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Neural and Non-neural Approaches to Authorship

Attribution

ABSTRACT

This thesis explores a range of authorship attribution approaches and proposes

new techniques to improve performance. Authorship attribution is the task of

identifying the author of a text. It has attracted attention due to its relevance

to a wide range of applications including forensic investigation and plagiarism

detection. An array of features and approaches have been applied to this task.

However, there has been a lack of study which involves multiple datasets or uses a

range of different classifiers. Therefore, in this thesis we explore both neural and

non-neural network models and use different feature representations on multiple

datasets.

We begin with a short introduction to authorship attribution in Chapter 1.

A more comprehensive review of authorship attribution and its related tasks is

given in Chapter 2. In Chapter 3 we introduces a novel analysis using topic mod-

eling to examine the conditions under which each type of authorship attribution

feature is useful. Chapter 4 explores the implementation of language modeling

for authorship attribution. We describe the feature selection issue in standard

authorship attribution approaches and evaluate whether n-gram language mod-

eling can help to address the problem. Furthermore, we implement A Long Short

Term Memory (LSTM) language model for authorship attribution and assess its

effectiveness for the task.

In Chapter 5 we present our work on using continuous representations for

authorship attribution. In contrast to previous work, which uses discrete feature

representations, our model learns continuous representations for n-gram features

via a neural network jointly with the classification layer. The proposed model

outperforms the state-of-the-art on two datasets, while producing comparable

results on the remaining two. In addition, we describe our novel extension of

the proposed models and show how the analysis in Chapter 3 helps to improve

the attribution accuracy. Finally, we demonstrate how the authors’ demographic

profiles can help improve task performance via Multi Task Learning (MTL). In

Chapter 6 we highlight the contributions of this thesis and propose directions for

future research in this area.
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Chapter 1

Introduction

Swinson and Reyna (2013) described authorship attribution simply as “the task

of identifying the author of a text”. This field is part of stylometry, the study

of style which was originally applied to handwritten texts. In more recent work,

stylometry has been widely applied to digital texts and computer code (Juola,

2008; Stamatatos, 2009a; Caliskan-Islam et al., 2015; Shrestha et al., 2017). The

famous case of the Federalist Papers can be considered as an early example of au-

thorship attribution (Juola, 2008). The Federalist Papers are a set of newspaper

essays published in the late 18th century by an anonymous author named ‘Pub-

lius’. Those papers were published to persuade New York residents to approve

the newly proposed Constitution of the United States. Lately, it has become

known that those 85 essays were written by three authors: John Jay, Alexander

Hamilton, and James Madison. Five essays were written by Jay, 14 essays by

Madison and 51 essays by Hamilton. There are also 12 disputed essays which

have been claimed by both Madison and Hamilton.

Authorship attribution has great potential to be used in various authorship

analysis applications; such as history and literary science (e.g. determining the

author of a disputed or anonymous text document) (Klarreich, 2003; Oakes, 2004;

Burrows, 2002; Hoover, 2004), forensic investigation (e.g. identifying authors in

anonymous or phishing email) (Chaski, 2005; Grant, 2007; Iqbal et al., 2010;

Lambers and Veenman, 2009; Gollub et al., 2013), plagiarism (e.g. detecting

collaboration in the document) (Gollub et al., 2013; Kimler, 2003) or even used

as evidence in courts of law (Morton and Michaelson, 1990). An example of a

real case is the role of authorship attribution in revealing J. K. Rowling who used

the pen name Robert Galbraith for her book “The Cuckoo’s Calling” (Zimmer,

2013). By using four different linguistic variables such as the distribution of

word lengths and the frequency of 100 most common words, the analysis pointed
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strongly to Rowling as the true author.

Most work in the area of authorship attribution tries to determine whether

an individual can be distinguished based on their writing style. Halteren et al.

(2005) proposed the idea of a “human stylome” as “specific properties of writing

style that can be used to identify the author.” Similarly, Juola (2008) used the

term “authorial fingerprint” to describe “characteristic pattern of language used

in people’s writings.” There was an idea to use a person’s writing style as identifi-

cation key like a fingerprint. However, it has yet to be determined whether there

are specific writing style features that can identify a person, like a fingerprint

(Malyutov, 2006). These writing style features need to be constant regardless of

aspects that can vary such as the writing time and the genre of the document.

The study of authorship attribution has been progressing quickly and has been

extended into more advanced problems such as authorship verification and adver-

sarial stylometry (see details in Section 2.3). The majority of existing authorship

attribution approaches apply supervised machine learning algorithms with a wide

range of features. Most of those works focused on feature engineering by exploring

potential features which could improve the attribution performance (see Section

2.2). Function words and character n-grams are two features that have been

proved to be effective for capturing an author’s writing style (Mosteller and Wal-

lace, 1964; Peng et al., 2003; Argamon and Levitan, 2005; Koppel et al., 2005;

Juola and Baayen, 2005; Zhao and Zobel, 2005; Stamatatos, 2013; Schwartz et al.,

2013). On the other hand, some approaches have explored different architectures

for the problem. Rather than using a standard machine learning algorithm such

as a Support Vector Machines (SVMs), they utilised neural network-based models

(Bagnall, 2015; Sari et al., 2017; Shrestha et al., 2017).

A range of approaches have been applied for authorship attribution with dif-

ferent features and architectures. However, they have not been systematically

compared. The lack of continuity in authorship attribution research causes dif-

ficulties to identify which approaches are most reliable in any particular circum-

stance. Evaluation forums such as PAN (see Section 2.4) help to address this

problem. Yet, their small size of released datasets prevent the participants from

exploring more advanced techniques. Juola (2008) emphasised that accuracy is

not the only consideration in authorship attribution. An authorship attribution

system is expected to be adaptive to the language, genre, size, of the available

documents. In addition, authorship attribution is a task with cross-disciplinary

interests. A good research work needs to be validated in various areas and prob-

lems. Thus, the expected levels of accuracy and the circumstances where it might

be expected to drop can be easily defined.
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Figure 1.1: Main research objective

This thesis aims to provide more clear direction of the authorship attribu-

tion approaches by exploring four different techniques as shown in Figure 1.1. In

general, the approaches can be divided along two dimensions: method and repre-

sentation. Discrete and continuous representations are combined with two types

of methods: Language Model (LM) and supervised classification. In continuous

representations, each feature is represented as a d-dimensional real-valued vec-

tor and its values are learned via a neural-network based model. In this way,

similar features are likely to have similar vectors (Goldberg and Hirst, 2017). In

contrast, in discrete representations, features are completely independent from

one another. Both non-neural and neural network-based approaches are also

explored in this thesis. There are five datasets involved in our studies includ-

ing Judgment (Seroussi et al., 2011), CCAT10, CCAT50 (Stamatatos, 2008),

IMDb62 (Seroussi et al., 2010) and The Blog Authorship Corpus (Schler et al.,

2006). These datasets are commonly used in previous literature and represent

a range of characteristics in terms of the number of authors, topic/genre and

document length. By conducting exploration on different approaches, we aim to

address the following problems:

• Previous work has explored an extensive array of authorship attribution

features (see Section 2.2). However, there has been a lack of analysis of the

3



behavior of features across multiple datasets or using a range of classifiers.

Consequently, it is difficult to determine which types of features will be

most useful for a particular authorship attribution dataset. This thesis

explores how the characteristics of an authorship attribution dataset affect

the usefulness of different types of features.

• Feature selection is an important step in authorship attribution which usu-

ally involves setting threshold to remove uninformative features (Scott and

Matwin, 1999). However, defining an optimal threshold can be problematic,

because rare features may contain essential information about the author’s

writing style. Peng et al. (2003) avoided the problem by implementing n-

gram based language models (LM). The model enables to include every

feature without experiencing sparse data problems. Their approach ob-

tained performance higher than 90% in accuracy. However they conducted

experiments on a limited type of datasets which may not reflect the ef-

fectiveness of the models. This work examines to what extent the n-gram

language model can benefit the authorship attribution task in various types

of datasets.

• One of the major drawbacks of an n-gram-based language model is it usually

depends only on the previous two or three words. This limits the model

from capturing information from a longer context which might be useful

for authorship attribution. The above problems can theoretically be solved

using the Long Short Term Memory (LSTM)-based language model (Sun-

dermeyer et al., 2012). This thesis investigates whether the application of

an LSTM-based language model can help to improve authorship attribution

performance.

• In authorship attribution, features are commonly represented in discrete

form. However, this representation suffers from data sparsity and does not

consider the semantic relatedness between features. For example, in the

bag-of-words representation, the words “Paris” and “London” are not con-

nected. In contrast, using a continuous representation, the distance is closer

since those words are semantically similar. Continuous representations have

been shown to be helpful in a wide range of tasks in natural language pro-

cessing (Mikolov et al., 2013b; Bansal et al., 2014; Joulin et al., 2017; Li

et al., 2016; Rahimi et al., 2017). This thesis explores continuous n-gram

representations for authorship attribution tasks.

• Previous work (Hovy, 2015) demonstrated that the author’s demographic
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profile can help to improve the performance of text classification tasks such

as sentiment analysis and topic detection via a Multi Task Learning (MTL)

framework. No previous work on authorship attribution has tried to im-

plement this approach, despite it being promising. This thesis examines

the role of age and gender information to improve authorship attribution

performance.

1.1 Contributions

This thesis makes the following research contributions:

• Proposes a novel analysis using topic modeling to examine the conditions

under which each type of authorship attribution feature is useful.

• Explores the application of n-gram based language model for authorship

attribution.

• Investigates whether an LSTM-based language model can help to improve

the attribution performance.

• Proposes the implementation of continuous n-gram representations to ad-

dress the discrete representations problem.

• Proposes the use of Multi Task Learning (MTL) to jointly learn authorship

attribution with gender and age identifications.

• Presents a comparative study of four different authorship attribution ap-

proaches representing a range of feature representations (discrete and con-

tinuous) and approaches (non-neural and neural network based model).

1.2 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2 (Background) provides a review of previous work of authorship

attribution. The chapter starts with a review of the current state of authorship

attribution. It then presents features and methods that have been used to address

this task. Various forms of authorship attribution are discussed including author

profiling, open and closed set authorship attribution, adversarial stylometry and

authorship verification. In addition, progress in authorship attribution shared
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tasks is described.

Chapter 3 (Exploring the Most Useful Features for Authorship Attri-

bution) introduces a novel analysis using topic modeling to examine the con-

ditions under which each type of authorship attribution feature is useful. In

addition, previous work which utilized the same datasets involved in our experi-

ments is also presented.

Chapter 4 (Language Model for Authorship Attribution) describes fea-

ture selection problems in authorship attribution and how n-gram language

modeling-based approaches can help to address them. Among existing authorship

attribution methods, this model has rarely been explored. A separate language

model is created for each of the authors. The author of an unseen document is

determined by comparing the document against each model and choosing the one

with lowest perplexity. Results indicate that the feature selection problems can

be addressed. However, the model failed to outperform the previous results due

to the problem of data sparsity. Furthermore, in this chapter we investigate the

effectiveness of a neural network model by implementing LSTM-based language

modeling for authorship attribution. Unlike the n-gram language model, the re-

current connections of LSTM allows to capture information from long context

sequences. However, the experimental results show that the information does

not benefit the authorship attribution performance. A thorough discussion is

presented on this case.

Chapter 5 (Continuous N -gram Representations for Authorship At-

tribution) presents work on using continuous representations for authorship at-

tribution. In contrast to most previous work which uses discrete representations,

this model learns continuous representations for n-grams via a neural network

jointly with the classification layer. Experimental results demonstrate that the

proposed model outperforms the state-of-the-art on two datasets, while produc-

ing comparable results on the remaining two. In addition, we describe our novel

extension of the proposed models and show how the analysis in Chapter 3 helps

to improve the attribution accuracy. Finally, we propose Multi Task Learning

(MTL) which jointly learns authorship attribution with gender and age identi-

fications. Results from the experiments show a consistent improvement on the

performance along the increase of the author numbers.

Chapter 6 (Conclusions and Future Work) provides the conclusion of this
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thesis and presents future directions for research in this area.

1.3 Published Material

The following publications are related to the work reported in this thesis:

1. Sari, Y., Stevenson, M., and Vlachos, A. (2018). Topic or Style? Explor-

ing the Most Useful Features for Authorship Attribution. Proceedings of

the 27th International Conference on Computational Linguistics (COLING

2018), Santa Fe, USA.

2. Sari, Y., Vlachos, A., and Stevenson, M. (2017). Continuous n-gram rep-

resentations for authorship attribution. In Proceedings of the 15th Confer-

ence of the European Chapter of the Association for Computational Lin-

guistics: Volume 2, Short Papers, pages 267– 273, Valencia, Spain. Associ-

ation for Computational Linguistics.

3. Sari, Y. and Stevenson, M. (2016). Exploring Word Embeddings and Char-

acter n-grams for Author Clustering—Notebook for PAN at CLEF 2016.

In Balog, K., Cappellato, L., Ferro, N., and Macdonald, C., editors, CLEF

2016 Evaluation Labs and Workshop – Working Notes Papers, 5-8 Septem-

ber, Evora, Portugal. CEUR-WS.org.

4. Sari, Y. and Stevenson, M. (2015). A Machine Learning-based Intrinsic

Method for Cross-topic and Cross-genre Authorship Verification—Notebook

for PAN at CLEF 2015. In Cappellato, L., Ferro, N., Jones, G., and San

Juan, E., editors, CLEF 2015 Evaluation Labs and Workshop – Working

Notes Papers, 8-11 September, Toulouse, France. CEUR-WS.org.

5. Sari, Y. (2015). Gender Identification for Adversarial Writing. In Proceed-

ings of the ESSLLI 2015 Student Session, Barcelona, Spain.
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Chapter 2

Background

This chapter presents background related to authorship attribution tasks. It

gives a detail description of various approaches and features that will be used

in the experiments presented in later chapters. In addition, it present different

types of tasks related to authorship attribution such as author profiling and ver-

ification. We also describe an evaluation forum which covers several authorship

identification shared tasks and show how it helps to accelerate the progress in

authorship attribution field.

First, we begin this chapter by presenting a short overview of current research

state of authorship attribution in Section 2.1. It covers description of methods

that have been employed for this task. We then describe various types of author-

ship attribution features in Section 2.2. In Section 2.3 we discuss different types

of tasks related to authorship attribution. Finally, the overview of authorship

attribution evaluation forums are provided in Section 2.4 followed by a summary

in Section 2.5

2.1 State of The Authorship Attribution Task

From a machine learning perspective, the authorship attribution task can be

treated as a form of text classification. Let D = d1, d2, ..., dn be a set of documents

and A = a1, a2, ..., am a fixed set of candidate authors. The task of authorship

attribution is to assign an author to each of the documents in D. The challenge

in authorship attribution is that identifying the topic preference of each author

is not sufficient; it is necessary to also capture their writing style (Stamatatos,

2013). This task is more difficult than determining the topic of a text, which is

possible by identifying domain-indicative lexical items since writing style cannot

be fully captured by an author’s choice of vocabulary.
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Rudman (1997), Juola (2008), Stamatatos (2009a), and Gollub et al. (2013)

provided comprehensive reviews of the state-of-the-art in authorship attribution

work describing the current state of the field at the time of writing. All four

agreed that research in authorship attribution started in the late 19th century

with the work of Mendenhall (1887). In his research, Mendenhall proposed a

simple approach for author attribution of texts belong to Bacon, Marlowe, and

Shakespeare using simple stylometric features. A curve was created for each text

document expressing a link between word length and its frequency; which later

could be used as the basis to determine the author of the text. Later studies

(e.g. Smith (1983)), proved that Mendenhall’s proposed method is unreliable for

authorship attribution.

Statistical method started to be used in the mid 20th century (Zipf, 1933;

Yule, 1939, 1944) . Koppel et al. (2009) categorized that early work as part of

the unitary invariant approach, in which authors are discriminated by only a

single numeric function. Attribution studies that consider this approach include

Brinegar (1963), Foster (1989) (word length); Williams (1940), Yule (1939) (sen-

tence length); and Holmes (1992), Yule (1944) (vocabulary richness). However,

Hoover (2003) and Grieve (2007) shared a similar opinion that unitary invari-

ant approach was not reliable enough to identify authors. Grieve conducted

experiments which involved thirty-nine different types of textual measurements

commonly used in attribution studies. His experiments which were performed

using an identical attribution algorithm and tested on the same dataset proved

that combination of the word and punctuation mark profiles are the best feature

sets among others. He argued that better performance can be obtained by using

larger number of textual measurement.

More recent attribution work started to apply the multivariate analysis ap-

proach, in which multiple stylistic features are combined, and then a statistical

multivariate discriminant analysis applied. Mosteller & Wallace (1964) imple-

mented a multivariate analysis approach to the Federalist Papers by using 30

function words (e.g. the, of, about, and, etc.) frequency as the feature and

Näıve Bayes as the classifier. For early attribution studies, the Federalist Pa-

pers were considered as the ideal testing ground as there is a well defined set of

candidate authors, sets of known authorship for all the candidate authors, and

a set of texts of disputed authorship. In addition, the papers have the same

genre and thematic area (Stamatatos, 2009a). Mosteller & Wallace proved that

high-frequency function words are effective features to discriminate authors. Be-

cause of this promising result, their work has been marked as the most successful

attribution work for that period.
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Another approach which can be considered as the most recent and widely used

method is supervised machine learning based approaches. In this technique, the

machine learning algorithms learn to find the boundaries between classes that

minimize the classification cost function. The algorithms create the classifica-

tion models based on training texts which are represented as labeled numerical

vectors. The models then can be used to assign classes to the unlabeled test doc-

uments. Figure 2.1 illustrates supervised machine learning applied for authorship

attribution task which is divided into two phases: training and test. Among ma-

chine learning algorithms, Support Vector Machine (SVM) (Cortes and Vapnik,

1995) has been proved to be an effective method. The ability of SVM to handle

sparse and high-dimensional data, make it suitable for authorship attribution

and in general for the text classification task (Stamatatos, 2013).

Figure 2.1: Authorship attribution with supervised machine learning approach

In addition to SVM, neural network based methods recently have enjoyed a

resurgence in popularity. Some authorship attribution work which has tried to

implement this approach reported an improvement in the results (Bagnall, 2015;

Sari et al., 2017; Shrestha et al., 2017). For example Shrestha et al. (2017) im-

plemented a character level Convolutional Neural Network (CNN) for short text.

The authors argued that the architecture of CNN which consists of convolutional

and pooling layers is suitable to capture local interactions between characters.

This information is then aggregated to learn high-level patterns for modeling the

authors’ writing style. Evaluated on a twitter dataset (Schwartz et al., 2013)

with 1,000 tweets per author, the CNN model successfully gained improvement

over the previous work with 76.1% accuracy. However, as expected from the

neural-based method which usually needs a large number of training data, the
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CNN performance decreased significantly when less training data was provided.

Another work by Sari et al. (2017) proposed a simpler neural-based architecture

for authorship attribution. Their model adopted the feed-forward neural network

architecture of fastText (Joulin et al., 2017). With a simpler architecture, the

model outperformed previous work on the CCAT50 dataset (Stamatatos, 2008)

with only 50 training documents per author.

2.2 Authorship Attribution Features

Feature engineering is one of the most important stages in the development of

authorship attribution tasks. A large amount of work has explored different

types of features (Grieve, 2007; Guthrie, 2008; Brennan, 2012; Sapkota et al.,

2015). Stamatatos (2009a) listed the basic authorship attribution features and

the tools to measure them (see Table 2.1). Authorship attribution features are

often referred to the term stylometric features due to the initial goal of the au-

thorship attribution task which more focused on exploiting the authors’ writing

style. However, there is evidence that topical information might also be use-

ful (Koppel et al., 2009). Nevertheless, the feature is not the only factor which

determines the accuracy of authorship attribution. Attribution techniques, fea-

ture selection and extraction technique and the nature of the corpus certainly will

also contribute to the performance (Forsyth and Holmes, 1996; Houvardas and

Stamatatos, 2006; Koppel et al., 2006; Luyckx and Daelemans, 2010; Savoy, 2013;

Stamatatos, 2013). In this section details of most common stylometric features

including lexical, character, syntactic semantic, and bag-of-words features are

discussed. In addition, a range of feature selection techniques is also presented.

