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Executive Summary 

Material responsible for discolouration risk has been shown to accumulate on pipe walls even 

after cleaning intervention, suggesting that risk cannot be eliminated with a single applied 

intervention and hence the long-term water quality benefits are uncertain. This recurring 

cleaning requirement can substantially increase total expenditure on interventions. Although 

different interventions exist to manage accumulated material, flow conditioning is considered 

to be a long-term intervention due to the use of only system hydraulic (shear stress) with 

minimal resources. The water quality performance of the selected intervention was tested in 

multiple operational trunk mains including a control main with similar physical, chemical and 

microbiological conditions and their discolouration risk and chlorine wall decay were 

measured as a water quality performance indicator. The periodic trunk main flow conditioning 

improved the long-term chronic material loading and chlorine wall decay of trunk mains 

compared to the control. Although transport of occasional acute loading to the downstream 

network from the flow conditioning trial was recorded, the improved downstream 

accumulation return period found for the flow conditioned main evidenced that chronic 

loading has a significant influence on discolouration risk than acute loading. Using the field 

observed material accumulation processes for large diameter main and long-term measured 

data, the Variable Condition Discolouration (VCD) model was used successfully to simulate 

long-term discolouration behaviour with high accuracy and the model’s accumulation 

functionality was validated. This fundamental way of capturing accumulation behaviour in the 

VCD model was used to develop a novel whole life costing (WLC) model for designing flow 

conditioning intervention cycle cost trading against hydraulic resilience. The WLC modelling 

framework derived exponential Pareto front solutions that can select best solutions between 

intervention expenditure and level of resilience achieved. This research enlightens for the first 

time how the trunk main and downstream network discolouration risk behaves in response to 

periodically controlled interventions and how risk can be managed proactively and 

strategically from treatment works to trunk main and downstream distribution zone.  
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1.   Introduction 

 

Drinking water assets must be managed in order to provide high-quality water with adequate 

pressure (Alegre et al., 2010; WHO, 2011). It is essential for water suppliers to provide clean 

drinking water to safeguard public health and well-being. However, water quality deteriorates as it 

flows through drinking water networks due to a complex set of physico-chemical and 

microbiological processes (Tamminen et al., 2008). As a consequence, this continuous water quality 

deterioration in the distribution system must be managed throughout the service life of the 

distribution main. A key water quality issue, discolouration is the most apparent and most often 

reported water quality complaint around the globe. Discolouration is primarily considered an 

aesthetic complaint that lowers the confidence of consumers and regulators in the water supplier and 

hence impacts their reputation. Even after modern water treatment procedures, particles remain in 

bulk water along with the solute that has accumulated on the pipe wall over time. These accumulated 

materials can be mobilised due to the hydraulic disturbance, causing discolouration events.  

The water distribution system, with its various components, is a complex network covering many 

miles within geographical areas. Figure 1 shows an example of water distribution network layout in a 

large geographical area. Due to the most of the network is being buried under soil, and network 

redundancy, it is a difficult task to investigate the asset deterioration and conduct any rehabilitation 

of the network without causing customer disruption. The water quality regulator of England and 

Wales, the Drinking Water Inspectorate (DWI), has reported that 37% of discolouration incidents 

originated from the planned maintenance work in 2014, which was lower than the 48% in 2007 

(DWI, 2007, 2014). This suggests that network management techniques are improving in terms of 

the management of discolouration problem, but they remain unacceptable.  
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Figure 1: Geographical distribution of water distribution systems in Scotland where blue line 

representing the water distribution network 

The water industry has traditionally removed accumulated material from drinking water pipe walls 

by various cleaning techniques (Ellison, 2003; Friedman et al., 2012). However, these techniques are 

expensive, reliant on specialist resources, and disruptive to the customer, as pipe needs to be isolated 

during the operation. Although short-term water quality improvement has been reported as a result of 

these strategies, their long-term benefit remains unknown. 

Several investigations have demonstrated that, following flushing, discolouration material returns to 

the pipe wall (Blokker and Schaap, 2015a; Cook and Boxall, 2011; Husband et al., 2010) and water 

quality contacts reported even after the traditional invasive interventions (Boxall et al., 2003a), 

suggesting the limitations of a single intervention. The return rate of discolouration material after 

cleaning is largely unknown, leading to uncertainty about maintenance frequency and the cost-

effectiveness of network management strategies. These uncertainties could increase the operational 

expenditures (OPEX) substantially compared to capital expenditures (CAPEX). Typically water 
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companies are obligated to follow the statutory and regulatory requirements set by their government 

regulators, in which water utilities essentially meet regulatory requirements by being commercially 

viable and providing the best service at the lowest sustainable cost to the customers (Engelhardt et 

al., 2002). An investigation by AWWA (2008) found that US utilities may need to pay $250 billion 

over the next 30 years to maintain and replace ageing drinking water networks, including valves and 

fittings. In the current AMP (Asset Management Period 6, 2015-2020) cycle of the UK water 

industry, OFWAT, the financial regulator of the England and Wales water industry, has limited 

CAPEX at £44.3 billion, which is lower than the water companies predicted investment of £45.7 

billion (OFWAT, 2014). These impractical amounts show the complex nature of investment and the 

end consumers to repay this investment over time. It is therefore expected that the water companies 

maintain the balance between total expenditure (TOTEX) including both CAPEX and OPEX and 

discolouration management strategies by considering long-term water quality benefits. This 

fundamental lack of knowledge drives this research work, which aims to take a holistic approach to 

investigate best discolouration management practices as part of water treatment works (WTW) 

outlet-to-tap approach, investigating the relevant long-term cost-benefit analysis. 

 

1.1   Thesis Structure 

 

Chapter 2 critiques and defines the relevance of state-of-the-art discolouration processes, modelling 

and management strategies. This chapter also explores what existing rehabilitation tools are available 

and the typical performance criteria that may or may not impact on discolouration risk processes. 

From the critical evaluation conducted in the literature review, knowledge gaps in managing 

discolouration risk and how to model the risk proactively have been identified. It is to be noted that 

several literature review sub-chapters are also included in the other chapters as background 

information.  

Chapter 3 states the aims and objectives of the thesis.  

Chapter 4 explores the long-term impact of flow conditioning intervention on discolouration risk 

from water treatment outlet to the downstream distribution network by assessing acute and chronic 

loading conditions. By collecting and analysing systematic long-term (+12 months) field data, this 
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chapter presents for the first time how a network discolouration risk behaves under series of 

controlled interventions and different material loading conditions in the distribution network.  

Chapter 5 evaluates the impact of an invasive cleaning intervention (ice slurry pigging) on water 

quantity (hydraulic roughness) and water quality (discolouration risk). This novel study enlightens 

our understanding about the complex interaction of pipe roughness and discolouration risk with the 

application of invasive intervention.  

Chapter 6 assesses the long-term impact of planned (flow conditioning) and unplanned (bursts) 

hydraulic events on chlorine wall decay. This is a first ever attempt to evaluate how long-term 

applied shear stress on the pipe wall correlates with chlorine wall decay.   

Chapter 7 discusses the simulation processes of long-term discolouration behaviour and validation 

of the Variable Condition Discolouration (VCD) modelling approach. A novel methodology is 

developed to collect required long-term field data and simulated in the VCD to test its ability to fit to 

the measured response. This is the first validation of accumulation functionality that encapsulated in 

the VCD model from field observed behaviour.  

Chapter 8 presents a novel whole life costing (WLC) model to design flow conditioning cleaning 

intervention by trading intervention cost and hydraulic resilience. The exponential relationship 

derived from Pareto front solutions between cost and hydraulic resilience demonstrates the model 

ability to use it as decision support model. In this chapter, a methodology is also proposed that can 

incorporate material accumulation rates in WTW improvement to design trade-off for CAPEX of 

treatment works upgrade against OPEX of cleaning intervention and hence propose an enhanced 

discolouration risk management process for the drinking water network. 

Chapter 9 presents cross-chapter discussions for chapter 4-8 and explores some future research 

direction.   

Chapter 10 concludes all the findings from the research. 
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2.   Literature Review 

 

2.1   Why discolouration is an issue 

 

Discolouration is the most frequent cause of water quality-related customer contacts worldwide 

(Vreeburg and Boxall, 2007). Customer contacts are often used as the key performance indicator by 

water utilities and their regulators (Polychronopolous et al., 2003). In Scotland alone, discolouration 

issues were reported in about 70% of total customer contacts in the year 2013, and 55% in 2015 

(DWQR, 2014, 2016). Similar percentages of contacts have been seen in other parts of the world, 

e.g. England and Wales, Australia, USA, Canada, The Netherlands and France (Boxall and Prince, 

2006; Deb et al., 1995; Ellison, 2003; Gauthier et al., 1999; Ginige et al., 2011; Husband, 2010; 

Ryan et al., 2008; Slaats et al., 2004). 

Discoloured water is primarily considered to be aesthetically poor water (Vreeburg and Boxall, 

2007). Failure of turbidity standards can be readily visible to the customer and will affect their 

confidence in the service provider. Depending on the customer contact performance, UK water 

companies can be fined or rewarded, and hence a drive to reduce customer contacts is vital for the 

water companies. Figure 2 shows typical discoloured water conditions from tap water. This poor 

aesthetic water quality can increase the consumption of bottled mineral water as an alternative 

(Baffoe-Bonnie, 2010). High turbidity concentration can contain increased levels of certain metals. 

Several flushing investigations reported a strong correlation between turbidity and Iron (Fe) and 

Manganese (Mn) (Boxall et al., (2003b), Cook (2007), Polychronopolous et al., (2003), Prince et al., 

(2003), Seth et al., (2004). An elevated level of Fe or Mn can be visible to consumers as “reddish” 

and “black” colours. Based on flushing data from several district metered areas (DMAs), 

predominantly from unlined cast iron (CI) mains, Cook (2007) demonstrated that about 70% 

discoloured particles are iron or forms thereof. He also showed that the prescribed Fe concentration 

value (PCV) limit in drinking water (200 𝜇g/l) was exceeded when turbidity reached only 0.6 NTU. 

Similar results regarding excess Fe and Mn concentration were found in trunk main flushing data 

(Seth et al., 2010).  
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Figure 2: Discoloured water in households and its aesthetic conditions. (Image courtesy: 

www.inhabitat.com and www.drinktap.org)  

 

2.1.1   Health impact 

 

Discolouration is typically considered an aesthetic issue, but several researchers have demonstrated 

its potential impact on health. Various researchers have reported that raised levels of turbidity 

potentially correlated to gastrointestinal illness (GI) and often mask health issues (Mann et al., 2007; 

Morris et al., 1996; Schwartz and Levin, 1999; Tinker et al., 2008). Schwartz et al. (1997) found an 

association between regular turbidity in drinking water and endemic GI illness among children in 

Philadelphia.  

Recent studies by Hsieh et al., (2015) found a positive correlation between turbidity response and the 

increase of diarrhoea patient visits. However, this increase was observed only in the spring and the 

authors suggested conducting more rigorous research to better understand the correlation. Higher 

levels of turbidity can reduce the disinfectant residual in the system, e.g. free chlorine and 

chloramine, which to some extent promotes microbiological activity (Allen et al., 2008; DWQR, 

2013; LeChevallier et al., 1981; McCoy and Olson, 1986; WHO, 2006). High levels of turbidity can 

encourage the growth of pathogens and leading waterborne diseases (USEPA, 1999). Several studies 

indicate that there is a significant relationship between turbidity and removal of protozoa from the 

downstream water sample (Fox, 1995; LeChevallier and Norton, 1992; LeChevallier et al., 1993; 

Ongerth, 1990). However, this has not been conclusively proven.  

 

http://www.inhabitat.com/
http://www.drinktap.org/


12 | P a g e  

 

2.2   Regulations  

 

Discoloration in drinking water is a known cause of solid particle movement in the distribution 

system (Boxall et al., 2001; Seth et al., 2004; Vreeburg, 2007). It is usually measured in 

Nephelometric turbidity units (NTU), which determine particle concentration from a 90° scattering 

angle. In practice the turbidity limit in drinking water is set to a maximum of 4.0 NTU at the 

consumer’s tap and 1.0 NTU at the WTW outlet (DWI, 2010; DWQR, 2013; Scottish Water, 2014; 

WHO, 2006, 2011). The Council of the European Union (1998) suggested that turbidity should be 

below 1.0 NTU at the treatment outlet in case of surface water treatment. An increased level of 

turbidity, typically above 4.0 NTU, could be visible to the customer and is not aesthetically 

acceptable (NHMRC, 2004; Slaats et al., 2004).  

2.3   Nature and characterisation of discolouration materials 

 

A particle size distribution analysis by Boxall et al. (2001) reported that discolouration is a 

particulate issue, but these particles are so small that they do not entirely follow the traditional 

sedimentation processes. The particle count analysis has shown that 70% (by count) particles found 

are 50 𝜇m in diameter or less. In the Netherlands, particle diameter was found between 3-12 𝜇m (van 

Thienen et al., 2011) and in the Australian distribution system this was approximately 11 𝜇m (Ryan 

et al., 2008).  

The specific gravity of discoloured material was reported between 1.0 and 1.3 in the UK distribution 

system (Boxall et al., 2001), while the average specific gravity in the Australian system was about 

1.64 (Ryan et al., 2008). 

In the UK distribution systems, turbidity is found to be correlated with Fe and Mn concentration 

(Boxall et al., 2003b). The ratio of metal (Fe, Mn and Al) concentration collected at different levels 

of excess shear stress and from different pipe materials has been found to be similar, indicating that 

the chemical composition of discolouration material is uniform regardless of discolouration material 

layer (Cook and Boxall, 2011).  

 

Substantial organic content is also found from discolouration material samples, indicating its 

microbiological affiliation (Gauthier et al., 1999). Carriere et al. (2005) reported based on flushing 

data that 14-24% of particles were organic in nature. Similar results were found in Zacheus et al. 

(2001) and Sly et al., (1990) study. Distribution of bacteria has been shown to be correlated with 
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turbidity, metals and phosphates in one UK distribution system (Douterelo et al., 2016). In Barbeau 

et al. (2005), sample collection during hydraulic disturbance showed that both total suspended solids 

(TSS) and turbidity correlated significantly with bacterial concentrations (P<0.01). It was 

hypothesized in this study that the discolouration particles may provide additional microbial nutrients 

for biofilm. The particle associated bacteria (PAB) may also accumulate as a loose deposit on the 

drinking water pipe wall, which may contribute to turbidity responses during hydraulic disturbance 

(Liu et al., 2016).  

2.4  Role of biofilms in discolouration risk 

Previously, discolouration thought to be an inorganic particulate issue (Cook and Boxall, 2011; Seth 

et al., 2004), although substantial percentage of organic material has indicated microbial affiliation 

(Gauthier et al., 1999). Recent studies suggested that Extra Polymeric Substances (EPS) composed of 

biofilms cells may play a vital role for discolouration process (Husband et al., 2016). The EPS is 

considered to hold floating inorganic-organic particles and create a robust protected environment for 

microorganism against the impact of disinfection (Cowle et al., 2014; Douterelo et al., 2014). Similar 

to DWDS cohesive layer theory, EPS has been identified as a cohesive, three dimensional polymer 

structure that is mobilised with increases in shear stress at the pipe wall (Abe et al., 2012; Choi and 

Morgenroth, 2003; Flemming and Wingender, 2010; Percival et al., 1999).  The stratified 

characteristics with weak layer on top of biofilms similar to inorganic accumulated material has been 

found in previous studies as well (Derlon et al., 2008). Rochex et al., (2008) research reported that 

high shear stress decelerate biofilm maturation process and support to maintain young biofilm. 

However, it is also reported that regular detachment can be beneficial for biofilm diversification and 

bacterial populations (Percival et al., 2014). Fish et al., (2017) demonstrate that hydraulic regime did 

not have any significant impact on biofilms bacteriological composition, however, it does influence 

the mechanical stability of biofilms structure.  

The regrowth of biofilms on DWDS pipe walls has been observed ubiquitously even under the 

presence of disinfectant conditions (Momba et al., 2000) and irrespective of pipe material (Hallam et 

al., 2001). Chemical analysis also suggests that the inorganic material can bind on EPS via cation ion 

exchange processes (Flemming and Wingender, 2010) and correlation between biofilms and iron and 

manganese deposition has been observed previously (Ginige et al., 2011). The presence of 

discolouration material around the pipe circumferences suggests that biofilm plays a key role for 

ubiquitous nature of discolouration material on pipe surface and provide support framework for 

inorganic incorporation.  
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2.5   Sources of discolouration material in distribution 

systems  

 

The modern WTW produces high-quality potable water, although particles remain in the treated 

water transported from the WTW outlet to the point of use. Even with 0.1μm ultra-filtration, the 

particles can remain present in the distribution system (Vreeburg et al., 2008). Due to the complex 

physicochemical and microbiological reactions between bulk water and pipe wall, particles can be 

produced during the transit of water. Formation of particles is a very complex process and is not yet 

properly understood (Vreeburg, 2007). The discoloured material originates from various sources 

such as incomplete removal of particles from the treatment works e.g. raw water (Chandy and 

Angles, 2001), water filtration and coagulation process (Polychronopolous et al., 2003; Prince et al., 

2003), powdered activated carbon (Brazos and O’Connor, 1996), aluminium flocks (Slaats et al., 

2004; Cook and Boxall, 2011). Material may also enter on the distribution system cause of negative 

transients (Besner et al., 2010; Collins and Boxall, 2013), poor maintenance and repair  (Slaats et al., 

2004), internal processes e.g. iron corrosion  (Sarin et al., 2002, 2003; Carriere et al., 2005; Cook, 

2007;), chemical reactions  (Kirmeyer, 2000; Sly et al., 1990) and biological growth ( LeChevallier 

et al., 1987; Gauthier et al., 2001; Meckes, 2001).  

 

2.6   Discolouration processes 

2.6.1   Material mobilisation processes  

 

(The following section has been taken from chapter 7) 

 

Discolouration was traditionally conceptualised as the re-suspension of gravity-driven sediments. 

Extensive study of discolouration particle size distribution and density analysis revealed that the 

particles responsible are small in size and between 2-50 𝜇m (Boxall et al., 2001; Ryan et al., 2008; 

Vreeburg, 2007). Hence self-weight effects are small and when re-suspended, they only settle due to 

the gravitational effects during prolonged quiescent conditions (Boxall et al., 2001). Similar 

phenomenon is suggested by UKWIR, (2001) that below 60 𝜇m particles are prone to remain 

suspended unless quiescent conditions occurs. Particle accumulation alone by traditional gravity 

settling processes is also not considered valid in water distribution systems as flow is mostly in 



15 | P a g e  

 

turbulent conditions (Blokker et al., 2010) and no sedimentation effect was found for a typical 

stagnation period in a dead-end pilot-scale areas (Smith et al., 1999).  

Discolouration events are typically observed following hydraulic disequilibrium (Blokker and 

Schaap, 2015a). This change of network hydraulic conditions, e.g. burst or demand rezoning, may 

increase velocity and therefore shear stress (τC) higher than the pipe network recently experienced. 

This will cause detachment of particles into the bulk flow and hence create  discolouration as this 

propagates downstream (Boxall et al., 2003b; Husband and Boxall, 2010). Flushing fieldwork has 

demonstrated that each step increase of shear stress releases additional material suggesting the 

accumulated material exhibits cohesive strength properties and are structured in varying strength 

with weaker layers mobilising earlier than stronger ones (Boxall et al., 2001, 2003b; Husband and 

Boxall, 2010). On the contrary, if material is comprised of loose deposits as conceptualised by 

sedimentation, all material will release instantaneously. A number of investigations have 

demonstrated particle mobilisation in response to velocity and shear stress and concluded that 

particles cannot bind in non-cohesive conditions unless the peak velocity is sufficiently low (Pothof 

and Blokker, 2012; Vreeburg, 2007). This suggests that accumulating material likely has cohesive 

properties, a result consistent with findings from the University of Sheffield fully temperature 

controlled experimental pipe facility (Husband et al., 2008).  

 

2.6.2   Material accumulation processes  

 

 

(The following section has been taken from chapter 7 and chapter 8) 

 

In several repeated flushing trials, it has been seen that following flushing discolouration material 

returns, accumulating again on the pipe wall (Blokker and Schaap, 2015a; Cook and Boxall, 2011; 

Husband and Boxall, 2011; Husband et al., 2010). Repeated flushing also showed amounts of 

accumulated material during flushing was similar irrespective of  seasonal influences suggesting 

material accumulated linearly over time  (Boxall et al., 2003a; Cook and Boxall, 2011).  

A number of studies have been aimed to develop an understanding of the material accumulation 

processes and how it is influenced by other physical, chemical and microbiological processes. Van 

Thienen et al., (2011) proposed two different accumulation mechanisms, turbophoresis and turbulent 

diffusion. Both these concepts only describe material transport from bulk water to wall and not how 

material bind on the pipe wall. These methods are not also applicable for large diameter pipes where 
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turbophoresis is found influential to relatively large particles (>50 𝜇m) and turbulent diffusion 

applicable only for very low velocities (<4 cm/s). Several researchers have provided evidence that 

discolouration material accumulates at varying strength cohesive layers at the same time (Husband 

and Boxall, 2011; Sharpe, 2012). Flushing field work by Husband and Boxall, (2011) in different 

parts of the UK demonstrated that material released in repeated flushing trials was lower than an 

initial flushing, indicating that accumulated material had not been completely regenerated after 12 

months intervals. Their study, using multiple shear stress step increases, also showed material being 

mobilised at each step similar to the initial flushing trial. This repeated turbidity response supporting 

that material accumulation occurring simultaneously across the range of shear strengths. 

Accumulation processes observed in field studies have also been supported by laboratory trials in a 

full-scale temperature controlled pipe facility by Sharpe (2012). This study showed material 

mobilisation occurring across the range of imposed shear stresses with a consistent turbidity 

response, indicating particle binding on the pipe wall occurring simultaneously for all shear 

strengths. While varying strength simultaneous accumulation observed for small diameter pipe, it is 

still not tested for large diameter trunk main systems. From all the studies reported, it is evident a 

continual mobilisation-accumulation cycle exists that has a relatively consistent behaviour across the 

full range of shear strength bound material and applied hydraulic forces. This leads to complex 

material conditions on pipe walls and varying amounts of material could present on pipe wall with 

different cohesive shear strengths at any given time. Although knowledge of mobilisation and 

accumulation processes has been gathered from experimental investigations, no known modelling 

framework encapsulates these simultaneous effects which can then facilitate simulating the long-

term turbidity behaviour. 

 

2.7   Quantifying discolouration risk  

 

(Part of this following section has been taken from chapter 4 and chapter 8) 

 

Several studies quantified discolouration risk in the distribution system by assessing the rate at which 

material accumulates on pipe walls. These studies compared volumetric material loading (flow and 

turbidity) from repeated controlled hydraulic events, e.g. flushing, over a specified period (Vreeburg 

et al., 2008; Blokker et al., 2011; Cook and Boxall, 2011; Husband and Boxall, 2011; Blokker and 

Schaap, 2015a). Some studies investigated material accumulation return interval for distribution 

pipes of less than 150 mm (6”) reported between 1.5 and 4.0 years through repeated flushing 
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(Husband and Boxall, 2011) and 1.5 years with resuspension potential method (RPM) trials 

(Vreeburg et al., 2008). While Husband and Boxall, (2011) estimated based on annual repeat 

flushing frequency, Vreeburg et al., (2008) extrapolated the return rate from repeated RPM trials 

information. Richardt et al., (2009) developed a flushing decision model based on pipe specific 

turbidity potential for estimating possible flushing return intervals and found between 0.5-8.0 years. 

Assessing return interval using flushing or RPM methods is particularly complex for trunk mains due 

to their critical nature and the flows required. Therefore little information is currently available about 

material return interval for large diameter pipe systems. 

Several studies proposed the importance of continuous turbidity measurement as part of a water 

quality monitoring program (Frey and Sullivan, 2005; Kara et al., 2016; Storey et al., 2011). van den 

Hoven et al. (1994) suggested that continuous turbidity measurement can be an indicator of aesthetic 

issues; for example, if turbidity increases during low demand periods, relevant pipes may need to be 

cleaned or re-lined to improve water quality. High temporal turbidity measurement was used to 

assess mass flux into the downstream distribution system and to identify spatial and localised 

material accumulation, suggesting its importance (Gaffney and Boult, 2012; Starczewska et al., 

2017). By applying the CANARY event detection system (USEPA, 2010) to the turbidity data 

collected by Gaffney and Boult (2012), Mounce et al. (2015) showed that continuous turbidity 

coupling can be used with hydraulic data for an event detection indicator.  While the current practice 

to track long-term turbidity is primarily based on DMA scale, none of the studies measures 

continuous turbidity from trunk mains for quantifying material loading into downstream DMA. 

Therefore, the risk from upstream trunk main to downstream DMA is not quantified yet and still not 

well understood.  

 

2.8   Potential influencing variables of discolouration risk  

 

The water distribution network is a complex reactor where numerous bulk water constituents react 

with the pipe wall in physicochemical and microbiological processes. The material mobilisation and 

accumulation process is also part of this complex reaction process. Several researchers have 

investigated the factors that could influence the both material accumulation and mobilisation process 

and have found that asset characteristics and source water quality significantly influence 

accumulation conditions or discolouration risk (Cook and Boxall, 2011; Husband and Boxall, 2011; 

Lehtola et al., 2006), while hydraulics profoundly effect on mobilisation processes. Given the 



18 | P a g e  

 

complex network conditions and operational practicalities, it is still unknown  how the accumulation 

rate independently differs due to each variable. Hence, the factors influencing the accumulation rate 

and discolouration risk should consider in relative rather than absolute terms.  

 

2.8.1   Source water and bulk water quality 

 

(Part of this following section has been taken from chapter 4) 

 

The type of source water and the bulk water quality have shown significant impact on the material 

accumulation process. Husband and Boxall (2011) repeated a flushing study in the UK-wide water 

network and demonstrated that a surface water-supplied network is typically regenerated to its initial 

conditions within 1.5 years following flushing, whereas this takes about three years for a 

groundwater-supplied network. To remove the natural organic matter (NOM) from raw water, it is a 

common practice to dose a Ferric (Fe) or alum (Al) coagulant (Sharp et al., 2006a, 2006b). However, 

failure to remove the coagulant particles means they could pass through the WTW outlet and may 

affect the network discolouration risk (Cook and Boxall, 2011). Husband and Boxall (2011) have 

further shown that a lower discolouration risk is found in non-coagulant systems compared to 

coagulant systems, where discolouration risk increased from alum-based to ferric-based coagulants.   

Many researchers investigated the influence of bulk water on discolouration risk by assessing 

material accumulation rates. Blokker and Schaap (2015) studied the material accumulation rates in 

two similar networks over a six-year period and found accumulation rate was variable with changing 

water source highlighting water quality as a factor. Cook and Boxall, (2011) found that accumulation 

rates were consistent between two DMAs fed from the same source suggesting water quality 

importance on accumulation rate. Bulk water was found to be a key factor for discolouration risk in 

non-corroding pipes (Husband and Boxall, 2011). Vreeburg et al., (2008) demonstrated that even 

with ultra-filtration (UF) treatment, particles exist in the network, however, accumulation return 

interval could be extended up to 10-15 years suggesting the implication of treated water quality and 

microbiological interaction with water constituents. Husband and Boxall, (2010) further explored the 

bulk water significance on material accumulation, and they proposed two material accumulation 

mechanisms influenced by 1) bulk water quality and 2) corrosion processes. Both accumulation 

mechanisms imply that all pipes in normal operation are susceptible to cohesive layer development 

and hence pose discolouration risk.  
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Other processes at the WTW could also influence the discolouration risk in the downstream network. 

A decrease in pH may accelerate the corrosion process within the distribution systems (McNeill and 

Edwards, 2001), influencing discolouration risk.  

Adding disinfection, e.g. chlorine and chloramine in drinking water to control microbial 

contamination and biofilms, is a common practice around the globe (Fisher et al., 2011; Hallam et 

al., 2002; Ramos et al., 2009; Vasconcelos et al., 1997). However, this disinfectant concentration can 

oxidise the soluble Fe and Mn and precipitates, which could further increase the discolouration risk 

in distribution systems (Sly et al., 1990). This is difficult to control, as the rate of chlorine decay is 

reported to be increased by nitrate concentration, temperature (Li et al., 2003; Zhang and Edwards, 

2007) and other factors e.g. TOC, pH. Hence balancing or tuning the process at the WTW is essential 

to reduce the risk of discolouration in systems.  

 

2.8.2   Pipe hydraulic conditions 

 

(Part of this following section has been taken from chapter 4) 

 

Several studies have shown that material settles and accumulates differently in a laminar hydraulic 

regime than a turbulent one (Pothof and Blokker, 2012; Vreeburg, 2010). Gaffney and Boult (2012) 

showed based on long-term turbidity monitoring in two DMAs at various locations that flushing does 

not inevitably reduce material loading in bulk water, suggesting that wall-bound layer conditions did 

not improve by applied shear stress conditions. Starczewska et al. (2017) demonstrated an overall 

improvement in DMA material transport (decrease>0.5 NTU flux) after flushing at one site. 

However, at another site where the network had relatively higher water flow, an increase in small 

flux (<0.3 NTU) was observed. By applying the CANARY event detection system (USEPA, 2010) 

to Gaffney and Boult (2012) turbidity data, Mounce et al. (2015) found that flushing significantly 

reduces the frequency of turbidity events. While both studies had used same dataset, results can be 

varied subject to analysis and interpretation. 

 

2.8.3   Network characteristics  

 

A water distribution network (WDN) is comprised of a vast buried pipe network which may have a 

wide variety and heterogeneity of pipe material. In the early 19
th

 century, most pipes installed were 
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cast iron (CI). Since 1970 a variety of plastic pipes have been installed (Momba et al., 2000) around 

the globe, which are thought to have a positive impact on water quality. The material accumulation 

rate has been found to be more rapid in CI mains than the smooth pipe systems, indicating the 

significance of pipe material (Husband and Boxall, 2011). Their study suggests that material may 

regenerate to its initial conditions following a flushing intervention by about two years for a CI main. 

The same risk to regenerate in a smooth pipe could take up to four years. These findings are 

supported by the idea that CI mains contributes additional material accumulation through corrosion 

processes (Cook and Boxall, 2011; Husband and Boxall, 2010).   

 

2.8.4   Temperature and microbial properties 

 

Temperature as an independent variable affects a range of water physical and quality parameters, e.g. 

chlorine decay (Li et al., 2003), fluid dynamic viscosity (Nguyen et al., 2007) and microbial 

properties (Hallam et al., 2001). However, little is understood about how temperature affects 

discolouration risk. Blokker and Schaap, (2015b) found a correlation between particle accumulation 

and seasonal water temperature when assessing data from multiple flushing of the Dutch water 

network. Sharpe (2012) explored the effect of temperature on material accumulation in full-scale 

laboratory conditions by providing material accumulation conditions at 8°C and 16°C for 28 days. 

She observed that the highest material mobilisation occurs at relatively higher water temperature 

(16°C). It has been hypothesised (Burns and Stach, 2002; Douterelo et al., 2013) that discolouration 

particles may provide microbial nutrients for biofilm and be trapped in the extracellular polymeric 

matrix, a key component of biofilms. While temperature influences microbiological properties, it is 

anticipated that temperature plays a critical role for discolouration risk as well. Previous work also 

suggested a microbial influence on the discolouration process (Ginige et al., 2011; Husband et al., 

2016). 

 

2.8.5   Pressure 

 

Apart from other physical processes, no correlation of discolouration risk with pressure has been 

found in any previous studies. Gaffney and Boult (2012) collected pressure and turbidity event data 

from multiple sites and found no significant correlation. The lack of interest in the effect of pressure 
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on accumulation processes has been influenced by the fact that the shear stress or velocity is not 

significantly affected by absolute pressure. 

However, the study by Aisopou et al. (2010) did suggest that unstable hydraulics could contribute to 

a discolouration response. They used the Vardy-Brown shear stress model to assess the impact of 

material mobilisation on discolouration material. The unsteady shear stress was much higher than the 

steady-state shear condition, although quantification of such temporally transient and associated 

response impacts is critical to investigate. Recently, Weston et al. (2017) demonstrated the transient 

event can potentially impact on material mobilisation, however, it is still not properly understood the 

mechanism and how such event influence the accumulation process. 

 

2.9   Modelling discolouration in water distribution system 

 

In recent times, discolouration modelling and prediction have captured significant interest, especially 

in the UK water industry, where discolouration management is of major importance in terms of water 

quality improvement. The complex interactions between the various bulk water components and pipe 

walls make the discolouration process exceptionally complex. Hence it is advisable to design the 

model with the key dominant process. While the mobilisation process is observed mostly from 

hydraulic disturbance, the accumulation rate on pipe walls is far more complex and depends on 

several factors, e.g. bulk water, pipe material, hydraulics, temperature and microbiology. Hence it is 

a challenge to develop an appropriate discolouration model capturing varying effects without making 

the model overly complicated.  

 

2.9.1   Prediction of Discolouration in Distribution Systems (PODDS) Model 

 

In 2001, The Prediction of Discolouration in Distribution System (PODDS) model was developed 

(Boxall and Saul, 2005) based on the idea that particulate material adheres ubiquitously as cohesive 

layers on all boundary surfaces with a layer shear strength conditioned by the maximum daily 

prevailing hydraulics (τd). These cohesive layer shear strengths remain in equilibrium conditions by 

balancing with the daily maximum applied shear stress (τd).  

The discolouration potential in the PODDS model designed as:  



22 | P a g e  

 

𝜏𝑐 =
𝐶 

𝑏− 𝐶𝑚𝑎𝑥

𝑘
                                                                                           (1) 

Where,  

τc = Current material layer strength      [N/m
2
] 

C = Stored volume of material on the pipe wall   [NTU.m
3
] 

Cmax = Maximum material volume for a fully developed layer  [NTU.m
3
]   

b = A power term, although later it found to be unity as no model fitting benefits was observed other 

than unity (Husband, 2010). 

k = Gradient of discolouration potential compare to layer shear strength and can contribute to 

increasing turbidity  

The rate of material supply is described as: 

𝑅 = 𝑃(𝜏𝑎 − 𝜏𝑐)𝑛                    (2) 

Where, 

τa - τc = Excess applied shear stress     [N/m
2
] 

R = Rate of supply from unit wall area    [NTU.ms
-1

] 

P = Linear coefficient of force required to erode   [NTU.m
3
.N

-1
.s

-1
] 

n = exponential coefficient of force required to erode [-] 

The rate of supply further defines the change in turbidity during mobilisation and subsequent 

decrease in discolouration potential. 

𝛥𝑁 =
𝑅.𝐴𝑠

𝑄
              (3) 

Where, 

ΔN = change in turbidity      [NTU] 

As = Area of pipe wall      [m
2
] 

Q = Bulk flow       [m
3
/s] 
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The PODDS model was coded in the open-source EPANET (Rossman, 2000) by revisiting its water 

quality engine (Boxall and Saul, 2005). The discolouration material released from the pipe wall is 

initially calculated by the PODDS governing equation, and the EPANET Lagrangian transport 

algorithm is then used to track the fate of particles along the pipe and mixing at the junction 

throughout the network.  

The PODDS material mobilisation process was coded as material mobilised from the weakest to the 

strongest layer based on the field evidence (Boxall and Saul, 2005). The PODDS model functionality 

was successively validated in the UK for both DMAs (Cook and Boxall, 2011; Husband and Boxall, 

2010) and trunk main systems (Husband and Boxall, 2015; Husband et al., 2010). The model output 

was further fitted to flushing data captured from Australian asbestos cement pipe, highlighting its 

universality (Boxall and Prince, 2006). 

During the model implementation in EPANET, the accumulation process was coded as a reverse 

process of mobilisation (strongest to weakest layer). It was designed based on the authors’ 

engineering judgement, to facilitate the model formulations in the software, and not based on any 

field data or observation (Boxall and Saul, 2005).  Although the model mobilisation process was 

validated, accumulation processes do not follow the laboratory or field evidence (Husband and 

Boxall, 2011; Sharpe, 2012) suggesting the model limited applicability for simulating long-term 

discolouration behaviour. Figure 3 shows a typical PODDS model output to the measured response 

of the trunk main. A set of calibrated model parameters was compiled in a look-up table indexed 

with pipe material, diameter and length. The intellectual property right (IPR) to this dataset is held by 

the PODDS project stakeholders (www.PODDS.co.uk) and the model is not publicly available at this 

moment.  

 

Figure 3: PODDS model graphical representation and calibration of a trunk main simulated (red 

line) and measured turbidity response (green dot). Measured data was collected from a separate 

flow conditioning trial for Scottish Water and not published previously. 

http://www.podds.co.uk/
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2.9.2    The Variable Condition Discolouration (VCD) model  

 

(The following section has been taken from chapter 7) 

 

 

In 2014, Furnass et al., (2014) proposed the Variable Condition Discolouration (VCD) model to 

simulate the discolouration behaviour as observed from laboratory and field data. The model 

captures some key mechanisms which govern discolouration as:  

a) The model assumes that wall bound cohesive layers remain in equilibrium conditions with 

recent prevailing hydraulics (τc).  

b) Material at the pipe wall accumulates over full range of shear strength when applied shear 

stress (τa) <τc 

c) Material is mobilised from the pipe wall and entrained and completely mixed with the bulk 

water due to the imposed excess shear stress (τa-τc) when τa>τc. In this context, the VCD 

model retains the same mobilisation mechanism as the PODDS model (Boxall and Saul, 

2005).  

d) Model is designed to track material across the range of shear strengths with mobilisation and 

accumulation processes occurring simultaneously. 

e) The model assumes material adheres uniformly throughout the pipe wall adopting field 

evidenced flushing data (Boxall and Saul, 2005).  

f) Model assume weak layer is always on top of stronger layers 

The model tracks relative material quantity φ (τ,t), a unitless parameter, bound between [0,1.0] where 

0 means no material and 1.0 is a maximum accumulation of material (Furnass et al., 2014). The VCD 

model simulates discolouration using three empirical parameters, a mobilisation rate = βe [N
-1

m
-2

s
-1

], 

an accumulation rate = βr [s
-1

] and material release coefficient = α [NTU.m.s
-1

]). The mobilisation 

rate (βe) and material release coefficient (α) describe the material mobilisation phenomenon and 

represent the rate of material release from a pipe wall where βe is a function of excess shear stress (τa-

τc), and α is linear scaling parameter. The accumulation rate (βr) describes the rate at which material 

accumulates on the pipe wall and is a pipe specific property. To reduce modelling complexity, all 

three model parameters (βr, βe, α) are currently designed as a scaler and invariant with time and shear 

strength.  

