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 Abstract                                              II 

Abstract 

The Cloud Radio Access Network (C-RAN) has been proposed for the provision of 

advanced fourth and fifth generation wireless communication services. The C-RAN 

system have been shown to reduce costs, and can provide high spectral efficiency and 

energy efficiency. The fronthaul in such networks, defined as the transmission links 

between Remote Radio Units (RRUs) and a central Baseband Unit (BBU), usually has 

high fronthaul load and constrained capacity. 

In this thesis, we explore and investigate the basic C-RAN system structure, based on 

which we propose two developed C-RAN systems. With each system we evaluate the 

Bit Error Ratio (BER) performance and transmission efficiency in multiple scenarios, 

and give advanced solutions to reduce the fronthaul load. We also analyse the effect of 

quantization on BPSK and QPSK modulation schemes, with different detection 

methods. 

Error control in fronthaul transmission is considered as erroneous frames may be 

received at the BBU. Error Detection Coding and Error Correction Coding approaches 

can be applied to the fronthaul network. They may increase the fronthaul latency, but 

great improve the end-to-end BER performance.  

Source compression techniques such as Slepian-Wolf (SW) coding can compress two 

correlated sources separately and de-compress them jointly. Since each RRU serves 

many user terminals, and some of them may also be served by another neighbour RRU, 

which results similarly in correlation of the received data between two RRUs. In this 

thesis, we applied the SW code to the C-RAN system and evaluate the compression rate 

achieved in fronthaul networks. 
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Chapter 1 Introduction 

 

 

1.1. Background 

The Cloud Radio Access Network (C-RAN) has been proposed for the provision of 

advanced fourth generation and fifth generation wireless communication services.  

The concept is that instead of full base station functionality being provided at each 

antenna site, the antenna should be equipped only with a Remote Radio Unit (RRU), 

which contains only Radio Frequency (RF) processing equipment which converts the 

radio signal to complex baseband (containing in phase and quadrature modulating 

signals) plus an analogue to digital converter (ADC) which quantizes the signals to 

convert them to digital form. They are then transmitted over the fronthaul network to a 

central Baseband Unit (BBU) which performs all processing of the complex baseband 

signals (modulation/demodulation, coding/decoding, higher layer protocols, etc) from 

antenna sites covering a wide area. This may provide economies of scale in performing 

the processing, and reduces the energy requirements at the antenna sites, potentially 

saving energy. It also allows joint processing of signals from multiple antenna sites, 

which has potential to greatly improve the performance of the radio access network.  

Note that this operates in both up and down-link: in both cases the fronthaul network 

carried quantized signals rather than user data.  

The disadvantage of C-RAN is that the load on the fronthaul network is very large in 

comparison with what would be required for the more conventional backhaul network 

which is used in current radio access networks to connect base stations to the core 

network. In principle each RRU requires a data rate proportional to the bandwidth of 
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the signals and the number of antennas, regardless of how many users are being served. 

The load may easily be in the tens of Gbps per RRU, and is typically many times the 

total data rate of the users being served.   

1.2. Problems and Objectives 

1.2.1. Problems 

The primary problem of C-RAN in general is the very large fronthaul load. This applies 

particularly to the uplink, where very fine quantization, and therefore very long sample 

word lengths, are required to accurately reproduce the signals received by the RRUs 

and the BBU. The problem is particularly severe when multiple antennas are provided 

on the RRUs. 

Quantization is a non-linear process, and when applied to mixed signals it generates 

additional spurious components which interfere with the intended signals, and which 

therefore give rise to an “error floor” for the bit error ratio (BER), that is, an irreducible 

BER which remains significant however high the signal to noise ratio (SNR) on the 

radio access links. To bring this error floor down to an acceptable level requires much 

finer quantization, and hence a larger fronthaul load.   

1.2.2. Objectives 

The overall objective of this thesis is to reduce the uplink fronthaul load in a C-RAN 

system using multiple antenna RRUs. 

 Investigate the C-RAN model and its related techniques from the theoretical and 

practical point of view. 

 Build up the C-RAN model in MATLAB and explore the potential ways to 

minimize the fronthaul load and achieve the expected end-to-end BER 

performance. 
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 Analyse the system performances and give the best solutions to reduce the 

fronthaul load and improve the transmission efficiency. 

 

1.3. Contributions 

 Detection techniques in C-RAN system 

- Build up a C-RAN simulation and investigate the impact of quantization levels and 

modulation schemes on the system BER performance. Conclude that at least 10 extra 

bits are needed to be transmitted in fronthaul network to reach the expected end-to-end 

BER level (10-4). 

 Analysis of effects of quantization 

- Analyse the effect of quantization on BPSK and QPSK modulation schemes, with ML 

and ZF detection methods. Conclude that quantization of the combined symbols 

transmitted from multiple sources will cause outage in fading, and hence an error floor 

in the average BER performance. 

 Evaluation of quantization positions in C-RAN system 

- Build up and develop the C-RAN system in a multiple carrier scheme with quantizer 

in different positions: before Fast Fourier transform (FFT) and after beamforming. 

- Evaluate the effect of quantization levels on multiple modulation schemes with 

different quantization positions. The results shows that with quantization after 

beamformer, the system needs much fewer extra bits to be transmitted, especially for 

low modulation level. 

- Develop the system with more antenna diversity at RRUs and evaluate the 

performance. We discover that a higher antenna diversity at RRU can reduce the 

fronthaul load. 
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- Analyse the simulation results for the two systems with different scenarios and provide 

advanced solutions to the system. Finally conclude that quantization after beamformer 

improves transmission efficiency in multiple scenarios. 

 Design of error control in fronthaul 

- Propose two error control systems in fronthaul network.   

- Examine two error control systems at different error rates for transmission between 

RRUs and BBU, and evaluate their performance. Finally conclude that the first system 

(error detection approach) can be used with low fronthaul BER level (less than 10-6) 

and the second system (error correction approach) can be used with high fronthaul BER 

level (more than 10-6).  

- Develop the system with more antenna diversity at each RRU.  

 Compression techniques in fronthaul 

- Apply Slepian-Wolf code to the C-RAN system.  

- Evaluate the compression rate of SW code, showing that the similarity between two 

sources from RRUs affects the compression rate achieved.  

- Show that compression rate can be improved by separate compression of the most 

significant bit (MSB), second significant bit (SSB) and least significant bit (LSB). 

1.4. Thesis Outline  

- Chapter 2 provides background information which introduces the basic concept of C-

RAN system in Fronthaul Network, and then the background relates to the scenarios 

and techniques used to build up the C-RAN system, which include channels, carrier 

schemes, quantization, combiners and detection approaches. In the last part of this 

chapter we introduces the concept relates to source compression techniques. 
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- In Chapter 3, a basic C-RAN system is set up, and several detection methods are 

applied and tested. The performance with transmitting quantized signals are given. The 

problems of the system are introduced.  

- In chapter 4, two C-RAN systems are proposed with multicarrier schemes, based on 

chapter 3. The solutions for the problems encountered in chapter 3 are explored and 

discovered. The BER performance of the systems in different scenarios are evaluated. 

- In chapter 5, two error control methods are introduced, and two fronthaul error control 

systems are built up. The end-to-end BER performance and throughput efficiency in 

fronthaul are evaluated and discussed.  

 - In chapter 6, the Slepian-Wolf code is studied and designed. Then the compression 

rate in fronthaul is evaluated. Furthermore, a more efficient compression scheme is 

proposed, and the results are compared and discussed. 

- In chapter 7, we conclude the contributions and give suggestions for future work. 

1.5. List of Publications 

R. Lei, A. Burr, T. Cai and K. Leppanen, " A network device and a baseband unit for a 

telecommunication system," European Patent Application, 4823197, 23 Nov 2016. 
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Chapter 2 Literature Review 

 

 

2.1. Introduction   

The fronthaul in Radio Access Networks (RAN) requires high capacity, but is often 

constrained. This chapter presents literature reviews of C-RAN in fronthaul-constrained 

networks which includes system architectures and related key techniques. The structure 

of this chapter is given below. 

First of all, the definition and architectures of C-RAN is given in section 2.2. Because 

this project is primarily focused on MIMO systems, the system will also be modelled 

in different types of channel, thus the basic structure of traditional MIMO and channel 

models are given in section 2.3. Then, the detection techniques normally used in MIMO 

systems are introduced in section 2.4. Quantization and combining are two main 

processes when modelling the system, and therefore their concepts are described in 

section 2.5 and 2.6. This project will examine C-RAN with different carrier schemes 

(especially OFDM); the background of such carrier schemes is given in section 2.7. 

Furthermore, as one of the key techniques to alleviate the impact of constrained 

fronthaul, source compression techniques are discussed in section 2.8.  

  C-RAN 

Radio Access Networks (RAN) usually consist many BBUs. These BBUs cover a 

continuous area by covering a group of small regions with each base station (BS). Each 

BS processes and transmits the signal data from multiple mobile users and then forward 

the data to the core network via the backhaul. In each BBU area, system has its own 

backhaul transportation, cooling system, battery monitoring system. However, due to 

https://en.wikipedia.org/wiki/Radio_Access_Network
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the limitation of spectral resource, all of the base stations use the same frequency 

bandwidth which cause interference among neighbouring cells [2].  

 

Figure 2.1 C-RAN system structures  

 

C-RAN may be viewed as an evolution of the BS system and is introduced in [2, 3, 5, 

6]. It takes advantage of many technological advances in wireless, optical and IT 

communications systems. For example, it is implemented by the Common public Radio 

Interface (CPRI) specification [3], low cost Coarse Wavelength Division Multiplexing 

(CWDM) and Dense Wavelength Division Multiplexing (DWDM) technology [8], and 

Millimetre Wave (mmWave), which achieve the large scale centralised BS can transmit 

the baseband signal over long distance. It applies Data Centre Network technology [9] 

to achieve high reliability, low cost, low latency and high bandwidth interconnect 

network in BBU pool [10]. 

The general architecture of a C-RAN consists of three components: a BBU pool which 

consists a group number of BBUs with centralized processors, RRUs with antennas 

located at remote sites, and fronthaul network between RRU and BBU with high 

capacity. The components are shown is figure 2.1. Note that the RRU also called a 



Chapter 2 Literature Review 8 

Remoted Radio Head (RRH). To harmonize with the acronym, RRU will be used in 

this thesis. 

A BBU pool usually consists of time-varying sets of software defined BBUs and the 

radio resources of different BBUs are fully shared with each other, and this forms a 

large-scale virtual multiple-input-multiple-output system from the BBU pool’s 

perspective. The software defined BBUs process the received baseband signals and 

optimize radio resource allocation [1, 2]. 

RRUs can provide high data rate for user terminals with basic wireless signal coverage. 

In uplink, RRUs are used to forward the baseband signals from user terminals to the 

BBU pool for centralized processing. In downlink, RRUs transmit RF signals to user 

terminals. The functions of RRUs usually perform RF amplification, analog-to-digital 

conversion (ADC), digital-to-analog conversion (DAC) and interface adaptation. 

Because of the low complexity and expense, RRUs can be distributed in a large scale 

scenario [1, 2].  

Fronthaul is defined as the link between BBUs and RRUs. The transmission methods 

of fronthaul network can be realized via several ways: optical fibre communication, 

cellular communication, and millimetre wave communication. Optical fibre 

communication [43] is considered to be the ideal fronthaul transmission without any 

constraints. It can provide high transmission efficiency and capacity with high expense 

and inflexible deployment. Cellular and millimetre wave communication technologies 

are considered to be non-ideal with capacity constraints in fronthaul network. Since 

wireless fronthaul is cheap and flexible to deploy, these technologies are anticipated to 

be prominent in practical C-RANs [2]. 
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  System and Channel Model 

2.3.1. MIMO 

A MIMO system uses multiple antennas to increase data rates through multiplexing or 

to improve performance through diversity. In MIMO systems, transmit and receive 

antennas can both be used for diversity gain. Multiplexing exploits the structure of the 

channel gain matrix to obtain independent signaling paths that can be used to send 

independent data. These spectral efficiency gains often require accurate knowledge of 

the channel at both the receiver and transmitter. In addition to spectral gains, ISI and 

interference from other users can be reduced using smart antenna techniques. The cost 

of the performance enhancements obtained through MIMO techniques is the added cost 

of deploying multiple antennas, the space and circuit power requirements of these extra 

antennas, and the added complexity required for multidimensional signal processing 

[14].  

 

Figure 2.2 MIMO system model with tN transmit antennas and rN receive antennas 

In figure 2.2, we consider a MIMO system with 𝑁𝑡 transmit antennas and 𝑁𝑟 receive 

antennas, where 𝑁𝑡 ≤ 𝑁𝑟. The MIMO channel is modeled as an uncorrelated Rayleigh 
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flat fading channel and can be denoted by a r tN N  matrix H. If ℎ𝑖𝑗  denotes a 

function of fading coefficient is employed, we can express the channel matrix as:                    

11 12 1

21 22 2

1 2

t

t

r r rt

h h h

h h h

h h h

 
 
 =
 
 
 

H                         (2.1) 

then the received signal vector 𝐫 can be expressed as:    

= +r Hx n                    (2.2)                                                    

where x is the transmitted data with 1 2[ ... ]tx x x=x  and n is the Gaussian noise. 

Equation 2.2 gives a general expression of the received signal for a MIMO system 

experiencing flat-fading channel.  

 

2.3.2. MIMO Diversity 

In single input and multiple output (SIMO) systems, the multiple receive antennas can 

see independently faded signal from the same transmit signal, and the received signals 

are then combined those faded signal to obtain a resulting signal with reduced fading 

[15]. The maximum receive diversity order with SIMO system is equal to the receive 

antennas number. Similarly, in multiple input and single output (MISO) systems, the 

same signal is transmitted through multiple fading paths which achieve the transmit 

diversity [16], and the maximum transmit diversity order is equal to the transmit 

antennas number. For a general MIMO system, the maximum diversity order can be 

obtained by: 

              MIMO t rD N N=                         (2.3) 
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where 𝑁𝑡  is the number of transmit antennas and 𝑁𝑟  is the number of receive 

antennas. 

 

2.3.3. Channel Model 

In wireless communications, the fading happens when there has reflection and 

scattering when transmit the signal, and this might affect the result of signal 

transmission: the amplitude and phase of the received signals could be suffered from 

fluctuations, and we named this channel model with multipath fading. With channel 

fading, we consider path loss, shadowing fading and multi-path fading. Besides, in this 

thesis, we always assume the channel state information (CSI) is known perfectly at the 

receiver.  

 Rayleigh Fading Channel 

Rayleigh fading models assume that the magnitude of a signal that passes through a 

communication channel with fading according to a Rayleigh distribution shows in 

equation 2.4. Rayleigh fading is a reasonable model to represent the communication 

scenario when the transmitted signal is scattered by many objects before it arrives at 

the receiver. With sufficient scattering, the channel impulse response will be modelled 

as a Gaussian process irrespective of the distribution of the individual components. 

With no dominant component to the scattering, the process will result zero mean and 

phase that distributed between 0 and 2π radians. The envelope of the channel response 

will therefore be Rayleigh distributed, which is defined by [17]: 

            ( ) ( )
2

2
x

rayleigh

x
f x e u x

−
=


                (2.4) 

where Ω is the average power of received signal and u(x) is the step function. Note that 

the Rayleigh distribution can be expressed by two independent and identically 

https://en.wikipedia.org/wiki/Rayleigh_distribution
https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Envelope_detector#Definition_of_the_envelope
https://en.wikipedia.org/wiki/Rayleigh_distribution
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distributed zero mean Gaussian random variables as real and imaginary parts of a 

complex number and then taking its magnitude [17]. 

 Rician Channel 

Rician fading is a channel model for the radio propagation caused by partial 

cancellation, which transmits the signal with several paths. One of the paths is much 

stronger than the others, which typically a line of sight (LoS) path, and the other paths 

are scatter paths. The amplitude gain can be characterized by a Rician distribution. 

A Rician fading channel can be expressed by two parameters: K and 𝛺. K is the ratio 

between the power in the direct path and the power in the other scattered paths. 𝛺 is the 

total power from all paths including direct path and the scattered paths ( 2 2= 2v  + ) 

and acts as a scaling factor to the distribution, v2 and σ2 can be obtained by [18] [19]: 

2

1

K
v

K
= 

+
           (2.5) 

      2

2(1 )K



=

+
                        (2.6) 

The PDF with rician fading is given by: 

2

0

2( 1) ( 1) ( 1)
( ) exp 2rician

K x K x K K
f x K I x

  + + +
= − −          

          (2.7) 

where I0 is the 0th order modified Bessel function of the fist kind. 