2.2.1 Lexical Features

Lexical features are commonly used in authorship attribution work as they pro-

vide rich information about the author’s writing style. In addition, most lexical

features can be applied to any language1 and corpus with no additional require-

ment (Stamatatos, 2009a). Some examples of simple lexical features include word

frequencies, word n-grams, function words, function word n-grams, hapax legom-

ena2, morphological information (lemma, stem, case, mood, etc.), word, sentence

and paragraph length, grammatical errors and slang words. These features have

1Except for certain natural language, e.g. Chinese which has a less-defined concept of

sentence (Huang and Chen, 2011)
2Word that only appeared once in the document
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Feature type Description Required tools and resource

Lexical

token based (word length,

sentence length, etc)

Tokenizer [sentence splitter]

Vocabulary richness Tokenizer

Word Frequencies Tokenizer

Word n-grams Tokenizer, [stemmer, lemmatizer]

Errors Tokenizer, orthographic, spell checker

Character

Character types (letter, dig-

its, etc)

Character dictionary

Character n-grams(fixed

length)

-

Character n-grams(variable

length)

Feature selector

Compression Text compression tools

Syntactic

Part of speech Tokenizer, sentence splitter, POS tagger

Chunks Tokenizer, sentence splitter, POS tagger,

text chunker

Sentence and phrase struc-

ture

Tokenizer, sentence splitter, POS tagger,

text chunker, partial parser

Rewrite rules frequencies Tokenizer, sentence splitter, POS tagger,

text chunker, full parser

Errors Tokenizer, sentence splitter, syntactic spell

checker

Semantic

Synonyms Tokenizer, POS tagger, thesaurus

Semantic Dependencies Tokenizer, sentence splitter, POS tag-

ger, text chunker, partial parser, semantic

parser

Functional Tokenizer, sentence splitter, POS tagger,

specialized dictionaries

Appl. Specific

Structural HTML parser, specialized parser

Content Specific Tokenizer, stemmer,lemmatizer, special-

ized dictionaries

Language Specific Tokenizer, stemmer, lemmatizer, special-

ized dictionaries

Table 2.1: Description of authorship attribution features (Stamatatos, 2009a)

been widely used since early attribution works which utilized only simple sta-

tistical approach (Mendenhall, 1887) to more recent work that applied complex
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machine learning techniques (Koppel et al., 2009; Seroussi et al., 2013). Sev-

eral lexical features are found to be ineffective when used alone (Burrows, 1992;

Grieve, 2007). Grieve evaluated a range of features and found that word length,

sentence length, and vocabulary richness appeared to be of little use to distinguish

authorship. On the other hand, he observed that word frequency, punctuation

mark frequency, and n-gram frequency are effective for distinguishing among a

small number of authors with accuracy more than 90%.

In content-based text classification representing documents as vectors of words

frequencies is the most common approach (the bag-of-words approach). In this

approach, common words like articles, prepositions, pronouns, etc., (known as

function words) will often be discarded as being unhelpful. In contrast to content-

based technique, authorship attribution utilizes those common words to capture

the author’s writing style. Function words have been proved to be effective

features because authors can not consciously control the usage of those words

in their writing. Several studies have reported the efficacy of function words

in authorship attribution including Mosteller and Wallace (1964), Argamon and

Levitan (2005), Koppel et al. (2005), Juola and Baayen (2005), Zhao and Zobel

(2005).

2.2.2 Character Features

Grieve (2007) reported that character features were effective in capturing stylistic

information. Along with lexical features, character features have become one

of the popular features used in many author attribution tasks since they can

be easily extracted from text (Stamatatos, 2009a). Commonly used character

features include letter frequencies, alphabetic characters count, uppercase and

lowercase characters count, digit count, punctuation mark count, and character

n-grams (de Vel et al., 2001; Zheng et al., 2006).

Character n-grams have been reported to outperform other character fea-

tures (Grieve, 2007). Other studies also reported the successful application of

this approach (Kjell, 1994; Forsyth and Holmes, 1996; Stamatatos, 2006; Peng

et al., 2003; Keselj et al., 2003; Juola, 2004). Beside being easily available and

effectively capturing stylistic information, character n-grams are also tolerant

to noise (Stamatatos, 2009a). Character n-gram representations are not signifi-

cantly affected by spelling errors or strange use of punctuation marks in the text.

An example is given by Stamatatos: the words ‘simplistic’ and ‘simpilstc’ would

be considered two different words in word n-grams representation, but a char-

acter n-gram representation would generate many common character n-grams.
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In addition, character n-grams can be used to capture regular grammatical or

orthographic errors which in some cases could represent the character of the

authors (Koppel and Schler, 2003).

Other studies used character features with a different approach. Instead of

using machine learning methods that usually need training data, compression-

based approaches were used (Benedetto et al., 2002; Khmelev and Teahan, 2003;

Marton et al., 2005; Oliveira et al., 2013). The archive size of the text file

after compression is compared with distance indicating the similarity between

documents.

The reason for the success of character n-grams is not well understood. Kop-

pel et al. (2011) argued that the effectiveness comes from the ability of character

n-grams to capture both content and stylistic information in the text. Similar

conclusions were reported by Sapkota et al. (2015) who analyzed subgroups of

character n-grams which have been claimed to represent some linguistic aspects

like morphosyntax, thematic content, and style. The predictiveness of each sub-

group was evaluated in single and cross-domain settings. The results of their

study demonstrate that affixes and punctuation n-grams make a significant con-

tribution towards the effectiveness of character n-grams.

2.2.3 Syntactic Features

A different type of feature set is based on syntactic information produced by

analysis tools such as text chunkers and parsers. A number of studies have found

that the use of syntactic information could result in better accuracy (Baayen

et al., 1996; Chaski, 2005; Gamon, 2004; Hirst and Feiguina, 2007; Stamatatos

et al., 2001; van Halteren, 2004). However, the performance for authorship attri-

bution is highly dependent on the accuracy of the syntactic analysis tools. Poor

accuracy of the tools will produce noisy features for the attribution classifier.

Many studies used syntactic features in different forms. As an example,

Baayen et al. (1996) created 46,403 rewrite rules expressing part of syntactic

analysis and then used the frequency of the rules as the features. Another study

by Hirst and Feiguina (2007) utilized the bi-gram frequencies of an ordered stream

of syntactic labels to discriminate authors of very short texts. Koppel and Schler

(2003) proposed an interesting approach by applying syntactic errors such as

sentence fragments, and mismatched tense as the attribution features. The most

common and simple approach is to use POS tag frequencies or POS tag n-gram

frequencies (Argamon-Engelson et al., 1998; Kukushkina et al., 2001; Koppel and

Schler, 2003; Zhao and Zobel, 2007)
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2.2.4 Semantic Features

Tools are now available to carry out complicated language understanding tasks

such as full syntactic parsing, semantic analysis, sentiment analysis, and prag-

matic analysis. This progress has made a positive impact on author attribu-

tion research. As an example, Bogdanova and Lazaridou (2014) implemented a

combination of several semantic, syntactic and lexical features to perform cross-

language (English and Spanish) authorship attribution. Interestingly, they in-

troduced sentiment (frequency of positive and negative words) and emotional

features (frequency of basic emotions i.e. anger, joy, fear, etc.) produced by

SentiWordNet and WordNet-Affect. Expression of sentiments and emotions are

reported to be a possible indicator of an author’s writing style and personal-

ity (Panicheva et al., 2010). Accuracy of analysis tools will affect the performance

of authorship attribution in the same way they do for syntactic features.

2.2.5 Bag-of-Words

As mentioned in Section 2.2.1, bag-of-words approaches are the most common

method applied for content-based classification tasks such as sentiment analy-

sis and topic classification. Although authorship attribution mostly focuses on

style-based features, there is evidence that content words are also useful for au-

thorship attribution tasks (Koppel et al., 2009). This case mostly occurs when

there is diversity in the topics discussed within a dataset so that authors can

be distinguished based on their topic preferences. There are several options to

construct feature representations: the straightforward way is by taking either the

absolute or relative term frequency or just representing the text as binary feature

vector based on the term occurrences. Another method is to weight terms e.g.

by calculating TfIdf values (Salton and Buckley, 1988; Lee and Liu, 2003).

2.2.6 Feature Selection

Approaches to authorship attribution often use combinations of different types of

features. Koppel et al. (2009), Stamatatos (2009a), and Grieve (2007) reported

that combination set of features could improve the attribution accuracy. How-

ever, combining certain features (such as lexical and syntactical features) will

certainly increase the complexity of the text representation and may decrease

overall classification performance. Feature selection has been widely applied in
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text classification and is an effective approach for reducing dimensionality. It

helps the classifier to avoid over fitting on the training data, diminish irrele-

vant features, find the best subset of features and may also indirectly increase

classification performance.

Most attribution tasks adopted common feature selection approaches from

Information Theory area such as Information Gain and Entropy (Houvardas

and Stamatatos, 2006), Odds Ratio (Koppel et al., 2006), Kolmogorov complex-

ity (Juola, 2008) and chi-squared (Grieve, 2007; Luyckx and Daelemans, 2008).

However, simple feature selection techniques such as term frequency are still

commonly applied (Burrows, 1987, 1992; Hoover, 2003).

Several works (Forsyth and Holmes, 1996; Houvardas and Stamatatos, 2006;

Koppel et al., 2006; Savoy, 2013) were conducted to compare the effect of certain

feature selection approaches for authorship attribution. Interestingly, frequency-

based feature selection, the simplest method, outperformed other feature selection

approaches such as Information Gain and Odds Ratio. Savoy (2013) performed

a comprehensive comparison study of manual selection with six other selection

methods including (df- document frequency, X2 - chi-square, IG- Information

Gain, PMI- pointwise mutual information, OR- Odd Ratio and DIA – Darmstadt

Indexing Approach). Document frequency (df) as a relatively simple selection

method and Information Gain (IG) were found to be the most effective approaches

compared to the others by achieving accuracy of 97.7%.

2.3 Authorship attribution Forms

In this section various forms of the authorship attribution task are described. Kop-

pel et al. (2009) and Juola (2008) divide the author attribution problem into three

main problem sets as shown in Figure 2.2. The first problem is closed set author-

ship attribution (Section2.3.1). In this problem, the challenge is to determine

the author of a piece of text where the set of authors is known. This case is

similar to multi-class classification problem where the classifier needs to identify

the correct class for a particular entity. The second problem is author verification

(Section 2.3.2) also known as open set authorship attribution. In this problem,

the true author might not be in the candidate set. The main challenge is to verify

whether a suspect is or is not the author of a document. The open set problem

usually harder than the closed problem.

The third problem is author profiling. In this case, we need to provide as much

information as possible about the author. The information can be psychological

(i.e. author personality, mental health, native speaker/not), sociological (e.g.
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Figure 2.2: Authorship attribution types

age, gender, education level, region of language acquisition) or other information

related to the author. In addition to those three problems, there is a case called

needle-in-haystack problem that might be the hardest problem among all the

authorship attribution problems. In this case, the classifier needs to identify

the correct author of a text from thousands of author candidates. To make it

harder, the classifier is only provided with a very small sized training data for

each of the candidate authors. Later, advances in authorship attribution have

raised concerns about applying attribution methods to deceptive writing and

leads to the new problem space called adversarial stylometry. In addition to

those problems, this section also discusses cross-topic and cross-genre authorship

attribution which are still challenges in the attribution field.

2.3.1 Closed Set Authorship Attribution

Let D = d1, d2, ..., dn be a set of documents and A = a1, a2, ..., am a fixed set of

candidate authors. The task of closed set authorship attribution is to assign an

author to each of the documents in D. This case is similar to text classification

tasks such as sentiment analysis and topic classification where there are a pre-

defined set of classes. Early attribution work focused on the closed set attribution
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task with a small number of author candidates, while more recent work tries to

address the case with a larger number of authors.

One of the existing problems in the closed case attribution is the difficulty in

differentiating between three factors: author, genre, and topic. In addition, it is

also a challenging task to find the best stylistic features that can capture only au-

thor style information. Past research reported a wide variety of features that can

be used to distinguish authors. However, usually because of a lack of systematic

research, it is difficult to determine whether a high attribution performance was

obtained because of the nature/genre of the text, the use of stylistic features or

both of them. Authorship attribution is often biased with genre and topic iden-

tification. Function words which it is claimed capture only stylistic information,

have been proved to have great potential for capturing thematic information in

the document (Clement and Sharp, 2003; Mikros and Argiri, 2007). On the other

hand, content words that have been shown to be useful for topic/genre classifica-

tion are also reported to be effective features for distinguishing author (Koppel

et al., 2009).

2.3.2 Open Set Authorship Attribution (Authorship Ver-

ification)

Given a pair of documents (X,Y), the task of author verification is to identify

whether the documents have been written by same or different authors. The

authorship verification task is significantly more difficult than authorship attri-

bution. Verification does not learn about the characteristic of each author, but

rather about the differences between a pair of documents. The problem is com-

plicated by the fact that an author may consciously or unconsciously vary his/her

writing style from text to text (Koppel and Schler, 2004). There has been limited

research on the authorship verification problem. In general, works in authorship

verification share similar approaches to those used for plagiarism detection (Stein

and Meyer Zu Eissen, 2007; Stamatatos, 2009b; Zechner et al., 2009).

Author verification methods are either intrinsic or extrinsic (Stamatatos

et al., 2014). The main difference between those approaches is the usage of addi-

tional documents to help the verification process. Intrinsic methods use only the

provided documents (in this case known and unknown documents) to determine

whether they are written by a similar author or not. Most of author verification

work falls into this category. There are two common techniques used in the in-

trinsic method: machine learning and similarity-based approaches. Given a pair

of documents (x,y), the similarity-based approach assigns the pair to a similar
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author if the similarity score exceeds a certain threshold. Standard vector simi-

larity measures such as cosine similarity, Euclidean distance, min-max measure,

and Manhattan distance is commonly used to generate the score. A similarity-

based method can be seen as the simplest verification approach. However, it

does not seem to work well, since this method tends to neglect the fact that a

document’s similarity is not only determined by the author’s style but also by

other factors such as genre and topic (Koppel and Winter, 2014).

The second intrinsic method: machine learning approaches, utilize the labeled

document pairs to construct a model that can be used to classify the unlabeled

pairs. Many verification works applied this approach with different learning al-

gorithms. For example, Fréry et al. (2014) employed optimized decision trees

with several representations of the texts. Their result brought them 2nd place

in the PAN CLEF Challenge 2014 with an overall AUC-ROC3 of 70.7% and

C@1 (Peñas and Rodrigo, 2011) of 68.4%. SVM (Koppel and Winter, 2014),

K-NN (Jankowska et al., 2013), Fuzzy C-means Clustering (Modaresi and Gross,

2014) are among the algorithms commonly used in verification.

In contrast to the intrinsic method, extrinsic techniques try to convert the

verification problem into binary classification task by generating a large set of

impostor or distractor documents which act as negative examples (Stamatatos

et al., 2014; Koppel and Winter, 2014). A pair of documents will be identified

as written by a similar author if the similarity score between those two is greater

than the impostors (Seidman, 2013). Several verification approaches (Koppel

and Winter, 2014; Seidman, 2013; Khonji and Iraqi, 2014; Mayor et al., 2014)

used extrinsic technique and obtained better results than intrinsic approaches.

As an example, Koppel and Winter (2014) compared the verification result of

three different approaches, including the similarity based method, supervised

method and impostor method. The results showed that the impostor method

outperformed two other methods by obtaining an accuracy of 87.4%. However,

choosing the impostor set and how many impostors to use are very critical issues

that need to be dealt with. Koppel and Winter emphasized that impostor quality,

impostor quantity and score threshold need to be optimized to get the proper

balance of false positive and false negative in the result. They also mentioned

that the impostor method still could not perform well when the genre and/or

topic of the documents are different.

Since 2011, authorship verification has become one of the main tasks in the

evaluation lab on uncovering plagiarism, authorship and social software misuse

3area under the ROC curve
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(PAN CLEF Challenge)4 (see details in Section 2.4 ). From time to time, the

organizer tries to challenge the participants by increasing the level of difficulty

of the task. For example in 2015, the participants were provided with a very

limited number of known documents which had a different genre/topic to the

unknown documents. However, this task represents more the real world appli-

cation where variables such as genre, topic, and number of training document

can not be controlled. The focus of PAN on author verification obviously gives a

positive impact on this field. Despite the fact that author verification is still an

unsolved task, there is significant progress on the development of new corpora,

new methods and an evaluation framework in this area (Stamatatos et al., 2014).

2.3.3 Author Profiling

Previous work in author profiling mostly focused on the age, gender, and de-

mographic profile of the authors. Some of the works also focused on the native

language profiling and identification of personality types. Research in author pro-

filing has applied various features and techniques to different types of dataset.

For example, Koppel et al. (2002) used a large number of content-independent

features consisting of 405 function words and a list of n-grams of part-of-speech

to identify gender in 920 English documents of the BNC corpus. Optimal perfor-

mance (82.6% on accuracy) was obtained when a combination of function word

and part-of-speech n-grams were applied to non-fiction documents. In addition,

Koppel et al. found the interesting fact that there is strong difference in usage

of determiners, negation, pronoun, conjunction and preposition between male

and females either in fiction or non-fiction documents. More recent work by Jo-

hannsen et al. (2015) comes to similar conclusions. Johannsen et al. conducted

a study of syntactic variations among demographic groups across five different

languages. Their results show men use numerals and nouns more than women,

while on the other hand women use VP conjunction more frequently than men.

For age, it has been found that younger groups use nouns more often, while the

older age groups seem to use prepositional phrases more.

Work by Schler et al. (2006) studied the effects of age and gender on blogging.

In contrast to Koppel et al., they used content-based features along with style-

based features to identify an author’s gender and age on 1,405,209 blog entries.

Schler et al. used simple content words and LIWC’s special class words (Pen-

nebaker et al., 2001). By analyzing content-words that have high frequency and

information gain, they concluded that male bloggers tend to write more about

4http://pan.webis.de/
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politics, technology, and money while female bloggers prefer to discuss their per-

sonal life. However, both Koppel and Schler have agreed that stylometric features

provide more information about the gender of the author despite the fact that

there is a big difference in content between male and female.

Gender-linked features are also useful for identifying gender. Work by Cheng

et al. (2011) applied nine gender-linked cues including use of affective adjectives,

exclamation, expletives, hedges, intensive adverbs, judgmental adjectives and

uncertainty verbs. Past studies (Jaffe et al., 1995; Mulac et al., 1990) showed

that different genders of authors have their preferences on using gender-linked

cues. For example, compared to female, male authors rarely use emotionally

intensive adverbs and affective adjectives in their writing. Men often use first-

person singular pronouns to express independence and assertions.

In PAN-2014, there were 10 submissions for the task of author profiling (Rangel

et al., 2014). Among the submissions, López-Monroy et al. (2014) successfully

obtained the overall best performance on average for English and Spanish tasks.

In their proposed approach, they built term and document vectors which repre-

sent the relationship of the term/document with the author’s profiles (e.g. male,

female). In addition, they generated author’s subprofiles (e.g. young-gamer fe-

males, housewife females) and re-computed the term/document representations

using subprofiles as the new target profiles. Their results outperformed the vast

majority of the teams who applied common author profiling features such as

stylistic and content-based features.

2.3.4 Needle-in-a-haystack Attribution Problem

Studies in the authorship attribution field mostly focus on small set problems

where there is a small number of authors and a large amount of training data.

In most cases, the problem can be addressed using supervised classifiers and sty-

lometric features as the input. However, more recent work found those standard

techniques performed less reliably in terms of accuracy and computation time

when applied to real-world applications like forensic investigation. The chal-

lenges faced in the needle-in-a-haystack problem is much closer to the practical

applications. In this problem, the goal is to identify the author of a document

but provided with thousands of potential candidates and a small training size.

A systematic study of the effect of author set size and training data size

was conducted by Luyckx and Daelemans (2010). The three evaluation data

sets were used in their experiments consisted of an English data set with 13

authors, a Dutch data set with eight authors and a larger Dutch data set with
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145 authors. In order to see the effect of author set and data set size on attribution

performance, they gradually increased the number of authors and training data

in separate experiments. In line with the results of Koppel et al. (2011), the

experiment showed a significant decrease in the attribution accuracy when there

are more candidate authors. This trend occurred in each of the datasets regardless

of their language, number of topics or the training size. In addition, they found

an important aspect of the feature set: similar types of features e.g. character

n-grams tend to perform well on both small and large numbers of authors.

Instead of using standard attribution approaches, Koppel et al. (2009) ad-

dressed the needle-in-a-haystack problems by applying information retrieval meth-

ods. First, they constructed the dataset by taking snippets of at least 500 words

from 20,000 blogs. 10,000 blogs were used in the training and the remaining

as the test set. Each snippet was then represented in three different TfIdf rep-

resentations based on 1,000 most common words and another based on style

features. The author of an unlabeled text is predicted by taking a candidate

whose known work has the highest similarity with a given snippet. The three

content representations produced performance between 52% and 56%, while the

style representation performed much worse by producing only 6% in accuracy.

The scalability issue certainly will be a great challenge for people in the au-

thorship attribution field. However, Luyckx and Daelemans (2010) emphasized

that scalability is only one of a number issues faced in large-scale authorship at-

tribution. This issue should expand our understanding that research in author-

ship attribution should be done by considering factors in a real world situation.

Another example of the challenge faced in large-scale authorship attribution is

the development of an adaptive attribution method (Stamatatos, 2009a). In the

practical application, it is difficult to have an ideal version of corpora with a

small number of candidate authors, big size of training data and a controlled

genre/topic for training and testing data. Thus, an adaptive and robust attri-

bution method is certainly needed. An attribution method is needed that is not

only robust to the scalability issues but also can be trained on training data from

one topic/genre and tested on different topic/genre dataset.

