 p < 0.01 

FENIX Plus 
p < 0.01 p < 0.01 p < 0.01 

FENIX p < 0.01 p < 0.01 p < 0.01 

30A 
Baseline 

FENIX p > 0.05 p < 0.01 p < 0.01 

FENIX Plus 
p > 0.05 p < 0.01 p < 0.01 

FENIX p > 0.05 p > 0.05 p < 0.01 

80° 

10A (n=9) 
Baseline 

FENIX p < 0.01 p > 0.05 p < 0.01 

FENIX Plus 
p < 0.01 p > 0.05 NA 

FENIX p > 0.05 p > 0.05 NA 

20A 
Baseline 

FENIX p < 0.01 p < 0.01 p < 0.01 

FENIX Plus 
p < 0.01 p < 0.01 p < 0.01 

FENIX p < 0.01 p < 0.01 p < 0.01 

30A 
Baseline 

FENIX p < 0.01 p < 0.01 p < 0.01 

FENIX Plus 
p < 0.01 p < 0.01 p < 0.01 

FENIX p < 0.01 p < 0.05 p > 0.05 

 

Table 5.3 Significance values, for metrics from stool injection tests between 

sphincter configurations (in columns I and J): 
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Graphs of total mass passed, IR pressure change and time at faecal leakage are plotted 

for each ARA tested, presenting the mean ± 1STD (an exhaustive list of which is also 

given in Table 4.3). Rectal compliance form categories along the y-axis, while data 

on sphincter configurations are plotted in each single column (with an offset for 

clarity). Trend-lines are constucted using the smoothingspline function in Matlab, 

using a smoothingparameter (p) of 0.02. This constructs a spline across variable 

means between rectal compliances (for each sphincter configuration) using a 

mathematical function based on the value p; defined between 0 and 1, p = 0 produces 

a least-squares straight-line fit to the data while p = 1 produces a cubic spline 

interpolant. Statistical significance (p<0.05) is indicated between sphincter state 

(coloured bars) and rectal compliance (black bars). Numbered asterisk make 

distinguishing the error bars easier. An exhaustive and more detailed overview of 

statistical significance between sphincter states is given in Table 5.3. Finally, each 

plot includes a data point collected with a rigid housing secured around the rectum, 

without sphincter occlusion. 

5.3.1. Mass Passed 

Effect of sphincter occlusion on faecal leakage is most pronounced and significant 

(p<0.05) when the rectum has high compliance (10A) and the ARA is obtuse. As 

shown by a reduction of total faecal mass passed from 59.7 g with a baseline sphincter 

configuration to 28.5 g with the FENIX, with good statistical significance (p<0.001), 

and a further reduction to no mass being passed is observed with the FENIX Plus. 

Effect of sphincter occlusion on faecal leakage is least pronounced and insignificant 

(p>0.05) for a low compliance (30A) rectum and when the ARA is accute. Sphincter 

occlusion has a significant effect on faecal leakage with obtuse ARAs for the range 

of compliancies tested, and also for obtuse ARAs between compliances of 10A and 

20A although it is insignificant with the lowest rectal compliance. While the rectal 

compliance as a large and across all ARAs, significant, effect on faecal leakage 

between 10A and 20A, its effect is much reduced between 20A and 30A, where 

significance is only denoted between baseline and FENIX Plus sphincter 

configurations for obtuse ARAs and FENIX Plus configurations for acute ARAs. 

There is a visible correlation between ARA and faecal mass passed for high 

compliance rectums, shown by a reduction in faecal mass passed from 59.7 g at 100° 
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down to 36.3 g at 90° and 10.9 g at 80°. However there is no correlation between ARA 

and faecal leakage with low rectal compliance. 

Use of a rigid housing (non-compliant rectum) produces the greatest mass leakage 

across all plots. With a  rectal compliance of 30A and an obtuse ARA, the faecal 

leakage was recorded as 83.4 g, compared to 89.9 g with the non-compliant recctum. 

In general, increasing sphincter occlusion, enhancing the ARA and increasing rectal 

compliance reduce mass of stool leakage from the rectum.  

5.3.2. Intra-Rectal Pressure 

Effect of sphincter occlusion on IR pressure change is least pronounced and least 

significant for high rectal compliances (10A) and acute ARA’s, with no significant 

difference (p>0.05) observed between IR pressures recorded for the various sphincter 

states. Effect of the FENIX compared with baseline sphincter occlusion on IR pressure 

change is small but significant for high rectal compliance (10A) and obtuse ARA’s. 

Effect of the FENIX compared with baseline sphincter occlusion on IR pressure 

change is most pronounced and significant for lower rectal compliances (20A & 30A). 

Similarly effects of the FENIX Plus compared with occlusion from the FENIX were 

most pronounced with lower rectal compliances, although it is less prominent with 

the lowest rectal compliance compared with mid-rectal compliance for both ARA’s, 

and even insignificant (p>0.05) with the lowest rectal compliance and an obtuse ARA. 

Effect of sphincter occlusion is most notable between rectal compliances of 10A and 

20A when comparing trends with the FENIX Plus device fitted, with similar notable 

differences seen for both ARAs tested using the device, this effect is less pronounced 

with the FENIX fitted and only a small variation between these compliances is seen 

with no device fitted. 

There is a small but noticable correlation between ARA and IR pressure change for 

high rectal compliances, evident from an increase from 21.0 mmHg at 100°, to 22.5 

mmHg at 90° and 23.4 mmHg at 80°. There is no trend apparent for ARA and IR 

pressure change for low rectal compliance, with each compliance producing roughly 

the same pressure difference for each test. 

Without sphincter occlusion, a non-compliant rectum produces an IR pressure change 

of 26.2 mmHg which is similar to the value recorded for the lowest rectal compliance 

(30A) tested (25.4 mmHg). However the IR pressures are greater than the IR pressure 
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change produced with a non-compliant rectum with an acute ARA, for all sphincter 

states. 

In general increasing sphincter occlusion, enhancing the ARA and increasing rectal 

compliance increase IR pressure changes genreated in the rectum. 

