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Ἀεὶ ὁ Θεὸς ὁ Μέγας γεωμετρεῖ

Τὸ κύκλου μῆκος ἵνα ὁρίσῃ διαμέτρῳ

Παρήγαγεν ἀριθμὸν ἀπέραντον

καὶ ὅν ϕεῦ! οὐδέποτε ὅλον θνητοὶ θὰ εὕρωσι.

ΝΙΚΟΛΑΟΣ ΧΑΤΖΗΔΑΚΙΣ



Abstract

The triple tangent bundle T 3M of a manifold M is a prime example of
a triple vector bundle. The definition of a general triple vector bundle
is a cube of vector bundles that commute in the strict categorical sense.
We investigate the intrinsic features of such cubical structures, introducing
systematic notation, and further studying linear double sections; a general-
ization of sections of vector bundles.

A set of three linear double sections on a triple vector bundle E yields a
total of six different routes from the base manifold M of E to the total
space E. The underlying commutativity of the vector bundle structures of
E leads to the concepts of warp and ultrawarp, concepts that measure the
noncommutativity of the six routes. The main theorem shows that despite
this noncommutativity, there is a strong relation between the ultrawarps.
The methods developed to prove the theorem rely heavily on the analysis
of the core double vector bundles and of the ultracore vector bundle of E.

This theorem provides a conceptual proof of the Jacobi identity, and a new
interpretation of the curvature of a connection ∇ on a vector bundle A. We
expect these methods to be capable of further development, and to apply
in a wider variety of situations.
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Glossary

• grid on a double vector bundle D: a pair of linear sections, see
Definition 0.2.1.

• warp of a grid on D: a section of the core vector bundle of D, see
Definition 0.2.2. It measures the lack of commutativity of the grid; see
diagram (10).

• struts over A: non-linear sections of D → A, defined by sections of
the core; see Definition 1.1.3. These project to the zero section 0B,
and were called core sections over A in [25, p. 347].

• bolt of φ: a linear section φ� of D that projects to the zero section
0B, defined by a vector bundle map φ : A→ C over M , see Definition
4.2.6.



Introduction

0.1 Some history

Double vector bundles have been implicitly present in the literature of Mathematics
since at least Dieudonné’s treatment of connection theory in [5]. Pradines was the first
to give a systematic and general treatment of the subject in [33]. Since the early 1990s,
double vector bundles have been used in several areas. A few (but by no means a
complete list of) such areas are the following:

• Poisson geometry has used double structures extensively, since at least the early
1990s, for example, see [28], [29], [21], [37].

• Double vector bundles and their relation to Lie algebroid theory have been studied
in [20], [23], [26], [15], [12], and [3].

• Classical mechanics has also used double vector bundles in formulations and ap-
plications, for example, see [10], [35], [11].

Besides applications, double vector bundles have their own rich theory. Their duality
was introduced and developed by Mackenzie [21], and has surprising properties. A
recent account with references can be found in [25, Chap. 9] and [13].

Another important feature is the warp, introduced in [27]. Once linear sections on dou-
ble vector bundles are defined, warps emerge naturally. Various identities of differential
geometry can be then described as applications of this concept.

The concepts of warp and linear sections can be extended to triple vector bundles. The
first serious treatments of triple vector bundles were given in [24], [13], and [38]. Our
primary objective in this thesis is the systematic treatment of these concepts.

A general double vector bundle is quite distinct from a (strict) 2-vector bundle; double
vector bundles are double structures in the sense of Ehresmann, [7]. We are also not
considering relations between double vector bundles and graded vector bundles.

So what is a double vector bundle? The definition of a double vector bundle consists of
three parts: (i) the algebraic compatibility conditions, (ii) the double source condition,
and (iii) the existence of sigma maps.

xi
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For part (i), the algebraic conditions are efficiently covered by the following definition
from [25, Definition 9.1.1].

Definition 0.1.1. (Part (i)) A double vector bundle (D;A,B;M) is a system of four
vector bundle structures

D B

A M,

qDB

qDA qB

qA

(1)

in which D has two vector bundle structures, on bases A and B, and both A and B are
vector bundles onM . In addition, each of the four structure maps of each vector bundle
structure on D, that is, the bundle projection, addition, scalar multiplication and the
zero section, is a morphism of vector bundles with respect to the other structure.

This is a well-established and widely used definition of a general double vector bundle
D, and in practice, the algebraic compatibility conditions are the ones we check when
establishing that a square of vector bundles is a double vector bundle. For the purpose
of this thesis though, Definition 0.1.1 is not strong enough. We present parts (ii) and
(iii) in Section 1.1.1, and further discuss their significance.

An equivalent and often more practical way of describing the algebraic compatibility
conditions on D are the interchange laws, presented in Section 1.1.

Definition 0.1.2. Given an element d ∈ D, let qDA (d) = a, qDB (d) = b, and qA(a) =
qB(b) = m. The first diagram in (2) comprised by these projections is called the outline
of d.

Given another element d′ as shown, the sum over A has the outline shown in the third
figure.

d b

a m,

d′ b′

a m,

d+
A
d′ b+ b′

a m.

(2)

For elements d which project to zeros under both bundle projections, that is, elements
that are in the intersection Ker(qDA ) ∩ Ker(qDB ), the two additions and the two scalar
multiplications coincide. Under these operations the set of such elements forms a vector
bundle over M , called the core of D [33], usually denoted by C. More details on C in
Section 1.1.2.

Now suppose that (d; a, b;m) and (d′; a′, b′;m) have a = a′ and b = b′. Then there is a
unique c ∈ C such that

d = d′+
A
(c+

B
0Da ) = d′+

B
(c+

A
0Db ). (3)



CHAPTER 0. INTRODUCTION xiii

In equations of this type, what is important is that the difference d− d′, calculated in
either structure, results to the same core element c plus an appropriate zero. We will
indicate this by

d− d′ ◃ c, (4)

and we use this notation from subsection 3.1.2 onwards.

The following are two fundamental examples that arise from an arbitrary vector bundle
A; the tangent and the cotangent double vector bundle.

TA TM

A M,

T (q)

pA p

q

T ∗A A∗

A M.

r

cA q∗

q

(5)

The tangent bundle TA of an arbitrary vector bundle A → M has two vector bundle
structures: the usual tangent bundle structure TA

pA−→ A, and the tangent prolongation

structure TA
T (q)−−−→ TM . The latter structure is obtained once we apply the tangent

functor to all the vector bundle operations of A → M . The tangent double vector
bundle TA is described in detail in [25, Section 3.4] and in [34, Ch.9]. Specifically
about the vector bundle structure of TA over TM , see [5, (16.15.7)].

As the following will be used again and again throughout calculations in most chapters,
we briefly state how we add two elements ξ1, ξ2 ∈ T (q)−1(v) in the same fibre of
TA→ TM . Since T (q)(ξ1) = T (q)(ξ2), we can write

ξ1 =
d

dt
a1(t)

∣∣∣
t=0

, ξ2 =
d

dt
a2(t)

∣∣∣
t=0

,

for a1(t) and a2(t) two curves in A, with q(a1(t)) = q(a2(t)), for t near zero, see
Proposition 1.2.2. Define:

ξ1 +
TM

ξ2 =
d

dt
(a1(t) + a2(t))

∣∣∣
t=0

. (6)

More specifically, for F ∈ C∞(TA):

(ξ1 +
TM

ξ2)(F ) =
d

dt
F (a1(t) + a2(t))

∣∣∣
t=0

. (7)

Dualizing TA over A yields the cotangent double vector bundle T ∗A. This is described
in detail in [28] and [25, Section 9.4]. We briefly present the necessary formulas for our
work in Section 2.4.5.

Of course, as with all Mathematics, there is more than one way of working with double
and with triple vector bundles.
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• Focusing on the intrinsic structure of these geometric objects, as in [25, Chap-
ter 9], and in [24]. In this way of working, core vector bundles and core double
vector bundles are crucial. The main bulk of our work is done in this fashion, see
Chapters 2, 3, 4.

• Using decompositions, as in [27]. We explain this in detail in Sections 1.1.1 and
2.4.1.

• Using local coordinates. A few papers that apply this method of work are [36],
[37], [35], and [3] for double vector bundles, and [38] for triple vector bundles.

We present T 2M , TA, a general double vector bundle D, a general triple vector
bundle E, and then T 2A in local coordinates. Some of the key concepts are
described using local coordinates, see Sections 1.2.1, 1.2.3, 1.1.3, 2.1.3, and 2.4.4.

• Dual frames, as in [15, p.5], and in [30]. This is another way of working locally;
once a decomposition and local coordinates on D are chosen, one can describe
sections of the vector bundle structures of D using dual frames.

0.2 Warps and grids in double vector bundles

The original motivating example for the concepts of grid and warp lies in [1, p.297],
where the authors give the following formula for the Lie bracket of vector fields X and
Y on a manifold M ,

T (Y )(X(m))− X̃(Y (m)) = ([X,Y ])↑(Y (m)). (8)

Here X̃ denotes the complete lift of X to a vector field on TM and the uparrow denotes
the vertical lift to TM of the vector [X,Y ](m) to Y (m). The complete lift, or tangent
lift, X̃ is JM ◦ T (X) where JM : T 2M → T 2M is the canonical involution which
interchanges the two bundle structures on T 2M . The double vector bundle T 2M is the
tangent double vector bundle of TM

p−→ M , called the double tangent bundle. Its core
vector bundle is yet a third copy of TM . We elaborate on the double vector bundle
T 2M , on the JM map, and on the vector fields X̃, X↑ in Section 1.2. The left hand
side of (8) is encapsulated in (9).

T 2M TM

TM M.

T (p)

T (Y )

pTMX̃ p X

p

Y

(9)
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If we look at the elements T (Y )(X(m)) and X̃(Y (m)), we see that they have the same
outlines

T (Y )(X(m)) X(m)

Y (m) m,

X̃(Y (m)) X(m)

Y (m) m.

The two elements therefore determine a core element c̄ ∈ TM . Taking d = T (Y )(X(m))
and d′ = X̃(Y (m)) in (3), we have

T (Y )(X(m))− X̃(Y (m)) = c̄ +
T (p)

0T
2M

Y (m),

where the subtraction on the left is the usual subtraction of vectors which are tangent
to TM at Y (m), and the addition on the right is addition in T (p) : T 2M → TM . That
is, c̄ +

T (p)
0T

2M
Y (m) is the vertical lift of c to Y (m) and so, by (8), c = [X,Y ](m).

A comment on the notation of the last equation. In the case of a general double vector
bundle D, the two additions +

A
and +

B
are clearly distinct. In the case of T 2M however,

both side bundles are copies of TM . To distinguish between the two additions, we use

the projection maps, for example, addition in T 2M
T (p)−−−→ TM will be denoted by +

T (p)
.

We adopt this notation whenever necessary, especially in Sections 4.5 and 4.6.

Equation (8) can be proved either in local coordinates, as in [31, Section 8.14], or in
terms of the action of vector fields on linear and pullback functions, by applying directly
[25, Theorem 3.4.5] for D = LX , the Lie derivative of the vector field X.

The use of (9) expresses the result in a compact conceptual way. To the best of our
knowledge, the first time equation (8) appeared in the literature of Mathematics is the
1988 edition of the book [1] by Abraham, Marsden and Raţiu.

We now generalize the picture (9) to any double vector bundle D. The following is [25,
Definition 10.3.1].

Definition 0.2.1. A pair of sections X ∈ ΓA and ξ ∈ ΓBD form a linear section of D
if ξ is a morphism of vector bundles over X.

A grid on D is a pair of linear sections (ξ,X) and (η, Y ) as shown in (10).

A section ξ ∈ ΓAD of D → A is q-projectable if there exists a section X ∈ ΓB such
that qDB ◦ ξ = X ◦ qA. A linear section (ξ,X) projects to its base section X ∈ ΓB. See
[15, p.6] for more details.
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D B

A M.

ξ

η Y

X

(10)

For each m ∈M , ξ(Y (m)) and η(X(m)) have the same outline. They therefore deter-
mine an element of the core C and, as m varies, a section of C which we denote w(ξ, η).
More precisely,

ξ(Y (m))—
A
η(X(m)) = w(ξ, η)(m)+

B
0DX(m),

ξ(Y (m))—
B
η(X(m)) = w(ξ, η)(m)+

A
0DY (m).

(11)

Definition 0.2.2. The warp of the grid consisting of (ξ,X) and (η, Y ) is w(ξ, η) ∈ ΓC.

Equation (8) can now be expressed as saying that the warp of (9) is [X,Y ].

Adopting the notation introduced in (4), we may write (11) succinctly as

ξ(Y (m))— η(X(m)) ◃ w(ξ, η)(m). (12)

The sign of the warp w(ξ, η) changes if ξ and η are interchanged. Our convention gives
the positive sign to the counterclockwise composition ξ ◦ Y .

The question of signs — or orientations — is omnipresent throughout the thesis. In
the double vector bundle setting, certain rules follow from established conventions of
Differential geometry, as in (9). Later on, we will see that in many cases, arbitrary but
consistent choices must be made to determine which difference to take as the positive
warp (see Remark 3.1.5).

0.3 Main results

The main theorem of the thesis is Theorem 3.1.4. This result first appeared in [27] with
a proof that relied on the use of decompositions for triple vector bundles. In Section
3.2 we give a different and genuinely geometric proof, based on a new technique using
exclusively the intrinsic structure of triple vector bundles, developed in Chapters 2
and 3.

As an application of Theorem 3.1.4, we derive Definition 4.5.1 in Chapter 4. There are
a variety of formulations of the definition of curvature of a connection depending on
whether one is working with vector bundles, principal bundles or general fibre bundles.
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A guiding principle which holds in all these cases is that the curvature measures the
difference between the bracket of horizontal lifts and the horizontal lift of the bracket
of two vector fields. This is implicit in many treatments of connection theory; see, for
example [5]. In Chapter 4, using the warp, bolts, and grids language, we give a new
explicit proof that this principle, which we formulate as Definition 4.5.1, leads to one
of the standard formulas of curvature.

In a double vector bundle D, the C∞(B)-module of sections ΓBD is generated by the
linear sections and the sections which arise from sections of the core; these latter were
called core sections of D in [26, Proposition 3.2]. In Definition 1.1.3 we introduce
the less confusing term ‘strut’ for them. These two kinds of sections of D have been
largely used in the literature, [26], [15], etc. The linear sections that project to the zero
section in particular, called core-linear sections, were introduced in [12] and [17]. These
sections are central to Definition 4.5.1, and in Chapter 4 we call these the bolt sections.
Bolt sections arise naturally when taking the difference of the horizontal lift and the
complete lift of a vector field, see Section 4.2.4. We also give the corresponding analog
of these sections in the triple vector bundle setting, which we call double bolt sections.

Some of the results of this thesis, notably, the proof of Theorem 3.1.4 and Definition
4.5.1 appear in [8].

0.4 Outline of thesis

In Chapter 1, the Background chapter, we present all the necessary theory concerning
double vector bundles on which we build in the following chapters. Most of the material
can be found in references given therein. Section 1.1.1, where we prove the existence
of nontrivial grids in a double vector bundle, is presented there for the first time.

In Chapter 2 we give a systematic treatment of the intrinsic structure of triple vector
bundles, which does not rely on decompositions or local coordinates. We set up the
notation and the operations on triple vector bundles. This is a nontrivial extension of
double vector bundle theory.

In Chapter 3, we formulate and prove Theorem 3.1.4, which we call the warp-grid
theorem. This is the heart of the thesis. The proof is a lengthy and intricate application
of the techniques developed in Chapter 2. Despite the technical nature of the proof,
we believe Theorem 3.1.4 is a natural result, and we explain the grounds for our belief
fully in Remark 3.2.1. A detailed outline of the proof is given in Section 3.2.

In Chapter 4, we present the bolt and the double bolt sections of a double vector
bundle and of a triple vector bundle respectively, and in Section 4.4 we present a class
of examples of grids on a triple vector bundle E invovling two double bolt sections.
Section 4.5 examines a grid on T 2A obtained from a connection ∇ on the vector bundle
A

q−→M , and the curvature of∇. Section 4.6 describes the first instance of the warp-grid
theorem, the Jacobi identity, which was introduced in [27, Section 3].



xviii

0.5 Future developments

We have not considered here the question of grids and warps in 4-fold vector bundles
or the general case of n-fold vector bundles. We expect however that the cases of n
odd and n even will exhibit different behaviour.

The question of bracket structures on triple vector bundles will be treated in a separate
publication.

0.6 Notation and Conventions

All manifolds are smooth, real, finite dimensional, Hausdorff and second-countable.

All vector bundles are smooth, real, and of finite rank. We denote a vector bundle by
A

q−→M . The dual vector bundle to A
q−→M is denoted by A∗ q∗−→M .

In conclusion

In conclusion, I would like to express my best thanks to Yvette Kosmann-Schwarzbach,
Theodore Voronov, and Ping Xu for lengthy conversations at different stages of the
thesis.



Chapter 1

Background

1.1 Preliminaries in double vector bundles

As mentioned in the Introduction, the definition of a double vector bundle has three
parts. And the first part, which is that the operations of D → A be vector bundle
morphisms with respect to D → B (or equivalently, that the operations of D → B be
vector bundle morphisms with respect to D → A), is equivalent to interchange laws.

Indeed, let us draw our attention to the addition in D → A. That the addition in
D → A is a morphism of vector bundles with respect to the structure D → B:

D×
A
D D

B ×
M
B B,

+
A

qDB ∗qDB
qDB

+

where D ×A D is a vector bundle over B ×M B, means that fibrewise

+
A
: D×

A
D
∣∣∣
(b1,b2)

→ D
∣∣∣
b1+b2

,

(d1, d2) 7→ d1+
A
d2,

is a linear map. Hence for (d1, d2), (d3, d4) ∈ D ×A D
∣∣∣
(b1,b2)

, two elements in the same

fibre over (b1, b2) ∈ B ×M B, we have

+
A

(d1, d2) +
B ×

M
B
(d3, d4)

 =

(
+
A
(d1, d2)

)
+
B

(
+
A
(d3, d4)

)
,

1



2

which we rewrite as the following interchange law :

(d1+
A
d2)+

B
(d3+

A
d4) = (d1+

B
d3)+

A
(d2+

B
d4). (1.1)

Of course since (d1, d2) ∈ D ×A D we have that qDA (d1) = qDA (d2) = a1, and similarly
for (d3, d4) ∈ D ×A D, qDA (d3) = qDA (d4) = a3. In total, (di; ai, bi;m), i = 1, . . . , 4, have
a1 = a2, a3 = a4, b1 = b3 and b2 = b4. The outlines of the four elements:

d1 b1

a1 m,

d2 b2

a1 m,

d3 b1

a2 m,

d4 b2

a2 m.

Similar conditions involving scalar multiplications:

• t ·
A
(d1+

B
d2) = t ·

A
d1+

B
t ·
A
d2, for t ∈ R, and with qDB (d1) = qDB (d2),

• t ·
B
(d1+

A
d2) = t ·

B
d1+

A
t ·
B
d2, for t ∈ R, and with qDA (d1) = qDA (d2),

• t ·
A
(u ·

B
d) = u ·

B
(t ·
A
d), for t, u ∈ R, d ∈ D.

The zero section of A→M is denoted by 0A, and the zero section of B →M is denoted
by 0B. We denote the zero of D over a ∈ A by 0Da , and the zero of D over b ∈ B by
0Db . Consequently, the following equations hold:

• 0Da+a′ = 0Da +
B
0Da′ , for a, a

′ ∈ Am,

• 0Dta = t ·
B
0Da ,

• 0Db+b′ = 0Db +
A
0Db′ , for b, b

′ ∈ Bm,

• 0Dtb = t ·
A
0Db .

We write ⊙D
m for the double zero of D, ⊙D

m, that is

⊙D
m := 0D0Am

= 0D0Bm
.

The notation d—
A
d′ is short hand notation for d+

A
(−1) ·

A
d′. A useful variation of the

interchange law (1.1), starting with four elements di, i = 1, 2, 3, 4 as in (1.1), is the
following:

(d1—
A
d2)—

B
(d3—

A
d4) = (d1—

B
d3)—

A
(d2—

B
d4). (1.2)
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To see this, rewrite the left hand side of (1.2) as

(d1—
A
d2)—

B
(d3—

A
d4) =

(
d1+

A

(
(−1) ·

A
d2

))
+
B
(−1) ·

B

(
d3+

A

(
(−1) ·

A
d4

))
=

(
d1+

A

(
(−1) ·

A
d2

))
+
B

(
(−1) ·

B
d3+

A
(−1) ·

B

(
(−1) ·

A
d4

))
(1.3)

where the outlines of the four elements are:

d1 b1

a1 m,

(−1) ·
A
d2 −b2

a1 m,

(−1) ·
B
d3 b1

− a2 m,

(−1) ·
B
((−1) ·

A
d4) −b2

− a2 m.

We see that qDA (d1) = qDA ((−1) ·
A
d2), q

D
A ((−1) ·

B
d3) = qDA ((−1) ·

B
((−1) ·

A
d4)), and that

qDB (d1) = qDB ((−1) ·
B
d3), q

D
B ((−1) ·

A
d2) = qDB ((−1) ·

B
((−1) ·

A
d4)). Apply the interchange

law (1.1) to (1.3):(
d1+

A

(
(−1) ·

A
d2

))
+
B

(
(−1) ·

B
d3+

A
(−1) ·

B

(
(−1) ·

A
d4

))
=

(
d1+

B

(
(−1) ·

B
d3

))
+
A

(
(−1) ·

A
d2+

B
(−1) ·

B

(
(−1) ·

A
d4

))
=

(
d1—

B
d3

)
+
A

(
(−1) ·

A
d2+

B
(−1) ·

A

(
(−1) ·

B
d4

))
=

(
d1—

B
d3

)
+
A
(−1) ·

A

(
d2+

B
((−1) ·

B
d4)

)
=

(
d1—

B
d3

)
—
A

(
d2—

B
d4

)
,

and this proves (1.2).

We won’t include as much detail in future calculations.

1.1.1 Double source map and sigma maps

Let us return to Definition 0.1.1, and discuss why we include parts (ii) and (iii) in the
definition of a double vector bundle.

The double source condition, part (ii) of the definition of a double vector bundle (part (i)
was Definition 0.1.1), is that the double source map, the double vector bundle morphism
which we denote by ♮ : D → A×M B, d 7→ (qDA (d), q

D
B (d)), be a surjective submersion1.

1In [19], the authors prove in Lemma 2, Appendix A, that part (ii) of the definition of a double
vector bundle follows from part (i) of the definition.



4

As we have already mentioned in the Introduction, the core C of a double vector bundle
D is the intersection of the kernels of the two projections of D. To ensure that C is
a well-defined closed embedded submanifold of D, we require that ♮ be a surjective
submersion.

The last part of the definition of a double vector bundle, part (iii), is the existence
of the sigma maps Σ : A ×M B → D, previously called the splitting maps, see [13,
Definition 1.1, p.178]. A sigma map is a double vector bundle morphism which is a
right-inverse to ♮ : D → A ×M B: ♮(Σ(a, b)) = (a, b). It follows that it preserves the
side bundles A and B. We use sigma maps to prove the existence of nontrivial grids
on D.

Some authors prove the existence of sigma maps from the first part of the definition
of double vector bundle, e.g. [11]. Our policy is to take the existence of this sigma
map as part of the definition of a double vector bundle. And as all examples of double
vector bundles known so far satisfy this requirement, and the operations of tangent
and cotangent prolongation, and the dualization processes preserve the sigma maps, in
practice, it is enough to check part (i) of the definition of a double vector bundle D.
When using local coordinates on D, one implicitly assumes the existence of the sigma
map. Pradines [33] did so, building explicit charts for D, which he called double charts.

So far, we have described a double vector bundle as (i) interchange laws, (ii) the double
source condition, and (iii) the existence of sigma maps. Alternatively, one can equally
describe a double vector bundle by (i), (ii), and the decomposition map Ω : D →
A ×M B ×M C instead of the sigma map. We will show that there is a bijective
correspondence between the Σ and Ω maps. And Ω is a double vector bundle morphism.
We denote the inverse of the decomposition map by 0 : A×M B ×M C → D.

Decompositions are very helpful, as they provide insight to the following. In the setting
of vector bundles, we only have one “level” of local triviality, the level of local charts.
In the setting of double vector bundles, we have two “levels” of local triviality: the
first level which is charts on the constituent bundles A, B, and C, and the second level
which is decompositions Ω : D → A ×M B ×M C which play a role for double vector
bundles comparable to local charts for ordinary vector bundles. The second level is
separate from the first level.

Bijective correspondence between Σ and Ω

Start with a sigma map Σ : A×M B → D. For (a, b) ∈ A×M B, the outline of Σ(a, b)
is (Σ(a, b); a, b;m), and by Σ’s definition: ♮(Σ(a, b)) = (a, b). Take any d ∈ D with
outline (d; a, b;m). Then:

d—
A
Σ(a, b) = c+

B
0Da ,
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for a unique c ∈ C. Define

Ω : D → A×M B ×M C

d → (a, b, (d—
A
Σ(a, b))—

B
0Da ). (1.4)

The inverse of this map is

0 : A×M B ×M C → D

(a, b, c) 7→ Σ(a, b)+
A
(c+

B
0Da ). (1.5)

Both Ω and 0 are smooth, as a combination of Σ and operations, all of which are
smooth. And Ω and 0 are mutually inverse.

Ω is a diffeomorphism, and if we regard A ×M B ×M C as a double vector bundle,
then Ω is an isomorphism of double vector bundles, and is the identity map on the side
bundles A,B, and on the core C. Using terminology of [13, Definition 2.2, p.181], Ω is
a statomorphism.

Therefore, given a sigma double vector bundle map Σ, there exists a unique double
vector bundle map Ω, defined by (1.4), which is a decomposition of D.

Equivalently, starting with an Ω, we can define a Σ using the inverse of Ω:

Σ : A×M B → D, (a, b) 7→ 0(a, b, 0Cm).

Therefore, there exists a bijective correspondence between the sigma double vector
bundle Σ and the decomposition Ω maps of D.

Parenthesis

The following is a result from [13, p.181], and we will use it to prove the existence
of nontrivial grids on a triple vector bundle E, in Section 3.1.1. First, we need the
following [25, Definition 9.1.2].

Definition 1.1.1. A double vector bundle morphism

(φ;φA, φB; f) : (D;A,B;M) → (D′;A′, B′;M ′)

consists of maps φ : D → D′, φA : A→ A′, φB : B → B′, f :M →M ′, such that each
of (φ,φA), (φ,φB), (φA, f) and (φB, f) is a morphism of the relevant vector bundles.

Proposition 1.1.2. Take φ : D → D′ a double vector bundle morphism (φ;φA, φB; f),
and denote its core morphism, the restriction of φ to the core vector bundles, by φC :
C → C ′. If D = A×M B ×M C and D′ = A′ ×M ′ B′ ×M ′ C ′, then we can write

φ(a, b, c) = (φA(a), φB(b), λ(a, b) + φC(c)),

where λ : A×M B → C ′ is a bilinear map.
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Proof. Write φ(a, b, c) = (φA(a), φB(b), f(a, b, c)), with f : A×M B ×M C → C ′. Then
φ(0Am, 0

B
m, c) = (0A

′

f(m), 0
B′

f(m), f(0
A
m, 0

B
m, c)), so

φC(c) = f(0Am, 0
B
m, c).

For d1 = (a, b1, c1), d2 = (a, b2, c2) ∈ D, since

φ(d1+
A
d2) = φ(d1) +

A′
φ(d2),

it follows that

f(a, b1 + b2, c1 + c2) = f(a, b1, c1) + f(a, b2, c2). (1.6)

Similarly, for d′1 = (a1, b, c1), d
′
2 = (a2, b, c2) ∈ D, by

φ(d′1+
B
d′2) = φ(d′1) +

B′
φ(d′2),

we obtain,

f(a1 + a2, b, c1 + c2) = f(a1, b, c1) + f(a2, b, c2). (1.7)

Note that subscripts for the additions in equations (1.6) and (1.7) are not necessary as
both additions coincide in the core vector bundle C ′ →M .

In (1.6), taking b1 = b2 = 0Bm and c1 = c2 = 0Cm:

f(a, 0Bm, 0
C
m) = f(a, 0Bm, 0

C
m) + f(a, 0Bm, 0

C
m),

hence

f(a, 0Bm, 0
C
m) = 0C

′

f(m),

the zero of the fibre C ′
f(m). Similarly, we obtain

f(0Am, b, 0
C
m) = 0C

′

f(m).

Hence, from (1.6), if we set b1 = b and b2 = 0Bm, and c1 = 0Cm and c2 = c,

f(a, b, c) = f(a, b, 0Cm) + f(a, 0Bm, c)
(1.7)
= f(a, b, 0Cm) + f(a, 0Bm, 0

C
m) + f(0Am, 0

B
m, c)

= f(a, b, 0Cm) + f(0Am, 0
B
m, c) = f(a, b, 0Cm) + φC(c),

since f(a, 0Bm, 0
C
m) = 0C

′

f(m). The bilinear map in question is then λ : A×M B → C ′,

(a, b) 7→ λ(a, b) = f(a, b, 0Cm). And this completes the proof.

Take a sigma map Σ : A ×M B → D, and a decomposition Ω′ : D → A ×M B ×M C,
not necessarily the one corresponding to the given sigma map. The core morphism of
Σ is the zero map, because the core of A ×M B is the zero vector bundle. The core
morphism of Ω′ is the identity map, therefore, the core morphism of the composition
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Ω′ ◦ Σ is the zero map. According to Proposition 1.1.2, there exists a bilinear map
λ : A×M B → C, such that:

Ω′ ◦ Σ : A×M B → A×M B ×M C

(a, b) 7→ (a, b, λ(a, b)).

As the decomposition Ω′ corresponds to some sigma map Σ′, we have,

Ω′ ◦ Σ : A×M B → A×M B ×M C

(a, b) 7→ (a, b, (Σ(a, b)—
A
Σ′(a, b))—

B
0Da ),

so

λ(a, b) = (Σ(a, b)—
A
Σ′(a, b))—

B
0Da = (c+

B
0Da )—

B
0Da = c.

We call this λ(a, b) the core component of the element Σ(a, b) ∈ D with respect to Ω′;
λ(a, b) is not intrinsically defined.

In the case where Ω is the decomposition corresponding to the given Σ, then

Ω ◦ Σ : A×M B → A×M B ×M C

(a, b) 7→ (a, b, (Σ(a, b)—
A
Σ(a, b))—

B
0Da ),

and since Σ(a, b)—
A
Σ(a, b) = 0Da , the core component of the element Σ(a, b) ∈ D with

respect to Ω is λ ≡ 0.

Therefore, we see that even though the core morphism of the double vector bundle Σ
is zero, the core component of the element Σ(a, b) ∈ D depends on the decomposition
chosen, and is not necessarily zero.

Nontrivial grids on D

The sigma map Σ : A ×M B → D guarantees the existence of nontrivial grids on D.
To see this, take a X ∈ ΓA and ψ : B → C a vector bundle map over M . Then using
(1.5),

ξ(b) = 0(X(m), b, ψ(b)), (1.8)

is a linear section of D → B over X.
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Some calculations:

ξ(b1)+
A
ξ(b2)

= 0(X(m), b1, ψ(b1))+
A

0(X(m), b2, ψ(b2))

=

(
Σ(X(m), b1)+

A

(
ψ(b1)+

B
0DX(m)

))
+
A

(
Σ(X(m), b2)+

A

(
ψ(b2)+

B
0DX(m)

))
=

(
Σ(X(m), b1)+

A
Σ(X(m), b2)

)
+
A

((
ψ(b1)+

B
0DX(m)

)
+
A

(
ψ(b2)+

B
0DX(m)

))
= Σ(X(m), b1 + b2)+

A

((
ψ(b1)+

A
ψ(b2)

)
+
B

(
0DX(m)+

A
0DX(m)

))
= Σ(X(m), b1 + b2)+

A

(
ψ(b1 + b2)+

B
0DX(m)

)
= 0(X(m), b1 + b2, ψ(b1 + b2))

= ξ(b1 + b2).

That Σ(X(m), b1)+
A
Σ(X(m), b2) = Σ(X(m), b1+ b2) follows since Σ is a double vector

bundle map. And qDA (ξ(b)) = X(m), hence ξ projects to X ∈ ΓA.

Now take a Y ∈ ΓB, and φ : A→ C a vector bundle map over M . Then

η(a) = 0(a, Y (m), φ(a)),

is a linear section of D → A over Y . Therefore, (ξ,X) and (η, Y ) is a nontrivial grid
on D. The warp of this grid:

ξ(Y (m))—
A
η(X(m)) =

= 0(X(m), Y (m), ψ(Y (m)))—
A

0(X(m), Y (m), φ(X(m)))

=

(
Σ(X(m), Y (m))+

A

(
ψ(Y (m))+

B
0DX(m)

))
—
A

(
Σ(X(m), Y (m))+

A

(
φ(X(m))+

B
0DX(m)

))
=

(
Σ(X(m), Y (m))—

A
Σ(X(m), Y (m))

)
+
A

((
ψ(Y (m))+

B
0DX(m)

)
—
A

(
φ(X(m))+

B
0DX(m)

))
= Σ(X(m), 0Bm)+

A

(
(ψ(Y (m))—

A
φ(X(m))+

B
(0DX(m)—

A
0DX(m))

)
= 0DX(m)+

A

(
(ψ(Y (m))—

A
φ(X(m))+

B
0DX(m)

)
=

(
0DX(m)+

B
⊙D
m

)
+
A

(
(ψ(Y (m))—

A
φ(X(m))+

B
0DX(m)

)
=

(
0DX(m)+

A
0DX(m)

)
+
B

(
(ψ(Y (m))—

A
φ(X(m))+

A
⊙D
m

)
= 0DX(m)+

B

(
ψ(Y (m))—

A
φ(X(m)

)
,
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hence w(ξ, η) = ψ(Y (m)) —
A/B

φ(X(m)), as the two subtractions coincide in the core

vector bundle.

Since d—
A
d = 0Da and d—

B
d = 0Db , by linearity of Σ it follows that,

Σ(0Am, b) = Σ(a, b)—
B
Σ(a, b) = 0Db ,

for a, b ∈ A×M B. Similarly Σ(a, 0Bm) = 0Da , and finally, Σ(0Am, 0
B
m) = ⊙D

m.

1.1.2 Core vector bundle

In this section we describe in detail everything concerning the core vector bundle of a
double vector bundle.

By definition, the core C of the double vector bundle D is the intersection of the kernels
of the two projections qDA and qDB of D, i.e.,

C := Ker(qDA ) ∩Ker(qDB ).

The core C is a closed embedded submanifold of D, as the preimage of the closed
submanifold Z = {(0Am, 0Bm) | m ∈ M} ⊆ A×M B via the double source map ♮ : D →
A ×M B. The core C is a submanifold of D, but not a subvector bundle of D. It is
however a vector bundle overM . My best thanks to Madeleine Jotz Lean for explaining
the use of pullbacks to define the vector bundle structure of C over M .

The kernel of the vector bundle morphism (qDB , qA) is a subvector bundle of D over A:

Ker(qDB ) =
∪
a∈A

Ker
(
qDB

∣∣∣
a

)
=
∪
a∈A

{d ∈ D
∣∣∣
a
| qDB (d) = 0Bm}.

Now take the pullback of Ker(qDB ) → A across the zero section 0A ∈ ΓA. This is now
a vector bundle over M ,

0A
!
Ker(qDB ) Ker(qDB )

M A.

qC qDA

0A

This pullback bundle 0A
!
Ker(qDB ) →M is the core vector bundle C →M ,

0A
!
Ker(qDB ) = {(d,m) ∈ Ker(qDB )×M | qDA (d) = 0Am}

= {d ∈ D | qDA (d) = 0Am, q
D
B (d) = 0Bm,m ∈M} = C,
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and this is the vector bundle structure the core inherits from D. Indeed, if d ∈
0A

!
Ker(qDB ), then q

D
A (d) = 0Am, hence,

qC(d) = m = qA(0
A
m) = qA(q

D
A (d)).

Applying the same method the other way around, that is, starting with the kernel
Ker(qDA ) of (qDA , qB), and taking its pullback across the zero section 0B ∈ ΓB, we
obtain the vector bundle

0B
!
Ker(qDA ) Ker(qDA )

M B.

q′C qDB

0B

For d′ ∈ 0B
!
Ker(qDA ), then q

D
B (d

′) = 0Bm, and

q′C(d
′) = m = qB(0

B
m) = qB(q

D
B (d

′)).

As sets, the two manifolds 0A
!
Ker(qDB ) and 0B

!
Ker(qDA ) are both equal to the core C of

D. Do the two pullback bundles define a unique vector bundle structure on C? For a

d in C = 0A
!
Ker(qDB ) = 0B

!
Ker(qDA ), since qA ◦ qDA = qB ◦ qDB ,

qC(d) = qA(q
D
A (d)) = qB(q

D
B (d)) = q′C(d),

that is, qC = q′C . Also, in the following diagram, both the inner and the outer square

diagrams commute, hence the unique map F : 0A
!
Ker(qDB ) → 0B

!
Ker(qDA ) is a smooth

map, and in fact, a vector bundle map over M .

0A
!
Ker(qDB )

0B
!
Ker(qDA ) Ker(qDA )

M B

pr

qC

F

pr

qC qDB

0B

We can similarly define a map G : 0B
!
Ker(qDA ) → 0A

!
Ker(qDB ), and we see that F and G

are mutual inverses, hence F is a diffeomorphism. Finally, about the two additions and
scalar multiplications that both pullback vector bundles inherit from D coincide. To see

this, take d1, d2 ∈ C = 0A
!
Ker(qDB ) = 0B

!
Ker(qDA ), with qA(q

D
A (d1)) = qA(q

D
A (d2)) = m.

Then, by the interchange law (1.1):

d1+
B
d2 = (d1+

A
⊙D
m)+

B
(⊙D

m+
A
d2) = (d1+

B
⊙D
m)+

A
(⊙D

m+
B
d2) = d1+

A
d2.
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And similarly for the scalar multiplication. Therefore, both pullback vector bundles
define the same vector bundle structure on the core.

From now on we denote a core element by c ∈ C. When working with examples, we can
usually identify the core vector bundle with a familiar vector bundle. For example, the
core vector bundle of TA can be canonically identified with A→M , as described in the
following subsection, see also [25, 9.1.7]. However, it can be important to distinguish
between these two pictures: the elements in C (i) as elements in D, and (ii) as elements
of the familiar bundle with which we identified C → M . To indicate that an element
c ∈ C is viewed as in (i), we write c̄, a bar over c. For instance, in the case of TA, an
element of the core vector bundle can be viewed either as an element ā ∈ TA, or as
an element a ∈ A. This distinction is usually not necessary for general double vector
bundles and triple vector bundles, so in Section 2.3 of Chapter 2 and in Chapter 3, we
do not write bars over core elements. The bar notation is used repeatedly in Section
2.4 and in Chapter 4.

As mentioned in the Introduction, two elements d, d′ ∈ D with the same outlines differ
by a unique core element c ∈ C, as in (3). Indeed, take (d; a, b;m) and (d′; a, b,m).
Then qDA (d—

A
d′) = a and qDB (d—

A
d′) = 0Bm. Subtracting 0Da over B yields the element

(d—
A
d′)—

B
0Da , and since qDA ((d—

A
d′)—

B
0Da ) = 0Am and qDB ((d—

A
d′)—

B
0Da ) = 0Bm, this is

precisely an element c ∈ C. In other words,

d—
A
d′ = 0Da +

B
c.

Of course if we take their difference over B, we obtain the same core element c ∈ C.
To see this, start with

d = d′+
A
(0Da +

B
c),

and apply the interchange law (1.1):

d′+
A
(0Da +

B
c) = (d′+

B
0Db )+

A
(0Da +

B
c) = (d′+

A
0Da )+

B
(0Db +

A
c) = d′+

B
(0Db +

A
c).

Therefore, we see that core elements naturally arise when combinations of operations
over different structures occur.

Struts

Given a section c ∈ ΓC of the core vector bundle we can define cA ∈ ΓAD and
cB ∈ ΓBD, called the core sections over A and over B respectively, corresponding to
c, see [25, Section 9.1]. From now on, we call these sections struts.

Definition 1.1.3. For a section c ∈ ΓC, define

cA : A→ D, a 7→ c(qA(a))+
B
0Da ,
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and call cA the strut of c over A, and similarly,

cB : B → D, b 7→ c(qB(b))+
A
0Db ,

the strut cB of c over B.

Struts are q-projectable sections, and they project to the zero section.

The core of TA

We briefly recall the identification of the core of TA with the vector bundle A → M
itself, see [25, Sections 3.4 and 9.7.1].

The kernel of the vector bundle map T (q) : TA → TM over q : A → M , consists of
vectors ξ ∈ TaA with T (q)(ξ) = 0TMq(a), that is, vectors with base point a, and fibre

component 0TMq(a) in TM . This means that ξ is tangent along the fibre Aq(a), i.e.,

ξ ∈ TaAm. Therefore, the kernel of T (q) consists of the vertical tangent vectors of TA,
and is the usual vertical bundle T qA→ A.

The kernel of the vector bundle morphism pA : TA→ A over p : TM →M is a vector
bundle over TM , and it consists of the vectors ξ ∈ TA with pA(ξ) = 0Am. And these
are the vectors that are based on the zeros 0Am of A.

The core of TA is the intersection of the two kernels, that is, it consists of the vertical
tangent vectors of TA based at the zeros 0Am of A. Fibrewise, we canonically identify the
tangent space T0AmAm with Am, hence the core vector bundle of TA can be identified
with A→M .

Conversely, when a ∈ Am is in the core of TA, we view it as an element in TA,

ā =
d

dt
(ta)

∣∣∣
t=0

∈ T0AmA, (1.9)

where the curve ta is entirely in the fibre Am. Therefore

T (q)(ā) =
d

dt
q(ta)

∣∣∣
t=0

=
d

dt
m
∣∣∣
t=0

= 0TMm .

In short, we view ā as the velocity vector at the point 0Am, the zero of the fibre Am, of
the curve ta.

For a section µ ∈ ΓA of the core vector bundle of TA, the strut µ↑ of µ over A is,

µ↑(F )(a) =
d

dt
F (a+ tµ(q(a)))

∣∣∣
t=0

, (1.10)

for F ∈ C∞(A), a ∈ A. It is a vector field on A.
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Finally, as we will use the following repeatedly, we write the two different zeros of
TA with respect to its two different vector bundle structures. For v ∈ TmM , with

v = d
dtγ(t)

∣∣∣
t=0

, where γ : I →M , t 7→ γ(t) is a curve in M , then,

T (0A)(v) =
d

dt
0A(γ(t))

∣∣∣
t=0

∈ T0AmA. (1.11)

If a ∈ Am, then

0TAa =
d

dt
a
∣∣∣
t=0

∈ TaA. (1.12)

Something that will be needed later on is the following. Take a vector bundle map
(φ, f),

A A′

M M ′.

φ

f

Then the morphism T (φ) of the tangent bundles is in fact a double vector bundle
morphism (T (φ);φ, T (f); f):

TA TM

TA′ TM ′

A M

A′ M ′,

T (φ) T (f)

φ f

and its core morphism is the vector bundle map (φ, f). Indeed, for a ∈ A a core element

of TA, write it as ā = d
dt ta

∣∣∣
t=0

. Then,

T (φ)(ā) =
d

dt
(φ(ta))

∣∣∣
t=0

=
d

dt
t(φ(a))

∣∣∣
t=0

= φ(a),

since φ
∣∣∣
a
: Am → A′

f(m) is linear.

1.1.3 Some local coordinates on D

It is customary in Differential Geometry to work in local coordinates. Double vec-
tor bundles are no exception to this custom, and indeed Pradines in [33] introduced
appropriate charts for double vector bundles, see also [38] and [36]. We now present
corresponding notation for this technique.
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Take a double vector bundle D. Denote by rA the rank of A → M , by rB the rank
of B → M , by rDA

the rank of D → A, and finally by rDB
the rank of D → B. The

dimension of the base manifold M is dimM = n. The dimension of the total space
D is then n + rA + rDA

= n + rB + rDB
, that is, rA + rDA

= rB + rDB
. Denote by

rC := rDB
− rA = rDA

− rB.

Now denote a local coordinate system for D by,

(x1, . . . , xn, a1, . . . , arA , b1, . . . , brB , z1, . . . , zrC ),

or in shorthand notation, (x, a, b, z). In particular, (a) are fibre coordinates for the
vector bundle A→M , and (b) are fibre coordinates for the vector bundle B →M .

From [33], in the intersection of overlapping charts on D, the coordinates change as
follows. For m ∈M in the intersection of two charts on D, for the fibre coordinates of
A and of B we have, respectively,

ãi = PA(m)ija
j , and b̃ℓ = PB(m)ℓkb

k,

where j and k are summation indices, i, j = 1, . . . , rA, ℓ, k = 1, . . . , rB, PA(m) ∈
GL(rA,R) and PB(m) ∈ GL(rB,R). We denote by PA(m)ij the element in the i-th

row and j-th column of the matrix PA(m), and similarly for PB(m)ℓk, the element in
the ℓ-th row and k-th column of the matrix PB(m). The transition laws for the fibre
coordinates (z),

z̃µ = PC(m)µνz
ν + P (m)µjka

jbk, (1.13)

where PC(m) ∈ GL(rC ,R), and P (m)µjk are the components of a bilinear map P (m) :

Am × Bm → Cm, (aj , bk) 7→ P (m)µjka
jbk, and µ, ν = 1, . . . , rC , j = 1, . . . , rA, and

k = 1, . . . , rB. To see this in matrix form, for the fibre coordinates of D → A,

ã1

...
ãrA

z̃1

...
z̃rC


=


PA(m)(rA×rA) 0(rA×rC)

P (m)11kb
k . . . P (m)1rAkb

k

...
. . .

...
P (m)rC1k b

k . . . P (m)rCrAkb
k

PC(m)(rC×rC)





a1

...
arA

z1

...
zrC


For the fibre coordinates of D → B,

b̃1

...

b̃rB

z̃1

...
z̃rC


=


PB(m)(rB×rB) 0(rB×rC)

P (m)1j1a
j . . . P (m)1jrBa

j

...
. . .

...
P (m)rCj1 a

j . . . P (m)rCjrBa
j

PC(m)(rC×rC)





b1

...
brB

z1

...
zrC


.
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And of course we have

z̃1 = P (m)11ka
1bk + . . .+ P (m)1rAka

rAbk = P (m)1j1a
jb1 + . . .+ P (m)1jrBa

jbrB .

Local coordinates for the core vector bundle are (x, z), where the fibre coordinates
(z) change as (z̃) do when additionally we set aj and bk to zero for j = 1, . . . , rA,
k = 1, . . . , rB in (1.13).

Let us describe struts in local coordinates. Any c ∈ ΓC,

(x1, . . . , xn) 7→ (x1, . . . , xn, z1(x), . . . , zrC (x)), (1.14)

hence the strut cA ∈ ΓAD in local coordinates,

(x1, . . . , xn, a1, . . . , arA) 7→ (x1, . . . , xn, a1, . . . , arA , 01, . . . , 0rB , z1(x), . . . , zrC (x)).
(1.15)

The zero of D over a ∈ A in coordinates,

0Da = (x1, . . . , xn, a1, . . . , arA , 01, . . . , 0rB , 01, . . . , 0rC ),

hence cA(a) = c(m)+
B
0Da . From this we see directly that cA(a1+a2) ̸= cA(a1)+

B
cA(a2).

This will come up again later on.

We present the warp of a grid on a general double vector bundle D using local coordi-
nates.

Example 1.1.4. Any section ξ ∈ ΓBD is described in local coordinates as follows,

(x1, . . . , xn, b1, . . . , brB ) 7→ (x1, . . . , xn, a1(x), . . . , arA(x), b1, . . . , brB , z1(x, b), . . . , zrC (x, b)).

By Definition (0.2.1), a linear section ξ ∈ ΓBD is a vector bundle morphism over
X ∈ ΓA. In local coordinates X ∈ ΓA is written,

(x1, . . . , xn) 7→ (x1, . . . , xn, a1(x), . . . , arA(x)),

and ξ ∈ ΓBD has the following expression,

(x1, . . . , xn, b1, . . . , brB ) 7→ (x1, . . . , xn, a1(x), . . . , arA(x), b1, . . . , brB , z1k(x)b
k, . . . , zrCk (x)bk).

(1.16)
Now take a grid on D as in (10),

D B

A M.

ξ

η Y

X
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Then for the linear section η ∈ ΓAD,

(x1, . . . , xn, a1, . . . , arA) 7→ (x1, . . . , xn, a1, . . . , arA , b1(x), . . . , brB (x), z1j (x)a
j , . . . , zrCj (x)aj),

over Y ∈ ΓB,

(x1, . . . , xn) 7→ (x1, . . . , xn, b1(x), . . . , brB (x)).

Therefore,

ξ(Y (m)) = (x1, . . . , xn, a1(x), . . . , arA(x), b1(x), . . . , brB (x), z1k(x)b
k(x), . . . , zrCk (x)bk(x))

η(X(m)) = (x1, . . . , xn, a1(x), . . . , arA(x), b1(x), . . . , brB (x), z1j (x)a
j(x), . . . , zrCj (x)aj(x)).

Their difference ξ(Y (m))—
A
η(X(m)) over A,

(x1, . . . , xn, a1(x), . . . , arA(x), 01, . . . , 0rB , z1k(x)b
k(x)−z1j (x)aj(x), . . . , z

rC
k (x)bk(x)−zrCj (x)aj(x)),

and this defines a section of the core C,

w(ξ, η) :M → C, (x1, . . . , xn) 7→ (x1, . . . , xn, z1(x), . . . , zrC (x)),

where zµ(x) = zµk (x)b
k(x) − zµj (x)a

j(x), µ = 1, . . . , rC . This is exactly the warp of
(ξ,X) and of (η, Y ).

1.2 Double tangent bundle et al

In this section we focus on the double tangent bundle T 2M for a manifold M , and we
describe everything concerning T 2M needed for the work that follows in later Chapters.
Main references for this subsection are [18] and [6], and for a treatment of T 2M in
synthetic terms, see [32, Section 4.1]. First, we set up the notation for local coordinates
on T 2M . We then proceed with the canonical involution JM , and we describe some of
its most important properties. We then set up notation for local coordinates on TA
(relevant sources are [36, Section 3], [34, Section 9], and [3]), and we describe in detail a
technical result from [34, Chapter 9]. Finally, we include the connection theory needed
for the examples of grids on T 2M and on TA in Section 4.2.4.