2.3.5 Adversarial Stylometry

Most previous studies in authorship attribution assumed that authors write in

their original writing style without any intention of modifying it. It has been

shown that current authorship attribution methods could achieve relatively high

accuracy in identifying authors (Abbasi and Chen, 2008). Advances in authorship
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attribution have raised concerns about applying attribution methods to adver-

sarial writing and this has led to the new problem area called adversarial stylom-

etry. According to Brennan et al. (2012), adversarial writing can be in the form

of obfuscated writing, where the subject tries to modify his original writing style;

imitated writing, where the subject is copying another person’s writing style; and

translated writing, where machine translation is used to modify the original text.

The main goal of adversarial writing is to hide the true author’s writing style.

Adversarial writing could be useful as it resolves the privacy and security

issue on the internet. As claimed by Rao and Rohatgi (2000), privacy and secu-

rity approaches focus on anonymizing proxies, cryptographic, and traffic shaping

techniques, yet tend to ignore the source of information itself. In their works,

Rao and Rohatgi demonstrated how stylometry provides solutions to the privacy

problem. Adversarial writing may lead to fraud when people obfuscate their

writing style to hide their true identity.

Adversarial stylometry can be considered as a new task in the authorship at-

tribution field. There have been few studies in adversarial stylometry and those

that have appeared mainly studied the impact of the adversarial attack on au-

thorship attribution performance. As an example, Kacmarcik and Gamon (2006)

observed the effect of changing feature vector values on attribution accuracy. In

their experiment, they only used the most frequent and highly ranked word fea-

tures. Using an SVM classifier, they found that not much effort was needed to

obfuscate a text document, as only an average of 14 changes in the feature vector

were required per 1000 words to give the mis-attribution effect.

It has been found that current attribution methods seem not resilient to the

adversarial attack as reported by Brennan and Greenstadt (2009). In their exper-

iment, three different attribution methods including chi-square, neural network,

and a synonym-based classifier with a different set of features for each of them

were applied to identify author on obfuscated and imitated documents. A cor-

pus was created from the writing of 15 individual authors. Each of the authors

submitted three types of documents: original, obfuscated and imitated text. The

results showed that there was significant decrement on the accuracy of each attri-

bution method when dealing with the adversarial attack. The drop in accuracy

increased as the number of candidate authors increased. Similar results were

shown in other adversarial stylometry works (Juola and Vescovi, 2010; Brennan

et al., 2012; Afroz et al., 2012).

Attribution methods might be very vulnerable to adversarial attack; however

detecting deceptive writing is not a hard task. Using a large feature set, Afroz

et al. (2012) successfully achieved 96.6% in accuracy for distinguishing decep-
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tive document from the regular one. In addition, they found that detecting an

obfuscation attack was harder than detecting an imitation attack. Interestingly,

they reported that in deceptive writing, a person tends to use simpler words with

fewer syllables, shorter and less complex sentence.

There is relatively little work that has been done in the adversarial stylom-

etry area. Among of them is the work by Brennan (2012) who developed two

adversarial corpora: Brennan-Greenstadt and Extended Brennan-Greenstadt ad-

versarial corpus. The first corpus was created based on a survey conducted by

Drexel University. This corpus contains three basic elements: the first element

is a preexisting sample of writing from 13 nonprofessional writers, where each of

them submitted at least 6500 words. In order to eliminate slang and abbrevia-

tions, each writing sample had to be formal writing such as an essay for school,

report for work or other academic and professional correspondences.

The second element is a 500 word obfuscation passage on a specific topic,

while the last element contains the sample of imitation passages from the par-

ticipants where they tried to imitate another author’s style (in this case Cormac

McCarthy). On the second and third elements, only 12 authors participated. In

order to conduct more robust analysis, Brennan and Greenstadt created a larger

and more diverse adversarial corpus called an Extended Brennan-Greenstadt ad-

versarial corpus. On this corpus development, submission quality is the main

concern. Each submission had to strictly follow the directions given. Among 100

submissions, only submissions from 45 individual authors were taken to construct

this corpus.

2.3.6 Cross-Topic and Cross-Genre Authorship Attribu-

tion

Cross-topic and cross-genre authorship attribution is another challenge in the

attribution field. In this case, the genre and/or topic may differ significantly

between the training and test documents. This task is more realistic since in

real world applications the genre/topic of the documents can not be controlled.

Kestemont et al. (2012) applied unmasking methods (Koppel et al., 2007) to au-

thorship verification across genres (prose and theater play). Given two documents

A and B, unmasking method works by generating a curve which demonstrates the

accuracy degradation when k-most useful features are removed. A sudden and

dramatic degradation curve indicates those documents were written by different

authors. In contrast, if the degradation curve is slow and smooth, document A

and B were potentially written by the same author.
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Compared to the result of intra-genre authorship verification, there is signifi-

cant degradation of performance for cross-genre verification. Work by Stamatatos

(2013) studied the effectiveness of character n-gram and word features for cross-

topic and cross-genre authorship attribution. First, cross-topic attribution was

examined where a political text is used as training data and various thematic texts

(society, world, and U.K.) as the testing set. Note that, the training and testing

set were still in the same genre. The same scenario was applied for cross-genre at-

tribution. The classifier was trained on politics texts and tested on book reviews.

Both cross-topic and cross-genre attribution showed similar results. The perfor-

mance decreased considerably compared to intra-topic/intra-genre attribution.

Stamatatos observed that in cross-topic/cross-genre attribution, low-frequency

features should be avoided as they reduced the effectiveness of the attribution

models.

Sapkota et al. (2014) used multiple cross-topic documents to train the cross-

topic authorship attribution model. From their results, it was found that their

proposed models could significantly improve the performance of cross-topic au-

thorship attribution, which is also an indication that authors maintain a con-

sistent writing style regardless of their topic preference. In addition to that,

they presented an analysis of feature sensitivities towards the change of topics.

By comparing four different attribution features, they concluded that character

n-grams have higher discriminative power in this task.

2.4 Evaluation Forum

According to Rudman (2012), there are still major shortcomings in authorship

attribution research that need to be addressed. One criticism is the lack of con-

tinuity as researchers do not seem to have any long-range commitment to work

on one problem (Rudman, 1997). He also noted that only a small percentage

of attribution works can be reproduced. The lack of consensus on the standard

attribution datasets is also another problem to be addressed. The PAN Evalua-

tion Lab tries to offer the solution for the above problems by organizing annual

authorship attribution shared tasks. PAN provided standard datasets and mech-

anisms to evaluate each of the proposed attribution approaches which make it

easier to do the benchmarking on the results.

Since 2011, the author identification task has been part of PAN (Plagiarism,

Authorship, and social software misuse) evaluation which is hosted by the CLEF

initiative (Conference and Labs of the Evaluation Forum). In each year, PAN

covers different attribution tasks; starting with standard authorship attribution
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to more advanced tasks such as author clustering and obfuscation. The challenge

has been developed to become more similar to realistic applications. For example,

PAN 2016 focused on author diarization (Rosso et al., 2016). This task is to

identify different authors within a single collaborative work (e.g., paper with

many authors) or the result of plagiarism. In 2017, a similar task was introduced

called style breach detection (Tschuggnall et al., 2017). The main goal of this task

is to identify the exact position in a collaborative document where the authorship

changes. Unlike author diarization where the training data is available, the style

breach detection task provides no training data. In addition, no information can

be gained from web search. The style breach detection task can be considered

as a text segmentation problem with the focus on detecting switches of writing

style, disregarding the specific content or topic.

An author masking/obfuscation task was also introduced for the first time in

2016. The main goal of this task is to check the robustness of current state-of-

the-art attribution methods against the obfuscation techniques. As illustrated

in Figure 2.3, author masking is an opposite task of author verification (see Sec-

tion 2.3.2). Given two documents written by the same author, author masking

works by paraphrasing one of the documents so that the author can not be iden-

tified anymore. In contrast to that, the author verification task has to verify

whether two documents has the same author. Thus, the development of new

approach in author obfuscation will influence the capabilities of authorship veri-

fication.

Figure 2.3: Schema of author masking/obfuscation and verification (Potthast

et al., 2016b)

In addition to the diversity of the tasks, PAN also encourages the participants

to develop more adaptive attribution methods by providing datasets in various
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natural languages (Dutch, English, Greek, and Spanish) and genres/topics (es-

says, reviews, novels, opinion articles, e-mails). Details of PAN’s authorship

attribution tasks are provided in Table 2.2.

Year Tasks Languages Topic/genre

2011 Author attribution, author veri-

fication

English Email

2012 Author attribution, author veri-

fication, author clustering

English Fiction book collections

2013 Author verification, author pro-

filing

English, Greek,

Spanish

Computer textbooks,

news articles, newspaper

editorials, short fictions

2014 Author verification, author pro-

filing

Dutch, English,

Greek, Spanish

Essays, reviews, novels,

opinion articles

2015 Cross-topic and cross-genre au-

thor verification, author profiling

Dutch, English,

Greek, Spanish

Essays, reviews, opinion

articles, play script

2016 Author clustering, author di-

arization, author profiling, au-

thor obfuscation

English, Dutch,

Greek

newspaper articles, text

from online forum

2017 Author clustering, style breach

detection, author profiling, au-

thor obfuscation

English, Dutch,

Greek

Newspaper articles, re-

views

Table 2.2: Details of the PAN’s authorship attribution shared tasks

However, regardless of their attempts to create diversity in the task, we ob-

served that the released datasets are rather small in size. As an example, in the

PAN 2015 authorship verification task, the organizer provided only 100 training

cases per language. We argue that the small size data limits the participants

from exploring more advanced approaches which usually require large amounts

of training data. The techniques proposed by the participants for each of PAN’s

shared tasks illustrates how authorship attribution methods develop over time.

However, for most cases, they are dominated by the combination of supervised

machine learning algorithms such as SVM with stylometric features. Some of

the participants chose to focus more on feature engineering in order to iden-

tify the most effective features (Hürlimann et al., 2015). There are also neural

network-based methods that have been proposed. For example in 2015, Bagnall

(2015) proposed a character-based language model using Recurrent Neural Net-

work (RNN) for author verification tasks. He argued that the model is suitable

for small amounts of data and can capture idiosyncratic usage in the text. The

proposed approaches obtained the best-performing results among all the partici-

pants. However the author also reported that the computational cost was high.
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2.5 Summary

This chapter presented an overview of authorship attribution. It started with a

review of the authorship attribution task. and showed how the authorship attri-

bution techniques have developed over time. Then, different authorship attribu-

tion features were compared. One of the important findings from the previous

work is that features which are usually discarded in the content-based classifica-

tion task can be useful for the style-based task. The usage of those features in

the text which could not be controlled consciously by the author make it as a

useful clue to capture the author’s writing style.

The chapter proceeded with a review on several authorship attribution forms;

including closed set authorship attribution, authorship verification, author pro-

filing, adversarial stylometry, the needle-in-the-haystack problem and cross-topic

or cross-genre authorship attribution. The last section provided reviews of the

PAN authorship attribution evaluation forum.
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Chapter 3

Exploring the Most Useful

Features for Authorship

Attribution

Authorship attribution has been extensively studied and a wide range of features

explored (see Section 2.2) (Stamatatos, 2013; Schwartz et al., 2013; Seroussi et al.,

2013; Hürlimann et al., 2015). However, there has been a lack of analysis of the

behavior of features across multiple datasets or when using a range of classi-

fiers. Consequently, it is difficult to determine which types of information will

be most useful for a particular authorship attribution dataset. There have been

some attempts in feature exploration, e.g. (Guthrie, 2008; Stamatatos, 2009a;

Brennan et al., 2012; Sapkota et al., 2015). Guthrie (2008) and Brennan et al.

(2012) examined several types of stylistic and linguistic features used to char-

acterize writing. Sapkota et al. (2015) attempted to evaluate the function of

different character n-gram subgroups for authorship attribution. However, the

work mostly focused on the overall effectiveness of features without considering

the characteristics of the datasets to which they were applied.

Authorship attribution is a unique task which is closely related to both the

representation of individuals’ writing styles and text categorization. In some

cases, where there is a clear topical distinction between the documents written

by different authors, content-related features such as those used in text catego-

rization may be effective. However, style-based features are more likely to be

effective for datasets containing a more homogeneous set of topics. Many previ-

ous studies (Peng et al., 2003; Koppel et al., 2011; Sapkota et al., 2015; Schwartz

et al., 2013; Sari et al., 2017; Shrestha et al., 2017) have concluded that, among

the large number of features that have been applied to the authorship attribution
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problem, using character n-grams features often produces good accuracy. Thus,

character n-grams have become the go-to features for this task to capture both

an author’s topical preferences and writing style.

This chapter explores how the characteristics of an authorship attribution

dataset affect the usefulness of different types of features. We carry out an

analysis of four datasets that have been previously used for this task: Judgment,

CCAT10, CCAT50 and IMDb62. Three types of features are considered in this

study: style, content and hybrid (a mixture of the previous two types). The

analysis indicates that features intended to capture topical preferences are most

useful when there is a clear topical distinction between authors and that this can

be predicted by analysing the output from a topic model. In contrast to previous

work, this study finds that character n-grams do not perform equally well in all

datasets. The analysis holds for authorship attribution models using discrete and

continuous representations. Using topic modeling and feature analysis, the most

effective features can be successfully predicted for three of the four datasets.

The remainder of this chapter is structured as follows. We start by describing

details of the datasets used in this thesis (Section 3.1). In Section 3.2, the dataset

analysis using topic modeling is presented. In this analysis, we utilize Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) to model topical interest between

authors. We then present the feature analysis in Section 3.3. Feature ablation

studies are conducted using a total of 728 features including lexical, syntactic,

character and content-based features. The ablation studies are performed for

both continuous and discrete representation. Then, we present the existing work

in Section 3.4, followed by a summary in Section 3.5.

3.1 Datasets

In this section, we present an overview of datasets involved in this thesis. Instead

of creating our own data, we choose to perform experiments with the available

corpora which have been commonly used in previous literature. By conducting

experiments on the available datasets, we can benchmark our models against

the previous results. Furthermore, it ensures evaluation comparability between

approaches which are useful to form a more solid foundation for the authorship

attribution field. Another major advantage of using commonly used datasets

is the warranty of the datasets’ quality. Rudman (2012) pointed out that the

corpus used in authorship attribution needs to be constructed carefully by taking

attention to various points. As an example, texts for a corpus need to be the

authentic writing of an author. Thus, texts that are obtained from the web
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Judgment CCAT10 CCAT50 IMDb62

genre legal judgments newswire movie reviews

# authors 3 10 50 62

# total documents 1,342 1,000 5,000 79,550

avg characters per document 11,957 3,089 3,058 1,401

avg words per document 2367 580 584 288

Table 3.1: Dataset statistics

or internet need to go through specific pre-processing steps such as removing

all extraneous text (i.e. additional text from editor or commentator), applying

encoding, regularizing or lemmatizing. This thesis utilizes four main datasets that

have been commonly used in previous attribution work: Judgment, CCAT10,

CCAT50, and IMDb62. These datasets represent a range of characteristics in

terms of the number of authors, topic/genre and document length (see details in

Table 3.1).

Judgment (Seroussi et al., 2011). The Judgment dataset was collected from legal

judgments of three Australian High Court judges: Dixon, McTiernan, and Rich.

This dataset was created to verify rumors of Dixon’s ghost-writing attributed

to McTiernan and Rich. Judgment is an example of a traditional authorship

attribution dataset where there are only a small number of authors with rela-

tively long text in a formal language (Seroussi et al., 2013). Due to the genre of

the datasets, Seroussi argued that attribution approaches that consider author’s

writing style are more likely to obtain better performances rather than methods

that rely solely on content-based features. The dataset comes in pre-processed

form where all dates and quotes were removed to ensure that only the actual

authors’ language is left. In this thesis, we follow Seroussi et al. (2013) by using

only undisputed judgments which were indicated by the periods when only one

of the three judges served on the High Court (Dixon’s 1929–1964, McTiernan’s

1965–1975, and Rich’s 1913–1928 judgments). Judgment has an imbalanced num-

ber of documents per author with 902 docs from Dixon, 253 docs from McTiernan

and 187 docs from Rich. As the dataset does not come with separate train-test

partitions, we follow the previous work by using 10-fold cross-validation in our

experiments. Figure 3.1 shows a snippet from the Judgment dataset.
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the plaintiff , who is the mortgagee of land under the transfer of land act

vict. , claims in this action that she , instead of the mortgagor , is entitled

by virtue of her rights as mortgagee to receive from the commonwealth the

compensation which it agreed with the mortgagor pursuant to reg . d of

the national security ( general ) regulations to pay him . the facts alleged

to support this claim are briefly that the minister validly took possession of

one parcel of thirty acres and another of sixty-two acres of the mortgaged

land pursuant to reg . of those regulations . the commonwealth agreed with

the mortgagor to pay him ” ” at the rate of four pounds per week ” ” and

fifty-five pounds per annum , payable monthly , ” ” the compensation was

” ” of these two parcels of the mortgaged land ...

Figure 3.1: A snippet from Judgment dataset

CCAT10 (Stamatatos, 2008). This dataset is a subset of Reuters Corpus Vol-

ume 1 (RCV1) (Rose et al., 2002) and consists of newswire stories by ten authors

labeled with the code CCAT (which indicates corporate/industrial news). The

corpus was divided into 50 training and 50 test texts per author. In our experi-

ments, we follow prior work (Stamatatos, 2013) and measure accuracy using the

train/test partition provided.

CCAT50 This corpus is the larger version of CCAT10. In total, there are 5,000

documents from 50 authors. As for CCAT10, for each of the author there are 50

training and 50 test documents. A sample text from CCAT10/CCAT50 datasets

is shown in Figure 3.2.

Several countries, mostly Asian, are resisting what they see as a U.S.-

driven push to get labour rights on to the WTO agenda and to use the

organisation’s disputes court to erode the developing world’s low-cost

labour edge. When asked if Malaysia would permit a WTO study on

labour rights, International Trade and Industry Minister Rafidah Aziz

told reporters:“No, no, no way. There is no place for labour issues at

the WTO”.

Figure 3.2: A snippet from CCAT10/CCAT50 datasets

IMDb62 (Seroussi et al., 2010). IMDb62 dataset consists of 62,000 movie re-

views and 17,550 message board posts from 62 prolific users of the Internet Movie

database (IMDb, www.imdb.com). Each user wrote 1,000 movie reviews and a

different number of message board posts, the topics of which may also be about

movie, television, music, and other topics. Among the datasets that were used

in our experiments, IMDb62 has the largest number of authors and documents.
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This dataset allows us to examine our approach in medium-scale authorship at-

tribution with similar themes of texts and plentiful training data. Similar to

Judgment, 10-fold cross validation is implemented in the experiments. Com-

pared to Judgment and CCAT’s, the language used in IMDb62 is considered less

formal (see Figure 3.3)

Poor film dealing with a brother’s scheme to get out of jail. He changes

places with his brother who looks like him.Jack Palance as always is

intriguing. However, the problem here is that he has such poor written

material to work with.Harold J. Stone comes off as a heavy as a prison

guard who has larceny in his heart but has the tables turned on him.We

see Palance as a sympathetic brother who helped the latter through

college...

Figure 3.3: A snippet from IMDb62 dataset

3.2 Dataset Analysis

In this section, analysis of the data sets using topic modeling is presented. The

aim of this analysis is to quantify topical divergences between authors in each

of the datasets. The motivation for this is that certain datasets may have clear

topical preferences between authors which cause authorship attribution to be

biased towards topic classification. Therefore, topic modeling can help assess the

topical dis-similarity between authors.

3.2.1 Analysis using Topic Modeling

We perform topic modeling using Latent Dirichlet Allocation (LDA) (Blei et al.,

2003). LDA is a generative probabilistic model of a corpus. Documents are rep-

resented as random mixtures over latent topics, where each topic is characterized

by a distribution over words. Figure 3.4 shows the graphical representation of

LDA using a plate diagram.

The graph can be explained as follows, given:

• D = x1...xM is dataset containing M documents.

• x = [x1...xN ] document with N words.

• θm is the topic proportion for the m-th document.
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Figure 3.4: Graphical model representation of LDA

• Φ1:T are the topics, where each Φt is a distribution over words in the vo-

cabulary.

• zm is the topic assignment for the m-th document.

• α is the parameter of the Dirichlet prior on the per-document topic distri-

bution.

• β is the parameter of the Dirichlet prior on the per-topic word distribution.

Then the topic probability of document xm given the hyper-parameters α and β

is given by the following equation:

P (xm, zm, θm,Φ1...T |α, β) = Dir(θm|α)
T∏
t=1

Dir(Φt|β)×
N∏

n=1

Mult(zmn |θm)Mult(xmn |Φzmn )

(3.1)

Parameters θ and Φ are estimated using Gibbs Sampling algorithm (Griffiths and

Steyvers, 2004).

