
 
 

Novel Synthesis and Functionalisation of Indoles:         

Application to The First Synthesis of The Natural Product 

Echinosulfone A Methyl Carbamate 

 

 

 
 

 

A thesis submitted in partial fulfillment of the degree of Doctor of 

Philosophy 

 

Muhannad Al-Saedy 

 

Department of Chemistry 

University of Sheffield 

 

September 2018 



 
 

 

 

 

 

 

 

 

 

 

 

òThe starting point of all achievement is desireó 

                                                                  

Napoleon Hill  

 

 

 

 

 

 

 

 

 

 

 

 

 



Dedication 

 
 

 
 

 

 

 

 

 

 

 

 

 

Dedication 

To my beloved country (Iraq) and lovely family 
 

 

  

 

 

 

 

 

 

 

 

 

 



Abstract 
  

IV 
 

Abstract 

This thesis describes the development of novel methods for the synthesis and 

functionalisation of indoles. These compounds are of importance since they are prevalent in 

a wide range of naturally occurring compounds, pharmaceuticals and several important 

synthetic molecules. 

The first part of this thesis describes the development of an effective synthetic approach to 

introduce the azetidine ring into indoles through a direct C-S bond forming reaction that 

provides a simple access to the azetidine analogues of the analgesic 3-indole thiopiperidine 

using azetidine sulfinate and thiosulfate salts, the former appearing to show significantly 

broader scope. Further functionalisation of the products can be exploited for the synthesis 

of multi-functionalised indole based sulfides, sulfoxides and sulfones. In addition, this 

chemistry was successfully extended to include other heterocycles of interest such as 

pyrroles and imidazo[1,2]pyridines using a variety of aliphatic and aromatic 

organothiosulfate salts. The mechanism of the direct C-H bond sulfenylation was 

subsequently investigated. Despite the fact that both sulfinate and thiosulfate salts have 

been proposed to act as reactive electrophiles via the formation of a sulfenyl iodide, the 

obvious differences in reactivities found in their reaction with indoles has led us to propose 

the intermediacy of sulfoxonium iodides from the sulfinate salts during this electrophilic 

aromatic substitution. Moreover, the coupling of azetidine thiosulfate to less nucleophilic 

aromatic systems such benzene and thiophene via the corresponding Grignard reagents is 

included in last section of this chapter.  
 

The second part of this thesis involves the development of a convenient synthetic strategy 

for the first total synthesis of the natural product echinosulfone A. In this context, the 

synthesis and use of indole Bunte salts as a valuable key intermediates was investigated. 

Pleasingly, the synthesis of methyl protected echinosulfone A was successfully achieved. The 

route is short and completely regioselective.  
 

The third part of this thesis describes an investigation into the synthesis and stabilities of 3-

borylated indoles. Specifically, 3-indole pinacol boronic esters were found to undergo facile 

protodeborylation in the presence of palladium catalysts and base, whereas the 

corresponding boronamides were more stable. {ǳƎƛƴƻƳŜΩǎ ǊŜŀƎŜƴǘ ǇǊƻǾƛŘŜǎ ŀƴ ŀƭǘŜǊƴŀǘƛǾŜ 

species to access 3-indole boronamides as these compounds are less susceptible to 
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protodeborylation. The first synthesis of 3-indole boronamides (indole-Bdan) from their 

corresponding 3-iodoindoles under Pd-catalyst is presented in this chapter along with the 

investigation of relative stability of indole-Bdan and indole-BPin compounds towards the 

borylative cyclisation conditions. It was found that indoles-Bdan are more stable than their 

corresponding indole boronic ester counterparts. Furthermore, the successful borylative 

cyclisation of 2-alkynylanilides to their corresponding indole boronamides using {ǳƎƛƴƻƳŜΩǎ 

reagent is described, followed by the attempts of their further elaboration.  
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1. Introduction  

1.1 Indoles and their importance 

The fusion of benzene ring to the positions 2 and 3 of pyrrole ring produces an important 

kind of aromatic heterocyclic system which is known as indole (1.1). The name indole is 

derived from the combination of the word indigo, a natural blue dye extracted from the 

Ǉƭŀƴǘ άIndigofera tinctoriaέ, and oleum (fuming sulfuric acid) since the first isolation of 

indole was achieved through the treatment of the indigo dye (1.2) with oleum. However, 

indole was first prepared in 1866 by the reduction of oxindole (1.3) with zinc dust.1 

 

Figure (1.1) The structure of indole, indigo and oxindole. 