5.3.3. Time at Faecal Leakage 

The effect of sphincter occlusion on time at faecal leakage is most pronounced and 

significant for high rectal compliance (10A) and acute ARA’s. The effect of the 

FENIX compared with baseline sphincter configuration on time at faecal leakage is 

less pronounced for a rectal compliance of 20A compare with 10A, but still highly 

significant (p<0.001) for both ARA’s. Effect of the FENIX compared with baseline 

sphincter configuration on time at faecal leakage is significant for all rectal 

compliancies tested for both ARAs (80° and 100°). The effect of sphincter occlusion 

on time at faecal leakage is least pronounced and least significant for low rectal 

compliances (30A), particularly for obtuse ARA’s. The FENIX Plus is particularly 

effective on time at faecal leakage for high rectal compliance, since the trend tends to 

infinity. While the FENIX Plus is still effective at increasing time until leakage for 

lower compliance rectums its effect is less pronounced, with no significance apparent 

between FENIX Plus and FENIX sphincter states with a low compliance rectum and 

obtuse ARAs. The trends between rectal compliance and time at faecal leakage with 

all ARAs and sphincter states show a steep reduction in time to leakage between high 

to mid rectal compliancies (10A to 20A), but little to no trend between mid to low 

rectal compliancies. Particularly evident when using the FENIX with an acute ARA, 

showing reduction in time from 13.96 s for a rectal compliance of 10A to 3.91 s with 

a compliance of 20A, with high significance (p<0.001), however no reduction is seen 

using a rectal compliance of 20A and 30A. With the FENIX fitted, an 

uncharacteristically large standard deviation is produced for time at faecal leakage 

measured for an acute ARA and high rectal compliance of 2.9 s. 

Similar to the trends observed between sphincter occlusion and time at faecal leakage, 

enhancing the ARA has a noticable effect at increasing time to leakage for high rectal 

compliances. Evident in an increase from 5.25 s at an ARA of 100° to 7.19 s at 90° 

and 13.96 s at 80°. While there’s still a positive trend between ARA and time for a 

mid-compliant rectum, it is far less pronounced and no correlation is apparent for low 

rectal compliance. 
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Time to faecal leakage is greatly reduced across all ARAs tested by use of a non-

compliant rectum. For an obtuse ARA and no sphincter occlusion, a reduction is seen 

from 3.14 s with a low compliance rectum (30A), down to 1.24 s with the rigid 

housing fitted. 

In general increasing sphincter occlusion, enhancing the ARA and increasing rectal 

compliance increases time until faecal matter is passed from the rectum. 

5.4. Discussion 

Upon reflection of the research questions asked in the introduction to this work, this 

experimental investigation has shed light on the influences of sphincter occlusion, 

anorectal angulation and rectal compliance on the faecal system and continence, 

together with a FI device. In general, increasing sphincter occlusion and enhancing 

the ARA have led to a reduction in stool mass passed, increase in IR pressure and 

increase in time until faecal leakage. With these observations becoming more 

pronounced using high rectal compliances. 

In the simulation, augmentation of the sphincter complex using the FENIX and 

FENIX Plus devices exhibits a similar effect to making the ARA more acute. 

Additional pressure applied to the anal canal by the device causes a restriction to flow 

and thus greater retention of faecal matter in the rectum, with consequent increases in 

IR pressures. The FENIX was particularly effective compared to a baseline sphincter 

configuration when used with more compliant rectum models (10A), where a 

significant difference (p<0.01) was observed in peak masses passed from 0.0597 to 

28.5 g and generated IR pressures of 21.0 and 22.9 mmHg respectively. Similarly the 

FENIX Plus was effective compared with the FENIX use with a high rectal 

compliance, as no leakage was measured for regardless of the ARA. However, the 

effect of sphincter occlusion diminishes as variations were observed for less 

compliant rectum models (20A, 30A) although effects were still significant (p<0.05). 

This demonstrates that while sphincter augmentation can be effective at reducing 

faecal leakage it does not have universal application. 

The effects from the PR modulating the ARA is notable. Upon varying the ARA, a 

prominent difference in leakage was observed between an ARA of 80° and 100°, 

increasing from 10.9 to 59.7 g. This demonstrates that as the ARA becomes more 

acute, a greater amount of stool is contained within the rectum during a controlled 
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influx of stool. It would also appear that if a threshold ARA is exceeded, the amount 

of leakage is drastically reduced, whereas at more obtuse ARA values, small changes 

in angle have little effect on leakage. This signifies that more acute ARAs produce an 

elevation in the apparent hold back pressure, and that if this is sufficient in relation to 

induced IR pressures, faecal leakage will be reduced. Fluctuation of the mass flow 

rate is apparent for all ARA values tested, with the phase of the fluctuation appearing 

larger at more acute ARA values and lower flow rates. These were formed as the 

semisolid exits the system in fluid globules, characteristic of viscous fluids with low 

surface tension under shear. 

The results obtained from this experimental investigation reveal the complex 

dynamics of the defecation process and the interplay between the mechanisms 

involved. A particular benefit of this model is the ability to control and time the 

processes used, revealing the temporal characteristics of defecation. Once simulated 

stool starts to be introduced into the system (t=0s) there is a notable time lag before 

leakage of feacal matter which tends to occur after approximately two seconds have 

passed. This delay is due to rectal filling whilst holdback pressures were great enough 

to overcome pressures produced by elastic energy stored in the rectal walls. 

Consequently this delay varies as a function of rectal compliance, with longer delays 

observed from more compliant rectum models (which overcome the holdback 

pressure more slowly as they fill with stool simulant). This has a clinical analogue in 

those patients with low rectal muscle tone (and so high compliance) who find it 

difficult to generate sufficient driving pressure to defecate. Interestingly, in tests 

carried out simulating a non-compliant rectum (with the rigid housing attached), the 

time at faecal leakage does not tend to zero. This is due to an incomplete fit around 

the rectum due obstruction from parts of the simulation, and a slight gap between the 

anal canal from which faecal matter is leaked, and tray in which it’s collected. 