36



Assuming a trained topic model over an authorship attribution dataset D, if

Ca is the set of documents written by author a and σi is the topic distribution for

the i-th document in Ca, then we estimate the topic distribution for a particular

author as follows:

θa =

|Ca|∑
i=1

σi

|Ca|
(3.2)

Following this, the difference between two author’s topic probability distributions

is calculated using the Jensen-Shannon Divergence (JSD) (Cover and Thomas,

2006):

sim(P,Q) = JSD(P ||Q) (3.3)

3.2.2 Results and Discussion

Table 3.2 shows the average of JSD for all author pairs in each of the datasets

having trained a topic model with a different number of topics. High JSD scores

indicate more topical diversity between authors in the dataset. The CCAT

datasets, which contain on-line news, have higher scores compared to Judgment

and IMDb62. The scores for CCAT50 and CCAT10 are similar, despite the fact

that the first dataset contains five times the number of authors of the second.

The consistency of this comparison across different numbers of topics indicates

that this method of assessing content similarity between authors is robust with

respect to tuning this parameter. Judgment has the lowest score across the four

datasets indicating that the authors discuss the most similar topics. Finally,

scores for the IMDb62 dataset obtained were slightly higher than those for Judg-

ment. Differences in scores for IMDb62 are due to the authors’ preferences, some

commented on the story while other commented on the characters of the movie.

Furthermore, from the results we observe that the genre of the datasets influences

the topical divergences between authors. Datasets constructed from on-line news

tend to have higher topical diversity. In contrast to that, legal judgments and

movie reviews have limited topic variances.

Confusion matrices were created to further analyse differences between au-

thors. These matrices were generated after running LDA with 20 topics for

1000 iterations. Similar patterns was observed using different numbers of topics.

For CCAT10 and CCAT50, separate matrices were generated for both train and

test partitions. Darker color indicates higher JSD between two authors. While
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n topic Judgment CCAT10

(tr)

CCAT10

(ts)

CCAT50

(tr)

CCAT50

(ts)

IMDb62

3 0.0056 0.1889 0.1936 0.1526 0.1728 0.1000

10 0.0148 0.3030 0.2872 0.2618 0.2627 0.1471

20 0.0180 0.3224 0.3214 0.3067 0.2956 0.1617

30 0.0256 0.3485 0.3319 0.3151 0.3158 0.1627

40 0.0272 0.3485 0.3360 0.3293 0.3262 0.1681

50 0.0281 0.3527 0.3459 0.3369 0.3345 0.1634

Table 3.2: Average JS Divergence for each number of topics

(tr: training data; ts: test data)

(a) CCAT10 (train partition) (b) CCAT10 (test partition)

(c) Judgment

Figure 3.5: Author topic distribution (n topic = 20)

lighter color indicates higher topical similarity between authors. For example

in CCAT10’s train set (Figure 3.5a), authors 5, 7, and 8 shared similar topical

interests related to China and Beijing, but from different points of view. The

majority of documents written by authors 7 and 8 discuss regional events within
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Figure 3.6: Author topic distribution (n topic = 20) in CCAT50 (train partition)

Figure 3.7: Author topic distribution (n topic = 20) in CCAT50 (test partition)
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Figure 3.8: Author topic distribution (n topic = 20) in IMDb62

China (Figure 3.9, Topic 9). On the other hand, author 5 reported more about

international related events (Figure 3.9, Topic 3).

Topic 3

china beijing taiwan chinese foreign visit washington relations ties sino

trade president united states war island talks nuclear links taiwanese

Topic 9

china state party beijing communist chinese official people officials

government economic years jiang xinhua newspaper yuan deng li corruption law

Figure 3.9: Sample of topics in CCAT10 datasets. Topics are represented by

top-20 most probable words.

In the CCAT50 dataset (Figure 3.6), one author (number 11) has very differ-

ent topic preferences to the others. Articles written by author 11 mainly discuss

topics related to gold, exploration, Canada, Indonesia which are rarely picked by

the other authors. A similar pattern is found in IMDb62, as shown in Figure 3.8.

Reviews by author 16 are dominated by positive comments about movies unlike

other authors who tended to write negative reviews or discuss the story and/or

characters. Unlike the three other datasets, authors in Judgment wrote on rela-
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tively similar topics (Figure 3.5c). We observed that there is no particular topic

dominated in author’s writings.

We performed another experiment to examine the influence of the number of

authors to the topical divergence. The experiment was conducted on the CCAT50

and IMDb62 data sets with a number of topics equal to 20. For each number

of authors, LDA was run ten times with random combinations of authors. The

results are presented in Table 3.3. As can be observed from the table, in CCAT50

which has high topical divergence, adding more authors does not significantly

affect the JS divergence score. A similar pattern is shown in IMDb62. The

experiment with more authors causes only a small decrease in the JSD score. The

results imply that a large number of authors does not guarantee that the topics

will be more diverse. We argue that factors such as the genre of the dataset affects

the JSD score. Although the number of authors in IMDb62 is large, they all wrote

on similar topics related to movies. In contrast, CCAT10 which is constructed

from newswire has higher JSD scores even though the number of authors is small.

In the next section, analysis of the features is presented. Ablation studies are

performed to examine whether specific features types produce better performance

for a particular dataset.

n author CCAT50 IMDb62

10 0.2953 0.1474

20 0.2977 0.1375

30 0.2901 0.1282

40 0.2993 0.1274

50 0.2979 0.1269

Table 3.3: Average JS Divergence for different number of author

3.3 Feature Analysis

The choice of features is an important decision in the development of super-

vised authorship attribution methods. Previous studies proposed different sets

of authorship attribution features. As an example, Stamatatos (2009a) intro-

duced five different types of features: lexical, character, syntactic, semantic and

application-specific features. Guthrie (2008) used 166 features consisting of typi-

cal stylistic features and several other features to capture emotional tone. Among

those features, he found 15 features to be the most useful for authorship attribu-
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Type Group Category # Description

Style Lexical Word-level 2 Average word length, number

of short words

Char-level 2 Percentage of digits, percent-

age of uppercase letters

Letters 26 Letter frequency

Digits 10 Digit frequency

Vocabulary rich-

ness

2 Richness (hapax-legomena

and dis-legomena)

Syntactic Function words 174 Frequency of function words

Punctuation 12 Occurrence of punctuation

Content Word n-

gram

Words unigrams 100 Frequency of 100 most com-

mon word unigrams

Words bigrams 100 Frequency of 100 most com-

mon word bigrams

Word trigrams 100 Frequency of 100 most com-

mon word trigrams

Hybrid Char

n-gram

Char bigrams 100 Frequency of 100 most com-

mon character bigrams

Char trigrams 100 Frequency of 100 most com-

mon character trigrams

Table 3.4: Authorship attribution feature sets

tion. Brennan et al. (2012) attempted to carry out a feature exploration. They

used a simplification of Writeprints features (Abbasi and Chen, 2008) which con-

sisted of a group of lexical and syntactic features. For a comprehensive review of

authorship attribution features, see Section 2.2.

Determining the most useful features can be challenging. One way to find out

the useful features is by implementing a comprehensive range of features and per-

forming an ablation study. For this purpose, we adopted features groups from two

previous studies by Stamatatos (2009a) and Abbasi and Chen (2008). These fea-

tures have been widely used and proved to be effective in many attribution works.

Similar to Stamatatos who introduced five features groups, Abassi and Chen pro-

posed an extensive list of authorship attribution features called Writeprints which

consist of 327 lexical, syntactic, structural and content-specific features.

We divide the features used in our experiment into three types (see Table 3.4):

• style: style-based features capture the writing style of the authors such as
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the usage of function words, digits and punctuation. We used pre-defined

function words and punctuation marks (see A.1).

• content: content-based features consist of bag of word n-grams which

are useful to map the author’s topical preferences. All function words are

removed when extracting these features.

• hybrid: in this type we use character n-grams which have been proved

effective for capturing both writing style and topical preferences (Koppel

et al., 2011; Sapkota et al., 2015).

Both character and word n-grams are limited to tri-grams. As the purpose

of these ablation experiments is not to outperform the previous work, we used

only 100 most common features for each of n-gram features. In addition, features

which are produced using NLP analysis tools, such as part-of-speech and semantic

features are not utilized in these experiments to avoid performance bias.

3.3.1 Feature Ablation Experiment

Ablation experiments were performed using a leave-one-out scenario. First, we

conducted an experiment with all features. Then, one feature group was removed

to show the effect of leaving it out. We performed feature ablation experiments

using two models:

• Feed-Forward Neural Network (FNN)

A single hidden layer feed-forward neural network model (FNN) was im-

plemented. The FNN hyper-parameters including learning rates, hidden

size and dropout rates were tuned on the development set for each of the

datasets. Table 3.5 presents the optimal hyper-parameters for each config-

uration of features.

For Judgment, CCAT10 and CCAT50, we set the number of epochs to 250

and 100 for IMDb62. For all datasets, early stopping was used on the de-

velopment sets and models optimized with the Adam update rule (Kingma

and Ba, 2014). Since none of the datasets have a standard development

set, we randomly selected 10% of the training data for this purpose.

• Logistic Regression (LR)

For Logistic Regression, the default hyper-parameter configurations from

Scikit-learn (Pedregosa et al., 2011) were used.
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Dataset all features (−) style (−) content (−) hybrid

Judgment 5x10-4;250;0.4 5x10-4;300;0.4 1x10-3;300;0.5 5x10-4;300;0.2

CCAT10 5x10-4;500;0.15 1x10-3;500;0.3 1x10-3;500;0.5 1x10-3;500;0.4

CCAT50 5x10-4;500;0.4 5x10-4;600;0.6 5x10-4;5000.6 5x10-4;5000.6

IMDb62 1x10-2;120;0.1 1x10-2;120;0.1 1x10-2;120;0.1 1x10-2;120;0.1

Table 3.5: Optimal hyper-parameters for each dataset with different feature

configurations (from left to right: learning rate; hidden size; dropout rate)

.

Accuracy was used as the evaluation metric to measure the authorship attribution

performance.

3.3.2 Results and Analysis

The results are presented in Table 3.6. The (−) symbol indicates that the respec-

tive feature type is excluded. Using the all features set, both FNN and LR pro-

duced similar accuracy. Among other feature types, removing style-based features

caused the biggest drop in Judgment and IMDb62. Meanwhile, in both CCAT

datasets, there was a significant decrease in accuracy when content-based features

were removed. The results confirm our topic model-based analysis. Style-based

features are more effective for datasets in which authors discuss similar topics,

e.g. Judgment and IMDb62. As expected, content-based features are generally

more effective when there is more diversity between the topics discussed in the

dataset, e.g. CCAT10 and CCAT50, but are of limited usefulness when the topics

are similar (particularly for the Judgment dataset). The hybrid features appear

to behave similarly to the content-based features since they are most useful when

the topic diversity is high.

Features
Judgment CCAT10 CCAT50 IMDb62

FNN LR FNN LR FNN LR FNN LR

all features 89.43 90.02 75.40 74.20 60.20 60.56 85.25 85.00

(–) Style -3.87 -4.32 -3.00 +0.40 -3.40 -2.60 -6.91 -8.39

(–) Content -1.43 +0.30 -3.60 -3.00 -4.52 -4.08 -2.77 -2.68

(–) Hybrid -0.83 -0.29 -3.40 -1.00 -1.28 -4.68 -2.02 -5.32

Table 3.6: Feature ablation results
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To examine the results further, we generated confusion matrices of the Logistic

Regression (LR) classifier applied on the CCAT10 dataset. The effect of remov-

ing content-based features is shown in Figure 3.11 where the prediction accuracy

of the authors Alexander Smith and Mure Dickie drops from 96% and 80% (see

Figure 3.10) to 84% and 64% respectively. Content-based features are essential

in this particular genre (newswire) dataset, since each author usually has differ-

ent topical interests. For example, among ten authors, Alexander Smith mostly

discussed topics related to investment and finance while topics related to China

were dominantly written by Mure Dickie, Benjamin Kang and Jane Macartney.

In addition, the writing style between authors in this genre can be very similar.

Thus, applying style-based or hybrid features may not be effective. In contrast

to CCAT10, removing style-based features in experiments using the Judgment

dataset resulted in a greater number of mis-classifications (see Figure 3.12).

Figure 3.10: Confusion matrix of LR classifier with all features types on CCAT10.

Additional feature exploration was carried out to analyse what types of fea-

tures are more important to the classifier overall. We performed an analysis us-

ing LIME (Ribeiro et al., 2016), a model agnostic framework for intepretability.

LIME provides explanations of how a classifier made a prediction by identify-

ing useful input features. We selected a document from each of the datasets

and analyzed what kind of features are learned. Figures 3.13, 3.14, 3.15 and

3.16 present the predictions of Logistic Regression (LR) trained on 1000 word

unigrams in Judgment, CCAT10, CCAT50, and IMDb62 respectively. In this
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Figure 3.11: Confusion matrix of LR classifier with content-based features ex-

cluded on CCAT10.

(a) All features (b) (−) Style

Figure 3.12: Confusion Matrices of LR classifier with different features types on

Judgment.

experiment, function words were not removed. For each of the documents pre-

sented, LR made correct author predictions with a probability close to 100%.

The darker shade indicates how important a particular word is in the attribution

decision. We can observe that in CCAT datasets, the classifier put more weight

on content-based words such as Thomson, Canada and Toronto. In contrast to

that, function words e.g. at, had, and, was appear to be more salient in Judgment
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and IMDb62.

Figure 3.13: Important word unigrams features in Judgment

Figure 3.14: Important word unigrams features in CCAT10

Figure 3.15: Important word unigrams features in CCAT50

Figure 3.16: Important word unigrams features in IMDb62

We also observed a document in the IMDb62 dataset where the classifier

assigns similar prediction probabilities to two authors as presented in Figure 3.17.

We can notice that the classifier gave the same weight to the function words and

and to which represent two different classes of authors (26 and not 26). The not

26 represents classes other than author 26. The correct decision of the classifier

is more likely helped by the presences of some less significant features such as is,

becomes, There, usual and could.
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Figure 3.17: Explanation of individual predictions of the Logistic Regression

classifier on an IMDb62 document using LIME. The bar chart represent the

weight given to the most relevant words which are also highlighted in the text.

By applying topic modeling and feature analysis, the most effective features

can be predicted for datasets based on their characteristics. Results provide evi-

dence that identifying the topical (or not) nature of the dataset is an important

step in determining the best-performing features for a particular authorship at-

tribution problem. Content-based features tend to be suitable for datasets with

high topical diversity such as the one constructed from on-line news. While

datasets with less topic variances e.g. legal judgment and movie review fit with

style-based features.

3.4 Benchmark Work

In addition to the datasets and features analysis, we list previously reported work

on the same datasets. In this way, we are able to compare our models against

them. In order to ensure a fair comparison, we carefully follow their training and

test procedure on conducting our experiments. Table 3.7 describes the previous

results of four datasets (Judgment, CCAT10, CCAT50 and IMDb62) using vari-

ous approaches.

SVM with affix+punctuation 3-grams (Sapkota et al., 2015) This work

examined different roles of character n-gram subgroups that correspond to certain

linguistic aspects such as morphosyntax, thematic content and style. Sapkota et.

al grouped the character n-grams into three categories: affix n-grams, word n-

grams and punctuation n-grams. Using SVM as the classifier, their experiment

resulted in four datasets including CCAT10 and CCAT50 showing that the com-

binations of affix and punctuation n-grams are the most effective features among

other types of n-grams. They claimed that both of the n-gram types have an

ability to capture both morphology and style information which are found to be
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useful in a single-domain setting.

SVM with 2,500 most frequent 3-grams (Plakias and Stamatatos, 2008)

In this approach, a single document was represented as a vector of 2,500 most

frequent 3-grams. Then a standard linear SVM model was used as the classifier.

In addition to its simplicity, this method was shown to be effective for identifying

authors with an accuracy of 80.80% on the CCAT10 dataset.

STM-Asymmetric cross (Plakias and Stamatatos, 2008) Instead of using

a vector space model to represent a document, Plakias and Stamatatos proposed

a second-order tensor space representation for authorship attribution. In order

to handle tensors, they used a generalization of SVM, called Support Tensor

Machines (STM) (Cai et al., 2006). The authors claimed that this approach is

suitable for cases where only limited training data are available with fewer pa-

rameters to be learned. However, their result failed to outperform the standard

vector space model by achieving only 78% accuracy on CCAT10.

SVM with bag of local histograms (Escalante et al., 2011) This work

proposes local histogram representations over character n-grams for authorship

attribution. Using this approach, a set of local histograms are computed across

the whole document and are smoothed by kernels centered on different document

locations. The representations were claimed to be able to preserve sequential in-

formation in the document which may reflect the writing style of the author. This

approach obtained the best performance among the other methods on CCAT10

with 86.40% in accuracy. However, our attempt to reproduce their result failed by

obtaining only 77% in the accuracy. Another attempt by Potthast et al. (2016a)

reported slightly worse accuracy of 75.4%. Thus, we do not consider this work

for performance benchmarking in the later chapters.

Token SVM (Seroussi et al., 2013) With only minimal tuning, SVM trained

on token frequency features has been known to yield state-of-the-art authorship

attribution performance (Koppel et al., 2009). Seroussi et al. used this method as

the baseline in their experiments on Judgment and IMDb62 datasets. With rela-

tively large amounts of training data, this method successfully obtained 91.15%

and 92.52% in accuracy for Judgment and IMDb62 respectively.

Authorship attribution with topic models (Seroussi et al., 2013) This

paper proposes a document representation based on topic modeling. Each docu-
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ment d is represented as a concatenation of two distributions: a document topic

distribution and an author topic distribution. In this way, the representation

could capture aspects of authorship style while at the same time also represents

the authors’ interests. Using SVM as the classifier, this method achieved an ac-

curacy of 93.64% for Judgment and 91.79% for IMDb62.

Model Judgment CCAT10 CCAT50 IMDb62

SVM with affix+punctuation 3-

grams (Sapkota et al., 2015)

- 78.80 69.30 -

SVM with 2,500 most frequent 3-

grams (Plakias and Stamatatos,

2008)

- 80.80 - -

STM-Asymmetric cross (Plakias

and Stamatatos, 2008)

- 78.00 - -

SVM with bag of local his-

togram (Escalante et al., 2011)

- 86.40 - -

Token SVM (Seroussi et al., 2013) 91.15 - - 92.52

Authorship attribution with topic

models (Seroussi et al., 2013)

93.64 - - 91.79

Table 3.7: Benchmark work

3.5 Summary

This chapter carried out an analysis of four widely used datasets to explore how

different types of feature affect authorship attribution accuracy under varying

conditions. The results of the analysis are applied to authorship attribution

models based on both discrete and continuous representations. Our experimental

results show that our proposed analysis is useful to determine the most effective

features based on dataset characteristics. In addition, we also described the detail

of previous work that will be used as the benchmark in our experiments.
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Chapter 4

Language Models for Authorship

Attribution

Language models are a fundamental component in various NLP tasks such as ma-

chine translation (Schwenk et al., 2006; Devlin et al., 2014; Luong et al., 2015),

image caption generation (Vinyals et al., 2014) and grammatical error correc-

tion (Yannakoudakis et al., 2017). This method offers easy access to a large

amount of training data and a straightforward learning objective (to predict the

next word/character in the sequence) (Rei, 2017). However, only relatively few

works have implemented language model for the authorship attribution task.

Among them is a work by Peng et al. (2003) who implemented character level

Language Modeling (LM) for authorship attribution. The motivation to imple-

ment a language model was influenced by some problems faced in the standard

attribution model such as language dependency and the difficulty on setting

thresholds in feature selection.

In most authorship attribution approaches, feature selection is an impor-

tant step which may significantly affect task performance. This process usu-

ally involves setting a threshold to remove uninformative features (Scott and

Matwin,1999). However, defining an optimal threshold can be problematic, be-

cause although less useful, rare features can still have an important cumulative

effect (Aizawa, 2001). As an example, Stamatatos (2013) demonstrated how the

appropriate selection of the number of features is crucial towards the task per-

formance. He examined different sizes of feature sets in intra/cross topic/genre

datasets and concluded that each type of dataset has a different optimal fea-

ture size. Peng et al. (2003) addressed the problem by avoiding feature selection

entirely. In their method, they included all features but use estimation meth-

ods from n-gram language modeling to avoid over-fitting a sparse set of training

52



data. They reported that their approach obtained performance higher than 90%

accuracy in three datasets which cover three languages: English, Greek and Chi-

nese. However, the datasets involved have a relatively small number of authors

(maximum 10 authors). Peng et al. also reported that their result on an aca-

demic writing dataset with a more rigid structure only achieved accuracy of 74%,

slightly higher than Stamatatos et al. (2000) who implemented feature selection

in their approach.