When K = 0, the Rician distribution becomes the Rayleigh distribution; when K = + , 

the channel does not exhibit fading, then Rician distribution considers with the 

Gaussian distribution. 

https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Wave_propagation
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  Detection Techniques 

A challenge in the practical realization of MIMO wireless systems lies in the efficient 

implementation of the detector which needs to separate the spatially multiplexed data 

streams. This section introduces the algorithms of Zero-Forcing (ZF), Minimum Mean 

Square Error (MMSE), and Maximum likelihood (ML). These detection techniques will 

be applied to the system in chapter 3, and the BER performance with multiple levels of 

quantizer will be explored.  

2.4.1. Zero-Forcing  

The Zero-Forcing technique is a standard linear detection method [21] [22]. If perfect 

CSI is available at the receiver, the zero-forcing estimate of the transmitted symbol 

vector can be written as: 

      ( )ZF ZF ZF= + = +r G Hs n s G n  ,            (2.8) 

where † 1( )H H

ZF

−= =G H H H H , † denotes the pseudo-inverse operation. ZFr is the 

recovered data vector of the transmitted symbol vector s. 

ZFr  consists of the decoded vector s plus a combination of the inverted channel matrix 

and the unknown noise vector. Because the pseudo-inverse of the channel matrix may 

causes noise amplification when the channel matrix is ill conditioned, the noise variance 

is consequently increased and the performance is degraded. To alleviate the noise 

enhancement introduced by the ZF detector, the MMSE detector was proposed, where 

the noise variance is considered in the construction of the filtering matrix [23]. 
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2.4.2 Minimum Mean Square Error  

The Minimum Mean Square Error (MMSE) approach alleviates the noise enhancement 

problem by taking into consideration the noise power when constructing the filtering 

matrix using the MMSE performance-based criterion [23, 24]. 

In order to maximize the post-detection signal-to-interference plus noise ratio (SINR), 

the MMSE weight matrix is given as [23]: 

       2 1( )H H

MMSE  −= +G H H I H                (2.9)                            

Note that the MMSE receiver requires the statistical information of the noise 𝜎2. Then 

we obtain the following relationship:  

         ( )MMSE MMSE MMSE= + = +r G Hs n s G n    (2.10) 

where MMSEr is the recovered symbol vector of s. The term (1/SNR = 𝜎2 ) offers a 

trade-off between the residual interference and the noise enhancement. As the SNR 

grows large, the MMSE detector converges to the ZF detector.  

2.4.3 Maximum Likelihood  

Maximum likelihood (ML) detection calculates the Euclidean distance between the 

received signal vector and the product of all possible transmitted signal vectors with 

the given channel H, and finds the one with the minimum distance [23]. Let C denote 

a set of signal constellation symbol points and 𝑁𝑇  denote a number of transmit 

antennas. Then, the estimated transmitted signal vector x can be determined with ML 

detection as [23]: 

      
2

ˆ arg min( )ML = −x r Hx , TNx C               (2.11) 
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where
2

−r Hx corresponds to the ML metric. The ML method can achieve the optimal 

performance when all the transmitted vectors are equally likely. However, as 

modulation order and the transmit antennas number increases, the system complexity 

increases exponentially. We can define the required number of ML metric as TN
C , the 

complexity of calculation largely increases with the number of antennas. Although the 

ML detection method suffers from computational complexity, the achieved 

performance can be served as a reference to other detection methods since it 

corresponds to the optimal performance [21, 23]. 

 Quantization 

Quantization is involved in nearly all digital signal processing, which is a process to 

represent a signal in digital form involves rounding. Quantization replaces each number 

with an approximation level from a set of discrete levels, and then convert to digital 

number for storage and processing. When quantizing a sequence of numbers, the system 

generates quantization errors that is modelled as an additive random signal, which is 

called as quantization noise. The more levels a quantizer uses, the lower its quantization 

noise power [25]. 
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Figure 2.3 Uniform quantization 

In figure 2.3, the signal has a finite range from 
miny to

maxy . Q(x) is the quantization 

output which can be converted to digital number in transmission. Then the entire data 

is divided into l equal intervals of length 𝛥 which known as the quantization step-size. 

The interval can be represented by: 

       max miny y
l

−
=


                       (2.12) 

 

  Combiner 

When wireless signals travel from a single transmit antenna to multiple receive 

antennas they experience different fading conditions. While the signal from one path 

may experience a deep fade the signal from another path may be stronger [28]. 

Therefore selecting the stronger of the two signals (selection combining, threshold 

combining) or adding the signals (equal gain combining, maximal ratio combining) 
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would always yield much better results (lower bit error rate). However, there must be 

sufficient spacing between the different receive antennas for the received signals to be 

dissimilar (uncorrelated). Here we consider the equal gain combining or maximal ratio 

combining to combine the received signals in our future system design [28]. 

2.6.1 Equal-gain Combining 

Equal-gain combining (EGC) is of practical interest because it achieves a comparable 

performance to the optimal maximal ratio combining receiver but with less complexity. 

Suppose the transmitted signal is subjected to multipath fading and is perturbed by 

additive white Gaussian noise (AWGN), the received signal at the lth antenna (l ∈{1, 

2}) can be expressed in complex form as [28]: 

         ( ( ) ( ))
( ) Re ( ) ( )l lj t t

l l ls t t e N t
  +

= +                 (2.13) 

where Re{.} denotes the real part of its argument,  𝛼𝑙(𝑡) and 𝜀𝑙(𝑡) correspond to 

fading amplitude and uniformly distributed random phase processes respectively, 

𝜃𝑙(𝑡)  denotes the desired phase modulation and 𝑁𝑙(𝑡) is the zero mean complex 

AWGN process with a power spectral density N0 (W/Hz). 

 

Figure 2.4 Equal-gain combiner         
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In contrast to the maximum-ratio combining (MRC) technique, the EGC combiner adds 

the co-phased signals from the two antennas in a linear fashion to produce the decision 

statistic [28].  

2.6.2 Maximum-ratio Combining 

In MRC, different weight factor are applied to the corresponding signal branch that is 

proportional to the signal amplitude, which result branches with strong signals are 

amplified, while weak signals are attenuated [29]. MRC is the optimum combiner for 

independent AWGN channels [29]. In MRC, the signals from all of the branches are 

weighted according to their individual SNRs and then summed. Here the individual 

signals need to be brought into phase alignment before summing [29]. 

The output of the combiner at the lth antenna (l∈{1, 2}) can be obtained by: 

1 1

L L

MRC l l l l

l l

S x w h w n
= =

= +                   (2.14) 

where x is the amplitude, 𝑤𝑙 is the combining weights, ℎ𝑙 is the channel, and 𝑛𝑙 is 

AWGN noise. 
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Figure 2.5 Maximum-ratio combining structure 

 OFDM 

Orthogonal Frequency Division Multiplexing (OFDM) is a method of encoding digital 

data on multiple carrier frequencies. OFDM is a special case of Frequency Division 

Multiplex (FDM) which uses a large number of closely spaced orthogonal sub-carrier 

signals to carry data on several parallel data streams or channels. Each sub-carrier is 

modulated at a low symbol rate and has the total data rates similar with single-carrier 

schemes in the same bandwidth [30, 31, 41].  

In OFDM, the sub-carrier frequencies are chosen and the sub-carriers are orthogonal to 

each other, meaning that cross-talk between the sub-channels is eliminated and inter-

carrier guard bands are not required, that greatly simplifies the design of both the 

transmitter and the receiver. 
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Figure 2.6 Block diagram of an OFDM system 

In figure 2.6, the input data is modulated by using a digital modulation scheme such as 

Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) and 

different constellation levels of Quadrature Amplitude Modulation (QAM). Then the 

data symbols are parallelized in N different sub-streams. Each sub-stream will modulate 

a separate carrier through the Inverse Fast Fourier Transform (IFFT) modulation block. 

A cyclic prefix is inserted in order to avoid inter-symbol interference (ISI) and inter-

block interference (IBI). This cyclic prefix of length C is a circular extension of the 

IFFT-modulated symbol, obtained by copying the last C samples of the symbol in front 

of it. Next, the data are converted back to serial and forming an OFDM symbol that will 

modulate a high-frequency carrier before its transmission through the channel. At the 

receiver, the system will perform the inverse operations [41]. 

  Information Theory 

2.8.1. Entropy 

Entropy is a measurement of the uncertainty with a random variable, and it defines the 

limitation of lossless compression. For a random variable X, its entropy is defined as 

[35] 

                      ( ) ( ) log ( )
x

H X p x p x


= −                   (2.15) 
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where ( ) Pr{ },p x X x x = =   is the probability mass function. In the digital system, 

the log is usually to the base 2 and entropy is expressed in bits. The entropy of 

continuous random variable is infinite, because the possible values are infinite.  

2.8.2. Joint Entropy 

The uncertainty of a pair of random variables can be measured with joint entropy. For 

a given pair of discrete random variables (X,Y), their joint entropy is defined as [35]: 

                ( , ) ( , ) log ( , )
x y

H X Y p x y p x y
  

= −                  (2.16) 

where p(x, y) is the joint distribution probability. 

Furthermore, the conditional entropy of a pair of discrete random variables (X,Y) can 

be defined as [35]: 

( | ) ( ) ( | )
x X

H Y X p x H Y X x


= =  

                 

( ) ( | ) log ( | )

( , ) log ( | )

x X y Y

x X y Y

p x p y x p y x

p x y p y x

 

 

= −

= −

 


         (2.17) 

The joint entropy of a pair of random variables can be expressed with the entropy of X 

plus the conditional entropy of the other variable Y. 

                      ( , ) ( ) ( | )H X Y H X H Y X= +                 (2.18) 

we can also expand the rule to three random variables: 

                ( , | ) ( | ) ( | , )H X Y Z H X Z H Y X Z= +                (2.19) 
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2.8.3. Mutual Information 

Mutual information measures the similarity between a pair of random variables. For a 

pair of discrete random variables (X,Y), the mutual information can be expressed as [35]: 

               
( , )

( ; ) ( , ) log
( ) ( )x X y Y

p x y
I x y p x y

p x p y 

=                   (2.20) 

where p(x, y) is the joint probability mass function and p(x), p(y) are marginal 

probability mass functions. 

For random variables X and Y given Z, the conditional mutual information can be 

defined by: 

              

, ,

( ; | ) ( | ) ( | , )

( , | )
( , , ) log

( | ) ( | )x X y Y z Z

I X Y Z H X Z H X Y Z

p x y z
p x y z

p x z p y z  

= −

= 
        (2.21) 

                                    

2.8.4. Mutual Information and Entropy 

               

( ; ) ( ) ( | )

( ; ) ( ) ( | )

( ; ) ( ) ( ) ( , )

( ; ) ( ; )

I X Y H X H X Y

I X Y H Y H Y X

I X Y H X H Y H X Y

I X Y I Y X

= −

= −

= + −

=

                   (2.22) 
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Figure 2.7 Relationship between entropy and mutual information 

  Slepian-Wolf Code 

The Slepian-Wolf theorem was introduced by David Slepian and Jack Wolf in 1973 

[45]. The theorem deals with the lossless compression of distributed correlated sources, 

and it also indicates that each of the correlated sources can be encoded separately 

without knowledge of the other sources and the compressed data from all these sources 

can be jointly decoded with arbitrarily small error probability [87]. Slepian-Wolf 

coding can achieve the same compression rate as the optimal joint compression. In 

Figure 2.8, sources 𝑋1 and 𝑋2 are two correlated sources, if 𝑋1, 𝑋2 are separately 

encoded without exploiting the correlated information, we can constrain the achievable 

rate pair (𝑅1, 𝑅2) by [87]: 

                          

1 2 1 2

1 1

2 2

( ) ( )

( )

( )

R R H X H X

R H X

R H X

+  +





              (2.23) 
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Figure 2.8 Slepian-Wolf concept, 
1x̂  and 

2x̂  are the estimation of source 
1x   

and 
2x   

The Slepian-Wolf region and non Slepian-Wolf region are shown in figure 2.9. By 

implementing a Slepian-Wolf code, the system require less transmit rate, and future 

reduce the channel capacity [87]. 

 

                        

1 2

1

2

( )

( )

( )

1 2

1 2

2 1

R R H X ,X

R H X | X

R H X | X

+ 





                (2.24) 
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Figure 2.9. Slepian-Wolf rate region 

 

 Chapter Summary 

In this chapter, we have introduced the definition and architectures of C-RAN and the 

basic structure of traditional MIMO and channel models. These system structures are 

helpful to build up the systems in our following chapters. We have also introduced the 

detection techniques that will be used for the designing with BBU. Then the 

quantization and combiner are introduced which will also be used in our future system 

development. Finally, the information theory with compression techniques are 

introduced which relate to the system development of constrained fronthaul.  
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Chapter 3 Detection Techniques with Quantization at 

Receiver in Single Carrier Scheme 

 

3.1.Introduction 

In a C-RAN system, more than one BS forwards multiple users' signal to the BBU 

simultaneously, all of the base stations using the same spectral bandwidth. This causes 

interference between neighbouring cells. In this chapter, we will explore the detection 

techniques used in the central processors at the BBU. Those detectors remove the 

interference and separate the user signals. The advanced detection techniques we 

introduce in this chapter are: ZF, MMSE and ML, also discussed in [36, 37, 75]. Each 

of the detectors will recover the quantized signals which are sent from the RRUs. We 

will analyse the effect of quantization on BPSK and QPSK with ML and ZF detection 

methods. Besides, due to the constrained-fronthaul network between RRUs and BBU, 

multiple levels of quantization at RRUs will be deployed. We will then analyse the 

impact of the quantization level on the fronthaul load and the BER performance with 

each detection technique.   
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3.2. System Model 

 

Figure 3.1 System model of a basic C-RAN system 

In this system, an uplink MIMO system is considered. In Figure 3.1, the system has two 

user terminals and two base stations. Each user terminal has one transmit antenna, and 

each BS contains one receive antenna. Thus we have 𝑁𝑢 = 2  and 𝑁𝑟 = 2. In this 

model we assume perfect CSI. At each receive antenna, the complex signal data is 

quantized: here we use uniform quantization. The quantized data is then input to 

detection filters and the recovered data of the two users is output. The structure is shown 

in Figure 3.2. 



Chapter 3 Detection Techniques with Quantization at Receiver in Single Carrier Scheme 28 

 

Figure 3.2 Detection techniques after quantizer. r1 and r2 represent the received 

signal at each base station. Q1 and Q2 represent the quantized signals. 1ŝ and 2ŝ

represent the recovered signal with two users. 

 

Figure 3.3 Extra quantization index bits need to be transmitted in fronthaul 

The quantization level affects the fronthaul load and transmission efficiency. If the 

quantization level is much higher than the modulation level of the system, the RRU will 

need to transmit more binary bits with each quantized symbol than the unquantized 

symbol. The extra bits extraN which need to be transmitted can be defined as:  
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                2

2

2

log ( )

log ( )

extra

Q

M

N n m

n L

m L

= − −

=

=

                        (3.1) 

where LQ is the quantization level, and LM is the modulation level. In practice, Nextra 

should be kept as low as we can, to avoid too much fronthaul load with transmission. 

For the system design and simulation, we investigate the minimum number of extra bits 

required to achieve an accredited BER performance. In the following simulation, the 

performance should be close to the optimal BER performance with which unquantized 

data can be decoded. However, the unquantized case is not practical as it would require 

an effectively infinitely fronthaul load. We assume the channel between user terminals 

and base stations is a multipath Rayleigh fading channel. We also assume that the 

channel between RRUs and BBU is a "bit pipe", which delivers the signal bits without 

any losses. 

 

3.3. Theory Analysis 

In this section, we will explore the effect of quantization on BPSK and QPSK with ML 

and ZF detection methods, and compare the theoretical results with the simulation 

results in MATLAB.  

The basic idea to explore the effect of quantization on the received signal at BBU is to 

estimate the probability of failure to recover the desired data from multiple sources, and 

the recovery failure will also generate erroneous bits at the BBU, and we call it outage 

probability. By analysing the outage cases with the quantized data, we can estimate the 

overall bit error rate (BER) at BBU. 