1.2.1 Local coordinates for T 2M

We introduce the notation we need in local coordinates for a smooth manifold M
with dimension dimM = n, for the tangent bundle TM

p−→ M , and for the double
tangent bundle T 2M = T (TM). To describe how local coordinates change from one
chart to another, when the charts overlap in the first place, we iterate the well-known
construction of building local coordinates for the tangent bundle TM → M from a
chart (U,φ) on M .
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Step 1

Start with a chart (U,φ) on M , with associated local coordinates (x1, . . . , xn). Denote
a point m ∈ U by (x1, . . . , xn), or by (x) in shorthand notation.

From the coordinates (x1, . . . , xn), we build the basis
(

∂
∂x1

∣∣∣
m
, . . . , ∂

∂xn

∣∣∣
m

)
, shorthand

notation
(
∂
∂x

∣∣∣
m

)
, for the tangent space TmM .

Take a chart (U,φ) with local coordinates (x1, . . . , xn) and another one (V, ψ) with local
coordinates (x̃1, . . . , x̃n), such that U ∩ V ̸= ∅. The transition map on the intersection
of these overlapping charts,

ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ),

(x1, . . . , xn) 7→ (x̃1, . . . , x̃n).

For points m ∈ U ∩ V , we have two bases
(
∂
∂x

∣∣∣
m

)
and

(
∂
∂x̃

∣∣∣
m

)
of the tangent space

TmM . The relation between these two bases, for i = 1, . . . , n:

∂

∂xi

∣∣∣
m

=
∂x̃j

∂xi
(m)

∂

∂x̃j

∣∣∣
m
, (1.17)

where j is the summation index. Equivalently, in matrix form:

[
∂
∂x1

∣∣∣
m

. . . ∂
∂xn

∣∣∣
m

]
=
[
∂
∂x̃1

∣∣∣
m

. . . ∂
∂x̃n

∣∣∣
m

]
∂x̃1

∂x1
(m) . . . ∂x̃1

∂xn (m)
...

. . .
...

∂x̃n

∂x1
(m) . . . ∂x̃n

∂xn (m)

 .

Step 2

From a chart (U,φ) on M with associated local coordinates (x1, . . . , xn), we can build
a chart on TM as usual, (p−1(U), φ̃), see [18] for example. We denote by v ∈ TmM a
single tangent vector to M at point m ∈M , and the corresponding chart on TM ,

φ̃ : p−1(U) → φ(U)× Rn ⊆ R2n, (1.18)

v1
∂

∂x1

∣∣∣
m
+ . . .+ vn

∂

∂xn

∣∣∣
m

7→ (x1, . . . , xn, v1, . . . , vn).

Hence, in local coordinates we write v ∈ TmM as (x1, . . . , xn, v1, . . . , vn), or as (x, v).

Now take (U,φ) and (V, ψ) two charts on M , with U ∩ V ̸= ∅, and with corresponding
local coordinates (x1, . . . , xn), and (x̃1, . . . , x̃n), respectively. The transition map on
the region of intersection p−1(U)∩ p−1(V ) = p−1(U ∩ V ) of the two charts (p−1(U), φ̃)
and (p−1(V ), ψ̃) of TM ,

ψ̃ ◦ φ̃−1 : φ(U ∩ V )× Rn → ψ(U ∩ V )× Rn,
(x1, . . . , xn, v1, . . . , vn) 7→ (x̃1, . . . , x̃n, ṽ1, . . . , ṽn). (1.19)
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The transformation laws for the coordinates (ṽ1, . . . , ṽn) on the intersection of the two
charts

ṽi =
∂x̃i

∂xj
(m)vj , i = 1, . . . , n, (1.20)

where (1.20) follows from (1.17), the relation between the two bases
(
∂
∂x

∣∣∣
m

)
and

(
∂
∂x̃

∣∣∣
m

)
of TmM . Therefore, (1.20) in matrix form:ṽ

1

...
ṽn

 =


∂x̃1

∂x1
(m) . . . ∂x̃1

∂xn (m)
...

. . .
...

∂x̃n

∂x1
(m) . . . ∂x̃n

∂xn (m)


v

1

...
vn

 .
Now, the two local coordinate systems, for v ∈ p−1(U ∩ V ), define two bases of TvTM ,(

∂
∂x1

∣∣∣
m
, . . . , ∂

∂xn

∣∣∣
m
, ∂
∂v1

∣∣∣
v
, . . . , ∂

∂vn

∣∣∣
v

)
, and(

∂
∂x̃1

∣∣∣
m
, . . . , ∂

∂x̃n

∣∣∣
m
, ∂
∂ṽ1

∣∣∣
v
, . . . , ∂

∂ṽn

∣∣∣
v

)
.

The Jacobian matrix of the transition map (1.19),

T
(
ψ̃ ◦ φ̃−1

)
=

 ( ∂x̃i∂xj

)
0(n×n)(

∂ṽi

∂xj

) (
∂ṽi

∂vj

)  (1.20)
=

 (
∂x̃i

∂xj

)
0(n×n)(

∂2x̃i

∂xj∂xk
vk
) (

∂x̃i

∂xj

)  , (1.21)

describes the relation between the two bases of TvTM , i.e.,

∂

∂xi

∣∣∣
m

=
∂x̃j

∂xi
(m)

∂

∂x̃j

∣∣∣
m
+

∂2x̃j

∂xi∂xk
(m)vk(v)

∂

∂ṽj

∣∣∣
v
,

∂

∂vi

∣∣∣
v

=
∂x̃j

∂xi
(m)

∂

∂ṽj

∣∣∣
v
.

Step 3

We now build charts for the tangent bundle structure pTM : T 2M → TM . Given a chart
(Ũ , φ̃)2 on TM , we can define a chart for the vector bundle structure T (TM)

pTM−−−→ TM :

Φ : p−1
TM (Ũ) → φ̃(Ũ)× R2n ⊆ R4n,

and for an element v = (x, v) ∈ Ũ write an element of p−1
TM (Ũ) as a linear combination

of the basis vectors of TvTM :

ẋ1
∂

∂x1

∣∣∣
m
+ . . .+ ẋn

∂

∂xn

∣∣∣
m
+ v̇1

∂

∂v1

∣∣∣
v
+ . . .+ v̇n

∂

∂vn

∣∣∣
v
.

2We have written Ũ for p−1(U)
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Then Φ maps it to

(x1, . . . , xn, v1, . . . , vn, ẋ1, . . . , ẋn, v̇1, . . . , v̇n).

And this is how we denote a local coordinate system on T 2M , and in shorthand nota-
tion: (x, v, ẋ, v̇).

For two charts (Ũ , φ̃) and (Ṽ , ψ̃) on TM , with Ũ ∩ Ṽ ̸= ∅, denote by (x, v, ẋ, v̇) and by
(x̃, ṽ, ˙̃x, ˙̃v) the corresponding coordinates on T 2M , respectively. The transition map on
the region of intersection p−1

TM (Ũ) ∩ p−1
TM (Ṽ ) of the two corresponding charts on T 2M ,

(x, v, ẋ, v̇) 7→ (x̃, ṽ, ˙̃x, ˙̃v).

As in the case of (1.20), the transformation laws for the coordinates ( ˙̃x) and ( ˙̃v) on the
intersection of the two charts of T 2M follow by (1.21):

˙̃xi =
∂x̃i

∂xj
(m)ẋj , ˙̃vi =

∂2x̃i

∂xj∂xk
(m)ẋjvk +

∂x̃i

∂xj
(m)v̇j . (1.22)

And this completes Step 3.

As mentioned in Subsection 1.1.3, the coordinates of the core vector bundle change as
the coordinates ( ˙̃v) change when we set ẋj and vk, j, k = 1, . . . , n, to zero in the second
equation of (1.22). This is another way of describing the canonical identification of the
core vector bundle of T 2M with TM →M .

The two bundle projections, pTM and T (p) in local coordinates (x, v, ẋ, v̇),

pTM : T 2M → TM, (x, v, ẋ, v̇) 7→ (x, v),

and
T (p) : T 2M → TM, (x, v, ẋ, v̇) 7→ (x, ẋ).

For the second projection, take the tangent of the bundle projection of the tangent
bundle p : TM →M , (x, v) 7→ (x), for v ∈ TmM ,

Tv(p) : TvTM → TmM,

which is described by the matrix:
∂x1

∂x1
. . . ∂x1

∂xn
...

. . .
...

∂xn

∂x1
. . . ∂xn

∂xn

∂x1

∂v1
. . . ∂x1

∂vn
...

. . .
...

∂xn

∂v1
. . . ∂xn

∂vn

 =
[
I(n×n) 0(n×n)

]
.

For ξ ∈ Tv(TM), written as ξ = ẋ1 ∂
∂x1

∣∣∣
m
+ . . .+ v̇n ∂

∂vn

∣∣∣
v
, we then have,

Tv(p)(ξ) =
[
I(n×n) 0(n×n)

]


ẋ1

...
ẋn

v̇1

...
v̇n


=

ẋ
1

...
ẋn

 = ẋ1
∂

∂x1
+ . . .+ ẋn

∂

∂xn
,
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hence

T (p) : T 2M → TM, (x, v, ẋ, v̇) 7→ (x, ẋ).

The two additions in T 2M , for (x, v, ẋ, v̇), (x, v, ẋ′, v̇′) ∈ T(x,v)TM :

(x, v, ẋ, v̇) +
pTM

(x, v, ẋ′, v̇′) = (x, v, ẋ+ ẋ′, v̇ + v̇′),

and for (x, v, ẋ, v̇), (x, v′, ẋ, v̇′) ∈ T (p)−1(x, ẋ):

(x, v, ẋ, v̇) +
T (p)

(x, v′, ẋ, v̇′) = (x, v + v′, ẋ, v̇ + v̇′).

In the rest of the thesis, we denote a single tangent vector onM at point m ∈M either
by v = (x, v) = (x1, . . . , xn, v1, . . . , vn) ∈ TmM , or by Xm ∈ TmM . For X ∈ X(M) a
vector field, we denote its value at point m ∈M by X(m).

1.2.2 The canonical involution JM : T 2M → T 2M

For any vector bundle (A, q,M), viewing A as a manifold, the corresponding canonical
involution JA : T 2A → T 2A is of paramount importance to Section 4.5. Hence, a
preliminary exposition on the properties of JM is necessary.

A detailed exposition in local coordinates can be found in [34, Section 10]. Other main
references are [1, Exercises 3.3B and 6.4G], [31, Section 8.13 and Section 8.14], [25,
Section 9.6], and [2, Chapter 1].

Definition of JM

To begin with, JM : T 2M → T 2M is a map from T 2M to itself. There are two
definitions of JM . The first one is given via local coordinates, and the second one via
second derivatives. We briefly describe both.

First, the definition via local coordinates. This is the definition given in both [1,
Exercise 3.3B] and [31, Section 8.13]. Locally, the canonical involution JM is described
by

JM (x, v, ẋ, v̇) = (x, ẋ, v, v̇).

This definition is invariant under changes of charts, [31, p.107].

The second definition via second derivatives, as in [25, Section 9.6]. When ξ ∈ T 2M ,
we can write it as

ξ =
∂

∂t

(
∂

∂s
µ(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

, (1.23)

where µ : D →M is a smooth square of elements of M , D ⊆ R× R an open subset of
R× R, with (0, 0) ∈ D.
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Then JM is the map that interchanges the order of differentiation, i.e.,

JM (ξ) :=
∂

∂s

(
∂

∂t
µ(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

. (1.24)

The use of partial derivatives in this setting can be misleading; we explain in detail this
definition in the following subsection.

Of course, the most immediate consequence of this definition is that J2
M = JM ◦ JM =

idT 2M , i.e., JM is an involution.

JM interchanges the two bundle structures on T 2M

Indeed, we will show that

T (p) ◦ JM = pTM , pTM ◦ JM = T (p),

using the definition of JM via second derivatives.

Take a µ : D →M , (t, s) 7→ µ(t, s), a smooth square of elements of M . First fix t ∈ I,
I ⊆ R an open interval of R such that for t ∈ I then (t, s) ∈ D, and of course 0 ∈ I.
Then, for every t, we obtain a curve in M :

µt : I
′ →M, s 7→ µt(s) = µ(t, s),

where I ′ ⊆ R an open interval of R, such that, if s ∈ I ′ and t ∈ I, then (t, s) ∈ D, and
additionally, 0 ∈ I ′. Take the velocity vector Yt of each of these curves at the point
µt(0) = µ(t, 0),

Yt :=
d

ds
µt(s)

∣∣∣
s=0

∈ Tµ(t,0)M.

These Yt, t ∈ I, form a smooth curve Y : I → TM , t 7→ Yt in TM , with p(Yt) =
µt(0) = µ(t, 0), i.e., its projection on M is the curve µ(·, 0) : I →M , t 7→ µ(t, 0).

Take the velocity vector of the curve Y in TM . This is exactly ξ as in (1.23):

ξ =
d

dt
Yt

∣∣∣
t=0

∈ TY0(TM).

The relevant projections:

pTM (ξ) = Y0 =
d

ds
µ0(s)

∣∣∣
s=0

∈ Tµ(0,0)M,

T (p)(ξ) = T (p)

(
d

dt
Yt

∣∣∣
t=0

)
=

d

dt
p(Yt)

∣∣∣
t=0

=
d

dt
µ(t, 0)

∣∣∣
t=0

∈ Tµ(0,0)M. (1.25)

Now we describe JM (ξ) in detail. All we have to do is switch the roles of s and t. Start
again with µ : D → M , (t, s) 7→ µ(t, s). Fix s ∈ I ′, I ′ as before. Then again, for every
s ∈ I ′ we get a curve in M :

µs : I →M, t 7→ µs(t) = µ(t, s),
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and again, the velocity vector of µs at point µs(0) = µ(0, s), denoted by Xs:

Xs :=
d

dt
µs(t)

∣∣∣
t=0

∈ Tµ(0,s)M.

The Xs, s ∈ I ′, form a smooth curve X : I ′ → TM , s → Xs, in TM , with p(Xs) =
µs(0) = µ(0, s). The projection of X on M is the curve µ(0, ·) : I ′ →M , s 7→ µ(0, s).

The velocity vector of the curve X at s = 0 is exactly JM (ξ) as in (1.24),

d

ds
Xs

∣∣∣
s=0

=
d

ds

(
d

dt
µs(t)

∣∣∣
t=0

) ∣∣∣
s=0

= JM (ξ).

Observe that

pTM (JM (ξ)) = X0 =
d

dt
µ(t, 0)

∣∣∣
t=0

(1.25)
= T (p)(ξ),

T (p)(JM (ξ)) = T (p)

(
d

ds
Xs

∣∣∣
s=0

)
=

d

ds
p(Xs)

∣∣∣
s=0

=
d

ds
µ(0, s)

∣∣∣
s=0

= Y0 = pTM (ξ).

The outlines of the two elements ξ and JM (ξ):

ξ X0

Y0 µ(0, 0),

T (p)

pTM

JM (ξ) Y0

X0 µ(0, 0).

T (p)

pTM

Therefore, we see that JM interchanges the two bundle structures on T 2M :

pTM ◦ JM = T (p), T (p) ◦ JM = pTM . (1.26)

In particular, this shows that as a vector bundle map JM : T 2M → T 2M induces the
identity map on the bases TM :

T 2M T 2M

TM TM,

JM

T (p) pTM

T 2M T 2M

TM TM,

JM

pTM T (p) (1.27)

hence JM preserves the side bundles TM of T 2M .

Focus now on the first diagram of (1.27). Fibrewise linearity for ξ, ξ′ ∈ T (p)−1(v), with
v ∈ TmM :

JM (ξ +
T (p)

ξ′) = JM (ξ) +
pTM

JM (ξ′). (1.28)

This follows immediately by JM ’s definition in local coordinates. Since ξ, ξ′ ∈ T (p)−1(v):

ξ = (x, v, ẋ, v̇), ξ′ = (x, v′, ẋ, v̇′),
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therefore,

JM (ξ +
T (p)

ξ′) = JM (x, v + v′, ẋ, v̇ + v̇′) = (x, ẋ, v + v′, v̇ + v̇′)

= (x, ẋ, v, v̇) +
pTM

(x, ẋ, v′, v̇′) = JM (ξ) +
pTM

JM (ξ′).

Of course the same is true the other way around. For ξ, ξ′ ∈ T 2M with pTM (ξ) =
pTM (ξ′),

JM (ξ +
pTM

ξ′) = JM (ξ) +
T (p)

JM (ξ′). (1.29)

Core morphism of JM

What is the core morphism of JM? Take a tangent vector v ∈ TmM in the core of
T 2M . How do we express v ∈ T 2M in terms of µ : D → M (recall that we write v
when we view a core element in the double vector bundle T 2M , and we simply write v
when we view it in TM , the familiar vector bundle with which we have identified the
core of T 2M)?

Since v ∈ TmM , we can write v = d
dtγ(t)

∣∣∣
t=0

, for γ : I → M , t 7→ γ(t) a curve in M

with γ(0) = m, and γ at least twice differentiable. Consider u : D → I, (t, s) 7→ t+ s,
and set µ(t, s) = γ(u(t, s)). Then it follows that

v =
∂

∂t

(
∂

∂s
µ(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

=
∂

∂t

(
∂

∂s
γ(u(t, s))

∣∣∣
s=0

) ∣∣∣
t=0

=
∂

∂t

(
dγ

du

∣∣∣
u(t,0)

du

ds

∣∣∣
s=0

) ∣∣∣
t=0

=
∂

∂t

(
dγ

du

∣∣∣
u(t,0)

) ∣∣∣
t=0

=
∂

∂t

(
dγ

dt
(t)

) ∣∣∣
t=0

=
d2γ

dt2

∣∣∣
t=0

.

If we now switch the order of the variables s and t, then µ(s, t) = γ(s+ t) is the same
curve, therefore JM (v) = v, see [2, Section 1.20].

Another way of understanding why JM is the identity map on the core is the follow-
ing. The core of the double tangent bundle T 2M we start with is the intersection
of the two kernels Ker(pTM ) ∩ Ker(T (p)). The map JM interchanges the two bundle
structures T (p) : T 2M → TM and pTM : T 2M → TM . Therefore, JM maps one
kernel to the other, i.e., JM (Ker(pTM )) = Ker(T (p)), and JM (Ker(T (p))) = Ker(pTM ).
Consequently, JM leaves the intersection of the kernels unchanged. Hence, the core of
JM (T 2M) = T 2M will be again the intersection Ker(T (p)) ∩ Ker(pTM ), i.e. the same
intersection that defines the core vector bundle of the initial T 2M .

Combining the last two subsections, it follows that JM is a double vector bundle iso-
morphism JM : T 2M → T 2M that induces the identity map on the core vector bundles,
see Theorem [25, 9.6.1].
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Local coordinates for X̃ and T (X)

The canonical involution JM when applied to sections of the vector bundle structure

T 2M
T (p)−−−→ TM , which are not vector fields on TM , yields sections of the vector bundle

structure T 2M
pTM−−−→ TM , that is, it yields vector fields on TM . Specifically, the

complete lift X̃ (sometimes also called the “tangent lift”) of a vector field X ∈ X(M),
is a vector field on TM such that

X̃ = JM ◦ T (X), T (X) = JM ◦ X̃. (1.30)

Take two vector fields X,Y ∈ X(M):

X = Xi ∂

∂xi
= (x1, . . . , xn, X1, . . . , Xn), Y = Y i ∂

∂xi
= (x1, . . . , xn, Y 1, . . . , Y n),

where for each i = 1, . . . , n, Xi, Y i ∈ C∞(M).

Take a chart (p−1(U), φ̃) for TM as in (1.18). We consider X as a map from M to
TM , m → (m,X(m)). Then the tangent map TmX : TmM → TX(m)TM maps the
vector Y (m) ∈ TmM to,

TmX(Y (m)) =


In×n

∂X1

∂x1
(m) . . . ∂X1

∂xn (m)
...

. . .
...

∂Xn

∂x1
(m) . . . ∂Xn

∂xn (m)


Y

1(m)
...

Y n(m)

 =



Y 1(m)
...

Y n(m)

Y i(m)∂X
1

∂xi
(m)

...

Y i(m)∂X
n

∂xi
(m)


,

hence

TmX(Y (m)) =(
x1(m), . . . , xn(m), X1(m), . . . , Xn(m), Y 1(m), . . . , Y n(m), Y i(m)

∂X1

∂xi
(m), . . . , Y i(m)

∂Xn

∂xi
(m)

)
,

(1.31)

and of course TmX(Y (m)) ∈ TX(m)TM . Similarly about TmY :

TmY (X(m)) =(
x1(m), . . . , xn(m), Y 1(m), . . . , Y n(m), X1(m), . . . , Xn(m), X i(m)

∂Y 1

∂xi
(m), . . . , Xi(m)

∂Y n

∂xi
(m)

)
,

(1.32)
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and TmY (X(m)) ∈ TY (m)TM . Applying JM to TmX(Y (m)) interchanges the two
vector bundle structures, therefore,

JM (TmX(Y (m))) =(
x1(m), . . . , xn(m), Y 1(m), . . . , Y n(m), X1(m), . . . , Xn(m), Y i(m)

∂X1

∂xi
(m), . . . , Y i(m)

∂Xn

∂xi
(m)

)
,

(1.33)

and now JM (TmX(Y (m))) ∈ TY (m)TM . The complete lift X̃ of X ∈ X(M) is a vector
field on TM :

X̃ : TM → T 2M, (1.34)

Ym 7→ X̃(Ym) = Xi(m)
∂

∂xi

∣∣∣
m
+ Y k(m)

∂Xi

∂xk
(m)

∂

∂vi

∣∣∣
Y (m)

∈ TY (m)TM.

In local coordinates this is precisely (1.33), and of course

pTM (X̃(Y (m))) = Y (m), T (p)(X̃(Y (m))) = X(m),

and

T (p)(TmX(Y (m))) = Y (m), pTM (TmX(Y (m))) = X(m).

Flows of complete lift

In this subsection we answer the question “X̃ is velocity vector of which curve?”, see
[1, Exercise 6.4G(ii)] and [25, Proposition 9.6.6] for further reading.

Denote by φ : Ω → M the (local) flow of the vector field X, Ω being an appropriate
open subset of R×M , (t,m) → φ(t,m), and by {φt} the one-parameter group of (local)
diffeomorphisms of M defined by φ. Then,

• for I ⊆ R an open subset of R, s.t. I ×M ⊂ Ω, φm : I →M , t→ φm(t), denotes
the unique integral curve of X, starting at m ∈M ;

• for each t ∈ I, φt : M → M , m 7→ φt(m) = φ(t,m) = φm(t), sends each m ∈ M
to the point obtained by following for time t the integral curve starting at m;

• and X(m) = d
dtφ

m(t)
∣∣∣
t=0

= d
dtφ(t,m)

∣∣∣
t=0

, denotes the tangent vector of the curve

φm at the point m.

The flow properties:

• For any t, s ∈ R, s.t. (s,m), (t, φs(m)), and (t + s,m) ∈ Ω, we have φt+s(m) =
(φt ◦ φs)(m), and
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• at t = 0, φ0(m) = m, ∀m ∈M , i.e., φ0 = idM .

We will show that {T (φt)} is the one-parameter group of (local) diffeomorphisms of
TM , corresponding to the (local) flow of the complete lift X̃. To begin with, the
tangent functor preserves the properties of the flow:

• Since φt+s = φt ◦ φs, it follows that

T (φt+s) = T (φt) ◦ T (φs).

• Since φ0 = idM , it follows immediately that T (φ0) = idTM .

Now take any v ∈ TmM , and some curve γ in M , γ : (−ϵ, ϵ) → M , u 7→ γ(u), with

γ(0) = m, and with v = d
duγ(u)

∣∣∣
u=0

. Let O be an open subset of R2 such that, for any

(t, u) ∈ O, (t, γ(u)) ∈ Ω. Consider the map (t, u) 7→ φ(t, γ(u)) = φγ(u)(t) = φt(γ(u))
from O to M . Then,

Tm(φt)(v) = Tm(φt)

(
d

du
γ(u)

∣∣∣
u=0

)
=

d

du
φt(γ(u))

∣∣∣
u=0

.

Denote by ξ the velocity vector of the curve t 7→ Tm(φt)(v),

ξ =
d

dt
Tm(φt)(v)

∣∣∣
t=0

=
d

dt

(
d

du
φt(γ(u))

∣∣∣
u=0

) ∣∣∣
t=0

=
d

dt

(
d

du
φ(t, γ(u))

∣∣∣
u=0

) ∣∣∣
t=0

.

(1.35)
By (1.24) it follows that

JM (ξ) =
d

du

(
d

dt
φ(t, γ(u))

∣∣∣
t=0

) ∣∣∣
u=0

=
d

du
X(γ(u))

∣∣∣
u=0

= T (X)(v),

and since J2
M = idTM , we have that

(JM ◦ T (X))(v) = ξ =
d

dt
Tm(φt)(v)

∣∣∣
t=0

.

Therefore, the vector field for which {T (φt)} is the one-parameter group of (local)
diffeomorphisms of TM , is JM ◦ T (X), and from (1.30), this is exactly X̃.

Vertical lift X↑

For completeness, we present here X↑. To begin with, one can define the vertical lift
of a single tangent vector. It isn’t necessary to start with a vector field, contrary to
complete lifts.

As a picture, you start with a vector Xm ∈ TmM . Choose a vector Ym ∈ TmM , and
we want to “lift” Xm to a vector on the fibre of T 2M

pTM−−−→ TM over Ym. This we do
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by simply taking Xm, placing its tail at Ym (which we view as 0T
2M

Ym
, the zero vector of

the fibre over Ym), and asking it to be tangent along the fibre TmM , as follows. Take
the velocity vector of the path Ym + tXm ∈ TmM :

X↑
m(Ym) =

d

dt
(Ym + tXm)

∣∣∣
t=0

.

Given X ∈ X(M), the vertical lift of X↑ is a vector field on TM ,

X↑ : TM → TTM

Ym 7→ X↑(Ym) ∈ TYmTM,

defined as follows. If X = Xi ∂
∂xi

= (x1, . . . , xn, X1, . . . , Xn), and Y = Y i ∂
∂xi

=
(x1, . . . , xn, Y 1, . . . , Y n), then

X↑(Ym) = Xi ∂

∂vi
= (x1, . . . , xn, Y 1, . . . , Y n, 0, . . . , 0, X1, . . . , Xn) ∈ TYmTM,

or, in double vector bundle language:

X↑(Ym) = X +
T (p)

0T
2M

Ym = (x1, . . . , xn, 0, . . . , 0, 0, . . . , 0, X1, . . . , Xn)

+
T (p)

(x1, . . . , xn, Y 1, . . . , Y n, 0, . . . , 0, 0, . . . , 0). (1.36)

Also T (p)(X↑(Ym)) = 0TMm and, of course, pTM (X↑(Ym)) = Ym.

The core vector bundle of T 2M is a copy of TM →M . A section of this vector bundle
is a vector field X on M . From Definition 1.1.3, the strut of X with respect to pTM is:

XpTM : TM → T (TM), Ym 7→ XpTM (Ym) = 0T
2M

Ym +
T (p)

X(m),

and by (1.36), this is precisely the vertical lift of X(m) at point Ym: X
pTM (Ym) =

X↑(Ym). In order to distinguish between the struts XA and XB in this case, since
A = B = TM , we again use the projections. So instead of XTM we write XpTM and
XT (p). And XpTM = X↑.

Naturality of JM

The following Lemma regarding the naturality property of the canonical involution will
be needed later on, see [1, Exercise 3.3B(ii)], and [31, Section 8.13(1)].

Lemma 1.2.1. Let M and N be smooth manifolds, and F : M → N a smooth map.
Then T 2(F ) ◦ JM = JN ◦ T 2(F ), where T 2(F ) = T (T (F )) is the tangent of the tangent
map T (F ).
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Proof. Take a ξ = d
dt

(
d
dsµ(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

, where µ : D → M a smooth square of

elements on M , where D ⊆ R× R an open subset of R× R with (0, 0) ∈ D. Write,

T 2(F ) ◦ JM (ξ) = T 2(F )

(
d

ds

(
d

dt
µ(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

)
=

d

ds

(
T (F )

(
d

dt
µ(t, s)

∣∣∣
t=0

)) ∣∣∣
s=0

=
d

ds

(
d

dt
F (µ(t, s))

∣∣∣
t=0

) ∣∣∣
s=0

,

and F ◦ µ : D → N a smooth square of elements on N , so

d

ds

(
d

dt
F (µ(t, s))

∣∣∣
t=0

) ∣∣∣
s=0

= JN

(
d

dt

(
d

ds
F (µ(t, s))

∣∣∣
s=0

) ∣∣∣
t=0

)
= JN

(
d

dt
T (F )

(
d

ds
µ(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

)
= JN ◦ T 2(F )

(
d

dt

(
d

ds
µ(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

)
= JN ◦ T 2(F )(ξ),

and this completes the proof.

1.2.3 TA: Curves and Tulczyjew

Let A
q−→M be a vector bundle of rank r, and denote its fibre over m ∈M by Am. Take

a local coordinate chart (U,φ) onM with associated local coordinates (x1, . . . , xn), and
a smooth local frame (s1, . . . , sr) for A over U . Write an element a ∈ Am, m ∈ U , as
a1s1(m) + . . .+ arsr(m). Then (q−1(U),Φ), the associated local chart on A,

Φ : q−1(U) → φ(U)× Rr,
a1s1(m) + . . .+ arsr(m) 7→ (x1, . . . , xn, a1, . . . , ar).

Therefore, we write an element a ∈ Am in local coordinates as (x1, . . . , xn, a1, . . . , ar),
or as (x, a).

Now take two local coordinate charts (U,φ) and (V, ψ) on M , with U ∩ V ̸= ∅. In ad-
dition, take two smooth local frames for A, (s1, . . . , sr) over U , and (s̃1, . . . , s̃r) over V ,
and the associated local coordinate charts (q−1(U),Φ) and (q−1(V ),Ψ) on A, with cor-
responding local coordinates, (x1, . . . , xn, a1, . . . , ar), and (x̃1, . . . , x̃n, ã1, . . . , ãr). The
transition map on the region of intersection:

Ψ ◦ Φ−1 : φ(U ∩ V )× Rr → ψ(U ∩ V )× Rr,
(x1, . . . , xn, a1, . . . , ar) 7→ (x̃1, . . . , x̃n, ã1, . . . , ãr). (1.37)
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Denote by P : U ∩ V → GL(r,R), the transition function defined by (1.37). Then for
a ∈ q−1(U) ∩ q−1(V ):

a = (x̃1, . . . , x̃n, ã1, . . . , ãr) = (x̃1, . . . , x̃n, P 1
k (m)ak, . . . , P rk (m)ak).

As in Section 1.2.1, the last equation in matrix form,ã
1

...
ãr

 =

P
1
1 (m) . . . P 1

r (m)
...

. . .
...

P r1 (m) . . . P rr (m)


a

1

...
ar

 ,
of course in P ℓk , ℓ denotes the row and k denotes the column of the matrix P . Therefore,
the transformation laws for the fibre coordinates (ã):

ãℓ = P ℓka
k, ℓ = 1, . . . , r. (1.38)

As in the case of T 2M , denote a local coordinate system for TA by:

(x1, . . . , xn, a1, . . . , ar, ẋ1, . . . , ẋn, ȧ1, . . . , ȧr),

and shorthand notation (x, a, ẋ, ȧ). If we take two overlapping charts on TA, with asso-
ciated local coordinates (x, a, ẋ, ȧ) and (x̃, ã, ˙̃x, ˙̃a), we use the Jacobian of the transition
map (1.37) to show how the coordinates change. In particular, the Jacobian of (1.37),

∂x̃1

∂x1
. . . ∂x̃1

∂xn
...

. . .
...

∂x̃n

∂x1
. . . ∂x̃n

∂xn

∂x̃1

∂a1
. . . ∂x̃1

∂ar
...

. . .
...

∂x̃n

∂a1
. . . ∂x̃n

∂ar
∂ã1

∂x1
. . . ∂ã1

∂xn
...

. . .
...

∂ãr

∂x1
. . . ∂ãr

∂xn

∂ã1

∂a1
. . . ∂ã1

∂ar
...

. . .
...

∂ãr

∂a1
. . . ∂ãr

∂ar


=

 ( ∂x̃i∂xj

)
0(n×r)(

∂ãℓ

∂xj

) (
∂ãℓ

∂ak

)  ,

where i, j = 1, . . . , n, and ℓ, k = 1, . . . , r. From (1.38), it follows that

∂ãℓ

∂xj
=
∂P ℓs
∂xj

as,
∂ãℓ

∂ak
= P ℓk ,

where s is a summation index, s = 1, . . . , r. Therefore, ( ∂x̃i∂xj

)
0(n×r)(

∂ãℓ

∂xj

) (
∂ãℓ

∂ak

)  =


(
∂x̃i

∂xj

)
(n×n)

0(n×r)(
∂P ℓ

s

∂xj
as
)
(r×n)

(P ℓk)(r×r)

 ,
hence, we have the following change of coordinates for (x, a, ẋ, ȧ) and (x̃, ã, ˙̃x, ˙̃a),

ãℓ = P ℓk(m)ak, (1.39)

˙̃xi =
∂x̃i

∂xj
(m)ẋj , (1.40)

˙̃aℓ = P ℓk(m)ȧk +
∂P ℓs
∂xj

(m)ẋjas. (1.41)
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The coordinates for the core vector bundle here change as ( ˙̃a) change, when we set ẋj

and as, j = 1, . . . , n, s = 1, . . . , r to zero in the last equation, hence again we see that
the core vector bundle can be canonically identified with A→M .

The two bundle projections pA and T (q) in local coordinates (x, a, ẋ, ȧ),

pA : TA→ A, (x, a, ẋ, ȧ) 7→ (x, a),

and

T (q) : TA→ TM, (x, a, ẋ, ȧ) 7→ (x, ẋ),

where the tangent prolongation of q : A→M follows similarly as T (p) in Section 1.2.1.

Now, for any curve γ : I → M , I ⊆ R an open interval of R with 0 ∈ I, what is
d
dtγ(t)

∣∣∣
t=0

in local coordinates of TM?

First off, take a chart (U,φ) in M , with φ : U → φ(U) ⊆ Rn, m 7→ (x1(m), . . . , xn(m)).
Write γ in local coordinates:

γ(t) = (x1(t), . . . , xn(t)).

Then the velocity vector of this curve at t = 0:

γ′(0) =
dxi

dt
(0)

∂

∂xi

∣∣∣
γ(0)

∈ Tγ(0)M,

and in the corresponding local coordinates on TM defined by (U,φ):

γ′(0) = (x1(0), . . . , xn(0),
dx1

dt
(0), . . . ,

dxn

dt
(0)).

Now take a curve a : I → A in A, I ⊆ R an open interval of R, with 0 ∈ I. Then

a′(0) = d
dta(t)

∣∣∣
t=0

∈ Ta(0)A. Take a chart (U,φ) on M , a local frame (si) for A over U ,

and the associated local chart (q−1(U),Φ) on A. The curve a(t) in local coordinates,

a(t) = (x1(t), . . . , xn(t), a1(t), . . . , ar(t)) = (x(t), a(t)),

and its velocity vector at t = 0,

a′(0) =
d

dt
a(t)

∣∣∣
t=0

=
dxi

dt
(0)

∂

∂xi

∣∣∣
x(0)

+
dai

dt
(0)

∂

∂ai

∣∣∣
a(0)

=

(
x1(0), . . . , xn(0), a1(0), . . . , ar(0),

dx1

dt
(0), . . . ,

dxn

dt
(0),

da1

dt
(0), . . . ,

dar

dt
(0)

)
.

The following is [34, Proposition 1, p.81]. It is a result we use repeatedly throughout
the following Chapters and we include its proof for completeness.
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Proposition 1.2.2. Take two vectors ξ1, ξ2 ∈ TA with T (q)(ξ1) = T (q)(ξ2). Then

there exist curves a1, a2 : I → A such that ξ1 = d
dta1(t)

∣∣∣
t=0

and ξ2 = d
dta2(t)

∣∣∣
t=0

, with

q(a1(t)) = q(a2(t)) for t near zero.

Proof. Let m = p(T (q)(ξ1)) = p(T (q)(ξ2)) = (x1(m), . . . , xn(m)) be in the domain of
U of the chart (U,φ), with coordinates (x1, . . . , xn). Write

ξ1 = (x1(m), . . . , xn(m), a11(m), . . . , ar1(m), ẋ11(m), . . . , ẋn1 (m), ȧ11(m), . . . , ȧr1(m))

ξ2 = (x1(m), . . . , xn(m), a12(m), . . . , ar2(m), ẋ12(m), . . . , ẋn2 (m), ȧi2(m), . . . , ȧr2(m)),

for some local coordinates on TA as described above. The following curves a1, a2 : R →
A,

a1(t) =
(
x1(m) + tẋ11(m), . . . , xn(m) + tẋn1 (m), a11(m) + tȧ11(m), . . . , ar1(m) + tȧr1(m)

)
,

a2(t) =
(
x1(m) + tẋ12(m), . . . , xn(m) + tẋn2 (m), a12(m) + tȧ12(m), . . . , ar2(m) + tȧr2(m)

)
,

for t sufficiently close to 0, satisfy the requirements. Indeed, we immediately see that

d

dt
a1(t)

∣∣∣
t=0

= ξ1,
d

dt
a2(t)

∣∣∣
t=0

= ξ2.

The condition T (q)(ξ1) = T (q)(ξ2) implies additionally that

ẋi1(m) = ẋi2(m), i = 1, . . . , n,

hence from the formulas of a1(t) and a2(t) it follows that q(a1(t)) = q(a2(t)), for t near
zero.

Two types of functions on A

A small parenthesis on recalling a useful technique. Two types of functions defined
on A, linear and pullback functions, are of particular importance. A section φ ∈ ΓA∗

defines a linear function ℓφ on A:

ℓφ : A → R,
a 7→ ℓφ(a) = ⟨φ(q(a)), a⟩.

For f ∈ C∞(M), its pullback function f ◦ q ∈ C∞(A) on A is constant on the fibres of
A.

To define either a vector field or a tangent vector on a vector bundle A
q−→ M , it is

enough to check how it “behaves” when applied to linear and pullback functions of A.
A proof of this is given in Appendix A.2.1.

For example, in the case of pTM : T 2M → TM , for ω ∈ Γ(T ∗M) the corresponding
linear function on TM is,

ℓω : TM → R, Xm 7→ ⟨ω(m), Xm⟩.
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From the definition (1.34) of the complete lift X̃ of a vector field X ∈M , the action of
X̃ on linear and pullback functions, for ω ∈ Γ(T ∗M) and f ∈ C∞(M) is,

X̃(f ◦ p) = X(f) ◦ p, X̃(ℓω) = ℓLX(ω).

Also, for f ∈ C∞(M), ω ∈ Γ(T ∗M), it follows directly from the definition of X↑, see
Section 1.2.2, that

X↑(f ◦ p) = 0, X↑(ℓω) = ⟨ω,X⟩ ◦ p.

For a section µ ∈ ΓA, a section of the core of TA, the strut µ↑ of µ over A is given by
(1.10). Applied to the two types of functions on A, the linear functions ℓφ, for φ ∈ ΓA∗,
and the pullbacks f ◦ q for f ∈ C∞(M), it follows directly from (1.10) that

µ↑(ℓφ) = ⟨φ, µ⟩ ◦ q, µ↑(f ◦ q) = 0. (1.42)

1.2.4 Connections in A and in TM

In this section we present all the basic concepts and formulas from Connection theory
needed in later sections.

Given a connection ∇ in a vector bundle A
q−→M , the dual connection ∇(∗) in the dual

vector bundle A∗ q∗−→M is defined by,

⟨∇(∗)
X (φ), µ⟩ = X(⟨φ, µ⟩)− ⟨φ,∇X(µ)⟩, (1.43)

where µ ∈ ΓA, φ ∈ ΓA∗, and X ∈ X(M). Further reading in [25, Section 3.4], [16,
p.320].

Given a vector field X ∈ X(M), denote by XH its horizontal lift on A with respect to
∇. Then (XH , X) is a linear vector field on A. The action of the horizontal lift XH on
the linear and the pullback functions,

XH(f ◦ q) = X(f) ◦ q, XH(ℓφ) = ℓ∇(∗)
X (φ)

, (1.44)

for f ∈ C∞(M) and φ ∈ ΓA∗.

That a connection in a vector bundle A is equivalent to a double vector bundle mor-
phism

C : TM ×M A→ TA, (Xm, a) 7→ (Xm)
H(a),

is described in detail in [5, p.324-8 and Problem 4, p.337]. Other references include [25,
Section 5.2], and for the particular case A = TM in [31, Section 22.8], and in implicit
form in [4, p.334].
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TM ×M A A

TA A

TM M

TM M

C

q

pA

q
p

p

T (q)

The double vector bundle morphism C is a smooth right-inverse to (T (q), pA) : TA→
TM ×M A, and is linear in both arguments, i.e., for a1, a2 ∈ Am and X ∈ TmM ,

C(X, a1 + a2) = XH(a1 + a2) = XH(a1) +
T (q)

XH(a2) = C(X, a1) +
T (q)

C(X, a2),

and for X1, X2 ∈ TmM two tangent vectors on M at point m ∈M , and a ∈ Am:

C(X1+X2, a) = (X1+X2)
H(a) = (X1

H +
pA
X2

H)(a) = X1
H(a) +

pA
X2

H(a) = C(X1, a) +
pA
C(X2, a).

This formulation of a connection in A will show up once again towards the end of this
section.

Example 1.2.3. The following example is central to Section 4.5. It is a subcase of [25,
Theorem 3.4.5].

Consider the tangent double vector bundle TA, and let ∇ be a connection in A. Take
a vector field Z ∈ X(M), and take its horizontal lift ZH with respect to ∇. Take also
any µ ∈ ΓA and form the grid shown in (1.46). Then the warp of the grid is ∇Zµ; that
is, for m ∈M ,

T (µ)(Z(m))—
A
ZH(µ(m)) = (∇Zµ)

↑(µ(m)), (1.45)

where the right hand side is the vertical lift of (∇Zµ)(m) ∈ Am to Tµ(m)A.

TA TM

A M.

T (q)

T (µ)

pAZH p Z

q

µ

(1.46)

It is enough to check that the right hand side and the left hand side of (1.45) are equal
when applied to the linear and the pullback functions of A. Starting from the right
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hand side of (1.45), when applied to a linear function ℓφ, φ ∈ ΓA∗:(
T (µ)(Z(m))—

A
ZH(µ(m))

)
(ℓφ)

= T (µ)(Z(m))(ℓφ)− ZH(µ(m))(ℓφ) = Z(m)(ℓφ ◦ µ)− (ZH(ℓφ))(µ(m))

(1.44)
= (Z(⟨φ, µ⟩))(m)− ℓ∇(∗)

Z φ
(µ(m)) = (Z(⟨φ, µ⟩))(m)− ⟨µ(m), (∇(∗)

Z φ)(m)⟩

(1.43)
= ⟨φ(m), (∇Zµ)(m)⟩ = ⟨φ,∇Zµ⟩(m) = ⟨φ,∇Zµ⟩(q(µ(m)))

(1.42)
= (∇Zµ)

↑(ℓφ)(µ(m))

=
(
(∇Zµ)

↑(µ(m))
)
(ℓφ),

and this is exactly the left hand side of (1.45) acting on ℓφ. About pullback functions
f ◦ q, f ∈ C∞(M), it follows that

T (µ)(Z(m))(f ◦ q) = (Z(m))(f ◦ q ◦ µ) = (Z(m))(f ◦ idM ) = (Z(f))(m),

and

ZH(µ(m))(f◦q) = (ZH(f◦q))(µ(m))
(1.44)
= (Z(f)◦q)(µ(m)) = Z(f)(q(µ(m))) = (Z(f))(m),

and finally, by (1.42), it follows that (1.45) is true for pullback functions too. And this
completes the proof.

Connections in TM

Now let us consider the special case of TM as a vector bundle overM . Take a connection
∇ in TM

p−→M . Denote by Γkij ∈ C∞(M) the Christoffel symbols of∇, i, j, k = 1, . . . , n,

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
,

where we’re summing over k. For X,Y ∈ X(M) two vector fields on M with local
coordinate expressions X = Xi ∂

∂xi
and Y = Y j ∂

∂xj
, Xi, Y j ∈ C∞(M). The covariant

derivative of Y with respect to X:

∇XY =

(
XiΓkijY

j +Xi∂Y
k

∂xi

)
∂

∂xk
,

from where we deduce that ∇XY ∈ TM has coordinates

∇XY =

(
x1, . . . , xn, XiΓ1

ijY
j +Xi∂Y

1

∂xi
, . . . , XiΓnijY

j +Xi∂Y
n

∂xi

)
,

where we write XiΓkijY
j to distinguish between the order of indices. Given a vector

field X ∈ X(M) we can take its horizontal lift XH with respect to ∇, a vector field on
TM :

XH : TM → T 2M,

v 7→ XH(v),
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and in local coordinates, writing v = (x1, . . . , xn, v1, . . . , vn), we have,

XH(v) = Xi ∂

∂xi
−XiΓkijv

j ∂

∂vk
= (x1, . . . , xn, v1, . . . , vn, X1, . . . , Xn,−XiΓ1

ijv
j , . . . ,−XiΓnijv

j).

(1.47)

Conjugate connection on TM

We consider TM as a special case for the following reason as well. Given a connection
∇ on TM , we can define the conjugate connection ∇̂ on TM :

∇̂XY = ∇YX + [X,Y ], (1.48)

see [16, p.319] for further details. The conjugate connection is only defined for the
tangent bundle, and not for any arbitrary vector bundle A → M . From (1.48) it
follows immediately that, if Γkij are the Christoffel symbols of ∇, then for the Christoffel

symbols Γ̂kij of ∇̂ we have

Γ̂kij
∂

∂xk
= ∇̂ ∂

∂xi

∂

∂xj
= ∇ ∂

∂xj

∂

∂xi
+

[
∂

∂xi
,
∂

∂xj

]
= ∇ ∂

∂xj

∂

∂xi
= Γkji

∂

∂xk
.

Therefore,

∇̂XY =

(
XiΓ̂kijY

j +Xi∂Y
k

∂xi

)
∂

∂xk
=

(
Y jΓkjiX

i +Xi∂Y
k

∂xi

)
∂

∂xk
. (1.49)

Denote by XĤ ∈ X(TM) the horizontal lift on TM of a vector field X on M with
respect to the conjugate connection ∇̂. For v ∈ TM ,

XĤ(v) = Xi ∂

∂xi
−XiΓ̂kijv

j ∂

∂vk
= Xi ∂

∂xi
− vjΓkjiX

i ∂

∂vk
.

Finally, using the double vector bundle formulation, if we denote by C : TM×M TM →
T 2M the double vector bundle morphism that corresponds to the connection ∇ in TM ,
then the conjugate connection ∇̂ is described by Ĉ = JM ◦ C ◦ J0, where JM is the
canonical involution in T 2M , and J0 : TM ⊕ TM → TM ⊕ TM interchanges the
arguments, see [22, p.7].
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Triple vector bundles

Triple vector bundles were introduced in [24],[13], and [27]. In this chapter we start
with the definition of a triple vector bundle, describe the basic operations and examples,
and set up the notation.

2.1 Definition of triple vector bundle

As the definition of a double vector bundle has three parts, so does the definition of a
triple vector bundle consist of (i) the algebraic compatibility conditions, (ii) the triple
source condition1, and (iii) the existence of sigma maps.

We start with part (i). We consider a cube of vector bundles as in (2.1). We refer to
the faces of E1,2,3 by the names

Back, Front, Left, Right, Up, Down.

The Back, Left, and Up faces are called upper faces, and the Front, Right, and Down
faces are called lower faces. The total space of (2.1) should be denoted, for consistency
with the labelling scheme, by E1,2,3 but we will usually denote it by E.

Definition 2.1.1. (Part (i)). A triple vector bundle is a cube of vector bundle struc-
tures, as in (2.1), such that each face is a double vector bundle, and such that the
vector bundle operations in E → E1,2 are morphisms of double vector bundles from the
Up face of E to the Down face of E. Similarly for the other vector bundle structures
in E.

1With an argument analogous to the one in [19], it is proved in [9] that part (ii) of the definition of
a triple vector bundle follows from part (i) of the definition.

36
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E1,2,3 E1,3

E2,3 E3

E1,2 E1

E2 M.

(2.1)

2.1.1 Projection maps

The general rule of indices of a projection map q is as follows: superscripts denote the
domain and subscripts denote the target. We omit superscripts when the domain is
the total space E, and omit the subscript when the target is M . For example, the
projection from the Left to the Right face of E,

E E1,3

E2,3 E3

E1,2 E1

E2 M,

q1,3

q2,33

q1,21

q2

and altogether, we denote this double vector bundle morphism by (q1,3; q
1,2
1 , q2,33 ; q2).

2.1.2 Triple source condition

Before proceeding with part (ii) of the definition of a triple vector bundle, we need to
establish the following.

Proposition 2.1.2. Given a triple vector bundle E, write W for the set of all

(e1,2, e2,3, e1,3) ∈ E1,2 × E2,3 × E1,3

such that

q1,22 (e1,2) = q2,32 (e2,3), q2,33 (e2,3) = q1,33 (e1,3), q1,31 (e1,3) = q1,21 (e1,2). (2.2)

This is a submanifold of E1,2 ×E2,3 × E1,3.
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Proof. To see this, write W as the preimage of a submanifold under a surjective sub-
mersion.

Define F : E1,2 × E2,3 × E1,3 → E1 × E2 × E2 × E3 × E1 × E3 by

F (e1,2, e2,3, e1,3) = (q1,21 (e1,2), q
1,2
2 (e1,2), q

2,3
2 (e2,3), q

2,3
3 (e2,3), q

1,3
1 (e1,3), q

1,3
3 (e1,3)).

The domain of F is simply the cartesian product of the three submanifolds E1,2, E1,3,
E2,3. The target of F may be restricted to the following cartesian product:

(E1 ×M E2)× (E2 ×M E3)× (E1 ×M E3) .

If the target of F were simply the cartesian product of the six manifolds (twice each
copy of Ei, i = 1, 2, 3), for example, for (e1, e2) ∈ E1 × E2, there is no guarantee that
there exists an e1,2 ∈ E1,2 such that

q1,21 (e1,2) = e1, q1,22 (e1,2) = e2.

We can now view F as the product of the three double source maps:

F := (♮1,2, ♮2,3, ♮1,3) : E1,2 ×E2,3 × E1,3 → (E1 ×M E2)× (E2 ×M E3)× (E1 ×M E3) .

By Definition 2.1.1, the lower faces of E satisfy the double source condition, hence each
double source map ♮1,2, ♮2,3, and ♮1,3 is a surjective submersion. It follows that F is a
surjective submersion.