Furnass et al., (2014) verified the VCD model through synthetic data and then successfully calibrated 

it for small diameter pipes and a single trunk main from field data. The calibration results 
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demonstrated that the VCD model retains the mobilisation function of the PODDS model, with 

similar quality of fitting obtained. Suitable data was not available to validate the accumulation 

functionality for the small diameter pipes, and the trunk main dataset was limited by the quality of 

the long-term time series data. Thus the accumulation mechanism of VCD model is verified 

(Furnass, 2015; Furnass et al., 2014), but has not been validated with long term data. The validation 

of accumulation process (occurs at all cohesive strengths simultaneously) and hence validation of 

VCD model would allow tracking discolouration response for different hydraulic scenarios and how 

risk changes over time and can be minimised. 

 

2.9.3   Other discolouration model  

 

2.9.3.1   The Discolouration Risk Model (DRM) and Discolouration Propensity 

Model (DPM) 

 

The discolouration risk model (DRM) is a risk assessment modelling approach to identify the 

likelihood of discolouration propensity due to the hydraulic events and structural failure throughout 

the network (Dewis and Randall-Smith, 2005). DRM has been used as an integral part of Yorkshire 

water asset management plan. A major modelling difference compared to PODDS is that it uses 

dynamic velocity changes rather than shear stress variation, which limits its modelling inaccuracy 

during a change of pipe diameter and roughness height (Cook, 2007). Unlike the PODDS model, a 

burst likelihood function has been integrated for risk analysis. However, it is limited to “expert 

judgement” to assign weighting criteria for the burst score analysis.  

The discolouration propensity model (DPM) is the successor of the DRM to quantify rank-based 

discolouration risk and provide further support to decide on appropriate cleaning interventions 

(McClymont et al., 2011, 2013). Instead of a velocity-driven mobilisation process, DPM adopted the 

PODDS cohesive transport model (Boxall and Saul, 2005) and discolouration risk quantified based 

on the maximum shear stress applied to the pipe wall. The DPM embedded with the Epanet 

hydraulic solver and a full-scale hydraulic model can be incorporated to identify the maximum 

discolouration risk from any unusual shear stress events. While both models use hydraulic to 

describe discolouration risk, neither of the models has yet been validated.  
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2.9.3.2   The Particle Sedimentation Model (PSM) 

 

The particle sedimentation model (PSM) was developed by a team from CSIRO (Australia) to 

predict the particle mass and distribution conditions in the water distribution network (Ryan et al., 

2008). The PSM adopted both gravitational and non-gravitational particle accumulation concepts on 

the pipe wall, where the latter attracts particles by Van der Waals forces. It was assumed that if 

critical velocity is higher than bulk water velocity during the gravitational setting process, particles 

are suspended from the pipe wall. They observed a velocity of around 0.15-0.25 m/s, material re-

suspended from pipe invert sections and all suspended material mobilised equal to or greater than 0.3 

m/s water velocity. The PSM explained material accumulation on the pipe circumference by Fick’s 

law of diffusion.  

𝜕𝐶

𝜕𝑡
= −𝛼(𝐶 − 𝐶∞) 

𝐶𝑤 = 𝛽𝐶∞ 

Where, C = Particle concentration in bulk water  [ppm] 

 Cw = Particle mass in pipe wall    [ppm] 

 C∞ = Final steady state particle concentration  [ppm] 

 α= Decay coefficient      [unit less] 

 β = Wall mass coefficient     [unit less] 

If C< C∞ : Particle accumulation from bulk water to the pipe wall   

If C> C∞ : Particle mobilisation from wall  

If C= C∞ : No particle resuspension or accumulation 

However, since a research report published in 2008 regarding the model construction and 

verification, no reference has been made to the PSM. The model has not been validated with large 

samples or tested in different systems. The model uses gravity deposit processes, which is contrary to 

the operational evidence (Boxall et al., 2001; UKWIR, 2001). The PSM also does not purely account 

for hydrodynamic conditions (Armand et al., 2015) and its inability to explain the process of material 

adhered on pipe wall restricts its applicability (Furnass, 2015).   
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2.9.3.3   Artificial neural network (ANN) model 

 

Meyers et al. (2017) used the artificial neural network (ANN) technique to forecast discolouration 

conditions as an early warning system. The proposed model could forecast turbidity events 15 

minutes in advance. The model is understood to be a fully data-driven process, and hence there are 

no requirements for a hydraulic or water quality model. However, this proposed ANN model does 

not describe discolouration processes and has not been tested in a variety of networks and is 

therefore currently not transferable across sites.  

 

2.9.3.4   Material accumulation investigation through data-driven model   

 

Mounce et al. (2014) used the evolutionary polynomial regression (EPR) model combining flushing 

and an asset dataset to derive a relative material accumulation rate on the pipe wall. They used 13 

predictor variables for discolouration process with an estimate of relative accumulation rate. 

Repeated flushing data for 67 individual pipe lengths was used to estimate the relative accumulation 

rate. They found that background iron concentration, pipe material, looped network and pipe volume 

had the greatest impact on material accumulation rate. The accuracy of the proposed data-driven 

model depends on the quality and amount of the data, as well as the numbers of predictor variables 

with consistent data available. 

Danso-Amoako and Prasad (2014) used the ANN technique to investigate Fe and Mn accumulation 

potential and hence further network discolouration risk potential. Initially, the dataset was studied to 

build an ANN model consisting of water quality data from 176 different DMAs with 37 individual 

parameters, although this was later reduced to 15 parameters. The model simulation suggests that 

aluminium concentration in bulk water between 0-120 𝜇g/l could facilitate an increase of Fe and Mn 

accumulation potential, with a slight decrease when concentration exceeded 120 𝜇g/l. They found 

that an increase of calcium carbonate (CaCO3) decreases Fe and Mn accumulation potential. The free 

chlorine results showed mixed effects on Fe and Mn accumulation and suggested maintaining 0.8 to 

1.8 mg/l to reduce the accumulation potential. However, it is understood from the available literature 

that the study findings are limited without the additional input of physical properties, i.e. shear stress, 

pipe material, etc. 
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2.9.4   Summary 

 

(The following section has been taken from chapter 7) 

 

There are various models that can simulate the material mobilisation processes, but none of the 

models is yet able to simulate material accumulation conditions. Unlike other discolouration models, 

the PODDS model has an integrated material accumulation function that is the reverse of the 

mobilisation process. However, the accumulation process coded in the PODDS model does not 

describe the behaviour observed from the laboratory (Sharpe, 2012) and field data (Husband and 

Boxall, 2011) that has been collected and analysed since its inception. Considering the limitations of 

previous models, the VCD model can simulate both mobilisation and accumulation processes 

continuously and accumulation at all strengths simultaneously. Although the model accumulation 

functionality has been verified (Furnass et al., 2014), it still requires validation. 

 

2.10   Trunk main impact on downstream discolouration risk 

 

The transmission or trunk main is typically a large-diameter pipe that transports water from WTW to 

the downstream consumer or service reservoir. In recent decades DMAs have been given the most 

operational attention as they are connected directly to the end consumers (Aikman, 1993). However, 

recent operational works have looked more and more closely into larger pipe diameters. 

Discolouration knowledge and management techniques are particularly important for trunk mains 

because unplanned operational events, e.g. bursts and/or valve movement, can impact hundreds of 

downstream consumers. Research has indicated that trunk mains play an important role in 

discolouration risk to the downstream consumer. In 2013-14, unplanned intervention in the trunk 

main initiated discolouration or particle-related issues affecting 2-3 million consumers in the UK 

(DWI, 2014). Long term clustered discolouration customer contact analysis suggested that around 

30-50% of contacts were initiated based on the trunk main and/or upstream boundary of DMAs 

(Husband et al., 2010; Cook et al., 2015). In the UK and international water industry, cast iron pipes 

are still predominant in trunk main system. From the cast iron pipes, corrosion can supply additional 

discoloured particles in the downstream distribution zone. Hence the risk is relatively higher from 

trunk main to multiple DMAs and not well understood. 
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Due to strict operational and quality regulation, water companies worldwide often avoid operational 

activities associated with trunk mains (Husband et al., 2014). Cleaning operations in a trunk main 

can be complex due to its critical layout and lack of redundancy. With the conventional techniques 

e.g. invasive cleaning and relining, trunk mains require isolation that may cause supply disruption. 

While non-invasive cleaning interventions e.g. flushing have been implemented successfully in the 

DMA system, it has some drawbacks for trunk main operation implementation. In practice, trunk 

main flushing is not common due to the high volume of water usage during the flushing procedure 

and wastewater disposal management issues. Trunk mains are often very long, and hence the pipe 

turnover is potentially long enough to affect the upstream storage or downstream wastewater 

compartment. Hence it is desirable to implement an intervention for trunk main that have in-service 

functionality and can manage water disposal issues.  

2.11   Discolouration management strategies  

 

To mitigate discolouration and other water quality risks in trunk mains, water companies regularly 

implement various network maintenance interventions, e.g. flushing, invasive cleaning, relining or 

pipe replacement (Engelhardt et al., 2000). Most of the network maintenance is based on reactive 

responses, which means mains cleaning is only scheduled based on customer complaints about water 

quality and/or asset structural conditions. While invasive cleaning is widely popular among water 

companies for ongoing maintenance, there are non-invasive techniques available that have also been 

reported to manage discolouration risk.  

 

2.11.1   Pipe replacement and relining 

 

Typically, unlined CI mains are considered the highest risk for discolouration due to the potential 

release of Fe content in bulk water from corrosion layers. Husband and Boxall (2011) demonstrated 

based on UK-wide flushing studies that plastic pipes have longer material accumulation period or 

pose  lower discolouration risk than relatively rough mains, e.g. unlined CI. In the UK, a substantial 

percentage of pipe material consists of unlined CI, but each company have their own replacement 

programme. While pipe replacement may improve water quality, due to the cost and operational 

constraints involved with the entire process water companies often hesitate to undertake such 

programmes. As an alternative to the pipe replacement, relining is a popular process among water 

companies. While North American companies tend to use cement mortar lining, European companies 
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prefer epoxy and polyurethane lining (Water Research Foundation, 2010). Study shows that 

relatively high concentrations of metals, e.g. aluminium, calcium and chromium, as well as pH, than 

under normal conditions was found from lined main (Water Research Foundation, 2010). Both pipe 

replacement and relining can be very expensive. In Canada water companies spent about $28 billion 

from 1997 to 2012 as part of network rehabilitation strategies, showing the extent of investment 

required (Shahata and Zayed, 2010). Although a substantial amount of money is spent on this type of 

strategy, there is no evidence that it improves long-term discolouration risk.  

 

2.11.2   Invasive cleaning 

2.11.2.1   Air scouring 

 

The air scouring method uses compressed air to blow into an isolated water main to break down the 

accumulated layer, biofilms and soft scales (Smith, 1999). The method is used to clean by a mixture 

of air and water which is forced into one end of the pipe section (Ellison, 2003). Compressed air 

provides the turbulence to the existing water to clear the accumulated material, soft scale and 

biofilms. The compressed air may also include atomized chlorine and a polyphosphate inhibitor 

(Smith, 1999). Air scouring is popular in the UK water industry. Figure 4 shows a typical air 

scouring method to clean accumulated material. 

 

Figure 4: Typical air scouring method and slug flow to clean the deposits (Image courtesy: USA Ltd, 

2014) 

This procedure requires 40% less water than a typical swabbing and flushing program, removes more 

scales and deposits than flushing, and the pipe breakage rate is relatively low as the air pressure 

remains below the operating pressure (Ellison, 2003; WHO, 2004). The air scouring method is not 

classed as an aggressive method, although if the internal structure of the pipe is not in good condition 

then it can create leakages and expose the unlined corrosion layer (Ellison, 2003).  
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2.11.2.2   Swabbing 

 

Swabbing is a type of “polyurethane cylindrical foam sponge” pig technique to remove the wall-

bound material and biofilms from the network using water pressure. Swabbing is one of the most 

known cleaning procedures, and hence the effectiveness of this method is well documented (Ellison, 

2003; Friedman et al., 2012; WHO, 2004). A “swab” is a particular type of pig used to clean larger 

pipe diameters (Ellison, 2003). Normally, these pigs are 25% larger in diameter than the nominal 

diameter of the pipe section, which creates a frictional shear force into the pipe wall to remove 

attached material (Friedman et al., 2012). Three different grades are available for swabbing: soft, 

hard and scouring (WRc, 1994). Swabbing is an effective intervention when the velocity of water is 

between 0.8 and 1.5 m/s, where the pigs are move in tandem with the water velocity and have 

enough time to apply the desired shear stress on the pipe wall (WHO, 2004).  

 

2.11.2.3   Ice pigging  

 

Ice pigging technology is a comparatively new pipe cleaning method which consists in inserting 

designed ice slurries into the pipe with a desired flow rate to remove the accumulated pipe wall 

materials. The semi-solid ice creates shear stress on the pipe wall and hence mobilised wall-bound 

accumulated material. Figure 5 shows a typical ice pigging operation where a semi-solid ice slurry is 

inserted from an upstream access point and highly turbid water is collected from a suitable 

downstream access point. During the process, collected highly turbid water is constantly monitored 

via bottle sampling and water temperature, and conductivity is also tested as part of the scheme. Ice 

pigging can remove material from pipes of diameters ranging from 15 mm to 300 mm and as long as 

2 km (Bristol Water, 2014). Ice pigging is a patented technology initially developed by the Bristol 

University Research Centre as a potential alternative pipe cleaning process  (Berriman, 2011; 

Quarini, 2002). This technology is currently used by different water suppliers around the globe, 

including some UK water utilities. Several studies have reported that the ice pigging considerably 

reduces biofilm and accumulated particles, requires less water and time, and does not block mains, as 

the ice simply melts away after a while (Candy et al., 2010; Evans et al., 2008; Moore, 2013; Quarini 

et al., 2010). The ice plug consists of 50-90% crystal ice and the mixture of ice-water designed in 
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such a way that it moves in the main as a solid plug and can move with water in constricted areas 

(Quarini, 2002).  

.  

Figure 5: Procedure of ice pigging strategy in a selected pipe (image courtesy: Yarra Valey Water) 

Candy et al. (2010) showed that ice plugs lose pressure at the start of the trial at a higher rate than the 

end of the trial, indicating higher resistance from ice plug generated at the top section of the pipe. A 

pressure drop during ice plug movement through pipe channel was reported by Shire (2006) as well. 

The loss of friction force during transit can limit its effectiveness in removing wall-bound material. 

Ice pigging is less expensive than other invasive cleaning techniques, e.g. swabbing and air scouring, 

but it requires high operational expertise and equipment. It also requires more intensive planning to 

ensure no other water is drawn into the main to dilute or disturb the ice slug formation (Friedman et 

al., 2002).  

2.11.3  Non-invasive cleaning 

2.11.3.1   Self-cleaning velocity concept 

 

Self-cleaning velocity is the critical velocity that considers limiting material accumulation on pipe 

walls. This force is applied in a daily frequency that inhibits the build-up of the material layer. Water 



33 | P a g e  

 

companies from the Netherlands have practiced this threshold velocity concept since 1999 (Slaats et 

al., 2004; Van Den Boomen et al., 2004; Vreeburg and Van Den Boomen, 2002). Slaats et al. (2004) 

suggest that 0.4 m/s is sufficient to prevent material accumulation, while Ryan et al. (2008) observed 

that material started to mobilise at 0.3 m/s or higher. Boxall and Prince (2006) found 1.12 N/m
2
 as a 

consistent value in the Australian network and 1.2 N/m
2 

in the UK water network systems (Husband 

and Boxall, 2010). Blokker et al. (2010) reported that the Dutch water companies found 0.25 m/s to 

be sufficient for a variety of pipe materials.  

To demonstrate and validate the self-cleaning velocity principle, Blokker et al. (2007) analysed these 

methods in several types of distribution networks. They found that branched networks are better at 

self-cleaning than looped systems. In a conventional distribution network, velocities are moderately 

low or even stagnant (Blokker et al., 2006) and this stagnation is dominated by fire flow demand 

(Vreeburg, 2007). According to Vreeburg et al. (2009) this method is cost-effective for newly built 

systems and can reduce the expenses by 20% compared to the conventional Dutch water network.  

The aforementioned studies were conducted in plastic pipe systems only. The findings are also 

limited to small-diameter mains. Since higher velocity or shear stress conditions already exist in 

trunk main systems, it is difficult to assess self-cleaning conditions for trunk mains. Another 

important consideration is the future development of water demand in the selected areas. This may 

lead to further increase of expansion costs to maintain the threshold velocity. To implement this 

method, co-ordination is required with the firefighting demand.  

2.11.3.2   Flushing  

 

Flushing is the oldest conventional and robust operational cleaning technique adopted by water 

suppliers to improve water quality. It is widely used to remove accumulated pipe material at the 

DMA level. Pipe dead ends in distribution systems are common places for water quality degradation, 

material deposition and bacterial growth (Barbeau et al., 2005). The flushing procedure is mainly 

divided into conventional and unidirectional flushing (UDF) (Nilsson et al., 2008). Conventional 

flushing consists in opening a fire hydrant with the desired flow rate as long as the pre-selected water 

quality is reached with no valve control (Hasit et al., 2004). A drawback of the conventional system 

is that it operates without controlling the selected valve closure options. Therefore, the highly turbid 

water can move to any other location of the network. The UDF method operates by closing valves 

and opening hydrants in a strategic manner (Ellison, 2003). A survey was conducted by Hasit et al. 

(2004) among 26 water utilities around the world and found that only 36% used the UDF method and 
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37% used conventional flushing. The remaining 27% used both methods. WRc (1998) proposed 

flushing velocity guidelines for different pipe diameters derived from the loose sediment transport 

theory. In practice, DMA flushing operation is undertaken at night to reduce the customer water 

usage impact and dissatisfaction. Night-time flushing operations can utilise the maximum available 

pressure while the base water flow level is minimum. UDF flushing frequency is subject to the best 

management practices (Friedman et al., 2002) with site-specific velocity and increase of customer 

contact in a specific region (Carriere et al., 2005). However, the dead end distribution system 

flushing process is still predominantly brought about by customer complaints (Barbeau et al., 2005).  

Flushing has shown a number of water quality-related benefits over the short term, e.g. it minimises 

customer complaints, reduces public health-related problems and maintains the structural condition 

of the pipe (Hasit et al., 2004). However, it is reported not to be very effective in cleaning heavily 

tuberculated pipe sections (Ellison, 2003).  

 

2.11.3.3   Flow conditioning approach 

 

(Part of this following section has been taken from chapter 4, 5 and 8) 
 

A cohesive transport model was proposed by Boxall et al., (2001) that discolouration layer binds on 

pipe wall ubiquitously and has varying cohesive strength properties. Based on this theory an in-

service trunk main cleaning strategy termed “flow conditioning” was developed by the University of 

Sheffield collaborating with several UK water companies (Husband and Boxall, 2015). The flow 

conditioning can be described as “controlled in-service flushing” based on knowledge of historical 

hydraulic and network properties and managing the impact of increasing shear stress.  

The method is designed to operate under operational network conditions without interrupting supply 

and therefore, maximum 1.0 NTU is targeted during the trial to avoid any potential turbidity 

prescribed concentration value (PCV) failure in the downstream network. This is achieved by 

imposing an excess system shear stress (τa-τi) until all material with strength below the imposed 

shear stress is mobilised. The remaining material is then considered “conditioned” to this imposed 

excess shear stress and would require further increases in shear stress to be mobilised. Use of 

multiple flow conditioning steps and manage the response at each stage allows target flows, or the 

desired system resilience, to be achieved. As a result, this strategy can be used to prevent 

discolouration risk from both planned and unplanned events, e.g. rezoning and bursts. In this case, 
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resilience means the magnitude of hydraulic event that will cause minimal or no discolouration 

response.  

This cleaning intervention has been effectively and successfully implemented in several trunk main 

systems with proven reduction in discolouration risk (Cook et al., 2015; Husband and Boxall, 2015).. 

However, the long-term impact on the trunk main and the downstream network discolouration risk is 

unknown. During flow conditioning, mobilised material is entrained in the bulk flow as wash load 

and transported through the downstream network and ultimately to the point of use. There is concern 

that the periodic mobilisation and transport of acute material (> typical average turbidity reading) 

loads during flow conditioning event could accelerate accumulation in the downstream network 

increasing discolouration risk. This additional material mobilised from pipe wall transported for only 

a short period of time (few minutes to hours depending on hydraulic conditions) compared to 

continuous turbidity or chronic loading. Therefore the primary research concern with the flow 

conditioning intervention is that periodic acute material loading or bulk water chronic loading may 

influence downstream discolouration risk more, which is not investigated yet. 

Similar to accumulated material cohesive nature, biofilms have been identified as a cohesive, three-

dimensional polymer structure that can be mobilised with increases in shear stress (Abe et al., 2012). 

Recent studies suggested that biofilm may play a vital role for discolouration process (Husband et 

al., 2016) which is considered to hold floating inorganic-organic particles and creates a robust 

protected environment for microorganism against the impact of disinfection (Cowle et al., 2014). 

Research indicates that chlorine penetration is limited into the biofilm matrix and have a reduced 

efficacy against biofilm microorganisms (Chen and Stewart, 1996; De Beer et al., 1994). Therefore 

by mobilising the top weak biofilm layer along with cohesive material layer during shear stress 

events potentially expose fresh biofilms which is a concern that it could increase the chlorine wall 

decay due to the new wall condition. While the flow conditioning has been proven to be good for 

controlling discolouration risk, the aim is to explore if it has any impact on chlorine wall decay.  

Flow conditioning is a relatively cheaper alternative compared to the other known maintenance 

strategies as it only uses system hydraulics to manage discolouration risk and no specialist tools are 

required for operation. Unlike other rehabilitation techniques, flow conditioning requires only 

OPEX, and it can be implemented in a range of network conditions, e.g. in normal operation or new 

pipes, however, no model has been developed yet that can simulate OPEX of this intervention. 
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2.5.6   Summary 

 

Among the currently available rehabilitation techniques, invasive cleaning processes are well-known 

to water suppliers. Invasive cleaning can remove significant amounts of accumulated material from 

the operational main and improve water quality (Friedman et al., 2012; Quarini et al., 2010; Smith, 

1999; WHO, 2004). However, they are relatively expensive and require skilled manpower and 

specialised equipment. Some of these techniques are quite aggressive and can cause internal 

structural deterioration of pipes. In general, during invasive cleaning processes mains need to be 

taken out of service and networks must rezone via valve movement or back-feed to provide a 

continuous water supply, which can cause significant customer disruption. For rezoning purposes, 

valve movement is a common practice in the water industry, although it is thought to generate 

discolouration responses (Cook, 2007).  In the UK, significant percentages of the pipe networks are 

comprised of unlined cast iron. Since most of the techniques are invasive, their application can pose 

high discolouration risk by disturbing the existing corrosion layer. 

While short-term applications of invasive cleaning to minimise discolouration risk are well known, 

long-term benefits have yet to be investigated. Due to the continuous material accumulation (Boxall 

et al., 2003a; Cook and Boxall, 2011), one-off applications of these cleaning interventions are not 

considered a long-term strategy. Hence it is ideal to implement periodic interventions with some 

prior knowledge of material accumulation processes. While the non-invasive cleaning strategies, e.g. 

flow conditioning and self-cleaning velocity, can be implemented periodically, their long-term 

impact on discolouration risk remains unknown.   

 

2.12   Modelling of rehabilitation strategies  and 

discolouration risk 

 

(Part of this following section has been taken from chapter 8) 
 

In the UK, selection of drinking water pipe rehabilitation techniques is primarily driven by the short-

term benefits and cost (Marlow et al., 2015). However, for cost optimisation, it is sensible to account 

for all relevant costs and benefits throughout the distribution main service life. Pre 1970, 

infrastructure investment decisions relied heavily on capital cost alone (Boussabaine and Kirkham, 

2008). Later, WLC concepts were developed based on the idea that OPEX for any asset maintenance 
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could be higher than its CAPEX. The WLC term has been defined in BS/ ISO 15686-5 Buildings & 

Constructed Assets:  

“an economic assessment considering all agreed projected significant and relevant cost flows over a 

period of analysis expressed in monetary value. The projected costs are those needed to achieve 

defined levels of performance, including reliability, safety and availability…. 

This is a methodology for the systematic economic consideration of all whole life costs and benefits 

over a period of analysis, as defined in the agreed scope” 

Several researchers demonstrated WLC approach for water distribution networks to minimise total 

expenditure (TOTEX) that includes both CAPEX and OPEX for a required level of service by 

maximising desired performance (Conroy and Hughes, 1997; Engelhardt et al., 2002; Skipworth et 

al., 2002; Jayaram and Srinivasan, 2008). For water quality improvement, water utilities typically 

exercise different types of rehabilitation techniques, e.g. pipe replacement, relining of old cast iron 

(CI) main, invasive cleaning. Rehabilitation decision and prioritisation models to address structural 

performance and water loss have been developed using diverse performance criteria, e.g. burst rate 

and asset age (Engelhardt et al., 2003), integrating GIS, hydraulic data and breakage models (Tabesh 

and Saber, 2012), use of cost function based on pipe replacement, rehabilitation, repairs and pumping 

cost (Kim and Mays, 1994), and pipe failure and replacement cost using Bayesian parameter 

estimation (Scholten et al., 2014). The above-mentioned models were mostly focussed on structural 

performance and water quantity; none of the models considers water quality performance as a 

criterion. While replacing pipe or relining unlined CI mains can reduce discolouration risk 

(Engelhardt et al., 2000; Husband and Boxall, 2011), previous studies have not assessed their 

performance based on discolouration risk. It is also noted that bursts have a cleaning effect on pipe 

walls as they create a hydraulic disturbance and mobilise accumulated discolouration material. Cook 

(2007) observed after companywide long-term bursts assessment that there was a reduction in 

discolouration based customer contacts in the summer season following a higher number of recorded 

bursts during the winter period. However, forecasting bursts events and associated effects on 

discolouration risk is relatively complex to evaluate and not yet well understood and the 

corresponding model should encapsulate discolouration processes as well.  

Primarily, the decision models compared CAPEX investment, e.g. installing new pipe, with ongoing 

OPEX, e.g. pipe repair, to hence minimise overall TOTEX. Skipworth et al. (2002) proposed a WLC 

methodology considering periodic flushing of distribution pipes to reduce accumulated material and 
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relining of unlined cast iron mains (thereby removing a source of discolouration material from 

corrosion) to reduce the required flushing frequency. However, apart from the conceptual proposals, 

no further study on this WLC methodology has been reported. Most of these models have primarily 

been proposed or developed for small diameter pipes. However, large diameter pipes have relatively 

lower shear stress conditions and mixing of material due to the higher ratio of water volume to 

surface area can have a different effect on discolouration behaviour. Thus methodologies to manage 

trunk main discolouration risk or investigate associated TOTEX for trunk main interventions are as 

yet unknown.  

 

2.13   Summary and knowledge gaps 

 

The existing literature provides a wealth of information regarding discolouration processes, including 

material mobilisation and accumulation processes and how discolouration modelling analysis can be 

implemented to manage various operational techniques to control discolouration risk. In addition, 

types of cost framework available for water rehabilitation strategies are also discussed in the 

literature review section. Several knowledge gaps were identified based on the literature reviews that 

require further investigation. Particularly for this study some of the knowledge gaps are described 

below: 

 

1. The literature review section has discussed different types of cleaning intervention for managing 

discolouration risk. While it was found that improving treated water quality can reduce material 

loading and hence improve discolouration risk, the trunk main intervention’s impact on 

discolouration risk as part of a WTW outlet to customer tap approach has not been assessed. 

Since invasive cleaning strategies are complex to implement, some non-invasive strategies e.g. 

flow conditioning have the potential to manage long-term discolouration risk. A specific concern 

with flow conditioning intervention is that intervention process can initiate transport of 

occasional acute material loading from trunk main to downstream distribution network. 

However, none of the studies has ever undertaken to evaluate the impact of flow conditioning on 

trunk main chronic material loading and the difference between the chronic and acute loading on 

downstream network accumulation processes.  

2. From research study, it is envisaged that biofilms have a similar cohesive structure to 

accumulated material which mobilises due to excess shear stress. By mobilising the top weak 
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biofilm layer along with cohesive material layer during flow conditioning events potentially 

expose fresh biofilms which is a concern that it could increase the chlorine wall decay due to the 

new wall condition. However, no previous studies have been undertaken to explore the impact of 

periodic flow conditioning on chlorine wall decay. 

3. It is well established that invasive cleaning (e.g. ice pigging, air scouring, swabbing) can remove 

significant amounts of wall bound accumulated materials from operational trunk mains. 

However, little is quantified regarding the efficacy of such interventions in terms of either 

quantity e.g. pipe roughness or quality e.g. discolouration risk improvement and how this 

changes over time following the intervention. 

 

4. The literature study describes various discolouration modelling techniques and their limitations. 

Most of the existing discolouration models are reported to simulate mobilisation processes; 

however, none of the models can simulate the material accumulation process. A detailed 

explanation is given for a newly verified model called variable condition discolouration (VCD) 

that can simulate both material mobilisation and accumulation processes continuously and 

accumulates at all strengths simultaneously. The mobilisation process of the VCD model has 

been validated, but the material accumulation processes have not. Therefore, the model’s ability 

to simulate long-term discolouration behaviour has not yet been fully tested.  

 

5. Due to continuous material accumulation, one-off intervention is not considered sustainable, as it 

can impact the on-going OPEX. The cleaning interventions are typically very expensive, but 

these costs are limited through financial caps set by the regulators. It is desirable for water 

companies to minimise intervention costs through modelling methods. The literature study 

assesses different existing models that use various performance criteria to optimise the OPEX of 

water rehabilitation strategies, but none of the models includes discolouration processes and 

material accumulation rate or return period as decision criteria. Thus a design process is required 

to identify the cost to manage discolouration risk and maintain network discolouration risk 

resilience against any hydraulic event.  
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3.   Aim of the Thesis   

 

The overall target of this research is to prepare a framework for long term cost-effective holistic 

discolouration management practice for water distribution network. The central aim of the research is 

to explore how controlled interventions can be best applied in trunk mains to manage long-term 

discolouration risk from a water treatment outlet to downstream distribution zone approach. The 

research hypothesis is that the trunk main flow conditioning intervention is the cost-effective long-

term discolouration management strategy.  

 

3.1   Thesis objectives 

 

To achieve the overall aim, research objectives were discretely divided, yet coherent in total 

structure. Each objective was set as clear and concise to accomplish the target aims.  

 

1. To explore the impact of trunk main flow conditioning intervention on long-term 

discolouration risk by investigating the change in chronic material loading of trunk main and 

difference between the effects of chronic and acute material loading from trunk main on 

downstream network accumulation return period. (chapter 4). 

 

2. To investigate the long-term impact of periodic flow conditioning intervention on chlorine 

wall decay (chapter 5). 

 

3. To investigate the quantity and quality performance benefits of an in-service trunk main 

invasive cleaning program (chapter 6). 

 

4. To assess if the VCD model can simulate the long-term turbidity behaviour of operational 

trunk main systems and hence provide a useful tool for informing discolouration risk 

assessment and management (chapter 7). 
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5. To demonstrate how to design flow conditioning cycles to manage discolouration risk by 

trading cost against hydraulic resilience (chapter 8). 
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4.1   Abstract 

 

The long-term impact of cleaning interventions on discolouration risk and how risk varies with 

different material loading conditions in a drinking water network is still unknown. This study 

presents the long-term impact of trunk main flow conditioning intervention on trunk mains and 

downstream network discolouration risk. An extensive approach of long-term continuous data 

collection from upstream to downstream network was undertaken through imposing a series of flow 

conditioning interventions on multiple trunk mains with similar characteristics, including a control 

main, and systematic analysis carried out to explore the impact of acute and chronic material 

loading. While flow conditioning increases occasional immediate acute material loading, 

simultaneously it reduces chronic loading from trunk mains compared to control. Overall evidence 

suggested that chronic loading on the downstream network is significantly influential on material 

accumulation rates and hence discolouration risk than the short term elevated acute loading from 

flow conditioning events. Thus, the evidence demonstrated that trunk main flow conditioning can 

improve both trunk main and downstream network discolouration risk by reducing overall trunk 

main chronic material loading. This novel understanding of acute and chronic loading impact on 

overall discolouration risk suggests that relatively cheaper non-invasive techniques, e.g. flow 

conditioning intervention, can be a viable management option leading to better use of aged 

infrastructure and providing better quality water for the customer. 

Keywords: Flow conditioning, shear stress, discolouration risks, accumulation rate 

 

4.2   Introduction 

 

Drinking water distribution systems (DWDS) are high surface area reactors where a complex set of 

physical, chemical and biological interactions occur simultaneously in both the bulk water and at the 

pipe wall. Impacts include discolouration, a key factor affecting customer satisfaction and 

acceptability of drinking water, due to the mobilisation of particulate material accumulated at the 

pipe wall. Often discolouration events are short in duration and associated with hydraulic 

disturbance. Discolouration samples could breach the other water quality parameters’ regulatory 

limits, e.g. iron concentration (Cook, 2007). In the UK, substantial financial penalties and rewards 



44 | P a g e  

 

depending on annual water quality performance have been set for the water utilities (DWI, 2016), 

with discolouration customer contacts identified as a primary quality target (Polychronopolous et al., 

2003). Hence the significance of discolouration customer contact analysis is prominent for assessing 

performance against discolouration risk. Although customer contacts are typically recorded in 

downstream District Metered Areas (DMA), 30-50% of discolouration events origin have been 

identified from the upstream source or trunk main (Cook et al., 2015).   

Large diameter pipes, e.g. trunk mains, are critical water distribution infrastructure from where the 

risk of discolouration is high due to the populations potentially exposed. Due to the fear of potential 

consequences from trunk main failure and associated strict regulations, the water companies are 

reluctant to undertake operational activities associated with them. The complexity of buried 

infrastructure access also influences the decision to avoid operational undertakings. However, to 

manage and deliver the highest drinking water quality standards to customers, interventions are 

becoming inevitable as infrastructure deteriorates and expectations rise. As a result, water utilities 

are regularly investing in the cleaning of accumulated materials from trunk mains to improve water 

quantity and quality as part of their rehabilitation programs. An option to clean the wall-bound 

material legacy is through expensive, invasive cleaning strategies, e.g. air scouring, ice pigging or 

swabbing (AWWA, 2014). These strategies may deliver short-term water quality benefits yet it is 

often difficult to implement such expensive and specialist resource-oriented strategies due to the 

challenge of taking trunk mains out of service without interrupting supply. In many cases, 

discolouration material returns on the pipe wall (Cook and Boxall, 2011) and water quality contacts 

(Boxall et al., 2003a) in those networks, questioning the long-term benefits of such invasive 

strategies. Some non-invasive and in-service hydraulic driven cleaning interventions have been 

implemented successfully in the distribution system, e.g. flow conditioning (Husband and Boxall, 

2015), self-cleaning velocity technique (Van Den Boomen et al., 2004; Vreeburg et al., 2009). 

However, the long-term impact on discolouration risk of these non-invasive techniques has never 

been assessed. Also, how these non-invasive techniques influence discolouration risk from water 

treatment works (WTW) outlet to the downstream distribution network is still unknown. Therefore, 

there are concerns over whether and how these interventions influence long-term discolouration risk 

and provide water quality benefits throughout water distribution networks. 
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4.3   Background 

4.3.1   Discolouration processes: Material mobilisation 

 

Prior to 2001, discolouration was conceived to be the re-suspension of gravity deposit sediments. 

Particle size distribution (PSD) analysis showed that the particles responsible for discolouration are 

microscopic in size (2-50 𝜇m). Discolouration particles are typically observed to be mobilised during 

hydraulic disturbances where each flow or shear stress step increase mobilises additional material 

during flushing investigations, evidencing that particles have cohesive properties where weak layers 

remain on top of stronger layers (Boxall et al., 2003b; Husband and Boxall, 2011). Boxall et al. 

(2001) hypothesised that these particles remain in equilibrium condition and mobilise during excess 

shear stress conditions. Several researchers (Vreeburg, 2007; Pothof and Blokker, 2012) concluded 

that particles cannot accumulate in a non-cohesive manner unless the peak hydraulic conditions are 

very low. The water distribution network (WDS) cohesive layer theory was previously validated 

under temperature controlled laboratory conditions  (Husband et al., 2008) and for operational 

systems (Husband and Boxall, 2011, 2016).  