3.3.1 Quantization with BPSK Modulation Scheme 

 BPSK on real-only channel 
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Let data vector be: 

   1 2 1 2, , 1,1x x x x=  −x  (3.2) 

Received signal, neglecting noise:  

 

                             1 1 2 2y h x h x= = +hx                    (3.3)  

We assume that some form of automatic gain control adjusts the maximum signal 

maxy  at the access point to correspond to the maximum quantization centre, then:  

( )1 2 1
2

maxy h h l


= + = −                 (3.4) 

where l is the number of quantization steps, and  is the quantization interval 

which can be expressed as:  

( )1 222

1 1

max
h hy

l l

+
 = =

− −
               (3.5) 

With different numbers of quantization levels, the quantization threshold thq  

shown in figure 3.4 can be defined with: 

max max
max max( 1) 2

2
1

th l

y y
q y y

l− 
= − = −

−
              (3.6)   

The quantizer is a one-domain mid-rise quantizer, and the output of the quantizer 

rounds to the nearest quantization point (positive or negative). Assuming 1 2h h , 

for 1 21, 0.8h h= = , with 4l = , the received constellation is:  
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Figure 3.4 Constellation of received points with 1 21, 0.8h h= =  

which quantizes as follows (with 1.2 = ):  

 

 

Table 3.1 Quantization results of received signal with 1 21, 0.8h h= =  

In figure 3.4, Q is the quantization output of y. The received point [1, 1] is great 

than the threshold thq , and [1,-1] is less than thq , which results in [1, 1] and [1,-1] 

being quantised to different quantization points corresponding to the results shows 

in Table 3.1. Similarly received points [-1, -1] and [-1, 1] are quantized to different 

quantization points. ThusQ can be decoded perfectly using ML detection, and the 

transmitted signal can be fully recovered without errors.  

 

With another example, for 1 21.6, 0.2h h= = , and 4l = , the received constellation is: 
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Figure 3.5 Constellation of received points with 1 21.6, 0.2h h= =  

Comparing figure 3.5 with figure 3.4, 1 21.6, 0.2h h= =  and 1 21, 0.8h h= =  have the 

same quantization step l and length of quantization interval  , however, the results for 

Q  are different, as shown in Table 3.2, which quantizes as follows (with 1.2 = ):  

 

Table 3.2 Quantization results of received signal with 1 21.6, 0.2h h= =  

In figure 3.5, the transmitted data vector [1, 1] and [1, -1] are both greater than the 

threshold thq , so that both of the vectors are quantized to the same quantization point. 

Similarly, the transmitted data vectors [-1, -1] and [-1, 1] are quantized to the same 

quantization point -1.8, as shown in Table 3.2. Using the ML detection method 

expressed in equation 2.11, thus the vector [1, -1] will be decoded to [1, 1], and hence 

2x  will be decoded incorrectly. In figure 3.4 and 3.5, we can also notice the symmetry 

of the coordinate axis: if [1,-1] and [1, 1] in the positive side are in outage, then [-1, 1] 

and [-1, -1] will be in outage. Thus we only need to consider the outage probability on 

one side.  
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Assume 1 2h h , with 4l =  the distance between quantization threshold thq  and 

maxy  can be defined with
1 2

3

h h+
, we can express the condition for the outage 

probability: 

( )

1 2

1 2 1 2

1 2

2

2 1

1

2

( ) ( )
3

2
3

5

5

outage

h h
P P h h h h

h h
P h

P h h

h
P h

 + 
= + − −  

 

 + 
=  

 

= 

 
=  

 

             (3.7) 

Thus the PDF for the outage probability can be expressed as: 

          ( ) ( )
1

1 5
2 1 2 2 1

0 05

h
h

P h p h p h d h d h
 

 = 
 

                  (3.8) 

Thus a common condition of outage probability with quantization step l can be 

expressed as: 

( ) ( )

( )

1 2

1 2 1 2

1 2

2

2 1

1

2

1

2
1

(2 3)

2 3

outage

h h
P P h h h h

l

h h
P h

l

P l h h

h
P h

l

 + 
= + − −  

− 

 + 
=  

− 

= − 

 
=  

− 

               (3.9) 

and the outage probability can be expressed as: 

( ) ( )
1

2 3
1 2 2 1

0 0

1
atan

2 3

h

l
outageP p h p h d h d h

l




−=

 
 

 − =

 
                (3.10) 

Which takes into account both cases 1 2h h  and 1 2h h .          
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Once the outage condition occurs, the symbol will have the second bit in error ( 1 2h h

) or first bit in error ( 1 2h h ), and thus we have: 

BER
2

outageP
=

                    (3.11) 

To calculate the outage probability, we derive equation (3.10) in Wolfram 

Mathematica. By giving multiple numbers of quantization levels, the theoretical 

results are shown in Table 3.3: 

 

Table 3.3 Comparison between the theoretical and simulation results for BPSK 

with real-only channel 

In Table 3.3, the simulation results are simulated in MATLAB. We set up a system 

transmitting binary data bit from two sources through a real-only channel, next quantize 

the received signal with a one domain mid-rise quantizer, then the quantized data is 

recovered by using ML detection, and finally we can count the number of erroneous 

bits and calculate the overall BER. From the results shown in Table 3.3, it can be seen 

that the theoretical results and simulation results are very close.  
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 BPSK on complex channel 

 

For the complex channel, we assume that the quantization is a two-domain mid-rise 

quantizer, and rounds the outputs to the nearest complex quantization point. The outage 

conditions in equation 3.10 could apply to either the real or the imaginary part, or to 

both of the parts, and the maximum quantization centre maxy can be defined as: 

1 2 1 2Re[ ] Re[ ] ( Im[ ] Im[ ])maxy h h j h h= + + +
           (3.12) 

and then: 

1 2

max 1 2

Re[ ] Re[ ]

Im[ ] Im[ ]

max

real

imag

y h h

y h h

= +

= +
                (3.13) 

With the number of quantization levels QL , the quantization step l  can be denoted as 

QL , and thus the threshold thq  can be denoted for the real and imaginary parts: 

max
max

max
max

( 1)

( 1)

th

real
real real

imag
imag imag
th

y
q y

l

y
q y

l

= −
−

= −
−                    (3.14) 
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Figure 3.6 Constellation of received points with two-domain quantizer 

The common outage probability with quantization step l  can be expressed as:  

1

2

1

2

Re[ ]
Re[ ]

2 3

Im[ ]
Im[ ]

2 3

real

outage

imag

outage

h
P P h

l

h
P P h

l

 
=  

− 

 
=  

− 

             (3.15) 

Note that the received signal must meet the outage condition in both real and imaginary 

parts, and thus the total outage probability condition can be expressed as: 

1 1

2 2

Re[ ] Im[ ]
Re[ ] Im[ ]

2 3 2 3

real imag

outage outage outage

h h
P P P P h P h

l l

   
=  =      

− −   
      (3.16) 

Similar to equation 3.11, we also have the BER for the complex channel: 

BER
2 2

real imag

outage outage outageP P P
= =

             (3.17) 

For ML detection, all the possible transmitted symbols should be quantized, and the 

ML detection equation can be expressed with: 
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( )2
ˆ min q( )ML = −x Q Hx                  (3.18) 

where { 1, 1} + −x and, q( )Hx denotes the quantization of all the possible transmitted 

symbols. In this case, the ML detector outputs the recovered vector which has minimum 

distance between the received quantizing symbol and all of the possible quantizing 

symbols. Note that, the minimum distance is 0 from the desired symbols. In an outage 

case there will be more than one symbol having the minimum distance. Thus any bits 

which are different in the two symbol labels will be in error with probability 0.5 if there 

are two symbols at the same distance.   

An alternative approach to ML detection might compare the received signal to un-

quantized signal values, expressed as: 

( )2
ˆ minML = −x Q Hx                     (3.19) 

In this case, the system will have another outage case when 
1 2Re Re+  is much 

greater than
1 2Im Im+ , or 

1 2Im Im+ is much greater than
1 2Re Re+ , as 

shown in figure 3.7: 
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Figure 3.7 Outage case with ML detection without quantize the possible received 

symbol 

In figure 3.7, the blue points r1, r2, r3, r4 are the four possible received symbol, and 

the red points are the 16 quantization points. After quantizing the 4 possible 

symbols, r1 is quantized to quantization point q1, and r2 is quantized to quantization 

point q2. The distance between the quantization point q2 and the received symbol 

r1 is d1, and the distance between q2 and r2 is d2. If r2 is the desired symbol, then 

q2 will be the target point which is to be compared with the distances from all the 

possible received points. We assume
1 2Re Re+  is much greater than

1 2Im Im+ , 

and this could give 1 2d d , then the target point will be recovered to symbol r1 

instead of r2, which generates errors in the recovered data bits. A similar outage 

case occurs when 
1 2Im Im+ is much greater than

1 2Re Re+ .  

This outage case occurs when the real part is in outage and the imaginary part is 

not in outage, or vice versa. Besides, it also need to meet 1 2d d  or 2 1d d
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corresponding to two cases. Thus it can be seen that ML method with un-quantized 

possible received symbol will generate more error to the recovered symbol. 

The theoretical results can be calculated in Wolfram Mathematica using equation 

(3.16) and equation (3.17). To develop the simulation system, we extend the 

channel to complex channel. Note that the real and imaginary part separately are 

the same as for the real only case shows in Table 3.3, thus we have the results 

shown in Table 3.4: 

 

Table 3.4 Comparison between the theoretical and simulation results for BPSK 

with complex channel 

In Table 3.4, the simulation results for the ideal case give the same value as the 

theoretical result for different quantization levels. Simulation results with non-ideal 

case has a higher outage probability to generate errors in the recovered data bits. 

Furthermore, with more APs, we assume the channels are independent, thus the outage 

probability at each AP is independent. If the transmitted signal at the first AP is in 

outage, then the system can still recover the data vector correctly by using the quantized 

symbol at second AP. When the quantized symbol at both APs are in outage, then the 

recovered bits will have errors. Thus we can calculate the outage probability for a two 
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APs system by squaring the outage probability for only one AP. With N APs we can 

express the total outage probability as: 

2 2 1

N

outage N outageP P =                     (3.20) 

The results of a two APs system are shown in Table 3.5: 

 

Table 3.5 Comparison between the theoretical and simulation results for BPSK 

with complex channel with two APs 

 Effect of quantization in Zero Forcing 

 

In this part we will analysis the outage cases with quantization in Zero Forcing.    The 

fundamental idea is to represent the effect of transmission from two sources over the 

channel pair (represented by the vector h), then quantization at an AP, as equivalent to 

multiplication of the vector of source data x by an integer vector representing the joint 

effect of channel and quantization. Assuming there are two APs, this forms a 2 2  

matrix: successful reception of both sources requires that this be full rank.   

We assume the quantizer is a mid-rise quantizer with integer output, and therefore 

rounds to the nearest odd integer (positive or negative), which we will denote by:  

2q
odd

y
y Q

 
=  

 
                        (3.21) 



Chapter 3 Detection Techniques with Quantization at Receiver in Single Carrier Scheme 41 

Note that qy  is different from Q in previous section, and Q can be obtain by 
2

qy  
.  

For example, for 1 21, 0.8h h= = , which quantizes as follows (with 1.2 = ):  

 

Table 3.6 Integer quantization results of received signal with 1 21, 0.8h h= =  

The same result would be obtained from q qy = xh  with [2,1]q =h , so this can be 

regarded as the equivalent integer channel vector.   

For l = 4 the same vector will apply for any channel coefficients such that the received 

signals quantize to the same values, i.e. provided:  

1 2

1 2

1
2

1 3

2 2

5

h h l

h h l

h
h

+ −
 =

− −



                (3.22) 

and assuming 1 2h h . If 1
2

5

h
h  , then the values will quantize as follows: 

 

Table 3.7 Integer quantization results of received signal with 1
2

5

h
h   

which is equivalent to the integer channel vector [3, 0]. There are other possibilities, 

depending on the sign of 1h  and 2h  are shown in Table 3.8:  
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Table 3.8 Integer quantization results and condition probability with sign of h1 

and h2 

In Table 3.8, the condition probability for each case can be expressed as: 

( ) 1

1

2 3

1 1 2 2 1
0

2 3

12
atan

1 2 3
( ) ( )

2 4

l h

h

l

l
p p h p h dh dh



 −

−

 
 

− = =  ,                (3.23) 

1

2 3
2 1 2 2 1

0 0

1
atan

2 3
2 ( ) ( )

4

h

l l
p p h p h dh dh




−

 
 

− = =   ,                (3.24) 

( ) 1

1

2 3

3 1 2 2 1
0

2 3

12
atan

1 2 3
( ) ( )

2 4

l h

h

l

l
p p h p h dh dh



 − −

−
−

 
 

− = =   ,                (3.25) 
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( ) 1

1

0 2 3

4 1 2 2 1

2 3

12
atan

1 2 3
( ) ( )

2 4

l h

h

l

l
p p h p h dh dh



− −

− −
−

 
 

− = =   ,                (3.26) 

( ) 1

1

0 2 3

5 1 2 2 1

2 3

12
atan

1 2 3
( ) ( )

2 4

l h

h

l

l
p p h p h dh dh



−

−
−

 
 

− = =   and                (3.27) 

10
2 3

6 1 2 2 1
0

1
atan

2 3
2 ( ) ( )

4

h

l l
p p h p h dh dh



−
−

−

 
 

− = =                  (3.28) 

 

where l is the number of quantization steps which is 4. Note that the probability results 

with p1, p3, p4 and p5 are the common cases for both 1 2h h  and 1 2h h , thus for 

only 1 2h h , the result is half of the probability. Then equation 3.23 to equation 3.28 

can be calculated in Wolfram Mathematica. These results correspond to 1 2h h , and 

the sum of the probability of conditions is equal to 0.5; there is a corresponding set, 

with all vectors reversed, corresponding to 1 2h h , and the sum of probability of 

conditions is another half of the total probability. It is possible to calculate the 

probability of each of these conditions, and hence the corresponding integer vectors for 

each access point. We assume that the channels are independent for each access point, 

so the integer vectors are also independent.   

These vectors form the columns of the equivalent integer channel matrix, which should 

be full rank for correct decoding. Hence an outage will occur (usually for both sources) 

if the matrix is rank-deficient. This will occur if one column is a multiple of the other. 

For example, if the integer channel vector with first AP is [2, 1], and the integer channel 

vector with second AP is [-2, -1], then the channel matrix is rank-deficient, which 
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results the recovered results by ZF is in outage. The probability of this rank-deficient 

channel matrix appears is 0.0936 0.0936 0.0087 = . Thus, we can calculate the total 

outage probability for the rank-deficient channel matrix with: 

( ) ( ) ( )

( ) ( ) ( )
1 2

1 1 1 5 2 2 2 6 3 3 3 4

4 4 4 3 5 5 5 2 6 6 6 2

...
h h

P p p p p p p p p p p p p

p p p p p p p p p p p p


= + + + + + +

+ + + + +
     (3.29) 

where 
1 2h h

P


 is the outage probability for 1 2h h , and the result is 0.0859. Thus the 

total outage probability is
1 2 1 2 1 2

2 0.1718
h h h h h h

P P P
  

+ =  = . The comparison of the 

theoretical results and simulation results are shown in Table 3.9: 

 

Table 3.9 Comparison between the theoretical and simulation results for the 

outage probability in different conditions 
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Table 3.9 shows the outage probability comparison in different cases. The simulation 

results are achieved by counting the number of integer channel matrices which are rank-

deficient, and each of them will corresponding to one of the conditions. It can be seen 

that the simulation results with 1 2h h  and 1 2h h  both match with the theoretical 

results. 

 

  

3.3.2 Quantization with QPSK Modulation Scheme 

In this section, we will analyse the outage probability for QPSK. With BPSK, when 

two received symbol locate at the same quantization region, the outage will occurs. 

With QPSK, there are 16 possible received symbols shows in figure 3.8, thus it could 

have more than two symbol lie in the same quantization region. Here we explore three 

outage scenarios: four points, three points and two points lie in the same region. Each 

scenario includes several cases in which a different set of points lies in the same region, 

for different regions. Furthermore, we explore the conditions for each case, and then 

apply these conditions using Monte Carlo integration [92]. Finally, we compare these 

numerical results and the simulation results in MATLAB.   

Let the data vector be: 

             1 2 1 2

1 1 1 1
, , , , ,

2 2 2 2

j j j j
x x x x

− − − + − + 
=   

 
x                 (3.30) 

According to equation 3.12, the quantization centre maxy can be expressed as: 
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( )( ) ( )( )

max 1 2

1 1 2 2

1 1 1 1

2 2 2 2

1 1
max

2 2

1 1
max 1 Re[ ]+ Im[ ] 1 Re[ ]+ Im[ ]

2 2

1
max( (( Re[ ] Im[ ]) ( Re[ ] Im[ ]))

2

1
(( Re[ ] Im[ ]) ( Re[ ] Im[ ])))

2

j j
y h h

j h j h j h j h

h h j h h

h h j h h

    
= + 

 

 
=   +   

 

=  +   +

 +  

   (3.31) 

and the real part and imaginary part of maxy can be expressed as:  

 ( )max max 1 1 2 2

1
Re[ ] Im[ ] Re[ ] Im[ ]

2

real imagy y h h h h= = + + +        (3.32)  

For QPSK, there are 16 desired data vectors:  

 

Figure 3.8 Constellation of received points for QPSK 

We will assume that 1 2h h , without loss of generality since results on this assumption 

can be converted to the opposite assumption by reversing these two symbols. Because 

these variables are identically distributed, and because the two cases are mutually 
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exclusive, the probabilities of results obtained in one case is the same as those obtained 

in the other case, and we can also obtain the total probability in both cases by doubling 

the probability for one.   

