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Abstract

Abstract

This thesis describes the development of novel methods for the synthesis and
functionalisation of indolesThese compounds are of importance siticey are prevalent in

a wide range ofnaturally ocarring compounds, pharmaceuticals and several important
synthetic molecules.

The first part of this thesis describes the developmenamfeffective synthetic approach to
introduce the azetidine ring into indoles through a direeE®ond forming reactiothat
provides a simple access to the azetidine analogues of the analgeslol8 thiopiperidine

using azetidinesulfinate and thiosulfate salts, the former appearing to show significantly
broader scope. Further functionalisation of the products can baated for the synthesis

of multi-functionalised indole based sulfides, sulfoxides and sulfones. In addition, this
chemistry was successfully extended to include other heterocycles of interest such as
pyrroles and imidazo[1,2]pyridines using a variety afiphatic and aromatic
organothiosulfate salts.The mechanism of the direct-l€ bond sulfenylationwas
subsequentlyinvestigated.Despite the fact that both sulfinate and thiosulfate salts have
been proposed to act as reactive electrophiles via the foramatf a sulfenyl iodide, the
obvious differences in reactivities found in their reaction with indoles has led us to propose
the intermediacy of sulfoxonium iodides from the sulfinate salts during this electrophilic
aromatic substitution. Moreover, the colipg of azetidine thiosulfate to less nucleophilic
aromatic systems such benzene and thiophene via the corresponding Grignard reagents is

included in last section of this chapter.

The second part of this thesis involves the development of a conveniattietic strategy
for the first total synthesis of the natural product echinosulfone A. In this contét,
synthesis and use of indole Bunte salts as a valuable key intermediates was investigated.
Pleasingly, the synthesis of methyl protecechinosulfore A was successfully achievade

route is short and completely regioselective.

The third part of this thesis describes an investigation into the synthesis and stabilities of 3
borylated indoles. Specifically;i8dole pinacol boronic esters were foumol undergo facile
protodeborylation in the presence of palladium catalysts and base, whereas the
corresponding boronamides were more stabledzaI Ay 2 YSQa NBIF ISy i LINE DA

species to access-iBdole boronamides as these compounds are less qidide to

v



Abstract

protodeborylation. The first synthesis of-Bidole boronamides (indot8dan) from their
corresponding3-iodoindoles under Pdatalyst is presented in this chapter along with the
investigation of relative stability of indolBdan and indoldPin ompounds towards the
borylative cyclisation conditions. It was found that indeBdan are more stable than their
corresponding indole boronic ester counterparts. Furthermore, the successful borylative
cyclisation oR-alkynylanilides to their correspondjnindole boronamidessing{ dz3 Ay 2 YS Q&

reagent isdescribed, followed by the attempts of their further elaboration.
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Chapter 1.General introduction

1. Introduction

1.1Indoles and their importance

The fusion of benzengng to the positions 2 and 8f pyrrole ring produces an important
kind of aromatic heterocyclic system which is known as indbl&).(The name indole is
derived fromthe combination ofthe word indigo, a natural blue dye extracted from the
LJt | yidigoferatinctoriaé, and oleum(fuming suluric acid)sincethe first isolation of
indole wasachievedthrough the treatment of the indigo dyél.2) with oleum. However,

indole was first prepared in B8 by thereduction of oxindolg1.3) with zinc dust

Cy Cr=1_ (o
N N N
H H o H
1.1 1.2 1.3
Indole Indigo Indigo dye Oxindole

Figure(1.1) The structure of indoleindigo andoxindole.