To defecate effectively requires a less acute ARA (i.e. straightening the rectum-canal 

configuration) and achieving a reduction in occlusive pressure at the sphincter, as 

observed during proctographic studies [79]. These traits were reflected in this 

investigation, particularly evident in tests using a low compliance rectum (30A) to 

simulate rectal contraction, and an obtuse ARA (100°) for which case there is no 

statistical significance (p>0.05) for faecal mass passed at baseline (83.4 g), with 

FENIX (84.7 g) and with the FENIX Plus (82.4 g).  
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Squatting is an effective position for defecation since it straightens the recto-anal 

passage, in turn reducing the pressures generated by the rectum and abdominal 

muscles to overcome the holdback pressures required for evacuation. Studies have 

shown that the ARA is 126° when squatting [179], requiring a pressure increase of 

38.2 mmHg to evacuate, whereas the ARA becomes more acute while sitting (100°) 

which requires a greater pressure change of 47.8 mmHg to evacuate. This correlation 

between ARA and pressure change is widely reflected among all rectal compliances 

tested in the simulation. Shown prominently with a high compliance rectum (10A) 

and baseline sphincter occlusion; with an ARA reflecting healthy subjects in a sitting 

position (100°) the pressure change was 25.4 mmHg, and with a more acute ARA 

(80°) the pressure change saw a significant rise to 26.9 mmHg. 

This investigation demonstrates that to effectively reduce faecal leakage, both 

anorectal angulation and occlusion pressure at the sphincter should be enhanced. 

Furthermore, it shows that to retain semisolid material in the rectum, it is not 

necessary to completely occlude the sphincter. Angulation of the rectum alone 

provides sufficient resistance to reduce stool leakage. Mean biological ARA values 

for healthy, nulliparous patients were measured at 104.5±10.3° at rest and 84.5±14.2° 

during squeeze [9]. These values were in agreement with the ARA’s observed for the 

reduction in leakage in this investigation. This highlights the potential to develop new 

technologies for FI which do not rely solely on occlusion of the anal canal to maintain 

continence but also include modulation of ARA. Too much of either mechanism 

would result in OD. A combined and modulated strategy would allow a reduction in 

occlusive pressures and thereby help to mitigate against the issues of soft tissue 

erosion and device migration that have previously plagued implantable technology for 

FI. 

5.5. Conclusion 

The stool injection investigation with the physical simulation has given an insight into 

the biomechanics of the human faecal system and the combined effects of the ARA 

and sphincter occlusion on continence. As stool simulant is fed into the rectum, the 

volume expands as elastic potential energy is stored in the rectal walls. When the 

contraction of the rectum leads to IR pressures which were sufficient to overcome 

holdback pressures incurred by PR muscle forces, leakage from the anal canal occurs. 

As pressures reach an equilibrium, stool flows steadily from the anal canal. When the 
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influx of stool into the rectum ceases, leakage continues at a reduced rate until the 

holdback pressure is sufficient to contain any remaining faeces in the rectum. 

This analysis has shown that in the simulation, both augmenting sphincter function 

and decreasing the ARA lead to increased resistance to the passing of faecal matter, 

helping to maintain continence. The provides rationale that modulation of the ARA 

could help relieve symptoms of chronic leakage associated with more severe cases of 

FI, complementing occlusion of the anal canal by existing technology like the FENIX. 
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Chapter 6: Discussion, Conclusions and Future Work 

The research presented in this thesis has shown the development, analysis and 

application of a physical simulation of the human defecatory system. The proposed 

simulation was designed for the investigation of the effects of ARA, sphincter 

occlusion and rectal compliance on IR pressure and faecal leakage, to inform the 

design of emerging technologies in the treatment of FI. Findings from the 

investigation identify correlations between the modelled continence mechanisms and 

degree of continence. This discussion considers key features of this research 

regarding the validity of the technique, how it compares to current simulations and 

how it may be applied to the development of clinically viable technologies. 

Reassessment of research objectives and identification of potential modifications 

concludes this chapter along with a proposal of future work. 

6.1. General Discussion 

It is clear that a physical simulation which accurately models biological continence 

mechanisms could have a significant impact on the development of existing and 

emerging technologies for the treatment of FI, achieved through an improved 

understanding of the associated biomechanics and the opportunity to analyse 

technology in the laboratory, prior to animal experiments. 

The work presented in this thesis has made significant contributions to the field with 

the publication of two papers [180, 181]. Notable contributions include: 

1. A method for fabricating repeatable/reusable anatomical tissue phantoms of 

the pelvic floor anatomy 

2. Empirical data on the biomechanics of faecal incontinence 

3. A test environment for the evaluation of existing/new technologies for the 

treatment of faecal incontinence 

Knowledge Base: During the conception of the simulation, an extensive review of 

literature revealed a handful of computational studies which provided an 

understanding of certain biomechanics of the pelvic floor [124], although fundamental 

mechanisms of continence had not been addressed such as the ARA and sphincter 

occlusion. This was probably due to the complexities of necessary modelling 

parameters. Due to the inherent complexity and variability in biological environments, 

the efficacy of FI devices can only be shown empirically, regardless of whether the 
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concept appeared promising. Despite this, to the best of my knowledge, there were no 

other studies reported in literature on the use of physical simulations to understand 

mechanisms associated with continence, or for the testing of FI devices. In contrast 

with a computational model, use of a physical model allowed complex interactions to 

be replicated with relative modelling ease, and established a basis around which 

biomechanical properties and physiological refinements could be made. The 

simulation presented in this thesis met these goals, by using a wealth of data from 

literature to recreate fundamental tissue components of the human defecatory system. 

Together with the tissue phantoms, instrumentation and control algorithms were used 

to form a controllable and adaptable test platform which effectively assessed the 

influence of continence mechanisms on forces and pressures within the system. 

Model Overview: The full biological continence mechanism is complex and consists 

of the coordinated function of the nervous systems, GI tract, and anal sphincter and 

pelvic floor musculature. The current simulation presented in this thesis has focussed 

on investigating the effects of varying ARA, sphincter pressure and rectal compliance. 

Accordingly the system was simplified to facilitate fabrication and detailed analysis 

of these functions. The rectum/anal canal, IAS, PR muscle and adipose fat 

components were simulated by cast, 1:1 scale silicone models. An anatomical rectum 

model forms the basis of the simulation, continuous with an approximated-dimension 

anal canal. An inextensible-mesh-lined silicone pad forms the PR muscle, which 

interfaces with the rectum to modulate the ARA. A sphincter phantom replicated the 

natural anatomical features of the human sphincter by forming mucosal folds in the 

anal canal, allowing expansion of the anal canal for defecation without elastic 

deformation of the anal canal wall, catering for critical observation of the effects of 

sphincter occlusion pressure on the system. By constructing the simulation with a 

modular design, individual components could be refined or replaced should they 

become damaged, or the simulation required re-configuration or physiological 

modifications. This is advantageous since the effect of single component variability 

can be observed on the system, particularly necessary in the case of investigating 

rectal compliance; a pivotal variable on continence in humans, dependant on rectal 

‘state’ and population attributes. 