Note that the symmetry of the diagram means we need only consider one cluster of the 

points in the constellation, corresponding to one of the symbols of source 1.  We will 

consider the cluster around a point in the top right hand quadrant (TRHQ). We will 

further assume without loss of generality that these correspond to ( )1 111, 1 2d s j= = + .  

This implies that the received signal due to this source: 

( )        ( )( )1 1 1 1 1 1

1 1
1 Re Im Re Im

2 2
r j h h h j h h= + = − + +         (3.33) 

(which we will subsequently write ( )( )1 1 1 11 2 Re Im Re Imj− + + ).  For this to be in the 

TRHQ implies that: 

( ) ( )1 1 1 1Re Im & Re Im  −
              (3.34) 

and hence that  1Re 0   

Generality is preserved by this assumption since if these conditions on Re1 and Im1 do 

not apply for this source data, there will be another source data symbol (equally 

probable) for which they do.   

In general also two of the four points in this cluster will be closest to the boundary set 

by the overall maximum of real or imaginary part: one of these will lie on the boundary.  

We will assume, again without loss of generality, that these two points correspond to 

source 2 data 11 and 10, and hence that:   

2 2 2 2 2

2 2 2 2 2

Re Im Re Im Im 0

Re Im Im Re Re 0

+  − → 

+  − → 
                 (3.35) 
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Again, if this is not the case then there will be another source 2 symbol for which it is.   

There are then two cases, depending on which of these two points lies on the boundary: 

Case 1: ( ) ( )Re 1110 Im 1111r r       , and thus 1110 lies on the boundary. 

(where we note that ( )1110r  denotes the received signal when 
1 11s =  and 

2 10s = ).  

Then: 

( ) ( )1 1 2 2 1 1 2 2

1 1
Re Im Re Im Re Im Re Im

2 2
− + +  + + +           (3.36) 

and hence 
1Im 0   

The boundary is then given by ( )1 1 2 2

1
Re Im Re Im

2
− + + . The next quantization threshold 

value is then: 

( )1 1 2 2

1 1
= = Re Im Re Im 1

12

real imag

th th thq q q
l

 
= − + + − 

− 
           (3.37) 

where l L=  is the number of quantization levels.   

Case 2: ( ) ( )Im 1111 Re 1110r r       , and thus 1111 lies on the boundary.  Then: 

( ) ( )1 1 2 2 1 1 2 2

1 1
Re Im Re Im Re Im Re Im

2 2
+ + +  − + +         (3.38) 

Hence  1Im 0 .   

The boundary is then given by ( )1 1 2 2

1
Re Im Re Im

2
+ + + . The next quantization threshold 

value is then: 

( )1 1 2 2

1 1
Re Im Re Im 1

12
thq

l

 
= + + + − 

− 
         (3.39) 
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We assume the number of quantization levels L  is 16, thus we can denote the 

quantization step 4l L= = . We also define the regions A, B, C and D as shown in 

figure 3.9: 

 

Figure 3.9 Define the region positions  

Below we will explore all of the outage cases with different numbers of points in outage, 

located in different regions.  

 Four Points in outage 

There are two cases: four points in region B, and four points in edge region D or region 

A. 
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Figure 3.10 Case with four points in region B 

In Figure 3.10, with case 4a-1, 1110 is on border; 1111 is not (and note Im1 < 0). Hence 

if Re[1100] is within the threshold, Im[1101] certainly is. Thus we only have one 

threshold: 

 

 

( ) ( )

( )( ) ( )( )

( )( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

Im 1100

1 1 1
Re Im Re Im Re Im Re Im 1

12 2

1 Re Im Re Im Re Im Re Im 2

Re 2 3 Im Re Im 0

thq

l

l l

l



 
+ − −  − + + − 

− 

− + − −  − + + −

+ − − − 

  (3.40)  

For case 4a-2, 1111 is on border; 1110 is not (and note Im1 > 0). Hence if Re[1101] is 

within the threshold, Im[1100] certainly is. Thus we again have only one condition: 
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 

( ) ( )

( )( ) ( )( )

( )( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

Re 1101

1 1 1
Re Im Re Im Re Im Re Im 1

12 2

1 Re Im Re Im Re Im Re Im 2

Re 2 3 Im Re Im 0

thq

l

l l

l



 
− − −  + + + − 

− 

− − − −  + + + −

+ − − − − 

  (3.41) 

This is in fact identical to case 4a-1, note that the sign of Im1 is different in the two 

cases.   

 

 

Figure 3.11 Case with four points in region A and D 

In figure 3.11, for 4b-1, 1110 is on the border, which means that the four points must 

be in region D. Outage occurs if: 
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     

( )
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( )( ) ( )( )
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1 1 2 2

1 1 2 2 1 1 2 2
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1
Re Im Re Im Re Im Re Im 1 &

1

Re Im Re Im 0&

1
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1

1 Re Im Re Im Re Im Re Im 2 &

Re Im Re Im 0&

1 Re I

th thq q
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l l
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  

 
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− 
+ − − 

 
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Re Im 2 3 Re Im 0
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− −  − + + −

+ + + − 

+ − − 

− − − + 

     (3.42) 

For case 4b-2, 1111 is on the border, which means that the four points must be in region 

A. Outage occurs if: 

     
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      (3.43) 

Again, the conditions for case 4b-2 are identical to case 4b-1. Because of the complexity 

with the integrals of the conditions, we calculate the outage probability by using Monte 

Carlo integration. Monte Carlo methods are numerical techniques which rely on 

random sampling to approximate their results. Monte Carlo integration applies this 
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process to the numerical estimation of integrals [92]. The basic idea is to count the 

number of the sampling points which meet the conditions, then calculate the percentage 

of these points of the total number of sample points.  

According to equation (3.34) and (3.35), we can define the range for 
1h and

2h , as 

shown in figure 3.12: 

 

Figure 3.12 Monte Carlo sampling range with 1h  and 2h  

In figure 3.12, when 1110 is on the boundary,
1Im 0 , and we define 1 [ , 0]

4


  − . 

When 1111 is on the boundary, 1Im 0 , and we have 1 [ 0, ]
4


  . According to 

equation (3.35), hence 2 [0, ]
2


  .   

To generate the sampling points of 1h  and 2h . The real part and imaginary part can 

be generated separately with: 
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1 1 1

1 1 1

2 2 2

2 2 2

Re cos

Im sin

Re cos

Im sin

a

a

a

a









=

=

=

=

                    (3.44) 

where 
1a  and 

2a  represent the amplitudes of 
1h  and 

2h . 

Then we can count the number of sampling pairs of 
1h  and 

2h  which meet the 

conditions above, and calculate the probability of these pairs as a proportion of the total 

number of sample pairs.  

We also simulate the outage cases in MATLAB: we assume that each region has a 

corresponding quantization point. For the 16 desired transmitted symbol of QPSK, if 

some of them are quantized to the same quantization point, then we can count the 

number with same quantization point and locate the region position. For the outage case 

with four points locate at the same region, the comparison results are shown in Table 

3.10: 

 

Table 3.10 Comparison between simulation and Monte Carlo results with four 

points in different region 
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Note that the outage probability show in Table 3.10 denotes the four points in outage 

case, to convert from outage probability to BER, we need to estimate the error 

probability for each bit. 

 

Table 3.11 Number of erroneous bit table for desired bits and transmitted bits for 

s2 with four points in outage 

For the case of four points in outage, if the desired vector of 
2s  is [0, 0], it has equal 

probability to be recovered as [0, 0], [0, 1], [1, 0] and [1, 1]. If the recovered vector is 

[0, 0], the vector is recovered without any errors. If the recovered vector is [0, 1], this 

will generate one bit error. If the recovered vector is [1, 1], it will generate two bit 

errors. Similarly the other desired vectors, will generate different numbers of error bits 

with different recovered vectors. The average number of bit errors listed in Table 3.11 

is 1 out of two bits transmitted, hence BER is half outage probability. Thus we can 

estimate the BER by counting the number of bit errors over the total number of bits: 

1

2
four fourBER P=                     (3.45) 

Thus the theoretical BER with four points in outage is 0.0253. 
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 Three points in outage 

There are seven cases with three points in outage: one case with three outage points in 

region B, three cases with three outage points in region A and D, and three cases with 

three outage points in region C.  

Figure 3.13 and 3.14 show two cases for three points in outage; see more cases with 

three points in outage in the appendix. 

 

Figure 3.13 Three points in outage in region B 

In figure 3.13, with case 3a-1, 1110 is on border; 1111 is not (and note Im1 < 0), 1100 

in region D and 1101, 1110 and 1111 located in region B. Thus we have the conditions: 
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   (3.46)  

 

For case 3a-2, 1111 is on border and 1110 is not (and note Im1 > 0), 1101 in region A 

and 1111, 1100 and 1110 in region B. Thus we have the conditions: 



Chapter 3 Detection Techniques with Quantization at Receiver in Single Carrier Scheme 58 

 

( ) ( )

( ) ( )

( ) ( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1

Re 1101 & Im[1100] & Re[1100] & Re[1111]

1 1 1
Re Im Re Im Re Im Re Im 1 &

12 2

1 1 1
Re Im Re Im Re Im Re Im 1 &

12 2

1 1 1
Re Im Re Im Re Im Re Im 1 &

12 2

1
Re I

2

th th th thq q q q

l

l

l

   

 
− − −  + + + − 

− 

 
+ − −  + + + − 

− 

 
− − +  + + + − 

− 

−( ) ( )

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1

1 1
m + Re Im Re Im Re Im 1 ;

12

1 Re Im Re Im Re Im Re Im 2 &

1 Re Im Re Im Re Im Re Im 2 &

1 Re Im Re Im Re Im Re Im 2 &

1 Re Im Re Im Re Im Re Im 2 ;

Re 2

l

l l

l l

l l

l l

l

 
−  + + + − 

− 

− − − −  + + + −

− + − −  + + + −

− − − +  + + + −

− − + −  + + + −

+ −( )( )
( )( )
( )( )
( )( )

1 2 2

1 1 2 2

1 2 1 2

1 2 1 2

3 Im Re Im 0 &

Re Im 2 3 Re Im 0 &

Re Im 2 3 Im Re 0 &

Re Re 2 3 Im Im 0

l

l

l

− − − 

+ + − − − 

+ + − − − 

+ + − − − 

     (3.47) 

 

 

Figure 3.14 Three points in outage in region A and D 
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In figure 3.14, with case 3b-1, 1110 is on the border, and 1101, 1110 and 1100 in the 

region D, 1111 in region B. Thus we have the conditions: 
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         (3.48) 

For case 3b-2, 1111 is on the border, 1111, 1101, 1100 in region A, 1110 in region B. 

Thus the conditions with this case are: 
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     (3.49) 

More cases are shown in the appendix. We sum the outage probability with three points 

in the same region and list the results in Table 3.12:  

 

Table 3.12 Comparison between simulation and Monte Carlo results with three 

points in different region 
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In Table 3.12, it can be seen that the Monte Carlo results and the simulation results are 

matched in each region. The outage probability for three points in outage is 0.1188. To 

calculate the BER from the outage probability, similar to Table 3.11, we can derive the 

erroneous bit table for desired bits and transmitted bits as shown in Table 3.13: 

 

 

Table 3.13 Number of erroneous bit table for desired bits and transmitted bits for 

s2 with three points in outage 

Table 3.13 shows the number of erroneous bit in each case for three points in outage, 

noting that the outage points could include the points from the other clusters with s1 
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except s1= [1, 1]. Thus when two points from different cluster are in outage, the 

recovered bits for s1 and s2 can both be in error. 

Thus the BER for each case can be computed and shows in Table 3.14: 

 

Table 3.14 Bit outage probability with each case for three points in outage 

Thus we have that the total bit outage probability for three points is 0.0448. 

 

 Two points in outage 

 

For the two points in outage case, we have explored 13 cases for two received symbols 

in the same region.  
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Figure 3.15 Two points in outage in region B 

With case 2a-1. 1110 is on the border, and 1111 is not. 1110 and 1111 will lie in the 

quantization region B if:  
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        (3.50) 

With case 2a-2. 1111 is on the border, and 1110 is not. 1110 and 1111 will lie in the 

quantization region B if:  
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         (3.51) 

 

Figure 3.16 Two points in outage in region B 

With case 2b-1, 1110 is on the border, and 1111 is not. 1110 and 1111 will lie in region 

B if:  
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Case 2b-2. 1111 is on the border, and 1110 is not. 1110 and 1111 will lie in the 

quantization region B if:  
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See appendix for more cases. Thus the sum of outage case in each region are shown in 

Table 3.15: 
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Table 3.15 Comparison between simulation and Monte Carlo results with two 

points in different region 

In Table 3.15, the outage probability with Monte Carlo results are very close to the 

simulation results, the slight difference in the results for region A and D shows that 

there may be some cases missed which results the Monte Carlo result is less than the 

simulation result. Besides, there are also cases in which two points are in outage in one 

region, and at the same time two points are in outage in another region (as shown in 2b-

1), and thus the outage probability with two points in one region will also include part 

of the outage probability with another two points in outage with their region. This 

means these outage events are not mutually exclusive, so their probabilities cannot 

simply be summed to obtain the overall outage probability. Therefore, in the Monte 

Carlo results, the sum of the outage probabilities from all the regions is not calculated.  
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Table 3.16 Number of erroneous bit table for desired bits and transmitted bits for 

s2 with two points in outage 

 

Table 3.17 Bit outage probability with each case for two points in outage 

In Table 3.17, the bit error probability with each case is calculated according to different 

bit error rate per symbol in different cases. However, as we have noted, we cannot 
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calculate straightforwardly the total bit error probability with two points in outage. 

Nevertheless in view of the results in Table 3.15, the Monte Carlo result for each region 

is very close to the simulation result. Hence we can estimate that the simulation and 

Monte Carlo will produce the same results for total bit error probability for two points 

in outage case, which is 0.2224, noting that the simulation process can easily achieve 

the computation by counting the number of incorrect bits for only the two points in 

outage case.  

Thus we can sum the bit error probability for three outage cases with different number 

of points in the same region, and the comparison between theoretical and simulation 

results are shown in Table 3.18: 

 

Table 3.18 BER comparison between theoretical and simulation results for QPSK 

modulation scheme and ML detection method 

In this section, we have analysed the effect of quantization on ML detection with BPSK 

and QPSK, due to the complexity of the outage cases for QPSK, we have only explored 

the 16 level quantization. For the effect of quantization on ZF detection, we have 

explored the real-only channel case, and compared the outage cases under different 

conditions.  

With a higher order quantization, the received symbols have smaller probability to lie 

in the same region, which further reduces the outage probability, and hence this will 

reduce the BER of the recovered data bits and improve the detection performance at the 

BBU. In this section, we have calculated the probability that two or more symbols 

cannot be distinguished in the absence of noise, and this determines the error floor 
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which applies at high Eb/N0.Thus we can conclude that increasing the quantization order 

can reduce the outage probability, and hence the level of the error floor, but does not 

eliminate it.  

 

3.4. Simulations with C-RAN 

In this section, we will evaluate multiple quantization levels at the RRU with multiple 

detection techniques in the BBU. The detection techniques which will be used in the 

simulations are ZF, MMSE and ML. We will also explore the minimum number of 

extra bits required with multiple modulation levels such as BPSK, QPSK, 16QAM and 

64QAM [49, 50]. The expected BER performance to achieve is 10-4. 

3.4.1. ZF Signal Detection 

 

Figure 3.17 BER performance comparison with Zero Forcing 
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Figure. 3.17 shows the BER performance with Zero-Forcing detection with multiple 

levels of quantization, and also compare the performance without quantization. When 

quantization is processed, it shows that an error floor occurs, at which increasing SNR 

on access links no longer improves the BER. To reduce this noise floor to a low enough 

level requires 10 quantization bits (1024) for BPSK, which means the quantized signal 

required at least 9 extra quantized bits to be conveyed to reach the performance of un-

quantized signal. The BER of un-quantized signal reaches 10-4 at 34dB with SINR.   