Hence, for any (e1, e2, f2, e3, f1, f3) ∈ (E1 ×M E2)× (E2 ×M E3)× (E1 ×M E3), we see
that there exist e1,2 ∈ E1,2, e2,3 ∈ E2,3, e1,3 ∈ E1,3, such that

F (e1,2, e2,3, e1,3) = (e1, e2, f2, e3, f1, f3).

Now choose e1 = f1, e2 = f2, and e3 = f3. Then,

∆ = {(e1, e2, e2, e3, e1, e3) | e2 ∈ E2, e3 ∈ E3, e1 ∈ E1}.

This ∆ is a submanifold of the target of F and F is a surjective submersion, so F−1(∆)
is a submanifold of E1,2 × E2,3 ×E1,3.

To show that F−1(∆) = W it is necessary to be sure that if (e1,2, e2,3, e1,3) ∈ F−1(∆)

then q1(q1,21 (e1,2)) = q2(q2,32 (e2,3)) = q3(q1,33 (e1,3)) = m, all three elements project to
the same element of M .

Given (e1,2, e2,3, e1,3) ∈ F−1(∆), write e1, e2, e3 as above and write m = q1(e1). Then

q3(e3) = q3(q1,33 (e1,3)) = q1(q1,31 (e1,3)) = q1(e1) = m.

Likewise q2(e2) = m. So (e1,2, e2,3, e1,3) ∈W .

This completes the proof.
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The manifold W is a triple vector bundle, with zero ultracore. We point out that
this proof also gives, for any three double vector bundles with matching side bundles,
a triple vector bundle with zero ultracore. To see the structure on W → E1,2, take
(e1,2, e2,3, e1,3) and (e1,2, e

′
2,3, e

′
1,3) in W , and define

(e1,2, e2,3, e1,3) +
1,2
(e1,2, e

′
2,3, e

′
1,3) = (e1,2, e2,3 +

E2

e′2,3, e1,3 +
E1

e′1,3).

The additions on the right hand side are defined, thanks to the definition of W . Scalar
multiplication is defined likewise.

We can now state the following natural condition we impose on a triple vector bundle
E.

Definition 2.1.3. (Part (ii)) A general triple vector bundle E satisfies the triple source
condition if the triple source map

♮̃ : E →W, e 7→ (q1,2(e), q2,3(e), q1,3(e)), (2.3)

is a surjective submersion.

2.1.3 Local coordinates on E

As with double vector bundles, one can also introduce and work with local coordinates
on a triple vector bundle. For completeness we present some notation, following [38,
Example 6.3]. We will resort to this technique in Section 2.4.4, to prove Lemma 2.4.6.

We denote a local coordinate system on E by

(x, v(1), v(2), v(3), v(12), v(13), v(23), v(123)),

where (x) is shorthand notation for (x1, . . . , xn), local coordinates on the base manifold
M of E, and the subsequent (v(1)), . . . , (v(123)) are fibre coordinates for the constituent
vector bundles of E. Denoting by r1, for example, the rank of E1 → M , then (v(1)) =
(v1(1), . . . , v

r1
(1)), and so forth.

On the intersection of two overlapping charts, the transformation laws for the seven
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type fibre coordinates, are the following,

ṽi1(1) = P(1)
i1
j1
vj1(1),

ṽi2(2) = P(2)
i2
j2
vj2(2),

ṽi3(3) = P(3)
i3
j3
vj3(3),

ṽi12(12) = P(12)
i12
j12
vj12(12) + P(1,2)

i12
j1 j2

vj1(1)v
j2
(2), (2.4)

ṽi13(13) = P(13)
i13
j13
vj13(13) + P(1,3)

i13
j1 j3

vj1(1)v
j3
(3),

ṽi23(23) = P(23)
i23
j23
vj23(23) + P(2,3)

i23
j2 j3

vj2(2)v
j3
(3),

ṽi123(123) = P(123)
i123
j123

vj123(123) + P(23,1)
i123
j23 j1

vj23(23)v
j1
(1)

+P(13,2)
i123
j13 j2

vj13(13)v
j2
(2) + P(12,3)

i123
j12 j3

vj12(12)v
j3
(3)

+P(1,2,3)
i123
j1 j2 j3

vj1(1)v
j2
(2)v

j3
(3).

2.2 Basic apparatus on triple vector bundles

We now establish the notation and the basic operations in the triple vector bundle
setting. The outline of a single element e ∈ E:

e e1,3

e2,3 e3

e1,2 e1

e2 m.

2.2.1 Addition and scalar multiplication

How do we add elements in triple vector bundles? Addition in each upper vector bundle
structure is a double vector bundle morphism, therefore, if e, f ∈ E lie over the same
point of E1,2, their sum has the outline:

e e1,3

e2,3 e3

e1,2 e1

e2 m.

+
1,2

f f1,3

f2,3 f3

e1,2 e1

e2 m.

=

e +
1,2
f e1,3 +

E1

f1,3

e2,3 +
E2

f2,3 e3 + f3

e1,2 e1

e2 m.
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Similarly, if e and f lie over the same element in E1,3, the outline of their sum:

e e1,3

e2,3 e3

e1,2 e1

e2 m.

+
1,2

f e1,3

f2,3 e3

f1,2 e1

f2 m.

=

e +
1,3
f e1,3

e2,3 +
E3

f2,3 e3

e1,2 +
E1

f1,2 e1

e2 + f2 m.

Finally, addition of e, f ∈ E over the same point in E2,3,

e e1,3

e2,3 e3

e1,2 e1

e2 m

+
1,2

f f1,3

e2,3 e3

f1,2 f1

e2 m

=

e +
2,3
f e1,3 +

E3

f1,3

e2,3 e3

e1,2 +
E2

f1,2 e1 + f1

e2 m.

Scalar multiplication follows in a similar way. If t ∈ R is a scalar, then scalar multipli-
cation over the three vector bundle structures of E is

t ·
1,2
e t ·

E1

e1,3

t ·
E2

e2,3 te3

e1,2 e1

e2 m,

t ·
1,3
e e1,3

t ·
E3

e2,3 e3

t ·
E1

e1,2 e1

te2 m,

t ·
2,3
e t ·

E3

e1,3

e2,3 e3

t ·
E2

e1,2 te1

e2 m.

2.2.2 Interchange laws

In the double case, the interchange laws encompass the structure of the double vector
bundle (see [25, Section 9.1]). We write similar laws for a triple vector bundle E.

There are two types of interchange laws in a triple vector bundle, the “small” inter-
change laws, and the “big” interchange law. The small interchange laws are direct
generalizations of the double case; they invole only two out of the three vector bundle
structures of the total space E.
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Small interchange laws

We descibe in detail the interchange law in the Left face.

As in the double vector bundle case, we have the following vector bundle morphism

E ×
E1,2

E E

E2,3 ×
E2

E2,3 E2,3.

+
1,2

+
E2

For (e, f), (g, h) ∈ E ×
E1,2

E
∣∣∣
(e2,3,f2,3)

we have:

+
1,2

(e, f) +
E2,3 ×

E2

E2,3

(g, h)

 =

(
+
1,2
(e, f)

)
+
2,3

(
+
1,2
(g, h)

)

and expanding both the right hand side and the left hand side we have the following
interchange law:

(e +
2,3
g) +

1,2
(f +

2,3
h) = (e +

1,2
f) +

2,3
(g +

1,2
h), (2.5)

where q1,2(e) = q1,2(f), q1,2(g) = q1,2(h), and q2,3(e) = q2,3(g) and q2,3(f) = q2,3(h).
The outlines of e, f, g, h are,

e e1,3

e2,3 e3

e1,2 e1

e2 m,

f f1,3

f2,3 f3

e1,2 e1

e2 m,

g g1,3

e2,3 e3

g1,2 g1

e2 m,

h h1,3

f2,3 f3

g1,2 g1

e2 m.

How do e, f, g, and h project to the Right face? Use the double vector bundle morphism
(q1,3; q

1,2
1 , q2,33 ; q2), the projection from the Left to the Right face of E. In particular,
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the vector bundle morphism (q1,3, q
1,2
1 ),

E E1,3

E1,2 E1.

q1,3

q1,21

For e, f ∈ E
∣∣∣
e1,2

, by fibrewise linearity we have:

q1,3(e +
1,2
f) = q1,3(e) +

E1

q1,3(f) = e1,3 +
E1

f1,3. (2.6)

Similarly, the vector bundle morphism (q1,3, q
2,3
3 ),

E E1,3

E2,3 E3,

q1,3

q2,33

for e, g ∈ E
∣∣∣
e2,3

, by fibrewise linearity again we have:

q1,3(e +
2,3
g) = q1,3(e) +

E3

q1,3(g) = e1,3 +
E3

g1,3. (2.7)

Therefore, since both e +
2,3
g and f +

2,3
h project to the same e1,2 +

E2

g1,2 ∈ E1,2, from (2.6),

q1,3

(
(e +

2,3
g) +

1,2
(f +

2,3
h)

)
= q1,3(e +

2,3
g) +

E1

q1,3(f +
2,3
h)

(2.7)
=

(
q1,3(e) +

E3

q1,3(g)

)
+
E1

(
q1,3(f) +

E3

q1,3(h)

)
= (e1,3 +

E3

g1,3) +
E1

(f1,3 +
E3

h1,3).

Now e +
1,2
f and g +

1,2
h project to e2,3 +

E2

f2,3, hence from (2.7),

q1,3

(
(e +

1,2
f) +

2,3
(g +

1,2
h)

)
= q1,3(e +

1,2
f) +

E3

q1,3(g +
1,2
h)

(2.6)
=

(
q1,3(e) +

E1

q1,3(f)

)
+
E3

(
q1,3(g) +

E1

q1,3(h)

)
= (e1,3 +

E1

f1,3) +
E3

(g1,3 +
E1

h1,3).

Applying q1,3 to (2.5), we see that the interchange law in the Right face holds for e1,3,
f1,3, g1,3, and h1,3 ∈ E1,3.
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A small remark. When we look at elements in the Left face, we focus entirely on that
face, and then project to the Right face. We do not look at the four elements e, f, g, and
h as being over the same e1,3 ∈ E1,3; we’re looking at e, f, g, and h in E over e2 ∈ E2,
and how they project in E1,3.

Let us state an interchange law for scalar multiplication. For e ∈ E, and t, u ∈ R, we
have

t ·
1,2
(u ·

1,3
e) = u ·

1,3
(t ·

1,2
e).

Some outlines,

t ·
1,2
(u ·

1,3
e) t ·

E1

e1,3

t ·
E2

(u ·
E3

e2,3) te3

u ·
E1

e1,2 e1

ue2 m,

u ·
1,3
(t ·

1,2
e) t ·

E1

e1,3

u ·
E3

(t ·
E2

e2,3) te3

u ·
E1

e1,2 e1

ue2 m,

in other words, as in the case of addition, the interchange law in the Back face for
scalar multiplication projects to the interchange law in the Front face.

Variations of interchange laws

In Chapter 1 we described in detail (1.2), a variation of the interchange law for the
two additions in D. A similar identity holds in the triple vector bundle setting. Take
e, f, g, h with outlines as in (2.5). Then

(e—
2,3
g)—

1,2
(f—

2,3
h) = (e—

1,2
f)—

2,3
(g—

1,2
h) (2.8)

is a variation of (2.5), of the interchange law for the two additions in the Left face of
E. Of course, taking the projection q1,3 of the previous identity yields

(e1,3—
E3

g1,3)—
E1

(f1,3—
E3

h1,3) = (e1,3—
E1

f1,3)—
E3

(g1,3—
E1

h1,3),

a variation of the interchange law for the additions in the Right face of E, an example
of (1.2).
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Big interchange law

The big interchange law involves all three vector bundle structures of E. We need eight
elements, with the following outlines,

1 e1,3

e2,3 e3

e1,2 e1

e2 m,

2 e′1,3

e′2,3 e′3

e1,2 e1

e2 m,

3 e′′1,3

e2,3 e3

e′1,2 e′1

e2 m,

4 e′′′1,3

e′2,3 e′3

e′1,2 e′1

e2 m,

5 e1,3

e′′2,3 e3

e′′1,2 e1

e′2 m,

6 e′1,3

e′′′2,3 e′3

e′′1,2 e1

e′2 m,

7 e′′1,3

e′′2,3 e3

e′′′1,2 e′1

e′2 m,

8 e′′′1,3

e′′′2,3 e′3

e′′′1,2 e′1

e′2 m.

Start with (
(1 +

1,2
2) +

2,3
(3 +

1,2
4)

)
+
1,3

(
(5 +

1,2
6) +

2,3
(7 +

1,2
8)

)
,

and in each parenthesis, apply the interchange law in the Left face of E:(
(1 +

2,3
3) +

1,2
(2 +

2,3
4)

)
+
1,3

(
(5 +

2,3
7) +

1,2
(6 +

2,3
8)

)
.

Now apply the interchange law in the Back face of E in the outer parentheses:(
(1 +

2,3
3) +

1,3
(5 +

2,3
7)

)
+
1,2

(
(2 +

2,3
4) +

1,3
(6 +

2,3
8)

)
,

and in each parenthesis apply the interchange law in the Up face,(
(1 +

1,3
5) +

2,3
(3 +

1,3
7)

)
+
1,2

(
(2 +

1,3
6) +

2,3
(4 +

1,3
8)

)
.

Applying the interchange law in the Left face of E in the outer parentheses,(
(1 +

1,3
5) +

1,2
(2 +

1,3
6)

)
+
2,3

(
(3 +

1,3
7) +

1,2
(4 +

1,3
8)

)
.

Finally, apply the interchange law in the Back face in each parenthesis,(
(1 +

1,2
2) +

1,3
(5 +

1,2
6)

)
+
2,3

(
(3 +

1,2
4) +

1,3
(7 +

1,2
8)

)
.

Applying the interchange law in the Up face in the outer parentheses, takes us back to
original expression. Hence we have these six expressions that are equal.

In practice, we will be using small interchange laws and variations thereof in what
follows.
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2.2.3 Zero sections of E

We have a lot of zero sections; the zero section of each invidual vector bundle structure,
but also, of each double vector bundle structure.

We denote the zero section of E1 by 0E1 :M → E1, m 7→ 0E1
m , and similarly for E2 and

E3.

The zero section of E1,2 → E1 is denoted by 0̃1,2 : E1 → E1,2, e1 7→ 0̃1,2e1 . The double

zero of E1,2 is denoted by ⊙1,2
m , with similar notations for the other vector bundle

structures.

We denote the zero section of E → E1,2 by 0̂ : E1,2 → E, e1,2 7→ 0̂e1,2 . Note that the
subscripts of the element e1,2 are enough to indicate that this is the zero section of
E over E1,2, therefore, there is no need for superscripts on 0̂, see the first diagram of
(2.9).

We denote the special case 0̂
0̃1,2e1

= 0̂
0̃1,3e1

simply by 0̂e1 , as in the second diagram of (2.9).

0̂e1,2 0̃1,3e1

0̃2,3e2 0E3
m

e1,2 e1

e2 m,

0̂e1 0̃1,3e1

⊙2,3
m 0E3

m

0̃1,2e1 e1

0E2
m m.

(2.9)

The triple zero of E is denoted by ⊙3
m.

2.2.4 Useful operations with zeros – Part 1

The following operations appear all the time, and we describe them in detail in this
subsection. We write out explicit formulas for E1,3. Similar formulas for the other
structures follow, and we include them for completion.

Take e1,3, e
′
1,3 ∈ E1,3, with outlines (e1,3; e1, e3;m) and (e′1,3; e

′
1, e

′
3;m). We have the

following cases.

1. If e1,3, e
′
1,3 ∈ E1,3 are over the same e1 ∈ E1, then:

0̂e1,3 +
E1

e′1,3
= 0̂e1,3 +

1,2
0̂e′1,3 . (2.10)

To see this, note that we have two additions in the Right face, +
E1

and +
E3

. The

zero section 0̂ ∈ ΓE1,3E is a double vector bundle morphism from the Right to the
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Left face. The two additions in the Left face are +
1,2

and +
2,3
. And e1,3 and e′1,3 are

over the same e1 ∈ E1. Therefore, 0̂e1,3 and 0̂e′1,3 are over the same 0̃1,2e1 ∈ E1,2,

hence, we take their sum over E1,2.

If e′1,3 = 0̃1,3e1 , then since e1,3 +
E1

0̃1,3e1 = e1,3, and 0̂
0̃1,3e1

= 0̂e1 , we have:

0̂e1,3 +
1,2

0̂e1 = 0̂
e1,3 +

E1

0̃1,3e1
= 0̂e1,3 . (2.11)

Another way of describing (2.11) is the following: 0̂e1 is the double zero of the
Back face over e1 ∈ E1.

2. Similarly, if e1,3, e
′
1,3 ∈ E1,3 are over the same e3 ∈ E3, then:

0̂e1,3 +
E3

e′1,3
= 0̂e1,3 +

2,3
0̂e′1,3 .

In case e′1,3 = 0̃1,3e3 , then since e1,3 +
E3

0̃1,3e3 = e1,3, and 0̂
0̃1,3e3

= 0̂e3 , we have:

0̂e1,3 +
2,3

0̂e3 = 0̂
e1,3 +

E3

0̃1,3e3
= 0̂e1,3 . (2.12)

Again, 0̂e3 is the double zero of the Up face over e3 ∈ E3.

3. In case e1,3 = e′1,3:

0̂e1,3 +
1,3

0̂e1,3 = 0̂e1,3 , (2.13a)

0̂e1,3 +
1,2

0̂e1,3 = 0̂e1,3 +
E1

e1,3 = 0̂ 2 ·
E1
e1,3 , (2.13b)

0̂e1,3 +
2,3

0̂e1,3 = 0̂e1,3 +
E3

e1,3 = 0̂ 2 ·
E3
e1,3 . (2.13c)

4. In case e1,3 = e′1,3 = 0̃1,3e1 :

0̂e1 +
1,3

0̂e1 = 0̂e1 , (2.14a)

0̂e1 +
1,2

0̂e1 = 0̂
2 ·
E1

0̃1,3e1
= 0̂

0̃1,3e1
= 0̂e1 , (2.14b)

0̂e1 +
2,3

0̂e1 = 0̂
2 ·
E3

0̃1,3e1
= 0̂

0̃1,32e1

= 0̂ 2e1 . (2.14c)

5. In case e1,3 = e′1,3 = 0̃1,3e3 :

0̂e3 +
1,3

0̂e3 = 0̂e3 , (2.15a)

0̂e3 +
1,2

0̂e3 = 0̂
2 ·
E1

0̃1,3e3
= 0̂

0̃1,32e3

= 0̂ 2e3 , (2.15b)

0̂e3 +
2,3

0̂e3 = 0̂
2 ·
E3

0̃1,3e3
= 0̂

0̃1,3e3
= 0̂e3 . (2.15c)
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About (2.15a) and (2.15c): 0̂e3 is the double zero of the Up face over e3 ∈ E3.
But since 0̂e3 is not a double zero in the Left or in the Back face, (2.15b) follows.

Similar calculations for e1,2, e
′
1,2 ∈ E1,2, with outlines (e1,2; e1, e2;m), and (e′1,2; e

′
1, e

′
2;m).

1. If e1 = e′1 ∈ E1, then:

0̂e1,2 +
E1

e′1,2
= 0̂e1,2 +

1,3
0̂e′1,2 . (2.16)

If e′1,2 = 0̃1,2e1 , then as e1,2 +
E1

0̃1,2e1 = e1,2, we have:

0̂e1,2 +
1,3

0̂e1 = 0̂
e1,2 +

E1

0̃1,2e1
= 0̂e1,2 . (2.17)

2. If e2 = e′2 ∈ E2, then:

0̂e1,2 +
E2

e′1,2
= 0̂e1,2 +

2,3
0̂e′1,2 . (2.18)

If e′1,2 = 0̃1,2e2 , then as e1,2 +
E2

0̃1,2e2 = e1,2, we have:

0̂e1,2 +
2,3

0̂e2 = 0̂
e1,2 +

E2

0̃1,2e2
= 0̂e1,2 . (2.19)

3. In case e1,2 = e′1,2:

0̂e1,2 +
1,3

0̂e1,2 = 0̂e1,2 +
E1

e1,2 = 0̂ 2 ·
E1
e1,2 , (2.20a)

0̂e1,2 +
1,2

0̂e1,2 = 0̂e1,2 , (2.20b)

0̂e1,2 +
2,3

0̂e1,2 = 0̂e1,2 +
E2

e1,2 = 0̂ 2 ·
E2
e1,2 . (2.20c)

4. In case e1,2 = e′1,2 = 0̃1,2e1 , we obtain (2.14).

5. In case e1,2 = e′1,2 = 0̃1,2e2 :

0̂e2 +
1,3

0̂e2 = 0̂ 2e2 , (2.21a)

0̂e2 +
1,2

0̂e2 = 0̂e2 , (2.21b)

0̂e2 +
2,3

0̂e2 = 0̂e2 . (2.21c)

Finally, for e2,3, e
′
2,3 ∈ E2,3 with outlines (e2,3; e2, e3;m) and (e′2,3; e

′
2, e

′
3;m):
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1. If e2 = e′2 ∈ E2, then:

0̂e2,3 +
E2

e′2,3
= 0̂e2,3 +

1,2
0̂e′2,3 . (2.22)

If e′2,3 = 0̃2,3e2 , then as e2,3 +
E2

0̃2,3e2 = e2,3, we have:

0̂e2,3 +
1,2

0̂e2 = 0̂
e2,3 +

E2

0̃2,3e2
= 0̂e2,3 . (2.23)

2. If e3 = e′3 ∈ E3, then:

0̂e2,3 +
E3

e′2,3
= 0̂e2,3 +

1,3
0̂e′2,3 . (2.24)

If e′2,3 = 0̃2,3e3 , then since e2,3 +
E3

0̃2,3e3 = e2,3, we have:

0̂e2,3 +
1,3

0̂e3 = 0̂
e2,3 +

E3

0̃2,3e3
= 0̂e2,3 . (2.25)

3. In case e2,3 = e′2,3:

0̂e2,3 +
1,3

0̂e2,3 = 0̂e2,3 +
E3

e2,3 = 0̂ 2 ·
E3
e2,3 , (2.26a)

0̂e2,3 +
1,2

0̂e2,3 = 0̂e2,3 +
E2

e2,3 = 0̂ 2 ·
E2
e2,3 , (2.26b)

0̂e2,3 +
2,3

0̂e2,3 = 0̂e2,3 . (2.26c)

4. In case e2,3 = e′2,3 = 0̃2,3e2 , we obtain (2.21).

5. In case e2,3 = e′2,3 = 0̃2,3e3 , we obtain (2.15).

2.3 How to subtract elements in E

So far we have seen how to add elements in E. In this section we will investigate
the operation of subtraction. We will obtain formulas expressing the difference of two
elements of a triple vector bundle in terms of core, ultracore, and zero elements. These
formulas are a significant part of the technical work needed for the proof of the warp-
grid theorem.

First, we need to describe the cores and the ultracore of a triple vector bundle E.

2.3.1 Core double vector bundles and the ultracore

Since each face of E is a double vector bundle, each face has a core vector bundle. The
cores of the lower faces Ei,j are denoted Eij with the comma removed. The core of the
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upper face with base manifold Ek is denoted Eij,k. (This convention comes from [14]
and from [13]).

Focus on the core vector bundles of the Left and of the Right faces. The Left face
projects to the Right face via the double vector bundle morphism which consists of the
bundle projections E → E1,3, E1,2 → E1, E2,3 → E3 and E2 → M . The restriction of
E → E1,3 to E13,2 goes into E13 and inherits the vector bundle structure of E → E1,3.
The total space E13,2 with the usual vector bundle structure over E2 (as the core of the
Left face of E), and with the vector bundle structure over E13, yields another double
vector bundle, which we call the (L-R) core double vector bundle.

We denote the core morphism of the projection double vector bundle morphsim
(q1,3; q

1,2
1 , q2,33 ; q2) from the Left to the Right face by (q13, q

2).

The (L-R) core double vector bundle is the following,

E13,2 E13

E2 M.

q13

q13,22
q13

q2

(2.27)

The addition in E13,2 → E13 is the usual addition in E → E1,3. If k1, k2 ∈ E13,2 are
over the same w13 ∈ E13, then

k1 +
1,3
k2, (2.28)

is their usual sum in E → E1,3. For k1, k2 ∈ E13,2 over the same e2 ∈ E2, then

k1 +
E2

k2 = k1 +
1,2/2,3

k2. (2.29)

Here we write k1 +
1,2/2,3

k2 to denote that k1 +
1,2
k2 = k1 +

2,3
k2.

The algebraic compatibility conditions for the (L-R) core double vector bundle follow
easily using the apparatus set up earlier in the chapter. The core double vector bundle
satisfies part (ii) of the definition of a double vector bundle as well. For example, take
any (e2, w13) ∈ E2 ×M E13. Then this is an element (0̃1,2e2 , 0̃

2,3
e2 , w13) ∈ W , and since

the triple source map ♮̃ : E → W is a surjection, there exists an e ∈ E such that
♮̃(e) = (0̃1,2e2 , 0̃

2,3
e2 , w13). That e ∈ E13,2 follows immediately from its outline. Hence the

double source map ♮ : E13,2 → E2 ×M E13 of the (L-R) core double vector bundle is

surjective. That it is a submersion, follows again from ♮̃ : E →W being a submersion.
Part (iii) of the definition of a double vector bundle for the (L-R) core double vector
bundle is explained towards the end of Section 2.4.1.

Of course this can also be done for the other two pairs of parallel faces. So there are
three core double vector bundles, shown in (2.30).
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E23,1 E23

E1 M,

E13,2 E13

E2 M,

E12,3 E12

E3 M.

(2.30)

Elements of the core of E12,3 project to zeros in the Down face. In the Up face they
project to zeros over the zero in E3. It follows that an element of the core of E12,3

projects to zero in every bundle structure. Equally the cores of the (B-F) and (L-R)
double vector bundles consist of the elements of E1,2,3 which project to zeros in every
bundle structure. Thus each double vector bundle in (2.30) has the same core. This is
denoted E123 (without commas) and called the ultracore of E.

From the interchange laws it follows that the three additions on E, namely +
1,2
, +
1,3
, and

+
2,3
, coincide on the ultracore and give it the structure of a vector bundle over M .

The triple zero ⊙3
m of E is the zero of the ultracore vector bundle E123 →M .

To see the core double vector bundles and ultracore vector bundle in local coordinates,
take a local coordinate system on E as described in Section 2.1.3. By setting (v(1)),
(v(2)), (v(13)), (v(23)) to zero in the equations (2.4), we obtain,

ṽi3(3) = P(3)
i3
j3
vj3(3),

ṽi12(12) = P(12)
i12
j12
vj12(12),

ṽi123(123) = P(123)
i123
j123

vj123(123) + P(12,3)
i123
j12 j3

vj12(12)v
j3
(3),

that is, local coordinates for the (U-D) core double vector bundle, (E12,3;E3, E12;M).
Setting additionally (v(3)) and (v(12)) to zero, we obtain a single vector bundle,

ṽi123(123) = P(123)
i123
j123

vj123(123),

and this is precisely the ultracore vector bundle E123 →M of E.

2.3.2 First case: two elements that have the same outline

Now we are ready to investigate subtraction. There are three cases to consider; two
elements of a triple vector bundle that can be subtracted, may admit exactly one, or
two, or all three, of the subtractions —

1,2
, —
1,3

, and —
2,3

.
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We begin with the case where e and e′ have exactly the same outline

e e1,3

e2,3 e3

e1,2 e1

e2 m,

e′ e1,3

e2,3 e3

e1,2 e1

e2 m.

Then all three differences e—
1,2
e′, e—

1,3
e′, e—

2,3
e′ are defined.

Step 1. Focus on the Back faces of e and e′

e, e′ e1,3

e1,2 e1.

Then, from double vector bundle theory, we can write

e—
1,2
e′ = k1 +

1,3
0̂e1,2 , e—

1,3
e′ = k1 +

1,2
0̂e1,3 ,

where k1 ∈ E23,1, the core of the Back face, with outline

E23,1 ∋ k1 w23 ∈ E23

e1 m.

Step 2. Show that w23 = ⊙2,3
m .

Use the morphism q2,3 : E → E2,3. We know that q2,3(e—
1,3
e′) = 0̃2,3e3 and

q2,3(k1 +
1,2

0̂e1,3) = q2,3(k1) +
E2

q2,3(0̂e1,3) = w23 +
E2

0̃2,3e3 .

Therefore

w23 +
E2

0̃2,3e3 = 0̃2,3e3 ,
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and, since 0̃2,3e3 —
E2

0̃2,3e3 = ⊙2,3
m , we have that w23 = 0̃2,3

0
E2
m

= ⊙2,3
m . So k1 has the outline

k1 ⊙2,3
m

e1 m.

Step 3. Applying double vector bundle theory again, we get

k1 = u1 +
2,3

0̂e1 ,

where u1 is an ultracore element.

Step 4. Apply the same procedure to Left and Up faces of e and e′.

Focus on the Left faces of e and e′

e—
2,3
e′ = k2 +

1,2
0̂e2,3 , e—

1,2
e′ = k2 +

2,3
0̂e1,2 ,

where k2 ∈ E13,2, core of the Left face, with outline

k2 ⊙1,3
m

e2 m.

So, we can write
k2 = u2 +

1,3
0̂e2 ,

where u2 is an ultracore element. Similarly for the Up faces, we have

e—
1,3
e′ = k3 +

2,3
0̂e1,3 , e—

2,3
e′ = k3 +

1,3
0̂e2,3 ,

where k3 ∈ E12,3, core of the Up face, with outline

k3 ⊙1,2
m

e3 m,

so k3 = u3 +
1,2

0̂e3 with u3 an ultracore element.
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Step 5. Show that u1 = u2 = u3.

We show that u1 = u3. So far, we have two expressions for e—
1,3
e′, namely:

k1 +
1,2

0̂e1,3 = k3 +
2,3

0̂e1,3 . (2.31)

Expand the left hand side of (2.31), mimicking the double vector bundle case:

0̂e1,3 +
1,2
(0̂e1 +

2,3
u1) = (0̂e1,3 +

2,3
0̂e3) +

1,2
(0̂e1 +

2,3
u1)

= (0̂e1,3 +
1,2

0̂e1) +
2,3
(0̂e3 +

1,2
u1) = 0̂e1,3 +

2,3
(0̂e3 +

1,2
u1).

Therefore, we see that (2.31) can be rewritten as:

0̂e1,3 +
2,3
(0̂e3 +

1,2
u1) = 0̂e1,3 +

2,3
(0̂e3 +

1,2
u3),

from where it follows that u1 = u3. Similarly, we can show that u2 = u3.

At this point write u1 = u2 = u3 to be u.

Step 6. We obtain six formulas for the differences between e and e′.

Proposition 2.3.1. With the above notation, two elements e and e′ which have the
same outline are related by

e—
1,3
e′ = 0̂e1,3 +

1,2
(0̂e1 +

2,3
u) = 0̂e1,3 +

2,3
(0̂e3 +

1,2
u),

e—
1,2
e′ = 0̂e1,2 +

1,3
(0̂e1 +

2,3
u) = 0̂e1,2 +

2,3
(0̂e2 +

1,3
u), (2.32)

e—
2,3
e′ = 0̂e2,3 +

1,3
(0̂e3 +

1,2
u) = 0̂e2,3 +

1,2
(0̂e2 +

1,3
u).

What is important here is that the subtraction with respect to each structure results
in the same ultracore element u.

Special case: when e, e′ are in a core double vector bundle

If e, e′ are in one of the core double vector bundles the preceding equations simplify.
For example if e, e′ ∈ E23,1, with outline

e, e′ 0̃1,3e1

w23 0E3
m

0̃1,2e1 e1

0E2
m m,
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then from (2.32) we have

e—
2,3
e′ = 0̂w23 +

1,3
(0̂

0
E3
m

+
1,2
u) = 0̂w23 +

1,3
(⊙3

m +
1,2
u) = 0̂w23 +

1,3
u

and
e—
2,3
e′ = 0̂w23 +

1,2
(0̂

0
E2
m

+
1,3
u) = 0̂w23 +

1,2
(⊙3

m +
1,3
u) = 0̂w23 +

1,2
u,

and therefore
0̂w23 +

1,3
u = 0̂w23 +

1,2
u. (2.33)

Also, the following will be needed in Subsection 3.2.2. Again, using (2.32) we see that

e—
1,3
e′ = 0̂

0̃1,3e1
+
1,2
(0̂e1 +

2,3
u) = 0̂e1 +

1,2
(0̂e1 +

2,3
u)

= (0̂e1 +
2,3

⊙3
m) +

1,2
(0̂e1 +

2,3
u) = (0̂e1 +

1,2
0̂e1) +

2,3
(⊙3

m +
1,2
u)

(2.14b)
= 0̂e1 +

2,3
u,

or, equivalently,

e—
1,3
e′ = 0̂

0̃1,3e1
+
2,3
(0̂

0
E3
m

+
1,2
u) = 0̂e1 +

2,3
(⊙3

m +
1,2
u) = 0̂e1 +

2,3
u.

For the last difference, by (2.32):

e—
1,2
e′ = 0̂

0̃1,2e1
+
1,3
(0̂e1 +

2,3
u) = 0̂e1 +

1,3
(0̂e1 +

2,3
u)

= (0̂e1 +
2,3

⊙3
m) +

1,3
(0̂e1 +

2,3
u) = (0̂e1 +

1,3
0̂e1) +

2,3
(⊙3

m +
1,3
u)

(2.14a)
= 0̂e1 +

2,3
u,

and finally,

e—
1,2
e′ = 0̂

0̃1,2e1
+
2,3
(0̂

0
E2
m

+
1,3
u) = 0̂e1 +

2,3
(⊙3

m +
1,3
u) = 0̂e1 +

2,3
u.

2.3.3 Second case: two elements that have two lower faces in common

What happens if e and e′ have only two of the lower faces in common? Then only two
of the three subtractions are defined. There are three cases to consider, each of which
arises later.

If e and e′ have the same Right and Down face

Since e and e′ project to the same e1,2 and e1,3, it follows that they project to the same
e1, e2 and e3. However e and e′ will differ at e2,3 and e′2,3, and these will differ by a
core element w23 ∈ E23 of the core of the Front face, that is

e2,3—
E2

e′2,3 = w23 +
E3

0̃2,3e2 , e2,3—
E3

e′2,3 = w23 +
E2

0̃2,3e3 . (2.34)
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It is useful to write out the outlines of these differences

e—
1,2
e′ 0̃1,3e1

e2,3—
E2

e′2,3 0E3
m

e1,2 e1

e2 m,

e—
1,3
e′ e1,3

e2,3—
E3

e′2,3 e3

0̃1,2e1 e1

0E2
m m.

Since e and e′ have the same Back face, again by applying double vector bundle theory,
we can write

e—
1,2
e′ = k +

1,3
0̂e1,2 , e—

1,3
e′ = k +

1,2
0̂e1,3 , (2.35)

where k ∈ E23,1, the core of the Back face.

Also, using the morphism q2,3 : E → E2,3, we show that q2,3(k) = w23. First,

q2,3(e—
1,2
e′) = e2,3—

E2

e′2,3 = w23 +
E3

0̃2,3e2 ,

and
q2,3(k +

1,3
0̂e1,2) = q2,3(k) +

E3

0̃2,3e2 ,

hence q2,3(k) = w23. Therefore, k has outline

E23,1 ∋ k w23 ∈ E23

e1 m.

Example 2.3.2. Special case: 0̂e2,3 and 0̂e′2,3 .

Recall (2.24) and (2.22),

0̂e2,3 +
1,3

0̂e′2,3 = 0̂e2,3 +
E3

e′2,3
, 0̂e2,3 +

1,2
0̂e′2,3 = 0̂e2,3 +

E2

e′2,3
,

and (−1) ·
1,3

0̂e2,3 = 0̂f2,3 where f2,3 = —
E3

e2,3.

Suppose we have two elements e2,3 and e′2,3 of E2,3 that differ by a core element
w23 ∈ E23, as in (2.34). The differences we are interested in are

0̂e2,3 —
1,2

0̂e′2,3 = 0̂e2,3 +
1,2

0̂—
E2
e′2,3

= 0̂e2,3 —
E2
e′2,3

= 0̂
w23 +

E3

0̃2,3e2
= 0̂w23 +

1,3
0̂e2 , (2.36)

and

0̂e2,3 —
1,3

0̂e′2,3 = 0̂e2,3 +
1,3

0̂—
E3
e′2,3

= 0̂e2,3 —
E3
e′2,3

= 0̂
w23 +

E2

0̃2,3e3
= 0̂w23 +

1,2
0̂e3 . (2.37)
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If e and e′ have the same Front and Down face

In this case, the elements e1,3 and e′1,3 differ by a core element w13 of E13

e1,3—
E1

e′1,3 = w13 +
E3

0̃1,3e1 , e1,3—
E3

e′1,3 = w13 +
E1

0̃1,3e3 . (2.38)

As before, we can write

e—
1,2
e′ = k +

2,3
0̂e1,2 , e—

2,3
e′ = k +

1,2
0̂e2,3 , (2.39)

with k an element of the core of the Left face with outline

E13,2 ∋ k w13 ∈ E13

e2 m.

Example 2.3.3. Special case: 0̂e1,3 and 0̂e′1,3 .

Suppose two elements e1,3 and e′1,3 of E1,3 differ by a core element w13 ∈ E13, as in
(2.38). The differences we will need are the following:

0̂e1,3 —
1,2

0̂e′1,3 = 0̂e1,3 +
1,2

0̂—
E1
e′1,3

= 0̂e1,3 —
E1
e′1,3

= 0̂
w13 +

E3

0̃1,3e1
= 0̂w13 +

2,3
0̂e1 , (2.40)

and

0̂e1,3 —
2,3

0̂e′1,3 = 0̂e1,3 +
2,3

0̂—
E3
e′1,3

= 0̂e1,3 —
E3
e′1,3

= 0̂
w13 +

E1

0̃1,3e3
= 0̂w13 +

1,2
0̂e3 . (2.41)

If e and e′ have the same Front and Right face

In this case, e1,2 and e′1,2 will differ by an element w12 ∈ E12 of the core of the Down
face

e1,2—
E1

e′1,2 = w12 +
E2

0̃1,2e1 , e1,2—
E2

e′1,2 = w12 +
E1

0̃1,2e2 , (2.42)

and as before
e—
1,3
e′ = k +

2,3
0̂e1,3 , e—

2,3
e′ = k +

1,3
0̂e2,3 , (2.43)

where k is an element of the core of the Up face with outline

E12,3 ∋ k w12 ∈ E12

e3 m.
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Example 2.3.4. Special case: 0̂e1,2 and 0̂e′1,2 .

Suppose two elements e1,2 and e′1,2 of E1,2 differ by a core element w12 ∈ E12, as in
(2.42). The differences we need to work out are

0̂e1,2 —
1,3

0̂e′1,2 = 0̂e1,2 +
1,3

0̂—
E1
e′1,2

= 0̂e1,2 —
E1
e′1,2

= 0̂
w12 +

E2

0̃1,2e1
= 0̂w12 +

2,3
0̂e1 , (2.44)

and

0̂e1,2 —
2,3

0̂e′1,2 = 0̂e1,2 +
2,3

0̂—
E2
e′1,2

= 0̂e1,2 —
E2
e′1,2

= 0̂
w12 +

E1

0̃1,2e2
= 0̂w12 +

1,3
0̂e2 . (2.45)

2.3.4 Third case: two elements that have one lower face in common

This case is directly relevant to Step 2 of Section 3.2.3.

So far we have seen that two elements of E with the same outlines differ by a unique
ultracore element, and that two elements with two of the lower faces in common differ
by a unique element λ which lies in the relevant core double vector bundle.

What happens in the case where e, f have only one lower face in common, for example,
if they have only the Front face in common? Then only the difference e—

2,3
f is defined.

The elements e and f project to the same e2 ∈ E2, and e3 ∈ E3 as they have the
same Front face. In the case we are interested in Step 2 of Section 3.2.3, both e and f
project to the same e1 ∈ E1. Then q1,2(e) = e1,2 and q1,2(f) = f1,2 will have the same
outlines and hence will differ by a unique core element w12 ∈ E12. Likewise for q1,3(e)
and q1,3(f). The outlines of e and f :

e e1,3

e2,3 e3

e1,2 e1

e2 m,

f f1,3

e2,3 e3

f1,2 e1

e2 m.

Their difference:
e—
2,3
f e1,3—

E3

f1,3

e2,3 e3

e1,2—
E2

f1,2 0E1
m

e2 m.

(2.46)
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Since e1,3 and f1,3 differ by a core element w13 ∈ E13:

e1,3—
E1

f1,3 = w13 +
E3

0̃1,3e1 , e1,3—
E3

f1,3 = w13 +
E1

0̃1,3e3 ,

and e1,2 and f1,2 differ by a core element w12 ∈ E12:

e1,2—
E1

f1,2 = w12 +
E2

0̃1,2e1 , e1,2—
E2

f1,2 = w12 +
E1

0̃1,2e2 .

Working in the ordinary vector bundle E → E2,3, we have:

e—
2,3
f = (e—

2,3
g) +

2,3
(g—

2,3
f), (2.47)

for any g ∈ E with outline:

g g1,3

e2,3 e3

g1,2 e1

e2 m.

However, as we want to make the calculation (2.46) easier, it makes sense to either take
g ∈ E with q1,3(g) = f1,3 and q1,2(g) = e1,2, or to choose an h ∈ E with q1,3(h) = e1,3
and q1,2(h) = f1,2. In total, the outlines of g and h will be:

g f1,3

e2,3 e3

e1,2 e1

e2 m,

h e1,3

e2,3 e3

f1,2 e1

e2 m.

We see that g has two lower faces in common with e and two lower faces in common
with f . The same is true of h.

Let’s start with g. Then from (2.39) and from (2.43), we can rewrite (2.47) as:

e—
2,3
f = (e—

2,3
g) +

2,3
(g—

2,3
f) = (k1 +

1,2
0̂e2,3) +

2,3
(k2 +

1,3
0̂e2,3), (2.48)

where k1 ∈ E13,2, k2 ∈ E12,3 with outlines:

E13,2 ∋ k1 w13 ∈ E13

e2 m,

E12,3 ∋ k2 w12 ∈ E12

e3 m.
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Using h in (2.47), and again from (2.39) and (2.43):

e—
2,3
f = (e—

2,3
h) +

2,3
(h—

2,3
f) = (λ1 +

1,3
0̂e2,3) +

2,3
(λ2 +

1,2
0̂e2,3), (2.49)

where now λ1 ∈ E12,3 and λ2 ∈ E13,2 with outlines:

E12,3 ∋ λ1 w12 ∈ E12

e3 m,

E13,2 ∋ λ2 w13 ∈ E13

e2 m.

Both k1 and λ2 project to the same w13 ∈ E13. This follows from (2.39), since
q1,3(e—

2,3
g) = q1,3(h—

2,3
f). Similarly for k2 and λ1.

Of course since (2.47) and (2.49) are equal, there will be a relation between the ki’s
and the λi’s, i = 1, 2.

We investigate this relation further towards the end of Chapter 3.

2.3.5 Useful operations with zeros – Part 2

We include equations for the various zero elements, as they show up again and again.
Note that these equations follow directly from the algebraic compatibility conditions
of the triple vector bundle; at this point, we do not use the methods developed in the
previous sections of this chapter.

1. Since (−1) ·
1,3

0̂e1 = 0̂e1 , we have

0̂e1 —
1,3

0̂e1 = 0̂e1 +
1,3
(−1) ·

1,3
0̂e1 = 0̂e1 +

1,3
0̂e1

(2.14a)
= 0̂e1 .

In total,

0̂e1 —
1,3

0̂e1 = 0̂e1 , (2.50a)

0̂e1 —
1,2

0̂e1 = 0̂e1 , (2.50b)

0̂e1 —
2,3

0̂e1 = ⊙3
m. (2.50c)

Similarly,

0̂e2 —
1,3

0̂e2 = ⊙3
m, (2.51a)

0̂e2 —
1,2

0̂e2 = 0̂e2 , (2.51b)

0̂e2 —
2,3

0̂e2 = 0̂e2 . (2.51c)
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And finally,

0̂e3 —
1,3

0̂e3 = 0̂e3 , (2.52a)

0̂e3 —
1,2

0̂e3 = ⊙3
m, (2.52b)

0̂e3 —
2,3

0̂e3 = 0̂e3 . (2.52c)

2. Since (−1) ·
1,3

0̂e1,2 = 0̂ (−1) ·
E1
e1,2 , we have

0̂e1,2 —
1,3

0̂e1,2 = 0̂e1,2 +
1,3

0̂ (−1) ·
E1
e1,2

(2.16)
= 0̂e1,2 +

E1

(−1) ·
E1
e1,2 = 0̂e1 .

Altogether,

0̂e1,2 —
1,3

0̂e1,2 = 0̂e1 , (2.53a)

0̂e1,2 —
1,2

0̂e1,2 = 0̂e1,2 , (2.53b)

0̂e1,2 —
2,3

0̂e1,2 = 0̂e2 . (2.53c)

About 0̂e1,3 ,

0̂e1,3 —
1,3

0̂e1,3 = 0̂e1,3 , (2.54a)

0̂e1,3 —
1,2

0̂e1,3 = 0̂e1 , (2.54b)

0̂e1,3 —
2,3

0̂e1,3 = 0̂e3 . (2.54c)

Finally, about 0̂e2,3 ,

0̂e2,3 —
1,3

0̂e2,3 = 0̂e3 , (2.55a)

0̂e2,3 —
1,2

0̂e2,3 = 0̂e2 , (2.55b)

0̂e2,3 —
2,3

0̂e2,3 = 0̂e2,3 . (2.55c)

3. The following is also used extensively throughout calculations:

0̂e1,3 —
2,3

0̂e3 = 0̂e1,3 .

This follows because (−1) ·
2,3

0̂e3 = 0̂e3 :

0̂e1,3 —
2,3

0̂e3 = 0̂e1,3 +
2,3
(−1) ·

2,3
0̂e3 = 0̂e1,3 +

2,3
0̂e3

(2.12)
= 0̂e1,3 .
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Similarly,

0̂e1,3 —
1,2

0̂e1 = 0̂e1,3 ,

and,

0̂e1,2 —
1,3

0̂e1 = 0̂e1,2 , 0̂e1,2 —
2,3

0̂e2 = 0̂e1,2 .

And finally,

0̂e2,3 —
1,2

0̂e2 = 0̂e2,3 , 0̂e2,3 —
1,3

0̂e3 = 0̂e2,3 .

2.4 Examples of triple vector bundles

We now present the fundamental examples of triple vector bundles.

2.4.1 Decomposed triple vector bundles

First let us work on part (iii) of the definition of a triple vector bundle2, the existence
of the corresponding sigma maps. We will use these maps to establish the existence of
nontrivial grids on E.

In the triple vector bundle setting there are three steps to defining sigma and omega
maps.

Step 1. In the first step, we are decomposing E into W ×M E123.

Recall part (ii) of the definition of a triple vector bundle, Definition 2.1.3.

Definition 2.4.1. (Part (iii)) Given a triple vector bundle E, a sigma triple vector
bundle map is a triple vector bundle map Σ̃ :W → E that is right inverse to ♮̃ : E →W .

If (e1,2, e2,3, e1,3) ∈W , the outline of Σ̃(e1,2, e2,3, e1,3),

Σ̃(e1,2, e2,3, e1,3) e1,3

e2,3 e3

e1,2 e1

e2 m.

For any e ∈ E with q1,2(e) = e1,2, q2,3(e) = e2,3 and q1,3(e) = e1,3, from Proposition
2.3.1 we can write

e—
1,2

Σ̃(e1,2, e2,3, e1,3) = 0̂e1,2 +
1,3
(0̂e1 +

2,3
u),

2As with double vector bundles, this part of the definition of a triple vector bundle may follow from
part (i) of the definition.
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for a unique u ∈ E123. Using Σ̃ :W → E, define

Ω̃ : E → W ×
M
E123,

e →
(
e1,2, e2,3, e1,3,

(
(e—

1,2
Σ̃(e1,2, e1,3, e2,3))—

1,3
0̂e1,2

)
—
2,3

0̂e1

)
. (2.56)

The inverse of Ω̃:

0̃ :W ×
M
E123 → E

(e1,2, e2,3, e1,3, u) → Σ̃(e1,2, e2,3, e1,3) +
1,2

(
0̂e1,2 +

1,3
(0̂e1 +

2,3
u)

)
. (2.57)

Conversely, given Ω̃, define a unique (that is, so that the Ω̃ corresponding to Σ̃ is the
given one),

Σ̃ :W → E

(e1,2, e2,3, e1,3) → 0̃(e1,2, e2,3, e1,3,⊙3
m).

So we see that there is a bijective correspondence between Σ̃ and Ω̃, as triple vector
bundle maps.

Step 2. In the second step, we are decomposing W . Denote by

E := E1 ×M E2 ×M E3 ×M E12 ×M E23 ×M E13 ×M E123,

the pullback manifold, the decomposed triple vector bundle. The various vector bundle
structures are pullbacks, as with decomposed double vector bundles. Denote by

E
′
:= E1 ×M E2 ×M E3 ×M E12 ×M E23 ×M E13.

This is a triple vector bundle with zero ultracore.

As starting with a triple vector bundle E we do not assume decompositions of E1,2,
E2,3, and E1,3, we need to choose decompositions of the three lower faces:

Ω1,2 : E1,2 → E1 ×
M
E2 ×

M
E12,

Ω2,3 : E2,3 → E2 ×
M
E3 ×

M
E23,

Ω1,3 : E1,3 → E1 ×
M
E3 ×

M
E13.

Using these maps we can define the following ΩW triple vector bundle map from W to
the E

′
,

ΩW :W → E1 ×
M
E2 ×

M
E3 ×

M
E12 ×

M
E23 ×

M
E13,

(e1,2, e2,3, e1,3) 7→ (e1, e2, e3, w12, w23, w13), (2.58)
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where

w12 = (e1,2—
E1

Σ1,2(e1, e2))—
E2

0̃1,2e1 ,

w23 = (e2,3—
E2

Σ2,3(e2, e3))—
E3

0̃2,3e2 ,

w13 = (e1,3—
E3

Σ1,3(e1, e3))—
E1

0̃1,3e3 ,

Σ1,2 being the sigma map corresponding to Ω1,2, and same for Σ2,3,Σ1,3.

The inverse of this ΩW is 0W :

0W : E1 ×
M
E2 ×

M
E3 ×

M
E12 ×

M
E23 ×

M
E13 →W.