4.3.2   Discolouration processes: Material accumulation  

 

Several studies showed that discolouration material in WDS accumulated again on the pipe wall 

following flushing (Husband et al., 2010; Cook and Boxall, 2011; Husband and Boxall, 2011; 

Blokker and Schaap, 2015a). While those studies found that material mobilisation occurred from 

weak to strong cohesive layers, the reverse process of accumulation was not observed. The repeated 

flushing study conducted in the same pipes after a 12 months interval by Husband and Boxall, (2011) 

showed that turbidity response to each shear stress step increase was similar to the first or initial trial 

and suggested that material regenerates at varying shear strengths simultaneously. These material 

accumulation process findings were also supported by the fully temperature controlled laboratory-

scale pipe network investigations by Sharpe, (2012). While simultaneous accumulation of varying 

strengths of material was observed for small diameter pipe, this has still not been tested for large 

diameter trunk main systems. 

4.3.3   Quantifying discolouration risk  

 

Several studies quantified discolouration risk in the distribution system by assessing the rate at which 

material accumulates on pipe walls. These studies compared volumetric material loading (flow and 
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turbidity) from repeated controlled hydraulic events, e.g. flushing, over a specified period (Vreeburg 

et al., 2008; Blokker et al., 2011; Cook and Boxall, 2011; Husband and Boxall, 2011; Blokker and 

Schaap, 2015a). The accumulation return interval found in these studies ranged between 1.5 and 4.0 

years. However, measuring accumulation rates in trunk mains using these methods is difficult due to 

their layout and the volume of water required.  

Several studies proposed the importance of continuous turbidity measurement as part of a water 

quality monitoring program (Frey and Sullivan, 2005; Kara et al., 2016; Storey et al., 2011). van den 

Hoven et al. (1994) suggested that continuous turbidity measurement is an indicator of aesthetic 

issues; for example, if turbidity increases during low demand periods, relevant pipes may need to be 

cleaned or re-lined to improve water quality. High temporal turbidity measurement was used to 

assess mass flux into the downstream distribution system and to identify spatial and localised 

material accumulation, suggesting its importance (Gaffney and Boult, 2012; Starczewska et al., 

2017). By applying the CANARY event detection system (USEPA, 2010) to the turbidity data 

collected by Gaffney and Boult (2012), Mounce et al. (2015) showed that continuous turbidity 

coupling can be used with hydraulic data for an event detection indicator.  No studies have yet 

measured continuous turbidity from trunk mains for quantifying material loading into downstream 

DMA. Since the risk from upstream trunk main to downstream DMA has not yet been quantified, it 

is still not well understood.  

.  

4.3.4   Bulk water significance on material accumulation rate  

 

Research has shown that the return period of material accumulation or accumulation rate is 

influenced by several factors, e.g. raw and bulk water quality (Chandy and Angles, 2001; Cook and 

Boxall, 2011; Husband and Boxall, 2011), pipe material (Husband and Boxall, 2011), network 

hydraulic conditions (Pothof and Blokker, 2012; Sharpe, 2012), and water temperature (Blokker and 

Schaap, 2015b).  

Many researchers investigated the influence of bulk water on discolouration risk by assessing 

material accumulation rates. Blokker and Schaap (2015) studied the material accumulation rates in 

two similar networks over a six-year period and found accumulation rate was variable with changing 

water source, highlighting water quality as a factor. Cook and Boxall (2011) found that accumulation 

rates were consistent between two DMAs fed from the same source, suggesting importance of water 
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quality for accumulation rate. Bulk water was found to be a key factor for discolouration risk in non-

corroding pipes (Husband and Boxall, 2011). Additionally, Vreeburg et al. (2008) demonstrated that 

even with ultra-filtration (UF) treatment, particles exist in the network; however, the accumulation 

return period could extend for up to 10-15 years, suggesting the implication of treated water quality. 

Husband and Boxall (2010) further explored the significance of bulk water for material 

accumulation, and they proposed two material accumulation mechanisms that are influenced by 1) 

bulk water quality and 2) corrosion processes. Both accumulation mechanisms imply that all pipes in 

normal operation are susceptible to cohesive layer development and hence pose discolouration risk.  

4.3.5   Hydraulic based discolouration management strategy in trunk mains 

 

A non-invasive trunk main cleaning strategy termed “flow conditioning” was developed based on the 

concept of a cohesive transport turbidity modelling approach (Husband and Boxall, 2015). This 

strategy was developed and implemented by the University of Sheffield in collaboration with several 

UK water companies. Flow conditioning is considered as “controlled in-service flushing” imposing 

managed shear stress to mobilise controled amounts of material, below the UK regulatory limit of 

4.0 NTU. It requires having extensive knowledge of pipe hydraulic and properties prior to the trial. 

During flow conditioning, mobilised material is entrained in the bulk flow as wash load and 

transported through the downstream network and ultimately to the point of use. The method is 

designed to operate under operational network conditions without interrupting supply, and therefore, 

maximum 1.0 NTU is targeted during the trial to avoid any potential turbidity prescribed 

concentration value (PCV) failure in the downstream network. Material with cohesive strength 

higher than the imposed shear stress remains on the pipe wall and hence flow conditioning reduces 

discolouration risk by removing (weaker) material loading proactively from the trunk main pipe wall. 

Thus flow conditioning has the ability to achieve target hydraulic resilience by increasing shear 

stress to a certain level. In this case, resilience refers to the magnitude of hydraulic events that will 

cause minimal or no discolouration response. Meanwhile, not removing the stronger layers during 

flow conditioning may lead to the weaker layer accumulating more rapidly in the trunk main itself, 

hence risk could be higher after the intervention. However, this was not investigated in any previous 

works which is the scope of this study.  

This cleaning intervention has been effectively and successfully implemented in several trunk main 

systems with proven reduction in discolouration risk (Husband and Boxall, 2015). However, the 

long-term impact on the trunk main and the downstream network discolouration risk is unknown. 



48 | P a g e  

 

There is concern that the periodic mobilisation and transport of acute material (> typical average 

turbidity reading) loads from trunk mains during flow conditioning events could accelerate 

accumulation in the downstream network increasing discolouration risk. This additional material is 

mobilised from the trunk main and transported for only a short period of time (a few minutes to 

hours depending on hydraulic magnitude and period) compared to the continuous turbidity flux or 

chronic loading time period of days to years. Figure 6 presents the acute and chronic material loading 

scenarios and material concentration during the transport from trunk main to downstream distribution 

zone. Therefore the primary research concern with the flow conditioning intervention is that periodic 

acute material loading or bulk water chronic loading may have more influence on downstream 

discolouration risk more, which has not been investigated yet. This study explores the impact of 

trunk main flow conditioning intervention on long-term discolouration risk by investigating the 

change in chronic material loading of trunk main and difference between the effects of chronic and 

acute material loading from trunk main on downstream network accumulation return period. 

 

Figure 6: Chronic and acute material loading under varying hydraulic conditions 
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4.4   Methods and Materials 

 

4.4.1   Methodology 

 

A methodology was developed to investigate the change in chronic loading of trunk mains and 

address the effects of chronic and acute material loading on discolouration risk induced from flow 

conditioning intervention. In order to investigate this, it is required to obtain both long-term 

hydraulic and turbidity time series data that include different material loading scenarios from flow 

conditioning. To assess the impact of different material loading on downstream accumulation 

conditions, an investigation of mass flux variations of discolouration material in relation to imposed 

hydraulic conditions was essential.  

Figure 7 presents the different magnitudes and periods of flow conditioning interventions applied on 

trunk mains. To provide the range of varying material loading scenarios and accumulation periods, 

two types of flow conditioning interventions were implemented periodically in two similar trunk 

mains: one with higher applied shear stress termed ‘normal flow conditioning’ and the other with 

relatively lower imposed shear stress termed ‘passive flow conditioning’. Both interventions were 

implemented quarterly to get a measurable response (Figure 7). A similar third trunk main with no 

intervention was selected as a control and flow conditioning intervention implemented at time zero 

and after 12 months. These varying magnitude events from the three trunk mains ensured different 

loading scenarios from trunk mains to downstream network, and as a result different discolouration 

risk conditions in the downstream test networks.  

The same initial imposed shear stress magnitude was used for the three trunk mains to set similar 

initial levels of discolouration risk conditions. The same final shear stress was applied to assess final 

discolouration risk for the three different maintenance strategies. Since different material loading 

was hypothesised to be transported from the trunk mains to downstream, it was likely that 

downstream material accumulation rates would be different. Thus from each trunk main, downstream 

distribution pipes with similar characteristics were flushed before and after all planned trials to assess 

material accumulation rates using mass flux analysis, as shown in Figure 7.    
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Figure 7: Fieldwork procedure, timeline and flow conditioning strategy definition where TM-1 is 

Normal flow conditioning, TM-2 is Passive flow conditioning, and TM-3 is Control. DMA flushing 

occurs in pipes downstream of all three trunk mains. 

Both hydraulics and water quality data are essential for this study. Trunk main flow data are 

necessary to record and manage both normal and flow conditioning events. Turbidity data are 

required to assess the material loading from flow conditioning trials and during normal operating 

conditions, at the common inlet to the three trunk mains and the downstream end of each. Monitoring 

turbidity at high temporal resolution is necessary to capture continuous material loading which can 

produce a quantitative indication of water quality as turbidity variations. Repeated flow conditioning 

trial response was compared by calculating material mass flux using both flow and turbidity data. 

Observing continuous turbidity data can be used to quantify the material loading from trunk mains to 

downstream network; however, it cannot separate the simultaneous chronic and acute loading impact 

on the particles passing through the downstream pipes and accumulating on the pipe wall. Therefore, 

to quantify the impact of different loading on downstrean accumulation, material accumulation rates 

or return period were estimated from repeated flushing trials using mass flux analysis within the 

selected DMAs’ pipes. It is to be noted that continuous turbidity measurement can only measure 

chronic and acute material loading and provide indication of how specific pipes perform against 

discolouration risk. However, it does not represent directly the amount of material that accumulates 

on the pipe wall. 

In order to complete the experimental design, it is necessary to eliminate effects of other influential 

variables on material accumulation processes, such as source water, hydraulics, pipe material. 

Therefore, the test network was selected based on a single water source supplying the three trunk 

mains, similar hydraulic conditions and similar pipe material. For downstream repeat flushing 
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investigations, similar pipe properties were selected, e.g. similar hydraulics, pipe material and 

location in the network to provide comparable material accumulation rates.   

4.4.2   Site details and network characteristics  

 

To fulfil the experimental design, a treatment outlet to tertiary (downstream) water network was 

selected from a UK based operational drinking water distribution network. Three independent trunk 

mains each supplied from a single treated water source, were selected for the case study. Each trunk 

main had similar pipe material and hydraulics profile, e.g. velocity, Reynold number and shear 

stress. This was to ensure comparable physical, chemical and microbiological water quality condition 

and hence discolouration risk between each main prior any intervention. Figure 8 presents the 

network schematics with monitoring instruments location. While the choice of inlet point confirmed 

the incoming loading from treated water, the outlet point monitors ensured that the monitoring 

section covered the change of discolouration risk within the trunk main over time and interventions 

and hence could provide accurate material loading information to the downstream network.   

 

The instruments as shown in Figure 8 were deployed in such a way that they could capture the 

necessary information for this study, described in the methodology. In addition to continuous 

turbidity and flow data, discolouration based customer contact data from the DMAs were collected to 

provide further collaborating insight and impact of different loading conditions. While customer 

contact is based on the consumer’s visual perception, the numbers of contacts per 1000 properties 

can be an indicator for DMAs discolouration risk performance and hence it is treated as secondary 

data for this study.  
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Figure 8: Network layout including water treatment, the three supplied trunk mains and DMAs 

layout and deployed instruments locations where a Sigrist Aquascat 2 turbidity meter was used for 

upstream and ATI Nephnet and Evoqua Hydraclam were used for downstream continuous turbidity 

measurement and ABB Aquamaster was used for continuous flow measurement.   

Table 1 presents the physical and typical hydraulic properties of the three test trunk mains.  
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Table 1: Trunk mains hydraulic properties where CI = Cast Iron  

Trunk 

main 

system 

Mean 

internal 

diameter 

from 

industry 

record 

[mm] 

Pipe 

material 

Length from 

WTW outlet 

to 

downstream 

logger [km] 

Calibrated 

Pipe 

Roughness, 

ks [mm] 

Velocity 

[m/s] 

min, average, 

max 

Shear 

stress 

[N/m
2
] 

min, 

average, 

max 

Reynold 

number 

 [-]*10
4
 

min, 

average, 

max 

TM-1 304.8 
Partially 

lined CI 
6.4 8.50 0.4, 0.6, 0.8 

0.1, 1.0, 

2.0 
4, 8, 15 

TM-2 406.8 
Unlined 

CI 
5.6 10.35 0.1, 0.3, 0.4 

0.1, 0.7, 

1.7 
4, 8, 14 

TM-3 304.8 
Unlined 

CI 
5.9 7.50 0.2, 0.4, 0.6 

0.1, 1.0, 

2.2 
5, 9, 13 

 

The raw water was supplied from an upland surface source and treated with a ferric coagulation 

process. Table 2 presents the treated water quality parameters from discrete samples collected for 

regulatory purposes from 2013 to 2016. All mains were gravity fed from the treatment works.  
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Table 2: Treated water quality parameters values; discrete samples collected from January 2013 till 

May 2017 (n ≥ 200)  

Treated water quality 

parameters 
Unit Average Min Max 

Standard 

deviation 

Iron (min 0.45 μm filter) 𝜇g/l 23.0 7 100 16 

Manganese (min 0.45 μm 

filter) 

𝜇g/l 1.8 1 6 1.0 

Aluminium (min 0.45 μm 

filter) 

𝜇g/l 39.0 9 57 10.6 

Turbidity  NTU 0.1 0.05 0.9 0.03 

Total Organic Carbon 

(TOC) (min 0.45 μm 

filter) 

mg/l 1.7 0.6 2.8 0.5 

Free Chlorine  mg/l 1.4 0.5 5 0.3 

Water temperature  °C 9.6 0.7 18 4.7 

 

4.4.3   Selected DMAs pipes characteristics  

 

As part of company network maintenance, all DMAs within the operational area including the 

selected DMAs were flushed before the investigations. In total five pipes with similar characteristics 

were chosen from each of the selected DMAs for repeated flushing. Priority was given to the non-

corroding pipes, such that the dominant contribution to discolouration risk would be accumulation 

from the bulk water, rather than local contribution from corrosion of the pipes themselves. All pipes 

were located near to the inlet of DMA and operated as dead end sections serving residential areas, so 

had similar demand patterns, rather than serving further different sized downstream areas. The flow 

in the investigated pipes was typically diurnally variable and relatively consistent across the year, 

with sub-daily variations. Table 3 presents the properties of selected pipes for flushing analysis. 
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Table 3: Test DMA pipes physical and hydraulic properties; DI = Ductile Iron, MDPE = Medium 

Density Polyethylene, CI = Cast Iron, DE= dead end and LP=Looped network  

Trunk 

mains 

and 

selected 

interventi

on 

Flushed 

DMA 

 

Max 

demand 

per capita 

[l/s.c] 

 

Total 

customer

s/ Total 

pipe 

length 

[c/m] 

Pipe  

numbers 

Pipe 

material 

Pipe 

location 

Length 

[m] 

Industry 

recorded 

internal 

diameter 

[mm] 

TM-1 

[Normal] 
DMA-A 0.0044 0.26 

A CI lined LP 251 152 

B DIL DE 100 100 

C DIL DE 70 100 

D MDPE DE 221 90 

E MDPE DE 166 90 

TM-2 

[Passive] 
DMA-C 0.0044 0.21 

F MDPE DE 93 102 

G MDPE DE 99 102 

H MDPE DE 47 102 

I MDPE DE 203 102 

J MDPE DE 94 102 

TM-3 

[Control] 

 

DMA-E 

 

0.0050 

 

0.20 

K DIL DE 253 80 

L DIL DE 343 100 

M MDPE DE 111 90 

N MDPE LP 204 90 

O MDPE DE 187 63 
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4.4.4 Fieldwork procedure and timeline 

 

The flow conditioning trial was designed using the validated PODDS model (Husband and Boxall, 

2015) to achieve max 1.0 NTU during the trial period. TM-1 and TM-2 were designed with a 40% 

shear increase addition to the typical historical (12 months) peak shear termed normal flow 

conditioning, and 16% addition to the peak shear termed passive flow conditioning. These target 

shear stresses were selected based on the WTW hydraulic capacity and trial point local drainage 

conditions. All flow conditioning trials were operated under similar conditions, i.e. same time of the 

day, equipment and monitoring sections to standardise the trial. Since the trunk main flow profiles 

were demand driven and diurnal in pattern, target excess shear stress was achieved during morning 

peak demand period when the network demand was highest. Morning peak demand period was 

chosen as it requires the lowest additional demand to achieve the target level. 

To pre-set the DMA pipes to known level of cleanliness prior any flow conditioning trial, initial 

flushing trials were undertaken. The repeated flushing trials were undertaken after the completion of 

all trials to determine the impact of different material loading on accumulation rates (see trial plan in 

Figure 7). Previous work reported that no notable turbidity responses were observed beyond flushing 

at 1.12 N/m
2
 (Boxall and Prince, 2006) and 1.2 N/m

2 
(Husband and Boxall, 2010) shear stress and 

1.5 m/s (Vreeburg, 2007) velocity for small diameter (≤150 mm) plastic pipe. Whilst the first two 

(shear stress) values were confirmed via fieldwork and fitted measured response to the PODDS 

model, velocity of 1.5 m/s was identified based on notable turbidity response compared to average 

typical values. Even though the methods were different, observed values were found to be similar, 

suggesting its universality for smooth pipes. Therefore, for this study, plastic pipes were chosen for 

the flushing study due to velocity to shear stress conversion is being less critical for smooth pipe 

compared to rough pipe e.g. unlined CI main and shear stress to achieve 1.2 N/m
2
 (Husband and 

Boxall, 2010) or above was relatively easier for the chosen network. Both initial and repeated 

flushing of DMA pipes were conducted with similar conditions to the initial trial, e.g. flow rate, flow 

step increase, flushing duration, same time of the day and same equipment’s to maintain the results 

consistency. Figure 9 shows a typical setup of flow conditioning and DMA flushing trial including 

monitoring equipment.  
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Figure 9: Intervention operation with the UK specified hydrant standpipe integrated ABB 

Aquamaster flow meter and turbidity monitoring through twin ATI Nephnet loggers (Turbidity unit 

included orange boxes and black flow cell)where a) is day time flow conditioning and b) is night 

time DMA flushing. 

4.4.5   Flow conditioning and DMA flushing data monitoring  

 

The typical turnover time for the three trunk mains under highest flow conditioning discharge was 

approximately 3.5 hrs. Hence given the expected propagation effects of material mobilisation, a 

turbidity sampling resolution of 15 minutes was selected to provide sufficient definition of the 

material mobilisation response. Since the turnover time for the typical DMA pipe with average pipe 

length of 150m and velocity of 1.2 m/s was 2 minutes, sampling was measured at the 1Hz frequency 

to ensure at least 10 measured points to define temporal response. To collect flow data during flow 

conditioning and DMA flushing trials, an ABB Aquamaster flow meter (www.abb.com) attached to a 

Langham UK hydrant standard standpipe was used. The ABB flow meter used in this work measured 

flow with an accuracy of ±5% of reading and maximum working pressure of 12 bar. Flow and 

therefore shear stress were increased carefully with a gate valve connected to the standpipe discharge 

point. The ATI Nephnet (www.atiuk.com) instruments were used to measure turbidity responses 

during flow conditioning (acute loading) and DMA flushing using infrared (IR) Nephelometric 

measurement process. The ATI Nephnet logger functioning range was set to 0-4.0 NTU for flow 

conditioning trial and 0-400.0 NTU for DMA flushing period. Instruments were calibrated with 

formazin samples under standard laboratory conditions. Turbidity data was spot checked regularly by 

a 2100Q Hach handheld logger (www.hach.com) which was also calibrated with standard formazin 

dilution samples. The handheld turbidity meter was calibrated for 0-800.0 NTU with an accuracy of 

±2% of reading. A one-off 24 hour pressure at trunk main downstream point was measured using 

Syrinix Transientminder (www.syrinix.com), to calibrate the pipe roughness and therefore to 

a) b) 

http://www.abb.com/
http://www.atiuk.com/
http://www.hach.com/
http://(www.syrinix.com/
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estimate shear stress for all three trunk mains. The pressure logger range was set for 0-20 bar with an 

accuracy of 0.1% of full-scale output. 

4.4.6   Long-term data monitoring 

 

Figure 7 shows the equipment used for continuous flow and turbidity measured in both the upstream 

and downstream section of the selected trunk main. Continuous flow and turbidity measurement 

from the trunk mains was conducted at a 15-minute frequency. The ABB Aquamaster flow meter at 

the inlet of each trunk main and DMAs were available prior to the interventions. A similar ABB 

flowmeter was used to check flow conditioning and flushing flows achieved. To measure the treated 

water turbidity, a Sigrist Aquascat 2 turbidity instrument (www.photometer.com) was available at 

the WTW outlet. The turbidity instrument range was set to 0-4.0 NTU with an accuracy of ±0.001 

NTU using the IR Nephelometric measurement process. To determine the downstream chronic 

loading, continuous turbidity data were measured at the trunk main downstream initially with an ATI 

Nephnet instrument (www.atiuk.com) from October 2015 to February 2016. The ATI Nephnet 

logger functioning range was set to 0-4.0 NTU for continuous measurement with an accuracy of ±5% 

of reading using IR Nephelometric measurement process. After January 2016, Evoqua Hydraclam 

(www.evoqua.com) loggers were deployed. Like the ATI and Sigrist logger, Hydraclam used the IR 

Nephelometric measurement process with a range set for 0-10.0 NTU with an accuracy of ±5% 

reading. Spot checks were made bi-weekly using Hach handheld turbidity instruments as detailed 

above. 

 

4.4.7  Data processing and analysis 

 

Due to discolouration particles’ cohesive nature (Boxall et al., 2001), it is anticipated that a drift 

could present in continuous turbidity data as optic lens fouling (Gaffney and Boult, 2012). To 

minimise the turbidity drift, the ATI Nephnet logger lens was cleaned on site bi-weekly during its 

deployment period (From October 2015 to February 2016), with little or no drift observed and good 

agreement shown with spot checks. After February 2016 the Hydraclam logger was deployed in 

which turbidity drift was corrected through a proprietary “Evoqua” post-processing algorithm which 

http://www.photometer.com/
http://www.atiuk.com/
http://www.evoqua.com/
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returned good agreement with handheld spot checks. The Sigrist logger was maintained in good 

order as part of the regular WTW regulatory maintenance. 

The Hydraclam turbidity data had higher standard deviation (SD) of 0.38 (sample size, n≥5800) 

compared to the ATI Nephnet unit (SD=0.03, n≥5800). A potential reason for the lower variation 

with the ATI logger is that it used a continuous flow of 0.02 l/s (~1.2 l/m) for the sampling process. 

The Hydraclam logger used a purging system, running 6L of water at a flow rate of 0.1 l/s to waste 

prior to sampling each 15-minutes. While the total discharged volume (>6L) can be increased, it was 

limited due to the local drainage conditions. This is considered to produce additional noise in the 

data due to partial purging of the hydrant riser and connecting pipework. To minimise the noise from 

the measured signal, different rolling means were explored and 1-hour was selected based on 

minimising the signal noise yet retaining the measured behaviour. Figure 10 shows a moving average 

sensitivity study comparing measured turbidity response of treated water and the three trunk mains. 

It is noted that turbidity responses produced during the flow conditioning trial were not included in 

the smoothing process as the higher flows through the hydrant negated the riser turnover effect.   

 

Figure 10: Moving average sensitivity analysis of measured turbidity responses where 1 hour is 

chosen as suitable conditions. Data is limited to 0-0.5 NTU for better visibility 

Due to operational constraints, the applied shear stresses were not consistent with both pipes and 

hydraulic events, and therefore volumetric turbidity responses (flow and turbidity) were not directly 

comparable. Hence the flow conditioning trial results were assessed and compared via a material 

release rate. To compare the responses with a single measurable unit, measured flow and turbidity 

response was calculated by integrating the turbidity time series with the volume of water used and 
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dividing by the sum of the imposed excess shear stress and calibrated pipe effective wall area. This is 

as shown in equation 1 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑒𝑥𝑐𝑒𝑠𝑠 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠  𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 =
∫ 𝑇𝑑𝑠(𝑡).𝑄(𝑡)𝑑𝑡

𝑡
0

𝜋

4
𝐷2 ∫ 𝜏(𝑡)

𝑡
0

   (1) 

Where Tds is the turbidity in NTU, t is the trial duration in seconds, Q is the volume of water in m
3
/s, 

τ is the applied excess shear during the trial period in N/m
2
, and D is the internal pipe diameter in m. 

The excess shear stress was determined by average daily shear stress minus the additional shear 

stress imposed during the trial period. The imposed shear stress was calculated using equation 2.  

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠, 𝜏 = 𝜌𝑔𝑅𝑆0          (2) 

Where, 𝜌 = discolouration material density in kg/m
3
, g = gravitational force in m/s

2
, R = hydraulic 

radius in m and S0 = hydraulic gradient unit less. In this calculations, 𝜌 and g were used at 1100 

kg/m
3
 (Boxall et al., 2001; Ryan et al., 2008) and 9.81 m/s

2
. Hydraulic gradient was calculated for 

the entire pipe length using Darcy-Weisbach formula integrating Swamee-Jain Colebrook-white 

approximation (Swamee and Jain, 1976) and network hydraulic properties stated in table 1.  

While the flow conditioning data was compared using material release rate, the same calculation was 

not valid for DMA pipe flushing data as the flow rate was relatively consistent for a short period of 

flushing durations, with no continuous change of shear stress. Hence, flushing data was compared by 

using volumetric material loading (NTU.m
3
) which integrated the turbidity time series in NTUs and 

multiplied by flushing water volume in m
3
/s. This volumetric loading calculation was done at initial 

flushing (time zero) and repeated flushing (+12 months) and estimated how long it would take for 

repeated flushing values to reach their initial volumetric loading conditions assuming a linear 

accumulation process (Boxall et al., 2003a; Cook and Boxall, 2011). This is as shown in equation 2: 

 𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = ∫ 𝑇𝑑𝑠(𝑡). 𝑄(𝑡)𝑑𝑡
𝑡

0
        (2) 

To investigate the significance of intervention impact on downstream network material accumulation 

rates, samples were statistically analysed by IBM SPSS v22.0 software. Due to the small sample size 

and assuming samples were not normally distributed, nonparametric testing was chosen to 

investigate the difference between the chronic and acute material loading rate with a significance 

level (α) of .05. For multivariate analysis, the Kruskal-Wallis H test was chosen, and Mann-Whitney 

U test was used for bivariate sample analysis.  
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4.4.8   Clustered discolouration contact analysis 

 

Previous research showed that trunk mains have a critical influence on DMA level discolouration 

contacts (Cook et al., 2015) as hydraulic disturbance from trunk mains can impact on multiple 

connected DMAs within a short period of time. Hence, spatial and temporal clustering can 

differentiate customer contact induced from trunk mains from more local DMA specific contacts. 

Prior to clustering analyses, records of discolouration customer contacts from the downstream DMAs 

were collected from 2013 till 2016 including the +12 months monitoring period maintained in 

accordance with regulatory requirements. Customer contact data for the +12 months monitoring 

period were collected for assessing the impact of trunk main interventions and how this differed from 

DMA local induced contact compared to the previous years. Contacts were then clustered with 

respect to hydraulic events affecting two or more DMAs within a 24 hour rolling period; hence, data 

were segregated into two groups: those from upstream effects (mainly the trunk mains) and those 

locally within DMAs. Discolouration contact data were cross-checked with other hydraulic events 

(e.g. bursts or rezoning) captured by the trunk main flow meter and bursts repair report.  

 

4.5   Results  

4.5.1  Flow-Turbidity time series and intervention data assessment 

 

Figure 11 presents the flow and turbidity profiles of the three trunk mains from October 2015 to 

January 2017. One major burst event affected TM-1 flow, occurring between trial 2 and trial 3. Four 

burst events were recorded by the TM-2 flow meter during the measured period. Two burst events 

were observed in TM-3 data. All these hydraulic events occured in the downstream networks except 

the burst event in June 2016 in TM-3 which occurred approximately 1.3 km from the WTW outlet. 

During the repair process, TM-3 demand was rerouted via parallel TM-2 at 1.7 km from the WTW 

outlet. This then initiated the burst event in TM-2 at the same time. The burst in December 2016 in 

TM-3 was a small event that caused 6 l/s additional flow and was located approximately 2.0 km from 

the WTW outlet. However, no observable turbidity response was found from the bursts event. This is 

potentially for the bursts upstream initiated location, no material propagation was recorded.  
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Figure 11: Flow and turbidity profiles of treated water and three trunk mains from October 2015 till 

January 2017. Redline is turbidity in NTU; blue line is flow profile in l/s. The dark blue arrows 

indicate the flow conditioning trials, and the red arrows are the burst events with:. a) Treated water 

turbidity, b) TM-1 flow, c) TM-1 turbidity, d) TM-2 flow, e) TM-2 turbidity, f) TM-3 flow and g)TM-3 

turbidity.    

Figure 12 presents the three trunk main flow conditioning and bursts event measured flow and 

turbidity responses obtained by setting zero minutes at midnight (12:00 am) of starting day for each 

event, continuing for a period of up to 72 hours (three days) and overlaying those events’ data to 

compare results. A three day continuous data period was chosen as each trial was required to achieve 

continuing target shear stresses up to a maximum of 72 hours. The TM-1 data in Figure 12(a) show 

that a notable amount (≤1.0 NTU) of material was mobilised from all planned trials, with turbidity 

observed from each daily shear stress increase. Even though the imposed shear stress was similar for 

all planned trials, similar strength material was mobilised from each of those successive trials. A 

peak turbidity of about 10.0 NTU was recorded during the burst in March 2016. While relatively 

stronger strength material was released from the burst in March 2016, enough material was 

accumulated within the two months period to have observable response from trial 3 (≤0.5 NTU). 

a) 

b) 

c) 

d) 

e) 

f) 

g) 
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Figure 12(b) presents TM-2 flow conditioning and burst event induced flow and turbidity data. No 

notable turbidity was observed from any TM-2 flow conditioning trials, potentially affected by 

multiple burst events during the monitoring period. However, material was released from each burst 

event under varying imposed shear stress conditions. For TM-3, only trial 1 and the burst in May 

2016 had observable turbidity responses, as shown in Figure 12(c). In all three trunk mains cases, 

these events were separated by some period that allowed material to accumulate and discolouration 

responses from the imposed hydraulic condition from each event, suggesting that the same strength 

material accumulated or returned on the pipe wall.. 

 

 

b) 

a) 
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Figure 12: Flow conditioning and bursts event flow and turbidity responses for the three trunk mains 

where time zero started from trial start day at 12 am (midnight) up to 72 hours where a) TM-1, b) 

TM-2 and c) TM-3. Here T represents flow conditioning trial and B represents bursts. Top plot: 

Flow profile in l/s, middle and bottom plot: showing trunk main downstream measured turbidity 

where bottom plot is limited to 0-1.0 NTU for better visibility 

Figure 13 presents the flow conditioning trial and burst events induced responses as material release 

rate per unit excess shear stress per unit wall area with focus both on bursts events (left Figure) and 

flow conditioning events (right Figure). It is evident from Figure 13(a) that the release rate value of 

TM-1 was lowest in trial 2 and 3 and the highest value was recorded during trial 5. Since similar 

imposed shear was implemented for all trials in TM-1, it was expected that similar amounts of 

material would be mobilised, which was not observed. However, during bursts in February 2016, the 

material release rate was 19230 NTUm
3
/N which potentially impacts on the trial 3 results as the 

lower values compared to the other period  evident from Figure 13(a). Figure 13(b) shows that 

relatively less material was mobilised from TM-2 (passive flow conditioning) compared to TM-1, 

which was anticipated due to the lower imposed shear stress conditions. A high amount of material 

was released from multiple TM-2 burst events and that may impact on the following flow 

conditioning event, e.g. trials 3 and 4 of TM-2. Figure 13(c) shows that similar amounts of material 

were released from two planned trials from the control main (TM-3) with 12 months interval. Similar 

to TM-2, TM-3 bursts in May, 2016 also released high amounts of material with potential impact on 

the trial 2 responses. However, due to the long interval period between the bursts in May, 2016 and 

trial 2, it is difficult to quantify the impact. The TM-3 burst in December, 2016 was calculated for 48 

hours of monitoring as there was no observable response measured from this event. It is to be noted 

that most material was released from TM-1 and TM-3 compared to TM-2 trial.  

c) 
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Figure 13: Material release rate per unit excess shear stress per unit wall area (NTU.m
3
/N) of flow 

conditioning trial and burst events where T stands for flow conditioning trial and B stands for bursts. 

a) TM-1, b) TM-2 and c) TM-3. Left plot y-axis is limited to 0-60000 NTUm
3
/N to focuses on bursts 

data and right plot is limited to 0-6000 NTUm
3
/N to show flow conditioning data properly. It is to be 

noted that x-axis are different for each trunk main data.  

 

4.5.2  Trunk main long-term turbidity response comparisons 

 

Figure 14 illustrates the continuous measured turbidity profile of the treated water and downstream 

ends of the three trunk mains for visual assessment for the month of May, 2016. This monthly data 

period was chosen for turbidity comparisons as it was just after the trial 3 of TM-1 and TM-2, before 

the May 2016 burst event in TM-2 and TM-3, and approximately in the middle of the investigation 

c) 

a) 

b) 

Focusses on 

bursts event  

Focusses on flow 

conditioning event  

Off the scale 

Off the 

scale 

Off the 

scale 
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period when all loggers were recording continuous data simultaneously. Visual comparison of WTW 

outlet turbidity with each trunk main’s time series data demonstrates that additional turbidity 

particles were produced while water was transported through the trunk mains; this is particularly 

evident in TM-3 data. The observed turbidity signals typically exhibited a diurnal pattern, suggesting 

an impact from the diurnal variations in flow..  

 

Figure 14: Long-term measured upstream-downstream turbidity response of May 2016 (sample size, 

n≥2950) where the top plot shows WTW treated water and the remaining three bottom graphs show 

the three trunk mains’ downstream responses. All data are limited to 0-1.0 NTU in y-axis scale for 

better visibility 

Figure 15 shows the histogram assessment of turbidity frequency ranging from 0 to 1.05 NTU for 

each trunk main. Long-term results demonstrate that higher frequency of low turbidity response (0-

0.15 NTU) is mostly found in treated water following TM-2 and TM-1. However, a relatively higher 

number of turbidity responses were recorded for TM-3, suggesting higher chronic loading 

transporting from TM-3 compared to other trunk mains.  
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Figure 15: Histogram analysis of WTW and the three trunk mains turbidity responses (sample size 

n≥25000). Histogram is limited to 0.-1.05 NTU in x-axis. Measured data collected from October 

2015 to December 2016.. 

To assess how bulk water turbidity varied during the transit and to quantify the hydraulic events’ 

impact on turbidity responses, continuous measured turbidity data of treated water and the three 

trunk mains were processed in box-whisker plots as shown in Figure 16. Box-whisker plots were 

processed in a monthly duration from October 2015 till December 2016 showing the median, 25
th

, 

75
th

 and 99
th

 percentile range of data. Figure 16(a) shows that treated water median turbidity lies 

between 0.07 and 0.15 NTU with no abrupt variations, suggesting low turbid water supplied in trunk 

mains. TM-1 (normal flow conditioning) measured data show that additional particles were 

generated compared to treated water responses as shown in Figure 16(b). The initial turbidity 

response of TM-1 (October, 2015) was relatively higher than WTW responses. It is apparent from 

Figure 16(b) that median turbidity response was improved after the flow conditioning trial started 

from November, 2015 and after that median turbidity was relatively nearer to the WTW baseline, 

suggesting that the flow conditioning influences turbidity behaviour. The only exception was 

observed in October, 2016, where relatively higher turbidity responses were measured than in the 

other months. This could be related to the change from European summer to autumn cyclic seasonal 

loading, although, TM-2 did not show a similar response. However, following trial 5 (implemented 

at the end of October, 2016), notable improvement of turbidity was observed from October 

(median=0.27 NTU) to November (median=0.075 NTU) and December (median=0.10 NTU). 

Similar to the TM-1 monthly turbidity response, Figure 16(c) shows that the TM-2 (passive flow 

conditioning) median response was nearer to the treated water response, suggesting the improved 
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turbidity conditions were due to the periodic flow conditioning and bursts events. . It is evident from 

Figure 16(c) that following the bursts in May, 2016 median turbidity was improved. Figure 16(d) 

presents that the control (TM-3) network monthly turbidity response was increased over time, 

suggesting that following trial 1, turbidity responses degraded due to no maintenance conditions. No 

immediate impact on turbidity response was observed from the bursts in May, 2016; however, a little 

improvement was measured from July 2016 onwards, with a slight improvement after the December, 

2016 bursts event. The improvement of turbidity after hydraulic events, e.g. bursts and flow 

conditioning and increased turbidity response due to no maintenance conditions, suggests that 

cleaning interventions have impact on bulk water turbidity behaviour.  

  

  

Figure 16: Monthly variations of treated water and the three trunk mains’ bulk water turbidity 

responses in statistical box-whisker plot: a) Treated water (sample size, n≥40000), b) TM-1 (normal 

flow conditioning, n≥25000), c) TM-2 (passive flow conditioning, n≥38000) and d) TM-3 (control, 

n≥33000). Data processed  from October, 2015 till December, 2016 show the range, median, max-

min data containing 99th percentile with 0-0.5 NTU in y-axis scale, highlighting both planned (flow 

conditioning) and unplanned (burst event). Here, green arrows represent flow conditioning trials 

and red arrows burst events. Turbidity data from the duration of the flow conditioning trials and 

burst events were excluded from the box-whisker analysis. X-axis timeline extended from October 

2015 till December 2016.  