While the results from Peng et al.’s experiments are convincing, n-gram lan-

guage models consider only a limited context length (Mikolov et al., 2010). This

condition prevents the model from acquiring information from longer sequences

which might be useful for authorship attribution. More recent work in language

modeling achieved state-of-the-art results (Mikolov et al., 2010) by implement-

ing Recurrent Neural Network/Long Short Term Memory (RNN/LSTM) frame-

work which is suitable for processing sequential data. The recurrent connections

allow capturing information from arbitrarily long sequences. In addition, the

distributed feature representation in neural network architecture allows one to

achieve a level of generalization that is not possible with n-gram language mod-

els (Mikolov et al., 2013c). A work by Bagnall (2015) is among the few attempts

which utilized RNN based language models for authorship attribution. He imple-

mented character level RNN language models for the PAN 2015 Author Verifi-

cation task (Stamatatos et al., 2015). Bagnall’s models successfully obtained the

best performance with an average area under the curve (AUC) score greater than

0.8. However, unlike the standard authorship attribution task, the main problem

in authorship verification is to decide whether a document of unknown author-

ship was written by the author of a small set of other documents. Therefore the

verification problem focuses on comparing the similarity of two documents rather

than capturing an author’s writing characteristics.

In this chapter we focus on exploring language modeling for authorship attri-

bution. We begin with presenting the feature selection problem which commonly

occurs in standard authorship attribution approaches (Section 4.1). We evaluate

two types of features: character and word n-grams and show how the number

of features (feature set size) and the value of n influence the task performance.

Following this, we apply n-gram language modeling to address the problem (Sec-

tion 4.2). In contrast to Peng et al. (2003) who only conducted their experiments

on a limited type of datasets (in terms of number of authors, genre), we use

four different authorship attribution datasets with a range of characteristics in

terms of the number of authors, topic/genre and document length: Judgment,

CCAT10, CCAT50 and IMDb62 (see details in Section 3.1). Finally, in Sec-
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tion 4.3 we investigate the effectiveness of a neural network model by implement-

ing LSTM-based language modeling for authorship attribution. We discuss how

the language model perplexity correlates with the authorship attribution accu-

racy. Furthermore, we present the limitations of these approaches and possible

directions for future work.

4.1 Feature Selection

Character and word n-grams are among the features that have been shown to

be effective for authorship attribution (Kjell, 1994; Forsyth and Holmes, 1996;

Stamatatos, 2006; Peng et al., 2003; Keselj et al., 2003; Juola, 2004; Stamatatos,

2013; Schwartz et al., 2013). Word n-grams can represent local structure of texts

and document topic (Coyotl-Morales et al., 2006; Wang and Manning, 2012) while

character n-grams have been shown to be effective for capturing stylistic and mor-

phological information (Koppel et al., 2011; Sapkota et al., 2015). Experiments

presented in this section explore the value of n and feature size parameters that

might influence the performance of both features in the authorship attribution

task.

However, despite the effectiveness it is usually problematic to define an opti-

mal value of n (Peng et al., 2003; Stamatatos, 2009). A small n can be inadequate

to capture sufficient information, while a large n will significantly increase the di-

mensionality of the representation and create sparse training data. In addition,

the optimal n-value is usually language dependent, since average word length

varies across languages.

4.1.1 Experimental setup

The experiments in this section use the Support Vector Machine (SVM) imple-

mentation from Scikit Learn (Pedregosa et al., 2011). We followed previous work

by using the provided train/test partitions for both CCAT datasets and the 10-

fold cross validation for Judgment and IMDb62. The SVM hyper-parameters

were fixed for all the experiments. We used a Radial-basis function (RBF) kernel

with the values of C and gamma set to 10.0 and 0.0001. We conducted experi-

ments with two types of features: character and word n-grams. A document is

represented as a frequency vector of the respective features. We performed an

experiment with various values of n and feature sizes. We did not apply any text

pre-processing to the documents.
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4.1.2 Value of n

This experiment was carried out to see the effect of different values of n on both

character and word n-grams on authorship attribution performance. In this

experiment, we set the feature set size to the 100 most common n-grams when

varying the value of n from 2 to 10 for character n-grams and 1 to 5 for word

n-grams. Figure 4.1 and 4.3 demonstrate the accuracy obtained using various

values of character and word n-grams in all four datasets. The x-axis represents

the value of n while the y-axis indicates the accuracy obtained. From the figure,

it is noticeable that the performances of both word and character n-grams are

affected by the choice of n. For models with character n-grams, it is obvious that

there is a sharp increase in accuracy when 3-grams are used, especially for the

CCAT10, CCAT50 and IMDb62 datasets as shown in Figure 4.1. This result is

in agreement with previous work (Stamatatos, 2013; Sapkota et al., 2015) which

used character 3-gram features in their experiments.

Figure 4.1: The accuracy obtained with different values of character n-grams

Table 4.1 shows the list of 10-most common character 3-grams for each dataset.

In Judgment, CCAT10 and CCAT50, the character 3-grams are dominated by

n-grams which are part of the word. It can be either the first/last three or the

mid characters of the word. For example, in CCAT10 and CCAT50 the 3-grams

ill is mostly from the word billion or million while 3-grams ch is derived from

China or Chinese. In contrast to that, in IMDb62 most of the common 3-grams
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are stopwords e.g. a, an, of, to, and, is. This might be affected by the informal

genre of the dataset which influenced the author’s choice of words. Compared to

three other datasets which discuss more formal topics, IMDb62 has the shortest

average word length. Results from this experiment explain how the character

3-grams could capture both topic and style, while in the same time support the

findings from the previous work (Sapkota et al., 2015). Sapkota et al. performed

a thorough analysis of the effectiveness of character 3-grams. They divided the

character 3-grams into three groups: affix, word and punctuation n-grams and

observed that each group captures different information which covers both topic

and style.

Judgment CCAT10 CCAT50 IMDb62

¨ ca bu a

( fr ca an

) ch ch of

at con ne to

ex ear wa and

pa ill are he

ain men ce ing

com pro ear is

int rs hat nd

was ted per ng

Table 4.1: 10 most common character 3-grams for each dataset

From Figure 4.1 we can observe that performance can still be improved by

adding more n-grams. For CCAT10, CCAT50 and IMDb62, the authorship at-

tribution model obtained the best performance by using up to character 5-grams

before the graph starts to plateau or even decline. An exception is found in

the Judgment dataset in which character 3-grams do not really help increase the

accuracy compared to 2-grams. Unlike the other datasets, the Judgment graph

shows an upward trend before reaching a peak at 7-grams and starts to level off.

The confusion matrices in Figure 4.2 clearly show how the classifier could identify

the authors better when using up to character 7-grams. By adding more n-grams,

the model minimized the error on identifying the author Rich by obtaining 74%

in accuracy.

A similar trend is found for models with word n-grams as shown in Fig-

ure 4.3. The performances of all the datasets except Judgment increased up to
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(a) Char up to 3-grams (b) Char up to 7-grams

Figure 4.2: Confusion matrices of Judgment with different values of n

Figure 4.3: The accuracy obtained with different values of word n-grams

word bi-grams and remained flat after that. Since we were not performing any

text pre-processing, the 10-most common word bi-grams are dominated by the

combination of stopwords such as by the, for the, and the, etc (see Table 4.2).

Some content words like hong kong, the company, the movie, the film were also

captured. On the other hand, Judgment reached its optimal performance by

using up to word 4-grams. We compared two confusion matrices of Judgment

which were generated with different set of features and discovered that models

with word 4-grams are better at distinguishing authors (see Figure 4.4). In Judg-
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ment, word bi-grams failed to represent the unique writing style of each author.

The cause can be explained with this following example: the word bi-gram in

the is found 3401 times in McTiernan, 1332 times in Rich and 20082 times in

Dixon writings, while the four-gram in the present case was only used 61 times

by McTiernan, 26 times by Rich and 532 times by Dixon. The frequency ratio of

both n-grams for each authors might be similar (since bi-gram in the is a subset

of 4-gram in the present case). However, we can see that the use of in the present

case is not as common as the use of in the, which make it a strong indicator of

unique writing style for a particular author.

Judgment CCAT10 CCAT50 IMDb62

and the by the for the and the

at the for the he said in the

by the he said hong kong of the

for the in the in the on the

from the of the of the one of

it is on the on the the film

on the said the said the the movie

to be to be the company to be

upon the to the to be to the

which the with the to the with the

Table 4.2: 10 most common word bi-grams for each dataset

(a) Word up to bi-grams (b) Word up to 4-grams

Figure 4.4: Confusion matrices of Judgment with different value of n

Through the experiments conducted, we have shown the problems of choosing

58



the optimal value of n. Although previous work has suggested certain optimal

values, we have shown that they may not be suitable for all datasets. We argue

that there are two main factors that are responsible for the performance differ-

ence in Judgment. First, among other datasets, Judgment has an imbalanced

number of documents per author. Dixon produced almost three and five times

as many documents as McTiernan and Rich. This caused misclassification of the

documents produced by the minority class as have been shown in Figure 4.2a

and 4.4a. Second, compared to the three other datasets, Judgment has the high-

est topical similarity (see discussion in Chapter 3). Furthermore, due to the genre

of the dataset (legal judgment), the writing style between authors tends to be

similar. Thus, we believe that the optimal values suggested in previous work

(character 3-grams and word bi-grams) are not suitable for this dataset.

4.1.3 Influence of Feature Set Size

Another factor that influences the accuracy of authorship attribution is the num-

ber of features used. We performed experiments with a range of feature sizes

from 500 to 4000 and 100 to 1000 for the character and word-based models re-

spectively. 3-grams were used for character-based model and up to bi-grams for

the word-based model. Figures 4.5 and 4.6 show the accuracy obtained for each

dataset with various numbers of features. For character n-grams using the 2,500

most frequent 3-grams produced optimal performance before the accuracy started

to plateau (Figure 4.5). Similar trends are shown for word n-grams (Figure 4.6).

Optimal accuracy was reached by using 600 features.

The main observation is that, unlike our previous experiments with the value

of n, all four datasets tended to have similar thresholds for the feature size. As

mentioned previously, Stamatatos (2013) conducted experiments with intra/cross

topic/genre attributions and found that the thresholds for optimal performance

differ for each type of tasks. In the intra topic/genre task, the training and test

sets belong to the same genre and thematic area, while in the cross topic/genre,

the topic/genre may be different for training and test sets. In our experiment,

the task is considered as intra topic/genre since the datasets involved have the

same genre and topic for both training and test data. We found that, our results

on the character based model are consistent with Stamatatos’ results in the intra

topic/genre task. Both of our results show that 2500 features are optimal for the

model with character 3-grams.

Nevertheless, we have shown that feature selection is crucial. The condition

of the datasets such as unbalanced data, type of the task (cross/intra attribution)

59



are some of the factors that need to be considered.

Figure 4.5: Authorship attribution accuracy with different numbers of character

tri-grams

Figure 4.6: Authorship attribution accuracy with different numbers of word bi-

grams
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4.2 N -gram based Language Modeling for Au-

thorship Attribution

In this section, we present an n-gram based language modeling approach which

attempts to address the problem of selecting suitable features, as outlined in

the previous section. We replicate Peng et al.’s (2003) experiments with more

diverse characteristics of datasets in terms of the number of authors, topic/genre

and document length. Compared to Peng et al., who only used datasets with a

maximum of 10 authors, the datasets involved in our experiments have a wider

range of numbers of authors (see details in Table 3.1). Furthermore, our datasets

also have different levels of topical diversity. Thus, we can examine whether the

n-gram based language modeling is effective for a wider range of datasets.

4.2.1 Overview of N -gram Language Modeling

Jurafsky and Martin (2000) describe Language Models (LM) as models that

assign probabilities to sequences of words. This probabilities are essential in

many NLP tasks e.g speech recognition, spelling correction and machine transla-

tion (Schwenk et al., 2006; Devlin et al., 2014; Luong et al., 2015; Vinyals et al.,

2014; Yannakoudakis et al., 2017). These tasks were similar in that they used on

using probabilities of word sequences to find the most probable solution. As an

example in spelling correction, assume that we need to find and correct spelling

errors in this following sentence Their like to play football together in which They

was incorrectly typed as Their. Supposing training is effective, using language

models we can easily spot the error as the phrase They like is more probable

than Their like. The error is not limited to spelling errors but also grammatical

errors.

Given the word sequence W = w1, w2, ..., wN , and let wn−1
1 be a sequence of

preceding words of wn, n-gram language models work by predicting the proba-

bility of the sequences P (w1, w2, ..., wN) using the chain rule of probability:

P (w1...wN) = P (w1)P (w2|w1)P (w3|w2
1)...P (wn|wn−1

1 )

=
N∏
k−1

P (wk|wk−1
1 )

(4.1)

However, using the n-grams model, the probability of the next word can be

approximated by just the last few words. For example in the bi-gram model,
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instead of calculating the probability

P (story|A mixture of truth and fiction! Okay if you know the true)

(4.2)

can be approximated with the probability

P (story|true) (4.3)

Using the Markov assumption, we do not need to use the entire history. The n-

gram probabilities approximation of a complete word sequence can be computed

by substituting Equation 4.1 with:

P (wn
1 ) ≈

n∏
k=1

P (wk|wk−1) (4.4)

Then, to estimate a particular bi-gram probability of a word wn given a previ-

ous word wn−1, we can use Maximum Likelihood Estimation (MLE). The MLE

estimate can be computed by counts of the bigram C(wn−1wn) and normalized

by the sum of all the bi-grams which contain the same first word wn−1:

P (wn|wn−1) =
C(wn−1wn)∑
w C(wn−1w)

(4.5)

Equation. 4.5 can be simplified by substituting the denominator with the unigram

counts of the word wn−1

P (wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.6)

A major drawback of MLE is the poor estimate of zero or low frequency counts of

n-grams which are more common in small training sets. To address the problem,

smoothing can be applied to modify the probability of n-grams. Some non-zero

counts are discounted/lowered in order to get the probability mass that will

be assigned to the zero counts. Among several smoothing techniques, Kneser-

Ney (Ney et al., 1994) is one of the most common methods. It works by re-

estimated count c∗ by subtracting a fixed discount D from each count while in

the same time handling the backoff distribution. Assuming a proper coefficient

α on the backoff, the probability of n-grams with Kneser Ney smoothing can be

formalised as follows:

PKN(wi|wi−1) =


C(wi−1)−D
C(wi−1)

, if C(wi−1wi) > 0

α(wi)
|{wi−1:C(wi−1wi)>0}|∑
wi
|{wi−1:C(wi−1wi)>0}| otherwise.

(4.7)
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For the experiment in this section, we used a statistical n-gram language model

provided by the publicly available toolkit SRILM (Stolcke, 2002)1. SRILM imple-

ments both original and modified Kneser-Ney discountings (Chen and Goodman,

1996). In modified Kneser-Ney discountings, for each n-gram order, it uses three

discounting constants, one for one-count n-grams (n1), one for two-count n-grams

(n2), and one for three-plus-count n-grams (n3). The discounting constants can

be computed as follows:

Y =
1

(n1 + 2 ∗ n2)

D1 = 1− 2Y (
n2

n1

)

D2 = 2− 3Y (
n3

n2

)

D3+ = 3− 4Y (
n4

n3

)

(4.8)

Finally, to evaluate the model, we can use perplexity :

PP = P (w1w2...wN)−
1
N

= N

√
1

P (w1w2...wN)

(4.9)

4.2.2 N -gram Language modeling for Authorship Attri-

bution

We followed Peng et al. (2003) by building separate language models for each of

the authors. In this experiment, we built both word and character level models.

Figure 4.7 shows the flow of creating a language model for each author using

SRILM. The lexicon was built by listing all n-gram words or characters found in

the training set from all of the authors. This will ensure that the same dictionary

is used when building language models across authors.

An author class a ∈ A = {a1, ...an} is assigned to a new document d if the

language model of author a assigns the lowest perplexity given the document d.

a∗ = argmina∈A{PPL(d|a)} (4.10)

4.2.3 Results and Discussion

We performed experiments with a range of n-gram lengths for both word and

character-level models. Table 4.3 describes the average number of characters and

1https://www.sri.com
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Figure 4.7: Creating LM using SRILM (Chen, 2014)

Dataset
Training Test

#char #word #char #word

Judgment (Dixon) 9.7M 1.9M 1.1M 213K

Judgment (McTiernan) 2.7M 539K 303K 60K

Judgment (Rich) 2M 398K 224K 44K

CCAT10 154.5K 29K 154.5K 29K

CCAT50 153K 29.2K 153K 29.2K

IMDb62 1.5M 311K 168K 34.5K

Table 4.3: Average number of characters and words per author

words per author for the training and test sets. In this experiment, we used

10% of the training data as the development set. For Judgment, we provide de-

tails per author (Dixon, McTiernan, Rich) since this dataset has an imbalanced

number of documents per author. Figures 4.8 and 4.9 show the authorship attri-

bution accuracies obtained with different n-gram lengths on the development set

using character and word-level models respectively. The best accuracy for the

character-level model was achieved by using either character tri-grams or four-

grams (see Figure 4.8). While in the word-level model, word bi-grams are found

to be the most effective.

Compared to the word-level model, the character model produced better per-

formances in all datasets. For example in IMDb62, the model obtained the

best accuracy of 87.45% in contrast to the word-level model which only achieved

65.75%. However, in the Judgment dataset, the word-level model obtained

80.50%, almost similar to the character model with 81.82%. We examined the
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Figure 4.8: Authorship attribution performance using character-level language

model in development set

cause of performance differences by evaluating the quality of language models

independently from the authorship attribution task. Figure 4.10 and 4.11 show

the average perplexity of character and word-level models for different n-gram

lengths. The results clearly demonstrate that the word-level language models

have significantly higher perplexity compared to the character-level model. The

poor performances of word-level models are likely due to the small training set

size. This argument is supported by the fact that the word-model still produces

good performance on the larger dataset (Judgment). It is interesting that by

representing documents at the character level, we can have more training data in

which could provide better quality of language models. In addition, the vocab-

ulary size of character-level models which is smaller than the vocabulary size of

word models helps to reduce the sparse data problem which might be encountered

in the experiments.

Table 4.4 compares the results of the approach reported here against previous

authorship attribution work that used the same datasets. The results presented

are the accuracy obtained in the test set. Most of the previous approaches pre-

sented in the table, used SVM with various feature types (see Section 3.4). Lan-

guage modeling-based approaches failed to provide more accurate predictions by
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Figure 4.9: Authorship attribution performance using word-level language model

in development set

obtaining lower accuracy than the previous results in all four datasets. We argue

that there are two main underlying factors causing the poor performance. First,

the poor quality of language model due to the small training size. Evidence to

support this argument can be seen from the results of the character-level model

which gained better performance than word-level model.

Second, we found that the language model-based approach is more suitable

for datasets with higher topical diversity and/or distinct idiosyncrasies in writing

style. Among the four datasets, CCAT10 and CCAT50 obtained better accuracies

relative to the previous results. In our previous experiments (Chapter 3), we

have shown that both CCAT datasets have higher topical diversity compared

to Judgment and IMDb62. This argument is also supported by Peng et al.

(2003) who obtained very high performance (more than 90% accuracy) for all

datasets except for the dataset with a more rigid structure or uniform writing

style (i.e. academic writing). Peng et al. reported that the datasets used in their

experiments (especially for English and Chinese languages) have distinct writing

styles since they were constructed from novels written by several famous authors

such as Charles Dickens and Shakespeare.
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Figure 4.10: Perplexity of character-level language model in the development

sets.

Figure 4.11: Perplexity of word-level language model in the development sets.
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Model Judgment CCAT10 CCAT50 IMDb62

SVM with affix+punctuation 3-

grams (Sapkota et al., 2015)

- 78.80 69.30 -

SVM with 2,500 most frequent 3-

grams (Plakias and Stamatatos, 2008)

- 80.80 - -

Token SVM (Seroussi et al., 2013) 91.15 - - 92.52

Authorship attribution with topic mod-

els (Seroussi et al., 2013)

93.64 - - 91.79

Character-level n-gram LM 80.78 75.00 64.76 87.39

Word-level n-gram LM 80.55 59.60 46.52 68.00

Table 4.4: Comparison against previous results.

Nevertheless, apart from the low attribution performances, we found that

the language model-based approaches can be used to address problems faced in

the feature selection. However, due to the sparse data problem, it limits the

model for getting longer-distance information which would probably be useful

for authorship attribution. As previously demonstrated in Figures 4.10 and 4.11,

a longer context did not help to improve the perplexity. In the next section,

we aim to address the drawbacks of n-gram language models by using the Long

Short Term Memory (LSTM) model which has the ability to preserve information

from long context sequences.

4.3 LSTM-based Language Model for Author-

ship Attribution

In this section, we apply the Long Short Term Memory (LSTM)-based lan-

guage model to the authorship attribution task. We examine whether infor-

mation from longer contexts is useful for authorship attribution. Unlike the

n-gram language models, where only a limited context length would be consid-

ered, LSTM allows conditioning the model on all previous words/characters in

the document (Mikolov et al., 2010).