Step 3. In the final step, we decompose E. To define a map from E to the decomposed
triple vector bundle E, take the composition of the following,

E
Ω̃−→W ×

M
E123

ΩW ×
M

id

−−−−−→ E. (2.59)

Denote the composition Ω := (ΩW ×
M
id) ◦ Ω̃. This is a decomposition map of E.

Denote the inverse of Ω by 0 : E → E:

E
0W ×

M
id

−−−−−→W ×
M
E123

0̃−→ E.

The Σ that corresponds to this Ω, from E
′
to E,

(e1, e2, e3, w12, w23, w13) → 0(e1, e2, e3, w12, w23, w13,⊙3
m). (2.60)

Remark 2.4.2. The following shows why choosing decompositions of the lower faces
is necessary.

Taking an e ∈ E with the same outline as Σ(e1,2, e2,3, e1,3) only defines a u ∈ E123, and
no w′

ijs ∈ Eij , elements in the cores of the lower faces.

Question: What if we compare Σ(e1,2, e2,3, e1,3) with an f ∈ E that has the same e1,2
and e1,3, but different e2,3?

Then e2,3—
E2

e′2,3 = w23 +
E3

0̃2,3e2 , where w23 ∈ E23, and

f—
1,2

Σ(e1,2, e2,3, e1,3) = k +
1,3

0̂e1,2 ,

where k ∈ E23,1 has outline (k; e1, w23;m). The problem is that both k ∈ E23,1 and
w23 ∈ E23 depend on f . How do we choose f? We would need a map to choose it in a
“canonical” way.

Therefore, we cannot define a w23 from Σ̃. So we see that we need decompositions of
the lower faces. △
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To sum up, we have the following maps associated with a triple vector bundle E:

Step 1.

• ♮̃ : E →W , the triple source map,

• Σ̃ :W → E, a right-inverse to ♮̃,

• Ω̃ : E →W ×M E123, defined by (2.56),

• 0̃ :W ×M E123 → E, the inverse of Ω̃, defined by (2.57),

Step 2.

• ΩW :W → E
′
, defined by (2.58),

• 0W : E
′ →W , inverse of ΩW ,

Step 3.

• Ω : E → E, defined by (2.59), Ω := (ΩW ×
M
id) ◦ Ω̃, a decomposition of E.

• 0 : E → E, inverse to Ω, and finally,

• Σ : E
′ → E, defined by (2.60).

A choice of decomposition map of E, namely Ω : E → E, determines decompositions
of upper faces. To see this, starting with an Ω : E → E, rearrange E to

(E2 ×M E1 ×M E12)×E2 (E2 ×M E3 ×M E23)×E2 (E2 ×M E13 ×M E123),

and this is precisely a decomposition of the Left face.

The choice of Ω also determines decompositions of the core double vector bundles. For
example, for E13,2, start with a decomposition Ω : E → E, and then restrict to E2,
E13, and E123, and set the other building vector bundles to zero. So we see that the
core double vector bundles satisfy all three parts of the definition of a double vector
bundle.

2.4.2 The tangent TD of a double vector bundle D

Appplying the tangent functor to a vector bundle A → M , we obtain the tangent
double vector bundle TA. Starting with a double vector bundleD, applying the tangent
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functor to each structure in D yields the triple vector bundle TD as shown in (2.61).

TD TB

TA TM

D B

A M.

T (qDB )

T (qDA )

pD

pB

T (qB)

T (qA)

p
qDB

qDA

qB

qA

pA
(2.61)

The Down face of (2.61) is D itself, the Front face is the tangent double vector bundle
TA of A → M , and the Left, the Back and the Right faces are the tangent double
vector bundles of D → A, of D → B, and of B → M respectively. These faces are
known double vector bundles. We need to check that the Up face of (2.61) is also a
double vector bundle.

Proposition 2.4.3. The Up face of (2.61) is a double vector bundle, with core vector
bundle TC → C.

Proof. The algebraic compatibility conditions for the Up face of (2.61) are straightfor-
ward. And as the tangent functor preserves the double source map and the sigma map,
parts (ii) and (iii) of the definition of a double vector bundle follow immediately. What
we need to describe in detail is the core of this double vector bundle.

The core of the Up face of (2.61) is the tangent of the core of the Down face, that is,
TC → TM . To see this, first take any W ∈ TcC. Denote by ν : I → C, a path in C
whose velocity vector at t = 0 is W , with ν(0) = c,

W =
d

dt
ν(t)

∣∣∣
t=0

.

Since ν(t) is a path in C, it is also a path inD. What is T (qDA )(W )? For any f ∈ C∞(A),
f ◦ qDA ∈ C∞(D) and we have:

T (qDA )(W )(f) =W (f ◦ qDA ) =
d

dt
(f ◦ qDA )(ν(t))

∣∣∣
t=0

.

Since ν(t) is a core element of D for t ∈ I, qDA (ν(t)) = 0A(m(t)), where m(t) =

(qA ◦ qDA )(ν(t)) is a path in M . Denote by v = d
dm(t)

∣∣∣
t=0

. Then continuing from where

we left off:

d

dt
(f ◦ qDA )(ν(t))

∣∣∣
t=0

=
d

dt
(f ◦ 0A)(m(t))

∣∣∣
t=0

= T (0A)(v)(f),
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and this is true for every f ∈ C∞(A) so T (qDA )(W ) = T (0A)(v). And since

(qB ◦ qDB )(ν(t)) = (qA ◦ qDA )(ν(t)) = m(t),

similarly, T (qDB )(W ) = T (0B)(v). Therefore, W is in the core of the Up face of (2.61).
The outline of W ,

W T (0B)(v)

T (0A)(v) v

c 0Bm

0Am m.

(2.62)

Conversely, take a ξ in the core of the Up face of (2.61). We will show that ξ ∈ TcC.

Take a ξ ∈ TcD. Then ξ = d
dtφ(t)

∣∣∣
t=0

, for some path φ : I → D in D, with φ(0) =

c ∈ D. By hypothesis T (qDA )(ξ) = T (0A)(v), and T (qDB )(ξ) = T (0B)(v), where v =
d
dm(t)

∣∣∣
t=0

∈ Tm(0)M , with m(t) = qA(q
D
A (φ(t))) = qB(q

D
B (φ(t))), a curve in M .

Since T (qDA )(ξ) = T (0A)(v),

d

dt
(qDA (φ(t)))

∣∣∣
t=0

=
d

dt
0A(m(t))

∣∣∣
t=0

.

With a similar argument as in the proof of Proposition 1.2.2, we can arrange for
qDA (φ(t)) = 0A(m(t)) for t near zero. Likewise, we can additionally arrange for qDB (φ(t)) =
0B(m(t)) for t near zero. Hence, we can arrange for φ(t) to be a path in C, and therefore
ξ ∈ TcC.

So far we have shown that each face of TD is a double vector bundle. To ensure that
this is a triple vector bundle, we need to check parts (i), (ii), (iii) of the definition of a
triple vector bundle.

The algebraic compatibility conditions follow easily. What is interesting in this case of
TD is part (iii). The following is [13, Proposition 3.4].

Proposition 2.4.4. If a double vector bundle D satisfies part (iii) of the definition
of a double vector bundle, then its tangent prolongation TD satisfies part (iii) of the
definition of a triple vector bundle.

Proof. Since D satisfies part (iii) of the definition of a double vector bundle, there exist
decomposition Ω : D → A×M B ×M C of D. The tangent of Ω,

T (Ω) : TD → TA×TM TB ×TM TC,
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and if we choose decompositions of TA, TB, and TC, then we obtain a map from TD
to

(A×M A×M TM)×TM (B ×M B ×M TM)×TM (C ×M C ×M TM)

we can rearrange this to

A×M A×M B ×M B ×M C ×M C ×M TM = TD.

Having established that decompositions of TD exist, we can show that the map ♮̃ : TD → W
is a surjective submersion.

Take any (d, ξ1, ξ2) ∈ W , where d ∈ D, ξ1 ∈ TA, ξ2 ∈ TB, with matching projections
as in (2.2). Then (d, ξ1, ξ2, 0

C
m) ∈ W ×M C, where m = qA(q

D
A (d)). Since there exist

decompositions Ω : TD → TD, we have

Φ := (ΩW ×M id)(d, ξ1, ξ2, 0
C
m) ∈ TD.

Then 0(Φ) ∈ TD and ♮̃(0(Φ)) = (d, ξ1, ξ2). Hence ♮̃ : TD → W is surjective. Submer-
sion follows with a similar argument.

The three core double vector bundle of TD in the usual order, and the ultracore:

(Back-Front) (Left-Right) (Up-Down) Ultracore

D A

B M

D B

A M

TC C

TM M

C →M

2.4.3 Special case: T 2A

In the case where D = TA for a vector bundle (A, q,M), the triple vector bundle T 2A
is as shown in (2.63).

T 2A T 2M

TA TM

TA TM

A M.

T 2(q)

T (pA)

pTA

pTM

T (p)

T (q)

p
T (q)

pA p
q

pA
(2.63)
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The core double vector bundles of T 2A

The three core double vector bundles of (2.63) are shown in (2.64), in the usual order
(B-F), (L-R), and (U-D), and arranged as in (2.30).

TA A

TM M,

pA

T (q) q

p

TA TM

A M,

T (q)

pA p

q

TA A

TM M.

pA

T (q) q

p

(2.64)

These core double vector bundles are the same as abstract double vector bundles but
are embedded differently in T 2A, as we show in what follows.

Take a ξ ∈ T (q)−1(v), v ∈ TmM , in the core of the Back face. Denote by a = pA(ξ).
So its outline in the (B-F) core double vector bundle is

ξ a

v m.

Denote by ξ̄B the corresponding element in T 2A defined by this ξ ∈ T (q)−1(v).

The Back face is the tangent double vector bundle for the tangent prolongation bundle
T (q) : TA → TM . Follow the construction in Subsection 1.1.2. The corresponding
curve to which ξ̄B is a tangent vector at point T (0A)(v), is t ·

TM
ξ:

t ·
TM

ξ ta

v m,

and this is entirely in the fibre T (q)−1(v). Therefore

ξ̄B =
d

dt
(t ·
TM

ξ)
∣∣∣
t=0

∈ TT (0A)(v)(TA) (2.65)

Furthermore,

T 2(q)(ξ̄B) =
d

dt
T (q)(t ·

TM
ξ)
∣∣∣
t=0

=
d

dt
v
∣∣∣
t=0

(1.12)
= 0T

2M
v ,

and

T (pA)(ξ̄
B) =

d

dt
pA(t ·

TM
ξ)
∣∣∣
t=0

=
d

dt
ta
∣∣∣
t=0

(1.9)
= ā,
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and of course

pTA(ξ̄
B) = T (0A)(v).

The outline of ξ̄B in T 2A:

ξ̄B 0T
2M

v

ā 0TMm

T (0A)(v) v

0Am m.

T 2(q)

T (pA)pTA

(2.66)

Now take a ξ ∈ TaA in the core of the Left face. The Left face is the double tangent
bundle of the manifold A. If we denote by ξ̄L the corresponding element in T 2A that
ξ ∈ TaA determines, we have

ξ̄L =
d

dt
(t ·
A
ξ)
∣∣∣
t=0

, (2.67)

where the scalar multiplication is in the usual tangent bundle TA→ A. The curve t ·
A
ξ

is in the fibre TaA entirely:

t ·
A
ξ tv

a m.

It follows that

T 2(q)(ξ̄L) =
d

dt
T (q)(t ·

A
ξ)
∣∣∣
t=0

=
d

dt
tv
∣∣∣
t=0

(1.9)
= v̄,

and

T (pA)(ξ̄
L) =

d

dt
pA(t ·

A
ξ)
∣∣∣
t=0

=
d

dt
a
∣∣∣
t=0

(1.12)
= 0TAa ,

and finally, the zero of the fibre TaA is 0TAa , therefore,

pTA(ξ̄
L) = 0TAa .
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Therefore, the outline of ξ̄L in T 2A:

ξ̄L v̄

0TAa 0TMm

0TAa 0TMm

a m.

T 2(q)

T (pA)
pTA

(2.68)

Finally, take a ξ in the (U-D) core double vector bundle with outline

ξ a

v m.

Following the construction in Subsection 2.4.2, take a curve a(t) in the core A of the

Down face, with a(0) = a, q(a(t)) = m(t) a curve in M with v = d
dtm(t)

∣∣∣
t=0

. Then

ξ =
d

dt
a(t)

∣∣∣
t=0

∈ TaA,

is in the core TA of the Up face. We view it as ξ̄U in T 2A as follows. Take the curve
a(t) in TA, where a(t) is the core element in TA corresponding to a(t) for every t:

a(t) =
d

ds
sa(t)

∣∣∣
s=0

∈ T0A(m(t))A,

with outlines

a(t) 0A(m(t))

0TM (m(t)) m(t).

Therefore,

ξ̄U =
d

dt
a(t)

∣∣∣
t=0

∈ TāTA. (2.69)

It follows that,

T 2(q)(ξ̄U ) =
d

dt
T (q)(a(t))

∣∣∣
t=0

=
d

dt
0TM (m(t))

∣∣∣
t=0

= T (0TM )(v),
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and

T (pA)(ξ̄
U ) =

d

dt
pA(a(t))

∣∣∣
t=0

=
d

dt
0A(m(t))

∣∣∣
t=0

= T (0A)(
d

dt
m(t)

∣∣∣
t=0

) = T (0A)(v),

and of course pTA(ξ̄
U ) = ā, see Subsection 2.4.2, (2.62). And the triple outline of ξ̄U

in T 2A:

ξ̄U T (0TM )(v)

T (0A)(v) v

ā 0TMm

0Am m.

T 2(q)

T (pA)

pTA

2.4.4 The canonical involution on T 2A

The canonical involution JA : T 2A→ T 2A for the manifold A is an isomorphism from
the double vector bundle T 2A to its flip. In what follows we will need to use it as a
map of triple vector bundles.

Proposition 2.4.5. The map JA is an isomorphism of the triple vector bundles shown
in (2.70).

T 2A T 2M

TA TM

TA TM

A M,

T 2(q)

T (pA)

pTA

pTM

T (p)

T (q)

p
T (q)

pA p
q

pA

T 2A T 2M

TA TM

TA TM

A M.

T 2(q)

pTA

T (pA)

T (p)

pTM

T (q)

p
T (q)

pA p
q

pA

(2.70)

In (2.70) the Left faces are the double tangent bundles of the manifold A and JA maps
the Left face of the domain to its flip. It interchanges the Up and Back faces. The Right
faces are the double tangent bundles of M , and as JA induces JM : T 2M → T 2M to
the Right faces, it maps the Right face of the domain to its flip. The Front and Down
faces are interchanged.
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The proof of Proposition 2.4.5 relies on two lemmas. First, the naturality property of
the canonical involution, Lemma 1.2.1. Secondly, we need to show that (JA, JM ) is a
vector bundle map. That the diagram

T 2A T 2A

T 2M T 2M,

JA

T 2(q) T 2(q)

JM

commutes follows from Lemma 1.2.1 for q : A → M . It remains to show that JA is
linear fibrewise. At this point we need to work in local coordinates on T 2A.

In Section 1.2.3 we described a local coordinate system on TA for a vector bundle
A → M of rank r. We denoted it by (x, a, ẋ, ȧ), with transformation laws (1.39). We
now present a local coordinate system on T 2A.

As it is important to distinguish between different copies of the same thing, instead
of using (x, a, ẋ, ȧ) on TA, we now write (x, a, v, w), where x̃ = x̃(x), ã = ã(x, a),
ṽ = ṽ(x, v), w̃ = w̃(x, a, v, w) on the intersection of two overlapping charts on TA

(x, a, v, w) → (x̃, ã, ṽ, w̃), (2.71)

and as in (1.39), we have

ãℓ = P ℓh(m)ah,

ṽi =
∂x̃i

∂xp
(m)vp,

w̃ℓ = P ℓh(m)wh +
∂P ℓs
∂xp

(m)vpas.

A local coordinate system on T 2A is now, in shorthand notation,

(x, a, v, w, ẋ, ȧ, v̇, ẇ),

where (x) = (x1, . . . , xn), (a) = (a1, . . . , ar), (v) = (v1, . . . , vn), (w) = (w1, . . . , wr),
and corresponding indices for the respective dots.

Following the usual rule of calculating the Jacobian matrix of 2.71, the following 4× 4
block matrix, 

(
∂x̃
∂x

)
(n×n)

(
∂x̃
∂a

)
(n×r)

(
∂x̃
∂v

)
(n×n)

(
∂x̃
∂w

)
(n×r)(

∂ã
∂x

)
(r×n)

(
∂ã
∂a

)
(r×r)

(
∂ã
∂v

)
(r×n)

(
∂ã
∂w

)
(r×r)(

∂ṽ
∂x

)
(n×n)

(
∂ṽ
∂a

)
(n×r)

(
∂ṽ
∂v

)
(n×n)

(
∂ṽ
∂w

)
(n×r)(

∂w̃
∂x

)
(r×n)

(
∂w̃
∂a

)
(r×r)

(
∂w̃
∂v

)
(r×n)

(
∂w̃
∂w

)
(r×r)

 , (2.72)

this matrix (2.72) describes how coordinates (x, a, v, w, ẋ, ȧ, v̇, ẇ) and (x̃, ã, ṽ, w̃, ˙̃x, ˙̃a, ˙̃v, ˙̃w)
on T 2A on overlapping charts change:
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• First row of (2.72),

∂x̃i

∂xj
,

∂x̃i

∂ak
= 0,

∂x̃i

∂vj
= 0,

∂x̃i

∂wk
= 0.

• Second row of (2.72),

∂ãℓ

∂xj
=
∂P ℓs
∂xj

as,
∂ãℓ

∂ak
= P ℓk ,

∂ãℓ

∂vj
= 0,

∂ãℓ

∂wk
= 0.

• Third row of (2.72),

∂ṽi

∂xj
=

∂2x̃i

∂xj∂xp
vp,

∂ṽi

∂ak
= 0,

∂ṽi

∂vj
=
∂x̃i

∂xj
,

∂ṽi

∂wk
= 0.

• Fourth row of (2.72),

∂w̃ℓ

∂xj
=
∂P ℓh
∂xj

wh +
∂2P ℓs
∂xj∂xp

vpas,
∂w̃ℓ

∂ak
=
∂P ℓk
∂xp

vp,
∂w̃ℓ

∂vj
=
∂P ℓs
∂xj

as,
∂w̃ℓ

∂wk
= P ℓk .

In total, about the seven fibre coordinates of T 2A, transformation laws are the following:

ãℓ = P ℓk(m)ak,

ṽi =
∂x̃i

∂xj
(m)vj ,

w̃ℓ = P ℓk(m)wk +
∂P ℓs
∂xj

(m)asvj ,

˙̃xi =
∂x̃i

∂xj
(m)ẋj ,

˙̃aℓ =
∂P ℓs
∂xj

(m)asẋj + P ℓk(m)ȧk,

˙̃vi =
∂2x̃i

∂xj∂xp
(m)vpẋj +

∂x̃i

∂xj
(m)v̇j ,

˙̃wℓ =
∂P ℓh
∂xj

(m)whẋj +
∂2P ℓs
∂xj∂xp

(m)vpasẋj +
∂P ℓk
∂xp

(m)vpȧk +
∂P ℓs
∂xj

(m)asv̇j + P ℓk(m)ẇk.

The three projections of T 2A,

pTA : (x, a, v, w, ẋ, ȧ, v̇, ẇ) 7→ (x, a, v, w), Down Face,

T (pA) : (x, a, v, w, ẋ, ȧ, v̇, ẇ) 7→ (x, a, ẋ, ȧ), Front Face,

T 2(q) : (x, a, v, w, ẋ, ȧ, v̇, ẇ) 7→ (x, v, ẋ, v̇), Right Face.

The canonical involution JA : T 2A→ T 2A in local coordinates:

(x, a, v, w, ẋ, ȧ, v̇, ẇ) 7→ (x, a, ẋ, ȧ, v, w, v̇, ẇ).

We need the following lemma in order to prove that JA is a fibrewise linear map over
JM .
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Lemma 2.4.6. If Φ1,Φ2 ∈ T 2A, with T 2(q)(Φ1) = T 2(q)(Φ2), then

JA

(
Φ1 +

T 2(q)
Φ2

)
= JA(Φ1) +

T 2(q)
JA(Φ2). (2.73)

First we need the following “double version” of Proposition 1.2.2.

Proposition 2.4.7. Take two vectors Φ1, Φ2 ∈ T 2A, with T 2(q)(Φ1) = T 2(q)(Φ2).

Then there exist smooth squares ν1, ν2 : (−ϵ, ϵ)×(−ϵ, ϵ) → A such that Φ1 =
d
dt

(
d
dsν1(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

and Φ2 =
d
dt

(
d
dsν2(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

, with q(ν1(t, s)) = q(ν2(t, s)), for t and s near zero.

The proof is similar to the single case one, we present it here for reference.

Proof. Let m = p(T (p)(T 2(q)(Φ1))) = p(T (p)(T 2(q)(Φ2))) be in the domain U of the
chart (U,φ) on M with coordinates (x1, . . . , xn), shorthand notation (x). Write:

Φ1 = (x(m), a1(m), v1(m), w1(m), ẋ1(m), ȧ1(m), v̇1(m), ẇ1(m)),

Φ2 = (x(m), a2(m), v2(m), w2(m), ẋ2(m), ȧ2(m), v̇2(m), ẇ2(m)),

for some local coordinates on T 2A. The following squares ν1, ν2 : (−ϵ, ϵ)× (−ϵ, ϵ) → A,

ν1(t, s) = (x(m) + tẋ1(m) + sv1(m) + tsv̇1(m), a1(m) + tȧ1(m) + sw1(m) + tsẇ1(m)) ,

ν2(t, s) = (x(m) + tẋ2(m) + sv2(m) + tsv̇2(m), a2(m) + tȧ2(m) + sw2(m) + tsẇ2(m)) .

Denote ν1(t, s) succinctly by (x(t, s), a(t, s)). Then,

d

ds
ν1(t, s)

∣∣∣
s=0

=

(
x(t, 0), a(t, 0),

dx(t, s)

ds

∣∣∣
s=0

,
da(t, s)

ds

∣∣∣
s=0

)
= (x(m) + tẋ1(m), a1(m) + tȧ1(m), v1(m) + tv̇1(m), w1(m) + tẇ1(m)),

and this is a curve d
dsν1(t, s)

∣∣∣
s=0

: (−ϵ, ϵ) → TA. Its velocity vector at t = 0,

d

dt

(
d

ds
ν1(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

= (x(m), a1(m), v1(m), w1(m), ẋ1(m), ȧ1(m), v̇1(m), ẇ1(m)) = Φ1.

And a similar calculation shows that

d

dt

(
d

ds
ν2(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

= Φ2.

By hypothesis, T 2(q)(Φ1) = T 2(q)(Φ2), which implies that

v1(m) = v2(m), ẋ1(m) = ẋ2(m), v̇1(m) = v̇2(m),
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therefore,

q(ν1(t, s)) = x(m) + tẋ1(m) + sv1(m) + tsv̇1(m)

= x(m) + tẋ2(m) + sv2(m) + tsv̇2(m) = q(ν2(t, s)).

We include some outlines for reference. The triple outline of Φ1 in local coordinates,

Φ1 (x, v1, ẋ1, v̇1)

(x, a1, ẋ1, ȧ1) (x, ẋ1)

(x, a1, v1, w1) (x, v1)

(x, a1) (x),

T 2(q)

T (pA)
pTA

and the triple outline of d
dt

(
d
dsν1(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

, where we denote by q ◦ν1 = µ, smooth

square of elements of M :

d
dt

(
d
dsν1(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

d
dt

(
d
dsµ(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

d
dtν1(t, 0)

∣∣∣
t=0

d
dtµ(t, 0)

∣∣∣
t=0

d
dsν1(0, s)

∣∣∣
s=0

d
dsµ(0, s)

∣∣∣
s=0

ν1(0, 0) µ(0, 0),

T 2(q)

T (pA)
pTA

And of course
d

ds
ν1(0, s)

∣∣∣
s=0

= (x, a1, v1, w1).

Additionally,

ν1(t, 0) = (x+ tẋ1, a1 + tȧ1) ⇒
d

dt
ν1(t, 0)

∣∣∣
t=0

= (x, a1, ẋ1, ȧ1).

The outline of JA(Φ1),

JA(Φ1) (x, ẋ1, v1, v̇1)

(x, a1, v1, w1) (x, v1)

(x, a1, ẋ1, ȧ1) (x, ẋ1)

(x, a1) (x),

T 2(q)

T (pA)
pTA
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and the outline of JA

(
d
dt

(
d
dsν1(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

)
= d

ds

(
d
dtν1(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

,

d
ds

(
d
dtν1(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

d
ds

(
d
dtµ(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

d
dsν1(0, s)

∣∣∣
s=0

d
dsµ(0, s)

∣∣∣
s=0

d
dtν1(t, 0)

∣∣∣
t=0

d
dtµ(t, 0)

∣∣∣
t=0

ν1(0, 0) µ(0, 0),

T 2(q)

T (pA)
pTA

We now proceed with the proof of Lemma 2.4.6.

Proof. By Proposition 2.4.7, there exist ν1, ν2 : (−ϵ, ϵ) × (−ϵ, ϵ) → A smooth squares
of elements of A, such that:

Φ1 =
d

dt

(
d

ds
ν1(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

, Φ2 =
d

dt

(
d

ds
ν2(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

,

with q ◦ ν1 = q ◦ ν2 = µ : (−ϵ, ϵ)× (−ϵ, ϵ) →M , a smooth square of elements of M .

Since q ◦ ν1 = q ◦ ν2, it follows that

T (q)

(
d

ds
ν1(t, s)

∣∣∣
s=0

)
=

d

ds
q(ν1(t, s))

∣∣∣
s=0

=
d

ds
q(ν2(t, s))

∣∣∣
s=0

= T (q)

(
d

ds
ν2(t, s)

∣∣∣
s=0

)
.

In other words, for the two curves Y1(t) =
d
dsν1(t, s)

∣∣∣
s=0

and Y2(t) =
d
dsν2(t, s)

∣∣∣
s=0

in

TA, we have that T (q)(Y1(t)) = T (q)(Y2(t)), for t near zero. Therefore,

Φ1 +
T 2(q)

Φ2 =
d

dt
Y1(t)

∣∣∣
t=0

+
T 2(q)

d

dt
Y2(t)

∣∣∣
t=0

=
d

dt

(
Y1(t) +

T (q)
Y2(t)

) ∣∣∣
t=0

=
d

dt

(
d

ds
ν1(t, s)

∣∣∣
s=0

+
T (q)

d

ds
ν2(t, s)

∣∣∣
s=0

) ∣∣∣
t=0

.

Again, due to our hypothesis, that q ◦ ν1 = q ◦ ν2, we have

d

ds
ν1(t, s)

∣∣∣
s=0

+
T (q)

d

ds
ν2(t, s)

∣∣∣
s=0

=
d

ds
(ν1(t, s) + ν2(t, s))

∣∣∣
s=0

.

Altogether,

Φ1 +
T 2(q)

Φ2 =
d

dt

(
d

ds
(ν1(t, s) + ν2(t, s))

∣∣∣
s=0

) ∣∣∣
t=0

.
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Applying JA to the previous equation,

JA

(
Φ1 +

T 2(q)
Φ2

)
=

d

ds

(
d

dt
(ν1(t, s) + ν2(t, s))

∣∣∣
t=0

) ∣∣∣
s=0

. (2.74)

About the right hand side of (2.73), again from the fact that q(ν1(t, s)) = q(ν2(t, s)),
it follows that,

JA(Φ1) +
T 2(q)

JA(Φ2) =
d

ds

(
d

dt
ν1(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

+
T 2(q)

d

ds

(
d

dt
ν2(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

=
d

ds

(
d

dt
ν1(t, s)

∣∣∣
t=0

+
T (q)

d

dt
ν2(t, s)

∣∣∣
t=0

) ∣∣∣
s=0

=
d

ds

(
d

dt
(ν1(t, s) + ν2(t, s))

∣∣∣
t=0

) ∣∣∣
s=0

,

and we see that this is equal to (2.74).

Also, as we will need it later on, note that JA as the canonical involution of the double
tangent bundle T 2A, for the manifold A, interchanges the two additions, that is, recall
(1.28) and (1.29). For Φ1,Φ2 ∈ T 2A with T (pA)(Φ1) = T (pA)(Φ2):

JA(Φ1 +
T (pA)

Φ2) = JA(Φ1) +
pTA

JA(Φ2),

and for Φ1,Φ2 ∈ T 2A with pTA(Φ1) = pTA(Φ2):

JA(Φ1 +
pTA

Φ2) = JA(Φ1) +
T (pA)

JA(Φ2).

Now consider the maps which JA induces on the cores.

Take an element ξ ∈ TA in the core of the Back face. Regarded as an element of T 2A
this is ξ̄B, with outline shown on the left of (2.75).

ξ̄B 0T
2M

v

ā 0TMm

T (0A)(v) v

0Am m,

T 2(q)

T (pA)pTA

ξ̄U T (0TM )(v)

T (0A)(v) v

ā 0TMm

0Am m.

T 2(q)

T (pA)

pTA

(2.75)

It follows from (2.65) and (2.69) that

JA(ξ̄
B) = ξ̄U and JA(ξ̄

U ) = ξ̄B, (2.76)
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since J2
A is the identity.

Since the Left faces in (2.70) are the double tangent bundle T 2A, the map on the cores
of the Left faces is the identity and so

JA(ξ̄
L) = ξ̄L. (2.77)

2.4.5 The cotangent T ∗D

In this section we present in detail the cotangent T ∗D of the tangent triple vector
bundle TD. The cotangent T ∗D is a triple vector bundle obtained through the process
of dualization. First, some background on the duality of double vector bundles.

Double vector bundles and Duality

When we dualize the double vector bundle D with respect to its vector bundle structure
over A, the resulting structure is denoted by D BA. That D BA is a double vector
bundle, this is described in detail in [25, Section 9.2].

D BA C∗

A M.

γA
C∗

γAA

The core of this double vector bundle is B∗ →M .

As we will use it extensively in what follows, we write the formula for the unfamiliar
projection γAC∗ : D BA→ C∗. From equation (16) of [25, p.348], this is

⟨γAC∗(Φ), c⟩C∗ = ⟨Φ, 0Da +
B
c⟩A, (2.78)

where c ∈ Cm, Φ : (qDA )
−1(a) → R, and a ∈ Am. The zero above κ ∈ C∗

m is denoted by

0D
BA

κ and is defined by

⟨0D
BA

κ , 0Db +
A
c⟩A = ⟨κ, c⟩C∗ , (2.79)

where b ∈ Bm and c ∈ Cm. The core element ψ corresponding to ψ ∈ B∗
m is

⟨ψ, 0Db +
A
c⟩A = ⟨ψ, b⟩B. (2.80)

The addition +
C∗

in D BA→ C∗ is defined by

⟨Φ +
C∗

Φ′, d+
B
d′⟩A = ⟨Φ, d⟩A + ⟨Φ′, d′⟩A, (2.81)
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where Φ and Φ′ have outlines (Φ; a, κ;m) and (Φ′; a′, κ;m), and d and d′ have outlines
(d; a, b;m) and (d′; a′, b;m), see [25, p.348] for more details. Similarly for D BB.

The two duals D BA and D BB of D have a remarkable relation, namely, D BA→ C∗

and DBB → C∗ are dual vector bundles. There exists a nondegenerate pairing between
D BA and D BB over C∗ [25, 9.2.2], denoted , , which is natural up to sign. Again,
for details see [25, Section 9.2].

D B

A M,

qDB

qDA qB

qA

D BA C∗

A M,

γA
C∗

γAA

D BB B

C∗ M.

γBB

γB
C∗

(2.82)

For Φ ∈ D BA, and Ψ ∈ D BB, with outlines (Φ; a, κ;m) and (Ψ;κ, b;m) respectively,
and for any d ∈ D with outline (d; a, b;m), define

Φ, Ψ = ⟨Φ, d⟩A − ⟨Ψ, d⟩B. (2.83)

Note that the pairing (2.83) is independent of the choice of d ∈ D. This pairing induces
two double vector bundle isomorphisms, namely,

ZA : D BA→ D BB BC∗, ⟨ZA(Φ),Ψ⟩C∗ = Φ, Ψ , (2.84)

and

ZB : D BB → D BA BC∗, ⟨ZB(Ψ),Φ⟩C∗ = Φ, Ψ . (2.85)

The core of T ∗A

The cotangent double vector bundle T ∗A:

T ∗A A∗

A M,

r

cA q∗

q

is a prime example of a dual double vector bundle. Since T ∗A is the resulting double
vector bundle after dualizing TA over A, its core vector bundle is T ∗M →M .

The unfamiliar projection r : T ∗A→ A∗ in this case, using (2.78) we can write:

⟨r(Φ), a′⟩ = ⟨Φ, 0TAa +
TM

ā′⟩A, (2.86)

for Φ ∈ T ∗
aA, a ∈ Am, and for a′ ∈ Am (where this copy of Am is the core of TA).
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By (2.81), the addition in T ∗A→ A∗ is described by

⟨Φ1 +
A∗

Φ2, ξ1 +
TM

ξ2⟩A = ⟨Φ1, ξ1⟩A + ⟨Φ2, ξ2⟩A, (2.87)

for Φ1 ∈ T ∗
a1A,Φ2 ∈ T ∗

a2A, with r(Φ1) = r(Φ2), and for ξ1 ∈ Ta1A, ξ2 ∈ Ta2A, with
T (q)(ξ1) = T (q)(ξ2).

For a single covector ωm ∈ T ∗
mM , its image in T ∗A is described by (2.80):

⟨ω, T (0A)(v)+
A
ā⟩ = ⟨ω, v⟩,

for v ∈ TmM . A section ω ∈ Γ(T ∗M) of the core of T ∗A, defines two sections of T ∗A:

• q∗(ω) ∈ Ω1(A), the strut of ω over A, a section of the vector bundle T ∗A → A,
and

• ω̌, the strut of ω over A∗ which is a section of T ∗A→ A∗.

More precisely,

q∗(ω) : A → T ∗A,

Am ∋ a 7→ 0T
∗A

a +
A∗
ω(m),

the pullback of ω(m) ∈ T ∗
mM to A at the point a ∈ Am.

About ω̌:

ω̌ : A∗ → T ∗A,

A∗
m ∋ α 7→ 0T

∗A
α +

A
ω(m),

and from (2.79) and (2.80) it follows that

⟨0T ∗A
α +

A
ω(m), T (0A)(v)+

A
ā⟩A

= ⟨0T ∗A
α , T (0A)(v)+

A
ā⟩A + ⟨ω(m), T (0A)(v)+

A
ā⟩A = ⟨α, a⟩A + ⟨ω, v⟩TM ,

for v ∈ TmM , and a ∈ Am.

The triple vector bundle T ∗D

We are now ready to further investigate T ∗D. This triple vector bundle was first
introduced in [24]. Dualizing TD with respect to D, we obtain the following triple
vector bundle,

T ∗D D BB
D BA C∗

D B

A M.

(2.88)
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All faces of T ∗D except for the Up face are known double vector bundles. So focus on
the Up face,

T ∗D D BB

D BA C∗.

rB

rA γB
C∗

γA
C∗

First we check that γBC∗ ◦rB = γAC∗ ◦rA. To begin with, let f ∈ T ∗
dD, with triple outline:

f rB(f)

rA(f) ?

d b

a m

Let us describe rA(f). The Left face of TD is the tangent double vector bundle of
D → A. Its dual with respect to D is the Left face of T ∗D, see (2.88). And by (2.78),
for f ∈ T ∗

dD:

⟨rA(f), d′⟩ = ⟨f, 0̂d +
TA

d′
A⟩, (2.89)

where d′ is in the core of the Left face of TD and we denote by d′
A
its image in TD.

An element of the (L-R) core double vector bundle, its triple outline is

d′
A

X

0̃TAa 0TMm

0Da 0Bm

a m,

where X ∈ TB is in the core of the Right face.

Therefore, equation (2.89) shows how to pair an element f ∈ T ∗
dD with 0̂d +

TA
d′
A
:

f rB(f)

rA(f) κ

d b

a m,

0̂d +
TA

d′
A

X +
TM

0̃TBb

0̃TAa 0TMm

d b

a m.
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Denote by κ := γAC∗ ◦ rA(f). The outline of rA(f) ∈ D BA (the Front face of T ∗D),

rA(f) κ

a m,

and again from (2.78), for any c ∈ Cm:

⟨κ, c⟩ = ⟨rA(f), 0Da +
B
c⟩. (2.90)

Note the following. The element c ∈ Cm lies in the ultracore C of TD: since κ =
γAC∗ ◦ rA(f) ∈ C∗ is in the dual of the ultracore C of TD, we pair it with an element of
the ultracore C of TD. As there are more than one copy of the vector bundle C →M
in TD, it is important to state explicitly in which copy the element c belongs to.

Focus on the right hand side of (2.90): rA(f) ∈ D BA, and 0Da +
B
c is in the core of the

Left face of TD (it plays the role of d′ ∈ D
∣∣∣
a
in the left hand side of (2.89)). That

0Da +
B
c is in the core of the Left face of TD means that c is in the core of the (L-R)

core double vector bundle, ergo, in the ultracore.

The image of 0Da +
B
c in TD is from (1.9),

0Da +
B
c
A
=

d

dt
t ·
A
(0Da +

B
c)
∣∣∣
t=0

=
d

dt
(0Da +

B
t ·
A
c)
∣∣∣
t=0

=
d

dt
0Da

∣∣∣
t=0

+
TB

d

dt
t ·
A
c
∣∣∣
t=0

= 0̂a +
TB

cA.

where we have denoted by cA the image of the ultracore element in TD. Note that

cA =
d

dt
t ·
A
c
∣∣∣
t=0

=
d

dt
t ·
B
c
∣∣∣
t=0

= cB,

and their triple diagrams:

0̂a ⊙TB
m

0TAa 0TMm

0Da 0Bm

a m

+
TB

cA ⊙TB
m

⊙TA
m 0TMm

⊙D
m 0Bm

0Am m.

By (2.89), we obtain

⟨κ, c⟩ = ⟨rA(f), 0Da +
B
c⟩ = ⟨f, 0̂d +

TA
(0̂a +

TB
cA)⟩. (2.91)
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We do exactly the same for rB(f). In this case, we can write:

⟨rB(f), d′′⟩ = ⟨f, 0̂d +
TB

d′′
B⟩, (2.92)

where d′′ is now a core element of the Back face of TD. It belongs to the (B-F) core
double vector bundle of TD, with outline:

d′′ Y

b m,

where Y ∈ A is a core element of the Front face of TD. The triple outlines of the

elements f ∈ T ∗
dD and 0̂d +

TB
d′′
B
:

f rB(f)

rA(f) κ

d b

a m,

0̂d +
TB

d′′
B

0TBb

Y +
TM

0TAa 0TMm

d b

a m.

Denote now by κ′ := γBC∗ ◦ rB(f). Again by (2.78), for any c′ ∈ Cm:

⟨κ′, c′⟩ = ⟨rB(f), 0Db +
A
c′⟩,

and now as 0Db +
A
c′ plays the role of d′′ in (2.92), it is an element of the (B-F) core

double vector bundle of TD, and now c′ in the core of the (B-F) core double vector
bundle, an ultracore element. Choose the same c ∈ Cm as we had chosen in (2.90), in

the case of rA. The image of 0Db +
A
c′ in TD is 0Db +

A
c
B
, and their triple diagrams:

0̂b 0TBb

⊙TA
m 0TMm

0Db b

0Am m

+
TA

cB ⊙TB
m

⊙TA
m 0TMm

⊙D
m 0Bm

0Am m.

Applying (2.92) for d′′ = 0Db +
A
c:

⟨κ′, c⟩ = ⟨rB(f), 0Db +
A
c⟩ = ⟨f, 0̂d +

TB
(0̂b +

TA
cB)⟩. (2.93)
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In order to show that κ = κ′, by (2.91) and (2.93), it is enough to show that

0̂d +
TA

(0̂a +
TB

cA) = 0̂d +
TB

(0̂b +
TA

cB),

and this follows directly using interchange laws:

0̂d +
TA

(0̂a +
TB

cA) = (0̂d +
TB

0̂b) +
TA

(0̂a +
TB

cA) = (0̂d +
TA

0̂a) +
TB

(0̂b +
TA

cA) = 0̂d +
TB

(0̂b +
TA

cA),

and as we mentioned earlier, cA = cB.

Linearity of rA

The Left face of T ∗D is the dual double vector bundle of the Left face of TD, therefore,
rA is a morphism of vector bundles from T ∗D → D to DBA→ A, i.e., for f1, f2 ∈ T ∗

dD:

rA(f1+
D
f2) = rA(f1)+

A
rA(f2).

To check that rA is a morphism of double vector bundles from the Back to the Front
face of T ∗D, we also need to check linearity over DBB, that is, assuming that rB(f1) =
rB(f2) = φ ∈ D BB, does the following hold?

rA(f1 +
DBB f2) = rA(f1) +

C∗
rA(f2). (2.94)

The outlines of f1 and f2:

f1 φ

rA(f1) κ

d b

a m,

f2 φ

rA(f2) κ

d′ b

a′ m.

The right hand side of (2.94): by (2.81), for d1, d2 ∈ D, with outlines:

d1 b′′

a m,

d2 b′′

a′ m,

we have
⟨rA(f1) +

C∗
rA(f2), d1+

B
d2⟩ = ⟨rA(f1), d1⟩+ ⟨rA(f2), d2⟩. (2.95)

Note that b′′ = qDB (d1) = qDB (d2) is not related to the b = qDB (pD(f1)) = qDB (pD(f2)).
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About the left hand side of (2.94), we will use (2.89), with d1+
B
d2 in place of d′. So

looking at d1+
B
d2 in the core of the Left face of TD, its image d1+

B
d2
A
is in the (L-R)

core double vector bundle with outline

d1
A
+
TB

d2
A

b′′

a+ a′ m,

where

d1+
B
d2
A
=

d

dt

(
t ·
A
(d1+

B
d2)

) ∣∣∣
t=0

=
d

dt
t ·
A
d1

∣∣∣
t=0

+
TB

d

dt
t ·
A
d2

∣∣∣
t=0

= d1
A
+
TB

d2
A
.

Applying now (2.89) for f1 +
DBB f2 ∈ T ∗

d+
B
d′D and rA(f1 +

DBB f2) ∈ D BA∣∣∣
a+a′

, the left

hand side of (2.94) can now be written,

⟨rA(f1 +
DBB f2), d1+B d2⟩ = ⟨f1 +

DBB f2, 0̂d+B d′ +TA(d1+B d2)
A⟩

= ⟨f1 +
DBB f2, (0̂d +

TB
0̂d′) +

TA
(d1

A
+
TB

d2
A
)⟩ = ⟨f1 +

DBB f2, (0̂d +
TA

d1
A
) +
TB

(0̂d′ +
TA

d2
A
)⟩.

We need to describe the addition +
DBB in T ∗D → D BB, using (2.81). This comes by

the Back face of T ∗D, the dual of the tangent double vector bundle of D → B:

TD TB

D B,

dualize over D
========⇒

T ∗D D BB

D B.

Therefore, the addition f1 +
DBB f2 is defined by pairing with elements ξ1, ξ2 ∈ (TD;D,TB;TM)

with outlines:
ξ1 x

d b,

ξ2 x

d′ b,

therefore, we can write:

⟨f1 +
DBB f2, ξ1 +

TB
ξ2⟩ = ⟨f1, ξ1⟩+ ⟨f2, ξ2⟩.
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For ξ1 = 0̂d +
TA

d1
A
, and ξ2 = 0̂d′ +

TA
d2
A
, we can rewrite the left hand side of (2.94),

⟨f1, 0̂d +
TA

d1
A⟩+ ⟨f2, 0̂d′ +

TA
d2
A⟩ (2.89)= ⟨rA(f1), d1⟩+ ⟨rA(f2), d2⟩,

and this is precisely (2.95), the right hand side of (2.94). The proof of the following
can be found in [24, Proposition 5.4]. We present it here in detail.

Proposition 2.4.8. The core of the Up face of T ∗D is T ∗C → C∗.

Proof. Consider an ω ∈ T ∗
c C. To define its image ω̃ in T ∗

cD, we first need to describe
the elements ξ ∈ TcD. The outline of such an element ξ ∈ TcD is

ξ T (0B)(v)+
B
X

T (0A)(v)+
A
Y v

c 0Bm

0Am m.

pD

pB

p
pA

To see this, since pD(ξ) = c, a core element of the Down face of TD, it follows that
qDA (c) = 0Am and qDB (c) = 0Bm. Therefore, pA(T (q

D
A )(ξ)) = 0Am, and T (qA)(T (q

D
A )(ξ)) =

v ∈ TmM . From usual double vector bundle theory T (qDA )(ξ) = T (0A)(v)+
A
Y , where

Y ∈ A lies in the core of the Front face of TD, and Y is its image in TA. Similarly for
T (qDB )(ξ) = T (0B)(v)+

B
X, where X ∈ B is an element of the core of the Right face of

TD.

Consider the following cases, where ξ = 0̂c +
TB

T (0DA )(Y ). Then v = 0TMm and X = 0Bm,

and ξ has outline:

0̂c +
TB

T (0DA )(Y ) ⊙TB
m

Y 0TMm

c 0Bm

0Am m.
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Similarly, when ξ = 0̂c +
TA

T (0DB )(X) then v = 0TMm and Y = 0Am:

0̂c +
TA

T (0DB )(X) X

⊙TA
m 0TMm

c 0Bm

0Am m.

Denote by X = (0̂c +
TB

T (0DA )(Y ))+
D
(0̂c +

TA
T (0DB )(X)). Then for any ξ ∈ TcD, we see

that ξ—
D

X will have the following outline:

ξ—
D

X T (0B)(v)

T (0A)(v) v

c 0Bm

0Am m,

that is, ξ—
D

X is in the (U-D) core double vector bundle of TD. Therefore, ξ—
D

X =

W , for some W ∈ TcC.

Define ω̃ in T ∗
cD as follows. For any ξ ∈ TcD:

⟨ω̃, ξ⟩ := ⟨ω,W ⟩, (2.96)

where W = ξ—
D

X .

To show that ω̃ is in the core of the Up face of T ∗D we need to show that rA(ω̃) = 0D
BA

κ ,

and rB(ω̃) = 0D
BB

κ .

So far, the outline of ω̃:

ω̃ rB(ω̃)

rA(ω̃) κ

c 0Bm

0Am m.
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Using (2.89) we have:

⟨rA(ω̃), d′⟩ = ⟨ω̃, 0̂c +
TA

d′
A⟩,

for d′ in the core of the Left face of TD, with outline in the (L-R) core double vector
bundle:

d′ X

0Am m.

We can write d′ = 0DX +
A
c′, for c′ in the core of the (L-R) core double vector bundle of

TD, i.e., an ultracore element. And we have

0DX +
A
c′
A
= 0̂X +

TA
c′
A

Therefore, by (2.89) for d′ = 0DX +
A
c′:

⟨rA(ω̃), 0DX +
A
c′⟩ = ⟨ω̃, 0̂c +

TA
(0̂X +

TA
c′
A
)⟩ = ⟨ω̃, (0̂c +

TA
0̂X)+

D
(0̂c +

TA
c′
A
)⟩.

The corresponding W defined here, noting that 0̂X = T (0B)(X), is

W =

(
(0̂c +

TA
T (0DB )(X))+

D
(0̂c +

TA
c′
A
)

)
—
D
(0̂c +

TA
T (0DB )(X)) = (0̂c +

TA
c′
A
),

hence W = 0TCc +
TM

c′. Therefore, by (2.96) for ξ,X , and W as just described:

⟨ω̃, (0̂c +
TA

0̂X)+
D
(0̂c +

TA
c′
A
)⟩ = ⟨ω, 0TCc +

TM
c′⟩.

Now using (2.78), the unfamiliar projection r : T ∗C → C∗, we have

⟨ω, 0TCc +
TM

c′⟩ = ⟨r(ω), c′⟩ = ⟨κ, c′⟩.

In total,

⟨rA(ω̃), 0DX +
A
c′⟩ = ⟨κ, c′⟩ (2.79)= ⟨0D

BA
κ , 0DX +

A
c′⟩,

and this is true for every c′ ∈ C in the ultracore of TD. Therefore, rA(ω̃) = 0D
BA

κ . And
similarly for rB(ω̃).

Conversely, take an element f ∈ T ∗
cD with outline:

f 0D
BB

κ

0D
BA

κ κ

c 0Bm

0Am m
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We will show that f = ω̃, for some ω ∈ T ∗
c C.

By (2.89) we have:

⟨0D
BA

κ , d′⟩ = ⟨f, 0̂c +
TA

d′
A⟩,

for d′ in the core of the Left face of TD with outline in the (L-R) core double vector
bundle,

d′ X

0Am m

therefore, as before we can write d′ = 0DX +
A
c′, for c′ in the core of the (L-R) double

vector bundle, i.e., in the ultracore. Hence:

⟨κ, c′⟩ (2.79)= ⟨0D
BA

κ , 0DX +
A
c′⟩ = ⟨f, 0̂c +

TA
(0DX +

A
c′)

A
⟩ = ⟨f, 0̂c +

TA
(T (0DB )(X) +

TA
c′
A
)⟩.
(2.97)

Similarly for rB(f) = 0D
BB

κ , use (2.92). The outline of d′′ in (B-F) core double vector
bundle of TD:

d′′ Y

0Bm m

and we can write d′′ = 0DY +
B
c′′, where again, c′′ is an ultracore element (in the core of

(B-F) core double vector bundle). Therefore,

⟨κ, c′′⟩ (2.79)= ⟨0D
BB

κ , 0DY +
B
c′′⟩ = ⟨f, 0̂c +

TB
(0DY +

B
c′′)

B
⟩ = ⟨f, 0̂c +

TB
(T (0DA )(Y ) +

TB
c′′
B
)⟩.
(2.98)

By (2.97) and (2.98), we see that f vanishes on elements of type X , since no ultracore
elements appear in X . Therefore, for any ξ ∈ TcD:

⟨f, ξ⟩ = ⟨f,X +
D
W ⟩ = ⟨f,X ⟩+ ⟨f,W ⟩ = ⟨f,W ⟩.

Now define ω ∈ T ∗
c C by

ω(W ) := ⟨f, ξ⟩,

where ξ ∈ TcD, with ξ = X +
D
W . Now we need to check that ω̃ = f . For any ξ, with

ξ = X +
D
W , from the previous subsection, we extend ω as

⟨ω̃, ξ⟩ := ⟨ω,W ⟩,

so it follows directly that ω̃ = f .