Indole is found in  coal tar, plants, and formed in the human intestines through the bacterial 

decomposition of tryptophan.2,3 Indole and its derivatives exhibit significant biological 

activities, and they are prevalent in many naturally occurring molecules, pharmaceuticals 

and several important synthetic molecules.4-8 

 

Figure (1.2) Examples of indole based natural products and drugs. 

https://en.wikipedia.org/wiki/Indigofera_tinctoria
https://en.wiktionary.org/wiki/produced
https://en.wiktionary.org/wiki/bacterial
https://en.wiktionary.org/wiki/decomposition
https://en.wiktionary.org/wiki/tryptophan
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The synthesis of indoles is therefore an important endeavor in the chemicals sciences. Not 

surprisingly, a very large number of strategies exist,9-16 and those that exploit alkynes are 

particularly appealing. 
 

1.2 Synthesis of indole 
 

1.2.1 Fischer Indole synthesis    

In 1883, Hermann Emil Fischer reported one of the most common and valuable methods for 

the synthesis of indoles.17-19 Typically, it involves the heating of a ketone or aldehyde with 

an aryl hydrazine in the presence of a Bronsted acid catalyst (such as HCl, H2SO4 andTsOH) 

or Lewis acid ( such as BF3, ZnCl2 and AlCl3), as shown in scheme (1.1). Owing to its 

adaptability and effectiveness, it has been extensively used in synthetic organic chemistry 

for the total synthesis of indole-based natural products and the industrial synthesis of 

several pharmaceuticals.20-22 In the present day, the synthesis of tryptamine-based migraine 

drugs (called triptans) is typically conducted by this approach.21-23 

 

Scheme (1.1) The general Fischer synthesis of indoles.  

The mechanism of Fisher indole synthesis involves the initial formation of hydrazone (1.5) 

by the condensation of an arylhydrazine (1.4) with an aldehyde or ketone. The isomerisation 

of the hydrazone (1.5) produces the corresponding enamine (1.6) and followed by a cyclic 

[3,3]-sigmatropic rearrangement deliver the imine (1.7) which rearomatize to the aniline (1.8) 

before the cyclisation to aminal (1.9). Aromatisation that takes place through the 

elimination of NH3 under acidic conditions furnishes the respective indole, as shown in 

scheme (1.1).19,22   

https://en.wikipedia.org/wiki/Hermann_Emil_Fischer
https://en.wikipedia.org/wiki/Boron_trifluoride
https://en.wikipedia.org/wiki/Zinc_chloride
https://en.wikipedia.org/wiki/Aluminium_chloride
https://en.wikipedia.org/wiki/Migraine
https://en.wikipedia.org/wiki/Triptan
https://en.wikipedia.org/wiki/Sigmatropic_rearrangement
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Over the years, various modifications of the Fischer indole synthesis have been developed 

involving the use of many different catalysts and precursors to give a rise to wider range of 

indoles, overcoming the limitations of substrate scope.22,24 For example, BuchwaldΩǎ 

approach consisted of a more convenient means for the formation of the required aryl 

hydrazones (1.12) via a Pd-catalysed the cross-coupling of aryl bromide (1.11) with the 

commercially available phenylhydrazone (1.10). Hydrolysis of the resulting hydrazones (1.12) 

in the presence of ketones along with Fischer indole synthesis under acidic conditions using 

TsOH efficiently provided a wide range of indoles (1.13).25 

 

Scheme (1.2) .ǳŎƘǿŀƭŘΩǎ ƳƻŘƛŦƛŎŀǘƛƻƴ ƻŦ the Fischer indole synthesis.25 

Alternatively, the Japp-Klingemann approach relies on the condensation of aryl diazonium 

salts (1.14) with -̡ƪŜǘƻŜǎǘŜǊǎ ƻǊ ʲ-ketoacids (1.15) to form the requisite arylhydrazones 

(1.16) which spontaneously cyclise under the acidic conditions of the reaction to the 

corresponding indoles (1.17), as shown in scheme (1.3).26  

 

Scheme (1.3) Japp-Klingemann modification of Fischer indole synthesis.27 

Some of the modifications have enabled the synthesis of numerous indoles via a transition 

metal-catalysed one pot consecutive intermolecular alkyne hydroamination (with 1,1-

disubstituted hydrazines) and Fischer cyclisation. The hydroamination takes place through 

the addition of aryl hydrazines (1.18) to alkynes (1.19) in presence of Ti-catalyst (1.20) to 

provide the hydrazones (1.21). Subsequent addition of ZnCl2 facilitates the formation of 

indoles (1.22) in high yields.28 
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Scheme (1.4) hŘƻƳΩǎ [Ŝǿƛǎ ŀŎƛŘ ŎŀǘŀƭȅǎŜŘ Cƛǎcher cyclisation.28 