Indoleisfound in coal tar,plants, andformedin the humanintestines through théacterial
decomposition of tryptophan?2 Indole and its derivatives exhibit significant biological
activities, and they are prevalent in mgmaturally occurring moleculepharmaceuticals

and several important synthetic moleculé%

COOH HOOC N,CH3
. H

___________________ NH, o N

| : A\ - A\

! Indole-based | N N\

| ' N

: natural products : H H N
____________________ H

Tryptophan Ibogaine Lysergic acid

CHN %
(0] 0 OH
° i CEC
1 1 \ H N

E Indole-based ,
: drugs :
| | N o)\Qm

Tropisetron Indomethacin
Antiemetic & Analgesic Anti-inflammotary

Figure(1.2) Examples ofndole basedatural products and drugs.
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The synthesis of indoles is therefore an important endeavor in the chemicals sciences. Not
surprisingly, a very large number of strategies eki8tand those that exploit alkynes are

particularly appealing.

1.2 Synthesis of indole

1.2.1 Fischer Indole synthesis

In 1883,Hermann Emil Fischeeported one of the most common and valuable methoslfor
the synthesis of indoke!'”1° Typically, it involves the heating of a ketone or aldehwdid
an aryl hydrazinen the presence o Bronsted acidatalyst(such as HCI, ¥Q andTsOH
or Lewis acid( such asBR, ZnCi and AICS), as shown inscheme 1.1). Owing to its
adaptability and effectiveness, has beenextensivelyusedin synthetic organic chemistry
for the total synthesisof indole-based natural products ahthe industrial synthesis of
several pharmaceuticaf8?? In the present day, the synthesis w§ptamine-basedmigraine

drugs (calledriptans) istypicallyconducted bythis approach?*23

R1
R1
H N g2
+ > R
N,NH2 P N
H o R R', R?= alkyl or aryl H

1.4

He 1
1
R , R
+ R 2
@W - @ s @ @ﬁ**@fy‘
NH NH
NH, N 2
1.8 1.9

S|gmatrop|c

Schemg(1.1) The generalFischersynthesis ofndoles.

The mechanisnof Fisher indole synthesis involvéee initial formation of hydrazone1(.5)
by the condensation odin arylhydrazing1.4) with an aldehyde or ketone. The isomerisation
of the hydrazoe (1.5) produces thecorresponding enamine {.6) and followed bya cyclc
[3,3]-sigmatropic rearrangemerdeliverthe imine (L.7) which rearomatize to the aniline (1.8)
before the cyclisation to aminal(1.9). Aromatisation that takes placethrough the
elimination of NH under addic conditions furnisés the respective indoleas shown in
scheme(1.1).19:22


https://en.wikipedia.org/wiki/Hermann_Emil_Fischer
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https://en.wikipedia.org/wiki/Migraine
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Over theyears various modificationof the Fischer indole synthesis have beeaveloped
involvingthe useof many differentcatalysts angrecursorsto give a rise tavider range of
indoles overcoming the limitations of substrate scopé*?* For example,Buchwald a
approach consigid of a more convenient meantor the formation ofthe required aryl
hydrazones(1.12) via a Pecatalysed the crossoupling of aryl bromide (1.11) with the
commercially available phenylhydrazo(iel0). Hydrolysis ofthe resulting hydrazong(1.12)
in the presence of ketongalong withFisher indok synthesisinder aatlic conditionsusing
TsOHefficiently provided awide rang of indoleg1.13).2°

0] 1
R Ph R R
1
Ph Pd(OAc), >=N\ R\)J\Rz N
J=NNH, + Br ———=p HN R R2
PH (£)-BINAP TsOH.H,0 N
1.10 1.11 NaO"Bu 1.12 143H

R, R, R?= H, alkyl or aryl

Schemgl.2). dzOKg | £ RQ& Yh2 RsthenAinOdlelsynthebis. 2 F

Alternatively,the JappKlingemannapproachrelies onthe condensationof aryl diazonium
salts (1.14) with i -1 S G 2 S & (-eMNacids@.N9 td form the requisite arylhydrazone
(1.16) which spontaneouslycyclise under the acidiconditions of the reaction to the

corresponding indolegl.17), as shown in schemé.@).%®

nge 0
2 COOR' NaOH N\
t+ R COOR'
1.14 115 “R2 7
RZ
H/COOR1
|
CLY
N

1.16H
R=alkyl R', R?= alkyl or aryl

Schemg(1.3) JappKlingemann modification of Fischer indole synthésis.