We begin this section with a short overview of Recurrent Neural Networks
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(RNNs). RNN (Rumelhart et al., 1986) is a type of neural network for processing

sequential data. This architecture can be considered as an unfolded feed-forward

neural network with a single shared model which operates on all time steps and

all sequence lengths (Goodfellow et al., 2016). Figure 4.12 illustrates the compu-

tational graph of an RNN. At each time step t, the model has xt, h
t, ot, yt and Lt

which represent input, hidden layer activation, output, target and loss. Training

the model starts with forward propagation which applies these computations at

each time step:

h(t) = tanh(Wh(t−1) + Ux(t) + b)

o(t) = V h(t) + c
(4.11)

where U , W and V are the weight matrices between input to hidden, hidden to

hidden and hidden to output respectively and b, c are bias vectors.

Figure 4.12: Recurrent Neural Network (RNN) architecture (Goodfellow et al.,

2016)

To obtain target y(t), a softmax operation can be applied over the output o(t)

ŷ(t) = softmax(V ht) (4.12)
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Then we can use the negative log-likelihood to compute the loss/error between

the predicted value and the correct value in each step. For the total loss given a

sequence of x values paired with a sequence of y values:

L({x(1), ..., x(T )}, {y(1), ..., y(T )}) = −
∑
t

L(t)

= −
∑
t

logpmodel(y
(t)|{x(1), ..., x(t)})

(4.13)

The gradient of this loss function can be computed by performing backpropaga-

tion through time (BPPT) (Werbos, 1990) which involves a forward propagation

from left to right followed by a backward propagation from right to left of the

unrolled graph. RNN models have been applied for many NLP tasks including

language modeling, speech recognition and machine translation (Mikolov et al.,

2010; Mikolov and Zweig, 2012) and are reported to bring improvement to the

performance.

Theoretically, RNNs can learn information from arbitrarily long sequences.

However, in practice it suffers from the vanishing gradient problem (Hochreiter,

1998; Bengio et al., 1994). Consider a language model trying to predict the last

words of these following sentences:

The chef cooks in the kitchen

Since April 1995, when the yen hit a high of 80 to the dollar, the

Japanese currency has weakened. The rate is now about 114,

meaning it takes more yen to buy one dollar.

In theory, RNN should be able to predict correctly the last words in both sen-

tences. However, the contribution of gradient values during the back-propagation

phase gradually vanishes. This problem is more likely to occur in long sentences

where the gap between relevant information and the point where it is needed is

large. Thus in the latter sentence, the probability that dollar would be predicted

correctly is smaller than the word kitchen in the first sentence. To address the

problem, Hochreiter and Schmidhuber (1997) proposed Long Short Term Memory

(LSTM), a special type of RNN which is capable of learning long-term depen-

dencies. LSTM addresses the problem by introducing a memory cell with gating

units in its architecture. The gating units have the ability to control whether

information from previous states need to be removed or preserved, meaning that

the vanishing gradient problem can be avoided.
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4.3.1 Character-level Language Models with LSTM

We limit the implementation of the LSTM-based model to the character-level

since the datasets available are not large enough to train word-based models. In

language modeling, given a sequence of N characters C1, ..., CN , the sequence

probability can be calculated using Equation 4.4 by substituting the words with

characters. In the LSTM-based model, the probability can be estimated by feed-

ing the encoded character input vector xt, the previous hidden state ht−1, and

the previous memory cell ct−1 into the LSTM one at a time. The next hidden

state ht then can be produced via the following calculation:

it = σ(W (i)xt + U (i)ht−1 + b(i))

ft = σ(W (f)xt + U (f)ht−1 + b(f))

ot = σ(W (o)xt + U (o)ht−1 + b(o))

ut = tanh(W (u)xt + U (u)ht−1 + b(u))

ct = it � ut + ft � ct−1
ht = ot � tanh(ct)

(4.14)

The LSTM cell has three gates: an input gate it, a forget gate ft and an output

gate ot; a memory cell ct and a hidden state ht. W (∗), U (∗), b(∗) denote the

weight matrix between hidden to hidden, input to hidden and bias in each gate.

A number between 0 and 1 is produced in each gate, which represents how much

information should be kept or removed. All of the gates receive input xt from

the current time step t and previous hidden state ht−1. The forget gate will

decide to what extent information from the previous state is forgotten, while the

input gate controls what new information will be added to the cell state. The

output gate filters the exposure of the internal memory cell of the current state.

A partial view of the internal memory cell ct is represented by the hidden state

ht. Finally, the target word at time step t and the total loss can be predicted by

Equations 4.12 and 4.13 respectively.

Figure 4.13 presents a working example of a character-level LSTM-based lan-

guage model. Suppose we want to train the LSTM on the training sequence

“cat ” ( denotes space). First, each character will be encoded using 1-of-k en-

coding, where k is the size of vocabulary. Given the target character for each time

step, the LSTM will be trained to assign the maximum probability. Training is

performed using the back-propagation through time algorithm and is repeated

until the network converges and its predictions are consistent with the given la-

bels.
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Figure 4.13: An example of character-level LSTM language models

If CT
1 = [C1, ..., CT ] is the sequence of characters in the training corpus, then

training involves minimizing the negative log-likelihood (NLL) of the sequence

NLL = −
T∑
t=1

logPr(Ct|Ct−1
1 ) (4.15)

and the perplexity (PPL) of a language model over the character sequence is

calculated by

PPL = exp(
NLL

T
) (4.16)

Finally, given a document d and a fixed set of candidate authors a ∈ A =

{a1, a2, ..., am}, a separate character-level language model for each of the authors.

To categorize a new document d, we pick the language model of an author a that

has the lowest perplexity, see Equation 4.10.

4.3.2 Experiment

We performed experiments with the datasets mentioned in Table 4.3. For each

of the datasets, we used 10% of the training data as the validation set. Our

LSTM-based language model consists of a single LSTM hidden layer with 128

hidden units. In total there are 110,918 parameters in our model. This model

is considered small compared to previous work (Mikolov et al., 2010; Zaremba

et al., 2014). We did not implement a larger model since our training data per
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author is limited and fairly small for the language modeling task. Each character

in the document is represented using one hot encoding (Bishop, 2006). We set

a fixed vocabulary list consisting of 70 characters including the characters of the

26 English alphabet, 10 digits and 34 other characters:

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v,

w, x, y, z, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -, ,’, ;, ., !, ?, :, ",

‘, /,\,|, ,@,#,$,%, ~,&, *,~, ’, +, =, <, >, (, ), [, ], , , \n, "

"

Optimization

The model was trained using truncated backpropagation through time (Williams

and Peng, 1990) and optimized using the Adam update rule (Kingma and Ba,

2014). The learning rate was set to 0.002 with decay rate 0.95. We conducted

hyper-parameter tuning including batch size and dropout rate (from hidden to

output layer) on the CCAT10 validation set. We found that 5 and 0.75 are

the optimal values for batch size and dropout rate respectively. Gradients were

averaged over each batch. For CCAT10, CCAT50 and IMDb62, we trained each

language model of the authors for 100 epochs, while for Judgment, we set 20

epochs for Dixon and 100 epochs for the rest of the authors. Note that Dixon

has an almost 10 times larger training size compared to the others authors. We

found that the chosen number of epochs were sufficient for the model to reach

convergence. Finally, we picked only the best model on the validation and used

it to perform evaluation on the test set.

4.3.3 Results and Analysis

In this section we present results on four datasets using the model described

in Section 4.3.2. First, we examined the effect of the number of time steps

in truncated backpropagation through time (TBPTT) to the language model

perplexity and how it correlates with the authorship attribution performance.

Then we provide an analysis of the limitations LSTM-based language model for

authorship attribution

4.3.4 The effect of perplexity on authorship attribution

performance

It is common practice to perform truncated backpropagation (Williams and Peng,

1990) for training LSTM/RNN. Sutskever (2013) explained that the main prob-

lem of BPTT is the high cost of parameter update which limits the use of
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large numbers of iterations. He reported that the cost of gradient update of

an RNN/LSTM on a sequence of length N is equal to the cost of a forward

and a backward pass in a neural network model with N layers. Considering the

document length of the datasets involved in our experiment, applying truncated

backpropagation is a good option. Truncated backpropagation works by splitting

the long sequence into shorter sequences and treats each shorter sequence as a

separate training case. Then the state of the parameters in the last time step of

the current short sequence will be passed to the next sequence.

We conducted experiments by varying the number of time steps in the trun-

cated backpropagation. The experiments were performed on the CCAT10 train-

ing set. We used 10% of the training data as the validation set. Table 4.5 presents

the experimental results. As can be observed from the table, using a larger num-

ber of time steps results in higher average perplexity. This is more likely caused

by the shortcoming of the truncated backpropagation. Although truncated back-

propagation maintains the recurrent hidden state between the networks, however

it truncates gradient flows between subsequences (Tallec and Ollivier, 2017). This

causes the problem of learning dependencies above the range of truncation/time

steps. Intuitively, a network with a larger number of time steps will be more

affected. In addition, we argue that in the character-level language model, infor-

mation from long context sequences is not useful for predicting the next character.

However, based on our observation, training the LSTM language model with a

smaller number of time steps required longer computation times as there is a

greater number of training samples to be processed. In previous work (Zaremba

et al., 2014; Kim et al., 2016) the number of time steps was set to fewer than 50.

We expect that more accurate language models will lead to better authorship

attribution accuracy. However, the results in Table 4.5 demonstrate that the

performance of authorship attribution is not really affected by the language model

perplexity. The differences in authorship attribution accuracy for each number

of time steps is more likely to be caused by the small size of the validation data.

Our observation is that since the LSTM model is optimized for the language

modeling task, perplexity is not a good predictor for the authorship attribution

performance. More accurate language models are not guaranteed to improve the

accuracy of authorship attribution. Previous studies utilizing language model for

other NLP tasks reported similar conclusions (Zweig et al., 2012; Mirowski and

Vlachos, 2015).
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num steps AA accuracy Average Perplexity

3 86.00 6.473473

10 86.00 6.804340

20 84.00 7.185383

30 88.00 7.479045

40 88.00 7.547656

50 88.00 7.684623

60 88.00 7.791094

200 88.00 8.218547

Table 4.5: Authorship attribution accuracy and average perplexity on the

CCAT10 validation set

Dataset
n-gram LM LSTM

AA acc perplexity AA acc perplexity

Judgment 80.78 5.98 75.92 3.81

CCAT10 75.00 4.56 75.60 6.68

CCAT50 64.76 5.01 66.20 7.53

IMDb62 87.39 5.27 *86.03 5.45

Table 4.6: Authorship attribution accuracy and average perplexity on the test

data using a character level n-gram and LSTM-based language model. *Due to

the long training time of LSTM, for IMDb62 we performed the experiment only

in the first fold (from 10-folds) of the dataset.

4.3.5 Limitation of LSTM-based language model for au-

thorship attribution

Table 4.6 presents the performance of the LSTM-based model in four datasets.

Compared to the n-gram language model-based approach, the LSTM-based model

obtained slightly higher authorship attribution performance in both CCAT datasets

but lower accuracy in two other datasets (Judgment and IMDb62). We argue

that the small improvement obtained in CCAT10 and CCAT50 is due to the

high topical diversity of the datasets which is better captured by the LSTM.

These results confirm our previous analysis in the latter section (Section 4.2),

that language model-based approaches are more suitable for datasets with more

clear topical distinction between authors. Furthermore, we can observe from the

table that perplexity is a bad indicator for authorship attribution performance.
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The poor accuracy is more likely due to the use of models not optimized for

the authorship attribution task. The LSTM results reported here also failed to

outperform the previous work which used simpler approaches (see Table 4.7).

We observed that optimizing the LSTM-based language model separately

from authorship attribution is ineffective since each author’s language model

needs to be optimized individually. This process involves hyper-parameters tun-

ing and optimizing the model on the training data via backpropagation. Consid-

ering the authorship attribution dataset may consist of a large number of authors,

the optimization process will be computationally expensive. A possible direction

to address this problem is by jointly training the language model and authorship

attribution via Multi Task Learning (MTL) (Caruana, 1993). In this way, the

language modeling can be used as a second objective function for authorship at-

tribution. Previous work applied this approach for sequence modeling tasks (Rei,

2017).

Model Judgment CCAT10 CCAT50 IMDb62

Previous work

SVM with affix+punctuation 3-

grams (Sapkota et al., 2015)

- 78.80 69.30 -

SVM with 2,500 most frequent 3-

grams (Plakias and Stamatatos, 2008)

- 80.80 - -

Token SVM (Seroussi et al., 2013) 91.15 - - 92.52

Authorship attribution with topic mod-

els (Seroussi et al., 2013)

93.64 - - 91.79

Character-level n-gram LM 80.78 75.00 64.76 87.39

Word-level n-gram LM 80.55 59.60 46.52 68.00

Character-level LSTM-based LM 75.92 75.60 66.20 86.03

Table 4.7: Comparison against previous results.
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4.4 Summary

In this chapter we presented the evaluation of n-gram and LSTM-based language

models for the authorship attribution task. We demonstrated how the n-gram

language model can be used to address the feature selection problem which is

commonly faced in the task. Furthermore, we implemented an LSTM-based lan-

guage model which can capture information from longer context sequences. We

provided a thorough analysis on the model performance and explored limitations

of the approaches described.
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Chapter 5

Continuous N -gram

Representations for Authorship

Attribution

In Chapter 4, it was demonstrated that information from long context sequences

does not really benefit the authorship attribution performance. Our LSTM-based

results failed to outperform the previous work which used simpler approaches such

as linear classifier with bag-of-words features. Information from local structure

which can be captured by character and word n-gram features, is likely to be

more useful for authorship attribution (Kjell, 1994; Forsyth and Holmes, 1996;

Stamatatos, 2006; Peng et al., 2003; Keselj et al., 2003; Juola, 2004; Stamatatos,

2013; Schwartz et al., 2013). Furthermore, word n-grams can represent docu-

ment topic (Coyotl-Morales et al., 2006; Wang and Manning, 2012) while char-

acter n-grams have been shown to be effective for capturing stylistic, topical and

morphological information (Koppel et al., 2011; Sapkota et al., 2015). However,

previous work in authorship attribution mostly relied on discrete feature repre-

sentations which suffer from sparsity and do not consider semantic relatedness

between features (Mikros and Perifanos, 2013; Joulin et al., 2017).

This chapter aims to address this problem by introducing the use of con-

tinuous n-gram representations for authorship attribution tasks. Continuous

representations have been shown to be helpful in a wide range of natural lan-

guage processing tasks (Mikolov et al., 2013b; Bansal et al., 2014; Joulin et al.,

2017; Li et al., 2016; Rahimi et al., 2017). Unlike previous work, each n-gram

is represented in continuous vector space, and these representations are learned

in the context of the authorship attribution tasks considered. More specifically,

continuous n-gram representations are learned jointly with the classifier as a
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feed-forward neural network, combining the advantages of n-gram features and

continuous representations. Furthermore, the model does not need any external

linguistic resources such as Wordnet, that have limited coverage and/or are not

available for many domains and languages. The proposed method outperforms

the prior state-of-the-art approaches on two out of four datasets while producing

comparable results on the remaining ones. In addition to that, we apply the re-

sults of the analysis in Chapter 3 via a novel extension of the proposed approach

and obtain improvement on two datasets.

This chapter also explores the use of the author’s demographic profiles. A

significant amount of work focuses on demographic profile based tasks such as

gender and age identification (see Section 2.3.3). Research in this area has found

that there are differences in the writing of people from different demographic

categories. Demographic profiles may provide information about the author of a

document. Some previous work demonstrated that improvements can be obtained

in some tasks by taking account of demographic information (Hovy, 2015; Benton

et al., 2017). However there have been no previous attempts to explore this for

the authorship attribution. In this chapter, Multi Task Learning (MTL) is used

to jointly learn authorship attribution, gender and age. Experiments implement

two different MTL models. Results show that incorporating gender and age

information produces a small, but consistent improvement in performance.

The main content of this chapter is split into three sections. First, Section 5.1

presents the proposed continuous n-gram representation models and experiments

which were performed on four different datasets (Judgment, CCAT10, CCAT50

and IMDb62). In this section, some results and analysis are also described.

Second, in Section 5.2, we describe our novel extension of the proposed continuous

n-gram representation models and show how the analysis in Chapter 3 helps to

improve the attribution accuracy. Third, in Section 5.3 the proposed multi task

learning models are presented. The discussion of the performed experiments on

The Blog Authorship corpus is included in this section. Finally, the conclusions

of this chapter are reported in the last section.

5.1 Continuous N -gram Representations

In this section, we present our proposed continuous n-gram representation models

and describe our experiments in four authorship attribution datasets. We begin

this section with a short overview of word embedding which is closely related to

our proposed model.

Word embedding is a distributed word representation where an individual
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word is represented as a d-dimensional real-valued vector. Each word is mapped

into a vector and the vector values are learned via a neural network-based model

(Bengio et al., 2003; Mikolov et al., 2010). One of the main advantages of this

representation is in generalization power (Goldberg and Hirst, 2017). Words

which have similar semantic and grammatical roles are likely to have similar

representations (Bengio et al., 2003). Given these following sentences: The cat is

walking in the bedroom and A dog was running in a room, the word cat and dog

will have similar representations as they are used in similar ways.

Mikolov et al. (2013c) proposed Word2Vec, a predictive model for learning a

standalone word embedding from training corpus. He demonstrated that syntac-

tic and semantic regularities in language can be captured using vector-space rep-

resentations. The regularities simply can be characterized by a relation-specific

vector offset. As an example, the distance between words king and queen are sim-

ilar as the distance between words man and woman as illustrated in Figure 5.1.

As part of Word2Vec, two different learning models are introduced: the Contin-

uous Bag-of-Words model (CBOW) and the Skip-Gram model (Mikolov et al.,

2013a). The CBOW model learns the word embedding by predicting the target

words from source context words. In contrast, the Skip-Gram model predicts the

surrounding words from the target words.

Figure 5.1: Illustration of word in vector space (source:

https://www.tensorflow.org/)

We adopt the idea of word embedding in our proposed models. However,

instead of learning word representations, our models learn the representations of

n-gram features in the context of the authorship attribution task.
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5.1.1 Model Architecture

A shallow neural network architecture, fastText, proposed by Joulin et al. (2017)

was applied to learn the n-gram feature representations jointly with the classifier.

This model is similar to a standard linear classifier, but instead of representing a

document with a discrete feature vector, the model represents it with a continuous

vector which is obtained by averaging the continuous vectors of the features

present. More formally, fastText predicts the probability distribution over the

labels for a document as follows:

ŷ = softmax(BAx) (5.1)

where x is the bag of features for the document, the weight matrix A is a dic-

tionary containing the embeddings learned for each feature, and B is a weight

matrix that is learned to predict the label correctly using the resulting repre-

sentations (essentially weighted feature embeddings). For a set of M documents,

training involves minimizing the negative log-likelihood over the classes:

L = − 1

M

M∑
m=1

ymlogŷm (5.2)

where ym is the target distribution and ŷm is the output distribution for a partic-

ular document m. The model is illustrated in Figure 5.2. The model consists of

an embedding layer (hidden layer), average pool and output layer. The embed-

ding layer is used to learn the continuous representations of the n-gram features.

The representations are then averaged and fed into the output layer.

Since the documents in this model are represented as bags of discrete fea-

tures, sequence information is lost. To recover some of this information feature

n-grams are considered, similar to the way convolutional neural network architec-

tures incorporate word order (Kim, 2014) but with a simpler architecture. Even

though the proposed model ignores long-range dependencies in sentences that

can be captured using recurrent neural network architectures that are commonly

used in natural language processing tasks (Mikolov et al., 2010; Luong et al.,

2013), topical or stylistic information mostly found in shorter word or character

sequences for which the shallow neural network architecture with n-gram fea-

ture representations is likely to be sufficient, while much faster to run since the

documents considered are much longer than the single sentences which RNNs

typically model.
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Figure 5.2: FastText model

5.1.2 Experiment

Experiments were performed using four datasets: Judgment, CCAT10, CCAT50

and IMDb62 (see Section 3.1).

5.1.2.1 Model Variations

Experiments were performed with three variations of the approach:

• Continuous word n-grams. In this model word unigrams and bigrams

were used. The vocabulary size was set to 700 words.

• Continuous character n-grams. Following our previous experimental

results in Section 4.1, n-grams up to and including a length of four were

used. Previous work (Sanderson and Guenter, 2006), also found it to be

the best n value for short English texts. Following Zhang et al. (2015) the

vocabulary size was set to 70 characters including letters, digits, and some

punctuation marks.

• Continuous word and character n-grams. This model combines word

and character n-gram features.

5.1.2.2 Hyperparameters Tuning and Training Details

For all four datasets the Adam update rule (Kingma and Ba, 2014) was used

to train the model. To avoid overfitting, validation loss was monitored using

early stopping. Since none of the datasets have a standard development set,

10% of the training data was picked randomly for that purpose. Both word and

character embeddings were initialized using Glorot uniform initialization (Glorot
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and Bengio, 2010). Following Keras’s (Chollet, 2015) implementation of fastText,

the softmax function was used in the output layer. This experiment did not use

the hashing trick (Weinberger et al., 2009) which was unnecessary for relatively

small sized datasets.