Tissue Phantom Fabrication Challenges: Fabrication of soft tissue surrogate 

models will always pose challenges, due to the anisotropic nature of biological tissue 
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properties. The materials used to fabricate the simulation phantoms were governed by 

the requirement that they needed to be reusable for test repeatability. While hydrogels 

have been shown to possess viscoelasticity similar to tissue [160, 161], they degrade 

following fabrication. Silicone was a good phantom material candidate since it 

exhibits excellent elastic properties without plastic deformation, while its elastic 

moduli can also be tailored by using different ‘grades’ and amounts of additives. 

Furthermore it is mixed as a liquid, lending it well to the fabrication of intricate parts 

via a vacuum casting technique. In the determination of suitable materials for tissue 

phantoms, tensile data was obtained from literature on rectum and adipose tissues, 

while uniaxial tensile tests were conducted on porcine IAS and EAS. This meant that 

together with literature, the loading profiles of all tissues represented in the simulator 

were acquired. Using a similar protocol as used on porcine sphincter, tensile data was 

also gathered for 3 grades of silicone. A method to match the properties of silicone 

and biological tissues presented in Chapter 4 was successfully implemented using 

linear analysis to compare the gradient of a portion of the loading curves. 

Subsequently the materials from this analysis were applied. Although with the 

exception of the rectum in which 3 lower compliance grades were selected to model 

an ‘active’ state (characteristic of the biological rectum during defecation), since it 

wasn’t possible to determine the tensile properties of ‘active’ rectal wall using ex-

vivo analysis. The shortcomings of matching biological and synthetic materials in this 

way is that the materials behave differently at each point along the loading curve due 

to inherent differences in their structure and bulk properties. Subject to a given force, 

tissue undergoes a greater deflection with low strains and conversely silicone will 

undergo a greater deflection with larger strains. To combat this, a small strain range 

based on the operational strains of the simulation phantoms increases the accuracy of 

the silicones behaviour when operating within that range. 

Stool Analogue Formulation Challenges: Stool was formulated using smectite clay 

(VEEGUM R) suspensions in water, in harmony with a previous study using stool 

analogue [148]. Using measured rheological data, an interpolated plot of apparent 

viscosities (at 1 Hz) allowed approximation of the properties of smectite clay 

suspensions with thicker consistencies than could be tested, this identified a 90.5% 

moisture content solution as having similar rheological properties to high moisture 

content faecal samples [142]. Using this consistency with the simulation would 

represent a ‘worst case’ scenario in maintaining continence. However configuration 
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of ARA and sphincter occlusion required to retain stools of this runny consistency 

may block the passage to thicker stools completely. Including stool consistency within 

the experimental variable matrix would provide an insight into its effect on the system. 

Limitations of Modelling Techniques: Due to the high variability and complexity 

of biological systems, the physical simulation has some limitations. Upon reflection 

of the valuable insights into the biological defecatory system gained during this work, 

through viewing radio proctography, cadaver dissections and meeting with clinical 

personnel; several improvements to the system were recognised. The non-linear, 

anisotropic behaviour typically found in human soft tissue have been approximated 

with an isotropic silicone model. Furthermore, complex surface interactions which 

occur between the between the rectum, pelvic floor, bladder and other surrounding 

tissues have been neglected. The anal canal closure mechanism is complex due to its 

interaction with adjoining tissue bodies, of particular relevance here is that contraction 

of the PR effects forces which act to occlude the anal canal, in conjunction with the 

EAS, due to connectivity of neighbouring tissues. These features were only partially 

approximated in the current model. The current simulation uses passive models and 

the active musculature in the rectum and sphincter have been neglected. While muscle 

contraction hasn’t been included with the rectum and sphincter, muscle fatigue has 

been neglected with the PR muscle. During tests, the position of the PR phantom 

remains constant throughout the duration of the tests. The biological striated muscle 

which forms the Puborectalis is not capable of holding a position for a prolonged 

amount of time. Furthermore, the abdominal pressure has not been included within 

the simulation due this added modelling complexities this would ensue. To model 

abdominal pressure, soft phantoms and instrumentation would need to be embedded 

in a fluid to apply pressure across all the model surfaces. This would require additional 

mounts and systems to retain the fluid while preventing contact with electronic 

components. 

The implications of all of these limitations regarding the removal of pressures and 

forces within the system, and discrepancies between the forces modelled and those 

generated in the biological system, mean that the simulation does not behave or 

respond in the same manor. While useful trends in biomechanical parameters have 

been observed, the values presented in this thesis should be viewed accordingly. 
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Fidelity of Simulation Components: Data on the distensibility of the anal canal 

using a dilation balloon (EndoFLIP) revealed the rate of increase in the narrowest 

section of the anal canal relative to the rate of increase in balloon pressure (DI) was 

4.74. The DI became smaller with the FENIX (3.88) and smaller still with the FENIX 

Plus (2.72). Higher DIs were associated with higher severities of FI. Previous 

assessments with the EndoFLIP [145] have reported the DI at rest as 3.9 for FI 

patients, and 1.5 for healthy patients. The simulated DI without an AAS device fitted 

is comparable to the DI for FI patients, suggesting that a similar pressure is required 

for expansion of the anal canal in both the human system and physical simulation. 

The FENIX and FENIX Plus offer an improvement to the DI of the anal canal, more 

in-line with the biological values for healthy subjects when used with the simulation. 

This suggests that the devices were effective at producing occlusion sufficient to 

prevent leakage during ‘resting’ states. This empirical analysis of FI devices is 

valuable for their evaluation in early development stages through demonstration of 

their influence on simulation behaviour compared with biological mechanisms. This 

analysis revealed that a passive device would not be sufficient in maintaining 

continence altogether, and highlights the need for an active device which could 

modulate pressure exerted on the anal canal, better representing the biological 

sphincter. Through being adaptive, a device could prevent leakage under high anal 

pressures and reduce the occlusion pressure during periods of rest, along with stress 

applied to delicate soft tissues. 