Figure 17 presents the +12 months turbidity responses comparisons between treated water and the 

three trunk mains summarised in a box-whisker plot. The upstream turbidity response or WTW 

baseline for +12 months lies between 0.08 and 0.15 NTU with a median of 0.115 NTU. Amongst the 

three trunk mains, TM-2 had the lowest response, with a median of 0.11 NTU which was closer to 

a) b) 

d) c) 
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the treated water values. TM-1 measured data were a little higher than TM-2 and the median was 

about 0.135 NTU, yet nearer to the treated water exiting values. The maximum turbidity response 

was recorded for TM-3, with median about 0.275 NTU which was about 240% higher than leaving 

water response and about 200% higher than TM-1 and TM-2. The results show that in comparison to 

the control main, chronic turbidity loading from the trunk mains (TM-1 and TM-2) was improved 

due to the periodic flow conditioning intervention.  

   

Figure 17: Statistical box-whisker plot for measured turbidity data (sample size, n≥25000) of 

upstream treated water and downstream trunk mains of total monitoring period showing the range, 

median, max-min data containing 99th percentile and y-axis limited to 0-0.5 NTU. TM-1 is Normal 

flow conditioning, TM-2 is Passive flow conditioning, and TM-3 is the control trunk main   

 

4.5.3   DMA flushing results  

Figure 18 shows initial and repeat flushing turbidity data along with the stepwise demand increase 

used to produce target shear stress (>1.2 N/m
2
) for two example pipes from two separate DMAs. 

Figure 18 data were chosen randomly from the flushing trials, with all other flushing results observed 

to be similar. The graph demonstrates that each stepwise increase in imposed flow (and therefore 

shear stress and velocity) caused material release from the pipe wall. Figure 18 also demonstrates 

that initial flushing of the previously undisturbed pipes produced more turbidity than the repeated 

flush, indicating the cohesive layers had not fully regenerated after +12 months. Figure 18 shows 

mobilisation of material with each increase in shear stress, confirming that the accumulation of 

material occurs across a range of strengths. It is to be noted that peak turbidity from TM-3 flushed 
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pipe was higher than from TM-1 pipe suggesting a higher amount of material accumulated in control 

main fed DMAs.  

 

 

Figure 18: Randomly selected DMA pipes repeated flushing trial at time zero and 12 months of 

investigation a) TM-1 pipe E where D=90mm and L=166m b) TM-3 pipe M where D=90 mm and 

L=204 m 

Table 4 presents the DMA pipes repeated flushing data with their average accumulation return period 

after 12 months and time taken to reach initial volumetric loading via mass-balance analysis. It is to 

be noted that initial flushing condition was assumed to be the maximum discolouration risk as it was 

in undisturbed conditions. DMA-A (TM-1, normal flow conditioning) pipes repeated flushing results 

show that the average time to reach initial condition would be 2.7 years, with 2.5 years for DMA-B 
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(TM-2, passive flow conditioning) pipes and 2.0 years for DMA-C (TM-3, control) pipe. These 

assessments showed that the pipes in the DMA fed by the flow conditioning main had approximately 

25% improved accumulation return period. 

The Kruskal-Wallis (K-W) H test demonstrated that there was a statistically significant difference in 

the DMA pipes accumulation return period between all three test groups with X
2
 = 8.398, p = .015. A 

similar statistical difference in downstream accumulation return period was found between the 

control group and normal flow conditioning group using Mann–Whitney (M-W) U test (U=.15, p = 

.016). However, for DMA pipes supplied from two flow conditioned trunk mains, the accumulation 

return period did not differ significantly according to the M-W U test (U=6.5, p = .22). These 

statistical significance tests suggests that there was no negative effect on downstream accumulation 

return period from the acute loading of quarterly flow conditioning intervention. Rather it seems that 

the reduced chronic loading due to the periodic flow conditioning intervention evident in Figures 15 

and 17 has a beneficial effect on downstream discolouration risk.  
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Table 4: DMA flushing volumetric turbidity results and relative accumulation rate for the selected 

pipes. Here, DE = dead end and LP = Looped 

Trunk main 

Intervention 

and DMAs 

 

 

Pipe 

material 

 

 

Pipe 

Location 

 

Volumetric 

turbidity 

NTU.m
3
 [1*10

5
] Material 

accumulation 

after 12 

months (%) 

Initial flush 

condition or 

predicted 

accumulation 

rate [year] 

Statistical 

Significance 

(Kruskal 

Wallis H 

Test) Pre 

[Initial] 

Post 

[+12 

months] 

DMA-A 

(Normal 

flow 

conditioning, 

TM-1) 

CI lined LP 8.3 3.8 46 2.1 

X
2
 =8.398 

P= .015 

DIL DE 7.3 1.9 27 3.7 

DIL DE 3.1 1.3 42 2.4 

MDPE DE 4.2 1.5 35 2.8 

MDPE DE 3.1 1.3 41 2.4 

DMA-C 

(Passive 

flow 

conditioning, 

TM-2) 

MDPE DE 3.3 1.5 45 2.2 

MDPE DE 8.9 3.3 37 2.7 

MDPE DE 1.3 0.5 39 2.5 

MDPE DE 1.5 0.5 30 3.3 

MDPE DE 6.6 3.6 55 1.8 

DMA-E 

(Control 

main, TM-3) 

DIL DE 2.1 1.0 47 2.1 

DIL DE 12.2 7.9 65 1.5 

MDPE DE 0.53 0.23 55 2.3 

*MDPE *LP *2.7 - - - 

MDPE DE 0.56 0.26 46 2.2 

* Due to the local pipe specific burst event with no impact on overall trunk main flow, material 

accumulation rate could be influenced and hence not valid for comparison. 
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4.5.4   Discolouration contact assessment  

In order to further evaluate the downstream network performance due to the different trunk main 

interventions and resulting downstream loading, long-term discolouration customer contact data 

were assessed for two or more DMAs (for detail see Figure 7 network schematics). Due to 

confidentiality issues it is not possible to publish actual contact numbers. To aid this, un-clustered or 

total discolouration customer contact was presented as contact numbers per 1000 properties as shown 

in Figure 19. The un-clustered discolouration contacts data were collected from 2013 to 2016, 

including the +12 months monitoring duration to explore the net effect of the trunk main 

interventions. The recorded data depicted in Figure 19 indicate that TM-1 (normal flow conditioning) 

supplied DMAs contacts were increasing during the 2013 to 2015 pre-trial period, potentially due to 

the lack of cleaning program, and reduced after commencement of the normal flow conditioning 

intervention. Discolouration contacts were similar in TM-2 from 2013 and 2014, with an increase in 

the 2015 pre-trial period likely due to the multiple recorded burst events, mostly at DMA level. 

However, slightly higher numbers were recorded during the +12 month monitoring period, 

predominantly caused by the May 2016 burst event. It is evident from Figure 17 that TM-3 (control) 

fed network discolouration contacts were higher in 2013 and reduced in the following years. An on-

going old CI pipe replacement rehabilitation program could potentially have contributed to the 

improved condition. No notable change of customer contact was observed during the +12 months 

post-trial monitoring period compared to the 2015 pre-trials. Although the TM-3 test DMAs were 

flushed prior to the investigation, no overall improvement of customer contact numbers was 

recorded, suggesting that overall DMA performance did not improve.  

 

Figure 19: Discolouration customer contact data per 1000 properties for the test DMAs fed from the 

three trunk mains from 2013 till 2016 including +12 months monitoring period. 
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Following the analysis of un-clustered or total discolouration contacts from the test DMAs (Figure 

17), discolouration contacts were clustered with respect to hydraulic events affecting two or more 

DMAs within a 24-hour rolling period. If discolouration contacts were found in more than one DMA 

within a 24-hour rolling period, the likely cause would be from trunk main event. Figure 20 presents 

the clustered contact analysis of trunk main and the percent contributed from trunk mains compared 

to total recorded contact. No trunk main induced contact was recorded in 2013 and few contacts 

during 2014, suggesting overall performance was good at that period. Although a high number of 

trunk main induced contacts was observed in the 2015 pre-trial period in the TM-1 fed network due 

to multiple bursts events, no clustered contacts were found during the monitoring period despite the 

TM-1 burst event in March 2016 evidencing the benefit of flow conditioning. Relatively low trunk 

main induced contact was observed in TM-2 fed network during 2013 and 2014, although it was 

higher during the 2015 pre-trial and monitoring period. Similar to TM-2, TM-3 supplied network had 

relatively low clustered contact in the 2013 and 2014 period and an increase was observed during the 

2015 pre-trial and monitoring period. Both TM-2 and TM-3 contacts were affected by the same burst 

event in May 2016. About 90% of contacts in the TM-2 fed network and 65% of those in TM-3 were 

produced from the burst event alone in the monitoring year, suggesting that DMAs’ performance of 

TM-2 (passive conditioning) was good compared to that of the TM-3 (control) network.  
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Figure 20: Clustered analysis of the trunk main induced customer contact data a) trunk main contact 

per 1000 properties and b) percent trunk main contact compared to un-clustered contact  

 

4.6   Discussion 

 

4.6.1   Trunk main turbidity time-series data and diurnal profile 

 

Intensive +12 months upstream and downstream turbidity measurement showed that in all trunk 

mains water quality deteriorated with increased turbidity concentration compared to the treated 

water. This evidences the concept of water quality deteriorating during transit due to the 

physicochemical and microbiological interactions. The measured higher turbidity could have been 

produced from varying sources, i.e. iron corrosion as test mains were unlined CI  (Carriere et al., 

2005; Sarin et al., 2002, 2003), chemical reactions  (Kirmeyer, 2000; Sly et al., 1990) and biological 

growth (LeChevallier et al., 1987; Gauthier et al., 2001; Meckes, 2001). However, this study did not 

investigate each variable’s influence on this degradation process separately. Diurnal turbidity profiles 
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showed that hydraulics influence the daily mass flux, with material accumulating during night time 

low flows and mobilised during the morning peak, as shown in Figure 14. This field evidence of 

diurnal turbidity response suggests that a continuous daily material mobilisation-accumulation 

process cycle exists in the distribution systems. Similar turbidity correlation to diurnal flow pattern 

was also observed by Cook, (2007) and Machell and Boxall, (2014). Mounce et al. (2015) used the 

semblance technique to correlate long-term continuous measured flow and turbidity data and 

suggested that as the correlation gets stronger, the risk increases, indicating that material is well 

accumulated on the pipe wall and poses higher risk. The diurnal turbidity behaviour was more 

apparent in TM-3 (control) main (Figure 14) compared to the other two flow conditioned mains, 

suggesting potentially higher discolouration risk from non-intervention networks.   

4.6.2   Material mobilisation and accumulation processes 

 

The trunk main flow conditioning trials (Figure 12) and DMA flushing data (Figure 18) showed that 

each step of the shear stress increase mobilised additional turbidity, confirming that materials have 

cohesive strength properties whereby weak layers mobilise earlier than the stronger ones. This 

pattern of discolouration is supported by several previous studies  (Boxall et al., 2003b; Cook and 

Boxall, 2011; Husband and Boxall, 2011, 2016). Material release rate assessment in Figure 13 

demonstrates that material accumulated continuously, supporting the previous work of Boxall et al. 

(2003b) and Cook and Boxall (2011).  

The periodic hydraulic intervention both at trunk main and DMAs demonstrated an increase in 

material being mobilised during each trial with similar shear stress step up to the initial trial, 

suggesting that material regenerated across the range of shear strength simultaneously (see Figure 12 

and 16). If it were regenerated from strong to weak layers as reverse of the mobilisation process, 

following the initial trial, material should have mobilised with small increase of shear stress and 

hence no responses would have been observed from repeated higher imposed shear stress conditions. 

However, this was not observed from repeated trials and bursts condition (Figure 12 and 18). While 

the previous works observed this accumulation behaviour for small diameter pipe both at controlled 

laboratory (Sharpe, 2012) and operational conditions (Husband and Boxall, 2011; Husband et al., 

2010), this work demonstrates for the first time that material accumulates across all strengths 

simultaneously in the large diameter pipe systems. This improved understanding of accumulation 

processes for trunk mains is critical to understand how risk returns on the pipe wall and for designing 
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discolouration management strategy by managing the cohesive layer strength and imposing 

controlled hydraulic intervention pro-actively.   

4.6.3  Shear stress impact on continuous turbidity profiles 

 

During the experimental design, it was conceptualised that all three trunk mains had similar physical, 

chemical and biological chemistry as each had similar hydraulics properties, pipe material and fed 

from the same source. The implication is that prior to any intervention, the three trunk mains had 

similar bulk water and wall conditions, and turbidity responses should have varied due to the 

different imposed shear stress conditions. Overall long-term turbidity assessment (Figure 17) shows 

that background turbidity was improved due to the periodic flow conditioning interventions 

compared to the no intervention system. Although reduced turbidity in bulk water due to hydraulic 

intervention contradicts the findings of Gaffney and Boult (2012), Mounce et al. (2015) evidenced 

that turbidity events frequency improved after flushing. While both studies had used the same 

dataset, results can vary subject to analysis and interpretation. This improvement in chronic loading 

conditions can be explained using Figure 21 which shows that during normal operations without any 

hydraulic disturbances, cohesive layers are in an equilibrium state with current hydraulics (Boxall et 

al., 2001) and a continuous daily material mobilisation-accumulation process cycle exists (Husband 

and Boxall, 2011), as shown in Figure 14. However, the net material balance in equilibrium 

conditions remains the same as the layer reaches its maximum accumulation capacity under normal 

operating conditions. Typically weaker cohesive layers are mobilised during the flow conditioning 

event and to maintain the equilibrium over time, additional particles from bulk water can accumulate 

on the remaining layer. However, in normal operation, this effect does not take place as there is little 

or no capacity left on the cohesive layers. As a result, particles generated from complex reactions 

between bulk water and pipe wall during transit remain suspended for normal operations, and the net 

response makes a greater contribution to chronic loading. This finding is observed in the monitoring 

data (Figure 17) where background turbidly was lower in the flow conditioning mains compared to 

the control main.  
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Figure 21: Influence of hydraulic behaviour on material mobilisation-accumulation and bulk water 

turbidity loading response for trunk main. During normal operation (first image), partial weak 

cohesive layers contribute to the chronic loading continually with additional generated particles 

from corrosion and microbial reactions; however, the reverse process does not necessarily occur 

due to the steady-state layer conditions and hence increasing background chronic loading. During 

the flow conditioning exercise (second image), weak layers are removed and therefore cohesive 

layers capacity increases for additional weak layers. During long-term normal hydraulic conditions 

following the flow conditioning exercise (third image), bulk water particles create equilibrium 

cohesive layer conditions by filling the weak strength layers and hence reducing overall chronic 

loading.  

 

4.6.4   Acute and chronic material loading effects 

 

Prior to the investigation, a research concern arose that immediate acute loading from trunk mains 

can increase the discolouration risk compared to chronic loading. While occasional acute material 

loading (in this case ≤1.0 NTU for flow conditioning trial) was supplied from flow conditioned trunk 

mains during conditioning trial, relatively higher chronic loading from the control main was 

observed. Results assessed from downstream pipes material accumulation return interval (table 4) 
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and selected DMAs discolouration contacts per 1000 properties (Figure 19 and 20) showed that 

downstream network performance is better with trunk mains undergoing flow conditioning 

intervention. Accumulation return periods are significantly lower in the control main fed downstream 

network, hence there is higher discolouration risk than the flow conditioned trunk mains. This is due 

to flow conditioning reducing the trunk main water quality degradation (turbidity responses) 

compared to the normal operation, and thereby reducing chronic turbidity loading in the bulk water 

that is continuously supplying the downstream network (Figure 17). This suggests that the higher 

chronic material influx from the upstream control network increases material loading on the 

downstream network and relatively fast build-up of material on the pipe wall. Acute material 

supplied from the trunk main may accumulate on the downstream pipe wall. It is also possible that 

acute loading simultaneously passed through the customer tap during the flow conditioning trial and 

was not accumulating on downstream pipe walls and hence overall pipe wall accumulation was 

lower for the flow conditioned trunk main. Since the 1.0 NTU target during flow conditioning main 

is lower than the aesthetically visible turbidity limit (4.0 NTU), it is difficult to provide conclusive 

evidence either that acute loading accumulates or passes through the tap. However, accumulation 

return period assessment suggested that pipe supplied from higher chronic loading (control main) has 

a lower accumulation period (higher discolouration risk) than the flow conditioned trunk main.  

The increase in accumulation rates from higher turbid bulk water and vice-versa shows the 

significance of bulk water effect on accumulation rates and that improving treated water quality can 

reduce discolouration risk in both trunk main and downstream distribution zone by lengthening 

return periods between the cleaning interventions. A similar conclusion was drawn by Vreeburg et 

al., (2008). While Vreeburg et al., (2008) came to this conclusion by changing the water quality, this 

study evidences the significance of bulk water on discolouration risk by imposing different planned 

interventions. This improved understanding of discolouration risk management opens up the 

opportunity to assess the synergy between treated water improvement and cleaning intervention 

return period. Such assessment can be undertaken by analysing the trade-off between cost of 

improved treatment and cost of intervention such that most suitable discolouration management 

conditions can be designed considering from WTW to downstream network approach.  
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4.7   Conclusions  

 

This study has assessed the long-term discolouration impacts of trunk main flow conditioning 

interventions on the trunk mains themselves and the associated downstream networks. Specific 

findings are: 

 

- Chronic material loading from bulk water is more significant in terms of downstream network 

accumulation rate and hence discolouration risk than the occasional acute loading from flow 

conditioning interventions. This study provides further evidence that accumulation rates are a 

function of long-term bulk water quality and improving water quality can play an important 

role in reducing discolouration risk by prolonging the process and hence extending the periods 

between cleaning interventions.  

 

- Long-term turbidity behaviour in trunk mains can be managed with repeated flow 

conditioning intervention whilst relatively higher chronic loading was observed from no 

intervention networks and hence higher risk for the whole investigated period, with some 

monthly variability. 

 

- Discolouration risk in downstream networks is reduced with repeated flow conditioning. 

While downstream networks may get occasional acute loading from flow conditioning, 

reduction of chronic loading from trunk mains reduces accumulation rates or return  period.  

 

- Further evidence on material accumulation indicates that it returns at all strengths 

simultaneously on both large and small diameter pipes, suggesting its long-term typical nature 

in drinking water networks. Understanding the significance of accumulation processes can 

help to understand how risk is formed within the network and manage those layers proactively 

by implementing flow conditioning strategically. 

 

- The finding that flow conditioning intervention provides effective discolouration risk 

reduction in trunk mains without creating an adverse effect on discolouration risk in the trunk 

main itself and downstream network highlights its value as a cost-effective way to manage 

long-term discolouration risk in the drinking water distribution systems.  
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5.1   Abstract 

 

This paper explores the concept that periodic imposed excess shear stress events to manage 

discolouration risk in trunk mains can also impact on the chlorine wall decay by changing the 

properties of the accumulated pipe wall material. By implementing a series of varying magnitude 

shear stress events in multiple trunk main demonstrated that significant material was mobilised, 

thereby cleaning the mains and reducing discolouration risk. Measured chlorine data also suggests 

that repeated shear stress intervention reduced the chlorine wall decay relative to a control network 

and the larger the intervention greater the benefit. Calibrated first order chlorine decay simulations 

in EPANET supported this finding. The modelling results further show that the wall decay has a 

dominant influence on this change even for these large diameter pipes. The significance of these 

findings is to evidence the additional value of regular hydraulics based cleaning interventions for 

large diameter mains delivering service improvement in terms of both discolouration risk and 

persistence of chlorine residual.  

 

Keywords: Discolouration risk, shear stress, chlorine decay  

 

5.2   Background 

 

5.2.1   Discolouration processes and management strategies  

 

The effective management of water distribution networks from water treatment works (WTW) to tap 

approach is an essential action to safeguard public health and asset longevity. However as soon as 

water flows through distribution systems, it starts to deteriorate due to complex physico-chemical 

and microbiological interactions. Hence, water quality failure is predictable considering network 

complexities and the diverse variables interacting with bulk water and pipe wall. This includes 

discolouration incident due to the mobilisation of accumulated material from the pipe wall. 

Discolouration is a wide-spread water quality issue due to its visibility and causes the highest 

consumer contacts globally which affecting customer confidence in tap water (Vreeburg and Boxall, 

2007). In 2001, the PODDS (Prediction of Discolouration in Distribution Systems) model (Boxall 

and Saul, 2005) was developed and validated to describe the behaviour of the wall bound 
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accumulated layers and hence to simulate discolouration response. The model assumes accumulated 

layers have cohesive strength properties where layers conditioned by the peak daily shear stress, can 

be mobilised during excess imposed shear stress conditions. Discolouration due to the hydraulic 

disturbance is critical for transmission (trunk) mains as it can cause a substantial impact on large 

numbers of downstream consumers. However, interventions to remove wall bound materials from 

large diameter pipes are often complex, expensive and potentially disruptive for consumers. Based 

on the PODDS model concept of conditioning layers with excess imposed shear stress, a non-

invasive flow conditioning strategy (Husband and Boxall, 2015) was developed by the University of 

Sheffield in collaboration with UK water companies. This strategy involves periodic interventions to 

impose excess shear stress in such a way to mobilise controlled amounts of material, below the UK 

turbidity regulatory limit of 4.0 NTU. This method is designed to be implemented in operational 

networks without interrupting customer supply. This strategy has been successfully implemented in 

several trunk main systems (Cook et al., 2015; Husband et al., 2011b). 

 

5.2.2   Chlorine applications and decay processes 

 

To limit biofilm regrowth and to protect against microbial contamination, application of free chlorine 

is widely used in the water distribution systems. However, during transit chlorine concertation is 

reduced due to the reaction with numerous bulk water and pipe wall constituents. Loss of chlorine 

within distribution system mainly occurs in two processes: a) bulk decay (kb): is the 1
st
 order 

exponential reaction coefficient and reacts with bulk water organic and inorganic constituents and b) 

wall decay (kw): chlorine reacts with pipe wall biofilms, accumulated materials and corrosion scale 

(Al-Jasser, 2007). Previous research has shown a strong correlation of bulk decay with initial 

chlorine concentration, total organic carbon and temperature (Hallam et al., 2003; Powell et al., 

2000) where the typical values found between 0.024 -17.7 (Speight and Boxall, 2015). Typically 

wall decay is site specific and can only be determined through a calibration process. Several studies 

reported that chlorine decay increases with the rise of Reynold numbers (Menaia et al., 2003; Ramos 

et al., 2009), although no investigations are examining how the properties of accumulated material 

influences the chlorine decay in an operational distribution system. 
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5.2.3   Discolouration risk and microbial affiliation  

 

Typically discolouration is considered to be an inorganic particulate issue, although substantial 

percentage of organic content has indicated microbial affiliation (Gauthier et al., 1999). Recent 

studies suggested that biofilm may play a vital role for discolouration process (Husband et al., 2016) 

which is considered to hold floating inorganic-organic particles and creates a robust protected 

environment for microorganism against the impact of disinfection (Cowle et al., 2014). Similar to 

accumulated material cohesive nature, biofilms have been identified as a cohesive, three-dimensional 

polymer structure that can be mobilised with increases in shear stress (Abe et al., 2012). Research 

indicates that chlorine penetration is limited into the biofilm matrix and have a reduced efficacy 

against biofilm microorganisms (Chen and Stewart, 1996; De Beer et al., 1994). Therefore by 

mobilising the top weak biofilm layer along with cohesive material layer during shear stress events 

potentially expose fresh biofilms which is a concern that it could increase the chlorine wall decay 

due to the new wall condition. While the flow conditioning has been proven to be good for 

controlling discolouration risk, the aim is to explore if it has any impact on chlorine wall decay.  

This paper investigates the long-term impact of periodic flow conditioning intervention on chlorine 

wall decay. The robustness of the chlorine wall decay coefficient assessment was tested by long-term 

data monitoring and modelling in multiple similar operational trunk main system. 

 

 

5.3   Methods and materials 

 

5.3.1   Site details  

To investigate the impact of trunk main flow conditioning on chlorine wall decay, a UK-based 

operational water distributional network was selected. The network was chosen to have three trunk 

mains fed from a single water source and hence the same chlorine residual and bulk water properties 

from WTW inlet. Single water source also ensured similar water chemistry existed in the trunk 

mains. All three trunk mains had similar hydraulic behaviour and pipe material and as a result similar 

discolouration risk prior to the investigation. These conditions also ensured similar decay processes 

as chlorine decay is influenced by both hydraulic conditions and pipe material. Table 5 presents the 

three selected trunk main hydraulic conditions and pipe properties. The source water was treated with 

a ferric coagulation based processes. Typical chlorine dosing in the treated water varied between 1.0-
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2.0 mg/l. Average treated water turbidity was between 0.05-0.2 NTU. Long-term spot samples results 

showed that average treated water iron, manganese and aluminium concentrations were 23, 6 and 39 

mg/l. Long-term average TOC (total organic carbon) and pH was 1.7 mg/l and 8.8. A schematic 

representation of the selected network and its associated monitoring instrumentation is presented in 

Figure 22. Continuous loggers were strategically deployed to captures all the essential information 

for chlorine decay modelling assessment. 

 

Figure 22: Network schematics showing instrumentation location 
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Table 5: Trunk mains hydraulic properties (here CI = Cast iron) 

Trunk 

main 

system  

Industry 

recorded 

mean 

internal 

diameter 

[mm] 

Pipe 

material 

Length 

from WTW 

outlet to 

downstream 

logger [km] 

Velocity 

[m/s] 

(min, 

average, 

max) 

Shear stress 

[N/m
2
] 

(min, 

average, 

max) 

Reynold 

number [-] 

* 10
4
 

(min, 

average, 

max)  

TM 1 304.8 
Partially 

lined CI 
6.4 0.4,0.6, 0.8 0.1,1.0,2.5 4,8,15 

TM 2 406.8 Unlined CI 5.6 0.1,0.3,0.45 0.1,0.75,1.7 4,8,14 

TM 3 304.8 Unlined CI 5.9 0.2,0.4,0.6 0.15,1.0,2.2 5,9,13.5 

 

5.3.2   Fieldwork setup, monitoring and data processing  

 

To investigate the impact of flow conditioning on chlorine decay, three independent strategies were 

implemented in the three selected trunk mains. Two cleaning strategies were designed, one with a 

40% shear stress increase in addition to the peak shear, termed normal flow conditioning. The second 

with a 15% addition to the peak shear, termed passive flow conditioning. Both normal and passive 

flow conditioning was implemented quarterly. The third trunk main, acting as a control had a flow 

conditioning intervention at time zero and after 12 months. All flow conditioning trials were operated 

using similar conditions e.g. same equipment’s and conducted at similar times of the day.  

 

Flow, and therefore shear stress, was increased during flow conditioning intervention and measured 

through Langham UK specified hydrant standpipe attached with ABB magflow meter. Flow was 

controlled via throttle gate valve. Turbidity response during the interventions was monitored through 

ATI Nephnet loggers at 15 minutes frequency. Continuous flow at the inlet of the trunk main was 

measured by ABB flowmeter at 15 minutes sampling frequency. Free chlorine residual was measured 

with 15 minutes sampling interval at trunk main upstream and downstream using Evoqua 

Chloroclams. Continuous chlorine loggers were spot checked and calibrated with Hach handheld 

colorimeter. The handheld logger was calibrated against standard gel for instrument verification. 
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Regular discrete samples were used to measure the average treated water temperature throughout the 

investigated period. A one-off period of downstream pressure monitoring was undertaken for the 

three trunk mains using Syrinix Transientminder at 15-minute sampling frequency for hydraulic 

calibration purposes. Zero leakage was considered for modelling purpose.   

 

5.3.3   Chlorine decay modelling 

 

Prior to the chlorine residual modelling, hydraulic models were calibrated to determine a unique 

solution to headloss and velocity and travel times. The calibration was facilitated by using a 1 mm 

roughness (ks) equal to 2 mm effective diameter (D) reduction concept (Boxall et al., 2004). The 

unique paired (ks and D) values were determined from using the PEST (Doherty, 2005) calibration 

model integrated to EPANET (Rossman, 2000) hydraulic model. Table 6 presents the investigated 

trunk mains optimised hydraulic configuration.  

Table 6: Investigated trunk mains optimised hydraulic configuration 

Trunk main system Length [km] 
Optimised 

diameter, D [mm] 

Optimised roughness,  

ks [mm] 

TM- 1 6.4 303.2 8.50 

TM-2 5.5 395.8 10.35 

TM- 3 5.9 292.3 7.50 

 

The chlorine quality modelling was simulated through standard Epanet software with simplified first 

order reaction kinetics for decay analysis. Use was made of the functionality to separate bulk and 

wall decay coefficients. Prior to the monitoring, a jar test was conducted from the treatment works 

final water at 5(±2)°C water temperature with kb_5 estimated as 1.79 day
-1

. Unfortunately, further jar 

tests were not conducted, so changes in the bulk coefficient over the year were not measured. 

However, temperature effects were accounted for. The site and time specific kb_5 value was used to 

determine kb_20 value from Arrhenius equation using the E/R value of 7300°C (Menaia et al., 2003). 

Bulk decay values were further corrected using equation 1 according to the recorded mean treated 

water temperature where necessary. Thus a representative common value for bulk decay that 

includes temperature effects was produced and used for all three trunk mains. The wall reaction 
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coefficient was then adjusted to account for any other effects. Hence, systematic change across all 

three could be due to source effects, but the difference between the trunk mains would be due to the 

wall effects. 

 

kT = k20 *θ
(T-20)

                                 (2) 

 

Where kT = decay at any given temperature (d
-1

); k20 = decay at 20°C reference temperature (d
-1

);    θ 

= temperature correction factor (unit less).  

Pipe wall decay (kw) was estimated through an iterative calibration process in EPANET using the 

field measurement and simulated values to maximise the correlation coefficient (R
2
). As it was a 

single parameter calibration, a manual approach was chosen for the optimisation purposes.  

 

5.4   Results 

 

5.4.1   Flow time series and trial results 

 

Figure 23 presents flow data from the three investigated trunk mains with the designated quarterly 

trial period. Over the 12 months monitoring period there were a series of burst events affecting all 

three trunk mains, these are also marked in Figure 23. All burst events occurred in the downstream 

distribution zone, except for the burst in May 2016 directly effecting both TM-2 and TM-3. This 

event started in TM-3 main 1.7 km from the treatment outlet, with the flow then rezoned via parallel 

TM-2 due to the maintenance work. Significant material was mobilised during these events which is 

not presented in this paper.  
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Figure 23: Flow data for the three selected trunk mains and the associated planned-unplanned 

event; here green arrow represent flow conditioning event and red arrow bursts event a) TM-1, b) 

TM-2 and c) TM-3. 

Figure 24 presents the material release rate amount per unit excess shear stress during the flow 

conditioning trial. The material release rate was estimated by integrating the turbidity time series 

multiplied with flow data and divided by summed excess shear stress and effective pipe area to 

render a single, directly comparable number. It is evident from Figure 24 that a sufficient amount of 

material was mobilised from each trial, with the highest amounts recorded from the trunk main 

subject to normal flow conditioning. Relatively less material was released and monitored from 

passive flow conditioning main (TM-2) due to the multiple burst events in TM-2 which potentially 

affect the trial induced turbidity response. Similar amounts of material were released from the control 

main trials at time 0 and after 12 months, although 12 month results could have been influenced by 

the burst events that occurred in May and December 2016. 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

a) 

b) 

c) 
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Figure 24: Material release rate per unit excess shear stress per unit wall area for all flow 

conditioning trial showing bursts occurrence period using black down arrows 

 

5.4.2   Long-Term chlorine measurement 

 

To investigate the impact of flow conditioning intervention on chlorine wall decay, modelling was 

undertaken to simulate the long-term chlorine measured data with an emphasis on understanding the 

change in wall decay coefficient. Figure 25 shows chlorine residual monitoring data from the treated 

water and the downstream end of each trunk main. Continuous monitoring was not functional during 

the first quarter following trial 1. Also, there were some periods where the instrument did not 

monitor data due to operational issues. The difference between WTW outlet and the downstream of 

all three trunk mains across the long-term data demonstrates that chlorine dissipates with time due to 

the reaction with water compounds and other influencing variables during transit. It is evident from 

Figure 25 that with the gradual rise of temperature from May 2016, chlorine dosing was increased in 

the treatment works to balance the downstream residual limit. Similar dosing was maintained at the 

WTW outlet from July to September 2016 as the temperature was steady in that period. It is also to 

be noted that TM-3 had relatively higher residual from mid-May to September 2016 compared to 

TM-1 and TM-2.    
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Figure 25: Time series signals of chlorine and temperature data; top plot showing treated water and 

3 supplied downstream trunk mains free chlorine residual and bottom plot showing 3 trunk mains 

temperature profile in °C 

A gradual drop in downstream residual was observed during this period suggesting temperature 

influence on chlorine demand. After mid-September temperature started to drop steadily, yet similar 

upstream residual was maintained. An increase in TM-2 chlorine residual trend was observed during 

this period, however there was no other trunk main data available from end October to mid-

December 2016. WTW chlorine dosing was lowered slowly from November due to compensate for 

the low water temperature. Even with relatively less chlorine dosing, downstream residual was 

higher indicating a strong temperature impact on downstream residual. 

 

5.4.3   Bulk decay assessment 

 

Figure 26(a) presents the bulk decay coefficients assessed from using a common bulk wall decay 

coefficient across all sites that was adjusted to the trial duration mean treated water temperature. 

Therefore, kb values were adjusted with equation 2 as a similar pattern to the measured temperature 

profile, shown in Figure 26(a). Figure 26(b) presents the chlorine decay partial simulation for TM-1 

during trial 4 to demonstrate the how wall decay influences the actual measured response of the 

system. Results depict that relatively large differences from downstream measured to simulated data 

was observed by simulating site-specific kb value (=4.2 d
-1

) and assuming no wall effect (kw = 0). 

Trial 2 Trial 3 Trial 4 Trial 5 
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This gap in simulated and measured data was compensated by adding a wall decay coefficient (kw = 

0.4) to better calibrate the model response.  

 

 

 

 

 

Figure 26: Bulk decay coefficient a) average treated water temperature and site specific bulk decay 

adjusted to the temperature, b) Upstream-downstream measured data with chlorine residual 

simulation using only kb (=4.2 d
-1

) and kb (=4.2 d
-1

) + kw (=0.4 d
-1

) 
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5.4.4   Wall decay assessment  

 

Figure 27 presents the calibrated wall decay for all three trunk mains simulated to the quarterly 

chlorine time series data. Trial 1 results were not available due to the lack of continuous chlorine 

data during this period. The control main (TM-3) had the highest kw value for trial 2. A drop of kw 

was observed in trial 3 for both TM-2 and TM-3, however the same trend was not observed for TM-1 

suggesting the large burst event in May 2016 impacted the wall decay process. An increase of kw was 

seen for TM-1 in trial 3 which is assumed to be influenced by relatively high water temperature and 

therefore higher microbial activities. Calibrated kw in trial 4 was found increasing for all three cases 

where control main (TM-3) had the highest wall decay rate. Although the overall temperature was 

lower during trial 5, so does not contribute to the difference in results observed. Noticeably the 

control main (TM-3) kw value, remained relatively static in trial 4 and 5 compared to the trunk mains 

undergoing flow conditioning. Of interest is that TM-1 performed best considering wall decay 

comparisons.  

 

Figure 27: Calibrated wall decay coefficient for three trunk mains and mean treated water 

temperature 
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5.5   Discussions 

 

The variation of the kw value can be explained based on the idea that excess shear stress is generated 

via flow conditioning intervention or burst event mobilised discolouration material from the pipe 

wall as well as weak biofilm layers, potentially exposing the remaining biofilms sections to being 

less chlorine resistant. The available chlorine residue reacts with the reduced biofilm, which possibly 

inactivates faster compared to the normally developed biofilm and creates equilibrium conditions 

quickly. The results also demonstrated that chlorine decay has an inverse relation to the imposed 

shear stress, where higher applied shear could mobilise more biofilm and the remaining reduced 

biofilm would return quicker to an equilibrium situation. While this change in wall decay condition 

was observed short term between the trials, it is necessary to impose shear stress at regular intervals 

to manage the reduced wall decay. The implication of the findings here is that, in addition to 

reducing discolouration risk, long-term flow conditioning strategies could reduce chemical-

operational costs by permitting lower chlorine dosing through improved maintenance of residual in 

trunk main system.  

This study, conducted with robust monitoring and decay assessment using a simplified modelling 

approach, has demonstrated the positive impacts of flow conditioning on chlorine wall decay. 

However, further understanding is required into the linkage between chlorine demand behaviour and 

discolouration material present on the pipe wall such that intervention strategies can be optimised for 

both benefits. Further investigation should include integration of temperature into a variety of wall 

effects and regular bulk decay measurement. 

 

5.6   Conclusions 

 

This study investigated the impact of trunk main shear stress driven flow conditioning strategy on 

chlorine wall decay. The findings from this long-term study are: 

 Periodic imposed excess shear stress events e.g. flow conditioning reduced chlorine wall 

decay.   

 The higher the applied shear stress, the better the observed chlorine wall decay benefit.  

 The improvement of chlorine wall decay due to the applied shear stress events was found to 

be temporary and hence regular hydraulic interventions are required to maintain the benefit.  
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6.1   Abstract  

 

Trunk mains are high risk critical infrastructure where poor performance can impact on large 

numbers of customers. Both quantity (e.g. hydraulic capacity) and quality (e.g. discolouration) of 

trunk main performance are affected by asset deterioration in the form of particle accumulation at 

the pipe wall. Trunk main cleaning techniques are therefore desirable to remove such material. 