3.4.2. MMSE Signal Detection 

 

Figure 3.18 BER performance comparison with MMSE 

Figure 3.18 shows the BER performance with MMSE detection and different levels of 

quantization. Similarly to the ZF detection approach, the error floor also occurs when 

quantization is processed. Besides, the quantized signal required at least 10 extra 

quantized bits to be conveyed to reach the performance of the un-quantized signal. The 
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optimal BER performance of the un-quantized signal reaches 10-4 at 32dB SNR. The 

performance has slight improvement compared with ZF. This is because the MMSE 

approach includes the statistical information of the noise when separating the spatially 

multiplexed data. (See equation 2.10) 

3.4.3. Maximum Likelihood Signal Detection 

 

Figure 3.19 BER performance comparison with ML 

Figure 3.19 shows the BER performance with ML detection with different levels of 

quantization. It can be clearly seen that the BER performance of the un-quantized signal 

is significantly improved, and the optimal BER reaches 10−4 at around 16.5dB SNR. 

However, the error floor still occurs with the quantized signal. The quantization 

degrades the BER performance noticeably with a low level quantizer (5 extra bits). As 

the level of quantization increases, the BER performance improves rapidly. With 8 bits 
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quantized signal (7 extra bit), the BER performance is almost the same as the BER 

performance of the un-quantized signal.    

 

3.4.4. Comparisons 

 

Figure 3.20 BER performance comparison with multiple detection approaches 

Figure 3.20 shows the performance of ZF, MMSE and ML. With MMSE, the term 

(1/SNR = 𝜎2 ) offers a trade-off between the residual interference and the noise 

enhancement, when Eb/N0 at low level, the BER of MMSE is lower than ZF, and when 

Eb/N0 at high level, MMSE detection generates a BER performance very close to ZF 

detection. It can be seen that at high Eb/N0, error floor still exist with each detection 

approach. Thus we can also conclude that the detection techniques cannot eliminate the 

error floor.  
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Table 3.19 Comparison the performance with multiple detection methods 

3.4.5. Modulation Schemes 

 

Figure 3.21 BER performance with Zero-Forcing detection in different modulation 

level 

Figure 3.21 shows the BER performance with various modulation schemes. With 

higher level modulation scheme, the system needs a higher level quantizer to achieve 
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the expected BER performance. With a 64 QAM modulation scheme, the quantization 

level needs to reach 65536. However, even though the required quantization level 

increases as the modulation level increases, the number of extra bits required with the 

various modulation schemes remains the same. All of the modulation schemes require 

at least 10 extra bits to transmit the quantized signal. This results in an improvement of 

transmission efficiency as the modulation level increases, as shown in Table 3.20.  

 

Table 3.20 Transmission efficiency with various modulation schemes 

3.5. Chapter Summary 

In this chapter, we have built up a single carrier C-RAN system with fronthaul network. 

The effect of quantization on BPSK and QPSK modulation scheme with ML and ZF 

detection methods have been explored and analyzed, we conclude that when 

quantization is applied, no matter what the quantization level is, erroneous bits can still 

exist in the recovered data bits, and an error floor will occur with the BER performance. 

However, this error floor level can be reduced by increasing the quantization level.  

Then multiple detection techniques are simulated and various modulation schemes are 

explored with the system. The ML detection method gives significant improvement of 

the BER performance compared with ZF and MMSE, and also ML need 2 fewer extra 

bits than ZF and MMSE. However, the ML implementation is computationally 

infeasible, the processing time to separate the complex baseband signals from multiple 
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users is too long, which will increase the fronthual latency. Therefore, for the further 

work of system design, we will apply ZF or MMSE to separate the complex signals 

from multiple user terminals.   

With various modulation schemes, we have explored BPSK, QPSK, 16 QAM and 64 

QAM in the system, and find that the number of minimum extra bits required with each 

modulation scheme is the same, which is 10. Thus when a higher level modulation 

scheme is applied to the system, the transmission efficiency in the fronthaul can be 

improved. However, when the modulation level is low, this system has insufficient 

transmission efficiency, and furthermore produces more fronthaul load.  

As we have noticed that the error floor causes an irreducible BER which remains 

significant however high the signal to noise ratio (SNR) on the radio access links. This 

effect is however eliminated if user signals are separated before quantization: in this 

case there is no error floor provided the quantization is correctly applied, since the 

spurious components do not occur if there is no noise. The level of the error floor can 

also be reduced to negligible levels if the user signals are partly separated, in the sense 

that a component from another user may remain in a first user’s signal, but this 

component is relatively small. In Chapter 4, we will design the system to reduce the 

fronthaul load caused by quantization. 
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Chapter 4 Quantization Position Design with C-RAN 

Fronthaul in Multiple Carrier Scheme 

 

 

4.1. Introduction 

In chapter 3 we have investigated a C-RAN system using single carrier modulation, 

considering especially quantization in the fronthaul network. In this chapter, we will 

design a system with a multi-carrier scheme using orthogonal frequency-division 

multiplexing (OFDM). Furthermore, we will develop the system and improve the 

transmission efficiency, especially at low modulation order. 

As we discussed in sections 3.3 - 3.4, the quantized signal with detection techniques 

generates error floors which are caused by the self-interference due to intermodulation 

produced by quantizing the mixed signals from multiple user terminals. Therefore, at 

the RRU, following RF processing then fast Fourier transformation (FFT) to separate 

data sub-channels of the orthogonal OFDM signal, a beam-former or other appropriate 

spatial filter can be applied to the signals from the multiple antennas of the RRU to 

separate to some degree signals from different users, which are either located in 

different directions or received via radio channels with different amplitudes and phases, 

which can be exploited to assist in the separation. The corresponding signals are then 

quantized to only that precision which is required according to the modulation being 

used by the user and on the sub-channels in question. The separation process gives each 

signal quantized contains mainly the signal from one user, with component signals from 

other users being reduced to low levels. This reduces the intermodulation effect due to 

quantization of a mixture of signals.   
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The bits representing the quantized signals are then transmitted over the fronthaul 

network to the BBU. At the BBU signals corresponding to the same user via different 

RRUs are combined in relative proportions according to the strength and accuracy of 

the signals. The remaining demodulation, decoding and other processing is performed 

at the BBU on the combined signals. 

In this chapter, using a multi-carrier scheme, we will investigate a system with 

quantization before FFT, and a system with quantization after beamformer. The 

transmission efficiency result for each system and the BER performance will be 

evaluated and compared. 

Furthermore, we will introduce three different channel models to the system: Rayleigh 

fading channel, Rician channel and Frequency Selective channel. We also develop the 

system by increasing the antenna diversity at each base station, and analyse how the 

diversity order will affect the error floor. 

4.2. System Design 

This section introduces two systems with C-RAN and fronthaul networks: quantize 

before FFT and quantize after beamformer. The former system is similar to the system 

introduced in chapter 3 but with a multi-carrier scheme. The latter system is developed 

based on the former system by choosing the quantizer and beamformer positions.  

4.2.1. Quantization before FFT 

Quantization before FFT, or signal sampling, is close to what we might describe as 

“classical” C-RAN: the signal is sampled directly at the antenna, or rather after down 

conversion to complex baseband, at a sample rate determined by the bandwidth of the 

OFDM multiplex. (Note that here we assume that the entire multiplex is used, and that 

all users employ the same modulation constellation). All baseband processing is then 

performed at the BBU on digitised signals from all RRUs which serve a given user or 
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group of users. First the FFT operation demodulates the OFDM multiplex, and 

following this we assume that a joint zero-forcing operation is performed on all signals 

from all cooperating RRUs, after which the signals are demodulated.  (Here we 

assume, for simplicity, that forward error correction (FEC) coding is not used).  This 

approach clearly minimizes the complexity of the BBU.   

 

Figure 4.1 C-RAN system with quantize before FFT 

The system is illustrated in figure 4.1, in which we assume that user terminals having a 

total of Nu antennas are served by NB RRUs each with Nr antennas. Note that the Nu 

antennas may in general be single antennas attached to Nu user terminals, or 

alternatively some terminals may have more than one antenna, in which each transmits 

an independent data stream using spatial multiplexing.   

The channel between the user terminals and the RRU antennas can in this case be 

described by a single ( )r B uN N N  matrix H. The joint beamforming matrix G using 

zero-forcing is then given by the pseudo-inverse of this matrix, i.e.  
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                    ( )
1

H H
−

=G H H H                     (4.1) 

4.2.2. Quantize after Beamformer 

 

Figure 4.2 C-RAN with quantize after beamformer 

In this system we assume that some of the baseband processing functions are performed 

at the RRUs. This is sometimes described as a split of the physical layer between the 

RRUs and the BBU. It has the disadvantage of increasing the complexity of the RRU. 

In this case we assume that each RRU includes the FFT, and then, operating on a per-

subcarrier basis, performs beamforming in order to separate the signals from different 

user terminals. Different beamformer algorithms are deployed in [84, 85]. Here we 

assume the beamformer operates a zero-forcing (ZF) algorithm [86], which nulls the 

interference between each user, potentially at the cost of enhancement of the thermal 

noise.  If the matrix between the user terminals and the ith RRU is , 1i Bi N=H , then 

the beamformer matrix in the ith RRU is  
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                            ( )H H

i i i i=G H H H                       (4.2) 

This forms an estimate ˆ
i i i=s G r  of the data symbols of each user at the ith RRU, where 

ri is the vector of received signals on the antennas of this RRU.   

The quantizer then operates on the signals corresponding to each user and each 

subcarrier. At the BBU the recovered signals from each RRU corresponding to the same 

user are combined according to the degree of noise enhancement that each has suffered: 

a maximum ratio combiner is used, in the sense that it maximizes the signal to noise 

ratio of the combined signal.  

Then the combined estimate: 
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              (4.3)  

where: 

         ( )( )( )
1

1 2 ; with diag diag H

L i i i

−

= =
C

G A A A A G G              (4.4)  

Note that ( )diag  here has the same properties as the MATLAB function: that is, 

( )diag A  where A is a matrix returns the diagonal as vector, and ( )diag a  where a is 

a vector returns a diagonal matrix with a as its diagonal. The inverse operation returns 

the element-by-element inverse. The combining matrix CG  is a block diagonal matrix 

which operates on a stacked vector containing all the signal estimates from the RRUs. 
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4.3.Performance on Rayleigh Channel 

We evaluate the performance of the two systems by simulation, determining the end-

to-end BER of each. First we assume a frequency-flat Rayleigh channel for the access 

links, with various modulation schemes, without FEC coding.   

 

 

Figure 4.3 Quantize before FFT: Nu = NB = Nr = 2; QPSK modulation with 6-10 extra 

bits 
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Figure 4.4 Quantize before FFT: Nu = NB = Nr = 2; 16QAM modulation with 4-10 

extra bits 
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Figure 4.5 Quantize before FFT: Nu = NB = Nr = 2; 64QAM modulation with 4-8 extra 

bits 

Figs 4.3-4.5 shows the BER performance versus Eb/N0 on the access links with 

quantize-before-FFT, followed by joint beamforming, in this case with Nu = NB = Nr = 

2, for simplicity, and for QPSK, 16QAM and 64QAM.  It shows that an error floor 

occurs, at which increasing Eb/N0 on access links no longer improves BER. The error 

floors are generated with the same reason with the system described in chapter 3: the 

signals on the antennas contain mixed signals from multiple terminals, and generate 

self-interference due to intermodulation, which degrades BER performance even in the 

absence of noise. To reduce this noise floor to a low enough level requires 12 

quantization bits for QPSK, 14 for 16QAM and 16 for 64QAM, which in each case 

means 10 extra bits on the fronthaul on top of the information bits conveyed. In each 

case the results are compared with the unquantized case to show the extent of the 
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degradation due to quantization. Of course the unquantized case is not practical as it 

would require an effectively infinite fronthaul load.   

 

Figure 4.6 Comparison of quantizer before FFT and after separate beamformer, 

and of joint and separate beamformer without quantization; Nu = NB = Nr = 2; QPSK 

with 16-level quantization (2 extra bits) 
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Figure 4.7 Comparison of quantizer before FFT and after (separate) beamformer, 

and of joint and separate beamformer without quantization; Nu = NB = Nr = 2; 

16QAM with 64-level quantization (2 extra bits) 
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Figure 4.8 Comparison of quantizer before FFT and after beamformer, and of joint 

and separate beamformer without quantization; Nu = NB = Nr = 2; 64QAM with 256-

level quantization (2 extra bits) 

Figs 4.6 - 4.8 compare the performance of the separate beamformers and combiner and 

the joint beamformer, and the effect of quantization in the two schemes with two extra 

bits, for QPSK, 16QAM and 64QAM respectively. They show that the joint 

beamformer has the better performance without quantization. This is because it 

achieves higher diversity: the joint processing means that the detector effectively has a 

total of r BN N  antennas, and hence the diversity order obtainable with linear 

detection is 1r B uN N N− + .  For the separate beamformer and combiner, however, the 

linear detector at each RRU can achieve diversity 1r uN N− + , and optimum combining 

at the BBU then gives a total diversity ( )1r u BN N N− + . However, with quantization 
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the latter has a very small performance degradation, of less than 2 dB with two extra 

quantization bits, whereas the former has a very high error floor. This is because 

quantization after beamformer separates the user signals before they are quantized, 

greatly reducing the intermodulation distortion. In terms of the outage analysis in 

section 3 above, quantization after beamforming does not suffer from outage, because 

the separate data streams do not interfere, and different combinations of symbols from 

two sources will not therefore fall into the same quantization region. 

 

Figure 4.9 Quantize-before-FFT (with joint beamformer): Nu = 4, NB = 2, Nr = 8; 

QPSK modulation with 2-6 extra bits 
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Figure 4.10 Quantize-before-FFT: Nu = 4, NB = 2, Nr = 8; 16QAM modulation with 2-

6 extra bits 
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Figure 4.11 Quantize-before-FFT: Nu = 4, NB = 2, Nr = 8; 64QAM modulation with 2-

6 extra bits 
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Figure 4.12 Quantize after (separate) beamformer: Nu = 4, NB = 2, Nr = 8; QPSK 

modulation with 2-4 extra bits 
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Figure 4.13 Quantize after beamformer: Nu = 4, NB = 2, Nr = 8; 64QAM modulation 

with 0-4 extra bits 
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Figure 4.14 Quantize-after-beamformer: Nu = 4, NB = 2, Nr = 8; 64QAM modulation 

with 0-4 extra bits 

Figures 4.9-4.14 give the same comparisons for a more realistic scenario with 8 

antennas per RRU, still with two RRUs, but now with four user terminals. This yields 

significantly larger diversity, which also reduces the error floor in the quantize-before-

FFT case. Now the error floor is sufficiently low (below 10-6) in this case with only 4 

extra bits, but there is a loss of around 3 dB at 10-6, while with 6 extra bits this is largely 

eliminated. We also investigate the effect of different numbers of extra bits in the 

quantize-after-beamforming scheme: we observe that there is a trade-off between the 

loss (compared to no quantization) and the number of extra bits. It is even possible to 

use zero extra bits without giving rise to an error floor, but the loss is then around 3 dB. 

We should note also that the extra diversity provided by the joint beamformer gives rise 

to approximately 4 dB improvement in performance (at 10-6), so that the BER 
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performance with 4 extra bits in the two schemes is then roughly comparable at this 

BER. However in this scenario, because the number of antennas is twice the number of 

users, the fronthaul load in the quantize-before-FFT scheme is twice that of the 

quantize-after-beamformer, even for the same number of extra bits.  

 

Table 4.1: Comparison of Quantize-before-FFT (QbFFT) and Quantize-after-

Beamformer (QaBF) for the two different scenarios and various modulation 

schemes, showing number of extra bits be used by quantizer, total transmitted bits for 

each symbol bt , required Eb/N0 for BER 10-6, and fronthaul transmission efficiency  

Table 4.1 summarizes the results for the two scenarios we have considered, comparing 

the transmission efficiency for the two schemes: that is, the ratio of total user data rate 

of users served by each RRU to the fronthaul load of that RRU. We observe that the 

quantize-after-beamformer scheme improves the transmission efficiency by a ratio 

between 30% and 32.1% with the scenario Nu = 2, NB = 2, Nr = 2, and an improved ratio 

between 15% and 16.7% with the scenario Nu = 4, NB = 2, Nr = 8. So that the additional 

overhead due to quantization is typically less than 50%.   There is however a penalty 

in the required Eb/N0 on the access link for the latter scheme: for the scenario Nu = 4, 

NB = 2, Nr = 8 this is only 1-2 dB; for Nu = 2, NB = 2, Nr = 2 it is between 7 and 9 dB, 

largely due to the greater diversity available using the joint beamformer.   
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4.4. Performance on Rician and Frequency-selective Channels 

Since in most cases a line-of-sight (LOS) signal will be available on the access links, 

the channels will be Rician rather than Rayleigh fading [52, 54]. Hence also it is 

necessary to account for the location of the user terminals and of the RRUs. This is 

illustrated in Fig. 4.15: we assume the terminals are uniformly distributed along a street 

between two RRUs, which are a distance a from the centre of the street, and a distance 

d apart.  The ith terminal is a distance xi along the street from one of the RRUs (which 

we will call the left hand RRU) and therefore a distance d – xi from the other. The 

antenna spacing at the RRUs is l and the wavelength is .  