Fidelity of the Simulation: Recreation of biological defecation using the simulation 

indicated the mean change in IR pressure was 25.1 mmHg (between test initialisation 

and peak pressure during defecation). Published manometry studies showed values 

for IR pressure changes as 41.3 mmHg [18, 175] between ‘rest’ and ‘defecation’, 

which is similar to the values observed with the simulation, demonstrating similar 

behavioural  traits.  Outline traces of the rectum were constructed on selected images 

of the rectum, taken over the duration of defecation scenario, to observe rectal 

morphology throughout the distension. This revealed that the anorectum remains 

relatively stationary while the proximal rectum appeared to move anteriorly, as could 

be described by phenomenon observed in the human system of a double-flap valve to 

prevent the passing of faeces [15]. This observation was a surprise since it had been 

overlooked as one of the influential continence mechanisms. However this 

demonstrated that with the correct component-level modelling considerations the 
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simulation behaved in a similar manner to the human system, further validating it as 

a tool for the development of clinically viable FI devices. Furthermore, during the 

defecation scenario pelvic floor descent was measured, revealing a descent of 6.8 mm 

between states of ‘rest’ and ‘defecation’. Equivalently in the human system, the 

descent is observed as 19 mm [178]. Pelvic floor descent in the simulation is less 

severe than observed in the human system, which could be explained by passive 

properties of the tissue phantoms. In the human system, the PR muscle relaxes in 

coordination with defecation, allowing the rectum to straighten and provide a passage 

of least resistance to the transit of faeces. In the physical simulation on the other hand, 

the PR muscle cannot relax, and continues to passively constrain the posterior rectum 

during an influx of stool to the rectum. Analysis of this parameter highlights the 

prerequisite for the inclusion of active tissue phantoms within the simulation, to form 

closer resemblance with the human system. 

Investigative Findings: The simulation provides visibility to the notion that 

continence mechanisms act to reinforce one another [106]. As such, it is not viable to 

target a single mechanisms for the treatment of FI, which may partially explain the 

poor efficacy of current treatment methods. This investigation has demonstrated that 

to effectively reduce faecal leakage, both anorectal angulation and occlusion pressure 

at the sphincter should be enhanced. Furthermore, it shows that to retain semisolid 

material in the rectum, it is not necessary to completely occlude the sphincter. 

Angulation of the rectum alone provides sufficient resistance to reduce stool leakage. 

Mean biological ARA values for healthy, nulliparous patients were measured at 

104.5±10.3° at rest and 84.5±14.2° during squeeze [9]. These values were in 

agreement with the ARA’s observed for the reduction in leakage in this investigation. 

This highlights the potential to develop new technologies for FI which do not rely 

solely on occlusion of the anal canal to maintain continence but also include 

modulation of ARA. Too much of either mechanism would result in OD. It is 

hypothesised that in the future a combined and modulated strategy would allow a 

reduction in occlusive pressures and thereby help to mitigate against the issues of soft 

tissue erosion and device migration that have previously plagued implantable 

technology for FI. 

Scope of the Simulation and Clinical Feedback: On reflection of this discussion, it 

should be questioned whether the simulation has clinical relevance and whether it is 
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suitable for clinical development of FI devices as set out from the initial objectives. 

The successful fabrication of a 1st iteration of the simulation demonstrated similar 

values of faecal leakage, IR pressure and pelvic floor kinematics to the biological 

system for corresponding ARAs and sphincter occlusion pressures. This suggests 

plausibility for the simulation to be used as a development tool for clinically viable FI 

technologies. However it would require the refinement of a number of aspects 

described above. It is clear that a number of challenges need to be addressed before 

the physical simulation could be used for the development of clinically viable FI 

devices. Most of which are associated with the comprehensibility of the simulation 

(material properties, model constraints and the control of variables which govern the 

simulation).  

A number of clinicians had input in defining the clinical requirements of the 

simulation. Clinicians were also sought to give feedback on the clinical relevance of 

the simulation in its current form, following the development documented in this 

thesis. Two clinicians (one colorectal surgeon and one associate clinical professor) 

paid a visit to the laboratory and were given a demonstration of the simulation in 

operation before being asked the question: “does the simulation have any clinical use 

in its current form and (if any) what are they?”. The following applications for the 

simulation were expressed: 

1. Pre-clinical evaluation of surgical devices for the treatment of FI 

2. To improve patient understanding of certain colorectal disorders (e.g. 

anismus) and treatment techniques (e.g. physiotherapy) 

3. Findings from the simulation could be used to inform treatment pathways in 

the application of personalised medicine 
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6.2. Conclusions 

This investigation has developed a physical simulation of the human defecation 

system. It is evident that the behaviour of the simulation is informative and 

comparable to the human system.  

The original objectives of the thesis detailed in Chapter 1 (Section 1.1.2. ) were 

successfully achieved: 

1. A review of publications on topics surrounding the fundamentals of FI 

revealed a clear need for new/improved technology. While a number of 

computational simulations were identified in literature, these were lacking in 

modelling complexities required for the understanding of biomechanics of the 

human defecation system. In general there was a dearth of literature on 

computational studies, and none on physical studies which modelled 

continence mechanisms. To aid the development of a physical simulation, 

important biomechanics associated with continence were identified and 

attributed to key components; the anatomy and properties of which were 

obtained where possible. Through discussion with clinicians, the clinical 

needs around a physical simulation were identified. Important influential 

continence mechanisms were identified and attributed to key biological 

components (Pelvis, rectum, PR muscle, sphincter complex and adipose fat) 

to be included in the simulation. Finally, measurements of important 

biomechanical parameters (ARA, pelvic floor descent, anal pressures) were 

obtained from literature and through clinicians, to inform the design and 

configuration of the simulation. 

2. Biomimetic materials were reviewed which identified silicone as a suitable 

material for the fabrication of reusable tissue phantoms. A vacuum casting 

technique was developed and used effectively to reproduce the intricate details 

characteristic of biological tissues in the fabrication of the rectum, PR muscle, 

anal sphincter and adipose tissue components. 