CHAPTER 2. TRIPLE VECTOR BUNDLES 91

Again one needs to check that T ∗D satisfies parts (i), (ii), and (iii) of the definition
of a triple vector bundle. Part (i) follows routinely. To see part (iii), start with a
decomposition Ω : TD → TD. Then the inverse of the following map

Ω BD : TD BD → T ∗D,

is a decomposition of T ∗D. Finally, part (ii) follows as it did in the case of TD.

The three core double vector bundle of T ∗D in the usual order, and the ultracore vector
bundle:

(Back-Front) (Left-Right) (Up-Down) Ultracore

T ∗B B∗

B M

T ∗A A∗

A M

T ∗C C

C∗ M

T ∗M →M



Chapter 3

The warp-grid theorem

In this chapter, we formulate the main theorem of the thesis in the first section, and
prove it in the second section using the techniques developed in Chapter 2.

3.1 The warp-grid theorem

3.1.1 Grids in triple vector bundles

A grid in a double vector bundle constitutes two linear sections. In a triple vector
bundle the concept of grid requires what we call linear double sections. The following
definition was first stated in [27, p.360].

Definition 3.1.1. A down-up linear double section of E is a collection of sections

Z1,2 : E1,2 → E1,2,3, Z1 : E1 → E1,3, Z2 : E2 → E2,3, Z :M → E3,

which form a morphism of double vector bundles from the Down face to the Up face.

The core morphism of Z1,2 defines a vector bundle morphism from the core of the Down
face to the core of the Up face. We denote this by Z12 : E12 → E12,3. It is a linear
section over Z :M → E3.

In a similar fashion we define right-left and front-back linear double sections of E. We
thus arrive to the following Definition, stated in [27].

Definition 3.1.2. A grid on E is a set of three linear double sections, one in each
direction, as shown in (3.1).

92
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E1,2,3 E1,3

E2,3 E3

E1,2 E1

E2 M.

Y1,3

X2,3

Z1,2

Z1

X3

Y3

Z
Y1

X2

X

Y

Z2

(3.1)

Notation-wise, we write the linear double sections as:

(X2,3;X2, X3;X), (Y1,3;Y1, Y3;Y ), (Z1,2;Z1, Z2;Z).

By definition the linear double sections are double vector bundle morphisms, hence we
have the following equations.

For e2,3, e
′
2,3 projecting to the same e2 ∈ E2,

X2,3(e2,3—
E2

e′2,3) = X2,3(e2,3)—
1,2
X2,3(e

′
2,3). (3.2)

For e2,3, e
′
2,3 over e3 ∈ E3,

X2,3(e2,3—
E3

e′2,3) = X2,3(e2,3)—
1,3
X2,3(e

′
2,3). (3.3)

For e1,3, e
′
1,3 over e1 ∈ E1,

Y1,3(e1,3—
E1

e′1,3) = Y1,3(e1,3)—
1,2
Y1,3(e

′
1,3). (3.4)

For e1,3, e
′
1,3 over e3 ∈ E3,

Y1,3(e1,3—
E3

e′1,3) = Y1,3(e1,3)—
2,3
Y1,3(e

′
1,3). (3.5)

For e1,2, e
′
1,2 over e1 ∈ E1,

Z1,2(e1,2—
E1

e′1,2) = Z1,2(e1,2)—
1,3
Z1,2(e

′
1,2). (3.6)

For e1,2, e
′
1,2 over e2 ∈ E2,

Z1,2(e1,2—
E2

e′1,2) = Z1,2(e1,2)—
2,3
Z1,2(e

′
1,2). (3.7)
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Nontrivial grids on E

We now establish the existence of nontrivial grids on E.

A right-left linear double section (Y1,3;Y1, Y3;Y ) is a double vector bundle morphism
from the Right to the Left face of E. To define this map, we will use Proposition 1.1.2,
decompositions of E, and the corresponding result from the double case.

Start with Y a section of E2 →M . Then from the double case, using (1.8), define the
linear section (Y1, Y )

Y1 : E1 → E1,2

e1 7→ 01,2(Y (m), e1, φ1(e1)),

where φ1 : E1 → E12 is a vector bundle map over M , and 01,2 is a decomposition of
the Down face of E. Define the linear section (Y3, Y )

Y3 : E3 → E2,3

e3 7→ 02,3(Y (m), e3, φ3(e3)),

where φ3 : E3 → E23 is a vector bundle map over M , and 02,3 is a decomposition of
the Front face of E.

To define a linear double section (Y1,3;Y1, Y3;Y ) on E, from Proposition 1.1.2, we can
write:

Y1,3 : E1,3 → E

e1,3 7→ 0̃(Y1(e1), Y3(e3), e1,3, φ(w13) +
E2

λ(e1, e3)),

where 0̃ :W ×E123 → E is a decomposition of E. Initially, φ : E13 → E13,2 is a vector
bundle map over Y : M → E2, and λ : E1 ×M E3 → E13,2, a bilinear map. However,

since Y1,3 is a section of E
q1,3−−→ E1,3 it follows that φ : E13 → E123 is a vector bundle

map over M , and the bilinear map λ : E1 ×M E3 → E123. Hence,

Y1,3 : E1,3 → E

e1,3 7→ 0̃(Y1(e1), Y3(e3), e1,3, φ(w13) + λ(e1, e3)),

We have also chosen a Σ1,3 : E1 ×M E3 → E1,3, to write

w13 = (e1,3—
E1

Σ1,3(e1, e3))—
E3

0̃1,3e1 .
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For e1,3, f1,3 over e1 ∈ E1, denote by w′
13 = (f1,3—

E1

Σ1,3(e1, f3))—
E3

0̃1,3e1 .

Y1,3(e1,3) +
1,2
Y1,3(f1,3)

= 0̃(Y1(e1), Y3(e3), e1,3, φ(w13) + λ(e1, e3)) +
1,2

0̃(Y1(e1), Y3(f3), f1,3, φ(w
′
13) + λ(e1, f3))

= 0̃(Y1(e1), Y3(e3) +
E2

Y3(f3), e1,3 +
E1

f1,3, φ(w13) + φ(w′
13) + λ(e1, e3) + λ(e1, f3))

= 0̃(Y1(e1), Y3(e3 + f3), e1,3 +
E1

f1,3, φ(w13 + w′
13) + λ(e1, e3 + f3))

= Y1,3(e1,3 +
E1

f1,3),

That Y3(e3 + f3) = Y3(e3) +
E2

Y3(f3), follows directly from the linearity of Y3.

To see the core element in E13 of e1,3 +
E1

f1,3 with respect to Σ1,3,

(
(e1,3 +

E1

f1,3)—
E1

Σ1,3(e1, e3 + f3)

)
—
E3

0̃1,3e1

=

(
(e1,3 +

E1

f1,3)—
E1

(Σ1,3(e1, e3) +
E1

Σ(e1, f3))

)
—
E3

(0̃1,3e1 +
E1

0̃1,3e1 )

=

(
(e1,3—

E1

Σ1,3(e1, e3))—
E3

0̃1,3e1

)
+
E1

(
(f1,3—

E1

Σ1,3(e1, f3))—
E3

0̃1,3e1

)
= w13 +

E1

w′
13.

For more details on grids on E using this technique, see [27].

3.1.2 Reformulation of the warp-grid theorem

In this subsection we first describe the original formulation of the warp-grid theorem,
as stated in [27]. Introducing then a more succint notation, we work towards equation
(3.23), a prototype of the kind of equations we will use in the second subsection to
prove the warp-grid theorem.

Start with a grid on E as in (3.1), and focus on the Up face of the triple vector bundle.
Then (Y1,3, Y3) and (X2,3, X3) define a grid on the Up face. Denote its warp by wup;
this is a section of the core vector bundle of the Up face, wup : E3 → E12,3. Likewise,
(Y1, Y ) and (X2, X) define a grid on the Down face, and we denote its warp by wdown,
a section of the core vector bundle of the Down face, wdown :M → E12. It follows that
(wup,wdown) is a linear section of the (U-D) core double vector bundle, see Proposition
3.1.3. In addition, the core morphism Z12 of the linear double section Z1,2 defines
another linear section of the (U-D) core double vector bundle. Therefore, we have the
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following induced grid on E12,3:

E12,3 E12

E3 M.

Z12

wup wdown

Z

We call the warp of this grid the Up-Down ultrawarp and denote it by uUD. It is a
section of the ultracore E123.

Proposition 3.1.3. The sections wup and wdown as described earlier, form a linear
section of the (U-D) core double vector bundle.

Proof. That wup and wdown are sections of the corresponding vector bundle structures
follows immediately from the definition of the warp. To show that (wup,wdown) is a
vector bundle morphism, we first check commutativity of the diagram:

E12,3 E3

E12 M,

wup

q12 q3

wdown

where (q12, q
3) is the core morphism of the projection map (q1,2; q

1,3
1 , q2,32 ; q3) from the

Up to the Down face of E, as in (2.27).

Using (11), for e3 ∈ E3,

Y1,3(X3(e3))—
1,3
X2,3(Y3(e3)) = wup(e3) +

2,3
0̂X3(e3). (3.8)

Applying q1,2 to both hand sides of the previous equation, writing q3(e3) = m, we
obtain,

Y1(X(m))—
E1

X2(Y (m)) = q1,2(wup(e3)) +
E2

0̃1,2X(m), (3.9)

due to the following relations of the linear double sections,

q1,2 ◦ Y1,3 = Y1 ◦ q1,31 , q1,2 ◦X2,3 = X2 ◦ q2,32 , q1,31 ◦X3 = X ◦ q3, q2,32 ◦ Y3 = Y ◦ q3.

And (3.9) is precisely the equation that describes wdown(m). From uniqueness of core
elements, it follows that q1,2(wup(e3)) = wdown(m).
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To check fibrewise linearity, we need to show that for e3, f3 ∈ E3 over the same m ∈M :

wup(e3 + f3) = wup(e3) +
1,2

wup(f3).

Rewrite (3.8) as,(
Y1,3(X3(e3))—

1,3
X2,3(Y3(e3))

)
—
2,3

0̂X3(e3) = wup(e3) +
2,3

(
0̂X3(e3)—2,3

0̂X3(e3)

)
(2.54c)
= wup(e3) +

2,3
0̂e3 .

Since 0̂e3 plays the role of the double zero of the Up face over e3, it follows that
wup(e3) +

2,3
0̂e3 = wup(e3).

Hence, (3.8) can now be stated as:

wup(e3) =

(
Y1,3(X3(e3))—

1,3
X2,3(Y3(e3))

)
—
2,3

0̂X3(e3). (3.10)

Equation (3.10) for e3 + f3 ∈ E3, with e3, f3 over the same m ∈M :

wup(e3 + f3) =

(
Y1,3(X3(e3 + f3))—

1,3
X2,3(Y3(e3 + f3))

)
—
2,3

0̂X3(e3+f3). (3.11)

Using the linearity of the various linear sections involved:

1. First, what is 0̂X3(e3+f3)? Since (X3, X) is the following linear section of the Right
face

E1,3 E3

E1 M,

X3

X

and we have X3(e3 + f3) = X3(e3) +
E1

X3(f3), by (2.10), we have that

0̂X3(e3+f3) = 0̂X3(e3) +
E1

X3(f3) = 0̂X3(e3) +
1,2

0̂X3(f3).

2. Secondly, since both X3(e3), and X3(f3) ∈ E1,3 are over the same X(m) ∈ E1,
and (Y1,3, Y1) is a linear section of the Back face:

E E1,3

E1,2 E1,

Y1,3

Y1
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it follows that

Y1,3(X3(e3 + f3)) = Y1,3(X3(e3) +
E1

X3(f3)) = Y1,3(X3(e3)) +
1,2
Y1,3(X3(f3)).

3. Similarly, since Y3(e3), and Y3(f3) ∈ E2,3 are over the same Y (m) ∈ E2, it follows
that

X2,3(Y3(e3 + f3)) = X2,3(Y3(e3) +
E2

Y3(f3)) = X2,3(Y3(e3)) +
1,2
X2,3(Y3(f3)),

where we’ve used that (X2,3, X2) is a linear section of the Left face:

E2,3 E3

E2 M,

Y3

Y

E E2,3

E1,2 E2,

X2,3

X2

So now we can rewrite (3.11) as follows:

wup(e3 + f3)

=

(
Y1,3(X3(e3 + f3))—

1,3
X2,3(Y3(e3 + f3))

)
—
2,3

0̂X3(e3+f3)

=

([
Y1,3(X3(e3)) +

1,2
Y1,3(X3(f3))

]
—
1,3

[
X2,3(Y3(e3)) +

1,2
X2,3(Y3(f3))

])
—
2,3

[
0̂X3(e3) +

1,2
0̂X3(f3)

]
=

([
Y1,3(X3(e3))—

1,3
X2,3(Y3(e3))

]
+
1,2

[
Y1,3(X3(f3))—

1,3
X2,3(Y3(f3))

])
—
2,3

[
0̂X3(e3) +

1,2
0̂X3(f3)

]
=

([
Y1,3(X3(e3))—

1,3
X2,3(Y3(e3))

]
—
2,3

0̂X3(e3)

)
+
1,2

([
Y1,3(X3(f3))—

1,3
X2,3(Y3(f3))

]
—
2,3

0̂X3(f3)

)
= wup(e3) +

1,2
wup(f3),

and this completes the proof.

Of course we can build corresponding grids on the other two core double vector bundles.
Therefore, a grid on E induces the following three ultrawarps,

E23,1 E23

E1 M,

X23

wback wfront

X

E13,2 E13

E2 M,

Y13

wleft wright

Y

E12,3 E12

E3 M.

Z12

wup wdown

Z

(3.12)
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Using the notation as in (12),

wback ◦X −X23 ◦ wfront ◃ uBF,

wleft ◦Y − Y13 ◦ wright ◃ uLR, (3.13)

wup ◦Z − Z12 ◦ wdown ◃ uUD .

Note that the orientation we take in (3.13) is opposite to the one we take in (12). We
explain this in Remark 3.1.5.

We can now state the main theorem about grids in triple vector bundles.

Theorem 3.1.4 (Warp-Grid Theorem). Given a triple vector bundle E and a grid in
E as in (3.1),

uBF+uLR+uUD = 0. (3.14)

To give an intrinsic proof, we need to describe the ultrawarps in an alternative way.
Focus on the ultrawarp uUD. From the grid on the (U-D) core double vector bundle,
for m ∈M , by (11) we have that

(wup ◦Z)(m)—
2,3

(Z12 ◦ wdown)(m) = 0̂Z(m) +
1,2

uUD(m). (3.15)

How can we express (wup ◦Z)(m) and (Z12 ◦wdown)(m) in a more useful way? We have
already written (3.8) for wup, for any e3 ∈ E3,

Y1,3(X3(e3))—
1,3
X2,3(Y3(e3)) = 0̂X3(e3) +

2,3
wup(e3). (3.16)

Putting e3 = Z(m), we have

Y1,3(X3(Z(m)))—
1,3
X2,3(Y3(Z(m))) = 0̂X3(Z(m)) +

2,3
wup(Z(m)). (3.17)

We introduce a more succint notation, for use in calculations.

ZYX = Z1,2(Y1(X(m))), YZX = Y1,3(Z1(X(m))), XZY = X2,3(Z2(Y (m))),

ZXY = Z1,2(X2(Y (m))), YXZ = Y1,3(X3(Z(m))), XYZ = X2,3(Y3(Z(m))).
(3.18)

Now (3.17) becomes
YXZ—

1,3
XYZ = 0̂e′1,3 +

2,3
λ3, (3.19)

where e′1,3 = X3(Z(m)) and λ3 = wup(Z(m)).

In the proof of Proposition 3.1.3, we rewrote (3.16) as equation (3.10). In a similar
fashion, we rewrite (3.19) as

λ3 = (YXZ—
1,3

XYZ)—
2,3

0̂e′1,3 . (3.20)

About (Z1,2 ◦ wdown)(m), first write wdown(m) out using (11) as

Y1(X(m))—
E1

X2(Y (m)) = 0̃1,2X(m) +
E2

wdown(m).
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Apply Z1,2 to this, and using (3.6) and (3.7), it follows that

Z1,2(Y1(X(m)))—
1,3
Z1,2(X2(Y (m))) = 0̂Z1(X(m)) +

2,3
Z12(wdown(m))

Again, for reasons of economy of space, rewrite this as

ZYX—
1,3

ZXY = 0̂e1,3 +
2,3
k3,

where e1,3 = Z1(X(m)) and k3 = Z12(wdown(m)). Alternatively, as we did for λ3,

k3 = (ZYX—
1,3

ZXY)—
2,3

0̂e1,3 . (3.21)

Let us go back to (3.15). We can rewrite this as

λ3—
2,3
k3 = 0̂e3 +

1,2
uUD(m),

and using (3.20) and (3.21), we have that(
(YXZ—

1,3
XYZ)—

2,3
0̂e′1,3

)
—
2,3

(
(ZYX—

1,3
ZXY)—

2,3
0̂e1,3

)
= 0̂e3 +

1,2
uUD(m) (3.22)

or, more elegantly, using interchange laws,

(YXZ—
1,3

XYZ)—
2,3

(ZYX—
1,3

ZXY) = (0̂e′1,3 +
2,3
λ3)—

2,3
(0̂e1,3 +

2,3
k3)

= (0̂e′1,3 —2,3
0̂e1,3) +

2,3
(λ3—

2,3
k3) = (0̂e′1,3 —2,3

0̂e1,3) +
2,3
(0̂e3 +

1,2
uUD(m)). (3.23)

In calculations it is generally preferable to use equations of the form (3.19), and to
avoid equations of the form (3.20).

Therefore, in order to describe ultrawarps such as uUD(m), we will use equations of the
form (3.23) and we will often use the abbreviated notation

(YXZ− XYZ)− (ZYX− ZXY) ◃ uUD(m),

as introduced in (12).

It is worth emphasizing that the above arguments rely on the fact that core and ultra-
core elements are uniquely determined by equations such as (11).

There are similar abbreviated equations for the other two ultrawarps. Altogether we
have

(ZYX− YZX)− (XZY − XYZ) ◃ uBF(m), (3.24a)

(XZY − ZXY)− (YXZ− YZX) ◃ uLR(m), (3.24b)

(YXZ− XYZ)− (ZYX− ZXY) ◃ uUD(m), (3.24c)
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and from now on we will use a further shortening of the notation

uBF(m) = u1, uLR(m) = u2, uUD(m) = u3.

The main difficulty in proving (3.14) is that we cannot simply add and subtract the
expressions in (3.24), since the operations are over different vector bundle structures.
The apparatus of the next section overcomes this difficulty.

Remark 3.1.5. A further problem arises from the fact that the warp of a grid in a
double vector bundle is only defined up to sign. We now need to consider how to choose
these signs consistently for a grid in a triple vector bundle. This is a question of fixing
the orientations of the grids.

First, observe that the orientations of the grids on the upper faces determine the ori-
entations of the grids on the corresponding lower faces. For example, asssume that the
orientation of a grid on the Up face is as in (3.16). The triple outlines of the elements
Y1,3(X3(e3)) and X2,3(Y3(e3)) are the following

Y1,3(X3(e3)) X3(e3)

Y3(e3) e3

Y1(X(m)) X(m)

Y (m) m,

X2,3(Y3(e3)) X3(e3)

Y3(e3) e3

X2(Y (m)) X(m)

Y (m) m,

(at this point we forget that we have three linear double sections on E, we are only
interested on the grids on the Up and on the Down faces). Then we see that

Y1,3(X3(e3))—
1,3
X2,3(Y3(e3))

projects to

Y1(X(m))—
E3

X2(Y (m)) ∈ E1,2.

For this reason, we orient the corresponding lower faces so that the positive term in
the warp defines the inward normal. We choose to orient each upper face so that the
positive term in the formula for the warp defines the outward normal by the right-hand
rule. In total, given a grid on E as in (3.1), the orientation of the grid on each face is
the following:

• Back face: Z1,2 ◦ Y1 − Y1,3 ◦ Z1, Front face: Z2 ◦ Y − Y3 ◦ Z,

• Left face: X2,3 ◦ Z2 − Z1,2 ◦X2, Right face: X3 ◦ Z − Z1 ◦X,

• Up face: Y1,3 ◦X3 −X2,3 ◦ Y3, Down face: Y1 ◦X −X2 ◦ Y .



102

Thus we see that the orientation of the grid on the Up face determines the signs in the
first subtraction in (3.24c), and the orientation of the Down face determines the signs
in the second subtraction.

The “middle subtractions” in (3.24), that is, the orientations of the core double vector
bundles, is an independent choice, equivalent to the choice of signs in (3.13). What
matters here is consistency: if we took all three ultrawarps with the opposite signs,
that would be fine.

We further explain the orientation of a grid and the meaning of the theorem at the end
of this Chapter, see Remark 3.2.1. △

3.2 Proof of the theorem

3.2.1 Notation

In this section we prove Theorem 3.1.4. We will use the notation of (3.18). We further
simplify the notation for elements of the lower faces and edges, as follows

X(m) := e1, Y (m) := e2, Z(m) := e3,

Z1(X(m)) := e1,3, X3(Z(m)) := e′1,3, Z2(Y (m)) := e2,3,

Y3(Z(m)) := e′2,3, Y1(X(m)) := e1,2, X2(Y (m)) := e′1,2.

The outlines of the elements in (3.18) are now written as follows

ZYX e1,3

e2,3 e3

e1,2 e1

e2 m,

YZX e1,3

e′2,3 e3

e1,2 e1

e2 m,

XZY e′1,3

e2,3 e3

e′1,2 e1

e2 m,

ZXY e1,3

e2,3 e3

e′1,2 e1

e2 m,

YXZ e′1,3

e′2,3 e3

e1,2 e1

e2 m,

XYZ e′1,3

e′2,3 e3

e′1,2 e1

e2 m.

We will need the following relations for the core elements of the lower faces in detailed
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form.

e2,3—
E2

e′2,3 = 0̃2,3e2 +
E3

w23, e2,3—
E3

e′2,3 = 0̃2,3e3 +
E2

w23, (3.25)

e′1,3—
E1

e1,3 = 0̃1,3e1 +
E3

w13, e′1,3—
E3

e1,3 = 0̃1,3e3 +
E1

w13, (3.26)

e1,2—
E1

e′1,2 = 0̃1,2e1 +
E2

w12, e1,2—
E2

e′1,2 = 0̃1,2e2 +
E1

w12, (3.27)

where w23 ∈ E23, w13 ∈ E13 and w12 ∈ E12.

For the zeros of these w elements, the diagrams are

0̂w23 ⊙1,3
m

w23 0E3
m

⊙1,2
m 0E1

m

0E2
m m,

0̂w13 w13

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m,

0̂w12 ⊙1,3
m

⊙2,3
m 0E3

m

w12 0E1
m

0E2
m m.

3.2.2 Core and ultracore elements arising from the grid

We collect here for reference the definitions and outlines of the core and ultracore
elements arising from the grid.

• λ1, k1 and u1. The elements ZYX and YZX have the same Right and Back faces,
and so their differences define an element λ1 ∈ E23,1 with outline

λ1 0̃1,3e1

w23 0E3
m

0̃1,2e1 e1

0E2
m m.

Using (2.35) the defining equations are

ZYX—
1,2

YZX = 0̂e1,2 +
1,3
λ1, ZYX—

1,3
YZX = 0̂e1,3 +

1,2
λ1. (3.28)
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If we look at XZY and XYZ, we see that they also have two faces in common, and their
differences define a k1 ∈ E23,1, with outline

k1 0̃1,3e1

w23 0E3
m

0̃1,2e1 e1

0E2
m m.

The two differences are, again using (2.35),

XZY—
1,2

XYZ = 0̂e′1,2 +
1,3
k1, XZY—

1,3
XYZ = 0̂e′1,3 +

1,2
k1. (3.29)

We see that λ1 and k1 have the same outlines so they differ by an ultracore element
u1 ∈ E123. By Subsection (2.3.2), “Special case: when e and e′ are in a core double
vector bundle”, we have that:

λ1—
1,3
k1 = 0̂e1 +

2,3
u1, (3.30a)

λ1—
1,2
k1 = 0̂e1 +

2,3
u1, (3.30b)

λ1—
2,3
k1 = 0̂w23 +

1,3
u1 = 0̂w23 +

1,2
u1. (3.30c)

There are four ways of describing the ultrawarp u1. The full calculations are presented
in detail in Appendix A.1.3.

(ZYX—
1,2

YZX)—
1,3

(XZY—
1,2

XYZ) = 0̂e1 +
2,3
(0̂w12 +

1,3/2,3
u1), (3.31a)

(ZYX—
1,2

YZX)—
2,3

(XZY—
1,2

XYZ) = (0̂w12 +
1,3

0̂w23) +
1,3
(0̂e2 +

1,3
u1), (3.31b)

(ZYX—
1,3

YZX)—
1,2

(XZY—
1,3

XYZ) = 0̂e1 +
2,3
(0̂−w13 +

1,2/2,3
u1), (3.31c)

(ZYX—
1,3

YZX)—
2,3

(XZY—
1,3

XYZ) = (0̂−w13 +
1,2

0̂w23) +
1,2
(0̂e3 +

1,2
u1). (3.31d)

• λ2, k2 and u2. The same procedure can be applied to XZY and ZXY; they have the
same Front and Down faces, so their differences will define an element λ2 ∈ E13,2

λ2 w13

0̃2,3e2 0E3
m

0̃1,2e2 0E1
m

e2 m.
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The corresponding equations, using (2.39), are

XZY—
1,2

ZXY = 0̂e′1,2 +
2,3
λ2, XZY—

2,3
ZXY = 0̂e2,3 +

1,2
λ2. (3.32)

If we look at YXZ and YZX, their differences define a k2 ∈ E13,2, with outline

k2 w13

0̃2,3e2 0E3
m

0̃1,2e2 0E1
m

e2 m,

and the differences defined are, due to (2.39),

YXZ—
1,2

YZX = 0̂e1,2 +
2,3
k2, YXZ—

2,3
YZX = 0̂e′2,3 +

1,2
k2. (3.33)

Since λ2 and k2 have the same outlines, they differ by an ultracore element u2 ∈ E123,

λ2—
1,3
k2 = 0̂w13 +

1,2/2,3
u2, (3.34a)

λ2—
1,2
k2 = 0̂e2 +

1,3
u2, (3.34b)

λ2—
2,3
k2 = 0̂e2 +

1,3
u2. (3.34c)

Again there are four ways of describing the ultrawarp u2, and relevant calculations are
in Appendix A.1.4.

(XZY—
1,2

ZXY)—
2,3

(YXZ—
1,2

YZX) = 0̂e2 +
1,3
(0̂−w12 +

1,3/2,3
u2), (3.35a)

(XZY—
1,2

ZXY)—
1,3

(YXZ—
1,2

YZX) = (0̂w13 +
2,3

0̂−w12) +
2,3
(0̂e1 +

2,3
u2), (3.35b)

(XZY—
2,3

ZXY)—
1,2

(YXZ—
2,3

YZX) = 0̂e2 +
1,3
(0̂w23 +

1,2/1,3
u2), (3.35c)

(XZY—
2,3

ZXY)—
1,3

(YXZ—
2,3

YZX) = (0̂w23 +
1,2

0̂w13) +
1,2
(0̂e3 +

1,2
u2). (3.35d)

• λ3, k3 and u3. Likewise YXZ and XYZ define λ3 ∈ E12,3 with outline

λ3 0̃1,3e3

0̃2,3e3 e3

w12 0E1
m

0E2
m m.
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The corresponding relations are, due to (2.43),

YXZ—
1,3

XYZ = 0̂e′1,3 +
2,3
λ3, YXZ—

2,3
XYZ = 0̂e′2,3 +

1,3
λ3. (3.36)

Likewise ZYX and ZXY define a k3 ∈ E12,3 with outline

k3 0̃1,3e3

0̃2,3e3 e3

w12 0E1
m

0E2
m m.

The differences defined are, due to (2.43),

ZYX—
1,3

ZXY = 0̂e1,3 +
2,3
k3, ZYX—

2,3
ZXY = 0̂e2,3 +

1,3
k3. (3.37)

The ultracore element u3 ∈ E123 defined by λ3 and k3 satisfies

λ3—
1,3
k3 = 0̂e3 +

1,2
u3, (3.38a)

λ3—
1,2
k3 = 0̂w12 +

1,3/2,3
u3, (3.38b)

λ3—
2,3
k3 = 0̂e3 +

1,2
u3. (3.38c)

The four relations in this case are the following, where the details can be found in
Appendix A.1.5.

(YXZ—
1,3

XYZ)—
2,3

(ZYX—
1,3

ZXY) = 0̂e3 +
1,2
(0̂w13 +

1,2/2,3
u3), (3.39a)

(YXZ—
1,3

XYZ)—
1,2

(ZYX—
1,3

ZXY) = (0̂w13 +
2,3

0̂w12) +
2,3
(0̂e1 +

2,3
u3), (3.39b)

(YXZ—
2,3

XYZ)—
1,3

(ZYX—
2,3

ZXY) = 0̂e3 +
1,2
(0̂−w23 +

1,2/1,3
u3), (3.39c)

(YXZ—
2,3

XYZ)—
1,2

(ZYX—
2,3

ZXY) = (0̂−w23 +
1,3

0̂w12) +
1,3
(0̂e2 +

1,3
u3). (3.39d)

3.2.3 Proof of the warp-grid theorem

We will show that u1 + u2 + u3 = ⊙3
m by showing that u1 = −u2 − u3. There are five

steps.

Step 1. Rewrite (3.31b)

(ZYX—
1,2

YZX)—
2,3

(XZY—
1,2

XYZ)
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as
(ZYX—

2,3
XZY)—

1,2
(YZX—

2,3
XYZ),

using a variation of the double vector bundle interchange law in the Left face, as in
(2.8). We know from (3.31b) that the ultracore element defined by the first expression
is u1, therefore, the ultracore element of the latter expression will also be u1. We will
show that the second expression has −u2 − u3 as its ultracore element, and this will
show that u1 = −u2 − u3.

Step 2. First, using (2.49), write ZYX—
2,3

XZY as

ZYX—
2,3

XZY = (ZYX—
2,3

ZXY)—
2,3

(XZY—
2,3

ZXY),

where we have from (3.37) and from (3.32),

ZYX—
2,3

ZXY = 0̂e2,3 +
1,3
k3, XZY—

2,3
ZXY = 0̂e2,3 +

1,2
λ2. (3.40)

Step 3. Similarly, write YZX—
2,3

XYZ as

YZX—
2,3

XYZ = (YXZ—
2,3

XYZ)—
2,3

(YXZ—
2,3

YZX),

and we have

YXZ—
2,3

XYZ = 0̂e′2,3 +
1,3
λ3, YXZ—

2,3
YZX = 0̂e′2,3 +

1,2
k2. (3.41)

Step 4. Since our convention is that λ3 − k3 defines u3, it follows that k3 − λ3 defines
−u3. These conventions need to be revered. Indeed,

k3—
1,2
λ3 = (−1) ·

1,2
(λ3—

1,2
k3)

(3.38b)
= (−1) ·

1,2
(0̂w12 +

1,3
u3) = (−1) ·

1,2
0̂w12 +

1,3
(−1) ·

1,2
u3.

Note that u3 ∈ E123, and the three multiplications ·
1,2
, ·

1,3
, and ·

2,3
coincide in the

ultracore of E. And note that (−1) ·
1,2

0̂w12 = 0̂w12 . Therefore, rewrite the previous

equation as:
k3—

1,2
λ3 = 0̂w12 —

1,3
u3. (3.42)

Step 5. We are finally able to complete the proof of Theorem 3.1.4. First, using
operations in E → E2,3, we have

(ZYX—
2,3

XZY)—
1,2

(YZX—
2,3

XYZ) =

[(ZYX—
2,3

ZXY)—
2,3

(XZY—
2,3

ZXY)]—
1,2

[(YXZ—
2,3

XYZ)—
2,3

(YXZ—
2,3

YZX)].
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Now, using (3.40) and (3.41), this is equal to

[(0̂e2,3 +
1,3
k3)—

2,3
(0̂e2,3 +

1,2
λ2)]—

1,2
[(0̂e′2,3 +

1,3
λ3)—

2,3
(0̂e′2,3 +

1,2
k2)].

Applying the interchange law in the Left face to the outer operations, this becomes

[(0̂e2,3 +
1,3
k3)—

1,2
(0̂e′2,3 +

1,3
λ3)]—

2,3
[(0̂e2,3 +

1,2
λ2)—

1,2
(0̂e′2,3 +

1,2
k2)].

Applying the interchange law in the Back face, in each [ ], we have

[(0̂e2,3 —
1,2

0̂e′2,3) +1,3
(k3—

1,2
λ3)]—

2,3
[(0̂e2,3 —

1,2
0̂e′2,3) +1,2

(λ2—
1,2
k2)].

Now apply (2.36) to the first term in each [ ]. Then use (3.42) and (3.34b) This gives

[(0̂w23 +
1,3

0̂e2) +
1,3

(0̂w12 —
1,3
u3)]—

2,3
[(0̂w23 +

1,3
0̂e2) +

1,2
(0̂e2 +

1,3
u2)].

Now apply the interchange law in the Back face to the second [ ] :

[0̂w23 +
1,3
(0̂e2 +

1,3
0̂w12 —

1,3
u3)]—

2,3
[(0̂w23 +

1,2
u2) +

1,3
(0̂e2 +

1,2
0̂e2)].

Focus on the second [ ]. Using (2.33) in its first ( ), and (2.21b) in its second ( ), this
in turn is equal to

[0̂w23 +
1,3
(0̂e2 +

1,3
0̂w12 —

1,3
u3)]—

2,3
[(0̂w23 +

1,3
u2) +

1,3
0̂e2 ].

Rewrite this as :

[0̂w23 +
1,3
(0̂e2 +

1,3
0̂w12 —

1,3
u3)]—

2,3
[0̂w23 +

1,3
(0̂e2 +

1,3
u2)];

note that the second [ ] is in an ordinary vector bundle. Now use the interchange law
in the Up face :

[0̂w23 —
2,3

0̂w23 ] +
1,3
[(0̂e2 +

1,3
0̂w12 —

1,3
u3)—

2,3
(0̂e2 +

1,3
u2)].

and this is equal to

0̂w23 +
1,3
[0̂e2 —

2,3
0̂e2 ] +

1,3
[(0̂w12 —

1,3
u3)—

2,3
u2],

using the facts that the zeros 0̂w23 in the first [ ] are zeros over E2,3, and then the
interchange law in the Up face. Likewise, using the fact that the zeros 0̂e2 are zeros
over E2,3, this is equal to

0̂w23 +
1,3

0̂e2 +
1,3
[(0̂w12 —

2,3
u3)—

2,3
u2].
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Finally, using an equation of the form (2.33), this becomes

0̂w23 +
1,3

0̂e2 +
1,3
[0̂w12 —

2,3
(u3 +

2,3
u2)] = 0̂w23 +

1,3
0̂e2 +

1,3
0̂w12 —

1,3
(u3 +

1,3
u2),

from which we obtain −(u3 + u2) as the ultracore element.

Comparing this with (3.31b),

(ZYX—
1,2

YZX)—
2,3

(XZY—
1,2

XYZ) = (0̂w12 +
1,3

0̂w23) +
1,3
(0̂e2 +

1,3
u1),

we have u1 = −(u3 + u2) as desired.

This completes the proof of the warp-grid theorem.

Remark 3.2.1. The strategy of this proof deserves some commentary.

What should the warp of a grid on a triple vector bundle be? Or, in other words, why
are we interested in the ultrawarps of a grid of a triple vector bundle?

The warp of a grid in the double case is a section of the core vector bundle, and measures
the non-commutativity of the two routes defined by the grid.

So far, we have seen that all operations on a triple vector bundle are iterations of
operations defined in double vector bundles. The ultracore, for example, is the core of
the core double vector bundles.

For these reasons, we would want the warp of a grid in the triple case to be a section of
the ultracore vector bundle, and to measure the non-commutativity of routes defined
by the grid.

Pick an upper face of E, for example the Up face. If we compare the two routes
defined by the grid in this face, then we obtain an element of the (U-D) core double
vector bundle, which we denoted by λ3. Similarly for the other upper faces, the non-
commutativity of the corresponding routes defines λ1 and λ2. The three λ’s are elements
of different spaces; therefore, if we tried to compare them, or indeed perform any sort of
operation with them (such as adding them or subtracting them), we would see that such
an operation could be algebraically possible but would not be geometrically meaningful.

The same applies for the three ki defined by the comparison of the routes for the lower
faces.

The λi’s and the corresponding ki’s however, are elements of the same spaces, there-
fore, comparing them is a possibility, and indeed the only sensible operation. And by
comparing them, we measure the non-commutativity of four routes, instead of two.

This can be done for the three pairs of λi and ki, and so we obtain the three ultrawarps.

So what does the warp-grid theorem tell us?

Each ultrawarp measures the non-commutativity of four routes. In total, a grid on a
triple vector bundle provides six different routes from M to E. The sum of the three
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ultrawarps takes into account each route twice, once with a positive and once with
a negative sign, and this is the reason we orient the core double vector bundles the
way we do. The warp-grid theorem tells us that these add up to zero, a result that
seems reasonable. The different vector bundle structures over which the operations
take place however, are the main obstacle here — as soon as one realizes that simple
operations like addition and subtraction in the triple vector bundle setting are no longer
simple. △

3.2.4 Promised calculation

In the end of Section 2.3.4 we mentioned that the λi’s and the ki’s described in that
section are in fact related. Applying the method described in Step 5 of the previous
Section, we proceed with investigating the aforementioned relation.

First, recall the outlines of the λi’s and the ki’s.

E12,3 ∋ λ1 w12 ∈ E12

e3 m,

E13,2 ∋ λ2 w13 ∈ E13

e2 m,

E13,2 ∋ k1 w13 ∈ E13

e2 m,

E12,3 ∋ k2 w12 ∈ E12

e3 m.

Since k1 and λ2 have the same outlines, they will differ by a unique ultracore element,
call it ϖ1 ∈ E123. Similarly, k2 and λ1 will differ by a unique ultracore element, denote
it by ϖ2 ∈ E123. Is there a relation between ϖ1 and ϖ2? The equations for k1−λ2◃ϖ1,

k1—
1,3
λ2 = 0̂w13 +

1,2/2,3
ϖ1, (3.43a)

k1—
1,2
λ2 = 0̂e2 +

1,3
ϖ1, (3.43b)

k1—
2,3
λ2 = 0̂e2 +

1,3
ϖ1. (3.43c)

and for k2 − λ1◃ϖ2,

k2—
1,3
λ1 = 0̂e3 +

1,2
ϖ2, (3.44a)

k2—
1,2
λ1 = 0̂w12 +

1,3/2,3
ϖ2, (3.44b)

k2—
2,3
λ1 = 0̂e3 +

1,2
ϖ2. (3.44c)
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As in the double case d—
A
d = 0Da , in the triple case, e—

2,3
e = 0̂e2,3 , or in this case,

(e—
2,3
f)—

2,3
(e—

2,3
f) = (2.48)—

2,3
(2.49) = 0̂e2,3 . (3.45)

Start with the left hand side:

(2.48)—
2,3

(2.49) =

[
(k1 +

1,2
0̂e2,3) +

2,3
(k2 +

1,3
0̂e2,3)

]
—
2,3

[
(λ1 +

1,3
0̂e2,3) +

2,3
(λ2 +

1,2
0̂e2,3)

]
=

[
(k1 +

1,2
0̂e2,3)—

2,3
(λ2 +

1,2
0̂e2,3)

]
+
2,3

[
(k2 +

1,3
0̂e2,3)—

2,3
(λ1 +

1,3
0̂e2,3)

]
=

[
(k1—

2,3
λ2) +

1,2
(0̂e2,3 —

2,3
0̂e2,3)

]
+
2,3

[
(k2—

2,3
λ1) +

1,3
(0̂e2,3 —

2,3
0̂e2,3)

]
(3.43c),(3.44c)

=

[
(0̂e2 +

1,3
ϖ1) +

1,2
0̂e2,3

]
+
2,3

[
(0̂e3 +

1,2
ϖ2) +

1,3
0̂e2,3

]
. (3.46)

Now rewrite the first bracket of (3.46),

(0̂e2 +
1,3
ϖ1) +

1,2
0̂e2,3 = (0̂e2 +

1,3
ϖ1) +

1,2
(0̂e2,3 +

1,3
0̂e3) = (0̂e2 +

1,2
0̂e2,3) +

1,3
(ϖ1 +

1,2
0̂e3) = 0̂e2,3 +

1,3
(ϖ1 +

1,2
0̂e3).

Returning to (3.46):

(2.48)—
2,3

(2.49) =

[
(ϖ1 +

1,2
0̂e3) +

1,3
0̂e2,3

]
+
2,3

[
(0̂e3 +

1,2
ϖ2) +

1,3
0̂e2,3

]
=

[
(ϖ1 +

1,2
0̂e3) +

2,3
(0̂e3 +

1,2
ϖ2)

]
+
1,3

[
0̂e2,3 +

2,3
0̂e2,3

]
=

[
(ϖ1 +

2,3
ϖ2) +

1,2
(0̂e3 +

2,3
0̂e3)

]
+
1,3

0̂e2,3

=

[
(ϖ1 +

2,3
ϖ2) +

1,2
0̂e3

]
+
1,3

0̂e2,3 . (3.47)

By (3.45),
(2.48)—

2,3
(2.49) = 0̂e2,3 = 0̂e2,3 +

1,3
0̂e3 ,

therefore, comparing (3.45) and (3.47), it follows that

ϖ1 +
2,3
ϖ2 = ⊙3

m,

and this applies over any structure, hence, ϖ1 = −ϖ2.



Chapter 4

Warps, bolts and grids; Examples

We begin this chapter with an example of a grid and its warp on the cotangent double
vector bundle T ∗A. We proceed with further investigating properties of the warp and
of the ultrawarp. We then develop bolt sections, and introduce double bolt sections,
and give a class of examples of grids on E using them. We continue with examples of
grids on T 2A and on T 3M . Finally, we give an alternative formula for the warp of a
grid on D using the duality of D in Section 4.7.

4.1 The reversal isomorphism R : T ∗A∗ → T ∗A

Recall the cotangent double vector bundle T ∗A, described in Section 2.4.5:

T ∗A A∗

A M.

r

cA q∗

q

To build a grid on T ∗A we need to use the reversal isomorphism R : T ∗(A∗) → T ∗A,
a double vector bundle isomorphism introduced by Mackenzie and Xu in [28]. This
map is a canonical diffeomorphism, which reverses the standard symplectic structures;
see [28] and references given there. In (2.86) we have defined the unfamiliar projection
r : T ∗A → A∗ using duality theory. Alternatively, one can use R−1 to transport the
vector bundle structure of T ∗(A∗) → A∗ to T ∗A→ A∗.

We need the following result concerning R from [28], or see [25, 9.5.1].

Proposition 4.1.1. For all ξ ∈ TA, X ∈ T (A∗), F ∈ T ∗(A∗) such that ξ and X
have the same projection into TM, X and F have the same projection into A∗, and F
and ξ have the same projection into A,

⟨⟨X , ξ⟩⟩ = ⟨R(F), ξ⟩A + ⟨F,X ⟩A∗ . (4.1)

112
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To keep track of the various calculations, we present the outlines of the four elements
involved in (4.1):

TA ∋ ξ v0 ∈ TM

A ∋ a0 m,

TA∗ ∋ X v0 ∈ TM

A∗ ∋ φ0 m,

T ∗A ∋ R(F) φ0 ∈ A∗

A ∋ a0 m,

T ∗A∗ ∋ F a0 ∈ A

A∗ ∋ φ0 m.

In fact, R as a double vector bundle isomorphism preserves the side bundles A and A∗,
and induces the − id : T ∗M → T ∗M on the cores (see Appendix A.2.2 for proof). For
a description of R in local coordinates, see [3] and [37, Theorem 7.1].

The two pairings on the right hand side of (4.1) are usual pairings between a vector
bundle and its dual. Specifically, for ⟨R(F), ξ⟩A we have the usual pairing between
TA→ A and T ∗A→ A, and for ⟨F,X ⟩A∗ we have the usual pairing between TA∗ → A∗

and T ∗A∗ → A∗.

The pairing ⟨⟨X , ξ⟩⟩ on the left hand side of (4.1) is described in detail in [25, p.117-
18]. Briefly, given a vector bundle A→M , the canonical pairing between A→M and
A∗ →M :

⟨·, ·, ⟩ : A∗ ×
M
A→ R, (αm, am) 7→ ⟨αm, am⟩ = αm(am).

induces a pairing between TA and TA∗ as vector bundles over TM , called the tan-
gent (prolongation) pairing as follows. Take X ∈ TA∗ and ξ ∈ TA with T (q)(ξ) =
T (q∗)(X ), and write

X =
d

dt
φ(t)

∣∣∣
t=0

∈ TA∗, ξ =
d

dt
a(t)

∣∣∣
t=0

∈ TA,

where φ(t) is a curve in A∗, a(t) is a curve in A, with q∗(φ(t)) = q(a(t)) = m(t) ∈ M ,
a curve in M for t near zero. Define the tangent pairing ⟨⟨ , ⟩⟩ by:

⟨⟨X , ξ⟩⟩TM =
d

dt
⟨φ(t), a(t)⟩

∣∣∣
t=0

. (4.2)

Equation (4.2) defines a non-degenerate pairing; one needs to check non-degeneracy, it
does not follow automatically.

Example 4.1.2. Now we can build a grid on T ∗A. Take µ ∈ ΓA and φ ∈ ΓA∗. These
define two linear sections as follows.

First, take the 1-form dℓφ ∈ Ω1(A) defined by the linear map ℓφ : A→ R,

ℓφ : A → R,
Am ∋ am 7→ ⟨φ(m), am⟩.
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Then dℓφ is a section of T ∗A→ A. To see that (dℓφ, φ) is a linear section,

A T ∗A

M A∗

dℓφ

q r

φ

first, we check that for a ∈ Am, r(dℓφ(a)) = φ(m).

By (2.86), the definition of the r map, for any a′ ∈ Am:

⟨r(dℓφ(a)), a′⟩ = ⟨dℓφ(a), 0TAa +
TM

ā′⟩ = (0TAa +
TM

ā′)(ℓφ).

By (1.12) we have that 0TAa = d
dta
∣∣∣
t=0

, and by (1.9) ā′ = d
dt ta

′
∣∣∣
t=0

, therefore we can

write

⟨r(dℓφ(a)), a′⟩ =
d

dt
ℓφ(a+ ta′)

∣∣∣
t=0

=
d

dt
(ℓφ(a) + ℓφ(ta

′))
∣∣∣
t=0

=
d

dt
tℓφ(a

′)
∣∣∣
t=0

= ℓφ(a
′) = ⟨φ(m), a′⟩.

This is true for any a′ ∈ Am, therefore, r(dℓφ(a)) = φ(m).

Note that ℓφ(a
′) ∈ R, so d

dt tℓφ(a
′)
∣∣∣
t=0

= ℓφ(a
′) and not ℓφ(a′). Similarly, ℓφ(a) ∈ R so

d
dtℓφ(a)

∣∣∣
t=0

= 0, and not 0TAℓφ(a).

Secondly, we check linearity. Take a1, a2 ∈ Am and ξ1 ∈ Ta1A, ξ2 ∈ Ta2A with
T (q)(ξ1) = T (q)(ξ2). As usual, see (6), we can arrange for a1(t), a2(t) two curves in A,

with q(a1(t)) = q(a2(t)) for t near zero, where ξ1 = d
dta1(t)

∣∣∣
t=0

, and ξ2 = d
dta2(t)

∣∣∣
t=0

.

Of course a1(0) = a1 and a2(0) = a2. Hence,

(dℓφ(a1 + a2))(ξ1 +
TM

ξ2) = (ξ1 +
TM

ξ2)(ℓφ) =
d

dt
ℓφ(a1(t) + a2(t))

∣∣∣
t=0

=
d

dt
ℓφ(a1(t))

∣∣∣
t=0

+
d

dt
ℓφ(a2(t))

∣∣∣
t=0

= ξ1(ℓφ) + ξ2(ℓφ)

= (dℓφ(a1))(ξ1) + (dℓφ(a2))(ξ2)
(2.87)
= ⟨dℓφ(a1) +

A∗
dℓφ(a2), ξ1 +

TM
ξ2⟩.

Hence (dℓφ, φ) is a linear section of T ∗A.

For µ ∈ ΓA, the 1-form dℓµ ∈ Ω1(A∗) defined by the corresponding linear map ℓµ :
A∗ → R, is a section of T ∗A∗ → A∗. Composing with the reversal isomorphism
R : T ∗A∗ → T ∗A it follows that R(dℓµ) is a section of T ∗A → A∗. To check that
(R(dℓµ), µ) is a linear section, since R is an isomorphism of double vector bundles, one
only needs to check that (dℓµ, µ) is a linear section, and this follows in a similar way
as (dℓφ, φ).
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It was proved in [28] that

R(dℓµ(φ(m)))—
A
dℓφ(µ(m)) = —

A
q∗(d⟨φ, µ⟩)(µ(m)). (4.3)

(or see [25, 9.5.3]). Therefore, the warp of the grid described on T ∗A,

T ∗A A∗

A M,

R◦dℓµ

dℓφ φ

µ

is w(R ◦ dℓµ, dℓφ) = −d⟨φ, µ⟩.

Remark 4.1.3. This is a good place to make the following remark. So far, we have
seen struts, e.g in T ∗A in (2.4.5), and examples of warps of grids, e.g. in TA, Example
1.2.3. It is important to distinguish between the two terms “struts” and “warps”. The
warp is a section of the core vector bundle, defined for any m ∈M by (11):

ξ(Y (m))—
A
η(X(m)) = w(ξ, η)(m)+

B
0DX(m).

Since the warp is a section of the core vector bundle, it will define two struts. Without
loss of generality, take w(ξ, η)A ∈ ΓAD, and from Definition 1.1.3, for a ∈ A:

w(ξ, η)A(a) = w(ξ, η)(m)+
B
0Da . (4.4)

Setting a = X(m) at (4.4),

w(ξ, η)A(X(m)) = w(ξ, η)(m)+
B
0DX(m).

Comparing the previous equation with (11), one might write:

w(ξ, η)A(X(m)) = ξ(Y (m))—
A
η(X(m)).

However, this is an equality about specific elements, not about sections; we cannot say
that the right hand side of (11) is equal to the strut w(ξ, η)A of the warp w(ξ, η).

By specifying a = X(m) in (4.4), w(ξ, η)A(X(m)) is no longer a map from A to D (as
the strut w(ξ, η)A is), but a map from M to D, just as ξ(Y (m))—

A
η(X(m)) is not a

map from A to D and is not defined for any a ∈ A.