However little is quantified regarding the efficacy of different maintenance interventions, or longer 

term changes following such cleaning. This paper presents an assessment for quantity and quality 

performance of a trunk main system pre, post and for twelve months following cleaning using 

pigging with ice slurry. Hydraulic calibration showed a 7 times roughness height reduction after ice 

slurry pigging, evidencing substantially improved hydraulic capacity and reduced headloss. 

Turbidity response due to carefully imposed shear stress increase remained significant after the 

cleaning intervention evidencing that relatively loose material had not been fully removed from the 

pipe wall. Overall the results demonstrate that cleaning by pigging with ice slurry can be beneficial 

for quantity performance, but care and further assessment may be necessary to realise the full 

quality benefits. 

Keyword: Invasive cleaning, hydraulic roughness, discolouration risk 

 

6.2   Introduction 

 

One of water company’s primary responsibilities is to operate and maintain their distribution 

network performance to ensure the continuous supply of safe, high water quality. As part of the 

drinking water network, transmission (trunk) mains are categorised as critical infrastructure as poor 

performance can impact a large numbers of downstream customers. Due to strict operational and 

quality regulations and concern regarding potential consequences, UK water companies have tended 

to avoid operational activities associated with trunk mains (Husband and Boxall, 2015). However 

this is becoming unavoidable and water utilities rehabilitation programs now include large 

undertaking for the cleaning of large diameter mains (i.e. trunk mains) to manage asset resilience and 

reduce water quality risks. Considering the massive total expenditure allocated for cleaning 

interventions, infrastructure performance assessment both for pre-post cleaning water quality and 

quantity are vital to justify the investment. 
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Quantity performance e.g. hydraulic capacity and pipe roughness can impacts on the quantity of 

water received by the consumer, fire flow capacity and energy (pumping) costs. Continuous fouling, 

tubercles and scaling can increase hydraulic resistance and reduce effective pipe diameter (Boxall et 

al., 2004). Microbial activity on pipe wall can also raise boundary resistance and affect hydraulic 

capacity (Cowle et al., 2014).  

Discolouration is the water quality issue most apparent to the customer, causing the highest contact 

rates (i.e. number of contacts per 1000 population per year) worldwide. Particle size analysis 

demonstrated that discolouration processes are dominated by small particulate material (2-25 𝜇m), 

thus their behaviour is unlikely to be dominated by gravity driven processes, rather continuously and 

ubiquitously attaching to the pipe wall by a complex combination of physical, chemical and 

biological processes (Boxall et al., 2001). The internationally validated PODDS (Prediction of 

Discolouration in Distribution Systems) model has developed and later verified that these particles 

are structured in  stable cohesive layers and are released in to the bulk water once an excess shear is 

imposed (Boxall and Saul, 2005). Recent studies have indicated that biofilms are a key component of 

the discolouration process.  facilitating inorganic particle absorption within the organic matrix 

(Douterelo et al., 2014; Husband et al., 2016).  PODDS concepts are well accepted for smaller 

diameter pipes in the distribution system and are started to be shown valid for large diameter 

transmission mains (Husband and Boxall, 2015). 

As infrastructure ages, particulate material attached to the pipe wall can create a significant 

discolouration risk and reduce hydraulic capacity (Cook and Boxall, 2011; Shahzad and James, 

2002). To remove accumulated material, water utilities often use invasive cleaning strategies as part 

of their rehabilitation programs (AWWA, 2014). It is well established that invasive cleaning (e.g. ice 

pigging, air scouring, swabbing) can remove significant amounts of accumulated materials and 

biofilms from operational trunk mains (Ellison, 2003; Friedman et al., 2012). However, little is 

quantified regarding the efficacy of such interventions in terms of either quantity or quality 

improvement and how this changes over time following the intervention. 

The aim of this paper is to investigate the quantity and quality performance benefits of an in-service 

trunk main invasive cleaning program. Quantity performance of the selected trunk main was assessed 

through hydraulic modelling of monitored pre and post invasive cleaning flow and pressure data, 

with performance improvement evaluated by change in calibrated roughness height. Quality 

performance was assessed by monitoring, modelling and comparing the turbidity response due to 
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controlled increase in hydraulic conditions pre and post intervention. Post cleaning evaluations were 

repeated over a twelve-month period to explore longer term performance changes. 

6.3   Methodology 

 

6.3.1   Selected network characteristics  

 

The selected trial trunk main was 2.4 km of 228 mm internal diameter (D) asbestos cement (AC) 

pipe. In this case, trunk main was defined by operation providing supply from a service reservoir into 

downstream distribution zones, with no consumers directly connected. The supplied DMAs (District 

Metered Area) were mostly residential with consistent demand across the year with sub-daily 

variations. The downstream network had a demand driven diurnal daily flow pattern with an average 

downstream pressure of 42 m and typical daily demand profile varying between 6 and 20 l/s (0.14-

0.48 m/s). The trunk main operates under gravity, with a low point in the long section as shown in 

Figure 28a. 
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Figure 28: Network schematics with field plan a) Trunk main layout, monitoring points with 

elevation profile, b) cleaning interventions planning and timelines 

 

6.3.2   Fieldwork procedure and monitoring 

 

The trunk main was built around 40 years ago. No known cleaning intervention have been 

implemented since it was commissioned. As part of a scheme to reduce discolouration customer 

contacts in the supplied DMAs and to remove particulate material and biofilm attached to the pipe 

wall, pigging with ice slurry was selected and implemented (Moore, 2013; Quarini, 2002). The 

method uses ice slurry to form a dynamic plug which increases shear on the pipe wall to dislodge 

built-up material. A site-specific amount of semi-solid ice slurry was pumped through a UK standard 

a) 

 

b) 
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washout hydrant at the trunk main inlet and emitted from a hydrant 2.4 km downstream. Before 

cleaning, the main was isolated from supply to ensure no mixing of water into supply with the semi-

solid ice pig. 

The trunk main served three separate downstream DMAs, with no connections over the 2.4 km 

length selected for cleaning. This layout ensures constant flow over the entire pipe length. Flow at 

the inlet, service reservoir level data and downstream pressure data allow for accurate hydraulic 

calibration, quantity performance. Pre and post pressure data was collected using Syrinix 

Transientminder loggers with 15-minute resolution. Flow was monitored continuously at the service 

reservoir outlet using existing instrumentation, again at 15-minute resolution. 

Quality performance was assessed by imposing carefully managed flow increases and monitoring for 

any turbidity response, see Figure 28b. From the PODDS concepts the imposed excess (above 

normal daily peak) shear stress would induce mobilisation of loose material associated with 

discolouration, with repeated operations of the same magnitude providing insight into any inter-

period accumulation or other change in material layers. Managed increases in system shear stress 

were imposed through a hydrant standpipe. Flow increases were planned such that turbidity 

responses were expected to be well within regulatory limits (4 NTU at customers tap in the UK). 

These trials were executed before, to establish a base condition and just after invasive cleaning to 

assess the amount of material left on the pipe wall and quarterly thereafter to explore subsequent 

change. All flow conditioning trials were operated with repeatable conditions i.e. similar time of day, 

duration, locations, equipment and section of trunk main to ensure the trial results were comparable. 

To monitor the downstream turbidity response, two ATI NephNet turbidity loggers were used with a 

1-second sampling interval. The ATI turbidity loggers were calibrated under laboratory conditions 

and two loggers used to provide dual validation. Spot checks against HACH handheld turbidity 

instrument, calibrated against formazin turbidity standards, were also undertaken. A specially 

designed ABB flow meter attached to a UK standard hydrant standpipe from Langham industrial 

controls was used to measure flow (and therefore shear stress) with local manual control of a gate 

valve.  
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6.4   Results and Discussions 

6.4.1 Pipe Cut Out  

A pre-intervention pipe cut out was taken from the trunk mains low point (see Figure 28a) to assess 

the pipe’s internal condition and amount of accumulated material present on the asbestos cement 

pipe wall which is shown in Figure 29. From the visual assessment, accumulated material can clearly 

be seen around the full pipe circumference, supporting the PODDS model concepts. The cut out was 

taken at the longitudinal low point, such that all gravitationally driven self-weight settling processes 

that would have led to invert deposits were explored, with none being found. 

 

    

Figure 29: Pre-cleaning intervention pipe cut out 

 

6.4.2   Hydraulic capacity assessment 

 

Hydraulic models were developed and simulated in standard EPANET software (Rossman, 2000). 

The hydraulic model was calibrated using monitored flow as an input and then minimising visual 

dissimilarities and maximising correlation coefficient (R
2
) between downstream simulated and 

measured pressure. While pipe roughness (ks) alone can produce an accurate simulation of observed 

pressure, inaccurate representation of velocities which can be significant for the quality application 

can persist. This is because hydraulic calibration is an indeterminate problem space where various 

combinations of diameter and roughness can produce similar headloss and hence downstream 

pressure. Calibration optimisation processes should also consider changing pipe internal diameter 

particularly for large roughness heights (Boxall et al., 2004). During the model construction, minor 

losses were incorporated as EPANET loss coefficient inputs, determined from the EPANET manual 
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(Rossman, 2000). However, these values were not considered as calibration variables and fixed 

throughout the simulations so effects would have been constant. The trunk main studied had no 

known leakage, as assessed through night line analysis. The effect of any unknown background 

leakage would have been manifest in the flow data that was used as an input to the model. The night 

line was not observed to change from the start to the end of the monitoring period (other than due to 

known operational changes) suggesting no new leakage occurred during the study. The estimated 

boundary condition of pipe roughness and the diameter using Boxall et al. (2004) concept has been 

applied to the PEST (Doherty, 2005; Méndez et al., 2013) in conjunction with the EPANET model to 

determine the best possible solutions comparing simulated and measured downstream pressure. The 

optimised paired value (roughness and diameter) solution was constrained by the original pipe 

diameter of 228 mm. Figure 30a shows the flow and simulated and measured pressure data for pre-

invasive cleaning. As the main is around 40 year old AC, it was expected that it might have relatively 

high roughness due to continuous material fouling. From the optimisation, the best achievable result 

for pre-invasive cleaning trial was 6.8 mm pipe roughness and 215.0 mm effective diameter.  

.  
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Figure 30: Pre and post invasive cleaning hydraulic simulation in EPANET. Demand in l/s (top plot) 

and simulated and measured pressure head in m (bottom plot). a) pre cleaning b) post cleaning. 

After the ice-slurry cleaning process, a similar monitoring program was conducted. With the new 

monitored pressure and flow data, the hydraulic model was re-optimised (Figure 30b), with the best 

model fit achieved with a pipe roughness of 1.0 mm and effective diameter of 227.4 mm. Thus, from 

hydraulic model optimisation, a seven times reduction in roughness height was found after the 

a) 

b) 



106 | P a g e  

 

invasive cleaning. This demonstrates improved mains carrying capacity and indicates that the ice 

slurry intervention removed material layers that cause significant hydraulic losses.  

A similar pressure and flow monitoring program was conducted 12 months after the invasive 

cleaning to quantify any further change of hydraulic capacity. Unfortunately, practical constraints 

were such that the data necessary for detailed hydraulic calibration was not collected for all 

events. The calibrated roughness was after 12 months found to increase to 2.3 mm and effective 

diameter reduced to 224 mm. This suggests longer term accumulation, continuous particulate fouling 

that impact on the hydraulic capacity. A correlation between change of roughness and turbidity 

response potentially indicates the growth of material on pipe wall over time; however previous work 

(Boxall et al., 2003) has suggested site specific change in roughness (~0.01mm) corresponding to 

notable turbidity (~10NTU) response is significantly less than the accuracy of the hydraulic 

calibration possible here. Table 1 presents all the diameters and roughness values. 

 

Table 7: Hydraulic parameter optimisation results for pre-post and 12 months after invasive 

cleaning 

 

6.4.3   Water quality assessment  

 

Water quality performance was assessed by measuring the discolouration response due to imposed 

excess shear stress, repeated as set out in Figure 28b. Figure 31 presents daily demand and applied 

shear stress during the first, second and third of these increases in flow (hence change in shear stress) 

and the ice slurry pigging. Typical maximum daily shear stress before the cleaning intervention was 

about 1.5 N/m
2
, estimated using calibrated roughness values. Due to operational circumstances, daily 

peak demand had increased after the intervention for more than a month and as a result, daily shear 

stress was also altered. From 27 August 2015 till 16 October 2015, new properties were connected to 

the downstream distribution zone fed from this trunk main due to repair work in a neighbouring 

Hydraulic parameters 

and calibration 

efficiency 

Initial mean 

diameter 

Pre invasive cleaning 

(Optimised) 

Post invasive 

cleaning 

(Optimised) 

+12 months post 

invasive cleaning 

(Optimised) 

ks [mm] ---- 6.82 1.05 2.28 

Diameter [mm] 228.04 215.00 227.40 224.04 

R
2
 [-] - 0.9424 0.9681 0.9227 
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zone. About 3 l/s demand was increased and transported to the downstream reservoir during this 

process which can be confirmed from the constant night line profile for over two months. Revised 

maximum daily shear stress after invasive cleaning intervention calculated from improved ks value 

was 1.0 N/m
2
 and later it was changed to 0.6 N/m

2
. This value persisted throughout the following 12 

months of monitoring. A planned night time downstream network flushing was undertaken from 

22nd September till 23rd September (2 nights). Also, there was a downstream burst event recorded 

as starting on 24th September and continuing until 25th September (Figure 31). Unfortunately, there 

was any turbidity loggers deployed on this trunk main which could have captured the continuous 

mobilisation response due to the burst event. These events could have mobilised accumulated 

material as it was higher than trial 2 event and potentially influence trial 3 responses.  

 

 

Figure 31: Daily demand in l/s and applied shear stress in N/m2 variations from August, 2016 till 

December, 2016  

Figure 32a shows the measured and simulated turbidity response due to shear stress increases before 

the ice slurry pigging intervention. It is evident from Figure 32a that material started to mobilise 

during the shear step of 1.1 to 1.65 N/m
2
, consistent with a normal daily max shear stress of 1.5 

N/m
2
. Maximum shear stress during the trial was 2.20 N/m

2
 generating a measured peak turbidity of 

about 2.0 NTU. To avoid regulatory turbidity limit (4.0 NTU), shear stress was reduced stepwise to 

1.13 N/m
2
 and it continued until the turbidity response had returned to pre-trial levels. An initial 

turbidity spike was observed around 8:30 am due to connection and opening of the hydrant.  

Invasive 

Cleaning Trial 2 

Operational 

Demand change 

Trial 1 Trial 3 
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To assess the discolouration risk from the main after it had been invasively cleaned, a similar trial 

was conducted 3 weeks after the pigging intervention (see trial timeline in Figure 28b). Figure 32b 

shows that despite the cleaning, material was mobilised from the pipe wall by only a small increase 

in excess shear stress. The maximum operated shear stress during the second trial was 1.32 N/m
2
 and 

peak turbidity was about 1.0 NTU. As with other case studies, the ice slurry pigging was shown to 

remove significant amounts of materials. However, these results show that loose material was 

present in the pipeline only 3 weeks after the invasive cleaning. 

Previous research has suggested that ice plug pressure or friction forces can drop as the trial 

continues (Candy et al., 2010; Shire, 2006). Therefore, potentially the cleaning performance was 

inadequate to remove all the materials during ice plug formation and movement along the pipe 

length. As noted previously the trial main had a low point in its longitudinal profile, as shown in 

Figure 28a. Contractors for the invasive cleaning program suggested the ice plug may have dropped 

pressure while flowing upwards from the dip section, possibly leaving material there. However, 

Figure 32b shows a linear increase in turbidity hence mobilisation of material from over the full pipe 

length with no spike in turbidity associated with the travel time from the trunk main low point 

  

 

a) 
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Figure 32: Measured and simulated turbidity response a) before the invasive cleaning trial b) after 

the invasive cleaning trial  

Results of metal samples during the trials are shown in Figure 33, expect trial 2 as samples could not 

be collected during the trial durations. Figure 33a shows that the concentration of manganese (Mn) 

was high and occasionally exceeding the UK regulatory prescribed concentration value (PCV) value 

of 50 𝜇g/l. Iron and aluminium concentrations are also shown to be significant, although well below 

the UK PCV limit. Figure 33b presents the results for calculated metal concentrations for an 

equivalent 1.0 NTU limit. Manganese PCV is likely to be exceeded during all trials at this threshold 

suggesting high manganese content in the bulk water. From this it could be suggested that the 

accumulation or fouling effects are driven by manganese and other metal (e.g. iron and aluminium) 

precipitation from the bulk water which is consistent with previous research findings (Boxall et al., 

2003; Husband and Boxall, 2011; Seth et al., 2004). However, a complete conclusion about the 

inorganic particles responsible for the observed discolouration cannot be drawn from this sampling 

study alone as undisturbed sampling data from the trunk main were unavailable. Also the previous 

work has indicated that biological processes impact on material accumulation and hence influence 

discolouration risks (Gauthier et al., 1999; Husband et al., 2016). 

b) 
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Figure 33: a) All metal sampling during trial durations, b) metal concentration equivalence at 1.0 

NTU 

As can be seen from Figure 32, PODDS model simulated successfully both pre and post shear stress 

trial induced turbidity responses. However, the invasive cleaning changed the accumulated layer 

conditions from pre to post in such a way that, it is not possible to compare the modelling results 

without a continuous mobilisation-accumulation tracking facility which PODDS model cannot 

facilitate. It is possible to simulate the discolouration response for a set of flow (or shear) increases 

from trial 3 to 6 taking information from Figure 32b model parameters, however due to the limited 

continuous flow and turbidity data, comparisons made here are only with fieldwork results. Flow 

increases and subsequent material mobilisation were repeated at three monthly intervals to assess the 

ongoing accumulation of loose material. Due to operational constraints, the imposed shear stresses 

were not exactly the same, as in Figure 31. Hence results are not directly comparable. In order to aid 

comparison, the time series data was converted to ‘volumetric turbidity’ due to imposed shear 

increase to estimate the material release rate per unit wall area. This was calculated by integration of 

the time turbidity plots with respect to the amount (flow rate with time) of water used and divided by 

the maximum imposed shear stress and pipe internal wall area. This effectively accounts for 

differences in mass flux but assumes mobilisation is linear with flow rate. While the last assumption 

is not valid, it is an acceptable simplification over the range of different excess shear stress imposed 

here. Table 2 presents the test parameters used to calculate material release rate for all trials. Though 

the roughness and diameter values were unknown in trial 3, 4 and 5, paired parameter values were 

assumed to be equal to trial 2. To calculate imposed excess shear stress addition to the table 2, 

discolouration material density (𝜌) and gravity was used at 1100 kg/m
3
  (Boxall et al., 2001; Ryan et 

al., 2008) and 9.81 m/s
2
.  

 

b) 

UK Fe and Al PCV = 200 𝜇g/l 
UK Fe and Al PCV = 200 𝜇g/l 

UK Mn PCV = 50 𝜇g/l UK Mn PCV = 50 𝜇g/l 

a) 
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Table 8: Test parameters for material release rate calculations 

Parameters Unit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

Internal 

diameter [ID] 
m 0.215 0.2274 0.2274 0.2274 0.2274 0.22404 

Pipe 

roughness [ks] 
mm 6.82 1.05 1.05 1.05 1.05 2.28 

 

Figure 34 summarises these amounts of volumetric turbidity mobilised from all trials, together with 

indicative service reservoir outlet seasonal water temperature collected by spot samples as part of the 

regular sampling program. As expected the pre-invasive cleaning trial generated relatively higher 

turbidity response compared to post cleaning trials. However, the 3 weeks post invasive cleaning 

amount was high as well suggesting that the material was able to regenerate quicker after invasive 

cleaning compared to the conditioning trials, rapidly developing to re-establish equilibrium between 

cohesive layer forces and daily peak shear stress, or that material loosened by the slurry was not fully 

removed. While the invasive cleaning was effective in removing a significant amount of historical 

accumulations, the remaining loose particles was not necessarily mobilised easily through ice slurry 

and hence represent discolouration risks. After 12 months this weaker material risk had returned, but 

the stronger material apparently responsible for the initial roughness height had not. The following 3 

month period, where temperature was lowest shows the least amount of material accumulated and 

subsequently mobilised by the controlled flow increase, while the final 3 months period where 

temperature was greatest showed the overall highest levels of mobilisation of weakly adhered 

material. Hence this indicates a temperature influence on material regeneration process in this trunk 

main. Previous research evidence has also suggested a temperature impact on material regeneration 

and discolouration processes and this potentially associated with microbial activity (Blokker and 

Schaap, 2015; Sharpe, 2012). However, as a single trunk main study it is not possible to confirm 

temperature and pipe material influcne on biofilms and hence significance on discolouration risks 

without investigating similar test profiles on varying pipe materials.   
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Figure 34: Volumetric turbidity output during flow conditioning trials with service reservoir outlet 

temperature with seasonal variations 

 

6.5   Conclusions  

 

The study investigates pre, post and long term, quality and quantity performance of a trunk main 

subject to invasive cleaning by ice slurry pigging. Benefits expected due to invasive cleaning 

included an improvement in hydraulic capacity and a reduction in discolouration risk. The findings 

from the fieldwork are summarised below: 

 Hydraulic modelling and calibration showed pipe roughness reduced by about 7 times after 

semi-solid ice slurry cleaning intervention. However, monitoring and modelling after 12 

months showed that the roughness had slowly increased after the intervention suggesting 

continuous material fouling impacting on the hydraulic capacity. 

 Pipe wall material mobilisation through controlled shear stress increases removed significant 

material after the selected invasive cleaning process. This indicates that loose particles 

remained on the pipe wall and that there was still a risk of discolouration after this invasive 

cleaning intervention was performed. 

 Repeated flow conditioning trials showed ongoing material accumulation, evidence of 

ongoing endemic processes.  

0

2

4

6

8

10

12

14

16

18

20

0

200

400

600

800

1000

1200

Trial 1 [Pre
Invasive Cleaning]

 Trial 2 [Post
Invasive cleaning]

Trial 3 [0-3
months]

Trial 4 [3-6
months]

Trial 5 [6-9
months]

Trial 6 [9-12
months]

W
at

e
r 

Te
m

p
e

ra
tu

re
 [

°C
] 

M
at

e
ri

al
 r

e
le

as
e

 p
e

r 
u

n
it

 w
al

l a
re

a 
[N

TU
.m

3
/N

] 

Material release per unit wall area  [NTU.m3/N] SR outlet water temperature [°C]





114 | P a g e  

 

7.1   Abstract 

 

Prediction of long-term turbidity behaviour is essential for managing trunk main discolouration risk 

as quality failure can cause significant impacts on customer perception and potential financial 

penalties in the UK. The work reported here provides the first long-term continuous turbidity time 

series and modelling of discolouration behaviour in large diameter mains, simulating both the 

material accumulation and mobilisation processes successfully. The Variable Condition 

Discolouration (VCD) model that tracks varying strength material conditions on pipe walls is 

validated on multiple trunk main systems with over a years data including notable turbidity 

responses from both managed and unplanned hydraulic events. The model is shown capable of 

simulating the measured response with an average peak turbidity accuracy of ±0.25 NTU within a 

single extended period simulation. The ability to simulate varying magnitude and temporal hydraulic 

induced turbidity events effectively validates the modelling approach for encapsulating accumulation 

processes that occur at all shear strengths simultaneously. The similar accumulation rates for 

studied trunk mains suggest that these are transferable and discolouration risk remain similar over 

time irrespective of cleaning intervention. The understanding of material accumulation processes 

and the ability to simulate long-term turbidity behaviour can be used to inform discolouration risk 

management proactively and optimise network maintenance frequencies so that complex and 

expensive trunk main cleaning strategies can be avoided.  

Keywords: Shear stress, accumulation process, turbidity simulation 

 

7.2   Introduction 

 

Water supply from treatment to customer tap is designed to ensure that it is safe for human 

consumption and compliant with stringent regulatory limits. Even after modern treatment facilities, 

particles along with solute remain in the bulk water and are transported downstream and can 

accumulate on pipe walls. This accumulated material can promote discolouration incidents due to 

hydraulic disequilibrium. Discolouration is the most apparent water quality failure reported around 

the world with customer contacts often used as a key performance indicator by the water authorities 

and their regulators (Polychronopolous et al., 2003, DWI,2016). Discoloured water sample can also 

breach other quality parameters as well, e.g. iron (Cook, 2007). However, these events are sporadic 

in nature, and relatively short duration as mostly induced from random hydraulic disturbances, e.g. 
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burst. As a result, they are unlikely to be captured by regulatory sampling. Discolouration incidents 

due to hydraulic events are particularly significant in large diameter transmission (trunk) mains as 

they can provide risk to large downstream populations. In the UK discolouration contact targets have 

been set as an indicator of delivered water quality with significant financial penalties or reward 

depending on annual performance. Although customer observed events are typically recorded as 

occurring in downstream District Metered Areas (DMA), 30-50% of discolouration events have been 

identified as originating from the upstream trunk main highlighting criticality of trunk main 

discolouration maintenance (Cook et al., 2015). To simulate and predict turbidity behaviour for large 

diameter trunk main, it is essential to understand how discolouration material behaves under varying 

hydraulic conditions. While discolouration risk is primarily induced from rapid mobilisation of 

accumulated materials, little is known about how these material returns on the pipe wall with no 

known model yet able to simulate this process effectively. While short-term discolouration responses 

are important to predict, long-term accumulation rate needs to be considered. Therefore a 

comprehensive discolouration model is required which can track discolouration material condition 

on pipe walls and simulates changing discolouration risk by encapsulating both mobilisation and 

accumulation would benefit operators predicting short-term turbidity response over a long periods. 

 

7.3   Background 

 

7.3.1   Discolouration processes: Mobilisation mechanism 

 

Discolouration was traditionally conceptualised as the re-suspension of gravity-driven sediments. 

Extensive study of discolouration particle size distribution and density analysis revealed that the 

particles responsible are small in size and between 2-50 𝜇m (Boxall et al., 2001; Ryan et al., 2008; 

Vreeburg, 2007). Hence self-weight effects are small and when re-suspended, they only settle due to 

the gravitational effects during prolonged quiescent conditions (Boxall et al., 2001). Similar 

phenomenon is suggested by UKWIR, (2001) that below 60 𝜇m particles are prone to remain 

suspended unless quiescent conditions occurs. Particle accumulation alone by traditional gravity 

settling processes is also not considered valid in water distribution systems as flow is mostly in 

turbulent conditions (Blokker et al., 2010) and no sedimentation effect was found for a typical 

stagnation period in a dead-end pilot-scale areas (Smith et al., 1999).  
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Discolouration events are typically observed following hydraulic disequilibrium (Blokker and 

Schaap, 2015a). This change of network hydraulic conditions, e.g. burst or demand rezoning, may 

increase velocity and therefore shear stress (τC) higher than the pipe network recently experienced. 

This will cause detachment of particles into the bulk flow and hence create  discolouration as this 

propagates downstream (Boxall et al., 2003b; Husband and Boxall, 2010). Flushing fieldwork has 

demonstrated that each step increase of shear stress releases additional material suggesting the 

accumulated material exhibits cohesive strength properties and are structured in varying strength 

with weaker layers mobilising earlier than stronger ones (Boxall et al., 2001, 2003b; Husband and 

Boxall, 2010). On the contrary, if material is comprised of loose deposits as conceptualised by 

sedimentation, all material will release instantaneously. A number of investigations have 

demonstrated particle mobilisation in response to velocity and shear stress and concluded that 

particles cannot bind in non-cohesive conditions unless the peak velocity is sufficiently low (Pothof 

and Blokker, 2012; Vreeburg, 2007). This suggests that accumulating materials likely has cohesive 

properties, a result consistent with findings from the University of Sheffield fully temperature 

controlled experimental pipe facility (Husband et al., 2008).  

 

7.3.2   Discolouration process: Accumulation mechanism 

 

In several repeated flushing trials, it has been seen that following flushing discolouration material 

returns, accumulating again on the pipe wall (Blokker and Schaap, 2015a; Cook and Boxall, 2011; 

Husband and Boxall, 2011; Husband et al., 2010). Repeated flushing also showed amounts of 

accumulated material during flushing was similar irrespective of  seasonal influences suggesting 

material accumulated linearly over time  (Boxall et al., 2003a; Cook and Boxall, 2011).  

A number of studies have been aimed to develop an understanding of the material accumulation 

processes and how it is influenced by other physical, chemical and microbiological processes. Van 

Thienen et al., (2011) proposed two different accumulation mechanisms, turbophoresis and turbulent 

diffusion. Both these concepts only describe material transport from bulk water to wall and not how 

material bind on the pipe wall. These methods are not also applicable for large diameter pipes where 

turbophoresis is found influential to relatively large particles (>50 𝜇m) and turbulent diffusion 

applicable only for very low velocities (<4 cm/s). Several researchers have provided evidence that 

discolouration material accumulates at varying strength cohesive layers at the same time (Husband 

and Boxall, 2011; Sharpe, 2012). Flushing field work by Husband and Boxall, (2011) in different 
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parts of the UK demonstrated that material released in repeated flushing trials was lower than an 

initial flushing, indicating that accumulated material had not been completely regenerated after 12 

months intervals. Their study, using multiple shear stress step increases, also showed material being 

mobilised at each step similar to the initial flushing trial. This repeated turbidity response supporting 

that material accumulation occurring simultaneously across the range of shear strengths. 

Accumulation processes observed in field studies have also been supported by laboratory trials in a 

full-scale temperature controlled pipe facility by Sharpe (2012). This study showed material 

mobilisation occurring across the range of imposed shear stresses with a consistent turbidity 

response, indicating particle binding on the pipe wall occurring simultaneously for all shear 

strengths. From all the studies reported, it is evident a continual mobilisation-accumulation cycle is 

exists that has a relatively consistent behaviour across the full range of shear strength bound material 

and applied hydraulic forces. This leads to complex material conditions on pipe walls and varying 

amounts of material could present on pipe wall with different cohesive shear strengths at any given 

time. Although knowledge of mobilisation and accumulation processes has been gathered from 

experimental investigations, no known modelling framework encapsulates these simultaneous effects 

which can then facilitate simulating the long-term turbidity behaviour.  

      

7.3.3   Accumulation process influencing variables 

 

A number of researchers have investigated how quickly material returns of pipe wall or accumulation 

rates and how different variables influences these rates. Blokker and Schaap, (2015a) showed that 

with the change in bulk water quality, accumulation rates can be varied. Husband and Boxall, (2011) 

demonstrated that material accumulation rates on the pipe wall was greatly influenced by bulk water 

quality. Vreeburg et al., (2008) demonstrated that water treated with ultra-filtration (0.1 𝜇m) reduces 

material accumulation significantly but still occurs at low rate. Cook and Boxall, (2011) reported that 

similar percentages of metal concentrations were present in varying cohesive strength samples, 

indicating layer inorganic composition is uniform irrespective of hydraulic properties and 

predominantly dependent on bulk water quality. In addition to bulk water quality, material 

accumulation and hence discolouration risk are influenced by shear stress and velocity (Blokker et 

al., 2010; Cook and Boxall, 2011; Pothof and Blokker, 2012) and pipe material (Husband and 

Boxall, 2011). While some studies has showed temperature and microbial influence on 

discolouration risk (Blokker and Schaap, 2015b; Ginige et al., 2011; Husband et al., 2016; Sharpe, 

2012), the variation of accumulation rates seasonally is not proven yet. No correlation was found 
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between pressure and discolouration risk (Gaffney and Boult, 2012), although hydraulic transients 

could contribute to material mobilisation (Aisopou et al., 2010).  

 

7.3.4   Modelling discolouration risk 

 

Various discolouration models exist which can describe material mobilisation behaviour and hence 

facilitate discolouration simulation. These include the particle sedimentation model (Ryan et al., 

2008) that uses gravity deposit processes contrary to operational evidence (Boxall et al., 2001; 

UKWIR, 2001) and artificial neural network model (Meyers et al., 2017) which is a data driven 

model that does not describe the discolouration process or currently transferable across sites. Other 

discolouration models that use velocity and shear stress as a mobilisation criteria, e.g. discolouration 

risk model (Dewis and Randall-Smith, 2005) and discolouration propensity model (McClymont et 

al., 2013), are not validated. The PODDS (Prediction of Discolouration in Distribution Systems) 

model (Boxall and Saul, 2005) uses excess shear stress criteria for mobilisation, evidenced from the 

flushing work (Boxall et al., 2001). This cohesive transport model has been validated both for small 

diameter (Boxall and Saul, 2005; Husband and Boxall, 2010) and large diameter pipe systems 

(Husband and Boxall, 2015, 2016). Unlike other discolouration models, PODDS has an integrated 

material accumulation function that is the reverse of simulated mobilisation process where strongest 

to weakest shear strength material accumulates following mobilisation. However, the accumulation 

process coded in the PODDS model does not describe the observed accumulation processes from the 

laboratory (Sharpe, 2012) and field data (Husband and Boxall, 2011) that has been collected and 

analysed since its conception. 

 

7.3.5   The Variable Condition Discolouration (VCD) model 

 

In 2014, Furnass et al., (2014) proposed the Variable Condition Discolouration (VCD) model to 

simulate the discolouration behaviour as observed from laboratory and field data. The model 

captures some key mechanisms which govern discolouration as:  

 The model assumes that wall bound cohesive layers remain in equilibrium conditions with 

recent prevailing hydraulics (τc).  

 Material at the pipe wall accumulates over full range of shear strength when applied shear 

stress (τa) <τc 
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 Material is mobilised from the pipe wall and entrained and completely mixed with the bulk 

water due to the imposed excess shear stress (τa-τc) when τa>τc. In this context, the VCD 

model retains the same mobilisation mechanism as the PODDS model (Boxall and Saul, 

2005).  

 Model is designed to track material across the range of shear strengths with mobilisation and 

accumulation processes occurring simultaneously. 

 The model assumes material adheres uniformly throughout the pipe wall adopting field 

evidenced flushing data (Boxall and Saul, 2005).  

 Model assume weak layer is always on top of stronger layers 

The model tracks relative material quantity φ (τ,t), a unitless parameter, bound between [0,1.0] where 

0 means no material and 1.0 is a maximum accumulation of material (Furnass et al., 2014). The VCD 

model simulates discolouration using three empirical parameters, a mobilisation rate = βe [N
-1

m
-2

s
-1

], 

an accumulation rate = βr [s
-1

] and material release coefficient = α [NTU.m.s
-1

]). The mobilisation 

rate (βe) and material release coefficient (α) describe the material mobilisation phenomenon and 

represent the rate of material release from a pipe wall where βe is a function of excess shear stress (τa-

τc), and α is linear scaling parameter. The accumulation rate (βr) describes the rate at which material 

accumulates on the pipe wall and is a pipe specific property. To reduce modelling complexity, all 

three model parameters (βr, βe, α) are currently designed as a scaler and invariant with time and shear 

strength.  

Furnass et al., (2014) verified the VCD model through synthetic data and then successfully calibrated 

it for small diameter pipes and a single trunk main from field data. The calibration results 

demonstrated that the VCD model retains the mobilisation function of the PODDS model, with 

similar quality of fitting obtained. Suitable data was not available to validate the accumulation 

functionality for the small diameter pipes, and the trunk main dataset was limited by the quality of 

the long-term time series data. Thus the accumulation mechanism of VCD model is verified 

(Furnass, 2015; Furnass et al., 2014), but has not been validated with long term data. The validation 

of accumulation process (occurs at all cohesive strengths simultaneously) and hence validation of 

VCD model would allow tracking discolouration response for different hydraulic scenarios and how 

risk changes over time and can be minimised.  
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7.4   Aims 

 

The aim of the paper reported here is to assess if the continual mobilisation and accumulation model 

can simulate the long-term turbidity behaviour of operational trunk main systems and hence provide 

a useful tool for informing discolouration risk assessment and management. The aim is to test the 

robustness of the model by exploring its ability for multiple independent trunk main systems 

supplied from a single water source with varying normal hydraulic and intervention conditions.  

 

7.5   Methods and materials 

 

7.5.1   Experimental design 

 

In order to validate the VCD model’s ability to simulate long-term material mobilisation and 

accumulation behaviour, it is essential to have hydraulic and turbidity time series data that includes 

notable turbidity responses due to hydraulic changes as well as stable inter duration between events. 

While such hydraulic events may occur naturally creating a discolouration response, there is no 

certainty or control. Hence an experimental design was developed involving periodically imposing 

excess shear stress events, termed flow conditioning, to generate controlled turbidity responses. A 

key assumption of the VCD model is that cohesive layers accumulate at varying strengths 

simultaneously. If valid this attribute would enable the model to simulate discolouration behaviour 

across a range of events, site conditions and to inform change in risk over time. In order to validate 

this concept, it is therefore essential to implement different magnitude hydraulic events and measure 

the associated turbidity response to investigate the impact on mobilisation and accumulation. To 

facilitate this, two different types of flow conditioning events were implemented in two similar trunk 

mains, one with higher imposed excess shear stress and termed normal flow conditioning, and 

another with relatively lower excess shear stress events termed passive flow conditioning. For each 

type of operation a quarterly return interval was established to define material accumulation periods. 

A third trunk main with flow conditioning only at the start and end of the investigation period was 

used, to act as a control. Figure 35 shows the different flow conditioning interventions implemented 

on the three trunk mains to provide the necessary range of events across different strength profiles, 

periods of accumulation and control. Initial and final target shear increments were similar for all 

three strategies. The initial shear increment was planned to ensure layer conditions were in similar 
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conditions for all three trunk main at the trial outset. The similar target shear stress at the end of 

investigation was implemented to allow investigation of the long-term effects on higher shear 

strength material following the different interventions. While natural hydraulic events may also 

occur, these planned events with managed conditions ensured that necessary data would be obtained 

for model validation.  