For the Judgment, CCAT10, and CCAT50 datasets, an embedding layer with

a size of 100, dropout rate of 0.75, learning rate of 0.001 and mini-batch size of

5 were used. The number of epochs was set to 150. The values of dropout rate

and mini-batch size were chosen via a grid search on the CCAT10 development

set. Other hyper-parameter values (i.e. learning rate and embedding size) were

fixed. For IMDb62, the same dropout rate as above was used. The learning rate,

embedding size, mini-batch size and number of epochs were set to 0.01, 50, 32

and 20 respectively, by considering the dataset has a relatively large number of

training instances.

5.1.3 Results and Discussion

Table 5.1 presents the comparison of the proposed approaches against the previ-

ous state-of-the-art methods on the four authorship attribution datasets consid-

ered. Overall, results show the effectiveness of continuous n-gram representations

which outperform the previous best results on the CCAT50 and IMDb62 datasets.

In the Judgment dataset, the models obtained comparable results with the previ-

ous best. However as can be seen in the table, the accuracy on CCAT10 is lower

than the one reported in the previous work.

5.1.3.1 Word vs Character

The results in Table 5.1 demonstrate that performance is higher using character

models. In particular, it is found that models which employ character level n-

grams appear to be more suitable for datasets with a large number of authors, i.e.

CCAT50 and IMDb62. To explore this further, an additional experiment was ran

by varying the number of authors on a subset of IMDb62. For each of the authors

200 documents were used, with 10% of the data set as the development set and

another 10% as the test set. Figure 5.3 shows a steep decrease in the accuracy

of word models as the number of authors increases. The drop in accuracy of the

character n-gram model is less pronounced.

Character models also achieved a slightly better result on the Judgment

dataset which consists of only three authors. This can be explained by the fact

that the documents in this corpus are significantly longer; almost ten and four

times longer than those in IMDb62 and CCAT50 respectively (see Table 3.1).
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Model Judgment CCAT10 CCAT50 IMDb62

Previous work

SVM with affix+punctuation 3-

grams (Sapkota et al., 2015)

- 78.80 69.30 -

SVM with 2,500 most frequent 3-

grams (Plakias and Stamatatos, 2008)

- 80.80 - -

Token SVM (Seroussi et al., 2013) 91.15 - - 92.52

Authorship attribution with topic mod-

els (Seroussi et al., 2013)

93.64 - - 91.79

Chapter 4

Character-level n-gram LM 80.78 75.00 64.76 87.39

Word-level n-gram LM 80.55 59.60 46.52 68.00

Character-level LSTM-based LM 75.92 75.60 66.20 86.03

Proposed models

Continuous n-gram words (1,2) 90.31 77.80 70.16 87.87

Continuous n-gram char (2,3,4) 91.29 74.80 72.60 94.80

Continuous n-gram words (1,2) and char

(2,3,4)

91.51 77.20 72.04 94.28

Table 5.1: Comparison against previous results.

The large numbers of word n-grams make it more difficult for the model to learn

good parameters for them. Combining word and character n-grams only pro-

duced a very small improvement on the Judgment dataset. We argue this was

probably due to the more parameters to learn which are not suitable for the rel-

atively small size datasets involved in our experiments. In CCAT10, character

models were not as effective as word or character-word models. Our observation

is that the high topical diversity between authors in CCAT10 is the main factor

that influences the model’s performance.
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Figure 5.3: Accuracy on IMDb62 data subset with varying number of authors

5.1.3.2 Domain Influence

Most previous work on authorship attribution has concluded that content words

are more effective for datasets where the documents can be discriminated by topic

(Peng et al., 2004; Luyckx and Daelemans, 2010). Seroussi et al. (2013) show that

the Judgment and IMDb62 datasets fall into this category and approaches based

on topic models achieve high accuracy (more than 90%). However, the results

in Table 5.1 demonstrate that stylistic information from continuous character n-

grams outperforms word-based approaches on some datasets. In addition, these

results also support the superiority of character n-grams that has been reported

in previous work (Peng et al., 2003; Stamatatos, 2013; Schwartz et al., 2013). We

observed that the low topical diversity between authors in Judgment and IMDb62

influences the effectiveness of word models in identifying the correct authors. On

the other hand, character models provide information about the author’s writing

style which is more useful in this type of dataset. The experiments in Chapter 3

confirm these observations.
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5.1.3.3 Feature Contributions

An ablation study was performed to further explore the influence of different types

of features by removing a single class of n-gram features. For this experiment

the character model was used. Three feature types are defined including:

1. Punctuation N -gram: A character n-gram which contains punctuation

(e.g. nts, ng" ars. ay’s no-c). There are 33 punctuation marks in

total: ‘-’, ‘,’, ‘;’, ‘.’, ‘!’, ‘?’, ‘:’, “‘’, “’, ‘\’,‘\\’, ‘—’, ‘ ’, ‘@’, ‘#’, ‘$’, ‘%’,

‘˜’, ‘&’,‘*’, ‘ˆ’, “’, ‘+’, ‘=’, ‘<’, ‘>’, ‘(’, ‘)’, ‘[’, ‘]’, ‘{’, ‘}’, and the newline

symbol.

2. Space N -gram: A character n-gram that contains at least one whitespace

character (e.g. to the by a ng ) .

3. Digit N -gram: A character n-gram that contains at least one digit (e.g.

F-16 6,7 3.1 PX50) .

Judgment (∆) CCAT10 (∆) CCAT50 (∆) IMDb62 (∆)

all features (char model) 91.29 74.80 72.60 94.80

(–) punctuation n-grams 85.77 (-5.52) 73.80 (-1.00) 68.80 (-3.80) 87.90 (-6.90)

(–) space n-grams 85.55 (-5.74) 71.80 (-3.00) 70.20 (-2.40) 92.70 (-2.10)

(–) digit n-grams 90.91 (-0.38) 75.60 (+0.80) 71.28 (-1.32) 94.90 (+0.10)

(–) bi-grams 91.28 (-0.01) 76.20 (+1.40) 72.08 (-0.58) 95.12 (+0.32)

(–) tri-grams 86.88 (-4.41) 74.80 (0.00) 71.84 (-0.76) 95.40 (+0.60)

(–) four-grams 86.81 (-4.48) 74.40 (-0.40) 71.16 (-1.44) 92.76 (-2.04)

Table 5.2: Results of feature ablation experiment.

Table 5.2 demonstrates that removing punctuation, space and character four-

grams leads to performance drops on all of the datasets. This is because some

of those n-grams such as the to and are function words which are essential on

capturing the writing style of the authors. The author’s unconscious behavior in

using punctuation is also a good feature for authorship attribution (Grieve, 2007;

Sapkota et al., 2015). On the other hand, leaving out digit n-grams and bi-grams

improves accuracy on the CCAT10 dataset. The CCAT10 dataset which was con-

structed from corporate/industrial on-line news contains some texts dominated

by digits (e.g. articles related to the stock exchange). However, using digits in

text usually needs to follow specific formating e.g. digits in time followed by

AM/PM, a year is written in four digits format. Thus, these features are not
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really effective for identifying the author. Removing character tri-grams affects

the performance on Judgment, since it may capture the author’s writing styles

which are important for this dataset. However, character tri-grams tend to be

less useful on other datasets.

5.2 Extending The Continuous N -gram Repre-

sentation Models

In Chapter 3, we have described experiments on the relationship between the

effectiveness of different types of features for authorship attribution with different

characteristics of datasets. We have presented feature ablation studies which

covered three different types of features: style, content and hybrid. Content-

based features tend to be suitable for datasets with high topical diversity such

as the one constructed from on-line news. On the other hand, datasets with

less topic variance e.g. legal judgment and movie review, fit with style-based

features. In this section, we aim to further validate our findings in Chapter

3. We extend the model presented in Section 5.1 by incorporating each feature

type (style, content and hybrid) as an auxiliary feature represented in discrete

form. Auxiliary features provide additional information related to the dataset

characteristics.

Given xaux as a normalized auxiliary feature frequency vector, V is the weight

applied to the features and f is the activation function (ReLu), the hidden layer

h performs the following computation:

h = f(V xaux) (5.3)

The probability distribution over the label for a document then can be described

as:

ŷ = softmax(Wout[Ax, h]) (5.4)

where x is the frequency vector of features for the document, A is the embed-

ding matrix, Wout is the weight matrix of the output layer and [Ax, h] is the

concatenation vector of Ax and h. Figure 5.4 illustrates the model architecture.

For experiment in this section, we use the character-based model as the base-

line, since it outperformed the state-of-the-art on the CCAT50 and IMDb62

datasets, while producing comparable results on the remaining two.
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Figure 5.4: The extended continuous n-gram representation model with auxiliary

features

5.2.1 Hyper-parameter Tuning

All character n-gram embeddings in the model were initialized using Glorot uni-

form initialization (Glorot and Bengio, 2010). We used the best hyper-parameter

values for each of the datasets which have been tuned in the development set via

a small grid search over all combinations of embedding size and dropout rate

(specifically dropout in the concatenation layer). The size of the hidden auxil-

iary layer was set to 2. For the rest of the hyper-parameters, we used values from

the baseline model (the continuous character n-grams). For Judgment, CCAT10

and CCAT50, we set the number of epochs to 250, and used 100 for IMDb62.

For all datasets, early stopping was used on the development sets and the models

were optimized with the Adam update rule (Kingma and Ba, 2014).

5.2.2 Experimental Results

Table 5.3 presents the results of the experiment. It can be seen that for each

of the four data sets there is at least one feature type which leads to improved

results when incorporated into the model. Our results demonstrate that better

performance can be achieved by taking the data characteristics into account
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Dataset baseline +style +content +hybrid

Judgment 91.29 91.07 91.51 91.21

CCAT10 74.80 76.00 76.20 74.80

CCAT50 72.60 72.72 72.88 71.76

IMDb62 94.80 95.93 95.59 95.26

Table 5.3: Extended model results

when choosing authorship attribution features. Moreover, the results provide

evidence that character n-grams which have been known as the typical go-to

features do not perform equally well in all types of datasets. For the three

datasets (CCAT10, CCAT50 and IMDb62) the best results are obtained using the

feature type identified as being most useful in Section 3.3. The only exception we

found was that using the style features does not improve results on the Judgment

dataset as we had expected. The relatively poor performance of the style features

may be due to the baseline model (the continuous character n-grams) which

effectively captured the author’s writing style. Thus the addition of auxiliary

style features did not lead to any improvement.

The results reported here for the CCAT50 and IMDb62 datasets outperform

the previously best reported results presented in Section 5.1 and the model

reported here therefore represents a new state-of-the-art performance (see Ta-

ble 5.4).
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Model Judgment CCAT10 CCAT50 IMDb62

Previous work

SVM with affix+punctuation 3-

grams (Sapkota et al., 2015)

- 78.80 69.30 -

SVM with 2,500 most frequent 3-

grams (Plakias and Stamatatos, 2008)

- 80.80 - -

Token SVM (Seroussi et al., 2013) 91.15 - - 92.52

Authorship attribution with topic mod-

els (Seroussi et al., 2013)

93.64 - - 91.79

Chapter 4

Character-level n-gram LM 80.78 75.00 64.76 87.39

Word-level n-gram LM 80.55 59.60 46.52 68.00

Character-level LSTM-based LM 75.92 75.60 66.20 86.03

Chapter 5.1

Continuous n-gram words (1,2) 90.31 77.80 70.16 87.87

Continuous n-gram char (2,3,4) 91.29 74.80 72.60 94.80

Continuous n-gram words (1,2) and char

(2,3,4)

91.51 77.20 72.04 94.28

The extended model 91.51 76.20 72.88 95.93

Table 5.4: Comparison against previous results.
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5.3 Improving attribution performance using the

author’s demographic profile

The task of authorship attribution can be seen as a way to model authors based on

their characteristics such as topical preferences and writing style. A large number

of studies have used similar characteristics to model the author’s demographic

profiles such as age, gender, personality and occupation (see Section 2.3.3). An

interesting finding from recent work is that learning those demographic profiles

jointly with text classification tasks might create opportunities to model coincid-

ing influence factors among them (Benton et al., 2017).

As an example, Hovy (2015) evaluated the effect of age and gender informa-

tion on classification performance in three NLP tasks: sentiment analysis, topic

detection and author attribute classification. Results from his experiments show

consistent improvements across tasks and languages. He argued that the differ-

ences between each demographic group’s use of language are the main reason for

improvement. Similar results were obtained by Benton et al. (2017) who used

Multi Task Learning (MTL) to model multiple mental health conditions. By per-

forming experiments with nine different auxiliary tasks, he observed that more

accurate predictions were obtained when the right set of tasks are chosen. For

example prediction of a bipolar condition achieved the best performance when

prediction of suicide attempts and depression were used as auxiliary tasks. Fur-

thermore, some tasks were also found to be similar: e.g. a model for predicting

suicide attempts may also be good at predicting anxiety.

MTL has been known to help improve the performance of single task models

(STL) (Caruana, 1993). Caruana argued that information provided by auxil-

iary tasks act as a domain-specific inductive bias for the main tasks. However,

previous work reported mixed results which shows MTL does not always guar-

antee improvement (Klerke et al., 2016; Luong et al., 2016; Mart́ınez Alonso and

Plank, 2017; Søgaard and Goldberg, 2016). Studies found that the performance

improvement is heavily influenced by the choice of auxiliary tasks (Bingel and

Søgaard, 2017).

In this section, experiments were conducted by extending the first model in

Figure 5.2 to use MTL. Using an MTL framework, the authorship attribution

tasks are learned in parallel with two other tasks: age and gender identification.

According to Schler et al. (2006), there are noteworthy differences between de-

mographic groups’ use of certain stylistic and content features. The most notable

differences are in the usage of blog words, pronouns, determiners and preposi-

tions. Compared to other age groups, teenagers more commonly use blog words
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such as lol, haha, ur and pronouns such as I, you, she, he. In addition, their

averaged post lengths are the shortest among the age groups. In contrast, peo-

ple in the 30s age group tend to use more prepositions and determiners in their

writings. Different writing styles are also found between gender groups. Pro-

nouns, negation words and blog words are more commonly used by females. On

the other hand, male bloggers use more hyperlinks. In terms of content, topical

preferences of each age group reflect their concerns at the time of writing. For

example, teenagers are more concerned about friends and mood swings. Thus,

their posts are dominated by topics related to happy, boring, homework. People

in their 20s discuss more about college life, since most of them are students, while

topics related to marriage, family life, financial concerns and politics are com-

monly discussed by people in their 30s. People in different gender groups are also

have different topical interests. Female bloggers tend to write more ‘personal’

writing, while posts by male bloggers are dominated by topics related to poli-

tics and technology (see A.2 for statistic of The Blog Authorship Corpus). This

section will explore the benefits of age and gender identification for authorship

attribution.

5.3.1 Multi Task Learning (MTL) model

In this experiment, we used hard parameter sharing in a deep neural network

approach (Caruana, 1993). This approach works by sharing some of the hidden

layers so that it allows the model to learn a joint representation for multiple tasks.

We used the character-level neural network model presented in Section 5.1 as the

baseline architecture for our MTL experiments. Our MTL model is presented

in Figure 5.5. First, an averaged continuous representation for a document is

learned via an embedding layer (hidden layer). This joint-tasks representation

is then fed into the corresponding task-specific output layers. The prediction

probabilities for a particular task p is computed by modifying the Equation 5.1:

ŷ(p) = softmax(B(p)Ax) (5.5)

where B(p) is the weight matrix in the output layer. Given P related tasks, the

global loss function is the linear combination of the loss function for all tasks.

φ =
P∑

p=1

λpL(ŷ(p), y(p)) (5.6)

L(ŷ(p), y(p)) is loss function for particular task p (see Equation 5.2) and λp is the

weights for each task p which is used to control the importance of the task’s loss.
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The hard parameter sharing model is easy to implement and known to be an

efficient regularizer (Baxter, 2000; Søgaard and Goldberg, 2016)

· · ·x2x1 xN−1 xN

embedding layer

average pool

out layer (main task) out layer (aux task)

activation (main task) activation (aux task)

Figure 5.5: Multi task learning (MTL) model

5.3.2 Experiments

Experiments were conducted to observe the effect of auxiliary tasks (gender and

age identification) on the main task (authorship attribution).

5.3.2.1 Data set

For this experiment, subsets of The Blog Authorship Corpus (Schler et al., 2006)

were used. The corpus consists of 681,288 posts and over 140 million words from

19,320 bloggers collected from blogger.com in August 2004. Unlike the other

datasets (Judgment, CCAT10, CCAT50 and IMdb62), this corpus provides addi-

tional information about the author including gender, age, industry and astrologi-

cal sign. The Blog Authorship corpus consists of three age groups: 10s (age 13-17)

with 8240 posts, 20s (age 23-27) with 8086 posts and 30s (age 33-47) with 2994

posts. For each age group there is an equal number of male and female bloggers.

Although this corpus contains a large number of authors, the number of posts per

author varies. In addition to that, as the blog posts are considered more informal,

some authors can have either very short posts (consisting of only a few words) or

relatively long posts (see Figure 5.6). The corpus is available for download from

the following link http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
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SAMPLE POST 1

*distorted electric guitars* Duh, duh duhn ... da, da, da, da, dah ...

duhn, dunh! I am 45% evil? I could go either way. I have sinned

quite a bit but I still have a bit of room for error. My life is a tug

of war between good and evil. Are you evil find out at Hilowitz.com

Silly on-line tests!!! I demand a re-count! Some of the questions were

only true because of stuff from my past, so I’m probaby less evil now,

maybe 35% evil or so. Either way, I’m more good that evil . . . so

the battle is not lost. Must . . . keep . . . fighting . . . against . . . evil!

SAMPLE POST 2

okay im having trouble the blog so bear with me......

Figure 5.6: Snippets from The Blog Authorship Corpus

For the purpose of the experiments in this section, only authors with at least

800 posts were selected and 500 posts with a minimum of 200 characters were

chosen for each of the authors. The numbers for each gender and age group were

balanced.

5.3.2.2 Model

Four different models were implemented, including non-neural network Single

Task Learning (STL) models as the baseline approaches. Details for each of the

models are given as follows:

• Single Task Learning Feed- Forward Neural Network Model (STL-

FNN)

For the single task learning model, experiments were performed by using

the character-level feed forward neural model described previously in Sec-

tion 5.1. The model works by representing character n-gram features by

continuous representations and learning the representations jointly with the

authorship attribution classifier.

• Multi Task Learning Model (MTL1)

In this model, authorship attribution was jointly learned with two auxiliary

tasks: age and gender identification. Figure 5.5 illustrates the multi task

model where the embedding layer is shared between all tasks. Each task

then has its own output layer and activation functions. The model is trained

to minimize the global loss function (Eq. 5.6). Shared weights (A) and all

task-specific weights (B(p)) are updated in parallel.
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• Multi Task Learning Model (MTL2): This model is similar to MTL1

with a slightly different procedure on the training phase. First, both shared

weights (A) and all tasks-specific weights (B(p)) were trained jointly for

n-epochs. After this initial joint training, only the authorship attribution-

specific weights (main task) were updated for another m-epochs. Using

this approach, previous work by Benton et al. (2017) reported significant

improvement over the first model (MTL1). They argued that updating

shared weights (A) and all task-specific weights (B(p)) in parallel, might

cause lower performance on different tasks, even though the global loss is

decreasing. This can be minimized by training only the main task weights

for more epochs.

• Non-Neural Network Single Task Learning (STL non-NN) For the

non-neural network STL, we used a Support Vector Machine (SVM) and

Logistic Regression (LR). Similar to the STL-FNN and MTL models, for

both SVM and LR, we used character bi-grams to four-grams as features.

For each n-gram we used a total of 2500 features. This is an optimal

value according to our experimental results in Section 4.1.3 and previous

work (Stamatatos, 2013). Results on the validation set show the RBF kernel

performs better than the linear kernel for SVM. All LR hyper-parameters

were set to default. We used SVM and LR implementations from Scikit

Learn (Pedregosa et al., 2011).

model aux task batch size learning rate

STL-FNN - (5,5,5,5,5,5) (5x10-4;5x10-4;5x10-4;5x10-4;5x10-4;5x10-4)

MTL1

age (10,5,10,25,25,25) (5x10-4;10-3;10-3;5x10-4;5x10-4;5x10-4)

gender (10,25,5,5,5,10) (5x10-4;5x10-4;10-3;5x10-4;5x10-4;10-3)

age & gender (10,10,25,5,5,25) (5x10-4;5x10-4;10-3;5x10-4;10-3;5x10-4)

MTL2

age (5,10,10,10,25,25) (5x10-4;10-3;10-3;5x10-4;5x10-4;5x10-4)

gender (5,25,5,10,25,25) (5x10-4;5x10-4;10-3;5x10-4;5x10-4;10-3)

age & gender (25,10,10,25,25,25) (5x10-4;5x10-4;10-3;5x10-4;10-3;5x10-4)

Table 5.5: Details of optimum hyper-parameters for each model and each

number of authors
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5.3.2.3 Hyper-parameter tuning and training details

In order to provide a fair comparison, certain hyper-parameters were set to the

same values for both STL and MTL including embedding size (150), layer ini-

tialization (Glorot Uniform) and dropout (0.75). Due to limited computational

resources, only two hyper-parameters were optimised, batch size (5, 10, 25)

and learning rate (0.001, 0.0005). The process for searching optimum hyper-

parameters was done via grid search. Adam was chosen as the default optimizer,

as it converges relatively faster compared to the other optimizers. The number

of epochs was set to 200. Validation losses during training were monitored us-

ing early stopping. Details of the optimum hyper-parameters for each model are

presented in Table 5.5. The single task model (STL-FNN) tends to produce the

best performances with small batch sizes and learning rates. Multi task models

achieved their optimum performances with larger batch sizes.