1.2.2 Alkyne-based methods for the synthesis of indoles 

In the past few decades, alkynes have occupied a leading position in synthetic organic 

chemistry as versatile building blocks that provide simple access to an immense number of 

important compounds in the presence of catalyst promoters, in particular, those based on 

transition metals.29-31 There have been various alkyne based methods for the synthesis of 

indoles. Some of the most important approaches exploit an amine cyclisation onto an alkyne 

in the presence of a palladium catalyst, and these are summarised in scheme (1.5).29-33 

 

 
 

Scheme (1.5) Some alkyne based-methods for the synthesis of indoles. 
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In this part three types of cyclisation method for the synthesis of indoles will be discussed 

(Routes 1, 2 and 3). The emphasis on the rationale behind each synthetic procedure and 

each method will be illustrated with relevant selected examples. A particular emphasis will 

be placed on intramolecular processes that permit the functionalization of the indole at 

position C-3 as this is relevant to the thesis topic. 

1.2.3 Cyclisation of 2-alkynylanilines. 

One of the most effective and popular methods for the synthesis of a variety of substituted 

indoles is via the ring closing reaction of 2-ethynylaniline derivatives. The overall reaction 

usually includes a two-step process: the first step involves the preparation of the substrate 

by incorporation of the alkyne unit on the aniline through a Sonogashira coupling reaction; 

the second step is the cyclisation of 2-ethynylaniline to indoles. In this context, various 

reagents and conditions have been utilized to effect the cyclisation, including the use of 

Lewis acids such as transition metals,14,34-36iodine37,38as well as different bases39-41such as 

sodium alkoxides, KH and Cs2CO3.42,43 

 
 

Scheme (1.6) The general two step synthesis of indoles from 2-haloanilines. 
 
 

There are many reasons why indole formation via the cyclisation of 2-alkynylanilines is 

regarded as one of the most powerful approaches to these heterocycles. First of all, many 

classical methods suffer from a lack of regioselectivity and have functional group 

compatibility issues. Moreover, there is a limited availability of precursors with classical 

methods44 (for instance Fischer24,44 Baeyer-Emmerling44and Bischler-Möhlau44), as opposed 

to those that employ 2-alkynylanilines.   

1.2.3.1 Alkoxide-mediated cyclisation 

The annulation of 2-alkynylanilines mediated by alkoxides has been widely exploited as a 

valuable and straightforward synthetic approach for the synthesis of 2-substituted indoles 

(scheme 1.7).45-47 
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Scheme (1.7) Base-mediated cyclisation of 2-alkynylanilines to indoles. 
 

In 1986, Sakamoto et al. showed that 2-phenylindole (1.24) could be prepared in good yield 

from the cyclisation of 2-(phenylethynyl)-N-ethoxycarbonylanilide (1.23) using a strong base 

such as sodium ethoxide. The precursor was prepared by a Sonogashira cross-coupling 

reaction followed by the acylation of the amino group (scheme 1.4).30 

 

Scheme (1.8) Cyclisation of 2-ethynylaniline derivatives to indole derivatives.30 

 

Significant improvements have been noticed when heating of 2-alkynylanilines with either 

sodium ethoxide (NaOEt) or potassium tert-butoxide (KOtBu) in the corresponding alcohol 

solvent. In addition, with regard to the precursor, employment of N-substituted anilines, 

such as carbamates or amides, can lead to N-unsubstituted indoles because of deacylation 

that occurs along with the cyclisation.30 This strategy has been utilised by Wang and co-

workers to prepare 5,6-difluoroindole (1.27) (in 82% yield). The latter was further converted 

into analogues of the natural product rebeccamycin (1.28) through three steps.48 The 

cyclisation was achieved by treatment of 5,6-difluoro-2-alkynylaniline (1.26) with sodium 

ethoxide in ethanol. Both desilylation and deacylation were observed during the cyclisation 

(scheme 1.9).48 
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Scheme (1.9) The preparation of the rebeccamycin analogue.48 