 

Figure 35: Methodology, procedure and flow conditioning intervention strategy definition and 

timeline for the three investigated trunk mains  

Commencing with a VCD model, empirical parameter calibration requires long-term hydraulic and 

turbidity data. System flow and pressure data are required for accurate hydraulic representation and 

travel time, with flow also used to determine shear stress. While collecting this data for calibration 

purposes may appear only effective during planned flow conditioning events, natural hydraulic 

events (e.g. bursts) may occur at any time. In addition, planned and unplanned intervening periods 

facilitate different material accumulation periods, and hence full duration high temporal logging is 

required to represent system behaviour at any time. Flow, pressure and turbidity monitoring 

equipment was therefore deployed for continuous capture facilitating single run period simulations to 

assess the model’s ability to track long-term discolouration behaviour.  

As bulk water quality, hydraulic conditions and pipe material can all influence material accumulation 

rates, for scientific rigour, it is therefore important to minimise these differences across test sites. In 
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defining trials, the three trunk mains to be selected required similar pipe material, supplied from a 

single water source and with similar hydraulic conditions including shear stress as wall exert force 

and Reynold numbers for material movement at laminar boundary layers. No known effect of 

pressure on discolouration has been identified and hence similar pressure regime in the selected trunk 

mains was not considered during site selection. 

 

7.5.2   Site details and treated water quality 

 

To meet the site selection criteria, three independent trunk mains were selected all supplied from a 

single water treatment works (WTW) in a UK operational network. The network alignment ensured 

that the same treated water passed through each trunk main and all were of similar pipe material and 

hydraulically had similar daily flow, velocity, shear stress and Reynold numbers. For trial purposes, 

all three trunk mains had similar physical, chemical and biological properties to facilitate comparison 

of results whilst investigating different imposed hydraulic events. Figure 36 presents a schematic of 

the investigated network with the main monitoring points indicated. All three trunk mains run 

independently. TM-2 and TM-3 run parallel to each other over much of their investigated length, 

although serving separate downstream distribution zones. Selection of the inlet and outlet monitoring 

points is important to ensure trunk main test sections act as a single pipe length to accommodate the 

experimental design procedure. The inlet point ensures the incoming turbidity from treated water and 

and outlet confirming no intermediate connection points, such as to any downstream distribution 

zone, to ensure hydraulic conditions remains the same. With the trunk mains directly supplying 

downstream distribution zones, proposed hydraulic events were planned to be conducted from fire 

hydrants. Continuous and trial measurement logging was also conducted from these locations. Both 

TM-2 and TM-3 had limited fire hydrant access points with the only available data monitoring 

location shown in Figure 36.  
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Figure 36: UK site location and schematics of the investigated network showing the water treatment 

works, the three test trunk mains and instrument deployment locations for continuous measurement. 

TM-2 and TM-3 are laid parallel, with all cross-connections closed other than during operational 

events 

All test trunk mains were gravity fed from the WTW and laid in mostly semi-urban non-paved areas 

with moderate vegetation. From Figure 36 it can be observed that by the locations of pressure 

reducing valves (PRV’s), TM-1 was pressurised for full monitoring length without any pressure 

constraint, TM-2 had partial pressure constraint, and TM-3 pressure reduced over the entire 

monitoring length. Table 9 summarises the details of all three trunk main hydraulic and PRV 

properties.  
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Table 9: Selected trunk mains hydraulic and PRV properties  

Trunk main 

system 

Internal pipe 

diameter, ID 

[mm] from 

company 

record 

Pipe material 

Length from 

the WTW 

outlet to 

downstream 

logger [km] 

Pressure Reducing Valve 

(PRV) properties (TM-3 had 

two PRV separated with 

comma) 

Inlet pressure 

[m] 

Outlet 

pressure 

[m] 

TM- 1 304.8 
Partially  

lined CI 
6.4 97.0 19.0 

TM-2 406.4 Unlined CI 5.6 44.0 20.0 

TM- 3  304.8 Unlined CI 5.9 
38.0(a), 

79.0(b) 

19.0(a), 

16.0 (b) 

*TM-3 had two PRVs which marked as a = nearer to the WTW and b = nearer to the 

downstream monitoring point 

 

The raw water source supplying the mains was transported from an upland surface reservoir and 

treated with a ferric coagulation. Figure 37 shows seasonal trends of treated water parameters which 

could affect accumulation rates. Total organic carbon (TOC), water temperature and metal 

concentrations (Fe, Al and Mn) values were collected from January 2013 to May 2017 through 

scheduled discrete sampling. From Figure 37, it can be observed that higher inorganic (Fe and Al) 

and organic (TOC) content was found in the treated water during the warmer months indicating 

higher bulk water loading during the summer season. Manganese concentrations, however, did not 

appear to demonstrate seasonal variation.  
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Figure 37:  WTW treated water discrete samples collected from January 2013 to May 2017 a) TOC 

in mg/l (top) and temperature in °C (bottom), b) Fe, and Al concentration in 𝜇g/l (top) and Mn 

concentration in 𝜇g/l (bottom) 

 

7.5.3   Network hydraulic comparisons 

 

The trunk mains were selected to fit site selection criteria requiring similar hydraulic performance. 

Figure 38 presents a sample of the trunk mains long-term measured flow, velocity, shear stress, 

Reynold number and pressure, highlighting compliance with the selection criteria. Comparing 

a) 

b) 
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pressure amongst the test trunk mains has been added for completeness as identified as not 

associated with discolouration process.  

 

Figure 38: Three trial trunk main hydraulic profiles. From top to bottom; demand [l/s], velocity 

[m/s], shear stress [N/m
2
], Reynold number [-] and pressure [bar] 

 

7.5.4  Data monitoring  

 

Trunk main turnover with the highest flow conditioning was approximately 3.5 hour. Due to the long 

turnover, a 15-minute sampling resolution was accepted as appropriate for flow conditioning trials. 

Continuous data (both flow and turbidity) was measured at a 15-minute sampling frequency to 

maintain consistency with trial data. The trial flow increases delivering the targeted excess shear 

stress was monitored and controlled by specially designed Langham hydrant standpipe with 

electromagnetic ABB Aquamaster 3 flow meter (www.abb.com) with an accuracy of ±5% of reading 

and maximum working pressure of 12 bar. Turbidity responses during flow conditioning were 

measured by ATI Nephnet logger (www.atiuk.com). The ATI Nephnet logger used an infrared (IR) 

Nephelometric measurement process and the functioning range was set for 0-4.0 NTU with an 

accuracy of ±5% of reading. Trial duration turbidity data was spot checked with a 2100Q Hach 

handheld logger (www.hach.com) which was calibrated with standard formazin dilution sample. The 

handheld logger was calibrated for 0-100.0 NTU with an accuracy of ±2% of reading. 

http://www.abb.com/
http://www.atiuk.com/
http://www.hach.com/
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Aquamaster 3 flow meters were installed at the inlet of each trunk main prior to the investigation for 

capturing long-term data. For measuring treated water turbidity, Sigrist Aquascat 2 WTM turbidity 

meter (www.photometer.com) was pre-deployed at the treatment outlet. The turbidity instrument 

used IR Nephelometric measurement process, and operating range was 0-4.0 NTU with reading of 

±0.001 NTU. To capture any unplanned event (e.g. burst) turbidity response, downstream continuous 

turbidity data was monitored from October 2015 to February 2016 using the ATI NephNet turbidity 

logger. During this time, ATI loggers range set for 0-4.0 NTU. After February 2016, Evoqua 

Hydraclam loggers (www.evoqua.com) were deployed which used the same IR Nephelometric 

measurement procedure. The instruments range was set for 0-10.0 NTU with an accuracy of ±5% of 

reading. All loggers calibrated with standard formazine sample. Continuous data was also spot 

checked regularly by Hach handheld logger to ensure consistency with trial monitoring. 

To calibrate pipe roughness, one-off 24 hour downstream pressure prior investigation was measured 

using Transientminder (www.syrinix.com) at 15-minute sampling frequency for the three trunk 

mains. The Syrinix pressure logger range defined for 0-20 bar with an accuracy of 0.1% of full-scale 

output. Figure 39 shows typical flow conditioning operational setup with monitoring equipment.  

 

Figure 39: Monitoring during flow conditioning trials with two ATI NephNet turbidity loggers 

(orange boxes) and ABB flow meter attached with Langham UK standard standpipe 

 

 

http://www.photometer.com/
http://www.evoqua.com/
http://(www.syrinix.com/
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7.5.5  Fieldwork procedure and timeline  

 

Flow conditioning trials were designed not to exceed 1.0 NTU responses to minimise discolouration 

risk on downstream consumers. The PODDS model (Boxall and Saul, 2005) was used to design 

shear stress steps with a 1.0 NTU constraint using previously calibrated model parameters from 

similar networks. From modelling assessment, TM-1 was designed with a 40% shear stress increase 

above the peak shear stress for all trials and applied at quarterly intervals. Maximum 40% additional 

shear stress was selected based on the WTW hydraulic capacity and trial specific drainage 

conditions. TM-2 had 40% shear stress increase above the peak shear for initial (time zero) and final 

trial (12 month) and 15% shear increase at quarterly intervals. TM-3 was designed as a control with 

no interventions for 12 months and only the 40% shear stress increase above the peak for initial and 

final trial assessment (see Figure 35). All flow conditioning trials were operated under similar 

conditions, i.e. same time of day and using the same equipment to maintain trial and data 

consistency.  

As the test trunk mains were demand driven and with diurnal flow patterns, target excess shear stress 

increments were achieved during the morning (about 7:30-8:00 am) peak period when the network 

had the highest demand and lowest pressure. Morning peak demand period was chosen to increase 

shear stress as it requires the lowest additional demand.  

7.5.6   Data processing: Long-term monitoring 

 

Due to discolouration particles cohesive properties (Boxall et al., 2001), optic lens fouling can occur 

causing drift in measurement over time (Gaffney and Boult, 2012). To reduce drift effect, ATI 

Nephnet logger lens was cleaned on site bi-weekly during its deployment period (From October 2015 

to February 2016) with little or no drift observed and showed good agreement with spot checks. The 

Hydraclam turbidity logger was deployed after February 2016 where drift was adjusted using the 

patented “Evoqua” post-processing algorithm which demonstrated good agreement with on-site bi-

weekly handheld spot checks. The Aquascat 2 WTM turbidity logger maintenance was conducted 

regularly as part of regulatory work and hence, no significant drift was found from turbidity signals.  

ATI measured turbidity signal data had relatively less noise with standard deviation (SD) of 0.03 

(sample size, n≥5800) compared to Hydraclam (SD=0.38) for same sample size. The ATI logger 

measured data as at continuous sampling flow at 0.02 l/s (~1.2 l/m). Hydraclam logger uses a purge 

system at each 15-minute before sampling that was limited to total discharging volume of 6l at 0.1 l/s 
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flow rate, due to local drainage constraints. This is thought to have resulting noise in the data due to 

incomplete purging of the hydrant riser and connecting pipe work. A moving average to measured 

data was applied to minimise this noise. Different rolling means were investigated and 1-hour was 

selected based on minimising the signal noise yet retaining the measured behaviour. Figure 40 shows 

a rolling mean sensitivity study comparing part of measured turbidity response of TM-2. It is noted 

that turbidity responses measured during the planned trials are not included in the filtering process as 

the higher and constant flows through hydrant avoided any riser turnover effect.   

 

Figure 40: Part of measured turbidity response of TM-2 with rolling mean sensitivity analysis  

7.5.7   VCD modelling process for the investigated trunk main 

 

It was anticipated that the trunk main with the highest magnitude imposed shear stress and more 

frequent event would produce the highest number of notable turbidity responses. Therefore, 

calibration of TM-1 was planned first to assess the VCD model simulation performance.  

Prior to the VCD simulation, all trunk main models were hydraulically calibrated to ensure accurate 

hydraulic and water quality model representation. The pipe roughness (ks) boundary condition was 

determined from pressure difference, and internal diameter (ID) was estimated from the (Boxall et 

al., 2004) concept of 1 mm ks reduces 2 mm effective ID. The parameter boundary condition was 

facilitated in the PEST calibration software (Doherty, 2005) in conjunction with EPANET (Rossman, 

2000) model to identify unique paired (ks and ID) values for VCD simulation where calibrated ID 

was constrained by the industry record effective ID. Zero leakage was considered for hydraulic 

calibration. Table 10 presents the trunk mains optimised hydraulic properties.  
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Table 10: Trunk mains calibrated hydraulic properties 

Trunk main 

system 

Optimised  

internal pipe  

diameter, ID  

[mm] 

Optimised roughness, 

ks [mm] 
Modelled length [km] 

TM- 1 303.2 8.50 6.4 

TM-2 395.8 10.35 5.6 

TM- 3 292.3 7.50 5.9 

 

As this is the first attempt to calibrate long-term flow-turbidity time series data, a modeller intuitive 

approach was used to facilitate the calibration and hence a manual parameter search exploration was 

used for calibration. The manual calibration was undertaken by tuning three model parameters (βr, βe, 

α) with initial values extrapolated from the previous findings (Furnass, 2015; Furnass et al., 2014). 

The calibration was undertaken by single extended period simulations using a single set of 

parameters to assess the model parameter functionality and discolouration processes facilitate in the 

model correctly. To assess the quality of model prediction, simulated response compared with 

downstream flow event induced turbidity measurements. The model fitting quality was assessed by 

Nash–Sutcliffe Efficiency (NSE) coefficient metric (Nash and Sutcliffe, 1970). The NSE method is 

widely used to describe both hydraulic and hydrological model performance and shows the model 

fitting quality relative to the average of measured data. Since NSE is sensitive to the outliers and 

average values, NSE assessment was performed for both +12 months measured data and event 

induced turbidity data to outline the model performance towards any hydraulic changes.  

Turbidity at the downstream end is a function of both material release from pipe wall and incoming 

turbidity from upstream network. In this case, upstream is the WTW where water was not particle 

free. Hence measured treated water turbidity was used to model for upstream material flux. 

In addition to the three model parameters optimisation, initial material layer strength profile needs to 

be determined to reduce simulation uncertainty. The amount of material φ(τ,t) at t=0 depends on the 

combined effect of material mobilisation and accumulation process due to the ongoing imposed 

shear stress conditions. Due to wall state unknown starting conditions, all models were simulated 
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assuming the maximum amount of material (φ=1.0) initially present on the pipe wall. While this 

process caused initial high over predictions, after a period it converges to a realistic state. To 

minimise any over prediction effect and to develop a realistic wall state condition, all models were 

simulated with varying period of measured shear stress data prior to the monitoring period and check 

if any impact was observed in NSE values. From this assessment, nine months measured shear stress 

data prior to the investigation period was found enough to minimise any effect on the model output. 

It is to be noted that these simulation results were not used for any calibration. 

To allow tracking of discolouration material content, the VCD model discretises the shear stress 

range into independent bands. The selection of how many tracked shear strength layers to produce 

accurate simulation is important as picking up large numbers could be computationally ineffective. 

To identify the suitable number of discretely tracked layers for this study, sensitivity analysis of 

numbers of strength bands of TM-1 plotted with model fitting performance (NSE) and computational 

times are shown in Figure 41. TM-1 data was selected as this has the highest number of calibration 

point with notable turbidity response. The sensitivity analysis simulation was conducted with initial 

best guess parameter values of TM-1 and then repeated with the final calibrated values with no 

changes to overall findings. The sensitivity study shows that 20 or above τ bands produced a lower 

error metric (higher NSE) for the studied trunk main with no observable change in computational 

time. To ensure accuracy at this stage, a more conservative approach was adopted by tracking 100 

discrete strength bands.  

Figure 41: Sensitivity analysis of model calibration quality in NSE value (unit less) and associated 

computational time (seconds) to determine the suitable τ bands for model simulation 
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7.6   Results  

7.6.1   Long-Term data monitoring  

 
Figure 42 shows the long-term (+12 months) measured common upstream treated water turbidity and 

flow and downstream turbidity for each trunk main. Figure 42 y-axis turbidity scales are clipped to 

0-1.0 NTU to aid visual interpretation of main features of interest. While all the flow conditioning 

trials were initially planned to undertake at similar times, TM-3 trials started later due to operational 

constraints. The data shows that treated water turbidity lies between 0.05-0.2 NTU and other water 

quality parameters e.g. metals are within regulatory limit (see Figure 37) indicating a consistent high-

quality water exiting from the treatment works. 

  
 

 

Figure 42: Continuous flow and turbidity measured response from WTW outlet (top) and three trunk 

mains from October 2015 to January 2017. Continuous data in red is the measured turbidity, and 

flow data in blue. Turbidity response is clipped to 0-1.0 NTU in y-axis for better visibility. Dark blue 

arrows represent flow conditioning trials and green arrows unplanned burst events with highlighting 

a) 

b) 

c) 

d) 

e) 

f) 

g) 
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the section of interested data. a) Treated water turbidity, b) TM-1 flow, c) TM-1 turbidity, d) TM-2 

flow, e) TM-2 turbidity, f) TM-3 flow and g)TM-3 turbidity.    

The flow profile of each trunk main shows diurnal patterns and a sub-daily variation existed in each 

trunk main system. During the investigation period, a number of burst events took place. All reported 

unplanned hydraulic events, as indicated in Figure 42, were cross-validated with water company 

repair and customer contacts records. All of the events occurred in the downstream distribution 

zones, except the event on TM-2 and TM-3 recorded at the end of May and into early June 2016. 

This event started in TM-3 on 31st May 2016 about 1.3 km from the WTW outlet. Due to the 

operational repair work, TM-3 demand was rezoned via TM-2 from a further 0.4 km downstream 

distance, which initiated the TM-2 event. Figure 43 shows the measured turbidity response during 

the event for both TM-2 and TM-3 and network rezoning schematics for repair work. Measured 

shear stress event of TM-3 in December 2016 was a leak of 6 l/s occurring about 2 km distance from 

the WTW outlet. 

    

Figure 43: Burst induced turbidity response and rezoning operation: a) Burst event produced 

downstream turbidity response of both TM-2 and TM-3, b) Network schematic with approximate 

burst location and rerouting operation  

7.6.2   VCD model validation 

7.6.2.1   Trunk main 1 

 

Figure 44 presents the TM-1 VCD model calibration results including applied shear stress and 

associated simulated and measured turbidity responses from January 2015 to January 2017. TM-1 

was the normal flow conditioning main where the first nine months (January to September 2015) 

shear stress profile was used to simulate the model initial wall state conditions starting at φ=1.0. As 

expected the model overpredicts the initial turbidity response, as shown in Figure 44. However, this 

was necessary to build confidence in the simulated wall state conditions and therefore not considered 

in the evaluation of model fitting process. The model was calibrated for the +12 months data set 

b) a) 
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(from October 2015 to January 2017) as shown in Figure 44 with a single simulation and one 

calibrated parameter set. Only the notable turbidity responses produced from the planned flow 

conditioning and unplanned burst events was used for the calibration with minimisation of the 

dissimilarities between measured and simulated response by NSE correlation metric. The NSE value 

showed that model simulated the +12 months measured data overall with good accuracy with an 

NSE value of 0.61. The NSE for each planned trial and unplanned event calibration are summarised 

in table 11 with the results indicating high accuracy simulation.  

 

 

Figure 44: TM-1 VCD model calibration results of 24 months where first nine months data was used 

to develop initial wall state condition. Top plot: Long-term shear stress profile in N/m2 (where green 

arrow showing burst events and blue for flow conditioning events), middle and bottom plot: showing 

downstream simulated turbidity (T_ds_pred), observed upstream turbidity ((T_us_obs) and 

downstream turbidity (T_ds_obs). Bottom plot shows turbidity profile in scale of 0-1.0 NTU in y-axis 

scale for better data visibility 

Table 11:  TM-1 NSE model calibration results from hydraulic events highlighted in Figure 44 from 

left to right direction 

 

Calibration 

Point 

Total 

[+12 

months] 

Trial 1 Trial 2 

Burst in 

March 

2016 

Trial 3 Trial 4 Trial 5 

NSE (-) 0.62 0.78 0.63 0.96 0.79 0.80 0.86 

Use of historical data to 

define model wall state 

condition 
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Figure 45 presents flow conditioning and burst event measured and simulated turbidity from TM-

1. Figure 45(a) shows that about 0.5 NTU measured turbidity response was simulated successfully 

with slight under predictions by the VCD model with an increase of imposed shear up to 3.5 N/m
2
. 

After three months (February 2016) interval, the network accumulated enough material to cause a 

0.45 NTU turbidity responses due to the 3.5 N/m
2
 imposed shear event which shows slight over 

VCD model prediction in Figure 45(b). Figure 45(c) presents the burst event in TM-1 that occurred 

in March 2016 where shear stress increased rapidly up to 5.0 N/m
2
 for about 2.0 hours, and a 10.0 

NTU response was measured. The observed 10.0 NTU response was simulated correctly by the VCD 

model. With a shorter accumulation period after the burst, Figure 45(d) presents the conditioning 

event in May 2016 that produced a turbidity response of 0.5 NTU which was simulated effectively 

by the VCD model. Figure 45(e) and 45(f) demonstrate the VCD model effectively simulated the 

flow conditioning event response undertaken in August and October 2016. The simulation results for 

all planned and unplanned events from Figure 44 show the model simulated peak measured turbidity 

with an average accuracy of ±0.2 NTU. Simulation results in Figure 44 also predict about +12.0 

NTU responses during the burst events in August and October 2015. However, it is not possible to 

confirm as no turbidity measurements were obtained during this period and the model may be 

influenced by initial fully developed material layer conditions.  
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Figure 45: TM-1 flow conditioning trial response and associated VCD model simulation results 

present with a single simulation and fixed set parameters. Events Figure are shown from left to right 

of the +12 months flow-turbidity time series. a) trial 1 b) trial 2 c) burst in March 2016 d) trial 3 e) 

trial 4 f) trial 5. Here top plot shows imposed shear stress in N/m
2
 and bottom plot modelled and 

measured turbidity response in NTU  

 

7.6.2.2   Trunk main 2 

The VCD model mobilisation and accumulation functionality were further validated for TM-2 

measured data using the parameter values found for TM-1 as initial values. Figure 46 shows the 

applied shear stress of TM-2 from October 2015 till January 2017 including upstream-downstream 

measured turbidity and simulated turbidity response using a single set of calibrated parameters with a 

single run simulation. As with TM-1, the TM-2 model was initialised using shear stress data from 

January 2015 till September 2015, not shown in Figure 46. The layer equilibrium effect of TM-2 was 

similar to TM-1 with the expected initial over predictions.  

a) b) 

c) d) 

f) e) 
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Figure 46: TM-2 VCD model calibration results from October 2015 to January 2017. Top plot: 

Long-term shear stress profile in N/m2 (where green arrows show burst events and blue arrows flow 

conditioning events), middle and bottom plot: downstream simulated turbidity (T_ds_pred), observed 

upstream turbidity (T_us_obs) and downstream turbidity (T_ds_obs). The bottom plot shows 

turbidity profile in the scale of 0-1.0 NTU in y-axis scale for better data visibility. 

TM-2 was the passive flow conditioning main with lower quarterly imposed shear stress events. 

Several large bursts events, much higher than planned trials were recorded during the monitoring 

period. As a result of the bursts effect on material condition, none of the planned event turbidity 

responses were measured above background turbidity response. Only the bursts with notable 

turbidity responses were therefore used for testing VCD model simulation performance. As with 

TM-1 calibration, a manual search technique was applied, and quality of fitting was measured by 

NSE coefficient. While the overall calibration of +12 months data presented in table 12 indicates a 

satisfactory NSE value of 0.44, average NSE values for burst induced responses are 0.77, indicating 

high-quality calibrations for the arguably more important event periods. 

Table 12: TM-2 NSE model calibration results from hydraulic events highlighted in Figure 46 from 

left to right direction 

Calibration Point 
Total [+12 

months] 

Burst in February 

2016 

Burst in 

June 2016 
Burst in July 2016 

NSE (-) 0.44 0.81 0.80 0.75 
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Figure 47 shows the burst events responses and associated single run VCD model simulation from 

Figure 46. Figure 47(a) shows the VCD model simulated well with slight under-prediction of the 

event in February 2016 where maximum measured turbidity response was 0.8 NTU. Figure 47(b) 

and 47(c) show the model simulation to the measured response of events occurring in June and July 

2016. The burst event in early June 2016 was initiated during the rezoning process where shear stress 

was increased up to 4.4 N/m
2 

(normal prevailing shear stress was 1.5 N/m
2
). Both the flow meter and 

turbidity logger captured the event effectively. The event continued for 60 hours duration and each 

increase in shear stress caused further material release with turbidity recorded at a maximum of 10.0 

NTU. The calibration figure shows that the model achieved good simulation of data. Another burst 

event was recorded at the end of July 2016 as shown in Figure 47(c) where simulated response fitted 

well to the measured 0.7 NTU turbidity with slight underprediction. The simulation results for the 

burst event show model simulated maximum turbidity response within an average accuracy of ±0.3 

NTU, indicating good quality calibration. 

  

 

Figure 47: TM-2 flow conditioning event measured and single run VCD model simulation results. a) 

Burst in February 2016, b) burst in May-June 2016 c) burst in July 2016. For each figure, top plot 

shows applied shear [N/m
2
], and bottom plot is the modelled and measured turbidity response 

[NTU].  

 

a) b) 

c) 
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7.6.2.3   Trunk main 3 

 

The model mobilisation and accumulation processes were further tested for TM-3, assigned as a 

control network. Figure 45 shows the TM-3 single simulation calibration of +12 months dataset 

using the parameter values found for TM-1 and TM-2 as a starting point. As previously, the model 

was initially run for nine months (January 2015 to September 2015) to develop material layer 

conditions. TM-3 had only two planned events (see Figure 35) with a 12-month interval. In addition, 

two burst events were recorded in June and December 2016. No significant turbidity response was 

measured from the burst in December 2016 event due to its low magnitude and location at the 

upstream point and planned trial in January 2017 resulting from the pressure constrained PRV 

settings. Therefore, only the planned trial in January 2016 and burst event in June 2016 was used for 

model calibration. The model simulated the shear stress events in January 2016 and June 2016 well 

and with high accuracy. Table 13 summarises the model simulation performance results in NSE 

values.  

  

Figure 48: TM-3 VCD model calibration results from October 2015 to January 2017. Top plot: 

Long-term shear stress profile in N/m
2
 (where green marks showing bursts event and dark blue for 

flow conditioning event), middle and bottom plot showing downstream simulated turbidity 

(T_ds_pred), observed upstream turbidity (T_us_obs) and downstream turbidity (T_ds_obs). Bottom 

plot is showing in scale of 0-1.0 NTU in y-axis scale for better data visibility 
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Table 13: TM-2 NSE model calibration results from hydraulic events highlighted in Figure 48 from 

left to right direction 

Calibration Point Total [+12 months] Trial in January 2016  Burst in June 2016 

NSE (-) 0.24 0.91 0.78 

 

Figure 49(a) shows the model simulation to measured turbidity in January 2016 where 0.45 NTU 

turbidity was observed during the trial. As TM-3 demand was rezoned through TM-2 during the 

burst event in June 2016, upstream mass flux was modelled from the TM-2 simulation response at 

1.7 km length. The TM-2 average daily flow was then subtracted from the actual metered burst data 

and used for TM-3 simulation. Figure 49(b) shows the calibration during the burst event in June 

2016 where the model simulated the measured turbidity response well. The last turbidity spike of 8.0 

NTU was not well simulated by the model, although it was unclear why there was such a high spike 

at the end of the burst event even with relatively low measured shear stress. Overall, with the 

exclusion of unknown turbidity spike, the model simulated the peak turbidity response within ±0.2 

NTU accuracy. 

  

Figure 49: TM-3 hydraulic event single run simulation a) Flow conditioning in January 2016 b) 

burst in May-June 2016. Top plot shows applied shear in N/m
2
 and bottom plot is the modelled and 

measured turbidity response in NTU 

 

7.6.3   Accumulation rate  

 

The VCD model calibration results indicate the accumulation rate was similar in all three trunk 

mains, supporting the conceptual approach advocated at the trial outset when selecting the trunk 

mains. The optimised accumulation rate for all three trunk mains was found to be between 1.65 to 

a) b) 
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1.85 years. This means in operation it would take 1.65-1.85 years to fully regenerate material layers 

starting from a totally clean condition if no further mobilisation occurred with the current hydraulic 

configuration and bulk water quality. The lowest accumulation return interval was found in TM-1 of 

1.85 years which is a partially lined main. TM-2 accumulation return interval was 1.65 years and 

TM-3 was 1.7 years, both mains unlined CI.  

7.6.4   Seasonal variation in accumulation rates 

 

It was conceptualised from previous research that the accumulation rate may show seasonal variation 

due to temperature influences on microbial and chemical processes. To explore seasonal variation in 

accumulation rate (βr), the model was calibrated using each quarterly measured period by changing 

βr while mobilisation parameters (βe, α) were held constant which is only possible for TM1 that had 

events in all quarters. Resulting parameter and NSE values are given in Table 14. It should be noted 

that βr was assumed null during the first planned trial response as there was no previous event 

induced response point available.  

 

Quarterly calibration results predict that βr was higher during the colder months (material takes 

longer to accumulate) and lower in warmer periods of the year. For TM-1 the βr values range was 

varied from 1.6 to 2.7 years with temperature ranging from 4 to 15°C. The highest accumulation 

period of TM-1 was calibrated at 2.7 years when the average treated water temperature was 4°C. 

There were limited numbers of βr calibration points available for TM-2 and TM-3. For both TM-2 

and TM-3, there was no cold period calibration available and rest calibration period was similar to 

the TM-1. The final calibrated βr was predicted between 1.65-1.85 years which is closer to the lower 

accumulation rate (influenced by higher temperature).  
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Table 14: Seasonal effect on VCD model accumulation rate parameter  

Calibrated 

Parameters and 

water 

temperature  

Initial 

[FC1] 

0-3 

months 

[FC2] 

3-6 

months 

[FC3] 

6-9 

months 

[FC4] 

9-12 

months 

[FC5] 

0-12 months 

TM-1 βr [years] - 2.8 1.75 1.60 1.65 1.85 

NSE [-] - 0.97 0.92 0.98 0.97 0.61 

Average treated 

water 

temperature [°C] 

10 4* 8* 15 13 - 

*Temperature data was determined from linear rolling mean analysis using Figure 37(a) 

temperature data 

 

7.7   Discussion 

7.7.1   VCD model calibration analysis 

 

This paper presents for the first time simulation of long-term turbidity behaviour due to the hydraulic 

changes in large diameter trunk mains using the VCD model material tracking facility. The 

calibration results show that the model successfully simulated the turbidity behaviour by tracking 

continual material mobilisation and accumulation across a range of layer strengths defined within the 

trial methodology. For this study, the model simulated peak turbidity response for both planned and 

unplanned shear stress events that was within an average accuracy of ±0.25 NTU with high NSE 

value, and is the first model to simulate accumulation processes. The simulation performance 

suggests that the model correctly describes accumulation processes over varying strength layers and 

hence discolouration behaviour at any given time. While the weak layers can mobilise during the 

hydraulic events, stronger material can accumulate at the same time, suggesting non-linear complex 

conditions exist on the pipe wall. The calibration results suggests that continual material mobilisation 

and accumulation behaviour in this case describe the more realistic accumulation processes for 
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estimating the relative amount of material present on the pipe wall at any given time period. It is to 

be noted that if accumulation rate was incorrect, mobilisation would have not been modelled well.  

The confidence in accumulation behaviour was further confirmed by calibrating the model to both 

relatively low imposed shear stress (planned flow conditioning) and high imposed shear stress events 

(unplanned burst). This was achieved successfully for all three trunk mains where the model had to 

track a range of varying strength cohesive layers. The successful calibration of both planned and 

unplanned hydraulic events data with high accuracy for the three trunk mains validates that 

discolouration causing material layers have a range of strength bands and accumulation occurs 

simultaneously across all shear strengths. The optimisation result also validates model mobilisation, 

with accumulation functionality implemented correctly in the software to simulate long-term 

turbidity behaviour. 

For this study model calibration was conducted by a manual search process. The VCD model 

calibrates three empirical parameters, using both mobilisation and accumulation processes, making it 

relatively easier to calibrate than its predecessor PODDS model, which has four parameters and 

simulates only the mobilisation processes. While the manual search calibration cannot guarantee 

global minima or unique solutions with reduced parameter uncertainty, the parameter transferability 

found in the three trunk mains provides confidence in model optimisation. An automatic calibration 

process could be used to facilitate optimisation, although care is required to avoid over sensitivity 

towards outliers or background turbidity response during calibration.  

The study shows the scope of the single pipe length model provides good simulation accuracy 

without any need for use of a complex mass transport model, e.g. EPANET (Rossman, 2000). 

Typically the trunk main has few take-offs and connections and changes of hydraulic or water 

quality conditions in its running length. These changes in hydraulic or water quality conditions can 

be modelled as a series of pipe connections. The model output at downstream can be used to simulate 

the upstream conditions of the next or following pipe, as was done for the TM-3 June 2016 burst 

event. Since this is a single pipe length model, it does not require any storage mixing sub-models, 

e.g. trunk main to service reservoir, to characterise discolouration material conditions, which likely 

reduces modelling complexity.  
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7.7.2   Accumulation rate assessment 

 

The accumulation rate parameter (βr) values from calibration results were found to be similar in all 

three trunk mains. The final calibration results were also similar for the mobilisation rate (βe) and 

material release coefficient (α), although not published due to the intellectual property rights agreed 

with the water company funding the work. The simulated accumulation return interval for the three 

trunk mains (1.65-1.85 years) was comparable with the previous field accumulation return interval 

investigation which was found between 1.5 to 4 years (Husband and Boxall, 2011) and within 1.5 

years (Vreeburg et al., 2008). While the previous studies found accumulation rates from mass-

balance analysis, this study found similar rates through model fitting to measured response 

simulating both material mobilisation and accumulation processes. Even though the procedure for 

estimating accumulation rates was different, accumulation rate ranges from both methods was 

similar giving the confidence in βr findings through the VCD model and suggesting model 

parameters can be transferable for future calibration use.   

Similar βr found for the three trunk mains with varying imposed shear stress events evident that 

accumulation rate per shear strength was not a function of a degree of imposed event and risk remain 

at relatively low shear event same irrespective of intervention conditions. While not removing the 

stronger layers via flow conditioning trial may lead to the weaker layer accumulating more rapidly in 

the trunk main itself, however, simulating the continual mobilisation-accumulation conditions 

suggests that all layers accumulates simultaneously. This is potentially indicating that accumulation 

is a process rate dependent rather than the rate of material supply. While a continuous influx of 

material from upstream can transport to the downstream, accumulation on pipe wall does not 

necessarily be a supply rate dependent where it would potentially speed up the weak cohesive layer 

accumulation. The process rate dependent system supports the idea of other discolouration material 

interacting wall bound properties e.g. biofilms which have also slow growing formations and has 

varying strength cohesive properties (Abe et al., 2012). This is significant for operational 

management where irrespective of intervention conditions, e.g. invasive cleaning or new pipe, 

material potentially regenerate following cleaning at the same speed, and hence the discolouration 

risk remains same after a while. Therefore regarding alleviating discolouration risk, all cleaning 

strategies are similarly effective with the primary difference in removing the amount of wall-bound 

particles for different interventions. 



145 | P a g e  

 

The accumulation rate parameter was found lower (faster accumulation) in the unlined CI mains 

(TM-2 and TM-3) than the partially lined trunk main (TM-1). While the accumulation rate is slightly 

higher in partially lined main, output results can be limited to modelling uncertainty range and hence 

cannot be confirmed from this study alone. However, previous research showed that corrosion 

contributes to discolouration risk (Cook and Boxall, 2011; Husband and Boxall, 2011, 2010) which 

is consistent with the accumulation modelling analysis. The longer accumulation rate found for 

partially lined systems indicates a major benefit may be gained by replacing or lining the unlined cast 

iron mains to minimise discolouration risk from corrosion processes.  

The accumulation rate parameter has been investigated and indicated temperature as a variable. This 

supports the assumption of material accumulation being a biologically mediated process as higher 

water temperature is associated with increased microbiological and therefore biofilm activity 

(Husband et al., 2016) and hence more material accumulating during warmer periods (Blokker and 

Schaap, 2015b). Higher material accumulation in the warmer season could also be linked to the 

higher treated water organic and inorganic metal concentrations loadings as shown in Figure 37. 

Higher temperatures also increase reaction rates and accelerate disinfection decay rates (Ramos et 

al., 2009; Vasconcelos et al., 1997) which could impact biofilm generation. Research suggests that 

biofilms may act like massive surface area perforated matrix that captures moving inorganic 

discolouration particles (Burns and Stach, 2002; Douterelo et al., 2013). With potentially greater 

biofilm growth more material may trap into the biofilms, elevating the discolouration risk (Blokker 

and Schaap, 2015b; Ginige et al., 2011; Sharpe, 2012). This process is reflected in the calibrated βr 

values. The temperature effect is critical for water utilities, especially with growing concerns about 

long-term impacts of climate change on water quality. In Netherlands, water temperature is regulated 

at a maximum 25°C (Agudelo-Vera et al., 2017) to reduce potential water quality failures that may 

be associated with temperature and biological stability. The model could therefore benefit by having 

an integrated time variant sub- accumulation model encapsulating water temperature, e.g. Blokker 

and Pieterse-Quirijns (2013). Adding the sub model, e.g. temperature or biofilm regrowth model, the 

time-variant βr would increase modelling complexity and computational time. Also, collecting 

temperature data from distribution system is not a common practice and hence not practicable to test 

temperature functionality over discolouration risk. The current model simulation performance is 

satisfactory and simplified time-invariant model has been demonstrated to produce accurate long-

term turbidity simulations. 
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7.7.3   Operational implications and future works 

 

A primary application of the validated VCD model could be to design flow conditioning 

interventions to minimise future discolouration risk. In the UK the regulatory turbidity at consumers’ 

taps is 4.0 NTU. With the VCD model accuracy range identified in this work as peak turbidity ±0.25 

NTU, this suggests it is a suitable tool to plan against potential turbidity failures, especially when 

output values can be constrained, e.g. to 1.0 NTU. Prior to use for scenario planning, empirical 

calibration is currently essential to develop confidence in model output. The VCD model calibration 

requires hydraulic and long-term data, and this work shows it needs hydraulic event induced 

turbidity response as well for good calibration. While a single hydraulic event, e.g. flow 

conditioning, can be used to calibrate mobilisation parameters (α and βe), however, at least two 

hydraulic events where turbidity responses should be above mean values, with a defined inter 

duration between events, are needed for accumulation rate (βr) parameter calibration. Since the 

material is structured in varying strength layers, a higher imposed event can mobilise more layers of 

material than a smaller event and hence provide more accurate model calibration and confidence 

over simulation. The flow conditioning strategy provides the user with a flexibility and design 

procedure by which to impose a constraint of material release by managing imposed hydraulic 

conditions.  