To illustrate this point clearly, let us use the Example 4.1.2 of the grid on T ∗A. We
have established that:
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• the warp of (R ◦ dℓµ, µ) and of (dℓφ, φ) is −d⟨φ, µ⟩ ∈ Γ(T ∗M), a section of the
core vector bundle of T ∗A, defined by (4.3).

• By Section 2.4.5, one of the two struts defined by−d⟨φ, µ⟩ ∈ Ω1(M) is q∗(−d⟨φ, µ⟩) ∈
Ω1(A), a section of the vector bundle T ∗A→ A, where for a ∈ A:

q∗(−d⟨φ, µ⟩)(a) = 0T
∗A

a —
A∗
d⟨φ, µ⟩(m) (4.5)

By (4.3), we have that

R(dℓµ(φ(m)))—
A
dℓφ(µ(m)) = —

A
q∗(d⟨φ, µ⟩)(µ(m)) = —

A

(
0T

∗A
µ(m) +

A∗
d⟨φ, µ⟩(m)

)
.

The latter is a statement about elements of T ∗
µ(m)A, and it is misleading to state it as

an equation for sections. After all, −q∗(d⟨φ, µ⟩) ◦ µ is a map from M to T ∗A, and we
cannot compare it to (4.5), which describes the strut q∗(d⟨φ, µ⟩) of d⟨φ, µ⟩.

In a similar note, take the very first example of warp, the Lie bracket of two vector
fields X,Y ∈ X(M) being the warp of (T (Y ), Y ) and of (X̃,X), as described by (8).
The vertical lift [X,Y ]↑ ∈ X(TM) is the strut defined by the warp [X,Y ] (see Section
1.2.2), but the right hand side of (8), namely, [X,Y ]↑(Y (m)) is the value at m of a map
from M to T (TM). △

4.2 Warps and Bolts

4.2.1 Properties of warps and ultrawarps

So far, we have seen examples of grids on double vector bundles and their warps. Are
there any further operations one can perform with warps? We proceed with showing
that the warp has various linearity properties.

Proposition 4.2.1. Take (ξ,X), and (ξi, Xi), i = 1, 2 linear sections of the horizontal
structure of D, where ξ, ξi ∈ ΓBD, and X,Xi ∈ ΓA. And take (η, Y ), and (ηi, Yi), i =
1, 2, linear sections of the vertical structure of D, where η, ηi ∈ ΓAD, and Y, Yi ∈ ΓB.
Then,

1. (κ ·
A
η1+

A
λ ·
A
η2, κY1+λY2) is a linear section of the vertical structure of D, where

κ, λ ∈ R,

2. w(ξ, η1+
A
η2) = w(ξ, η1) + w(ξ, η2).

3. For any κ ∈ R: w(ξ, κ ·
A
η) = κw(ξ, η).

4. For any λ, κ ∈ R: w(λ ·
B
ξ, κ ·

A
η) = λκw(ξ, η).
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5. For any λ, κ ∈ R: w(ξ, κ ·
A
η1+

A
λ ·
A
η2) = κw(ξ, η1) + λw(ξ, η2).

6. For any µ, ν, λ, κ ∈ R:

w(µ ·
B
ξ1+

B
ν ·
B
ξ2, κ ·

A
η1+

A
λ ·
A
η2)

= µκw(ξ1, η1) + νκw(ξ2, η1) + µλw(ξ1, η2) + νλw(ξ2, η2).

Proof. 1. For a1, a2 ∈ A,

(κ ·
A
η1+

A
λ ·
A
η2)(a1 + a2)

= (κ ·
A
η1(a1 + a2))+

A
(λ ·

A
η2(a1 + a2))

= (κ ·
A
(η1(a1)+

B
η1(a2)))+

A
(λ ·

A
(η2(a1)+

B
η2(a2)))

= (κ ·
A
η1(a1)+

B
κ ·
A
η1(a2))+

A
(λ ·

A
η2(a1)+

B
λ ·
A
η2(a2))

= (κ ·
A
η1(a1)+

A
λ ·
A
η2(a1))+

B
(κ ·

A
η1(a2)+

A
λ ·
A
η2(a2))

= (κ ·
A
η1+

A
λ ·
A
η2)(a1)+

B
(κ ·

A
η1+

A
λ ·
A
η2)(a2).

2. The warps of the two grids w(ξ, η1) and w(ξ, η2) for m ∈M :

ξ(Y1(m))—
A
η1(X(m)) = w(ξ, η1)(m)+

B
0DX(m),

ξ(Y2(m))—
A
η2(X(m)) = w(ξ, η2)(m)+

B
0DX(m).

What is w(ξ, η1+
A
η2)?

ξ((Y1 + Y2)(m))—
A
(η1+

A
η2)(X(m))

= (ξ(Y1(m))+
A
ξ(Y2(m)))—

A
(η1(X(m))+

A
η2(X(m)))

= (ξ(Y1(m))—
A
η1(X(m)))+

A
(ξ(Y2(m))—

A
η2(X(m)))

= (w(ξ, η1)(m)+
B
0DX(m))+

A
(w(ξ, η2)(m)+

B
0DX(m))

= (w(ξ, η1)(m)+
A
w(ξ, η2)(m))+

B
(0DX(m)+

A
0DX(m))

= (w(ξ, η1)+
A
w(ξ, η2))(m)+

B
0DX(m),

ergo, w(ξ, η1+
A
η2) = w(ξ, η1)+

A
w(ξ, η2).
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3. Since ξ(κY (m)) = κ ·
A
ξ(Y (m)), for the warp w(ξ, κ ·

A
η) we have:

ξ(κY (m))—
A
κ ·
A
η(X(m)) = κ ·

A
ξ(Y (m))—

A
κ ·
A
η(X(m))

= κ ·
A
(ξ(Y (m))—

A
η(X(m)))

= κ ·
A
(w(ξ, η)(m)+

B
0DX(m))

= κ ·
A
w(ξ, η)(m)+

B
κ ·
A
0DX(m)

= κ ·
A
w(ξ, η)(m)+

B
0DX(m),

hence w(ξ, κ ·
A
η) = κ ·

A
w(ξ, η).

4. The linear sections involved (λ ·
B
ξ, λX) and (κ ·

A
η, κY ).

(λ ·
B
ξ)(κY (m))—

A
(κ ·

A
η)(λX(m)) = λ ·

B
(ξ(κY (m)))—

A
κ ·
A
(η(λX(m)))

= λ ·
B
(κ ·

A
(ξ(Y (m)))—

A
κ ·
A
(λ ·

B
(η(X(m)))

= λ ·
B
(κ ·

A
(ξ(Y (m)))—

A
λ ·
B
(κ ·

A
(η(X(m)))

= λ ·
B

(
κ ·
A
(ξ(Y (m))—

A
η(X(m)))

)
= λ ·

B

(
κ ·
A
(w(ξ, η)(m)+

B
0DX(m))

)
= λ ·

B

(
κ ·
A
w(ξ, η)(m)+

B
κ ·
A
0DX(m)

)
= λ ·

B

(
κ ·
A
w(ξ, η)(m)0DX(m)+

B
0DX(m)

)
= λ ·

B
(κ ·

A
w(ξ, η)(m))+

B
λ ·
B
0DX(m)

= λκw(ξ, η)(m)+
B
0DλX(m),

and this ends the proof.

Now start with a grid (ξ,X), (η, Y ) on D as in (10), that has warp w(ξ, η) ∈ ΓC as
in (11). Applying the tangent functor to a double vector bundle D yields TD, the
triple vector bundle we described in Section 2.4.2. In the following proposition we show
that applying the tangent functor to a grid (ξ,X), (η, Y ) on D yields another grid
(T (ξ), T (X)), (T (η), T (Y )) on TD. In fact,

Proposition 4.2.2. Let (ξ,X) and (η, Y ) be a grid on a double vector bundle D with
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warp w(ξ, η) ∈ ΓC. Then the warp of the following grid

TD TB

TA TM,

T (ξ)

T (η) T (Y )

T (X)

(4.6)

is T (w(ξ, η)) ∈ ΓTM (TC).

Proof. From Proposition 2.4.3 we know that the Up face of TD is a double vector
bundle with core TC → TM . That (T (ξ), T (X)) and (T (η), T (Y )) are linear sections
of TD follows immediately.

The warp w(ξ, η) ∈ ΓC of (ξ,X), (η, Y ) is given as usual by (11). We calculate the
warp of the tangent grid. From the definition of a warp, for v ∈ TmM ,

(T (ξ) ◦ T (Y ))(v) —
TA

(T (η) ◦ T (X))(v) = T (0D ◦X)(x) +
TB

w(T (ξ), T (η))(v).

Write v = d
dtm(t)

∣∣∣
t=0

, for m(t) a curve in M with tangent vector v at t = 0. Then, for

F ∈ C∞(D),(
(T (ξ) ◦ T (Y )) —

TA
(T (η) ◦ T (X))

)
(v)(F )

(7)
=

d

dt
F

(
(ξ ◦ Y )(m(t))—

A
(η ◦X)(m(t))

) ∣∣∣
t=0

=
d

dt
F

(
0DX(m(t))+

B
w(ξ, η)(m(t))

) ∣∣∣
t=0

=
d

dt
F

(
(0D ◦X)(m(t))+

B
w(ξ, η)(m(t))

) ∣∣∣
t=0

(7)
=

(
T (0D ◦X)(v) +

TB
T (w(ξ, η))(v)

)
(F ). (4.7)

By uniqueness of the core element, it follows from (4.7) that

w(T (ξ), T (η))(v) = T (w(ξ, η))(v).
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Proposition 4.2.3. Let F : D → D′ be a double vector bundle morphism,

D B

D′ B′

A M

A′ M ′.

F fB

fA f

If (ξ,X) and (η, Y ) is a grid on D, and (ξ′, X ′) and (η′, Y ′) is a grid on D′, related by

F ◦ ξ = ξ′ ◦ fB, F ◦ η = η′ ◦ fA, fB ◦ Y = Y ′ ◦ f, fA ◦X = X ′ ◦ f. (4.8)

Then

w(ξ′, η′)(f(m)) = fC(w(ξ, η)(m)), m ∈M,

where fC = F
∣∣∣
C

is the core morphism of F .

Proof. For m ∈M :

ξ′(Y ′(m′))—
A′
η′(X ′(m′)) = w(ξ′, η′)(m′) +

B′
0D

′

X′(m′).

For m′ = f(m):

ξ′(Y ′(f(m)))—
A′
η′(X ′(f(m))) = ξ′(fB(Y (m)))—

A′
η′(fA(X(m)))

= F (ξ(Y (m)))—
A′
F (η(X(m)))

= F

(
ξ(Y (m))—

A
η(X(m))

)
= F

(
w(ξ, η)(m)+

B
0DX(m)

)
= fC(w(ξ, η)(m)) +

B′
0D

′

X′(f(m)).

And the result follows.

An extension of the previous result to triple vector bundles is immediate. If F is a
triple vector bundle map from E to E′, then we have six double vector bundle maps
from each face of E to the corresponding face of E′ — more details on the definition of
a triple vector bundle morphism can be found in [13]. Assume that F maps the grid of
E to a grid of E′. What happens to the induced grids on the three core double vector
bundles and the ultrawarps? Exactly what we expect.
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Proposition 4.2.4. Let F : E → E′ be a morphism of triple vector bundles, that is,
a system of six double vector bundle morphisms between the corresponding upper and
lower faces of E and of E′. If a grid on E as in (3.1) projects via F to a grid on
E′, and uBF, uLR, uUD are the ultrawarps of the grid on E and u′BF, u

′
LR, u

′
UD are the

ultrawarps of the grid on E′, then

u′BF(f(m)) = F
∣∣∣
E123

((uBF)(m)), m ∈M,

where F
∣∣∣
E123

: E123 → E′
123 is the ultracore morphism of F over f : M → M ′, that is,

the restriction of F to the ultacore vector bundles.

Proof. We sketch the proof for uUD. The triple vector bundle map F induces a double
vector bundle morphism from the (U-D) core double vector bundle of E to the (U-D)
core double vector bundle of E′. Then the induced grid on the (U-D) core double vector
bundle of E is related to the one induced on the (U-D) core double vector bundle of E′

as in (4.8) in Proposition 4.2.3, via the induced core double vector bundle morphism
of F . The result then follows immediately.

Now a proposition about ultrawarps, an extension of Proposition 4.2.1, (5).

Proposition 4.2.5. Suppose the following two grids in (4.9) have corresponding ultra-
warps uXBF, u

X
LR,u

X
UD and uWBF, u

W
LR, u

W
UD,

E E1,3

E2,3 E3

E1,2 E1

E2 M,

Y1,3

X2,3
Z1,2

Z1

X3

Y3

Z
Y1

X2

X

Y

Z2

E E1,3

E2,3 E3

E1,2 E1

E2 M.

Y1,3

W2,3
Z1,2

Z1

W3

Y3

Z
Y1

W2

W

Y

Z2

(4.9)
Then the following grid on E

E E1,3

E2,3 E3

E1,2 E1

E2 M,

Y1,3

X2,3 +
2,3
W2,3

Z1,2

Z1

X3 +
E3

W3

Y3

Z
Y1

X2 +
E2

W2

X+W

Y

Z2

(4.10)
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where we have added the two front-back linear double sections X2,3 and W2,3, has ul-
trawarps

uX+W
BF = uXBF+uWBF, uX+W

LR = uXLR+uWLR, uX+W
UD = uXUD+uWUD .

Proof. For the proof of this result, we abandon the succinct notation introduced in
(3.18) and in Section 3.2.1. We use the original notation of the grids involved.

We will prove that uX+W
BF = uXBF+uWBF, and the other two ultrawarps will follow likewise.

First, about uXBF, we will use a variation of the form (3.22) of equation (3.31a) to
describe it:

wback(X(m))—
1,3
X23(wfront(m))

=

[(
Z1,2(Y1(X(m)))—

1,2
Y1,3(Z1(X(m)))

)
—
1,3

0̂Y1(X(m))

]
—
1,3

[(
X2,3(Z2(Y (m)))—

1,2
X2,3(Y3(Z(m)))

)
—
1,3

0̂X2(Y (m))

]
= 0̂X(m) +

2,3
uXBF(m).

A similar equation describes uWBF(m).

Let us write the induced grid on the (B-F) core double vector bundle, for diagram
(4.10),

E23,1 E23

E1 M.

X23+W23

wback wfront

X+W

Denote by (X23, X) the core morphism of the linear double section X2,3, and by
(W23,W ) the core morphism of W2,3. It follows immediately that the core morphism
of (X2,3 +

2,3
W2,3;X2 +

E2

W2, X3 +
E3

W3;X +W ) is (X23 +
2,3
W2,3, X +W ). For w23 ∈ E23,

the core of the Down face, then

(X2,3 +
2,3
W2,3)(w23) = X2,3(w23) +

2,3
W2,3(w23) = X23(w23) +

2,3
W23(w23).
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Therefore, the equation that describes uX+W
BF (m), is

wback((X +W )(m))—
1,3

(X23 +
2,3
W23)(wfront(m))

=

[(
Z1,2(Y1((X +W )(m)))—

1,2
Y1,3(Z1((X +W )(m)))

)
—
1,3

0̂Y1((X+W )(m))

]
—
1,3

[(
(X2,3 +

2,3
W2,3)(Z2(Y (m)))—

1,2
(X2,3 +

2,3
W2,3)(Y3(Z(m)))

)
—
1,3

0̂(X2 +
E2

W2)(Y (m))

]
= 0̂(X+W )(m) +

2,3
uX+W
BF (m). (4.11)

Start from[(
Z1,2(Y1((X +W )(m)))—

1,2
Y1,3(Z1((X +W )(m)))

)
—
1,3

0̂Y1((X+W )(m))

]
—
1,3

[(
(X2,3 +

2,3
W2,3)(Z2(Y (m)))—

1,2
(X2,3 +

2,3
W2,3)(Y3(Z(m)))

)
—
1,3

0̂(X2 +
E2

W2)(Y (m))

]

and using (3.7) and (3.5) in the first bracket, rewrite the previous equation as

[((
Z1,2(Y1(X(m))) +

2,3
Z1,2(Y1(W (m)))

)
—
1,2

(
Y1,3(Z1(X(m))) +

2,3
Y1,3(Z1(W (m)))

))
—
1,3

0̂Y1(X(m)) +
E2

Y1(W (m))

]
—
1,3

[((
X2,3(Z2(Y (m))) +

2,3
W2,3(Z2(Y (m)))

)
—
1,2

(
X2,3(Y3(Z(m))) +

2,3
W2,3(Y3(Z(m)))

))
—
1,3

0̂X2(Y (m)) +
E2

W2(Y (m))

]
.

Now i) use the interchange law in the Left face of E, in the first parentheses of each
bracket, and ii) use (2.18) for the zeros,

[((
Z1,2(Y1(X(m)))—

1,2
Y1,3(Z1(X(m)))

)
+
2,3

(
Z1,2(Y1(W (m)))—

1,2
Y1,3(Z1(W (m)))

))
—
1,3

(
0̂Y1(X(m)) +

2,3
0̂Y1(W (m))

) ]
—
1,3

[((
X2,3(Z2(Y (m)))—

1,2
X2,3(Y3(Z(m)))

)
+
2,3

(
W2,3(Z2(Y (m)))—

1,2
W2,3(Y3(Z(m)))

))
—
1,3

(
0̂X2(Y (m)) +

2,3
0̂W2(Y (m))

) ]
.
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Now, in each bracket, use the interchange law in the Up face of E[((
Z1,2(Y1(X(m)))—

1,2
Y1,3(Z1(X(m)))

)
—
1,3

0̂Y1(X(m))

)
+
2,3

((
Z1,2(Y1(W (m)))—

1,2
Y1,3(Z1(W (m)))

)
—
1,3

0̂Y1(W (m))

)]
—
1,3

[((
X2,3(Z2(Y (m)))—

1,2
X2,3(Y3(Z(m)))

)
—
1,3

0̂X2(Y (m))

)
+
2,3

((
W2,3(Z2(Y (m)))—

1,2
W2,3(Y3(Z(m)))

)
—
1,3

0̂W2(Y (m))

)]
.

Finally, use once more the interchange law in the Up face of E,[((
Z1,2(Y1(X(m)))—

1,2
Y1,3(Z1(X(m)))

)
—
1,3

0̂Y1(X(m))

)
—
1,3

((
X2,3(Z2(Y (m)))—

1,2
X2,3(Y3(Z(m)))

)
—
1,3

0̂X2(Y (m))

)]

+
2,3

[((
Z1,2(Y1(W (m)))—

1,2
Y1,3(Z1(W (m)))

)
—
1,3

0̂Y1(W (m))

)
—
1,3

((
W2,3(Z2(Y (m)))—

1,2
W2,3(Y3(Z(m)))

)
—
1,3

0̂W2(Y (m))

)]
.

The first bracket now is exactly the equation that describes the uXBF(m) and the second
bracket describes the uWBF(m), hence the last equation is equal to,[

0̂X(m) +
2,3

uXBF(m)

]
+
2,3

[
0̂W (m) +

2,3
uWBF(m)

]
= 0̂X(m)+W (m) +

2,3
(uXBF(m) +

2,3
uWBF(m)).

Comparing the last equation with (4.11), from the uniqueness of ultracore elements, it
follows that uX+W

BF (m) = uXBF(m) + uWBF(m).

4.2.2 Bolts

So far we have seen in Chapter 1 that a section of the core C of a double vector bundle
D defines the strut cA ∈ ΓAD over A, see Definition 1.1.3,

cA : A→ D, a 7→ c(qDa (a))+
B
0Da .

For a1, a2 ∈ Am,

cA(a1 + a2) = c(m)+
B
0Da1+a2 = c(m)+

B
(0Da1 +

B
0Da2)

̸= (c(m)+
B
c(m))+

B
(0Da1 +

B
0Da2) = cA(a1)+

B
cA(a2),
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in other words, cA is not a linear section of D → A, as we have already seen in local
coordinates towards the end of Section 1.1.3. Similarly for the strut cB ∈ ΓBD. Except
for the zero section, struts are not linear sections. This is how we arrive at the definition
of the bolt section. Bolt sections are defined via the core vector bundle, and in addition,
are linear.

Definition 4.2.6. Let φ : A → C be a vector bundle map over M . Define a section
φ� ∈ ΓAD by

φ�(a) = φ(a)+
B
0Da .

We call φ� the bolt of φ. First, note that φ� projects to the zero section:

qDB ◦ φ�(a) = qDB (φ(a)+
B
0Da ) = 0Bm.

Secondly, (φ�, 0B) is a linear section. Take a1, a2 ∈ Am,

φ�(a1 + a2) = φ(a1 + a2)+
B
0Da1+a2 = (φ(a1)+

B
φ(a2))+

B
(0Da1 +

B
0Da2)

= (φ(a1)+
B
0Da1)+

B
(φ(a2)+

B
0Da2) = φ�(a1)+

B
φ�(a2),

and similarly for the scalar multiplication.

In a local coordinate system (x, a, b, z) on D the vector bundle map φ : A → C over
M ,

(x1, . . . , xn, a1, . . . , arA) 7→ (x1, . . . , xn, z1j (x)a
j , . . . , zrCj (x)aj),

hence φ� ∈ ΓAD,

(x1, . . . , xn, a1, . . . , arA) 7→ (x1, . . . , xn, a1, . . . , arA , 01, . . . , 0rB , z1j (x)a
j , . . . , zrCj (x)aj).

(4.12)
Comparing the last equation with (1.15) we see directly how struts and bolts differ.
Now rewrite the last equation as

(x1, . . . , xn, a1, . . . , arA , 01, . . . , 0rB , 01, . . . , 0rC )

+
B
(x1, . . . , xn, 01, . . . , 0rA , 01, . . . , 0rB , z1j (x)a

j , . . . , zrCj (x)aj) = 0Da +
B
φ(a).

Finally, we note that using decompositions, in particular using (1.5), a bolt section
(φ�, 0B) can be described by

φ�(a) = 0(a, 0, φ(a)).

If we start with a vector bundle map ψ : B → C over M , we can define in a similar
fashion a bolt section (ψ�, 0A) of the vertical structure of D.

So far we have seen that given a vector bundle map φ : A→ C over M , we can define
a linear section (φ�, 0B) of D → A. The converse is also true.
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Lemma 4.2.7. Every linear section (η, 0B) is a bolt section for a unique φ : A→ C.

Proof. Suppose that (η, 0B) is a linear section. For a ∈ Am the outline of η(a),

η(a) 0Bm

a m.

Therefore, we can write η(a) = c+
B
0Da , for a unique c ∈ Cm, see Section 1.1.2 and (3).

Define φ(a) = c. Then

η(a) = φ(a)+
B
0Da .

To show that φ is a vector bundle morphism, take a1, a2 ∈ Am. We will show that

φ(a1 + a2) = φ(a1) + φ(a2). (4.13)

Write

η(a1) = φ(a1)+
B
0Da1 , η(a2) = φ(a2)+

B
0Da2 ,

and since η is linear over 0B,

η(a1)+
B
η(a2) = (φ(a1)+

B
0Da1)+

B
(φ(a2)+

B
0Da2)

= (φ(a1)+
B
φ(a2))+

B
(0Da1 +

B
0Da2) = (φ(a1)+

B
φ(a2))+

B
0Da1+a2 . (4.14)

Again, since η is linear,

η(a1 + a2) = φ(a1 + a2)+
B
0Da1+a2 , (4.15)

therefore, comparing (4.14) and (4.15), we obtain (4.13). Following a similar calculation
for the scalar multiplication, we establish that φ is a vector bundle map. And finally,
we see directly that φ� = η.

The following property is an immediate consequence of the definition of bolt sections.

Corollary 4.2.8. If (φ�, 0B) is a bolt section, then

φ�(0Am) = ⊙D
m,

where ⊙D
m is the double zero of D over m ∈M .

Proof. We have that

φ�(0Am) = φ(0Am)+
B
0D0Am

= φ(0Am),
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and since φ : A→ C is a vector bundle map over M , it will send the zero of Am to the
zero of Cm, that is, φ(0

A
m) = 0Cm. Therefore,

φ�(0Am) = 0Cm = ⊙D
m.

The next proposition will prove very useful.

Proposition 4.2.9. Take (η1, Y ) and (η2, Y ) two linear sections of D, where Y ∈ ΓB
and η1, η2 ∈ ΓAD. Their difference (η1—

A
η2, 0

B) defines a bolt section corresponding

to a unique vector bundle map φ : A→ C.

Proof. We follow the same procedure as in the proof of Lemma 4.2.7.

Looking at η1(a)—
A
η2(a), we can write it as

η1(a)—
A
η2(a) = c+

B
0Da ,

where c ∈ C is unique. Define a map φ : A → C by φ(a) = c. With a similar
calculation as in the proof of Lemma 4.2.7, it follows that φ is a vector bundle map.
Finally, φ�(a) = φ(a)+

B
0Da = η1(a)—

A
η2(a), hence η1—

A
η2 = φ�.

Remark 4.2.10. In Remark 4.1.3 we described how struts and warps differ. At this
point we describe how bolts differ from warps. For example, if (ξ1, X) and (ξ2, X) are
two linear sections of the horizontal structure of D, ξ1, ξ2 ∈ ΓBD, X ∈ ΓA, then from
Proposition 4.2.9 they define a bolt section ψ� ∈ ΓBD:

ξ1(b)—
B
ξ2(b) = ψ�(b) = 0Db +

A
ψ(b).

If (ξ,X) and (η, Y ) is the usual grid on D as in (10), then the warp w(ξ, η) is described
by (11),

ξ(Y (m))—
B
η(X(m)) = 0DY (m)+

A
w(ξ, η)(m).

Clearly, the blue arguments in the left hand side are different; the first term has ar-
gument Y (m) and the second term has argument X(m). Recall from Remark 4.1.3
that the right hand side of the last equation is not the strut defined by the warp
w(ξ, η) ∈ ΓC. △

4.2.3 Bolts and warps

We now proceed with what we are really interested in, warps of pairs of linear sections.

Proposition 4.2.11. We have the following:
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1. The warp of a bolt section and of the zero section is the zero section.

2. The warp of a linear section and of the zero section is the zero section.

3. The warp of two bolt sections is the zero section.

4. The warp of a linear section (ξ,X), with ξ ∈ ΓBD, X ∈ ΓA, and of a bolt section
(φ�, 0B), is the section

w(ξ, φ�) = −φ ◦X. (4.16)

Proof. For (1), take (ψ�, 0A) a bolt section with ψ� ∈ ΓBD and the linear zero section
(0DA , 0

B):

D B

A M

ψ�

0DA 0B

0A

What is the difference between ψ�(0Bm) and 0DA ◦ 0Am = ⊙D
m? From Corollary 4.2.8,

ψ�(0Bm) = ⊙D
m as well, therefore, their warp is the zero section of the core vector

bundle.

For (2), take (ξ,X) a linear section, with ξ ∈ ΓBD, X ∈ ΓA, and the linear zero section
(0DA , 0

B):

D B

A M.

ξ

0DA 0B

X

In this case, the outlines of the two elements ξ(0Bm) and 0DA (X(m)):

ξ(0Bm) = 0DX(m) 0Bm

X(m) m,

0DA (X(m)) = 0DX(m) 0Bm

X(m) m,

hence the two elements ξ(0Bm) and 0DA (X(m)) are the same, therefore, their warp is the
zero section of the core vector bundle.
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For (3), take (ψ�, 0A) and (φ�, 0B) two bolt sections, with ψ� ∈ ΓBD and φ� ∈ ΓAD.
The corresponding grid on D,

D B

A M.

ψ�

φ� 0B

0A

Again, by Corollary 4.2.8, ψ�(0Bm) = φ�(0Am) = ⊙D
m, therefore, their warp is the zero

section of the core vector bundle.

Finally, for (4.16), the grid on D defined by the two linear sections:

D B

A M.

ξ

φ� 0B

X

The unique core element c ∈ C their two differences define:

ξ(0Bm)—
A
φ�(X(m)) = c+

B
0DX(m),

ξ(0Bm)—
B
φ�(X(m)) = c+

A
0D0Bm

= c.

Write φ�(X(m)) = φ(X(m))+
B
0DX(m), where φ : A → C is the corresponding vector

bundle map over M . Then,

ξ(0Bm)—
A
φ�(X(m)) = 0DX(m)—

A

(
φ(X(m))+

B
0DX(m)

)
=

(
0DX(m)+

B
⊙D
m

)
—
A

(
φ(X(m))+

B
0DX(m)

)
=

(
0DX(m)—

A
0DX(m)

)
+
B

(
⊙D
m—

A
φ(X(m))

)
= 0DX(m)—

B
φ(X(m)),

and of course the same is true for the other difference:

ξ(0Bm)—
B
φ�(X(m)) = 0DX(m)—

B

(
φ(X(m))+

B
0DX(m)

)
=

(
0DX(m)—

B
0DX(m)

)
—
B
φ(X(m)) = ⊙D

m—
B
φ(X(m)) = —

B
φ(X(m)).
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Hence w(ξ, φ�) = −φ ◦X ∈ ΓC.

To see the last statement in local coordinates, in a local coordinate system (x, a, b, z)
on D, from (1.16) we have,

ξ(0B(m)) = (x1, . . . , xn, a1(x), . . . , arA(x), 01, . . . , 0rB , z1k(x)0
k, . . . , zrCk (x)0k)

= (x1, . . . , xn, a1(x), . . . , arA(x), 01, . . . , 0rB , 01, . . . , 0rC ),

and from (4.12),

φ�(X(m)) = (x1, . . . , xn, a1(x), . . . , arA(x), 01, . . . , 0rB , z1j (x)a
j(x), . . . , zrC (x)aj(x)).

Hence

ξ(0B(m))—
A
φ�(X(m))

= (x1, . . . , xn, a1(x), . . . , arA(x), 01, . . . , 0rB ,−z1j (x)aj(x), . . . ,−zrC (x)aj(x))
= 0DX(m)—

B
φ(X(m))

The following special case of Proposition 4.2.1, (2), that “the warp of the sum is the
sum of the warp” is important to Section 4.5.3.

Proposition 4.2.12. Given two grids (ξ,X), (η, Y ), and (ξ,X), (φ�, 0B) on a double
vector bundle D,

D B

A M

ξ

η Y

X

and

D B

A M,

ξ

φ� 0B

X

with warps w(ξ, η) and w(ξ, φ�), then

w(ξ, η+
A
φ�) = w(ξ, η) + w(ξ, φ�).

4.2.4 Grids on T 2M and TA

Using the canonical involution JM : T 2M → T 2M and bolt sections, we further inves-
tigate grids on T 2M .
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JM and warps

Apply JM to the double vector bundle T 2M and to the grid (9). We have:

T 2M TM

T 2M TM

TM M

TM M.

T (p)

T (Y )

JM

pTMX̃

X

pTM

Ỹ

X

Y

Y

T (p)
T (X) (4.17)

Apply JM to (8):

JM

(
Tm(Y )(X(m)) —

pTM

X̃(Y (m))

)
= JM

(
0T

2M
Y (m) +

T (p)
[X,Y ](m)

)
⇒ JM (T (Y )(X(m))) —

T (p)
JM (X̃(Y (m))) = JM (0T

2M
Y (m)) +

pTM

JM ([X,Y ](m))

⇒ Ỹ (X(m)) —
T (p)

T (X)(Y (m)) = T (0TM )(Y (m)) +
pTM

[X,Y ](m), (4.18)

so we see that the new grid has the same warp as grid (9) because JM is the identity
on the cores: JM ([X,Y ](m)) = [X,Y ](m).

Equivalently, by applying directly Proposition 4.2.3, it follows that the warp of the
resulting grid of (4.17) is [X,Y ] ∈ Γ(TM). Both (8) and (4.18) are mentioned in [1,
p.297].

Warps and conjugate connections

Take a connection ∇ in TM , and for X,Y ∈ X(M) build the following grid on T 2M as
in (1.46),

T 2M TM

TM M.

T (p)

T (Y )

pTMXH X

Y

(4.19)
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By (1.45), the warp of (4.19) has warp w(T (Y ), XH) = ∇XY .

Now take both grids: (4.19), and (9) on page xiv. Apply Proposition 4.2.1, (2). Then
the following grid,

T 2M TM

TM M,

T (p)

T (Y )

pTMXH —
pTM

X̃ 0TM

Y

(4.20)

has warp
w(T (Y ), XH)− w(T (Y ), X̃) = ∇XY − [X,Y ],

which is exactly ∇̂YX, see (1.48).

What is XH(Y (m)) —
pTM

X̃(Y (m))? Both the horizontal lift (XH , X) and the complete

lift (X̃,X) of a vector field X ∈ X(M) are linear vector fields on TM that project to
X ∈ X(M). By Proposition 4.2.9, XH(Y (m)) —

pTM

X̃(Y (m)) is a bolt section,

XH(Y (m)) —
pTM

X̃(Y (m)) = 0T
2M

Y (m) +
T (p)

φ(Y (m)) = φ�(Y (m)),

a vertical vector field on TM . The vector bundle map φ : TM → TM over M is
precisely the vector bundle map −∇̂X : TM → TM , Y (m) 7→ −(∇̂X)(Y (m)) =
−∇̂Y (m)X, whose corresponding map on the sections of TM is none other than the

total covariant derivative −∇̂X : X(M) → X(M), Y → −∇̂YX.

We work this out in local coordinates. Write Y = Y j ∂
∂xj

and X = Xi ∂
∂xi

, where
Xi, Y j ∈ C∞(M). Then from (1.49),

∇̂YX =

(
Y j ∂X

i

∂xj
+ Y jΓ̂ijkX

k

)
∂

∂xi
=

(
Y j ∂X

i

∂xj
+XkΓikjY

j

)
∂

∂xi
.

Additionally, from (1.47) and (1.33), and since (∇̂YX)(m) = ∇̂Y (m)X = (∇̂X)(Y (m)),
it follows that,

XH(Y (m)) —
pTM

X̃(Y (m))

= (x1, .., xn, Y 1, . . . , Y n, X1, . . . , Xn,−XkΓ1
kjY

j , . . . ,−XkΓnkjY
j)

—
pTM

(x1, . . . , xn, Y 1, . . . , Y n, X1, . . . , Xn, Y j ∂X
1

∂xj
, . . . , Y j ∂X

n

∂xj
)

= (x1, . . . , xn, Y 1, . . . , Y n, 01, . . . , 0n,−XkΓ1
kjY

j − Y j ∂X
1

∂xj
, . . . ,−XkΓnkjY

j − Y j ∂X
n

∂xj
)

= 0T
2M

Y (m) —
T (p)

∇̂X(Y (m)),
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that is, φ = −∇̂X.

On the other hand, start directly with the conjugate connection ∇̂ of ∇ in TM , and
build the following grid on T 2M for X,Y ∈ T 2M as in (1.46)

T 2M TM

TM M.

T (p)

T (X)

pTMY Ĥ Y

X

(4.21)

From (1.45), its warp is w(T (X), Y Ĥ) = ∇̂YX. Hence the two grids (4.20) and (4.21)
have the same warp.

Applying JM to the grid (4.19), we obtain the grid

T 2M TM

TM M,

pTM

Ỹ

T (p)JM◦XH X

Y

and again, since JM is the identity on the core vector bundle, the warp of (Ỹ , Y ) and
(JM ◦XH , X) is also ∇XY ∈ X(M).

Affine space of connections on A

Take now two connections ∇1 and ∇2 in a vector bundle A → M . For µ ∈ ΓA and
X ∈ X(M), we have the following two different grids on TA,

TA TM

A M,

T (q)

T (µ)

pAXH1 X

µ

TA TM

A M.

T (q)

T (µ)

pAXH2 X

µ
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The warp of the first and of the second grid, using (1.45), are w(T (µ), XH1) = ∇1
Xµ,

and w(T (µ), XH2) = ∇2
Xµ repsectively. In particular,

T (µ)(X(m))—
A
XH1(µ(m)) = 0TAµ(m) +

TM
(∇1

Xµ)(m),

T (µ)(X(m))—
A
XH2(µ(m)) = 0TAµ(m) +

TM
(∇2

Xµ)(m).

Both horizontal lifts XH1 and XH2 are linear vector fields over X, and therefore, by
Proposition 4.2.9, their difference is a bolt section. To describe this bolt section, we
need to describe the difference (XH1 —

A
XH2)(a), for any a ∈ Am. For any a ∈ Am, write

µ(m) = a where µ ∈ ΓA. Therefore, we can equivalently describe (XH1 —
A
XH2)(µ(m)):

XH1(µ(m))—
A
XH2(µ(m)) = 0TAµ(m) +

TM
φ(µ(m)),

where φ : A→ A, a vector bundle map over M . Rewriting the previous two equations
as

XH1(µ(m)) = T (µ)(X(m))—
A

(
0TAµ(m) +

TM
(∇1

Xµ)(m)

)
,

XH2(µ(m)) = T (µ)(X(m))—
A

(
0TAµ(m) +

TM
(∇2

Xµ)(m)

)
,

it now follows,

XH1(µ(m))—
A
XH2(µ(m))

=

[
T (µ)(X(m))—

A

(
0TAµ(m) +

TM
(∇1

Xµ)(m)

)]
—
A

[
T (µ)(X(m))—

A

(
0TAµ(m) +

TM
(∇2

Xµ)(m)

)]
=

[
T (µ)(X(m))—

A
T (µ)(X(m))

]
—
A

[(
0TAµ(m) +

TM
(∇1

Xµ)(m)

)
—
A

(
0TAµ(m) +

TM
(∇2

Xµ)(m)

)]
= 0TAµ(m)—

A

[(
0TAµ(m)—

A
0TAµ(m)

)
+
TM

(
(∇1

Xµ)(m)—
A
(∇2

Xµ)(m)

)]
= 0TAµ(m)—

A

[
0TAµ(m) +

TM

(
(∇1

Xµ)(m)—
A
(∇2

Xµ)(m)

)]
= 0TAµ(m) —

TM

(
(∇1

Xµ)(m)—
A
(∇2

Xµ)(m)

)
,

where in the last step we applied the following variation of interchange laws (in general
double vector bundle language),

0Da —
A
(0Da +

B
c) = (0DA +

B
⊙D
m)—

A
(0Da +

B
c) = (0Da —

A
0Da )+

B
(⊙D

m—
A
c) = 0Da —

B
c.

The difference of two connections is C∞(M)-linear in both X and µ. It defines a
vector bundle map TM ⊕ A → A. Therefore, the corresponding vector bundle map is
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φ = −(∇1
X −∇2

X) : A→ A over M . Take the following grid on TA

TA TM

A M.

T (q)

T (µ)

pAXH1 —
A
XH2

0TM

µ

By Proposition 4.2.1, (2), its warp is

w(T (µ), XH1 —
A
XH2) = w(T (µ), XH1)− w(T (µ), XH2) = ∇1

Xµ−∇2
Xµ,

or, equivalently, from (4.16),

w(T (µ), XH1 —
A
XH2) = w(T (µ), φ�) = −(−(∇1

X −∇2
X)) ◦ µ = ∇1

Xµ−∇2
Xµ.

4.3 Double Bolts

To define a single bolt section (φ�, 0B) in the double vector bundle setting, we used a
vector bundle map φ : A→ C over M . To define a double bolt section, we use a double
vector bundle map from one of the lower faces of the triple vector bundle (Front, Right,
Down), to a “corresponding” core double vector bundle. The “corresponding” cases
are the following:

• Front → (L-R) core double vector bundle,

• Front → (U-D) core double vector bundle,

• Right → (B-F) core double vector bundle,

• Right → (U-D) core double vector bundle,

• Down → (B-F) core double vector bundle,

• Down → (L-R) core double vector bundle.

Definition 4.3.1. A double vector bundle map (φ; idE2 , ψ; idM ) from the Front face
to the (L-R) core double vector bundle,

E2,3 E3

E13,2 E13

E2 M

E2 M

φ

ψ
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defines the following front-back linear double section

E E1,3

E2,3 E3

E1,2 E1

E2 M.

φ�
ψ�

01,2E2

0E1

We call (φ�; 01,2E2
, ψ�; 0E1) the double bolt section of the double vector bundle map

(φ; idE2 , ψ; idM ).

We proceed with describing the double vector bundle morphism (φ�; 01,2E2
, ψ�; 0E1) in

detail, that is, the vector bundle maps (ψ�, 0E1), (φ�, 01,2E2
) and (φ�, ψ�).

Start with (ψ�, 0E1). The vector bundle map ψ : E3 → E13 over M defines the bolt
section (ψ�, 0E1) of the Right face of E:

E3 E13

M

ψ

⇒

E3 E1,3

M E1

ψ�

0E1

As we will need them later on, we write out explicit formulas. For every e3 ∈ E3:

ψ�(e3) = ψ(e3) +
E1

0̃1,3e3 , (4.22)

and from (2.10),
0̂ψ�(e3) = 0̂

ψ(e3) +
E1

0̃1,3e3
= 0̂ψ(e3) +

1,2
0̂e3 . (4.23)

The linearity condition for e3, e
′
3 ∈ E3

∣∣∣
m
:

ψ�(e3 + e′3) = ψ�(e3) +
E1

ψ�(e′3).

Continuing with (φ�, 01,2E2
). The vector bundle map φ : E2,3 → E13,2 defines the bolt

section (φ�, 01,2E2
) of the Left face of E:

E2,3 E13,2

E2

φ

⇒

E2,3 E

E2 E1,2

φ�

01,2E2
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and for every e2,3 ∈ E2,3:
φ�(e2,3) = φ(e2,3) +

1,2
0̂e2,3 . (4.24)

The outline of φ(e2,3) in the (L-R) core double vector bundle,

E13,2 ∋ φ(e2,3) ψ(e3) ∈ E13

e2 m.

Equation (4.24) in outlines,

φ(e2,3) ψ(e3)

0̃2,3e2 0E3
m

0̃1,2e2 0E1
m

e2 m

+
1,2

0̂e2,3 0̃1,3e3

e2,3 e3

0̃1,2e2 0E1
m

e2 m

=

φ(e2,3) +
1,2

0̂e2,3 ψ(e3) +
E1

0̃1,3e3

e2,3 e3

0̃1,2e2 0E1
m

e2 m

=

φ�(e2,3) ψ�(e3)
e2,3 e3

0̃1,2e2 0E1
m

e2 m.

The linearity condition for φ�, for e2,3, e′2,3 ∈ E2,3 that project to the same e2 ∈ E2:

φ�(e2,3 +
E2

e′2,3) = φ�(e2,3) +
1,2
φ�(e′2,3). (4.25)

The third vector bundle map we need to describe is (φ�, ψ�). This is defined by the
vector bundle map (φ,ψ),

E2,3 E13,2

E3 E13

φ

q2,33
q13

ψ

⇒

E2,3 E

E3 E1,3.

φ�

q2,33
q1,3

ψ�

(4.26)

First, we need to show that q1,3(φ
�(e2,3)) = ψ�(q2,33 (e2,3)). Writing q2,33 (e2,3) = e3, we

need to show that,
q1,3(φ

�(e2,3)) = ψ�(e3). (4.27)
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The left hand side of (4.27),

q1,3(φ
�(e2,3)) = q1,3(φ(e2,3) +

1,2
0̂e2,3)

(2.6)
= q1,3(φ(e2,3)) +

E1

q1,3(0̂e2,3) = q1,3(φ(e2,3)) +
E1

0̃1,3e3 .

What is q1,3(φ(e2,3))? Since φ(e2,3) ∈ E13,2, by definition of the core morphism, Section
2.3.1,

q1,3(φ(e2,3)) = q13(φ(e2,3)).

And by the vector bundle map (φ,ψ), we have that q13 ◦ φ = ψ ◦ q2,33 , hence the left
hand side of (4.27) can be written as,

q1,3(φ
�(e2,3)) = q13(φ(e2,3)) +

E1

0̃1,3e3 = ψ(e3) +
E1

0̃1,3e3 = ψ�(e3) = ψ�(q2,33 (e2,3)),

and this establishes the commutativity of diagram (4.26). About fibrewise linearity of
φ� over ψ�, take e2,3 and f2,3 ∈ E2,3 projecting to the same e3 ∈ E3. Since (φ,ψ) is a

vector bundle map, φ(e2,3 +
E3

f2,3)
(2.28)
= φ(e2,3) +

1,3
φ(f2,3). Therefore,

φ�(e2,3 +
E3

f2,3)
(4.24)
= φ(e2,3 +

E3

f2,3) +
1,2

0̂e2,3 +
E3

f2,3

(2.24)
=

(
φ(e2,3) +

1,3
φ(f2,3)

)
+
1,2

(
0̂e2,3 +

1,3
0̂f2,3

)
=

(
φ(e2,3) +

1,2
0̂e2,3

)
+
1,3

(
φ(f2,3) +

1,2
0̂f2,3

)
= φ�(e2,3) +

1,3
φ�(f2,3),

and scalar multiplication follows similarly.

4.3.1 Zeros and core morphism of double bolts

By Corollary 4.2.8, for (ψ�, 0E1) and (φ�, 01,2E2
) we have respectively,

ψ�(0E3
m ) = ⊙1,3

m , φ�(0̃2,3e2 ) = 0̂e2 .

About the vector bundle map (φ�, ψ�), for 0̃2,3e3 ∈ E2,3, the zero in E2,3 over e3,

E2,3 ∋ 0̃2,3e3 φ�(0̃2,3e3 ) ∈ E

E3 ∋ e3 ψ�(e3) ∈ E1,3,



CHAPTER 4. WARPS, BOLTS AND GRIDS; EXAMPLES 139

hence φ�(0̃2,3e3 ) is the zero in E over ψ�(e3),
φ�(0̃2,3e3 ) = 0̂ψ�(e3). (4.28)

Or, using (4.24) directly,

φ�(0̃2,3e3 ) = φ(0̃2,3e3 ) +
1,2

0̂
0̃2,3e3

= φ(0̃2,3e3 ) +
1,2

0̂e3

What is φ(0̃2,3e3 )? Going back to the vector bundle map (φ,ψ):

E2,3 ∋ 0̃2,3e3 φ(0̃2,3e3 ) ∈ E13,2

E3 ∋ e3 ψ(e3) ∈ E13,

we see that φ(0̃2,3e3 ) is the zero of E13,2 over ψ(e3). Its image in E,

φ(0̃2,3e3 ) = 0̂ψ(e3),

hence,

φ�(0̃2,3e3 ) = 0̂ψ(e3) +
1,2

0̂e3
(2.10)
= 0̂

ψ(e3) +
E1

0̃1,3e3
= 0̂ψ�(e3),

which is exactly (4.28). Some outlines,

0̂ψ(e3) ψ(e3)

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m

+
1,2

0̂e3 0̃1,3e3

0̃2,3e3 e3

⊙1,2
m 0E1

m

0E2
m m

=

0̂ψ�(e3) ψ�(e3)

0̃2,3e3 e3

⊙1,2
m 0E1

m

0E2
m m.

Last but not least of our calculations, the core morphism of the linear double section
(φ�; 01,2E2

, ψ�; 0E1).

To begin with, the core morphism of the double vector bundle morphism (φ; idE2 , ψ; idM )
is the restriction of φ to the core vector bundles,

E23 E123

M M.

φ
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Therefore, for w23 ∈ E23, φ(w23) ∈ E123 is an ultracore element. Now we denote the
restriction of φ on the cores by φ. Notation-wise, we will write φ(w23) ∈ E123. This is

an ad-hoc notation; typically, we would write φ
∣∣∣
E23

(w23) for the restriction of φ to the

cores, but this isn’t practical to use in the calculations that follow. Therefore, we use
φ,

E23 E123

M

φ

This core morphism φ defines a bolt section of the (B-F) core double vector bundle:

E23 E23,1

M E1,

φ�

0E1

and from (4.24)
φ�(w23) = φ(w23) +

E1

0̂w23 = φ(w23) +
1,2/1,3

0̂w23 .

We arrive at the final statement of this section, that the core morphism of a double bolt
is the bolt of the core morphism. This translates to the following proposition.

Proposition 4.3.2. The core morphism of (φ�; 01,2E2
, ψ�; 0E1) is the bolt section φ� just

described.

Proof. To calculate the core morphism of (φ�; 01,2E2
, ψ�; 0E1), take a w23 ∈ E23, in the

core of E2,3. By (4.24),
φ�(w23) = φ(w23) +

1,2
0̂w23 .

Since w23 ∈ E23, it follows that φ(w23) = φ(w23) ∈ E123, an ultracore element. And
0̂w23 ∈ E23,1 is the zero over 0E1

m , so we can write:

φ�(w23) = φ(w23) +
E1

0̂w23 = φ�(w23),

and this completes the proof.

A few outlines:

φ�(w23) ⊙1,3
m

w23 0E3
m

⊙1,2
m 0E1

m

0E2
m m,

=

φ(w23) ⊙1,3
m

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m,

+
1,2

0̂w23 ⊙1,3
m

w23 0E3
m

⊙1,2
m 0E1

m

0E2
m m.
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We saw in Proposition 4.2.9 that two linear sections η1, η2 ∈ ΓAD that project to the
same section Y ∈ ΓB differ by a bolt section. Analogously,

Proposition 4.3.3. Given two front-back linear double sections, (X2,3;X2, X3;X) and

(W2,3;X2,W3;X), then (X2,3—
2,3
W2,3; 0

1,2
E2
, X3—

E3

W3; 0
E1) is a double bolt section.

Proof. Focusing on the Right face of E, it follows immediately from Proposition 4.2.9
that (X3—

E3

W3; 0
E1) is a bolt section, and the vector bundle map ψ : E3 → E13 over

M that defines this bolt section is

ψ(e3) = (X3(e3)—
E3

W3(e3))—
E1

0̃1,3e3

as follows from the proof of Proposition 4.2.9.

Likewise for the Left face, it follows immediately that (X2,3—
2,3
W2,3, 0

1,2
E2

) is a bolt section

defined by a vector bundle map φ : E2,3 → E13,2 over E2,

φ(e2,3) = (X2,3(e2,3)—
2,3
W2,3(e2,3))—

1,2
0̂e2,3 .