In 2000, Knochel reported a method for the high yielding alkoxide-mediated cyclisation of 2-

alkynylanilines with the use of NMP as a solvent. NMP was found to be important in 

enhancing reaction rates, and it also provided the opportunity to conduct the reaction 

under very mild conditions as this solvent has the ability to dissolve both the starting 

materails and the base (potassium alkoxidesor  KH); therefore, this protocol allowed various 

and poly functionalised indoles to become easily accessed in high yield. For example, 2-

phenylindole (1.30) was prepared in 79% yield through treatment of 2-(phenylethynyl) 

aniline (1.29) with KOtBu in NMP after only 4 h at room temperature (scheme 1.10).41 

 
Scheme (1.10) Alkoxide-mediated cyclisation of 2-alkynylanilines.41 

This methodology was nicely employed in the one pot synthesis of N-alkyl 2-substituted 

indoles. First, 2-(phenylethynyl) aniline (1.29) reacted with potassium hydride in NMP for 2 

h. Then, methyl iodide was added immediately to produce a good yield (96%) of N-methyl-2-

phenylindole (1.31), scheme (1.11).49  

 



 Chapter 1: General introduction 
  

8 
 

 

Scheme (1.11) KH-mediated cyclisation of 2-alkynylanilines.49  

Remarkably, the C3-indole functionalization could be combined with cyclisation of 2-alkynyl 

anilines in a one-pot reaction protocol. For example, multi substituted indole (1.33) was 

obtained in 58% yield through a oneςpot strategy from the reaction of multi substituted 2-

(phenylethynyl)aniline (1.32) with potassium hydride in NMP for 2 h. Afterwards, 

dibromotetrachloroethane was directly added to the resultant mixture to furnish the multi 

substituted 3-bromoindole (1.33), scheme (1.12).49 

 

 

Scheme (1.12) KH-mediated cyclisation of 2-alkynylanilines to indoles.49 
 
 

Moreover, in 2010, Zhou et al. investigated the scope of bases that could be used to 

promote the cyclisation of 2-alkynyl anilines to indoles. Thus, they treated N-(1-butyl)-2-

(phenylthiomethyl) aniline (1.34) with various bases to access 1- butyl-2-(phenylthiomethyl) 

indole (1.35), scheme (1.13). Strong bases such as KOtBu or NaOEt gave low yields, and 

weak bases such as potassium carbonate (K2CO3) or triethylamine (Et3N) did not promote 

the reaction. However, bases such as DBU and DBN furnished N-(1-butyl)-2-(phenylthio-

methyl) indole (1.35) in good yield at various reaction temperatures (scheme 1.13).39 It was 

demonstrated by controle experiments  that allen intermediate is essential for this type of 

cyclisation.  

 
 

Scheme (1.13) DBU-mediated cyclisation of  
2-alkynylanilines to indoles.39 
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1.2.3.2 Iodine-promoted electrophilic cyclisation   

Iodine has also been used to promoted the cyclisation of a broad range of aromatic alkynes 

for the synthesis of various multi-functionalized heterocyclic compounds, including 

functionalized indoles.37,38 For example, N-tosyl or Boc-3-iodoindoles (1.36) were prepared 

from 2-iodoanilines (1.36) in two simple steps using iodine (scheme 1.14).37 Firstly, the 

Sonogashira coupling of 2-iodoanilines (1.36) with terminal alkynes afforded the 

corresponding 2-alkynylanilines (1.37) in excellent yields (75-96%). Then, the treatment of 2-

alkynylanilines (1.37) with iodine (3 eq.) and anhydrous K2CO3 (3 eq.) in acetonitrile at 0 oC 

led to 3-iodoindoles (1.38) in good to excellent yield.37 This method is straightforward and 

uses readily available starting materials.37 

 

Scheme (1.14) Knight's  approach for the cyclisation of  
2-alkynylanilines to 3-iodoindoles.35 

 

This strategy has also been used for the cyclisation of either mono or di-substituted amines. 

For example, N,N-dimethyl-2-iodoanilines (1.39) have been converted to N-methyl-3-

iodoindoles (1.41) by Yue and Larock.38 The first step involved the synthesis of 2-

alkynylanilines (1.40) by Sonogashira coupling of 2-haloanilines with various alkynes. Then, 

exposure of N,N-disubstituted-2-alkynylanilines (1.40) to iodine in DCM at room 

temperature furnished 3-iodoindoles (1.41) in a good to excellent yield (72-100%). The 

demethylation occurred along with the cyclisation.38 

 

Scheme (1.15) ̧ ǳŜ ŀƴŘ [ŀǊƻŎƪΩǎ ŀǇǇǊƻŀŎƘ ŦƻǊ ǘƘŜ ŎȅŎƭƛǎŀǘƛƻƴ ƻŦ н-alkynylanilines  
to 3-iodoindoles.38 