 

Figure 4.15 Location of RRUs and terminals in Rician channel 

The response vector for the LOS component of the signal at the left hand RRU from 

the ith user terminal is given by:  

          ,

sin
exp 2 , 0 1i

i LOS r

l
j i N






  
= = −  

  
h                (4.5)  

where the angle of arrival at the left hand RRU:  

                  1tan i
i

x

a
 −  

=  
 

                            (4.6)  



Chapter 4 Quantization Position Design with C-RAN Fronthaul in Multiple Carrier Scheme 95 

The vectors ,i LOSh   then form the columns of the LOS channel matrix HLOS for this 

RRU. The matrix for the right hand RRU can be obtained using the same equations and 

substituting id x−  for xi.  The complete Rician channel matrix is then: 

          
1

1 1
Rice LOS Ray

K

K K
= +

+ +
H H H                      (4.7) 

where K is the Rice factor of the channel, which is the ratio of the power of the LOS 

component to the multipath component, and HRay denotes a matrix with independent 

complex Gaussian entries representing the Rayleigh fading channel.   

 

Figure 4.16 BER on Rician channel, random terminal positions, with different K-

factors 

Figure 4.16 shows the BER performance with ZF beamforming, in this case without 

quantization. With unlimited terminal positions, here the user terminal positions are 

random, uniformly distributed along the street. It shows, somewhat unexpectedly, that 
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performance degrades as K-factor increases, and reach the poorest performance with a 

pure Gaussian noise channel. However, this is because of the correlation between the 

response vectors from different users when the terminals are close together, which 

means that ZF results in large noise enhancement, as shown in figure 4.17. Here the 

signals from two users are correlated when the angles of arrival of their LOS 

components are very similar, which means that their LOS response vectors are very 

similar. It is low if the distance between them is more than 10 m, and rises again beyond 

40 m due to a grating lobe.   

Note that in Fig. 4.16 and all subsequent plots, Nu = NB = Nr = 2, distance between 

RRUs is d = 50m, distance a of RRUs from centre of street is 20m, and antenna spacing 

at RRUs l is equal to the wavelength .   

 

 

Figure 4.17 Noise enhancement factor in Gaussian channel versus distance 

between terminals 
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Figure 4.18 Quantize before FFT, Rician channel with various K-factors, 16QAM 

modulation with 4 extra bits 

 

Figure 4.19 Quantize after beamformer, Rician channel with various K-factors, 

16QAM modulation with 2 extra bits 
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Figure 4.20 Comparison of quantizer positions on frequency-selective channel, 

Rayleigh fading, Nu = 2, NB = 2, Nr = 2; 16QAM modulation with 2 extra bits 
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Figure 4.21 Comparison of quantizer positions on frequency-selective channel, 

Rayleigh fading, Nu = 4, NB = 2, Nr = 8; 16QAM modulation with 2 extra bits 

Fig 4.18 shows the performance in this case for quantize-before-FFT, with 16QAM 

modulation and 4 extra bits, where a substantial error floor is visible. Fig. 4.19 shows 

the result for quantize-after-beamformer, with 2 extra bits. Here an error floor is 

avoided, although a performance loss occurs with quantization which increases with K-

factor, reaching 3-4 dB for the Gaussian channel. This confirms the benefit of quantize-

after-beamformer also in the Rician case, for the full range of K-factors.  With a limit 

terminal positions, we propose that the distance between terminals sharing the same 

resources should be limited to a minimum of 10m, by reassigning resource blocks for 

closer users. This avoids excessive noise enhancement, and means that channels with 

higher K-factor give better BER. 
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Figure 4.22 Channel power-delay profile for frequency-selective channel 

Finally Figure 4.20 and figure 4.21 shows the BER performance for both quantizer 

positions for a frequency-selective Rayleigh fading channel with different antenna 

diversity, with an arbitrarily-chosen power-delay profile, shown in Figure 4.22. It 

suggests a similar comparison between the two schemes as for frequency-flat fading.   

 

4.5. Chapter Conclusion 

This chapter explored two C-RAN systems in fronthaul networks: quantize before FFT 

and quantize after beamformer. Each system is evaluated with multiple modulation 

schemes: QPSK, 16 QAM and 64 QAM. Additionally, a greater diversity scenario was 

considered in practice and simulated. Finally, the end to end BER performance for each 

system and scenario has been compared and analysed.  

For the system with quantize before FFT, with first scenario (Nu = 2, NB = 2, Nr = 2), 

because of the error floor which occurs, increasing Eb/N0 no longer improves BER and 

each BBU needs to transmit 8-10 extra bits to reduce the error floor to a low enough 

level (10-6 with BER). The number of required extra bits remain unchanged as higher 

and higher modulation levels are applied, thus the transmission efficiency improves. 

With the second scenario (Nu = 4, NB = 2, Nr = 8), the extra bits required are reduced 

by 4 bits (4-6 bits) compared with first scenario, resulting in an improvement of 
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transmission efficiency in the fronthaul network. Moreover, a higher diversity can 

greatly improve the BER performance.  

For the system with quantization after beamformer, in the first scenario (Nu = 2, NB = 

2, Nr = 2), the beamformer separates the user signals before they are quantized, and 

hence the error floor is removed. Two extra bits can easily achieve the required BER 

performance level (zero extra bits can also achieve the BER level, but requires higher 

Eb/N0), and improves the transmission efficiency significantly, especially with low 

level modulation schemes. When the system modulation level increases, the required 

extra bits still remains the same. As a result, a higher level modulation scheme also 

improves the transmission efficiency with this system. With the second scenario (Nu = 

4, NB = 2, Nr = 8), this system can also achieve the BER performance level with only 

0-2 bits, furthermore, the higher antenna diversity also improves the BER performance 

significantly.  

Moreover, two systems are evaluated with Rician channel and FSC channel. We 

conclude that the BER performances also benefit from the system with quantization 

after beamformer. With Rician channel, the BER performance is also affected by the K 

factor and the distance between terminal positions.  

Through the comparison of the performance results between two systems, on the one 

hand, one solution for improving the transmission efficiency is to increase the antenna 

diversity at each RRU, since we have observed that the extra bits required has dropped 

from 8-10 bits to 4-6 bits if we increases the number of receive antennas at each BBU. 

But increasing the antenna diversity also increases the complexity of the base stations. 

On the other hand, the second system with quantization after beamformer provides an 

obvious improvement of transmission efficiency, and the transmission efficiency at low 

modulation level is greatly enhanced. However, the second system also requires 

separation of the user signals by using a beamformer before quantization at each RRU, 
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which increases the complexity and costs for the base stations. Besides, as higher and 

higher modulation schemes are applied, the improvement rate of the transmission 

efficiency with the second system becomes diminished. If we assume the modulation 

level can be extremely high, the difference of transmission efficiency between two 

systems is negligible. However if this assumption is unrealistic and high modulation 

level also increases the fronthaul load, we will not accept the solution which increases 

the modulation level with first system. As a result, the second C-RAN system gives 

outstanding improvement on transmission efficiency in the fronthaul and will be used 

in the following work. 
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Chapter 5 Physical Layer: Error Control in 

Fronthaul 

 

 

5.1. Introduction 

In the previous system design, we assumed the transmission between RRUs and BBU 

is a lossless "bit pipe". In this chapter we will introduce errors and investigate the effect 

of errors in transmission of the quantized data over the fronthaul network, to evaluate 

the error rate requirements for this network as well as its capacity requirements. It may 

be appropriate to combine the quantized data into packets for transmission over the 

fronthaul network, especially for the purposes of error control. This packetization may 

cause additional latency, and so we also address here the effectiveness of error control 

[59] measures such as error detection and error correction coding [58] as a function of 

packet length. Error correction coding results in increased fronthaul load because of the 

additional code parity bits required, but the throughput efficiency is increased with 

increased packet length. This results in a trade-off between throughput efficiency and 

increased latency [59].   
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5.2. System Structure 

 

Figure 5.1  Fronthaul error handling 

Figure 5.1 shows the error-handling options for fronthaul. We consider two methods of 

error control, both based on packetization of the fronthaul data. The first is to detect 

packet errors using error-detection coding (such as cyclic redundancy check – CRC 

[56]) and to discard any erroneous packets; the second is to apply error correction 

coding. Note that if a packet is discarded from one RRU, the BBU may still be able to 

recover the transmitted data using the corresponding packet from another RRU. These 

methods are compared with no error control: allowing erroneous packets to be 

forwarded and combined.   

Note that all the simulations reported in the following system design use 16 QAM 

modulation and 4 extra bits of quantization (256 levels).  We assume that an end-to-

end error floor of 10-6 is acceptable.   



Chapter 5 Physical Layer: Error Control in Fronthaul 105 

5.2.1. Error Detection Coding Approach 

The first method of error control is to apply an error detection code to the system, which 

only detects the errors from the received packets at the BBU. Once any packet errors 

are detected, the system will discard the erroneous packet and use the corresponding 

packet from the other RRUs. If all of the corresponding packets contains errors, then 

the system will discard all of these packets, which results information loss of user 

signals. The system will need to re-transmit these packets. The system flowchart is 

illustrated in figure 5.3. 

The cyclic redundancy check, or CRC, is a technique for detecting errors in digital data, 

but not for making corrections when errors are detected. It is used primarily in data 

transmission. In the CRC method, a certain number of check bits, often called a 

checksum, are appended to the message being transmitted. The receiver can determine 

whether or not the check bits agree with the data, to ascertain with a certain degree of 

probability whether or not an error occurred in transmission. If an error occurs, the 

receiver at the BBU will consider asking the sender to retransmit the message or just 

discard the erroneous data.  

 

Figure 5.2 CRC generator and checker 



Chapter 5 Physical Layer: Error Control in Fronthaul 106 

 

Figure 5.3 System flowchart with CRC codes 

In figure 5.2, the system first computes an n bit binary CRC, then k data bits are encoded 

into N code bits by appending the n bit code and forming the codeword. Once the 

codeword is received at the BBU node, the system computes the remainder by using 

the whole codeword and the same polynomial as at transmitter. If the remainder is zero, 

this means the data is received without any errors. If the reminder is not zero, it means 

that the received data contains errors [59].  

If is a prime number, then a field consists of a set of 
k  elements for any k, which 

known as Galois fields and denoted with GF (
k ). Then each element can be 

represented by a polynomial expression: 

         1 2

1 2 1 0...k k k

k ka x a x a x a − −

− −= + + +                (5.1) 

where the coefficients
1ka −
 to 

0a  take the values in the set {0, 1, …, 1 − }. In coding 

applications,  is commonly 2, thus the coefficients are taken from the binary digits 

{0, 1}. Thus 2k field elements correspond to the 2k combinations of the k-bit number.  

The addition of two field elements can be represented with [59]: 

       

1 2 1 2

1 2 1 0 1 2 1 0

1 2

1 2 1 0

( ... )+( ... )

= ...

k k k k

k k k k

k k

k k

a x a x a x a b x b x b x b

c x c x c x c

− − − −

− − − −

− −

− −

+ + + + + +

+ + +
        (5.2) 

where ci = ai + bi. Because the coefficients only take values 0 and 1, we have: 
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0

1

i i i

i i i

c for a b

c for a b

= =


= 
                       (5.3) 

which producing the bit-by-bit exclusive-OR function of two binary numbers. With 

CRC code, the data bits: 
1 2 1 0[ ... ]k km m m m− −=m  can be represented with [59]: 

        1 2

1 2 1 0( ) ...k k

k kx m x m x m x m− −

− −= + + +m                 (5.4) 

while appended bits:
1 2 1 0[ ... ]k kr r r r− −=R  can be represented with [59]: 

       1 2

1 2 1 0( ) ...k k

k kx r x r x r x r− −

− −= + + +R                     (5.5) 

and hence codeword bits [59]:  

        
1 2 1 0 1 2 1 0 1 2 1 0[ ... ] [ ... ... ]k k k k k kc c c c m m m m r r rr− − − − − −= =C           (5.6) 

which can be represented by [59]: 

              1 2

1 2 1 0( ) ...k k

k kx c x c x c x c− −

− −= + + +C                (5.7) 

= ( ) ( )nx x x+m R  

 

5.2.2. Error Correction Coding Approach 

The second method of error control is to apply forward error correction (FEC) 

techniques, which encodes the message in a redundant way by using an error correction 

code (ECC). Many different ECC types can be used to correct the errors occur in 

transmission, however, Reed-Solomon code (RSC) is introduced with [60, 61], which 

provides a good compromise between transmission efficiency (the proportion of 

redundant part required) and complexity (the difficulty of encoding and decoding).  

The Reed-Solomon code is a block code, which divides the transmitted message into 

separate blocks of data. Each separate block is encoded by adding parity protection 

symbols: the structure is shown in figure. 5.4. 
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Figure 5.4 Reed-Solomon code definitions 

In figure 5.4, the encoder inputs with k symbols of m bits each, then adds the parity 

symbols and outputs the n symbol codeword. At the decoder, the Reed-Solomon code 

can correct up to t symbols which contain errors in the received codeword. The error 

correction capacity (ECC) t can be represented with [60]: 

          
2

n k
t

−
=                               (5.8) 

where n is the codeword length and k is the number of transmitted symbols. The encoder 

and decoder of the Reed-Solomon code is based on Galois (Finite) fields, which carry 

out the arithmetic operations such as addition, subtraction, multiplication and division.  

The received codeword R(x) can be represented with [60]: 

               ( ) ( ) ( )R x T x E x= +                         (5.9) 

where E(x) is an error polynomial can be represented with [60]: 

              1

1 1 0( ) ...n

nE x E x E x E−

−= + + +                    (5.10) 
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Each of the coefficients is an m-bit value, represented by an element of GF (2m). If more 

than t of the E values are non-zero, then the error number exceeds the correction 

capacity and those errors cannot be corrected. 

Similarly with CRC encoder, remainders can be calculated by dividing a generator 

polynomial. The syndromes can be calculated by substituting the 2t roots of the 

generator polynomial into R(x). 

To find the symbol error location, the Reed-Solomon decoder uses several algorithms 

such as the Euclidean algorithm and the Chien search algorithm [63]. Euclid's method 

[59] [60] is used to find the error locator polynomial, and the Chien search algorithm is 

used to find the roots of this polynomial. To calculate the error values, the Forney 

algorithm can be used [71]. The process of decoding to use these algorithms is 

illustrated in figure 5.5. 

 

 

Figure 5.5 Main processes of a Reed-Solomon decoder 

After applying Reed-Solomon codes to the system, since the error correction capacity 

might be exceeded and the errors might not be corrected, we still need to apply the CRC 

code to detect if any errors still exist after the correction approach. Figure 5.6 illustrates 

the flowchart applied with RSC and CRC codes.  
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Figure 5.6 System flowchart applying RSC and CRC codes 

5.3. Simulation Results 

In this section, we have evaluated the two error control systems in section 5.2 by giving 

multiple BER levels in fronthaul network: the higher the fronthaul BER, the more errors 

are generated with transmission. With the first system, we compare the end-to-end BER 

performance when discarding or forwarding the erroneous packets. With the second 

system, we explore the performance obtained by giving different ECC (Error 

Correction Capacity) with RSC code, also with different numbers of symbols to be 

encoded. In this way, we will test the throughput efficiency in those scenarios. 

Furthermore, we will evaluate these two systems by improving the antenna diversity at 

each RRU. 
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5.3.1. Simulation Results with CRC code 

 

Figure 5.7 Comparison with different BER level in fronthaul; Without error 

correction code; Quantize-after-beamformer; Nu = 2, NB = 2, Nr = 2 

Figure 5.7 shows the end-to-end BER performance with different error rates in the 

fronthaul, assuming that the system transmits and combines the erroneous packets with 

the other packets directly with no error control. Obviously, the BER performance 

degrades as the fronthaul error rate increases. We note that the end-to-end error floor is 

slightly above the fronthaul BER: the error floor is acceptable (below 10-6) only when 

the fronthaul BER is less than 10-6. 
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Figure 5.8 With and without erroneous packets discarded; Quantize-after-

beamformer; Nu = 2, Nb = 2, Nr = 2 

 

Figure 5.8 shows the BER performance with the system discard erroneous packets. It 

can be observed that this gives significantly worse end-to-end performance than no 

error control.  Discarding a whole erroneous packet means discarding many correct 

bits along with a few erroneous ones. Furthermore, if the packets from both RRUs 

contain errors, the entire source data packet will be lost. The green line shows the 

scenario with fronthaul BER reach to 10-6, and it can be seen that the BER performance 

is very close to the scenario without any fronthaul errors. Thus we conclude that if the 

fronthaul BER is better than 10-6, then no error control is required. This also means that 

no additional latency need be introduced due to fronthaul packetization.   
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5.3.2. Simulation Results with RSC code 

 

Figure 5.9 With error correction code; Quantize-after-beamformer; Nu = 2, NB = 2, 

Nr = 2 
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Figure 5.10 With error correction code; Quantize-after-beamformer; Nu = 2, NB = 2, 

Nr = 2 
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Figure 5.11 With error correction code; Quantize-after-beamformer; Nu = 2, NB = 2, 

Nr = 2 

Figure 5.9 - Figure 5.11 show the BER performances with error correction codes for 

different fronthaul error rates. We use Reed-Solomon codes (RSC) here to correct the 

errors with different error correction capacities (ECC), see equation 5.8. Here we 

compare the performance with different ECC of the RSC, that is where different 

numbers of bit errors can be corrected: with fronthaul error rate 10−5, only single bit 

error correction is required to reach the required end-to-end BER (10−6), while error 

rate  10−4 will require ECC of at least 2 and error rate 10−3 will require at least 5. 