Some of the modifications hawnabledthe synthesis of numerous indoles \d@dransition
metalcatalysed one pot consecutiveintermolecular alkyne hydroamination (with 1,1-
disubstituted hydrazine$ and Fischer cyclisationnThe hydroaminatiortakes placethrough
the addition of aryl hydrazines1(18) to alkynes(1.19) in presence of Tecatalyst {.20) to
provide the hydrazones 1.21). Subsequent additionof ZnCl facilitates the formation of

indoles(1.22) in highyields?®
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1 ) R2
R Ti(NMey),(dap), H/R1 ZnCl
1.20 2 —
AR | B N’lN - ‘-
h R ' P{
1.18 1.19 121R 122

R, R, R2= alkyl or aryl

~

Schemgl.Hh R2Y Q& [ S6Aa ¢héayRisaordi I t @ aSR CA &

1.2.2 Alkyne-based methods for the synthesis of indoles

In the past few decades, alkynes have occupied a leading position in synthetic organic
chemistry as versatile building blocks that provide simple s£t¢e an immensaumber of
important compoundsn the presence of catalyst promoters, in particular, those based on
transition metals?*3! There have been various alkyne based methods for the synthesis of
indoles.Some of the most important approaches exploit an amine cyclisaibdo an alkyne

in the presence of a palladium catalyst, ahdse are summarised in scher(e5).2%33

4 Route 12°

NHR' R= EWG R? = alkyl or aryl group

.
7 Route 22930 N
+ RZX > R1
NHR N

R= EWG R', R?= alkyl or aryl group

R
R2 R?
X Route 33" Q
+ g R
NH, N
R1
Cry-
N

R, R2= alkyl or aryl group

R1
X P R < Route 432 R
/ N
N/ + HN. R'=H, Ph, CsH4y R=alkyl R
[ :[TS Ts
. Et
—_—
gz
= Route 533
N—r
NAR R= alkyl or aryl group H

Schemg1.5) Some alkyne baseghethods for the synthesis of indoles
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In this partthree types of cyclisation method for the synthesis of indalaé$ be discussed
(Routes 12 and 3). The emphasis on the rationale behind each synthetic procedure and
each method wil be illustrated with relevant selected examples. A particular emphasis will
be placed on intramolecular processes that permit the functionalization of the indole at

position G3 as this is relevant tthe thesis topic

1.2.3 Cyclisation of 2alkynylanilines

One of the most effective and popular methods for the synthesis of a variety of substituted
indoles is via the ring closing reactioh ethynylaniline derivativesThe overall reaction
usually includes a twstep process: the first step involves the paegtion of the substrate

by incorporation of the alkyne unit on the aniline through a Sonogashira coupling reaction;
the second step is the cyclisation ofethynylaniline to indoles. In this context, various
reagents and conditions have been utilized tbeet the cyclisation, including the use of
Lewis acids such as transition mett$}35iodine’”3%s well adifferent base@®4!such as

sodium alkoxides, KH and,C§}.4243

R2
X hi l ¢| lecul lisati
R3<©: Sonogashira coupling R ntramolecular cyclisation Rstz
NHR' =R? NHR! Reagent or Catalyst N
X= Halide or OTf Pd(ll)/Cu(l), Base (Base, iodine or Lewis acid) R

Schemg(1.6) Thegeneral two step synthesis ofdolesfrom 2-haloanilines

There aremany reasons why indole formation via the cyclisation alk¥/nylanilines is
regarded as one of the most powerful approaches to these heterocycles. First of all, many
classical methods suffer from a lack of regioselectivity drave functional group
compatibility issues. Moreover, there is a limited availability of precursors with classical
methods* (for instance Fischét** BaeyerEmmerling*and BischleMohlau*¥), as opposed

to those that employ zalkynylanilines.