The continuous and endemic material accumulation on pipe walls confirmed by this work creates a 

challenge for the water industry to design network maintenance cycles. The knowledge of site-

specific accumulation rates can therefore be an initial move towards proactive discolouration 

management as this represents how quickly discolouration risk returns on the pipe wall. With 

accurate βr determination from the VCD model, whole life costing (WLC) models for designing 

optimal cleaning intervention cycles can be developed. Careful and further investigation is required 

of VCD model calibration for the variety and range of networks to understand the significance of 

parameter variance to pipe material and the subsequent water quality impact such that it can inform 

decisions on operation expenditure.  
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7.8   Conclusions  

 

This paper demonstrates the operational long-term system validation of the proposed VCD (Variable 

Condition Discolouration) model. This is the first known model to simulate material mobilisation 

and accumulation processes continuously and accumulating material at all strength simultaneously. 

The key findings are: 

 The VCD model can track long-term material mobilisation and accumulation occurring in 

large diameter pipe systems in response to hydraulic behaviour. It is shown capable of 

simulating the downstream turbidity response with an average peak turbidity accuracy of 

±0.25 NTU using three empirical parameters that are constant for the single run simulation 

period.  

 

 The accurate turbidity simulation result validates the concept of material mobilisation-

accumulation processes occurring continuously, and accumulation occurring at varying shear 

strengths simultaneously on the pipe wall.  

 

 The empirically calibrated accumulation rate showed consistency for similar network 

characteristics and source water quality despite differences in imposed shear stress conditions 

and accumulation periods. The similar accumulation rate under varying hydraulic conditions 

suggests discolouration risk could return to similar conditions irrespective of cleaning 

intervention after a while and accumulation is a potential function of process dependent 

conditions rather than material supply rate dependent processes.  

 

 The VCD model’s ability to accurately simulate long-term discolouration behaviour using 

continuous accumulation and mobilisation functionality facilitates future hydraulic based 

discolouration scenarios and the development of pro-active network maintenance strategies. 

Hence the potential significance of continuous tracking ability of VCD model lets user’s 

design cost-effective cleaning interventions using discolouration risk as a criterion to better 

inform operation strategies. 
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8.1   Abstract 

 

Managing discolouration risk with a single applied intervention is not considered cost-effective due 

to continual and endemic material accumulation on pipe walls. This paper presents a novel 

methodology for designing periodic hydraulic based maintenance interventions, termed “flow 

conditioning” and investigates the trade-off between operational expenditure (OPEX) and hydraulic 

resilience. The proposed methodology uses the validated Variable Condition Discolouration model 

to track the simultaneous mobilisation and accumulation of pipe bound discolouration material for 

OPEX determination, the first time discolouration behaviour has been used as a sole decision 

criteria. The experimental design uses idealised trunk main conditions and successfully develops a 

trade-off curve between imposed system shear stress and discolouration risk-return frequency for a 

given target hydraulic resilience. Sensitivity analysis of pipe length, diameter and material 

accumulation rates are all shown to be significant on imposed intervention magnitude and 

maintenance frequencies. The results are then extended to map the Pareto front between intervention 

costs and hydraulic resilience, revealing an exponential relationship. This provides operators a 

unique opportunity to select between levels of resilience considering budget constraints.  

Keywords:  Discolouration risk, shear stress, hydraulic resilience, cost 

 

8.2   Introduction 

 

It is essential for water suppliers to have a comprehensive network risk assessment for safeguarding 

water quality and assets to ensure any changes in operation also deliver benefits to the consumers. 

The supplied water must be safe, aesthetically acceptable and reliable, where the set price should not 

prevent consumer to use water for fundamental domestic needs with sufficient quantity and quality 

,e.g. as agreed in the Bonn water charter (IWA, 2004). However, following treatment, water quality 

can deteriorate during transit due to various physicochemical, and microbiological processes that 

create challenges to the water industry to manage the desired service level within regulatory limits. 

In addition, particles remaining within the bulk water at low concentrations (even after modern water 

treatment facilities) continuously accumulate on pipe walls along with solutes and microbiological 

precipitations persistently generating discolouration risk. Accumulated material can be mobilised 

leading to discolouration and associated water quality issues when hydraulically disturbed, such as 

following valve operations, rezoning or bursts. Hence a hydraulically resilient network is desirable 
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for the water industry to minimise discolouration risk which can guard against varying hydraulic 

demands. The necessity of providing the hydraulic resilient network with reduced expenditure is vital 

for water companies so that it does not impact the consumers by hefty charges and the operator can 

be commercially viable.  

Discolouration as a visible water quality issue is a well-reported risk and causes the highest number 

of customer contacts worldwide. These hydraulic induced discolouration events are significant for 

large diameter transmission (trunk) mains due to critical layout position and typically serving high 

numbers of downstream consumers. Failure to manage these critical assets adequately can damage 

water utility reputation and consumer confidence with increased financial penalties/incentive being 

applied by regulators depending on their annual performance (DWI, 2016).  

To manage accumulated materials and ensure the network is hydraulically resilient, water utilities 

regularly exercise various types of network invasive cleaning strategies, e.g., ice pigging, air 

scouring, swabbing (Friedman et al., 2012). However, these known strategies are expensive, and 

mains are required to be taken out of service which can disrupt customer service. Several studies 

reported that material returns to the pipe wall following interventions (Blokker and Schaap, 2015a; 

Husband et al., 2010) indicating a constant regenerating discolouration risk. Therefore, one-off 

intervention may not be a solution for managing long-term discolouration risk, and this 

understanding will likely impact operational expenditure (OPEX). 

Since most interventions are expensive and disruptive for the customer, balancing the cleaning 

intervention expenditure with water quality performance and customer disruption is central to the 

intervention selection process. The selection of intervention should consider how a network can be 

hydraulically resilient over its life span period and how financial cost of the intervention can be 

balanced based on the selected network resilience. Developing an in-service and long-term cost-

effective cleaning model would, therefore, be a critical first step with respect to discolouration risk 

management considering budget constraints.  
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8.3   Background 

 

8.3.1   Rehabilitation intervention and discolouration Risk  

 

In the UK, selection of drinking water pipe rehabilitation techniques is primarily driven by the short-

term benefits and cost (Marlow et al., 2015). However, for cost optimisation, it is sensible to account 

for all relevant costs and benefits throughout the distribution main service life. Pre 1970, 

infrastructure investment decisions relied heavily on capital cost alone (Boussabaine and Kirkham, 

2008). Later, whole life costing (WLC) concepts were developed based on the idea that OPEX for 

any asset maintenance could be higher than its capital expenditure (CAPEX). Several researchers 

demonstrated WLC approach for water distribution networks to minimise total expenditure 

(TOTEX) that includes both CAPEX and OPEX for a required level of service by maximising 

desired performance (Conroy and Hughes, 1997; Engelhardt et al., 2002; Skipworth et al., 2002; 

Jayaram and Srinivasan, 2008). For water quality improvement, water utilities typically exercise 

different types of rehabilitation techniques, e.g. pipe replacement, relining of old cast iron (CI) main, 

invasive cleaning. Rehabilitation decision and prioritisation models to address structural performance 

and water loss have been developed using diverse performance criteria, e.g. burst rate and asset age 

(Engelhardt et al., 2003), integrating GIS, hydraulic data and breakage models (Tabesh and Saber, 

2012), use of cost function based on pipe replacement, rehabilitation, repairs and pumping cost (Kim 

and Mays, 1994), and pipe failure and replacement cost using Bayesian parameter estimation 

(Scholten et al., 2014). The above-mentioned models were mostly focussed on structural 

performance and water quantity; none of the models considers water quality performance as a 

criterion.  

While replacing pipe or relining unlined CI mains can reduce discolouration risk (Engelhardt et al., 

2000; Husband and Boxall, 2011), previous studies have not assessed their performance based on 

discolouration risk. It is also noted that bursts have a cleaning effect on pipe walls as they create a 

hydraulic disturbance and mobilise accumulated discolouration material. Cook (2007) observed after 

companywide long-term bursts assessment that there was a reduction in discolouration based 

customer contacts in the summer season following a higher number of recorded bursts during the 

winter period. However, forecasting bursts events and associated effects on discolouration risk is 

relatively complex to evaluate and not yet well understood and the corresponding model should 

encapsulate discolouration processes as well.  
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Primarily, the decision models compared CAPEX investment, e.g. installing new pipe, with ongoing 

OPEX, e.g. pipe repair, to hence minimise overall TOTEX. Skipworth et al. (2002) proposed a WLC 

methodology considering periodic flushing of distribution pipes to reduce accumulated material and 

relining of unlined cast iron mains (thereby removing a source of discolouration material from 

corrosion) to reduce the required flushing frequency. However, apart from the conceptual proposals, 

no further study on this WLC methodology has been reported. Most of these models have primarily 

been proposed or developed for small diameter pipes. However, large diameter pipes have relatively 

lower shear stress conditions and mixing of material due to the higher ratio of water volume to 

surface area can have a different effect on discolouration behaviour. Thus methodologies to manage 

trunk main discolouration risk or investigate associated TOTEX for trunk main interventions are as 

yet unknown.  

 

8.3.2   Material accumulation rates and maintenance interval 

 

While one-off invasive interventions or rehabilitation techniques, e.g. relining, can reduce 

discolouration risk over a short period within the assets lifetime, material accumulation following 

intervention raises questions about the sustainability of these for an extended period and the 

associated OPEX benefits. Therefore in order to assess the cleaning intervention OPEX and reducing 

overall TOTEX, knowledge of the rate at which material returns is a key criteria defining 

maintenance intervals (Boxall et al., 2003a).  

Various research has showed that material responsible for discolouration accumulates continuously 

and ubiquitously in distribution systems (Boxall et al., 2001; Blokker et al., 2011; Cook and Boxall, 

2011; Husband and Boxall, 2016). Accumulation process are influenced from a number sources and 

factors highlighting its endemic nature in water distribution network e.g. bulk water ( Vreeburg et al., 

2008; Blokker and Schaap, 2015a), pipe material (Husband and Boxall, 2011), hydraulics (Cook and 

Boxall, 2011; Pothof and Blokker, 2012), temperature ( Sharpe, 2012; Blokker and Schaap, 2015b).  

Some studies investigated material accumulation return period for distribution pipes of less than 150 

mm (6”) reported between 1.5-4.0 years through repeated flushing (Husband and Boxall, 2011) and 

1.5 years with resuspension potential method (RPM) trials (Vreeburg et al., 2008). While Husband 

and Boxall, (2011) estimated based on annual repeat flushing frequency, Vreeburg et al., (2008) 

extrapolated the return rate from repeated RPM trials information. Richardt et al., (2009) developed a 

flushing decision model based on pipe specific turbidity potential for estimating possible flushing 
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return intervals and found between 0.5-8.0 years. Assessing accumulation return period using 

flushing or RPM methods is particularly complex for trunk mains due to their critical nature and the 

flows required. Therefore little information is currently available about material accumulation return 

interval or rates for large diameter pipe systems. 

 

8.3.3   Discolouration processes and behaviour simulation 

 

Discolouration processes primarily consist of material mobilisation and accumulation that can occur 

simultaneously on pipe walls (Husband and Boxall, 2011). Field evidence showed that accumulated 

material can be mobilised due to an increase in velocity or shear stress above normal prevailing 

hydraulic conditions (Boxall et al., 2001). Flushing data has evidenced that material is mobilised at 

consecutive shear stress step increases, analogous to material arranged in cohesive shear strength 

layers (Boxall et al., 2003b; Husband and Boxall, 2011).  

While observed material mobilisation can be described as occurring from weak to strong layers, 

repeated flushing results demonstrate accumulation occurring across all shear strength layers 

simultaneously (Husband and Boxall, 2011; Husband et al., 2010). This accumulation across the 

shear strength range has been verified in full-scale temperature controlled laboratory conditions 

(Sharpe, 2012). The accumulation process indicate that how discolouration risk changes accorss 

varying strength cohesive layers. Therefore it must be captured or simulated to estimate the 

accumulation rates and using this information, cost of intervention can be designed effectively. 

Repeated flushing has also demonstrated that material accumulating linearly over time irrespective of 

seasonal variations (Cook and Boxall, 2011). 

Based on the operational evidence of discolouration processes, Furnass et al., 2014 developed a 

Variable Condition Discolouration (VCD) model that simulates long-term discolouration behaviour 

by tracking both material mobilisation and accumulation processes simultaneously. The model tracks 

the material present across a number of shear strength bands with accumulation defined as occurring 

at all shear strengths continuously up to a hydraulically limiting maximum. The mobilisation process 

assumes cohesive layers remain in equilibrium conditions with current prevailing hydraulic (τi) and 

only mobilises during excess applied shear stress (τa-τi) conditions when τa>τi. Material accumulation 

occurs when applied shear is lower than the prevailing hydraulics (τi>τa). The mobilisation and 

accumulation processes are represented by βe (mobilisation rate, N
-1

m
-2

s
-1

) and βr (accumulation rate, 

s
-1

). A third parameter α (material release coefficient, NTUms
-1

) is a linear scaling factor. To reduce 
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modelling complexity, the three model parameters are currently designed as scalar and invariant with 

time and shear strength. The model tracks the relative amount of material [φ (τ,t)] within the range of 

0 to 1.0 where 0 means no material on the pipe wall and 1.0 means maximum amount for a given 

layer strength (Furnass et al., 2014). The model assumes material binds uniformly and ubiquitously 

on the pipe wall, recreating field evidenced flushing data (Boxall and Saul, 2005). Turbidity is 

treated as a concentration in the VCD model taking account of its linear correlation to total 

suspended solids (Boxall et al., 2001; Vreeburg, 2007). 

The model functionality was initially tested using synthetic data and calibrated for both small 

diameter and trunk main measured data (Furnass et al., 2014). The model has since successfully 

simulated long-term measured data, validating the concepts in multiple trunk mains (Chapter 7, 

Husband and Boxall, 2017). Validation of this model highlights the ability to simulate long-term 

discolouration behaviour, however, design methodologies utilising this novel understanding, are yet 

to be developed. 

 

8.3.4   Non-invasive hydraulic based discolouration risk management  

 

A cohesive transport model was proposed by Boxall et al., (2001) that discolouration layer binds on 

pipe wall ubiquitously and has varying cohesive strength properties. Based on this theory an in-

service trunk main cleaning strategy termed “flow conditioning” was developed by the University of 

Sheffield collaborating with several UK water companies (Husband and Boxall, 2015). The flow 

conditioning can be described as “controlled in-service flushing” based on knowledge of historical 

hydraulic and network properties and managing the impact of increasing shear stress. On contrary 

typical flushing operates by increasing pre-defined shear stress or velocity until the base turbidity 

level reduced to target values.  

Flow conditioning strategies have been designed to mobilise material into the bulk water yet keep the 

response usually below a target value, such as the Prescribed Concentration Value (PCV) limit at the 

customer’s taps in the UK of 4.0 NTU. This is achieved by imposing an excess system shear stress 

(τa-τi) until all material with strength below the imposed shear stress is mobilised. The remaining 

material is then considered “conditioned” to this imposed excess shear stress and would require 

further increases in shear stress to be mobilised. The ability to use multiple flow conditioning steps 

and manage the response at each stage allows target flows, or the desired system resilience, to be 

achieved. As a result, this strategy can be used to prevent discolouration risk from both planned and 
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unplanned events, e.g. rezoning and bursts. However, due to the continuous material accumulation 

(Cook and Boxall, 2011), periodic flow conditioning is then required to preserve the benefits. This 

method has been successfully implemented in several trunk main systems (Cook et al., 2015; 

Husband and Boxall, 2015) and its long-term water quality benefits have been demonstrated as part 

of water treatment works (WTW) outlet to downstream network approach (chapter 4 and chapter 5).  

To determine the flow conditioning OPEX, a trade-off between the imposed event magnitude and the 

return frequency for a defined system resilience to protect against discolouration risk is sought. In 

this case, system or hydraulic resilience is a discolouration risk index. While the VCD model 

encapsulates the cohesive transport theory and has successfully simulated flow conditioning for 

multiple trunk main systems (Husband and Boxall, 2017, Chapter 7), no study has used the VCD 

model to determine the trade-off between the imposed shear stress magnitude and the risk-return 

frequency. Therefore, long-term costs of flow conditioning and how to design maintenance schedules 

cost-effectively remains unknown. 

 

8.4 Aim 

The overall aim of the paper is to demonstrate how to design flow conditioning cycles to manage 

discolouration risk by trading cost against hydraulic resilience. The aim is spilt into further two 

objectives as: a) determine the cost of flow conditioning intervention for a specific period; b) 

determine the trade-off between intervention costs against hydraulic resilience using VCD model 

functionality. 

 

8.5   Methods and materials 

8.5.1   Methodology 

 

A methodology was developed for modelling periodic flow conditioning interventions considering 

cost compared to hydraulic resilience. The first stage of the design process required simulating flow 

conditioning shear stress and then predetermined event conditions to ensure that mobilisation of the 

remaining discolouration material from the pipe wall never exceeded a discolouration threshold 

within the given period due to a target hydraulic resilience event. The remaining material that would 
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be mobilised by the target hydraulic resilience event resulting in peak turbidity at the downstream of 

pipe is referred to as ‘critical material’ and unless stated otherwise a threshold 4.0 NTU to match UK 

PCV was used. It is also to be noted that following flow conditioning, material accumulates again 

prior to hydraulic resilience event, meaning that this contributes to the amount of critical material as 

well.  

To track critical amount and design flow conditioning magnitude and return period, the validated 

“Variable Condition Discolouration” (VCD) model can be used to simulate material mobilisation and 

accumulation simultaneously across the range of shear strength layers. In order to investigate the 

discolouration risk-return period for varying imposed shear stress interventions, the model was tested 

initially against a fixed hydraulic resilience. As different magnitude flow conditioning interventions 

have different risk-return periods, cost determinations were different for each imposed intervention. 

The minimum cost to ensure resilience against fixed hydraulic event was assessed from a trade-off 

curve between intervention magnitude and periodicity. Once the method for identifying the 

minimum costs for periodicity and magnitude of flow conditioning for a given resilience was 

assessed, different resilience levels informing a true trade off curve or Pareto front for cost against 

resilience were explored.  

Most trunk mains can be split into two hydraulic groups, those linking network components and 

hence with utility controlled flows, e.g. between treatment and reservoir, or demand-driven mains 

supplying customers directly. In the former, networks typically have a level of risk buffer, e.g. higher 

storage during repair, so that risk can be delayed or even mitigated with appropriate measures. With 

the correct infrastructure, it is feasible to automate repeat flow conditioning trials after an initial trial. 

In these circumstances, long-term flow conditioning strategies can be effectively cost-free and 

become part of business as usual protocols. However, for demand-driven networks managing 

hydraulics is more complex as there is no certainty of peak demand and, hence, without any risk 

buffer or break present prior to water being delivered to the customer any risk that propagates within 

the network, e.g. discolouration risk, can directly impact on the end users. Due to its demand driven 

nature, mains automation of flow conditioning trials is not possible in this case and manual on-site 

intervention is required to control flow and associated turbidity responses. To demonstrate how flow 

conditioning long-term options can be modelled, idealised daily flow patterns and hydraulic 

properties, e.g. length, diameter, roughness based on real network, were chosen. The daily flow 

patterns were chosen based on ease of interpretation with no seasonal or daily variation. Since 

interventions were to be manually controlled by increasing shear stress on-site and water was to be 
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discharged in a manner similar to a flushing operation, data on water usage and resource unit cost to 

undertake such operations, e.g. equiment setup, travel to the site, were considered in the cost 

framework. 

A range of sensitivity analyses were undertaken to evaluate the effect of parameters on the applied 

shear stress and its risk-return frequency output for a given resilience. Regarding parameters, 

preference was given to those which have a significant influence on flow conditioning operational 

aspects, e.g. cost and strategic modelling, and those typically invariant with time, e.g. hydraulic 

structure. 

 

8.5.2   Framework for flow conditioning long-term modelling to guard 

against discolouration risk  

 

The relationship between the imposed shear stress interventions and discolouration risk-return 

intervals was determined by tracking the amount of material on the pipe wall that could be mobilised 

by a given target hydraulic event. Figure 50 presents how material layers are structured in the VCD 

model during normal operation with no intervention and the effect of increased hydraulics. Using 

VCD model concepts, cohesive layers are conditioned by the daily peak shear stress (τD) during 

normal operational conditions, point 1 Figure 50. If an event (τR) occurs at any period (point 2 Figure 

50), the amount of material mobilised (marked in red) can cause a discolouration event potentially 

leading to a PCV failure. Following mobilisation, the remaining material potentially has a shear 

strength equal or higher than τR event. The target to designing flow conditioning repeat interventions 

is therefore such that the remaining available material to be mobilised due to τR at any time never 

exceeds a discolouration threshold, in this case a peak of 4.0 NTU at the downstream end of the pipe, 

at any given period. 
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Figure 50: Varying strength material conditions at given time and the effect of the hydraulic event on 

the material amount – normal conditions without any interventions. τD [N/m
2
] is maximum daily 

peak shear stress, material accumulation below this strength is in a continual daily cycle of 

accumulation and mobilisation and hence is effectively zero, τR [N/m
2
] is hydraulic event shear 

stress, and τmax [N/m
2
] is the hydraulic network specific maximum material shear strength – for these 

simulations this was kept high enough to effectively be infinite so did not affect simulations. The 

rainbow colour pallet shows varying cohesive strength material present on pipe wall during normal 

operation limited between φ = [0,1.0] where material strength increasing from left (red) to right 

(blue), T represents max turbidity [NTU] at the downstream end due to the τR event and the red box 

shows amount of mobilised material due to the τR event causing discolouration risk (≥4.0 NTU). 

 

Figure 51 depicts the cyclic design procedure for flow conditioning interventions to guard against τR 

events at any given design period. If a target conditioning shear stress (τc) is implemented as shown 

at point 2 Figure 51, all material with shear strength below τc is mobilised from the pipe wall. 

Material then accumulates again across all shear strength simultaneously (Husband and Boxall, 

2011), shown at point 3. Similar to point 2 and 3, target strength material is mobilised due to the τc 

event at point 4 and point 5. If a hydraulic event (τR) occurred at point 6, this would mobilise 

relatively less material (L-shaped red marked area) due to the pro-active removal by flow 

conditioning than shown in Figure 50 without any controlled interventions (red marked area). The 
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repeat cycle of flow conditioning interventions has to ensure that the total mobilised material by the 

event (the amount equivalent to the L shaped red marked area) should remain below the 

discolouration PCV of 4.0 NTU, i.e. the critical amount. It is essential to maintain the same initial 

trial magnitude for repeat intervention so that each repeat intervention mobilises a consistent amount 

of material in every cycle. This will ensure the tracked critical amount is the same and providing an 

accurate risk-return period for a given configuration 

 

Figure 51: The conceptual basis of material mobilisation and accumulation for discolouration 

management decision framework. Here τc [N/m
2
] is representing flow conditioning shear stress 

magnitude. Transparent layer indicated the material just mobilised at the time due to the τc event, 

and X represents the risk-return frequency of the τc event. Red represents the amount of material 

mobilised by the τR event and is the critical material amount which must be less than 4.0 NTU at the 

downstream end of the trunk main when mobilised to satisfy the resilience criteria 

Figure 52 presents the various configurations for designing flow conditioning trials to guard the 

network against a hydraulic resilient (τR) event. The Figure 52 illustrates how target resilience can be 
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achieved by imposing higher magnitude low frequency or lower magnitude higher frequency 

interventions.  

 

 

Figure 52: Discolouration risk management by balancing flow conditioning magnitude and return 

frequency. Three scenarios are presented; top plot lower intervention magnitude with higher return 

frequency, middle plot medium magnitude and frequency and a bottom plot higher magnitude with 

lower frequency. All scenarios provide same hydraulic resilience (τR) with the critical amount 

(marked red) limited to target threshold 

 



161 | P a g e  

 

8.5.3   Case Study: Idealised model conditions 

 

The conceptual basis of discolouration management framework as shown in Figure 51 was tested in 

the VCD model for idealised trunk main conditions in a demand driven network requiring manual 

intervention. The model was developed for a single pipe length of 1.0 km with an effective internal 

diameter (ID) of 228.0 mm (9”) and pipe roughness (ks) 5.0 mm. This was based on a real operation 

trunk main of interest, but simplified and obfuscated for confidentiality reasons. The model 

accumulation return period was selected as 1.0 year, taken from previous findings (Husband and 

Boxall, 2011; Furnass, 2015; Furnass et al., 2014) and representative of the surface water source and 

cast iron pipe material of the real system. To demonstrate the relationship between imposed shear 

stress magnitude and risk-return frequency, a 24 hour fixed diurnal flow profile with a maximum 

peak of 20 l/s (=0.55 N/m
2
) was selected. A 24 hour fixed diurnal pattern was chosen for the 

simplification and ease of representation. In normal operation demand profiles can vary, influencing 

the amount of material on the pipe wall. For this work, however, this is not critical as model 

resilience was tested against extreme hydraulic cases.  

Even though the upstream end of the pipeline on which these simulations is based is a water 

treatment work, the incoming mass flux of turbidity would not be zero. In order to account for this 

effect the simulations were run with a turbidity of 0-0.3 NTU generated using normally distributed 

random numbers. This was based on a previous study (chapter 7) and normal UK practice that targets 

WTW outlet turbidity well below the 1.0 NTU regulatory limit (DWI, 2012). 

The current layer strength profile is a vital parameter in the VCD simulations (Furnass, 2015; 

Furnass et al., 2014). In order to ensure this was accurate at the time of interest, an initial period of 

three months was added starting with a fully developed layers (φ=1.0) and the turbidity results from 

this period ignored. The results for this simulation period were not included here. The VCD model 

requires the material layers to be described by a number of discrete bands. Based on previous work 

this was set to 100, found to be more than sufficient to accurately simulating measured data (chapter 

7, Figure 41). 

While this study used demand-driven flow patterns assuming the main was supplying water directly 

to downstream consumers, the intervention turbidity simulated response was constrained to 1.0 NTU 

to provide a significant safety margin over regulatory 4.0 NTU. Peak turbidity due to shear stress 

increases occurs at approximately one pipe turnover when the water parcel has gathered potentially 
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the highest amount of material when it reaches downstream point of interests (Furnass, 2015). As a 

result all planned trials simulated for >1x turnover to allow complete target strength material 

mobilisation from the pipe wall.  

An event of additional 15 l/s to the daily peak (=total 35 l/s peak demand) was used as the initial 

fixed resilience target, based on an operational requirement of the real system. This is equivalent to 

shear stress of 1.5 N/m
2
. Fixed resilience was selected high enough compared to the peak shear of 

0.55 N/m
2 

(=20 l/s). Each intervention event (τR) duration was implemented >1x pipe turnover as 

stated previously as an idealised condition.  

8.5.4   Pareto front assessment for OPEX against hydraulic resilience  

 

The trade-off curve of cost against hydraulic resilience for a fixed resilience can indicate a minimum 

cost required to protect against a given resilience, however, it can not encapsulate the required OPEX 

to maintain varying hydraulic resilience. Knowledge of pre-selected resilience is often unknown for a 

given network. To determine trade-off curve between interventions OPEX against any level of  

hydraulic resiliencee, Pareto efficient method was used to generate a set of independent solutions to 

develop a true Pareto frontier or front where below this curve no best solutions (here, minimum cost) 

can exist. This method was applied by assessing the minimum cost for imposing interventions for a 

fixed resilience (=1.5 N/m
2
) and the the same costing assessment was conducted for varying 

resilience to determine the true pareto front of hydraulic resilience and intervention cost. The lowest 

resilience point at the pareto solutions were identified when below a τR event the model does not 

produce 4.0 NTU, whilst higher resilience is effectively infinite. For this paper, the upper bound of 

2.5 N/m
2
 (=46 l/s) resilience was selected to evaluate the Pareto front solutions. To map the Pareto 

set of intervention cost against hydraulic resilience, minimum cost solutions for each resilient event 

was then used.  

 

8.5.5   Sensitivity study of shear stress and return frequency 

 

Sensitivity tests were carried out by changing the network physical characteristics and model 

parameters to evaluate the influence on magnitudes of imposed interventions and return frequency 

output. Network hydraulic properties (length and diameter) and model accumulation rate (βr) were 

selected as variables for this study. The length (L) and diameter (D) were chosen as invariant with 
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time. Both L and D influence the volumetric amount and travel time of the discolouration material. 

Diameter additionally influences imposed network shear stress. The effects of L and D are more 

readily apparent in the fixed resilience plots and extrapolation to moving the Pareto curves is trivial 

as they are induced from fixed resilience curve and lifts or suppress the Pareto front. Hence 

sensitivity tests for L and D focussed on the initial trade-off curve developed with a fixed resilience 

of τR =1.5 N/m
2
 and a daily peak shear stress of 0.55 N/m

2
. Other hydraulic property, e.g. pipe 

roughness was not accounted due to its potential variability over time in response to varying 

hydraulic conditions and hence quantifying results become complex and no significant impact on any 

trade-off curve.  

The effect of accumulation rate (βr) was tested for both fixed resilience and Pareto front as βr 

accounts change in source water quality and can inform operation decision. This βr value range was 

chosen from the previous findings of 1.5-4.0 years (Husband and Boxall, 2011; Vreeburg et al., 

2008). While improving treated water quality can reduce accumulation rates and hence influence the 

cost profile, βr sensitivity tests were undertaken for both shear stress and cost against resilience trade-

off. The sensitivity of VCD model parameters defining mobilisation (βe and α) is not considered or 

discussed due to the contractual conditions with the sponsoring company of this project.  

 

8.5.6   Costing framework 

 

Flow conditioning cost assessment was split into two parts: a) resource cost to operate the 

intervention on-site and b) water usage cost.  

To quantify the resource cost, two employees have been identified as required on-site for 

implementation, in accordance with common health and safety practices. The work process includes 

valve management, equipment setup, data collection and health, safety and risk assessments. It was 

assumed that each trial would require five hours of operation including field work with minimum 

one pipe turnover trial duration. Travel cost to the site has not been included as it is more site-

specific. The employee unit hourly cost was taken from the UK national minimum wage of £7.5 per 

hour (www.GOV.uk). Considering employee pension, overhead management cost, various 

insurances and travel allowance, it was assumed that resource cost would be three times unit rate 

(2*7.5*3 = £45.0 per hour).  

http://www.gov.uk/
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Since this work demonstrating flow conditioning trial in a demand driven network, excess shear 

stress or water disposal was considered by hydrant discharge similar to flushing operations. It was 

assumed discharge did not incur to any direct wastewater cost. For the costing framework, 

discharged bulk water cost was determined as 0.8368 £/m
3
 (Scottish Water, 2013) which included 

internal maintenance, water treatment and pumping cost. 

UK water companies’ financial regulatory cycle is currently set at five years and hence for this study, 

a five year design period was selected for cost assessment. To normalise the future cost to its present 

value, all flow conditioning intervention associated costs were converted to their net present value 

(NPV) by using a discount rate of 3.5% (HM Treasury, 2003). The NPV cost was calculated by 

equation 1. 

𝑁𝑃𝑉 = ∑
𝐶𝑛

(1 + 𝑖)𝑛

𝑛

𝑛=0

                                                                                                                                           (1) 

Where, NPV = Net present value (£), Cn = operational cost at year n (£), i = discount rate (%), n = 

duration of cash flow (year) 

   

It is noted that additional design and management related cost was excluded from this costing 

calculation as these are more business specific. Equipment costs such as flushing standpipes, 

turbidity monitoring equipment, vehicles etc., for flow conditioning was also not included as those 

are part of CAPEX investment or standard water company inventory. The costing framework could 

be readily expandable and adaptable to include or exclude costs as required. 

 

8.6   Results  

8.6.1   Applied shear versus return frequency trade-off curve for given 

network resilience 

 

Figure 53 presents the relationship between applied shear stress and return frequency to protect 

against a τR (=1.5 N/m
2
) event generating downstream turbidity greater than 4.0 NTU. Figure 53 

demonstrates that the higher the imposed shear, the longer the return period and vice-versa. This 

relationship followed up to a certain point (1.2 N/m
2
) from where the return period remains constant 

(105 days). It is evident from Figure 53 that after 1.2 N/m
2
 simulation responses was dominated by 
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the lower part of the ‘L’ shape and conversely below 0.9 the output was dominated by the upper part 

of the ‘L’ shape. However, between these upper and lower band, a trade-off region exists that was 

influenced by complex material conditions. The result demonstrates that it is not necessary to 

increase imposed shear stress up to the τR event magnitude and highlights discolouration risk can be 

managed with lower shear stress interventions. For this scenario, the result indicates a daily return 

period with a 0.925 N/m
2
 imposed shear stress intervention, or 80 days with a 1.0 N/m

2
 imposed 

shear stress intervention. Below 0.925 N/m
2
 the

 
network cannot protect against the defined 

discolouration risk (≥4.0 NTU) with the current network configuration. Above τR (=1.5 N/m
2
) event, 

return period was found constant. It is important to note that in all cases, network resilience was 

designed to protect against the same τR event meaning all interventions (0.925-1.75 N/m
2
) provided 

the same discolouration risk protection, but require different amounts of water, different durations on 

site and frequency of visits and hence have different costs associated. 

 

Figure 53: Trade-off curve of applied shear stress magnitude and risk-return period and material 

conditions following the fixed hydraulic resilience (τR) event (=1.5 N/m
2
). The top plot shows varying 
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imposed flow conditioning events to protect against τR event and risk-return period in days for an 

idealised model. Bottom plots represent material conditions in the VCD model, showing the amount 

of material (in red) that would be mobilised if the target resilience event occurred just prior to each 

repeat intervention – the worst case time.  

 

8.6.2   Cost assessment for a fixed resilience  

 

Figure 54 presents the flow conditioning intervention cost projected in a five-year financial period 

determined from the trade-off curve (Figure 53) for a network resilience of τR=1.5 N/m
2
. The lowest 

cost for the given resilience identified from Figure 54 was a flow conditioning target of 1.125 N/m
2
 

with return period of 102 days. Results depict that the lower the imposed shear stress, the higher the 

cost. However, this relationship holds valid for below the minimum cost point. Above 1.125 N/m
2
, 

steps are evident in the cost profile. These are due to the need for visits to span over more than one 

site visit and the associated costs. The cost for a one day return period and flow conditioning target 

flow of 0.925 N/m
2
 is £452070, not shown in Figure 54 due to y-axis scaling to focus on 

operationally pragmatic intervention schedules. 

  

Figure 54: Intervention cost assessment based on imposed shear stress magnitude and risk-return 

period for a fixed hydraulic resilience (τR = 1.5 N/m
2
) 

 

Figure 55 presents the cost breakdown of flow conditioning events that had at least a one day return 

period. The cost analysis in Figure 55 demonstrates the proportion of initial cost compared to the 

τR 
τD 

Shear step increase  

Minimum cost point 
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repeat intervention costs for a five-year financial period. The plot demonstrates repeated trial 

resources dominated total cost where approximate ~80% of the total cost incurs from resource usage 

and the rest of the cost (~20%) was from water usage. As expected due to the number of repeat 

interventions within the five-year interval, repeated trial water usage cost was also higher compared 

to the initial trial water usage. At one day return with an imposed shear of 0.925 N/m
2
, repeated trial 

costs accounted for almost the total cost which was anticipated due to the 365 annual repeats. 

 

Figure 55: Cost breakdown of imposed intervention to protect against τR (=1.5 N/m
2
) event  

 

8.6.3   Cost assessment for varying resilience: Pareto front assessment  

 

Using the same method to determine the costs for a single defined resilience, the minimum cost for 

different resilience targets was determined as shown in Figure 56. The Pareto front or set solutions 

shows that intervention costs over five years increased exponentially with increasing τR conditions. 

An exponential function explained the cost correlated to the resilient event with R
2
 = 0.98. Below 

1.25 N/m
2
, τR event did not create a 4.0 NTU discolouration risk with the current network 

configuration, and hence this was considered the minimum point. While picking pre-set resilience 

event as a prior is often challenging, this exponential relation allows determining the optimal set of 

OPEX for any resilience. Hence this model can be utilised as a decision support model. Using this 

plot an operator can select the required resilience target considering budget constraints. For example 
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with a 25% cost compared to maximum expenditure (up to £82000 to protect the network to 2.5 

N/m
2
), the network can be resilient up to 1.75 N/m

2
. 

.   

 

 

Figure 56: Pareto front curve for minimum cost of flow conditioning intervention strategy to achieve 

a range of resilience levels. 