5.3.2.4 Results and Analysis

n authors
STL non-NN

STL-FNN
MTL1 MTL2

SVM LR (a) (g) (a+g) (a) (g) (a+g)

2 95.10 95.40 95.50 95.40 95.40 95.35 95.45 95.40 95.25

4 89.23 91.30 89.58 89.90 89.98 89.98 89.625 90.00 89.88

10 74.52 75.96 78.77∗ 78.73 78.51 78.98∗† 78.58 78.38 78.74

20 63.67 64.63 71.28∗ 71.35 71.34 71.29 71.27 71.25 71.38∗

30 58.12 59.28 66.64∗ 66.87 66.79 66.82 66.87 66.91 66.93∗

40 52.31 52.97 62.36∗ 62.25 62.39 62.41∗ 62.29 62.36 62.37

Table 5.6: Accuracy of several models on the authorship attribution task.

MTL results were obtained with certain auxiliary tasks including: (a):age

identification; (g):gender identification; (a+g):age and gender identification.

Significant improvement over the LR baseline at p=0.05 is denoted by ∗ and

over the STL model by †
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Results for all models are presented in Table 5.6. We performed experiments

with different numbers of authors. For each number of authors, results were

averaged across 10 different sets. It is clear that neural network models (STL-

FNN, MTL1 and MTL2) consistently produced better accuracies compared to

non-neural network models (SVM and LR) particularly on the tasks with higher

numbers of authors. Starting from 10 authors, there is a significant difference

in the accuracy, while for fewer authors (2 and 4), non-neural models obtained

similar or even better results. The results imply that the size of training data

becomes an important factor which influences the neural network models per-

formance. The size of training data grows as the more numbers of authors are

added.

To gain insights into the classification results, confusion matrices were gener-

ated for each of the models. Figures 5.7, 5.8, 5.9 and 5.10 show confusion matrices

for authorship attribution with 10 authors. The rows indicate the predicted la-

bel, whereas the correct label is indicated by the columns. For experiments with

10 authors, the best MTL1 result was obtained when using the model with age

and gender as the auxiliary tasks. From the matrices, it can be seen that MTL1

successfully outperformed the non-neural network STL (SVM and LR) and STL-

FNN models (see Figure 5.7). As can be observed from Figures 5.8, 5.9 and 5.10,

all the STL models (SVM, LR and STL-FNN) made more incorrect predictions

which mistakenly labeled author 7 as one of the other authors. MTL1 with age

and gender identification improved the performance up to 94% in accuracy by

lowering the incorrect predictions in the other classes (0, 1, 3, 4). We argue

that the improvement is due to the variations of language use between each de-

mographic group. As an example, authors 1 and 7 are identified as males from

different age groups (author 1 in his 20s, while author 7 in the 10s) and with dif-

ferent topical interests. Blog posts written by author 1 are dominated by topics

related to computer, internet, email, and server, while author 7 mostly discussed

topics related to anime, manga, japanese, and movie.

The effectiveness of MTL models is also supported by the results from Ta-

ble 5.6 which indicate consistent improvements with an increasing number of

authors. This results agree with the previous experiments conducted by Hovy

(2015) and Benton et al. (2017). Age and gender identification serve as regu-

larizers for authorship attribution. As shown in Figures 5.11 and 5.12, training

and validation losses in MTL1 converged more slowly than STL-FNN. However,

it is hard to identify which auxiliary task has the most important contribution

towards the improvements. As can be seen from Table 5.6, in most cases adding

both age and gender identification result in higher accuracy gains. Restricting
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Figure 5.7: Confusion matrix of MTL1 on the authorship attribution task with

10 authors

Figure 5.8: Confusion matrix of SVM on the authorship attribution task with 10

authors
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Figure 5.9: Confusion matrix of LR on the authorship attribution task with 10

authors

Figure 5.10: Confusion matrix of STL-FNN on the authorship attribution task

with 10 authors
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Figure 5.11: Training and validation losses of STL-FNN models

Figure 5.12: Training and validation losses of MTL1 models for authorship at-

tribution with 10 authors (MTL1 model with the best accuracy).
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the auxiliary task tends to hurt the accuracy of the attribution task. In contrast

to Benton et al. (2017), we observed that there is no significant improvement

obtained by training only the main task weights for more epochs (MTL2).

Nevertheless, apart from the obtained improvement, we found that training

the MTL framework is challenging. Through the performed experiments, we

observed that MTL is sensitive to hyper-parameter settings (e.g. batch size and

learning rate). Furthermore, as has been pointed out in previous work (Caruana,

1996; Bingel and Søgaard, 2017; Benton et al., 2017) the choice of auxiliary task

is essential in regard to the main task performance.

5.4 Summary

This chapter proposed continuous n-gram representations for authorship attri-

bution. Using four authorship attribution datasets, it has been shown that the

proposed model is accurate in identifying the writing style of the authors when

compared to a strong baseline. Further improvement was obtained by incorpo-

rating auxiliary feature types discussed in Chapter 3 into the proposed model.

In addition to that, experiments using MTL demonstrate the benefit of age and

gender identification to the authorship attribution task. Results in experiments

performed on The Blog Authorship corpus demonstrate the effectiveness of both

tasks as a regularizer for authorship attribution as MTL yields small but consis-

tent improvement over single task learning.
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Chapter 6

Conclusions and Future Work

This thesis explored a variety of authorship attribution approaches in different

types of datasets. This chapter presents a summary of contributions and findings

throughout the thesis and proposes directions for future research.

6.1 Summary of Thesis Contributions

As stated in Chapter 1, the main goal of this thesis was to provide more clear

direction of the authorship attribution approaches by exploring four different

techniques implemented on various types of datasets. We believe that we have

achieved this goal by tackling five subproblems: (1) the difficulties in determining

which types of information will be most useful for a particular authorship attri-

bution dataset; (2) evaluation of the effectiveness of n-gram language models on

various types of datasets; (3) the limitation of n-gram-based language model on

capturing information from long context sequences; (4) data sparsity and the

inability of discrete representations to capture semantic relatedness between fea-

tures; and (5) implementation of an authors’ demographic profiles to improve

authorship attribution performance.

In Chapter 3, we proposed a novel analysis using topic modeling to examine

the conditions under which each type of authorship attribution feature is use-

ful. Results from the analysis showed style-based features are more effective for

datasets in which authors discuss similar topics. On the other hand, content-

based features are generally more effective when there is more diversity between

the topics discussed in the dataset. The hybrid features appear to behave sim-

ilarly to the content-based features since they are most useful when the topic

diversity is high. In addition, we have demonstrated that the results of the anal-

ysis are useful for both neural and non-neural network authorship attribution
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models.

In Chapter 4, we focused on investigating the effectiveness of language models

for authorship attribution. We begin our contributions by presenting the feature

selection problems that usually occur in authorship attribution. We have proved

that the optimal values in feature selection which are suggested by the previous

work are not applicable for all types of datasets. We argue that factors such as an

imbalanced dataset and topical similarity between authors determine the optimal

values in feature selection. This analysis prompted us to implement the n-gram

language model approach for authorship attribution which has been claimed in

previous work (Peng et al., 2003) to be effective for tackling the feature selection

problem. Using a variety of datasets, we have demonstrated that the approach is

more suitable for a dataset with higher topical diversity and/or distinct idionsyn-

cracies in writing style. Our final contribution in this area is that we developed

an LSTM-based language model for authorship attribution. From the experi-

mental results, we argue that information from long context sequences does not

benefit authorship attribution. Furthermore, we found that the language model’s

perplexity is not a good indicator for authorship attribution accuracy. Overall,

throughout this chapter we have identified the strengths and limitations of the

language model-based method.

In Chapter 5, we proposed a continuous n-gram representation for authorship

attribution. Our model learns continuous representations for n-gram features

via a neural network jointly with the classification layer. The representations

addressed the problem in discrete feature representations which suffer from data

sparsity and do not consider the semantic relatedness between features. Unlike

previous work, each n-gram is represented in continuous vector space, and these

representations are learned in the context of the authorship attribution tasks con-

sidered. The proposed model outperforms the state-of-the-art on two datasets,

while producing comparable results on the remaining two. In addition, we de-

scribe our novel extension of the proposed models and show how the analysis

in Chapter 3 helps to improve the attribution accuracy. Another contribution

is that we proposed a Multi Task Learning (MTL) model which jointly learned

an authorship attribution task with gender and age identifications. Results of

the experiments demonstrate the effectiveness of both tasks as regularizers for

authorship attribution. MTL yields small but consistent improvement over single

task learning.

In sum, in this thesis we have validated four authorship attribution models on

various types of datasets. We have demonstrated that in different circumstances,

each model and feature representation may achieve different levels of accuracy.
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Furthermore, we have provided suggestions on models and features which can

produce optimal performance given a certain type of dataset.

6.2 Future Directions

A range of authorship attribution approaches explored in this thesis can be ex-

tended into different domains or attribution forms. We outline directions for

future work:

• Constructing Standard Authorship Attribution Datasets

An important area of future work is to construct standard datasets which

enable evaluation of different methods of authorship attribution. We ar-

gue that researchers in authorship attribution are limited in exploring

more advanced methods such as neural networks due to the unavailabil-

ity of datasets with large numbers of training sets. Nevertheless, con-

structing an authorship attribution datasets is a challenging task. Juola

(2008) and (Rudman, 2012) emphasised that a good dataset has to be

constructed from clean and original writings by the authors. We believe

standard datasets will encourage the continuity of systematic work in the

authorship attribution field.

• Exploring Different Languages

The majority of previous authorship attribution work has focused on En-

glish documents. There are only a few experiments which have been per-

formed on languages other than English (Peng et al., 2003; Mikros and

Perifanos, 2013). The PAN evaluation forum organized shared tasks in

several languages, such as Dutch, Greek and Spanish (see Section 2.2), but

research progress for these languages are relatively slow. A possible direc-

tion to explore is developing an adaptive approach which can be used for

any language.

• Multi Task Learning for Authorship Attribution

In Section 4.3.5 we identified the limitations of LSTM-based language model

for authorship attribution. The model can be extended by jointly learn-

ing the language model and authorship attribution task via Multi Task

Learning (MTL). Rei (2017) recently proposed a semi-supervised MTL for

sequence labeling. It used the language model as the secondary training

objective for several sequence labeling tasks such as error detection in text,

named entity recognition, chunking and POS-tagging. The same method
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can be implemented for authorship attribution, so that the task can be opti-

mized on both the language model and the authorship attribution objective

functions.

• Neural Style Transfer for Authorship Obfuscation

Another possible extension of this work is to explore tasks related to au-

thorship attribution such as authorship obfuscation. Section 2.3.5 provides

a short review of this task. In authorship obfuscation, the original texts

are modified so that the true author can not be identified. One possible

method is by implementing an encoder-decoder LSTM (Bakhteev and Kha-

zov, 2017). The encoder reads the the original texts and represents them

as fixed-length embedding vectors. The decoder then decodes the vector

and produces the obfuscated texts. Another potential approach is neural

style transfer (Gatys et al., 2015) which was originally applied for images.

The method works by separating and recombining the content and style of

arbitrary images. A similar idea can be adopted for text documents. The

content and style of original documents are recombined with other author’s

writings to produce obfuscated texts.
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Appendix A

A.1 Predefined Function Words and Punctua-

tion

a about above after again against all am an and any are

aren’t as at be because been before being below between

both but by can’t cannot could couldn’t did didn’t do does

doesn’t doing don’t down during each few for from further

had hadn’t has hasn’t have haven’t having he he’d he’ll he’s

her here here’s hers herself him himself his how how’s i i’d

i’ll i’m i’ve if in into is isn’t it it’s its itself let’s me more

most mustn’t my myself no nor not of off on once only or

other ought our ours ourselves out over own same shan’t she

she’d she’ll she’s should shouldn’t so some such than that

that’s the their theirs them themselves then there there’s

these they they’d they’ll they’re they’ve this those through

to too under until up very was wasn’t we we’d we’ll we’re

we’ve were weren’t what what’s when when’s where where’s

which while who who’s whom why why’s with won’t would

wouldn’t you you’d you’ll you’re you’ve your yours yourself

yourselves

Figure A.1: Predefined function words

“’, ‘:’, ‘,’, ‘ ’, ‘!’, ‘?’, ‘;’, ‘.’, “‘’, ‘(’, ‘)’, ‘-’

Figure A.2: Predefined punctuation
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A.2 The Blog Authorship Corpus Details

These following tables present the statistic details of The Blog Authorship Corpus

according to age and gender profiles. The tables are presented without modifi-

cation from ? work.

feature 10s 20s 30s

maths 1.05±0.06 0.03±0.00 0.02±0.01

homework 1.37±0.06 0.18±0.01 0.15±0.02

bored 3.84±0.27 1.11±0.14 0.47±0.04

sis 0.74±0.04 0.26±0.03 0.10±0.02

boring 3.69±0.10 1.02±0.04 0.63±0.05

awesome 2.92±0.08 1.28±0.04 0.57±0.04

mum 1.25±0.06 0.41±0.04 0.23±0.04

crappy 0.46±0.02 0.28±0.02 0.11±0.01

mad 2.16±0.07 0.80±0.03 0.53±0.04

dumb 0.89±0.04 0.45±0.03 0.22±0.03

semester 0.22±0.02 0.44±0.03 0.18±0.04

apartment 0.18±0.02 1.23±0.05 0.55±0.05

drunk 0.77±0.04 0.88±0.03 0.41±0.05

beer 0.32±0.02 1.15±0.05 0.70±0.05

student 0.65±0.04 0.98±0.05 0.61±0.06

album 0.64±0.05 0.84±0.06 0.56±0.08

college 1.51±0.07 1.92±0.07 1.31±0.09

someday 0.35±0.02 0.40±0.02 0.28±0.03

dating 0.31±0.02 0.52±0.03 0.37±0.04

bar 0.45±0.03 1.53±0.06 1.11±0.08

marriage 0.27±0.03 0.83±0.05 1.41±0.13
development 0.16±0.02 0.50±0.03 0.82±0.10
campaign 0.14±0.02 0.38±0.03 0.70±0.07
tax 0.14±0.02 0.38±0.03 0.72±0.11
local 0.38±0.02 1.18±0.04 1.85±0.10
democratic 0.13±0.02 0.29±0.02 0.59±0.05
son 0.51±0.03 0.92±0.05 2.37±0.16
systems 0.12±0.01 0.36±0.03 0.55±0.06
provide 0.15±0.01 0.54±0.03 0.69±0.05
workers 0.10±0.01 0.35±0.02 0.46±0.04

Table A.1: Word frequency (per 10,000 words) and standard error by age
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feature male female

linux 0.53±0.04 0.03±0.01

microsoft 0.63±0.05 0.08±0.01

gaming 0.25±0.02 0.04±0.00

server 0.76±0.05 0.13±0.01

software 0.99±0.05 0.17±0.02

gb 0.27±0.02 0.05±0.01

programming 0.36±0.02 0.08±0.01

google 0.90±0.04 0.19±0.02

data 0.62±0.03 0.14±0.01

graphics 0.27±0.02 0.06±0.01

india 0.62±0.04 0.15±0.01

nations 0.25±0.01 0.06±0.01

democracy 0.23±0.01 0.06±0.01

users 0.45±0.02 0.11±0.01

economic 0.26±0.01 0.07±0.01

shopping 0.66±0.02 1.48±0.03
mom 2.07±0.05 4.69±0.08
cried 0.31±0.01 0.72±0.02
freaked 0.08±0.01 0.21±0.01
pink 0.33±0.02 0.85±0.03
cute 0.83±0.03 2.32±0.04
gosh 0.17±0.01 0.47±0.02
kisses 0.08±0.01 0.28±0.01
yummy 0.10±0.01 0.36±0.01
mommy 0.08±0.01 0.31±0.02
boyfriend 0.41±0.02 1.73±0.04
skirt 0.06±0.01 0.26±0.01
adorable 0.05±0.00 0.23±0.01
husband 0.28±0.01 1.38±0.04
hubby 0.01±0.00 0.30±0.02

Table A.2: Word frequency (per 10,000 words) and standard error by gender
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10s 20s 30s all

pronouns all 1316.7 1173.7 1104.4

male 1216.4 1063.0 968.7 1113.8

female 1416.9 1284.5 1240.1 1334.1

assent all 33.7 20.1 17.0

male 30.0 18.5 15.3 22.9

female 37.5 21.7 18.7 28.0

negation all 162.0 157.5 149.3

male 153.4 146.7 137.8 148.1

female 170.7 168.4 160.8 168.2

determiners all 488.9 619.9 671.5

male 542.1 661.9 715.4 619.1

female 435.7 578.0 627.6 525.0

prepositions all 1077.0 1231.9 1276.6

male 1123.5 1250.8 1296.7 1203.6

female 1030.5 1212.9 1256.5 1141.8

blogwords all 122.1 34.8 20.4

male 99.2 31.3 18.7 58.3

female 145.1 38.4 22.1 81.4

hyperlinks all 20.7 35.0 38.8

male 25.4 41.7 49.1 35.9

female 16.0 28.4 28.6 23.1

post length all 195.0 210.0 221.0

male 191.4 2017.5 204.1 201.0

female 198.8 213.6 240.3 213.0

Table A.3: Frequency (per 10,000 words) of stylistic features per gender per

age bracket

133


	1 Introduction
	1.1 Contributions
	1.2 Thesis Overview
	1.3 Published Material

	2 Background
	2.1 State of The Authorship Attribution Task
	2.2 Authorship Attribution Features
	2.2.1 Lexical Features
	2.2.2 Character Features
	2.2.3 Syntactic Features
	2.2.4 Semantic Features
	2.2.5 Bag-of-Words
	2.2.6 Feature Selection

	2.3 Authorship attribution Forms
	2.3.1 Closed Set Authorship Attribution
	2.3.2 Open Set Authorship Attribution (Authorship Verification)
	2.3.3 Author Profiling
	2.3.4 Needle-in-a-haystack Attribution Problem
	2.3.5 Adversarial Stylometry
	2.3.6 Cross-Topic and Cross-Genre Authorship Attribution

	2.4 Evaluation Forum
	2.5 Summary

	3 Exploring the Most Useful Features for Authorship Attribution
	3.1 Datasets
	3.2 Dataset Analysis
	3.2.1 Analysis using Topic Modeling
	3.2.2 Results and Discussion

	3.3 Feature Analysis
	3.3.1 Feature Ablation Experiment
	3.3.2 Results and Analysis

	3.4 Benchmark Work
	3.5 Summary

	4 Language Models for Authorship Attribution
	4.1 Feature Selection
	4.1.1 Experimental setup
	4.1.2 Value of n
	4.1.3 Influence of Feature Set Size

	4.2 N-gram based Language Modeling for Authorship Attribution
	4.2.1 Overview of N-gram Language Modeling
	4.2.2 N-gram Language modeling for Authorship Attribution
	4.2.3 Results and Discussion

	4.3 LSTM-based Language Model for Authorship Attribution
	4.3.1 Character-level Language Models with LSTM
	4.3.2 Experiment
	4.3.3 Results and Analysis
	4.3.4 The effect of perplexity on authorship attribution performance
	4.3.5 Limitation of LSTM-based language model for authorship attribution

	4.4 Summary

	5 Continuous N-gram Representations for Authorship Attribution
	5.1 Continuous N-gram Representations
	5.1.1 Model Architecture
	5.1.2 Experiment
	5.1.2.1 Model Variations
	5.1.2.2 Hyperparameters Tuning and Training Details

	5.1.3 Results and Discussion
	5.1.3.1 Word vs Character
	5.1.3.2 Domain Influence
	5.1.3.3 Feature Contributions


	5.2 Extending The Continuous N-gram Representation Models 
	5.2.1 Hyper-parameter Tuning
	5.2.2 Experimental Results

	5.3 Improving attribution performance using the author's demographic profile
	5.3.1 Multi Task Learning (MTL) model
	5.3.2 Experiments
	5.3.2.1 Data set
	5.3.2.2 Model
	5.3.2.3 Hyper-parameter tuning and training details
	5.3.2.4 Results and Analysis


	5.4 Summary

	6 Conclusions and Future Work
	6.1 Summary of Thesis Contributions
	6.2 Future Directions

	Bibliography
	A 
	A.1 Predefined Function Words and Punctuation
	A.2 The Blog Authorship Corpus Details