It remains to show that the φ just described is a vector bundle map over ψ,

E2,3 E13,2

E3 E13,

φ

q2,33
q13

ψ

(4.29)

and this follows from properties of the linear double sections. About the commutativity
of the diagram (4.29),

q13(φ(e2,3)) = q13

(
(X2,3(e2,3)—

2,3
W2,3(e2,3))—

1,2
0̂e2,3

)
= q1,3((X2,3(e2,3)—

2,3
W2,3(e2,3)))—

E1

q1,3(0̂e2,3)

=

(
q1,3(X2,3(e2,3))—

E3

q1,3(W2,3(e2,3))

)
—
E1

0̃1,3e3

= ψ(q2,33 (e2,3)).
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About fibrewise linearity, for e2,3, f2,3 over the same e3 ∈ E3, we have

φ(e2,3 +
E3

f2,3)

= (X2,3(e2,3 +
E3

f2,3)—
2,3
W2,3(e2,3 +

E3

f2,3))—
1,2

0̂e2,3 +
E3

f2,3

(3.3),(2.24)
=

(
(X2,3(e2,3) +

1,3
X2,3(f2,3))—

2,3
(W2,3(e2,3) +

1,3
W2,3(f2,3))

)
—
1,2

(0̂e2,3 +
1,3

0̂f2,3)

=

(
(X2,3(e2,3)—

2,3
W2,3(e2,3)) +

1,3
(X2,3(f2,3)—

2,3
W2,3(f2,3))

)
—
1,2

(0̂e2,3 +
1,3

0̂f2,3)

=

(
(X2,3(e2,3)—

2,3
W2,3(e2,3))—

1,2
0̂e2,3

)
+
1,3

(
(X2,3(f2,3)—

2,3
W2,3(f2,3))—

1,2
0̂f2,3

)
= φ(e2,3) +

1,3
φ(f2,3),

and this completes the proof.

4.4 Class of examples with bolt sections; two double bolts

This is a confirmation of the general result of the warp-grid theorem in a special case,
where special features of the following grid enable clear calculations.

Take the following grid on E,

E E1,3

E2,3 E3

E1,2 E1

E2 M

ξ�

φ�
Z1,2

Z1

ψ�
η�

Z
01,2E1

01,2E2

0E1

0E2

Z2

where (Z1,2;Z1, Z2;Z) is a down-up linear double section, (φ�; 01,2E2
, ψ�; 0E1) is a front-

back double bolt section, and (ξ�; 01,2E1
, η�; 0E2) is a right-left double bolt section.

To calculate the three ultrawarps defined by this grid, we first calculate the core mor-
phism of each linear double section. The core morphism of the double bolt (φ�; 01,2E2

, ψ�; 0E1),
as we calculated in Section 4.3.1, is the bolt section defined by φ, a section of the (B-F)
core double vector bundle. Similarly for (ξ�; 01,2E1

, η�; 0E2), the core morphism will be the

bolt section defined by ξ, a section of the (L-R) core double vector bundle. The core
morphism of the double vector bundle morphism (Z1,2;Z1, Z2;Z) is the vector bundle
morphism (Z12, Z), see Section 3.1.2.
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The three core double vector bundles in the usual order, (B-F), (L-R), and (U-D):

E23,1 E23

E1 M,

φ�

0E1

E13,2 E13

E2 M,

ξ
�

0E2

E12,3 E12

E3 M.

Z12

Z

We also need some calculations about the right-left double bolt section. The double
vector bundle map (ξ; idE1 , η; idM ) from the Right face to the (B-F) core double vector
bundle,

E1,3 E3

E23,1 E23

E1 M

E1 M,

ξ

η

defines the double bolt section (ξ�; η�, 01,2E2
; 0E2). The vector bundle map η, and the bolt

section it defines, along with the corresponding relations:

E3 E23

M

η

⇒

E3 E2,3

M E2

η�

0E2

For e3 ∈ E3:

η�(e3) = η(e3) +
E2

0̃2,3e3 , (4.30)

and as we will need it later, from (2.22),

0̂η�(e3) = 0̂
η(e3) +

E2

0̃2,3e3
= 0̂η(e3) +

1,2
0̂e3 . (4.31)

For e3, e
′
3 ∈ E3

∣∣∣
m
:

η�(e3 + e′3) = η�(e3) +
E2

η�(e′3).
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The vector bundle map ξ defines the bolt section ξ� of the Back face of E,

E1,3 E23,1

E1

ξ

⇒

E1,3 E

E1 E1,2.

ξ�

01,2E1

For e1,3 ∈ E1,3:
ξ�(e1,3) = ξ(e1,3) +

1,2
0̂e1,3 . (4.32)

For e1,3, e
′
1,3 ∈ E1,3 that are over the same e1 ∈ E1:

ξ�(e1,3 +
E1

e′1,3) = ξ�(e1,3) +
1,2
ξ�(e′1,3). (4.33)

For e1,3, e
′
1,3 ∈ E1,3 that are over the same e3 ∈ E3, using the fact that (ξ, η) is a vector

bundle map:
ξ�(e1,3 +

E3

e′1,3) = ξ�(e1,3) +
2,3
ξ�(e′1,3).

And the zeros defined:

ξ�(0̃1,3e1 ) = 0̂e1 , ξ�(0̃1,3e3 ) = 0̂η�(e3). (4.34)

Finally, the core morphism of (ξ�; 01,2E2
, η�; 0E2) will be the bolt section defined by the

core morphism of (ξ; idE1 , η; idM ), which is ξ:

E13 E123

M

ξ

⇒

E13 E13,2

M E2,

ξ
�

0E2

such that, for every w13 ∈ E13:

ξ
�
(w13) = ξ(w13) +

E2

0̂w13 = ξ(w13) +
1,2/2,3

0̂w13 .

4.4.1 Warp of grid of each face of E and ultrawarps

The only warp we need to calculate thoroughly is the warp of the Up face. The Down
warp follows immediately that it is zero, and the remaining warps follow directly from
Proposition 4.2.11, (4). In total, the six warps,
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i. Back face: wback = −ξ ◦ Z1 : E1 → E23,1,

ii. Front face: wfront = −η ◦ Z :M → E23,

iii. Left face: wleft = φ ◦ Z2 : E2 → E13,2,

iv. Right face: wright = ψ ◦ Z :M → E13,

v. Up face: wup = ξ ◦ ψ − φ ◦ η : E3 → E12,3,

vi. Down face: zero section wdown = 012 :M → E12.

Warp of Up face

We now have everything we need to calculate the warp of the Up face. For the two
elements ξ�(ψ�(e3)) and φ�(η�(e3)), we need to calculate,

ξ�(ψ�(e3))—
1,3
φ�(η�(e3)) = wup(e3) +

2,3
0̂ψ�(e3),

ξ�(ψ�(e3))—
2,3
φ�(η�(e3)) = wup(e3) +

1,3
0̂η�(e3). (4.35)

First, focus on ξ�(ψ�(e3)):

ξ�(ψ�(e3)) (4.22)= ξ�(ψ(e3) +
E1

0̃1,3e3 )
(4.33)
= ξ�(ψ(e3)) +

1,2
ξ�(0̃1,3e3 )

(4.32)
=

(
ξ(ψ(e3)) +

1,2
0̂ψ(e3)

)
+
1,2

0̂η�(e3)
(4.31)
=

(
ξ(ψ(e3)) +

1,2
0̂ψ(e3)

)
+
1,2

(
0̂η(e3) +

1,2
0̂e3

)
.

And since ψ(e3) ∈ E13, it follows that ξ(ψ(e3)) = ξ(ψ(e3)), hence,

ξ�(ψ�(e3)) =
(
ξ(ψ(e3)) +

1,2
0̂ψ(e3)

)
+
1,2

(
0̂η(e3) +

1,2
0̂e3

)
.

Similarly for φ�(η�(e3)),

φ�(η�(e3)) (4.30)= φ�(η(e3) +
E2

0̃2,3e3 ) = φ�(η(e3)) +
1,2
φ�(0̃2,3e3 )

(4.24),(4.28)
=

(
φ(η(e3)) +

1,2
0̂η(e3)

)
+
1,2

0̂ψ�(e3)
(4.23)
=

(
φ(η(e3)) +

1,2
0̂η(e3)

)
+
1,2

(
0̂ψ(e3) +

1,2
0̂e3

)
,

where we have used that η(e3) ∈ E23, hence φ(η(e3)) = φ(η(e3)). In order to keep
track of calculations, we add the outlines of the elements involved:

0̂ψ(e3) ψ(e3)

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m,

0̂η(e3) ⊙1,3
m

η(e3) 0E3
m

⊙1,2
m 0E1

m

0E2
m m,

0̂e3 0̃1,3e3

0̃2,3e3 e3

⊙1,2
m 0E1

m

0E2
m m,
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ξ(ψ(e3)) ⊙1,3
m

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m,

φ(η(e3)) ⊙1,3
m

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m.

The left hand side of (4.35) can now be written as,

ξ�(ψ�(e3))—
2,3
φ�(η�(e3))

=

[(
ξ(ψ(e3)) +

1,2
0̂ψ(e3)

)
+
1,2

(
0̂η(e3) +

1,2
0̂e3

)]
—
2,3

[(
φ(η(e3)) +

1,2
0̂η(e3)

)
+
1,2

(
0̂ψ(e3) +

1,2
0̂e3

)]
.

Rearrange the second term of the previous equation,[(
ξ(ψ(e3)) +

1,2
0̂ψ(e3)

)
+
1,2

(
0̂η(e3) +

1,2
0̂e3

)]
—
2,3

[(
φ(η(e3)) +

1,2
0̂ψ(e3)

)
+
1,2

(
0̂η(e3) +

1,2
0̂e3

)]
.

Now apply the interchange law in the Left face,[(
ξ(ψ(e3)) +

1,2
0̂ψ(e3)

)
—
2,3

(
φ(η(e3)) +

1,2
0̂ψ(e3)

)]
+
1,2

[(
0̂η(e3) +

1,2
0̂e3

)
—
2,3

(
0̂η(e3) +

1,2
0̂e3

)]
.

(4.36)
About the first bracket of (4.36), apply the interchange law in the Left face,(

ξ(ψ(e3)) +
1,2

0̂ψ(e3)

)
—
2,3

(
φ(η(e3)) +

1,2
0̂ψ(e3)

)
=

(
ξ(ψ(e3))—

2,3
φ(η(e3))

)
+
1,2

(
0̂ψ(e3)—2,3

0̂ψ(e3)

)
(2.54c)
=

(
ξ(ψ(e3))—

2,3
φ(η(e3))

)
+
1,2

0̂
0
E3
m

= ξ(ψ(e3))—
2,3
φ(η(e3)).

About the second bracket of (4.36),(
0̂η(e3) +

1,2
0̂e3

)
—
2,3

(
0̂η(e3) +

1,2
0̂e3

)
=

(
0̂η(e3)—2,3

0̂η(e3)

)
+
1,2

(
0̂e3 —

2,3
0̂e3

)
(2.55c),(2.52c)

= 0̂η(e3) +
1,2

0̂e3 .

Therefore, we can rewrite (4.36) as[
ξ(ψ(e3))—

2,3
φ(η(e3))

]
+
1,2

(
0̂η(e3) +

1,2
0̂e3

)
(4.31)
=

[
ξ(ψ(e3))—

2,3
φ(η(e3))

]
+
1,2

0̂η�(e3).

Denote temporarily ξ(ψ(e3))—
2,3
φ(η(e3)) by u ∈ E123. Therefore, the last expression is

now,

u +
1,2

0̂η�(e3).
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Recall from (2.25) that 0̂η�(e3) = 0̂η�(e3) +
1,3

0̂e3 . In total, the left hand side of (4.35) can

now be rewritten, using the interchange law in the Back face,

ξ�(ψ�(e3))—
2,3
φ�(η�(e3)) =(

u +
1,3

⊙3
m

)
+
1,2

(
0̂η�(e3) +

1,3
0̂e3

)
=

(
u +

1,2
0̂e3

)
+
1,3

(
0̂η�(e3) +

1,2
⊙3
m

)
=

(
u +

1,2
0̂e3

)
+
1,3

0̂η�(e3).

Comparing the previous equation with the right hand side of (4.35), we see that

wup =

(
ξ(ψ(e3))—

2,3
φ(η(e3))

)
+
1,2

0̂e3 .

Note that ξ ◦ ψ − φ ◦ η is a vector bundle map. Indeed, both ξ ◦ ψ and φ ◦ η are
compositions of vector bundle maps, and are both vector bundle maps E3 → E123 over
M . Hence ξ ◦ ψ − φ ◦ η is a vector bundle map,

E3 E123

M,

ξ◦ψ−φ◦η

and this defines a bolt section in the (U-D) core double vector bundle:

E3 E12,3

M E12.

(ξ◦ψ−φ◦η)�

012

So finally, the warp of the Up face is the bolt section defined by ξ ◦ ψ − φ ◦ η.

Final calculation

The three core double vector bundles in the usual order, (B-F), (L-R), and (U-D):

E23,1 E23

E1 M

φ�

−ξ◦Z1 −η◦Z

0E1

,

E13,2 E13

E2 M

ξ
�

φ◦Z2 ψ◦Z

0E2

,

E12,3 E12

E3 M

Z1,2

(ξ◦ψ−φ◦η)� 012

Z
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In every core double vector bundle we have a bolt section and a linear section. There-
fore, applying Proposition 4.2.1, (4) we obtain:

(−ξ ◦ Z1) ◦ (0E1)—φ� ◦ (−η ◦ Z) ◃ φ ◦ η ◦ Z,

(φ ◦ Z2) ◦ (0E2)— ξ
� ◦ (ψ ◦ Z) ◃ −ξ ◦ ψ ◦ Z,

(ξ ◦ ψ—φ ◦ η)� ◦ Z − Z1,2 ◦ (012) ◃ (ξ ◦ ψ − φ ◦ η) ◦ Z.

Hence the three ultrawarps,

uBF = φ ◦ η ◦ Z, uLR = −ξ ◦ ψ ◦ Z, uUD = (ξ ◦ ψ − φ ◦ η) ◦ Z,

and since ξ ◦ ψ − φ ◦ η is a vector bundle map, we can rewrite the last ultrawarp as:

uUD = ξ ◦ ψ ◦ Z − φ ◦ η ◦ Z.

The sum of the three ultrawarps is zero.

4.4.2 Six elements method

We will calculate the three ultrawarps via the six elements method, calculating the λi
and ki, for i = 1, 2, 3.

The six elements defined

The first element:

ZYX :=

Z1,2(0
1,2
E1

(0E1
m )) Z1(0

E1
m )

Z2(0
E2
m ) Z(m)

01,2E1
(0E1
m ) 0E1

m

0E2
m m

=

0̂Z(m) 0̃1,3Z(m)

0̃2,3Z(m) Z(m)

⊙1,2
m 0E1

m

0E2
m m,

where we have used the fact that Z1,2 is a double vector bundle map, hence Z2(0
E2
m ) =

0̃2,3Z(m).

The second element:

YZX :=

ξ�(Z1(0
E1
m )) Z1(0

E1
m )

η�(Z(m)) Z(m)

01,2E1
(0E1
m ) 0E1

m

0E2
m m

=

0̂η�(Z(m)) 0̃1,3Z(m)

η�(Z(m)) Z(m)

⊙1,2
m 0E1

m

0E2
m m,
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where we have used (4.34), ξ�(Z1(0
E1
m )) = ξ�(0̃1,3Z(m)) = 0̂η�(Z(m)).

The third element:

XZY :=

φ�(Z2(0
E2
m )) ψ�(Z(m))

Z2(0
E2
m ) Z(m)

01,2E2
(0E2
m ) 0E1

m

0E2
m m

=

0̂ψ�(Z(m)) ψ�(Z(m))

0̃2,3Z(m) Z(m)

⊙1,2
m 0E1

m

0E2
m m,

where we have used (4.28), φ�(Z2(0
E2
m )) = φ�(0̃2,3Z (m)) = 0̂ψ�(Z(m)).

The fourth element:

ZXY :=

Z1,2(0
1,2
E2

(0E1
m )) Z1(0

E1
m )

Z2(0
E2
m ) Z(m)

01,2E2
(0E2
m ) 0E1

m

0E2
m m

=

0̂Z(m) 0̃1,3Z(m)

0̃2,3Z(m) Z(m)

⊙1,2
m 0E1

m

0E2
m m.

The fifth element:

YXZ :=

ξ�(ψ�(Z(m))) ψ�(Z(m))

η�(Z(m)) Z(m)

⊙1,2
m 0E1

m

0E2
m m,

and finally the sixth element:

XYZ :=

φ�(η�(Z(m))) ψ�(Z(m))

η�(Z(m)) Z(m)

⊙1,2
m 0E1

m

0E2
m m.

u1: the ultrawarp of induced grid on the (B-F) core dvb

We need to calculate λ1 and k1. From (3.28) we have,

ZYX—
1,2

YZX = 0̂e1,2 +
1,3
λ1,
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and since in this case e1,2 = 01,2E1
(0E1
m ) = ⊙1,2

m , we have that 0̂e1,2 = ⊙3
m, the triple zero

of E. Therefore,
ZYX—

1,2
YZX = λ1.

The outline of the difference ZYX—
1,2

YZX,

0̂Z(m)—
1,2

0̂η�(Z(m)) 0̃1,3Z(m)—E1

0̃1,3Z(m)

0̃2,3Z(m)—E2

η�(Z(m)) Z(m)− Z(m)

⊙1,2
m 0E1

m

0E2
m m,

and since

0̃2,3Z(m)—E2

η�(Z(m))
(4.30)
= 0̃2,3Z(m)—E2

(η(Z(m)) +
E2

0̃2,3Z(m))

= (0̃2,3Z(m)—E2

0̃2,3Z(m))—E2

η(Z(m)) = —
E2

η(Z(m)),

and additionally,

0̂Z(m)—
1,2

0̂η�(Z(m))
(4.31)
= 0̂Z(m)—

1,2
(0̂η(Z(m)) +

1,2
0̂Z(m))

= (0̂Z(m)—
1,2

0̂Z(m))—
1,2

0̂η(Z(m))
(2.52b)
= —

1,2
0̂η(Z(m)),

it follows that

ZYX—
1,2

YZX =

—
1,2

0̂η(Z(m)) ⊙1,3
m

—
E2

η(Z(m)) 0E3
m

⊙1,2
m 0E1

m

0E2
m m.

To calculate k1, use (3.29),

XZY—
1,2

XYZ = 0̂e′1,2 +
1,3
k1.

In this case, e′1,2 = 01,2E2
(0E2
m ) = ⊙1,2

m so 0̂e′1,2 = ⊙3
m the triple zero of E. So,

XZY—
1,2

XYZ = k1.
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The outline of the difference between the third and the sixth element,

0̂ψ�(Z(m))—
1,2
φ�(η�(Z(m))) ψ�(Z(m))—

E1

ψ�(Z(m))

0̃2,3Z(m)—E2

η�(Z(m)) Z(m)− Z(m)

⊙1,2
m 0E1

m

0E2
m m.

As for λ1, 0̃
2,3
Z(m)—E2

η�(Z(m)) = —
E2

η(Z(m)), and of course, ψ�(Z(m))—
E1

ψ�(Z(m)) =

⊙1,3
m . Also,

0̂ψ�(Z(m))—
1,2
φ�(η�(Z(m)))

(4.30)
= 0̂ψ�(Z(m))—

1,2
φ�(η(Z(m)) +

E2

0̃2,3Z(m))

= 0̂ψ�(Z(m))—
1,2

(
φ�(η(Z(m))) +

1,2
φ� (0̃2,3Z(m)

))
(4.28)
= 0̂ψ�(Z(m))—

1,2

(
φ�(η(Z(m))) +

1,2
0̂ψ�(Z(m))

)
=

(
0̂ψ�(Z(m))—

1,2
0̂ψ�(Z(m))

)
—
1,2
φ�(η(Z(m))) = —

1,2
φ�(η(Z(m)))

and we have that

—
1,2
φ�(η(Z(m)))

(4.24)
= —

1,2

(
φ(η(Z(m))) +

1,2
0̂η(Z(m))

)
= —

1,2
φ(η(Z(m)))—

1,2
0̂η(Z(m)),

so in total,

XZY—
1,2

XYZ =

—
1,2
φ(η(Z(m)))—

1,2
0̂η(Z(m)) ⊙1,3

m

—
E2

η(Z(m)) 0E3
m

⊙1,2
m 0E1

m

0E2
m m.

From (3.30b), since e1 = 0E1
m , 0̂e1 = ⊙3

m,

λ1—
1,2
k1 = 0̂e1 +

2,3
u1 = u1,

therefore,

λ1—
1,2
k1 = —

1,2
0̂η(Z(m))—

1,2

(
—
1,2
φ(η(Z(m)))—

1,2
0̂η(Z(m))

)
= φ(η(Z(m)))

therefore,
u1 = φ(η(Z(m))).
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u2: the ultrawarp of induced grid on the (L-R) core dvb

We now calculate λ2 and k2. For λ2, from (3.32),

XZY—
1,2

ZXY = 0̂e′1,2 +
2,3
λ2 = λ2,

since e′1,2 = 01,2E2
(0E2
m ) = ⊙1,2

m . The outline of the corresponding difference now is,

XZY—
1,2

ZXY =

0̂ψ�(Z(m))—
1,2

0̂Z(m) ψ�(Z(m))—
E1

0̃1,3Z(m)

0̃2,3Z(m)—E2

0̃2,3Z(m) Z(m)− Z(m)

⊙1,2
m 0E1

m

0E2
m m.

Of course we have that 0̃2,3Z(m)—E2

0̃2,3Z(m) = ⊙2,3
m , and

ψ�(Z(m))—
E1

0̃1,3Z(m)

(4.22)
= (ψ(Z(m)) +

E1

0̃1,3Z(m))—E1

0̃1,3Z(m) = ψ(Z(m)), (4.37)

and from (4.23),

0̂ψ�(Z(m))—
1,2

0̂Z(m) = (0̂ψ(Z(m)) +
1,2

0̂Z(m))—
1,2

0̂Z(m) = 0̂ψ(Z(m)) +
1,2
(0̂Z(m)—

1,2
0̂Z(m))

(2.52b)
= 0̂ψ(Z(m)) +

1,2
⊙3
m = 0̂ψ(Z(m)).

The outline of λ2,

XZY—
1,2

ZXY =

0̂ψ(Z(m)) ψ(Z(m))

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m.

For k2, from (3.33),

YXZ—
1,2

YZX = 0̂e1,2 +
2,3
k2 = k2,
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since e1,2 = 01,2E1
(0E1
m ) = ⊙1,2

m . The outline of YXZ—
1,2

YZX:

YXZ—
1,2

YZX =

ξ�(ψ�(Z(m)))—
1,2

0̂η�(Z(m)) ψ�(Z(m))—
E1

0̃1,3Z(m)

η�(Z(m))—
E2

η�(Z(m)) Z(m)− Z(m)

⊙1,2
m 0E1

m

0E2
m m,

and as usual, η�(Z(m))—
E2

η�(Z(m)) = ⊙2,3
m , and from (4.37),

ψ�(Z(m))—
E1

0̃1,3Z(m) = ψ(Z(m)).

Also,

ξ�(ψ�(Z(m)))—
1,2

0̂η�(Z(m))
(4.22)
= ξ�(ψ(Z(m)) +

E1

0̃1,3Z(m))—1,2
0̂η�(Z(m))

(4.33)
= (ξ�(ψ(Z(m))) +

1,2
ξ�(0̃1,3Z(m)))—1,2

0̂η�(Z(m))
(4.34)
= ξ�(ψ(Z(m))) +

1,2
(0̂η�(Z(m))—

1,2
0̂η�(Z(m)))

(2.55b)
= ξ�(ψ(Z(m)))

(4.32)
= ξ(ψ(Z(m))) +

1,2
0̂ψ(Z(m)).

hence the outline of k2,

YXZ—
1,2

YZX =

ξ(ψ(Z(m))) +
1,2

0̂ψ(Z(m)) ψ(Z(m))

⊙2,3
m 0E3

m

⊙1,2
m 0E1

m

0E2
m m.

From (3.34b), we have
λ2—

1,2
k2 = 0̂e2 +

1,3
u2 = u2,

since in this case e2 = 0E2
m . Therefore, as from (2.52b) we have 0̂ψ(Z(m))—

1,2
0̂ψ(Z(m)) =

⊙3
m, it follows that,

λ2—
1,2
k2 = 0̂ψ(Z(m))—

1,2

(
ξ(ψ(Z(m))) +

1,2
0̂ψ(Z(m))

)
= —

1,2
ξ(ψ(Z(m))),

that is,
u2 = —

1,2
ξ(ψ(Z(m))).
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u3: the ultrawarp of induced grid on the (U-D) core dvb

To calculate λ3 use (3.36),

YXZ—
1,3

XYZ = 0̂e′1,3 +
2,3
λ3,

and e′1,3 = ψ�(Z(m)), so

YXZ—
1,3

XYZ = 0̂ψ�(Z(m)) +
2,3
λ3.

The outline of the difference of the elements,

YXZ—
1,3

XYZ =

ξ�(ψ�(Z(m)))—
1,3
φ�(η�(Z(m))) ψ�(Z(m))

η�(Z(m))—
E3

η�(Z(m)) Z(m)

⊙1,2
m 0E1

m

0E2
m m

and since

η�(Z(m))—
E3

η�(Z(m)) = 0̃2,3Z(m),

it follows that:

YXZ—
1,3

XYZ =

ξ�(ψ�(Z(m)))—
1,3
φ�(η�(Z(m))) ψ�(Z(m))

0̃2,3Z(m) Z(m)

⊙1,2
m 0E1

m

0E2
m m
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The following calculation is a variation on the calculation (4.35):

ξ�(ψ�(Z(m)))—
1,3
φ�(η�(Z(m)))

(4.22),(4.30)
= ξ�(ψ(Z(m)) +

E1

0̃1,3Z(m))—1,3
φ�(η(Z(m)) +

E2

0̃2,3Z(m))

(4.33),(4.25)
=

(
ξ�(ψ(Z(m))) +

1,2
ξ�(0̃1,3Z(m))

)
—
1,3

(
φ�(η(Z(m))) +

1,2
φ�(0̃2,3Z(m))

)
(4.34),(4.28)

=

(
ξ�(ψ(Z(m))) +

1,2
0̂η�(Z(m))

)
—
1,3

(
φ�(η(Z(m))) +

1,2
0̂ψ�(Z(m))

)
(4.32),(4.24)

=

(
ξ(ψ(Z(m))) +

1,2
0̂ψ(Z(m)) +

1,2
0̂η�(Z(m))

)
—
1,3

(
φ(η(Z(m))) +

1,2
0̂η(Z(m)) +

1,2
0̂ψ�(Z(m))

)
(4.31),(4.23)

=

(
ξ(ψ(Z(m))) +

1,2
0̂ψ(Z(m)) +

1,2
0̂η(Z(m)) +

1,2
0̂Z(m)

)
—
1,3

(
φ(η(Z(m))) +

1,2
0̂η(Z(m)) +

1,2
0̂ψ(Z(m)) +

1,2
0̂Z(m)

)
=

[
ξ(ψ(Z(m)))—

1,3
φ(η(Z(m)))

]
+
1,2

[
0̂ψ(Z(m))—

1,3
0̂ψ(Z(m))

]
+
1,2

[
0̂η(Z(m))—

1,3
0̂η(Z(m))

]
+
1,2

[
0̂Z(m)—

1,3
0̂Z(m)

]
(2.54a),(2.55a),(2.52a)

=

[
ξ(ψ(Z(m)))—

1,3
φ(η(Z(m)))

]
+
1,2

0̂ψ(Z(m)) +
1,2

⊙3
m +

1,2
0̂Z(m)

(4.23)
=

[
ξ(ψ(Z(m)))—

1,3
φ(η(Z(m)))

]
+
1,2

0̂ψ�(Z(m))

So far, we have written:

YXZ—
1,3

XYZ =

(
ξ(ψ(Z(m)))—

1,3
φ(η(Z(m)))

)
+
1,2

0̂ψ�(Z(m))

Denote by u := ξ(ψ(Z(m)))—
1,3
φ(η(Z(m))) the ultracore element in the previous equa-

tion. Using interchange laws in the Left face of E, we can rewrite the right hand side
of the previous equation as follows,

u +
1,2

0̂ψ�(Z(m)) = (u +
2,3

⊙3
m) +

1,2
(0̂ψ�(Z(m)) +

2,3
0̂Z(m))

= (u +
1,2

0̂Z(m)) +
2,3
(⊙3

m +
1,2

0̂ψ�(Z(m))) = (u +
1,2

0̂Z(m)) +
2,3

0̂ψ�(Z(m)),

in other words:

YXZ—
1,3

XYZ = (u +
1,2

0̂Z(m)) +
2,3

0̂ψ�(Z(m)),
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from where it follows that

λ3 = u +
1,2

0̂Z(m).

To calculate k3, use (3.37),

ZYX—
1,3

ZXY = 0̂e1,3 +
2,3
k3 = 0̂Z(m) +

2,3
k3,

since e1,3 = Z1(0
E1
m ) = 0̃1,3Z(m). We have that

ZYX—
1,3

ZXY = 0̂Z(m)—
1,3

0̂Z(m)
(2.52a)
= 0̂Z(m).

Comparing the last two equations, we have

0̂Z(m) +
2,3
k3 = 0̂Z(m).

Since 0̂Z(m) is the double zero of the Up face over Z(m), we have that k3 +
2,3

0̂Z(m) = k3.

Therefore, from the final equation we obtain k3 = 0̂Z(m). In total, we have that

λ3 = u +
1,2

0̂Z(m) and k3 = 0̂Z(m).

For u3, from (3.38a),

λ3—
1,3
k3 = u3 +

1,2
0̂e3 = u3 +

1,2
0̂Z(m),

since e3 = Z(m). Finally,

λ3—
1,3
k3 = (u +

1,2
0̂Z(m))—

1,3
0̂Z(m) = (u +

1,2
0̂Z(m))—

1,3
(0̂Z(m) +

1,2
⊙3
m)

= (u—
1,3

⊙3
m) +

1,2
(0̂Z(m)—

1,3
0̂Z(m)) = u +

1,2
0̂Z(m),

therefore, from uniqueness of core elements, we have

u3 = u = ξ(ψ(Z(m)))—
1,3
φ(η(Z(m))).

We see that the ultrawarps we obtain with this method are the same as the ultrawarps
obtained with the method in the previous section.

4.5 Connections in A and grids on T 2A

In this section and the next we examine two typical instances of the warp-grid theorem.
In this section we consider grids which arise in T 2A from connections in A. In the
following section we consider T 3M , the triple tangent bundle of a manifold M .



CHAPTER 4. WARPS, BOLTS AND GRIDS; EXAMPLES 157

4.5.1 Grids on T 2A

Consider a connection ∇ in A. Recall that Example 1.2.3 gave a construction of a grid
in TA for which the warp is ∇Xµ. We now extend this idea to define a grid in T 2A.

Let X,Z ∈ X(M), and µ ∈ ΓA. Define the following three linear double sections:

• From Front to Back face: (T (XH);XH , T (X);X).

• From Right to Left face: (T 2(µ);T (µ), T (µ);µ).

• From Down to Up face: (Z̃H
A
; Z̃, ZH ;Z).

Here Z̃ = JM ◦ T (Z) is the complete (or tangent) lift of Z to a vector field on TM .

Likewise Z̃H
A
is the complete lift of ZH ∈ X(A) to a vector field on TA. The grid is

shown in (4.38).

T 2A T 2M

TA TM

TA TM

A M.

T 2(µ)

T (XH)

Z̃H
A

Z̃

T (X)

T (µ)

Z
T (µ)

XH

X

µ

ZH
(4.38)

The front-back and right-left linear double sections are straightforward. For the down-

up linear double section we need to show that (Z̃H
A
, Z̃) is a vector bundle map:

TA T 2A

TM T 2M.

Z̃H
A

T (q) T 2(q)

Z̃

(4.39)

First, commutativity of the diagram. Using that Z̃H
A
= JA ◦ T (ZH) we have,

T 2(q) ◦ Z̃H
A
= T 2(q) ◦ JA ◦ T (ZH),

and from Lemma 1.2.1:

T 2(q) ◦ JA = JM ◦ T 2(q),
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so

T 2(q) ◦ JA ◦ T (ZH) = JM ◦ T 2(q) ◦ T (ZH) = JM ◦ T
(
T (q) ◦ ZH

)
.

Since (ZH , Z) is a vector bundle map we have that T (q) ◦ ZH = Z ◦ q. Hence

JM ◦ T
(
T (q) ◦ ZH

)
= JM ◦ T (Z ◦ q) = JM ◦ T (Z) ◦ T (q) = Z̃ ◦ T (q),

and this establishes the commutativity of the diagram (4.39).

Secondly, we need to check fibrewise linearity. Take ξ1, ξ2 ∈ TA with T (q)(ξ1) =
T (q)(ξ2) = v, v ∈ TM . Then as usual:

ξ1 =
d

dt
a1(t)

∣∣∣
t=0

, ξ2 =
d

dt
a2(t)

∣∣∣
t=0

,

where a1(t), a2(t) are curves in A, with q(a1(t)) = q(a2(t)) = m(t), a curve in M , for t

near zero, and with v = d
dtm(t)

∣∣∣
t=0

. Now expand Z̃H
A
(
ξ1 +

T (q)
ξ2

)
:

Z̃H
A
(
ξ1 +

T (q)
ξ2

)
= (JA ◦ T (ZH))

(
ξ1 +

T (q)
ξ2

)
(6)
= JA

(
d

dt
ZH(a1(t) + a2(t))

∣∣∣
t=0

)
.

(4.40)
Using that ZH is a linear vector field over Z:

A TA

M TM,

ZH

q T (q)

Z

we have that ZH(a1(t) + a2(t)) = ZH(a1(t)) +
T (q)

ZH(a2(t)). Therefore, (4.40) can be

rewritten as:

JA

(
d

dt
(ZH(a1(t)) +

T (q)
ZH(a2(t)))

∣∣∣
t=0

)
. (4.41)

We have that ZH(a1(t)) and Z
H(a2(t)) are curves in TA with

T (q)(ZH(a1(t))) = Z(m(t)) = T (q)(ZH(a2(t))),

for t near zero. And since (ZH , Z) is a linear vector field,

ZH(a1(t)) Z(m(t))

a1(t) m(t),

ZH(a2(t)) Z(m(t))

a2(t) m(t),
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and ZH(a1(t)) +
T (q)

ZH(a2(t)) is the addition in TA
T (q)−−−→ TM of the two curves, there-

fore:

d

dt

(
ZH(a1(t)) +

T (q)
ZH(a2(t))

) ∣∣∣
t=0

=
d

dt
ZH(a1(t))

∣∣∣
t=0

+
T 2(q)

d

dt
ZH(a2(t))

∣∣∣
t=0

, (4.42)

and note that

T 2(q)(
d

dt
ZH(ai(t))

∣∣∣
t=0

) =
d

dt
T (q)(ZH(ai(t)))

∣∣∣
t=0

=
d

dt
Z(m(t))

∣∣∣
t=0

= T (Z)(
d

dt
m(t)

∣∣∣
t=0

) = T (Z)(v),

where d
dtZ

H(ai(t)) ∈ T (TA), i = 1, 2, as the tangent double vector bundle of TA
T (q)−−−→ TM ,

the Back face of 2.63:

T (TA) T (TM)

TA TM.

T 2(q)

pTA pTM

T (q)

Therefore, going back to (4.41), we can rewrite it as,

JA

(
d

dt
ZH(a1(t))

∣∣∣
t=0

+
T 2(q)

d

dt
ZH(a2(t))

∣∣∣
t=0

)
, (4.43)

and since JA preserves addition over T 2(q), see Lemma 2.4.6, (4.43) is equal to,

JA

(
d

dt
ZH(a1(t))

∣∣∣
t=0

)
+

T 2(q)
JA

(
d

dt
ZH(a2(t))

∣∣∣
t=0

)
= JA(T (Z

H)(ξ1)) +
T 2(q)

JA(T (Z
H)(ξ2)) = Z̃H

A
(ξ1) +

T 2(q)
Z̃H

A
(ξ2),

and this completes the proof that (4.39) is a vector bundle map.

The core morphisms of the linear double sections will be needed later:

• For (T (XH);XH , T (X);X) the core morphism is (XH , X).

• For (T 2(µ);T (µ), T (µ);µ) the core morphism is (T (µ), µ).

• For (Z̃H
A
; Z̃, ZH ;Z) the core morphism is (ZH , Z).

The first two cases are instances of the general fact that given a morphism (φ, f) of
vector bundles, the core morphism of the double vector bundle map (T (φ);φ, T (f); f)
is (φ, f), see Section 1.1.2.
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To calculate the core morphism of (Z̃H
A
; Z̃, ZH ;Z), focus on (4.44). At this point we

investigate this linear double section further; it is a double vector bundle morphism
from the Down face to the Up face of T 2A. Note that (4.44) is not a triple vector
bundle.

T 2A T 2M

TA TM

TA TM

A M.

T 2(q)

T (pA)

Z̃H
A

Z̃

T (p)

T (q)

Z
T (q)

pA

p

q

ZH
(4.44)

Take an element a ∈ A. As an element of the core of the Down face of (4.38), its image

in the Down face is ā = d
dt ta

∣∣∣
t=0

∈ TA.

Using the fact that (Z̃, Z) is a vector bundle map, we have that Z̃(0TMm ) = T (0TM )(Z(m)).
Similarly, using the fact that (ZH , Z) is a vector bundle map, we have that ZH(0Am) =
T (0A)(Z(m)). Finally,

Z̃H
A
(ā)

= JA
(
T (ZH)(ā)

)
= JA

(
d

dt
ZH(ta)

∣∣∣
t=0

)
= JA

(
d

dt
tZH(a)

∣∣∣
t=0

)
= JA

(
ZH(a)

B
)
.

Note the following. The element Z̃H
A
(ā) is an element of the Up face of T 2A. And

we can write it as JA
(
T (ZH)(ā)

)
. As JA maps the Back face of T 2A to the Up face

of T 2A, it follows that T (ZH)(ā) is an element of the Back face of T 2A. Hence, in
T (ZH)(ā), ā is an element of the Front face of T 2A.

The maps (T (ZH);ZH , T (Z);Z) form a double vector bundle morphism from the
Front to the Back face of (2.63), with core morphism (ZH , Z) as usual. Therefore,

T (ZH)(ā) = ZH(a)
B
is now in the core of the Back face. And by (2.76), it follows that

JA

(
ZH(a)

B
)
= ZH(a)

U
.
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In total, the triple outline of ā:

ZH(a)
U

T (0TM )(Z(m))

T (0A)(Z(m)) Z(m)

ā 0TMm

0Am m.

Z̃H
A

Z̃

Z

ZH

This completes the proof that the core morphism of (Z̃H
A
; Z̃, ZH ;Z) is (ZH , Z).

4.5.2 The warp of the Back face

The warp of the Back face is given by

T 2(µ)(Z̃(X(m))) —
pTA

Z̃H
A
(T (µ)(X(m))).

The outlines of the two elements are

T 2(µ)(Z̃(X(m))) Z̃(X(m))

T (µ)(Z(m)) Z(m)

T (µ)(X(m)) X(m)

µ(m) m,

Z̃H
A
(T (µ)(X(m))) Z̃(X(m))

ZH(µ(m)) Z(m)

T (µ)(X(m)) X(m)

µ(m) m,

(compare with the general triple outlines of the elements YZX and ZYX, of subsection
3.2.1).
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Writing the complete lifts as Z̃H
A
= JA ◦ T (ZH) and Z̃ = JM ◦ T (Z), and using the

naturality of J-maps (Lemma 1.2.1), we have that

T 2(µ)(Z̃(X(m))) —
pTA

Z̃H
A
(T (µ)(X(m)))

= T 2(µ) (JM (T (Z)(X(m)))) —
pTA

JA
(
T (ZH)(T (µ)(X(m)))

)
= JA(T

2(µ)(T (Z)(X(m)))) —
pTA

JA(T (Z
H)(T (µ)(X(m)))). (4.45)

Since JA interchanges the structures pTA and T (pA), we can rewrite the last expression
in (4.45) as

JA

(
T 2(µ)(T (Z)(X(m))) —

T (pA)
T (ZH)(T (µ)(X(m)))

)
.

Focus on T 2(µ)(T (Z)(X(m))) —
T (pA)

T (ZH)(T (µ)(X(m))). This now describes the warp

of the grid (T 2(µ), T (µ)) and (T (ZH), T (Z)), a grid on the Up face of T 2A. We can
rewrite this as

T (T (µ) ◦ Z)(X(m)) —
T (pA)

T (ZH ◦ µ)(X(m)). (4.46)

At this point, we use Proposition 4.2.2, that the warp of the tangent of a grid is the
tangent of the warp of the grid. We apply this to the grid (T (µ), µ), (ZH , Z) on the
Down face of T 2A. From Example 1.2.3 the warp of this grid is ∇Z(µ) (see(1.45)). The
tangent of this grid is a grid on the Up face of T 2A,

T 2A T 2M

TA TM,

T 2(q)

T 2(µ)

T (pA)T (ZH) T (p) T (Z)

T (q)

T (µ)

and so its warp is given, for any v ∈ TmM , by Proposition 4.2.2,

(T 2(µ) ◦ T (Z))(v) —
T (pA)

(T (ZH) ◦ T (µ))(v) =

T (∇Zµ)(v)
U

+
T 2(q)

T (0̃TA)(T (µ)(v)). (4.47)

Having denoted by 0̃TA the zero section of TA
pA−→ A, the zero section of T 2A

T (pA)−−−−→ TA
is then T (0̃TA). For v = X(m), the left hand side of (4.47) is equal to (4.46). Therefore,
(4.46) is equal to

T (∇Zµ)(X(m))
U

+
T 2(q)

T (0̃TA)(T (µ)(X(m))). (4.48)
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We return now to our calculation of (4.45). Applying JA to (4.48), we have that (4.45)
is

JA

(
T (∇Zµ)(X(m))

U
)

+
T 2(q)

JA
(
T (0̃TA)(T (µ)(X(m)))

)
.

The addition over T 2(q) does not change under JA, by Lemma 2.4.6. From (2.76) we
have

JA

(
T (∇Zµ)(X(m))

U
)

+
T 2(q)

JA
(
T (0̃TA)(T (µ)(X(m)))

)
=

T (∇Zµ)(X(m))
B

+
T 2(q)

0T
2A

T (µ)(X(m)).

This completes the calculation of the warp of the Back face; taking into consideration
the orientation of the Back face, the warp is −T (∇Zµ) ∈ ΓTMTA.

4.5.3 The three ultrawarps

We now focus on the grids defined on the core double vector bundles of T 2A. We present
a table with the results here, and outline the calculations in the following subsections.

Back-Front

The Back face is the tangent double vector bundle of the prolonged bundle TA→ TM
and by the results of subsection 4.5.2 we obtain

T 2(µ) ◦ Z̃ − Z̃H
A
◦ T (µ) ◃ T (∇Zµ). (4.49)

Taking into account the orientation of the Back face, the warp is −T (∇Zµ) ∈ ΓTM (TA).
For the Front face, with the appropriate orientation, the warp is −∇Zµ ∈ ΓA, by
Example 1.2.3. Therefore the ultrawarp for the Back-Front core double vector bundle
(first row of Table 4.1) is, again using Example 1.2.3,

−T (∇Zµ) ◦X +XH(∇Zµ) ◃ −∇X∇Zµ.

Left-Right

The Left face is the double tangent vector bundle T 2A for the manifold A. We therefore
apply (8). Taking into account the orientation of the Left face, we have

T (XH) ◦ ZH − Z̃H
A
◦XH ◃ [ZH , XH ].

The Right face is T 2M so the warp is [Z,X] ∈ X(M). So the warp of the core double
vector bundle in the second row of Table 4.1 is defined by

T (µ) ◦ [Z,X]− [ZH , XH ] ◦ µ. (4.50)
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First, what is [ZH , XH ]? In general, it is not equal to [Z,X]H . Using the warp-grid
theorem, we now show that [ZH , XH ] − [Z,X]H , for a connection in a vector bundle
A, corresponds to the usual definition of R∇ in terms of the covariant derivatives ∇X ;
see (4.52) below.

Both [ZH , XH ] and [Z,X]H project to [Z,X] and therefore their difference is a lin-
ear and vertical vector field on A, see Proposition 4.2.9. We now state the following
definition.

Definition 4.5.1. With the above notation, R∇(Z,X) : A→ A is the map such that

[Z,X]H − [ZH , XH ] = R∇(Z,X)�. (4.51)

In the rest of the section we show that this definition leads to the usual concept of
curvature. We can rewrite the grid on the (L-R) core double vector bundle as the sum
of the following two grids,

TA TM

A M

T (µ)

[Z ,X]H [Z ,X]

µ

and

TA TM

A M,

T (µ)

—
A
R∇(Z,X)� 0TM

µ

so (4.50) is now, from Proposition 4.2.12,

(
T (µ) ◦ [Z,X]− [Z,X]H ◦ µ

)
+

(
T (µ) ◦ 0TM − (—

A
R∇(Z,X)�) ◦ µ

)
.

Here we could cancel the minus signs in the second parenthesis, but we retain them
both in order to make the application of (4.16) clear. From Example 1.2.3,

T (µ) ◦ [Z,X]− [Z,X]H ◦ µ ◃ ∇[Z,X]µ,

and from (4.16)

T (µ) ◦ 0TM − (—
A
R∇(Z,X)�) ◦ µ ◃ +R∇(Z,X)(µ).

So in total, the warp of this core double vector bundle will be

∇[Z,X]µ+R∇(Z,X)(µ).

Taking into consideration the orientation of the core double vector bundle, take the
opposite sign

−∇[Z,X]µ−R∇(Z,X)(µ).
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Up-Down

The warp of the Down face is, again by Example 1.2.3, ∇Xµ. For the warp of the Up
face, we use Proposition 4.2.2, and obtain T (∇Xµ) ∈ ΓTM (TA). Therefore the warp
of the grid in the third row of Table 4.1 is

∇Z∇Xµ.

This completes the exposition of Table 4.1.

The warp-grid theorem now gives us that

−∇X∇Zµ−∇[Z,X]µ−R∇(Z,X)(µ) +∇Z∇Xµ = 0. (4.52)

This is the usual definition of the curvature of ∇ via differential operators. Therefore,
we have shown that if we start with the concept of a connection ∇, and apply the warp-
grid theorem to the grid (4.38) in T 2A, we obtain the usual formula for R∇(Z,X)(µ).

4.6 The triple tangent bundle T 3M and the Jacobi identity

In this section we consider the triple tangent bundle T 3M of a manifoldM and construct
a grid on it, for which the Jacobi identity emerges as a consequence of the warp-grid
theorem. A version of this approach was given by Mackenzie [27]. We present here a
clearer and more detailed calculation.

Take E to be T 3M , the triple tangent bundle. This is a special case of T 2A, for
A = TM :

T 3M T 2M

T 2M TM

T 2M TM

TM M.

T 2(p)

T (pTM )
pT2M

pTM

T (p)

T (p)

pT (p)

pTM p

p

pTM

The three lower faces are copies of T 2M . The Left face is the double tangent bundle
of the manifold TM . The Back face is not a double tangent bundle; it is the tangent

double vector bundle of T 2M
T (p)−−−→ TM . The Up face is obtained by applying the

tangent functor to T 2M .

Starting with three vector fields X, Y , and Z, each a section of one of the three copies
of TM , one can build a grid on T 3M as follows; see (4.53) below.
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• The front-back linear double section (T (X̃); X̃, T (X);X). Take the complete lift
of X across the Down face, and apply the tangent functor to the linear section
(X̃,X).

• The right-left linear double section (T 2(Y );T (Y ), T (Y );Y ). Apply the tangent
functor to Y and then to T (Y ).

• The down-up linear double section (
˜̃
Z; Z̃, Z̃;Z). Take the complete lift of Z across

the Front face, and the complete lift of this across the Left face. Likewise take
the complete lift of Z across the Right face.

As in T 2A, we need to check that (
˜̃
Z, Z̃) is indeed a linear section of the Back face.

First, we need to check commutativity of

T 2M T 3M

TM T 2M.

˜̃
Z

T (p) T 2(p)

Z̃

Using Lemma 1.2.1 for T 2(p) ◦ JTM = JM ◦ T 2(p), and that (Z̃, Z) is a linear vector
field of T 2M , that is, T (p) ◦ Z̃ = Z ◦ p, it follows:

T 2(p) ◦ ˜̃Z = T 2(p) ◦ JTM ◦ T (Z̃) = JM ◦ T 2(p) ◦ T (Z̃) = JM ◦ T (T (p) ◦ Z̃)

= JM ◦ T (Z ◦ p) = J ◦ T (Z) ◦ T (p) = Z̃ ◦ T (p).

To check fibrewise linearity, take ξ1, ξ2 ∈ T 2M , with T (p)(ξ1) = T (p)(ξ2) = v, for

v ∈ TM . Write ξ1 = d
dta1(t)

∣∣∣
t=0

, ξ2 = d
dta2(t)

∣∣∣
t=0

, for a1(t), a2(t) curves in TM , with

p(a1(t)) = p(a2(t)) = m(t), a curve in M , for t near zero, with v = d
dtm(t)

∣∣∣
t=0

. A
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similar calculation as in Section 4.5.1,

˜̃
Z

(
ξ1 +

T (p)
ξ2

)
= (JTM ◦ T (Z̃))

(
ξ1 +

T (p)
ξ2

)
= JTM ◦ T (Z̃)

(
d

dt
(a1(t) + a2(t))

∣∣∣
t=0

)
= JTM

(
d

dt
Z̃(a1(t) + a2(t))

∣∣∣
t=0

)
= JTM

(
d

dt

(
Z̃(a1(t)) +

T (p)
Z̃(a2(t))

) ∣∣∣
t=0

)
= JTM

(
d

dt
Z̃(a1(t))

∣∣∣
t=0

+
T 2(p)

d

dt
Z̃(a2(t))

∣∣∣
t=0

)

= JTM

(
T (Z̃)(ξ1) +

T 2(p)
T (Z̃)(ξ2)

)
= JTM (T (Z̃)(ξ1)) +

T 2(p)
JTM (T (Z̃)(ξ2))

=
˜̃
Z(ξ1) +

T 2(p)

˜̃
Z(ξ2),

and this completes the proof.

That Z̃(a1(t)+ a2(t)) = Z̃(a1(t)) +
T (p)

Z̃(a2(t)) follows from (Z̃, Z) being a linear vector

field.

That d
dt

(
Z̃(a1(t)) +

T (p)
Z̃(a2(t))

) ∣∣∣
t=0

= d
dt Z̃(a1(t))

∣∣∣
t=0

+
T 2(p)

d
dt Z̃(a2(t))

∣∣∣
t=0

, follows as in

4.42.

The diagram in (4.53) shows the entire grid.

T 3M T 2M

T 2M TM

T 2M TM

TM M.

T 2(Y )

T (X̃)˜̃
Z

Z̃

T (X)

T (Y )

Z
T (Y )

X̃

X

Y

Z̃
(4.53)

We now calculate the three ultrawarps defined by this grid. To do this, we calculate
the core morphisms of the three linear double sections, and the warps of the six faces.
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First, the core morphisms. These follow in an analogous way as in the example of T 2A,

• The core morphism of (T (X̃); X̃, T (X);X) is (X̃,X).

• The core morphism of (T 2(Y );T (Y ), T (Y );Y ) is (T (Y ), Y ).

• The core morphism of (
˜̃
Z; Z̃, Z̃;Z) is (Z̃, Z).