 

8.6.4   Sensitivity analysis of trade-off curve for given resilience  

 

8.6.4.1   Length and diameter 

 

Figure 57 is the sensitivity analysis showing how different pipe lengths impact applied shear stress 

and intervention return frequency trade-off. The plot shows the shorter the length, the longer the 

return period. As can be seen from Figure 57, the trade-off curve was sensitive to lower imposed 

shear stress compared to the higher events for length variations. However, after about two km the 

maximum return period converged. Pipe length as a variable showed that for longer pipes with 

relatively higher imposed shear stress, return periods were relatively consistent (Figure 57). Change 
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in return period observed as pipes get longer is initially due to increasing amounts of material 

accumulating with the greater surface area available as the model assumes material accumulates on 

pipe walls uniformly. Typically peak turbidity due to the imposed interventions occurs at one pipe 

turnover. However once the peak turbidity occurs for a specific configuration when all material is 

mobilsed into the bulk flow, this acts as a block of volumetric material being transported and peak 

turbidity does not increase anymore. Since τR event mobilises the same amount of material per unit 

area irrespective of length, peak turbidity in shorter pipes is therefore associated with the pipe 

turnover volume. However when a certain pipe length is reached, all accumulated material of 

specific strength depending on imposed event can be mobilised before the time taken for a pipe 

turnover. When this occurs, at around two km in the configuration used here, turbidity values plateau 

at a peak value and hence the return period is similar after a certain length.  

 

 

Figure 57: Sensitivity analysis of trade-off curve for varying pipe lengths for a given resilience τR = 

1.5 N/m
2
. Idealised model conditions (Figure 53) length set at L = 1.0 km 

Figure 58 presents the diameter effect on the trade-off curve where the imposed shear stress had little 

influence on return period for the largest diameter pipe. However, the return period was quicker with 

the reduction of diameter sizes and hence more influential for smaller diameter pipes. From Figure 

58 it can be observed that the return period has little impact on relatively larger diameter pipe 

systems within the modelled network configuration. This is due to the dilution effect of material 

being mobilised into the bulk water as the model treated turbidity as concentration. Since the shear 

stress was maintained constant as irrespective of diameter for sensitivity assessment, the flow rate 

0

20

40

60

80

100

120

140

160

180

0
.5

0
.6

0
.6

7

0
.7

5

0
.8

5

0
.9

2
5

0
.9

7
5

1
.0

2
5

1
.0

7
5

1
.1

2
5

1
.1

7
5

1
.1

9

1
.2

2
5

1
.2

7
5

1
.3

2
5

1
.3

7
5

1
.4

2
5

1
.4

7
5

1
.5

2
5

1
.5

7
5

1
.6

2
5

1
.6

7
5

1
.7

2
5

R
et

u
rn

 r
at

e 
[d

ay
s]

 

Size of the imposed shear stress [N/m2] 

0.5 km

1 km

2 km

3 km

4 km

5 km

6 km

7 km

τR τD 



170 | P a g e  

 

was much higher in larger diameter pipes compared to smaller ones. As a result in the scenarios 

investigated here when a τR event was applied, the 200 mm pipe diameter has two times higher 

surface area to volume ratio than the 500 mm pipe (Figure 58). Hence the smaller the pipe diameter, 

the less dilution of wall mobilised material in the bulk flow and the higher the resulting observed 

turbidity and increased return frequency required to manage this.  

 

Figure 58: Sensitivity analysis of trade-off curve for varying pipe diameter for a given resilience τR = 

1.5 N/m
2
. Idealised model conditions (Figure 53) set at D=228 mm 

8.6.4.2   Accumulation rate  

 

Figure 59 presents the effect of accumulation rate on the trade-off curve showing a linear increase 

with the increase of accumulation rates. The minimum shear stress required to have return frequency 

of one day was same (= 0.925 N/m
2
) for all accumulation rates. This is due to network accumulating 

enough material irrespective of accumulation rates to generate maximum one day return period. 

Although Figure 59 scaled linearly after 1.125 N/m
2
 imposed event, initial slopes were different for 

varying accumulation rate (βr). 
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Figure 59: Sensitivity analysis of accumulation rate on imposed shear stress and return frequency 

for resilience τR = 1.5 N/m
2
. Idealised model conditions (Figure 53) set at βr=1.0 year 

Since the accumulation rate (βr) has a direct influence on intervention return rate, further assessment 

was undertaken to evaluate βr on cost against resilience. Figure 60 presents the higher the βr (the 

slower material accumulates), the lower the five-year intervention costs. Although the cost for 

varying βr was similar in the lower hydraulic resilience region, the exponential relationship increases 

cost differences at higher resilience.  
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Figure 60: Accumulation rate effect on five-year intervention costs against resilience  

 

8.7   Discussion 

8.7.1   Trade-off diagram and cost assessment for fixed resilience  

 

A novel methodology is presented in this paper for designing flow conditioning cycles in a demand 

driven network by considering long-term OPEX against hydraulic resilience. While previous models 

determined TOTEX based on structural performance and water quantity, this is the first attempt to 

model discolouration risk as a water quality performance where only OPEX is required to manage 

the discolouration risk using flow conditioning intervention.  

The proposed WLC model developed a non-linear relationship between imposed shear stress 

magnitude and return frequency indicating that complex non-linear material layer conditions exist on 

the pipe wall. Cost profile for shear stress and its return frequency had a low point and linearly 

increased afterwards with some steps (Figure 54). This cost profile was anticipated as costs are 

dominated by repeat trials where lower shear stress interventions require a higher frequency. The 

steps are linked to increased water discharge and resource time when multiple flushing steps are 
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required to achieve the desired resilience within the 1.0 NTU intervention constraints. The applied 

shear stress magnitude and frequency trade-off results demonstrate that varying magnitude 

interventions can provide the same protection against discolouration risk; however, cost can vary 

with the magnitude of intervention. The selection of flow conditioning magnitude has substantial 

impact on the intervention cost, as shown in Figure 54, suggesting a necessity of a trade-off between 

shear stress magnitudes and return period and associated intervention cost.  

 

8.7.2  Flow conditioning in non-demand driven network  

 

Implementation of flow conditioning in a demand driven network is relatively complex compared to 

the non-demand driven network described in the methodology section (Chapter 8.4.1). While no 

survey has indicated what percentage of the network comes within this category, it is plausible to 

assume demand-driven mains could cover up to 50% of the total network where populations are 

uniformly distributed in a relatively small land areas, e.g. Europe. This indicates the necessity of 

designing specific interventions for demand driven systems. 

A significant part of the cost assessment involves disposal of the water used for a demand driven 

network. While this is not ideal from an environmental viewpoint, on-site manual control of flow 

conditioning discharge is required when flow is demand driven to avoid any discolouration risk 

failure. Water discharge during interventions can be avoided if networks have an appropriate 

infrastructure and constant periodic daily flow profiles, such as typically used to fill downstream 

reservoirs. Intervention in these cases can be facilitated by increasing the shear stress to a target level 

via appropriate valve operation managing flows between parallel pipes (Cook et al., 2015), valve 

operations in looped networks controlling flow direction and magnitude and/or reservoir fill rates via 

valve or pump control. The processes can be fully automated by a Programmable Logic Controller 

(PLC) with minimal or zero resource cost and no water wastage (Cook and Husband, 2017). 

However, automation processes and equipment costs requiring potential CAPEX investment are 

variable between utilities. As a result this aspect has not been included within the scope of this work. 

 

 

 

 



174 | P a g e  

 

8.7.3   Pareto front assessment  

 

The modelling framework of Pareto front assessment demonstrated that cost profiles had an 

exponential relationship to hydraulic resilience (Figure 56). This is due to the higher frequency of 

interventions required to sustain higher resilience. Additionally, to maintain higher resilience, higher 

magnitude interventions are required which impact the resource costs, with increased multiple shear 

stress steps necessary to satisfy the 1.0 NTU operational constraints. While the appropriate choice of 

pre-selected hydraulic resilience (τR) is often unknown, this non-linear representation does however 

give the users a unique opportunity to determine the best-suited flow conditioning program based on 

the desired hydraulic resilience and budget available for discolouration management. Thus the 

proposed modelling framework is the first model that can be used as a decision support tool with a 

proactive informing discolouration risk based management approach. The exponential correlation of 

cost against hydraulic resilience is potentially transferable for a similar type of network and 

accumulation rates. This transferability could be a valuable tool for developing initial budgets for 

discolouration management before upcoming fiscal periods, e.g. UK water industry Asset 

Management Period 7 (2020-2025) cycle. 

It is however necessary to generate as many possible solutions within the Pareto front range as 

possible so that the Pareto optimal band can be used by the decision makers to inform risk 

proactively. While work undertaken here used batch simulations based on an idealised network 

system, the process can be automated to produce optimum costings for a given resilience within any 

network and design constraints.  

 

8.7.4   Sensitivity analysis: Accumulation rates, length and diameter  

 

In this work, five-year cost profile was dominated by intervention return frequency (Figure 55), 

which was primarily dictated by accumulation rates. The methodology effectively demonstrates the 

improvement of five year OPEX with the improvement of accumulation rates (Figure 60). While 

improving treated water quality can improve accumulation rates (Vreeburg et al., 2008), it can be 

expensive, e.g. manganese removal (Postawa et al., 2013). This study maps a Pareto front to assess 

the trade-off between cleaning intervention with treatment works CAPEX investment and how 

OPEX is justifiable against CAPEX investment over asset life span (Figure 60). While previous 

works showed that both flow conditioning intervention (chapter 4) and treated water quality 
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(Vreeburg et al., 2008) can improve downstream network discolouration risk, this work demonstrates 

that a potential trade-off solution between water treatement upgradation and trunk main intervention 

can inform risk in a more robust manner. This is the first proposed WLC model that accounts for the 

cleaning intervention and WTW improvement processes to manage discolouration risk and can be 

used as a decision support model. With this proposed model the operator can find the synergy 

between tuning of WTW upgrade works and network maintenace cost such that the risk can be 

optmised from WTW to downstream on a network approach basis.  

The sensitivity result suggests that the selection of trunk main length has non-trivial impact on 

managing discoloriation risk via flow conditioning. Since long trunk mains require potentially long 

pipe turnovers and discharge volumes, suitable conditioning lengths can be determined from 

sensitivity analysis by assessing the trade-off curve, hence reducing the overall cost of flow 

conditioning programs. While selection of length for flow conditioning can influence operation 

decisions, diameter has a different influence on the trade-off curve. The smaller the pipe diameter, 

the lower the dilution of wall mobilised material in the bulk flow and the higher the resulting 

observed turbidity and increased return frequency required to manage this. Although the larger 

diameter pipes carry much higher volumes of water, these typically do not supply directly to 

downstream distribution zones. Diameter is therefore a significant part of this methodology that 

considers the impact on demand-driven system intervention cycles. Overall both length and diameter 

assessment suggests that these have an influence on fixed resilience curve and require site-specific 

simulations to explore their impact on the operation decisions.  

 

8.7.5   Improving hydraulic resilience for a new and invasively cleaned pipe 

 

While the methodology of this paper focusses on flow conditioning for ongoing OPEX determination 

against hydraulic resilience, it can be extended to investigate different intervention strategies, e.g. 

flow conditioning in a new pipe or following an invasive cleaning intervention. A schematic diagram 

is presented in Figure 61 demonstrating how periodic flow conditioning can manage discolouration 

risk and hydraulic resilience safely in a new pipe (or fully clean) system. The proposed methodology 

to design flow conditioning in a new or fully clean pipe can be facilitated in the VCD model by 

setting initial wall layer condition at φ=0.0, which means no material is present on the pipe wall 

(Furnass et al., 2014). While this methodology is designed for the new or fully clean pipe, the initial 
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material condition (φ(τ,t)) is uncertain after invasive cleaning application and hence setting φ=0.0 

will not be applicable for invasive cleaning intervention. The value of invasive cleaning can be 

evaluated from its capacity to remove legacy deposits from the pipe wall that may contain substances 

of more concern and what is entering systems according to current WTW standards. However, no 

previous study has investigated material layer conditions after an invasive cleaning intervention and 

hence setting φ(τ,t) for design could provide uncertain results. Therefore, to assess φ(τ,t) for an 

invasively cleaned main, long-term continuous flow and turbidity data are necessary for both pre and 

post intervention so that the VCD model can track any material conditions changes caused by the 

invasive cleaning system.  

Figure 61(a) shows material conditions in a new and normal operational pipe at t=0, and after a 

period of material accumulation at all shear strengths simultaneously, for a new pipe at t+ Δt(1) 

period. The imposed flow conditioning mobilises target strength material (τc) at t+ Δt(2) from both 

normal operating main and new pipe wall, shown in Figure 61(a). However, over time (t+Δt(n)) 

material accumulates irrespective of preceding material legacy or intervention type and reaches a 

level similar to a network operating for a sufficient time with layer equilibrium with daily applied 

shear (τD). This consistent material accumulation is a critical conceptual result of this work, 

indicating that to safeguard against a target resilience, flow conditioning is as effective as any other 

intervention technique or even new pipe. The constant accumulation conditions also highlight that 

once in operation a fully clean pipe cannot exist, and any maintenance is only temporary. Figure 

61(b) shows how network resilience in new pipe systems can be increased by applying periodic flow 

conditioning interventions with safe downstream turbidity response (≤1.0 NTU). The low turbidity 

response during trials in a cleaned pipe is anticipated as following rehabilitation reduced material 

will present on the pipe wall. In this manner, however, even with a maximum burst event, the 

network can be guarded over its lifespan, such that there is not enough material to create a threshold 

discolouration response. 
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Figure 61: Managing discolouration risk for a new (or fully clean) pipe using combined 

interventions a) comparison of material accumulation behaviour over time in a new pipe (left 

column) and pipe in operation for sufficient time for layers to be at equilibirum with daily flows 

following flow conditioning intervention (τc, right column), b) Managing hydraulic resilience via 

periodic flow conditioning with safe turbidity mobilisation (≤1.0 NTU) in normal operating 

conditions (top plot) and in a new pipe conditions (bottom plot). 

 

Typically the charge for cleaning intervention service is financially constrained, such as by 

regulators in the UK through customer price caps (Engelhardt et al., 2002). Several studies raised 

concern about this price cap due to water utilities potentially needing to invest impractical amounts 

in the future to manage infrastructure and water quality. For example, a report produced by AWWA 

(2012) stated that about $1 trillion in funding would be required over the coming 25 years to manage 

and deliver clean water effectively considering both aged asset rehabilitation and meeting the 

demand of growing populations. While the cost of cleaning intervention is huge, to manage this type 

of extreme investment water industry requires cheaper intervention. This study shows flow 

conditioning is a relatively cheaper alternative compared to the other known maintenance strategies 

as it only uses system hydraulics to manage discolouration risk and no specialist tools are required 

for operation. Unlike other rehabilitation techniques, flow conditioning requires only OPEX, and it 

can be implemented in a range of network conditions, e.g. in normal operation, new pipes or after 

invasive cleaning conditions (Figure 61). While a one-off flow conditioning intervention may be 

cheaper to implement, the Pareto front solution (Figure 56) shows that cost of flow conditioning can 

a) b) 
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increase exponentially with increase of desired hydraulic resilience. In order to tackle this type of 

extreme investment the operator requires a decision support model, e.g. the proposed WLC model. 

The exponential Pareto solution is a good example of how the operator can use this type of model to 

take decisions based on operational constraints and available budget and manage risk for the end 

users.  

It is possible that a combined application of flow conditioning with another rehabilitation strategy 

can provide sufficient hydraulic resilience with reduced cost. While the proposed methodology in 

this paper is based on OPEX assessment (Figure 51), with the updated method as shown in Figure 

61, CAPEX investment for installing new pipes or relining old CI main against long-term OPEX of 

flow conditioning can be compared, and overall TOTEX can be minimised. Although the trade-off 

between CAPEX and OPEX comparison (Figure 61) is not demonstrated in this paper, future work 

can be used to investigate these options with supporting field data to help develop holistic 

discolouration management strategies incorporating different intervention types. 

 

8.8   Conclusions  

 

This paper presents a novel methodology for designing cost-effective trunk main flow conditioning 

intervention cycles trading OPEX against hydraulic resilience using validated discolouration process 

understanding and modelling.  

- The work demonstrates the use of VCD model to develop a trade-off diagram between 

applied shear stress and discolouration risk-return frequency for a fixed hydraulic resilience. 

By predicting the risk-return period for any imposed intervention for a pre-defined hydraulic 

resilience, network operators can choose the magnitude of the intervention and return period 

based on the network suitability and operational constraints. 

 

- The relationship established between varying imposed shear stress conditions and the 

operational costs facilitates determining the lowest operating cost for a given resilience 

scenario.  

 

- The Pareto front methodology can be used to identify a suitable flow conditioning cycle 

comparing cost and hydraulic resilience. This novel methodology can be used as a decision 
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support model where an operator has budget constraints and can choose a different level of 

network resilience depending on investment availability and network conditions.  

 

- The accumulation rate show non-trivial influence on shear stress and its return period trade-

off curve for both fixed resilience and Pareto front curve. The Pareto set solutions provides an 

unique opportunity to inform managing discolouration risk from WTW to downstream 

network approach by trading between costs of network maintenance and upgrading treatment 

works.  

 

- Both length and diameter trade-off curve for the fixed hydraulic resilience shows that these 

are site-specific and simulation required for each pipe system to inform risk proactively.  
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9.   Combined Discussions and Future Works 

 

Fundamentally this research work explored how controlled interventions can be applied to 

distribution networks to manage long-term discolouration risk. The work focussed on flow 

conditioning as a key strategy and compared the outcomes to network with no interventions. 

Extensive fieldwork, data monitoring and discolouration modelling were undertaken to evidence the 

findings. In order to assess the flow conditioning concept as a long-term strategy, multiple 

methodologies (Chapter 4,5,6,7 and 8) were developed in relation to scientific knowledge gathered 

from previous work and new ideas were developed aligned to rational justification. Attainment of the 

aims and objectives set out at chapter 3 are reported through four independent journal papers and a 

published conference paper. The first three chapters assess selected cleaning interventions long-term 

impact on water quality from part of a water distribution network, the fourth chapter explores the 

ability of the VCD model for simulating long-term discolouration behaviour and the final chapter 

models cost-effective discolouration management strategies comparing cost against hydraulic 

resilience. While each chapter answers a specific objective (chapter 3.1) that coherently justifies the 

overall aims of the thesis, additional knowledge regarding discolouration processes, modelling 

functionality and intervention efficiency has been further explored from the five chapters.  

 

9.1   Discolouration processes 

 

In this work, several flow conditioning intervention and flushing field trials demonstrated that each 

step increase of shear stress mobilises additional material. This occurs both from small diameter and 

large diameter pipe walls confirming discolouration material cohesive strength properties (Figure 12 

& 18). No sedimentation effect was observed from trunk main low points (Figure 32b) during flow 

conditioning trials where flow was in fully turbulent (Re=10
4
) conditions (chapter 6). Pipe cut-out 

prior to invasive interventions from the same pipe low point showed that material accumulates 

ubiquitously on the pipe wall and no invert deposits were observed (Figure 29). The gathered 

information about discolouration processes is supported by several previous studies that 

discolouration material exhibit cohesive strength properties with weaker layers on top of stronger 

ones ( Boxall et al., 2003b; Boxall and Saul, 2005; Husband and Boxall, 2010, 2011). The findings 
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from this thesis contradict some previous studies that state sedimentation effects causing 

discolouration material deposition (Vreeburg, 2007; van Thienen et al., 2011) and discolouration 

modelling based on gravitational effects, e.g. particle sedimentation model (Ryan et al., 2008). 

  

9.2   Accumulation processes 

 

Periodic flow conditioning and burst events in multiple trunk mains and flushing in multiple DMAs 

demonstrated that material accumulates on pipe wall at varying strengths simultaneously (Figure 12 

and 18). While the previous work observed this accumulation behaviour in small diameter pipe 

(Husband and Boxall, 2011; Husband et al., 2010; Sharpe, 2012), this work highlighted the same 

behaviour for large diameter pipes (Figure 12). This accumulation process was further tested via the 

VCD model where model functionality allows accumulating material at all strength simultaneously 

(chapter 7). VCD model simulation performance to measured turbidity responses confirms 

accumulation behaviour occurs across the range of cohesive layer strength simultaneously. The 

significance of understanding and modelling this accumulation behaviour facilitates managing 

varying strength material layers effectively and minimising discolouration risk proactively via flow 

conditioning interventions.  

 

9.3   Accumulation rate or return period 

 

Accumulation return period through VCD model calibration was found between 1.65-1.85 years for 

the three trunk mains (chapter 7.6.3). DMA pipe accumulation return interval, supplied from the 

same trunk mains, was estimated between 1.5-3.7 years (table 4). Although the accumulation rate 

result of large diameter mains (trunk main) and small diameter pipes (DMA) are relatively different, 

they are also not directly comparable. Trunk main accumulation rates was estimated through the 

VCD modelling technique with a defined methodology (chapter 7.5). However, no continuous 

measured data was available for the selected DMAs pipes to calibrate it via VCD modelling. Hence 

accumulation rates at DMA level were estimated by mass flux analysis induced from repeated 

flushing (chapter 4.6). Also, pipe material, diameter and hydraulics are different between the trunk 

main and DMA studied pipes (table 1 and 4). This combined effect can impact on the accumulation 

rates (Cook and Boxall, 2011; Husband and Boxall, 2011; Pothof and Blokker, 2012; Sharpe, 2012) 
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and help explain the difference between the results from large and small diameter pipes. Although 

accumulation return period have been estimated by repeated flushing in several studies (Blokker and 

Schaap, 2015a; Husband and Boxall, 2011), results can be limited by not capturing the effect of 

recent and unusual hydraulic behaviour, e.g. bursts. Hence it is proposed estimation of accumulation 

rates by the VCD model can provide higher confidence as demonstrated by the long term 

simultaneous tracking of both mobilisation and accumulation processes.  

9.4   Bulk water effect on accumulation rate 

 

Long-term monitoring and repeated flushing results show that accumulation return period at the 

downstream network increased with higher background turbidity loading (table 4). The material 

accumulation rate was found similar for pre invasive and following flow conditioning trials 

suggesting risk return on pipe wall at a similar rate influenced dominantly by bulk water. This 

suggests that the accumulation rate is a function of bulk water quality which agrees with previous 

studies (Blokker and Schaap, 2015a; Cook and Boxall, 2011; Husband and Boxall, 2011; Vreeburg 

et al., 2008). The VCD model calibration also supported this as accumulation rates were found 

transferable for similar water quality (chapter 7). While improving treated water quality can improve 

accumulation rate (Vreeburg et al., 2008), this study shows that applying periodic flow conditioning 

intervention can have a similar chronic effect by reducing the background loading.  Thereby a novel 

trade-off between treated water quality and cleaning interventions was developed by trading CAPEX 

of treatment works improvement with ongoing trunk main maintenance OPEX in the chapter 8 

(Figure 60).  

 

9.5  Temperature effect on discolouration process 

 

Mass balances analysis induced from periodic flow conditioning trial showed that temperature 

potentially has an influence on discolouration risk (Figure33, chapter 6). A different approach was 

undertaken by calibrating the accumulation rate (βr) of VCD model to one trunk main (TM-1) 

quarterly measured data. Similar to mass-balance analysis, modelling results was also found 

temperature influence on accumulation rates and hence discolouration risk. The correlation between 

temperature with chlorine residual (Figure 25, chapter 5) and total organic carbon (Figure 37a, 

chapter 7) was also evident from long-term data monitoring which can potentially contribute to the 
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discolouration risk by increasing microbiological activities during warmer season. These findings 

agree with the previous works of Blokker and Schaap, 2015b and Sharpe, 2012. However due to the 

small sample size, this correlation cannot be confirmed from this study alone.   

 

9.6   VCD model functionality 

 

The fieldwork results showed that repeated flow conditioning interventions reduces background 

turbidity levels by managing wall bound material layers (Figure 17) and a process for this 

improvement was described in Figure 21. This behaviour suggesting a cyclic material mobilisation 

and accumulation processes exists and material transport from bulk water to wall has critical impact 

on chronic turbidity loading. However, VCD model assumes material transport from bulk to wall is 

negligible compared to the wall to bulk water (Furnass et al., 2014). Although the VCD model is 

unable to simulate the cyclic material accumulation and mobilisation process as shown in Figure 21, 

calibration results showed that the difference can be adjusted by tweaking material accumulation rate 

parameter (βr). While this material accumulation-mobilisation from bulk to wall processes can be 

integrated in the VCD model, only with the calibration of βr model parameter can be produced 

sufficient simulation accuracy to the long term measured data. Hence it can be stated that the current 

functionality is sufficient to simulate accurate turbidity output.  

 

9.7   Trunk main cleaning effect on water distribution 

network 

 

Results show that higher continuous material loading from the trunk main can increase accumulation 

rates in the downstream network (table 4). This is consistent with previous studies, e.g. (Blokker and 

Schaap, 2015a; Vreeburg et al., 2008) where bulk water quality is found as the dominant factor for 

accumulation rates. DMA performance in terms of discolouration PCV failure at customer tap (≥4.0 

NTU) was found better from the flow conditioning trunk mains compared to the control main 

network (Figure 19 and 20). Chlorine decay assessment shows that higher chlorine residual was 

measured from the flow conditioned main, indicating improved DMA performance against microbial 

contamination (chapter 5).  
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While this work investigated the trunk main flow conditioning impact from part of a WTW outlet to 

tap approach, the impact on customer taps has some uncertainties. Several studies have shown that 

premise plumbing has a significant impact at tap level drinking water quality and in many cases 

traces of discolouration material can be present, e.g. iron particles can originate from corroded 

plumbing material (Jang et al., 2011; Lytle, 2009; Viraraghavan et al., 1996). Since selecting and 

installing plumbing material of household service connections is not water company’s responsibility, 

it adds uncertainty when evaluating water quality based on customer taps and observed 

discolouration. This is an area that requires further investigation. Thus it is reasonable to state that 

cleaning intervention impact should be assessed as part of a WTW outlet up to downstream customer 

property boundary.  

 

9.8   Comparison of Flow conditioning and other 

interventions 

 

The primary focus of this study was to test whether flow conditioning is a cost-effective long-term 

discolouration management strategy compared to no interventions. While flow conditioning can be 

implemented in the operational network without isolating the main, for invasive cleaning it is not an 

option. Hence this type of intervention can cause severe customer disruption. In order to test flow 

conditioning performance, varying magnitude and interval flow conditioning was implemented 

successfully in multiple trunk main systems (chapter 4 and chapter 6). This research demonstrated 

that flow conditioning not only improves trunk main long-term turbidity behaviour but also improves 

material accumulation rates for the downstream network (chapter 4). However, a critical risk was 

found after the ice slurry pigging intervention (chapter 6). While ice slurry pigging improved the 

hydraulic capacity of the trunk main, no study has been undertaken that confirms similar for flow 

conditioning. The WLC modelling framework using the validated VCD model also demonstrates that 

flow conditioning is a relatively cheaper alternative compared to other rehabilitation programs 

(chapter 8.7.3).   

Apart from its cleaning performance, flow conditioning can also be effectively used to assess 

discolouration risk performance for a new or invasively cleaned pipe (chapter 6). Long-term 

hydraulic and water quality (chlorine) monitoring with chlorine decay modelling (Rossman, 2000) 

also showed that chlorine wall decay improved following imposed events and there is a relationship 
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between shear stress magnitude and chlorine wall decay (chapter 5). While the calibration was 

undertaken only for the wall decay parameter by keeping bulk decay constant for the whole 

simulation period, the reduction of trunk main chronic loading suggests that bulk decay will also 

reduce over time due to the periodic flow conditioning. However, due to the seasonal bulk decay data 

unavailability, this complex process needs further investigation.  

 

9.9   Proposed future works 

 

In order to evaluate the concept that flow conditioning is a long-term cost-effective discolouration 

management strategy, a broad range of aims and objectives were developed and tested in operational 

networks and validated via modelling analysis. Following the discussions, there are several 

opportunities to extend the current work to address further knowledge gaps: 

1. Comparison of long-term water quantity and quality benefits of invasive cleaning with other 

known interventions, e.g. flow conditioning. The developed methodology in this thesis could be used 

to explore this type investigation.  

 

2. Design of invasive cleaning interventions cost profile compared to flow conditioning intervention 

using the VCD model material tracking functionality. This can eventually demonstrate if flow 

conditioning or invasive cleaning interventions are the most cost-effective long-term discolouration 

management solutions.  

 

3. Explore the trade-off between WTW upgradation e.g. Mn removal and different trunk main 

cleaning interventions for managing long-term discolouration risk. It will be interesting to explore if 

tuning treated water or imposing cleaning intervention provides better long-term discolouration 

management options in terms of water quality and cost.  

 

4. Implementation of proposed WLC modelling framework into commercial drinking water 

modelling software for wider application.  
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10.  Conclusions 

 

This research work explored for the first time the long-term impact of controlled interventions on 

discolouration risk as part of a WTW outlet to downstream network approach. A particular feature 

was consideration of how such interventions can be best applied when considering operational 

expenditure against the level of hydraulic resilience achieved. Central to the thesis is the concept of 

in-service flow conditioning as a cost-effective long-term discolouration management strategy. This 

research enlightens for the first time how our trunk main and downstream network discolouration 

risk behaves due to the periodically controlled interventions and how risk can be managed 

proactively.  

The field experimental investigations observed for the first time the long-term impact of trunk main 

flow conditioning intervention on selected water quality. An improvement of long-term background 

turbidity or chronic material loading was identified for each trunk main. Assessing of downstream 

material accumulation rates for the test trunk mains fed network demonstrated that chronic loading is 

significantly more influential on discolouration risk than immediate alleviated acute loading from 

flow conditioning trial. This suggests flow conditioning intervention not only lowers long-term 

discolouration risk for trunk mains but also for the connected downstream network showing its 

capabilities to manage discolouration risk from part of a treatment outlet to downstream network 

approach. Chlorine wall decay was also improved due to the periodic flow conditioning intervention 

and found an inverse relationship between imposed shear stress and wall decay coefficients. Since 

flow conditioning reduced trunk main chronic loading, it is conceptualised that this lowered the 

chlorine bulk decay as well suggesting it’s dynamic water quality benefits. However, due to the 

limited bulk decay samples, this thesis cannot confirm this water quality improvement behaviour. 

While long-term water quality benefits of flow conditioning intervention were observed, an invasive 

cleaning termed “ice slurry pigging” performance was not found adequate against managing 

discolouration risk, due to loose particles remaining on the trunk main after the intervention and 

posing further discolouration risk. Improvement in hydraulic pipe roughness was found following the 

ice slurry pigging intervention; however, the higher measurements observed after 12 months of trial 

suggest that continuous material fouling potentially impacts on pipe roughness as well. The evidence 

from robust fieldwork shows that risk remains and returns on the pipe wall after a while, even after 

an expensive intervention, and hence regular cleaning maintenance is required to manage risk.  
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This work found accumulation occurs continuously and at all strengths simultaneously for both large 

and small diameter pipe systems adding more knowledge to the material accumulation processes. 

This varying strength accumulation process was encapsulated by the VCD model which was tested 

for simulating long-term turbidity behaviour. A novel methodology was developed to validate the 

VCD modelling functionality and model simulated long-term discolouration behaviour successfully 

with high accuracy. From the repeated field study and by simulating the measured data in the VCD 

model it was confirmed that the processes of material mobilisation and accumulation occur 

continually and accumulation occurs at all strengths simultaneously. This improved understanding 

agrees with the previously explored knowledge and concept. This is the first model that provides 

robust validation of accumulation functionality and simulates both mobilisation and accumulation 

continually.  

Derivation of this complex knowledge both via fieldwork and modelling allowed the opportunity to 

develop a cost-effective trunk main discolouration management strategy. A novel methodology was 

developed using the validated VCD model to design cost-effective flow conditioning cycle trading 

against hydraulic resilience. The validated VCD model material tracking functionality allows the 

user for the first time to design flow conditioning long-term intervention pro-actively in such a way 

that it can guard the network against any hydraulic event discolouration risk. While picking pre-

selected hydraulic resilience for a network is often unknown or difficult, an exponential relationship 

drawn from Pareto front solutions of intervention cost against hydraulic resilience provides the 

operator with a unique prospect of deciding the best-suited intervention considering budget 

constraint. The WLC model effectively shows that it can be used as a decision support model. The 

significance of this study has been extended by conducting a comparison of flow conditioning with 

other interventions and showing that it is cheaper to implement than other known interventions, 

suggesting its viability for use as a long-term discolouration management strategy. 

From the fieldwork experimental study it is also evident that not only can discolouration risk be 

prolonged via bulk water improvement but also a synergy exists to manage risk between treated 

water improvement and trunk main cleaning interventions. A trade-off curve between CAPEX of 

treatment upgradation and OPEX of flow conditioning against hydraulic resilience was developed. 

This novel trade-off demonstrates the WTW upgradation effect on material accumulation rate could 

readily be included into the model and trade of the cost-benefit analysis from WTW to downstream 

network discolouration management approach. 



188 | P a g e  

 

Overall, this thesis has described the flow conditioning long-term impact on selected water quality, 

observed the accumulation process in the large diameter pipe and provided confirmation via 

simulation in the VCD model. This innovative understanding of discolouration processes was further 

transferred into a modelling framework to develop a novel model trading cost against hydraulic 

resilience. Each chapter uses enhanced scientific methods and provides a solution to a specific 

objective that has led this thesis as a whole to conclusively provide a holistic discolouration 

management strategy from WTW to downstream network. Table 15 summarises the output of each 

paper and its significance.  

Table 15: Conclusions of each chapter and their significance 

Output Significance 

Chapter 4: How Chronic and Acute Material Loading Impacts Discolouration Risk in a 

Water Distribution Network 

Chronic material loading from bulk water is more 

significant than acute loading from flow conditioning 

interventions in terms of downstream network 

accumulation rate and hence discolouration risk  

Occasional acute loading from flow conditioning 

intervention does not increase discolouration risk and 

improving bulk water quality can improve 

discolouration risk  

Periodic flow conditioning intervention improves 

bulk water chronic material loading  

Benefits of flow conditioning for trunk mains 

discolouraiton risk  

Accumulation rate in downstream network is 

reduced with repeated flow conditioning.  

No negative effect observe from flow conditioning 

acute loading to DMA’s discolouration risk 

Adding further evidence of material accumulates 

processes that it returns at all strength simultaneously 

on both large and small diameter pipes 

Long-term and universal nature of material 

accumulation process in drinking water network 

. 

Chapter 5: Discolouration Risk and Chlorine Wall Decay  

Periodic imposed excess shear stress events reduces 

chlorine wall decay 

Benefits of flow conditioning intervention to limit 

chlorine wall decay 

The higher the applied shear stress, the better the 

observed chlorine wall decay benefit.  

Design of appropriate imposed shear stress  
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The improvement of chlorine wall decay was found 

to be temporary  

Require regular hydraulic interventions requires to 

maintain the benefit 

Chapter 6: Quantity  and Quality Benefits of an In-service Invasive Cleaning of Trunk Mains 

Roughness reduces 7 times, however, roughness 

increases slowly after 12 months 

Quantity benefits of the invasive cleaning 

intervention, however, one-off intervention is not 

enough to maintain the benefit 

Significant turbidity response after ice slurry pigging 

intervention 

Loose particle remain on pipe wall and hence 

discolouration risk pertains even after expensive 

cleaning process 

Amount of mobilised material correlate with treated 

water temperature 

Microbial role in discolouration material 

accumulation process. 

Chapter 7: Simulating Long-Term Discolouration Risk Behaviour in Large Diameter Trunk 

Main 

Model can track long-term material mobilisation and 

accumulation with an accuracy of ±0.25 NTU 

User can assess risk for any event in any given time 

period with high precision including simulating flow 

conditioning trial  

Accurate turbidity simulation result validates the 

concept of material mobilisation-accumulation 

processes occurring continuously, and accumulation 

occurring at varying shear strength simultaneously 

on the pipe wall. 

Use VCD model functionality to inform 

discolouration risk proactively and potentially 

develop whole life costing model  

The similar accumulation rate under varying 

hydraulic conditions  

Bulk water has greater impact on accumulation 

processes.  

Accumulation rate is a function of process dependent 

conditions rather than material supply rate dependent 

processes. 

Cleaning interventions are effective only as a 

removal of amount of  material and if there is no 

periodic intervention undertaken, discolouration risk 

returns to similar conditions after certain period 

Chapter 8: Strategic Planning to Manage Transmission Main Long-term Discolouration Risk  

A novel methodology was developed to design flow The VCD model capabilities to design whole life 
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conditioning cycle against hydraulic resilience 

incorporating discolouration processes  

costing model  

Trade-off diagram between varying imposed shear 

stress and cost determining the lowest operating cost 

for a fixed resilience 

Operator can choose the best possible magnitude and 

return frequency of flow conditioning for a given 

network conditions.  

Proposed methodology can be used to identify a 

suitable flow conditioning cycle comparing cost and 

for any hydraulic resilience  

Flexibility of designing flow conditioning cycle 

considering budget constraints and using it as 

decision support tool. 

The accumulation rate and network hydraulic 

characteristics (length and diameter) show non-trivial 

influence on shear stress and its return period trade-

off curve 

Accumulation rate can be used to assess CAPEX of 

treatment improvement and OPEX of flow 

conditioning. Length can inform operational decision 

and diameter can help to take intervention feasibility 

decision.  

Potential extension of proposed methodology to 

design WTW improvement and new or invasive 

cleaning system process  

Comparing cost of WTW upgradation with different 

interventions and minimising TOTEX of cleaning 

strategy by managing risk from WTW to 

downstream networks.  
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