3. Implementation of control hardware allowed the modulation of PR force to 

augment the ARA and delivery of stool to the rectum at a controlled rate and 

volume. Implementation of sensing hardware permitted the observation of the 

ARA and measurement of the IR pressure, PR force and stool leakage. 
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4. A thorough component-level validation showed that the simulation 

components replicated biomechanics of the human system. The tissue 

properties of IAS and EAS could not be obtained from publications, therefore 

uniaxial tensile tests were carried out, which combined with literature 

provided loading data on each biological component modelled in the 

simulation. A similar tensile test method was then conducted on 3 grades of 

silicone and consequently the properties of silicone and biological tissues were 

successfully matched. Rheological analysis on smectite clay suspensions and 

comparison with rheological data of human faeces identified clay-moisture 

concentrations which represented low viscosity faeces. Other simulation 

parameters which showed similarities with the human system included the 

anal canal DI, pelvic floor descent and rectal morphology. 

5. An experimental investigation was successfully carried out which revealed 

correlations between a number of variables on continence and biomechanics 

of the system. Smaller ARAs and increased anal canal occlusion pressure were 

shown to reduce faecal leakage and lead to increased IR pressures, generally 

with more pronounced effects observed for a higher compliance rectums. 

The simulation has shown that to effectively reduce faecal leakage, both anorectal 

angulation and sphincter occlusion pressure should be enhanced. Furthermore, it 

shows that to retain semisolid material in the rectum it is not necessary to completely 

occlude the sphincter. This finding gives notions toward FI technologies which target 

a combination of continence mechanisms and modulate intermittent pressures applied 

to soft tissues. Through demonstrating its capabilities of investigating continence 

mechanisms and analysing existing devices, the simulation has shown that it meets 

the research questions defined in Section 3.1. The simulation has direct clinical 

relevance in aiding pre-clinical evaluation of technologies to treat FI, improving 

patient understanding of colorectal disorders and treatment modalities and in 

informing treatment pathways in the application of personalised medicine. 
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6.3. Future Work 

Future work and further refinements will increase the fidelity and scope of the 

physical simulation, as a means to develop new technologies for the treatment of FI. 

6.3.1. Silicone Characterisation and Material Selection 

For the purposes of this research, a simplified model was used to characterise the 

material properties of human tissue using a linear relationship. Future work would 

look to characterise the non-linear properties of human tissue, and replicate these with 

an appropriate material. Capturing the full behaviour of biological tissues with the 

phantom models would allow the simulation to replicate the biological system more 

accurately when subject to dynamic forces and pressures.  

6.3.2. Simulating Abnormalities 

There is a large scope for the simulation to be used to model abnormalities and 

diseased states, for an understanding of the unique effects on the biomechanics of the 

system. By making use of the modular design of the simulation, biomechanical 

modifications can be applied to replicate an array of common abnormalities. The 

compliance and geometry of the soft components is variable. Therefore rectoceles 

could be simulated by the rectum model by modifying its design. Similarly, the 

intrinsic properties of the PR muscle could be tailored to have a greater elasticity for 

the representation of weaker pelvic floor tone, and the sphincter component can be 

modified to include areas which represent scar tissue or muscle atrophy. 
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6.3.3. Physiological Modifications 

Demonstrated in Figure 6.1 are several proposed physiological modifications to the 

simulation, as identified through consultation with clinicians. 

 

Three main modifications were identified which detail tweaks to geometry and 

methods of constraints applied to the existing soft components: 

1. The anal verge should be moved closer to the PR muscle, thereby shortening 

the anal canal so that its length is encompassed by the sphincter and PR muscle 

components, producing a high-pressure zone distributed along the length of 

the canal without the additional friction forces resulting from the excess canal. 

2. The length of the posterior rectum is constrained by the mesorectum, which 

prevents movement of the entire component to the anterior upon PR 

contraction, enhancing the effect of PR contraction on anorectal angulation.  

3. The anal sphincter complex (external anal sphincter) is constrained to the 

anococcygeal raphe which connects to the coccyx at the posterior of the pelvic 

cavity, and also constrained by pelvic muscles (in particular the 

illeococcygeus muscle, shown in green in Figure 6.1) which are attached to 

Figure 6.1 Demonstration of biological modifications showing left; transverse 

view of the female human pelvic configuration and right; sagittal view of the 

simulation. 
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the ischial spines. These additional fixations would result in pressure along the 

anterior of the anal canal from the anal sphincters when the PR contracts. 

Mechanisms 2 and 3 act to increase occlusion in the anorectum and anal canal during 

PR muscle contraction, and suggest that the influence of the PR muscle in the 

maintenance of continence is more substantial than given credit in this thesis. 

6.3.4. Investigation of Additional Variables 

Use of an active sphincter component would facilitate investigation of the effects of 

dynamic sphincter pressures during simulated scenarios. ‘Active’ properties can be 

built into the sphincter muscles through techniques employed by a previous study 

[132]. 

Stool consistency plays an important role in the flow regime established through the 

system. Thicker consistency homogeneous stools and heterogeneous stool would 

allow the effects of different types of stool identified by the Bristol stool form scale 

to be investigated on biomechanics of the defecation system. Formulation of 

heterogeneous stool can be achieved by addition of a fibre-reinforcement such as 

grated carrot [148].  

As discussed earlier in this chapter, while the PR muscle model is provided with active 

properties through modulation of both its position and force, the biomechanical 

operation of the PR muscle has not truly been replicated. For simplicity, the position 

of the PR muscle has been controlled. In practice, however, the muscle produces a 

constant force when contracted, until it relaxes or the muscle becomes fatigued. Seen 

as the force applied to the rectum by the PR is recorded in real-time during 

experimental analysis, a control loop could easily be incorporated into the control 

program to adjust the position of the PR muscle to maintain a constant force. 