To calculate the warps of the six faces, we take into consideration the orientation of
the faces of a triple vector bundle. For the lower faces, by (8):

• For the Front face: Z̃(Y )— T (Y )(Z) ◃ [Y, Z].

• For the Right face: T (X)(Z)— Z̃(X) ◃ [Z,X].

• For the Down face: T (Y )(X)— X̃(Y ) ◃ [X,Y ].

We now calculate the warps of the upper faces.

4.6.1 Upper faces

Back face

The warp of the Back face, for v ∈ TM , is given by

˜̃
Z ◦ T (Y )(v) —

T 2(p)
T 2(Y ) ◦ Z̃(v) = wback(v) +

pT2M

0̂
Z̃(v)

. (4.54)

As we mentioned, the Back face is the tangent double vector bundle of T 2M
T (p)−−−→ TM .

Apply T (JM ) to it, the tangent of the canonical involution JM : T 2M → T 2M . The
resulting double vector bundle is now the double tangent bundle of TM . In fact,
T (JM ) is a triple vector bundle morphism, and maps the Back face of T 3M to the
double tangent bundle of TM as shown in (4.55).

T 3M T 2M

T 3M T 2M

T 2M TM

T 2M TM.

T 2(p)

T (JM )

pT2M

pTM

id

T (pTM )

pTM
T (p)

JM id
pTM

pT2M

(4.55)
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As usual, from Section 1.1.2, the core morphism of (4.55) is (JM , id). Hence, applying
T (JM ) to (4.54),

T (JM )

(˜̃
Z ◦ T (Y )(v) —

T 2(p)
T 2(Y ) ◦ Z̃(v)

)
= JM (wback(v)) +

pT2M

0̂
Z̃(v)

. (4.56)

Note that T (JM ) changes the vector bundle structure over which the subtraction of the
left hand side takes place, and —

T 2(p)
will become —

T (pTM )
. Applying T (JM ) to the grid

of the Back face yields the following grid on the double tangent bundle of TM .

T 3M T 2M

T 2M TM.

T (pTM )

T (Ỹ )

pT2M˜̃
Z pTM Z̃

pTM

Ỹ

Therefore, expanding the left hand side of (4.56),

T (JM )

(˜̃
Z ◦ T (Y )(v) —

T 2(p)
T 2(Y ) ◦ Z̃(v)

)
= T (JM )((

˜̃
Z ◦ T (Y ))(v)) —

T (pTM )
T (JM )((T 2(Y ) ◦ Z̃)(v)). (4.57)

At this point we need to show that

T (JM ) ◦ ˜̃Z =
˜̃
Z ◦ JM . (4.58)

This we do as follows. First, rewrite the left hand side of (4.58) as,

T (JM ) ◦ ˜̃Z = T (JM ) ◦ (JTM ◦ T (Z̃)) = T (JM ) ◦ (JTM ◦ T (JM ◦ T (Z)))
= T (JM ) ◦ JTM ◦ T (JM ) ◦ T 2(Z).

Rewrite the right hand side of (4.58) as,

˜̃
Z ◦ JM = JTM ◦ T (JM ) ◦ T 2(Z) ◦ JM = JTM ◦ T (JM ) ◦ JTM ◦ T 2(Z),

where in the last equality we have used that T 2(Z) ◦ JM = JTM ◦ T 2(Z) applying
Lemma 1.2.1. Therefore, it suffices to show that

T (JM ) ◦ JTM ◦ T (JM ) = JTM ◦ T (JM ) ◦ JTM .
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Take a Φ ∈ T 3M , and write it as:

d

dt

d

ds

d

du
m(t, s, u)

∣∣∣
u,s,t=0

,

where m : (−ϵ, ϵ)× (−ϵ, ϵ)× (−ϵ, ϵ) →M , a smooth cube of elements of M . Then,

T (JM )(Φ) =
d

dt

(
JM (

d

ds

d

du
m(t, s, u)

∣∣∣
u,s=0

)

) ∣∣∣
t=0

=
d

dt

d

du

d

ds
m(t, s, u)

∣∣∣
s,u,t=0

,

and

JTM (T (JM )(Φ)) = JTM

(
d

dt

d

du

d

ds
m(t, s, u)

∣∣∣
s,u,t=0

)
=

d

du

d

dt

d

ds
m(t, s, u)

∣∣∣
s,t,u=0

so finally

T (JM )(JTM (T (JM )(Φ))) = T (JM )

(
d

du

d

dt

d

ds
m(t, s, u)

∣∣∣
s,t,u=0

)
=

d

du

(
JM (

d

dt

d

ds
m(t, s, u)

∣∣∣
s,t=0

)

) ∣∣∣
u=0

=
d

du

d

ds

d

dt
m(t, s, u)

∣∣∣
t,s,u=0

(4.59)

Similarly,

(JTM ◦ T (JM ) ◦ JTM )(Φ) = (JTM ◦ T (JM ))(JTM (Φ))

= (JTM ◦ T (JM ))

(
d

ds

d

dt

d

du
m(t, s, u)

∣∣∣
u,t,s=0

)
= JTM

(
T (JM )

(
d

ds

d

dt

d

du
m(t, s, u)

∣∣∣
u,t,s=0

))
= JTM

(
d

ds

d

du

d

dt
m(t, s, u)

∣∣∣
t,u,s=0

)
=

d

du

d

ds

d

dt
m(t, s, u)

∣∣∣
t,s,u=0

and we see that this is equal to (4.59). Therefore, using (4.58), we can rewrite (4.57)
as,

(
˜̃
Z ◦ Ỹ )(v) —

T (pTM )
(T (Ỹ ) ◦ Z̃)(v) (8)= −[Z̃, Ỹ ](v) +

pT2M

0̂
Z̃(v)

= [̃Y,Z](v) +
pT2M

0̂
Z̃(v)

.

Substituting this into (4.56),

[̃Y, Z](v) +
pT2M

0̂
Z̃(v)

= JM (wback(v)) +
pT2M

0̂
Z̃(v)

,

and using that J2
M = id, we obtain

wback = T ([Y, Z]).
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Left face

The Left face is the double tangent bundle of TM , so we simply apply (8) for the grid

(T (X̃), X̃), (
˜̃
Z, Z̃),

T (X̃) ◦ Z̃ − ˜̃Z ◦ X̃ ◃ [Z̃, X̃] = [̃Z,X],

so wleft = [̃Z,X].

Up face

For the Up face, using Proposition 4.2.2, it follows directly that wup = T ([X,Y ]).

The three ultrawarps

The three core double vector bundles are all copies of T 2M , and their ultracore is
TM →M .

The three core double vector bundles in the usual order (B-F), (L-R), and (U-D), with
the induced grids from the original grid on T 3M ,

T 2M TM

TM M,

X̃

wback wfront

X

T 2M TM

TM M,

T (Y )

wleft wright

Y

T 2M TM

TM M.

Z̃

wup wdown

Z

Finally, by (8), the ultracore elements are

wback ◦X − X̃ ◦ wfront = T ([Y, Z]) ◦X − X̃ ◦ [Y,Z] ◃ [X, [Y, Z]],

wleft ◦Y − T (Y ) ◦ wright = [̃Z,X] ◦ Y − T (Y ) ◦ [Z,X] ◃ [Y, [Z,X]],

wup ◦Z − Z̃ ◦ wdown = T ([X,Y ]) ◦ Z − Z̃ ◦ [X,Y ] ◃ [Z, [X,Y ]].

We see that in this way we have formulated the three terms of the Jacobi identity. And
applying the warp-grid theorem, we obtain a diagrammatic proof of the Jacobi identity.

4.7 Warps and duality

In this subsection we present Theorem 4.7.2, an alternative formula for the warp which
relies on the duality of double vector bundles. And in subsections 4.7.2 and 4.7.3 we
verify Theorem 4.7.2 directly for the grids in (9) and in (1.46).
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4.7.1 Squarecap sections and their pairings

For a double vector bundle D, in Subsection 2.4.5 we encountered its two duals D BA
and D BB. We now examine linear sections of these structures. In particular, starting
with a grid (ξ,X) and (η, Y ) on D, we will describe the following two linear sections
on the iterated duals D BA BC∗ and D BB BC∗ of D:

D B

A M,

ξ

η Y

X

D BA BC∗ C∗

B M,

η⊓

Y

D BB BC∗ A

C∗ M.

ξ⊓ X (4.60)

A linear section (η, Y ) of D as in the first diagram of (4.60) induces a linear map,

ℓη : D BA → R
Φ 7→ ⟨Φ, η(γAA(Φ))⟩A,

where γAA : D BA→ A, see middle diagram of (2.82). This map is automatically linear
with respect to D BA→ A, that is, for Φ1,Φ2 ∈ D BA with γAA(Φ1) = γAA(Φ2) = a:

ℓη(Φ1+
A
Φ2) = ⟨Φ1+

A
Φ2, η(γ

A
A(Φ1+

A
Φ2))⟩A = ⟨Φ1+

A
Φ2, η(a)⟩A

= ⟨Φ1, η(a)⟩A + ⟨Φ2, η(a)⟩A = ℓη(Φ1) + ℓη(Φ2).

In ([26, Proposition 3.1]), it is proved that ℓη is also linear with respect to the other
vector bundle structure, D BA→ C∗. We include the proposition and its proof.

Proposition 4.7.1. If (η, Y ) is a linear section, then ℓη : D BA→ R defined by

Φ 7→ ⟨Φ, η(γAA(Φ))⟩

is linear with respect to C∗ as well as A, and the restriction of ℓη to the core of D BA
is ℓY : B∗ → R.

Proof. If Φ1,Φ2 ∈ D BA with (Φ1; a1, κ;m) and (Φ2; a2, κ;m), their sum over C∗ has
outline (Φ1 +

C∗
Φ2; a1 + a2, κ;m), therefore,

ℓη(Φ1 +
C∗

Φ2) = ⟨Φ1 +
C∗

Φ2, η(a1 + a2)⟩A.

Now since (η, Y ) is a vector bundle morphism, for a1, a2 ∈ Am: η(a1+a2) = η(a1)+
B
η(a2),

therefore

⟨Φ +
C∗

Φ2, η(a1)+
B
η(a2)⟩A.
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Using (2.81) the definition of +
C∗

, we can write:

ℓη(Φ1 +
C∗

Φ2) = ⟨Φ1, η(a1)⟩+ ⟨Φ2, η(a2)⟩ = ℓη(Φ1) + ℓη(Φ2).

Similarly for scalar multiplication. Now given ψ ∈ B∗
m, recall by (2.80) the correspond-

ing core element ψ ∈ D BA is given by

⟨ψ, 0Db +
A
c⟩ = ⟨ψ, b⟩,

for any b ∈ Bm, and any c ∈ Cm. Hence

ℓη(ψ) = ⟨ψ, η(0Am)⟩ = ⟨ψ, Y (m)⟩ = ℓY (ψ),

where ℓY : B∗ → R denotes the linear map φ 7→ ⟨φ, Y (qB∗(φ))⟩, for Y ∈ ΓB, of
(η, Y ).

Therefore, we can define a linear section of D BA BC∗ → C∗, which we denote by η⊓:

η⊓ : C∗ → D BA BC∗

κ 7→ η⊓(κ) ∈ D BA BC∗
∣∣∣
κ
.

Define η⊓(κ) ∈ D BA BC∗
∣∣∣
κ
by defining its pairing with any Φ ∈ D BA∣∣∣

κ
to be

⟨η⊓(κ),Φ⟩C∗ := ℓη(Φ) = ⟨Φ, η(γAA(Φ))⟩A. (4.61)

This η⊓ is again a linear section over Y ∈ ΓB. We use notations such as
∣∣∣
κ
on double

vector bundles when the symbol for the base point makes clear which structure is meant.
The corresponding linear function defined by (η⊓, Y ) then is,

ℓη⊓ : D BA → R
Φ 7→ ⟨η⊓(γAC∗(Φ)),Φ⟩C∗ ,

and due to (4.61), of course ℓη⊓ = ℓη.

Therefore, we see that there exists a one-to-one correspondence between linear sections
(η, Y ) of D → A and linear sections (η⊓, Y ) of D BA BC∗ → C∗.

Similarly, there exists a one-to-one correspondence between linear sections (ξ,X) of
D → B and linear sections (ξ⊓, X) of D BB BC∗ → C∗, given by

⟨ξ⊓(κ),Ψ⟩C∗ := ℓξ(Ψ) = ⟨Ψ, ξ(γBB (Ψ))⟩B, (4.62)

where κ ∈ C∗ and Ψ ∈ D BB∣∣∣
κ
.

We refer to ξ⊓ and η⊓ collectively as ‘squarecap sections.’
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We now transform the pairing , into a pairing J , K between the bundles DBBBC∗ →
C∗ and D BA BC∗ → C∗. Given a grid in D, applying J , K to the sections defined in
(4.61) and (4.62) will give an alternative formula for the warp.

Since D BA BC∗ and D BA are dual vector bundles over C∗, we have the usual
nondegenerate pairing between them. We will use this pairing and the map Z−1

A :
DBB BC∗ → DBA (see (2.84)) to define a pairing between DBABC∗ and DBB BC∗

over C∗1.

Take elements Λ ∈ D BB BC∗ and Σ ∈ D BA BC∗ with outlines (Λ;κ,X;m) and
(Σ;Y, κ;m), and define JΛ,ΣK = ⟨Σ, Z−1

A (Λ)⟩C∗ . (4.63)

Equivalently, we can define the pairing (4.63) via the map Z−1
B : D BA BC∗ → D BB,

see (2.85), as follows JΛ,ΣK = ⟨Λ, Z−1
B (Σ)⟩C∗ . (4.64)

Both (4.63) and (4.64) define the same pairing. Indeed, rewrite the right hand side of
(4.63) using (2.85):

⟨Σ, Z−1
A (Λ)⟩C∗ = Z−1

A (Λ), Z−1
B (Σ) .

And rewriting the right hand side of (4.64) using (2.84),

⟨Λ, Z−1
B (Σ)⟩C∗ = Z−1

A (Λ), Z−1
B (Σ) ,

so we see that they are equal.

The proof of the next result will take us to the end of the subsection.

Theorem 4.7.2. Let (ξ,X) and (η, Y ) be linear sections forming a grid on a double
vector bundle D. Then Jξ⊓, η⊓K = ℓw(ξ,η).

Proof. The following outlines may help us to keep track of the various calculations,

D BA ∋ Z−1
A (ξ⊓(κ)) κ

−X(m) m,

D BB ∋ Z−1
B (η⊓(κ)) Y (m)

κ m.

Note that the minus sign on −X(m) of Z−1
A (ξ⊓(κ)) comes from the fact that ZA induces

− idA : A→ A over M .

1Parenthesis: Suppose φ ∈ V ∗ and v ∈ V . Take the usual pairing between V and V ∗: ⟨φ, v⟩ ∈ R.
Let F : W → V ∗ be an isomorphism of vector spaces. Then we can define a pairing between W and V
as follows: ⟨w, v⟩ := ⟨F (w), v⟩, for w ∈ W and v ∈ V . This is what we do in this case.
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We can now begin calculations. Start with (4.63),Jξ⊓(κ), η⊓(κ)K = ⟨η⊓(κ), Z−1
A (ξ⊓(κ))⟩C∗

(4.61)
= ℓη(Z

−1
A (ξ⊓(κ)))

= −⟨Z−1
A (ξ⊓(κ)), η(X(m))⟩A.

Now using (2.83), with Φ = Z−1
A (ξ⊓(κ)), Ψ = Z−1

B (η⊓(κ)), and d = —
B
η(X(m)), we

have

Z−1
A (ξ⊓(κ)), Z−1

B (η⊓(κ))

= ⟨Z−1
A (ξ⊓(κ)),—

B
η(X(m))⟩A − ⟨Z−1

B (η⊓(κ)),—
B
η(X(m))⟩B,

and this implies that

− ⟨Z−1
A (ξ⊓(κ)), η(X(m))⟩A

= Z−1
A (ξ⊓(κ)), Z−1

B (η⊓(κ)) − ⟨Z−1
B (η⊓(κ)), η(X(m))⟩B.

Returning to the previous calculationsJξ⊓(κ), η⊓(κ)K = −⟨Z−1
A (ξ⊓(κ)), η(X(m))⟩A

= Z−1
A (ξ⊓(κ)), Z−1

B (η⊓(κ)) − ⟨Z−1
B (η⊓(κ)), η(X(m))⟩B

(2.84)
= ⟨ξ⊓(κ), Z−1

B (η⊓(κ))⟩C∗ − ⟨Z−1
B (η⊓(κ)), η(X(m))⟩B (4.65)

(4.62)
= ⟨Z−1

B (η⊓(κ)), ξ(Y (m))⟩B − ⟨Z−1
B (η⊓(κ)), η(X(m))⟩B

= ⟨Z−1
B (η⊓(κ)), ξ(Y (m))—

B
η(X(m))⟩B

(11)
= ⟨Z−1

B (η⊓(κ)),w(ξ, η)(m)+
A
0DY (m)⟩B.

Using (2.78), we can rewrite the last expression of (4.65) as

⟨Z−1
B (η⊓(κ)),w(ξ, η)(m)+

A
0DY (m)⟩B = ⟨κ,w(ξ, η)(m)⟩ = ℓw(ξ,η)(κ),

since γBC∗(Z
−1
B (η⊓(κ))) = κ.

In total, we have shown that, for κ ∈ C∗, Jξ⊓, η⊓K(κ) = ℓw(ξ,η)(κ). And this completes
the proof of Theorem 4.7.2.

Note that by comparing (4.64) with (4.65), we see that ⟨Z−1
B (η⊓(κ)), η(X(m))⟩B = 0.

This can be proved directly. To see this, let Φ ∈ D BA, with outline (Φ;X(m), κ;m).
Then, via (2.83), rewrite ⟨Z−1

B (η⊓(κ)), η(X(m))⟩B as follows:

⟨Z−1
B (η⊓(κ)), η(X(m))⟩B = ⟨Φ, η(X(m))⟩A − ∥Φ, Z−1

B (η⊓(κ))∥C∗

(2.85)
= ⟨Φ, η(X(m))⟩A − ⟨η⊓(κ),Φ⟩C∗

(4.61)
= ⟨Φ, η(X(m))⟩A − ⟨Φ, η(X(m))⟩A
= 0.
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4.7.2 Example with T 2M

Consider the double vector bundle T 2M and the grid consisting of (X̃,X) and (T (Y ), Y ),
as in (9). What are the corresponding X̃⊓ and T (Y )⊓? The two duals of T 2M are

T 2M TM

TM M,

T (p)

pTM p

p

T •TM TM

T ∗M M,

T (p)•

r• p

cM

T ∗(TM) T ∗M

TM M.

r

cTM cM

p

(4.66)

The double vector bundle T •TM is the prolongation dual of T 2M , in the notation of
[25, Section 9.3]. It is canonically isomorphic as a double vector bundle to T (T ∗M)
under the map I:

I : T (T ∗M) → T •(TM),

X 7→ I(X ),

such that
⟨I(X ), η⟩TM = ⟨⟨X , η⟩⟩, (4.67)

where X ∈ T (T ∗M), η ∈ T 2M , and ⟨⟨ , ⟩⟩ is the tangent prolongation of the pairing of
TM with T ∗M , as we saw in (4.2). The map I induces the identity map on both side
bundles and on the core vector bundle.

Now, given (T (Y ), Y ), we will calculate T (Y )⊓ using ℓT (Y ),

ℓT (Y ) : T
•(TM) → R, T •

v TM ∋ ξ 7→ ⟨ξ, T (Y )(v)⟩TM ,

where v ∈ TM and T •
v TM is the fibre of T •(TM) over v ∈ TM .

The function ℓT (Y ) is linear with respect to both TM and T ∗M as noted in general in
subsection 4.7.1. Since it is linear with respect to T ∗M , it defines a linear section of
the dual of the vector bundle T •(TM) → T ∗M , that is, of T •(TM) BT ∗M → T ∗M .
We use I to simplify this.

Take the function
ℓT (Y ) ◦ I : T (T ∗M) → R.

It follows directly that this is also linear with respect to T ∗M .

Therefore, it will define a linear section Y of the dual of the vector bundle T (T ∗M) →
T ∗M , that is, of the iterated cotangent T ∗(T ∗M) → T ∗M .

Consider Y(φ) ∈ T ∗(T ∗M) for φ ∈ T ∗M . Pair this with a ξ ∈ T (T ∗M) with outline
(ξ;φ, v;m), where v ∈ TM . Using (4.61),

⟨Y(φ), ξ⟩T ∗M = (ℓT (Y ) ◦ I)(ξ) = ⟨I(ξ), T (Y )(v)⟩TM .

We now need the following result from [28]; see also [25, 3.4.6]. It is valid for an
arbitrary vector bundle A.
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Proposition 4.7.3. Given (ξ;µ(m), v;m) ∈ TA and (X;φm, v;m) ∈ T (A∗), let µ ∈
Γ(A) and φ ∈ Γ(A∗) be any sections taking the values µ(m) and φm at m. Then

⟨⟨X, ξ⟩⟩ = X(ℓµ) + ξ(ℓφ)− v(⟨φ, µ⟩). (4.68)

Using Proposition 4.7.3 and (4.67), it follows that

⟨I(ξ), T (Y )(v)⟩TM = ⟨dℓY (φ), ξ⟩. (4.69)

This is true for any such ξ ∈ T (T ∗M) so it follows that

Y(φ) = (dℓY )(φ),

and the linear section in question, (T (Y )⊓, Y ), can be identified with (dℓY , Y ).

Next consider the linear section (X̃,X) and the third double vector bundle in (4.66).
As before, the function

ℓ
X̃

: T ∗(TM) → R.

is linear with respect to both TM and T ∗M . Using the linearity over T ∗M , we obtain a
section of the dual of the vector bundle T ∗(TM) → T ∗M ; that is, of T ∗(TM)BT ∗M →
T ∗M .

Again, this is not easy to work with, and in this case we need to use the reversal
isomorphism R which we saw in Example 4.1.2. It follows that

ℓ
X̃
◦R : T ∗(T ∗M) → R

is also linear with respect to T ∗M , and defines a section X of the dual of the vector
bundle T ∗(T ∗M) → T ∗M ; that is, of the tangent bundle T (T ∗M) → T ∗M .

Then for φ ∈ T ∗M , and any F ∈ T ∗(T ∗M) with outline (F; v, φ;m), with v ∈ TM ,
using (4.61),

⟨X(φ),F⟩T ∗M = (ℓ
X̃
◦R)(F) = ℓ

X̃
(R(F)) = ⟨R(F), X̃(v)⟩TM .

At this point, we use the commutative diagram (4.70), in which each map is an iso-
morphism of double vector bundles and (dν)♯ is the map associated to the canonical
symplectic structure dν on T ∗M ; see [28] or [25, p. 442].

T ∗(T ∗M) T ∗(TM)

T (T ∗M) T •(TM).

R

(dν)♯ J∗

I

(4.70)

Using R = J∗ ◦ I ◦ (dν)♯, we have

⟨R(F), X̃(v)⟩TM = ⟨J∗(I((dν)♯(F))), X̃(v)⟩TM
= ⟨I((dν)♯(F)), J(X̃(v))⟩TM = ⟨I((dν)♯(F)), T (X)(v)⟩TM .
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As before, using (4.69),

⟨I((dν)♯(F)), T (X)(v)⟩TM = (dν)♯(F)(ℓX) = ⟨dℓX , (dν)♯(F)⟩ = −⟨(dν)♯(dℓX),F⟩,

so we see that X = −(dν)♯(dℓX); that is, it is the Hamiltonian vector field for the
function ℓX . Denote it by HℓX . Finally,

JT (Y )⊓, X̃⊓KT ∗M = ⟨dℓY ,HℓX ⟩ = ℓ[X,Y ].

4.7.3 Example with TA

In the case of Example 1.2.3, what are the corresponding sections T (µ)⊓ and (XH)⊓ ?
Just as in the case of T 2M , (T (µ)⊓, µ) can be identified with (dℓµ, µ).

For (XH , X) a more elaborate calculation is needed. Again, we use ℓXH ◦R : T ∗A∗ → R,
and its linearity with respect to A∗. This will define a section of the dual of T ∗A∗ → A∗,
that is, of TA∗ → A∗. Denote this vector field by Φ.

Given κ ∈ A∗, pair Φ(κ) ∈ TA∗ with any Ψ ∈ T ∗A∗ which has outline (Ψ;κ, a;m). By
Proposition 4.1.1, for suitable X ∈ TA∗,

⟨Φ(κ),Ψ⟩A∗ = (ℓXH ◦R)(Ψ) = ⟨R(Ψ), XH(a)⟩A = ⟨⟨X , XH(a)⟩⟩ − ⟨Ψ,X ⟩A∗ . (4.71)

The outlines for the elements involved are:

T ∗A ∋ R(Ψ) a ∈ A

A∗ ∋ κ m,

TA ∋ XH(a) X(m) ∈ TM

A ∋ a m,

T ∗A∗ ∋ Ψ a ∈ A

A∗ ∋ κ m,

TA∗ ∋ X X(m) ∈ TM

A∗ ∋ κ m.

Now use Proposition 4.7.3 for the first term of (4.71). Choose a φ ∈ ΓA∗ with φ(m) = κ,
and a µ ∈ ΓA with µ(m) = a. We can also make the following choice; linear vector
fields of a vector bundle A are in bijective correspondence with linear vector fields on
its dual bundle A∗ (see [25, 3.4.5]). Therefore, take X to be XH∗(φ(m)), where XH∗

is the corresponding linear vector field to XH . Then we can write

⟨⟨XH∗(φ(m)), XH(a)⟩⟩ − ⟨Ψ, XH∗(φ(m))⟩A∗

= XH∗(φ(m))(ℓµ) +XH(µ(m))(ℓφ)

−X(m)(⟨φ, µ⟩)− ⟨Ψ, XH∗(φ(m))⟩A∗ . (4.72)
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At this point, recall from (1.44) that for φ ∈ ΓA∗, and for µ ∈ ΓA,

XH(ℓφ) = ℓ∇(∗)
X (φ)

∈ C∞(A), XH∗(ℓµ) = ℓ∇X(µ) ∈ C∞(A∗),

and of course equation (1.43), the relation between ∇ and ∇(∗),

⟨∇(∗)
X (φ), µ⟩ = X(⟨φ, µ⟩)− ⟨φ,∇X(µ)⟩,

and the latter equation can be rewritten as

ℓ∇(∗)
X (φ)

◦ µ = X(⟨φ, µ⟩)− ℓ∇X(µ) ◦ φ.

Returning to (4.72),

⟨⟨XH∗(φ(m)), XH(a)⟩⟩ − ⟨Ψ, XH∗(φ(m))⟩A∗

= ℓ∇X(µ)(φ(m)) + ℓ∇(∗)
X (φ)

(µ(m))−X(m)(⟨φ, µ⟩)− ⟨Ψ, XH∗(φ(m))⟩A∗

= −⟨Ψ, XH∗(φ(m))⟩A∗ .

Finally, we have shown that the pairing between T (µ)⊓, which we have shown can be
identified with (dℓµ, µ), and (XH)⊓, which can be identified with (XH∗ , X) is,

⟨XH∗ , dℓµ⟩ = XH∗(ℓµ) = ℓ∇X(µ).
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Table 4.1: Warps and ultrawarps in T 2A.

Back Front (B-F) core double vector bundle uBF

−T (∇Zµ) −∇Zµ

TA A

TM M

XH

−T (∇Zµ) −∇Z(µ)

X

−∇X∇Zµ

Left Right (L-R) core double vector bundle uLR

[ZH , XH ] [Z,X]

TA TM

A M

T (µ)

[ZH , XH ] [Z ,X]

µ

−∇[Z,X]µ−R∇(Z,X)(µ)

Up Down (U-D) core double vector bundle uUD

T (∇Xµ) ∇Xµ

TA A

TM M

ZH

T (∇Xµ) ∇Xµ

Z

∇Z∇Xµ
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Additional calculations

A.1 Calculations for Section 3.2.2

A.1.1 Proofs of the equations (3.34a), (3.34b), and (3.34c)

From Paragraph 3.2.2, the outlines of λ2 and k2 are:

λ2, k2 w13

0̃2,3e2 0E3
m

0̃1,2e2 0E1
m

e2 m,

The calculations,

• λ2—
1,3
k2 = 0̂w13 +

1,2
(0̂

0
E1
m

+
2,3
u2) = 0̂w13 +

1,2
(⊙3

m +
2,3
u2) = 0̂w13 +

1,2
u2,

• λ2—
1,3
k2 = 0̂w13 +

2,3
(0̂

0
E3
m

+
1,2
u2) = 0̂w13 +

2,3
(⊙3

m +
1,2
u2) = 0̂w13 +

2,3
u2,

• λ2—
1,2
k2 = 0̂

0̃1,2e2
+
1,3
(0̂

0
E1
m

+
2,3
u2) = 0̂e2 +

1,3
(⊙3

m +
2,3
u2) = 0̂e2 +

1,3
u2,

• And

λ2—
1,2
k2 = 0̂

0̃1,2e2
+
2,3
(0̂e2 +

1,3
u2) = 0̂e2 +

2,3
(0̂e2 +

1,3
u2)

= (0̂e2 +
1,3

⊙3
m) +

2,3
(0̂e2 +

1,3
u2) = (0̂e2 +

2,3
0̂e2) +

1,3
(⊙3

m +
2,3
u2)

(2.21c)
= 0̂e2 +

1,3
u2,

181
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• λ2—
2,3
k2 = 0̂

0̃2,3e2
+
1,3
(0̂

0
E3
m

+
1,2
u2) = 0̂e2 +

1,3
(⊙3

m +
1,2
u2) = 0̂e2 +

1,3
u2,

• Finally,

λ2—
2,3
k2 = 0̂

0̃2,3e2
+
1,2
(0̂e2 +

1,3
u2) = 0̂e2 +

1,2
(0̂e2 +

1,3
u2)

= (0̂e2 +
1,3

⊙3
m) +

1,2
(0̂e2 +

1,3
u2) = (0̂e2 +

1,2
0̂e2) +

1,3
(⊙3

m +
1,2
u2)

(2.21b)
= 0̂e2 +

1,3
u2.

A.1.2 Proofs of the equations (3.38a), (3.38b), and (3.38c)

From Paragraph 3.2.2, the outlines of λ3 and k3 are:

λ3, k3 0̃1,3e3

0̃2,3e3 e3

w12 0E1
m

0E2
m m,

And the relevant calculations,

• λ3—
1,3
k3 = 0̂

0̃1,3e3
+
1,2
(0̂

0
E1
m

+
2,3
u3) = 0̂e3 +

1,2
u3,

• And

λ3—
1,3
k3 = 0̂

0̃1,3e3
+
2,3
(0̂e3 +

1,2
u3) = (0̂e3 +

1,2
⊙3
m) +

2,3
(0̂e3 +

1,2
u3)

= (0̂e3 +
2,3

0̂e3) +
1,2
(⊙3

m +
2,3
u3)

(2.15c)
= 0̂e3 +

1,2
u3,

• λ3—
1,2
k3 = 0̂w12 +

1,3
(0̂

0
E1
m

+
2,3
u3) = 0̂w12 +

1,3
u3,

• λ3—
1,2
k3 = 0̂w12 +

2,3
(0̂

0
E2
m

+
1,3
u3) = 0̂w12 +

2,3
u3,

• And

λ3—
2,3
k3 = 0̂

0̃2,3e3
+
1,3
(0̂e3 +

1,2
u3) = (0̂e3 +

1,2
⊙3
m) +

1,3
(0̂e3 +

1,2
u3)

= (0̂e3 +
1,3

0̂e3) +
1,2
(⊙3

m +
1,3
u3)

(2.15a)
= 0̂e3 +

1,2
u3,

• λ3—
2,3
k3 = 0̂

0̃2,3e3
+
1,2
(0̂

0
E2
m

+
1,3
u3) = 0̂e3 +

1,2
u3.
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A.1.3 Calculations for u1

ZYX—
1,2

YZX and XZY—
1,2

XYZ

Recall from Paragraph 3.2.2, that

ZYX—
1,2

YZX = 0̂e1,2 +
1,3
λ1, XZY—

1,2
XYZ = 0̂e′1,2 +

1,3
k1.

Using these, we can write:

(ZYX—
1,2

YZX)—
1,3

(XZY—
1,2

XYZ) = (0̂e1,2 +
1,3
λ1)—

1,3
(0̂e′1,2 +

1,3
k1)

= (0̂e1,2 —
1,3

0̂e′1,2) +1,3
(λ1—

1,3
k1)

(2.44),(3.30a)
= (0̂e1 +

2,3
0̂w12) +

1,3
(0̂e1 +

2,3
u1)

= (0̂e1 +
1,3

0̂e1) +
2,3
(0̂w12 +

1,3
u1)

(2.14a)
= 0̂e1 +

2,3
(0̂w12 +

1,3/2,3
u1).

That 0̂w12 +
1,3
u1 = 0̂w12 +

2,3
u1 follows similarly as (2.33). And this proves (3.31a).

About (3.31b):

(ZYX—
1,2

YZX)—
2,3

(XZY—
1,2

XYZ) = (0̂e1,2 +
1,3
λ1)—

2,3
(0̂e′1,2 +

1,3
k1)

= (0̂e1,2 —
2,3

0̂e′1,2) +1,3
(λ1—

2,3
k1)

(2.45),(3.30c)
= (0̂e2 +

1,3
0̂w12) +

1,3
(0̂w23 +

1,3
u1)

= (0̂w12 +
1,3

0̂w23) +
1,3
(0̂e2 +

1,3
u1).

ZYX—
1,3

YZX and XZY—
1,3

XYZ

Again, from Paragraph 3.2.2, we have:

ZYX—
1,3

YZX = 0̂e1,3 +
1,2
λ1, XZY—

1,3
XYZ = 0̂e′1,3 +

1,2
k1.
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Therefore, we see that

(ZYX—
1,3

YZX)—
1,2

(XZY—
1,3

XYZ) = (0̂e1,3 +
1,2
λ1)—

1,2
(0̂e′1,3 +

1,2
k1)

= (0̂e1,3 —
1,2

0̂e′1,3) +1,2
(λ1—

1,2
k1)

(2.40),(3.30b)
= (0̂e1 +

2,3
0̂−w13) +

1,2
(0̂e1 +

2,3
u1)

= (0̂e1 +
1,2

0̂e1) +
2,3
(0̂−w13 +

1,2
u1)

(2.14b)
= 0̂e1 +

2,3
(0̂−w13 +

1,2/2,3
u1),

and this proves (3.31c).

Note that we used: 0̂e1,3 —
1,2

0̂e′1,3 = 0̂e1 +
2,3

0̂−w13 . This requires some explanation. Recall

that by hypothesis (3.26):

e′1,3—
E1

e1,3 = 0̃1,3e1 +
E3

w13, e′1,3—
E3

e1,3 = 0̃1,3e3 +
E1

w13.

As in (3.42), taking the difference of e′1,3 and e1,3 the other way around, the corre-
sponding core element is:

e1,3—
E1

e′1,3 = 0̃1,3e1 +
E3

(−1) ·
E3

w13, e1,3—
E3

e′1,3 = 0̃1,3e3 +
E1

(−1) ·
E1

w13,

and since w13 ∈ E13 is in the core of the Right face, the two scalar multiplications over
E3 and over E1 coincide, hence we may denote by −w13 := (−1) ·

E1

w13 = (−1) ·
E3

w13.

Therefore, applying (2.40):

0̂e1,3 —
1,2

0̂e′1,3 = 0̂e1,3 —
E1
e′1,3

= 0̂
0̃1,3e1

+
E3

(−1) ·
E3
w13

= 0̂e1 +
2,3

0̂(−1) ·
E3
w13

= 0̂e1 +
2,3

0̂−w13 .

Similarly, applying (2.41):

0̂e1,3 —
2,3

0̂e′1,3 = 0̂e3 +
1,2

0̂−w13 . (A.1)

Finally, note that

(−1) ·
2,3

0̂w13 = 0̂(−1) ·
E3
w13

= 0̂(−1) ·
E1
w13

= (−1) ·
1,2

0̂w13 := 0̂−w13 .

Writing:

0̂e1,3 —
1,2

0̂e′1,3 = 0̂e1 +
2,3
(−1) ·

2,3
0̂w13 = 0̂e1 —

2,3
0̂w13 ,

is not particularly useful in this case.
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About the last equation (3.31d) of this kind:

(ZYX—
1,3

YZX)—
2,3

(XZY—
1,3

XYZ) = (0̂e1,3 +
1,2
λ1)—

2,3
(0̂e′1,3 +

1,2
k1)

= (0̂e1,3 —
2,3

0̂e′1,3) +1,2
(λ1—

2,3
k1)

(A.1),(3.30c)
= (0̂e3 +

1,2
0̂−w13) +

1,2
(0̂w23 +

1,2
u1)

= (0̂−w13 +
1,2

0̂w23) +
1,2
(0̂e3 +

1,2
u1).

Relevant diagrams

For completeness, we include the following diagrams.

ZYX—
1,2

YZX 0̃1,3e1

e2,3—
E2

e′2,3 0E3
m

e1,2 e1

e2 m,

XZY—
1,2

XYZ 0̃1,3e1

e2,3—
E2

e′2,3 0E3
m

e′1,2 e1

e2 m,

ZYX—
1,3

YZX e1,3

e2,3—
E3

e′2,3 e3

0̃1,2e1 e1

0E2
m m,

XZY—
1,3

XYZ e′1,3

e2,3—
E3

e′2,3 e3

0̃1,2e1 e1

0E2
m m.

A.1.4 Calculations for u2

XZY—
1,2

ZXY and YXZ—
1,2

YZX

From Paragraph 3.2.2 we have:

XZY—
1,2

ZXY = 0̂e′1,2 +
2,3
λ2, YXZ—

1,2
YZX = 0̂e1,2 +

2,3
k2.
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Therefore,

(XZY—
1,2

ZXY)—
2,3

(YXZ—
1,2

YZX) = (0̂e′1,2 +
2,3
λ2)—

2,3
(0̂e1,2 +

2,3
k2)

= (0̂e′1,2 —2,3
0̂e1,2) +

2,3
(λ2—

2,3
k2)

(2.45),(3.34c)
= (0̂−w12 +

1,3
0̂e2) +

2,3
(0̂e2 +

1,3
u2)

= (0̂e2 +
2,3

0̂e2) +
1,3
(0̂−w12 +

2,3
u2)

(2.21c)
= 0̂e2 +

1,3
(0̂−w12 +

1,3/2,3
u2),

and this proves (3.35a).

About (3.35b):

(XZY—
1,2

ZXY)—
1,3

(YXZ—
1,2

YZX) = (0̂e′1,2 +
2,3
λ2)—

1,3
(0̂e1,2 +

2,3
k2)

= (0̂e′1,2 —1,3
0̂e1,2) +

2,3
(λ2—

1,3
k2)

(2.44),(3.34a)
= (0̂−w12 +

2,3
0̂e1) +

2,3
(0̂w13 +

2,3
u2)

= (0̂w13 +
2,3

0̂−w12) +
2,3
(0̂e1 +

2,3
u2).

Equations 0̂e′1,2 —2,3
0̂e1,2 = 0̂−w12 +

1,3
0̂e2 , and 0̂e′1,2 —1,3

0̂e1,2 = 0̂−w12 +
2,3

0̂e1 follow as in

page 184, in the previous subsection.

XZY—
2,3

ZXY and YXZ—
2,3

YZX

From Paragraph 3.2.2 we have:

XZY—
2,3

ZXY = 0̂e2,3 +
1,2
λ2, YXZ—

2,3
YZX = 0̂e′2,3 +

1,2
k2.

About (3.35c):

(XZY—
2,3

ZXY)—
1,2

(YXZ—
2,3

YZX) = (0̂e2,3 +
1,2
λ2)—

1,2
(0̂e′2,3 +

1,2
k2)

= (0̂e2,3 —
1,2

0̂e′2,3) +1,2
(λ2—

1,2
k2)

(2.36),(3.34b)
= (0̂w23 +

1,3
0̂e2) +

1,2
(0̂e2 +

1,3
u2)

= (0̂e2 +
1,2

0̂e2) +
1,3
(0̂w23 +

1,2
u2)

(2.21b)
= 0̂e2 +

1,3
(0̂w23 +

1,2/1,3
u2).
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Note: At this point, we make the following comment. Since XZY—
2,3

ZXY and YXZ—
2,3

YZX

have the same Right and Down faces, we can use equations (2.35), with e = XZY—
2,3

ZXY

and e′ = YXZ—
2,3

YZX. From (2.35):

e—
1,2
e′ = k +

1,3
0̂e1,2 ,

and in this case, q1,2(e) = q1,2(e
′) = 0̃1,2e2 , so

e—
1,2
e′ = k +

1,3
0̂e2 ,

and comparing this with (3.35c), it follows that

k = 0̂w23 +
1,2/1,3

u2 ∈ E23,1

The second difference of e and e′, from (2.35):

e—
1,3
e′ = k +

1,2
0̂e1,3 ,

we know that k = 0̂w23 +
1,2
u2, and in our case q1,3(e) = q1,3(e

′) = e′1,3—
E3

e1,3, therefore,

by (2.41) we have that 0̂e′1,3 —
E3
e1,3 = 0̂w13 +

1,2
0̂e3 , so

e—
1,3
e′ = (0̂w23 +

1,2
u2) +

1,2
(0̂w13 +

1,2
0̂e3),

and this just a rearrangement of (3.35d).

Alternatively, proving (3.35d) the usual way:

(XZY—
2,3

ZXY)—
1,3

(YXZ—
2,3

YZX) = (0̂e2,3 +
1,2
λ2)—

1,3
(0̂e′2,3 +

1,2
k2)

= (0̂e2,3 —
1,3

0̂e′2,3) +1,2
(λ2—

1,3
k2)

(2.37),(3.34a)
= (0̂w23 +

1,2
0̂e3) +

1,2
(0̂w13 +

1,2
u2)

= (0̂w23 +
1,2

0̂w13) +
1,2
(0̂e3 +

1,2
u2).
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Relevant diagrams

Again, we include the following diagrams.

XZY—
1,2

ZXY e′1,3—
E1

e1,3

0̃2,3e2 0E3
m

e′1,2 e1

e2 m,

YXZ—
1,2

YZX e′1,3—
E1

e1,3

0̃2,3e2 0E3
m

e1,2 e1

e2 m,

XZY—
2,3

ZXY e′1,3—
E3

e1,3

e2,3 e3

0̃1,2e2 0E1
m

e2 m,

YXZ—
2,3

YZX e′1,3—
E3

e1,3

e′2,3 e3

0̃1,2e2 0E1
m

e2 m.

A.1.5 Calculations for u3

YXZ—
1,3

XYZ and ZYX—
1,3

ZXY

In Paragraph 3.2.2, we established that

YXZ—
1,3

XYZ = 0̂e′1,3 +
2,3
λ3, ZYX—

1,3
ZXY = 0̂e1,3 +

2,3
k3.

Write:

(YXZ—
1,3

XYZ)—
2,3

(ZYX—
1,3

ZXY) = (0̂e′1,3 +
2,3
λ3)—

2,3
(0̂e1,3 +

2,3
k3)

= (0̂e′1,3 —2,3
0̂e1,3) +

2,3
(λ3—

2,3
k3)

(2.41),(3.38c)
= (0̂w13 +

1,2
0̂e3) +

2,3
(0̂e3 +

1,2
u3)

= (0̂e3 +
2,3

0̂e3) +
1,2
(0̂w13 +

2,3
u3)

(2.15c)
= 0̂e3 +

1,2
(0̂w13 +

1,2/2,3
u3),

and this proves (3.39a).
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About (3.39b):

(YXZ—
1,3

XYZ)—
1,2

(ZYX—
1,3

ZXY) = (0̂e′1,3 +
2,3
λ3)—

1,2
(0̂e1,3 +

2,3
k3)

= (0̂e′1,3 —1,2
0̂e1,3) +

2,3
(λ3—

1,2
k3)

(2.40),(3.38b)
= (0̂w13 +

2,3
0̂e1) +

2,3
(0̂w12 +

2,3
u3)

= (0̂w13 +
2,3

0̂w12) +
2,3
(0̂e1 +

2,3
u3).

YXZ—
2,3

XYZ and ZYX—
2,3

ZXY

Again, from Paragraph 3.2.2 we have:

YXZ—
2,3

XYZ = 0̂e′2,3 +
1,3
λ3, ZYX—

2,3
ZXY = 0̂e2,3 +

1,3
k3.

Write:

(YXZ—
2,3

XYZ)—
1,3

(ZYX—
2,3

ZXY) = (0̂e′2,3 +
1,3
λ3)—

1,3
(0̂e2,3 +

1,3
k3)

= (0̂e′2,3 —1,3
0̂e2,3) +

1,3
(λ3—

1,3
k3)

(2.37),(3.38a)
= (0̂−w23 +

1,2
0̂e3) +

1,3
(0̂e3 +

1,2
u3)

= (0̂e3 +
1,3

0̂e3) +
1,2
(0̂−w23 +

1,3
u3)

(2.15a)
= 0̂e3 +

1,2
(0̂−w23 +

1,2/1,3
u3),

and this proves (3.39c).

Finally, for (3.39d),

(YXZ—
2,3

XYZ)—
1,2

(ZYX—
2,3

ZXY) = (0̂e′2,3 +
1,3
λ3)—

1,2
(0̂e2,3 +

1,3
k3)

= (0̂e′2,3 —1,2
0̂e2,3) +

1,3
(λ3—

1,2
k3)

(2.36),(3.38b)
= (0̂−w23 +

1,3
0̂e2) +

1,3
(0̂w12 +

1,3
u3)

= (0̂−w23 +
1,3

0̂w12) +
1,3
(0̂e2 +

1,3
u3).

And again 0̂e′2,3 —1,3
0̂e2,3 = 0̂−w23 +

1,2
0̂e3 , and 0̂e′2,3 —1,2

0̂e2,3 = 0̂−w23 +
1,3

0̂e2 follow as in

page 184.
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Relevant diagrams

Finally, the diagrams in this case are:

YXZ—
1,3

XYZ e′1,3

0̃2,3e3 e3

e1,2—
E1

e′1,2 e1

0E2
m m,

ZYX—
1,3

ZXY e1,3

0̃2,3e3 e3

e1,2—
E1

e′1,2 e1

0E2
m m,

YXZ—
2,3

XYZ 0̃1,3e3

e′2,3 e3

e1,2—
E2

e′1,2 0E1
m

e2 m,

ZYX—
2,3

ZXY 0̃1,3e3

e2,3 e3

e1,2—
E2

e′1,2 0E1
m

e2 m.

A.2 Functions on A and more on R

A.2.1 Classes of functions on A → M

As mentioned in Section 1.2.3, to define either a vector field or a tangent vector on a
vector bundle A

q−→ M , it is enough to check how it “behaves” when applied to linear
and pullback functions of A. It’s not quite true to say that these classes of functions
generate C∞(A). What is true is that one can write any 1-form Φ ∈ Ω1(A) as a (not
unique) sum of dℓφ and of q∗df , where φ ∈ ΓA∗ and f ∈ C∞(M).

The following is Proposition 9.4.1, [25].

Proposition A.2.1. For (Φ;X,φ(m);m) ∈ T ∗A, a covector at X ∈ Am, and any
φ ∈ ΓA∗ which takes the value φ(m), there exists ω ∈ Ω1(M) such that

Φ = dℓφ(X)+
A
(q∗ω)(X).

Proving that two tangent vectors (or two vector fields) ξ1, ξ2 ∈ TaA are equal, is
equivalent to checking that for every covector Φ ∈ T ∗

aA: ⟨Φ, ξ1⟩ = ⟨Φ, ξ2⟩. And by
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Proposition A.2.1, it is enough to check that

⟨dℓφ, ξ1⟩ = ⟨dℓφ, ξ2⟩, ∀φ ∈ ΓA∗, (A.2)

and
⟨q∗ω, ξ1⟩ = ⟨q∗ω, ξ2⟩, ∀ω ∈ Γ(T ∗M). (A.3)

We can directly reformulate (A.2) to:

ξ1(ℓφ) = ξ2(ℓφ), ∀φ ∈ ΓA∗.

Locally any 1-form on M can be written as a linear combination of differentials of
functions f ∈ C∞(M), so we can reformulate (A.3) as

⟨q∗(df), ξ1⟩ = ⟨q∗(df), ξ2⟩,

and since q∗(df) = d(q∗f), rewrite the last equation as

ξ1(f ◦ q) = ξ2(f ◦ q).

And this is why linear and pullback functions are of special importance.

A.2.2 Core morphism of R

Recall by Proposition (4.1.1),

⟨⟨X , ξ⟩⟩TM = ⟨R(F), ξ⟩A + ⟨F,X ⟩A∗ ,

for elements

TA ∋ ξ v0 ∈ TM

A ∋ a0 m,

TA∗ ∋ X v0 ∈ TM

A∗ ∋ φ0 m,

T ∗A ∋ R(F) φ0 ∈ A∗

A ∋ a0 m,

T ∗A∗ ∋ F a0 ∈ A

A∗ ∋ φ0 m.

If F is a core element of T ∗A∗, i.e.,

F = ω 0Am

0A
∗

m m
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which means that X will have outline:

X v

0A
∗

m m,

therefore, we can write X = T (0A
∗
)(v) +

A∗
η, for η a core element of TA∗. By (2.80), it

follows that,
⟨F,X ⟩A∗ = ⟨ω, T (0A∗

)(v) +
A∗
η⟩A∗ = ⟨ω, v⟩.

The corresponding ξ ∈ TA will have outline

ξ v

0Am m,

hence we can write ξ = T (0A)(v)+
A
ā, for ā a core element of TA. Then, since R is

a double vector bundle morphism, it will map core elements to core elements, hence
R(ω) = R(ω), and again from (2.80),

⟨R(F), ξ⟩A = ⟨R(ω), T (0A)(v)+
A
ā⟩A = ⟨R(ω), v⟩.

For X = T (0A
∗
)(v) +

A∗
η and ξ = T (0A)(v)+

A
ā, we can write:

X =
d

dt
(m(t), t · η)

∣∣∣
t=0

, ξ =
d

dt
(m(t), t · a)

∣∣∣
t=0

where d
dtm(t)

∣∣∣
t=0

= v. Hence,

⟨⟨X , ξ⟩⟩TM =
d

dt
⟨t · η, t · a⟩

∣∣∣
t=0

=
d

dt
t2⟨η, a⟩

∣∣∣
t=0

= 0.

Substituting everything into (4.1):

0 = ⟨ω, v⟩+ ⟨R(ω), v⟩ = ⟨ω +R(ω), v⟩

and this is true for all v ∈ TmM , therefore, R(ω) = −ω.
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