1.2.3.1Alkoxide-mediated cyclisation

The annulation of alkynylanilines mediated by alkoxides has been widely exploited as a
valuable and straightforward synthetic approach fbe synthesis of Bubstituted indoles

(schemel.7).4547
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R2
=
R3 &, Rstz
NHR' N

\

R1

Schemg(1.7) Basemediatedcyclisationof 2-alkynylanilines to indoles.

In 1986, Sakamotet al. showed that Zohenylindole(1.24)could be prepared in good yield
from the cyclisation of ZphenylethynyBlN-ethoxycarbonylanilid€1.23)using a strong base
such as sodium ethoxide. The precursor was preparngdabSonogashira csscoupling

reaction followed by the acylation of the amino grogpHeme 1.4§°

Ph
©\/ EtONa, EtOH
NHCOOEt Reflux

1.23 1.24

Iz /i
)
>

Schemg(1.8) Cyclisation of &thynylaniline derivatives to indole derivativés.

Significantimprovemens have been noticed when heatingof 2-alkynylanilines with either
sodium ethoxide (NaOEt) or potassiuart-butoxide (K@Bu) in the corresponding alcohol
solvent. In addition with regard to the precursor, employment dfsubstituted anilines

such as carbamates or amides, can leadNtonsubstituted indoles becausef deacylation

that occursalong withthe cyclisation’® This strategy has been utilised by Waand co
workers to prepare 5/@lifluoroindole(1.27)(in 82% yield). The latter was further converted
into analogues of the naturabroduct rebeccamycin(1.28) through three stepg? The
cyclisation was achieved by treatment of &li@uoro-2-alkynylaniline(1.26) with sodium
ethoxide in ethanol. Both desilylation and deacylation were observed during the cyclisation

(schemel.9).48



Chapter 1.General introduction

s

F | F =
j@i =-TMS, Pd(OAc); 1.5 mol%

F NHCO,Me , P(o-tolyl)3 2.0 mol% F NHCO,Me

1.25 NEtz rt, 16 h 1.26
94%
NaOEt, EtOH
70°C, 14 h
oN_o0
F F F
Pala® ——— D
- N
F s N F 3 steps F H
1.28 1 1.27

. 5, 6- difluoroindole
The rebeccamycin analogue

Scteme (1.9) The preparation of the rebeccamycin analogtie.

In 2000, Knochel reported a method for the high yielding alkerieeiated cyclisation of-2
alkynylanilineswith the use of NMP as a solvemiiIMP was found to be important in
enhancing reaction rates, and it alsoopided the opportunity to conduct the reaction
under very mild conditions as this solvent has the ability to dissolve bHwghstarting
materails and the base¢tassiun alkoxidesr KH); therefore, thisprotocol allowedvarious
and poly functionalsed indbles to become easily accessed in high yiekbr example, 2
phenylindole (1.30) was prepared in 79% yield through treatment of(ghenykthynyl)
aniline(1.29) with KOBu in NMP after only 4 h at room temperatusetjeme1.10).#*

P
=
NH, NMP, rt, 4 h H

1.29 79% 1.30

Schemg(1.10) Alkoxidemediated cyclisation of-alkynylanilineg'!

This methodology wasicely employed irthe one pot synthesis oRN-alkyl 2substituted
indoles. First, Zphenylethynyl)aniline (1.29) reacted with potassium hydride in NMP for 2
h. Then, methyl iodide was added immediately to produce a good yield (96%nethyl-2-
phenylindole(1.31), schemg(1.11).4°
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Ph

Y 1.KH (1 eq.)
©\/ NMP, rt, 4 h mPh
1.29 96% 13173

Schemg(1.11) KHmediated cyclisation of-alkynylanilines?