It is thought that abdominal pressure plays an important role in normal defecation 

[182], by including this in the simulation, its effects on the system could be 

empirically assessed. Inclusion of abdominal pressure is achievable by submerging 

the simulation in a fluid, or embedding the soft phantom models in an elastomeric gel, 

similar to a method used previously [135]. Embedding the phantom models and 

control systems in a fluid presents clear challenges in terms of fluid retention and 

avoiding fluid damage to components. However if these challenges were overcome, 

abdominal pressure could be modulated through variation to the fluids static head, or 



Chapter 6: Discussion, Conclusions and Future Work 

153 

 

by creating instantaneous pressure spikes through impact with the fluid container 

(characteristic of a cough or sneeze). 
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Glossary 

 

Anterior Located at the front 

Autonomic Not subject to voluntary control 

Cloaca Terminal end of the hindgut before division into rectum, bladder and 

genital organs in an embryo 

Colon Section of the large intestine from its origin to the rectum 

Faeces Solid or liquid waste discharged from the intestine 

Flatus Gaseous waste discharged from the intestine 

Inferior Located away from the head 

Innervate To supply an organ or body part with nerves 

Peritoneum The secreted membrane lining walls of the abdominal and pelvic cavities 

Posterior Located at the rear 

Somatic Affecting the body as distinguished from a body part, the mind or the 

environment 

Stenosis Abnormal narrowing of a passage in the body 

Stool Solid or liquid excretory product evacuated from the bowel 

Striated Series of linear ridges, furrows or marks 

Superior Located towards the head 

Vascular Characterised by blood vessels 

Viscera The internal organs contained within the abdominal cavity 
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Acronyms 

 

 

 

 

AAS  Artificial anal sphincter 

ARA  Anorectal angle 

CT  Computerised tomography 

DI  Distensibility index 

FI  Faecal incontinence 

GI  Gastrointestinal 

IR  Intra-rectal 

MRI  Magnetic resonance imaging 

OD  Obstructed defecation 

PR  Puborectalis 

QoL  Quality of life 
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Appendix I: Publications 

I. A physical simulation to investigate the effect of anorectal angle on continence 

Biomedical Engineering (BioMed), 2017 13th IASTED International 

Conference on Incontinence 
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II. A biomechanical model of the human defecatory system to investigate 

mechanisms of continence. Proceedings of the Institution of Mechanical 

Engineers, Part H: Journal of Engineering in Medicine, 2018 



Appendix I: Publications 

176 

 

 

 

 



Appendix I: Publications 

177 

 

 

 

 

 



Appendix I: Publications 

178 

 

 

 

 

 



Appendix I: Publications 

179 

 

 

 

 

 



Appendix I: Publications 

180 

 

 

 

 

 



Appendix I: Publications 

181 

 

 

 

 

 



Appendix I: Publications 

182 

 

 

 

 



Appendix I: Publications 

183 

 

 



Appendix I: Publications 

184 

 

 



Appendix I: Publications 

185 

 

 

 

 



Appendix I: Publications 

186 

 

 



Appendix I: Publications 

187 

 

 



Appendix I: Publications 

188 

 

 



Appendix I: Publications 

189 

 

 



Appendix I: Publications 

190 

 

 



Appendix I: Publications 

191 

 

 



Appendix I: Publications 

192 

 

 



Appendix I: Publications 

193 

 

 



Appendix II: Clinical Meetings 

194 

 

Appendix II: Clinical Meetings 

I. IMPRESS Meetings 

Date & time: 29/09/2014, 10:00-16:30 

Location: St James University Teaching Hospital, Leeds 

A meeting among clinicians, patients and engineers to present clinical needs 

associated with faecal incontinence. 

Bowel – Faecal Incontinence 

FI is a sign or symptom, not a diagnosis. It affects 1%-10% of adults and incidences 

increase with age. 

 Patients undergo an examination, if their symptoms cannot be diagnosed, an 

investigation is carried out 

 Investigations consist of colonic imaging, anorectal manometry and endoanal 

ultrasound and reveal physiological defects in patients: 

o Sphincter defect 

o Physiological function 

 Urge incontinence 

 Co-existent pudendal neuropathy 

 Passive incontinence 

 The symptoms are classified into four categories which are treated using 

different methods 

o Loose Stools and Irritable Bowel Syndrome (IBS) 

o Passive incontinence 

o Sphincter failure (accounts for about 5% of all cases) 

Sphincter Failure 

 Specialist evaluation is important to determine if a surgically correctable cause 

is present 

 Obstetric injuries and prolapse are most likely to benefit from surgery 

 Conservative management can be effective for less serious cases 

o Dietary modification 

o Bulking and constipating agents 

o Rectal enemas 
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o Irrigation techniques 

o Biofeedback therapy 

 Surgical Intervention is required for severe FI 

o Anterior sphincteroplasty 

o Sacral Nerve Modulation 

 Posterior Tibial Nerve Stimulation 

o Graciloplasty 

o Artificial Bowel Sphincter 

Interventional Treatment 

Anterior Sphincteroplasty: 

 Short-term results 

o 70% improved continence at 2 years follow-up 

 Long-term results 

o Deteriorate with age 

o 50% improved continence at 5 years follow-up 

o Worse with large sphincter defect; multiple defects; atrophy; pudendal 

neuropathy 

Sacral Nerve Modulation: 

 Test Stimulation (2 weeks) 

o S3 stimulation 

o 50% improvement 

 Permanent Implant 

Complex 2nd Line Surgery: 

Patients who fail the therapeutic strategies outlined above need to be considered for 

more complex surgery and therefore need to be assessed in a unit with experience of 

these. 

 Stimulated gracilis neo-sphincter 

 Artificial bowel sphincter 

Artificial Bowel Sphincter: 

 Inflatable Artificial Anal Sphincter 
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A fluid filled cuff is placed around the anal canal, mimicking the natural function of 

the sphincter muscle. When the fluid is displaced from the cuff, via a patient 

controlled pump, defecation can take place. 

 Magnetic Anal Sphincter Augmentation: 

The FENIX® Continence Restoration System is a new medical device to treat faecal 

incontinence. It consists of a ring of magnetic beads which is placed inside the body, 

around the outside of the anal sphincter in a surgical operation. It assists the muscles 

that normally stop you passing stools when you don’t want to. It usually keeps them 

closed, but is designed to open to let stools pass when the person wants to open their 

bowels. Early studies on a few patients suggest that this device works but more studies 

are needed. 

Stoma: 

 Often considered treatment of last resort 

 Quality of life often better than with FI 
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II. Clinical Interview with David Jayne 

Date & time: 18/12/2014, 14:00-15:00 

Location: St James University Teaching Hospital, Leeds 

Present: A. Neville, M. Bryant, W. Stokes, S. King 

David Jayne was visited at St. James’ University Hospital and an hour was spent 

discussing the clinical needs in colorectal surgery and faecal incontinence. 