Clearly the higher the fronthaul error rate, the greater the ECC is required. 
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5.3.3. Simulation Results with Different Scenarios 

 

Figure 5.12 With and without erroneous packets discarded; With error correction 

code; Quantize-after-beamformer; Nu = 2, NB = 2, Nr = 2 

Figure 5.12 shows the effect of discarding packets which still contain errors after error 

correction, due to the limited ECC. It shows again that discarding errored packets 

results in further degradation of the end-to-end BER performance. It shows also a small 

variation in the required Eb/N0 on the access network to achieve end-to-end BER 10-6.   
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Figure 5.13 Comparison with different length of transmitted data. With error 

correction code; Quantize-after-beamformer; Nu = 2, NB = 2, Nr = 2 

Figure 5.13 shows the end-to-end BER performance as a function of the data length and 

ECC. For a given ECC, increasing data length degrades performance: hence larger ECC 

is required for longer data. If the packet contains 13 symbols data, ECC of 1 can meet 

the required BER. If the data length increases to 26 symbols, it will require ECC of at 

least 2. Note however that for a given code rate, the longer the data, the greater the ECC 

can be achieved.   
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Table 5.1 Comparison of throughput efficiency with different data lengths and 

fronthaul error rate, giving minimum error correction capacity and minimum 

Eb/N0 to meet the required BER 

Table 5.1 shows the relationship between fronthaul BER, data length and throughput 

efficiency, defined as the ratio of quantization bits to the total number of bits transmitted 

on the fronthaul (including the code parity bits). The effect of error correction coding 

will be to further increase the fronthaul load by the inverse of the throughput efficiency. 

Note that in general the required number of code parity bits depends on the ECC, and 

hence for given ECC the throughput efficiency increases with data length.   

For a given fronthaul error rate, the longer the packet length, the higher the throughput 

efficiency that can be achieved, and so the smaller the increase in required fronthaul 

capacity. However the packetization will result in additional latency.  There may also 

be a small increase (of a few dB) in the required Eb/N0 on the access network.   
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Figure 5.14 Without error correction code; Quantize-after-beamformer; Nu = 4, 

NB=2, Nr = 8 
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Figure 5.15 With error correction code; Quantize-after-beamformer; Nu = 4, NB = 2, 

Nr = 8 

Figure 5.14 and figure 5.15 give the BER performance for a more realistic scenario 

with four antennas per RRU, two RRUs and four user terminals. Figure 5.14 shows the 

effect of different fronthaul error rates, without and with error correction respectively, 

which gives a similar BER performance as that of the previous scenario shown in 5.7. 

Figure 5.15 shows the minimum ECC required with different fronthaul error rates. After 

applying error correction technique to the system, with adequate ECC, the performance 

can always meet the required end-to-end BER. 

5.4. Chapter Summary 

Therefore, we can conclude that, if the fronthaul error rate is lower than 10-6, the system 

can transmit and combine the erroneous packets without any error detection or 

correction techniques, and can still meet the required end-to-end BER. If the fronthaul 
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error rate is higher than 10-6, then to achieve the required end-to-end BER fronthaul 

error correction coding is necessary. Erroneous packets, either in the uncoded case or 

after error correction decoding, should not be discarded since this always degrades 

performance. Where error correction is necessary, increased data length will increase 

throughput efficiency (and thus reduce fronthaul load), but will increase latency. 
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Chapter 6 Compression Techniques  

 

 

6.1. Introduction  

The data received at each RRU are sent by the same user terminals. We can consider 

the received data at each RRU are correlated with each other. With this scenario, a 

Slepian-Wolf code can be applied to the system which allows the data from each RRU 

to be compressed and transmitted to the BBU, which increases the spectral efficiency 

and further reduces the fronthaul load. In this chapter, we will implement a Slepian-

Wolf code to the RRU and BBU, and test the transmission rate of the system. 

The Accumulate-Repeat-Accumulate code (ARA) [68] and the Super-Turbo code [66] 

are two methods to implement Slepian-Wolf code, that use different methods to reduce 

the transmit rate: the ARA code uses CNE (see section 6.3.1) to reduce the transmit rate 

and the Super-Turbo code uses puncturing to reduce its transmit rate. According to [66, 

68], Super-Turbo has greater complexity and very close compression rate with ARA 

code, we decide to use ARA code to implement the Slepian-Wolf code[87]. 
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Figure 6.1 System structure with Slepian-Wolf code applied 

In figure 6.1, at RRU, with each base station, the quantized signals are compressed by 

the Slepian-Wolf encoder. Then the signals from stations are transmitted 

simultaneously to the BBU. At the BBU, the compressed data are detected and 

decompressed by the Slepian-Wolf decoder.  

For the following design work, we consider only a 2x2 MIMO system model between 

the user terminals and RRUs. Thus we have two users and two RRUs. The channel we 

assume is independent Rayleigh fading, with perfect CSI at receiver. 

6.2. Slepian-Wolf Overall Structure 

The Slepian-Wolf code generally includes following structure: (details are introduced 

in [48, 66, 67, 68, 69]): 

 The sources from different base stations are randomly interleaved before being 

independently encoded (see Figure 6.2). 
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 At BBU, a joint decoder performs iterative decoding with soft-in and soft-out 

decoders [70] (See Figure 6.3). 

 Each source has a separate iterative decoder, then exchange the extrinsic 

information between the decoders in each source by using the Log likelihood Ratio 

(LLR) updating function. (See equation 6.1 and 6.2). 

 

Figure 6.2 Slepian-Wolf encoder implementation 

 

Figure 6.3 Slepian-Wolf decoder implementation; 1̂c and 2ĉ  are the coded 

messages 1C  and 2C  in Figure 6.2. 1̂s and 2ŝ  are the estimated output of data 1S

and 2S in Figure 6.2  
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In figure 6.3, the LLR updating function is one of the most crucial steps in Slepian-

Wolf code implementation. When the corresponding extrinsic information from each 

source are worked by the iterative decoder, the system will input the extrinsic 

information to the LLR updating function, which will produce the priori information 

for the other source. The LLR updating algorithms are defined with [68, 87] 

                 ˆ( 0) (1 ) ( 0) ( 1)Pr b p Pr b pPr b= = − = + =                (6.1) 

             ˆ( 1) (1 ) ( 1) ( 0)Pr b p Pr b pPr b= = − = + =                (6.2) 

where 

     
Number of bits that are different between detected messages 

Length of the overall message
p =        (6.3) 

is the bit difference probability between two base stations, Pr(b=0) and Pr(b=1) are the 

probability of a particular bit being 0 and 1 in one source, ˆ( 0)Pr b =  and ˆ( 1)Pr b =

are the probability of the corresponding bit being 0 and 1 in the other source [87]. 

For the iterative soft-in/soft-out decoders, the LLR updating function can be rewritten 

as [68] 

        
ˆ (1 )exp( )

ln
(1 ) exp( )

b
b

b

p L p
L

p p L

− +
=

− +
                     (6.4) 

where 
b̂L  and bL  are bit log likelihood ratio from each base station. 

The probability of difference p in equation (6.4) can be estimated by the following 

algorithm [68]: 
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n
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=

+ +
                     (6.5) 

where N is the number of bits in one frame. 

6.3. Accumulate-Repeat-Accumulate Code 

The Accumulate-Repeat-Accumulate (ARA) code is built base on the Repeat-

Accumulate (RA) code [69]. The ARA code contains two part codes: outer code and 

inner code, the outer code is structured with the variable node encoder (VNE) and the 

doped accumulator and inner code is structured with the check node encoder (CNE). 

Finally, the outer code and the inner code are connected by an interleaver [87]. The 

ARA encoder and decoder structures are shown in Figure 6.4 and Figure 6.6. 

6.3.1. Accumulate-Repeat-Accumulate Encoder  

The encoder of the ARA code consists three components: doped accumulator, variable 

node encoder (VNE) and check node encoder (CNE). 

The accumulator is a memory one recursive convolution encoder [72], that by using 

doping technique to improve the decoding convergence in the iterative decoding 

procedure. The output of a doped accumulator consists of the original information bit 

from S and coded bits from C: if doping period is P (positive integer), the output is S 

with every Pth bit replaced by the corresponding bit in C. ARA encoder has two doped 

accumulators: outer accumulator and inner accumulator. The outer accumulator is 

attached to the source and only be activated when the correlation of two sources is low. 

The inner accumulator is attached to the antenna and only be activated when SNR is 

low [48, 87]. The structure of the doped accumulator is shown in Figure 6.5. 

The VNE is a repetition code, which repeats the input bits for multiple times and then 

outputs them. The repeat times of the input bits is named as the degree. If a different 
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portion of the input bits are repeated in different repeatation numbers, this kind of VNE 

is called an irregular VNE [87].  

The CNE is a parity check code. It takes the input bits and output the results by 

performing modulo 2 addition on them. The number of bits that participate in the 

modulo 2 addition is called the degree. Similar with VNE, if a different portion of the 

input bits have different degrees, then this kind of CNE is referred to as an irregular 

CNE [87].  

The interleaver used in figure 6.4 is a random interleaver defined with ,
1 and

2 , 
1

and
2 takes the output of the VNE and randomly shuffles the input bits, then outputs 

the results to the CNE [87]. 

 

Figure 6.4 Accumulate-Repeat-Accumulate encoder, , 1 and 2 are interleavers  
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Figure 6.5 Doped accumulator 

6.3.2. Accumulate-Repeat-Accumulate Decoder  

The decoder of the ARA code consists four components: de-accumulator, variable node 

decoder (VND), check node decoder (CND) and LLR updating function. Each of these 

component decoders takes the LLR as input and output. 

The de-accumulator is the decoder for the accumulator. Here the de-accumulator can 

use the simplified version of the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [74].  

A degree n variable node decoder takes n+1 inputs, which consists one information bit 

and n coded bits. The corresponding output value ,i outL is to add the rest of the input 

values ,j inL  together [87]. 

          , ,i out j in

j i

L L


=                       (6.6) 

A degree n check node decoder takes n+1 inputs which consists one coded bit and n 

information bits. The corresponding output ,i outL  applies the "box plus" function [76] 

to the rest of the input values ,j inL  

          , ,= (i out j in

j i

L L


田 ）              (6.7) 
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The rules for "box plus" are defined as [76, 87]: 

( ) ( )u uL L =田                          

( ) (- ) -u uL L =田  

( ) (0) 0uL =田  

                 
1

1

1

1 tanh( ( ) / 2)

( ) log

1 tanh( ( ) / 2)

J

jJ
j

j J
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j
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L u

L u
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−

=

−

+

=

−





田                  (6.8) 

 

Figure 6.6 Accumulate-Repeat-Accumulate decoder,  , 1 and 2 are 

interleavers, and
-1 , -1

1 and -1

2 are de-interleavers  
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In figure 6.6, the vertical loop represents the separate decoding at each BBU, whereas 

the horizontal loop represents the exchange of extrinsic information between two 

individual decoders. 

In the ARA decoding process, each individual vertical loop takes place several times, 

and then a horizontal loop takes place once between two vertical loop outputs. This 

process is regarded as one joint decoding loop. In order to decode a frame successfully, 

the system normally needs several joint decoding loops, and the number of loops 

depends on the compression rate and the SNR [87]. 

 

6.4. Simulation Results and Analysis 

To analyse the performance of Slepian-Wolf code in the system, we compute the total 

transmission rate Tr as: 

            1 2

1 2

c c
r

s s

N N
T

N N

+
=

+
                          (6.9) 

and the compression rate Cr as: 

            1 2

1 2

s s
r

c c

N N
C

N N

+
=

+
                        (6.10) 

where 1cN  and 2cN  are the size of compressed bits for each source. 1sN  and 2sN are 

the size of uncompressed data bits for each source.   
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Figure 6.7 Program design flowchart 

Figure 6.7 illustrates the flowchart of program design. At the Slepian-Wolf encoder of 

each source, the system has set compression parameters with N level compression ratios 

from C1 to CN , and outputs the compressed data with compression ratio Cn, 

{0,1, 2, 3, ..., }n N . C1 has the least compression ratio and CN has the greatest 

compression ratio. Each time signal bits are input to the encoder. It starts to compress 

the signal bits with the largest compression ratio CN . Then the compressed signal is 

sent to the joint Slepian-Wolf decoder. The joint decoder de-compresses the received 

signals and detects the bit errors. If the number of detected errors is over the threshold 

limit (here we use 100 bit errors as the threshold), the system defines this compression 

ratio CN as too high and the compression process as failed. Next the system sends 

feedback to the encoders to activate a lower level compression ratio CN-1.  The system 

will repeat this loop until the number of detected errors at the decoder is below the 

threshold, and finally the joint decoder stores the de-compressed signal bits at a frame 
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buffer. However, the system may still fail the compression with the least compression 

ratio, especially with very low correlation between two sources. For this case, each 

RRU will transmit the uncompressed signal frame to the BBU, and we define the 

probability of these uncompressed frames occurring as "compression failure rate".       

To simulate the Slepian-Wolf code in our system, BPSK modulation and an 8 level (3 

bit) quantizer are used in the following simulations. Each user terminal sends 10000 

binary bits. After the quantizer at each RRU, there are 60000 bits before compression.  

The data transmission rate from RRUs to BBU is shown in Figure 6.8. The red line 

represents the actual data transmission rate and the blue line represents the joint entropy 

with two sources. As SNR increases the transmitted data from the two sources become 

highly correlated with each other, which improve the mutual information and lowers 

the joint entropy [See equation 2.21]. The highest compression rate reaches 1.4 at 40dB. 

Therefore, as the formation in common between the two sources increases, the 

compression rate of Slepian-Wolf code increases. Figure 6.9 shows the compression 

failure rate against SNR. When the SNR is less than 15dB, the data from the two sources 

has low correlation, and thus the system is unable to compress and de-compress the 

data.   
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Figure 6.8 Compression rate with Slepian-Wolf code 

 

Figure 6.9 Compression failure rate with Slepian-Wolf code 
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6.5. System Development 

In the previous simulations, the system tried to compress the binary data from two 

sources simultaneously, and the binary bits in each source are compressed with equal 

compression ratio. The compression ratio is defined by the parameters at the VNE and 

CNE. For example, if we define the parameter of the VNE as (30%(2), 70%(3)) , this 

means that 30% of the bits at VNE in each source will do the repetition process twice, 

and 70% of binary bits will do the repetition process three times. The ratio and 

repetition numbers produce different numbers of output bits. In the system design, the 

VNE process increases the data size, while the CNE reduces the data size and 

compresses the signal. Once the VNE parameters are fixed, the system will try to 

compress the two correlated sources by adjusting the CNE parameters. 

Assuming the system uses an 8 level quantizer, each quantized signal can be 

represented with 3 bits, and all of them are compressed with equal compression ratio. 

However, these three bits have different significance. We say the first bit is the most 

significant bit (MSB), the second bit is the second significant bit (SSB) and the third 

bit is the least significant bit (LSB). The structure is shown in Figure 6.10. 

 

Figure 6.10 Each symbol is quantized with 8 level quantizer and output 3 binary 

bits: MSB, SSB and LSB 
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MSB, SSB, and LSB can be compressed with different compression ratio by giving 

different parameters with VNE. In system design and simulations, they can be 

separately compressed and de-compressed.  

 

Figure 6.11 Compression rate comparison between joint transmission ratio and 

separate transmission ratios. The joint transmission uses the VNE parameters 

(30%(2) 70%(3)), and the separate compression uses the VNE parameters with 

MSB(70%(2) 30%(3)), SSB(15%(2) 85%(3)) and LSB (5%(2) 95%(3))). 