Remarkably, e C3indole functionalization could be combined witigclisation of 2alkynyl
anilines ina onepot reaction protocol. For example, multi substituted indg¢le33) was
obtained in 58% yield through a ogeot strategy from the reaction of mulsubstituted 2
(phenylethynylaniline (1.32) with potassium hydride in NMP for 2 h. Afterwards,
dibromotetrachloroethane was directly added tbhe resultant mixtureto furnish the multi

substituted3-bromoindole(1.33), schemg1.12).4°

= Bu 1.KH (1.8 Br
FoC ~ - NM(P. teg-i] FaC
T A Bu
NH, 2. (Cl,BrC), (3 eq.) ”
NO; 1.32 58% NO,  1.33

Schemg(1.12) KHmediated cylisation of 2alkynylanilinego indoles?®

Moreover, in 2010, Zhowt al investigated the scope of bases that could be used to
promote the cyclisation of -alkynyl anilines to indoles. Thus, they treatle(1-butyl)-2-
(phenylthiomethyl) aniling1.34) with various bases to accesshutyl-2-(phenylthiomethyl)
indole (1.35, ssheme (1.13). Strong bases such as'B@or NaOEt gave low yieldgnd
weak bases such as potassium carbonat€ () or triethylamine (EN) did not promote

the reaction. However, bases such as DBU and DBN furni®hétbutyl)-2-(phenylthio
methyl) indole (1.35) in good vyield at various reaction temperaturesi{eme1.13).3° It was
demonstrated by controle expements that allen intermediateis essential for this type of

cyclisation.
SPh

Z _ SPh
0.1 equiv. DBU @J
N

NH"Bu Toluene, 90 °C Y
1.34 1.35 'Bu

Schemg1.13) DBUmediated cytsation of
2-alkynylanilinego indoles3®
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1.2.3.2lodine-promoted electrophilic cycliation

lodine has also been used to promottee cyclisation of a broad range of aromatic alkynes
for the synthesis of various muhiinctionalized heterocyclic compounds, including
functiondized indoles’-*® For example,N-tosyl or Boe3-iodoindoles (1.36) were prepared
from 2-iodoanilines(1.36) in two simple steps using iodinescheme 1.14).37 Firstly, the
Sonogashira coupling of -i@doanilines (1.36) with terminal alkynes afforded the
corresponding Zalkynylanilineg1.37) in excellent yields (#96%). Then, the treatment of 2
alkynylanilineq1.37) with iodine (3 eq.) and anhydrous®Q (3 eq.) in acetonitrile at 6C
led to 3-iodoindoles(1.38) in good to excellent yield This method is straightforward and

uses readily available starting materiéls.

- | ; y I> (3 equiv.)
\©i onogashira K,CO4 3equw
NHRZ — NHR2 MeCN, 0-20 °C
1.36 85-94% 1.38 R2

75-95%
R'=H,NO, RZ=Ts, Boc R®=Ph,™Bu, TMS, CH,0OTBS

Schemg(1.14) Knight's approach for the cyclisation of
2-alkynylanilinego 3-iodoindoles®

This strategyhas also been useddr the cyclisation of either mono or-gubstituted amines.
For example,N,N-dimethyl2-iodoanilines (1.39 have been converted taN-methyl3-
iodoindoles (1.41) by Yue and Larock. The first step involved the synthesis of- 2
alkynylanilineq1.40) by Sonogashira coupling ofrialoanilines with various alkynes. Then,
exposure of N,N-disubstituted2-alkynylanilines (1.40) to iodine in DCM at room
temperature furnished3-iodoindoles(1.41) in a good to excellent yield (7200%).The

demethylation occurred along with the cyclisatiéh.

Schemg(1.15), dzS 'y R [ I NB O] Q& | LILINKEynyaKlings2 NJ (G KS
to 3-iodoindoles3®

O