Background 

Research has been carried out into the development of an artificial anal sphincter, both 

active (Acticon Neosphincter) and passive (FENIX) devices have been researched and 

implanted while the graciloplasty procedure has also been practised. Studies into these 

methods have been limited or have revealed major limitations to their success. Due to 

the research already implemented in these areas, it is of the opinion that an entirely 

new approach to continence restoration is required. 

Pelvic Floor and Puborectalis Reinforcement or Augmentation 

In almost all cases of FI, an underlying problem is a lack of support from the pelvic 

floor. In conjunction, patients with weak pelvic floors tend to have poor Puborectalis 

function, both of which are crucial for maintaining continence. The diagram in figure 

1 shows the Puborectalis muscle and its influence on the anorectum. 

History 

A number of operations were developed in the 20th century to provide a treatment 

solution to patients whose anal sphincter was intact but weak. One unique procedure 

is known as the Parks postanal repair, devised in 1975 the procedure used sutures to 

restore the anorectal angle. Despite a good success being observed in some patients, 

other procedures failed due to the limited properties of materials available, inadequate 

modification to the anorectal angle and poor patient cooperation with post-operative 

care [1]. 

Opportunities for Future Work 

                                                 
[1] Mayo Foundation for Medical Education and Research, Treating patients with pelvic floor dysfunction. 2014. [Date accessed: 

19th December 2014]. Available from: http://www.mayoclinic.org/medical-professionals/clinical-updates/general-
medical/treating-patients-with-pelvic-floor-dysfunction 

http://www.mayoclinic.org/medical-professionals/clinical-updates/general-medical/treating-patients-with-pelvic-floor-dysfunction
http://www.mayoclinic.org/medical-professionals/clinical-updates/general-medical/treating-patients-with-pelvic-floor-dysfunction
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There is scope for development of a medical device which modifies the Puborectalis 

or pelvic floor function. These procedures would be appropriate for a large proportion 

of patients who experience FI and have the ability to ‘push’ but may not be suitable 

for the minority with the most extreme cases. 

The opportunity to obtain an electric stimulator was discussed; this could be used to 

investigate its effects on piezoelectric materials, which may give an indication of how 

it would augment human muscle. 

Puborectalis 

1. Use of a more suitable artificial material and fixation method (than Parks 

postanal procedure [2]) to tighten the Puborectalis muscle against the anorectal 

junction 

2. Puborectalis muscle fixation to the pubic bone – potential for suitable fixation 

of a suture or sling 

3. Reinforcement of the whole muscle or just a section 

4. Passive material would require ‘pushing’ from the patient, active material 

could be actuated to relax during defecation 

Pelvic Floor 

1. Electric mesh which could stimulate the pelvic floor to restore tone 

2. Potential for stimulation of innervation to the pelvic floor (similar to SNS) 

 

 

 

 

 

 

 

 

                                                 
[2] Parks, A. (1975). "Royal Society of Medicine, Section of Proctology; Meeting 27 November 1974. President's Address. 

Anorectal incontinence." Proceedings of the Royal Society of Medicine 68(11): 681. 
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III. Clinical Interview with Damian Tolan 

Date & time: 01/10/2015, 14:30-15:30 

Location: St James University Teaching Hospital, Leeds 

Present: P. Culmer, W. Stokes, S. King 

Damian Tolan was visited at St. James’ University Hospital and an hour was spent 

discussing the clinical needs in radiology and faecal incontinence. 

Impaired pelvic floor function, effect on FI and treatment 

Discussions were based around a test rig for the development of a puborectalis 

assistive FI device in relation to the normal biological system. In addition, the patient 

criteria for such a device were considered. 

Background 

 In patients whom experiences a lot of rectal descent, the pelvic floor is 

generally very poor 

 Pelvic floor tone usually weakens with age however various factors can also 

cause a weak pelvic floor (e.g. collagen degenerative disorder etc.) 

 Pelvic floor meshes generally fail due to the material not being flexible and 

compliant 

Overview of imaging methods 

There was discussion as to how closely the medium used to simulate faecal matter 

should mimic normal faeces. 

 For dynamic MRI, an ultrasound jelly is used as the imaging medium 

o Dynamic MRI used for prolapse etc. 

o Jelly is dissimilar to faeces but allows imaging of rectal descent etc. 

 For CT imaging, barium contrast is used 

o Damian uses non-viscous mixture of Ready Brek and injects using a 

syringe 

Biomechanical study on intra-rectal pressure 

Understanding the intra-rectal pressure under various conditions (rest/squeeze/strain) 

is crucial for the development of an active and adaptive device. 
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Upon defecation, intrinsic contraction of the rectum increases pressure, in addition to 

abdominal pressure. 

To simulate this system in vitro, the rectal pressure and pelvic floor morphology upon 

defecation should be investigated: 

 Carry out a series of tests which measure this pressure 

o In females via a pressure probe in the vagina (trans-vaginal pressure 

measurement) 

 Pelvic floor morphology should be observed 

o Take measurements as they void 

 Strain and relaxed 
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Appendix III: Experimental Investigation – Mass, 

Force and Pressure Plots 

This section presents plots of mass leakage, PR force and IR pressure. Using rectums 

fabricated from 3 different grades of silicone, tests were conducted with two ARA 

configurations (80° and 100°), and 3 sphincter configurations (without a device, with 

the FENIX & with the FENIX Plus). Metrics were calculated from this data to 

characterise the physical simulation and compare it to the human system. 

1. Dragon Skin 10A 

 

 

 

Figure 0.1 Plots of mass leakage, PR force and IR pressure, recorded during tests 

conducted with a rectum fabricated from Dragon Skin 10A. 
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2. Dragon Skin 20A 

 

 

 

 

 

 

 

 

 

Figure 0.2 Plots of mass leakage, PR force and IR pressure, recorded during tests 

conducted with a rectum fabricated from Dragon Skin 20A. 
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3. Dragon Skin 30A 

 

 

 

 

 

 

 

 

Figure 0.3 Plots of mass leakage, PR force and IR pressure, recorded during tests 

conducted with a rectum fabricated from Dragon Skin 30A. 
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Tests were also carried out using the same 3 grades of silicone, but with the ARA 

configured to 90°. These tests were conducted with the sphincter configured without 

a device: 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.4 Plots of mass leakage, PR force and IR pressure, recorded during tests 

conducted with the ARA configured to 90°. 
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