In Figure 6.11, the black line represents the overall transmission ratio with different 

compression ratios for MSB, SSB and LSB, and the red line represents the transmission 

ratio with joint compression. At low SNR, the separate transmission ratio scheme 

improves the transmission rate significantly and efficiently, and the two correlated 

sources are compressed successfully from 5dB. The blue line represents the 

compression rate with MSB, due to the larger significance of the MSB, the common 

information in the MSBs from two sources has greatly increased, which results in 

greater compression of the two sources.  



Chapter 6 Compression Techniques 136 

6.6. Chapter Summary 

Based on the simulation results from this chapter, with the joint compression scheme, 

the compression ratio can achieve up to 1.4 at 40dB which means that 30% of the data 

bits are compressed from the two correlated sources. The deficiency of this scheme is 

that the system is unable to compress the sources at low SNR properly. With the 

separate compression ratio scheme, even if the SSB and LSB parts cannot be 

compressed by the system at low SNR, due to the greater robustness of the MSB part, 

which causes high correlation between the two MSB parts from each source, the binary 

data from two sources can still be partly compressed at low SNR. 

For the future work of this chapter, more VNE parameters will be tested, and the 

compression bound of this compression scheme will be explored. As part of the 

potential development of the separate compression scheme, the system can consider to 

discard the LSB frames even the second least significant bit (SLSB) frames, especially 

with higher level of quantization, because the LSB frames have very little impact on 

the constellation of quantized symbols. 
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Chapter 7 Conclusions and Further Work  

 

 

7.1 Summary of the Achievements  

In this section we review the previous work in this project and summarise the 

contributions made for C-RAN system design in fronthaul network. 

 In chapter 3, we have set up the basic C-RAN system and analysed the effect of 

quantization with different modulation schemes and detection techniques. We 

concluded that quantization of the received symbol will cause an error floor in the 

BER performance to the recovered data bits. Then we have evaluated different 

detection techniques that are located at the BBU processing centre. Multiple levels 

of quantization at each RRUs are tested with different detection approaches. Finally 

ZF is chosen to be applied in the following system design because of its low 

complexity and acceptable end-to-end BER performance. Moreover, we determine 

that with the ZF detection approach, the system needs to transmit at least 10 more 

extra bits to low the error floor and achieve the expected end-to-end BER 

performance. A higher level of modulation scheme can improve the transmission 

efficiency but it still suffers a high fronthaul load. 

 In chapter 4, we have developed and proposed two C-RAN system by changing the 

positions of quantization in RRUs: quantize before FFT and quantize after 

beamformer. The system with quantize after beamfomer finally removes the error 

floor occurs in the system which occurs with quantize before FFT (as in chapter 3), 

and the extra bits required with this system have been reduced to 2. The 

transmission efficiency is significantly improved, especially for low modulation 

levels.  



Chapter 7 Conclusions and Further Work 138 

 In chapter 5, we have explored and evaluated two error control approaches in the 

fronthaul network. The first approach only detects errors from received frames 

using a CRC code. The second approach detects and corrects errors using both 

CRC code and RS code. We have also explored the two approaches and tested the 

system with erroneous packets being discarded or not discarded. Finally we 

conclude that if the fronthaul error rate is lower than 10-6, the system can transmit 

and combine the erroneous packets without any error detection or correction 

techniques, and can still meet the required end-to-end BER. Erroneous packets, 

either in the uncoded case or after error correction decoding, it should not be 

discarded since this always degrades performance. 

 In chapter 6, we have designed and applied a compression technique (Slepian-Wolf 

code) to the C-RAN system. The compression rate for the system has been 

evaluated. The deficiency of this scheme is that the system is unable to compress 

the sources at low SNR properly, because of low correlation between the two 

sources. When Eb/N0 reaches 40dB, the transmission rate can achieve 1.4 after 

compression, which reduces the fronthaul load by 30%. 

We have proposed a C-RAN system exploring the quantization level and positions, 

modulation schemes, antenna diversity, error control methods (error detection and 

correction codes) and compression techniques (Slepian-Wolf), and give solutions to 

improve the transmission efficiency and reduce the fronthaul load. However, there are 

still some aspects that can be improved with our design.  

7.2 Future Work 

 For the system model we current set up in chapter 4, we evaluated performance 

with 2 and 4 antennas at each base station: a larger number of antennas diversity 

can be applied to the system, and also with more user terminals may be included. 

 For the quantization design, we use uniform quantization in our system. A more 

advance quantizer such as lattice quantizer [91] can be applied to the system. 
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 For the theoretical analysis, the quantization effect on ZF detection method with 

complex channel can be developed.  

 More advanced beamformer algorithms [83, 84] can be applied to the system with 

quantize after beamformer.  

 For the compression scheme with C-RAN system, more parameters with VNE and 

CNE should be tested: the combination between the two parameter settings will 

produce different transmission rate. To maximum the compression rate, Curve-

Fitting method can be studied and designed in our system [37]. 

 As regards compression techniques, a Wyner-Ziv compression approach [88, 89] 

can be designed and applied to the system. Different from lossless compression in 

Slepian-Wolf theorem, Wyner-Ziv theorem looked into the lossy compression case. 

The Wyner–Ziv theorem presents the achievable lower bound for the bit rate at 

given distortion. It was found that for Gaussian memoryless sources and mean-

squared error distortion, the lower bound for the bit rate remains the same no matter 

whether the side information Y is available at the encoder or not. The approach of 

Wyner-Ziv is illustrated in figure 7.1 

 

Figure 7.1 Wyner-Ziv compression approach 
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Appendix 

 

 Four Points in outage 

 

There are two cases: four points in region B, and four points in edge region D or region 

A. 

Case 4a 

 

 

 

Case (4a-1): 

1110 is on border; 1111 is not (and note Im1 < 0). Hence if Re[1100] is within the 

threshold, Im[1101] certainly is. Thus we only have one threshold: 
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Case (4a-2): 

1111 is on border; 1110 is not (and note Im1 > 0). Hence if Re[1101] is within the 

threshold, Im[1100] certainly is. Thus we again have only one condition: 
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Case 4b 
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Case (4b-1): 

1110 is on the border, which means that the four points must be in region D. Outage 

occurs if: 
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Case (4b-2): 

1111 is on the border, which means that the four points must be in region A. Outage 

occurs if: 
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Three points in outage 

For the three points in outage case, there are 7 cases for three possible received symbols 

in the same region. 

Case 3a 

 

 

Case (3a-1): 

1110 is on border; 1111 is not (and note Im1 < 0), 1100 will lie in region D and 1101, 

1110 and 1111 will lie in region B if: 
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Case (3a-2): 

1111 is on border and 1110 is not (and note Im1 > 0). 1101 will lie in region A and 

1111, 1100 and 1110 will lie in region B if: 
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Case 3b 

 

Case (3b-1): 

1110 is on the border. 1101, 1110 and 1100 will lie in the region D, and 1111 will lie 

in region B if: 
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Case (3b-2): 

1111 is on the border. Points 1111, 1101 and 1100 will lie in region A, 1110 will lie in 

region B if: 
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Case 3c 

 

 

 

 



Appendix 148 

Case (3c-1): 

1110 is on the border. Three points (1111, 1110 and 1100) will lie in the region D, 1101 

will lie in region C if: 

         

( )

( )

( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

Re 1111 & Im 1111 & Re 1100 & Im 1100 0& Re 1101

1
Re Im Re Im Re Im Re Im 1 &

1

1
Re Im Re Im Re Im Re Im 1 &

1

1
Re Im Re Im Re Im Re Im 1 &

1

Re Im Re Im

th th th thq q q q

l

l

l

    

 
− + −  − + + − 

− 

 
+ + +  − + + − 

− 

 
− − +  − + + − 

− 
+ − − 

( )

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2 1

0&

1
Re Im Re Im Re Im Re Im 1 ;

1

1 Re Im Re Im Re Im Re Im 2 &

1 Re Im Re Im Re Im Re Im 2 &

1 Re Im Re Im Re Im Re Im 2 &

Re Im Re Im 0&

1 Re Im Re Im Re

l

l l

l l

l l

l

 
− − −  − + + − 

− 

− − + −  − + + −

− + + +  − + + −

− − − +  − + + −

+ − − 

− − − −  ( )( )

( )
( )
( )

( )( )

1 2 2

1 1 2 2

1 2 2 1

1 1 2 2

1 1 2 2

1 1 2 2

Im Re Im 2 ;

Re Im Re 2 3 Im 0 &

Re Re Im 2 3 Im 0&

Re Im Im 2 3 Re 0 &

Re Im Re Im 0&

Re Im 2 3 Re Im 0

l

l

l

l

l

− + + −

− + − − 

+ + + − 

− + − − 

+ − − 

− − − + 

 

Case (3c-2): 

1111 is on the border. Three points (1111, 1110 and 1101) will lie in region A, and 

1100 will lie in region C if: 
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+ − − + 

 

Case 3d 

 

 

Case (3d-1): 

1110 is on the border. Three points (1111, 1110 and 1101) will lie in region D, and 

1100 will lie in down right hand edge region if: 
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 
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1 1
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l

l
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Case (3d-2): 

1111 is on the border. Three points (1111, 1110 and 1100) will lie in region A, and 

1100 will lie in left upper right hand edge region if: 
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 
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1
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2
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l
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−
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Case 3e 

 

Case (3e-1): 

1110 is on the border. Three points (1111, 1101 and 0110) will lie in region C if: 
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 
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     

 
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Case (3e-2) 

1111 is on the border. Three points (1110, 1100 and 1011) will lie in region C if: 
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 

( ) ( )

( ) ( )

( )

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2

Im 1110 & Re[1110] & Re[1100] 0 & Im[1100] 0 & Re[1011] & Im[1011] 0
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Case 3f 
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Case (3f-1): 

1110 is on the border. Three points (1111, 0110 and 1011) will lie in region C if: 

 
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Case (3f-2): 

1111 is on the border. Three points (1110, 0110 and 1011) will lie in region C if: 
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 
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Case 3g 
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Case (3g-1): 

1110 is on the border. Three points (1111, 0110, and 0100) will lie in region C if: 

 
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Case (3g-2): 

1111 is on the border. Three points (1110, 1011, and 1001) will lie in region C if: 
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 
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+ − − 

− + + − 

 

Two points in outage 

For the two points in outage case, there are 13 cases for two possible received symbols 

in the same region. 

Case 2a 

 

Case (2a-1): 

1110 is on the border, and 1111 is not. 1110 and 1111 will lie in region B if: 
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( ) ( )

( )
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1
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Case (2a-2): 

1111 is on the border, and 1110 is not. 1110 and 1111 will lie in region B if:  
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( )( ) ( )
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Case 2b 

 

Case (2b-1): 

1110 is on the border, and 1111 is not. 1101 and 1111 will lie in region B if:  
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Case (2b-2): 

1111 is on the border, and 1110 is not. 1110 and 1100 will lie in region B if:  
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Case 2c 

 

Case (2c-1): 

1110 is on the border, and 1111 is not. 1110 and 1111 will lie in region D if:  
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Case (2c-2): 

1111 is on the border, and 1110 is not. 1110 and 1111 will lie in region A if:  
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Case 2d 

 

Case (2d-1):  

1110 is on the border, and 1111 is not. 1110 and 1100 will lie in region D if:  

   
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Case (2d-2):  

1111 is on the border, and 1110 is not. 1111 and 1101 will lie in region A if:  
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Case 2e 

 

Case (2e-1): 

1110 is on the border, and 1111 is not. 1111 and 1101 will lie in region D if:  
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Case (2e-2): 

1111 is on the border, and 1110 is not. 1100 and 1110 will lie in region A if:  
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Case 2f 

 

Case (2f-1): 

1110 is on the border, and 1111 is not. 1101 and 1100 will lie in region D if:  
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Case (2f-2): 

1111 is on the border, and 1110 is not. 1101 and 1100 will lie in region A if:  
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Case 2g 
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Case (2g-1): 

1110 is on the border, and 1111 is not. 1111 and 0110 will lie in region A if: 
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Case (2g-2): 

1111 is on the border, and 1110 is not. 1110 and 1011 will lie in region D if: 
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Case 2h 

 

Case (2h-1): 

1110 is on the border, and 1111 is not. 1110 and 1011 will lie in region D if: 
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Case (2h-2): 

1111 is on the border, and 1110 is not. 1111 and 0110 will lie in region A if: 
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Case 2i 

 

Case (2i-1): 

1110 is on the border, and 1111 is not. 1111 and 1101 will lie in region C if:  
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Case (2i-2): 

1111 is on the border, and 1110 is not. 1110 and 1100 will lie in region C if:  
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Case 2j 
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Case (2j-1) 

1110 is on the border, and 1111 is not. 1101 and 1100 will lie in region C if:  
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Case (2j-2): 

1111 is on the border, and 1110 is not. 1101 and 1100 will lie in region C if:  
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Case 2k 

 

Case (2k-1): 

1110 is on the border, and 1111 is not. 1011 and 0110 will lie in region C if: 
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Case (2k-2): 

1111 is on the border, and 1110 is not. 1011 and 0110 will lie in region C if: 
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Case 2l 

 

Case (2l-1): 

1110 is on the border, and 1111 is not. 1111 and 0100 will lie in region C if: 
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Case (2l-2): 

1111 is on the border, and 1110 is not. 1100 and 1011 will lie in region C if: 
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Case 2m 
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Case (2m-1): 

1110 is on the border, and 1111 is not. 1101 and 0110 will lie in region C if: 
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Case (2m-2): 

1111 is on the border, and 1110 is not. 1110 and 1001 will lie in region C if: 
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Definitions of Acronyms 

ARA  Accumulate-Repeat-Accumulate 

ADC  Analogue to Digital Converter 

AP   Access Point 

AWGN  Additive White Gaussian Noise 

BBU  Baseband (processing) Unit 

BER  Bit Error Ratio 

BPSK  Binary Phase Shift Keying 

BS   Base Station 

CRC  Cyclic Redundancy Check 

C-RAN  Cloud Radio Access Network 

CND  Check Node Decoder 

CNE  Check Node Encoder 

CSI   Channel State Information 

CPRI  Common Public Radio Interface 

CWDM  Coarse Wavelength Division Multiplexing 

DWDM  Dense Wavelength Division Multiplexing 

DAC  Digital to Analogue Converter 

ECC  Error Correction Capacity 

EGC  Equal Gain Combining 

FFT   Fast Fourier Transform 

FEC  Forward Error Correction 

FSC  Frequency Selective Channel 

FDM  Frequency Division Multiplex 

GF   Galois Field 

IFFT  Inverse Fast Fourier Transform 

ISI   Inter-symbol Interference 
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IBI   Inter-block Interference 

LLR  Log-likelihood Ratio 

LSB  Least Significant Bit 

LoS   Line-of-Sight 

mm-wave Millimetre-wave 

MMSE  Minimum Mean Square Error 

MRC  Maximum Ratio Combining 

MIMO  Multiple-Input-Multiple-Output 

ML   Maximum Likelihood 

MISO  Multiple-Input-Single-Output 

MSB  Most Significant Bit 

OBSAI  Open Base Station Architecture Initiative 

OFDM  Orthogonal Frequency Division Multiplexing 

QPSK  Quadrature Phase Shift Keying 

QAM  Quadrature Amplitude Modulation 

RMS  Root Mean Square 

RRU  Remote Radio Unit 

RF   Radio Frequency 

RSC  Reed-Solomon Code 

RRH  Remote Radio Head 

SNR  Signal to Noise Ratio 

SIMO  Single-Input-Multiple-Output 

SW   Slepian-Wolf 

SSB  Second Significant Bit 

VND  Variable Node Decoder 

VNE  Variable Node Encoder 

ZF   Zero-Forcing 
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List of Symbols 

P(x)   Probability of Event x 

P(x,y)   Joint probability mass function of discrete variables x and y 

Eb/N0  Bit energy to noise density ratio 

     Noise standard deviation 

N0   Noise power spectral density 

E(x)  Expectation of variable x 

Y

X    Integration from X to Y 

x=0

Y

xa   Summation of adding ax from x=0 to x=Y 

0

Y

xx
a

=   Product of multiplying ax from x=0 to x=Y 

exp   The exponential function 

log   The logarithmic function 

   The Euclidean distance 

    Absolute value 

( )
H

   Complex conjugate 

( )
-1

   Inverse function 

H(X)  Entropy of variable X 

H(X,Y)  Joint entropy of variable X and Y 

H(X|Y)  Conditional entropy of variable X and Y 

I(X;Y)  Mutual information of variable between X and Y 

I(X;Y|Z)  Conditional mutual information of variables X and Y given variable Z 

Re[.]  Real part of element 

Im[.]      Imaginary part of element 
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min   Minimum value 

 

max   Maximum value 
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